image
imagewidth (px) 768
768
| label
stringlengths 1
157
|
|---|---|
P(q)=\frac{e^{-\frac{E(q)}{k_{B}T}}}{Z}
|
|
(229-2)^{9^{72}}
|
|
\frac{\partial f}{\partial\theta}
|
|
\prod n_{i}
|
|
a^{-\frac{1}{3}(\frac{log\frac{x}{x_{8}}}{log\Xi})^{3}}
|
|
\hat{a}_{i}
|
|
\frac{i(p/+m)}{p^{2}-m^{2}}
|
|
\mathbb{R}[z]
|
|
\sqrt{8}-2\sqrt{2}
|
|
T=(\begin{matrix}1&0\\ 1&0\end{matrix})
|
|
G_{X}(e^{t})=M_{X}(t)
|
|
T=\frac{mc^{2}}{\sqrt{6+\frac{b^{2}}{c^{2}}}}
|
|
76\frac{2}{15}
|
|
0100=\alpha^{-13}
|
|
\prod_{i\ne\beta}X_{i}
|
|
\frac{U}{t}\sim\nu\frac{U}{y^{2}}
|
|
(\begin{matrix}0&1\\ 1&0\end{matrix})
|
|
\psi(r+N_{i}a_{i})=\psi(r)
|
|
P_{0}\equiv\frac{L}{n}
|
|
\epsilon_{0}=\Theta^{\Theta^{\Theta^{+^{+^{+}}}}}
|
|
\pi(2^{n/2})\approx\frac{2^{n/2}}{(\frac{n}{2})ln2}
|
|
c\prod(x-a_{i})
|
|
\frac{dh}{dt}
|
|
A^{(n)}:=L_{n}A^{(n-1)}
|
|
x^{2}\frac{log^{2}T}{T}+logx
|
|
H(s)=\sum_{n=1}^{\infty}\frac{h(n)}{n^{s}}
|
|
\frac{\partial}{\partial x}
|
|
(\begin{matrix}n\\ 2\end{matrix})
|
|
it=ln(\frac{iy+F}{iP+F})
|
|
\neg\varphi\vdash\neg\psi
|
|
f(x)=\pm\sqrt{x}
|
|
(\begin{matrix}n\\ k\end{matrix})=0
|
|
\frac{1}{\sqrt{1\cdot\frac{v^{6}}{k^{6}}}}
|
|
\tilde{E}_{6}
|
|
P=\frac{V^{2}}{R}
|
|
\frac{G\hbar}{c^{3}}
|
|
\frac{V^{2}}{L}
|
|
5^{5^{5^{5^{5^{5}}}}}-7
|
|
\frac{\alpha^{2}\Gamma(3/\beta)}{\Gamma(1/\beta)}
|
|
f_{2}(x)>g_{2}(x)
|
|
\frac{8^{8}}{76^{480}}
|
|
\overline{O_{R}P}
|
|
PB-C=\sqrt{\gamma}Q
|
|
x\notin\overline{W_{U}}
|
|
{9^{9}}^{(3\cdot\sqrt{1})\cdot\sqrt{8}}
|
|
X\backslash\{p\}
|
|
\mu_{ex}
|
|
\omega\notin X
|
|
g\notin F
|
|
\overline{G}_{k}(X)
|
|
(\frac{6}{10})^{(\frac{58}{399}\cdot395)}
|
|
\frac{ds}{dT}=\frac{W(s)}{b}
|
|
\frac{\frac{\frac{9}{3}}{95}}{(1^{2}\cdot281)}
|
|
T=\sum\lambda_{i}U(g_{i}).
|
|
a\underline{x}^{-k}+b\delta^{(k-1)}
|
|
k=e^{-\frac{\Delta G_{F}}{k_{B}T}}
|
|
(\frac{60}{296}+{96^{193}}^{3})
|
|
X,Y\in g,F\in g^{*}
|
|
\sqrt{\phi}
|
|
\mathbb{N}
|
|
\tilde{D}_{4}
|
|
5/5\cdot9^{(365-1)+299}
|
|
L(s,\pi_{1}\times\pi_{2})
|
|
v_{1}=[\begin{matrix}1\\ 1\\ 0\\ 1\end{matrix}]
|
|
\sqrt{\delta}
|
|
\frac{-3x+2}{x+3}<0
|
|
\frac{(q+n-1)!}{(n-1)!q!}
|
|
\frac{159\cdot10}{363^{347}}
|
|
\alpha<1
|
|
P_{1},P_{2},P_{3},P_{4}\rightarrow P
|
|
x^{\underline{n}}
|
|
X=-\langle\frac{dE_{r}}{dx}\rangle
|
|
\rho_{i}>0
|
|
(\begin{matrix}a\\ a+1\end{matrix})=0
|
|
(\begin{matrix}n-k\\ k\end{matrix})
|
|
\frac{458}{496}/475^{245}
|
|
{36^{243}}^{\frac{7}{5}+244}
|
|
p_{2}T
|
|
(\begin{matrix}[n]\\ 1\end{matrix})
|
|
(\sqrt[n]{r},\theta/n)
|
|
\vec{k}\perp\vec{B}_{0},\vec{E}_{1}\perp\vec{B}_{0}
|
|
(\frac{n-k}{n})^{m}
|
|
\frac{\frac{\frac{7}{7}}{1}}{6-440+\sqrt{9}}
|
|
\frac{\frac{380}{454}}{(35-465)}
|
|
e_{a}=\frac{\partial}{\partial x^{a}}
|
|
((3\cdot6)+\frac{3}{2})
|
|
|L|=\hbar\sqrt{l(l+1)}
|
|
\sqrt{\frac{\sum{A_{f}}^{2}}{n}}
|
|
\frac{dn}{d\tau}=n(1-n)
|
|
log_{a}(\frac{1}{x}-1)
|
|
-(\frac{\partial w}{\partial z}\frac{\partial\theta}{\partial z})
|
|
\int_{0}^{\infty}\frac{e^{-(\frac{(q\cdot g)^{2}}{2k})}}{\sqrt{2\pi k}}
|
|
s\{\begin{matrix}5\\ 3\end{matrix}\}
|
|
\int_{\gamma}\rho|dz|
|
|
\frac{s}{\sqrt{\frac{v^{7}}{c^{7}}-1}}
|
|
\overline{X^{i}}
|
|
\hat{S}_{a}
|
|
{(D^{g})}^{3}
|
|
Q_{x}^{face}=\frac{dM_{xx}^{face}}{dx}
|
|
(\begin{matrix}1&-1\\ 1&0\end{matrix})
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.