tinyflux-experts / README.md
AbstractPhil's picture
Update README.md
8d25aef verified
---
license: mit
---
# Flow Matching & Diffusion Prediction Types
## A Practical Guide to Sol, Lune, and Epsilon Prediction
---
## Overview
This document covers three distinct prediction paradigms used in diffusion and flow-matching models. Each was designed for different purposes and requires specific sampling procedures.
| Model | Prediction Type | What It Learned | Output Character |
|-------|----------------|-----------------|------------------|
| **Standard SD1.5** | Ξ΅ (epsilon/noise) | Remove noise | General purpose |
| **Sol** | v (velocity) via DDPM | Geometric structure | Flat silhouettes, mass placement |
| **Lune** | v (velocity) via flow | Texture and detail | Rich, detailed images |
---
SD15-Flow-Sol (velocity prediction epsilon converted):
https://huggingface.co/AbstractPhil/tinyflux-experts/resolve/main/inference_sd15_flow_sol.py
![image](https://cdn-uploads.huggingface.co/production/uploads/630cf55b15433862cfc9556f/FeF5L08KaozTq8X4TXaTU.png)
SD15-Flow-Lune (rectified flow shift=2):
https://huggingface.co/AbstractPhil/tinyflux-experts/resolve/main/inference_sd15_flow_lune.py
![image](https://cdn-uploads.huggingface.co/production/uploads/630cf55b15433862cfc9556f/a33DpYjD_cwdfXm43SlS8.png)
TinyFlux-Lailah
tinyflux is currently in training and planning and is not yet ready to be used for production capacity.
https://huggingface.co/AbstractPhil/tiny-flux-deep
![image](https://cdn-uploads.huggingface.co/production/uploads/630cf55b15433862cfc9556f/9Ek_vTrMDQUA1id37Lwys.png)
## 1. Epsilon (Ξ΅) Prediction β€” Standard Diffusion
### Core Concept
> **"Predict the noise that was added"**
The model learns to identify and remove noise from corrupted images.
### The Formula (Simplified)
```
TRAINING:
x_noisy = √(α) * x_clean + √(1-α) * noise
↓
Model predicts: Ξ΅Μ‚ = "what noise was added?"
↓
Loss = ||Ξ΅Μ‚ - noise||Β²
SAMPLING:
Start with pure noise
Repeatedly ask: "what noise is in this?"
Subtract a fraction of predicted noise
Repeat until clean
```
### Reading the Math
- **Ξ± (alpha)**: "How much original image remains" (1 = all original, 0 = all noise)
- **√(1-α)**: "How much noise was mixed in"
- **Ξ΅**: The actual noise that was added
- **Ξ΅Μ‚**: Model's guess of what noise was added
### Training Process
```python
# Forward diffusion (corruption)
noise = torch.randn_like(x_clean)
Ξ± = scheduler.alphas_cumprod[t]
x_noisy = √α * x_clean + √(1-α) * noise
# Model predicts noise
Ξ΅_pred = model(x_noisy, t)
# Loss: "Did you correctly identify the noise?"
loss = MSE(Ξ΅_pred, noise)
```
### Sampling Process
```python
# DDPM/DDIM sampling
for t in reversed(timesteps): # 999 β†’ 0
Ξ΅_pred = model(x, t)
x = scheduler.step(Ξ΅_pred, t, x) # Removes predicted noise
```
### Utility & Behavior
- **Strength**: General-purpose image generation
- **Weakness**: No explicit understanding of image structure
- **Use case**: Standard text-to-image generation
---
## 2. Velocity (v) Prediction β€” Sol (DDPM Framework)
### Core Concept
> **"Predict the direction from noise to data"**
Sol predicts velocity but operates within the DDPM scheduler framework, requiring conversion from velocity to epsilon for sampling.
### The Formula (Simplified)
```
TRAINING:
x_t = Ξ± * x_clean + Οƒ * noise (same as DDPM)
v = Ξ± * noise - Οƒ * x_clean (velocity target)
↓
Model predicts: vΜ‚ = "which way is the image?"
↓
Loss = ||vΜ‚ - v||Β²
SAMPLING:
Convert velocity β†’ epsilon
Use standard DDPM scheduler stepping
```
### Reading the Math
- **v (velocity)**: Direction vector in latent space
- **Ξ± (alpha)**: √(Ξ±_cumprod) β€” signal strength
- **Οƒ (sigma)**: √(1 - Ξ±_cumprod) β€” noise strength
- **The velocity formula**: `v = Ξ± * Ξ΅ - Οƒ * xβ‚€`
- "Velocity is the signal-weighted noise minus noise-weighted data"
### Why Velocity in DDPM?
Sol was trained with David (the geometric assessor) providing loss weighting. This setup used:
- DDPM noise schedule for interpolation
- Velocity prediction for training target
- Knowledge distillation from a teacher
The result: Sol learned **geometric structure** rather than textures.
### Training Process (David-Weighted)
```python
# DDPM-style corruption
noise = torch.randn_like(latents)
t = torch.randint(0, 1000, (batch,))
Ξ± = sqrt(scheduler.alphas_cumprod[t])
Οƒ = sqrt(1 - scheduler.alphas_cumprod[t])
x_t = Ξ± * latents + Οƒ * noise
# Velocity target (NOT epsilon!)
v_target = Ξ± * noise - Οƒ * latents
# Model predicts velocity
v_pred = model(x_t, t)
# David assesses geometric quality β†’ adjusts loss weights
loss_weights = david_assessor(features, t)
loss = weighted_MSE(v_pred, v_target, loss_weights)
```
### Sampling Process (CRITICAL: v β†’ Ξ΅ conversion)
```python
# Must convert velocity to epsilon for DDPM scheduler
scheduler = DDPMScheduler(num_train_timesteps=1000)
for t in scheduler.timesteps: # 999, 966, 933, ... β†’ 0
v_pred = model(x, t)
# Convert velocity β†’ epsilon
Ξ± = sqrt(scheduler.alphas_cumprod[t])
Οƒ = sqrt(1 - scheduler.alphas_cumprod[t])
# Solve: v = Ξ±*Ξ΅ - Οƒ*xβ‚€ and x_t = Ξ±*xβ‚€ + Οƒ*Ξ΅
# Result: xβ‚€ = (Ξ±*x_t - Οƒ*v) / (Ξ±Β² + σ²)
# Ξ΅ = (x_t - Ξ±*xβ‚€) / Οƒ
x0_hat = (Ξ± * x - Οƒ * v_pred) / (Ξ±Β² + σ²)
Ξ΅_hat = (x - Ξ± * x0_hat) / Οƒ
x = scheduler.step(Ξ΅_hat, t, x) # Standard DDPM step with epsilon
```
### Utility & Behavior
- **What Sol learned**: Platonic forms, silhouettes, mass distribution
- **Visual output**: Flat geometric shapes, correct spatial layout, no texture
- **Why this happened**: David rewarded geometric coherence, Sol optimized for clean David classification
- **Use case**: Structural guidance, composition anchoring, "what goes where"
### Sol's Unique Property
Sol never "collapsed" β€” it learned the **skeleton** of images:
- Castle prompt β†’ Castle silhouette, horizon line, sky gradient
- Portrait prompt β†’ Head oval, shoulder mass, figure-ground separation
- City prompt β†’ Building masses, street perspective, light positions
This is the "WHAT before HOW" that most diffusion models skip.
---
## 3. Velocity (v) Prediction β€” Lune (Rectified Flow)
### Core Concept
> **"Predict the straight-line direction from noise to data"**
Lune uses true rectified flow matching where data travels in straight lines through latent space.
### The Formula (Simplified)
```
TRAINING:
x_t = Οƒ * noise + (1-Οƒ) * data (linear interpolation)
v = noise - data (constant velocity)
↓
Model predicts: vΜ‚ = "straight line to noise"
↓
Loss = ||vΜ‚ - v||Β²
SAMPLING:
Start at Οƒ=1 (noise)
Walk OPPOSITE to velocity (toward data)
End at Οƒ=0 (clean image)
```
### Reading the Math
- **Οƒ (sigma)**: Interpolation parameter (1 = noise, 0 = data)
- **x_t = σ·noise + (1-Οƒ)Β·data**: Linear blend between noise and data
- **v = noise - data**: The velocity is CONSTANT along the path
- **Shift function**: `Οƒ' = shiftΒ·Οƒ / (1 + (shift-1)Β·Οƒ)`
- Biases sampling toward cleaner images (spends more steps refining)
### Key Difference from Sol
| Aspect | Sol | Lune |
|--------|-----|------|
| Interpolation | DDPM (Ξ±, Οƒ from scheduler) | Linear (Οƒ, 1-Οƒ) |
| Velocity meaning | Complex (Ξ±Β·Ξ΅ - σ·xβ‚€) | Simple (noise - data) |
| Sampling | Convert v→Ρ, use scheduler | Direct Euler integration |
| Output | Geometric skeletons | Detailed images |
### Training Process
```python
# Linear interpolation (NOT DDPM schedule!)
noise = torch.randn_like(latents)
Οƒ = torch.rand(batch) # Random sigma in [0, 1]
# Apply shift during training
Οƒ_shifted = (shift * Οƒ) / (1 + (shift - 1) * Οƒ)
Οƒ = Οƒ_shifted.view(-1, 1, 1, 1)
x_t = Οƒ * noise + (1 - Οƒ) * latents
# Velocity target: direction FROM data TO noise
v_target = noise - latents
# Model predicts velocity
v_pred = model(x_t, Οƒ * 1000) # Timestep = Οƒ * 1000
loss = MSE(v_pred, v_target)
```
### Sampling Process (Direct Euler)
```python
# Start from pure noise (Οƒ = 1)
x = torch.randn(1, 4, 64, 64)
# Sigma schedule: 1 β†’ 0 with shift
sigmas = torch.linspace(1, 0, steps + 1)
sigmas = shift_sigma(sigmas, shift=3.0)
for i in range(steps):
Οƒ = sigmas[i]
Οƒ_next = sigmas[i + 1]
dt = Οƒ - Οƒ_next # Positive (going from 1 toward 0)
timestep = Οƒ * 1000
v_pred = model(x, timestep)
# SUBTRACT velocity (v points toward noise, we go toward data)
x = x - v_pred * dt
# x is now clean image latent
```
### Why SUBTRACT the Velocity?
```
v = noise - data (points FROM data TO noise)
We want to go FROM noise TO data (opposite direction!)
So: x_new = x_current - v * dt
= x_current - (noise - data) * dt
= x_current + (data - noise) * dt ← Moving toward data βœ“
```
### Utility & Behavior
- **What Lune learned**: Rich textures, fine details, realistic rendering
- **Visual output**: Full detailed images with lighting, materials, depth
- **Training focus**: Portrait/pose data with caption augmentation
- **Use case**: High-quality image generation, detail refinement
---
## Comparison Summary
### Training Targets
```
EPSILON (Ξ΅): target = noise
"What random noise was added?"
VELOCITY (Sol): target = Ξ±Β·noise - σ·data
"What's the DDPM-weighted direction?"
VELOCITY (Lune): target = noise - data
"What's the straight-line direction?"
```
### Sampling Directions
```
EPSILON: x_new = scheduler.step(Ξ΅_pred, t, x)
Scheduler handles noise removal internally
VELOCITY (Sol): Convert v β†’ Ξ΅, then scheduler.step(Ξ΅, t, x)
Must translate to epsilon for DDPM math
VELOCITY (Lune): x_new = x - v_pred * dt
Direct Euler integration, subtract velocity
```
### Visual Intuition
```
EPSILON:
"There's noise hiding the image"
"I'll predict and remove the noise layer by layer"
β†’ General-purpose denoising
VELOCITY (Sol):
"I know which direction the image is"
"But I speak through DDPM's noise schedule"
β†’ Learned structure, outputs skeletons
VELOCITY (Lune):
"Straight line from noise to image"
"I'll walk that line step by step"
β†’ Learned detail, outputs rich images
```
---
## Practical Implementation Checklist
### For Epsilon Models (Standard SD1.5)
- [ ] Use DDPM/DDIM/Euler scheduler
- [ ] Pass timestep as integer [0, 999]
- [ ] Scheduler handles everything
### For Sol (Velocity + DDPM)
- [ ] Use DDPMScheduler
- [ ] Model outputs velocity, NOT epsilon
- [ ] Convert: `x0 = (Ξ±Β·x - σ·v) / (Ξ±Β² + σ²)`, then `Ξ΅ = (x - Ξ±Β·x0) / Οƒ`
- [ ] Call `scheduler.step(Ξ΅, t, x)`
- [ ] Expect geometric/structural output
### For Lune (Velocity + Flow)
- [ ] NO scheduler needed β€” direct Euler
- [ ] Sigma goes 1 β†’ 0 (not 0 β†’ 1!)
- [ ] Apply shift: `Οƒ' = shiftΒ·Οƒ / (1 + (shift-1)Β·Οƒ)`
- [ ] Timestep to model: `Οƒ * 1000`
- [ ] SUBTRACT velocity: `x = x - v * dt`
- [ ] Expect detailed textured output
---
## Why This Matters for TinyFlux
TinyFlux can leverage both experts:
1. **Sol (early timesteps)**: Provides geometric anchoring
- "Where should the castle be?"
- "What's the horizon line?"
- "How is mass distributed?"
2. **Lune (mid/late timesteps)**: Provides detail refinement
- "What texture is the stone?"
- "How does light fall?"
- "What color is the sky?"
By combining geometric structure (Sol) with textural detail (Lune), TinyFlux can achieve better composition AND quality than either alone.
---
## Quick Reference Card
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ PREDICTION TYPES β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ EPSILON (Ξ΅) β”‚
β”‚ Train: target = noise β”‚
β”‚ Sample: scheduler.step(Ξ΅_pred, t, x) β”‚
β”‚ Output: General images β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ VELOCITY - SOL (DDPM framework) β”‚
β”‚ Train: target = Ξ±Β·Ξ΅ - σ·xβ‚€ β”‚
│ Sample: v→Ρ conversion, then scheduler.step(Ρ, t, x) │
β”‚ Output: Geometric skeletons β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ VELOCITY - LUNE (Rectified Flow) β”‚
β”‚ Train: target = noise - data β”‚
β”‚ Sample: x = x - vΒ·dt (Euler, Οƒ: 1β†’0) β”‚
β”‚ Output: Detailed textured images β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```
---
*Document Version: 1.0*
*Last Updated: January 2026*
*Authors: AbstractPhil & Claude OPUS 4.5*
License: MIT