|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import math |
|
|
|
|
|
|
|
|
class NoiseScheduleVP: |
|
|
def __init__( |
|
|
self, |
|
|
schedule="discrete", |
|
|
betas=None, |
|
|
alphas_cumprod=None, |
|
|
continuous_beta_0=0.1, |
|
|
continuous_beta_1=20.0, |
|
|
): |
|
|
|
|
|
if schedule not in ["discrete", "linear", "cosine"]: |
|
|
raise ValueError( |
|
|
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( |
|
|
schedule |
|
|
) |
|
|
) |
|
|
|
|
|
self.schedule = schedule |
|
|
if schedule == "discrete": |
|
|
if betas is not None: |
|
|
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) |
|
|
else: |
|
|
assert alphas_cumprod is not None |
|
|
log_alphas = 0.5 * torch.log(alphas_cumprod) |
|
|
self.total_N = len(log_alphas) |
|
|
self.T = 1.0 |
|
|
self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)) |
|
|
self.log_alpha_array = log_alphas.reshape( |
|
|
( |
|
|
1, |
|
|
-1, |
|
|
) |
|
|
) |
|
|
else: |
|
|
self.total_N = 1000 |
|
|
self.beta_0 = continuous_beta_0 |
|
|
self.beta_1 = continuous_beta_1 |
|
|
self.cosine_s = 0.008 |
|
|
self.cosine_beta_max = 999.0 |
|
|
self.cosine_t_max = ( |
|
|
math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi) |
|
|
* 2.0 |
|
|
* (1.0 + self.cosine_s) |
|
|
/ math.pi |
|
|
- self.cosine_s |
|
|
) |
|
|
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)) |
|
|
self.schedule = schedule |
|
|
if schedule == "cosine": |
|
|
|
|
|
|
|
|
self.T = 0.9946 |
|
|
else: |
|
|
self.T = 1.0 |
|
|
|
|
|
def marginal_log_mean_coeff(self, t): |
|
|
""" |
|
|
Compute log(alpha_t) of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
if self.schedule == "discrete": |
|
|
return interpolate_fn( |
|
|
t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device) |
|
|
).reshape((-1)) |
|
|
elif self.schedule == "linear": |
|
|
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 |
|
|
elif self.schedule == "cosine": |
|
|
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)) |
|
|
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 |
|
|
return log_alpha_t |
|
|
|
|
|
def marginal_alpha(self, t): |
|
|
""" |
|
|
Compute alpha_t of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
return torch.exp(self.marginal_log_mean_coeff(t)) |
|
|
|
|
|
def marginal_std(self, t): |
|
|
""" |
|
|
Compute sigma_t of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) |
|
|
|
|
|
def marginal_lambda(self, t): |
|
|
""" |
|
|
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
log_mean_coeff = self.marginal_log_mean_coeff(t) |
|
|
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) |
|
|
return log_mean_coeff - log_std |
|
|
|
|
|
def inverse_lambda(self, lamb): |
|
|
""" |
|
|
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. |
|
|
""" |
|
|
if self.schedule == "linear": |
|
|
tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) |
|
|
Delta = self.beta_0**2 + tmp |
|
|
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) |
|
|
elif self.schedule == "discrete": |
|
|
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) |
|
|
t = interpolate_fn( |
|
|
log_alpha.reshape((-1, 1)), |
|
|
torch.flip(self.log_alpha_array.to(lamb.device), [1]), |
|
|
torch.flip(self.t_array.to(lamb.device), [1]), |
|
|
) |
|
|
return t.reshape((-1,)) |
|
|
else: |
|
|
log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) |
|
|
t_fn = ( |
|
|
lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) |
|
|
* 2.0 |
|
|
* (1.0 + self.cosine_s) |
|
|
/ math.pi |
|
|
- self.cosine_s |
|
|
) |
|
|
t = t_fn(log_alpha) |
|
|
return t |
|
|
|
|
|
|
|
|
def model_wrapper( |
|
|
model, |
|
|
noise_schedule, |
|
|
model_type="noise", |
|
|
model_kwargs={}, |
|
|
guidance_type="uncond", |
|
|
condition=None, |
|
|
unconditional_condition=None, |
|
|
guidance_scale=1.0, |
|
|
classifier_fn=None, |
|
|
classifier_kwargs={}, |
|
|
): |
|
|
|
|
|
def get_model_input_time(t_continuous): |
|
|
""" |
|
|
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. |
|
|
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. |
|
|
For continuous-time DPMs, we just use `t_continuous`. |
|
|
""" |
|
|
if noise_schedule.schedule == "discrete": |
|
|
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 |
|
|
else: |
|
|
return t_continuous |
|
|
|
|
|
def noise_pred_fn(x, t_continuous, cond=None): |
|
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
|
t_input = get_model_input_time(t_continuous) |
|
|
if cond is None: |
|
|
output = model(x, t_input, None, **model_kwargs) |
|
|
else: |
|
|
output = model(x, t_input, cond, **model_kwargs) |
|
|
if model_type == "noise": |
|
|
return output |
|
|
elif model_type == "x_start": |
|
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
|
dims = x.dim() |
|
|
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) |
|
|
elif model_type == "v": |
|
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
|
dims = x.dim() |
|
|
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x |
|
|
elif model_type == "score": |
|
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
|
dims = x.dim() |
|
|
return -expand_dims(sigma_t, dims) * output |
|
|
|
|
|
def cond_grad_fn(x, t_input): |
|
|
""" |
|
|
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). |
|
|
""" |
|
|
with torch.enable_grad(): |
|
|
x_in = x.detach().requires_grad_(True) |
|
|
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) |
|
|
return torch.autograd.grad(log_prob.sum(), x_in)[0] |
|
|
|
|
|
def model_fn(x, t_continuous): |
|
|
""" |
|
|
The noise predicition model function that is used for DPM-Solver. |
|
|
""" |
|
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
|
if guidance_type == "uncond": |
|
|
return noise_pred_fn(x, t_continuous) |
|
|
elif guidance_type == "classifier": |
|
|
assert classifier_fn is not None |
|
|
t_input = get_model_input_time(t_continuous) |
|
|
cond_grad = cond_grad_fn(x, t_input) |
|
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
|
noise = noise_pred_fn(x, t_continuous) |
|
|
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad |
|
|
elif guidance_type == "classifier-free": |
|
|
if guidance_scale == 1.0 or unconditional_condition is None: |
|
|
return noise_pred_fn(x, t_continuous, cond=condition) |
|
|
else: |
|
|
x_in = torch.cat([x] * 2) |
|
|
t_in = torch.cat([t_continuous] * 2) |
|
|
c_in = torch.cat([unconditional_condition, condition]) |
|
|
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) |
|
|
return noise_uncond + guidance_scale * (noise - noise_uncond) |
|
|
|
|
|
assert model_type in ["noise", "x_start", "v"] |
|
|
assert guidance_type in ["uncond", "classifier", "classifier-free"] |
|
|
return model_fn |
|
|
|
|
|
|
|
|
class UniPC: |
|
|
def __init__(self, model_fn, noise_schedule, predict_x0=True, thresholding=False, max_val=1.0, variant="bh1"): |
|
|
"""Construct a UniPC. |
|
|
|
|
|
We support both data_prediction and noise_prediction. |
|
|
""" |
|
|
self.model = model_fn |
|
|
self.noise_schedule = noise_schedule |
|
|
self.variant = variant |
|
|
self.predict_x0 = predict_x0 |
|
|
self.thresholding = thresholding |
|
|
self.max_val = max_val |
|
|
|
|
|
def dynamic_thresholding_fn(self, x0, t=None): |
|
|
""" |
|
|
The dynamic thresholding method. |
|
|
""" |
|
|
dims = x0.dim() |
|
|
p = self.dynamic_thresholding_ratio |
|
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) |
|
|
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) |
|
|
x0 = torch.clamp(x0, -s, s) / s |
|
|
return x0 |
|
|
|
|
|
def noise_prediction_fn(self, x, t): |
|
|
""" |
|
|
Return the noise prediction model. |
|
|
""" |
|
|
return self.model(x, t) |
|
|
|
|
|
def data_prediction_fn(self, x, t): |
|
|
""" |
|
|
Return the data prediction model (with thresholding). |
|
|
""" |
|
|
noise = self.noise_prediction_fn(x, t) |
|
|
dims = x.dim() |
|
|
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) |
|
|
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) |
|
|
if self.thresholding: |
|
|
p = 0.995 |
|
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) |
|
|
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) |
|
|
x0 = torch.clamp(x0, -s, s) / s |
|
|
return x0 |
|
|
|
|
|
def model_fn(self, x, t): |
|
|
""" |
|
|
Convert the model to the noise prediction model or the data prediction model. |
|
|
""" |
|
|
if self.predict_x0: |
|
|
return self.data_prediction_fn(x, t) |
|
|
else: |
|
|
return self.noise_prediction_fn(x, t) |
|
|
|
|
|
def get_time_steps(self, skip_type, t_T, t_0, N, device): |
|
|
"""Compute the intermediate time steps for sampling.""" |
|
|
if skip_type == "logSNR": |
|
|
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) |
|
|
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) |
|
|
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) |
|
|
return self.noise_schedule.inverse_lambda(logSNR_steps) |
|
|
elif skip_type == "time_uniform": |
|
|
return torch.linspace(t_T, t_0, N + 1).to(device) |
|
|
elif skip_type == "time_quadratic": |
|
|
t_order = 2 |
|
|
t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device) |
|
|
return t |
|
|
else: |
|
|
raise ValueError( |
|
|
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type) |
|
|
) |
|
|
|
|
|
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, t2, order, **kwargs): |
|
|
if len(t.shape) == 0: |
|
|
t = t.view(-1) |
|
|
if "bh" in self.variant: |
|
|
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, t2, order, **kwargs) |
|
|
|
|
|
|
|
|
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, t2, order, x_t=None, use_corrector=True): |
|
|
|
|
|
ns = self.noise_schedule |
|
|
assert order <= len(model_prev_list) |
|
|
dims = x.dim() |
|
|
|
|
|
|
|
|
t_prev_0 = t_prev_list[-1] |
|
|
lambda_prev_0 = ns.marginal_lambda(t_prev_0) |
|
|
lambda_t = ns.marginal_lambda(t) |
|
|
model_prev_0 = model_prev_list[-1] |
|
|
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) |
|
|
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) |
|
|
alpha_t = torch.exp(log_alpha_t) |
|
|
|
|
|
h = lambda_t - lambda_prev_0 |
|
|
|
|
|
rks = [] |
|
|
D1s = [] |
|
|
for i in range(1, order): |
|
|
t_prev_i = t_prev_list[-(i + 1)] |
|
|
model_prev_i = model_prev_list[-(i + 1)] |
|
|
lambda_prev_i = ns.marginal_lambda(t_prev_i) |
|
|
rk = ((lambda_prev_i - lambda_prev_0) / h)[0] |
|
|
rks.append(rk) |
|
|
D1s.append((model_prev_i - model_prev_0) / rk) |
|
|
|
|
|
rks.append(1.0) |
|
|
rks = torch.tensor(rks, device=x.device) |
|
|
|
|
|
R = [] |
|
|
b = [] |
|
|
|
|
|
hh = -h[0] if self.predict_x0 else h[0] |
|
|
h_phi_1 = torch.expm1(hh) |
|
|
h_phi_k = h_phi_1 / hh - 1 |
|
|
|
|
|
factorial_i = 1 |
|
|
|
|
|
if self.variant == "bh1": |
|
|
B_h = hh |
|
|
elif self.variant == "bh2": |
|
|
B_h = torch.expm1(hh) |
|
|
else: |
|
|
raise NotImplementedError() |
|
|
|
|
|
for i in range(1, order + 1): |
|
|
R.append(torch.pow(rks, i - 1)) |
|
|
b.append(h_phi_k * factorial_i / B_h) |
|
|
factorial_i *= i + 1 |
|
|
h_phi_k = h_phi_k / hh - 1 / factorial_i |
|
|
|
|
|
R = torch.stack(R) |
|
|
b = torch.tensor(b, device=x.device) |
|
|
|
|
|
|
|
|
use_predictor = len(D1s) > 0 and x_t is None |
|
|
if len(D1s) > 0: |
|
|
D1s = torch.stack(D1s, dim=1) |
|
|
if x_t is None: |
|
|
|
|
|
if order == 2: |
|
|
rhos_p = torch.tensor([0.5], device=b.device) |
|
|
else: |
|
|
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) |
|
|
else: |
|
|
D1s = None |
|
|
|
|
|
if use_corrector: |
|
|
|
|
|
|
|
|
if order == 1: |
|
|
rhos_c = torch.tensor([0.5], device=b.device) |
|
|
else: |
|
|
rhos_c = torch.linalg.solve(R, b) |
|
|
|
|
|
model_t = None |
|
|
if self.predict_x0: |
|
|
x_t_ = expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * h_phi_1, dims) * model_prev_0 |
|
|
|
|
|
if x_t is None: |
|
|
if use_predictor: |
|
|
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) |
|
|
else: |
|
|
pred_res = 0 |
|
|
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res |
|
|
|
|
|
if use_corrector: |
|
|
model_t = self.model_fn(x_t, t2) |
|
|
if D1s is not None: |
|
|
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) |
|
|
else: |
|
|
corr_res = 0 |
|
|
D1_t = model_t - model_prev_0 |
|
|
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) |
|
|
else: |
|
|
x_t_ = ( |
|
|
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x |
|
|
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 |
|
|
) |
|
|
if x_t is None: |
|
|
if use_predictor: |
|
|
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) |
|
|
else: |
|
|
pred_res = 0 |
|
|
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res |
|
|
|
|
|
if use_corrector: |
|
|
model_t = self.model_fn(x_t, t2) |
|
|
if D1s is not None: |
|
|
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) |
|
|
else: |
|
|
corr_res = 0 |
|
|
D1_t = model_t - model_prev_0 |
|
|
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) |
|
|
return x_t, model_t |
|
|
|
|
|
|
|
|
def sample( |
|
|
self, |
|
|
x, |
|
|
steps=20, |
|
|
t_start=None, |
|
|
t_end=None, |
|
|
order=3, |
|
|
skip_type="time_uniform", |
|
|
method="singlestep", |
|
|
lower_order_final=True, |
|
|
denoise_to_zero=False, |
|
|
solver_type="dpm_solver", |
|
|
atol=0.0078, |
|
|
rtol=0.05, |
|
|
corrector=False, |
|
|
flags=None, |
|
|
): |
|
|
|
|
|
device = x.device |
|
|
assert steps >= order |
|
|
with torch.no_grad(): |
|
|
if flags.learn: |
|
|
load_from = f"{flags.log_path}/NFE-{steps}-256LSUN-uni_pc-{order}-decode/best.pt" |
|
|
timesteps = torch.load(load_from)['best_t_steps'].to(x.device) |
|
|
if flags.vs: |
|
|
length = timesteps.shape[0] // 2 |
|
|
timesteps2 = timesteps[length:] |
|
|
timesteps = timesteps[:length] |
|
|
else: |
|
|
timesteps2 = timesteps |
|
|
else: |
|
|
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end |
|
|
t_T = self.noise_schedule.T if t_start is None else t_start |
|
|
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) |
|
|
timesteps2 = timesteps |
|
|
assert timesteps.shape[0] - 1 == steps |
|
|
|
|
|
def one_step(t1, t2, t_prev_list, model_prev_list, step, x_next, order, first=True, use_corrector=True): |
|
|
x_next, model_x_next = self.multistep_uni_pc_update(x_next, model_prev_list, t_prev_list, t1, t2, step, use_corrector=use_corrector) |
|
|
if model_x_next is None: |
|
|
model_x_next = self.model_fn(x_next, t2) |
|
|
update_lists(t_prev_list, model_prev_list, t1, model_x_next, order, first=first) |
|
|
return x_next |
|
|
|
|
|
def update_lists(t_list, model_list, t_, model_x, order, first=False): |
|
|
if first: |
|
|
t_list.append(t_) |
|
|
model_list.append(model_x) |
|
|
return |
|
|
for m in range(order - 1): |
|
|
t_list[m] = t_list[m + 1] |
|
|
model_list[m] = model_list[m + 1] |
|
|
t_list[-1] = t_ |
|
|
model_list[-1] = model_x |
|
|
|
|
|
timesteps1 = timesteps |
|
|
step = 0 |
|
|
vec_t1 = timesteps1[0].expand((x.shape[0])) |
|
|
vec_t2 = timesteps2[0].expand((x.shape[0])) |
|
|
t_prev_list = [vec_t1] |
|
|
model_prev_list = [self.model_fn(x, vec_t2)] |
|
|
|
|
|
for step in range(1, order): |
|
|
vec_t1 = timesteps1[step].expand((x.shape[0])) |
|
|
vec_t2 = timesteps2[step].expand((x.shape[0])) |
|
|
x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step, x, order, first=True) |
|
|
|
|
|
for step in range(order, steps + 1): |
|
|
step_order = min(order, steps + 1 - step) |
|
|
vec_t1 = timesteps1[step].expand((x.shape[0])) |
|
|
vec_t2 = timesteps2[step].expand((x.shape[0])) |
|
|
use_corrector = True |
|
|
if step == steps: |
|
|
use_corrector = False |
|
|
x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step_order, x, order, first=False, use_corrector=use_corrector) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def interpolate_fn(x, xp, yp): |
|
|
""" |
|
|
A piecewise linear function y = f(x), using xp and yp as keypoints. |
|
|
We implement f(x) in a differentiable way (i.e. applicable for autograd). |
|
|
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) |
|
|
|
|
|
Args: |
|
|
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). |
|
|
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. |
|
|
yp: PyTorch tensor with shape [C, K]. |
|
|
Returns: |
|
|
The function values f(x), with shape [N, C]. |
|
|
""" |
|
|
N, K = x.shape[0], xp.shape[1] |
|
|
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) |
|
|
sorted_all_x, x_indices = torch.sort(all_x, dim=2) |
|
|
x_idx = torch.argmin(x_indices, dim=2) |
|
|
cand_start_idx = x_idx - 1 |
|
|
start_idx = torch.where( |
|
|
torch.eq(x_idx, 0), |
|
|
torch.tensor(1, device=x.device), |
|
|
torch.where( |
|
|
torch.eq(x_idx, K), |
|
|
torch.tensor(K - 2, device=x.device), |
|
|
cand_start_idx, |
|
|
), |
|
|
) |
|
|
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) |
|
|
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) |
|
|
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) |
|
|
start_idx2 = torch.where( |
|
|
torch.eq(x_idx, 0), |
|
|
torch.tensor(0, device=x.device), |
|
|
torch.where( |
|
|
torch.eq(x_idx, K), |
|
|
torch.tensor(K - 2, device=x.device), |
|
|
cand_start_idx, |
|
|
), |
|
|
) |
|
|
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) |
|
|
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) |
|
|
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) |
|
|
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) |
|
|
return cand |
|
|
|
|
|
|
|
|
def expand_dims(v, dims): |
|
|
""" |
|
|
Expand the tensor `v` to the dim `dims`. |
|
|
|
|
|
Args: |
|
|
`v`: a PyTorch tensor with shape [N]. |
|
|
`dim`: a `int`. |
|
|
Returns: |
|
|
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. |
|
|
""" |
|
|
return v[(...,) + (None,) * (dims - 1)] |
|
|
|