image
imagewidth (px) 768
768
| label
stringlengths 1
157
|
|---|---|
a_{g}=\frac{Gi_{3}}{s^{4}\sqrt{1+\frac{k^{4}}{c^{4}}}}
|
|
\mathbb{C}
|
|
\int_{0}^{\infty}f_{a}dx
|
|
Q=CH^{n}-Q_{E}
|
|
\tilde{u}
|
|
(\frac{271^{4}}{101})^{(\frac{68}{301})^{123}}
|
|
x(\frac{1}{y})
|
|
f^{-\frac{(A-K)^{2}}{2{(p_{A})}^{2}}}
|
|
|{\Psi_{p}^{1}}^{(\pm)}\rangle
|
|
[\begin{matrix}1&4&4\\ 3&5\\ 4&7\\ 6\end{matrix}]
|
|
5^{\sqrt{189}}-381\cdot(\frac{197}{10})^{5}
|
|
\frac{\partial u}{\partial y}
|
|
\frac{9}{\sqrt{10}}-76^{249}
|
|
c\in(0,\infty),p\in P
|
|
(\frac{271^{4}}{101})^{(\frac{68}{301})^{123}}
|
|
[\begin{matrix}1&1\\ 0&1\end{matrix}]
|
|
p_{\mu}\leftrightarrow-\frac{\partial S}{\partial x^{\mu}}
|
|
MPC=\frac{dC}{dY}
|
|
\frac{a^{2}}{2L}
|
|
\sqrt{\nu}
|
|
\sqrt{\Phi}
|
|
u^{n_{w}}
|
|
(-v^{\prime}(t),u^{\prime}(t))
|
|
(\begin{matrix}0&1\\ -1&0\end{matrix})
|
|
\frac{dy}{dx}
|
|
Z_{y^{\beta}}
|
|
d=(\frac{4\rho\omega^{2}}{3\mu}t)^{-1/2}
|
|
B/3
|
|
\frac{\frac{\sqrt{6}}{10}-456}{\frac{\sqrt{6}}{61}/7}
|
|
mv\frac{dv}{dt}=H-fv-kv^{3}
|
|
\prod_{j=0}^{t}\beta[Z(j)]
|
|
v_{p}=\frac{\lambda}{T}=\frac{f}{\tilde{\nu}}=\frac{\omega}{\beta}
|
|
(\begin{matrix}6\\ 3\end{matrix})
|
|
A\notin D(u,p)
|
|
h(X)=\frac{X}{|X|^{2}}
|
|
d^{\prime}=\frac{\mu_{S}-\mu_{N}}{\sqrt{\frac{1}{2}(\sigma_{S}^{2}+\sigma_{N}^{2})}}
|
|
H(X,Z|W,Y)
|
|
M_{i}(n)=\prod_{j=1}^{n}\mu_{i}(j)
|
|
v=\frac{dr}{dt}
|
|
4.\overline{2}
|
|
(\begin{matrix}10\\ i\end{matrix})(\begin{matrix}20\\ n-i\end{matrix})/(\begin{matrix}30\\ n\end{matrix})
|
|
H_{2}(T^{2})
|
|
\frac{\partial M}{\partial x}
|
|
\frac{\partial u}{\partial t}=\frac{\partial v}{\partial t}=0
|
|
\{\begin{matrix}p\\ q\end{matrix}\}
|
|
2U_{k}
|
|
h(\tilde{y})
|
|
n=\prod_{i<r}p_{i}^{e_{i}}
|
|
\prod_{x}a^{\frac{1}{x}}=Ca^{\frac{\Gamma^{\prime}(x)}{\Gamma(x)}}
|
|
F(z)=\int_{\gamma}f(\zeta)d\zeta
|
|
t=\frac{|b|}{\sqrt{\frac{1\cdot b^{5}}{n\cdot5}}}
|
|
\frac{\frac{9}{374}}{9}-1+265
|
|
p_{k}=\frac{\partial L}{\partial\dot{x}_{k}}
|
|
f(x)=cot\frac{\pi}{x}
|
|
[\begin{matrix}0&1\\ 0&0\end{matrix}]
|
|
\frac{e^{\frac{(x-a)^{7}}{4}}}{i\sqrt{4\Delta}}
|
|
(d,(\begin{matrix}d+1\\ 2\end{matrix}))
|
|
\frac{1}{2}L\cdot I^{2}
|
|
(\overline{x})
|
|
\frac{dy}{dt}=?
|
|
H(x)\cdot n(x)dS
|
|
f(E[X])
|
|
\partial_{n}\sigma_{n}(\Delta^{n})
|
|
\omega_{p}=\sqrt{g/l}
|
|
45^{45^{45^{45^{43}}}}
|
|
\Delta\Phi=\gamma v_{x}\Delta m_{1}
|
|
p=-\frac{\partial U}{\partial V}
|
|
det[\begin{matrix}\frac{d\beta}{dt}&\frac{d^{2}\beta}{dt^{2}}\end{matrix}]
|
|
g_{2}=\frac{nM_{4}}{M_{2}^{2}}-3
|
|
\hat{y}_{i}
|
|
\frac{dy}{dx}=xy
|
|
\int_{E}\varphi=\infty
|
|
\mu=-(X\beta)^{-1}
|
|
\gamma=\frac{3}{\sqrt{3+\frac{v^{8}}{c^{8}}}}
|
|
\frac{1}{B(\alpha)}\prod_{i=1}^{K}x_{i}^{\alpha_{i}-1}
|
|
2|U_{G}|
|
|
g_{i}=\frac{\partial x}{\partial\xi^{i}}
|
|
\overline{a}_{n}+\overline{b}_{n}=\overline{(a+b)}_{n}
|
|
\psi\rightarrow\varphi
|
|
q(y)=\prod_{i=1}^{n}q_{i}(y)
|
|
2^{2^{2^{f^{a}}}}
|
|
E=\frac{m+y^{7}}{\sqrt{1-\frac{|e|^{7}}{y^{7}}}}
|
|
(\begin{matrix}21\end{matrix})(\begin{matrix}21\end{matrix})(\begin{matrix}31\end{matrix})(\begin{matrix}103\end{matrix}){(\begin{matrix}41\end{matrix})}^{3}
|
|
\prod_{p\le X}\frac{N_{p}}{p}
|
|
e[n]=x[n]-\hat{x}[n]
|
|
[z,x^{-1}]\subseteq C_{G}(Y)
|
|
\frac{\rho}{R}=lk
|
|
g(x)=\int_{0}^{x}f(t)dt
|
|
v=\frac{dr}{dt}
|
|
\hat{Y}
|
|
\hat{F}(x)
|
|
s\{\begin{matrix}5\\ 3\end{matrix}\}
|
|
abc
|
|
\overline{C}(8)
|
|
\hat{y}-y
|
|
(\frac{7}{3})^{6/10}
|
|
d=\frac{1}{2}(g*t^{2})
|
|
\frac{1}{P}\frac{dP}{dt}=k
|
|
\gamma=\frac{5}{\sqrt{5-\frac{q^{2}}{d^{2}}}}
|
|
\int_{S}F\overline{G}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.