Ashtheroy / app.py
summrs's picture
app.py
c4cc609 verified
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Helper Functions
def parse_graph_input(graph_input):
"""Parse user input to create an adjacency list."""
try:
# Try interpreting as a dictionary (adjacency list)
graph = eval(graph_input)
if isinstance(graph, dict):
return graph
except:
pass
try:
# Try interpreting as an edge list
edges = eval(graph_input)
if not isinstance(edges, list):
raise ValueError("Invalid graph input. Please use an adjacency list or edge list.")
graph = {}
for u, v in edges:
graph.setdefault(u, []).append(v)
graph.setdefault(v, []).append(u)
return graph
except:
raise ValueError("Invalid graph input. Please use a valid adjacency list or edge list.")
def visualize_graph(graph):
"""Generate a visualization of the graph using a circular layout."""
plt.figure()
nodes = list(graph.keys())
edges = [(u, v) for u in graph for v in graph[u]]
# Use a circular layout for faster visualization
pos = nx.circular_layout(nx.Graph(edges))
# Draw the graph
nx.draw(
nx.Graph(edges),
pos,
with_labels=True,
node_color='lightblue',
edge_color='gray',
node_size=500,
font_size=10
)
# Identify the graph type
graph_type = identify_graph_type(graph)
# Add a label for the graph type below the visualization
plt.title(f"Graph Type: {graph_type}", fontsize=12, color='darkblue')
return plt.gcf()
def identify_graph_type(graph):
"""Identify the type of graph based on its structure."""
num_nodes = len(graph)
num_edges = sum(len(neighbors) for neighbors in graph.values()) // 2
if num_nodes == 0:
return "Empty Graph"
elif num_nodes == 1:
return "Single Vertex Graph"
elif num_edges == 0:
return f"Empty Graph with {num_nodes} vertices"
elif num_edges == num_nodes - 1:
return f"Path Graph P{num_nodes}"
elif num_edges == num_nodes:
return f"Cycle Graph C{num_nodes}"
elif num_edges == num_nodes * (num_nodes - 1) // 2:
return f"Complete Graph K{num_nodes}"
elif num_edges == 2 * num_nodes - 2:
return f"Wheel Graph W{num_nodes - 1}"
else:
return "Custom Graph (Unknown Type)"
def spectral_isomorphism_test(graph1, graph2):
"""Perform spectral isomorphism test with step-by-step explanation."""
adj_spectrum1 = sorted(np.linalg.eigvals(nx.adjacency_matrix(nx.Graph(graph1)).todense()).real)
adj_spectrum2 = sorted(np.linalg.eigvals(nx.adjacency_matrix(nx.Graph(graph2)).todense()).real)
lap_spectrum1 = sorted(np.linalg.eigvals(nx.laplacian_matrix(nx.Graph(graph1)).todense()).real)
lap_spectrum2 = sorted(np.linalg.eigvals(nx.laplacian_matrix(nx.Graph(graph2)).todense()).real)
# Round spectra to 2 decimal places
adj_spectrum1 = [round(float(x), 2) for x in adj_spectrum1]
adj_spectrum2 = [round(float(x), 2) for x in adj_spectrum2]
lap_spectrum1 = [round(float(x), 2) for x in lap_spectrum1]
lap_spectrum2 = [round(float(x), 2) for x in lap_spectrum2]
output = (
f"### **Spectral Isomorphism Test Results**\n\n"
f"#### **Step 1: Node and Edge Counts**\n"
f"- **Graph 1**: \n"
f" - Nodes: **{len(graph1)}** \n"
f" - Edges: **{sum(len(neighbors) for neighbors in graph1.values()) // 2}**\n"
f"- **Graph 2**: \n"
f" - Nodes: **{len(graph2)}** \n"
f" - Edges: **{sum(len(neighbors) for neighbors in graph2.values()) // 2}**\n\n"
f"**Observation:** Both graphs have the same number of nodes, but Graph 1 has {sum(len(neighbors) for neighbors in graph1.values()) // 2} edges, while Graph 2 has {sum(len(neighbors) for neighbors in graph2.values()) // 2} edges.\n\n"
f"---\n\n"
f"#### **Step 2: Adjacency Spectra**\n"
f"- **What is an Adjacency Spectrum?** \n"
f" The adjacency spectrum is the set of eigenvalues of the graph's adjacency matrix, which represents connections between vertices.\n\n"
f"- **Adjacency Spectrum of Graph 1**: \n"
f" ```{adj_spectrum1}```\n"
f"- **Adjacency Spectrum of Graph 2**: \n"
f" ```{adj_spectrum2}```\n\n"
f"**Comparison:** \n"
f"- Are the adjacency spectra approximately equal? {'✅ Yes' if np.allclose(adj_spectrum1, adj_spectrum2) else '❌ No'}\n"
f"- **Reason:** The eigenvalues {'match' if np.allclose(adj_spectrum1, adj_spectrum2) else 'differ significantly'} between the two graphs.\n\n"
f"---\n\n"
f"#### **Step 3: Laplacian Spectra**\n"
f"- **What is a Laplacian Spectrum?** \n"
f" The Laplacian spectrum is the set of eigenvalues of the graph's Laplacian matrix, which combines information about vertex degrees and adjacency.\n\n"
f"- **Laplacian Spectrum of Graph 1**: \n"
f" ```{lap_spectrum1}```\n"
f"- **Laplacian Spectrum of Graph 2**: \n"
f" ```{lap_spectrum2}```\n\n"
f"**Comparison:** \n"
f"- Are the Laplacian spectra approximately equal? {'✅ Yes' if np.allclose(lap_spectrum1, lap_spectrum2) else '❌ No'}\n"
f"- **Reason:** The eigenvalues {'match' if np.allclose(lap_spectrum1, lap_spectrum2) else 'differ significantly'} between the two graphs.\n\n"
f"---\n\n"
f"#### **Final Result**\n"
f"- **Outcome:** {'✅ PASS' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else '❌ FAIL'}\n"
f"- **Conclusion:** The graphs are {'isomorphic' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'NOT isomorphic'} because their adjacency and Laplacian spectra {'match' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'do not match'}.\n\n"
f"---\n\n"
f"### **Explanation**\n"
f"- **Adjacency Spectrum:** Represents the eigenvalues of the adjacency matrix. If two graphs are isomorphic, their adjacency spectra must match.\n"
f"- **Laplacian Spectrum:** Represents the eigenvalues of the Laplacian matrix. Similar to adjacency spectra, matching Laplacian spectra is a strong indicator of isomorphism.\n"
f"- **Result Interpretation:** Since {'both' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'neither'} the adjacency nor the Laplacian spectra match, the graphs are {'structurally identical' if np.allclose(adj_spectrum1, adj_spectrum2) and np.allclose(lap_spectrum1, lap_spectrum2) else 'structurally different'} and cannot be isomorphic.\n"
)
return output
def check_graph_homomorphism(graph1, graph2, mapping):
"""Check if a mapping defines a graph homomorphism."""
result = []
for u, v in graph1.edges():
mapped_u, mapped_v = mapping.get(u), mapping.get(v)
if mapped_u is None or mapped_v is None:
result.append(f"Mapping is incomplete. Missing vertex {u} or {v}.")
continue
if (mapped_u, mapped_v) not in graph2.edges() and (mapped_v, mapped_u) not in graph2.edges():
result.append(f"Edge ({u}, {v}) in Graph 1 maps to ({mapped_u}, {mapped_v}) in Graph 2. Edge does NOT exist in Graph 2.")
else:
result.append(f"Edge ({u}, {v}) in Graph 1 maps to ({mapped_u}, {mapped_v}) in Graph 2. Edge exists in Graph 2.")
is_homomorphism = all(("exists" in line) for line in result)
final_result = (
f"**Final Result:** {'✅ Mapping IS a Graph Homomorphism.' if is_homomorphism else '❌ Mapping IS NOT a Graph Homomorphism.'}\n"
f"Explanation: A graph homomorphism must preserve all adjacencies. If any edge fails to map correctly, the mapping is invalid."
)
return "\n".join(result) + "\n\n" + final_result
def demonstrate_matrix_representations(graph):
"""Display adjacency matrix, Laplacian matrix, and spectra."""
adj_matrix = nx.adjacency_matrix(nx.Graph(graph)).todense()
laplacian_matrix = nx.laplacian_matrix(nx.Graph(graph)).todense()
degree_matrix = np.diag([len(graph[v]) for v in graph])
adj_spectrum = sorted(np.linalg.eigvals(adj_matrix).real)
lap_spectrum = sorted(np.linalg.eigvals(laplacian_matrix).real)
algebraic_connectivity = lap_spectrum[1] # Second smallest eigenvalue
output = (
f"### **Matrix Representations and Spectra**\n\n"
f"#### **Adjacency Matrix**\n"
f"```\n{adj_matrix}\n```\n\n"
f"#### **Laplacian Matrix**\n"
f"```\n{laplacian_matrix}\n```\n\n"
f"#### **Degree Matrix**\n"
f"```\n{degree_matrix}\n```\n\n"
f"#### **Adjacency Spectrum**\n"
f"```{[round(x, 2) for x in adj_spectrum]}```\n\n"
f"#### **Laplacian Spectrum**\n"
f"```{[round(x, 2) for x in lap_spectrum]}```\n\n"
f"#### **Algebraic Connectivity**\n"
f"The second smallest eigenvalue (Algebraic Connectivity): {round(algebraic_connectivity, 2)}\n\n"
f"**Explanation:** These matrices and spectra provide insights into the graph's structure. Algebraic connectivity measures robustness."
)
return output
def process_inputs(graph1_input, graph2_input, question_type, mapping=None):
"""Process user inputs and perform the selected operation."""
# Parse graphs
graph1 = parse_graph_input(graph1_input)
graph2 = parse_graph_input(graph2_input)
# Determine operation based on question type
if question_type == "Spectral Isomorphism Test":
result = spectral_isomorphism_test(graph1, graph2)
elif question_type == "Graph Homomorphism Check":
if mapping is None:
result = "Error: Mapping is required for Graph Homomorphism Check."
else:
result = check_graph_homomorphism(nx.Graph(graph1), nx.Graph(graph2), mapping)
elif question_type == "Matrix Representations and Spectra":
result = demonstrate_matrix_representations(graph1)
else:
result = "Unsupported question type. Please select a valid operation."
# Visualize graphs
graph1_plot = visualize_graph(graph1)
graph2_plot = visualize_graph(graph2)
return graph1_plot, graph2_plot, result
# Gradio Interface
with gr.Blocks(title="Graph Theory Project") as demo:
gr.Markdown("# Graph Theory Project")
gr.Markdown("Select a question type and analyze two graphs!")
with gr.Row():
graph1_input = gr.Textbox(label="Graph 1 Input (e.g., '{0: [1], 1: [0, 2], 2: [1]}' or edge list)")
graph2_input = gr.Textbox(label="Graph 2 Input (e.g., '{0: [1], 1: [0, 2], 2: [1]}' or edge list)")
question_type = gr.Dropdown(
choices=["Spectral Isomorphism Test", "Graph Homomorphism Check", "Matrix Representations and Spectra"],
label="Select Question Type"
)
mapping_input = gr.Textbox(label="Mapping (for Graph Homomorphism Check, e.g., '{0: 0, 1: 1, 2: 2}')", visible=False)
def toggle_mapping_visibility(question_type):
"""Show/hide the mapping input based on the selected question type."""
return {"visible": question_type == "Graph Homomorphism Check"}
question_type.change(toggle_mapping_visibility, inputs=question_type, outputs=mapping_input)
with gr.Row():
graph1_output = gr.Plot(label="Graph 1 Visualization")
graph2_output = gr.Plot(label="Graph 2 Visualization")
result_output = gr.Textbox(label="Results", lines=20)
submit_button = gr.Button("Run")
submit_button.click(process_inputs, inputs=[graph1_input, graph2_input, question_type, mapping_input], outputs=[graph1_output, graph2_output, result_output])
# Launch the app
demo.launch()