text
stringlengths 68
2.01k
| label
int64 0
1
|
|---|---|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type \(n\)-folds (\(n>4\)), Minimal model program (Mori theory, extremal rays), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, (Equivariant) Chow groups and rings; motives, Families, moduli, classification: algebraic theory, Transcendental methods, Hodge theory (algebro-geometric aspects)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Applications of global analysis to structures on manifolds, Symplectic and contact topology in high or arbitrary dimension, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type K. KONNO, Even surfaces with pg = 7; q = 0 and K2 = 16, Math. Rep. Kyushu University, 18-1 (1991), pp. 15-41. Zbl0763.14016 MR1157326 Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type M. OKA, On the deformation of a certain type of algebraic varieties, Surfaces of general type, Formal methods and deformations in algebraic geometry, Families, moduli, classification: algebraic theory, Special surfaces, Toric varieties, Newton polyhedra, Okounkov bodies
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Singularities of surfaces or higher-dimensional varieties, Automorphisms of surfaces and higher-dimensional varieties, Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Demailly, J.-P.: Monge-Ampère operators, Lelong numbers and intersection theory. In: Complex analysis and geometry, Univ. Ser. Math., pp. 115-193. Plenum, New York (1993) Surfaces of general type, Compact complex surfaces, Coverings in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Liedtke, Christian; Schütt, Matthias, Unirational surfaces on the Noether line, Pac. J. math., 239, 2, 343-356, (2009) Rational and unirational varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Structure of families (Picard-Lefschetz, monodromy, etc.), Surfaces of general type, Coverings of curves, fundamental group
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Laterveer, R., Some results on a conjecture of voisin for surfaces of geometric genus one, Boll. Unione Mat. Ital., 9, 435-452, (2016) (Equivariant) Chow groups and rings; motives, Algebraic cycles, Transcendental methods, Hodge theory (algebro-geometric aspects), \(K3\) surfaces and Enriques surfaces, Surfaces of general type, Automorphisms of surfaces and higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Y. Lee and F. Polizzi, ''Deformations of product-quotient surfaces and reconstruction of Todorov surfaces via \(\mathbb{Q}\)-Gorenstein smoothing'' in Algebraic Geometry in East Asia--Taipei 2011, Adv. Stud. Pure Math. 65, Math. Soc. Japan, Tokyo, 2015, 159--185. Surfaces of general type, Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Ciro Ciliberto and Margarida Mendes Lopes, On surfaces with \?_{\?}=2, \?=1 and non-birational bicanonical map, Algebraic geometry, de Gruyter, Berlin, 2002, pp. 117 -- 126. Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Gallego, F.J., Purnaprajna, B.P.: Classification of quadruple Galois canonical covers I. Trans. Am. Math. Soc. 360(10), 5489--5507 (2008) Surfaces of general type, Families, moduli, classification: algebraic theory, Rational and ruled surfaces
| 1
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, \(K3\) surfaces and Enriques surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, moduli, classification: algebraic theory, Families, moduli of curves (algebraic), Positive characteristic ground fields in algebraic geometry, Picard schemes, higher Jacobians, Fibrations, degenerations in algebraic geometry, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Mendes Lopes, M., Pardini, R.: On the algebraic fundamental group of surfaces with K2 \leq 3\chi . J. Differential Geom. 77, 189-199 (2007) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Z. J. Chen, The existence of algebraic surfaces with preassigned Chern numbers, Math. Z., 206 (1991), 241-254. Families, moduli, classification: algebraic theory, Characteristic classes and numbers in differential topology, Surfaces of general type, Moduli, classification: analytic theory; relations with modular forms
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Special surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Chiantini, L.; Sernesi, E., Nodal curves on surfaces of general type, Math. Ann., 307, 1, 41-56, (1997) Surfaces of general type, Families, moduli of curves (algebraic), Singularities of curves, local rings
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Rational and birational maps, Surfaces of general type, Fibrations, degenerations in algebraic geometry, Families, moduli of curves (algebraic)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.1142/S0129167X94000036 Surfaces of general type, Divisors, linear systems, invertible sheaves, Vector bundles on surfaces and higher-dimensional varieties, and their moduli
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Infinitesimal methods in algebraic geometry, Formal methods and deformations in algebraic geometry, Deformations and infinitesimal methods in commutative ring theory, Fibrations, degenerations in algebraic geometry, Schemes and morphisms, Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Hypersurfaces and algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Deligne, P.: Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien (d'après W. Fulton). [The fundamental group of the complement of a plane curve having only ordinary double points is abelian (after W. Fulton)] Bourbaki Seminar, Vol. 1979/80, pp. 1-10. Lecture Notes in Math., 842. Springer, Berlin-New York (1981) Surfaces of general type, Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables), Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Lee, Y.; Shin, Y., Involutions on a surface of general type with \(p_g=q=0, K^2=7\), Osaka J. Math., 51, 121-139, (2014) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Local deformation theory, Artin approximation, etc., Surfaces of general type, Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants), Vanishing theorems in algebraic geometry, Deformations of complex structures, Topological aspects of complex manifolds, Compact complex surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Tsai, I-Hsun: Dominating the varieties of general type. J. reine angew. Math. 483, 197-219 (1997) Surfaces of general type, Rational and birational maps, Birational automorphisms, Cremona group and generalizations
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Heijne, B.: Picard Numbers of Complex Delsarte Surfaces with Only Isolated ADE-Singularities. arXiv:1212.5006v4 Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Ciliberto, C.; Francia, P.; Mendes Lopes, M., Remarks on the bicanonical map for surfaces of general type, \textit{Math. Z.}, 224, 137-166, (1997) Rational and birational maps, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type A. Ikeda, ``The double cover of cubic surfaces branched along their Hessian'', ArXiv:1012.4242 Picard groups, Transcendental methods, Hodge theory (algebro-geometric aspects), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Local deformation theory, Artin approximation, etc., Coverings in algebraic geometry, Families, moduli, classification: algebraic theory, Surfaces of general type, Group actions on varieties or schemes (quotients), Deformations of complex structures
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Automorphisms of surfaces and higher-dimensional varieties, Algebraic theory of abelian varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type --------, A surface with canonical map of degree \(24\). arXiv:1509.04132 Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Vanishing theorems in algebraic geometry, Surfaces of general type, Picard schemes, higher Jacobians
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type M. Penegini, F. Polizzi, On surfaces with \textit{p_{g}} = \textit{q} = 2, \textit{K}2 = 5 and Albanese map of degree 3. \textit{Osaka J. Math.}\textbf{50} (2013), 643-686. MR3128997 Zbl 1288.14026 Surfaces of general type, Families, moduli, classification: algebraic theory, Vector bundles on surfaces and higher-dimensional varieties, and their moduli
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Special surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Sun, X. T., Algebraic surfaces whose canonical image has a pencil of rational curves of degree two, Math. Z., 209 (1992), 67-74. Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type C. Ciliberto and M. Mendes Lopes: On surfaces with \(p_{g} = q = 2\) and non-birational bicanonical maps , Adv. Geom. 2 (2002), 281-300. Surfaces of general type, Rational and birational maps
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type C. Werner, Branch curves for Campedelli double planes, Rocky Mountain J. Math. 36 (2006), 2057--2073. Surfaces of general type, Coverings in algebraic geometry, Singularities of curves, local rings, Special algebraic curves and curves of low genus
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Miles Reid, Campedelli versus Godeaux, Problems in the theory of surfaces and their classification (Cortona, 1988) Sympos. Math., XXXII, Academic Press, London, 1991, pp. 309 -- 365. Surfaces of general type, Singularities of surfaces or higher-dimensional varieties, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Cai, J.-X., Automorphisms of fiber surfaces of genus \(2\), inducing the identity in cohomology, Trans. Amer. Math. Soc., 358, 1187-1201, (2006) Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Catanese, F.; Ciliberto, F., Surfaces with \(p\)\_{}\{g\} = \(q\) = 1, Sympos. Math., 32, 49-79, (1991) Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Elliptic surfaces, elliptic or Calabi-Yau fibrations, Fibonacci and Lucas numbers and polynomials and generalizations, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Surfaces of general type, \(n\)-folds (\(n>4\))
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Julien Duval, ``Une sextique hyperbolique dans \(\operatorname{P}^3(\mathbf{C})\)'', Math. Ann.330 (2004) no. 3, p. 473-476 Hypersurfaces and algebraic geometry, Hyperbolic and Kobayashi hyperbolic manifolds, Projective techniques in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Transcendental methods, Hodge theory (algebro-geometric aspects), Algebraic systems of matrices, Transcendental methods of algebraic geometry (complex-analytic aspects)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Fibrations, degenerations in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Barja, MA; Zucconi, F, A note on a conjecture of xiao, J. Math. Soc. Japan, 52, 633-635, (2000) Families, moduli of curves (algebraic), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Margarida Mendes Lopes and Rita Pardini, Surfaces of general type with \?_{\?}=0,\?²=6 and non birational bicanonical map, Math. Ann. 329 (2004), no. 3, 535 -- 552. Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Zhang, L, Characterization of a class of surfaces with \(p\)\_{}\{g\} = 0 and \(K\)\^{}\{2\} = 5 by their bicanonical maps, Manuscripta Math, 135, 165-181, (2011) Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Introductory exposition (textbooks, tutorial papers, etc.) pertaining to geometry, Questions of classical algebraic geometry, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Cai, J-X, Classification of fiber surfaces of genus \(2\) with automorphisms acting trivially in cohomology, Pacific J. Math., 232, 43-59, (2007) Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Fine and coarse moduli spaces, Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Rito, C., On equations of double planes with \(p\)\_{}\{g\} = \(q\) = 1, Math. Comp., 79, 1091-1108, (2010) Surfaces of general type, Computational aspects of algebraic curves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Chen, Y., A new family of surfaces of general type with \(K^2 = 7\) and \(p_g = 0\), Math. Z., 275, 3-4, 1275-1286, (2013) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Mendes Lopes, M; Pirola, GP; Pardini, R, On surfaces of general type with \(q=5\), Ann. Sc. Norm. Super. Pisa Cl. Sci, 5, 999-1007, (2012) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Lee, Kyoung-Seog, Derived categories of surfaces isogenous to a higher product, J. Algebra, 441, 180-195, (2015) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Manetti M.: Surfaces of Albanese general type and the Severi conjecture. Math. Nachr. 261/262, 105--122 (2003) Surfaces of general type, Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Catanese, F., Schreyer, F.O.: Canonical projections of irregular algebraic surfaces. In: Algebraic Geometry, pp. 79--116. de Gruyter, Berlin (2002) Surfaces of general type, Families, moduli, classification: algebraic theory, Rational and birational maps
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Konno K.: Relations in the canonical algebras on surfaces. Rend. Semin. Mat. Univ. Padova 120, 227--261 (2008) Surfaces of general type, Divisors, linear systems, invertible sheaves, Syzygies, resolutions, complexes and commutative rings
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Fibrations, degenerations in algebraic geometry, Families, moduli, classification: algebraic theory, \(n\)-folds (\(n>4\))
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Special surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Special surfaces, Fibrations, degenerations in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Konno K.: Canonical fixed parts of fibred algebraic surfaces. Tohoku Math. J. 62(1), 117--136 (2010) Special surfaces, Divisors, linear systems, invertible sheaves, Surfaces of general type, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Lee, Y; Park, J, A construction of horikawa surface via \(\mathbb{Q}\)-Gorenstein smoothings, Math. Z., 267, 15-25, (2011) Surfaces of general type, Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type M. Murakami, The torsion group of a certain numerical Godeaux surface, J. Math. 68ALBERTO CALABRI - EZIO STAGNARO Kyoto Univ. 41 (2001), no. 2, 323--333. Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Special surfaces, Transcendental methods, Hodge theory (algebro-geometric aspects), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Naie D.: Numerical Campedelli surfaces cannot have the symmetric group as the algebraic fundamental group. J. Lond. Math. Soc. 59, 813--827 (1999) Surfaces of general type, Coverings in algebraic geometry, Group actions on varieties or schemes (quotients), Geometric invariant theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Structure of families (Picard-Lefschetz, monodromy, etc.), Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Computational aspects of algebraic surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type B. Fairbairn, K. Magaard and C. Parker, Generation of finite quasisimple groups with an application to groups acting on Beauville surfaces, Proc. Lond. Math. Soc. (3) 107 (2013), no. 4, 744-798. Finite simple groups and their classification, Simple groups: alternating groups and groups of Lie type, Generators, relations, and presentations of groups, Conjugacy classes for groups, Surfaces of general type, Families, moduli, classification: algebraic theory, Linear algebraic groups over finite fields, Compact Riemann surfaces and uniformization
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Z. Qin, Birational properties of moduli spaces of stable locally free rank-\(2\) sheaves on algebraic surfaces , Manuscripta Math. 72 (1991), no. 2, 163-180. Parametrization (Chow and Hilbert schemes), Rational and birational maps, Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Algebraic moduli problems, moduli of vector bundles, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Complete intersections
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Y. Lee, \textit{Complex structure on the rational blowdown of sections in E (4), in AlgebraicGeometry in East Asia--Seoul 2008}, Advanced Studies in Pure Mathematics, Vol. 60, Mathematical Society of Japan, Tokyo, 2010, pp. 259-269. Surfaces of general type, Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties, Symplectic manifolds (general theory)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Relations with algebraic geometry and topology, Discrete subgroups of Lie groups, Structure of modular groups and generalizations; arithmetic groups
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Mendes Lopes, M; Pirola, GP; Pardini, R, On the canonical map of surfaces with \(q\geq 6\), Sci. China Math., 54, 1725-1739, (2011) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Urzúa, Giancarlo, Arrangements of curves and algebraic surfaces, 19, 2, 335-365, (2010), arXiv preprint Surfaces and higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Singularities in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Cohomology of groups, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Nakamura, I, On surfaces of class \(VII_0\) with curves II, Tohoku J. Math., 42, 475-516, (1990) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type A. Albano and G.\ P. Pirola, Dihedral monodromy and Xiao fibrations, Ann. Mat. Pura App. (2015), 10.1007/s10231-015-0514-y. Fibrations, degenerations in algebraic geometry, Structure of families (Picard-Lefschetz, monodromy, etc.), Surfaces of general type, Jacobians, Prym varieties, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type K. Konno , On certain even canonical surfaces . Tôhoku Math. J. 44 ( 1992 ), 59 - 68 . Article | MR 1145722 | Zbl 0792.14017 Moduli, classification: analytic theory; relations with modular forms, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type D. Hwang and J. Keum, Algebraic Montgomery-Yang Problem: the noncyclic case, Math. Ann. 350 (2011), no. 3, 721-754. Surfaces of general type, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.1007/s00229-013-0607-0 Families, moduli, classification: algebraic theory, Surfaces of general type, Simple groups: alternating groups and groups of Lie type, Fuchsian groups and their generalizations (group-theoretic aspects), Riemann surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, In: 1958 Symposium Internacional de Topología Algebraica International Symposium on Algebraic Topology, Univ. Nacional Autónoma de México and UNESCO, Mexico City, pp. 129-144. Fibrations, degenerations in algebraic geometry, Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Konno, K.; Mendes-Lopes, M.: On a question of miles reid. Manuscripta math. 100, 81-86 (1999) Families, moduli, classification: algebraic theory, Fibrations, degenerations in algebraic geometry, Surfaces of general type, Families, moduli of curves (algebraic)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type González-Diez, G.; Reyes-Carocca, S., Families of Riemann surfaces, uniformization and arithmeticity, Trans. Am. Math. Soc., 370, 3, 1529-1549, (2018) Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables), Arithmetic ground fields for surfaces or higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Surfaces of general type, Grassmannians, Schubert varieties, flag manifolds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type {G. Xiao, } {Bound of automorphisms of surfaces of general type. I, } \textit{Ann. of Math.} \textbf{139} (1994), 51--77 Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Manetti M. On the moduli space of diffeomorphic algebraic surfaces. Invent Math, 2001, 143: 29--76 Moduli, classification: analytic theory; relations with modular forms, Algebraic moduli problems, moduli of vector bundles, Surfaces of general type, Differentiable structures in differential topology
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Divisors, linear systems, invertible sheaves, Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry, Families, moduli, classification: algebraic theory, Surfaces of general type, \(3\)-folds, \(4\)-folds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Embeddings in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Konno, K., Chain-connected component decomposition of curves on surfaces, J. Math. Soc. Japan, 62, 2, 467-486, (2010) Special surfaces, Special algebraic curves and curves of low genus, Surfaces of general type, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Classical problems, Schubert calculus, Plane and space curves, Surfaces of general type, Hypersurfaces and algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Bouganis T.: Error correcting codes over algebraic surfaces. In: Lecture Notes in Computer Science, vol. 2643, pp. 169--179. Springer Verlag, Berlin, (2003). Geometric methods (including applications of algebraic geometry) applied to coding theory, Rational and ruled surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Lu, Steven S. Y., On surfaces of general type with maximal Albanese dimension, J. Reine Angew. Math., 0075-4102, 641, 163\textendash 175 pp., (2010) Surfaces of general type, Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.