simples_pedro / app.py
pedrobritto-123's picture
Update app.py
5555137 verified
import re
import traceback
from typing import List, Dict, Any, Tuple
import numpy as np
import pandas as pd
import gradio as gr
from fpdf import FPDF
EPS = 1e-9
def parse_coeffs(text: str) -> List[float]:
if not text or not text.strip():
return []
s = text.replace(',', ' ')
parts = [p for p in s.split() if p.strip()]
coeffs = []
for p in parts:
try:
coeffs.append(float(eval(p)))
except Exception:
raise ValueError(f"Coeficiente inválido: '{p}'")
return coeffs
def parse_constraints(text: str, nvars: int) -> Tuple[List[Dict[str,Any]], List[int]]:
lines = [ln.strip() for ln in text.strip().splitlines() if ln.strip()]
skip_words = ["tal que", "sujeito a", "subject to", "s.t.", "st:"]
lines = [ln for ln in lines if not any(word in ln.lower() for word in skip_words)]
free_vars = []
cons = []
pattern_free = re.compile(r'x([0-9]+)\s*(livre|free)', flags=re.I)
# CORREÇÃO: regex robusto para coeficientes negativos ou omitidos
term_pattern = r'([+-]?\d*(?:\.\d+)?)(x\d+)'
for ln in lines[:]:
m = pattern_free.search(ln)
if m:
idx = int(m.group(1)) - 1
if idx < 0 or idx >= nvars:
raise ValueError(f"Variável livre fora do intervalo: x{idx+1}")
free_vars.append(idx)
lines.remove(ln)
for ln in lines:
s = ln.replace(" ", "")
if "<=" in s or "=<" in s:
s = s.replace("=<", "<=")
left, right = s.split("<=")
sense = "<="
elif ">=" in s or "=>" in s:
s = s.replace("=>", ">=")
left, right = s.split(">=")
sense = ">="
elif "=" in s:
left, right = s.split("=")
sense = "="
else:
raise ValueError(f"Faltando <=, >= ou =: '{ln}'")
try:
rhs = float(eval(right))
except Exception:
raise ValueError(f"RHS inválido em: '{ln}'")
coeffs = [0.0] * nvars
# agora os termos negativos funcionam corretamente
terms = re.findall(term_pattern, left)
for coef_str, var_str in terms:
idx = int(var_str[1:]) - 1
# Trata coeficientes omitidos ou sinal puro
if coef_str in ["", "+", None]:
v = 1.0
elif coef_str == "-":
v = -1.0
else:
v = float(eval(coef_str))
coeffs[idx] += v
cons.append({'coeffs': coeffs, 'sense': sense, 'rhs': rhs})
return cons, sorted(list(set(free_vars)))
def expand_free_variables(nvars: int, c: List[float], constraints: List[Dict[str,Any]], free_vars: List[int]):
new_c = []
mapping = {}
for i in range(nvars):
if i in free_vars:
new_c.append(c[i]); mapping[len(new_c)-1] = (i, +1)
new_c.append(-c[i]); mapping[len(new_c)-1] = (i, -1)
else:
new_c.append(c[i]); mapping[len(new_c)-1] = (i, +1)
new_constraints = []
for row in constraints:
coeffs = row['coeffs']
new_coeffs = []
for i in range(nvars):
if i in free_vars:
new_coeffs.append(coeffs[i])
new_coeffs.append(-coeffs[i])
else:
new_coeffs.append(coeffs[i])
new_constraints.append({'coeffs': new_coeffs, 'sense': row['sense'], 'rhs': row['rhs']})
return len(new_c), new_c, new_constraints, mapping
# ---------------- Tableau helpers ----------------
def snapshot_html(tableau: np.ndarray, basis: List[int]) -> str:
cols = tableau.shape[1]
html = '<table border="1" style="border-collapse:collapse;font-family:Arial; font-size:12px;">'
for i in range(tableau.shape[0]):
html += '<tr>'
for j in range(cols):
val = tableau[i, j]
html += f'<td style="padding:4px;">{val:.6g}</td>'
html += '</tr>'
html += '</table>'
return html
def primal_simplex_tableau(T: np.ndarray, basis: List[int], max_iters=1000) -> Tuple[np.ndarray, List[int], List[Dict[str,Any]]]:
m = T.shape[0] - 1
ncols = T.shape[1]
path = []
path.append({'tableau': T.copy(), 'basis': basis.copy(), 'html': snapshot_html(T, basis)})
it = 0
while it < max_iters:
it += 1
obj_row = T[-1, :-1]
entering_candidates = np.where(obj_row < -EPS)[0]
if entering_candidates.size == 0:
break
entering = int(entering_candidates[0])
ratios = np.full(m, np.inf)
for i in range(m):
a = T[i, entering]
if a > EPS:
ratios[i] = T[i, -1] / a
if np.all(np.isinf(ratios)):
raise Exception('Unbounded LP')
leaving = int(np.argmin(ratios))
piv = T[leaving, entering]
T[leaving, :] = T[leaving, :] / piv
for i in range(m+1):
if i == leaving: continue
T[i, :] = T[i, :] - T[i, entering] * T[leaving, :]
basis[leaving] = entering
path.append({'tableau': T.copy(), 'basis': basis.copy(), 'html': snapshot_html(T, basis)})
return T, basis, path
# ---------------- Two-Phase implementation----------------
def build_tableau_two_phase(c: List[float], constraints: List[Dict[str,Any]], sense: str = 'max'):
obj_mult = 1.0
if sense == 'min':
obj_mult = -1.0
c_adj = [ci * obj_mult for ci in c]
n = len(c_adj)
m = len(constraints)
slacks = 0
artificials = 0
for row in constraints:
if row['sense'] == '<=':
slacks += 1
elif row['sense'] == '>=':
slacks += 1
artificials += 1
else:
artificials += 1
total_cols = n + slacks + artificials + 1
T = np.zeros((m + 1, total_cols))
slack_idx = n
artificial_idx = n + slacks
basis = []
art_positions = []
s_counter = 0
a_counter = 0
for i, row in enumerate(constraints):
coeffs = row['coeffs']
T[i, :n] = coeffs
if row['sense'] == '<=':
T[i, slack_idx + s_counter] = 1.0
basis.append(slack_idx + s_counter)
s_counter += 1
elif row['sense'] == '>=':
T[i, slack_idx + s_counter] = -1.0
T[i, artificial_idx + a_counter] = 1.0
basis.append(artificial_idx + a_counter)
art_positions.append(artificial_idx + a_counter)
s_counter += 1
a_counter += 1
else: # equality
T[i, artificial_idx + a_counter] = 1.0
basis.append(artificial_idx + a_counter)
art_positions.append(artificial_idx + a_counter)
a_counter += 1
T[i, -1] = row['rhs']
# Phase I objective: minimize sum of artificials.
# Convert to maximization for our tableau solver: maximize (-sum a_j)
# So c_phase1 (for maximization) = -1 for each artificial column.
c_phase1 = np.zeros(total_cols - 1)
for a in art_positions:
c_phase1[a] = -1.0
# In tableau we store -c in last row, so set T[-1, :-1] = -c_phase1
T[-1, :-1] = -c_phase1
# But because artificials are in basis, we must adjust objective row:
# T[-1, :] = -c + sum_{i in basis} c_Bi * row_i, where c_Bi = c_phase1[basis_i]
for i in range(m):
bi = basis[i]
cBi = c_phase1[bi] if bi < len(c_phase1) else 0.0
if abs(cBi) > EPS:
T[-1, :] += cBi * T[i, :]
return T, basis, (n, slacks, artificials), art_positions, c_adj
def run_two_phase(c, constraints, sense='max'):
#FASE I
T0, basis0, (n_orig, n_slack, n_art), art_positions, c_adj = build_tableau_two_phase(
c, constraints, sense
)
try:
T1, basis1, path1 = primal_simplex_tableau(T0.copy(), basis0.copy())
except Exception as e:
return {
'status': 'phase1_failed',
'error': str(e),
'trace': traceback.format_exc()
}
phase1_obj = float(T1[-1, -1])
# se sum(a_j) != 0 → inviável
if abs(phase1_obj) > 1e-6:
return {
'status': 'infeasible',
'phase1_obj': phase1_obj,
'phase1_path': path1,
'tableau_phase1': T1
}
# ---------- REMOVER ARTIFICIAIS ----------
art_cols = set(art_positions)
old_ncols = T1.shape[1] - 1
keep_cols = [j for j in range(old_ncols) if j not in art_cols]
# construir tableau da fase II (T2)
T2 = np.zeros((T1.shape[0], len(keep_cols) + 1))
for i, col in enumerate(keep_cols):
T2[:, i] = T1[:, col]
T2[:, -1] = T1[:, -1]
# nova base
basis2 = []
for bi in basis1:
if bi in art_cols:
basis2.append(None)
else:
basis2.append(keep_cols.index(bi))
# corrigir linhas onde a base ficou None
used = set([b for b in basis2 if b is not None])
m = T2.shape[0] - 1
for i in range(m):
if basis2[i] is None:
replaced = False
for j in range(T2.shape[1] - 1):
if j not in used and abs(T2[i, j]) > EPS:
piv = T2[i, j]
T2[i, :] = T2[i, :] / piv
for r in range(m+1):
if r != i:
T2[r, :] -= T2[r, j] * T2[i, :]
basis2[i] = j
used.add(j)
replaced = True
break
if not replaced:
basis2[i] = None
#FASE II — definir objetivo original
c_full = []
for col in keep_cols:
if col < len(c_adj):
c_full.append(c_adj[col])
else:
c_full.append(0.0)
c_full = np.array(c_full)
T2[-1, :-1] = -c_full
for i in range(m):
bi = basis2[i]
if bi is not None and bi < len(c_full):
coef = c_full[bi]
if abs(coef) > EPS:
T2[-1, :] += coef * T2[i, :]
# preencher bases ausentes
for i in range(m):
if basis2[i] is None:
for j in range(T2.shape[1]-1):
if j not in used:
basis2[i] = j
used.add(j)
break
#SIMPLEX FASE II
try:
T_final, basis_final, path2 = primal_simplex_tableau(T2.copy(), basis2.copy())
except Exception as e:
return {
'status': 'phase2_failed',
'error': str(e),
'phase1_path': path1,
'trace': traceback.format_exc()
}
#EXTRAI X*, REDUCED COSTS E DUAL (GERAL)
x = [0.0] * n_orig
for i, bi in enumerate(basis_final):
if bi is not None:
oldcol = keep_cols[bi]
if oldcol < n_orig:
x[oldcol] = float(T_final[i, -1])
z = float(T_final[-1, -1])
# custos reduzidos apenas variáveis originais
reduced = []
for j in range(n_orig):
if j in keep_cols:
colpos = keep_cols.index(j)
z_j = -T_final[-1, colpos]
reduced.append(round(c_adj[j] - z_j, 8))
else:
reduced.append(0.0)
# Reconstruir matriz A (somente colunas originais) e b, c (originais)
A_orig = np.array([row['coeffs'] for row in constraints], dtype=float) # m x n_orig
b_vec = np.array([row['rhs'] for row in constraints], dtype=float)
cvec = np.array(c[:n_orig], dtype=float)
# Construir matriz M das colunas que permaneceram no tableau (T_final[:m, :-1])
M = T_final[:m, :-1].copy() # m x ncols_keep
# Basis matrix B (colunas básicas da fase II) — usar basis_final (índices em 0..ncols_keep-1)
# Garantir que não haja None; se houver, já tentamos preencher antes.
if any(bi is None for bi in basis_final):
# Em casos degenerados, preencher com pseudo-solução: y zeros
y_star = np.zeros(m)
else:
B = M[:, basis_final] # m x m
# montar c_B (custos das colunas básicas)
cB = np.zeros(m)
for i, bi in enumerate(basis_final):
if bi < len(c_full):
cB[i] = c_full[bi]
else:
cB[i] = 0.0
# y^T = cB^T * B^{-1}
try:
Binv = np.linalg.inv(B)
y_star = (cB @ Binv) # shape (m,)
except np.linalg.LinAlgError:
# fallback: tentar solução via least squares
try:
y_star, *_ = np.linalg.lstsq(B.T, cB, rcond=None)
except Exception:
y_star = np.zeros(m)
# dual objective b^T y
dual_obj = float(b_vec @ y_star)
# Definir folgas/violação das desigualdades do dual dependendo do sentido primal
# Se primal == 'max' -> dual é min b^T y s.t. A^T y >= c => slack = A^T y - c (>=0)
# Se primal == 'min' -> dual is max b^T y s.t. A^T y <= c => slack = c - A^T y (>=0)
if sense == 'max':
dual_slacks = (A_orig.T @ y_star) - cvec
else:
dual_slacks = cvec - (A_orig.T @ y_star)
# Preços-sombra (y) - ajustar sinal/convenção para exibição: mantemos y_star como calculado.
shadow = []
for i, row in enumerate(constraints):
shadow.append(round(float(y_star[i]), 8))
return {
'status': 'optimal',
'x': [round(v, 8) for v in x],
'obj': round(z, 8),
'y_dual': [round(float(v), 8) for v in y_star],
'dual_obj': round(dual_obj, 8),
'dual_slacks': [round(float(v), 8) for v in dual_slacks],
'A': A_orig.tolist(),
'b': b_vec.tolist(),
'c': cvec.tolist(),
'path_phase1': path1,
'path_phase2': path2,
'tableau_final': T_final,
'basis_final': basis_final,
'reduced_costs': reduced,
'shadow_prices': shadow
}
# ---------------- Helpers & PDF ----------------
def clean_vector(vec):
try:
return [float(v) for v in vec]
except:
return vec
# ---------------- Gradio handler ----------------
def run_algorithms(nvars_str, objective_str, cons_str, sense, mode):
try:
nvars = int(nvars_str)
if nvars <= 0:
return 'Erro: nvars deve ser inteiro positivo', '', '', '', ''
c = parse_coeffs(objective_str)
if len(c) != nvars:
return 'Erro: coeficientes do objetivo não correspondem a nvars', '', '', '', ''
constraints, free_vars = parse_constraints(cons_str, nvars)
if free_vars:
nvars, c, constraints, mapping = expand_free_variables(nvars, c, constraints, free_vars)
except Exception as e:
return f'Erro ao ler entrada: {e}', '', '', '', ''
res = run_two_phase(c, constraints, sense)
status = res.get('status')
# infeasible detected in Phase I
if status == 'infeasible':
return f"Problema inviável (Fase I obj = {res.get('phase1_obj')})", '', '', '', ''
# Phase I failed
if status == 'phase1_failed':
return f"Erro na Fase I: {res.get('error','(sem detalhe)')}", '', '', '', ''
if status == 'optimal':
x_primal = res['x']
z_primal = res['obj']
reduced = res.get('reduced_costs', [])
shadow = res.get('shadow_prices', [])
T_final = res.get('tableau_final', None)
path_primal = res.get('path_phase2', [])
path_phase1 = res.get('path_phase1', [])
y_dual = res.get('y_dual', [])
dual_obj = res.get('dual_obj', None)
dual_slacks = res.get('dual_slacks', [])
A = res.get('A', [])
b = res.get('b', [])
cvec = res.get('c', [])
else:
return f"Erro na resolução: status inesperado '{status}' - {res.get('error','')}", '', '', '', ''
steps_html_phase2 = ""
for idx, step in enumerate(path_primal):
steps_html_phase2 += f"<h4>Fase II — Passo {idx+1} — Base: {step.get('basis','?')}</h4>"
steps_html_phase2 += snapshot_html(np.array(step['tableau']), step.get('basis', [])) + "<br/>"
steps_html_phase1 = ""
for idx, step in enumerate(path_phase1):
steps_html_phase1 += f"<h4>Fase I — Passo {idx+1} — Base: {step.get('basis','?')}</h4>"
steps_html_phase1 += snapshot_html(np.array(step['tableau']), step.get('basis', [])) + "<br/>"
df = pd.DataFrame({'Variável': [f'x{i+1}' for i in range(len(x_primal))], 'Valor': x_primal})
solution_html = df.to_html(index=False)
solution_html += f"<p><b>Valor ótimo (estimado) = {z_primal:.6g}</b></p>"
x_primal = clean_vector(x_primal); reduced = clean_vector(reduced); shadow = clean_vector(shadow)
z_primal = float(z_primal)
model_txt = f"Objective ({'min' if sense=='min' else 'max'}): {c}\nConstraints:\n"
for r in constraints:
model_txt += f" {r['coeffs']} {r['sense']} {r['rhs']}\n"
summary = ""
summary += f"Solução primal x* = {x_primal}\n"
summary += f"Z_primal (estimado) = {z_primal:.6g}\n\n"
summary += f"Solução dual y* = {y_dual}\n"
summary += f"Valor dual b^T y = {dual_obj}\n"
summary += f"Folgas/violação dual (A^T y - c) = {dual_slacks}\n\n"
summary += f"Preços-sombra (dual interpretado) = {shadow}\n"
summary += f"Custos reduzidos (vars originais) = {reduced}\n"
return model_txt, solution_html, steps_html_phase1, steps_html_phase2, summary
# ---------------- Gradio UI ----------------
with gr.Blocks() as demo:
gr.Markdown("# Simplex — Duas Fases (Fase I / Fase II) (Dual Geral)")
with gr.Row():
with gr.Column(scale=1):
nvars = gr.Textbox(label='Número de variáveis (n)', value='2')
objective = gr.Textbox(label='Coeficientes da função objetivo (ex: \"60 30\")', value='60 30')
cons = gr.Textbox(label='Restrições (uma por linha). Ex.: 2x1 + 3x2 <= 300', lines=6,
value='2x1 + 4x2 >= 40\n3x1 + 2x2 >= 50')
sense = gr.Radio(['max','min'], value='max', label='Tipo de objetivo')
run = gr.Button('Executar Simplex (Duas Fases)')
with gr.Column(scale=2):
model_out = gr.Textbox(label='Função objetivo e restrições (modelo)', lines=6)
solution_out = gr.HTML(label='Solução ótima (tabela)')
steps_phase2_out = gr.HTML(label='Passos do Simplex (Phase II tableaus)')
steps_phase1_out = gr.HTML(label='Passos do Simplex (Phase I tableaus)')
summary_out = gr.Textbox(label='Resumo', lines=12)
run.click(run_algorithms, inputs=[nvars, objective, cons, sense, gr.State(value='primal_and_dual')], outputs=[model_out, solution_out, steps_phase2_out, steps_phase1_out, summary_out])
gr.Examples(examples=[["2","60 30","2x1 + 4x2 >= 40\n3x1 + 2x2 >= 50","max"]], inputs=[nvars, objective, cons, sense])
if __name__ == '__main__':
demo.launch(ssr_mode=False)