image
imagewidth (px)
768
768
label
stringlengths
1
157
a_{g}=\frac{Gi_{3}}{s^{4}\sqrt{1+\frac{k^{4}}{c^{4}}}}
\mathbb{C}
\int_{0}^{\infty}f_{a}dx
Q=CH^{n}-Q_{E}
\tilde{u}
(\frac{271^{4}}{101})^{(\frac{68}{301})^{123}}
x(\frac{1}{y})
f^{-\frac{(A-K)^{2}}{2{(p_{A})}^{2}}}
|{\Psi_{p}^{1}}^{(\pm)}\rangle
[\begin{matrix}1&4&4\\ 3&5\\ 4&7\\ 6\end{matrix}]
5^{\sqrt{189}}-381\cdot(\frac{197}{10})^{5}
\frac{\partial u}{\partial y}
\frac{9}{\sqrt{10}}-76^{249}
c\in(0,\infty),p\in P
(\frac{271^{4}}{101})^{(\frac{68}{301})^{123}}
[\begin{matrix}1&1\\ 0&1\end{matrix}]
p_{\mu}\leftrightarrow-\frac{\partial S}{\partial x^{\mu}}
MPC=\frac{dC}{dY}
\frac{a^{2}}{2L}
\sqrt{\nu}
\sqrt{\Phi}
u^{n_{w}}
(-v^{\prime}(t),u^{\prime}(t))
(\begin{matrix}0&1\\ -1&0\end{matrix})
\frac{dy}{dx}
Z_{y^{\beta}}
d=(\frac{4\rho\omega^{2}}{3\mu}t)^{-1/2}
B/3
\frac{\frac{\sqrt{6}}{10}-456}{\frac{\sqrt{6}}{61}/7}
mv\frac{dv}{dt}=H-fv-kv^{3}
\prod_{j=0}^{t}\beta[Z(j)]
v_{p}=\frac{\lambda}{T}=\frac{f}{\tilde{\nu}}=\frac{\omega}{\beta}
(\begin{matrix}6\\ 3\end{matrix})
A\notin D(u,p)
h(X)=\frac{X}{|X|^{2}}
d^{\prime}=\frac{\mu_{S}-\mu_{N}}{\sqrt{\frac{1}{2}(\sigma_{S}^{2}+\sigma_{N}^{2})}}
H(X,Z|W,Y)
M_{i}(n)=\prod_{j=1}^{n}\mu_{i}(j)
v=\frac{dr}{dt}
4.\overline{2}
(\begin{matrix}10\\ i\end{matrix})(\begin{matrix}20\\ n-i\end{matrix})/(\begin{matrix}30\\ n\end{matrix})
H_{2}(T^{2})
\frac{\partial M}{\partial x}
\frac{\partial u}{\partial t}=\frac{\partial v}{\partial t}=0
\{\begin{matrix}p\\ q\end{matrix}\}
2U_{k}
h(\tilde{y})
n=\prod_{i<r}p_{i}^{e_{i}}
\prod_{x}a^{\frac{1}{x}}=Ca^{\frac{\Gamma^{\prime}(x)}{\Gamma(x)}}
F(z)=\int_{\gamma}f(\zeta)d\zeta
t=\frac{|b|}{\sqrt{\frac{1\cdot b^{5}}{n\cdot5}}}
\frac{\frac{9}{374}}{9}-1+265
p_{k}=\frac{\partial L}{\partial\dot{x}_{k}}
f(x)=cot\frac{\pi}{x}
[\begin{matrix}0&1\\ 0&0\end{matrix}]
\frac{e^{\frac{(x-a)^{7}}{4}}}{i\sqrt{4\Delta}}
(d,(\begin{matrix}d+1\\ 2\end{matrix}))
\frac{1}{2}L\cdot I^{2}
(\overline{x})
\frac{dy}{dt}=?
H(x)\cdot n(x)dS
f(E[X])
\partial_{n}\sigma_{n}(\Delta^{n})
\omega_{p}=\sqrt{g/l}
45^{45^{45^{45^{43}}}}
\Delta\Phi=\gamma v_{x}\Delta m_{1}
p=-\frac{\partial U}{\partial V}
det[\begin{matrix}\frac{d\beta}{dt}&\frac{d^{2}\beta}{dt^{2}}\end{matrix}]
g_{2}=\frac{nM_{4}}{M_{2}^{2}}-3
\hat{y}_{i}
\frac{dy}{dx}=xy
\int_{E}\varphi=\infty
\mu=-(X\beta)^{-1}
\gamma=\frac{3}{\sqrt{3+\frac{v^{8}}{c^{8}}}}
\frac{1}{B(\alpha)}\prod_{i=1}^{K}x_{i}^{\alpha_{i}-1}
2|U_{G}|
g_{i}=\frac{\partial x}{\partial\xi^{i}}
\overline{a}_{n}+\overline{b}_{n}=\overline{(a+b)}_{n}
\psi\rightarrow\varphi
q(y)=\prod_{i=1}^{n}q_{i}(y)
2^{2^{2^{f^{a}}}}
E=\frac{m+y^{7}}{\sqrt{1-\frac{|e|^{7}}{y^{7}}}}
(\begin{matrix}21\end{matrix})(\begin{matrix}21\end{matrix})(\begin{matrix}31\end{matrix})(\begin{matrix}103\end{matrix}){(\begin{matrix}41\end{matrix})}^{3}
\prod_{p\le X}\frac{N_{p}}{p}
e[n]=x[n]-\hat{x}[n]
[z,x^{-1}]\subseteq C_{G}(Y)
\frac{\rho}{R}=lk
g(x)=\int_{0}^{x}f(t)dt
v=\frac{dr}{dt}
\hat{Y}
\hat{F}(x)
s\{\begin{matrix}5\\ 3\end{matrix}\}
abc
\overline{C}(8)
\hat{y}-y
(\frac{7}{3})^{6/10}
d=\frac{1}{2}(g*t^{2})
\frac{1}{P}\frac{dP}{dt}=k
\gamma=\frac{5}{\sqrt{5-\frac{q^{2}}{d^{2}}}}
\int_{S}F\overline{G}