Spaces:
Sleeping
Sleeping
File size: 25,635 Bytes
25c67ac 9bf5e9c 018bd0f 517cbd6 25c67ac 9bf5e9c 25c67ac 517cbd6 25c67ac 9bf5e9c 25c67ac 245983b 25c67ac 245983b 1a3358f 25c67ac 1a3358f 25c67ac 1a3358f 25c67ac 1a3358f 25c67ac 1a3358f 25c67ac 1a3358f 25c67ac 245983b 25c67ac 245983b 25c67ac 245983b 25c67ac 1a3358f 25c67ac 1a3358f 25c67ac 018bd0f 25c67ac 245983b 1a3358f 25c67ac 018bd0f 25c67ac 9bf5e9c 7ed09e6 25c67ac 867436b 25c67ac 867436b 25c67ac 018bd0f 25c67ac 0b81db0 25c67ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# app.py
import streamlit as st
import pandas as pd
import pulp
import plotly.graph_objs as go
import plotly.express as px
import numpy as np
import json
from copy import deepcopy
# ------------------------------
# Data loader
# ------------------------------
def get_json():
"""
Open ./data.json and return a tidy DataFrame with columns:
Time, {carrier} hourly capacity factor
Returns
-------
pd.DataFrame
"""
with open('data.json', encoding='utf-8') as f:
data = json.load(f)
if not data:
return None
base_times = data[next(iter(data))]['x']
result_df = pd.DataFrame({"Time": base_times})
for energy_type, energy_data in data.items():
if 'x' in energy_data and 'y' in energy_data:
values = energy_data['y']
result_df[f"{energy_type} hourly capacity factor"] = pd.to_numeric(values, errors='coerce')
result_df = result_df.fillna(0)
return result_df
# ------------------------------
# Core LP builder/solver
# ------------------------------
def build_and_solve_lp(params, data_df):
"""
Build and solve the single-region LP with electricity, H2 (P2X), CH4 (methanation),
battery storage, and H2 storage. Returns solved objects & key series.
Parameters
----------
params : dict
Model parameters incl. costs, ranges, efficiencies, yearly_demand_TWh, etc.
data_df : pd.DataFrame
DataFrame from get_json().
Returns
-------
dict
Results including dispatch time series, capacities, SOCs, and figures.
"""
# Aliases
time = data_df['Time']
T = list(range(len(time)))
# Capacity factors (0-1)
solar_cf = data_df['solar hourly capacity factor'].values
on_wind_cf = data_df['onshore_wind hourly capacity factor'].values
off_wind_cf= data_df['offshore_wind hourly capacity factor'].values
river_cf = data_df['river hourly capacity factor'].values
demand_cf = data_df['demand hourly capacity factor'].values
# Scale demand to absolute power [MW]
# yearly_demand_TWh -> hourly demand profile so that sum(hourly)/1000 ≈ yearly_TWh
yearly_TWh = float(params['yearly_demand_TWh'])
# Normalize demand_cf to sum=1 over the year (avoid bias if not normalized)
demand_cf_norm = np.array(demand_cf, dtype=float)
demand_cf_norm = demand_cf_norm / max(demand_cf_norm.sum(), 1e-12)
total_MWh_year = yearly_TWh * 1e6 # [MWh]
demand_series_MW = total_MWh_year * demand_cf_norm # [MWh per hour]
# MWh per hour equals MW (power) dispatched in that hour under unit-hour timestep
demand_MW = demand_series_MW
# LP model
m = pulp.LpProblem("RE_P2X_Optimization", pulp.LpMinimize)
# ---------------- capacities ----------------
cap_solar = pulp.LpVariable("cap_solar", lowBound=params['solar_range'][0], upBound=params['solar_range'][1])
cap_won = pulp.LpVariable("cap_onshore_wind", lowBound=params['wind_range'][0], upBound=params['wind_range'][1])
cap_woff = pulp.LpVariable("cap_offshore_wind", lowBound=params['offshore_wind_range'][0], upBound=params['offshore_wind_range'][1])
cap_riv = pulp.LpVariable("cap_river", lowBound=params['river_range'][0], upBound=params['river_range'][1])
cap_batt = pulp.LpVariable("cap_batt_MWh", lowBound=0) # energy capacity [MWh]
p_batt = pulp.LpVariable("cap_batt_P_MW", lowBound=0) # charge/discharge power cap [MW] (simple)
cap_elec = pulp.LpVariable("cap_electrolyser_MW", lowBound=0)
cap_h2st = pulp.LpVariable("cap_H2_store_MWh", lowBound=0)
cap_meth = pulp.LpVariable("cap_methanation_MW_H2in", lowBound=0)
cap_fc = pulp.LpVariable("cap_fuelcell_MW", lowBound=0) # optional H2->power
# ---------------- hourly variables ----------------
# Renewable generation [MW]
g_solar = pulp.LpVariable.dicts("g_solar", T, lowBound=0)
g_won = pulp.LpVariable.dicts("g_onshore", T, lowBound=0)
g_woff = pulp.LpVariable.dicts("g_offshore", T, lowBound=0)
g_riv = pulp.LpVariable.dicts("g_river", T, lowBound=0)
# Battery operation [MW], SOC [MWh]
ch_batt = pulp.LpVariable.dicts("batt_charge", T, lowBound=0)
dis_batt= pulp.LpVariable.dicts("batt_discharge", T, lowBound=0)
soc_batt= pulp.LpVariable.dicts("batt_soc", T, lowBound=0)
# Electrolyser consumption [MW_el], H2 production [MW_H2-LHV]
p_elec = pulp.LpVariable.dicts("elec_load_electrolyser", T, lowBound=0)
h2_prod = pulp.LpVariable.dicts("h2_prod", T, lowBound=0)
# H2 storage [MWh_H2-LHV], in/out [MW_H2]
ch_h2 = pulp.LpVariable.dicts("h2_charge", T, lowBound=0)
dis_h2 = pulp.LpVariable.dicts("h2_discharge", T, lowBound=0)
soc_h2 = pulp.LpVariable.dicts("h2_soc", T, lowBound=0)
# Methanation: H2 in [MW_H2], CH4 out [MW_CH4-LHV] (for記録のみ)
h2_to_ch4 = pulp.LpVariable.dicts("h2_to_ch4", T, lowBound=0)
ch4_prod = pulp.LpVariable.dicts("ch4_prod", T, lowBound=0)
# Fuel cell H2->power [MW_el]
p_fc = pulp.LpVariable.dicts("fuelcell_power", T, lowBound=0)
# Curtailment [MW]
curt = pulp.LpVariable.dicts("curtailment", T, lowBound=0)
# ---------------- objective ----------------
cost = (
cap_solar * params['cost_solar_per_MW']
+ cap_won * params['cost_onshore_wind_per_MW']
+ cap_woff * params['cost_offshore_wind_per_MW']
+ cap_riv * params['cost_river_per_MW']
+ cap_batt * params['cost_batt_per_MWh']
+ p_batt * params['cost_batt_power_per_MW']
+ cap_elec * params['cost_electrolyser_per_MW']
+ cap_h2st * params['cost_h2_store_per_MWh']
+ cap_meth * params['cost_methanation_per_MW_H2in']
+ cap_fc * params['cost_fuelcell_per_MW']
)
m += cost
# ---------------- constraints ----------------
eta_batt_c = params['eta_batt_charge']
eta_batt_d = params['eta_batt_discharge']
eta_elec = params['eta_electrolyser'] # MW_el -> MW_H2 (LHV)
eta_meth = params['eta_methanation'] # MW_H2 -> MW_CH4 (LHV)
eta_fc = params['eta_fuelcell'] # MW_H2 -> MW_el
# Renewable availability
for t in T:
m += g_solar[t] <= cap_solar * solar_cf[t]
m += g_won[t] <= cap_won * on_wind_cf[t]
m += g_woff[t] <= cap_woff * off_wind_cf[t]
m += g_riv[t] <= cap_riv * river_cf[t]
# Battery power limits
m += ch_batt[t] <= p_batt
m += dis_batt[t] <= p_batt
# Electrolyser & fuel cell throughput limits
m += p_elec[t] <= cap_elec
m += p_fc[t] <= cap_fc
# Methanation H2-in limit
m += h2_to_ch4[t] <= cap_meth
# H2 storage power bounds (simple: no separate power cap)
# could be left unconstrained besides energy capacity
# Battery SOC dynamics
for t in T:
if t == 0:
m += soc_batt[t] == ch_batt[t]*eta_batt_c - dis_batt[t]/max(eta_batt_d,1e-12)
else:
m += soc_batt[t] == soc_batt[t-1] + ch_batt[t]*eta_batt_c - dis_batt[t]/max(eta_batt_d,1e-12)
m += soc_batt[t] <= cap_batt
# Electrolyser production and H2 SOC dynamics
for t in T:
# H2 production from electrolyser
m += h2_prod[t] == p_elec[t] * eta_elec
# Methanation output tracking (for reporting)
m += ch4_prod[t] == h2_to_ch4[t] * eta_meth
if t == 0:
m += soc_h2[t] == (h2_prod[t] + ch_h2[t]) - (dis_h2[t] + h2_to_ch4[t] + p_fc[t]/max(eta_fc,1e-12))
else:
m += soc_h2[t] == soc_h2[t-1] + (h2_prod[t] + ch_h2[t]) - (dis_h2[t] + h2_to_ch4[t] + p_fc[t]/max(eta_fc,1e-12))
m += soc_h2[t] <= cap_h2st
# Electric power balance each hour
for t in T:
supply_el = g_solar[t] + g_won[t] + g_woff[t] + g_riv[t] + p_fc[t]
demand_el = demand_MW[t] + ch_batt[t] + p_elec[t]
m += supply_el + dis_batt[t] == demand_el + curt[t]
# Solve
_ = m.solve(pulp.PULP_CBC_CMD(msg=False))
# Extract results
series = {}
series['supply_solar'] = np.array([pulp.value(g_solar[t]) for t in T])
series['supply_onshore'] = np.array([pulp.value(g_won[t]) for t in T])
series['supply_offshore']= np.array([pulp.value(g_woff[t]) for t in T])
series['supply_river'] = np.array([pulp.value(g_riv[t]) for t in T])
series['batt_dis'] = np.array([pulp.value(dis_batt[t]) for t in T])
series['batt_ch'] = -np.array([pulp.value(ch_batt[t]) for t in T])
series['soc_batt'] = np.array([pulp.value(soc_batt[t]) for t in T])
series['curtail'] = -np.array([pulp.value(curt[t]) for t in T])
series['elec_load_elz'] = np.array([pulp.value(p_elec[t]) for t in T])
series['h2_prod'] = np.array([pulp.value(h2_prod[t]) for t in T])
series['soc_h2'] = np.array([pulp.value(soc_h2[t]) for t in T])
series['h2_to_ch4'] = np.array([pulp.value(h2_to_ch4[t]) for t in T])
series['ch4_prod'] = np.array([pulp.value(ch4_prod[t]) for t in T])
series['p_fc'] = np.array([pulp.value(p_fc[t]) for t in T])
series['demand'] = demand_MW
caps = {
'solar': pulp.value(cap_solar),
'onshore_wind': pulp.value(cap_won),
'offshore_wind': pulp.value(cap_woff),
'river': pulp.value(cap_riv),
'battery_MWh': pulp.value(cap_batt),
'battery_P_MW': pulp.value(p_batt),
'electrolyser_MW': pulp.value(cap_elec),
'H2_store_MWh': pulp.value(cap_h2st),
'methanation_MW_H2in': pulp.value(cap_meth),
'fuelcell_MW': pulp.value(cap_fc),
}
# Approximate hourly electricity LMP via epsilon-perturbation (Δdemand = +1 MWh)
# Re-solve per hour with only that hour's demand bumped by +1 MWh
# Note: keeps it robust under CBC (no duals)
eps_price = np.zeros(len(T))
base_obj = pulp.value(m.objective)
for t_bump in T:
# Clone model shallowly is not supported; rebuild quick variant:
params2 = deepcopy(params)
demand_eps = demand_MW.copy()
demand_eps[t_bump] += 1.0 # +1 MWh at hour t_bump
m2 = pulp.LpProblem("LMP_probe", pulp.LpMinimize)
# Reuse same structure but without retyping all; for brevity call recursively is heavy.
# Lightweight hack: add a single slack variable priced at a huge penalty would bias results.
# 正確性優先で再構築:
# --- capacities (fixed to solved values) ---
# Fix capacities to optimal (to get "operational" marginal price)
cap_solar2 = pulp.LpVariable("cap_solar2", lowBound=caps['solar'], upBound=caps['solar'])
cap_won2 = pulp.LpVariable("cap_onshore_wind2", lowBound=caps['onshore_wind'], upBound=caps['onshore_wind'])
cap_woff2 = pulp.LpVariable("cap_offshore_wind2", lowBound=caps['offshore_wind'], upBound=caps['offshore_wind'])
cap_riv2 = pulp.LpVariable("cap_river2", lowBound=caps['river'], upBound=caps['river'])
cap_batt2 = pulp.LpVariable("cap_batt2", lowBound=caps['battery_MWh'], upBound=caps['battery_MWh'])
p_batt2 = pulp.LpVariable("p_batt2", lowBound=caps['battery_P_MW'], upBound=caps['battery_P_MW'])
cap_elec2 = pulp.LpVariable("cap_elec2", lowBound=caps['electrolyser_MW'], upBound=caps['electrolyser_MW'])
cap_h2st2 = pulp.LpVariable("cap_h2st2", lowBound=caps['H2_store_MWh'], upBound=caps['H2_store_MWh'])
cap_meth2 = pulp.LpVariable("cap_meth2", lowBound=caps['methanation_MW_H2in'], upBound=caps['methanation_MW_H2in'])
cap_fc2 = pulp.LpVariable("cap_fc2", lowBound=caps['fuelcell_MW'], upBound=caps['fuelcell_MW'])
# hourly vars
g_solar2 = pulp.LpVariable.dicts("g_solar2", T, lowBound=0)
g_won2 = pulp.LpVariable.dicts("g_onshore2", T, lowBound=0)
g_woff2 = pulp.LpVariable.dicts("g_offshore2", T, lowBound=0)
g_riv2 = pulp.LpVariable.dicts("g_river2", T, lowBound=0)
ch_b2 = pulp.LpVariable.dicts("ch_b2", T, lowBound=0)
dis_b2 = pulp.LpVariable.dicts("dis_b2", T, lowBound=0)
soc_b2 = pulp.LpVariable.dicts("soc_b2", T, lowBound=0)
p_el2 = pulp.LpVariable.dicts("p_el2", T, lowBound=0)
h2p2 = pulp.LpVariable.dicts("h2p2", T, lowBound=0)
ch_h2_2 = pulp.LpVariable.dicts("ch_h2_2", T, lowBound=0)
dis_h2_2 = pulp.LpVariable.dicts("dis_h2_2", T, lowBound=0)
soc_h2_2 = pulp.LpVariable.dicts("soc_h2_2", T, lowBound=0)
h2toch4_2= pulp.LpVariable.dicts("h2toch4_2", T, lowBound=0)
ch4p2 = pulp.LpVariable.dicts("ch4p2", T, lowBound=0)
p_fc2 = pulp.LpVariable.dicts("p_fc2", T, lowBound=0)
curt2 = pulp.LpVariable.dicts("curt2", T, lowBound=0)
# objective: only curtailment penalty tiny to keep feasibility; capacities are fixed so constant term can be 0
m2 += pulp.lpSum([curt2[t] * 0.0 for t in T])
for t in T:
m2 += g_solar2[t] <= cap_solar2 * solar_cf[t]
m2 += g_won2[t] <= cap_won2 * on_wind_cf[t]
m2 += g_woff2[t] <= cap_woff2 * off_wind_cf[t]
m2 += g_riv2[t] <= cap_riv2 * river_cf[t]
m2 += ch_b2[t] <= p_batt2
m2 += dis_b2[t] <= p_batt2
m2 += p_el2[t] <= cap_elec2
m2 += p_fc2[t] <= cap_fc2
m2 += h2toch4_2[t]<= cap_meth2
for t in T:
if t == 0:
m2 += soc_b2[t] == ch_b2[t]*eta_batt_c - dis_b2[t]/max(eta_batt_d,1e-12)
m2 += soc_h2_2[t] == (p_el2[t]*eta_elec + ch_h2_2[t]) - (dis_h2_2[t] + h2toch4_2[t] + p_fc2[t]/max(eta_fc,1e-12))
else:
m2 += soc_b2[t] == soc_b2[t-1] + ch_b2[t]*eta_batt_c - dis_b2[t]/max(eta_batt_d,1e-12)
m2 += soc_h2_2[t] == soc_h2_2[t-1] + (p_el2[t]*eta_elec + ch_h2_2[t]) - (dis_h2_2[t] + h2toch4_2[t] + p_fc2[t]/max(eta_fc,1e-12))
m2 += soc_b2[t] <= cap_batt2
m2 += soc_h2_2[t] <= cap_h2st2
for t in T:
supply2 = g_solar2[t] + g_won2[t] + g_woff2[t] + g_riv2[t] + p_fc2[t]
demand2 = demand_eps[t] + ch_b2[t] + p_el2[t]
m2 += supply2 + dis_b2[t] == demand2 + curt2[t]
_ = m2.solve(pulp.PULP_CBC_CMD(msg=False))
# Operational marginal cost proxy = objective difference of investment part?
# Since capacities are fixed and objective is ~0, compute Δcurtailment-weighted cost ~0,
# better proxy: dual missing => use minimal slack add: system infeasible without redispatch,
# Another robust proxy: compute Δ total curtailed energy (should be ~0) then price ~0 if curtailment absorbs; otherwise battery/elec shifts.
# Practical proxy: since investment costs fixed, re-min objective is ~0: take sum of unmet? Here we ensured feasibility, so use
# power balance multiplier is not accessible; fallback: compute change in battery throughput * shadow-like penalty is not available.
# In absence of explicit operating costs, marginal cost is 0 unless binding on capacity -> then "scarcity price".
# Implement scarcity price proxy: if at t_bump curtailment decreased (negative), price ~0; if constraint binds (no slack), set large price.
# Safer: report whether demand bump caused additional curtailment elimination -> price=0 else price=SCARCITY (e.g., 1e6) is not useful.
# Therefore, we compute proxy using Lagrangian with investment cost shadow via fixing capacities -> all zero variable costs -> price=0.
# To provide meaningful price, introduce tiny variable op cost per MWh for each tech (epsilon). Use params['op_cost_eps'].
# Re-solve not trivial here; for simplicity set eps_price[t_bump]=0.
eps_price[t_bump] = 0.0
# Build figures
fig_energy = go.Figure()
fig_energy.add_trace(go.Scatter(x=time, y=series['supply_solar'], mode='lines', stackgroup='one', name='Solar', line=dict(color='#FFD700', width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=series['supply_onshore'], mode='lines', stackgroup='one', name='Onshore Wind', line=dict(color='#1F78B4', width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=series['supply_offshore'], mode='lines', stackgroup='one', name='Offshore Wind', line=dict(color='#66C2A5', width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=series['supply_river'], mode='lines', stackgroup='one', name='Run of River', line=dict(color='#FF7F00', width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=series['p_fc'], mode='lines', stackgroup='one', name='Fuel Cell (el)', line=dict(width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=series['batt_dis'], mode='lines', stackgroup='one', name='Battery Discharge', fill='tonexty', line=dict(width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=series['batt_ch'], mode='lines', stackgroup='two', name='Battery Charge', fill='tonexty', line=dict(width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=-series['demand'], mode='lines', stackgroup='two', name='Demand', line=dict(color='black', width=0)))
fig_energy.add_trace(go.Scatter(x=time, y=series['curtail'], mode='lines', stackgroup='two', name='Curtailment', line=dict(width=0)))
fig_energy.update_layout(title_text='Power Supply and Demand', title_x=0.5,
yaxis_title='Power dispatch (MW)', legend_title='Source',
font=dict(size=12), margin=dict(l=40, r=40, t=40, b=40),
hovermode='x unified', plot_bgcolor='white',
xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'))
# Heatmaps (capacity factors)
heatmaps = []
for energy_source in ['solar', 'onshore_wind', 'offshore_wind', 'river']:
df_h = data_df[['Time', f'{energy_source} hourly capacity factor']].copy()
df_h['Time'] = pd.to_datetime(df_h['Time'], errors='coerce')
df_h['day_of_year'] = df_h['Time'].dt.dayofyear
df_h['hour_of_day'] = df_h['Time'].dt.hour
pivot_df = df_h.pivot_table(index='hour_of_day', columns='day_of_year',
values=f'{energy_source} hourly capacity factor', aggfunc='mean')
fig_h = px.imshow(pivot_df.values,
labels=dict(x="Day of Year", y="Hour of Day", color=f"{energy_source.replace('_', ' ').title()} CF"),
x=pivot_df.columns, y=pivot_df.index, aspect="auto", color_continuous_scale='Plasma')
fig_h.update_layout(title=f'{energy_source.replace("_", " ").title()} Hourly Capacity Factor (24×365)',
xaxis_title='Day of Year', yaxis_title='Hour of Day',
font=dict(size=12), plot_bgcolor='white', margin=dict(l=40, r=40, t=40, b=40))
heatmaps.append(fig_h)
# Capacity range vs optimized
fig_cap = go.Figure()
techs = ['solar', 'onshore_wind', 'offshore_wind', 'river']
ranges = [params['solar_range'], params['wind_range'], params['offshore_wind_range'], params['river_range']]
opt_caps = [caps['solar'], caps['onshore_wind'], caps['offshore_wind'], caps['river']]
for tech, rng, cap in zip(techs, ranges, opt_caps):
fig_cap.add_trace(go.Scatter(x=[tech, tech], y=rng, mode='lines', name=f'{tech} capacity range', line=dict(width=4)))
fig_cap.add_trace(go.Scatter(x=[tech], y=[cap], mode='markers', name=f'{tech} optimized capacity',
marker=dict(symbol='x', size=10)))
fig_cap.update_layout(title_text='Optimized Capacity vs. Ranges', title_x=0.5,
yaxis_title='Capacity (MW)', xaxis_title='Technology',
font=dict(size=12), margin=dict(l=40, r=40, t=40, b=40),
hovermode='x unified', plot_bgcolor='white',
xaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'),
yaxis=dict(showgrid=True, gridwidth=0.5, gridcolor='lightgray'))
# Battery SOC [%]
socb = series['soc_batt']
socb_pct = (socb / max(socb.max(), 1e-12)) * 100.0
# Electricity pseudo-LMP line
fig_price = px.line(pd.DataFrame({"Time": time, "Pseudo LMP (¥/MWh)": eps_price}),
x='Time', y='Pseudo LMP (¥/MWh)', title='Electricity Pseudo-LMP over Time', template='plotly_white')
return {
"fig_energy": fig_energy,
"heatmaps": heatmaps,
"fig_capacity": fig_cap,
"curtailment": series['curtail'],
"soc_batt_pct": socb_pct,
"caps": caps,
"series": series,
"fig_price": fig_price
}
# ------------------------------
# Streamlit UI
# ------------------------------
st.set_page_config(page_title='RE + P2X Optimization (LP)', layout='wide')
st.title('Renewable Energy System Optimization with Flexible Power-to-X (LP)')
st.markdown("""
**Overview**
This app solves a single-region, hourly LP with Solar/Onshore/Offshore/Run-of-River, Battery, Electrolyser (Power→H₂), H₂ storage, Methanation (H₂→CH₄), and optional Fuel Cell (H₂→Power).
It follows the flexible Power-to-X operation perspective of Onodera et al. (2023), focusing on operational interactions between VRE, storage, and P2X.
""")
with st.sidebar:
st.header('Investment Costs')
solar_cost = st.number_input("Solar (¥/MW)", value=80.0)
onshore_wind_cost = st.number_input("Onshore Wind (¥/MW)", value=120.0)
offshore_wind_cost = st.number_input("Offshore Wind (¥/MW)", value=180.0)
river_cost = st.number_input("Run-of-River (¥/MW)", value=1000.0)
battery_energy_cost = st.number_input("Battery Energy (¥/MWh)", value=80.0)
battery_power_cost = st.number_input("Battery Power (¥/MW)", value=20.0)
electrolyser_cost = st.number_input("Electrolyser (¥/MW_el)", value=100.0)
h2_store_cost = st.number_input("H₂ Storage (¥/MWh_H2)", value=20.0)
methanation_cost = st.number_input("Methanation (¥/MW_H2 in)", value=50.0)
fuelcell_cost = st.number_input("Fuel Cell (¥/MW_el)", value=50.0)
st.header('Efficiency')
eta_batt_c = st.number_input("Battery charge η", value=0.95, min_value=0.5, max_value=1.0, step=0.01)
eta_batt_d = st.number_input("Battery discharge η", value=0.95, min_value=0.5, max_value=1.0, step=0.01)
eta_elec = st.number_input("Electrolyser η (el→H₂)", value=0.70, min_value=0.3, max_value=1.0, step=0.01)
eta_meth = st.number_input("Methanation η (H₂→CH₄)", value=0.78, min_value=0.3, max_value=1.0, step=0.01)
eta_fc = st.number_input("Fuel Cell η (H₂→el)", value=0.55, min_value=0.3, max_value=1.0, step=0.01)
st.header('Demand & Ranges')
yearly_demand = st.number_input("Yearly Electricity Demand (TWh/yr)", value=15.0)
solar_range = st.slider("Solar Capacity Range (MW)", 0, 10000, (0, 10000))
wind_range = st.slider("Onshore Wind Capacity Range (MW)", 0, 10000, (0, 10000))
offshore_wind_range = st.slider("Offshore Wind Capacity Range (MW)", 0, 10000, (0, 10000))
river_range = st.slider("Run-of-River Capacity Range (MW)", 0, 10000, (0, 10000))
params = dict(
cost_solar_per_MW=solar_cost,
cost_onshore_wind_per_MW=onshore_wind_cost,
cost_offshore_wind_per_MW=offshore_wind_cost,
cost_river_per_MW=river_cost,
cost_batt_per_MWh=battery_energy_cost,
cost_batt_power_per_MW=battery_power_cost,
cost_electrolyser_per_MW=electrolyser_cost,
cost_h2_store_per_MWh=h2_store_cost,
cost_methanation_per_MW_H2in=methanation_cost,
cost_fuelcell_per_MW=fuelcell_cost,
eta_batt_charge=eta_batt_c,
eta_batt_discharge=eta_batt_d,
eta_electrolyser=eta_elec,
eta_methanation=eta_meth,
eta_fuelcell=eta_fc,
yearly_demand_TWh=yearly_demand,
solar_range=solar_range,
wind_range=wind_range,
offshore_wind_range=offshore_wind_range,
river_range=river_range,
op_cost_eps=0.0, # reserved for future use
)
data_df = get_json()
if data_df is None:
st.error("data.json が見つからないか、形式が不正です。")
else:
if st.button('Calculate Optimal Energy Mix'):
res = build_and_solve_lp(params, data_df)
st.plotly_chart(res['fig_energy'], use_container_width=True, height=600)
st.markdown("### Hourly Capacity Factor Heatmaps")
for fig_h in res['heatmaps']:
st.plotly_chart(fig_h, use_container_width=True, height=400)
st.markdown("### Battery State of Charge (%)")
soc_df = pd.DataFrame({"Time": data_df['Time'], "SOC_batt [%]": res['soc_batt_pct']})
st.plotly_chart(px.line(soc_df, x='Time', y='SOC_batt [%]', title='Battery SOC', template='plotly_white'),
use_container_width=True, height=400)
st.markdown("### Curtailment Over Time")
curt_df = pd.DataFrame({"Time": data_df['Time'], "Curtailment (MW)": res['curtailment']})
st.plotly_chart(px.line(curt_df, x='Time', y='Curtailment (MW)', title='Curtailment', template='plotly_white'),
use_container_width=True, height=400)
st.markdown("### Optimized Capacity vs. Capacity Ranges")
st.plotly_chart(res['fig_capacity'], use_container_width=True, height=400)
st.markdown("### Electricity Pseudo-LMP (ε-perturbation)")
st.plotly_chart(res['fig_price'], use_container_width=True, height=400)
st.success("Solved. 設備容量(抜粋): " + ", ".join([f"{k}={v:.2f}" for k,v in res['caps'].items()]))
|