mulo / README.md
btherien's picture
Update README.md
44de681 verified
---
license: apache-2.0
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
- learned-optimizer
---
# Description
`btherien/mulo` is a learned optimizer meta-trained in μ-parameterization. It corresponds to the μLO_M optimizer from [μLO: Compute-Efficient Meta-Generalization of Learned Optimizers](https://arxiv.org/abs/2406.00153). Due to being meta-trained in μP, μLO_M has strong meta-generalization capabilities (i.e., the ability to optimize unseen tasks), despite its relatively short and inexpensive meta-training distribution.
### Learned optimizer meta training and architectural details
| **Field** | **Value** |
|------------------------------|---------------------------------------------------------------------------|
| **Meta-training distribution** | ImageNet classification, 3-layer MLP, width ∈ {128, 512, 1024} |
| **Number of meta-training steps** | 5000 |
| **Target inner problem length** | 1000 iterations |
| **Gradient estimator** | Persistent Evolution Strategies |
| **Truncation length** | 50 |
| **Architecture** | small_fc_lopt |
| **Optimizer Input size** | 39 |
| **Optimizer Hidden size** | 32 |
| **Optimizer Output size** | 2 |
# Usage
---
## 1) Install PyLO
The following
```bash
git clone https://github.com/Belilovsky-Lab/pylo
cd pylo
pip install . --config-settings="--build-option=--cuda" #Optional installation with Cuda
```
## (2) Use $\mu$LO as a drop-in replacement for pytorch learned optimizers
```python
if USE_CUDA_KERNEL:
from pylo.optim import MuLO_CUDA
optimizer = MuLO_CUDA(model.parameters(), hf_key='btherien/mulo')
else:
from pylo.optim import MuLO_naive
optimizer = MuLO_naive(model.parameters(), hf_key='btherien/mulo')
```
## (3) A simple example
The following example is for illustration purposes and does not implement the correct parameterizaiton. For a correct implementation see https://github.com/Belilovsky-Lab/pylo/tree/main/examples
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# Model
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Flatten(),
nn.Linear(28 * 28, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
return self.net(x)
model = MLP().to(device)
#########################
Setup Learned Optimizer
#########################
#USE_CUDA_KERNEL=True # Uncomment for accelerated kernels
if USE_CUDA_KERNEL:
from pylo.optim import MuLO_CUDA
optimizer = MuLO_CUDA(model.parameters(), hf_key='btherien/mulo')
else:
from pylo.optim import MuLO_naive
optimizer = MuLO_naive(model.parameters(), hf_key='btherien/mulo')
# Device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Data
transform = transforms.ToTensor()
train_loader = DataLoader(datasets.MNIST(root='./data', train=True, download=True, transform=transform),
batch_size=64, shuffle=True)
criterion = nn.CrossEntropyLoss()
# Training loop
for epoch in range(1): # Just 1 epoch for simplicity
for x, y in train_loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
loss = criterion(model(x), y)
loss.backward()
optimizer.step()
print("Done!")
```
### Per-Parameter Input Features Used by MuLO
| **Type** | **# Features** | **Description** | **Equation** |
|---------------------------|----------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| **Accumulators** | 3 | Momentum accumulators with coefficients βᵢ, i ∈ {1, 2, 3}. | mₜ,ᵢ = βᵢ·mₜ₋₁,ᵢ + (1 − βᵢ)·∇ₜ |
| | 1 | Second moment accumulator with coefficient β₄. | vₜ = β₄·vₜ₋₁ + (1 − β₄)·∇ₜ² |
| | 3 | Adafactor row accumulators with coefficients βᵢ, i ∈ {5, 6, 7}. | rₜ,ᵢ = βᵢ·rₜ₋₁,ᵢ + (1 − βᵢ)·row_mean(∇ₜ²) |
| | 3 | Adafactor column accumulators with coefficients βᵢ, i ∈ {5, 6, 7}. | cₜ,ᵢ = βᵢ·cₜ₋₁,ᵢ + (1 − βᵢ)·col_mean(∇ₜ²) |
| **Accumulator Features** | 3 | Normalized momentum: momentum divided by sqrt of second moment for i ∈ {5, 6, 7}. | mₜ,ᵢ / √v |
| | 1 | Reciprocal sqrt of second moment value. | 1 / √v |
| | 6 | Reciprocal sqrt of Adafactor accumulators. | 1 / √(rₜ,ᵢ or cₜ,ᵢ) |
| | 3 | Adafactor gradient features for i ∈ {5, 6, 7}. | ∇ₜ × rₜ,ᵢ × cₜ,ᵢ |
| | 3 | Adafactor momentum features for (i, j) ∈ {(5,1), (6,2), (7,3)}. | mₜ,ⱼ × rₜ,ᵢ × cₜ,ᵢ |
| **Time Features** | 11 | Time features for x ∈ {1, 3, 10, 30, 100, 300, 1000, 3000, 10⁴, 3·10⁴, 10⁵}. | tanh(t / x) |
| **Parameters** | 1 | Parameter value. | wₜ |
| | 1 | Gradient value. | ∇ₜ |
| **Total** | 39 | — | — |
# Cite
If you found this optimizer useful in your research, please consider citing our work:
```bibtex
@misc{therien2024mulo,
title = {$\mu$LO: Compute-Efficient Meta-Generalization of Learned Optimizers},
author = {Benjamin Thérien and Charles-Étienne Joseph and Boris Knyazev and Edouard Oyallon and Irina Rish and Eugene Belilovsky},
year = {2024},
eprint = {2406.00153},
archivePrefix = {arXiv},
primaryClass = {cs.LG},
url = {https://arxiv.org/abs/2406.00153}
}
```