image
imagewidth (px)
768
768
label
stringlengths
1
157
P(q)=\frac{e^{-\frac{E(q)}{k_{B}T}}}{Z}
(229-2)^{9^{72}}
\frac{\partial f}{\partial\theta}
\prod n_{i}
a^{-\frac{1}{3}(\frac{log\frac{x}{x_{8}}}{log\Xi})^{3}}
\hat{a}_{i}
\frac{i(p/+m)}{p^{2}-m^{2}}
\mathbb{R}[z]
\sqrt{8}-2\sqrt{2}
T=(\begin{matrix}1&0\\ 1&0\end{matrix})
G_{X}(e^{t})=M_{X}(t)
T=\frac{mc^{2}}{\sqrt{6+\frac{b^{2}}{c^{2}}}}
76\frac{2}{15}
0100=\alpha^{-13}
\prod_{i\ne\beta}X_{i}
\frac{U}{t}\sim\nu\frac{U}{y^{2}}
(\begin{matrix}0&1\\ 1&0\end{matrix})
\psi(r+N_{i}a_{i})=\psi(r)
P_{0}\equiv\frac{L}{n}
\epsilon_{0}=\Theta^{\Theta^{\Theta^{+^{+^{+}}}}}
\pi(2^{n/2})\approx\frac{2^{n/2}}{(\frac{n}{2})ln2}
c\prod(x-a_{i})
\frac{dh}{dt}
A^{(n)}:=L_{n}A^{(n-1)}
x^{2}\frac{log^{2}T}{T}+logx
H(s)=\sum_{n=1}^{\infty}\frac{h(n)}{n^{s}}
\frac{\partial}{\partial x}
(\begin{matrix}n\\ 2\end{matrix})
it=ln(\frac{iy+F}{iP+F})
\neg\varphi\vdash\neg\psi
f(x)=\pm\sqrt{x}
(\begin{matrix}n\\ k\end{matrix})=0
\frac{1}{\sqrt{1\cdot\frac{v^{6}}{k^{6}}}}
\tilde{E}_{6}
P=\frac{V^{2}}{R}
\frac{G\hbar}{c^{3}}
\frac{V^{2}}{L}
5^{5^{5^{5^{5^{5}}}}}-7
\frac{\alpha^{2}\Gamma(3/\beta)}{\Gamma(1/\beta)}
f_{2}(x)>g_{2}(x)
\frac{8^{8}}{76^{480}}
\overline{O_{R}P}
PB-C=\sqrt{\gamma}Q
x\notin\overline{W_{U}}
{9^{9}}^{(3\cdot\sqrt{1})\cdot\sqrt{8}}
X\backslash\{p\}
\mu_{ex}
\omega\notin X
g\notin F
\overline{G}_{k}(X)
(\frac{6}{10})^{(\frac{58}{399}\cdot395)}
\frac{ds}{dT}=\frac{W(s)}{b}
\frac{\frac{\frac{9}{3}}{95}}{(1^{2}\cdot281)}
T=\sum\lambda_{i}U(g_{i}).
a\underline{x}^{-k}+b\delta^{(k-1)}
k=e^{-\frac{\Delta G_{F}}{k_{B}T}}
(\frac{60}{296}+{96^{193}}^{3})
X,Y\in g,F\in g^{*}
\sqrt{\phi}
\mathbb{N}
\tilde{D}_{4}
5/5\cdot9^{(365-1)+299}
L(s,\pi_{1}\times\pi_{2})
v_{1}=[\begin{matrix}1\\ 1\\ 0\\ 1\end{matrix}]
\sqrt{\delta}
\frac{-3x+2}{x+3}<0
\frac{(q+n-1)!}{(n-1)!q!}
\frac{159\cdot10}{363^{347}}
\alpha<1
P_{1},P_{2},P_{3},P_{4}\rightarrow P
x^{\underline{n}}
X=-\langle\frac{dE_{r}}{dx}\rangle
\rho_{i}>0
(\begin{matrix}a\\ a+1\end{matrix})=0
(\begin{matrix}n-k\\ k\end{matrix})
\frac{458}{496}/475^{245}
{36^{243}}^{\frac{7}{5}+244}
p_{2}T
(\begin{matrix}[n]\\ 1\end{matrix})
(\sqrt[n]{r},\theta/n)
\vec{k}\perp\vec{B}_{0},\vec{E}_{1}\perp\vec{B}_{0}
(\frac{n-k}{n})^{m}
\frac{\frac{\frac{7}{7}}{1}}{6-440+\sqrt{9}}
\frac{\frac{380}{454}}{(35-465)}
e_{a}=\frac{\partial}{\partial x^{a}}
((3\cdot6)+\frac{3}{2})
|L|=\hbar\sqrt{l(l+1)}
\sqrt{\frac{\sum{A_{f}}^{2}}{n}}
\frac{dn}{d\tau}=n(1-n)
log_{a}(\frac{1}{x}-1)
-(\frac{\partial w}{\partial z}\frac{\partial\theta}{\partial z})
\int_{0}^{\infty}\frac{e^{-(\frac{(q\cdot g)^{2}}{2k})}}{\sqrt{2\pi k}}
s\{\begin{matrix}5\\ 3\end{matrix}\}
\int_{\gamma}\rho|dz|
\frac{s}{\sqrt{\frac{v^{7}}{c^{7}}-1}}
\overline{X^{i}}
\hat{S}_{a}
{(D^{g})}^{3}
Q_{x}^{face}=\frac{dM_{xx}^{face}}{dx}
(\begin{matrix}1&-1\\ 1&0\end{matrix})