SAT-HMR / utils /transforms.py
ChiSu001's picture
Upload model files
ff07ed4 verified
# Borrow from OSX and agora_evaluation
import torch
from torchvision import transforms
import numpy as np
import scipy
import colorsys
from torch.nn import functional as F
unNormalize = transforms.Normalize(
mean=-np.array([0.485,0.456,0.406]) / np.array([0.229,0.224,0.225]),
std=1 / np.array([0.229,0.224,0.225]))
def adjust_colors(colors, saturation_threshold = 0.3, brightness_threshold = 0.8):
def adjust_func(rgb_color):
r, g, b = rgb_color
h, s, v = colorsys.rgb_to_hsv(r, g, b)
if v < brightness_threshold:
v = brightness_threshold
if s > saturation_threshold:
s = saturation_threshold
r, g, b = colorsys.hsv_to_rgb(h, s, v)
return r, g, b
adjusted_colors = np.apply_along_axis(adjust_func, 1, colors)
return adjusted_colors
def to_zorder(img, z_order_map, y_coords, x_coords):
h, w = img.shape[:2]
assert max(h,w) <= z_order_map.shape[0]
clipped_z = z_order_map[:h,:w].flatten()
sorted_idx = torch.argsort(clipped_z)
img_z = img.flatten(0,1)[sorted_idx]
z_order_idx = clipped_z[sorted_idx]
y_idx = y_coords[:h,:w].flatten()[sorted_idx]
x_idx = x_coords[:h,:w].flatten()[sorted_idx]
return img_z, z_order_idx, y_idx, x_idx
def img2patch(x, patch_size):
assert x.ndim == 3 # (c,h,w)
c, h, w = x.shape
feature_h = h//patch_size
feature_w = w//patch_size
x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4)
return x_patched
def img2patch_flat(x, patch_size):
assert x.ndim == 3 # (c,h,w)
c, h, w = x.shape
feature_h = h//patch_size
feature_w = w//patch_size
x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4)
return x_patched.flatten(0,1)
def rot6d_to_rotmat(x):
"""Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation
Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
if isinstance(x, torch.Tensor):
x = x.reshape(-1, 3, 2)
elif isinstance(x, np.ndarray):
x = x.view(-1, 3, 2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.linalg.cross(b1, b2)
return torch.stack((b1, b2, b3), dim=-1)
def rotation_matrix_to_angle_axis(rotation_matrix):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
if rotation_matrix.shape[1:] == (3, 3):
rot_mat = rotation_matrix.reshape(-1, 3, 3)
hom = torch.tensor([0, 0, 1],
dtype=torch.float32,
device=rotation_matrix.device)
hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1)
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
aa = quaternion_to_angle_axis(quaternion)
aa[torch.isnan(aa)] = 0.0
return aa
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""
This function is borrowed from https://github.com/kornia/kornia
Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError(
'Input must be a tensor of shape Nx4 or 4. Got {}'.format(
quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError(
'Input size must be a three dimensional tensor. Got {}'.format(
rotation_matrix.shape))
if not rotation_matrix.shape[-2:] == (3, 4):
raise ValueError(
'Input size must be a N x 3 x 4 tensor. Got {}'.format(
rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0,
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
mask_c1 = mask_d2 * ~mask_d0_d1
mask_c2 = ~mask_d2 * mask_d0_nd1
mask_c3 = ~mask_d2 * ~mask_d0_nd1
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
q *= 0.5
return q
def rot6d_to_axis_angle(x):
bs,num_queries,_ = x.shape
rot_mat = rot6d_to_rotmat(x)
rot_mat = torch.cat([rot_mat, torch.zeros((rot_mat.shape[0], 3, 1)).cuda().float()], 2) # 3x4 rotation matrix
axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1, 3) # axis-angle
axis_angle[torch.isnan(axis_angle)] = 0.0
return axis_angle.reshape(bs,num_queries,-1)
def rigid_transform_3D(A, B):
n, dim = A.shape
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n
U, s, V = np.linalg.svd(H)
R = np.dot(np.transpose(V), np.transpose(U))
if np.linalg.det(R) < 0:
s[-1] = -s[-1]
V[2] = -V[2]
R = np.dot(np.transpose(V), np.transpose(U))
varP = np.var(A, axis=0).sum()
c = 1 / varP * np.sum(s)
t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B)
return c, R, t
def rigid_align(A, B):
c, R, t = rigid_transform_3D(A, B)
A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t
return A2
def pelvis_align(joints, verts=None):
left_id = 1
right_id = 2
pelvis = (joints[left_id, :] + joints[right_id, :]) / 2.0
if verts is not None:
return verts - np.expand_dims(pelvis, axis=0)
else:
return joints - np.expand_dims(pelvis, axis=0)
def root_align(joints, verts=None):
left_id = 1
right_id = 2
root = joints[0, :]
if verts is not None:
return verts - np.expand_dims(root, axis=0)
else:
return joints - np.expand_dims(root, axis=0)