LINC-BIT's picture
Upload 15 files
7cae457 verified
import numpy as np
import pyswarms as ps
def cargo_load_planning_pso_v2(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u,
max_positions, options=None, swarmsize=100, maxiter=100):
"""
使用二进制粒子群优化方法计算货物装载方案,最小化重心的变化量。
参数:
weights (list): 每个货物的质量列表。
cargo_names (list): 每个货物的名称。
cargo_types_dict (dict): 货物名称和占用的货位数量。
positions (list): 可用的货位编号。
cg_impact (list): 每个位置每kg货物对重心index的影响系数。
cg_impact_2u (list): 两个位置组合的重心影响系数。
cg_impact_4u (list): 四个位置组合的重心影响系数。
max_positions (int): 总货位的数量。
options (dict, optional): PSO算法的配置选项。
swarmsize (int, optional): 粒子群大小。
maxiter (int, optional): 最大迭代次数。
返回:
best_solution (np.array): 最优装载方案矩阵。
best_cg_change (float): 最优方案的重心变化量。
"""
# 将货物类型映射为对应的占用单位数
cargo_types = [cargo_types_dict[name] for name in cargo_names]
num_cargos = len(weights) # 货物数量
num_positions = len(positions) # 可用货位数量
dimension = num_cargos * max_positions # 每个粒子的维度:货物数量 × 可用货位数量
# 如果未提供options,使用默认配置
if options is None:
options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9}
# 定义适应度评估函数
def fitness_function(x):
"""
计算每个粒子的适应度值。
参数:
x (numpy.ndarray): 粒子的位置数组,形状为 (n_particles, dimension)。
返回:
numpy.ndarray: 每个粒子的适应度值。
"""
fitness = np.zeros(x.shape[0])
for idx, particle in enumerate(x):
# 将连续位置映射为离散起始位置
start_positions = []
penalty = 0
cg_change = 0.0
occupied = np.zeros(num_positions, dtype=int)
for i in range(num_cargos):
cargo_type = cargo_types[i]
pos_continuous = particle[i * max_positions:(i + 1) * max_positions]
# 根据粒子位置值选择最佳货位
start_pos = np.argmax(pos_continuous)
# 检查边界
if start_pos < 0 or start_pos + cargo_type > num_positions:
penalty += 1000
continue
# 检查对齐
if cargo_type == 2 and start_pos % 2 != 0:
penalty += 1000
if cargo_type == 4 and start_pos % 4 != 0:
penalty += 1000
# 检查重叠
if np.any(occupied[start_pos:start_pos + cargo_type]):
penalty += 1000
else:
occupied[start_pos:start_pos + cargo_type] = 1
start_positions.append(start_pos)
# 计算重心变化量
if cargo_type == 1:
cg_change += weights[i] * cg_impact[start_pos]
elif cargo_type == 2:
cg_change += weights[i] * cg_impact_2u[start_pos // 2]
elif cargo_type == 4:
cg_change += weights[i] * cg_impact_4u[start_pos // 4]
fitness[idx] = cg_change + penalty
return fitness
# 设置PSO的边界
# 对于每个货物,起始位置的范围根据货物类型对齐
lower_bounds = []
upper_bounds = []
for i in range(num_cargos):
cargo_type = cargo_types[i]
lower_bounds.append([0] * max_positions)
upper_bounds.append([1] * max_positions)
bounds = (np.array(lower_bounds), np.array(upper_bounds))
# 初始化PSO优化器
optimizer = ps.single.GlobalBestPSO(n_particles=swarmsize, dimensions=dimension, options=options, bounds=bounds)
# 运行PSO优化
best_cost, best_pos = optimizer.optimize(fitness_function, iters=maxiter)
# 将最佳位置映射为离散装载方案
best_start_positions = []
penalty = 0
cg_change = 0.0
occupied = np.zeros(num_positions, dtype=int)
for i in range(num_cargos):
cargo_type = cargo_types[i]
pos_continuous = best_pos[i * max_positions:(i + 1) * max_positions]
# 根据粒子位置值选择最佳货位
start_pos = np.argmax(pos_continuous)
# 检查边界
if start_pos < 0 or start_pos + cargo_type > num_positions:
penalty += 1000
best_start_positions.append(start_pos)
continue
# 检查对齐
if cargo_type == 2 and start_pos % 2 != 0:
penalty += 1000
if cargo_type == 4 and start_pos % 4 != 0:
penalty += 1000
# 检查重叠
if np.any(occupied[start_pos:start_pos + cargo_type]):
penalty += 1000
else:
occupied[start_pos:start_pos + cargo_type] = 1
best_start_positions.append(start_pos)
# 计算重心变化量
if cargo_type == 1:
cg_change += abs(weights[i] * cg_impact[start_pos])
elif cargo_type == 2:
cg_change += abs(weights[i] * cg_impact_2u[start_pos // 2])
elif cargo_type == 4:
cg_change += abs(weights[i] * cg_impact_4u[start_pos // 4])
total_cg_change = cg_change + penalty
# 构建装载方案矩阵
best_xij = np.zeros((num_cargos, num_positions), dtype=int)
for i, start_pos in enumerate(best_start_positions):
cargo_type = cargo_types[i]
for k in range(cargo_type):
pos = start_pos + k
if pos < num_positions:
best_xij[i, pos] = 1
# 检查是否有严重惩罚,判断是否找到可行解
if total_cg_change >= -999999:
return best_xij, total_cg_change
else:
return [], -1000000
# 示例调用