|
|
|
|
|
import torch |
|
|
from torchvision import transforms |
|
|
import numpy as np |
|
|
import scipy |
|
|
import colorsys |
|
|
from torch.nn import functional as F |
|
|
|
|
|
unNormalize = transforms.Normalize( |
|
|
mean=-np.array([0.485,0.456,0.406]) / np.array([0.229,0.224,0.225]), |
|
|
std=1 / np.array([0.229,0.224,0.225])) |
|
|
|
|
|
def adjust_colors(colors, saturation_threshold = 0.3, brightness_threshold = 0.8): |
|
|
|
|
|
def adjust_func(rgb_color): |
|
|
r, g, b = rgb_color |
|
|
h, s, v = colorsys.rgb_to_hsv(r, g, b) |
|
|
if v < brightness_threshold: |
|
|
v = brightness_threshold |
|
|
if s > saturation_threshold: |
|
|
s = saturation_threshold |
|
|
r, g, b = colorsys.hsv_to_rgb(h, s, v) |
|
|
return r, g, b |
|
|
|
|
|
adjusted_colors = np.apply_along_axis(adjust_func, 1, colors) |
|
|
return adjusted_colors |
|
|
|
|
|
def to_zorder(img, z_order_map, y_coords, x_coords): |
|
|
h, w = img.shape[:2] |
|
|
assert max(h,w) <= z_order_map.shape[0] |
|
|
clipped_z = z_order_map[:h,:w].flatten() |
|
|
sorted_idx = torch.argsort(clipped_z) |
|
|
|
|
|
img_z = img.flatten(0,1)[sorted_idx] |
|
|
z_order_idx = clipped_z[sorted_idx] |
|
|
y_idx = y_coords[:h,:w].flatten()[sorted_idx] |
|
|
x_idx = x_coords[:h,:w].flatten()[sorted_idx] |
|
|
|
|
|
return img_z, z_order_idx, y_idx, x_idx |
|
|
|
|
|
def img2patch(x, patch_size): |
|
|
assert x.ndim == 3 |
|
|
c, h, w = x.shape |
|
|
feature_h = h//patch_size |
|
|
feature_w = w//patch_size |
|
|
x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4) |
|
|
return x_patched |
|
|
|
|
|
def img2patch_flat(x, patch_size): |
|
|
assert x.ndim == 3 |
|
|
c, h, w = x.shape |
|
|
feature_h = h//patch_size |
|
|
feature_w = w//patch_size |
|
|
x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4) |
|
|
return x_patched.flatten(0,1) |
|
|
|
|
|
def rot6d_to_rotmat(x): |
|
|
"""Convert 6D rotation representation to 3x3 rotation matrix. |
|
|
|
|
|
Based on Zhou et al., "On the Continuity of Rotation |
|
|
Representations in Neural Networks", CVPR 2019 |
|
|
Input: |
|
|
(B,6) Batch of 6-D rotation representations |
|
|
Output: |
|
|
(B,3,3) Batch of corresponding rotation matrices |
|
|
""" |
|
|
if isinstance(x, torch.Tensor): |
|
|
x = x.reshape(-1, 3, 2) |
|
|
elif isinstance(x, np.ndarray): |
|
|
x = x.view(-1, 3, 2) |
|
|
a1 = x[:, :, 0] |
|
|
a2 = x[:, :, 1] |
|
|
b1 = F.normalize(a1) |
|
|
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) |
|
|
b3 = torch.linalg.cross(b1, b2) |
|
|
return torch.stack((b1, b2, b3), dim=-1) |
|
|
|
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix): |
|
|
""" |
|
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
Convert 3x4 rotation matrix to Rodrigues vector |
|
|
Args: |
|
|
rotation_matrix (Tensor): rotation matrix. |
|
|
Returns: |
|
|
Tensor: Rodrigues vector transformation. |
|
|
Shape: |
|
|
- Input: :math:`(N, 3, 4)` |
|
|
- Output: :math:`(N, 3)` |
|
|
Example: |
|
|
>>> input = torch.rand(2, 3, 4) # Nx3x4 |
|
|
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 |
|
|
""" |
|
|
if rotation_matrix.shape[1:] == (3, 3): |
|
|
rot_mat = rotation_matrix.reshape(-1, 3, 3) |
|
|
hom = torch.tensor([0, 0, 1], |
|
|
dtype=torch.float32, |
|
|
device=rotation_matrix.device) |
|
|
hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) |
|
|
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) |
|
|
|
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
|
aa = quaternion_to_angle_axis(quaternion) |
|
|
aa[torch.isnan(aa)] = 0.0 |
|
|
return aa |
|
|
|
|
|
|
|
|
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
Convert quaternion vector to angle axis of rotation. |
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
Args: |
|
|
quaternion (torch.Tensor): tensor with quaternions. |
|
|
Return: |
|
|
torch.Tensor: tensor with angle axis of rotation. |
|
|
Shape: |
|
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
|
- Output: :math:`(*, 3)` |
|
|
Example: |
|
|
>>> quaternion = torch.rand(2, 4) # Nx4 |
|
|
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 |
|
|
""" |
|
|
if not torch.is_tensor(quaternion): |
|
|
raise TypeError('Input type is not a torch.Tensor. Got {}'.format( |
|
|
type(quaternion))) |
|
|
|
|
|
if not quaternion.shape[-1] == 4: |
|
|
raise ValueError( |
|
|
'Input must be a tensor of shape Nx4 or 4. Got {}'.format( |
|
|
quaternion.shape)) |
|
|
|
|
|
q1: torch.Tensor = quaternion[..., 1] |
|
|
q2: torch.Tensor = quaternion[..., 2] |
|
|
q3: torch.Tensor = quaternion[..., 3] |
|
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
|
cos_theta: torch.Tensor = quaternion[..., 0] |
|
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
|
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), |
|
|
torch.atan2(sin_theta, cos_theta)) |
|
|
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
|
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) |
|
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] |
|
|
angle_axis[..., 0] += q1 * k |
|
|
angle_axis[..., 1] += q2 * k |
|
|
angle_axis[..., 2] += q3 * k |
|
|
return angle_axis |
|
|
|
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
|
""" |
|
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
Convert 3x4 rotation matrix to 4d quaternion vector |
|
|
This algorithm is based on algorithm described in |
|
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
Args: |
|
|
rotation_matrix (Tensor): the rotation matrix to convert. |
|
|
Return: |
|
|
Tensor: the rotation in quaternion |
|
|
Shape: |
|
|
- Input: :math:`(N, 3, 4)` |
|
|
- Output: :math:`(N, 4)` |
|
|
Example: |
|
|
>>> input = torch.rand(4, 3, 4) # Nx3x4 |
|
|
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 |
|
|
""" |
|
|
if not torch.is_tensor(rotation_matrix): |
|
|
raise TypeError('Input type is not a torch.Tensor. Got {}'.format( |
|
|
type(rotation_matrix))) |
|
|
|
|
|
if len(rotation_matrix.shape) > 3: |
|
|
raise ValueError( |
|
|
'Input size must be a three dimensional tensor. Got {}'.format( |
|
|
rotation_matrix.shape)) |
|
|
if not rotation_matrix.shape[-2:] == (3, 4): |
|
|
raise ValueError( |
|
|
'Input size must be a N x 3 x 4 tensor. Got {}'.format( |
|
|
rotation_matrix.shape)) |
|
|
|
|
|
rmat_t = torch.transpose(rotation_matrix, 1, 2) |
|
|
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
|
q0 = torch.stack([ |
|
|
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, |
|
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] |
|
|
], -1) |
|
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
|
q1 = torch.stack([ |
|
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
|
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] |
|
|
], -1) |
|
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
|
q2 = torch.stack([ |
|
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 |
|
|
], -1) |
|
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
|
q3 = torch.stack([ |
|
|
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] |
|
|
], -1) |
|
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
|
|
mask_c0 = mask_d2 * mask_d0_d1 |
|
|
mask_c1 = mask_d2 * ~mask_d0_d1 |
|
|
mask_c2 = ~mask_d2 * mask_d0_nd1 |
|
|
mask_c3 = ~mask_d2 * ~mask_d0_nd1 |
|
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
|
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + |
|
|
t2_rep * mask_c2 + t3_rep * mask_c3) |
|
|
q *= 0.5 |
|
|
return q |
|
|
|
|
|
|
|
|
def rot6d_to_axis_angle(x): |
|
|
bs,num_queries,_ = x.shape |
|
|
rot_mat = rot6d_to_rotmat(x) |
|
|
rot_mat = torch.cat([rot_mat, torch.zeros((rot_mat.shape[0], 3, 1)).cuda().float()], 2) |
|
|
axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1, 3) |
|
|
axis_angle[torch.isnan(axis_angle)] = 0.0 |
|
|
return axis_angle.reshape(bs,num_queries,-1) |
|
|
|
|
|
|
|
|
def rigid_transform_3D(A, B): |
|
|
n, dim = A.shape |
|
|
centroid_A = np.mean(A, axis=0) |
|
|
centroid_B = np.mean(B, axis=0) |
|
|
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n |
|
|
U, s, V = np.linalg.svd(H) |
|
|
R = np.dot(np.transpose(V), np.transpose(U)) |
|
|
if np.linalg.det(R) < 0: |
|
|
s[-1] = -s[-1] |
|
|
V[2] = -V[2] |
|
|
R = np.dot(np.transpose(V), np.transpose(U)) |
|
|
|
|
|
varP = np.var(A, axis=0).sum() |
|
|
c = 1 / varP * np.sum(s) |
|
|
|
|
|
t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B) |
|
|
return c, R, t |
|
|
|
|
|
|
|
|
def rigid_align(A, B): |
|
|
c, R, t = rigid_transform_3D(A, B) |
|
|
A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t |
|
|
return A2 |
|
|
|
|
|
|
|
|
def pelvis_align(joints, verts=None): |
|
|
|
|
|
left_id = 1 |
|
|
right_id = 2 |
|
|
|
|
|
pelvis = (joints[left_id, :] + joints[right_id, :]) / 2.0 |
|
|
if verts is not None: |
|
|
return verts - np.expand_dims(pelvis, axis=0) |
|
|
else: |
|
|
return joints - np.expand_dims(pelvis, axis=0) |
|
|
|
|
|
|
|
|
def root_align(joints, verts=None): |
|
|
|
|
|
left_id = 1 |
|
|
right_id = 2 |
|
|
|
|
|
root = joints[0, :] |
|
|
if verts is not None: |
|
|
return verts - np.expand_dims(root, axis=0) |
|
|
else: |
|
|
return joints - np.expand_dims(root, axis=0) |