Spaces:
Running
Running
File size: 6,476 Bytes
4cf1f6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
<!DOCTYPE html>
<html lang="hi-IN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Equations Solve Karna Gauss-Jordan Method Se</title>
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.8; /* Thoda zyada line height Hinglish ke liye */
margin: 0;
padding: 20px;
background-color: #f4f4f9;
color: #333;
}
.container {
max-width: 800px;
margin: auto;
background: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 0 15px rgba(0,0,0,0.1);
}
h1, h2, h3 {
color: #2c3e50;
border-bottom: 2px solid #3498db;
padding-bottom: 5px;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
h3 {
font-size: 1.2em;
margin-top: 20px;
color: #3498db;
}
p {
margin-bottom: 15px;
}
.equations, .matrix-display {
background-color: #ecf0f1;
border: 1px solid #bdc3c7;
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
font-family: 'Courier New', Courier, monospace;
font-size: 1.1em;
overflow-x: auto; /* Responsive banane ke liye */
white-space: pre; /* Whitespace aur formatting ko preserve karne ke liye */
}
.matrix-display code {
display: block; /* code block ko full width lene ke liye */
}
.solution {
background-color: #e8f6f3;
border: 1px solid #1abc9c;
padding: 15px;
border-radius: 5px;
font-size: 1.1em;
font-weight: bold;
color: #16a085;
}
.operation {
font-style: italic;
color: #7f8c8d;
}
.highlight {
color: #c0392b;
font-weight: bold;
}
</style>
</head>
<body>
<div class="container">
<h1>Linear Equations Ko Solve Karna</h1>
<h2>(a) Sawaal (Problem)</h2>
<p>Yeh equations ko Gauss-Jordan method ka istemal karke solve karo:</p>
<div class="equations">
x + 4y - z = -5
x + y - 6z = -12
3x - y - z = 4
</div>
<h2>Gauss-Jordan Elimination Ke Steps</h2>
<p>Sabse pehle, hum in equations ka augmented matrix (sanjojit avyuh) banayenge:</p>
<div class="matrix-display"><code>[ 1 4 -1 | -5 ]
[ 1 1 -6 | -12 ]
[ 3 -1 -1 | 4 ]</code></div>
<h3>Step 1: Pehle pivot ke neeche zeros banana</h3>
<p>Pehla pivot R1,C1 mein 1 hai. Iske neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
<p class="operation">R2 β R2 - R1 (Row 2 mein se Row 1 ko minus karo)</p>
<p class="operation">R3 β R3 - 3*R1 (Row 3 mein se Row 1 ka 3 guna minus karo)</p>
<div class="matrix-display"><code>[ <span class="highlight">1</span> 4 -1 | -5 ]
[ 0 -3 -5 | -7 ] <-- (1-1=0, 1-4=-3, -6-(-1)=-5, -12-(-5)=-7)
[ 0 -13 2 | 19 ] <-- (3-3*1=0, -1-3*4=-13, -1-3*(-1)=2, 4-3*(-5)=19)</code></div>
<h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3>
<p>Ab R2,C2 wale element (-3) ko 1 banana hai.</p>
<p class="operation">R2 β R2 / (-3) (Row 2 ko -3 se divide karo)</p>
<div class="matrix-display"><code>[ 1 4 -1 | -5 ]
[ 0 <span class="highlight">1</span> 5/3 | 7/3 ]
[ 0 -13 2 | 19 ]</code></div>
<h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3>
<p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
<p class="operation">R1 β R1 - 4*R2 (Row 1 mein se Row 2 ka 4 guna minus karo)</p>
<p class="operation">R3 β R3 + 13*R2 (Row 3 mein Row 2 ka 13 guna add karo)</p>
<div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ] <-- R1: [1, 4-4*1, -1-4*(5/3) | -5-4*(7/3)] = [1,0,-23/3|-43/3]
[ 0 1 5/3 | 7/3 ]
[ 0 0 71/3 | 148/3 ] <-- R3: [0, -13+13*1, 2+13*(5/3) | 19+13*(7/3)] = [0,0,71/3|148/3]</code></div>
<h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
<p>Ab R3,C3 wale element (71/3) ko 1 banana hai.</p>
<p class="operation">R3 β R3 * (3/71) (Row 3 ko 3/71 se multiply karo)</p>
<div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ]
[ 0 1 5/3 | 7/3 ]
[ 0 0 <span class="highlight">1</span> | 148/71 ]</code></div>
<h3>Step 5: Teesre pivot ke upar zeros banana</h3>
<p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
<p class="operation">R1 β R1 + (23/3)*R3 (Row 1 mein Row 3 ka 23/3 guna add karo)</p>
<p class="operation">R2 β R2 - (5/3)*R3 (Row 2 mein se Row 3 ka 5/3 guna minus karo)</p>
<div class="matrix-display"><code>[ 1 0 0 | 117/71 ] <-- R1: [-23/3 + (23/3)*1 = 0], [-43/3 + (23/3)*(148/71) = 117/71]
[ 0 1 0 | -81/71 ] <-- R2: [5/3 - (5/3)*1 = 0], [7/3 - (5/3)*(148/71) = -81/71]
[ 0 0 1 | 148/71 ]</code></div>
<p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
<h2>Hal (Solution)</h2>
<p>RREF matrix se humein solution milta hai:</p>
<div class="solution">
x = 117/71 <br>
y = -81/71 <br>
z = 148/71
</div>
<h2>Jaanch (Verification)</h2>
<p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
<h3>Equation 1: x + 4y - z = -5</h3>
<p>(117/71) + 4(-81/71) - (148/71) = (117 - 324 - 148) / 71 = (117 - 472) / 71 = -355 / 71 = <strong>-5</strong> (Sahi hai!)</p>
<h3>Equation 2: x + y - 6z = -12</h3>
<p>(117/71) + (-81/71) - 6(148/71) = (117 - 81 - 888) / 71 = (36 - 888) / 71 = -852 / 71 = <strong>-12</strong> (Sahi hai!)</p>
<h3>Equation 3: 3x - y - z = 4</h3>
<p>3(117/71) - (-81/71) - (148/71) = (351 + 81 - 148) / 71 = (432 - 148) / 71 = 284 / 71 = <strong>4</strong> (Sahi hai!)</p>
<p>Solution sahi hai.</p>
</div>
</body>
</html> |