image
imagewidth (px)
768
768
label
stringlengths
1
157
\hat{f}(x)
F[y]=y^{[-1]}
A(\rho)=wh
\tilde{C}(u)=W(u)
\int_{S}F\overline{G}
1000\cdot2^{\frac{n}{9}}
\hat{8}
-\frac{\partial S}{\partial t}=H
\tilde{a}
X=log_{a}b=\frac{lnb}{lna}
\overline{DR}
(t^{\prime},x^{\prime},y^{\prime},z^{\prime})
\sqrt{n-1}s/\sigma
[\begin{matrix}1&\frac{1}{sC}\\ 0&1\end{matrix}]
U_{\theta}f(z)=f(e^{i\theta}z).
B_{0}=0
F(x)=\int f(x)dx
A=[\begin{matrix}a&c\\ c&b\end{matrix}]
(\frac{5}{4}/359)/\sqrt{8}^{146}
G:=-\frac{\partial(U-V)}{\partial A}
\sum_{n=2}^{\infty}\Lambda(n)e^{-ny}\sim\frac{1}{y}
z+n=\prod_{p_{i}\in P}p_{i}^{b_{i}}
\frac{42}{1}\cdot\frac{36}{245}/2
\omega_{0}=\frac{1}{\sqrt{LC}}
e=\frac{b\cdot v}{\sqrt{8-\frac{v^{2}}{j^{2}}}}
t=\frac{Usin\theta}{g}
\sigma=\frac{My}{I_{x}}
\hat{h}_{k}
A=l^{2}+l\sqrt{l^{2}+(2h)^{2}}
70^{70^{70^{70^{76}}}}
\tilde{\tau}
y=\int sin\psi ds
\int_{0}^{T}wx(t)dt
\frac{1}{F^{\prime}(-r)}(-r)^{-n}
C_{*}(\tilde{X})
\int_{B}\psi dx=1
{(5-169)^{240}}^{8/7}
\frac{d^{2}y}{dt^{2}}+4y=(
\frac{r^{2}+s^{2}}{4r}
f=\prod_{i=1}^{deg(f)}f_{i}^{i}
7^{7^{7^{7^{7}}}}-8
m=\frac{d}{p}
(\begin{matrix}1&N\\ 1&1\end{matrix})
\gamma_{2,\alpha}=1-\alpha
a_{k}\in\{0,1\}
\frac{1}{2}\sqrt{r-r^{2}}
\mu_{1}=m\frac{K_{1}(a)}{K_{0}(a)}
x
|x-\frac{p}{q}|<\frac{\psi(q)}{|q|}
b=\frac{D}{e^{\int_{s_{4}}^{x}P(s)ws}}
m=(p_{23},p_{31},p_{12})
\frac{{2^{5}}^{5}}{7^{317}-372}
\langle\overline{\psi}\gamma_{0}\psi\rangle
\frac{d(uv)}{dx}
5^{5^{5^{.^{.^{n}}}}}
F_{BG}=\frac{G_{B}}{4}
H_{out}
lim_{n\rightarrow\infty}p=\frac{1}{9}
A^{k-1}=A
[\begin{matrix}0&1\\ 0&0\end{matrix}]
6(6x+2)(x+\frac{1}{2})
R_{dq}=\sqrt{\frac{1}{N}\sum_{i=1}^{N}\Delta_{i}^{2}}
z=x/(\sqrt{2}\sigma)
\frac{\partial^{2}\delta}{\partial t^{2}}=c^{2}\frac{\partial\delta^{2}}{\partial x^{2}}
114^{467}/478^{1}
\frac{d(w)}{d(v)+d(w)}
z^{z^{z^{\cdot^{\cdot^{\cdot}}}}}
Nu=f(Ra,Pr
[\alpha]_{\lambda}^{T}=\frac{\alpha}{l\times\rho}
\frac{dx}{dy}=
arg(H(s=j\omega))
\frac{x}{\sqrt{x^{2}+y^{2}}}
N_{i}=(\begin{matrix}8\\ i\end{matrix})i^{12}
P=\frac{\frac{D_{0}(1+g)}{(1+r)}}{1-\frac{1+g}{1+r}}
G^{(i)}\ne G^{(j)}
(\begin{matrix}n+k-1\\ n-1\end{matrix})
C_{\tilde{Y}}
Q_{1}(X)E_{1}(X)
G=H-TS_{int}
\frac{265}{50}=5.300
p_{t}=\frac{ac^{2}}{b}
E=-\frac{\partial A}{\partial t}
\Delta t/T
\frac{|A(x)|}{|R|}>1-\frac{1}{2^{|x|}}
\sum k(\begin{matrix}n\\ k\end{matrix})
(\frac{\frac{2}{289}}{2}\cdot\frac{2^{97}}{17})
\frac{\partial v}{\partial s}
M_{i}=\prod_{j=1}^{i}m_{j}
R=e^{\frac{A}{2}}
f(\overline{u})=f(x,y,z)
-\frac{1}{x\sqrt{x^{2}-1}}
p=\frac{\frac{n}{2}+1}{n+1}\approx1+\frac{1}{n}
\phi=sin^{-1}\frac{4A}{\pi\Delta T_{s}\Delta d}
\frac{\Gamma,C,C\vdash B}{\Gamma,C\vdash B}
\frac{2}{a+b}
z=\prod_{p_{i}\in P}p_{i}^{a_{i}}
\eta,\zeta\mapsto\int_{M}\eta\wedge\zeta
\frac{\frac{\frac{3}{\sqrt{1}}}{447}}{4^{7}}
\prod_{i=0}^{9}\frac{n-i}{30-i}=\frac{1}{2}
V_{m}\oplus W_{m}=V_{m-1}