text
stringlengths 68
2.01k
| label
int64 0
1
|
|---|---|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Finite nilpotent groups, \(p\)-groups, Asymptotic properties of groups, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type F. Catanese, Chow varieties, Hilbert schemes, and moduli spaces of surfaces of general type,J. Algebraic Geom. 1 (1992), 561--595. Algebraic moduli problems, moduli of vector bundles, Surfaces of general type, Parametrization (Chow and Hilbert schemes)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry, Modular and Shimura varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Böhning, C., Canonical surfaces \(\mathbb{P}^4\) with \(p_g = p_a = 5\) and \(K^2 = 11\), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 18, 39-57, (2007) Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal), Syzygies, resolutions, complexes and commutative rings, Divisors, linear systems, invertible sheaves, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Hyperbolic and Kobayashi hyperbolic manifolds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type C. Ciliberto and M. Mendes Lopes, On surfaces of general type with \(K^2 = 2\chi -2\) and nontrivial torsion, Geom. Dedicata, 66 (1997), 313-329. Surfaces of general type, Topological properties in algebraic geometry, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Flamini, F., Moduli of nodal curves on smooth surfaces of general type, J. Algebraic Geom., 11, 4, 725-760, (2002) Families, moduli of curves (algebraic), Singularities of curves, local rings, Enumerative problems (combinatorial problems) in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Barker, N; Boston, N; Peyerimhoff, N; Vdovina, A, New examples of Beauville surfaces, Monatsh. Math., 166, 319-327, (2012) Special surfaces, Surfaces of general type, Finite nilpotent groups, \(p\)-groups, Buildings and the geometry of diagrams
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Du, R; Gao, Y, Canonical maps of surfaces defined on abelian covers, Asian J. Math., 18, 219-228, (2014) Surfaces of general type, Coverings in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Embeddings in algebraic geometry, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Hyperbolic and Kobayashi hyperbolic manifolds, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Margarida Mendes Lopes and Rita Pardini, A new family of surfaces with \?_{\?}=0 and \?²=3, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 4, 507 -- 531 (English, with English and French summaries). Surfaces of general type, Elliptic surfaces, elliptic or Calabi-Yau fibrations, Families, moduli, classification: algebraic theory, \(K3\) surfaces and Enriques surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Garion, S., Penegini, M.: Beauville surfaces, moduli spaces and finite groups. Commun. Algebra \textbf{42}, 2126-2155 (2014) Surfaces of general type, Families, moduli, classification: algebraic theory, Simple groups: alternating groups and groups of Lie type, Fuchsian groups and their generalizations (group-theoretic aspects), Riemann surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Algebraic moduli problems, moduli of vector bundles, Surfaces of general type, Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Plane and space curves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Mendes Lopes, M; Pardini, R, The degree of the bicanonical map of a surface with \(p\)\_{}\{g\} = 0, Proc Amer Math Soc, 135, 1279-1282, (2007) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Ciro Ciliberto, The bicanonical map for surfaces of general type, Algebraic geometry --- Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 57 -- 84. Surfaces of general type, Rational and birational maps, History of mathematics in the 20th century
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type C. Ciliberto, R. Pardini, F. Tovena, Prym varieties and the canonical map of surfaces of general type. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 905-938. Surfaces of general type, Jacobians, Prym varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Todorov, G, Effective log iitaka fibrations for surfaces and threefolds, Manuscr. Math., 133, 183-195, (2010) Rational and birational maps, \(3\)-folds, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Barja, M.Á.; Stoppino, L., Slopes of trigonal fibred surfaces and of higher dimensional fibrations, Ann. sc. norm. super. Pisa cl. sci. (5), 8, 4, 647-658, (2009) Families, moduli, classification: algebraic theory, Surfaces of general type, Fibrations, degenerations in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Formal methods and deformations in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Chan, T.O.M., Coughlan, S.: Kulikov surfaces form a connected component of the moduli space. Nagoya Math. J. \textbf{210}, 1-27 (2013) Surfaces of general type, Families, moduli, classification: algebraic theory, Special surfaces, Software, source code, etc. for problems pertaining to algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type V. S. Kulikov, Old examples and a new example of surfaces of general type with \(p_{g}=0\) (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 5, 123-170; English translation in Izv. Math. 68 (2004), no. 5, 965-1008. Surfaces of general type, Special surfaces, Families, moduli, classification: algebraic theory, Compact complex surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Vanishing theorems in algebraic geometry, Positive characteristic ground fields in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Sun X.T.: On canonical fibrations of algebraic surfaces. Manuscr. Math. 83, 161--169 (1994) Surfaces of general type, Structure of families (Picard-Lefschetz, monodromy, etc.)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Topological properties in algebraic geometry, Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Algebraic moduli problems, moduli of vector bundles
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Abstract approximation theory (approximation in normed linear spaces and other abstract spaces), Continuation and prolongation of solutions to PDEs
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Calabi-Yau manifolds (algebro-geometric aspects)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Bauer, I.; Frapporti, D., Bloch's conjecture for generalized Burniat type surfaces with \(p_g=0\), Rend. Circ. Mat. Palermo (2), 64, 27-42, (2015) Algebraic cycles, Surfaces of general type, Automorphisms of surfaces and higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Tan, Sheng Li, Surfaces whose canonical maps are of odd degrees, Math. Ann., 292, 1, 13-29, (1992) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Hirotaka Ishida, Bounds for the relative Euler-Poincaré characteristic of certain hyperelliptic fibrations, Manuscripta Math. 118 (2005), no. 4, 467 -- 483. Surfaces of general type, Structure of families (Picard-Lefschetz, monodromy, etc.), Families, moduli of curves (algebraic)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Piovan, L.A., Cyclic Coverings of Abelian Varieties and the Goryachev-Chaplygin Top, Math. Ann., 1992, vol. 294, no. 4, pp. 755--764. Geometric invariant theory, Surfaces of general type, Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests, Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Huizenga, Jack, Birational geometry of moduli spaces of sheaves and Bridgeland stability.Surveys on recent developments in algebraic geometry, Proc. Sympos. Pure Math. 95, 101-148, (2017), Amer. Math. Soc., Providence, RI Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Minimal model program (Mori theory, extremal rays), Surfaces of general type, Parametrization (Chow and Hilbert schemes)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Kollár, J., Is there a topological Bogomolov-miyaoka-Yau inequality?, Pure Appl. Math. Q., 4, 203-236, (2008) Surfaces of general type, Singularities of surfaces or higher-dimensional varieties, Characteristic classes and numbers in differential topology, \(h\)- and \(s\)-cobordism, Algebraic topology on manifolds and differential topology
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Catanese, F.: Moduli of algebraic surfaces, Lecture Notes in Math. \textbf{1337}, Springer (1988) Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Homotopy theory and fundamental groups in algebraic geometry, Families, fibrations in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Polizzi, F., On surfaces of general type with \(p\)\_{}\{g\} = \(q\) = 1 isogenous to a product of curves, Comm. Algebra, 36, 2023-2053, (2008) Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Polizzi, F., Surfaces of general type with \(p\)\_{}\{g\} = \(q\) = 1,\(K\)\_{}\{2\} = 8 and bicanonical map of degree 2, Trans. Amer. Math. Soc., 358, 759-798, (2006) Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type (Equivariant) Chow groups and rings; motives, Algebraic cycles, Transcendental methods, Hodge theory (algebro-geometric aspects), \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type (Equivariant) Chow groups and rings; motives, Algebraic cycles, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Di Cerbo, L.F., Finite-volume complex-hyperbolic surfaces, their toroidal compactifications, and geometric applications, Pacific J. Math., 255, 305-315, (2012) Surfaces of general type, Global Riemannian geometry, including pinching, Global differential geometry of Hermitian and Kählerian manifolds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type [CatTov] Catanese, F., Tovena, F.: Vector bundles with zero discriminant and fundamental groups of algebraic surfaces. In: Complex Algebraic Varieties. (Lect. Notes Math., vol. 1507, pp. 51-70) Berlin Heidelberg New York: Springer 1992 Homotopy theory and fundamental groups in algebraic geometry, Divisors, linear systems, invertible sheaves, Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Catanese, F, Canonical symplectic structures and deformations of algebraic surfaces, Commun. Contemp. Math., 11, 481-493, (2009) Families, moduli, classification: algebraic theory, Moduli, classification: analytic theory; relations with modular forms, Surfaces of general type, Singularities of surfaces or higher-dimensional varieties, Symplectic manifolds (general theory)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Pignatelli, R; Polizzi, F, A family of surfaces with \(p_g=q=2\), \(K^2=7\) and Albanese map of degree \(3\), Math. Nachr., (2016) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Shepherd-Barron, N. I., \textit{geography for surfaces of general type in positive characteristic}, Invent. Math., 106, 263-274, (1991) Families, moduli, classification: algebraic theory, Surfaces of general type, Finite ground fields in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type I. Bauer and F. Catanese, Burniat surfaces I: fundamental groups and moduli of primary Burniat surfaces, In: Classification of Algebraic Varieties, (eds. C. Faber et al.), EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 49-76. Surfaces of general type, Special surfaces, Families, moduli, classification: algebraic theory, Fine and coarse moduli spaces, Coverings of curves, fundamental group, Fundamental groups and their automorphisms (group-theoretic aspects), Deformations of complex structures, Uniformization of complex manifolds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Formal methods and deformations in algebraic geometry, Infinitesimal methods in algebraic geometry, Fibrations, degenerations in algebraic geometry, Surfaces of general type, Calabi-Yau manifolds (algebro-geometric aspects), Fano varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type 10.1215/21562261-1966107 Algebraic moduli problems, moduli of vector bundles, Surfaces of general type, Plane and space curves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, moduli, classification: algebraic theory, Finite nilpotent groups, \(p\)-groups
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type I.C. Bauer: Surfaces with \(K^2=7\) and \(p_g=4\), Mem. Amer. Math. Soc. 152 , 2001. Families, moduli, classification: algebraic theory, Surfaces of general type, Compact complex surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Kulikov, Vi.k S.; Kharlamov, V. M., Automorphisms of Galois coverings of generic m-canonical projections, Izv. Ross. Akad. Nauk, Ser. Mat., 73, 121-156, (2009) Coverings in algebraic geometry, Homotopy theory and fundamental groups in algebraic geometry, Moduli, classification: analytic theory; relations with modular forms, Surfaces of general type, Topology of real algebraic varieties, Deformations of complex structures, Symplectic and contact topology in high or arbitrary dimension, Differential topological aspects of diffeomorphisms
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Groups acting on trees, Finite nilpotent groups, \(p\)-groups, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Miyaoka, Y, Counting lines and conics on a surface, Publ. Res. Inst. Math. Sci., 45, 919-923, (2009) Classical problems, Schubert calculus, \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Calabri, A.; Ciliberto, C.; Mendes Lopes, M., Numerical godeaux surfaces with an involution, \textit{Trans. Amer. Math. Soc.}, 359, 4, 1605-1632, (2007) Surfaces of general type, Special surfaces, Automorphisms of surfaces and higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Roulleau, X.; Urzúa, G., Chern slopes of simply connected complex surfaces of general type are dense in \([2,3]\), Ann. Math., 182, 287-306, (2015) Special surfaces, Moduli, classification: analytic theory; relations with modular forms, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Vial, C., Exceptional collections, and the Néron-Severi lattice for surfaces, Adv. Math., 305, 895-934, (2017) Divisors, linear systems, invertible sheaves, Rational and ruled surfaces, Surfaces of general type, Other nonalgebraically closed ground fields in algebraic geometry, (Equivariant) Chow groups and rings; motives
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Divisors, linear systems, invertible sheaves, Surfaces of general type, \(3\)-folds, \(4\)-folds, \(n\)-folds (\(n>4\))
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Jorge Neves and Stavros Argyrios Papadakis, A construction of numerical Campedelli surfaces with torsion \Bbb Z/6, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4999 -- 5021. Surfaces of general type, Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.), Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Elliptic surfaces, elliptic or Calabi-Yau fibrations
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type R. Guralnick and G. Malle, Simple groups admit Beauville structures, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 694-721. Finite simple groups and their classification, Coverings of curves, fundamental group, Surfaces of general type, Generators, relations, and presentations of groups, Conjugacy classes for groups, Simple groups, Linear algebraic groups over arbitrary fields, Representations of finite groups of Lie type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Laterveer, R.: A family of cubic fourfolds with finite-dimensional motive, preprint (Equivariant) Chow groups and rings; motives, Algebraic cycles, Transcendental methods, Hodge theory (algebro-geometric aspects), \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type H. Ishida, Catanese-Ciliberto surfaces of fiber genus three with unique singular fiber, Tohoku Math. J. (2), \textbf{58} (2006), 33-69. Structure of families (Picard-Lefschetz, monodromy, etc.), Surfaces of general type, Fibrations, degenerations in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Adjunction problems, \(3\)-folds, Rational and birational maps, Divisors, linear systems, invertible sheaves, Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Giuseppe Borrelli, On regular surfaces of general type with \?_{\?}=2 and non-birational bicanonical map, Algebraic geometry, de Gruyter, Berlin, 2002, pp. 65 -- 78. Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Gritsenko, V., Hulek, K., Sankaran, G.K.: Hirzebruch--Mumford proportionality and locally symmetric domains of orthogonal type. Preprint (2006), arXiv:math.AG/0609744 Moduli, classification: analytic theory; relations with modular forms, Other groups and their modular and automorphic forms (several variables), Homogeneous spaces and generalizations, \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3--a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011) Singularities of surfaces or higher-dimensional varieties, Surfaces of general type, Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math., no. 11, 167 (1961) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type I. Bauer, F. Catanese and F. Grunewald, Beauville surfaces without real structures, In: Geometric Methods in Algebra and Number Theory, Progr. Math., \textbf{235}, Birkhäuser Boston, Boston, MA, 2005, pp. 1-42. Surfaces of general type, Families, moduli, classification: algebraic theory, Special surfaces, Group actions on varieties or schemes (quotients)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Surfaces of general type, Finite nilpotent groups, \(p\)-groups, Special subgroups (Frattini, Fitting, etc.), Fuchsian groups and their generalizations (group-theoretic aspects), Riemann surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Sun X.T.: Surfaces of general type with canonical pencil. Acta Math. Sin. 33, 769--773 (1990) Surfaces of general type, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Pardini, Rita, The classification of double planes of general type with \(K^2=8\) and \(p_g=0\), J.~Algebra, 259, 1, 95-118, (2003) Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Murakami, M., Remarks on surfaces with \textit{K}2 = 2\textit{ {\(\chi\)}}-1 having non-trivial 2-torsion, \textit{J. Math. Soc. Japan}, 65, 51-95, (2013) Surfaces of general type, Complete rings, completion, Deformations of complex structures
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Coverings in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Generalizations (algebraic spaces, stacks)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Lee, J., Relative canonical sheaves of a family of curves, J. Algebra, 286, 341-360, (2005) Divisors, linear systems, invertible sheaves, Surfaces of general type, Special divisors on curves (gonality, Brill-Noether theory), Families, moduli of curves (algebraic)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Pardini, R, Canonical images of surfaces, J. Reine Angew. Math., 417, 215-219, (1991) Surfaces of general type, Coverings in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Reider, I, Geography and the number of moduli of surfaces of general type, Asian J. Math., 9, 407-448, (2005) Surfaces of general type, Vector bundles on surfaces and higher-dimensional varieties, and their moduli
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Yamaki K.: A direct proof of Moriwaki's inequality for semistably fibered surfaces and its generalization. J. Math. Kyoto Univ. 42(3), 485--508 (2002) Fibrations, degenerations in algebraic geometry, Varieties over global fields, Arithmetic varieties and schemes; Arakelov theory; heights, Families, moduli of curves (algebraic), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Margarida Mendes Lopes and Rita Pardini, A connected component of the moduli space of surfaces with \?_{\?}=0, Topology 40 (2001), no. 5, 977 -- 991. Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Fairbairn B., Magaard K. and Parker C., Corrigendum: Generation of finite quasisimple groups with an application to groups acting on Beauville surfaces, Proc. Lond. Math. Soc. (3) 107 (2013), 1220-1220. Finite simple groups and their classification, Simple groups: alternating groups and groups of Lie type, Generators, relations, and presentations of groups, Conjugacy classes for groups, Surfaces of general type, Families, moduli, classification: algebraic theory, Linear algebraic groups over finite fields, Compact Riemann surfaces and uniformization
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Sönke Rollenske, Compact moduli for certain Kodaira fibrations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 4, 851 -- 874. Surfaces of general type, Families, moduli, classification: algebraic theory, Algebraic moduli problems, moduli of vector bundles
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type P.A. Oliverio: On even surfaces of general type with \(K^2=8\), \(p_g=4\), \(q=0\) , Rend. Sem. Mat. Univ. Padova 113 (2005), 1--14. Surfaces of general type, Families, moduli, classification: algebraic theory, Special surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type \auK. Konno, On the irregularity of special non-canonical surfaces, \tiPubl. RIMS Kyoto Univ., , 30 ( (1994),)\spg671-\epg688. Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type E. Ballico, ''On the automorphisms of surfaces of general type in positive characteristic,'' Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., vol. 4, iss. 2, pp. 121-129, 1993. Automorphisms of surfaces and higher-dimensional varieties, Finite ground fields in algebraic geometry, Surfaces of general type, Birational automorphisms, Cremona group and generalizations
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Lee, Y.; Park, J., A simply connected surface of general type with \(p_g = 0\) and \(K^2 = 2\), Invent. Math., 170, 483-505, (2007) Surfaces of general type, Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties, Symplectic manifolds (general theory)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Picard groups
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Suh, Plurigenera of general type surfaces in mixed characteristic, Compos. Math. 144 pp 1214-- (2008) Surfaces of general type, Arithmetic aspects of modular and Shimura varieties, Deformations and infinitesimal methods in commutative ring theory, Formal methods and deformations in algebraic geometry, Modular and Shimura varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type V. Alexeev and S. Mori, ''Bounding singular surfaces of general type,'' in Algebra, Arithmetic and Geometry with Applications, New York: Springer-Verlag, 2004, pp. 143-174. Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Ly, O.: On effective decidability of the homeomorphism problem for non-compact surfaces. Contemp. math. 250, 89-112 (1999) Software, source code, etc. for problems pertaining to manifolds and cell complexes, Triangulating manifolds, Software, source code, etc. for problems pertaining to algebraic topology, Surfaces of general type, Formal languages and automata, Hypergraphs
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Fibrations, degenerations in algebraic geometry, Families, moduli of curves (algebraic), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Franciosi, M; Pardini, R; Rollenske, S, Log-canonical pairs and Gorenstein stable surfaces with \(K_X^2=1\), Compos. Math., 151, 1529-1542, (2015) Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.