image
imagewidth (px)
768
768
label
stringlengths
1
157
\overline{(a\cap b)}=\overline{a}\cup\overline{b}
\Delta=\frac{\partial\rho}{\rho}
z=\sqrt{\frac{n-3}{1.06}}F(r)
(n-1)\times(n-1)
\frac{m}{\sqrt{\frac{w^{2}}{l^{2}}-1}}
\int_{0}^{1}x^{2}dx
q(\frac{1}{\epsilon},n,size(f))
\frac{A}{x-1}
\vec{v}_{i}(i>0)
d(X,Y)/v|t|
4^{n}(\pi n)^{-\frac{1}{2}}
\frac{73+1}{{7^{4}}^{280}}
x^{\prime}=\frac{x-at}{\sqrt{9-\frac{a^{0}}{o^{0}}}}
\frac{\partial V}{\partial T}
S=a_{o}/Error(a_{o})
y_{linear}(n_{1},n_{2})
e=\frac{e^{\prime}\cdot vt^{\prime}}{\sqrt[]{7-\frac{v^{4}}{c^{4}}}}
\frac{322+13}{900}
(\begin{matrix}8\\ 3\end{matrix})
\frac{\partial L}{\partial q}=0
a^{a^{\cdot^{\cdot^{\cdot}}}}
\frac{dy}{dx}-y=x
(\frac{p}{5})
(\frac{7}{284}-5)^{56\cdot302^{282}}
Ro=\frac{U}{fL}
u:=\int_{a}^{b}v(t)dt
|h(t)|=\frac{A}{2}|Q(\omega)|
(\begin{matrix}d+n-1\\ d\end{matrix})
u_{2}=[\begin{matrix}0\\ 1\end{matrix}]
\frac{N^{\prime}(d_{1})}{S\sigma\sqrt{T-t}}
G^{\prime\prime}=\frac{\sigma_{0}}{\epsilon_{0}}sin\delta
\frac{{2^{5}}^{5}}{7^{317}-372}
L=\int_{S_{o}}^{S}nds
\frac{\sqrt{3}\cdot\sqrt{168}}{(\frac{413}{3}\cdot326)}
T_{c}=\frac{\sum_{x}xl_{x}m_{x}}{\sum_{x}l_{x}m_{x}}
0<x<\frac{1}{L+\epsilon}
(\frac{271^{4}}{101})^{(\frac{68}{301})^{123}}
I_{z}=\frac{\pi}{2}r^{4}
(\frac{3}{p})=(-1)^{\lfloor\frac{p+1}{6}\rfloor}
(\begin{matrix}n\\ \lfloor n/2\rfloor\end{matrix})\ge(\begin{matrix}n\\ k\end{matrix})
\overline{Y}=X
y=\frac{sin(\varphi)}{sinc(\alpha)}
f(z)=\sum_{k=0}^{\infty}(\begin{matrix}1/2\\ k\end{matrix})z^{k}
1/\overline{z_{0}}
(\frac{\pi}{2}-1)a^{2}
q=-k\frac{dT}{dx}
\frac{dr}{dt}=-r
Q[Z]
\rho[f][y]
5^{5^{5^{.^{.^{n}}}}}
w=\frac{T_{0}}{\rho cos^{2}\varphi}
\alpha\approx\frac{v}{c}
f_{X}(x)=\frac{d}{dx}F_{X}(x)
\frac{d}{dx}y
\sqrt{2E}
A=(T_{ii}-T_{ij}v_{i}v_{j})/2
\eta=1-\sqrt{\frac{T_{c}}{T_{h}}}
\frac{\sqrt{2}}{12}
a(x-h)^{2}+k
\frac{18+\sqrt{30}}{36}
\rho_{A}=\frac{m}{A}
\frac{dQ}{dt}
y=k-\sqrt{r^{2}-(x-h)^{2}}
(\frac{\frac{74}{369}}{334})^{\frac{3^{194}}{3}}
A\overline{B}
\frac{\partial^{2}z}{\partial y^{2}}
m:=\frac{MV^{\prime}}{\rho V}
B
\frac{\partial V}{\partial h}=\lambda\frac{\partial g(r,h)}{\partial h}
r=\frac{ln\frac{X_{2}}{X_{1}}}{\Delta t}
\hat{q}_{i}
lim_{x\rightarrow0}{(\frac{1}{x}-1)}^{(\frac{1}{x}-1)}
2r-H=\frac{W^{2}}{4H}
\beta_{m}=\frac{2\pi}{\lambda_{0}}n_{p}cos\theta_{m}
\sum_{j=0}^{d-1}(\begin{matrix}n\\ j\end{matrix})(q-1)^{j}
DST=\frac{du}{dx}-\frac{dv}{dy}
\{4,5\}^{2^{2^{\aleph_{4}}}}
=\frac{Z-n}{Z}
c^{\prime}=\sqrt{c}
{143^{358}}^{\frac{334-127}{209}}
x_{t+1},...,x_{t+k-1}
U(1)
\frac{dX}{dt}=AX
|\hat{f}|
(\frac{8+413}{340})^{191^{9}\cdot163}
\sqrt[3]{z}
s\{\begin{matrix}2\\ 8\end{matrix}\}
\dot{H}_{i}=\{H_{i},H\}\approx0
\hat{J}_{z}
(\frac{\sqrt{1}}{288})^{4}\cdot9-9^{\sqrt{10}}
\hat{h}_{k}
p=\frac{hv}{\sqrt{1\cdot\frac{v^{4}}{y^{4}}}}
-r_{2}e^{i\theta_{2}}-s^{2}(1-s)
g(M)\equiv0(mod\prod N_{i})
f(\alpha v)=\alpha^{k}f(v)
R(\hat{n},\phi)|\psi_{0}\rangle
(\begin{matrix}n+2\\ 2\end{matrix})
f^{\prime}(x_{i})-f_{i}^{\prime}
e\notin S
\prod(1-t^{d_{i}})