prefix
stringlengths
65
1.8k
suffix
stringclasses
839 values
solution
stringlengths
6
859
test_cases
listlengths
0
100
import_str
listlengths
0
1
demos
listlengths
0
8
entry_func
stringclasses
158 values
data_id
stringlengths
36
40
doc_string
stringclasses
164 values
dataset_name
stringclasses
1 value
task_name
stringclasses
1 value
compare_func
listlengths
0
0
src_lang
stringclasses
1 value
tgt_lang
stringclasses
1 value
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0])
return "NO"
r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return "YES"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L11_L14
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0])
r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return "YES" return "NO"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L11_L15
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1])
if length > 0 and is_prime(length): return "YES" return "NO"
length = r - l
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L12_L12
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1])
return "YES" return "NO"
length = r - l if length > 0 and is_prime(length):
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L12_L13
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1])
return "NO"
length = r - l if length > 0 and is_prime(length): return "YES"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L12_L14
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1])
length = r - l if length > 0 and is_prime(length): return "YES" return "NO"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L12_L15
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l
return "YES" return "NO"
if length > 0 and is_prime(length):
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L13_L13
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l
return "NO"
if length > 0 and is_prime(length): return "YES"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L13_L14
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l
if length > 0 and is_prime(length): return "YES" return "NO"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L13_L15
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length):
return "NO"
return "YES"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L14_L14
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length):
return "YES" return "NO"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L14_L15
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return "YES"
return "NO"
[ [ "(1, 2), (2, 3)", "\"NO\"" ], [ "(-1, 1), (0, 4)", "\"NO\"" ], [ "(-3, -1), (-5, 5)", "\"YES\"" ], [ "(-2, 2), (-4, 0)", "\"YES\"" ], [ "(-11, 2), (-1, -1)", "\"NO\"" ], [ "(1, 2), (3, 5)", "\"NO\"" ], [ "(1, 2), (1, 2)", "\"NO\"" ], [ "(-2, -2), (-3, -2)", "\"NO\"" ] ]
[]
[ [ "(1, 2), (2, 3)", "> \"NO\"" ], [ "(-1, 1), (0, 4)", "> \"NO\"" ], [ "(-3, -1), (-5, 5)", "> \"YES\"" ] ]
intersection
MultiLineInfilling/HumanEval/127/L15_L15
You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO".
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. """
prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
if not arr: return None
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[1, 1, 1, 2, 3, -1, 1]", "-10" ], [ "[]", "None" ], [ "[2, 4,1, 2, -1, -1, 9]", "20" ], [ "[-1, 1, -1, 1]", "4" ], [ "[-1, 1, 1, 1]", "-4" ], [ "[-1, 1, 1, 0]", "0" ] ]
[]
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[]", "None" ] ]
prod_signs
MultiLineInfilling/HumanEval/128/L0_L0
You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. """
return prod * sum([abs(i) for i in arr])
if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[1, 1, 1, 2, 3, -1, 1]", "-10" ], [ "[]", "None" ], [ "[2, 4,1, 2, -1, -1, 9]", "20" ], [ "[-1, 1, -1, 1]", "4" ], [ "[-1, 1, 1, 1]", "-4" ], [ "[-1, 1, 1, 0]", "0" ] ]
[]
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[]", "None" ] ]
prod_signs
MultiLineInfilling/HumanEval/128/L0_L1
You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. """
if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[1, 1, 1, 2, 3, -1, 1]", "-10" ], [ "[]", "None" ], [ "[2, 4,1, 2, -1, -1, 9]", "20" ], [ "[-1, 1, -1, 1]", "4" ], [ "[-1, 1, 1, 1]", "-4" ], [ "[-1, 1, 1, 0]", "0" ] ]
[]
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[]", "None" ] ]
prod_signs
MultiLineInfilling/HumanEval/128/L0_L2
You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. """ if not arr: return None
return prod * sum([abs(i) for i in arr])
prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[1, 1, 1, 2, 3, -1, 1]", "-10" ], [ "[]", "None" ], [ "[2, 4,1, 2, -1, -1, 9]", "20" ], [ "[-1, 1, -1, 1]", "4" ], [ "[-1, 1, 1, 1]", "-4" ], [ "[-1, 1, 1, 0]", "0" ] ]
[]
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[]", "None" ] ]
prod_signs
MultiLineInfilling/HumanEval/128/L1_L1
You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. """ if not arr: return None
prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[1, 1, 1, 2, 3, -1, 1]", "-10" ], [ "[]", "None" ], [ "[2, 4,1, 2, -1, -1, 9]", "20" ], [ "[-1, 1, -1, 1]", "4" ], [ "[-1, 1, 1, 1]", "-4" ], [ "[-1, 1, 1, 0]", "0" ] ]
[]
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[]", "None" ] ]
prod_signs
MultiLineInfilling/HumanEval/128/L1_L2
You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. """ if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))
return prod * sum([abs(i) for i in arr])
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[1, 1, 1, 2, 3, -1, 1]", "-10" ], [ "[]", "None" ], [ "[2, 4,1, 2, -1, -1, 9]", "20" ], [ "[-1, 1, -1, 1]", "4" ], [ "[-1, 1, 1, 1]", "-4" ], [ "[-1, 1, 1, 0]", "0" ] ]
[]
[ [ "[1, 2, 2, -4]", "-9" ], [ "[0, 1]", "0" ], [ "[]", "None" ] ]
prod_signs
MultiLineInfilling/HumanEval/128/L2_L2
You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L0
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L1
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L2
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L3
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L4
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L5
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L6
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L7
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L9
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L10
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L12
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L13
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L15
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L16
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L18
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L20
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L21
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
ans.append(1) else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L22
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
else: ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L23
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
ans.append(val) return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L24
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
return ans
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L25
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """
n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L0_L26
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L1
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L2
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L3
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L4
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L5
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L6
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L7
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L9
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L10
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L12
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L13
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L15
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L16
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L18
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L20
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L21
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
ans.append(1) else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L22
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
else: ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L23
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
ans.append(val) return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L24
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
return ans
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L25
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid)
val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L1_L26
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L2
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L3
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L4
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L5
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L6
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L7
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L9
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L10
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L12
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L13
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L15
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L16
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L18
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L20
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L21
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
ans.append(1) else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L22
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
else: ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L23
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
ans.append(val) return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L24
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
return ans
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L25
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1
for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L2_L26
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L3
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L4
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L5
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L6
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L7
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L9
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L10
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L12
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L13
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L15
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1])
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L16
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L18
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = []
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L20
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k):
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L21
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
ans.append(1) else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L22
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
else: ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L23
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
ans.append(val) return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else:
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L24
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
return ans
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val)
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L25
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. """ n = len(grid) val = n * n + 1 for i in range(n):
for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
[ [ "[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3", "[1, 2, 1]" ], [ "[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1", "[1]" ], [ "[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4", "[1, 2, 1, 2]" ], [ "[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7", "[1, 10, 1, 10, 1, 10, 1]" ], [ "[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5", "[1, 7, 1, 7, 1]" ], [ "[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9", "[1, 6, 1, 6, 1, 6, 1, 6, 1]" ], [ "[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12", "[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]" ], [ "[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8", "[1, 3, 1, 3, 1, 3, 1, 3]" ], [ "[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8", "[1, 5, 1, 5, 1, 5, 1, 5]" ], [ "[[1, 2], [3, 4]], 10", "[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]" ], [ "[[1, 3], [3, 2]], 10", "[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]" ] ]
[]
[ [ "[[1,2,3], [4,5,6], [7,8,9]], 3", "[1, 2, 1]" ], [ "[[5,9,3], [4,1,6], [7,8,2]], 1", "[1]" ] ]
minPath
MultiLineInfilling/HumanEval/129/L3_L26
Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through.
HumanEval_MultiLineInfilling
code_infilling
[]
python
python