|
|
import numpy as np
|
|
|
import pulp
|
|
|
|
|
|
def cargo_load_planning_mip(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u,
|
|
|
max_positions):
|
|
|
"""
|
|
|
使用混合整数规划方法计算货物装载方案,最小化重心的变化量。
|
|
|
|
|
|
参数:
|
|
|
weights (list): 每个货物的质量列表。
|
|
|
cargo_names (list): 每个货物的名称。
|
|
|
cargo_types_dict (dict): 货物名称和占用的货位数量。
|
|
|
positions (list): 可用的货位编号。
|
|
|
cg_impact (list): 每个位置每kg货物对重心index的影响系数。
|
|
|
cg_impact_2u (list): 两个位置组合的重心影响系数。
|
|
|
cg_impact_4u (list): 四个位置组合的重心影响系数。
|
|
|
max_positions (int): 总货位的数量。
|
|
|
|
|
|
返回:
|
|
|
result (pulp.LpStatus): 求解状态。
|
|
|
cg_change (float): 最优解的重心变化量。
|
|
|
solution_matrix (np.ndarray): 最优装载方案矩阵。
|
|
|
"""
|
|
|
|
|
|
cargo_types = [cargo_types_dict[name] for name in cargo_names]
|
|
|
|
|
|
num_cargos = len(weights)
|
|
|
num_positions = len(positions)
|
|
|
|
|
|
|
|
|
prob = pulp.LpProblem("Cargo_Load_Planning", pulp.LpMinimize)
|
|
|
|
|
|
|
|
|
|
|
|
x = pulp.LpVariable.dicts("x",
|
|
|
((i, j) for i in range(num_cargos) for j in range(num_positions)),
|
|
|
cat='Binary')
|
|
|
|
|
|
|
|
|
objective_terms = []
|
|
|
for i in range(num_cargos):
|
|
|
for j in range(num_positions):
|
|
|
if cargo_types[i] == 1:
|
|
|
impact = abs(weights[i] * cg_impact[j])
|
|
|
elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2:
|
|
|
impact = abs(weights[i] * cg_impact_2u[j // 2])
|
|
|
elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4:
|
|
|
impact = abs(weights[i] * cg_impact_4u[j // 4])
|
|
|
else:
|
|
|
impact = 0
|
|
|
objective_terms.append(impact * x[i, j])
|
|
|
|
|
|
prob += pulp.lpSum(objective_terms), "Total_CG_Change"
|
|
|
|
|
|
|
|
|
for i in range(num_cargos):
|
|
|
prob += pulp.lpSum([x[i, j] for j in range(num_positions)]) == 1, f"Cargo_{i}_Single_Position"
|
|
|
|
|
|
|
|
|
for j in range(num_positions):
|
|
|
prob += pulp.lpSum([x[i, j] for i in range(num_cargos)]) <= 1, f"Position_{j}_Single_Cargo"
|
|
|
|
|
|
|
|
|
for i, cargo_type in enumerate(cargo_types):
|
|
|
if cargo_type == 2:
|
|
|
for j in range(0, num_positions - 1, 2):
|
|
|
prob += x[i, j] + x[i, j + 1] <= 1, f"Cargo_{i}_Type2_Position_{j}_{j+1}"
|
|
|
elif cargo_type == 4:
|
|
|
for j in range(0, num_positions - 3, 4):
|
|
|
prob += x[i, j] + x[i, j + 1] + x[i, j + 2] + x[i, j + 3] <= 1, f"Cargo_{i}_Type4_Position_{j}_{j+3}"
|
|
|
|
|
|
|
|
|
solver = pulp.PULP_CBC_CMD(msg=False)
|
|
|
prob.solve(solver)
|
|
|
|
|
|
|
|
|
if pulp.LpStatus[prob.status] == 'Optimal':
|
|
|
|
|
|
solution = np.zeros((num_cargos, num_positions))
|
|
|
for i in range(num_cargos):
|
|
|
for j in range(num_positions):
|
|
|
var_value = pulp.value(x[i, j])
|
|
|
if var_value is not None and var_value > 0.5:
|
|
|
solution[i, j] = 1
|
|
|
|
|
|
|
|
|
cg_change = 0.0
|
|
|
for i in range(num_cargos):
|
|
|
for j in range(num_positions):
|
|
|
if solution[i, j] == 1:
|
|
|
if cargo_types[i] == 1:
|
|
|
cg_change += weights[i] * cg_impact[j]
|
|
|
elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2:
|
|
|
cg_change += weights[i] * cg_impact_2u[j // 2]
|
|
|
elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4:
|
|
|
cg_change += weights[i] * cg_impact_4u[j // 4]
|
|
|
|
|
|
return solution, cg_change
|
|
|
else:
|
|
|
|
|
|
return [], -1000000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|