File size: 6,476 Bytes
4cf1f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
<!DOCTYPE html>
<html lang="hi-IN">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Equations Solve Karna Gauss-Jordan Method Se</title>
    <style>
        body {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            line-height: 1.8; /* Thoda zyada line height Hinglish ke liye */
            margin: 0;
            padding: 20px;
            background-color: #f4f4f9;
            color: #333;
        }
        .container {
            max-width: 800px;
            margin: auto;
            background: #fff;
            padding: 25px;
            border-radius: 8px;
            box-shadow: 0 0 15px rgba(0,0,0,0.1);
        }
        h1, h2, h3 {
            color: #2c3e50;
            border-bottom: 2px solid #3498db;
            padding-bottom: 5px;
        }
        h1 {
            text-align: center;
            font-size: 2em;
        }
        h2 {
            font-size: 1.5em;
            margin-top: 30px;
        }
        h3 {
            font-size: 1.2em;
            margin-top: 20px;
            color: #3498db;
        }
        p {
            margin-bottom: 15px;
        }
        .equations, .matrix-display {
            background-color: #ecf0f1;
            border: 1px solid #bdc3c7;
            padding: 15px;
            border-radius: 5px;
            margin-bottom: 20px;
            font-family: 'Courier New', Courier, monospace;
            font-size: 1.1em;
            overflow-x: auto; /* Responsive banane ke liye */
            white-space: pre; /* Whitespace aur formatting ko preserve karne ke liye */
        }
        .matrix-display code {
            display: block; /* code block ko full width lene ke liye */
        }
        .solution {
            background-color: #e8f6f3;
            border: 1px solid #1abc9c;
            padding: 15px;
            border-radius: 5px;
            font-size: 1.1em;
            font-weight: bold;
            color: #16a085;
        }
        .operation {
            font-style: italic;
            color: #7f8c8d;
        }
        .highlight {
            color: #c0392b;
            font-weight: bold;
        }
    </style>
</head>
<body>
    <div class="container">
        <h1>Linear Equations Ko Solve Karna</h1>
        <h2>(a) Sawaal (Problem)</h2>
        <p>Yeh equations ko Gauss-Jordan method ka istemal karke solve karo:</p>
        <div class="equations">
            x + 4y -  z = -5
            x +  y - 6z = -12
           3x -  y -  z =  4
        </div>

        <h2>Gauss-Jordan Elimination Ke Steps</h2>
        <p>Sabse pehle, hum in equations ka augmented matrix (sanjojit avyuh) banayenge:</p>
        <div class="matrix-display"><code>[ 1   4  -1 |  -5 ]
[ 1   1  -6 | -12 ]
[ 3  -1  -1 |   4 ]</code></div>

        <h3>Step 1: Pehle pivot ke neeche zeros banana</h3>
        <p>Pehla pivot R1,C1 mein 1 hai. Iske neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
        <p class="operation">R2 β†’ R2 - R1 (Row 2 mein se Row 1 ko minus karo)</p>
        <p class="operation">R3 β†’ R3 - 3*R1 (Row 3 mein se Row 1 ka 3 guna minus karo)</p>
        <div class="matrix-display"><code>[ <span class="highlight">1</span>   4  -1 |  -5 ]
[ 0  -3  -5 |  -7 ]  <-- (1-1=0, 1-4=-3, -6-(-1)=-5, -12-(-5)=-7)
[ 0 -13   2 |  19 ]  <-- (3-3*1=0, -1-3*4=-13, -1-3*(-1)=2, 4-3*(-5)=19)</code></div>

        <h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3>
        <p>Ab R2,C2 wale element (-3) ko 1 banana hai.</p>
        <p class="operation">R2 β†’ R2 / (-3) (Row 2 ko -3 se divide karo)</p>
        <div class="matrix-display"><code>[ 1   4  -1         |  -5         ]
[ 0   <span class="highlight">1</span>   5/3       |   7/3       ]
[ 0 -13   2         |  19         ]</code></div>

        <h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3>
        <p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
        <p class="operation">R1 β†’ R1 - 4*R2 (Row 1 mein se Row 2 ka 4 guna minus karo)</p>
        <p class="operation">R3 β†’ R3 + 13*R2 (Row 3 mein Row 2 ka 13 guna add karo)</p>
        <div class="matrix-display"><code>[ 1   0  -23/3      | -43/3      ] <-- R1: [1, 4-4*1, -1-4*(5/3) | -5-4*(7/3)] = [1,0,-23/3|-43/3]
[ 0   1   5/3       |   7/3      ]
[ 0   0   71/3      | 148/3      ] <-- R3: [0, -13+13*1, 2+13*(5/3) | 19+13*(7/3)] = [0,0,71/3|148/3]</code></div>

        <h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
        <p>Ab R3,C3 wale element (71/3) ko 1 banana hai.</p>
        <p class="operation">R3 β†’ R3 * (3/71) (Row 3 ko 3/71 se multiply karo)</p>
        <div class="matrix-display"><code>[ 1   0  -23/3      | -43/3      ]
[ 0   1   5/3       |   7/3      ]
[ 0   0   <span class="highlight">1</span>         | 148/71     ]</code></div>

        <h3>Step 5: Teesre pivot ke upar zeros banana</h3>
        <p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
        <p class="operation">R1 β†’ R1 + (23/3)*R3 (Row 1 mein Row 3 ka 23/3 guna add karo)</p>
        <p class="operation">R2 β†’ R2 - (5/3)*R3 (Row 2 mein se Row 3 ka 5/3 guna minus karo)</p>
        <div class="matrix-display"><code>[ 1   0   0 |  117/71 ] <-- R1: [-23/3 + (23/3)*1 = 0], [-43/3 + (23/3)*(148/71) = 117/71]
[ 0   1   0 |  -81/71 ] <-- R2: [5/3 - (5/3)*1 = 0], [7/3 - (5/3)*(148/71) = -81/71]
[ 0   0   1 |  148/71 ]</code></div>
        <p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>

        <h2>Hal (Solution)</h2>
        <p>RREF matrix se humein solution milta hai:</p>
        <div class="solution">
            x = 117/71 <br>
            y = -81/71 <br>
            z = 148/71
        </div>

        <h2>Jaanch (Verification)</h2>
        <p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
        
        <h3>Equation 1: x + 4y - z = -5</h3>
        <p>(117/71) + 4(-81/71) - (148/71) = (117 - 324 - 148) / 71 = (117 - 472) / 71 = -355 / 71 = <strong>-5</strong> (Sahi hai!)</p>

        <h3>Equation 2: x + y - 6z = -12</h3>
        <p>(117/71) + (-81/71) - 6(148/71) = (117 - 81 - 888) / 71 = (36 - 888) / 71 = -852 / 71 = <strong>-12</strong> (Sahi hai!)</p>

        <h3>Equation 3: 3x - y - z = 4</h3>
        <p>3(117/71) - (-81/71) - (148/71) = (351 + 81 - 148) / 71 = (432 - 148) / 71 = 284 / 71 = <strong>4</strong> (Sahi hai!)</p>
        
        <p>Solution sahi hai.</p>
    </div>
</body>
</html>