contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
20
C
Dijkstra?
PROGRAMMING
1,900
[ "graphs", "shortest paths" ]
C. Dijkstra?
1
64
You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*.
The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices.
Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them.
[ "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n", "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n" ]
[ "1 4 3 5 ", "1 4 3 5 " ]
none
1,500
[ { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "2 1\n1 2 1", "output": "1 2 " }, { "input": "3 1\n1 2 1", "output": "-1" }, { "input": "3 3\n1 2 1\n1 3 2\n2 3 1", "output": "1 3 " }, { "input": "10 10\n1 5 12\n2 4 140\n2 10 149\n3 6 154\n3 7 9\n3 8 226\n3 10 132\n4 10 55\n5 8 33\n7 8 173", "output": "1 5 8 7 3 10 " }, { "input": "10 10\n1 5 178\n1 8 221\n2 7 92\n2 8 159\n3 5 55\n3 6 179\n3 10 237\n4 8 205\n5 6 191\n8 10 157", "output": "1 8 10 " }, { "input": "10 10\n1 4 200\n1 9 197\n3 4 79\n3 5 213\n3 6 149\n5 8 3\n5 9 189\n6 7 130\n6 9 51\n8 10 135", "output": "1 9 5 8 10 " }, { "input": "10 10\n1 4 201\n2 3 238\n3 4 40\n3 6 231\n3 8 45\n4 5 227\n4 6 58\n4 9 55\n5 7 14\n6 10 242", "output": "1 4 6 10 " } ]
1,582,029,317
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
3
124
921,600
import queue from collections import defaultdict, deque import sys def diaxtra(n, starting, ending, graph, cost, distance): q = queue.PriorityQueue() distance[starting] = 0 q.put((distance[starting], starting)) parent = {} while(not q.empty()): now_dis, now_node = q.get() for neighbour in graph[now_node]: if(distance[now_node]+cost[now_node][neighbour] < distance[neighbour]): parent[neighbour] = now_node distance[neighbour] = distance[now_node]+cost[now_node][neighbour] q.put((distance[neighbour], neighbour)) return distance, parent def backtrace(parent, start, end): path = [end] while(path[-1]!=start): path.append(parent[path[-1]]) path.reverse() return path if __name__=="__main__": n, m = map(int, input().split()) graph = defaultdict(list) distance = [sys.maxsize for _ in range(n+1)] cost = [[0 for _ in range(n+1)] for _ in range(n+1)] for _ in range(m): u,v,w = map(int, input().split()) graph[u].append(v) graph[v].append(u) cost[u][v] = w cost[v][u] = w dis, parent = diaxtra(n, 1, n, graph, cost, distance) if(dis[n]==0): print(-1) else: print(*backtrace(parent, 1, n))
Title: Dijkstra? Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*. Input Specification: The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices. Output Specification: Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them. Demo Input: ['5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n', '5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n'] Demo Output: ['1 4 3 5 ', '1 4 3 5 '] Note: none
```python import queue from collections import defaultdict, deque import sys def diaxtra(n, starting, ending, graph, cost, distance): q = queue.PriorityQueue() distance[starting] = 0 q.put((distance[starting], starting)) parent = {} while(not q.empty()): now_dis, now_node = q.get() for neighbour in graph[now_node]: if(distance[now_node]+cost[now_node][neighbour] < distance[neighbour]): parent[neighbour] = now_node distance[neighbour] = distance[now_node]+cost[now_node][neighbour] q.put((distance[neighbour], neighbour)) return distance, parent def backtrace(parent, start, end): path = [end] while(path[-1]!=start): path.append(parent[path[-1]]) path.reverse() return path if __name__=="__main__": n, m = map(int, input().split()) graph = defaultdict(list) distance = [sys.maxsize for _ in range(n+1)] cost = [[0 for _ in range(n+1)] for _ in range(n+1)] for _ in range(m): u,v,w = map(int, input().split()) graph[u].append(v) graph[v].append(u) cost[u][v] = w cost[v][u] = w dis, parent = diaxtra(n, 1, n, graph, cost, distance) if(dis[n]==0): print(-1) else: print(*backtrace(parent, 1, n)) ```
-1
845
A
Chess Tourney
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
Berland annual chess tournament is coming! Organizers have gathered 2·*n* chess players who should be divided into two teams with *n* people each. The first team is sponsored by BerOil and the second team is sponsored by BerMobile. Obviously, organizers should guarantee the win for the team of BerOil. Thus, organizers should divide all 2·*n* players into two teams with *n* people each in such a way that the first team always wins. Every chess player has its rating *r**i*. It is known that chess player with the greater rating always wins the player with the lower rating. If their ratings are equal then any of the players can win. After teams assignment there will come a drawing to form *n* pairs of opponents: in each pair there is a player from the first team and a player from the second team. Every chess player should be in exactly one pair. Every pair plays once. The drawing is totally random. Is it possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100). The second line contains 2·*n* integers *a*1,<=*a*2,<=... *a*2*n* (1<=≤<=*a**i*<=≤<=1000).
If it's possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing, then print "YES". Otherwise print "NO".
[ "2\n1 3 2 4\n", "1\n3 3\n" ]
[ "YES\n", "NO\n" ]
none
0
[ { "input": "2\n1 3 2 4", "output": "YES" }, { "input": "1\n3 3", "output": "NO" }, { "input": "5\n1 1 1 1 2 2 3 3 3 3", "output": "NO" }, { "input": "5\n1 1 1 1 1 2 2 2 2 2", "output": "YES" }, { "input": "10\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "NO" }, { "input": "1\n2 3", "output": "YES" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "35\n919 240 231 858 456 891 959 965 758 30 431 73 505 694 874 543 975 445 16 147 904 690 940 278 562 127 724 314 30 233 389 442 353 652 581 383 340 445 487 283 85 845 578 946 228 557 906 572 919 388 686 181 958 955 736 438 991 170 632 593 475 264 178 344 159 414 739 590 348 884", "output": "YES" }, { "input": "5\n1 2 3 4 10 10 6 7 8 9", "output": "YES" }, { "input": "2\n1 1 1 2", "output": "NO" }, { "input": "2\n10 4 4 4", "output": "NO" }, { "input": "2\n2 3 3 3", "output": "NO" }, { "input": "4\n1 2 3 4 5 4 6 7", "output": "NO" }, { "input": "4\n2 5 4 5 8 3 1 5", "output": "YES" }, { "input": "4\n8 2 2 4 1 4 10 9", "output": "NO" }, { "input": "2\n3 8 10 2", "output": "YES" }, { "input": "3\n1 3 4 4 5 6", "output": "NO" }, { "input": "2\n3 3 3 4", "output": "NO" }, { "input": "2\n1 1 2 2", "output": "YES" }, { "input": "2\n1 1 3 3", "output": "YES" }, { "input": "2\n1 2 3 2", "output": "NO" }, { "input": "10\n1 2 7 3 9 4 1 5 10 3 6 1 10 7 8 5 7 6 1 4", "output": "NO" }, { "input": "3\n1 2 3 3 4 5", "output": "NO" }, { "input": "2\n2 2 1 1", "output": "YES" }, { "input": "7\n1 2 3 4 5 6 7 7 8 9 10 11 12 19", "output": "NO" }, { "input": "5\n1 2 3 4 5 3 3 5 6 7", "output": "YES" }, { "input": "4\n1 1 2 2 3 3 3 3", "output": "YES" }, { "input": "51\n576 377 63 938 667 992 959 997 476 94 652 272 108 410 543 456 942 800 917 163 931 584 357 890 895 318 544 179 268 130 649 916 581 350 573 223 495 26 377 695 114 587 380 424 744 434 332 249 318 522 908 815 313 384 981 773 585 747 376 812 538 525 997 896 859 599 437 163 878 14 224 733 369 741 473 178 153 678 12 894 630 921 505 635 128 404 64 499 208 325 343 996 970 39 380 80 12 756 580 57 934 224", "output": "YES" }, { "input": "3\n3 3 3 2 3 2", "output": "NO" }, { "input": "2\n5 3 3 6", "output": "YES" }, { "input": "2\n1 2 2 3", "output": "NO" }, { "input": "2\n1 3 2 2", "output": "NO" }, { "input": "2\n1 3 3 4", "output": "NO" }, { "input": "2\n1 2 2 2", "output": "NO" }, { "input": "3\n1 2 7 19 19 7", "output": "NO" }, { "input": "3\n1 2 3 3 5 6", "output": "NO" }, { "input": "2\n1 2 2 4", "output": "NO" }, { "input": "2\n6 6 5 5", "output": "YES" }, { "input": "2\n3 1 3 1", "output": "YES" }, { "input": "3\n1 2 3 3 1 1", "output": "YES" }, { "input": "3\n3 2 1 3 4 5", "output": "NO" }, { "input": "3\n4 5 6 4 2 1", "output": "NO" }, { "input": "3\n1 1 2 3 2 4", "output": "NO" }, { "input": "3\n100 99 1 1 1 1", "output": "NO" }, { "input": "3\n1 2 3 6 5 3", "output": "NO" }, { "input": "2\n2 2 1 2", "output": "NO" }, { "input": "4\n1 2 3 4 5 6 7 4", "output": "NO" }, { "input": "3\n1 2 3 1 1 1", "output": "NO" }, { "input": "3\n6 5 3 3 1 3", "output": "NO" }, { "input": "2\n1 2 1 2", "output": "YES" }, { "input": "3\n1 2 5 6 8 6", "output": "YES" }, { "input": "5\n1 2 3 4 5 3 3 3 3 3", "output": "NO" }, { "input": "2\n1 2 4 2", "output": "NO" }, { "input": "3\n7 7 4 5 319 19", "output": "NO" }, { "input": "3\n1 2 4 4 3 5", "output": "YES" }, { "input": "3\n3 2 3 4 5 2", "output": "NO" }, { "input": "5\n1 2 3 4 4 5 3 6 7 8", "output": "NO" }, { "input": "3\n3 3 4 4 5 1", "output": "YES" }, { "input": "2\n3 4 3 3", "output": "NO" }, { "input": "2\n2 5 4 4", "output": "NO" }, { "input": "5\n1 2 3 3 4 5 6 7 8 4", "output": "NO" }, { "input": "3\n1 2 3 3 5 5", "output": "NO" }, { "input": "2\n3 4 4 4", "output": "NO" }, { "input": "2\n1 4 5 4", "output": "NO" }, { "input": "2\n1 2 3 3", "output": "YES" }, { "input": "2\n1 1 2 1", "output": "NO" }, { "input": "4\n1 1 1 1 2 2 2 2", "output": "YES" }, { "input": "4\n1 2 3 5 6 7 8 5", "output": "NO" }, { "input": "2\n4 3 3 1", "output": "NO" }, { "input": "3\n3 1 2 4 3 5", "output": "NO" }, { "input": "3\n1 2 3 3 4 6", "output": "NO" }, { "input": "4\n2 2 2 4 5 5 5 5", "output": "YES" }, { "input": "2\n1 3 4 3", "output": "NO" }, { "input": "2\n3 3 2 3", "output": "NO" }, { "input": "2\n1 2 1 1", "output": "NO" }, { "input": "3\n1 3 4 4 2 5", "output": "YES" }, { "input": "4\n4 7 1 2 3 5 6 4", "output": "NO" }, { "input": "2\n3 2 2 2", "output": "NO" }, { "input": "1\n2 1", "output": "YES" }, { "input": "2\n3 3 1 2", "output": "YES" }, { "input": "1\n8 6", "output": "YES" }, { "input": "7\n6 7 6 7 3 1 9 4 6 10 8 2 5 7", "output": "NO" }, { "input": "2\n3 9 2 1", "output": "YES" }, { "input": "2\n3 3 3 3", "output": "NO" } ]
1,503,341,293
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
n=int(input()) a=list(map(int,input().split())) m=0'''67''' for i in range(2*n,n-1,-1): for j in range(i-1): if a[j]>a[j+1]: a[j],a[j+1]=a[j+1],a[j] print('NO' if a[n]==a[n-1] else 'YES')
Title: Chess Tourney Time Limit: None seconds Memory Limit: None megabytes Problem Description: Berland annual chess tournament is coming! Organizers have gathered 2·*n* chess players who should be divided into two teams with *n* people each. The first team is sponsored by BerOil and the second team is sponsored by BerMobile. Obviously, organizers should guarantee the win for the team of BerOil. Thus, organizers should divide all 2·*n* players into two teams with *n* people each in such a way that the first team always wins. Every chess player has its rating *r**i*. It is known that chess player with the greater rating always wins the player with the lower rating. If their ratings are equal then any of the players can win. After teams assignment there will come a drawing to form *n* pairs of opponents: in each pair there is a player from the first team and a player from the second team. Every chess player should be in exactly one pair. Every pair plays once. The drawing is totally random. Is it possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100). The second line contains 2·*n* integers *a*1,<=*a*2,<=... *a*2*n* (1<=≤<=*a**i*<=≤<=1000). Output Specification: If it's possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing, then print "YES". Otherwise print "NO". Demo Input: ['2\n1 3 2 4\n', '1\n3 3\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n=int(input()) a=list(map(int,input().split())) m=0'''67''' for i in range(2*n,n-1,-1): for j in range(i-1): if a[j]>a[j+1]: a[j],a[j+1]=a[j+1],a[j] print('NO' if a[n]==a[n-1] else 'YES') ```
-1
220
B
Little Elephant and Array
PROGRAMMING
1,800
[ "constructive algorithms", "data structures" ]
null
null
The Little Elephant loves playing with arrays. He has array *a*, consisting of *n* positive integers, indexed from 1 to *n*. Let's denote the number with index *i* as *a**i*. Additionally the Little Elephant has *m* queries to the array, each query is characterised by a pair of integers *l**j* and *r**j* (1<=≤<=*l**j*<=≤<=*r**j*<=≤<=*n*). For each query *l**j*,<=*r**j* the Little Elephant has to count, how many numbers *x* exist, such that number *x* occurs exactly *x* times among numbers *a**l**j*,<=*a**l**j*<=+<=1,<=...,<=*a**r**j*. Help the Little Elephant to count the answers to all queries.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the size of array *a* and the number of queries to it. The next line contains *n* space-separated positive integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109). Next *m* lines contain descriptions of queries, one per line. The *j*-th of these lines contains the description of the *j*-th query as two space-separated integers *l**j* and *r**j* (1<=≤<=*l**j*<=≤<=*r**j*<=≤<=*n*).
In *m* lines print *m* integers — the answers to the queries. The *j*-th line should contain the answer to the *j*-th query.
[ "7 2\n3 1 2 2 3 3 7\n1 7\n3 4\n" ]
[ "3\n1\n" ]
none
1,000
[ { "input": "7 2\n3 1 2 2 3 3 7\n1 7\n3 4", "output": "3\n1" }, { "input": "6 6\n1 2 2 3 3 3\n1 2\n2 2\n1 3\n2 4\n4 6\n1 6", "output": "1\n0\n2\n1\n1\n3" }, { "input": "1 2\n1\n1 1\n1 1", "output": "1\n1" }, { "input": "1 1\n1000000000\n1 1", "output": "0" } ]
1,562,160,439
2,147,483,647
PyPy 3
MEMORY_LIMIT_EXCEEDED
TESTS
4
795
268,390,400
n,q=map(int,input().split()) l=[int(i) for i in input().split()] from math import sqrt as S m=int(2*S(n)) pre=[[0 for j in range(m+1)] for i in range(n+1)] for i in range(1,n+1): for j in range(1,m): pre[i][j]=pre[i-1][j]+(l[i-1]==j) for i in range(q): left,right=map(int,input().split()) cnt=0 for j in range(1,m): if pre[right][j]-pre[left-1][j]==j: cnt+=1 #print(j) print(cnt)
Title: Little Elephant and Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Elephant loves playing with arrays. He has array *a*, consisting of *n* positive integers, indexed from 1 to *n*. Let's denote the number with index *i* as *a**i*. Additionally the Little Elephant has *m* queries to the array, each query is characterised by a pair of integers *l**j* and *r**j* (1<=≤<=*l**j*<=≤<=*r**j*<=≤<=*n*). For each query *l**j*,<=*r**j* the Little Elephant has to count, how many numbers *x* exist, such that number *x* occurs exactly *x* times among numbers *a**l**j*,<=*a**l**j*<=+<=1,<=...,<=*a**r**j*. Help the Little Elephant to count the answers to all queries. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105) — the size of array *a* and the number of queries to it. The next line contains *n* space-separated positive integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109). Next *m* lines contain descriptions of queries, one per line. The *j*-th of these lines contains the description of the *j*-th query as two space-separated integers *l**j* and *r**j* (1<=≤<=*l**j*<=≤<=*r**j*<=≤<=*n*). Output Specification: In *m* lines print *m* integers — the answers to the queries. The *j*-th line should contain the answer to the *j*-th query. Demo Input: ['7 2\n3 1 2 2 3 3 7\n1 7\n3 4\n'] Demo Output: ['3\n1\n'] Note: none
```python n,q=map(int,input().split()) l=[int(i) for i in input().split()] from math import sqrt as S m=int(2*S(n)) pre=[[0 for j in range(m+1)] for i in range(n+1)] for i in range(1,n+1): for j in range(1,m): pre[i][j]=pre[i-1][j]+(l[i-1]==j) for i in range(q): left,right=map(int,input().split()) cnt=0 for j in range(1,m): if pre[right][j]-pre[left-1][j]==j: cnt+=1 #print(j) print(cnt) ```
0
36
A
Extra-terrestrial Intelligence
PROGRAMMING
1,300
[ "implementation" ]
A. Extra-terrestrial Intelligence
2
64
Recently Vasya got interested in finding extra-terrestrial intelligence. He made a simple extra-terrestrial signals’ receiver and was keeping a record of the signals for *n* days in a row. Each of those *n* days Vasya wrote a 1 in his notebook if he had received a signal that day and a 0 if he hadn’t. Vasya thinks that he has found extra-terrestrial intelligence if there is a system in the way the signals has been received, i.e. if all the intervals between successive signals are equal. Otherwise, Vasya thinks that the signals were sent by some stupid aliens no one cares about. Help Vasya to deduce from the information given by the receiver if he has found extra-terrestrial intelligence or not.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of days during which Vasya checked if there were any signals. The second line contains *n* characters 1 or 0 — the record Vasya kept each of those *n* days. It’s guaranteed that the given record sequence contains at least three 1s.
If Vasya has found extra-terrestrial intelligence, output YES, otherwise output NO.
[ "8\n00111000\n", "7\n1001011\n", "7\n1010100\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "8\n00111000", "output": "YES" }, { "input": "7\n1001011", "output": "NO" }, { "input": "7\n1010100", "output": "YES" }, { "input": "5\n10101", "output": "YES" }, { "input": "3\n111", "output": "YES" }, { "input": "10\n0011111011", "output": "NO" }, { "input": "12\n001010101010", "output": "YES" }, { "input": "25\n1000000010000000100000001", "output": "YES" }, { "input": "30\n111110111101110111111111111111", "output": "NO" }, { "input": "50\n00101010101010101010101010101010101010101010101010", "output": "YES" }, { "input": "60\n000000000000000000100001000000001000000001000000001000000001", "output": "NO" }, { "input": "66\n000000000000000000000010011110000010000010000010000000000000000000", "output": "NO" }, { "input": "77\n10000100001010000000000001000000000000100000101000010010000000001100000000000", "output": "NO" }, { "input": "99\n000000000000000000100000010000001000000100000010000001000000100000010000001000000100000010000001000", "output": "YES" }, { "input": "100\n0000000000001000000000000000000000000000000000000010000000000000000000000000000000000000100000000000", "output": "YES" }, { "input": "100\n0010000000000000000000000000000100000000000010000000000000001000000000000000000000000000010000000000", "output": "NO" }, { "input": "5\n10111", "output": "NO" }, { "input": "100\n0000100000000000000000000000000000000000010000000000000000000000000000000000001000000000000000000000", "output": "YES" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "YES" }, { "input": "100\n1111111111111111111111111111111111111111111111111111111111111101111111111111111111111111111111111111", "output": "NO" } ]
1,577,913,484
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
436
2,150,400
fin = open('input.txt', 'r') fout = open('output.txt', 'w') n = int(fin.readline()) l = list(map(int, fin.readline())) idx = [] for i, j in enumerate(l): if j == 1: idx.append(i) diff = idx[1] - idx[0] flag = True for i in range(1, len(idx)-1): if idx[i+1] - idx[i] != diff: flag = False print('NO') fout.write('NO') break if flag: print('YES') fout.write('YES') fout.close()
Title: Extra-terrestrial Intelligence Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Recently Vasya got interested in finding extra-terrestrial intelligence. He made a simple extra-terrestrial signals’ receiver and was keeping a record of the signals for *n* days in a row. Each of those *n* days Vasya wrote a 1 in his notebook if he had received a signal that day and a 0 if he hadn’t. Vasya thinks that he has found extra-terrestrial intelligence if there is a system in the way the signals has been received, i.e. if all the intervals between successive signals are equal. Otherwise, Vasya thinks that the signals were sent by some stupid aliens no one cares about. Help Vasya to deduce from the information given by the receiver if he has found extra-terrestrial intelligence or not. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of days during which Vasya checked if there were any signals. The second line contains *n* characters 1 or 0 — the record Vasya kept each of those *n* days. It’s guaranteed that the given record sequence contains at least three 1s. Output Specification: If Vasya has found extra-terrestrial intelligence, output YES, otherwise output NO. Demo Input: ['8\n00111000\n', '7\n1001011\n', '7\n1010100\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python fin = open('input.txt', 'r') fout = open('output.txt', 'w') n = int(fin.readline()) l = list(map(int, fin.readline())) idx = [] for i, j in enumerate(l): if j == 1: idx.append(i) diff = idx[1] - idx[0] flag = True for i in range(1, len(idx)-1): if idx[i+1] - idx[i] != diff: flag = False print('NO') fout.write('NO') break if flag: print('YES') fout.write('YES') fout.close() ```
-1
414
B
Mashmokh and ACM
PROGRAMMING
1,400
[ "combinatorics", "dp", "number theory" ]
null
null
Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following. A sequence of *l* integers *b*1,<=*b*2,<=...,<=*b**l* (1<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**l*<=≤<=*n*) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all *i* (1<=≤<=*i*<=≤<=*l*<=-<=1). Given *n* and *k* find the number of good sequences of length *k*. As the answer can be rather large print it modulo 1000000007 (109<=+<=7).
The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*,<=*k*<=≤<=2000).
Output a single integer — the number of good sequences of length *k* modulo 1000000007 (109<=+<=7).
[ "3 2\n", "6 4\n", "2 1\n" ]
[ "5\n", "39\n", "2\n" ]
In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].
1,000
[ { "input": "3 2", "output": "5" }, { "input": "6 4", "output": "39" }, { "input": "2 1", "output": "2" }, { "input": "1478 194", "output": "312087753" }, { "input": "1415 562", "output": "953558593" }, { "input": "1266 844", "output": "735042656" }, { "input": "680 1091", "output": "351905328" }, { "input": "1229 1315", "output": "100240813" }, { "input": "1766 1038", "output": "435768250" }, { "input": "1000 1", "output": "1000" }, { "input": "2000 100", "output": "983281065" }, { "input": "1 1", "output": "1" }, { "input": "2000 1000", "output": "228299266" }, { "input": "1928 1504", "output": "81660104" }, { "input": "2000 2000", "output": "585712681" }, { "input": "29 99", "output": "23125873" }, { "input": "56 48", "output": "20742237" }, { "input": "209 370", "output": "804680894" }, { "input": "83 37", "output": "22793555" }, { "input": "49 110", "output": "956247348" }, { "input": "217 3", "output": "4131" }, { "input": "162 161", "output": "591739753" }, { "input": "273 871", "output": "151578252" }, { "input": "43 1640", "output": "173064407" }, { "input": "1472 854", "output": "748682383" }, { "input": "1639 1056", "output": "467464129" }, { "input": "359 896", "output": "770361185" }, { "input": "1544 648", "output": "9278889" }, { "input": "436 1302", "output": "874366220" }, { "input": "1858 743", "output": "785912917" }, { "input": "991 1094", "output": "483493131" }, { "input": "1013 1550", "output": "613533467" }, { "input": "675 741", "output": "474968598" }, { "input": "1420 1223", "output": "922677437" }, { "input": "1544 1794", "output": "933285446" }, { "input": "1903 1612", "output": "620810276" }, { "input": "500 1304", "output": "706176027" }, { "input": "525 314", "output": "245394744" }, { "input": "39 1930", "output": "992125404" }, { "input": "1895 753", "output": "180474828" }, { "input": "1722 1474", "output": "742424590" }, { "input": "1153 1823", "output": "791493066" }, { "input": "1409 734", "output": "627413973" }, { "input": "478 1301", "output": "476483030" }, { "input": "1887 1729", "output": "730033374" }, { "input": "1610 774", "output": "50897314" }, { "input": "1770 679", "output": "235295539" }, { "input": "987 1292", "output": "560110556" }, { "input": "1707 1117", "output": "237674323" }, { "input": "1424 1431", "output": "184145444" }, { "input": "86 1078", "output": "252515343" }, { "input": "1066 995", "output": "180753612" }, { "input": "1024 133", "output": "392603027" }, { "input": "659 974", "output": "397026719" }, { "input": "1349 1606", "output": "522392901" }, { "input": "473 211", "output": "809550224" }, { "input": "634 1825", "output": "438513382" }, { "input": "22 373", "output": "907321755" }, { "input": "531 147", "output": "242883376" }, { "input": "1307 1247", "output": "21512331" }, { "input": "415 735", "output": "393705804" }, { "input": "1659 1501", "output": "225266660" }, { "input": "1454 296", "output": "750032659" }, { "input": "158 772", "output": "850911301" }, { "input": "2000 1", "output": "2000" } ]
1,588,105,782
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
139
0
import io, os input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline mod = 10**9 + 7 n, k = map(int, input().split()) count = [1]*(n+1) for i in range(k-1): new = [0]*(n+1) for j in range(1, n+1): t = count[j] for k in range(j, n+1, j): new[k] = (new[k]+t)%mod count = new print(sum(count)%mod)
Title: Mashmokh and ACM Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following. A sequence of *l* integers *b*1,<=*b*2,<=...,<=*b**l* (1<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**l*<=≤<=*n*) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all *i* (1<=≤<=*i*<=≤<=*l*<=-<=1). Given *n* and *k* find the number of good sequences of length *k*. As the answer can be rather large print it modulo 1000000007 (109<=+<=7). Input Specification: The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*,<=*k*<=≤<=2000). Output Specification: Output a single integer — the number of good sequences of length *k* modulo 1000000007 (109<=+<=7). Demo Input: ['3 2\n', '6 4\n', '2 1\n'] Demo Output: ['5\n', '39\n', '2\n'] Note: In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].
```python import io, os input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline mod = 10**9 + 7 n, k = map(int, input().split()) count = [1]*(n+1) for i in range(k-1): new = [0]*(n+1) for j in range(1, n+1): t = count[j] for k in range(j, n+1, j): new[k] = (new[k]+t)%mod count = new print(sum(count)%mod) ```
0
404
A
Valera and X
PROGRAMMING
1,000
[ "implementation" ]
null
null
Valera is a little boy. Yesterday he got a huge Math hometask at school, so Valera didn't have enough time to properly learn the English alphabet for his English lesson. Unfortunately, the English teacher decided to have a test on alphabet today. At the test Valera got a square piece of squared paper. The length of the side equals *n* squares (*n* is an odd number) and each unit square contains some small letter of the English alphabet. Valera needs to know if the letters written on the square piece of paper form letter "X". Valera's teacher thinks that the letters on the piece of paper form an "X", if: - on both diagonals of the square paper all letters are the same; - all other squares of the paper (they are not on the diagonals) contain the same letter that is different from the letters on the diagonals. Help Valera, write the program that completes the described task for him.
The first line contains integer *n* (3<=≤<=*n*<=&lt;<=300; *n* is odd). Each of the next *n* lines contains *n* small English letters — the description of Valera's paper.
Print string "YES", if the letters on the paper form letter "X". Otherwise, print string "NO". Print the strings without quotes.
[ "5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox\n", "3\nwsw\nsws\nwsw\n", "3\nxpx\npxp\nxpe\n" ]
[ "NO\n", "YES\n", "NO\n" ]
none
500
[ { "input": "5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox", "output": "NO" }, { "input": "3\nwsw\nsws\nwsw", "output": "YES" }, { "input": "3\nxpx\npxp\nxpe", "output": "NO" }, { "input": "5\nliiil\nilili\niilii\nilili\nliiil", "output": "YES" }, { "input": "7\nbwccccb\nckcccbj\nccbcbcc\ncccbccc\nccbcbcc\ncbcccbc\nbccccdt", "output": "NO" }, { "input": "13\nsooooooooooos\nosoooooooooso\noosooooooosoo\nooosooooosooo\noooosooosoooo\nooooososooooo\noooooosoooooo\nooooososooooo\noooosooosoooo\nooosooooosooo\noosooooooosoo\nosoooooooooso\nsooooooooooos", "output": "YES" }, { "input": "3\naaa\naaa\naaa", "output": "NO" }, { "input": "3\naca\noec\nzba", "output": "NO" }, { "input": "15\nrxeeeeeeeeeeeer\nereeeeeeeeeeere\needeeeeeeeeeoee\neeereeeeeeeewee\neeeereeeeebeeee\nqeeeereeejedyee\neeeeeerereeeeee\neeeeeeereeeeeee\neeeeeerereeeeze\neeeeereeereeeee\neeeereeeeegeeee\neeereeeeeeereee\neereeeeeeqeeved\ncreeeeeeceeeere\nreeerneeeeeeeer", "output": "NO" }, { "input": "5\nxxxxx\nxxxxx\nxxxxx\nxxxxx\nxxxxx", "output": "NO" }, { "input": "5\nxxxxx\nxxxxx\nxoxxx\nxxxxx\nxxxxx", "output": "NO" }, { "input": "5\noxxxo\nxoxox\nxxxxx\nxoxox\noxxxo", "output": "NO" }, { "input": "5\noxxxo\nxoxox\nxxoox\nxoxox\noxxxo", "output": "NO" }, { "input": "5\noxxxo\nxoxox\nxxaxx\nxoxox\noxxxo", "output": "NO" }, { "input": "5\noxxxo\nxoxox\noxoxx\nxoxox\noxxxo", "output": "NO" }, { "input": "3\nxxx\naxa\nxax", "output": "NO" }, { "input": "3\nxax\naxx\nxax", "output": "NO" }, { "input": "3\nxax\naxa\nxxx", "output": "NO" }, { "input": "3\nxax\nxxa\nxax", "output": "NO" }, { "input": "3\nxax\naaa\nxax", "output": "NO" }, { "input": "3\naax\naxa\nxax", "output": "NO" }, { "input": "3\nxaa\naxa\nxax", "output": "NO" }, { "input": "3\nxax\naxa\naax", "output": "NO" }, { "input": "3\nxax\naxa\nxaa", "output": "NO" }, { "input": "3\nxfx\naxa\nxax", "output": "NO" }, { "input": "3\nxax\nafa\nxax", "output": "NO" }, { "input": "3\nxax\naxa\nxaf", "output": "NO" }, { "input": "3\nxox\nxxx\nxxx", "output": "NO" }, { "input": "3\naxa\naax\nxxa", "output": "NO" }, { "input": "3\nxox\noxx\nxox", "output": "NO" }, { "input": "3\nxox\nooo\nxox", "output": "NO" }, { "input": "3\naaa\naab\nbbb", "output": "NO" }, { "input": "3\nxxx\nsxs\nxsx", "output": "NO" }, { "input": "5\nabbba\nbabab\nbbbbb\nbaaab\nabbba", "output": "NO" }, { "input": "5\nabaaa\nbbbbb\nbbabb\nbabab\nabbba", "output": "NO" }, { "input": "5\nxoxox\noxoxo\nooxoo\noxoxo\nxooox", "output": "NO" }, { "input": "3\nxox\noxx\nxxx", "output": "NO" }, { "input": "5\nxoooo\noxooo\nooxoo\noooxo\noooox", "output": "NO" }, { "input": "5\nxoooo\noxoxx\nooxoo\noxoxo\noxoox", "output": "NO" }, { "input": "3\naaa\nbab\naba", "output": "NO" } ]
1,662,734,482
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
31
0
n = int(input()) dig = False others = False chr_d = '' char_other = '' st= input() if (st[0]==st[n-1]): chr_d = st[0] else: dig = True if(n>3): for i in set(range(n))-set((1,n-1)): if(st[i]==st[i+2]): char_other = st[i] else: others = True break else: char_other = st[1] j = 0 # print(others , dig) for i in range(1,n): st= input() if(st[i]!=chr_d or st[n-1-i]!= chr_d): dig = True #if(n>3): for k in set(range(n))-set((i,n-1-i)): if(st[k]!=char_other): others = True if(others or dig): print('NO') else: print('YES')
Title: Valera and X Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera is a little boy. Yesterday he got a huge Math hometask at school, so Valera didn't have enough time to properly learn the English alphabet for his English lesson. Unfortunately, the English teacher decided to have a test on alphabet today. At the test Valera got a square piece of squared paper. The length of the side equals *n* squares (*n* is an odd number) and each unit square contains some small letter of the English alphabet. Valera needs to know if the letters written on the square piece of paper form letter "X". Valera's teacher thinks that the letters on the piece of paper form an "X", if: - on both diagonals of the square paper all letters are the same; - all other squares of the paper (they are not on the diagonals) contain the same letter that is different from the letters on the diagonals. Help Valera, write the program that completes the described task for him. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=&lt;<=300; *n* is odd). Each of the next *n* lines contains *n* small English letters — the description of Valera's paper. Output Specification: Print string "YES", if the letters on the paper form letter "X". Otherwise, print string "NO". Print the strings without quotes. Demo Input: ['5\nxooox\noxoxo\nsoxoo\noxoxo\nxooox\n', '3\nwsw\nsws\nwsw\n', '3\nxpx\npxp\nxpe\n'] Demo Output: ['NO\n', 'YES\n', 'NO\n'] Note: none
```python n = int(input()) dig = False others = False chr_d = '' char_other = '' st= input() if (st[0]==st[n-1]): chr_d = st[0] else: dig = True if(n>3): for i in set(range(n))-set((1,n-1)): if(st[i]==st[i+2]): char_other = st[i] else: others = True break else: char_other = st[1] j = 0 # print(others , dig) for i in range(1,n): st= input() if(st[i]!=chr_d or st[n-1-i]!= chr_d): dig = True #if(n>3): for k in set(range(n))-set((i,n-1-i)): if(st[k]!=char_other): others = True if(others or dig): print('NO') else: print('YES') ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,685,529,552
2,147,483,647
Python 3
OK
TESTS
20
46
0
def abbreviate_words(words): """ Abbreviates long words in a list of words. Args: words: A list of words. Returns: A list of abbreviated words. """ # Create a dictionary that maps from a word to its abbreviation. abbreviations = {} for word in words: if len(word) > 10: abbreviations[word] = word[0] + str(len(word) - 2) + word[-1] # Iterate over the words and replace any long words with their abbreviations. abbreviated_words = [] for word in words: if word in abbreviations: abbreviated_words.append(abbreviations[word]) else: abbreviated_words.append(word) return abbreviated_words if __name__ == "__main__": # Read the number of words from the input. n = int(input()) # Read the words from the input. words = [] for _ in range(n): words.append(input()) # Abbreviate the long words in the list of words. abbreviated_words = abbreviate_words(words) #Print the abbreviated words. for word in abbreviated_words: print(word)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python def abbreviate_words(words): """ Abbreviates long words in a list of words. Args: words: A list of words. Returns: A list of abbreviated words. """ # Create a dictionary that maps from a word to its abbreviation. abbreviations = {} for word in words: if len(word) > 10: abbreviations[word] = word[0] + str(len(word) - 2) + word[-1] # Iterate over the words and replace any long words with their abbreviations. abbreviated_words = [] for word in words: if word in abbreviations: abbreviated_words.append(abbreviations[word]) else: abbreviated_words.append(word) return abbreviated_words if __name__ == "__main__": # Read the number of words from the input. n = int(input()) # Read the words from the input. words = [] for _ in range(n): words.append(input()) # Abbreviate the long words in the list of words. abbreviated_words = abbreviate_words(words) #Print the abbreviated words. for word in abbreviated_words: print(word) ```
3.977
599
A
Patrick and Shopping
PROGRAMMING
800
[ "implementation" ]
null
null
Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.
The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths. - *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops.
Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.
[ "10 20 30\n", "1 1 5\n" ]
[ "60\n", "4\n" ]
The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
500
[ { "input": "10 20 30", "output": "60" }, { "input": "1 1 5", "output": "4" }, { "input": "100 33 34", "output": "134" }, { "input": "777 777 777", "output": "2331" }, { "input": "2 2 8", "output": "8" }, { "input": "12 34 56", "output": "92" }, { "input": "789 101112 131415", "output": "203802" }, { "input": "27485716 99999999 35182", "output": "55041796" }, { "input": "1 293548 5", "output": "12" }, { "input": "12059 259855 5874875", "output": "543828" }, { "input": "46981 105809 585858", "output": "305580" }, { "input": "9889 1221 2442", "output": "7326" }, { "input": "100500 200600 300700", "output": "601800" }, { "input": "318476 318476 318476", "output": "955428" }, { "input": "23985 3353 75633", "output": "54676" }, { "input": "120 1298 2222", "output": "2836" }, { "input": "98437 23487 666672", "output": "243848" }, { "input": "100000000 100000000 100000000", "output": "300000000" }, { "input": "2 5 2", "output": "8" }, { "input": "1 1000 1", "output": "4" }, { "input": "1 100000000 1", "output": "4" } ]
1,690,010,723
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
46
0
d1,d2,d3=map(int,input().split()) print(min(d1+d3+d2,2*d1+2*d2))
Title: Patrick and Shopping Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled. Input Specification: The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths. - *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops. Output Specification: Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house. Demo Input: ['10 20 30\n', '1 1 5\n'] Demo Output: ['60\n', '4\n'] Note: The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
```python d1,d2,d3=map(int,input().split()) print(min(d1+d3+d2,2*d1+2*d2)) ```
0
366
A
Dima and Guards
PROGRAMMING
1,100
[ "implementation" ]
null
null
Nothing has changed since the last round. Dima and Inna still love each other and want to be together. They've made a deal with Seryozha and now they need to make a deal with the dorm guards... There are four guardposts in Dima's dorm. Each post contains two guards (in Russia they are usually elderly women). You can bribe a guard by a chocolate bar or a box of juice. For each guard you know the minimum price of the chocolate bar she can accept as a gift and the minimum price of the box of juice she can accept as a gift. If a chocolate bar for some guard costs less than the minimum chocolate bar price for this guard is, or if a box of juice for some guard costs less than the minimum box of juice price for this guard is, then the guard doesn't accept such a gift. In order to pass through a guardpost, one needs to bribe both guards. The shop has an unlimited amount of juice and chocolate of any price starting with 1. Dima wants to choose some guardpost, buy one gift for each guard from the guardpost and spend exactly *n* rubles on it. Help him choose a post through which he can safely sneak Inna or otherwise say that this is impossible. Mind you, Inna would be very sorry to hear that!
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=105) — the money Dima wants to spend. Then follow four lines describing the guardposts. Each line contains four integers *a*,<=*b*,<=*c*,<=*d* (1<=≤<=*a*,<=*b*,<=*c*,<=*d*<=≤<=105) — the minimum price of the chocolate and the minimum price of the juice for the first guard and the minimum price of the chocolate and the minimum price of the juice for the second guard, correspondingly.
In a single line of the output print three space-separated integers: the number of the guardpost, the cost of the first present and the cost of the second present. If there is no guardpost Dima can sneak Inna through at such conditions, print -1 in a single line. The guardposts are numbered from 1 to 4 according to the order given in the input. If there are multiple solutions, you can print any of them.
[ "10\n5 6 5 6\n6 6 7 7\n5 8 6 6\n9 9 9 9\n", "10\n6 6 6 6\n7 7 7 7\n4 4 4 4\n8 8 8 8\n", "5\n3 3 3 3\n3 3 3 3\n3 3 3 3\n3 3 3 3\n" ]
[ "1 5 5\n", "3 4 6\n", "-1\n" ]
Explanation of the first example. The only way to spend 10 rubles to buy the gifts that won't be less than the minimum prices is to buy two 5 ruble chocolates to both guards from the first guardpost. Explanation of the second example. Dima needs 12 rubles for the first guardpost, 14 for the second one, 16 for the fourth one. So the only guardpost we can sneak through is the third one. So, Dima can buy 4 ruble chocolate for the first guard and 6 ruble juice of the second guard.
500
[ { "input": "10\n5 6 5 6\n6 6 7 7\n5 8 6 6\n9 9 9 9", "output": "1 5 5" }, { "input": "10\n6 6 6 6\n7 7 7 7\n4 4 4 4\n8 8 8 8", "output": "3 4 6" }, { "input": "5\n3 3 3 3\n3 3 3 3\n3 3 3 3\n3 3 3 3", "output": "-1" }, { "input": "100000\n100000 100000 100000 100000\n100000 100000 100000 100000\n100000 100000 100000 100000\n100000 100000 100000 100000", "output": "-1" }, { "input": "5\n3 2 3 3\n3 2 3 3\n4 4 4 4\n4 4 1 1", "output": "1 2 3" }, { "input": "100\n1 1 2 2\n100 100 2 2\n99 99 2 2\n2 2 99 99", "output": "1 1 99" }, { "input": "1000\n500 500 550 550\n450 450 500 500\n999 1 1 999\n1 999 1 999", "output": "3 1 999" }, { "input": "50\n30 30 30 30\n20 20 40 40\n10 10 50 50\n1 1 50 55", "output": "-1" }, { "input": "10000\n1000 7000 8000 6000\n8000 8000 6000 6000\n5000 6000 6000 6000\n10000 10000 2 3", "output": "1 1000 9000" }, { "input": "40000\n25000 25000 30000 30000\n1 1 1 1\n30000 20000 30000 30000\n40000 40000 40000 50000", "output": "2 1 39999" }, { "input": "4\n2 1 4 4\n4 4 1 1\n3 1 2 2\n4 4 4 4", "output": "3 1 3" }, { "input": "50\n5 5 5 5\n5 5 5 5\n5 5 5 5\n5 5 5 5", "output": "1 5 45" }, { "input": "10\n7 2 3 20\n20 20 20 20\n20 20 20 20\n7 2 3 20", "output": "1 2 8" }, { "input": "10\n8 2 7 8\n20 20 20 20\n20 20 20 20\n8 2 7 8", "output": "1 2 8" }, { "input": "100000\n50000 50000 50000 50000\n50000 50000 50000 50000\n50000 50000 50000 50000\n50000 50000 50000 50000", "output": "1 50000 50000" }, { "input": "100000\n25000 75000 80000 80000\n99999 99999 2 2\n99999 2 99999 99999\n2 99999 99999 99999", "output": "-1" }, { "input": "1231\n123 132 85 78\n123 5743 139 27\n4598 347 12438 12\n34589 2349 123 123", "output": "2 123 1108" }, { "input": "6\n2 6 2 9\n4 8 5 1\n5 6 4 3\n1 2 5 1", "output": "4 1 5" }, { "input": "8\n5 5 3 3\n1 1 8 8\n2 8 8 7\n10 7 2 2", "output": "1 5 3" }, { "input": "100000\n25000 50000 50001 75001\n25000 50000 50001 75001\n25000 50000 50001 75001\n25000 50000 50001 75001", "output": "1 25000 75000" }, { "input": "100000\n25000 50000 75001 50001\n25000 50000 75001 50001\n25000 50000 75001 50001\n25000 50000 75001 50001", "output": "1 25000 75000" }, { "input": "5\n3 7 6 2\n100 100 100 100\n100 100 100 100\n100 100 100 100", "output": "1 3 2" }, { "input": "10\n1 100 100 1\n1 100 100 1\n1 100 100 1\n1 100 100 1", "output": "1 1 9" }, { "input": "10\n7 5 5 7\n10 10 10 10\n10 10 10 10\n10 10 10 10", "output": "1 5 5" }, { "input": "10\n9 9 9 9\n9 9 9 9\n9 9 9 9\n1 1 1 1", "output": "4 1 9" }, { "input": "10\n8 6 5 3\n8 6 5 3\n8 6 5 3\n8 6 5 3", "output": "1 6 4" }, { "input": "10\n9 9 9 9\n9 9 9 9\n9 9 9 9\n9 4 9 6", "output": "4 4 6" }, { "input": "10\n6 6 4 4\n6 6 4 4\n6 6 4 4\n6 6 4 4", "output": "1 6 4" }, { "input": "100000\n99000 100000 999 100000\n100000 100000 100000 100000\n100000 100000 100000 100000\n100000 100000 100000 100000", "output": "1 99000 1000" } ]
1,675,609,654
2,147,483,647
Python 3
OK
TESTS
29
46
0
# LUOGU_RID: 101541280 (n, ), *a = [[*(map(int, s.split()))] for s in open(0)] for i, (a, b, c, d) in enumerate(a): if min(a, b) + min(c, d) <= n: exit(print(i + 1, min(a, b), n - min(a, b))) print(-1)
Title: Dima and Guards Time Limit: None seconds Memory Limit: None megabytes Problem Description: Nothing has changed since the last round. Dima and Inna still love each other and want to be together. They've made a deal with Seryozha and now they need to make a deal with the dorm guards... There are four guardposts in Dima's dorm. Each post contains two guards (in Russia they are usually elderly women). You can bribe a guard by a chocolate bar or a box of juice. For each guard you know the minimum price of the chocolate bar she can accept as a gift and the minimum price of the box of juice she can accept as a gift. If a chocolate bar for some guard costs less than the minimum chocolate bar price for this guard is, or if a box of juice for some guard costs less than the minimum box of juice price for this guard is, then the guard doesn't accept such a gift. In order to pass through a guardpost, one needs to bribe both guards. The shop has an unlimited amount of juice and chocolate of any price starting with 1. Dima wants to choose some guardpost, buy one gift for each guard from the guardpost and spend exactly *n* rubles on it. Help him choose a post through which he can safely sneak Inna or otherwise say that this is impossible. Mind you, Inna would be very sorry to hear that! Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=105) — the money Dima wants to spend. Then follow four lines describing the guardposts. Each line contains four integers *a*,<=*b*,<=*c*,<=*d* (1<=≤<=*a*,<=*b*,<=*c*,<=*d*<=≤<=105) — the minimum price of the chocolate and the minimum price of the juice for the first guard and the minimum price of the chocolate and the minimum price of the juice for the second guard, correspondingly. Output Specification: In a single line of the output print three space-separated integers: the number of the guardpost, the cost of the first present and the cost of the second present. If there is no guardpost Dima can sneak Inna through at such conditions, print -1 in a single line. The guardposts are numbered from 1 to 4 according to the order given in the input. If there are multiple solutions, you can print any of them. Demo Input: ['10\n5 6 5 6\n6 6 7 7\n5 8 6 6\n9 9 9 9\n', '10\n6 6 6 6\n7 7 7 7\n4 4 4 4\n8 8 8 8\n', '5\n3 3 3 3\n3 3 3 3\n3 3 3 3\n3 3 3 3\n'] Demo Output: ['1 5 5\n', '3 4 6\n', '-1\n'] Note: Explanation of the first example. The only way to spend 10 rubles to buy the gifts that won't be less than the minimum prices is to buy two 5 ruble chocolates to both guards from the first guardpost. Explanation of the second example. Dima needs 12 rubles for the first guardpost, 14 for the second one, 16 for the fourth one. So the only guardpost we can sneak through is the third one. So, Dima can buy 4 ruble chocolate for the first guard and 6 ruble juice of the second guard.
```python # LUOGU_RID: 101541280 (n, ), *a = [[*(map(int, s.split()))] for s in open(0)] for i, (a, b, c, d) in enumerate(a): if min(a, b) + min(c, d) <= n: exit(print(i + 1, min(a, b), n - min(a, b))) print(-1) ```
3
870
A
Search for Pretty Integers
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
You are given two lists of non-zero digits. Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively. The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list. The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list.
Print the smallest pretty integer.
[ "2 3\n4 2\n5 7 6\n", "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n" ]
[ "25\n", "1\n" ]
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list. In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
500
[ { "input": "2 3\n4 2\n5 7 6", "output": "25" }, { "input": "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1", "output": "1" }, { "input": "1 1\n9\n1", "output": "19" }, { "input": "9 1\n5 4 2 3 6 1 7 9 8\n9", "output": "9" }, { "input": "5 3\n7 2 5 8 6\n3 1 9", "output": "12" }, { "input": "4 5\n5 2 6 4\n8 9 1 3 7", "output": "12" }, { "input": "5 9\n4 2 1 6 7\n2 3 4 5 6 7 8 9 1", "output": "1" }, { "input": "9 9\n5 4 3 2 1 6 7 8 9\n3 2 1 5 4 7 8 9 6", "output": "1" }, { "input": "9 5\n2 3 4 5 6 7 8 9 1\n4 2 1 6 7", "output": "1" }, { "input": "9 9\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "9 9\n1 2 3 4 5 6 7 8 9\n9 8 7 6 5 4 3 2 1", "output": "1" }, { "input": "9 9\n9 8 7 6 5 4 3 2 1\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "9 9\n9 8 7 6 5 4 3 2 1\n9 8 7 6 5 4 3 2 1", "output": "1" }, { "input": "1 1\n8\n9", "output": "89" }, { "input": "1 1\n9\n8", "output": "89" }, { "input": "1 1\n1\n2", "output": "12" }, { "input": "1 1\n2\n1", "output": "12" }, { "input": "1 1\n9\n9", "output": "9" }, { "input": "1 1\n1\n1", "output": "1" }, { "input": "4 5\n3 2 4 5\n1 6 5 9 8", "output": "5" }, { "input": "3 2\n4 5 6\n1 5", "output": "5" }, { "input": "5 4\n1 3 5 6 7\n2 4 3 9", "output": "3" }, { "input": "5 5\n1 3 5 7 9\n2 4 6 8 9", "output": "9" }, { "input": "2 2\n1 8\n2 8", "output": "8" }, { "input": "5 5\n5 6 7 8 9\n1 2 3 4 5", "output": "5" }, { "input": "5 5\n1 2 3 4 5\n1 2 3 4 5", "output": "1" }, { "input": "5 5\n1 2 3 4 5\n2 3 4 5 6", "output": "2" }, { "input": "2 2\n1 5\n2 5", "output": "5" }, { "input": "4 4\n1 3 5 8\n2 4 6 8", "output": "8" }, { "input": "3 3\n1 5 3\n2 5 7", "output": "5" }, { "input": "3 3\n3 6 8\n2 6 9", "output": "6" }, { "input": "2 2\n1 4\n2 4", "output": "4" }, { "input": "5 3\n3 4 5 6 7\n1 5 9", "output": "5" }, { "input": "4 4\n1 2 3 4\n2 5 6 7", "output": "2" }, { "input": "5 5\n1 2 3 4 5\n9 2 1 7 5", "output": "1" }, { "input": "2 2\n1 3\n2 3", "output": "3" }, { "input": "3 3\n3 2 1\n3 2 1", "output": "1" }, { "input": "3 3\n1 3 5\n2 3 6", "output": "3" }, { "input": "3 3\n5 6 7\n5 6 7", "output": "5" }, { "input": "1 2\n5\n2 5", "output": "5" }, { "input": "3 3\n2 4 9\n7 8 9", "output": "9" }, { "input": "3 3\n1 2 4\n3 4 5", "output": "4" }, { "input": "3 2\n1 4 9\n2 4", "output": "4" }, { "input": "3 3\n3 5 6\n1 5 9", "output": "5" }, { "input": "3 2\n1 2 4\n3 4", "output": "4" }, { "input": "2 4\n8 9\n1 2 3 9", "output": "9" }, { "input": "1 2\n9\n8 9", "output": "9" }, { "input": "3 2\n1 2 4\n4 2", "output": "2" }, { "input": "2 3\n4 5\n1 3 5", "output": "5" }, { "input": "3 2\n1 2 3\n2 3", "output": "2" }, { "input": "4 3\n1 3 5 9\n2 8 9", "output": "9" }, { "input": "2 2\n1 9\n9 2", "output": "9" } ]
1,658,240,926
166
PyPy 3-64
WRONG_ANSWER
TESTS
1
31
0
n, m = map(int, input().split()) a = list(map(int, input().split())) b = list(map(int, input().split())) a_ = min(a) b_ = min(b) print(min(10*a_ + b_, 10*b_ + a_))
Title: Search for Pretty Integers Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two lists of non-zero digits. Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer? Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively. The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list. The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list. Output Specification: Print the smallest pretty integer. Demo Input: ['2 3\n4 2\n5 7 6\n', '8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n'] Demo Output: ['25\n', '1\n'] Note: In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list. In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
```python n, m = map(int, input().split()) a = list(map(int, input().split())) b = list(map(int, input().split())) a_ = min(a) b_ = min(b) print(min(10*a_ + b_, 10*b_ + a_)) ```
0
984
A
Game
PROGRAMMING
800
[ "sortings" ]
null
null
Two players play a game. Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns. The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it. You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves.
The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$).
Print one number that will be left on the board.
[ "3\n2 1 3\n", "3\n2 2 2\n" ]
[ "2", "2" ]
In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board. In the second sample, $2$ is left on the board regardless of the actions of the players.
500
[ { "input": "3\n2 1 3", "output": "2" }, { "input": "3\n2 2 2", "output": "2" }, { "input": "9\n44 53 51 80 5 27 74 79 94", "output": "53" }, { "input": "10\n38 82 23 37 96 4 81 60 67 86", "output": "60" }, { "input": "10\n58 26 77 15 53 81 68 48 22 65", "output": "53" }, { "input": "1\n124", "output": "124" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n1 1 1000", "output": "1" }, { "input": "2\n322 322", "output": "322" }, { "input": "3\n9 92 12", "output": "12" }, { "input": "3\n1 2 2", "output": "2" } ]
1,567,271,569
2,147,483,647
Python 3
OK
TESTS
35
124
0
n = int(input()) a = list(map(int, input().split())) t = 1 k = len(a) while t < k: if t%2 != 0: a.remove(max(a)) elif t%2 == 0: a.remove(min(a)) t = t+1 print(a[0])
Title: Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players play a game. Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns. The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it. You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves. Input Specification: The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$). Output Specification: Print one number that will be left on the board. Demo Input: ['3\n2 1 3\n', '3\n2 2 2\n'] Demo Output: ['2', '2'] Note: In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board. In the second sample, $2$ is left on the board regardless of the actions of the players.
```python n = int(input()) a = list(map(int, input().split())) t = 1 k = len(a) while t < k: if t%2 != 0: a.remove(max(a)) elif t%2 == 0: a.remove(min(a)) t = t+1 print(a[0]) ```
3
253
A
Boys and Girls
PROGRAMMING
1,100
[ "greedy" ]
null
null
There are *n* boys and *m* girls studying in the class. They should stand in a line so that boys and girls alternated there as much as possible. Let's assume that positions in the line are indexed from left to right by numbers from 1 to *n*<=+<=*m*. Then the number of integers *i* (1<=≤<=*i*<=&lt;<=*n*<=+<=*m*) such that positions with indexes *i* and *i*<=+<=1 contain children of different genders (position *i* has a girl and position *i*<=+<=1 has a boy or vice versa) must be as large as possible. Help the children and tell them how to form the line.
The single line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), separated by a space.
Print a line of *n*<=+<=*m* characters. Print on the *i*-th position of the line character "B", if the *i*-th position of your arrangement should have a boy and "G", if it should have a girl. Of course, the number of characters "B" should equal *n* and the number of characters "G" should equal *m*. If there are multiple optimal solutions, print any of them.
[ "3 3\n", "4 2\n" ]
[ "GBGBGB\n", "BGBGBB\n" ]
In the first sample another possible answer is BGBGBG. In the second sample answer BBGBGB is also optimal.
500
[ { "input": "3 3", "output": "GBGBGB" }, { "input": "4 2", "output": "BGBGBB" }, { "input": "5 5", "output": "GBGBGBGBGB" }, { "input": "6 4", "output": "BGBGBGBGBB" }, { "input": "100 1", "output": "BGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB" }, { "input": "76 48", "output": "BGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBB" }, { "input": "100 90", "output": "BGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBBBBBBBBBB" }, { "input": "90 100", "output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGGGGGGGGGG" }, { "input": "1 98", "output": "GBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG" }, { "input": "1 100", "output": "GBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG" }, { "input": "56 98", "output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG" }, { "input": "89 89", "output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGB" }, { "input": "18 94", "output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG" }, { "input": "84 27", "output": "BGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB" }, { "input": "1 1", "output": "GB" }, { "input": "1 2", "output": "GBG" }, { "input": "2 1", "output": "BGB" }, { "input": "1 34", "output": "GBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG" }, { "input": "46 2", "output": "BGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB" }, { "input": "99 3", "output": "BGBGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB" }, { "input": "10 100", "output": "GBGBGBGBGBGBGBGBGBGBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG" }, { "input": "100 100", "output": "GBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGBGB" }, { "input": "1 4", "output": "GBGGG" } ]
1,620,349,997
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
122
6,656,000
# e - 1 line=input().split() boys=int(line[0]) girls=int(line[1]) length=min(girls,boys) for i in range(length): print("BG",end="") for i in range(boys-length): print("B",end="") for i in range(girls-length): print("G",end="")
Title: Boys and Girls Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* boys and *m* girls studying in the class. They should stand in a line so that boys and girls alternated there as much as possible. Let's assume that positions in the line are indexed from left to right by numbers from 1 to *n*<=+<=*m*. Then the number of integers *i* (1<=≤<=*i*<=&lt;<=*n*<=+<=*m*) such that positions with indexes *i* and *i*<=+<=1 contain children of different genders (position *i* has a girl and position *i*<=+<=1 has a boy or vice versa) must be as large as possible. Help the children and tell them how to form the line. Input Specification: The single line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100), separated by a space. Output Specification: Print a line of *n*<=+<=*m* characters. Print on the *i*-th position of the line character "B", if the *i*-th position of your arrangement should have a boy and "G", if it should have a girl. Of course, the number of characters "B" should equal *n* and the number of characters "G" should equal *m*. If there are multiple optimal solutions, print any of them. Demo Input: ['3 3\n', '4 2\n'] Demo Output: ['GBGBGB\n', 'BGBGBB\n'] Note: In the first sample another possible answer is BGBGBG. In the second sample answer BBGBGB is also optimal.
```python # e - 1 line=input().split() boys=int(line[0]) girls=int(line[1]) length=min(girls,boys) for i in range(length): print("BG",end="") for i in range(boys-length): print("B",end="") for i in range(girls-length): print("G",end="") ```
-1
298
A
Snow Footprints
PROGRAMMING
1,300
[ "greedy", "implementation" ]
null
null
There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints.
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists.
Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them.
[ "9\n..RRLL...\n", "11\n.RRRLLLLL..\n" ]
[ "3 4\n", "7 5\n" ]
The first test sample is the one in the picture.
500
[ { "input": "11\n.RRRLLLLL..", "output": "7 5" }, { "input": "4\n.RL.", "output": "3 2" }, { "input": "3\n.L.", "output": "2 1" }, { "input": "3\n.R.", "output": "2 3" } ]
1,675,777,957
2,147,483,647
Python 3
OK
TESTS
23
92
0
n = int(input()) steps = input() for i in range(n): if steps[i] != "." : start = steps[i] key = i break for x in range(key,n): if steps[x] == "L": end = x break elif steps[x] == "." : end = x+1 break print(key+1,end)
Title: Snow Footprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints. Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists. Output Specification: Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them. Demo Input: ['9\n..RRLL...\n', '11\n.RRRLLLLL..\n'] Demo Output: ['3 4\n', '7 5\n'] Note: The first test sample is the one in the picture.
```python n = int(input()) steps = input() for i in range(n): if steps[i] != "." : start = steps[i] key = i break for x in range(key,n): if steps[x] == "L": end = x break elif steps[x] == "." : end = x+1 break print(key+1,end) ```
3
378
A
Playing with Dice
PROGRAMMING
800
[ "brute force" ]
null
null
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
[ "2 5\n", "2 4\n" ]
[ "3 0 3\n", "2 1 3\n" ]
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
500
[ { "input": "2 5", "output": "3 0 3" }, { "input": "2 4", "output": "2 1 3" }, { "input": "5 3", "output": "2 1 3" }, { "input": "1 6", "output": "3 0 3" }, { "input": "5 1", "output": "3 1 2" }, { "input": "6 3", "output": "2 0 4" }, { "input": "2 3", "output": "2 0 4" }, { "input": "5 6", "output": "5 0 1" }, { "input": "4 4", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" }, { "input": "6 4", "output": "1 1 4" }, { "input": "1 4", "output": "2 0 4" }, { "input": "5 5", "output": "0 6 0" }, { "input": "4 5", "output": "4 0 2" }, { "input": "4 3", "output": "3 0 3" }, { "input": "1 5", "output": "2 1 3" }, { "input": "6 5", "output": "1 0 5" }, { "input": "2 2", "output": "0 6 0" }, { "input": "1 3", "output": "1 1 4" }, { "input": "3 6", "output": "4 0 2" }, { "input": "3 1", "output": "4 1 1" }, { "input": "3 2", "output": "4 0 2" }, { "input": "3 5", "output": "3 1 2" }, { "input": "3 3", "output": "0 6 0" }, { "input": "6 2", "output": "2 1 3" }, { "input": "4 1", "output": "4 0 2" }, { "input": "5 2", "output": "3 0 3" }, { "input": "4 2", "output": "3 1 2" }, { "input": "2 1", "output": "5 0 1" }, { "input": "6 1", "output": "3 0 3" }, { "input": "4 6", "output": "4 1 1" }, { "input": "2 6", "output": "3 1 2" }, { "input": "3 4", "output": "3 0 3" }, { "input": "1 2", "output": "1 0 5" }, { "input": "6 6", "output": "0 6 0" }, { "input": "5 4", "output": "2 0 4" }, { "input": "3 3", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" } ]
1,689,625,004
2,147,483,647
PyPy 3-64
OK
TESTS
38
62
0
n1, n2 = map(int, input().split()) n1w = 0 d = 0 n2w = 0 for n in range(6): i = n+1 if abs(i - n1) < abs(i - n2): n1w += 1 elif abs(i - n2) < abs(i - n1): n2w += 1 else: d += 1 print(n1w, d, n2w)
Title: Playing with Dice Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins? Input Specification: The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly. Output Specification: Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly. Demo Input: ['2 5\n', '2 4\n'] Demo Output: ['3 0 3\n', '2 1 3\n'] Note: The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
```python n1, n2 = map(int, input().split()) n1w = 0 d = 0 n2w = 0 for n in range(6): i = n+1 if abs(i - n1) < abs(i - n2): n1w += 1 elif abs(i - n2) < abs(i - n1): n2w += 1 else: d += 1 print(n1w, d, n2w) ```
3
1,005
B
Delete from the Left
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
You are given two strings $s$ and $t$. In a single move, you can choose any of two strings and delete the first (that is, the leftmost) character. After a move, the length of the string decreases by $1$. You can't choose a string if it is empty. For example: - by applying a move to the string "where", the result is the string "here", - by applying a move to the string "a", the result is an empty string "". You are required to make two given strings equal using the fewest number of moves. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the initial strings. Write a program that finds the minimum number of moves to make two given strings $s$ and $t$ equal.
The first line of the input contains $s$. In the second line of the input contains $t$. Both strings consist only of lowercase Latin letters. The number of letters in each string is between 1 and $2\cdot10^5$, inclusive.
Output the fewest number of moves required. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the given strings.
[ "test\nwest\n", "codeforces\nyes\n", "test\nyes\n", "b\nab\n" ]
[ "2\n", "9\n", "7\n", "1\n" ]
In the first example, you should apply the move once to the first string and apply the move once to the second string. As a result, both strings will be equal to "est". In the second example, the move should be applied to the string "codeforces" $8$ times. As a result, the string becomes "codeforces" $\to$ "es". The move should be applied to the string "yes" once. The result is the same string "yes" $\to$ "es". In the third example, you can make the strings equal only by completely deleting them. That is, in the end, both strings will be empty. In the fourth example, the first character of the second string should be deleted.
0
[ { "input": "test\nwest", "output": "2" }, { "input": "codeforces\nyes", "output": "9" }, { "input": "test\nyes", "output": "7" }, { "input": "b\nab", "output": "1" }, { "input": "z\nz", "output": "0" }, { "input": "abacabadabacaba\nabacabadacaba", "output": "18" }, { "input": "z\na", "output": "2" }, { "input": "ama\nsama", "output": "1" }, { "input": "aaabc\nbc", "output": "3" }, { "input": "lxuyspmieeuyxluv\ndfwxqvavzxctblaa", "output": "32" }, { "input": "ahmedaly\naly", "output": "5" }, { "input": "aa\na", "output": "1" }, { "input": "aa\nba", "output": "2" }, { "input": "cccba\nba", "output": "3" }, { "input": "a\nab", "output": "3" }, { "input": "dadc\ndddc", "output": "4" }, { "input": "aacaaab\nb", "output": "6" }, { "input": "dddc\ncdcde", "output": "9" }, { "input": "bbdab\ndab", "output": "2" }, { "input": "a\naa", "output": "1" }, { "input": "aa\nab", "output": "4" }, { "input": "codeforces\nces", "output": "7" } ]
1,677,121,083
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
5
1,000
22,732,800
import re a=input();a1=len(a) b=input();b1=len(b) j = 0 if len(a) > len(b): while re.search(b,a) is None: b=b[j:] j+=1 y = re.search(b,a) try: print(len(a) - len(b)+ (b1-len(b)) if y.end()==len(a) else a1+b1) except: print(a1-b1) else: while re.search(a,b) is None: a=a[j:] j+=1 y = re.search(a,b) try: print(len(b) - len(a)+ (a1-len(a)) if y.end()==len(b) else a1+b1) except: print(b1-a1)
Title: Delete from the Left Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two strings $s$ and $t$. In a single move, you can choose any of two strings and delete the first (that is, the leftmost) character. After a move, the length of the string decreases by $1$. You can't choose a string if it is empty. For example: - by applying a move to the string "where", the result is the string "here", - by applying a move to the string "a", the result is an empty string "". You are required to make two given strings equal using the fewest number of moves. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the initial strings. Write a program that finds the minimum number of moves to make two given strings $s$ and $t$ equal. Input Specification: The first line of the input contains $s$. In the second line of the input contains $t$. Both strings consist only of lowercase Latin letters. The number of letters in each string is between 1 and $2\cdot10^5$, inclusive. Output Specification: Output the fewest number of moves required. It is possible that, in the end, both strings will be equal to the empty string, and so, are equal to each other. In this case, the answer is obviously the sum of the lengths of the given strings. Demo Input: ['test\nwest\n', 'codeforces\nyes\n', 'test\nyes\n', 'b\nab\n'] Demo Output: ['2\n', '9\n', '7\n', '1\n'] Note: In the first example, you should apply the move once to the first string and apply the move once to the second string. As a result, both strings will be equal to "est". In the second example, the move should be applied to the string "codeforces" $8$ times. As a result, the string becomes "codeforces" $\to$ "es". The move should be applied to the string "yes" once. The result is the same string "yes" $\to$ "es". In the third example, you can make the strings equal only by completely deleting them. That is, in the end, both strings will be empty. In the fourth example, the first character of the second string should be deleted.
```python import re a=input();a1=len(a) b=input();b1=len(b) j = 0 if len(a) > len(b): while re.search(b,a) is None: b=b[j:] j+=1 y = re.search(b,a) try: print(len(a) - len(b)+ (b1-len(b)) if y.end()==len(a) else a1+b1) except: print(a1-b1) else: while re.search(a,b) is None: a=a[j:] j+=1 y = re.search(a,b) try: print(len(b) - len(a)+ (a1-len(a)) if y.end()==len(b) else a1+b1) except: print(b1-a1) ```
0
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,621,960,030
2,147,483,647
PyPy 3
OK
TESTS
35
184
0
a,b=map(int,input().split()) r=int(a*b) print(int(r/2))
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python a,b=map(int,input().split()) r=int(a*b) print(int(r/2)) ```
3.954
735
C
Tennis Championship
PROGRAMMING
1,600
[ "combinatorics", "constructive algorithms", "greedy", "math" ]
null
null
Famous Brazil city Rio de Janeiro holds a tennis tournament and Ostap Bender doesn't want to miss this event. There will be *n* players participating, and the tournament will follow knockout rules from the very first game. That means, that if someone loses a game he leaves the tournament immediately. Organizers are still arranging tournament grid (i.e. the order games will happen and who is going to play with whom) but they have already fixed one rule: two players can play against each other only if the number of games one of them has already played differs by no more than one from the number of games the other one has already played. Of course, both players had to win all their games in order to continue participating in the tournament. Tournament hasn't started yet so the audience is a bit bored. Ostap decided to find out what is the maximum number of games the winner of the tournament can take part in (assuming the rule above is used). However, it is unlikely he can deal with this problem without your help.
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=1018) — the number of players to participate in the tournament.
Print the maximum number of games in which the winner of the tournament can take part.
[ "2\n", "3\n", "4\n", "10\n" ]
[ "1\n", "2\n", "2\n", "4\n" ]
In all samples we consider that player number 1 is the winner. In the first sample, there would be only one game so the answer is 1. In the second sample, player 1 can consequently beat players 2 and 3. In the third sample, player 1 can't play with each other player as after he plays with players 2 and 3 he can't play against player 4, as he has 0 games played, while player 1 already played 2. Thus, the answer is 2 and to achieve we make pairs (1, 2) and (3, 4) and then clash the winners.
1,750
[ { "input": "2", "output": "1" }, { "input": "3", "output": "2" }, { "input": "4", "output": "2" }, { "input": "10", "output": "4" }, { "input": "1000", "output": "14" }, { "input": "2500", "output": "15" }, { "input": "690000", "output": "27" }, { "input": "3000000000", "output": "45" }, { "input": "123456789123456789", "output": "81" }, { "input": "5", "output": "3" }, { "input": "143", "output": "9" }, { "input": "144", "output": "10" }, { "input": "145", "output": "10" }, { "input": "232", "output": "10" }, { "input": "233", "output": "11" }, { "input": "234", "output": "11" }, { "input": "679891637638612257", "output": "84" }, { "input": "679891637638612258", "output": "85" }, { "input": "679891637638612259", "output": "85" }, { "input": "1000000000000000000", "output": "85" }, { "input": "10235439547", "output": "47" }, { "input": "1240723548", "output": "43" }, { "input": "92353046212453", "output": "66" }, { "input": "192403205846532", "output": "68" }, { "input": "13925230525389", "output": "62" }, { "input": "12048230592523", "output": "62" }, { "input": "19204385325853", "output": "63" }, { "input": "902353283921", "output": "56" }, { "input": "793056859214355", "output": "70" }, { "input": "982045466234565", "output": "71" }, { "input": "126743950353465", "output": "67" }, { "input": "12405430465", "output": "47" }, { "input": "10238439257768", "output": "61" }, { "input": "1728493055346", "output": "58" }, { "input": "927553829046", "output": "56" }, { "input": "62735129403", "output": "51" }, { "input": "71624823950223", "output": "65" }, { "input": "8902353464851212", "output": "75" }, { "input": "61824012598535", "output": "65" }, { "input": "1294902504603347", "output": "71" }, { "input": "6", "output": "3" }, { "input": "7", "output": "3" }, { "input": "8", "output": "4" }, { "input": "9", "output": "4" }, { "input": "11", "output": "4" }, { "input": "12", "output": "4" }, { "input": "13", "output": "5" }, { "input": "14", "output": "5" }, { "input": "15", "output": "5" }, { "input": "16", "output": "5" }, { "input": "17", "output": "5" }, { "input": "18", "output": "5" }, { "input": "19", "output": "5" }, { "input": "20", "output": "5" }, { "input": "21", "output": "6" }, { "input": "22", "output": "6" }, { "input": "23", "output": "6" }, { "input": "355687428096000", "output": "69" }, { "input": "576460752303423488", "output": "84" }, { "input": "32212254719", "output": "49" }, { "input": "26388279066623", "output": "63" }, { "input": "618473717761", "output": "56" }, { "input": "262406072477", "output": "54" } ]
1,624,892,928
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
77
0
def ii(): return int(input()) def si(): return input() def mi(): return map(int,input().split()) def msi(): return map(str,input().split()) def li(): return list(mi()) n=ii() ans=0 p,q=2,1 while p<=n: p,q=p+q,p ans+=1
Title: Tennis Championship Time Limit: None seconds Memory Limit: None megabytes Problem Description: Famous Brazil city Rio de Janeiro holds a tennis tournament and Ostap Bender doesn't want to miss this event. There will be *n* players participating, and the tournament will follow knockout rules from the very first game. That means, that if someone loses a game he leaves the tournament immediately. Organizers are still arranging tournament grid (i.e. the order games will happen and who is going to play with whom) but they have already fixed one rule: two players can play against each other only if the number of games one of them has already played differs by no more than one from the number of games the other one has already played. Of course, both players had to win all their games in order to continue participating in the tournament. Tournament hasn't started yet so the audience is a bit bored. Ostap decided to find out what is the maximum number of games the winner of the tournament can take part in (assuming the rule above is used). However, it is unlikely he can deal with this problem without your help. Input Specification: The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=1018) — the number of players to participate in the tournament. Output Specification: Print the maximum number of games in which the winner of the tournament can take part. Demo Input: ['2\n', '3\n', '4\n', '10\n'] Demo Output: ['1\n', '2\n', '2\n', '4\n'] Note: In all samples we consider that player number 1 is the winner. In the first sample, there would be only one game so the answer is 1. In the second sample, player 1 can consequently beat players 2 and 3. In the third sample, player 1 can't play with each other player as after he plays with players 2 and 3 he can't play against player 4, as he has 0 games played, while player 1 already played 2. Thus, the answer is 2 and to achieve we make pairs (1, 2) and (3, 4) and then clash the winners.
```python def ii(): return int(input()) def si(): return input() def mi(): return map(int,input().split()) def msi(): return map(str,input().split()) def li(): return list(mi()) n=ii() ans=0 p,q=2,1 while p<=n: p,q=p+q,p ans+=1 ```
0
579
A
Raising Bacteria
PROGRAMMING
1,000
[ "bitmasks" ]
null
null
You are a lover of bacteria. You want to raise some bacteria in a box. Initially, the box is empty. Each morning, you can put any number of bacteria into the box. And each night, every bacterium in the box will split into two bacteria. You hope to see exactly *x* bacteria in the box at some moment. What is the minimum number of bacteria you need to put into the box across those days?
The only line containing one integer *x* (1<=≤<=*x*<=≤<=109).
The only line containing one integer: the answer.
[ "5\n", "8\n" ]
[ "2\n", "1\n" ]
For the first sample, we can add one bacterium in the box in the first day morning and at the third morning there will be 4 bacteria in the box. Now we put one more resulting 5 in the box. We added 2 bacteria in the process so the answer is 2. For the second sample, we can put one in the first morning and in the 4-th morning there will be 8 in the box. So the answer is 1.
250
[ { "input": "5", "output": "2" }, { "input": "8", "output": "1" }, { "input": "536870911", "output": "29" }, { "input": "1", "output": "1" }, { "input": "343000816", "output": "14" }, { "input": "559980448", "output": "12" }, { "input": "697681824", "output": "14" }, { "input": "41313494", "output": "14" }, { "input": "673935585", "output": "13" }, { "input": "117422204", "output": "19" }, { "input": "954746654", "output": "15" }, { "input": "536838144", "output": "14" }, { "input": "1000000000", "output": "13" }, { "input": "2", "output": "1" }, { "input": "3", "output": "2" }, { "input": "4", "output": "1" }, { "input": "6", "output": "2" }, { "input": "7", "output": "3" }, { "input": "9", "output": "2" }, { "input": "10", "output": "2" }, { "input": "999999999", "output": "21" }, { "input": "999999998", "output": "20" }, { "input": "999999997", "output": "20" }, { "input": "999999996", "output": "19" }, { "input": "999999995", "output": "20" }, { "input": "999999994", "output": "19" }, { "input": "999999993", "output": "19" }, { "input": "999999992", "output": "18" }, { "input": "999999991", "output": "20" }, { "input": "999999990", "output": "19" }, { "input": "536870910", "output": "28" }, { "input": "536870912", "output": "1" }, { "input": "536870913", "output": "2" }, { "input": "536870914", "output": "2" }, { "input": "22", "output": "3" }, { "input": "14", "output": "3" } ]
1,678,845,348
2,147,483,647
Python 3
OK
TESTS
36
46
0
x = int(input()) # We can represent x in binary and count the number of 1s in it # This will give us the number of bacteria we need to add to get x count = 0 while x > 0: if x % 2 == 1: count += 1 x //= 2 print(count)
Title: Raising Bacteria Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are a lover of bacteria. You want to raise some bacteria in a box. Initially, the box is empty. Each morning, you can put any number of bacteria into the box. And each night, every bacterium in the box will split into two bacteria. You hope to see exactly *x* bacteria in the box at some moment. What is the minimum number of bacteria you need to put into the box across those days? Input Specification: The only line containing one integer *x* (1<=≤<=*x*<=≤<=109). Output Specification: The only line containing one integer: the answer. Demo Input: ['5\n', '8\n'] Demo Output: ['2\n', '1\n'] Note: For the first sample, we can add one bacterium in the box in the first day morning and at the third morning there will be 4 bacteria in the box. Now we put one more resulting 5 in the box. We added 2 bacteria in the process so the answer is 2. For the second sample, we can put one in the first morning and in the 4-th morning there will be 8 in the box. So the answer is 1.
```python x = int(input()) # We can represent x in binary and count the number of 1s in it # This will give us the number of bacteria we need to add to get x count = 0 while x > 0: if x % 2 == 1: count += 1 x //= 2 print(count) ```
3
82
A
Double Cola
PROGRAMMING
1,100
[ "implementation", "math" ]
A. Double Cola
1
256
Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.
The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.
Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially.
[ "1\n", "6\n", "1802\n" ]
[ "Sheldon\n", "Sheldon\n", "Penny\n" ]
none
500
[ { "input": "1", "output": "Sheldon" }, { "input": "6", "output": "Sheldon" }, { "input": "1802", "output": "Penny" }, { "input": "1", "output": "Sheldon" }, { "input": "2", "output": "Leonard" }, { "input": "3", "output": "Penny" }, { "input": "4", "output": "Rajesh" }, { "input": "5", "output": "Howard" }, { "input": "10", "output": "Penny" }, { "input": "534", "output": "Rajesh" }, { "input": "5033", "output": "Howard" }, { "input": "10010", "output": "Howard" }, { "input": "500000000", "output": "Penny" }, { "input": "63", "output": "Rajesh" }, { "input": "841", "output": "Leonard" }, { "input": "3667", "output": "Penny" }, { "input": "38614", "output": "Howard" }, { "input": "282798", "output": "Rajesh" }, { "input": "9266286", "output": "Rajesh" }, { "input": "27385966", "output": "Leonard" }, { "input": "121580142", "output": "Penny" }, { "input": "5", "output": "Howard" }, { "input": "300", "output": "Howard" }, { "input": "1745", "output": "Leonard" }, { "input": "8302", "output": "Rajesh" }, { "input": "184518", "output": "Sheldon" }, { "input": "1154414", "output": "Rajesh" }, { "input": "28643950", "output": "Leonard" }, { "input": "159222638", "output": "Howard" }, { "input": "24", "output": "Penny" }, { "input": "505", "output": "Penny" }, { "input": "4425", "output": "Rajesh" }, { "input": "12079", "output": "Sheldon" }, { "input": "469726", "output": "Penny" }, { "input": "3961838", "output": "Penny" }, { "input": "57710446", "output": "Leonard" }, { "input": "80719470", "output": "Howard" }, { "input": "1000000000", "output": "Penny" }, { "input": "999999999", "output": "Penny" }, { "input": "999999998", "output": "Penny" }, { "input": "5", "output": "Howard" } ]
1,691,384,172
2,147,483,647
PyPy 3-64
OK
TESTS
41
62
0
from math import * n = int(input()) k = floor(log(n/5+1, 2)) r = (n-5*(2**k-1))/(2**k) print(["Sheldon", "Leonard", "Penny", "Rajesh", "Howard"][ceil(r)-1])
Title: Double Cola Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon. Input Specification: The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers. Output Specification: Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially. Demo Input: ['1\n', '6\n', '1802\n'] Demo Output: ['Sheldon\n', 'Sheldon\n', 'Penny\n'] Note: none
```python from math import * n = int(input()) k = floor(log(n/5+1, 2)) r = (n-5*(2**k-1))/(2**k) print(["Sheldon", "Leonard", "Penny", "Rajesh", "Howard"][ceil(r)-1]) ```
3.969
202
A
LLPS
PROGRAMMING
800
[ "binary search", "bitmasks", "brute force", "greedy", "implementation", "strings" ]
null
null
This problem's actual name, "Lexicographically Largest Palindromic Subsequence" is too long to fit into the page headline. You are given string *s* consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence. We'll call a non-empty string *s*[*p*1*p*2... *p**k*] = *s**p*1*s**p*2... *s**p**k* (1 <=≤<= *p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**k* <=≤<= |*s*|) a subsequence of string *s* = *s*1*s*2... *s*|*s*|, where |*s*| is the length of string *s*. For example, strings "abcb", "b" and "abacaba" are subsequences of string "abacaba". String *x* = *x*1*x*2... *x*|*x*| is lexicographically larger than string *y* = *y*1*y*2... *y*|*y*| if either |*x*| &gt; |*y*| and *x*1<==<=*y*1, *x*2<==<=*y*2, ...,<=*x*|*y*|<==<=*y*|*y*|, or there exists such number *r* (*r*<=&lt;<=|*x*|, *r*<=&lt;<=|*y*|) that *x*1<==<=*y*1, *x*2<==<=*y*2, ..., *x**r*<==<=*y**r* and *x**r*<=<=+<=<=1<=&gt;<=*y**r*<=<=+<=<=1. Characters in the strings are compared according to their ASCII codes. For example, string "ranger" is lexicographically larger than string "racecar" and string "poster" is lexicographically larger than string "post". String *s* = *s*1*s*2... *s*|*s*| is a palindrome if it matches string *rev*(*s*) = *s*|*s*|*s*|*s*|<=-<=1... *s*1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are "racecar", "refer" and "z".
The only input line contains a non-empty string *s* consisting of lowercase English letters only. Its length does not exceed 10.
Print the lexicographically largest palindromic subsequence of string *s*.
[ "radar\n", "bowwowwow\n", "codeforces\n", "mississipp\n" ]
[ "rr\n", "wwwww\n", "s\n", "ssss\n" ]
Among all distinct subsequences of string "radar" the following ones are palindromes: "a", "d", "r", "aa", "rr", "ada", "rar", "rdr", "raar" and "radar". The lexicographically largest of them is "rr".
500
[ { "input": "radar", "output": "rr" }, { "input": "bowwowwow", "output": "wwwww" }, { "input": "codeforces", "output": "s" }, { "input": "mississipp", "output": "ssss" }, { "input": "tourist", "output": "u" }, { "input": "romka", "output": "r" }, { "input": "helloworld", "output": "w" }, { "input": "zzzzzzzazz", "output": "zzzzzzzzz" }, { "input": "testcase", "output": "tt" }, { "input": "hahahahaha", "output": "hhhhh" }, { "input": "abbbbbbbbb", "output": "bbbbbbbbb" }, { "input": "zaz", "output": "zz" }, { "input": "aza", "output": "z" }, { "input": "dcbaedcba", "output": "e" }, { "input": "abcdeabcd", "output": "e" }, { "input": "edcbabcde", "output": "ee" }, { "input": "aaaaaaaaab", "output": "b" }, { "input": "testzzzzzz", "output": "zzzzzz" }, { "input": "zzzzzzwait", "output": "zzzzzz" }, { "input": "rrrrrqponm", "output": "rrrrr" }, { "input": "zzyzyy", "output": "zzz" }, { "input": "aababb", "output": "bbb" }, { "input": "zanzibar", "output": "zz" }, { "input": "hhgfedcbaa", "output": "hh" }, { "input": "aabcdefghh", "output": "hh" }, { "input": "aruaru", "output": "uu" }, { "input": "uraura", "output": "uu" }, { "input": "aru", "output": "u" }, { "input": "aburvabur", "output": "v" }, { "input": "ura", "output": "u" }, { "input": "eurottat", "output": "u" }, { "input": "referee", "output": "rr" }, { "input": "joking", "output": "o" }, { "input": "seriously", "output": "y" }, { "input": "sets", "output": "t" }, { "input": "test", "output": "tt" }, { "input": "klmgameklm", "output": "mmm" }, { "input": "dfkjafdkdd", "output": "kk" }, { "input": "zzzzzzzzzz", "output": "zzzzzzzzzz" }, { "input": "aaaaaaaaaa", "output": "aaaaaaaaaa" }, { "input": "buzz", "output": "zz" }, { "input": "b", "output": "b" }, { "input": "y", "output": "y" }, { "input": "yy", "output": "yy" }, { "input": "zz", "output": "zz" }, { "input": "bb", "output": "bb" }, { "input": "aa", "output": "aa" }, { "input": "a", "output": "a" }, { "input": "z", "output": "z" }, { "input": "zz", "output": "zz" }, { "input": "zzazazzzaz", "output": "zzzzzzz" }, { "input": "hellhellhe", "output": "llll" }, { "input": "hellohello", "output": "oo" }, { "input": "refer", "output": "rr" } ]
1,614,421,335
2,147,483,647
Python 3
OK
TESTS
54
156
0
def largestPalinSub(s): res = "" mx = s[0] # Find the largest character for i in range(1, len(s)): mx = max(mx, s[i]) # Append all occurrences of largest # character to the resultant string for i in range(0, len(s)): if s[i] == mx: res += s[i] return res # Driver Code if __name__ == "__main__": s = input() print(largestPalinSub(s))
Title: LLPS Time Limit: None seconds Memory Limit: None megabytes Problem Description: This problem's actual name, "Lexicographically Largest Palindromic Subsequence" is too long to fit into the page headline. You are given string *s* consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence. We'll call a non-empty string *s*[*p*1*p*2... *p**k*] = *s**p*1*s**p*2... *s**p**k* (1 <=≤<= *p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**k* <=≤<= |*s*|) a subsequence of string *s* = *s*1*s*2... *s*|*s*|, where |*s*| is the length of string *s*. For example, strings "abcb", "b" and "abacaba" are subsequences of string "abacaba". String *x* = *x*1*x*2... *x*|*x*| is lexicographically larger than string *y* = *y*1*y*2... *y*|*y*| if either |*x*| &gt; |*y*| and *x*1<==<=*y*1, *x*2<==<=*y*2, ...,<=*x*|*y*|<==<=*y*|*y*|, or there exists such number *r* (*r*<=&lt;<=|*x*|, *r*<=&lt;<=|*y*|) that *x*1<==<=*y*1, *x*2<==<=*y*2, ..., *x**r*<==<=*y**r* and *x**r*<=<=+<=<=1<=&gt;<=*y**r*<=<=+<=<=1. Characters in the strings are compared according to their ASCII codes. For example, string "ranger" is lexicographically larger than string "racecar" and string "poster" is lexicographically larger than string "post". String *s* = *s*1*s*2... *s*|*s*| is a palindrome if it matches string *rev*(*s*) = *s*|*s*|*s*|*s*|<=-<=1... *s*1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are "racecar", "refer" and "z". Input Specification: The only input line contains a non-empty string *s* consisting of lowercase English letters only. Its length does not exceed 10. Output Specification: Print the lexicographically largest palindromic subsequence of string *s*. Demo Input: ['radar\n', 'bowwowwow\n', 'codeforces\n', 'mississipp\n'] Demo Output: ['rr\n', 'wwwww\n', 's\n', 'ssss\n'] Note: Among all distinct subsequences of string "radar" the following ones are palindromes: "a", "d", "r", "aa", "rr", "ada", "rar", "rdr", "raar" and "radar". The lexicographically largest of them is "rr".
```python def largestPalinSub(s): res = "" mx = s[0] # Find the largest character for i in range(1, len(s)): mx = max(mx, s[i]) # Append all occurrences of largest # character to the resultant string for i in range(0, len(s)): if s[i] == mx: res += s[i] return res # Driver Code if __name__ == "__main__": s = input() print(largestPalinSub(s)) ```
3
181
B
Number of Triplets
PROGRAMMING
1,300
[ "binary search", "brute force" ]
null
null
You are given *n* points on a plane. All points are different. Find the number of different groups of three points (*A*,<=*B*,<=*C*) such that point *B* is the middle of segment *AC*. The groups of three points are considered unordered, that is, if point *B* is the middle of segment *AC*, then groups (*A*,<=*B*,<=*C*) and (*C*,<=*B*,<=*A*) are considered the same.
The first line contains a single integer *n* (3<=≤<=*n*<=≤<=3000) — the number of points. Next *n* lines contain the points. The *i*-th line contains coordinates of the *i*-th point: two space-separated integers *x**i*,<=*y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000). It is guaranteed that all given points are different.
Print the single number — the answer to the problem.
[ "3\n1 1\n2 2\n3 3\n", "3\n0 0\n-1 0\n0 1\n" ]
[ "1\n", "0\n" ]
none
1,000
[ { "input": "3\n1 1\n2 2\n3 3", "output": "1" }, { "input": "3\n0 0\n-1 0\n0 1", "output": "0" }, { "input": "4\n0 0\n1 0\n2 0\n3 0", "output": "2" }, { "input": "5\n0 -1\n0 -2\n0 -3\n0 -4\n0 -5", "output": "4" }, { "input": "7\n1 1\n-1 -1\n1 0\n0 1\n-1 0\n0 -1\n0 0", "output": "3" }, { "input": "9\n1 1\n1 0\n0 1\n0 0\n-1 0\n-1 1\n-1 -1\n1 -1\n0 -1", "output": "8" }, { "input": "10\n2 1\n-1 0\n-2 -1\n-1 1\n0 2\n2 -2\n0 0\n-2 -2\n0 -2\n-2 1", "output": "4" }, { "input": "10\n-2 1\n2 -2\n-1 -2\n0 0\n2 -1\n0 -2\n2 2\n0 2\n-1 -1\n1 -2", "output": "4" }, { "input": "10\n0 1\n-1 -1\n1 1\n-1 0\n1 -1\n-2 -1\n-2 2\n-2 0\n0 -2\n0 -1", "output": "5" }, { "input": "10\n2 1\n-1 1\n0 0\n-3 1\n-2 -3\n-1 -2\n-1 -1\n1 2\n3 -2\n0 -2", "output": "1" }, { "input": "20\n-3 -3\n0 4\n-3 1\n1 1\n-1 2\n-4 4\n3 -1\n-3 0\n0 2\n4 0\n2 3\n2 4\n4 -3\n-4 3\n-1 1\n1 3\n-2 4\n1 -2\n1 -1\n3 0", "output": "10" }, { "input": "20\n-3 -3\n0 4\n-3 1\n1 1\n-1 2\n-4 4\n3 -1\n-3 0\n0 2\n4 0\n2 3\n2 4\n4 -3\n-4 3\n-1 1\n1 3\n-2 4\n1 -2\n1 -1\n3 0", "output": "10" }, { "input": "20\n-1 18\n-2 5\n-5 4\n2 -33\n9 -18\n0 0\n11 -22\n2 0\n-1 2\n-4 41\n1 6\n1 -2\n6 -12\n0 1\n-3 6\n3 -6\n3 -8\n-1 4\n2 -5\n1 0", "output": "21" }, { "input": "40\n-8 24\n2 -1\n1 -18\n72 -70\n5 -4\n-308 436\n-19 40\n36 -35\n-178 265\n-1 2\n-7 30\n-1 0\n3 -2\n200 -285\n17 -16\n-35 74\n0 -4\n-86 106\n-1 4\n-7 6\n0 1\n-5 4\n-2 3\n6 -5\n-4 5\n181 -262\n76 -118\n0 0\n-7 18\n-58 104\n-5 6\n-6 12\n-3 4\n1 0\n11 -10\n-86 130\n-3 6\n153 -236\n-183 270\n-33 64", "output": "57" }, { "input": "3\n3 3\n1 2\n1 1", "output": "0" }, { "input": "3\n0 0\n0 -1\n0 1", "output": "1" } ]
1,622,058,922
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
16
652
4,608,000
n = int(input()) ans = 0 l = [] d = {} for i in range(n): x,y = map(int,input().split()) if x in d: d[x].append(y) else: d[x] = [y] l.append([x,y]) for i in range(n-2): for j in range(i+1,n): if (l[i][0]+l[j][0])%2==0 and (l[i][1]+l[j][1])%2==0: if (l[i][0]+l[j][0])//2 in d: if (l[i][1]+l[j][1])//2 in d[(l[i][0]+l[j][0])//2]: ans += 1 print(ans)
Title: Number of Triplets Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given *n* points on a plane. All points are different. Find the number of different groups of three points (*A*,<=*B*,<=*C*) such that point *B* is the middle of segment *AC*. The groups of three points are considered unordered, that is, if point *B* is the middle of segment *AC*, then groups (*A*,<=*B*,<=*C*) and (*C*,<=*B*,<=*A*) are considered the same. Input Specification: The first line contains a single integer *n* (3<=≤<=*n*<=≤<=3000) — the number of points. Next *n* lines contain the points. The *i*-th line contains coordinates of the *i*-th point: two space-separated integers *x**i*,<=*y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000). It is guaranteed that all given points are different. Output Specification: Print the single number — the answer to the problem. Demo Input: ['3\n1 1\n2 2\n3 3\n', '3\n0 0\n-1 0\n0 1\n'] Demo Output: ['1\n', '0\n'] Note: none
```python n = int(input()) ans = 0 l = [] d = {} for i in range(n): x,y = map(int,input().split()) if x in d: d[x].append(y) else: d[x] = [y] l.append([x,y]) for i in range(n-2): for j in range(i+1,n): if (l[i][0]+l[j][0])%2==0 and (l[i][1]+l[j][1])%2==0: if (l[i][0]+l[j][0])//2 in d: if (l[i][1]+l[j][1])//2 in d[(l[i][0]+l[j][0])//2]: ans += 1 print(ans) ```
0
863
B
Kayaking
PROGRAMMING
1,500
[ "brute force", "greedy", "sortings" ]
null
null
Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers. Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash. Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks. Help the party to determine minimum possible total instability!
The first line contains one number *n* (2<=≤<=*n*<=≤<=50). The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000).
Print minimum possible total instability.
[ "2\n1 2 3 4\n", "4\n1 3 4 6 3 4 100 200\n" ]
[ "1\n", "5\n" ]
none
0
[ { "input": "2\n1 2 3 4", "output": "1" }, { "input": "4\n1 3 4 6 3 4 100 200", "output": "5" }, { "input": "3\n305 139 205 406 530 206", "output": "102" }, { "input": "3\n610 750 778 6 361 407", "output": "74" }, { "input": "5\n97 166 126 164 154 98 221 7 51 47", "output": "35" }, { "input": "50\n1 1 2 2 1 3 2 2 1 1 1 1 2 3 3 1 2 1 3 3 2 1 2 3 1 1 2 1 3 1 3 1 3 3 3 1 1 1 3 3 2 2 2 2 3 2 2 2 2 3 1 3 3 3 3 1 3 3 1 3 3 3 3 2 3 1 3 3 1 1 1 3 1 2 2 2 1 1 1 3 1 2 3 2 1 3 3 2 2 1 3 1 3 1 2 2 1 2 3 2", "output": "0" }, { "input": "50\n5 5 5 5 4 2 2 3 2 2 4 1 5 5 1 2 4 2 4 2 5 2 2 2 2 3 2 4 2 5 5 4 3 1 2 3 3 5 4 2 2 5 2 4 5 5 4 4 1 5 5 3 2 2 5 1 3 3 2 4 4 5 1 2 3 4 4 1 3 3 3 5 1 2 4 4 4 4 2 5 2 5 3 2 4 5 5 2 1 1 2 4 5 3 2 1 2 4 4 4", "output": "1" }, { "input": "50\n499 780 837 984 481 526 944 482 862 136 265 605 5 631 974 967 574 293 969 467 573 845 102 224 17 873 648 120 694 996 244 313 404 129 899 583 541 314 525 496 443 857 297 78 575 2 430 137 387 319 382 651 594 411 845 746 18 232 6 289 889 81 174 175 805 1000 799 950 475 713 951 685 729 925 262 447 139 217 788 514 658 572 784 185 112 636 10 251 621 218 210 89 597 553 430 532 264 11 160 476", "output": "368" }, { "input": "50\n873 838 288 87 889 364 720 410 565 651 577 356 740 99 549 592 994 385 777 435 486 118 887 440 749 533 356 790 413 681 267 496 475 317 88 660 374 186 61 437 729 860 880 538 277 301 667 180 60 393 955 540 896 241 362 146 74 680 734 767 851 337 751 860 542 735 444 793 340 259 495 903 743 961 964 966 87 275 22 776 368 701 835 732 810 735 267 988 352 647 924 183 1 924 217 944 322 252 758 597", "output": "393" }, { "input": "50\n297 787 34 268 439 629 600 398 425 833 721 908 830 636 64 509 420 647 499 675 427 599 396 119 798 742 577 355 22 847 389 574 766 453 196 772 808 261 106 844 726 975 173 992 874 89 775 616 678 52 69 591 181 573 258 381 665 301 589 379 362 146 790 842 765 100 229 916 938 97 340 793 758 177 736 396 247 562 571 92 923 861 165 748 345 703 431 930 101 761 862 595 505 393 126 846 431 103 596 21", "output": "387" }, { "input": "50\n721 631 587 746 692 406 583 90 388 16 161 948 921 70 387 426 39 398 517 724 879 377 906 502 359 950 798 408 846 718 911 845 57 886 9 668 537 632 344 762 19 193 658 447 870 173 98 156 592 519 183 539 274 393 962 615 551 626 148 183 769 763 829 120 796 761 14 744 537 231 696 284 581 688 611 826 703 145 224 600 965 613 791 275 984 375 402 281 851 580 992 8 816 454 35 532 347 250 242 637", "output": "376" }, { "input": "50\n849 475 37 120 754 183 758 374 543 198 896 691 11 607 198 343 761 660 239 669 628 259 223 182 216 158 20 565 454 884 137 923 156 22 310 77 267 707 582 169 120 308 439 309 59 152 206 696 210 177 296 887 559 22 154 553 142 247 491 692 473 572 461 206 532 319 503 164 328 365 541 366 300 392 486 257 863 432 877 404 520 69 418 99 519 239 374 927 601 103 226 316 423 219 240 26 455 101 184 61", "output": "351" }, { "input": "3\n1 2 10 11 100 100", "output": "1" }, { "input": "17\n814 744 145 886 751 1000 272 914 270 529 467 164 410 369 123 424 991 12 702 582 561 858 746 950 598 393 606 498 648 686 455 873 728 858", "output": "318" }, { "input": "45\n476 103 187 696 463 457 588 632 763 77 391 721 95 124 378 812 980 193 694 898 859 572 721 274 605 264 929 615 257 918 42 493 1 3 697 349 990 800 82 535 382 816 943 735 11 272 562 323 653 370 766 332 666 130 704 604 645 717 267 255 37 470 925 941 376 611 332 758 504 40 477 263 708 434 38 596 650 990 714 662 572 467 949 799 648 581 545 828 508 636", "output": "355" }, { "input": "2\n55 5 25 51", "output": "4" }, { "input": "25\n89 50 640 463 858 301 522 241 923 378 892 822 550 17 42 66 706 779 657 840 273 222 444 459 94 925 437 159 182 727 92 851 742 215 653 891 782 533 29 128 133 883 317 475 165 994 802 434 744 973", "output": "348" }, { "input": "4\n35 48 71 44 78 79 57 48", "output": "10" }, { "input": "3\n58 89 73 15 5 47", "output": "21" }, { "input": "2\n1 20 99 100", "output": "1" } ]
1,616,035,785
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
108
2,252,800
from itertools import combinations as comb n,weight=int(input()),list(map(int,input().split())) weight=sorted(weight) '''weight=weight[:-2] marked_indexes=[] for i in range(len(weight)-1): if weight[i]==weight[i+1]: if i not in marked_indexes and i+1 not in marked_indexes: marked_indexes.append(i) marked_indexes.append(i+1) temp=[] for i in range(len(weight)): if i not in marked_indexes: temp.append(weight[i]) weight=temp instability=0 for i in range(0,len(weight),2): instability+=abs(weight[i]-weight[i+1]) print(instability) ''' diff=[] instability=2_000_000_000 for i in comb([k for k in range(len(weight))],2): a=weight[:] a.pop(i[0]) a.pop(i[1]) t=0 for j in range(0,len(a),2): t+=(a[j+1]-a[j]) instability=min(instability,t) print(instability)
Title: Kayaking Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers. Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash. Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks. Help the party to determine minimum possible total instability! Input Specification: The first line contains one number *n* (2<=≤<=*n*<=≤<=50). The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000). Output Specification: Print minimum possible total instability. Demo Input: ['2\n1 2 3 4\n', '4\n1 3 4 6 3 4 100 200\n'] Demo Output: ['1\n', '5\n'] Note: none
```python from itertools import combinations as comb n,weight=int(input()),list(map(int,input().split())) weight=sorted(weight) '''weight=weight[:-2] marked_indexes=[] for i in range(len(weight)-1): if weight[i]==weight[i+1]: if i not in marked_indexes and i+1 not in marked_indexes: marked_indexes.append(i) marked_indexes.append(i+1) temp=[] for i in range(len(weight)): if i not in marked_indexes: temp.append(weight[i]) weight=temp instability=0 for i in range(0,len(weight),2): instability+=abs(weight[i]-weight[i+1]) print(instability) ''' diff=[] instability=2_000_000_000 for i in comb([k for k in range(len(weight))],2): a=weight[:] a.pop(i[0]) a.pop(i[1]) t=0 for j in range(0,len(a),2): t+=(a[j+1]-a[j]) instability=min(instability,t) print(instability) ```
-1
628
B
New Skateboard
PROGRAMMING
1,300
[ "dp" ]
null
null
Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4. You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero. A substring of a string is a nonempty sequence of consecutive characters. For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9.
Print integer *a* — the number of substrings of the string *s* that are divisible by 4. Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
[ "124\n", "04\n", "5810438174\n" ]
[ "4\n", "3\n", "9\n" ]
none
0
[ { "input": "124", "output": "4" }, { "input": "04", "output": "3" }, { "input": "5810438174", "output": "9" }, { "input": "1", "output": "0" }, { "input": "039", "output": "1" }, { "input": "97247", "output": "6" }, { "input": "5810438174", "output": "9" }, { "input": "12883340691714056185860211260984431382156326935244", "output": "424" }, { "input": "2144315253572020279108092911160072328496568665545836825277616363478721946398140227406814602154768031", "output": "1528" }, { "input": "80124649014054971081213608137817466046254652492627741860478258558206397113198232823859870363821007188476405951611069347299689170240023979048198711745011542774268179055311013054073075176122755643483380248999657649211459997766221072399103579977409770898200358240970169892326442892826731631357561876251276209119521202062222947560634301788787748428236988789594458520867663257476744168528121470923031438015546006185059454402637036376247785881323277542968298682307854655591317046086531554595892680980142608", "output": "30826" }, { "input": "123456", "output": "7" }, { "input": "4", "output": "1" }, { "input": "123", "output": "1" } ]
1,693,055,578
2,147,483,647
Python 3
OK
TESTS
22
140
819,200
import sys input = lambda: sys.stdin.readline() I = lambda: int(input()) M = lambda: map(int, input().strip().split()) L = lambda: list(map(int, input().strip().split())) S = lambda: input().strip() n = S() count = n.count('4') + n.count('8') + n.count('0') for i in range(len(n)-1): if int(n[i:i+2]) % 4 == 0: count += i+1 print(count)
Title: New Skateboard Time Limit: None seconds Memory Limit: None megabytes Problem Description: Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a calculator on the floor and went to ask some money from his parents. Meanwhile his little brother Yusuf came and started to press the keys randomly. Unfortunately Max has forgotten the number which he had calculated. The only thing he knows is that the number is divisible by 4. You are given a string *s* consisting of digits (the number on the display of the calculator after Yusuf randomly pressed the keys). Your task is to find the number of substrings which are divisible by 4. A substring can start with a zero. A substring of a string is a nonempty sequence of consecutive characters. For example if string *s* is 124 then we have four substrings that are divisible by 4: 12, 4, 24 and 124. For the string 04 the answer is three: 0, 4, 04. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java. Input Specification: The only line contains string *s* (1<=≤<=|*s*|<=≤<=3·105). The string *s* contains only digits from 0 to 9. Output Specification: Print integer *a* — the number of substrings of the string *s* that are divisible by 4. Note that the answer can be huge, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type. Demo Input: ['124\n', '04\n', '5810438174\n'] Demo Output: ['4\n', '3\n', '9\n'] Note: none
```python import sys input = lambda: sys.stdin.readline() I = lambda: int(input()) M = lambda: map(int, input().strip().split()) L = lambda: list(map(int, input().strip().split())) S = lambda: input().strip() n = S() count = n.count('4') + n.count('8') + n.count('0') for i in range(len(n)-1): if int(n[i:i+2]) % 4 == 0: count += i+1 print(count) ```
3
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,674,068,608
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
46
0
b=list(map(int,input().split())) z=b.copy() c=0 a= min(b[0:2]) x=max(b[0:2]) if b[0]*b[1]==b[2]*b[2]: c+=1 elif b[0]!=b[1]: while x>0: c+=1 a-=b[2] x-=b[2] while a>0: c+=1 x-=b[2] else: while b[1]>0: c+=1 b[1]-=b[2] while b[0]>0: c+=1 b[0]-=b[2] print(c)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python b=list(map(int,input().split())) z=b.copy() c=0 a= min(b[0:2]) x=max(b[0:2]) if b[0]*b[1]==b[2]*b[2]: c+=1 elif b[0]!=b[1]: while x>0: c+=1 a-=b[2] x-=b[2] while a>0: c+=1 x-=b[2] else: while b[1]>0: c+=1 b[1]-=b[2] while b[0]>0: c+=1 b[0]-=b[2] print(c) ```
0
5
A
Chat Servers Outgoing Traffic
PROGRAMMING
1,000
[ "implementation" ]
A. Chat Server's Outgoing Traffic
1
64
Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands: - Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command). Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands. Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message. As Polycarp has no time, he is asking for your help in solving this problem.
Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following: - +&lt;name&gt; for 'Add' command. - -&lt;name&gt; for 'Remove' command. - &lt;sender_name&gt;:&lt;message_text&gt; for 'Send' command. &lt;name&gt; and &lt;sender_name&gt; is a non-empty sequence of Latin letters and digits. &lt;message_text&gt; can contain letters, digits and spaces, but can't start or end with a space. &lt;message_text&gt; can be an empty line. It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc. All names are case-sensitive.
Print a single number — answer to the problem.
[ "+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n", "+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n" ]
[ "9\n", "14\n" ]
none
0
[ { "input": "+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate", "output": "9" }, { "input": "+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate", "output": "14" }, { "input": "+Dmitry\n+Mike\nDmitry:All letters will be used\nDmitry:qwertyuiopasdfghjklzxcvbnm QWERTYUIOPASDFGHJKLZXCVBNM\nDmitry:And digits too\nDmitry:1234567890 0987654321\n-Dmitry", "output": "224" }, { "input": "+Dmitry\n+Mike\n+Kate\nDmitry:", "output": "0" }, { "input": "+Dmitry\nDmitry:No phrases with spaces at the beginning and at the end\n+Mike\nDmitry:spaces spaces\n-Dmitry", "output": "86" }, { "input": "+XqD\n+aT537\nXqD:x6ZPjMR1DDKG2\nXqD:lLCriywPnB\n-XqD", "output": "46" }, { "input": "+8UjgAJ\n8UjgAJ:02hR7UBc1tqqfL\n-8UjgAJ\n+zdi\n-zdi", "output": "14" }, { "input": "+6JPKkgXDrA\n+j6JHjv70An\n+QGtsceK0zJ\n6JPKkgXDrA:o4\n+CSmwi9zDra\nQGtsceK0zJ:Zl\nQGtsceK0zJ:0\nj6JHjv70An:7\nj6JHjv70An:B\nQGtsceK0zJ:OO", "output": "34" }, { "input": "+1aLNq9S7uLV\n-1aLNq9S7uLV\n+O9ykq3xDJv\n-O9ykq3xDJv\n+54Yq1xJq14F\n+0zJ5Vo0RDZ\n-54Yq1xJq14F\n-0zJ5Vo0RDZ\n+lxlH7sdolyL\n-lxlH7sdolyL", "output": "0" }, { "input": "+qlHEc2AuYy\nqlHEc2AuYy:YYRwD0 edNZgpE nGfOguRWnMYpTpGUVM aXDKGXo1Gv1tHL9\nqlHEc2AuYy:yvh3GsPcImqrvoUcBNQcP6ezwpU0 xAVltaKZp94VKiNao\nqlHEc2AuYy:zuCO6Opey L eu7lTwysaSk00zjpv zrDfbt8l hpHfu\n+pErDMxgVgh\nqlHEc2AuYy:I1FLis mmQbZtd8Ui7y 1vcax6yZBMhVRdD6Ahlq7MNCw\nqlHEc2AuYy:lz MFUNJZhlqBYckHUDlNhLiEkmecRh1o0t7alXBvCRVEFVx\npErDMxgVgh:jCyMbu1dkuEj5TzbBOjyUhpfC50cL8R900Je3R KxRgAI dT\nqlHEc2AuYy:62b47eabo2hf vSUD7KioN ZHki6WB6gh3u GKv5rgwyfF\npErDMxgVgh:zD5 9 ympl4wR gy7a7eAGAn5xVdGP9FbL6hRCZAR6O4pT6zb", "output": "615" }, { "input": "+adabacaba0", "output": "0" }, { "input": "+acabadab\n+caba0aba", "output": "0" }, { "input": "+dabaca\n-dabaca\n+aba0ab", "output": "0" }, { "input": "+cab\n+abac\n-abac\n+baca", "output": "0" }, { "input": "+cabadabac\n-cabadabac\n+abacaba1ab\n-abacaba1ab\n+ba0abaca", "output": "0" }, { "input": "+adabacaba\n-adabacaba\n+aca\naca:caba\n-aca\n+bacaba\n-bacaba\n+aba\n-aba\n+bad", "output": "4" }, { "input": "+acabadab\n-acabadab\n+aba0abacab\n+baca\n+abacaba0ab\n-baca\n-abacaba0ab\n-aba0abacab\n+cab\n-cab\n+abacabada\n-abacabada\n+badabaca\n-badabaca\n+badaba", "output": "0" }, { "input": "+badabac\nbadabac:abacabad\n-badabac\n+0ab\n-0ab\n+dabacab\n-dabacab\n+a0ab\n-a0ab\n+0abaca\n-0abaca\n+dabac\n-dabac\n+abaca\n-abaca\n+bacabada\n-bacabada\n+aca\n-aca\n+abadabaca\n-abadabaca\n+acaba\n-acaba\n+abacabadab\n-abacabadab", "output": "8" } ]
1,578,484,685
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
216
0
import sys traffic =0 n=0 for x in sys.stdin: if(x[0] =='+'): n +=1 elif(x[0] =='-'): n -=1 else: message= x.split(':')[1] traffic +=n*len(message) print(traffic)
Title: Chat Servers Outgoing Traffic Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands: - Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command). Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands. Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message. As Polycarp has no time, he is asking for your help in solving this problem. Input Specification: Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following: - +&lt;name&gt; for 'Add' command. - -&lt;name&gt; for 'Remove' command. - &lt;sender_name&gt;:&lt;message_text&gt; for 'Send' command. &lt;name&gt; and &lt;sender_name&gt; is a non-empty sequence of Latin letters and digits. &lt;message_text&gt; can contain letters, digits and spaces, but can't start or end with a space. &lt;message_text&gt; can be an empty line. It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc. All names are case-sensitive. Output Specification: Print a single number — answer to the problem. Demo Input: ['+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n', '+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n'] Demo Output: ['9\n', '14\n'] Note: none
```python import sys traffic =0 n=0 for x in sys.stdin: if(x[0] =='+'): n +=1 elif(x[0] =='-'): n -=1 else: message= x.split(':')[1] traffic +=n*len(message) print(traffic) ```
0
997
A
Convert to Ones
PROGRAMMING
1,500
[ "brute force", "greedy", "implementation", "math" ]
null
null
You've got a string $a_1, a_2, \dots, a_n$, consisting of zeros and ones. Let's call a sequence of consecutive elements $a_i, a_{i<=+<=1}, \ldots,<=a_j$ ($1\leq<=i\leq<=j\leq<=n$) a substring of string $a$. You can apply the following operations any number of times: - Choose some substring of string $a$ (for example, you can choose entire string) and reverse it, paying $x$ coins for it (for example, «0101101» $\to$ «0111001»); - Choose some substring of string $a$ (for example, you can choose entire string or just one symbol) and replace each symbol to the opposite one (zeros are replaced by ones, and ones — by zeros), paying $y$ coins for it (for example, «0101101» $\to$ «0110001»). You can apply these operations in any order. It is allowed to apply the operations multiple times to the same substring. What is the minimum number of coins you need to spend to get a string consisting only of ones?
The first line of input contains integers $n$, $x$ and $y$ ($1<=\leq<=n<=\leq<=300\,000, 0 \leq x, y \leq 10^9$) — length of the string, cost of the first operation (substring reverse) and cost of the second operation (inverting all elements of substring). The second line contains the string $a$ of length $n$, consisting of zeros and ones.
Print a single integer — the minimum total cost of operations you need to spend to get a string consisting only of ones. Print $0$, if you do not need to perform any operations.
[ "5 1 10\n01000\n", "5 10 1\n01000\n", "7 2 3\n1111111\n" ]
[ "11\n", "2\n", "0\n" ]
In the first sample, at first you need to reverse substring $[1 \dots 2]$, and then you need to invert substring $[2 \dots 5]$. Then the string was changed as follows: «01000» $\to$ «10000» $\to$ «11111». The total cost of operations is $1 + 10 = 11$. In the second sample, at first you need to invert substring $[1 \dots 1]$, and then you need to invert substring $[3 \dots 5]$. Then the string was changed as follows: «01000» $\to$ «11000» $\to$ «11111». The overall cost is $1 + 1 = 2$. In the third example, string already consists only of ones, so the answer is $0$.
500
[ { "input": "5 1 10\n01000", "output": "11" }, { "input": "5 10 1\n01000", "output": "2" }, { "input": "7 2 3\n1111111", "output": "0" }, { "input": "1 60754033 959739508\n0", "output": "959739508" }, { "input": "1 431963980 493041212\n1", "output": "0" }, { "input": "1 314253869 261764879\n0", "output": "261764879" }, { "input": "1 491511050 399084767\n1", "output": "0" }, { "input": "2 163093925 214567542\n00", "output": "214567542" }, { "input": "2 340351106 646854722\n10", "output": "646854722" }, { "input": "2 222640995 489207317\n01", "output": "489207317" }, { "input": "2 399898176 552898277\n11", "output": "0" }, { "input": "2 690218164 577155357\n00", "output": "577155357" }, { "input": "2 827538051 754412538\n10", "output": "754412538" }, { "input": "2 636702427 259825230\n01", "output": "259825230" }, { "input": "2 108926899 102177825\n11", "output": "0" }, { "input": "3 368381052 440077270\n000", "output": "440077270" }, { "input": "3 505700940 617334451\n100", "output": "617334451" }, { "input": "3 499624340 643020827\n010", "output": "1142645167" }, { "input": "3 75308005 971848814\n110", "output": "971848814" }, { "input": "3 212627893 854138703\n001", "output": "854138703" }, { "input": "3 31395883 981351561\n101", "output": "981351561" }, { "input": "3 118671447 913685773\n011", "output": "913685773" }, { "input": "3 255991335 385910245\n111", "output": "0" }, { "input": "3 688278514 268200134\n000", "output": "268200134" }, { "input": "3 825598402 445457315\n100", "output": "445457315" }, { "input": "3 300751942 45676507\n010", "output": "91353014" }, { "input": "3 517900980 438071829\n110", "output": "438071829" }, { "input": "3 400190869 280424424\n001", "output": "280424424" }, { "input": "3 577448050 344115384\n101", "output": "344115384" }, { "input": "3 481435271 459737939\n011", "output": "459737939" }, { "input": "3 931962412 913722450\n111", "output": "0" }, { "input": "4 522194562 717060616\n0000", "output": "717060616" }, { "input": "4 659514449 894317797\n1000", "output": "894317797" }, { "input": "4 71574977 796834337\n0100", "output": "868409314" }, { "input": "4 248832158 934154224\n1100", "output": "934154224" }, { "input": "4 71474110 131122047\n0010", "output": "202596157" }, { "input": "4 308379228 503761290\n1010", "output": "812140518" }, { "input": "4 272484957 485636409\n0110", "output": "758121366" }, { "input": "4 662893590 704772137\n1110", "output": "704772137" }, { "input": "4 545183479 547124732\n0001", "output": "547124732" }, { "input": "4 684444619 722440661\n1001", "output": "722440661" }, { "input": "4 477963686 636258459\n0101", "output": "1114222145" }, { "input": "4 360253575 773578347\n1101", "output": "773578347" }, { "input": "4 832478048 910898234\n0011", "output": "910898234" }, { "input": "4 343185412 714767937\n1011", "output": "714767937" }, { "input": "4 480505300 892025118\n0111", "output": "892025118" }, { "input": "4 322857895 774315007\n1111", "output": "0" }, { "input": "4 386548854 246539479\n0000", "output": "246539479" }, { "input": "4 523868742 128829368\n1000", "output": "128829368" }, { "input": "4 956155921 11119257\n0100", "output": "22238514" }, { "input": "4 188376438 93475808\n1100", "output": "93475808" }, { "input": "4 754947032 158668188\n0010", "output": "317336376" }, { "input": "4 927391856 637236921\n1010", "output": "1274473842" }, { "input": "4 359679035 109461393\n0110", "output": "218922786" }, { "input": "4 991751283 202031630\n1110", "output": "202031630" }, { "input": "4 339351517 169008463\n0001", "output": "169008463" }, { "input": "4 771638697 346265644\n1001", "output": "346265644" }, { "input": "4 908958584 523522825\n0101", "output": "1047045650" }, { "input": "4 677682252 405812714\n1101", "output": "405812714" }, { "input": "4 815002139 288102603\n0011", "output": "288102603" }, { "input": "4 952322026 760327076\n1011", "output": "760327076" }, { "input": "4 663334158 312481698\n0111", "output": "312481698" }, { "input": "4 840591339 154834293\n1111", "output": "0" }, { "input": "14 3 11\n10110100011001", "output": "20" }, { "input": "19 1 1\n1010101010101010101", "output": "9" }, { "input": "1 10 1\n1", "output": "0" }, { "input": "1 100 1\n1", "output": "0" }, { "input": "5 1000 1\n11111", "output": "0" }, { "input": "5 10 1\n11111", "output": "0" }, { "input": "7 3 2\n1111111", "output": "0" }, { "input": "5 1 10\n10101", "output": "11" }, { "input": "1 3 2\n1", "output": "0" }, { "input": "2 10 1\n11", "output": "0" }, { "input": "4 148823922 302792601\n1010", "output": "451616523" }, { "input": "1 2 1\n1", "output": "0" }, { "input": "5 2 3\n00011", "output": "3" }, { "input": "1 5 0\n1", "output": "0" }, { "input": "7 2 3\n1001001", "output": "5" }, { "input": "10 1 1000000000\n1111010111", "output": "1000000001" }, { "input": "25 999999998 999999999\n1011001110101010100111001", "output": "7999999985" }, { "input": "2 0 1\n00", "output": "1" }, { "input": "2 1 100\n10", "output": "100" }, { "input": "7 20 3\n1111111", "output": "0" }, { "input": "1 1 0\n1", "output": "0" }, { "input": "3 1 10\n010", "output": "11" }, { "input": "2 1 0\n11", "output": "0" }, { "input": "7 100 3\n1111111", "output": "0" }, { "input": "5 1 1000\n10101", "output": "1001" }, { "input": "5 2 1\n11111", "output": "0" }, { "input": "1 1000 1\n1", "output": "0" }, { "input": "1 799543940 488239239\n1", "output": "0" }, { "input": "6 1 1000\n010101", "output": "1002" }, { "input": "5 11 1\n11111", "output": "0" }, { "input": "5 2 3\n10101", "output": "5" }, { "input": "3 10 1\n111", "output": "0" }, { "input": "7 9 10\n1001011", "output": "19" }, { "input": "5 5 6\n10101", "output": "11" }, { "input": "1 1000000000 0\n1", "output": "0" }, { "input": "4 0 1\n0101", "output": "1" }, { "input": "8 2 3\n10101010", "output": "9" }, { "input": "6 3 100\n010101", "output": "106" }, { "input": "3 3 2\n111", "output": "0" }, { "input": "1 20 1\n1", "output": "0" }, { "input": "2 1 2\n01", "output": "2" } ]
1,530,454,232
332
Python 3
OK
TESTS
115
233
1,024,000
n, x, y = [int(x) for x in input().split()] xs = input().strip() from itertools import groupby count = sum(1 for g, _ in groupby(xs) if g == '0') ans = count * y for i in range(count): ans = min(ans, i * x + (count - i) * y) print(ans)
Title: Convert to Ones Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got a string $a_1, a_2, \dots, a_n$, consisting of zeros and ones. Let's call a sequence of consecutive elements $a_i, a_{i<=+<=1}, \ldots,<=a_j$ ($1\leq<=i\leq<=j\leq<=n$) a substring of string $a$. You can apply the following operations any number of times: - Choose some substring of string $a$ (for example, you can choose entire string) and reverse it, paying $x$ coins for it (for example, «0101101» $\to$ «0111001»); - Choose some substring of string $a$ (for example, you can choose entire string or just one symbol) and replace each symbol to the opposite one (zeros are replaced by ones, and ones — by zeros), paying $y$ coins for it (for example, «0101101» $\to$ «0110001»). You can apply these operations in any order. It is allowed to apply the operations multiple times to the same substring. What is the minimum number of coins you need to spend to get a string consisting only of ones? Input Specification: The first line of input contains integers $n$, $x$ and $y$ ($1<=\leq<=n<=\leq<=300\,000, 0 \leq x, y \leq 10^9$) — length of the string, cost of the first operation (substring reverse) and cost of the second operation (inverting all elements of substring). The second line contains the string $a$ of length $n$, consisting of zeros and ones. Output Specification: Print a single integer — the minimum total cost of operations you need to spend to get a string consisting only of ones. Print $0$, if you do not need to perform any operations. Demo Input: ['5 1 10\n01000\n', '5 10 1\n01000\n', '7 2 3\n1111111\n'] Demo Output: ['11\n', '2\n', '0\n'] Note: In the first sample, at first you need to reverse substring $[1 \dots 2]$, and then you need to invert substring $[2 \dots 5]$. Then the string was changed as follows: «01000» $\to$ «10000» $\to$ «11111». The total cost of operations is $1 + 10 = 11$. In the second sample, at first you need to invert substring $[1 \dots 1]$, and then you need to invert substring $[3 \dots 5]$. Then the string was changed as follows: «01000» $\to$ «11000» $\to$ «11111». The overall cost is $1 + 1 = 2$. In the third example, string already consists only of ones, so the answer is $0$.
```python n, x, y = [int(x) for x in input().split()] xs = input().strip() from itertools import groupby count = sum(1 for g, _ in groupby(xs) if g == '0') ans = count * y for i in range(count): ans = min(ans, i * x + (count - i) * y) print(ans) ```
3
43
A
Football
PROGRAMMING
1,000
[ "strings" ]
A. Football
2
256
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
[ "1\nABC\n", "5\nA\nABA\nABA\nA\nA\n" ]
[ "ABC\n", "A\n" ]
none
500
[ { "input": "1\nABC", "output": "ABC" }, { "input": "5\nA\nABA\nABA\nA\nA", "output": "A" }, { "input": "2\nXTSJEP\nXTSJEP", "output": "XTSJEP" }, { "input": "3\nXZYDJAEDZ\nXZYDJAEDZ\nXZYDJAEDZ", "output": "XZYDJAEDZ" }, { "input": "3\nQCCYXL\nQCCYXL\nAXGLFQDD", "output": "QCCYXL" }, { "input": "3\nAZID\nEERWBC\nEERWBC", "output": "EERWBC" }, { "input": "3\nHNCGYL\nHNCGYL\nHNCGYL", "output": "HNCGYL" }, { "input": "4\nZZWZTG\nZZWZTG\nZZWZTG\nZZWZTG", "output": "ZZWZTG" }, { "input": "4\nA\nA\nKUDLJMXCSE\nA", "output": "A" }, { "input": "5\nPHBTW\nPHBTW\nPHBTW\nPHBTW\nPHBTW", "output": "PHBTW" }, { "input": "5\nPKUZYTFYWN\nPKUZYTFYWN\nSTC\nPKUZYTFYWN\nPKUZYTFYWN", "output": "PKUZYTFYWN" }, { "input": "5\nHH\nHH\nNTQWPA\nNTQWPA\nHH", "output": "HH" }, { "input": "10\nW\nW\nW\nW\nW\nD\nW\nD\nD\nW", "output": "W" }, { "input": "19\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nTGACNIH\nTGACNIH\nXBCP", "output": "XBCP" }, { "input": "33\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS", "output": "PYPAS" }, { "input": "51\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC", "output": "NC" }, { "input": "89\nH\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nVOCI\nVOCI\nH\nH\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nH\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI", "output": "VOCI" }, { "input": "100\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nM\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA", "output": "HA" }, { "input": "100\nG\nG\nS\nS\nG\nG\nS\nS\nG\nS\nS\nS\nG\nS\nG\nG\nS\nG\nS\nS\nG\nS\nS\nS\nS\nS\nG\nS\nG\nS\nS\nG\nG\nG\nS\nS\nS\nS\nG\nS\nS\nG\nG\nG\nG\nG\nS\nG\nG\nS\nS\nS\nS\nS\nG\nG\nS\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nS\nS\nG\nS\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nG\nG\nS\nG\nG\nG\nS", "output": "G" }, { "input": "100\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nOBH\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL", "output": "WL" } ]
1,660,948,589
2,147,483,647
PyPy 3-64
OK
TESTS
34
124
0
def football(): goals = [] for i in range(int(input())): goals.append(input()) sorted_goals = list(sorted(goals)) teams = [sorted_goals[0], sorted_goals[-1]] if teams[0] == teams[1]: print(teams[0]) else: scores = [0, 0] for item in sorted_goals: scores[teams.index(item)] += 1 print(teams[scores.index(max(scores))]) football()
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams. Output Specification: Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner. Demo Input: ['1\nABC\n', '5\nA\nABA\nABA\nA\nA\n'] Demo Output: ['ABC\n', 'A\n'] Note: none
```python def football(): goals = [] for i in range(int(input())): goals.append(input()) sorted_goals = list(sorted(goals)) teams = [sorted_goals[0], sorted_goals[-1]] if teams[0] == teams[1]: print(teams[0]) else: scores = [0, 0] for item in sorted_goals: scores[teams.index(item)] += 1 print(teams[scores.index(max(scores))]) football() ```
3.969
719
A
Vitya in the Countryside
PROGRAMMING
1,100
[ "implementation" ]
null
null
Every summer Vitya comes to visit his grandmother in the countryside. This summer, he got a huge wart. Every grandma knows that one should treat warts when the moon goes down. Thus, Vitya has to catch the moment when the moon is down. Moon cycle lasts 30 days. The size of the visible part of the moon (in Vitya's units) for each day is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and then cycle repeats, thus after the second 1 again goes 0. As there is no internet in the countryside, Vitya has been watching the moon for *n* consecutive days and for each of these days he wrote down the size of the visible part of the moon. Help him find out whether the moon will be up or down next day, or this cannot be determined by the data he has.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=92) — the number of consecutive days Vitya was watching the size of the visible part of the moon. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=15) — Vitya's records. It's guaranteed that the input data is consistent.
If Vitya can be sure that the size of visible part of the moon on day *n*<=+<=1 will be less than the size of the visible part on day *n*, then print "DOWN" at the only line of the output. If he might be sure that the size of the visible part will increase, then print "UP". If it's impossible to determine what exactly will happen with the moon, print -1.
[ "5\n3 4 5 6 7\n", "7\n12 13 14 15 14 13 12\n", "1\n8\n" ]
[ "UP\n", "DOWN\n", "-1\n" ]
In the first sample, the size of the moon on the next day will be equal to 8, thus the answer is "UP". In the second sample, the size of the moon on the next day will be 11, thus the answer is "DOWN". In the third sample, there is no way to determine whether the size of the moon on the next day will be 7 or 9, thus the answer is -1.
500
[ { "input": "5\n3 4 5 6 7", "output": "UP" }, { "input": "7\n12 13 14 15 14 13 12", "output": "DOWN" }, { "input": "1\n8", "output": "-1" }, { "input": "44\n7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10", "output": "DOWN" }, { "input": "92\n3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4", "output": "UP" }, { "input": "6\n10 11 12 13 14 15", "output": "DOWN" }, { "input": "27\n11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15", "output": "DOWN" }, { "input": "6\n8 7 6 5 4 3", "output": "DOWN" }, { "input": "27\n14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10", "output": "UP" }, { "input": "79\n7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5", "output": "DOWN" }, { "input": "25\n1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7", "output": "DOWN" }, { "input": "21\n3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7", "output": "DOWN" }, { "input": "56\n1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6", "output": "DOWN" }, { "input": "19\n4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14", "output": "UP" }, { "input": "79\n5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13", "output": "UP" }, { "input": "87\n14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10", "output": "UP" }, { "input": "13\n10 9 8 7 6 5 4 3 2 1 0 1 2", "output": "UP" }, { "input": "2\n8 9", "output": "UP" }, { "input": "3\n10 11 12", "output": "UP" }, { "input": "1\n1", "output": "-1" }, { "input": "1\n2", "output": "-1" }, { "input": "1\n3", "output": "-1" }, { "input": "1\n4", "output": "-1" }, { "input": "1\n5", "output": "-1" }, { "input": "1\n6", "output": "-1" }, { "input": "1\n7", "output": "-1" }, { "input": "1\n9", "output": "-1" }, { "input": "1\n10", "output": "-1" }, { "input": "1\n11", "output": "-1" }, { "input": "1\n12", "output": "-1" }, { "input": "1\n13", "output": "-1" }, { "input": "1\n14", "output": "-1" }, { "input": "1\n15", "output": "DOWN" }, { "input": "1\n0", "output": "UP" }, { "input": "3\n11 12 13", "output": "UP" }, { "input": "2\n10 9", "output": "DOWN" }, { "input": "92\n10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11", "output": "UP" }, { "input": "92\n7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6", "output": "DOWN" }, { "input": "2\n14 15", "output": "DOWN" }, { "input": "2\n1 0", "output": "UP" }, { "input": "2\n15 14", "output": "DOWN" }, { "input": "92\n7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8", "output": "UP" }, { "input": "92\n13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12", "output": "DOWN" }, { "input": "92\n4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3", "output": "DOWN" }, { "input": "92\n14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15", "output": "DOWN" }, { "input": "92\n1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "UP" }, { "input": "2\n2 1", "output": "DOWN" }, { "input": "3\n2 1 0", "output": "UP" }, { "input": "5\n4 3 2 1 0", "output": "UP" }, { "input": "2\n5 4", "output": "DOWN" }, { "input": "4\n3 2 1 0", "output": "UP" }, { "input": "3\n13 12 11", "output": "DOWN" }, { "input": "2\n1 2", "output": "UP" }, { "input": "2\n0 1", "output": "UP" }, { "input": "2\n13 14", "output": "UP" }, { "input": "14\n13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "UP" } ]
1,606,713,823
2,147,483,647
Python 3
OK
TESTS
56
109
0
n=int(input()) lst = list(map(int, input().strip().split(' '))) if lst[-1]==15: print('DOWN') elif lst[-1]==0: print('UP') elif n==1: print('-1') else: if lst[-1]<lst[-2]: print('DOWN') else: print('UP')
Title: Vitya in the Countryside Time Limit: None seconds Memory Limit: None megabytes Problem Description: Every summer Vitya comes to visit his grandmother in the countryside. This summer, he got a huge wart. Every grandma knows that one should treat warts when the moon goes down. Thus, Vitya has to catch the moment when the moon is down. Moon cycle lasts 30 days. The size of the visible part of the moon (in Vitya's units) for each day is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and then cycle repeats, thus after the second 1 again goes 0. As there is no internet in the countryside, Vitya has been watching the moon for *n* consecutive days and for each of these days he wrote down the size of the visible part of the moon. Help him find out whether the moon will be up or down next day, or this cannot be determined by the data he has. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=92) — the number of consecutive days Vitya was watching the size of the visible part of the moon. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=15) — Vitya's records. It's guaranteed that the input data is consistent. Output Specification: If Vitya can be sure that the size of visible part of the moon on day *n*<=+<=1 will be less than the size of the visible part on day *n*, then print "DOWN" at the only line of the output. If he might be sure that the size of the visible part will increase, then print "UP". If it's impossible to determine what exactly will happen with the moon, print -1. Demo Input: ['5\n3 4 5 6 7\n', '7\n12 13 14 15 14 13 12\n', '1\n8\n'] Demo Output: ['UP\n', 'DOWN\n', '-1\n'] Note: In the first sample, the size of the moon on the next day will be equal to 8, thus the answer is "UP". In the second sample, the size of the moon on the next day will be 11, thus the answer is "DOWN". In the third sample, there is no way to determine whether the size of the moon on the next day will be 7 or 9, thus the answer is -1.
```python n=int(input()) lst = list(map(int, input().strip().split(' '))) if lst[-1]==15: print('DOWN') elif lst[-1]==0: print('UP') elif n==1: print('-1') else: if lst[-1]<lst[-2]: print('DOWN') else: print('UP') ```
3
680
B
Bear and Finding Criminals
PROGRAMMING
1,000
[ "constructive algorithms", "implementation" ]
null
null
There are *n* cities in Bearland, numbered 1 through *n*. Cities are arranged in one long row. The distance between cities *i* and *j* is equal to |*i*<=-<=*j*|. Limak is a police officer. He lives in a city *a*. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city. Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city *a*. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal. You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD.
The first line of the input contains two integers *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100) — the number of cities and the index of city where Limak lives. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=≤<=1). There are *t**i* criminals in the *i*-th city.
Print the number of criminals Limak will catch.
[ "6 3\n1 1 1 0 1 0\n", "5 2\n0 0 0 1 0\n" ]
[ "3\n", "1\n" ]
In the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red. Using the BCD gives Limak the following information: - There is one criminal at distance 0 from the third city — Limak is sure that this criminal is exactly in the third city. - There is one criminal at distance 1 from the third city — Limak doesn't know if a criminal is in the second or fourth city. - There are two criminals at distance 2 from the third city — Limak is sure that there is one criminal in the first city and one in the fifth city. - There are zero criminals for every greater distance. So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total. In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is.
1,000
[ { "input": "6 3\n1 1 1 0 1 0", "output": "3" }, { "input": "5 2\n0 0 0 1 0", "output": "1" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n0", "output": "0" }, { "input": "9 3\n1 1 1 1 1 1 1 1 0", "output": "8" }, { "input": "9 5\n1 0 1 0 1 0 1 0 1", "output": "5" }, { "input": "20 17\n1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0", "output": "10" }, { "input": "100 60\n1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0", "output": "27" }, { "input": "8 1\n1 0 1 1 0 0 1 0", "output": "4" }, { "input": "11 11\n0 1 0 0 1 1 1 0 0 0 0", "output": "4" }, { "input": "19 10\n0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1", "output": "4" }, { "input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "1" }, { "input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "3" }, { "input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "25" }, { "input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "24" }, { "input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "24" }, { "input": "98 70\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "41" }, { "input": "99 70\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "99 60\n0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1", "output": "34" }, { "input": "98 24\n0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1", "output": "39" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "2 1\n0 1", "output": "1" } ]
1,621,259,575
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
4
108
0
a,b = list(map(int,input().split())) arr= list(map(int,input().split())) b = b-1 al = [] for i in range(a): al.append(abs(b-i)) al.append(i) dt = {} for i in set(al): dt[i]= 0 for i in al: dt[i]+=arr[i] print(sum(1 for i,v in dt.items() if v>1))
Title: Bear and Finding Criminals Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* cities in Bearland, numbered 1 through *n*. Cities are arranged in one long row. The distance between cities *i* and *j* is equal to |*i*<=-<=*j*|. Limak is a police officer. He lives in a city *a*. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city. Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city *a*. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal. You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD. Input Specification: The first line of the input contains two integers *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100) — the number of cities and the index of city where Limak lives. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=≤<=1). There are *t**i* criminals in the *i*-th city. Output Specification: Print the number of criminals Limak will catch. Demo Input: ['6 3\n1 1 1 0 1 0\n', '5 2\n0 0 0 1 0\n'] Demo Output: ['3\n', '1\n'] Note: In the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red. Using the BCD gives Limak the following information: - There is one criminal at distance 0 from the third city — Limak is sure that this criminal is exactly in the third city. - There is one criminal at distance 1 from the third city — Limak doesn't know if a criminal is in the second or fourth city. - There are two criminals at distance 2 from the third city — Limak is sure that there is one criminal in the first city and one in the fifth city. - There are zero criminals for every greater distance. So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total. In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is.
```python a,b = list(map(int,input().split())) arr= list(map(int,input().split())) b = b-1 al = [] for i in range(a): al.append(abs(b-i)) al.append(i) dt = {} for i in set(al): dt[i]= 0 for i in al: dt[i]+=arr[i] print(sum(1 for i,v in dt.items() if v>1)) ```
0
864
A
Fair Game
PROGRAMMING
1,000
[ "implementation", "sortings" ]
null
null
Petya and Vasya decided to play a game. They have *n* cards (*n* is an even number). A single integer is written on each card. Before the game Petya will choose an integer and after that Vasya will choose another integer (different from the number that Petya chose). During the game each player takes all the cards with number he chose. For example, if Petya chose number 5 before the game he will take all cards on which 5 is written and if Vasya chose number 10 before the game he will take all cards on which 10 is written. The game is considered fair if Petya and Vasya can take all *n* cards, and the number of cards each player gets is the same. Determine whether Petya and Vasya can choose integer numbers before the game so that the game is fair.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100) — number of cards. It is guaranteed that *n* is an even number. The following *n* lines contain a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (one integer per line, 1<=≤<=*a**i*<=≤<=100) — numbers written on the *n* cards.
If it is impossible for Petya and Vasya to choose numbers in such a way that the game will be fair, print "NO" (without quotes) in the first line. In this case you should not print anything more. In the other case print "YES" (without quotes) in the first line. In the second line print two distinct integers — number that Petya should choose and the number that Vasya should choose to make the game fair. If there are several solutions, print any of them.
[ "4\n11\n27\n27\n11\n", "2\n6\n6\n", "6\n10\n20\n30\n20\n10\n20\n", "6\n1\n1\n2\n2\n3\n3\n" ]
[ "YES\n11 27\n", "NO\n", "NO\n", "NO\n" ]
In the first example the game will be fair if, for example, Petya chooses number 11, and Vasya chooses number 27. Then the will take all cards — Petya will take cards 1 and 4, and Vasya will take cards 2 and 3. Thus, each of them will take exactly two cards. In the second example fair game is impossible because the numbers written on the cards are equal, but the numbers that Petya and Vasya should choose should be distinct. In the third example it is impossible to take all cards. Petya and Vasya can take at most five cards — for example, Petya can choose number 10 and Vasya can choose number 20. But for the game to be fair it is necessary to take 6 cards.
500
[ { "input": "4\n11\n27\n27\n11", "output": "YES\n11 27" }, { "input": "2\n6\n6", "output": "NO" }, { "input": "6\n10\n20\n30\n20\n10\n20", "output": "NO" }, { "input": "6\n1\n1\n2\n2\n3\n3", "output": "NO" }, { "input": "2\n1\n100", "output": "YES\n1 100" }, { "input": "2\n1\n1", "output": "NO" }, { "input": "2\n100\n100", "output": "NO" }, { "input": "14\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43\n43", "output": "NO" }, { "input": "100\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n14\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32\n32", "output": "YES\n14 32" }, { "input": "2\n50\n100", "output": "YES\n50 100" }, { "input": "2\n99\n100", "output": "YES\n99 100" }, { "input": "4\n4\n4\n5\n5", "output": "YES\n4 5" }, { "input": "10\n10\n10\n10\n10\n10\n23\n23\n23\n23\n23", "output": "YES\n10 23" }, { "input": "20\n34\n34\n34\n34\n34\n34\n34\n34\n34\n34\n11\n11\n11\n11\n11\n11\n11\n11\n11\n11", "output": "YES\n11 34" }, { "input": "40\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n20\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30\n30", "output": "YES\n20 30" }, { "input": "58\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "YES\n1 100" }, { "input": "98\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99\n99", "output": "YES\n2 99" }, { "input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100", "output": "YES\n1 100" }, { "input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2", "output": "YES\n1 2" }, { "input": "100\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n49\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12", "output": "YES\n12 49" }, { "input": "100\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n15\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94\n94", "output": "YES\n15 94" }, { "input": "100\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42\n42", "output": "YES\n33 42" }, { "input": "100\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n16\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35\n35", "output": "YES\n16 35" }, { "input": "100\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n33\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44\n44", "output": "YES\n33 44" }, { "input": "100\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n54\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98\n98", "output": "YES\n54 98" }, { "input": "100\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n81\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12", "output": "YES\n12 81" }, { "input": "100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100\n100", "output": "NO" }, { "input": "100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "NO" }, { "input": "40\n20\n20\n30\n30\n20\n20\n20\n30\n30\n20\n20\n30\n30\n30\n30\n20\n30\n30\n30\n30\n20\n20\n30\n30\n30\n20\n30\n20\n30\n20\n30\n20\n20\n20\n30\n20\n20\n20\n30\n30", "output": "NO" }, { "input": "58\n100\n100\n100\n100\n100\n1\n1\n1\n1\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n100\n1\n100\n100\n100\n100\n100\n1\n1\n100\n100\n100\n100\n1\n100\n1\n1\n1\n1\n1", "output": "NO" }, { "input": "98\n2\n99\n99\n99\n99\n2\n99\n99\n99\n2\n2\n99\n2\n2\n2\n2\n99\n99\n2\n99\n2\n2\n99\n99\n99\n99\n2\n2\n99\n2\n99\n99\n2\n2\n99\n2\n99\n2\n99\n2\n2\n2\n99\n2\n2\n2\n2\n99\n99\n99\n99\n2\n2\n2\n2\n2\n2\n2\n2\n99\n2\n99\n99\n2\n2\n99\n99\n99\n99\n99\n99\n99\n99\n2\n99\n2\n99\n2\n2\n2\n99\n99\n99\n99\n99\n99\n2\n99\n99\n2\n2\n2\n2\n2\n99\n99\n99\n2", "output": "NO" }, { "input": "100\n100\n1\n100\n1\n1\n100\n1\n1\n1\n100\n100\n1\n100\n1\n100\n100\n1\n1\n1\n100\n1\n100\n1\n100\n100\n1\n100\n1\n100\n1\n1\n1\n1\n1\n100\n1\n100\n100\n100\n1\n100\n100\n1\n100\n1\n1\n100\n100\n100\n1\n100\n100\n1\n1\n100\n100\n1\n100\n1\n100\n1\n1\n100\n100\n100\n100\n100\n100\n1\n100\n100\n1\n100\n100\n1\n100\n1\n1\n1\n100\n100\n1\n100\n1\n100\n1\n1\n1\n1\n100\n1\n1\n100\n1\n100\n100\n1\n100\n1\n100", "output": "NO" }, { "input": "100\n100\n100\n100\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n100\n1\n100\n1\n100\n1\n100\n100\n100\n1\n100\n1\n1\n1\n100\n1\n1\n1\n1\n1\n100\n100\n1\n100\n1\n1\n100\n1\n1\n100\n1\n100\n100\n100\n1\n100\n100\n100\n1\n100\n1\n100\n100\n100\n1\n1\n100\n100\n100\n100\n1\n100\n36\n100\n1\n100\n1\n100\n100\n100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n100\n1\n1\n100\n100\n100\n100\n100\n1\n100\n1\n100\n1\n1\n100\n100\n1\n100", "output": "NO" }, { "input": "100\n2\n1\n1\n2\n2\n1\n1\n1\n1\n2\n1\n1\n1\n2\n2\n2\n1\n1\n1\n2\n1\n2\n2\n2\n2\n1\n1\n2\n1\n1\n2\n1\n27\n1\n1\n1\n2\n2\n2\n1\n2\n1\n2\n1\n1\n2\n2\n2\n2\n2\n2\n2\n2\n1\n2\n2\n2\n2\n1\n2\n1\n1\n1\n1\n1\n2\n1\n1\n1\n2\n2\n2\n2\n2\n2\n1\n1\n1\n1\n2\n2\n1\n2\n2\n1\n1\n1\n2\n1\n2\n2\n1\n1\n2\n1\n1\n1\n2\n2\n1", "output": "NO" }, { "input": "100\n99\n99\n100\n99\n99\n100\n100\n100\n99\n100\n99\n99\n100\n99\n99\n99\n99\n99\n99\n100\n100\n100\n99\n100\n100\n99\n100\n99\n100\n100\n99\n100\n99\n99\n99\n100\n99\n10\n99\n100\n100\n100\n99\n100\n100\n100\n100\n100\n100\n100\n99\n100\n100\n100\n99\n99\n100\n99\n100\n99\n100\n100\n99\n99\n99\n99\n100\n99\n100\n100\n100\n100\n100\n100\n99\n99\n100\n100\n99\n99\n99\n99\n99\n99\n100\n99\n99\n100\n100\n99\n100\n99\n99\n100\n99\n99\n99\n99\n100\n100", "output": "NO" }, { "input": "100\n29\n43\n43\n29\n43\n29\n29\n29\n43\n29\n29\n29\n29\n43\n29\n29\n29\n29\n43\n29\n29\n29\n43\n29\n29\n29\n43\n43\n43\n43\n43\n43\n29\n29\n43\n43\n43\n29\n43\n43\n43\n29\n29\n29\n43\n29\n29\n29\n43\n43\n43\n43\n29\n29\n29\n29\n43\n29\n43\n43\n29\n29\n43\n43\n29\n29\n95\n29\n29\n29\n43\n43\n29\n29\n29\n29\n29\n43\n43\n43\n43\n29\n29\n43\n43\n43\n43\n43\n43\n29\n43\n43\n43\n43\n43\n43\n29\n43\n29\n43", "output": "NO" }, { "input": "100\n98\n98\n98\n88\n88\n88\n88\n98\n98\n88\n98\n88\n98\n88\n88\n88\n88\n88\n98\n98\n88\n98\n98\n98\n88\n88\n88\n98\n98\n88\n88\n88\n98\n88\n98\n88\n98\n88\n88\n98\n98\n98\n88\n88\n98\n98\n88\n88\n88\n88\n88\n98\n98\n98\n88\n98\n88\n88\n98\n98\n88\n98\n88\n88\n98\n88\n88\n98\n27\n88\n88\n88\n98\n98\n88\n88\n98\n98\n98\n98\n98\n88\n98\n88\n98\n98\n98\n98\n88\n88\n98\n88\n98\n88\n98\n98\n88\n98\n98\n88", "output": "NO" }, { "input": "100\n50\n1\n1\n50\n50\n50\n50\n1\n50\n100\n50\n50\n50\n100\n1\n100\n1\n100\n50\n50\n50\n50\n50\n1\n50\n1\n100\n1\n1\n50\n100\n50\n50\n100\n50\n50\n100\n1\n50\n50\n100\n1\n1\n50\n1\n100\n50\n50\n100\n100\n1\n100\n1\n50\n100\n50\n50\n1\n1\n50\n100\n50\n100\n100\n100\n50\n50\n1\n1\n50\n100\n1\n50\n100\n100\n1\n50\n50\n50\n100\n50\n50\n100\n1\n50\n50\n50\n50\n1\n50\n50\n50\n50\n1\n50\n50\n100\n1\n50\n100", "output": "NO" }, { "input": "100\n45\n45\n45\n45\n45\n45\n44\n44\n44\n43\n45\n44\n44\n45\n44\n44\n45\n44\n43\n44\n43\n43\n43\n45\n43\n45\n44\n45\n43\n44\n45\n45\n45\n45\n45\n45\n45\n45\n43\n45\n43\n43\n45\n44\n45\n45\n45\n44\n45\n45\n45\n45\n45\n45\n44\n43\n45\n45\n43\n44\n45\n45\n45\n45\n44\n45\n45\n45\n43\n43\n44\n44\n43\n45\n43\n45\n45\n45\n44\n44\n43\n43\n44\n44\n44\n43\n45\n43\n44\n43\n45\n43\n43\n45\n45\n44\n45\n43\n43\n45", "output": "NO" }, { "input": "100\n12\n12\n97\n15\n97\n12\n15\n97\n12\n97\n12\n12\n97\n12\n15\n12\n12\n15\n12\n12\n97\n12\n12\n15\n15\n12\n97\n15\n12\n97\n15\n12\n12\n15\n15\n15\n97\n15\n97\n12\n12\n12\n12\n12\n97\n12\n97\n12\n15\n15\n12\n15\n12\n15\n12\n12\n12\n12\n12\n12\n12\n12\n97\n97\n12\n12\n97\n12\n97\n97\n15\n97\n12\n97\n97\n12\n12\n12\n97\n97\n15\n12\n12\n15\n12\n15\n97\n97\n12\n15\n12\n12\n97\n12\n15\n15\n15\n15\n12\n12", "output": "NO" }, { "input": "12\n2\n3\n1\n3\n3\n1\n2\n1\n2\n1\n3\n2", "output": "NO" }, { "input": "48\n99\n98\n100\n100\n99\n100\n99\n100\n100\n98\n99\n98\n98\n99\n98\n99\n98\n100\n100\n98\n100\n98\n99\n100\n98\n99\n98\n99\n99\n100\n98\n99\n99\n98\n100\n99\n98\n99\n98\n100\n100\n100\n99\n98\n99\n98\n100\n100", "output": "NO" }, { "input": "4\n1\n3\n3\n3", "output": "NO" }, { "input": "6\n1\n1\n1\n1\n2\n2", "output": "NO" }, { "input": "4\n1\n1\n1\n2", "output": "NO" }, { "input": "4\n1\n2\n2\n2", "output": "NO" }, { "input": "4\n1\n2\n3\n4", "output": "NO" }, { "input": "8\n1\n1\n2\n2\n3\n3\n4\n4", "output": "NO" }, { "input": "4\n1\n3\n2\n4", "output": "NO" }, { "input": "4\n10\n10\n10\n20", "output": "NO" }, { "input": "4\n11\n12\n13\n13", "output": "NO" }, { "input": "4\n1\n1\n1\n3", "output": "NO" }, { "input": "6\n1\n1\n2\n2\n2\n2", "output": "NO" }, { "input": "10\n1\n1\n2\n2\n2\n3\n3\n4\n4\n4", "output": "NO" } ]
1,550,392,705
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
77
0
n=int(input()) arr1=[int(input()) for _ in range(n)] arr2=set(arr1) if len(arr2)==2 and arr1.count(arr2[0])==arr1.count(arr2[1]): print('YES') print(*arr2) print('NO')
Title: Fair Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya and Vasya decided to play a game. They have *n* cards (*n* is an even number). A single integer is written on each card. Before the game Petya will choose an integer and after that Vasya will choose another integer (different from the number that Petya chose). During the game each player takes all the cards with number he chose. For example, if Petya chose number 5 before the game he will take all cards on which 5 is written and if Vasya chose number 10 before the game he will take all cards on which 10 is written. The game is considered fair if Petya and Vasya can take all *n* cards, and the number of cards each player gets is the same. Determine whether Petya and Vasya can choose integer numbers before the game so that the game is fair. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100) — number of cards. It is guaranteed that *n* is an even number. The following *n* lines contain a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (one integer per line, 1<=≤<=*a**i*<=≤<=100) — numbers written on the *n* cards. Output Specification: If it is impossible for Petya and Vasya to choose numbers in such a way that the game will be fair, print "NO" (without quotes) in the first line. In this case you should not print anything more. In the other case print "YES" (without quotes) in the first line. In the second line print two distinct integers — number that Petya should choose and the number that Vasya should choose to make the game fair. If there are several solutions, print any of them. Demo Input: ['4\n11\n27\n27\n11\n', '2\n6\n6\n', '6\n10\n20\n30\n20\n10\n20\n', '6\n1\n1\n2\n2\n3\n3\n'] Demo Output: ['YES\n11 27\n', 'NO\n', 'NO\n', 'NO\n'] Note: In the first example the game will be fair if, for example, Petya chooses number 11, and Vasya chooses number 27. Then the will take all cards — Petya will take cards 1 and 4, and Vasya will take cards 2 and 3. Thus, each of them will take exactly two cards. In the second example fair game is impossible because the numbers written on the cards are equal, but the numbers that Petya and Vasya should choose should be distinct. In the third example it is impossible to take all cards. Petya and Vasya can take at most five cards — for example, Petya can choose number 10 and Vasya can choose number 20. But for the game to be fair it is necessary to take 6 cards.
```python n=int(input()) arr1=[int(input()) for _ in range(n)] arr2=set(arr1) if len(arr2)==2 and arr1.count(arr2[0])==arr1.count(arr2[1]): print('YES') print(*arr2) print('NO') ```
-1
26
A
Almost Prime
PROGRAMMING
900
[ "number theory" ]
A. Almost Prime
2
256
A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive.
Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000).
Output the amount of almost prime numbers between 1 and *n*, inclusive.
[ "10\n", "21\n" ]
[ "2\n", "8\n" ]
none
500
[ { "input": "10", "output": "2" }, { "input": "21", "output": "8" }, { "input": "1", "output": "0" }, { "input": "2", "output": "0" }, { "input": "4", "output": "0" }, { "input": "3", "output": "0" }, { "input": "8", "output": "1" }, { "input": "19", "output": "6" }, { "input": "40", "output": "19" }, { "input": "77", "output": "41" }, { "input": "222", "output": "125" }, { "input": "987", "output": "501" }, { "input": "1000", "output": "508" }, { "input": "2000", "output": "958" }, { "input": "3000", "output": "1375" }, { "input": "2999", "output": "1375" }, { "input": "2998", "output": "1375" }, { "input": "2997", "output": "1374" }, { "input": "1429", "output": "706" }, { "input": "1673", "output": "808" }, { "input": "1500", "output": "732" }, { "input": "500", "output": "266" }, { "input": "856", "output": "439" } ]
1,664,033,661
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
14
92
0
c = int(input()) cou = 0 p = [0 for i in range(3005)] for i in range(2,1005): if p[i] == 0: for j in range(2*i,3005,i): p[j] += 1 for i in range(1,c+1): if p[i] == 2: cou += 1 print (cou)
Title: Almost Prime Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and *n*, inclusive. Input Specification: Input contains one integer number *n* (1<=≤<=*n*<=≤<=3000). Output Specification: Output the amount of almost prime numbers between 1 and *n*, inclusive. Demo Input: ['10\n', '21\n'] Demo Output: ['2\n', '8\n'] Note: none
```python c = int(input()) cou = 0 p = [0 for i in range(3005)] for i in range(2,1005): if p[i] == 0: for j in range(2*i,3005,i): p[j] += 1 for i in range(1,c+1): if p[i] == 2: cou += 1 print (cou) ```
0
70
A
Cookies
PROGRAMMING
1,300
[ "math" ]
A. Cookies
1
256
Fangy collects cookies. Once he decided to take a box and put cookies into it in some way. If we take a square *k*<=×<=*k* in size, divided into blocks 1<=×<=1 in size and paint there the main diagonal together with cells, which lie above it, then the painted area will be equal to the area occupied by one cookie *k* in size. Fangy also has a box with a square base 2*n*<=×<=2*n*, divided into blocks 1<=×<=1 in size. In a box the cookies should not overlap, and they should not be turned over or rotated. See cookies of sizes 2 and 4 respectively on the figure: To stack the cookies the little walrus uses the following algorithm. He takes out of the repository the largest cookie which can fit in some place in the box and puts it there. Everything could be perfect but alas, in the repository the little walrus has infinitely many cookies of size 2 and larger, and there are no cookies of size 1, therefore, empty cells will remain in the box. Fangy wants to know how many empty cells will be left in the end.
The first line contains a single integer *n* (0<=≤<=*n*<=≤<=1000).
Print the single number, equal to the number of empty cells in the box. The answer should be printed modulo 106<=+<=3.
[ "3\n" ]
[ "9" ]
If the box possesses the base of 2<sup class="upper-index">3</sup> × 2<sup class="upper-index">3</sup> (as in the example), then the cookies will be put there in the following manner:
500
[ { "input": "3", "output": "9" }, { "input": "1", "output": "1" }, { "input": "2", "output": "3" }, { "input": "4", "output": "27" }, { "input": "6", "output": "243" }, { "input": "11", "output": "59049" }, { "input": "14", "output": "594320" }, { "input": "15", "output": "782957" }, { "input": "7", "output": "729" }, { "input": "0", "output": "1" }, { "input": "1000", "output": "691074" }, { "input": "657", "output": "874011" }, { "input": "561", "output": "842553" }, { "input": "823", "output": "858672" }, { "input": "850", "output": "557186" }, { "input": "298", "output": "999535" }, { "input": "262", "output": "946384" }, { "input": "910", "output": "678945" }, { "input": "617", "output": "247876" }, { "input": "857", "output": "562128" }, { "input": "69", "output": "327984" }, { "input": "589", "output": "889192" }, { "input": "928", "output": "794863" }, { "input": "696", "output": "695035" }, { "input": "226", "output": "376094" } ]
1,673,782,170
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
9
61
0
n = int(input()) count = (3**(n-1)) % ((10**6) + 3) if n > 0: print(count) else: print(0)
Title: Cookies Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Fangy collects cookies. Once he decided to take a box and put cookies into it in some way. If we take a square *k*<=×<=*k* in size, divided into blocks 1<=×<=1 in size and paint there the main diagonal together with cells, which lie above it, then the painted area will be equal to the area occupied by one cookie *k* in size. Fangy also has a box with a square base 2*n*<=×<=2*n*, divided into blocks 1<=×<=1 in size. In a box the cookies should not overlap, and they should not be turned over or rotated. See cookies of sizes 2 and 4 respectively on the figure: To stack the cookies the little walrus uses the following algorithm. He takes out of the repository the largest cookie which can fit in some place in the box and puts it there. Everything could be perfect but alas, in the repository the little walrus has infinitely many cookies of size 2 and larger, and there are no cookies of size 1, therefore, empty cells will remain in the box. Fangy wants to know how many empty cells will be left in the end. Input Specification: The first line contains a single integer *n* (0<=≤<=*n*<=≤<=1000). Output Specification: Print the single number, equal to the number of empty cells in the box. The answer should be printed modulo 106<=+<=3. Demo Input: ['3\n'] Demo Output: ['9'] Note: If the box possesses the base of 2<sup class="upper-index">3</sup> × 2<sup class="upper-index">3</sup> (as in the example), then the cookies will be put there in the following manner:
```python n = int(input()) count = (3**(n-1)) % ((10**6) + 3) if n > 0: print(count) else: print(0) ```
0
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,680,283,201
2,147,483,647
Python 3
OK
TESTS
40
92
0
s=input() t=input() x='' for i in range(len(t)-1,-1,-1): x+=t[i] if s==x: print('YES') else: print('NO')
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python s=input() t=input() x='' for i in range(len(t)-1,-1,-1): x+=t[i] if s==x: print('YES') else: print('NO') ```
3.977
665
D
Simple Subset
PROGRAMMING
1,800
[ "constructive algorithms", "greedy", "number theory" ]
null
null
A tuple of positive integers {*x*1,<=*x*2,<=...,<=*x**k*} is called simple if for all pairs of positive integers (*i*,<=<=*j*) (1<=<=≤<=*i*<=<=&lt;<=<=*j*<=≤<=*k*), *x**i*<=<=+<=<=*x**j* is a prime. You are given an array *a* with *n* positive integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n* (not necessary distinct). You want to find a simple subset of the array *a* with the maximum size. A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. Let's define a subset of the array *a* as a tuple that can be obtained from *a* by removing some (possibly all) elements of it.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of integers in the array *a*. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the elements of the array *a*.
On the first line print integer *m* — the maximum possible size of simple subset of *a*. On the second line print *m* integers *b**l* — the elements of the simple subset of the array *a* with the maximum size. If there is more than one solution you can print any of them. You can print the elements of the subset in any order.
[ "2\n2 3\n", "2\n2 2\n", "3\n2 1 1\n", "2\n83 14\n" ]
[ "2\n3 2\n", "1\n2\n", "3\n1 1 2\n", "2\n14 83\n" ]
none
0
[ { "input": "2\n2 3", "output": "2\n3 2" }, { "input": "2\n2 2", "output": "1\n2" }, { "input": "3\n2 1 1", "output": "3\n1 1 2" }, { "input": "2\n83 14", "output": "2\n14 83" }, { "input": "10\n10 10 1 2 3 3 1 2 1 5", "output": "4\n1 1 10 1" }, { "input": "100\n314 905 555 526 981 360 424 104 920 814 143 872 741 592 105 573 837 962 220 692 560 493 889 824 145 491 828 960 889 87 375 486 609 423 386 323 124 830 206 446 899 522 514 696 786 783 268 483 318 261 675 445 1000 896 812 277 131 264 860 514 701 678 792 394 324 244 483 357 69 931 590 452 626 451 976 317 722 564 809 40 265 709 13 700 769 869 131 834 712 478 661 369 805 668 512 184 477 896 808 168", "output": "2\n104 905" }, { "input": "100\n174 816 593 727 182 151 842 277 1 942 307 939 447 738 823 744 319 394 515 451 875 950 319 789 384 292 190 758 927 103 246 1 675 42 398 631 382 893 646 2 773 157 992 425 804 565 500 242 2 657 611 647 4 331 99 1 694 18 119 364 458 569 94 999 72 7 297 102 982 859 786 868 178 393 642 254 707 41 103 764 934 70 775 41 188 199 767 64 84 899 626 224 279 188 659 374 105 178 154 758", "output": "4\n1 1 738 1" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" }, { "input": "100\n966 680 370 134 202 826 254 620 700 336 938 344 368 108 732 130 134 700 996 904 644 734 184 134 996 46 146 928 320 664 304 160 358 306 330 132 674 16 338 138 926 994 196 960 972 972 756 276 600 982 588 978 868 572 446 578 692 976 780 434 882 344 980 536 856 916 966 936 178 300 294 568 984 54 238 718 582 400 572 142 118 306 222 850 948 954 682 256 70 550 830 980 646 970 688 56 552 592 200 682", "output": "1\n966" }, { "input": "100\n598 236 971 958 277 96 651 366 629 50 601 822 744 326 276 330 413 531 791 655 450 173 992 80 401 760 227 64 350 711 258 545 212 690 996 515 983 835 388 311 970 608 185 164 491 419 295 293 274 93 339 761 155 307 991 857 309 957 563 232 328 682 779 637 312 888 305 184 15 556 427 211 327 313 516 815 914 588 592 988 151 839 828 339 196 462 752 454 865 479 356 529 320 59 908 840 294 882 189 6", "output": "2\n96 277" }, { "input": "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 204239 1 194239 216480", "output": "18\n1 1 1 1 1 1 1 216480 1 1 1 1 1 1 1 1 1 1" }, { "input": "10\n4 3 1 1 1 1 1 1 1 1", "output": "9\n4 1 1 1 1 1 1 1 1" }, { "input": "2\n1000000 1000000", "output": "1\n1000000" }, { "input": "1\n4", "output": "1\n4" }, { "input": "1\n1", "output": "1\n1" }, { "input": "2\n999997 999994", "output": "1\n999997" }, { "input": "5\n1 1 1 8 9", "output": "3\n1 1 1" }, { "input": "3\n1 5 8", "output": "2\n8 5" }, { "input": "2\n999996 999997", "output": "2\n999997 999996" }, { "input": "2\n1 2", "output": "2\n1 2" }, { "input": "3\n1 8 9", "output": "2\n9 8" }, { "input": "2\n1 1", "output": "2\n1 1" }, { "input": "2\n1 3", "output": "1\n1" }, { "input": "3\n1 9 8", "output": "2\n8 9" }, { "input": "6\n1 3 3 3 3 20", "output": "2\n20 3" }, { "input": "1\n3", "output": "1\n3" }, { "input": "2\n3 3", "output": "1\n3" }, { "input": "5\n1 1 1 8 3", "output": "3\n1 1 1" }, { "input": "1\n9", "output": "1\n9" }, { "input": "3\n2 4 7", "output": "2\n7 4" }, { "input": "6\n2 5 1 1 1 1", "output": "5\n2 1 1 1 1" }, { "input": "3\n1 3 14", "output": "2\n14 3" }, { "input": "1\n6", "output": "1\n6" }, { "input": "3\n2 7 12", "output": "2\n12 7" }, { "input": "3\n3 6 7", "output": "2\n7 6" }, { "input": "3\n7 3 2", "output": "2\n2 3" }, { "input": "3\n1 8 5", "output": "2\n5 8" }, { "input": "2\n1000000 999993", "output": "2\n999993 1000000" }, { "input": "5\n1 5 8 1 1", "output": "3\n1 1 1" }, { "input": "1\n8", "output": "1\n8" }, { "input": "3\n1 13 13", "output": "1\n1" }, { "input": "3\n5 8 1", "output": "2\n8 5" }, { "input": "3\n8 1 5", "output": "2\n5 8" }, { "input": "3\n1 3 8", "output": "2\n8 3" }, { "input": "2\n1 9", "output": "1\n1" }, { "input": "2\n5 5", "output": "1\n5" }, { "input": "1\n5", "output": "1\n5" }, { "input": "3\n1 83 14", "output": "2\n14 83" }, { "input": "5\n123445 32892 32842 432721 39234", "output": "1\n123445" } ]
1,606,212,310
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
4
202
9,318,400
#besme taala #ya_hossein q = (1000000 + 1)*[0] prime = (1000000 + 1)*[0] for i in range(2 ,int(1e6 + 1)): for j in range(2*i,int(1e6 + 1), i): prime[j] = 1 n = int(input()) a = list(map(int, input().split())) for i in range(len(a)): q[a[i]] += 1 if q[1] >= 2: print(q[1] + q[2]) for i in range(q[1]): print(1, end=' ') for i in range(min(1, q[2])): print(2, end=' ') exit(0) for i in range(len(a)): for j in range(i + 1, len(a)): if prime[a[i] + a[j]] == 0: print(2) print(a[i], a[j]) exit(0) print(1) print(a[0])
Title: Simple Subset Time Limit: None seconds Memory Limit: None megabytes Problem Description: A tuple of positive integers {*x*1,<=*x*2,<=...,<=*x**k*} is called simple if for all pairs of positive integers (*i*,<=<=*j*) (1<=<=≤<=*i*<=<=&lt;<=<=*j*<=≤<=*k*), *x**i*<=<=+<=<=*x**j* is a prime. You are given an array *a* with *n* positive integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n* (not necessary distinct). You want to find a simple subset of the array *a* with the maximum size. A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. Let's define a subset of the array *a* as a tuple that can be obtained from *a* by removing some (possibly all) elements of it. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of integers in the array *a*. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the elements of the array *a*. Output Specification: On the first line print integer *m* — the maximum possible size of simple subset of *a*. On the second line print *m* integers *b**l* — the elements of the simple subset of the array *a* with the maximum size. If there is more than one solution you can print any of them. You can print the elements of the subset in any order. Demo Input: ['2\n2 3\n', '2\n2 2\n', '3\n2 1 1\n', '2\n83 14\n'] Demo Output: ['2\n3 2\n', '1\n2\n', '3\n1 1 2\n', '2\n14 83\n'] Note: none
```python #besme taala #ya_hossein q = (1000000 + 1)*[0] prime = (1000000 + 1)*[0] for i in range(2 ,int(1e6 + 1)): for j in range(2*i,int(1e6 + 1), i): prime[j] = 1 n = int(input()) a = list(map(int, input().split())) for i in range(len(a)): q[a[i]] += 1 if q[1] >= 2: print(q[1] + q[2]) for i in range(q[1]): print(1, end=' ') for i in range(min(1, q[2])): print(2, end=' ') exit(0) for i in range(len(a)): for j in range(i + 1, len(a)): if prime[a[i] + a[j]] == 0: print(2) print(a[i], a[j]) exit(0) print(1) print(a[0]) ```
0
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,642,791,639
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
62
0
kare=input() kenar1=int(kare[0]) kenar2=int(kare[-1]) alan=kenar1*kenar2 print(int(alan/2))
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python kare=input() kenar1=int(kare[0]) kenar2=int(kare[-1]) alan=kenar1*kenar2 print(int(alan/2)) ```
0
18
C
Stripe
PROGRAMMING
1,200
[ "data structures", "implementation" ]
C. Stripe
2
64
Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem?
The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value.
Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only.
[ "9\n1 5 -6 7 9 -16 0 -2 2\n", "3\n1 1 1\n", "2\n0 0\n" ]
[ "3\n", "0\n", "1\n" ]
none
0
[ { "input": "9\n1 5 -6 7 9 -16 0 -2 2", "output": "3" }, { "input": "3\n1 1 1", "output": "0" }, { "input": "2\n0 0", "output": "1" }, { "input": "4\n100 1 10 111", "output": "1" }, { "input": "10\n0 4 -3 0 -2 2 -3 -3 2 5", "output": "3" }, { "input": "10\n0 -1 2 2 -1 1 0 0 0 2", "output": "0" }, { "input": "10\n-1 -1 1 -1 0 1 0 1 1 1", "output": "1" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "9" }, { "input": "50\n-4 -3 3 4 -1 0 2 -4 -3 -4 1 4 3 0 4 1 0 -3 4 -3 -2 2 2 1 0 -4 -4 -5 3 2 -1 4 5 -3 -3 4 4 -5 2 -3 4 -5 2 5 -4 4 1 -2 -4 3", "output": "3" }, { "input": "15\n0 4 0 3 -1 4 -2 -2 -4 -4 3 2 4 -1 -3", "output": "0" }, { "input": "10\n3 -1 -3 -1 3 -2 0 3 1 -2", "output": "0" }, { "input": "100\n-4 2 4 4 1 3 -3 -3 2 1 -4 0 0 2 3 -1 -4 -3 4 -2 -3 -3 -3 -1 -2 -3 -1 -4 0 4 0 -1 4 0 -4 -4 4 -4 -2 1 -4 1 -3 -2 3 -4 4 0 -1 3 -1 4 -1 4 -1 3 -3 -3 -2 -2 4 -3 -3 4 -3 -2 -1 0 -2 4 0 -3 -1 -2 -3 1 -4 1 -3 -3 -3 -2 -3 0 1 -2 -2 -4 -3 -1 2 3 -1 1 1 0 3 -3 -1 -2", "output": "1" }, { "input": "100\n-2 -1 1 0 -2 -1 2 2 0 0 2 1 0 2 0 2 1 0 -1 -1 -1 0 -2 -1 2 -1 -2 2 -2 2 -2 -2 2 1 1 1 -2 2 0 0 2 -1 2 2 2 0 -1 -1 -1 1 -2 2 2 2 -2 0 0 -2 0 -2 -2 0 -1 -1 -2 -1 1 2 -2 -1 1 -2 -1 0 -2 2 2 -1 -2 2 0 0 0 1 0 1 2 1 -2 -2 -1 -1 -2 -2 -2 -1 2 2 2 -2", "output": "6" }, { "input": "100\n2 7 6 0 8 -2 0 1 8 -1 7 -4 -1 1 0 3 4 -4 3 7 8 -4 -6 6 4 -2 -5 7 4 6 1 6 3 8 -2 6 -6 -3 0 -1 -7 -8 -2 5 8 6 -2 -2 -5 -4 -7 -3 -5 -3 -3 -1 5 8 4 0 -7 -6 8 -4 -1 7 2 6 6 4 -5 -4 -5 -2 2 -2 -7 -1 5 -8 -6 -2 -5 4 2 8 -6 7 -8 -1 -5 8 6 -3 -1 7 -1 2 -8 -8", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "1\n10000", "output": "0" }, { "input": "1\n-10000", "output": "0" } ]
1,679,857,251
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
122
0
n = int(input()) values = list(map(int, input().split(' '))) prefix_sum = [] sum = 0 for i in range(n): sum += values[i] prefix_sum.append(sum) theset = set(prefix_sum) print(n - len(theset))
Title: Stripe Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Once Bob took a paper stripe of *n* squares (the height of the stripe is 1 square). In each square he wrote an integer number, possibly negative. He became interested in how many ways exist to cut this stripe into two pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece, and each piece contains positive integer amount of squares. Would you help Bob solve this problem? Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=105) — amount of squares in the stripe. The second line contains *n* space-separated numbers — they are the numbers written in the squares of the stripe. These numbers are integer and do not exceed 10000 in absolute value. Output Specification: Output the amount of ways to cut the stripe into two non-empty pieces so that the sum of numbers from one piece is equal to the sum of numbers from the other piece. Don't forget that it's allowed to cut the stripe along the squares' borders only. Demo Input: ['9\n1 5 -6 7 9 -16 0 -2 2\n', '3\n1 1 1\n', '2\n0 0\n'] Demo Output: ['3\n', '0\n', '1\n'] Note: none
```python n = int(input()) values = list(map(int, input().split(' '))) prefix_sum = [] sum = 0 for i in range(n): sum += values[i] prefix_sum.append(sum) theset = set(prefix_sum) print(n - len(theset)) ```
0
545
C
Woodcutters
PROGRAMMING
1,500
[ "dp", "greedy" ]
null
null
Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below. There are *n* trees located along the road at points with coordinates *x*1,<=*x*2,<=...,<=*x**n*. Each tree has its height *h**i*. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [*x**i*<=-<=*h**i*,<=*x**i*] or [*x**i*;*x**i*<=+<=*h**i*]. The tree that is not cut down occupies a single point with coordinate *x**i*. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of trees. Next *n* lines contain pairs of integers *x**i*,<=*h**i* (1<=≤<=*x**i*,<=*h**i*<=≤<=109) — the coordinate and the height of the *і*-th tree. The pairs are given in the order of ascending *x**i*. No two trees are located at the point with the same coordinate.
Print a single number — the maximum number of trees that you can cut down by the given rules.
[ "5\n1 2\n2 1\n5 10\n10 9\n19 1\n", "5\n1 2\n2 1\n5 10\n10 9\n20 1\n" ]
[ "3\n", "4\n" ]
In the first sample you can fell the trees like that: - fell the 1-st tree to the left — now it occupies segment [ - 1;1] - fell the 2-nd tree to the right — now it occupies segment [2;3] - leave the 3-rd tree — it occupies point 5 - leave the 4-th tree — it occupies point 10 - fell the 5-th tree to the right — now it occupies segment [19;20] In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19].
1,750
[ { "input": "5\n1 2\n2 1\n5 10\n10 9\n19 1", "output": "3" }, { "input": "5\n1 2\n2 1\n5 10\n10 9\n20 1", "output": "4" }, { "input": "4\n10 4\n15 1\n19 3\n20 1", "output": "4" }, { "input": "35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 10\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4", "output": "10" }, { "input": "40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 1\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1", "output": "2" }, { "input": "67\n1 1\n3 8\n4 10\n7 8\n9 2\n10 1\n11 5\n12 8\n13 4\n16 6\n18 3\n19 3\n22 5\n24 6\n27 5\n28 3\n29 3\n30 5\n32 5\n33 10\n34 7\n35 8\n36 5\n41 3\n42 2\n43 5\n46 4\n48 4\n49 9\n52 4\n53 9\n55 1\n56 4\n59 7\n68 7\n69 4\n71 9\n72 10\n74 5\n76 4\n77 9\n80 7\n81 9\n82 5\n83 5\n84 9\n85 7\n86 9\n87 4\n88 7\n89 10\n90 3\n91 5\n92 10\n93 5\n94 8\n95 4\n96 2\n97 10\n98 1\n99 3\n100 1\n101 5\n102 4\n103 8\n104 8\n105 8", "output": "5" }, { "input": "1\n1000000000 1000000000", "output": "1" }, { "input": "10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n87 1", "output": "9" }, { "input": "3\n1 1\n1000 1000\n1000000000 1000000000", "output": "3" }, { "input": "2\n1 999999999\n1000000000 1000000000", "output": "2" }, { "input": "10\n999999900 1000000000\n999999901 1000000000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000", "output": "2" }, { "input": "2\n100000000 1000000000\n1000000000 1000000000", "output": "2" } ]
1,692,327,942
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
7
139
16,588,800
import sys input = sys.stdin.readline MOD=10**9+7 if __name__ == '__main__': n=int(input()) arr=list() for _ in range(n): arr.append(list(map(int, input().split()))) if n<=2: print(n) exit() left=True res=2 for i in range(1,n-1): if left and arr[i][1]<arr[i][0]-arr[i-1][0]: res+=1 elif arr[i][1]<arr[i+1][0]-arr[i][0]: res +=1 left=False else: left=True print(res)
Title: Woodcutters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below. There are *n* trees located along the road at points with coordinates *x*1,<=*x*2,<=...,<=*x**n*. Each tree has its height *h**i*. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [*x**i*<=-<=*h**i*,<=*x**i*] or [*x**i*;*x**i*<=+<=*h**i*]. The tree that is not cut down occupies a single point with coordinate *x**i*. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of trees. Next *n* lines contain pairs of integers *x**i*,<=*h**i* (1<=≤<=*x**i*,<=*h**i*<=≤<=109) — the coordinate and the height of the *і*-th tree. The pairs are given in the order of ascending *x**i*. No two trees are located at the point with the same coordinate. Output Specification: Print a single number — the maximum number of trees that you can cut down by the given rules. Demo Input: ['5\n1 2\n2 1\n5 10\n10 9\n19 1\n', '5\n1 2\n2 1\n5 10\n10 9\n20 1\n'] Demo Output: ['3\n', '4\n'] Note: In the first sample you can fell the trees like that: - fell the 1-st tree to the left — now it occupies segment [ - 1;1] - fell the 2-nd tree to the right — now it occupies segment [2;3] - leave the 3-rd tree — it occupies point 5 - leave the 4-th tree — it occupies point 10 - fell the 5-th tree to the right — now it occupies segment [19;20] In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19].
```python import sys input = sys.stdin.readline MOD=10**9+7 if __name__ == '__main__': n=int(input()) arr=list() for _ in range(n): arr.append(list(map(int, input().split()))) if n<=2: print(n) exit() left=True res=2 for i in range(1,n-1): if left and arr[i][1]<arr[i][0]-arr[i-1][0]: res+=1 elif arr[i][1]<arr[i+1][0]-arr[i][0]: res +=1 left=False else: left=True print(res) ```
0
445
B
DZY Loves Chemistry
PROGRAMMING
1,400
[ "dfs and similar", "dsu", "greedy" ]
null
null
DZY loves chemistry, and he enjoys mixing chemicals. DZY has *n* chemicals, and *m* pairs of them will react. He wants to pour these chemicals into a test tube, and he needs to pour them in one by one, in any order. Let's consider the danger of a test tube. Danger of an empty test tube is 1. And every time when DZY pours a chemical, if there are already one or more chemicals in the test tube that can react with it, the danger of the test tube will be multiplied by 2. Otherwise the danger remains as it is. Find the maximum possible danger after pouring all the chemicals one by one in optimal order.
The first line contains two space-separated integers *n* and *m* . Each of the next *m* lines contains two space-separated integers *x**i* and *y**i* (1<=≤<=*x**i*<=&lt;<=*y**i*<=≤<=*n*). These integers mean that the chemical *x**i* will react with the chemical *y**i*. Each pair of chemicals will appear at most once in the input. Consider all the chemicals numbered from 1 to *n* in some order.
Print a single integer — the maximum possible danger.
[ "1 0\n", "2 1\n1 2\n", "3 2\n1 2\n2 3\n" ]
[ "1\n", "2\n", "4\n" ]
In the first sample, there's only one way to pour, and the danger won't increase. In the second sample, no matter we pour the 1st chemical first, or pour the 2nd chemical first, the answer is always 2. In the third sample, there are four ways to achieve the maximum possible danger: 2-1-3, 2-3-1, 1-2-3 and 3-2-1 (that is the numbers of the chemicals in order of pouring).
1,000
[ { "input": "1 0", "output": "1" }, { "input": "2 1\n1 2", "output": "2" }, { "input": "3 2\n1 2\n2 3", "output": "4" }, { "input": "10 10\n1 8\n4 10\n4 6\n5 10\n2 3\n1 7\n3 4\n3 6\n6 9\n3 7", "output": "512" }, { "input": "20 20\n6 8\n13 20\n7 13\n6 17\n5 15\n1 12\n2 15\n5 17\n5 14\n6 14\n12 20\n7 20\n1 6\n1 7\n2 19\n14 17\n1 10\n11 15\n9 18\n2 12", "output": "32768" }, { "input": "30 30\n7 28\n16 26\n14 24\n16 18\n20 29\n4 28\n19 21\n8 26\n1 25\n14 22\n13 23\n4 15\n15 16\n2 19\n29 30\n12 20\n3 4\n3 26\n3 11\n22 27\n5 16\n2 24\n2 18\n7 16\n17 21\n17 25\n8 15\n23 27\n12 21\n5 30", "output": "67108864" }, { "input": "40 40\n28 33\n15 21\n12 29\n14 31\n2 26\n3 12\n25 34\n6 30\n6 25\n5 28\n9 17\n23 29\n30 36\n3 21\n35 37\n7 25\n29 39\n15 19\n12 35\n24 34\n15 25\n19 33\n26 31\n7 29\n1 40\n11 27\n6 9\n6 27\n36 39\n10 14\n6 16\n23 25\n2 38\n3 24\n30 31\n29 30\n4 12\n11 13\n14 40\n22 39", "output": "34359738368" }, { "input": "50 50\n16 21\n23 47\n23 30\n2 12\n23 41\n3 16\n14 20\n4 49\n2 47\n19 29\n13 42\n5 8\n24 38\n13 32\n34 37\n38 46\n3 20\n27 50\n7 42\n33 45\n2 48\n41 47\n9 48\n15 26\n27 37\n32 34\n17 24\n1 39\n27 30\n10 33\n38 47\n32 33\n14 39\n35 50\n2 19\n3 12\n27 34\n18 25\n12 23\n31 44\n5 35\n28 45\n38 39\n13 44\n34 38\n16 46\n5 15\n26 30\n47 49\n2 10", "output": "4398046511104" }, { "input": "50 0", "output": "1" }, { "input": "50 7\n16 32\n31 34\n4 16\n4 39\n1 50\n43 49\n1 33", "output": "128" }, { "input": "7 20\n2 3\n3 6\n1 6\n1 2\n3 5\n1 7\n4 5\n4 7\n1 3\n2 6\n2 7\n4 6\n3 4\n1 4\n3 7\n1 5\n2 5\n5 6\n5 7\n2 4", "output": "64" }, { "input": "5 4\n1 2\n2 3\n3 4\n4 5", "output": "16" }, { "input": "10 7\n1 2\n2 3\n1 5\n2 7\n7 8\n1 9\n9 10", "output": "128" }, { "input": "20 15\n1 3\n3 4\n3 5\n4 6\n1 7\n1 8\n1 9\n7 11\n8 12\n5 13\n3 16\n1 17\n3 18\n1 19\n17 20", "output": "32768" }, { "input": "30 24\n2 3\n3 4\n1 5\n4 6\n6 7\n1 8\n1 9\n4 10\n9 11\n5 12\n6 13\n10 14\n14 15\n12 16\n14 17\n2 18\n8 19\n3 20\n10 21\n11 24\n3 25\n1 26\n7 27\n4 29", "output": "16777216" }, { "input": "40 28\n1 2\n2 4\n3 5\n1 7\n1 8\n7 9\n6 10\n7 11\n2 12\n9 13\n11 15\n12 16\n1 18\n10 19\n7 21\n7 23\n20 25\n24 27\n14 28\n9 29\n23 30\n27 31\n11 34\n21 35\n32 36\n23 38\n7 39\n20 40", "output": "268435456" }, { "input": "50 41\n1 2\n1 3\n2 4\n1 5\n2 7\n4 8\n7 9\n2 11\n10 13\n11 14\n12 15\n14 16\n4 19\n7 20\n14 21\n8 23\n16 24\n16 25\n16 26\n19 27\n2 28\n3 29\n21 30\n12 31\n20 32\n23 33\n30 34\n6 35\n34 36\n34 37\n33 38\n34 40\n30 41\n3 42\n39 43\n5 44\n8 45\n40 46\n20 47\n31 49\n34 50", "output": "2199023255552" }, { "input": "50 39\n1 2\n1 4\n5 6\n4 7\n5 8\n7 9\n9 10\n10 11\n2 12\n8 14\n11 15\n11 17\n3 18\n13 19\n17 20\n7 21\n6 22\n22 23\n14 24\n22 25\n23 26\n26 27\n27 28\n15 29\n8 30\n26 31\n32 33\n21 35\n14 36\n30 37\n17 38\n12 40\n11 42\n14 43\n12 44\n1 45\n29 46\n22 47\n47 50", "output": "549755813888" }, { "input": "50 38\n1 2\n2 3\n3 4\n3 5\n4 7\n5 10\n9 11\n9 12\n11 13\n12 14\n6 15\n8 16\n2 18\n15 19\n3 20\n10 21\n4 22\n9 24\n2 25\n23 26\n3 28\n20 29\n14 30\n4 32\n24 33\n20 36\n1 38\n19 39\n39 40\n22 41\n18 42\n19 43\n40 45\n45 46\n9 47\n6 48\n9 49\n25 50", "output": "274877906944" }, { "input": "50 41\n1 3\n1 4\n2 5\n2 7\n1 8\n2 10\n4 11\n5 12\n12 13\n4 14\n10 17\n1 18\n1 21\n5 22\n14 23\n19 24\n13 25\n3 26\n11 27\n6 28\n26 29\n21 30\n17 31\n15 32\n1 33\n12 34\n23 36\n6 37\n15 38\n37 39\n31 40\n15 41\n25 42\n19 43\n20 44\n32 45\n44 46\n31 47\n2 48\n32 49\n27 50", "output": "2199023255552" }, { "input": "50 47\n1 2\n1 3\n1 4\n1 5\n5 6\n2 7\n2 8\n2 9\n2 10\n8 11\n5 12\n11 13\n10 14\n6 15\n9 16\n1 17\n1 18\n8 19\n5 20\n5 21\n11 22\n2 23\n22 24\n24 25\n5 26\n21 27\n27 28\n8 29\n2 30\n4 31\n11 32\n17 33\n22 34\n25 35\n28 36\n28 37\n11 38\n17 39\n19 42\n6 43\n11 44\n29 45\n2 46\n24 47\n7 48\n3 49\n44 50", "output": "140737488355328" }, { "input": "11 20\n3 6\n2 6\n2 9\n4 5\n9 11\n6 8\n5 6\n1 6\n4 11\n9 10\n5 10\n4 6\n3 8\n2 3\n1 7\n1 11\n2 7\n1 3\n3 7\n1 8", "output": "1024" }, { "input": "26 17\n1 2\n2 3\n1 6\n6 7\n7 8\n2 9\n4 10\n3 11\n11 12\n9 13\n6 14\n2 16\n5 18\n6 19\n11 22\n15 24\n6 26", "output": "131072" }, { "input": "48 43\n1 2\n1 3\n3 4\n4 5\n2 6\n5 7\n7 9\n4 10\n6 11\n3 12\n6 13\n3 14\n6 15\n13 16\n4 17\n12 18\n18 19\n1 20\n1 21\n16 22\n9 23\n3 24\n22 25\n2 26\n10 27\n18 28\n13 30\n3 31\n24 33\n29 34\n15 35\n16 36\n23 37\n21 38\n34 39\n37 40\n39 41\n19 42\n15 43\n23 44\n22 45\n14 47\n10 48", "output": "8796093022208" }, { "input": "8 5\n1 2\n1 3\n1 4\n5 6\n7 8", "output": "32" }, { "input": "8 7\n1 2\n2 3\n3 4\n1 4\n5 6\n6 7\n7 8", "output": "64" } ]
1,665,423,451
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
46
307,200
import timeit numbers = list(map(int , input().split())) info = [] hash_table = {} # start = timeit.default_timer() for i in range(0 , numbers[0]) : x = { "name" : i+1 , "react" : [] } info.append(x) hash_table[i+1] = len(info) - 1 for i in range(0 , numbers[1] ) : x = list(map(int , input().split())) info[hash_table[x[0]]]['react'].append(x[1]) info[hash_table[x[1]]]['react'].append(x[0]) count = 0 path = [] have = {} step = "" count1 = 0 danger = 0 strong_path = 0 while count < len(info) : if len(path) == 0 : path.append([count , info[count]['name'] , 0 , 0] ) have[info[count]['name']] = True count += 1 step = "forward" count1 = 0 elif step == "forward" : y = path[len(path) - 1] z = hash_table[y[1]] v = info[z] h = v['react'] if count1 >= len(h) : step='backword' elif h[count1] in have : count1 += 1 else : path[-1][-1] = count1 path.append([z , h[count1] , y[2] + 1 , 0]) have[h[count1]] = True count1 = 0 elif step == "backword" : y = path[-1] if danger < path[-1][-2] : danger = path[-1][-2] strong_path = [path[i][1] for i in range (0 , len(path))] have.pop(y[1]) path.pop() if len(path) != 0 : count1 = path[-1][-1] + 1 step = "forward" lol = [ i for i in range (1 , numbers[1]+1) if not i in strong_path ] for i in lol : x = [j for j in info[hash_table[i]]['react'] if j in strong_path] if len(x) > 0 : danger += 1 print(2**danger)
Title: DZY Loves Chemistry Time Limit: None seconds Memory Limit: None megabytes Problem Description: DZY loves chemistry, and he enjoys mixing chemicals. DZY has *n* chemicals, and *m* pairs of them will react. He wants to pour these chemicals into a test tube, and he needs to pour them in one by one, in any order. Let's consider the danger of a test tube. Danger of an empty test tube is 1. And every time when DZY pours a chemical, if there are already one or more chemicals in the test tube that can react with it, the danger of the test tube will be multiplied by 2. Otherwise the danger remains as it is. Find the maximum possible danger after pouring all the chemicals one by one in optimal order. Input Specification: The first line contains two space-separated integers *n* and *m* . Each of the next *m* lines contains two space-separated integers *x**i* and *y**i* (1<=≤<=*x**i*<=&lt;<=*y**i*<=≤<=*n*). These integers mean that the chemical *x**i* will react with the chemical *y**i*. Each pair of chemicals will appear at most once in the input. Consider all the chemicals numbered from 1 to *n* in some order. Output Specification: Print a single integer — the maximum possible danger. Demo Input: ['1 0\n', '2 1\n1 2\n', '3 2\n1 2\n2 3\n'] Demo Output: ['1\n', '2\n', '4\n'] Note: In the first sample, there's only one way to pour, and the danger won't increase. In the second sample, no matter we pour the 1st chemical first, or pour the 2nd chemical first, the answer is always 2. In the third sample, there are four ways to achieve the maximum possible danger: 2-1-3, 2-3-1, 1-2-3 and 3-2-1 (that is the numbers of the chemicals in order of pouring).
```python import timeit numbers = list(map(int , input().split())) info = [] hash_table = {} # start = timeit.default_timer() for i in range(0 , numbers[0]) : x = { "name" : i+1 , "react" : [] } info.append(x) hash_table[i+1] = len(info) - 1 for i in range(0 , numbers[1] ) : x = list(map(int , input().split())) info[hash_table[x[0]]]['react'].append(x[1]) info[hash_table[x[1]]]['react'].append(x[0]) count = 0 path = [] have = {} step = "" count1 = 0 danger = 0 strong_path = 0 while count < len(info) : if len(path) == 0 : path.append([count , info[count]['name'] , 0 , 0] ) have[info[count]['name']] = True count += 1 step = "forward" count1 = 0 elif step == "forward" : y = path[len(path) - 1] z = hash_table[y[1]] v = info[z] h = v['react'] if count1 >= len(h) : step='backword' elif h[count1] in have : count1 += 1 else : path[-1][-1] = count1 path.append([z , h[count1] , y[2] + 1 , 0]) have[h[count1]] = True count1 = 0 elif step == "backword" : y = path[-1] if danger < path[-1][-2] : danger = path[-1][-2] strong_path = [path[i][1] for i in range (0 , len(path))] have.pop(y[1]) path.pop() if len(path) != 0 : count1 = path[-1][-1] + 1 step = "forward" lol = [ i for i in range (1 , numbers[1]+1) if not i in strong_path ] for i in lol : x = [j for j in info[hash_table[i]]['react'] if j in strong_path] if len(x) > 0 : danger += 1 print(2**danger) ```
0
946
A
Partition
PROGRAMMING
800
[ "greedy" ]
null
null
You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences. Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*.
Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*.
[ "3\n1 -2 0\n", "6\n16 23 16 15 42 8\n" ]
[ "3\n", "120\n" ]
In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* =  - 2, *B* - *C* = 3. In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
0
[ { "input": "3\n1 -2 0", "output": "3" }, { "input": "6\n16 23 16 15 42 8", "output": "120" }, { "input": "1\n-1", "output": "1" }, { "input": "100\n-100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100", "output": "10000" }, { "input": "2\n-1 5", "output": "6" }, { "input": "3\n-2 0 1", "output": "3" }, { "input": "12\n-1 -2 -3 4 4 -6 -6 56 3 3 -3 3", "output": "94" }, { "input": "4\n1 -1 1 -1", "output": "4" }, { "input": "4\n100 -100 100 -100", "output": "400" }, { "input": "3\n-2 -5 10", "output": "17" }, { "input": "5\n1 -2 3 -4 5", "output": "15" }, { "input": "3\n-100 100 -100", "output": "300" }, { "input": "6\n1 -1 1 -1 1 -1", "output": "6" }, { "input": "6\n2 -2 2 -2 2 -2", "output": "12" }, { "input": "9\n12 93 -2 0 0 0 3 -3 -9", "output": "122" }, { "input": "6\n-1 2 4 -5 -3 55", "output": "70" }, { "input": "6\n-12 8 68 -53 1 -15", "output": "157" }, { "input": "2\n-2 1", "output": "3" }, { "input": "3\n100 -100 100", "output": "300" }, { "input": "5\n100 100 -1 -100 2", "output": "303" }, { "input": "6\n-5 -4 -3 -2 -1 0", "output": "15" }, { "input": "6\n4 4 4 -3 -3 2", "output": "20" }, { "input": "2\n-1 2", "output": "3" }, { "input": "1\n100", "output": "100" }, { "input": "5\n-1 -2 3 1 2", "output": "9" }, { "input": "5\n100 -100 100 -100 100", "output": "500" }, { "input": "5\n1 -1 1 -1 1", "output": "5" }, { "input": "4\n0 0 0 -1", "output": "1" }, { "input": "5\n100 -100 -1 2 100", "output": "303" }, { "input": "2\n75 0", "output": "75" }, { "input": "4\n55 56 -59 -58", "output": "228" }, { "input": "2\n9 71", "output": "80" }, { "input": "2\n9 70", "output": "79" }, { "input": "2\n9 69", "output": "78" }, { "input": "2\n100 -100", "output": "200" }, { "input": "4\n-9 4 -9 5", "output": "27" }, { "input": "42\n91 -27 -79 -56 80 -93 -23 10 80 94 61 -89 -64 81 34 99 31 -32 -69 92 79 -9 73 66 -8 64 99 99 58 -19 -40 21 1 -33 93 -23 -62 27 55 41 57 36", "output": "2348" }, { "input": "7\n-1 2 2 2 -1 2 -1", "output": "11" }, { "input": "6\n-12 8 17 -69 7 -88", "output": "201" }, { "input": "3\n1 -2 5", "output": "8" }, { "input": "6\n-2 3 -4 5 6 -1", "output": "21" }, { "input": "2\n-5 1", "output": "6" }, { "input": "4\n2 2 -2 4", "output": "10" }, { "input": "68\n21 47 -75 -25 64 83 83 -21 89 24 43 44 -35 34 -42 92 -96 -52 -66 64 14 -87 25 -61 -78 83 -96 -18 95 83 -93 -28 75 49 87 65 -93 -69 -2 95 -24 -36 -61 -71 88 -53 -93 -51 -81 -65 -53 -46 -56 6 65 58 19 100 57 61 -53 44 -58 48 -8 80 -88 72", "output": "3991" }, { "input": "5\n5 5 -10 -1 1", "output": "22" }, { "input": "3\n-1 2 3", "output": "6" }, { "input": "76\n57 -38 -48 -81 93 -32 96 55 -44 2 38 -46 42 64 71 -73 95 31 -39 -62 -1 75 -17 57 28 52 12 -11 82 -84 59 -86 73 -97 34 97 -57 -85 -6 39 -5 -54 95 24 -44 35 -18 9 91 7 -22 -61 -80 54 -40 74 -90 15 -97 66 -52 -49 -24 65 21 -93 -29 -24 -4 -1 76 -93 7 -55 -53 1", "output": "3787" }, { "input": "5\n-1 -2 1 2 3", "output": "9" }, { "input": "4\n2 2 -2 -2", "output": "8" }, { "input": "6\n100 -100 100 -100 100 -100", "output": "600" }, { "input": "100\n-59 -33 34 0 69 24 -22 58 62 -36 5 45 -19 -73 61 -9 95 42 -73 -64 91 -96 2 53 -8 82 -79 16 18 -5 -53 26 71 38 -31 12 -33 -1 -65 -6 3 -89 22 33 -27 -36 41 11 -47 -32 47 -56 -38 57 -63 -41 23 41 29 78 16 -65 90 -58 -12 6 -60 42 -36 -52 -54 -95 -10 29 70 50 -94 1 93 48 -71 -77 -16 54 56 -60 66 76 31 8 44 -61 -74 23 37 38 18 -18 29 41", "output": "4362" }, { "input": "2\n-1 1", "output": "2" }, { "input": "3\n1 -2 100", "output": "103" }, { "input": "5\n1 -2 3 1 2", "output": "9" }, { "input": "10\n100 -10 -100 10 10 10 10 10 10 10", "output": "280" }, { "input": "4\n2 0 -2 4", "output": "8" }, { "input": "4\n3 -3 1 -1", "output": "8" }, { "input": "3\n1 -1 1", "output": "3" }, { "input": "4\n2 5 -2 4", "output": "13" }, { "input": "2\n-2 2", "output": "4" }, { "input": "3\n1 -2 1", "output": "4" }, { "input": "5\n-1 -2 1 1 -1", "output": "6" }, { "input": "4\n-2 0 2 4", "output": "8" }, { "input": "8\n-42 7 87 -16 -5 65 -88 1", "output": "311" }, { "input": "3\n1 -3 4", "output": "8" }, { "input": "1\n1", "output": "1" }, { "input": "2\n0 1", "output": "1" }, { "input": "3\n-1 2 -1", "output": "4" }, { "input": "18\n-21 12 65 66 -24 62 82 35 -45 -47 28 37 5 -32 22 -14 -69 -95", "output": "761" }, { "input": "4\n-1 1 -1 1", "output": "4" }, { "input": "5\n-1 2 1 1 1", "output": "6" }, { "input": "3\n1 1 1", "output": "3" } ]
1,683,023,918
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
n = int(input()) a = list(map(int, input().split())) sum_a = sum(a) dp = [[False] * (sum_a + 1) for _ in range(n + 1)] dp[0][0] = True for i in range(1, n + 1): for j in range(sum_a + 1): dp[i][j] = dp[i - 1][j] if j >= a[i - 1]: dp[i][j] |= dp[i - 1][j - a[i - 1]] max_diff = 0 for j in range(sum_a // 2 + 1): if dp[n][j]: max_diff = max(max_diff, sum_a - 2 * j) print(max_diff)
Title: Partition Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a sequence *a* consisting of *n* integers. You may partition this sequence into two sequences *b* and *c* in such a way that every element belongs exactly to one of these sequences. Let *B* be the sum of elements belonging to *b*, and *C* be the sum of elements belonging to *c* (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of *B*<=-<=*C*? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in *a*. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (<=-<=100<=≤<=*a**i*<=≤<=100) — the elements of sequence *a*. Output Specification: Print the maximum possible value of *B*<=-<=*C*, where *B* is the sum of elements of sequence *b*, and *C* is the sum of elements of sequence *c*. Demo Input: ['3\n1 -2 0\n', '6\n16 23 16 15 42 8\n'] Demo Output: ['3\n', '120\n'] Note: In the first example we may choose *b* = {1, 0}, *c* = { - 2}. Then *B* = 1, *C* =  - 2, *B* - *C* = 3. In the second example we choose *b* = {16, 23, 16, 15, 42, 8}, *c* = {} (an empty sequence). Then *B* = 120, *C* = 0, *B* - *C* = 120.
```python n = int(input()) a = list(map(int, input().split())) sum_a = sum(a) dp = [[False] * (sum_a + 1) for _ in range(n + 1)] dp[0][0] = True for i in range(1, n + 1): for j in range(sum_a + 1): dp[i][j] = dp[i - 1][j] if j >= a[i - 1]: dp[i][j] |= dp[i - 1][j - a[i - 1]] max_diff = 0 for j in range(sum_a // 2 + 1): if dp[n][j]: max_diff = max(max_diff, sum_a - 2 * j) print(max_diff) ```
-1
270
A
Fancy Fence
PROGRAMMING
1,100
[ "geometry", "implementation", "math" ]
null
null
Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*?
The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees.
For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible.
[ "3\n30\n60\n90\n" ]
[ "NO\nYES\nYES\n" ]
In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
500
[ { "input": "3\n30\n60\n90", "output": "NO\nYES\nYES" }, { "input": "6\n1\n2\n3\n170\n179\n25", "output": "NO\nNO\nNO\nYES\nYES\nNO" } ]
1,665,315,567
2,147,483,647
PyPy 3-64
OK
TESTS
3
124
0
#I = lambda: [int(i) for i in input().split()] #import io, os, sys #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline # n = int(input()) # l1 = list(map(int,input().split())) # n,x = map(int,input().split()) # s = input() mod = 1000000007 # print("Case #"+str(_+1)+":",) from collections import Counter,defaultdict,deque #from heapq import heappush,heappop,heapify import sys import math import bisect for _ in range(int(input())): n = int(input()) if 360%(180-n): print("NO") else: print("YES")
Title: Fancy Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*? Input Specification: The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees. Output Specification: For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible. Demo Input: ['3\n30\n60\n90\n'] Demo Output: ['NO\nYES\nYES\n'] Note: In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
```python #I = lambda: [int(i) for i in input().split()] #import io, os, sys #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline # n = int(input()) # l1 = list(map(int,input().split())) # n,x = map(int,input().split()) # s = input() mod = 1000000007 # print("Case #"+str(_+1)+":",) from collections import Counter,defaultdict,deque #from heapq import heappush,heappop,heapify import sys import math import bisect for _ in range(int(input())): n = int(input()) if 360%(180-n): print("NO") else: print("YES") ```
3
377
A
Maze
PROGRAMMING
1,600
[ "dfs and similar" ]
null
null
Pavel loves grid mazes. A grid maze is an *n*<=×<=*m* rectangle maze where each cell is either empty, or is a wall. You can go from one cell to another only if both cells are empty and have a common side. Pavel drew a grid maze with all empty cells forming a connected area. That is, you can go from any empty cell to any other one. Pavel doesn't like it when his maze has too little walls. He wants to turn exactly *k* empty cells into walls so that all the remaining cells still formed a connected area. Help him.
The first line contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*<=≤<=500, 0<=≤<=*k*<=&lt;<=*s*), where *n* and *m* are the maze's height and width, correspondingly, *k* is the number of walls Pavel wants to add and letter *s* represents the number of empty cells in the original maze. Each of the next *n* lines contains *m* characters. They describe the original maze. If a character on a line equals ".", then the corresponding cell is empty and if the character equals "#", then the cell is a wall.
Print *n* lines containing *m* characters each: the new maze that fits Pavel's requirements. Mark the empty cells that you transformed into walls as "X", the other cells must be left without changes (that is, "." and "#"). It is guaranteed that a solution exists. If there are multiple solutions you can output any of them.
[ "3 4 2\n#..#\n..#.\n#...\n", "5 4 5\n#...\n#.#.\n.#..\n...#\n.#.#\n" ]
[ "#.X#\nX.#.\n#...\n", "#XXX\n#X#.\nX#..\n...#\n.#.#\n" ]
none
500
[ { "input": "5 4 5\n#...\n#.#.\n.#..\n...#\n.#.#", "output": "#XXX\n#X#.\nX#..\n...#\n.#.#" }, { "input": "3 3 2\n#.#\n...\n#.#", "output": "#X#\nX..\n#.#" }, { "input": "7 7 18\n#.....#\n..#.#..\n.#...#.\n...#...\n.#...#.\n..#.#..\n#.....#", "output": "#XXXXX#\nXX#X#X.\nX#XXX#.\nXXX#...\nX#...#.\nX.#.#..\n#.....#" }, { "input": "1 1 0\n.", "output": "." }, { "input": "2 3 1\n..#\n#..", "output": "X.#\n#.." }, { "input": "2 3 1\n#..\n..#", "output": "#.X\n..#" }, { "input": "3 3 1\n...\n.#.\n..#", "output": "...\n.#X\n..#" }, { "input": "3 3 1\n...\n.#.\n#..", "output": "...\nX#.\n#.." }, { "input": "5 4 4\n#..#\n....\n.##.\n....\n#..#", "output": "#XX#\nXX..\n.##.\n....\n#..#" }, { "input": "5 5 2\n.#..#\n..#.#\n#....\n##.#.\n###..", "output": "X#..#\nX.#.#\n#....\n##.#.\n###.." }, { "input": "4 6 3\n#.....\n#.#.#.\n.#...#\n...#.#", "output": "#.....\n#X#.#X\nX#...#\n...#.#" }, { "input": "7 5 4\n.....\n.#.#.\n#...#\n.#.#.\n.#...\n..#..\n....#", "output": "X...X\nX#.#X\n#...#\n.#.#.\n.#...\n..#..\n....#" }, { "input": "16 14 19\n##############\n..############\n#.############\n#..###########\n....##########\n..############\n.#############\n.#.###########\n....##########\n###..#########\n##...#########\n###....#######\n###.##.......#\n###..###.#..#.\n###....#......\n#...#...##.###", "output": "##############\nXX############\n#X############\n#XX###########\nXXXX##########\nXX############\nX#############\nX#.###########\nX...##########\n###..#########\n##...#########\n###....#######\n###.##.......#\n###..###.#..#.\n###...X#......\n#X..#XXX##.###" }, { "input": "10 17 32\n######.##########\n####.#.##########\n...#....#########\n.........########\n##.......########\n........#########\n#.....###########\n#################\n#################\n#################", "output": "######X##########\n####X#X##########\nXXX#XXXX#########\nXXXXXXXXX########\n##XXX.XXX########\nXXXX...X#########\n#XX...###########\n#################\n#################\n#################" }, { "input": "16 10 38\n##########\n##########\n##########\n..########\n...#######\n...#######\n...#######\n....######\n.....####.\n......###.\n......##..\n.......#..\n.........#\n.........#\n.........#\n.........#", "output": "##########\n##########\n##########\nXX########\nXXX#######\nXXX#######\nXXX#######\nXXXX######\nXXXXX####.\nXXXXX.###.\nXXXX..##..\nXXX....#..\nXXX......#\nXX.......#\nX........#\n.........#" }, { "input": "15 16 19\n########.....###\n########.....###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n.....#####.#..##\n................\n.#...........###\n###.########.###\n###.########.###", "output": "########XXXXX###\n########XXXXX###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\n############.###\nXXXX.#####.#..##\nXXX.............\nX#...........###\n###.########.###\n###X########.###" }, { "input": "12 19 42\n.........##########\n...................\n.##.##############.\n..################.\n..#################\n..#################\n..#################\n..#################\n..#################\n..#################\n..##########.######\n.............######", "output": "XXXXXXXXX##########\nXXXXXXXXXXXXXXXXXXX\nX##X##############X\nXX################X\nXX#################\nXX#################\nXX#################\nX.#################\nX.#################\n..#################\n..##########.######\n.............######" }, { "input": "3 5 1\n#...#\n..#..\n..#..", "output": "#...#\n..#..\nX.#.." }, { "input": "4 5 10\n.....\n.....\n..#..\n..#..", "output": "XXX..\nXXX..\nXX#..\nXX#.." }, { "input": "3 5 3\n.....\n..#..\n..#..", "output": ".....\nX.#..\nXX#.." }, { "input": "3 5 1\n#....\n..#..\n..###", "output": "#....\n..#.X\n..###" }, { "input": "4 5 1\n.....\n.##..\n..#..\n..###", "output": ".....\n.##..\n..#.X\n..###" }, { "input": "3 5 2\n..#..\n..#..\n....#", "output": "X.#..\nX.#..\n....#" }, { "input": "10 10 1\n##########\n##......##\n#..#..#..#\n#..####..#\n#######.##\n#######.##\n#..####..#\n#..#..#..#\n##......##\n##########", "output": "##########\n##......##\n#..#..#..#\n#X.####..#\n#######.##\n#######.##\n#..####..#\n#..#..#..#\n##......##\n##########" }, { "input": "10 10 3\n..........\n.########.\n.########.\n.########.\n.########.\n.########.\n.#######..\n.#######..\n.####..###\n.......###", "output": "..........\n.########.\n.########.\n.########.\n.########.\n.########.\n.#######X.\n.#######XX\n.####..###\n.......###" }, { "input": "5 7 10\n..#....\n..#.#..\n.##.#..\n..#.#..\n....#..", "output": "XX#....\nXX#.#..\nX##.#..\nXX#.#..\nXXX.#.." }, { "input": "5 7 10\n..#....\n..#.##.\n.##.##.\n..#.#..\n....#..", "output": "XX#....\nXX#.##.\nX##.##.\nXX#.#..\nXXX.#.." }, { "input": "10 10 1\n##########\n##..##..##\n#...##...#\n#.######.#\n#..####..#\n#..####..#\n#.######.#\n#........#\n##..##..##\n##########", "output": "##########\n##.X##..##\n#...##...#\n#.######.#\n#..####..#\n#..####..#\n#.######.#\n#........#\n##..##..##\n##########" }, { "input": "4 5 1\n.....\n.###.\n..#..\n..#..", "output": ".....\n.###.\n..#..\n.X#.." }, { "input": "2 5 2\n###..\n###..", "output": "###X.\n###X." }, { "input": "2 5 3\n.....\n..#..", "output": "X....\nXX#.." }, { "input": "12 12 3\n############\n#..........#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.#######..#\n#.#######..#\n#.####..####\n#.......####\n############", "output": "############\n#..........#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.########.#\n#.#######X.#\n#.#######XX#\n#.####..####\n#.......####\n############" }, { "input": "5 5 1\n.....\n.##..\n..###\n..###\n#####", "output": ".....\n.##.X\n..###\n..###\n#####" }, { "input": "4 4 1\n....\n.#..\n..##\n..##", "output": "....\n.#.X\n..##\n..##" }, { "input": "5 5 1\n....#\n.##..\n.##..\n...##\n...##", "output": "....#\n.##..\n.##.X\n...##\n...##" }, { "input": "5 5 1\n.....\n.##..\n..###\n..###\n..###", "output": ".....\n.##.X\n..###\n..###\n..###" }, { "input": "4 5 1\n#....\n#.#..\n..###\n..###", "output": "#....\n#.#.X\n..###\n..###" }, { "input": "4 4 3\n....\n.#..\n..##\n..##", "output": "...X\n.#XX\n..##\n..##" }, { "input": "4 7 6\n.......\n....#..\n.##.#..\n....#..", "output": "X......\nX...#..\nX##.#..\nXXX.#.." }, { "input": "8 8 7\n........\n.##.....\n.#######\n..######\n..######\n..######\n..######\n..######", "output": ".....XXX\n.##.XXXX\n.#######\n..######\n..######\n..######\n..######\n..######" } ]
1,628,534,955
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
62
6,963,200
n, m, k = map(int, input().split()) lista = [["#"]*(m+2)] + [["#"] + list(input()) + ["#"] for _ in range(n)] + [["#"]*(m+2)] pontos = sum(l.count(".") for l in lista) st = [(x, y) for i in range(n+2) for j in range(m+2) if lista[x][y] == "."][:1] a = 0 while a < pontos - k: x, y = st.pop() if lista[x][y] != ".": continue lista[i][j] = "dot" a += 1 for i, j in ((x-1, y), (x+1, y), (x, y-1), (x, y+1)): if lista[i][j] == ".": st.append((i, j)) lista = "\n".join("".join(l[1:-1]) for l in lista[1:-1]) print(lista.replace(".", "X").replace("dot", "."))
Title: Maze Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pavel loves grid mazes. A grid maze is an *n*<=×<=*m* rectangle maze where each cell is either empty, or is a wall. You can go from one cell to another only if both cells are empty and have a common side. Pavel drew a grid maze with all empty cells forming a connected area. That is, you can go from any empty cell to any other one. Pavel doesn't like it when his maze has too little walls. He wants to turn exactly *k* empty cells into walls so that all the remaining cells still formed a connected area. Help him. Input Specification: The first line contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*<=≤<=500, 0<=≤<=*k*<=&lt;<=*s*), where *n* and *m* are the maze's height and width, correspondingly, *k* is the number of walls Pavel wants to add and letter *s* represents the number of empty cells in the original maze. Each of the next *n* lines contains *m* characters. They describe the original maze. If a character on a line equals ".", then the corresponding cell is empty and if the character equals "#", then the cell is a wall. Output Specification: Print *n* lines containing *m* characters each: the new maze that fits Pavel's requirements. Mark the empty cells that you transformed into walls as "X", the other cells must be left without changes (that is, "." and "#"). It is guaranteed that a solution exists. If there are multiple solutions you can output any of them. Demo Input: ['3 4 2\n#..#\n..#.\n#...\n', '5 4 5\n#...\n#.#.\n.#..\n...#\n.#.#\n'] Demo Output: ['#.X#\nX.#.\n#...\n', '#XXX\n#X#.\nX#..\n...#\n.#.#\n'] Note: none
```python n, m, k = map(int, input().split()) lista = [["#"]*(m+2)] + [["#"] + list(input()) + ["#"] for _ in range(n)] + [["#"]*(m+2)] pontos = sum(l.count(".") for l in lista) st = [(x, y) for i in range(n+2) for j in range(m+2) if lista[x][y] == "."][:1] a = 0 while a < pontos - k: x, y = st.pop() if lista[x][y] != ".": continue lista[i][j] = "dot" a += 1 for i, j in ((x-1, y), (x+1, y), (x, y-1), (x, y+1)): if lista[i][j] == ".": st.append((i, j)) lista = "\n".join("".join(l[1:-1]) for l in lista[1:-1]) print(lista.replace(".", "X").replace("dot", ".")) ```
-1
66
B
Petya and Countryside
PROGRAMMING
1,100
[ "brute force", "implementation" ]
B. Petya and Countryside
2
256
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section. Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture: As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
[ "1\n2\n", "5\n1 2 1 2 1\n", "8\n1 2 1 1 1 3 3 4\n" ]
[ "1\n", "3\n", "6\n" ]
none
1,000
[ { "input": "1\n2", "output": "1" }, { "input": "5\n1 2 1 2 1", "output": "3" }, { "input": "8\n1 2 1 1 1 3 3 4", "output": "6" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "10" }, { "input": "10\n10 9 8 7 6 5 4 3 2 1", "output": "10" }, { "input": "2\n100 100", "output": "2" }, { "input": "3\n100 100 100", "output": "3" }, { "input": "11\n1 2 3 4 5 6 5 4 3 2 1", "output": "11" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 100 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "61" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 82 83 84 85 86 87 88 89 90 91 92 93 94 100 5 4 3 2 1", "output": "81" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1 86 87 88 89 90 91 92 93 100 6 5 4 3 2 1", "output": "85" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 7 6 5 4 3 2 1", "output": "61" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 100 8 7 6 1 4 3 2 1", "output": "96" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 100 10 9 8 7 6 5 4 3 2 1", "output": "100" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 100 11 10 9 8 7 6 5 4 3 2 1", "output": "55" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 100 12 11 10 9 8 7 6 5 4 3 2 1", "output": "59" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 100 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "86" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 100 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "83" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 100 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 1 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "74" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 100 9 8 7 6 5 4 3 2 1", "output": "100" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "52" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 100 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1", "output": "98" }, { "input": "10\n1 4 4 4 4 4 1 2 4 3", "output": "7" } ]
1,616,931,639
2,147,483,647
PyPy 3
OK
TESTS
80
216
1,945,600
n = int(input()) arr = list(map(int, input().split())) water = [0] * n # Search Right for i in range(n): temp = 1 for j in range(i, n-1): l = arr[j] r = arr[j+1] if l >= r: temp +=1 else: break; water[i] += temp # Search Left for i in range(n-1,-1, -1): temp = 0 for j in range(i, 0, -1): r = arr[j] l = arr[j - 1] if l<=r: temp+=1 else: break; water[i]+=temp print(max(water))
Title: Petya and Countryside Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section. Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture: As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000. Output Specification: Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section. Demo Input: ['1\n2\n', '5\n1 2 1 2 1\n', '8\n1 2 1 1 1 3 3 4\n'] Demo Output: ['1\n', '3\n', '6\n'] Note: none
```python n = int(input()) arr = list(map(int, input().split())) water = [0] * n # Search Right for i in range(n): temp = 1 for j in range(i, n-1): l = arr[j] r = arr[j+1] if l >= r: temp +=1 else: break; water[i] += temp # Search Left for i in range(n-1,-1, -1): temp = 0 for j in range(i, 0, -1): r = arr[j] l = arr[j - 1] if l<=r: temp+=1 else: break; water[i]+=temp print(max(water)) ```
3.942376
148
D
Bag of mice
PROGRAMMING
1,800
[ "dp", "games", "math", "probabilities" ]
null
null
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance. They take turns drawing a mouse from a bag which initially contains *w* white and *b* black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning? If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
The only line of input data contains two integers *w* and *b* (0<=≤<=*w*,<=*b*<=≤<=1000).
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10<=-<=9.
[ "1 3\n", "5 5\n" ]
[ "0.500000000\n", "0.658730159\n" ]
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.
1,000
[ { "input": "1 3", "output": "0.500000000" }, { "input": "5 5", "output": "0.658730159" }, { "input": "100 100", "output": "0.666295063" }, { "input": "100 1", "output": "0.990099010" }, { "input": "1 100", "output": "0.336633663" }, { "input": "67 420", "output": "0.536897227" }, { "input": "0 1000", "output": "0.000000000" }, { "input": "1000 0", "output": "1.000000000" }, { "input": "0 0", "output": "0.000000000" }, { "input": "1000 1000", "output": "0.666629617" }, { "input": "32 1000", "output": "0.507870202" }, { "input": "581 406", "output": "0.708455368" }, { "input": "459 52", "output": "0.907503322" }, { "input": "900 853", "output": "0.672635039" }, { "input": "778 218", "output": "0.820333392" }, { "input": "219 20", "output": "0.922525319" }, { "input": "815 665", "output": "0.689921745" }, { "input": "773 467", "output": "0.726347987" }, { "input": "215 269", "output": "0.642626672" }, { "input": "93 633", "output": "0.534192877" }, { "input": "267 270", "output": "0.665290172" }, { "input": "226 72", "output": "0.805082561" }, { "input": "666 436", "output": "0.716435071" }, { "input": "544 519", "output": "0.671862905" }, { "input": "141 883", "output": "0.536951107" }, { "input": "581 685", "output": "0.648844385" }, { "input": "459 487", "output": "0.660077510" }, { "input": "980 133", "output": "0.893190920" }, { "input": "858 934", "output": "0.657333867" }, { "input": "455 299", "output": "0.715932720" }, { "input": "962 35", "output": "0.966054554" }, { "input": "840 837", "output": "0.667020172" }, { "input": "1000 483", "output": "0.754259888" }, { "input": "958 285", "output": "0.813405050" }, { "input": "399 649", "output": "0.617507391" }, { "input": "277 451", "output": "0.617396161" }, { "input": "155 534", "output": "0.563323504" }, { "input": "315 898", "output": "0.574579114" }, { "input": "193 700", "output": "0.560544099" }, { "input": "713 65", "output": "0.922816830" }, { "input": "377 720", "output": "0.603697168" }, { "input": "817 522", "output": "0.719439426" }, { "input": "695 168", "output": "0.836944656" }, { "input": "574 969", "output": "0.614216493" }, { "input": "95 334", "output": "0.562182792" }, { "input": "691 417", "output": "0.726476058" }, { "input": "132 781", "output": "0.538939829" }, { "input": "10 583", "output": "0.504240929" }, { "input": "888 385", "output": "0.767717438" }, { "input": "329 31", "output": "0.920544382" }, { "input": "73 405", "output": "0.541293398" }, { "input": "513 488", "output": "0.672187379" }, { "input": "391 852", "output": "0.593281183" }, { "input": "551 654", "output": "0.648141838" }, { "input": "429 19", "output": "0.959234268" }, { "input": "387 102", "output": "0.827219303" }, { "input": "827 466", "output": "0.735005881" }, { "input": "705 268", "output": "0.783946132" }, { "input": "864 70", "output": "0.930218970" }, { "input": "743 715", "output": "0.670910005" }, { "input": "50 372", "output": "0.531448979" } ]
1,695,298,017
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
154
614,400
from functools import cache w, b = map(int, input().split()) @cache def f(w, b): if w==0: return 0 elif b==0: return 1 else: a = w/(w+b) fix = b/(w+b) b -= 1 if b==0: c = 0 else: c = (b/(w+b))*f(w,b-1) return a + fix*c ans = f(w, b) print(ans)
Title: Bag of mice Time Limit: None seconds Memory Limit: None megabytes Problem Description: The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance. They take turns drawing a mouse from a bag which initially contains *w* white and *b* black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning? If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one. Input Specification: The only line of input data contains two integers *w* and *b* (0<=≤<=*w*,<=*b*<=≤<=1000). Output Specification: Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10<=-<=9. Demo Input: ['1 3\n', '5 5\n'] Demo Output: ['0.500000000\n', '0.658730159\n'] Note: Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.
```python from functools import cache w, b = map(int, input().split()) @cache def f(w, b): if w==0: return 0 elif b==0: return 1 else: a = w/(w+b) fix = b/(w+b) b -= 1 if b==0: c = 0 else: c = (b/(w+b))*f(w,b-1) return a + fix*c ans = f(w, b) print(ans) ```
0
122
A
Lucky Division
PROGRAMMING
1,000
[ "brute force", "number theory" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked.
In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes).
[ "47\n", "16\n", "78\n" ]
[ "YES\n", "YES\n", "NO\n" ]
Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
500
[ { "input": "47", "output": "YES" }, { "input": "16", "output": "YES" }, { "input": "78", "output": "NO" }, { "input": "48", "output": "YES" }, { "input": "100", "output": "YES" }, { "input": "107", "output": "NO" }, { "input": "77", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "480", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "49", "output": "YES" }, { "input": "56", "output": "YES" }, { "input": "124", "output": "YES" }, { "input": "1000", "output": "YES" }, { "input": "999", "output": "NO" }, { "input": "298", "output": "NO" }, { "input": "274", "output": "NO" }, { "input": "998", "output": "NO" }, { "input": "42", "output": "YES" }, { "input": "788", "output": "YES" }, { "input": "70", "output": "YES" }, { "input": "444", "output": "YES" }, { "input": "777", "output": "YES" }, { "input": "799", "output": "YES" }, { "input": "25", "output": "NO" }, { "input": "882", "output": "YES" }, { "input": "88", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "7", "output": "YES" }, { "input": "8", "output": "YES" }, { "input": "94", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "141", "output": "YES" } ]
1,690,538,217
2,147,483,647
Python 3
OK
TESTS
36
92
0
from itertools import product n = int(input()) luck = [] def generate_lucky(l:int) -> list: ns = list(product("47", repeat=l)) return list(map(lambda x:int("".join(x)),ns)) for i in range(1, 4): l = generate_lucky(i) for x in l: luck.append(x) for x in luck: if n%x ==0: print("YES") exit() print("NO")
Title: Lucky Division Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked. Output Specification: In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes). Demo Input: ['47\n', '16\n', '78\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
```python from itertools import product n = int(input()) luck = [] def generate_lucky(l:int) -> list: ns = list(product("47", repeat=l)) return list(map(lambda x:int("".join(x)),ns)) for i in range(1, 4): l = generate_lucky(i) for x in l: luck.append(x) for x in luck: if n%x ==0: print("YES") exit() print("NO") ```
3
911
C
Three Garlands
PROGRAMMING
1,400
[ "brute force", "constructive algorithms" ]
null
null
Mishka is decorating the Christmas tree. He has got three garlands, and all of them will be put on the tree. After that Mishka will switch these garlands on. When a garland is switched on, it periodically changes its state — sometimes it is lit, sometimes not. Formally, if *i*-th garland is switched on during *x*-th second, then it is lit only during seconds *x*, *x*<=+<=*k**i*, *x*<=+<=2*k**i*, *x*<=+<=3*k**i* and so on. Mishka wants to switch on the garlands in such a way that during each second after switching the garlands on there would be at least one lit garland. Formally, Mishka wants to choose three integers *x*1, *x*2 and *x*3 (not necessarily distinct) so that he will switch on the first garland during *x*1-th second, the second one — during *x*2-th second, and the third one — during *x*3-th second, respectively, and during each second starting from *max*(*x*1,<=*x*2,<=*x*3) at least one garland will be lit. Help Mishka by telling him if it is possible to do this!
The first line contains three integers *k*1, *k*2 and *k*3 (1<=≤<=*k**i*<=≤<=1500) — time intervals of the garlands.
If Mishka can choose moments of time to switch on the garlands in such a way that each second after switching the garlands on at least one garland will be lit, print YES. Otherwise, print NO.
[ "2 2 3\n", "4 2 3\n" ]
[ "YES\n", "NO\n" ]
In the first example Mishka can choose *x*<sub class="lower-index">1</sub> = 1, *x*<sub class="lower-index">2</sub> = 2, *x*<sub class="lower-index">3</sub> = 1. The first garland will be lit during seconds 1, 3, 5, 7, ..., the second — 2, 4, 6, 8, ..., which already cover all the seconds after the 2-nd one. It doesn't even matter what *x*<sub class="lower-index">3</sub> is chosen. Our choice will lead third to be lit during seconds 1, 4, 7, 10, ..., though. In the second example there is no way to choose such moments of time, there always be some seconds when no garland is lit.
0
[ { "input": "2 2 3", "output": "YES" }, { "input": "4 2 3", "output": "NO" }, { "input": "1499 1498 1500", "output": "NO" }, { "input": "1500 1500 1500", "output": "NO" }, { "input": "100 4 1", "output": "YES" }, { "input": "4 2 4", "output": "YES" }, { "input": "3 3 3", "output": "YES" }, { "input": "2 3 6", "output": "NO" }, { "input": "2 3 3", "output": "NO" }, { "input": "4 4 2", "output": "YES" }, { "input": "1 1 1", "output": "YES" }, { "input": "2 11 2", "output": "YES" }, { "input": "4 4 4", "output": "NO" }, { "input": "4 4 5", "output": "NO" }, { "input": "3 3 2", "output": "NO" }, { "input": "3 6 6", "output": "NO" }, { "input": "2 3 2", "output": "YES" }, { "input": "1 1 3", "output": "YES" }, { "input": "3 3 4", "output": "NO" }, { "input": "2 4 4", "output": "YES" }, { "input": "2 2 2", "output": "YES" }, { "input": "2 10 10", "output": "NO" }, { "input": "3 4 4", "output": "NO" }, { "input": "2 5 5", "output": "NO" }, { "input": "2 4 5", "output": "NO" }, { "input": "228 2 2", "output": "YES" }, { "input": "2 998 1000", "output": "NO" }, { "input": "2 6 6", "output": "NO" }, { "input": "6 4 7", "output": "NO" }, { "input": "2 5 2", "output": "YES" }, { "input": "2 100 100", "output": "NO" }, { "input": "7 7 2", "output": "NO" }, { "input": "3 3 6", "output": "NO" }, { "input": "82 3 82", "output": "NO" }, { "input": "2 3 5", "output": "NO" }, { "input": "1 218 924", "output": "YES" }, { "input": "4 4 123", "output": "NO" }, { "input": "4 4 3", "output": "NO" }, { "input": "3 4 2", "output": "NO" }, { "input": "2 2 5", "output": "YES" }, { "input": "2 10 2", "output": "YES" }, { "input": "5 2 2", "output": "YES" }, { "input": "3 3 9", "output": "NO" }, { "input": "1 5 5", "output": "YES" }, { "input": "2 4 6", "output": "NO" }, { "input": "15 3 3", "output": "NO" }, { "input": "1 5 10", "output": "YES" }, { "input": "2 3 14", "output": "NO" }, { "input": "1265 2 593", "output": "NO" }, { "input": "2 2 567", "output": "YES" }, { "input": "1 6 5", "output": "YES" }, { "input": "2 2 7", "output": "YES" }, { "input": "2 2 1500", "output": "YES" }, { "input": "3 6 9", "output": "NO" }, { "input": "1 46 79", "output": "YES" }, { "input": "4 3 3", "output": "NO" }, { "input": "2 4 8", "output": "NO" }, { "input": "1493 1489 1487", "output": "NO" }, { "input": "1 2 3", "output": "YES" }, { "input": "1 2 5", "output": "YES" }, { "input": "1 2 8", "output": "YES" }, { "input": "3 4 5", "output": "NO" }, { "input": "2 2 4", "output": "YES" }, { "input": "3 2 3", "output": "NO" }, { "input": "7 2 2", "output": "YES" }, { "input": "3 2 2", "output": "YES" }, { "input": "6 7 4", "output": "NO" } ]
1,536,329,999
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
109
0
a, b, c = map(int, input().split()) good = False template = [True if i % a == 0 else False for i in range(3 * max([a, b, c]))] A = template[:] i = 0 while i * b + 1 < len(A): A[i * b + 1] = True i += 1 i = 0 while i < len(A): if not A[i]: break break i += 1 j = 0 while j * c + i < len(A): A[j * c + i] = True j += 1 good = good or all(A) A = template[:] i = 0 while i * c + 1 < len(A): A[i * c + 1] = True i += 1 i = 0 while i < len(A): if not A[i]: break i += 1 j = 0 while j * b + i < len(A): A[j * b + i] = True j += 1 good = good or all(A) if good: print("YES") else: print("NO")
Title: Three Garlands Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka is decorating the Christmas tree. He has got three garlands, and all of them will be put on the tree. After that Mishka will switch these garlands on. When a garland is switched on, it periodically changes its state — sometimes it is lit, sometimes not. Formally, if *i*-th garland is switched on during *x*-th second, then it is lit only during seconds *x*, *x*<=+<=*k**i*, *x*<=+<=2*k**i*, *x*<=+<=3*k**i* and so on. Mishka wants to switch on the garlands in such a way that during each second after switching the garlands on there would be at least one lit garland. Formally, Mishka wants to choose three integers *x*1, *x*2 and *x*3 (not necessarily distinct) so that he will switch on the first garland during *x*1-th second, the second one — during *x*2-th second, and the third one — during *x*3-th second, respectively, and during each second starting from *max*(*x*1,<=*x*2,<=*x*3) at least one garland will be lit. Help Mishka by telling him if it is possible to do this! Input Specification: The first line contains three integers *k*1, *k*2 and *k*3 (1<=≤<=*k**i*<=≤<=1500) — time intervals of the garlands. Output Specification: If Mishka can choose moments of time to switch on the garlands in such a way that each second after switching the garlands on at least one garland will be lit, print YES. Otherwise, print NO. Demo Input: ['2 2 3\n', '4 2 3\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first example Mishka can choose *x*<sub class="lower-index">1</sub> = 1, *x*<sub class="lower-index">2</sub> = 2, *x*<sub class="lower-index">3</sub> = 1. The first garland will be lit during seconds 1, 3, 5, 7, ..., the second — 2, 4, 6, 8, ..., which already cover all the seconds after the 2-nd one. It doesn't even matter what *x*<sub class="lower-index">3</sub> is chosen. Our choice will lead third to be lit during seconds 1, 4, 7, 10, ..., though. In the second example there is no way to choose such moments of time, there always be some seconds when no garland is lit.
```python a, b, c = map(int, input().split()) good = False template = [True if i % a == 0 else False for i in range(3 * max([a, b, c]))] A = template[:] i = 0 while i * b + 1 < len(A): A[i * b + 1] = True i += 1 i = 0 while i < len(A): if not A[i]: break break i += 1 j = 0 while j * c + i < len(A): A[j * c + i] = True j += 1 good = good or all(A) A = template[:] i = 0 while i * c + 1 < len(A): A[i * c + 1] = True i += 1 i = 0 while i < len(A): if not A[i]: break i += 1 j = 0 while j * b + i < len(A): A[j * b + i] = True j += 1 good = good or all(A) if good: print("YES") else: print("NO") ```
0
22
A
Second Order Statistics
PROGRAMMING
800
[ "brute force" ]
A. Second Order Statistics
2
256
Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem.
The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value.
If the given sequence has the second order statistics, output this order statistics, otherwise output NO.
[ "4\n1 2 2 -4\n", "5\n1 2 3 1 1\n" ]
[ "1\n", "2\n" ]
none
0
[ { "input": "4\n1 2 2 -4", "output": "1" }, { "input": "5\n1 2 3 1 1", "output": "2" }, { "input": "1\n28", "output": "NO" }, { "input": "2\n-28 12", "output": "12" }, { "input": "3\n-83 40 -80", "output": "-80" }, { "input": "8\n93 77 -92 26 21 -48 53 91", "output": "-48" }, { "input": "20\n-72 -9 -86 80 7 -10 40 -27 -94 92 96 56 28 -19 79 36 -3 -73 -63 -49", "output": "-86" }, { "input": "49\n-74 -100 -80 23 -8 -83 -41 -20 48 17 46 -73 -55 67 85 4 40 -60 -69 -75 56 -74 -42 93 74 -95 64 -46 97 -47 55 0 -78 -34 -31 40 -63 -49 -76 48 21 -1 -49 -29 -98 -11 76 26 94", "output": "-98" }, { "input": "88\n63 48 1 -53 -89 -49 64 -70 -49 71 -17 -16 76 81 -26 -50 67 -59 -56 97 2 100 14 18 -91 -80 42 92 -25 -88 59 8 -56 38 48 -71 -78 24 -14 48 -1 69 73 -76 54 16 -92 44 47 33 -34 -17 -81 21 -59 -61 53 26 10 -76 67 35 -29 70 65 -13 -29 81 80 32 74 -6 34 46 57 1 -45 -55 69 79 -58 11 -2 22 -18 -16 -89 -46", "output": "-91" }, { "input": "100\n34 32 88 20 76 53 -71 -39 -98 -10 57 37 63 -3 -54 -64 -78 -82 73 20 -30 -4 22 75 51 -64 -91 29 -52 -48 83 19 18 -47 46 57 -44 95 89 89 -30 84 -83 67 58 -99 -90 -53 92 -60 -5 -56 -61 27 68 -48 52 -95 64 -48 -30 -67 66 89 14 -33 -31 -91 39 7 -94 -54 92 -96 -99 -83 -16 91 -28 -66 81 44 14 -85 -21 18 40 16 -13 -82 -33 47 -10 -40 -19 10 25 60 -34 -89", "output": "-98" }, { "input": "2\n-1 -1", "output": "NO" }, { "input": "3\n-2 -2 -2", "output": "NO" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "NO" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 -100 100 100 100 100 -100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "10\n40 71 -85 -85 40 -85 -85 64 -85 47", "output": "40" }, { "input": "23\n-90 -90 -41 -64 -64 -90 -15 10 -43 -90 -64 -64 89 -64 36 47 38 -90 -64 -90 -90 68 -90", "output": "-64" }, { "input": "39\n-97 -93 -42 -93 -97 -93 56 -97 -97 -97 76 -33 -60 91 7 82 17 47 -97 -97 -93 73 -97 12 -97 -97 -97 -97 56 -92 -83 -93 -93 49 -93 -97 -97 -17 -93", "output": "-93" }, { "input": "51\n-21 6 -35 -98 -86 -98 -86 -43 -65 32 -98 -40 96 -98 -98 -98 -98 -86 -86 -98 56 -86 -98 -98 -30 -98 -86 -31 -98 -86 -86 -86 -86 -30 96 -86 -86 -86 -60 25 88 -86 -86 58 31 -47 57 -86 37 44 -83", "output": "-86" }, { "input": "66\n-14 -95 65 -95 -95 -97 -90 -71 -97 -97 70 -95 -95 -97 -95 -27 35 -87 -95 -5 -97 -97 87 34 -49 -95 -97 -95 -97 -95 -30 -95 -97 47 -95 -17 -97 -95 -97 -69 51 -97 -97 -95 -75 87 59 21 63 56 76 -91 98 -97 6 -97 -95 -95 -97 -73 11 -97 -35 -95 -95 -43", "output": "-95" }, { "input": "77\n-67 -93 -93 -92 97 29 93 -93 -93 -5 -93 -7 60 -92 -93 44 -84 68 -92 -93 69 -92 -37 56 43 -93 35 -92 -93 19 -79 18 -92 -93 -93 -37 -93 -47 -93 -92 -92 74 67 19 40 -92 -92 -92 -92 -93 -93 -41 -93 -92 -93 -93 -92 -93 51 -80 6 -42 -92 -92 -66 -12 -92 -92 -3 93 -92 -49 -93 40 62 -92 -92", "output": "-92" }, { "input": "89\n-98 40 16 -87 -98 63 -100 55 -96 -98 -21 -100 -93 26 -98 -98 -100 -89 -98 -5 -65 -28 -100 -6 -66 67 -100 -98 -98 10 -98 -98 -70 7 -98 2 -100 -100 -98 25 -100 -100 -98 23 -68 -100 -98 3 98 -100 -98 -98 -98 -98 -24 -100 -100 -9 -98 35 -100 99 -5 -98 -100 -100 37 -100 -84 57 -98 40 -47 -100 -1 -92 -76 -98 -98 -100 -100 -100 -63 30 21 -100 -100 -100 -12", "output": "-98" }, { "input": "99\n10 -84 -100 -100 73 -64 -100 -94 33 -100 -100 -100 -100 71 64 24 7 -100 -32 -100 -100 77 -100 62 -12 55 45 -100 -100 -80 -100 -100 -100 -100 -100 -100 -100 -100 -100 -39 -48 -100 -34 47 -100 -100 -100 -100 -100 -77 -100 -100 -100 -100 -100 -100 -52 40 -55 -100 -44 -100 72 33 70 -100 -100 -78 -100 -3 100 -77 22 -100 95 -30 -100 10 -69 -100 -100 -100 -100 52 -39 -100 -100 -100 7 -100 -98 -66 95 -17 -100 52 -100 68 -100", "output": "-98" }, { "input": "100\n-99 -98 -64 89 53 57 -99 29 -78 18 -3 -54 76 -98 -99 -98 37 -98 19 -47 89 73 -98 -91 -99 -99 -98 -48 -99 22 -99 -98 -99 -99 -98 -60 84 67 -99 -98 20 -98 88 -98 46 -98 -99 -98 -99 -71 -99 -98 -98 -39 83 95 -98 63 -98 -99 32 -98 -99 -64 57 -30 -53 -83 -4 -99 58 20 -98 -10 -99 -44 -99 -99 -99 -99 75 34 -98 -52 -98 -30 -98 -99 -98 -98 51 -99 -99 -99 -98 -99 -99 -82 -90 92", "output": "-98" }, { "input": "3\n1 2 3", "output": "2" }, { "input": "3\n1 3 2", "output": "2" }, { "input": "3\n2 1 3", "output": "2" }, { "input": "3\n2 3 1", "output": "2" }, { "input": "3\n3 1 2", "output": "2" }, { "input": "3\n3 2 1", "output": "2" }, { "input": "9\n99 99 99 99 100 100 100 100 100", "output": "100" }, { "input": "5\n-100 -100 -100 -100 -100", "output": "NO" } ]
1,545,833,411
2,147,483,647
Python 3
OK
TESTS
31
218
0
input() a = sorted(set(map(int, input().split()))) if len(a) == 1: print("NO") else: print(a[1])
Title: Second Order Statistics Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Once Bob needed to find the second order statistics of a sequence of integer numbers. Lets choose each number from the sequence exactly once and sort them. The value on the second position is the second order statistics of the given sequence. In other words it is the smallest element strictly greater than the minimum. Help Bob solve this problem. Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=100) — amount of numbers in the sequence. The second line contains *n* space-separated integer numbers — elements of the sequence. These numbers don't exceed 100 in absolute value. Output Specification: If the given sequence has the second order statistics, output this order statistics, otherwise output NO. Demo Input: ['4\n1 2 2 -4\n', '5\n1 2 3 1 1\n'] Demo Output: ['1\n', '2\n'] Note: none
```python input() a = sorted(set(map(int, input().split()))) if len(a) == 1: print("NO") else: print(a[1]) ```
3.9455
985
C
Liebig's Barrels
PROGRAMMING
1,500
[ "greedy" ]
null
null
You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.
The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves.
Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*.
[ "4 2 1\n2 2 1 2 3 2 2 3\n", "2 1 0\n10 10\n", "1 2 1\n5 2\n", "3 2 1\n1 2 3 4 5 6\n" ]
[ "7\n", "20\n", "2\n", "0\n" ]
In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
0
[ { "input": "4 2 1\n2 2 1 2 3 2 2 3", "output": "7" }, { "input": "2 1 0\n10 10", "output": "20" }, { "input": "1 2 1\n5 2", "output": "2" }, { "input": "3 2 1\n1 2 3 4 5 6", "output": "0" }, { "input": "10 3 189\n267 697 667 4 52 128 85 616 142 344 413 660 962 194 618 329 266 593 558 447 89 983 964 716 32 890 267 164 654 71", "output": "0" }, { "input": "10 3 453\n277 706 727 812 692 686 196 507 911 40 498 704 573 381 463 759 704 381 693 640 326 405 47 834 962 521 463 740 520 494", "output": "2979" }, { "input": "10 3 795\n398 962 417 307 760 534 536 450 421 280 608 111 687 726 941 903 630 900 555 403 795 122 814 188 234 976 679 539 525 104", "output": "5045" }, { "input": "6 2 29\n1 2 3 3 4 5 5 6 7 7 8 9", "output": "28" }, { "input": "2 1 2\n1 2", "output": "3" } ]
1,526,931,723
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
202
8,192,000
from bisect import bisect_right def bad(): print(0) exit() n, k, l_ = map(int, input().split()) a = sorted(list(map(int, input().split()))) if n == 1: print(min(a)) exit() if a[1] - a[0] > l_: bad() b = bisect_right(a, a[0] + l_) if b < n: bad() to_sum = [0] if n == 2: print(a[0] + a[n // 2]) exit() to_sum += [min(k * i, b - n + i) for i in range(1, n)] print(sum(a[i] for i in to_sum))
Title: Liebig's Barrels Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above. Input Specification: The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves. Output Specification: Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Demo Input: ['4 2 1\n2 2 1 2 3 2 2 3\n', '2 1 0\n10 10\n', '1 2 1\n5 2\n', '3 2 1\n1 2 3 4 5 6\n'] Demo Output: ['7\n', '20\n', '2\n', '0\n'] Note: In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
```python from bisect import bisect_right def bad(): print(0) exit() n, k, l_ = map(int, input().split()) a = sorted(list(map(int, input().split()))) if n == 1: print(min(a)) exit() if a[1] - a[0] > l_: bad() b = bisect_right(a, a[0] + l_) if b < n: bad() to_sum = [0] if n == 2: print(a[0] + a[n // 2]) exit() to_sum += [min(k * i, b - n + i) for i in range(1, n)] print(sum(a[i] for i in to_sum)) ```
0
621
B
Wet Shark and Bishops
PROGRAMMING
1,300
[ "combinatorics", "implementation" ]
null
null
Today, Wet Shark is given *n* bishops on a 1000 by 1000 grid. Both rows and columns of the grid are numbered from 1 to 1000. Rows are numbered from top to bottom, while columns are numbered from left to right. Wet Shark thinks that two bishops attack each other if they share the same diagonal. Note, that this is the only criteria, so two bishops may attack each other (according to Wet Shark) even if there is another bishop located between them. Now Wet Shark wants to count the number of pairs of bishops that attack each other.
The first line of the input contains *n* (1<=≤<=*n*<=≤<=200<=000) — the number of bishops. Each of next *n* lines contains two space separated integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the number of row and the number of column where *i*-th bishop is positioned. It's guaranteed that no two bishops share the same position.
Output one integer — the number of pairs of bishops which attack each other.
[ "5\n1 1\n1 5\n3 3\n5 1\n5 5\n", "3\n1 1\n2 3\n3 5\n" ]
[ "6\n", "0\n" ]
In the first sample following pairs of bishops attack each other: (1, 3), (1, 5), (2, 3), (2, 4), (3, 4) and (3, 5). Pairs (1, 2), (1, 4), (2, 5) and (4, 5) do not attack each other because they do not share the same diagonal.
1,000
[ { "input": "5\n1 1\n1 5\n3 3\n5 1\n5 5", "output": "6" }, { "input": "3\n1 1\n2 3\n3 5", "output": "0" }, { "input": "3\n859 96\n634 248\n808 72", "output": "0" }, { "input": "3\n987 237\n891 429\n358 145", "output": "0" }, { "input": "3\n411 81\n149 907\n611 114", "output": "0" }, { "input": "3\n539 221\n895 89\n673 890", "output": "0" }, { "input": "3\n259 770\n448 54\n926 667", "output": "0" }, { "input": "3\n387 422\n898 532\n988 636", "output": "0" }, { "input": "10\n515 563\n451 713\n537 709\n343 819\n855 779\n457 60\n650 359\n631 42\n788 639\n710 709", "output": "0" }, { "input": "10\n939 407\n197 191\n791 486\n30 807\n11 665\n600 100\n445 496\n658 959\n510 389\n729 950", "output": "0" }, { "input": "10\n518 518\n71 971\n121 862\n967 607\n138 754\n513 337\n499 873\n337 387\n647 917\n76 417", "output": "0" }, { "input": "10\n646 171\n816 449\n375 934\n950 299\n702 232\n657 81\n885 306\n660 304\n369 371\n798 657", "output": "0" }, { "input": "10\n70 311\n74 927\n732 711\n126 583\n857 118\n97 928\n975 843\n175 221\n284 929\n816 602", "output": "0" }, { "input": "2\n1 1\n1 1000", "output": "0" }, { "input": "2\n1 1\n1000 1", "output": "0" }, { "input": "2\n1 1\n1000 1000", "output": "1" }, { "input": "2\n1000 1\n1 1000", "output": "1" }, { "input": "2\n1000 1\n1000 1000", "output": "0" }, { "input": "2\n1 1000\n1000 1000", "output": "0" }, { "input": "1\n6 3", "output": "0" }, { "input": "1\n1 1", "output": "0" }, { "input": "1\n1 1000", "output": "0" }, { "input": "1\n1000 1", "output": "0" }, { "input": "1\n1000 1000", "output": "0" }, { "input": "2\n1 1\n3 1", "output": "0" }, { "input": "2\n999 1\n1000 2", "output": "1" }, { "input": "5\n1 1000\n2 999\n3 998\n4 997\n5 996", "output": "10" } ]
1,555,259,807
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
2
171
1,024,000
MAX = 5 matriz = [] for i in range(MAX): linha = [] for j in range(MAX): linha.append(0) matriz.append(linha) def imprimir_matriz(mat): for l in mat: for ind, el in enumerate(l): if ind == len(l) - 1: print(el) else: print(el, end=" ") n = int(input()) #print(matriz) for i in range(n): a, b = map(int, input().split()) linha = matriz[a - 1] linha[b - 1] = 1 #imprimir_matriz(matriz) #print(matriz) resp = 0 for k in range(1, MAX + (MAX - 2)): i = max(0, k - MAX + 1) j = -(min(1, MAX - k) - 1) crossing = 0 while k - j >= 0 and i < MAX: if matriz[i][k - j] == 1: crossing += 1 i += 1 j += 1 if crossing > 1: resp += crossing for k in range(MAX - 2, -(MAX - 1), -1): i = max(0, k - MAX) j = 0 if k <= 0: i = abs(k) j -= k crossing = 0 while k + j < MAX and i < MAX: if matriz[i][k + j] == 1: crossing += 1 i += 1 j += 1 if crossing > 1: resp += crossing #imprimir_matriz(matriz) print(resp)
Title: Wet Shark and Bishops Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today, Wet Shark is given *n* bishops on a 1000 by 1000 grid. Both rows and columns of the grid are numbered from 1 to 1000. Rows are numbered from top to bottom, while columns are numbered from left to right. Wet Shark thinks that two bishops attack each other if they share the same diagonal. Note, that this is the only criteria, so two bishops may attack each other (according to Wet Shark) even if there is another bishop located between them. Now Wet Shark wants to count the number of pairs of bishops that attack each other. Input Specification: The first line of the input contains *n* (1<=≤<=*n*<=≤<=200<=000) — the number of bishops. Each of next *n* lines contains two space separated integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the number of row and the number of column where *i*-th bishop is positioned. It's guaranteed that no two bishops share the same position. Output Specification: Output one integer — the number of pairs of bishops which attack each other. Demo Input: ['5\n1 1\n1 5\n3 3\n5 1\n5 5\n', '3\n1 1\n2 3\n3 5\n'] Demo Output: ['6\n', '0\n'] Note: In the first sample following pairs of bishops attack each other: (1, 3), (1, 5), (2, 3), (2, 4), (3, 4) and (3, 5). Pairs (1, 2), (1, 4), (2, 5) and (4, 5) do not attack each other because they do not share the same diagonal.
```python MAX = 5 matriz = [] for i in range(MAX): linha = [] for j in range(MAX): linha.append(0) matriz.append(linha) def imprimir_matriz(mat): for l in mat: for ind, el in enumerate(l): if ind == len(l) - 1: print(el) else: print(el, end=" ") n = int(input()) #print(matriz) for i in range(n): a, b = map(int, input().split()) linha = matriz[a - 1] linha[b - 1] = 1 #imprimir_matriz(matriz) #print(matriz) resp = 0 for k in range(1, MAX + (MAX - 2)): i = max(0, k - MAX + 1) j = -(min(1, MAX - k) - 1) crossing = 0 while k - j >= 0 and i < MAX: if matriz[i][k - j] == 1: crossing += 1 i += 1 j += 1 if crossing > 1: resp += crossing for k in range(MAX - 2, -(MAX - 1), -1): i = max(0, k - MAX) j = 0 if k <= 0: i = abs(k) j -= k crossing = 0 while k + j < MAX and i < MAX: if matriz[i][k + j] == 1: crossing += 1 i += 1 j += 1 if crossing > 1: resp += crossing #imprimir_matriz(matriz) print(resp) ```
-1
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,665,680,394
2,147,483,647
Python 3
OK
TESTS
40
62
5,017,600
from re import match print("YES" if match(r"[^\s]*h[^\s]*e[^\s]*l[^\s]*l[^\s]*o[^\s]*",input()) else "NO")
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python from re import match print("YES" if match(r"[^\s]*h[^\s]*e[^\s]*l[^\s]*l[^\s]*o[^\s]*",input()) else "NO") ```
3.959654
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,679,846,920
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
31
0
n,m,k = map(int,input().split()) a = min(n,m,k) print(a)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python n,m,k = map(int,input().split()) a = min(n,m,k) print(a) ```
0
157
B
Trace
PROGRAMMING
1,000
[ "geometry", "sortings" ]
null
null
One day, as Sherlock Holmes was tracking down one very important criminal, he found a wonderful painting on the wall. This wall could be represented as a plane. The painting had several concentric circles that divided the wall into several parts. Some parts were painted red and all the other were painted blue. Besides, any two neighboring parts were painted different colors, that is, the red and the blue color were alternating, i. e. followed one after the other. The outer area of the wall (the area that lied outside all circles) was painted blue. Help Sherlock Holmes determine the total area of red parts of the wall. Let us remind you that two circles are called concentric if their centers coincide. Several circles are called concentric if any two of them are concentric.
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=100). The second line contains *n* space-separated integers *r**i* (1<=≤<=*r**i*<=≤<=1000) — the circles' radii. It is guaranteed that all circles are different.
Print the single real number — total area of the part of the wall that is painted red. The answer is accepted if absolute or relative error doesn't exceed 10<=-<=4.
[ "1\n1\n", "3\n1 4 2\n" ]
[ "3.1415926536\n", "40.8407044967\n" ]
In the first sample the picture is just one circle of radius 1. Inner part of the circle is painted red. The area of the red part equals π × 1<sup class="upper-index">2</sup> = π. In the second sample there are three circles of radii 1, 4 and 2. Outside part of the second circle is painted blue. Part between the second and the third circles is painted red. Part between the first and the third is painted blue. And, finally, the inner part of the first circle is painted red. Overall there are two red parts: the ring between the second and the third circles and the inner part of the first circle. Total area of the red parts is equal (π × 4<sup class="upper-index">2</sup> - π × 2<sup class="upper-index">2</sup>) + π × 1<sup class="upper-index">2</sup> = π × 12 + π = 13π
1,000
[ { "input": "1\n1", "output": "3.1415926536" }, { "input": "3\n1 4 2", "output": "40.8407044967" }, { "input": "4\n4 1 3 2", "output": "31.4159265359" }, { "input": "4\n100 10 2 1", "output": "31111.1920484997" }, { "input": "10\n10 9 8 7 6 5 4 3 2 1", "output": "172.7875959474" }, { "input": "1\n1000", "output": "3141592.6535897931" }, { "input": "8\n8 1 7 2 6 3 5 4", "output": "113.0973355292" }, { "input": "100\n1000 999 998 997 996 995 994 993 992 991 990 989 988 987 986 985 984 983 982 981 980 979 978 977 976 975 974 973 972 971 970 969 968 967 966 965 964 963 962 961 960 959 958 957 956 955 954 953 952 951 950 949 948 947 946 945 944 943 942 941 940 939 938 937 936 935 934 933 932 931 930 929 928 927 926 925 924 923 922 921 920 919 918 917 916 915 914 913 912 911 910 909 908 907 906 905 904 903 902 901", "output": "298608.3817237098" }, { "input": "6\n109 683 214 392 678 10", "output": "397266.9574170437" }, { "input": "2\n151 400", "output": "431023.3704798660" }, { "input": "6\n258 877 696 425 663 934", "output": "823521.3902487604" }, { "input": "9\n635 707 108 234 52 180 910 203 782", "output": "1100144.9065826489" }, { "input": "8\n885 879 891 428 522 176 135 983", "output": "895488.9947571954" }, { "input": "3\n269 918 721", "output": "1241695.6467754442" }, { "input": "7\n920 570 681 428 866 935 795", "output": "1469640.1849419588" }, { "input": "2\n517 331", "output": "495517.1260654109" }, { "input": "2\n457 898", "output": "1877274.3981158488" }, { "input": "8\n872 704 973 612 183 274 739 253", "output": "1780774.0965755312" }, { "input": "74\n652 446 173 457 760 847 670 25 196 775 998 279 656 809 883 148 969 884 792 502 641 800 663 938 362 339 545 608 107 184 834 666 149 458 864 72 199 658 618 987 126 723 806 643 689 958 626 904 944 415 427 498 628 331 636 261 281 276 478 220 513 595 510 384 354 561 469 462 799 449 747 109 903 456", "output": "1510006.5089479341" }, { "input": "76\n986 504 673 158 87 332 124 218 714 235 212 122 878 370 938 81 686 323 386 348 410 468 875 107 50 960 82 834 234 663 651 422 794 633 294 771 945 607 146 913 950 858 297 88 882 725 247 872 645 749 799 987 115 394 380 382 971 429 593 426 652 353 351 233 868 598 889 116 71 376 916 464 414 976 138 903", "output": "1528494.7817143100" }, { "input": "70\n12 347 748 962 514 686 192 159 990 4 10 788 602 542 946 215 523 727 799 717 955 796 529 465 897 103 181 515 495 153 710 179 747 145 16 585 943 998 923 708 156 399 770 547 775 285 9 68 713 722 570 143 913 416 663 624 925 218 64 237 797 138 942 213 188 818 780 840 480 758", "output": "1741821.4892636713" }, { "input": "26\n656 508 45 189 561 366 96 486 547 386 703 570 780 689 264 26 11 74 466 76 421 48 982 886 215 650", "output": "1818821.9252031571" }, { "input": "52\n270 658 808 249 293 707 700 78 791 167 92 772 807 502 830 991 945 102 968 376 556 578 326 980 688 368 280 853 646 256 666 638 424 737 321 996 925 405 199 680 953 541 716 481 727 143 577 919 892 355 346 298", "output": "1272941.9273080483" }, { "input": "77\n482 532 200 748 692 697 171 863 586 547 301 149 326 812 147 698 303 691 527 805 681 387 619 947 598 453 167 799 840 508 893 688 643 974 998 341 804 230 538 669 271 404 477 759 943 596 949 235 880 160 151 660 832 82 969 539 708 889 258 81 224 655 790 144 462 582 646 256 445 52 456 920 67 819 631 484 534", "output": "2045673.1891262225" }, { "input": "27\n167 464 924 575 775 97 944 390 297 315 668 296 533 829 851 406 702 366 848 512 71 197 321 900 544 529 116", "output": "1573959.9105970615" }, { "input": "38\n488 830 887 566 720 267 583 102 65 200 884 220 263 858 510 481 316 804 754 568 412 166 374 869 356 977 145 421 500 58 664 252 745 70 381 927 670 772", "output": "1479184.3434235646" }, { "input": "64\n591 387 732 260 840 397 563 136 571 876 831 953 799 493 579 13 559 872 53 678 256 232 969 993 847 14 837 365 547 997 604 199 834 529 306 443 739 49 19 276 343 835 904 588 900 870 439 576 975 955 518 117 131 347 800 83 432 882 869 709 32 950 314 450", "output": "1258248.6984672088" }, { "input": "37\n280 281 169 68 249 389 977 101 360 43 448 447 368 496 125 507 747 392 338 270 916 150 929 428 118 266 589 470 774 852 263 644 187 817 808 58 637", "output": "1495219.0323274869" }, { "input": "97\n768 569 306 968 437 779 227 561 412 60 44 807 234 645 169 858 580 396 343 145 842 723 416 80 456 247 81 150 297 116 760 964 312 558 101 850 549 650 299 868 121 435 579 705 118 424 302 812 970 397 659 565 916 183 933 459 6 593 518 717 326 305 744 470 75 981 824 221 294 324 194 293 251 446 481 215 338 861 528 829 921 945 540 89 450 178 24 460 990 392 148 219 934 615 932 340 937", "output": "1577239.7333274092" }, { "input": "94\n145 703 874 425 277 652 239 496 458 658 339 842 564 699 893 352 625 980 432 121 798 872 499 859 850 721 414 825 543 843 304 111 342 45 219 311 50 748 465 902 781 822 504 985 919 656 280 310 917 438 464 527 491 713 906 329 635 777 223 810 501 535 156 252 806 112 971 719 103 443 165 98 579 554 244 996 221 560 301 51 977 422 314 858 528 772 448 626 185 194 536 66 577 677", "output": "1624269.3753516484" }, { "input": "97\n976 166 649 81 611 927 480 231 998 711 874 91 969 521 531 414 993 790 317 981 9 261 437 332 173 573 904 777 882 990 658 878 965 64 870 896 271 732 431 53 761 943 418 602 708 949 930 130 512 240 363 458 673 319 131 784 224 48 919 126 208 212 911 59 677 535 450 273 479 423 79 807 336 18 72 290 724 28 123 605 287 228 350 897 250 392 885 655 746 417 643 114 813 378 355 635 905", "output": "1615601.7212203942" }, { "input": "91\n493 996 842 9 748 178 1 807 841 519 796 998 84 670 778 143 707 208 165 893 154 943 336 150 761 881 434 112 833 55 412 682 552 945 758 189 209 600 354 325 440 844 410 20 136 665 88 791 688 17 539 821 133 236 94 606 483 446 429 60 960 476 915 134 137 852 754 908 276 482 117 252 297 903 981 203 829 811 471 135 188 667 710 393 370 302 874 872 551 457 692", "output": "1806742.5014501044" }, { "input": "95\n936 736 17 967 229 607 589 291 242 244 29 698 800 566 630 667 90 416 11 94 812 838 668 520 678 111 490 823 199 973 681 676 683 721 262 896 682 713 402 691 874 44 95 704 56 322 822 887 639 433 406 35 988 61 176 496 501 947 440 384 372 959 577 370 754 802 1 945 427 116 746 408 308 391 397 730 493 183 203 871 831 862 461 565 310 344 504 378 785 137 279 123 475 138 415", "output": "1611115.5269110680" }, { "input": "90\n643 197 42 218 582 27 66 704 195 445 641 675 285 639 503 686 242 327 57 955 848 287 819 992 756 749 363 48 648 736 580 117 752 921 923 372 114 313 202 337 64 497 399 25 883 331 24 871 917 8 517 486 323 529 325 92 891 406 864 402 263 773 931 253 625 31 17 271 140 131 232 586 893 525 846 54 294 562 600 801 214 55 768 683 389 738 314 284 328 804", "output": "1569819.2914796301" }, { "input": "98\n29 211 984 75 333 96 840 21 352 168 332 433 130 944 215 210 620 442 363 877 91 491 513 955 53 82 351 19 998 706 702 738 770 453 344 117 893 590 723 662 757 16 87 546 312 669 568 931 224 374 927 225 751 962 651 587 361 250 256 240 282 600 95 64 384 589 813 783 39 918 412 648 506 283 886 926 443 173 946 241 310 33 622 565 261 360 547 339 943 367 354 25 479 743 385 485 896 741", "output": "2042921.1539616778" }, { "input": "93\n957 395 826 67 185 4 455 880 683 654 463 84 258 878 553 592 124 585 9 133 20 609 43 452 725 125 801 537 700 685 771 155 566 376 19 690 383 352 174 208 177 416 304 1000 533 481 87 509 358 233 681 22 507 659 36 859 952 259 138 271 594 779 576 782 119 69 608 758 283 616 640 523 710 751 34 106 774 92 874 568 864 660 998 992 474 679 180 409 15 297 990 689 501", "output": "1310703.8710041976" }, { "input": "97\n70 611 20 30 904 636 583 262 255 501 604 660 212 128 199 138 545 576 506 528 12 410 77 888 783 972 431 188 338 485 148 793 907 678 281 922 976 680 252 724 253 920 177 361 721 798 960 572 99 622 712 466 608 49 612 345 266 751 63 594 40 695 532 789 520 930 825 929 48 59 405 135 109 735 508 186 495 772 375 587 201 324 447 610 230 947 855 318 856 956 313 810 931 175 668 183 688", "output": "1686117.9099228707" }, { "input": "96\n292 235 391 180 840 172 218 997 166 287 329 20 886 325 400 471 182 356 448 337 417 319 58 106 366 764 393 614 90 831 924 314 667 532 64 874 3 434 350 352 733 795 78 640 967 63 47 879 635 272 145 569 468 792 153 761 770 878 281 467 209 208 298 37 700 18 334 93 5 750 412 779 523 517 360 649 447 328 311 653 57 578 767 460 647 663 50 670 151 13 511 580 625 907 227 89", "output": "1419726.5608617242" }, { "input": "100\n469 399 735 925 62 153 707 723 819 529 200 624 57 708 245 384 889 11 639 638 260 419 8 142 403 298 204 169 887 388 241 983 885 267 643 943 417 237 452 562 6 839 149 742 832 896 100 831 712 754 679 743 135 222 445 680 210 955 220 63 960 487 514 824 481 584 441 997 795 290 10 45 510 678 844 503 407 945 850 84 858 934 500 320 936 663 736 592 161 670 606 465 864 969 293 863 868 393 899 744", "output": "1556458.0979239127" }, { "input": "100\n321 200 758 415 190 710 920 992 873 898 814 259 359 66 971 210 838 545 663 652 684 277 36 756 963 459 335 484 462 982 532 423 131 703 307 229 391 938 253 847 542 975 635 928 220 980 222 567 557 181 366 824 900 180 107 979 112 564 525 413 300 422 876 615 737 343 902 8 654 628 469 913 967 785 893 314 909 215 912 262 20 709 363 915 997 954 986 454 596 124 74 159 660 550 787 418 895 786 293 50", "output": "1775109.8050211088" }, { "input": "100\n859 113 290 762 701 63 188 431 810 485 671 673 99 658 194 227 511 435 941 212 551 124 89 222 42 321 657 815 898 171 216 482 707 567 724 491 414 942 820 351 48 653 685 312 586 24 20 627 602 498 533 173 463 262 621 466 119 299 580 964 510 987 40 698 521 998 847 651 746 215 808 563 785 837 631 772 404 923 682 244 232 214 390 350 968 771 517 900 70 543 934 554 681 368 642 575 891 728 478 317", "output": "1447969.4788174964" }, { "input": "100\n941 283 349 457 52 837 299 284 796 305 893 624 101 972 738 204 121 70 17 704 836 791 95 111 162 952 472 724 733 580 878 177 705 804 11 211 463 417 288 409 410 485 896 755 921 267 164 656 505 765 539 439 535 19 991 689 220 474 114 944 884 144 926 849 486 566 117 35 749 499 797 303 362 905 690 890 976 66 590 183 234 683 39 297 769 787 376 541 571 759 495 200 261 352 73 493 831 442 273 339", "output": "1597889.4218394549" }, { "input": "100\n110 868 147 888 291 282 916 542 917 337 235 595 498 621 814 249 261 713 445 666 142 275 319 49 900 543 333 606 487 670 620 769 852 258 230 867 603 491 714 839 879 37 21 74 590 190 397 506 499 967 152 862 200 107 145 23 614 167 857 475 79 598 270 906 626 116 89 59 651 846 723 201 50 699 522 408 634 132 226 414 824 764 513 586 526 238 556 162 667 173 684 415 527 743 10 442 552 274 350 822", "output": "1567230.6191330721" }, { "input": "100\n901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000", "output": "298608.3817237098" } ]
1,608,880,984
2,147,483,647
Python 3
OK
TESTS
44
218
307,200
#from collections import Counter import math pi = math.pi n = int(input()) arr = list(map(int, input().split())) arr.sort(reverse=True) i = 0 area = 0 while i<len(arr): if i+1<len(arr): area += pi*(arr[i]**2-arr[i+1]**2) else: area += pi*(arr[i]**2) i += 2 print(area)
Title: Trace Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day, as Sherlock Holmes was tracking down one very important criminal, he found a wonderful painting on the wall. This wall could be represented as a plane. The painting had several concentric circles that divided the wall into several parts. Some parts were painted red and all the other were painted blue. Besides, any two neighboring parts were painted different colors, that is, the red and the blue color were alternating, i. e. followed one after the other. The outer area of the wall (the area that lied outside all circles) was painted blue. Help Sherlock Holmes determine the total area of red parts of the wall. Let us remind you that two circles are called concentric if their centers coincide. Several circles are called concentric if any two of them are concentric. Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=100). The second line contains *n* space-separated integers *r**i* (1<=≤<=*r**i*<=≤<=1000) — the circles' radii. It is guaranteed that all circles are different. Output Specification: Print the single real number — total area of the part of the wall that is painted red. The answer is accepted if absolute or relative error doesn't exceed 10<=-<=4. Demo Input: ['1\n1\n', '3\n1 4 2\n'] Demo Output: ['3.1415926536\n', '40.8407044967\n'] Note: In the first sample the picture is just one circle of radius 1. Inner part of the circle is painted red. The area of the red part equals π × 1<sup class="upper-index">2</sup> = π. In the second sample there are three circles of radii 1, 4 and 2. Outside part of the second circle is painted blue. Part between the second and the third circles is painted red. Part between the first and the third is painted blue. And, finally, the inner part of the first circle is painted red. Overall there are two red parts: the ring between the second and the third circles and the inner part of the first circle. Total area of the red parts is equal (π × 4<sup class="upper-index">2</sup> - π × 2<sup class="upper-index">2</sup>) + π × 1<sup class="upper-index">2</sup> = π × 12 + π = 13π
```python #from collections import Counter import math pi = math.pi n = int(input()) arr = list(map(int, input().split())) arr.sort(reverse=True) i = 0 area = 0 while i<len(arr): if i+1<len(arr): area += pi*(arr[i]**2-arr[i+1]**2) else: area += pi*(arr[i]**2) i += 2 print(area) ```
3
76
E
Points
PROGRAMMING
1,700
[ "implementation", "math" ]
E. Points
1
256
You are given *N* points on a plane. Write a program which will find the sum of squares of distances between all pairs of points.
The first line of input contains one integer number *N* (1<=≤<=*N*<=≤<=100<=000) — the number of points. Each of the following *N* lines contain two integer numbers *X* and *Y* (<=-<=10<=000<=≤<=*X*,<=*Y*<=≤<=10<=000) — the coordinates of points. Two or more points may coincide.
The only line of output should contain the required sum of squares of distances between all pairs of points.
[ "4\n1 1\n-1 -1\n1 -1\n-1 1\n" ]
[ "32\n" ]
none
0
[ { "input": "4\n1 1\n-1 -1\n1 -1\n-1 1", "output": "32" }, { "input": "1\n6 3", "output": "0" }, { "input": "30\n-7 -12\n-2 5\n14 8\n9 17\n15 -18\n20 6\n20 8\n-13 12\n-4 -20\n-11 -16\n-6 16\n1 -9\n5 -12\n13 -17\n11 5\n8 -9\n-13 5\n19 -13\n-19 -8\n-14 10\n10 3\n-16 -8\n-17 16\n-14 -15\n5 1\n-13 -9\n13 17\n-14 -8\n2 5\n18 5", "output": "265705" } ]
1,670,662,014
2,147,483,647
Python 3
OK
TESTS
11
528
5,017,600
from heapq import heapify, heappop, heappush, nlargest from collections import Counter, defaultdict from sys import stdin, stdout from math import ceil, floor, sqrt from functools import reduce,lru_cache # n,m = map(int,stdin.readline().split()) # stdout.write(str(arr[x-y]-arr[x])+'\n') # reps = int(stdin.readline()) # for _ in range(reps): # n, x, y = map(int,stdin.readline().split()) # s1,s2 = stdin.readline().strip().split() # s2 = stdin.readline().strip() # n = int(stdin.readline()) # arr = list(map(int,stdin.readline().split())) n = int(stdin.readline()) if n==1: print(0);exit() ans = 0 xarr = [] yarr = [] for _ in range(n): x,y = (map(int,stdin.readline().split())) xarr.append(x) yarr.append(y) ans += (x**2+y**2)*(n-1) curr = xarr[-1] for x in reversed(xarr[:-1]): ans -= 2*x*curr curr += x curr = yarr[-1] for y in reversed(yarr[:-1]): ans -= 2*y*curr curr += y print(ans)
Title: Points Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: You are given *N* points on a plane. Write a program which will find the sum of squares of distances between all pairs of points. Input Specification: The first line of input contains one integer number *N* (1<=≤<=*N*<=≤<=100<=000) — the number of points. Each of the following *N* lines contain two integer numbers *X* and *Y* (<=-<=10<=000<=≤<=*X*,<=*Y*<=≤<=10<=000) — the coordinates of points. Two or more points may coincide. Output Specification: The only line of output should contain the required sum of squares of distances between all pairs of points. Demo Input: ['4\n1 1\n-1 -1\n1 -1\n-1 1\n'] Demo Output: ['32\n'] Note: none
```python from heapq import heapify, heappop, heappush, nlargest from collections import Counter, defaultdict from sys import stdin, stdout from math import ceil, floor, sqrt from functools import reduce,lru_cache # n,m = map(int,stdin.readline().split()) # stdout.write(str(arr[x-y]-arr[x])+'\n') # reps = int(stdin.readline()) # for _ in range(reps): # n, x, y = map(int,stdin.readline().split()) # s1,s2 = stdin.readline().strip().split() # s2 = stdin.readline().strip() # n = int(stdin.readline()) # arr = list(map(int,stdin.readline().split())) n = int(stdin.readline()) if n==1: print(0);exit() ans = 0 xarr = [] yarr = [] for _ in range(n): x,y = (map(int,stdin.readline().split())) xarr.append(x) yarr.append(y) ans += (x**2+y**2)*(n-1) curr = xarr[-1] for x in reversed(xarr[:-1]): ans -= 2*x*curr curr += x curr = yarr[-1] for y in reversed(yarr[:-1]): ans -= 2*y*curr curr += y print(ans) ```
3.726654
479
A
Expression
PROGRAMMING
1,000
[ "brute force", "math" ]
null
null
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get.
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
Print the maximum value of the expression that you can obtain.
[ "1\n2\n3\n", "2\n10\n3\n" ]
[ "9\n", "60\n" ]
none
500
[ { "input": "1\n2\n3", "output": "9" }, { "input": "2\n10\n3", "output": "60" }, { "input": "1\n1\n1", "output": "3" }, { "input": "1\n2\n1", "output": "4" }, { "input": "10\n10\n10", "output": "1000" }, { "input": "5\n1\n3", "output": "20" }, { "input": "3\n1\n5", "output": "20" }, { "input": "6\n7\n1", "output": "48" }, { "input": "1\n8\n3", "output": "27" }, { "input": "9\n7\n2", "output": "126" }, { "input": "1\n1\n10", "output": "20" }, { "input": "9\n1\n1", "output": "18" }, { "input": "10\n5\n6", "output": "300" }, { "input": "8\n9\n7", "output": "504" }, { "input": "4\n2\n10", "output": "80" }, { "input": "2\n8\n3", "output": "48" }, { "input": "3\n5\n7", "output": "105" }, { "input": "1\n10\n1", "output": "12" }, { "input": "2\n2\n2", "output": "8" }, { "input": "5\n6\n1", "output": "35" }, { "input": "10\n1\n1", "output": "20" }, { "input": "1\n6\n1", "output": "8" }, { "input": "1\n9\n1", "output": "11" }, { "input": "2\n1\n2", "output": "6" }, { "input": "2\n6\n1", "output": "14" }, { "input": "9\n2\n1", "output": "27" }, { "input": "1\n9\n2", "output": "20" }, { "input": "1\n3\n1", "output": "5" }, { "input": "2\n1\n1", "output": "4" } ]
1,697,361,482
2,147,483,647
PyPy 3-64
OK
TESTS
29
77
0
i=[] ans=[] for _ in range(3): i.append(int(input())) ans.append(i[0]*i[1]*i[2]) ans.append(i[0] + i[1] + i[2]) ans.append(i[0]*(i[1] + i[2])) ans.append((i[0]+i[1]) * i[2]) print(max(ans))
Title: Expression Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get. Input Specification: The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10). Output Specification: Print the maximum value of the expression that you can obtain. Demo Input: ['1\n2\n3\n', '2\n10\n3\n'] Demo Output: ['9\n', '60\n'] Note: none
```python i=[] ans=[] for _ in range(3): i.append(int(input())) ans.append(i[0]*i[1]*i[2]) ans.append(i[0] + i[1] + i[2]) ans.append(i[0]*(i[1] + i[2])) ans.append((i[0]+i[1]) * i[2]) print(max(ans)) ```
3
796
B
Find The Bone
PROGRAMMING
1,300
[ "implementation" ]
null
null
Zane the wizard is going to perform a magic show shuffling the cups. There are *n* cups, numbered from 1 to *n*, placed along the *x*-axis on a table that has *m* holes on it. More precisely, cup *i* is on the table at the position *x*<==<=*i*. The problematic bone is initially at the position *x*<==<=1. Zane will confuse the audience by swapping the cups *k* times, the *i*-th time of which involves the cups at the positions *x*<==<=*u**i* and *x*<==<=*v**i*. If the bone happens to be at the position where there is a hole at any time, it will fall into the hole onto the ground and will not be affected by future swapping operations. Do not forget that Zane is a wizard. When he swaps the cups, he does not move them ordinarily. Instead, he teleports the cups (along with the bone, if it is inside) to the intended positions. Therefore, for example, when he swaps the cup at *x*<==<=4 and the one at *x*<==<=6, they will not be at the position *x*<==<=5 at any moment during the operation. Zane’s puppy, Inzane, is in trouble. Zane is away on his vacation, and Inzane cannot find his beloved bone, as it would be too exhausting to try opening all the cups. Inzane knows that the Codeforces community has successfully helped Zane, so he wants to see if it could help him solve his problem too. Help Inzane determine the final position of the bone.
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=106, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=3·105) — the number of cups, the number of holes on the table, and the number of swapping operations, respectively. The second line contains *m* distinct integers *h*1,<=*h*2,<=...,<=*h**m* (1<=≤<=*h**i*<=≤<=*n*) — the positions along the *x*-axis where there is a hole on the table. Each of the next *k* lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the positions of the cups to be swapped.
Print one integer — the final position along the *x*-axis of the bone.
[ "7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1\n", "5 1 2\n2\n1 2\n2 4\n" ]
[ "1", "2" ]
In the first sample, after the operations, the bone becomes at *x* = 2, *x* = 5, *x* = 7, and *x* = 1, respectively. In the second sample, after the first operation, the bone becomes at *x* = 2, and falls into the hole onto the ground.
750
[ { "input": "7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1", "output": "1" }, { "input": "5 1 2\n2\n1 2\n2 4", "output": "2" }, { "input": "10000 1 9\n55\n44 1\n2929 9292\n9999 9998\n44 55\n49 94\n55 53\n100 199\n55 50\n53 11", "output": "55" }, { "input": "100000 3 7\n2 3 4\n1 5\n5 1\n1 5\n5 1\n1 4\n4 3\n3 2", "output": "4" }, { "input": "1000000 9 11\n38 59 999999 199 283 4849 1000000 2 554\n39 94\n3 9\n1 39\n39 40\n40 292\n5399 5858\n292 49949\n49949 222\n222 38\n202 9494\n38 59", "output": "38" }, { "input": "1000000 11 9\n19 28 39 82 99 929384 8298 892849 202020 777777 123123\n19 28\n28 39\n1 123124\n39 28\n28 99\n99 8298\n123124 123122\n2300 3200\n8298 1000000", "output": "123122" }, { "input": "2 1 1\n1\n1 2", "output": "1" }, { "input": "7 3 6\n1 4 5\n1 2\n2 3\n3 5\n4 5\n4 5\n4 5", "output": "1" }, { "input": "10 3 8\n1 5 10\n1 2\n2 3\n3 4\n3 4\n3 4\n4 5\n5 6\n6 5", "output": "1" }, { "input": "5 2 9\n2 4\n1 3\n3 5\n3 5\n3 4\n4 2\n2 4\n1 4\n1 2\n1 4", "output": "4" }, { "input": "10 10 13\n1 2 3 4 5 6 7 8 9 10\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n6 7\n6 10\n10 9\n9 1\n1 10\n1 10\n1 10", "output": "1" }, { "input": "3 3 3\n1 2 3\n1 2\n2 3\n3 2", "output": "1" }, { "input": "100 7 7\n17 27 37 47 57 67 77\n49 39\n55 1\n50 3\n89 1\n1 99\n100 55\n98 55", "output": "100" }, { "input": "9 1 9\n9\n1 2\n3 2\n4 3\n8 9\n4 5\n7 4\n8 5\n1 3\n3 2", "output": "8" }, { "input": "300000 1 1\n200000\n300000 1", "output": "300000" }, { "input": "203948 2 14\n203948 203946\n39 38\n4959 3030\n1 203947\n2929 9292\n203944 203948\n203947 203944\n203944 203922\n203922 203948\n2495 20495\n29419 5959\n12949 12\n49 29292\n1 94\n1 203", "output": "203948" }, { "input": "203948 2 14\n203948 203947\n39 38\n4959 3030\n1 203947\n2929 9292\n203944 203948\n203947 203944\n203944 203922\n203922 203948\n2495 20495\n29419 5959\n12949 12\n49 29292\n1 94\n1 203", "output": "203947" }, { "input": "100 2 5\n1 2\n2 39\n39 29\n99 100\n1 2\n2 39", "output": "1" }, { "input": "3 1 1\n1\n1 2", "output": "1" }, { "input": "5 2 2\n1 2\n1 2\n2 3", "output": "1" }, { "input": "2 2 1\n1 2\n2 1", "output": "1" }, { "input": "5 2 1\n1 2\n2 1", "output": "1" }, { "input": "5 1 1\n5\n3 4", "output": "1" }, { "input": "3 2 1\n1 2\n2 1", "output": "1" }, { "input": "5 1 2\n2\n2 1\n2 3", "output": "2" }, { "input": "3 1 2\n2\n2 1\n2 3", "output": "2" }, { "input": "3 2 2\n2 3\n2 1\n2 3", "output": "2" }, { "input": "4 2 1\n1 2\n2 1", "output": "1" }, { "input": "4 1 1\n2\n2 3", "output": "1" }, { "input": "3 2 1\n1 3\n3 1", "output": "1" }, { "input": "10 1 3\n2\n2 1\n2 4\n9 10", "output": "2" }, { "input": "5 2 4\n3 5\n1 2\n4 2\n3 4\n3 5", "output": "3" }, { "input": "4 3 1\n1 2 3\n2 1", "output": "1" } ]
1,586,720,933
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
93
0
n,m,k=map(int,input().split()) l=list(map(int,input().split())) ind=1 flag=0 for i in range(k): u,v=map(int,input().split()) if flag==0: if v in l: ind=v flag=1 else: ind=v print(ind)
Title: Find The Bone Time Limit: None seconds Memory Limit: None megabytes Problem Description: Zane the wizard is going to perform a magic show shuffling the cups. There are *n* cups, numbered from 1 to *n*, placed along the *x*-axis on a table that has *m* holes on it. More precisely, cup *i* is on the table at the position *x*<==<=*i*. The problematic bone is initially at the position *x*<==<=1. Zane will confuse the audience by swapping the cups *k* times, the *i*-th time of which involves the cups at the positions *x*<==<=*u**i* and *x*<==<=*v**i*. If the bone happens to be at the position where there is a hole at any time, it will fall into the hole onto the ground and will not be affected by future swapping operations. Do not forget that Zane is a wizard. When he swaps the cups, he does not move them ordinarily. Instead, he teleports the cups (along with the bone, if it is inside) to the intended positions. Therefore, for example, when he swaps the cup at *x*<==<=4 and the one at *x*<==<=6, they will not be at the position *x*<==<=5 at any moment during the operation. Zane’s puppy, Inzane, is in trouble. Zane is away on his vacation, and Inzane cannot find his beloved bone, as it would be too exhausting to try opening all the cups. Inzane knows that the Codeforces community has successfully helped Zane, so he wants to see if it could help him solve his problem too. Help Inzane determine the final position of the bone. Input Specification: The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=106, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=3·105) — the number of cups, the number of holes on the table, and the number of swapping operations, respectively. The second line contains *m* distinct integers *h*1,<=*h*2,<=...,<=*h**m* (1<=≤<=*h**i*<=≤<=*n*) — the positions along the *x*-axis where there is a hole on the table. Each of the next *k* lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the positions of the cups to be swapped. Output Specification: Print one integer — the final position along the *x*-axis of the bone. Demo Input: ['7 3 4\n3 4 6\n1 2\n2 5\n5 7\n7 1\n', '5 1 2\n2\n1 2\n2 4\n'] Demo Output: ['1', '2'] Note: In the first sample, after the operations, the bone becomes at *x* = 2, *x* = 5, *x* = 7, and *x* = 1, respectively. In the second sample, after the first operation, the bone becomes at *x* = 2, and falls into the hole onto the ground.
```python n,m,k=map(int,input().split()) l=list(map(int,input().split())) ind=1 flag=0 for i in range(k): u,v=map(int,input().split()) if flag==0: if v in l: ind=v flag=1 else: ind=v print(ind) ```
0
757
B
Bash's Big Day
PROGRAMMING
1,400
[ "greedy", "math", "number theory" ]
null
null
Bash has set out on a journey to become the greatest Pokemon master. To get his first Pokemon, he went to Professor Zulu's Lab. Since Bash is Professor Zulu's favourite student, Zulu allows him to take as many Pokemon from his lab as he pleases. But Zulu warns him that a group of *k*<=&gt;<=1 Pokemon with strengths {*s*1,<=*s*2,<=*s*3,<=...,<=*s**k*} tend to fight among each other if *gcd*(*s*1,<=*s*2,<=*s*3,<=...,<=*s**k*)<==<=1 (see notes for *gcd* definition). Bash, being smart, does not want his Pokemon to fight among each other. However, he also wants to maximize the number of Pokemon he takes from the lab. Can you help Bash find out the maximum number of Pokemon he can take? Note: A Pokemon cannot fight with itself.
The input consists of two lines. The first line contains an integer *n* (1<=≤<=*n*<=≤<=105), the number of Pokemon in the lab. The next line contains *n* space separated integers, where the *i*-th of them denotes *s**i* (1<=≤<=*s**i*<=≤<=105), the strength of the *i*-th Pokemon.
Print single integer — the maximum number of Pokemons Bash can take.
[ "3\n2 3 4\n", "5\n2 3 4 6 7\n" ]
[ "2\n", "3\n" ]
*gcd* (greatest common divisor) of positive integers set {*a*<sub class="lower-index">1</sub>, *a*<sub class="lower-index">2</sub>, ..., *a*<sub class="lower-index">*n*</sub>} is the maximum positive integer that divides all the integers {*a*<sub class="lower-index">1</sub>, *a*<sub class="lower-index">2</sub>, ..., *a*<sub class="lower-index">*n*</sub>}. In the first sample, we can take Pokemons with strengths {2, 4} since *gcd*(2, 4) = 2. In the second sample, we can take Pokemons with strengths {2, 4, 6}, and there is no larger group with *gcd* ≠ 1.
1,000
[ { "input": "3\n2 3 4", "output": "2" }, { "input": "5\n2 3 4 6 7", "output": "3" }, { "input": "3\n5 6 4", "output": "2" }, { "input": "8\n41 74 4 27 85 39 100 36", "output": "4" }, { "input": "6\n89 20 86 81 62 23", "output": "3" }, { "input": "71\n23 84 98 8 14 4 42 56 83 87 28 22 32 50 5 96 90 1 59 74 77 88 71 38 62 36 85 97 99 6 81 20 49 57 66 9 45 41 29 68 35 19 27 76 78 72 55 25 46 48 26 53 39 31 94 34 63 37 64 16 79 24 82 17 12 3 89 61 80 30 10", "output": "38" }, { "input": "95\n72 38 75 62 87 30 11 65 35 16 73 23 18 48 19 4 22 42 14 60 49 83 59 15 51 27 80 97 37 100 64 81 54 71 52 20 5 98 78 86 26 55 25 57 36 3 8 74 82 21 29 1 76 2 79 61 39 9 89 77 70 63 56 28 92 53 31 45 93 47 67 99 58 12 84 44 32 34 69 40 13 7 66 68 17 85 6 90 33 91 94 24 46 10 50", "output": "48" }, { "input": "44\n39706 21317 26213 55086 10799 31825 29024 6565 96535 11412 14642 91901 41932 24538 81351 53861 63403 34199 82286 32594 29684 42753 16857 73821 71085 36306 70080 11233 21023 8551 85406 95390 92375 52675 77938 46265 74855 5229 5856 66713 65730 24525 84078 20684", "output": "19" }, { "input": "35\n45633 86983 46174 48399 33926 51395 76300 6387 48852 82808 28694 79864 4482 35982 21956 76522 19656 74518 28480 71481 25700 46815 14170 95705 8535 96993 29029 8898 97637 62710 14615 22864 69849 27068 68557", "output": "20" }, { "input": "1\n1", "output": "1" }, { "input": "10\n10 7 9 8 3 3 10 7 3 3", "output": "5" }, { "input": "9\n10 10 6 10 9 1 8 3 5", "output": "5" }, { "input": "7\n9 4 2 3 3 9 8", "output": "4" }, { "input": "1\n4", "output": "1" }, { "input": "6\n1623 45906 37856 34727 27156 12598", "output": "4" }, { "input": "30\n83172 59163 67334 83980 5932 8773 77649 41428 62789 28159 17183 10199 41496 59500 14614 10468 54886 64679 42382 57021 50499 95643 77239 61434 16181 30505 59152 55972 18265 70566", "output": "15" }, { "input": "23\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 22 16 2 13 16", "output": "22" }, { "input": "46\n12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 12553 15 1 18 28 20 6 31 16 5 23 21 38 3 11 18 11 3 25 33", "output": "27" }, { "input": "43\n8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8831 8 23 40 33 11 5 21 16 19 15 41 30 28 31 5 32 16 5 38 11 21 34", "output": "21" }, { "input": "25\n58427 26687 48857 46477 7039 25423 58757 48119 38113 40637 22391 48337 4157 10597 8167 19031 64613 70913 69313 18047 17159 77491 13499 70949 24107", "output": "1" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "2\n3 6", "output": "2" }, { "input": "5\n1 1 1 1 1", "output": "1" }, { "input": "5\n3 3 3 3 3", "output": "5" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "2\n541 541", "output": "2" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n99989 99989", "output": "2" }, { "input": "3\n3 9 27", "output": "3" }, { "input": "2\n1009 1009", "output": "2" }, { "input": "4\n1 1 1 1", "output": "1" }, { "input": "6\n2 10 20 5 15 25", "output": "5" }, { "input": "3\n3 3 6", "output": "3" }, { "input": "3\n457 457 457", "output": "3" }, { "input": "2\n34 17", "output": "2" }, { "input": "3\n12 24 3", "output": "3" }, { "input": "10\n99991 99991 99991 99991 99991 99991 99991 99991 99991 99991", "output": "10" }, { "input": "2\n1009 2018", "output": "2" }, { "input": "3\n3 3 3", "output": "3" }, { "input": "7\n6 9 12 15 21 27 33", "output": "7" }, { "input": "3\n2 1 1", "output": "1" }, { "input": "2\n557 557", "output": "2" }, { "input": "3\n1 1 2", "output": "1" }, { "input": "5\n2 2 101 101 101", "output": "3" }, { "input": "2\n122 3721", "output": "2" }, { "input": "2\n49201 98402", "output": "2" }, { "input": "2\n88258 44129", "output": "2" }, { "input": "2\n7919 47514", "output": "2" }, { "input": "5\n1 2 1 1 1", "output": "1" }, { "input": "2\n2 2", "output": "2" }, { "input": "5\n1 1 1 1 2", "output": "1" }, { "input": "3\n10007 20014 30021", "output": "3" }, { "input": "4\n10 10 5 5", "output": "4" }, { "input": "2\n6 9", "output": "2" }, { "input": "3\n6 12 9", "output": "3" }, { "input": "2\n14 7", "output": "2" }, { "input": "2\n199 199", "output": "2" }, { "input": "3\n49999 49999 99998", "output": "3" }, { "input": "5\n1009 1009 1009 1009 1009", "output": "5" }, { "input": "3\n17 17 17", "output": "3" }, { "input": "2\n503 1509", "output": "2" }, { "input": "3\n49999 99998 99998", "output": "3" }, { "input": "2\n28657 28657", "output": "2" }, { "input": "3\n121 22 33", "output": "3" }, { "input": "2\n10079 20158", "output": "2" }, { "input": "2\n6 15", "output": "2" }, { "input": "4\n6 6 6 3", "output": "4" }, { "input": "2\n991 1982", "output": "2" }, { "input": "3\n20362 30543 50905", "output": "3" }, { "input": "2\n443 886", "output": "2" }, { "input": "4\n3 7 7 21", "output": "3" }, { "input": "3\n3 6 9", "output": "3" }, { "input": "2\n217 31", "output": "2" }, { "input": "6\n10 10 10 5 5 5", "output": "6" }, { "input": "4\n49441 25225 9081 4036", "output": "4" }, { "input": "2\n4 9", "output": "1" }, { "input": "2\n18 27", "output": "2" }, { "input": "2\n13 26", "output": "2" }, { "input": "4\n6 6 6 15", "output": "4" } ]
1,485,196,840
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
10
2,000
10,854,400
def main(): QWE = 'river' INF = 10 ** 18 + 9 EPS = 10 ** -10 import sys, math, re #fi = open('input.txt', 'r') #fo = open('output.txt', 'w+') #fi = open(QWE +".in", "r") #fo = open(QWE + ".out", "w+") #n, m, k = map(int, input().split(' ', 2)) n = int(input()) d = {} rez = 0 for i in map(int, input().split(' ', n - 1)): for j in range(2, round(math.sqrt(i)) + 2): if (i % j == 0): try: d[j] += 1 except KeyError: d[j] = 1 rez = max(rez, d[j]) print(rez) main()
Title: Bash's Big Day Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bash has set out on a journey to become the greatest Pokemon master. To get his first Pokemon, he went to Professor Zulu's Lab. Since Bash is Professor Zulu's favourite student, Zulu allows him to take as many Pokemon from his lab as he pleases. But Zulu warns him that a group of *k*<=&gt;<=1 Pokemon with strengths {*s*1,<=*s*2,<=*s*3,<=...,<=*s**k*} tend to fight among each other if *gcd*(*s*1,<=*s*2,<=*s*3,<=...,<=*s**k*)<==<=1 (see notes for *gcd* definition). Bash, being smart, does not want his Pokemon to fight among each other. However, he also wants to maximize the number of Pokemon he takes from the lab. Can you help Bash find out the maximum number of Pokemon he can take? Note: A Pokemon cannot fight with itself. Input Specification: The input consists of two lines. The first line contains an integer *n* (1<=≤<=*n*<=≤<=105), the number of Pokemon in the lab. The next line contains *n* space separated integers, where the *i*-th of them denotes *s**i* (1<=≤<=*s**i*<=≤<=105), the strength of the *i*-th Pokemon. Output Specification: Print single integer — the maximum number of Pokemons Bash can take. Demo Input: ['3\n2 3 4\n', '5\n2 3 4 6 7\n'] Demo Output: ['2\n', '3\n'] Note: *gcd* (greatest common divisor) of positive integers set {*a*<sub class="lower-index">1</sub>, *a*<sub class="lower-index">2</sub>, ..., *a*<sub class="lower-index">*n*</sub>} is the maximum positive integer that divides all the integers {*a*<sub class="lower-index">1</sub>, *a*<sub class="lower-index">2</sub>, ..., *a*<sub class="lower-index">*n*</sub>}. In the first sample, we can take Pokemons with strengths {2, 4} since *gcd*(2, 4) = 2. In the second sample, we can take Pokemons with strengths {2, 4, 6}, and there is no larger group with *gcd* ≠ 1.
```python def main(): QWE = 'river' INF = 10 ** 18 + 9 EPS = 10 ** -10 import sys, math, re #fi = open('input.txt', 'r') #fo = open('output.txt', 'w+') #fi = open(QWE +".in", "r") #fo = open(QWE + ".out", "w+") #n, m, k = map(int, input().split(' ', 2)) n = int(input()) d = {} rez = 0 for i in map(int, input().split(' ', n - 1)): for j in range(2, round(math.sqrt(i)) + 2): if (i % j == 0): try: d[j] += 1 except KeyError: d[j] = 1 rez = max(rez, d[j]) print(rez) main() ```
0
855
A
Tom Riddle's Diary
PROGRAMMING
800
[ "brute force", "implementation", "strings" ]
null
null
Harry Potter is on a mission to destroy You-Know-Who's Horcruxes. The first Horcrux that he encountered in the Chamber of Secrets is Tom Riddle's diary. The diary was with Ginny and it forced her to open the Chamber of Secrets. Harry wants to know the different people who had ever possessed the diary to make sure they are not under its influence. He has names of *n* people who possessed the diary in order. You need to tell, for each person, if he/she possessed the diary at some point before or not. Formally, for a name *s**i* in the *i*-th line, output "YES" (without quotes) if there exists an index *j* such that *s**i*<==<=*s**j* and *j*<=&lt;<=*i*, otherwise, output "NO" (without quotes).
First line of input contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of names in the list. Next *n* lines each contain a string *s**i*, consisting of lowercase English letters. The length of each string is between 1 and 100.
Output *n* lines each containing either "YES" or "NO" (without quotes), depending on whether this string was already present in the stream or not. You can print each letter in any case (upper or lower).
[ "6\ntom\nlucius\nginny\nharry\nginny\nharry\n", "3\na\na\na\n" ]
[ "NO\nNO\nNO\nNO\nYES\nYES\n", "NO\nYES\nYES\n" ]
In test case 1, for *i* = 5 there exists *j* = 3 such that *s*<sub class="lower-index">*i*</sub> = *s*<sub class="lower-index">*j*</sub> and *j* &lt; *i*, which means that answer for *i* = 5 is "YES".
500
[ { "input": "6\ntom\nlucius\nginny\nharry\nginny\nharry", "output": "NO\nNO\nNO\nNO\nYES\nYES" }, { "input": "3\na\na\na", "output": "NO\nYES\nYES" }, { "input": "1\nzn", "output": "NO" }, { "input": "9\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nliyzmbjwnzryjokufuxcqtzwworjeoxkbaqrujrhdidqdvwdfzilwszgnzglnnbogaclckfnbqovtziuhwvyrqwmskx\nhrtm\nssjqvixduertmotgagizamvfucfwtxqnhuowbqbzctgznivehelpcyigwrbbdsxnewfqvcf\nhyrtxvozpbveexfkgalmguozzakitjiwsduqxonb\nwcyxteiwtcyuztaguilqpbiwcwjaiq\nwcyxteiwtcyuztaguilqpbiwcwjaiq\nbdbivqzvhggth", "output": "NO\nYES\nYES\nNO\nNO\nNO\nNO\nYES\nNO" }, { "input": "10\nkkiubdktydpdcbbttwpfdplhhjhrpqmpg\nkkiubdktydpdcbbttwpfdplhhjhrpqmpg\nmvutw\nqooeqoxzxwetlpecqiwgdbogiqqulttysyohwhzxzphvsfmnplizxoebzcvvfyppqbhxjksuzepuezqqzxlfmdanoeaoqmor\nmvutw\nvchawxjoreboqzuklifv\nvchawxjoreboqzuklifv\nnivijte\nrflybruq\nvchawxjoreboqzuklifv", "output": "NO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nNO\nYES" }, { "input": "1\nz", "output": "NO" }, { "input": "9\nl\ny\nm\nj\nn\nr\nj\nk\nf", "output": "NO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO" }, { "input": "14\nw\na\nh\np\nk\nw\ny\nv\ns\nf\nx\nd\nk\nr", "output": "NO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nNO" }, { "input": "25\np\nk\nu\nl\nf\nt\nc\ns\nq\nd\nb\nq\no\ni\ni\nd\ni\nw\nn\ng\nw\nt\na\ne\ni", "output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nNO\nNO\nYES" }, { "input": "20\nd\nh\ng\no\np\ne\nt\nj\nv\ni\nt\nh\ns\ni\nw\nf\nx\na\nl\ni", "output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nYES" }, { "input": "3\nbbbbbbb\nbbbbbbbbb\nbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "NO\nNO\nNO" }, { "input": "2\nab\nba", "output": "NO\nNO" }, { "input": "6\ntom\nlucius\nginnys\nharpy\nginny\nharry", "output": "NO\nNO\nNO\nNO\nNO\nNO" }, { "input": "2\nabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcde\nabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcdeabcde", "output": "NO\nYES" }, { "input": "42\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na", "output": "NO\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES" } ]
1,660,925,756
2,147,483,647
PyPy 3-64
OK
TESTS
55
77
0
num = int(input()) people = [] s = set() for i in range(num): person = input() if person in s: print("YES") else: print("NO") s.add(person)
Title: Tom Riddle's Diary Time Limit: None seconds Memory Limit: None megabytes Problem Description: Harry Potter is on a mission to destroy You-Know-Who's Horcruxes. The first Horcrux that he encountered in the Chamber of Secrets is Tom Riddle's diary. The diary was with Ginny and it forced her to open the Chamber of Secrets. Harry wants to know the different people who had ever possessed the diary to make sure they are not under its influence. He has names of *n* people who possessed the diary in order. You need to tell, for each person, if he/she possessed the diary at some point before or not. Formally, for a name *s**i* in the *i*-th line, output "YES" (without quotes) if there exists an index *j* such that *s**i*<==<=*s**j* and *j*<=&lt;<=*i*, otherwise, output "NO" (without quotes). Input Specification: First line of input contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of names in the list. Next *n* lines each contain a string *s**i*, consisting of lowercase English letters. The length of each string is between 1 and 100. Output Specification: Output *n* lines each containing either "YES" or "NO" (without quotes), depending on whether this string was already present in the stream or not. You can print each letter in any case (upper or lower). Demo Input: ['6\ntom\nlucius\nginny\nharry\nginny\nharry\n', '3\na\na\na\n'] Demo Output: ['NO\nNO\nNO\nNO\nYES\nYES\n', 'NO\nYES\nYES\n'] Note: In test case 1, for *i* = 5 there exists *j* = 3 such that *s*<sub class="lower-index">*i*</sub> = *s*<sub class="lower-index">*j*</sub> and *j* &lt; *i*, which means that answer for *i* = 5 is "YES".
```python num = int(input()) people = [] s = set() for i in range(num): person = input() if person in s: print("YES") else: print("NO") s.add(person) ```
3
496
B
Secret Combination
PROGRAMMING
1,500
[ "brute force", "constructive algorithms", "implementation" ]
null
null
You got a box with a combination lock. The lock has a display showing *n* digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068. You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of digits on the display. The second line contains *n* digits — the initial state of the display.
Print a single line containing *n* digits — the desired state of the display containing the smallest possible number.
[ "3\n579\n", "4\n2014\n" ]
[ "024\n", "0142\n" ]
none
1,000
[ { "input": "3\n579", "output": "024" }, { "input": "4\n2014", "output": "0142" }, { "input": "1\n1", "output": "0" }, { "input": "3\n039", "output": "014" }, { "input": "4\n4444", "output": "0000" }, { "input": "5\n46802", "output": "02468" }, { "input": "10\n4447444444", "output": "0000000003" }, { "input": "10\n5810438174", "output": "0147609473" }, { "input": "30\n027027027027027027027027027027", "output": "027027027027027027027027027027" }, { "input": "50\n41012516454101251645410125164541012516454101251645", "output": "01076781720107678172010767817201076781720107678172" }, { "input": "72\n464553044645330446455304464553064645530445455304464553044645530446455304", "output": "001011960020119600201196002011960020119600201996002011960020119620201196" }, { "input": "100\n2144315253572020279108092911160072328496568665545836825277616363478721946398140227406814602154768031", "output": "0005996121738545755443472571416650525236761083528703911639570359104365792010332041424619191680979818" }, { "input": "200\n79025531557298703099245700860027432585447902553155729870309924570086002743258544790255315572987030992457008600274325854479025531557298703099245700860027432585447902553155729870309924570086002743258544", "output": "00274325854479025531557298703099245700860027432585447902553155729870309924570086002743258544790255315572987030992457008600274325854479025531557298703099245700860027432585447902553155729870309924570086" }, { "input": "100\n6669666666666666666866266666666666666666666666666666666666666666626666666666666966666766665667666656", "output": "0000000000000000000000000000000000000000006000000000000030000010000900100009000030000000000000002006" }, { "input": "1\n0", "output": "0" } ]
1,441,499,798
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
numdig = int(input()) innum = int(input()) import math length = numdig digits = [] def shift(l, n): return l[n:] + l[:n] for x in range (0,length): digits.append( int( innum%(math.pow(10, x+1))/(math.pow(10,x))) ) innum = innum - (innum%(math.pow(10, x+1))) bestshort = 0 bestdigits = digits for p in range(0,length): bestshort = int(bestshort + (digits[p]*math.pow(10, length-p-1))) for y in range (0,length): for a in range(0,10): for z in range (0,length): if digits[z] >= 9: digits[z] = 0 else: digits[z] = digits[z] + 1 #add one to all the digits current = 0 for q in range (0,length): current = current + (digits[q]*math.pow(10, q)) if current < bestshort : bestshort = int(current) bestdigits = digits #checking if its the best so far digits = shift(digits, 1) #shift everything along print(bestshort)
Title: Secret Combination Time Limit: None seconds Memory Limit: None megabytes Problem Description: You got a box with a combination lock. The lock has a display showing *n* digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068. You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of digits on the display. The second line contains *n* digits — the initial state of the display. Output Specification: Print a single line containing *n* digits — the desired state of the display containing the smallest possible number. Demo Input: ['3\n579\n', '4\n2014\n'] Demo Output: ['024\n', '0142\n'] Note: none
```python numdig = int(input()) innum = int(input()) import math length = numdig digits = [] def shift(l, n): return l[n:] + l[:n] for x in range (0,length): digits.append( int( innum%(math.pow(10, x+1))/(math.pow(10,x))) ) innum = innum - (innum%(math.pow(10, x+1))) bestshort = 0 bestdigits = digits for p in range(0,length): bestshort = int(bestshort + (digits[p]*math.pow(10, length-p-1))) for y in range (0,length): for a in range(0,10): for z in range (0,length): if digits[z] >= 9: digits[z] = 0 else: digits[z] = digits[z] + 1 #add one to all the digits current = 0 for q in range (0,length): current = current + (digits[q]*math.pow(10, q)) if current < bestshort : bestshort = int(current) bestdigits = digits #checking if its the best so far digits = shift(digits, 1) #shift everything along print(bestshort) ```
0
608
A
Saitama Destroys Hotel
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0. The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0.
The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively. The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*.
Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0.
[ "3 7\n2 1\n3 8\n5 2\n", "5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n" ]
[ "11\n", "79\n" ]
In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done: 1. Move to floor 5: takes 2 seconds. 2. Pick up passenger 3. 3. Move to floor 3: takes 2 seconds. 4. Wait for passenger 2 to arrive: takes 4 seconds. 5. Pick up passenger 2. 6. Go to floor 2: takes 1 second. 7. Pick up passenger 1. 8. Go to floor 0: takes 2 seconds. This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
500
[ { "input": "3 7\n2 1\n3 8\n5 2", "output": "11" }, { "input": "5 10\n2 77\n3 33\n8 21\n9 12\n10 64", "output": "79" }, { "input": "1 1000\n1000 1000", "output": "2000" }, { "input": "1 1\n1 1", "output": "2" }, { "input": "1 1000\n1 1", "output": "1000" }, { "input": "1 1000\n1 1000", "output": "1001" }, { "input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "2" }, { "input": "2 7\n6 3\n1 5", "output": "9" }, { "input": "2 100\n99 2\n1 10", "output": "101" }, { "input": "5 5\n1 1\n2 1\n3 1\n4 1\n5 1", "output": "6" }, { "input": "3 7\n1 6\n5 5\n6 1", "output": "10" }, { "input": "2 100\n4 100\n7 99", "output": "106" }, { "input": "2 10\n9 3\n1 4", "output": "12" }, { "input": "2 5\n4 4\n5 4", "output": "9" }, { "input": "2 10\n9 10\n6 11", "output": "19" }, { "input": "2 100\n99 9\n1 10", "output": "108" }, { "input": "2 7\n3 5\n7 4", "output": "11" }, { "input": "4 4\n4 6\n4 8\n1 7\n2 9", "output": "12" }, { "input": "2 1000\n1 2\n1000 1", "output": "1001" }, { "input": "2 20\n1 1\n2 2", "output": "20" }, { "input": "2 20\n10 10\n19 9", "output": "28" } ]
1,620,840,726
2,147,483,647
Python 3
OK
TESTS
39
93
6,963,200
n=list(map(int,input().split())) count=0 m=[] for i in range(n[0]): x=list(map(int,input().split())) m.append(x) # print(m) f=len(m)-i-1 for i in range(n[0]): f=len(m)-i-1 if i==0: count+=(n[1]-m[f][0]) if i!=0: count+=(m[f+1][0]-m[f][0]) if (count)<m[f][1]: count+=m[f][1]-count count+=m[0][0] print(count)
Title: Saitama Destroys Hotel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0. The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0. Input Specification: The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively. The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*. Output Specification: Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0. Demo Input: ['3 7\n2 1\n3 8\n5 2\n', '5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n'] Demo Output: ['11\n', '79\n'] Note: In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done: 1. Move to floor 5: takes 2 seconds. 2. Pick up passenger 3. 3. Move to floor 3: takes 2 seconds. 4. Wait for passenger 2 to arrive: takes 4 seconds. 5. Pick up passenger 2. 6. Go to floor 2: takes 1 second. 7. Pick up passenger 1. 8. Go to floor 0: takes 2 seconds. This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
```python n=list(map(int,input().split())) count=0 m=[] for i in range(n[0]): x=list(map(int,input().split())) m.append(x) # print(m) f=len(m)-i-1 for i in range(n[0]): f=len(m)-i-1 if i==0: count+=(n[1]-m[f][0]) if i!=0: count+=(m[f+1][0]-m[f][0]) if (count)<m[f][1]: count+=m[f][1]-count count+=m[0][0] print(count) ```
3
160
A
Twins
PROGRAMMING
900
[ "greedy", "sortings" ]
null
null
Imagine that you have a twin brother or sister. Having another person that looks exactly like you seems very unusual. It's hard to say if having something of an alter ego is good or bad. And if you do have a twin, then you very well know what it's like. Now let's imagine a typical morning in your family. You haven't woken up yet, and Mom is already going to work. She has been so hasty that she has nearly forgotten to leave the two of her darling children some money to buy lunches in the school cafeteria. She fished in the purse and found some number of coins, or to be exact, *n* coins of arbitrary values *a*1,<=*a*2,<=...,<=*a**n*. But as Mom was running out of time, she didn't split the coins for you two. So she scribbled a note asking you to split the money equally. As you woke up, you found Mom's coins and read her note. "But why split the money equally?" — you thought. After all, your twin is sleeping and he won't know anything. So you decided to act like that: pick for yourself some subset of coins so that the sum of values of your coins is strictly larger than the sum of values of the remaining coins that your twin will have. However, you correctly thought that if you take too many coins, the twin will suspect the deception. So, you've decided to stick to the following strategy to avoid suspicions: you take the minimum number of coins, whose sum of values is strictly more than the sum of values of the remaining coins. On this basis, determine what minimum number of coins you need to take to divide them in the described manner.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of coins. The second line contains a sequence of *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=100) — the coins' values. All numbers are separated with spaces.
In the single line print the single number — the minimum needed number of coins.
[ "2\n3 3\n", "3\n2 1 2\n" ]
[ "2\n", "2\n" ]
In the first sample you will have to take 2 coins (you and your twin have sums equal to 6, 0 correspondingly). If you take 1 coin, you get sums 3, 3. If you take 0 coins, you get sums 0, 6. Those variants do not satisfy you as your sum should be strictly more that your twins' sum. In the second sample one coin isn't enough for us, too. You can pick coins with values 1, 2 or 2, 2. In any case, the minimum number of coins equals 2.
500
[ { "input": "2\n3 3", "output": "2" }, { "input": "3\n2 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "5\n4 2 2 2 2", "output": "3" }, { "input": "7\n1 10 1 2 1 1 1", "output": "1" }, { "input": "5\n3 2 3 3 1", "output": "3" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n2 1 3", "output": "2" }, { "input": "6\n1 1 1 1 1 1", "output": "4" }, { "input": "7\n10 10 5 5 5 5 1", "output": "3" }, { "input": "20\n2 1 2 2 2 1 1 2 1 2 2 1 1 1 1 2 1 1 1 1", "output": "8" }, { "input": "20\n4 2 4 4 3 4 2 2 4 2 3 1 1 2 2 3 3 3 1 4", "output": "8" }, { "input": "20\n35 26 41 40 45 46 22 26 39 23 11 15 47 42 18 15 27 10 45 40", "output": "8" }, { "input": "20\n7 84 100 10 31 35 41 2 63 44 57 4 63 11 23 49 98 71 16 90", "output": "6" }, { "input": "50\n19 2 12 26 17 27 10 26 17 17 5 24 11 15 3 9 16 18 19 1 25 23 18 6 2 7 25 7 21 25 13 29 16 9 25 3 14 30 18 4 10 28 6 10 8 2 2 4 8 28", "output": "14" }, { "input": "70\n2 18 18 47 25 5 14 9 19 46 36 49 33 32 38 23 32 39 8 29 31 17 24 21 10 15 33 37 46 21 22 11 20 35 39 13 11 30 28 40 39 47 1 17 24 24 21 46 12 2 20 43 8 16 44 11 45 10 13 44 31 45 45 46 11 10 33 35 23 42", "output": "22" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "51" }, { "input": "100\n1 2 2 1 2 1 1 2 1 1 1 2 2 1 1 1 2 2 2 1 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 1 1 2 1 1 1 1 2 2 2 2", "output": "37" }, { "input": "100\n1 2 3 2 1 2 2 3 1 3 3 2 2 1 1 2 2 1 1 1 1 2 3 3 2 1 1 2 2 2 3 3 3 2 1 3 1 3 3 2 3 1 2 2 2 3 2 1 1 3 3 3 3 2 1 1 2 3 2 2 3 2 3 2 2 3 2 2 2 2 3 3 3 1 3 3 1 1 2 3 2 2 2 2 3 3 3 2 1 2 3 1 1 2 3 3 1 3 3 2", "output": "36" }, { "input": "100\n5 5 4 3 5 1 2 5 1 1 3 5 4 4 1 1 1 1 5 4 4 5 1 5 5 1 2 1 3 1 5 1 3 3 3 2 2 2 1 1 5 1 3 4 1 1 3 2 5 2 2 5 5 4 4 1 3 4 3 3 4 5 3 3 3 1 2 1 4 2 4 4 1 5 1 3 5 5 5 5 3 4 4 3 1 2 5 2 3 5 4 2 4 5 3 2 4 2 4 3", "output": "33" }, { "input": "100\n3 4 8 10 8 6 4 3 7 7 6 2 3 1 3 10 1 7 9 3 5 5 2 6 2 9 1 7 4 2 4 1 6 1 7 10 2 5 3 7 6 4 6 2 8 8 8 6 6 10 3 7 4 3 4 1 7 9 3 6 3 6 1 4 9 3 8 1 10 1 4 10 7 7 9 5 3 8 10 2 1 10 8 7 10 8 5 3 1 2 1 10 6 1 5 3 3 5 7 2", "output": "30" }, { "input": "100\n16 9 11 8 11 4 9 17 4 8 4 10 9 10 6 3 3 15 1 6 1 15 12 18 6 14 13 18 1 7 18 4 10 7 10 12 3 16 14 4 10 8 10 7 19 13 15 1 4 8 16 10 6 4 3 16 11 10 7 3 4 16 1 20 1 11 4 16 10 7 7 12 18 19 3 17 19 3 4 19 2 12 11 3 18 20 2 2 14 4 20 13 13 11 16 20 19 14 7 2", "output": "29" }, { "input": "100\n2 46 4 6 38 19 15 34 10 35 37 30 3 25 5 45 40 45 33 31 6 20 10 44 11 9 2 14 35 5 9 23 20 2 48 22 25 35 38 31 24 33 35 16 4 30 27 10 12 22 6 24 12 30 23 21 14 12 32 21 7 12 25 43 18 34 34 28 47 13 28 43 18 39 44 42 35 26 35 14 8 29 32 20 29 3 20 6 20 9 9 27 8 42 10 37 42 27 8 1", "output": "30" }, { "input": "100\n85 50 17 89 65 89 5 20 86 26 16 21 85 14 44 31 87 31 6 2 48 67 8 80 79 1 48 36 97 1 5 30 79 50 78 12 2 55 76 100 54 40 26 81 97 96 68 56 87 14 51 17 54 37 52 33 69 62 38 63 74 15 62 78 9 19 67 2 60 58 93 60 18 96 55 48 34 7 79 82 32 58 90 67 20 50 27 15 7 89 98 10 11 15 99 49 4 51 77 52", "output": "29" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "30" }, { "input": "1\n1", "output": "1" }, { "input": "4\n4 1 2 3", "output": "2" }, { "input": "5\n2 2 2 4 4", "output": "2" }, { "input": "4\n100 99 99 100", "output": "2" } ]
1,696,954,934
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
60
0
'''程文奇 2100015898''' n=int(input()) coinlist=list(map(int,input().split())) myvalue=0 totalvalue=sum(coinlist) for i in range(n): myvalue+=coinlist[i] if myvalue>(totalvalue/2) : print(i+1) break
Title: Twins Time Limit: None seconds Memory Limit: None megabytes Problem Description: Imagine that you have a twin brother or sister. Having another person that looks exactly like you seems very unusual. It's hard to say if having something of an alter ego is good or bad. And if you do have a twin, then you very well know what it's like. Now let's imagine a typical morning in your family. You haven't woken up yet, and Mom is already going to work. She has been so hasty that she has nearly forgotten to leave the two of her darling children some money to buy lunches in the school cafeteria. She fished in the purse and found some number of coins, or to be exact, *n* coins of arbitrary values *a*1,<=*a*2,<=...,<=*a**n*. But as Mom was running out of time, she didn't split the coins for you two. So she scribbled a note asking you to split the money equally. As you woke up, you found Mom's coins and read her note. "But why split the money equally?" — you thought. After all, your twin is sleeping and he won't know anything. So you decided to act like that: pick for yourself some subset of coins so that the sum of values of your coins is strictly larger than the sum of values of the remaining coins that your twin will have. However, you correctly thought that if you take too many coins, the twin will suspect the deception. So, you've decided to stick to the following strategy to avoid suspicions: you take the minimum number of coins, whose sum of values is strictly more than the sum of values of the remaining coins. On this basis, determine what minimum number of coins you need to take to divide them in the described manner. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of coins. The second line contains a sequence of *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=100) — the coins' values. All numbers are separated with spaces. Output Specification: In the single line print the single number — the minimum needed number of coins. Demo Input: ['2\n3 3\n', '3\n2 1 2\n'] Demo Output: ['2\n', '2\n'] Note: In the first sample you will have to take 2 coins (you and your twin have sums equal to 6, 0 correspondingly). If you take 1 coin, you get sums 3, 3. If you take 0 coins, you get sums 0, 6. Those variants do not satisfy you as your sum should be strictly more that your twins' sum. In the second sample one coin isn't enough for us, too. You can pick coins with values 1, 2 or 2, 2. In any case, the minimum number of coins equals 2.
```python '''程文奇 2100015898''' n=int(input()) coinlist=list(map(int,input().split())) myvalue=0 totalvalue=sum(coinlist) for i in range(n): myvalue+=coinlist[i] if myvalue>(totalvalue/2) : print(i+1) break ```
0
812
B
Sagheer, the Hausmeister
PROGRAMMING
1,600
[ "bitmasks", "brute force", "dp" ]
null
null
Some people leave the lights at their workplaces on when they leave that is a waste of resources. As a hausmeister of DHBW, Sagheer waits till all students and professors leave the university building, then goes and turns all the lights off. The building consists of *n* floors with stairs at the left and the right sides. Each floor has *m* rooms on the same line with a corridor that connects the left and right stairs passing by all the rooms. In other words, the building can be represented as a rectangle with *n* rows and *m*<=+<=2 columns, where the first and the last columns represent the stairs, and the *m* columns in the middle represent rooms. Sagheer is standing at the ground floor at the left stairs. He wants to turn all the lights off in such a way that he will not go upstairs until all lights in the floor he is standing at are off. Of course, Sagheer must visit a room to turn the light there off. It takes one minute for Sagheer to go to the next floor using stairs or to move from the current room/stairs to a neighboring room/stairs on the same floor. It takes no time for him to switch the light off in the room he is currently standing in. Help Sagheer find the minimum total time to turn off all the lights. Note that Sagheer does not have to go back to his starting position, and he does not have to visit rooms where the light is already switched off.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=15 and 1<=≤<=*m*<=≤<=100) — the number of floors and the number of rooms in each floor, respectively. The next *n* lines contains the building description. Each line contains a binary string of length *m*<=+<=2 representing a floor (the left stairs, then *m* rooms, then the right stairs) where 0 indicates that the light is off and 1 indicates that the light is on. The floors are listed from top to bottom, so that the last line represents the ground floor. The first and last characters of each string represent the left and the right stairs, respectively, so they are always 0.
Print a single integer — the minimum total time needed to turn off all the lights.
[ "2 2\n0010\n0100\n", "3 4\n001000\n000010\n000010\n", "4 3\n01110\n01110\n01110\n01110\n" ]
[ "5\n", "12\n", "18\n" ]
In the first example, Sagheer will go to room 1 in the ground floor, then he will go to room 2 in the second floor using the left or right stairs. In the second example, he will go to the fourth room in the ground floor, use right stairs, go to the fourth room in the second floor, use right stairs again, then go to the second room in the last floor. In the third example, he will walk through the whole corridor alternating between the left and right stairs at each floor.
1,000
[ { "input": "2 2\n0010\n0100", "output": "5" }, { "input": "3 4\n001000\n000010\n000010", "output": "12" }, { "input": "4 3\n01110\n01110\n01110\n01110", "output": "18" }, { "input": "3 2\n0000\n0100\n0100", "output": "4" }, { "input": "1 89\n0000000000000000000000000000000100000000000000010000000000010000000000000000000000000000000", "output": "59" }, { "input": "2 73\n000000000000000000000000000000000000000000000000000000000000000000000000000\n000000000000000000000000000000000000000100000010000000000000000000000000000", "output": "46" }, { "input": "3 61\n000000000000000000000000000000000000000000000000000000000000000\n000000000000000000000000000000000000000000000000000000000000000\n000000000000000000000000000000000000000000000000000000000000000", "output": "0" }, { "input": "4 53\n0000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000", "output": "0" }, { "input": "5 93\n00000000000000000000000000000000000000000000000000000000100000000000000000000000000000000001010\n00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000\n00000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000\n00000000000000000000000000000010000000000000000000100000000000000000000000000000000000000000000\n00000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000", "output": "265" }, { "input": "6 77\n0000000000000000100000000000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000000000000010000000000000\n0000000000010000000000000000000000000000000000000000000000000000000000000000010\n0000000000000000000001000000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000100000000000000000000000000000", "output": "311" }, { "input": "7 65\n0000000001000000000000000010000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000000000000000\n0000000001000001000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000000000000000\n0000000000000000000000000000000000000000000000000000000000000000000", "output": "62" }, { "input": "8 57\n00000000100000000000000000000000000000000000000000000000000\n00000000000000010000000000000000000000000000000000000000000\n00000000000000000000000000000000000100000000000000000000000\n00000000000000000000000000000000000000000000000000000000000\n00000000000000000000000000000000000100000000000000000000000\n00000000000000000000000000000000000000000000000000000000000\n00000000000010000000000000000000000000000000000000000000000\n00000000000000000000000000000000000000000000000001000000000", "output": "277" }, { "input": "12 13\n000000000000000\n000000000000000\n000000000000000\n000000000000000\n000000000000000\n000000000000000\n010000000000000\n000000000000000\n000000000000000\n000000000000000\n000010000000000\n000000000000000", "output": "14" }, { "input": "13 1\n000\n000\n000\n000\n000\n000\n000\n000\n000\n000\n000\n000\n000", "output": "0" }, { "input": "1 33\n00000100101110001101000000110100010", "output": "33" }, { "input": "2 21\n00100110100010010010010\n01000001111001010000000", "output": "43" }, { "input": "3 5\n0001010\n0100000\n0100000", "output": "11" }, { "input": "4 45\n00010000101101100000101101000000100000001101100\n01110000100111010011000000100000000001000001100\n00000000001000100110100001000010011010001010010\n01111110100100000101101010011000100100001000000", "output": "184" }, { "input": "5 37\n010100000000000000000110000110010000010\n001101100010110011101000001010101101110\n010000001000100010010100000000001010000\n000000000100101000000101100001000001110\n000010000000000000100001001000011100110", "output": "193" }, { "input": "6 25\n011001000100111010000101000\n000000000010000010001000010\n011001100001100001001001010\n000000100000010000000000110\n010001100001000001000000010\n011000001001010111110000100", "output": "160" }, { "input": "7 61\n010000111100010100001000011010100001000000000011100000100010000\n000010011000001000000100110101010001000000010001100000100100100\n000010001000001000000100001000000100100011001110000111000000100\n000000000101000011010000011000000101000001011001000011101010010\n000010010011000000100000110000001000000101000000101000010000010\n000010010101101100100100100011001011101010000101000010000101010\n000100001100001001000000001000000001011000110010100000000010110", "output": "436" }, { "input": "8 49\n000100100000000111110010011100110100010010000011000\n001000000101111000000001111100010010100000010000000\n000000010000011100001000000000101000110010000100100\n000000000001000110000011101101000000100000101010000\n000000110001000101101000000001000000110001000110000\n000100000000000000100100010011000001111101010100110\n000000001000000010101111000100001100000000010111000\n001000010000110000011100000000100110000010001000000", "output": "404" }, { "input": "9 41\n0011000000000101001101001000000001110000010\n0000110000001010110010110010110010010001000\n0001100010100000000001110100100001101000100\n0001010101111010000000010010001001011111000\n0101000101000011101011000000001100110010000\n0001010000000000000001011000000100010101000\n0000010011000000001000110001000010110001000\n0000100010000110100001000000100010001111100\n0000001110100001000001000110001110000100000", "output": "385" }, { "input": "10 29\n0000000000101001100001001011000\n0001110100000000000000100010000\n0010001001000011000100010001000\n0001000010101000000010100010100\n0111000000000000100100100010100\n0001000100011111000100010100000\n0000000000000001000001001011000\n0000101110000001010001011001110\n0000001000101010011000001100100\n0100010000101011010000000000000", "output": "299" }, { "input": "1 57\n00011101100001110001111000000100101111000111101100111001000", "output": "55" }, { "input": "2 32\n0011110111011011011101111101011110\n0111000110111111011110011101011110", "output": "65" }, { "input": "3 20\n0110011111110101101100\n0111110000111010100100\n0110111110010100011110", "output": "63" }, { "input": "4 4\n011100\n001010\n010000\n011110", "output": "22" }, { "input": "5 44\n0001010010001111111001111111000010100100000010\n0001111001111001101111011111010110001001111110\n0111111010111111011101100011101010100101110110\n0011010011101011101111001001010110000111111100\n0110100111011100110101110010010011011101100100", "output": "228" }, { "input": "6 36\n01110101111111110101011000011111110010\n00011101100010110111111111110001100100\n00001111110010111111101110101110111110\n00110110011100100111011110000000000010\n01100101101001010001011111100111101100\n00011111111011001000011001011110011110", "output": "226" }, { "input": "7 24\n01111001111001011010010100\n00111011010101000111101000\n01001110110010010110011110\n00000101111011011111111000\n01111111101111001001010010\n01110000111101011111111010\n00000100011100110000110000", "output": "179" }, { "input": "8 8\n0011101110\n0110010100\n0100111110\n0111111100\n0011010100\n0001101110\n0111100000\n0110111000", "output": "77" }, { "input": "9 48\n00011010111110111011111001111111111101001111110010\n01000101000101101101111110111101011100001011010010\n00110111110110101110101110111111011011101111011000\n00110111111100010110110110111001001111011010101110\n01111111100101010011111100100111110011001101110100\n01111011110011111101010101010100001110111111111000\n01110101101101110001000010110100010110101111111100\n00111101001010110010110100000111110101010100001000\n00011011010110011111001100111100100011100110110100", "output": "448" }, { "input": "10 40\n010011001001111011011011101111010001010010\n011000000110000010001011111010100000110000\n011010101001110010110110011111010101101000\n000111111010101111000110011111011011011010\n010110101110001001001111111000110011101010\n010011010100111110010100100111100111011110\n001111101100111111111111001010111010000110\n001111110010101100110100101110001011100110\n010111010010001111110101111111111110111000\n011101101111000100111111111001111100111010", "output": "418" }, { "input": "11 28\n011100111101101001011111001110\n010001111110011101101011001000\n001010011011011010101101101100\n001100011001101011011001110100\n010111110011101110000110111100\n010010001111110000011111010100\n001011111111110011101101111010\n001101101011100100011011001110\n001111110110100110101011000010\n000101101011100001101101100100\n010011101101111011100111110100", "output": "328" }, { "input": "1 68\n0101111110111111111111111111110111111111111111111110111111101111111110", "output": "68" }, { "input": "2 56\n0011111111111110111111111111111111011111111111011111011110\n0111111111010111111111110111111111111110111111010111111110", "output": "113" }, { "input": "3 17\n0111111101111111110\n0111111111101011110\n0101111111111111110", "output": "55" }, { "input": "4 4\n011110\n010110\n010110\n011110", "output": "22" }, { "input": "5 89\n0011111111111101110110111111111101111011111011101110111111111111111111111111111111111111110\n0111111111111111111111111101111111111111111111111111111111111111111111111111111111111111110\n0111111111111011111111111111111111101111011111111111111111110110111101111111111111111011010\n0111111111111111011011111111111011111111111111111111111111111111111111111111111110111111010\n0111111101111011111110101011111111110111100100101111111011111111111111011011101111111111110", "output": "453" }, { "input": "6 77\n0111111110101011111111111111111111111111111111111111100111111111101111111111110\n0111111111111111111101111101111111111011111111011111111001011111111111101111110\n0111101111111111111111111111111111111110110011111111111011111111101111111111110\n0111110111111111111111111111111111111111111111111111011011111111111111111111110\n0101111110111111111111111111111111111111111011111111111111111111101111011011110\n0110111111101111110111111111111011111111101011111101111111111111111111110111100", "output": "472" }, { "input": "7 20\n0111111111111111111100\n0111110111111111111110\n0111111111111111111100\n0111111011111111111110\n0111111111111011101110\n0111101011110111111010\n0111111111111111111010", "output": "151" }, { "input": "8 8\n0111111110\n0111101110\n0111111110\n0111111110\n0111111110\n0110111100\n0101111110\n0110111110", "output": "78" }, { "input": "11 24\n01111111111101111111111110\n01111111111111111111111110\n01110111111111111111111110\n01111111111111111111011110\n01111111111111111110111110\n01111010111111100111101110\n01111111111111010101111100\n01111111111111110111111110\n01011101111111111101111110\n00111111011111111110111110\n01111111101111111101111110", "output": "284" }, { "input": "12 12\n01111111111000\n01101111110110\n01111110111110\n01111111111110\n01111111111010\n01011111110110\n01111111111110\n01101101011110\n01111111111110\n01111101011110\n00111111111110\n01111111011110", "output": "166" }, { "input": "15 28\n011111111101011111111101111110\n011111111111111111111111111110\n011101110111011011101111011110\n011111111011111011110111111110\n011111111110101111111111111110\n011111011111110011111111011010\n011110111111001101111111111110\n011111111110111111111011111110\n011111111111111111111111011110\n011111011111111111111011001010\n011111111101111111111101111110\n011111111110111111101111011110\n010111111111101111111111111110\n011111111111111111011111111110\n011011111111111110110111110110", "output": "448" }, { "input": "2 11\n0100000000000\n0000000010000", "output": "18" }, { "input": "1 100\n010010010011100001101101110111101010000101010001111001001101011110000011101110101000100111111001101110", "output": "100" }, { "input": "15 1\n010\n010\n010\n010\n010\n010\n000\n000\n000\n010\n000\n010\n000\n000\n000", "output": "29" }, { "input": "3 3\n00010\n00000\n00010", "output": "7" } ]
1,626,889,258
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
108
20,172,800
import sys import io, os import math gcd = math.gcd sqrt = math.sqrt ceil = math.ceil # arr=list(map(int, input().split())) input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline def strinp(testcases): k = 5 if (testcases == -1 or testcases == 1): k = 1 f = str(input()) f = f[2:len(f) - k] return f def lastf(arr,beg): if(beg==0): ed=-1 for i in range(len(arr)-1,-1,-1): if(arr[i]=="1"): ed=i break if(ed==-1): return 0 return ed else: ed=-1 for i in range(len(arr)): if(arr[i]=="1"): ed=i break if(ed==-1): return 0 return len(arr)-1-ed def cost(arr,beg,ed): if(beg!=ed): return len(arr)-1 if(beg==0): ed1=-1 for i in range(len(arr)-1,-1,-1): if(arr[i]=="1"): ed1=i break if(ed1==-1): return 0 return 2*ed1 else: ed1=-1 for i in range(len(arr)): if(arr[i]=="1"): ed1=i break if(ed1==-1): return 0 return 2*(len(arr)-ed1-1) def rec(beg,floor,curr): if(curr==len(floor)-1): return lastf(floor[curr],beg) return 1+min(cost(floor[curr],beg,0)+rec(0,floor,curr+1),cost(floor[curr],beg,len(floor[0])-1)+rec(len(floor[0])-1,floor,curr+1)) def main(): arr=list(map(int, input().split())) n=arr[0] m=arr[1] floor=[0]*n for i in range(n): floor[n-1-i]=list(strinp(90)) print(rec(0,floor,0)) main()
Title: Sagheer, the Hausmeister Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some people leave the lights at their workplaces on when they leave that is a waste of resources. As a hausmeister of DHBW, Sagheer waits till all students and professors leave the university building, then goes and turns all the lights off. The building consists of *n* floors with stairs at the left and the right sides. Each floor has *m* rooms on the same line with a corridor that connects the left and right stairs passing by all the rooms. In other words, the building can be represented as a rectangle with *n* rows and *m*<=+<=2 columns, where the first and the last columns represent the stairs, and the *m* columns in the middle represent rooms. Sagheer is standing at the ground floor at the left stairs. He wants to turn all the lights off in such a way that he will not go upstairs until all lights in the floor he is standing at are off. Of course, Sagheer must visit a room to turn the light there off. It takes one minute for Sagheer to go to the next floor using stairs or to move from the current room/stairs to a neighboring room/stairs on the same floor. It takes no time for him to switch the light off in the room he is currently standing in. Help Sagheer find the minimum total time to turn off all the lights. Note that Sagheer does not have to go back to his starting position, and he does not have to visit rooms where the light is already switched off. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=15 and 1<=≤<=*m*<=≤<=100) — the number of floors and the number of rooms in each floor, respectively. The next *n* lines contains the building description. Each line contains a binary string of length *m*<=+<=2 representing a floor (the left stairs, then *m* rooms, then the right stairs) where 0 indicates that the light is off and 1 indicates that the light is on. The floors are listed from top to bottom, so that the last line represents the ground floor. The first and last characters of each string represent the left and the right stairs, respectively, so they are always 0. Output Specification: Print a single integer — the minimum total time needed to turn off all the lights. Demo Input: ['2 2\n0010\n0100\n', '3 4\n001000\n000010\n000010\n', '4 3\n01110\n01110\n01110\n01110\n'] Demo Output: ['5\n', '12\n', '18\n'] Note: In the first example, Sagheer will go to room 1 in the ground floor, then he will go to room 2 in the second floor using the left or right stairs. In the second example, he will go to the fourth room in the ground floor, use right stairs, go to the fourth room in the second floor, use right stairs again, then go to the second room in the last floor. In the third example, he will walk through the whole corridor alternating between the left and right stairs at each floor.
```python import sys import io, os import math gcd = math.gcd sqrt = math.sqrt ceil = math.ceil # arr=list(map(int, input().split())) input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline def strinp(testcases): k = 5 if (testcases == -1 or testcases == 1): k = 1 f = str(input()) f = f[2:len(f) - k] return f def lastf(arr,beg): if(beg==0): ed=-1 for i in range(len(arr)-1,-1,-1): if(arr[i]=="1"): ed=i break if(ed==-1): return 0 return ed else: ed=-1 for i in range(len(arr)): if(arr[i]=="1"): ed=i break if(ed==-1): return 0 return len(arr)-1-ed def cost(arr,beg,ed): if(beg!=ed): return len(arr)-1 if(beg==0): ed1=-1 for i in range(len(arr)-1,-1,-1): if(arr[i]=="1"): ed1=i break if(ed1==-1): return 0 return 2*ed1 else: ed1=-1 for i in range(len(arr)): if(arr[i]=="1"): ed1=i break if(ed1==-1): return 0 return 2*(len(arr)-ed1-1) def rec(beg,floor,curr): if(curr==len(floor)-1): return lastf(floor[curr],beg) return 1+min(cost(floor[curr],beg,0)+rec(0,floor,curr+1),cost(floor[curr],beg,len(floor[0])-1)+rec(len(floor[0])-1,floor,curr+1)) def main(): arr=list(map(int, input().split())) n=arr[0] m=arr[1] floor=[0]*n for i in range(n): floor[n-1-i]=list(strinp(90)) print(rec(0,floor,0)) main() ```
0
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,531,725,920
2,147,483,647
Python 3
OK
TESTS
102
124
0
line1 = str(input()) line2 = str(input()) nline = "" for a in range(len(line2)): if line1[a] == line2[a]: nline += "0" else: nline += "1" print(nline)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python line1 = str(input()) line2 = str(input()) nline = "" for a in range(len(line2)): if line1[a] == line2[a]: nline += "0" else: nline += "1" print(nline) ```
3.969
356
B
Xenia and Hamming
PROGRAMMING
1,900
[ "implementation", "math" ]
null
null
Xenia is an amateur programmer. Today on the IT lesson she learned about the Hamming distance. The Hamming distance between two strings *s*<==<=*s*1*s*2... *s**n* and *t*<==<=*t*1*t*2... *t**n* of equal length *n* is value . Record [*s**i*<=≠<=*t**i*] is the Iverson notation and represents the following: if *s**i*<=≠<=*t**i*, it is one, otherwise — zero. Now Xenia wants to calculate the Hamming distance between two long strings *a* and *b*. The first string *a* is the concatenation of *n* copies of string *x*, that is, . The second string *b* is the concatenation of *m* copies of string *y*. Help Xenia, calculate the required Hamming distance, given *n*,<=*x*,<=*m*,<=*y*.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1012). The second line contains a non-empty string *x*. The third line contains a non-empty string *y*. Both strings consist of at most 106 lowercase English letters. It is guaranteed that strings *a* and *b* that you obtain from the input have the same length.
Print a single integer — the required Hamming distance. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "100 10\na\naaaaaaaaaa\n", "1 1\nabacaba\nabzczzz\n", "2 3\nrzr\naz\n" ]
[ "0\n", "4\n", "5\n" ]
In the first test case string *a* is the same as string *b* and equals 100 letters a. As both strings are equal, the Hamming distance between them is zero. In the second test case strings *a* and *b* differ in their 3-rd, 5-th, 6-th and 7-th characters. Thus, the Hamming distance equals 4. In the third test case string *a* is rzrrzr and string *b* is azazaz. The strings differ in all characters apart for the second one, the Hamming distance between them equals 5.
1,000
[]
1,573,994,038
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
7
1,000
13,619,200
e=[] s=input() e=s.split() n=int(e[0]) m=int(e[1]) x=str(input()) y=str(input()) a='' b='' count=0 for i in range(n): a=a+x for j in range(m): b=b+y for q in range(len(a)): if(a[q]!=b[q]): count=count+1 print(count)
Title: Xenia and Hamming Time Limit: None seconds Memory Limit: None megabytes Problem Description: Xenia is an amateur programmer. Today on the IT lesson she learned about the Hamming distance. The Hamming distance between two strings *s*<==<=*s*1*s*2... *s**n* and *t*<==<=*t*1*t*2... *t**n* of equal length *n* is value . Record [*s**i*<=≠<=*t**i*] is the Iverson notation and represents the following: if *s**i*<=≠<=*t**i*, it is one, otherwise — zero. Now Xenia wants to calculate the Hamming distance between two long strings *a* and *b*. The first string *a* is the concatenation of *n* copies of string *x*, that is, . The second string *b* is the concatenation of *m* copies of string *y*. Help Xenia, calculate the required Hamming distance, given *n*,<=*x*,<=*m*,<=*y*. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1012). The second line contains a non-empty string *x*. The third line contains a non-empty string *y*. Both strings consist of at most 106 lowercase English letters. It is guaranteed that strings *a* and *b* that you obtain from the input have the same length. Output Specification: Print a single integer — the required Hamming distance. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['100 10\na\naaaaaaaaaa\n', '1 1\nabacaba\nabzczzz\n', '2 3\nrzr\naz\n'] Demo Output: ['0\n', '4\n', '5\n'] Note: In the first test case string *a* is the same as string *b* and equals 100 letters a. As both strings are equal, the Hamming distance between them is zero. In the second test case strings *a* and *b* differ in their 3-rd, 5-th, 6-th and 7-th characters. Thus, the Hamming distance equals 4. In the third test case string *a* is rzrrzr and string *b* is azazaz. The strings differ in all characters apart for the second one, the Hamming distance between them equals 5.
```python e=[] s=input() e=s.split() n=int(e[0]) m=int(e[1]) x=str(input()) y=str(input()) a='' b='' count=0 for i in range(n): a=a+x for j in range(m): b=b+y for q in range(len(a)): if(a[q]!=b[q]): count=count+1 print(count) ```
0
805
A
Fake NP
PROGRAMMING
1,000
[ "greedy", "math" ]
null
null
Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path. You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times. Solve the problem to show that it's not a NP problem.
The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109).
Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them.
[ "19 29\n", "3 6\n" ]
[ "2\n", "3\n" ]
Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html) The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}. The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
500
[ { "input": "19 29", "output": "2" }, { "input": "3 6", "output": "2" }, { "input": "39 91", "output": "2" }, { "input": "76 134", "output": "2" }, { "input": "93 95", "output": "2" }, { "input": "17 35", "output": "2" }, { "input": "94 95", "output": "2" }, { "input": "51 52", "output": "2" }, { "input": "47 52", "output": "2" }, { "input": "38 98", "output": "2" }, { "input": "30 37", "output": "2" }, { "input": "56 92", "output": "2" }, { "input": "900000000 1000000000", "output": "2" }, { "input": "37622224 162971117", "output": "2" }, { "input": "760632746 850720703", "output": "2" }, { "input": "908580370 968054552", "output": "2" }, { "input": "951594860 953554446", "output": "2" }, { "input": "347877978 913527175", "output": "2" }, { "input": "620769961 988145114", "output": "2" }, { "input": "820844234 892579936", "output": "2" }, { "input": "741254764 741254768", "output": "2" }, { "input": "80270976 80270977", "output": "2" }, { "input": "392602363 392602367", "output": "2" }, { "input": "519002744 519002744", "output": "519002744" }, { "input": "331900277 331900277", "output": "331900277" }, { "input": "419873015 419873018", "output": "2" }, { "input": "349533413 349533413", "output": "349533413" }, { "input": "28829775 28829776", "output": "2" }, { "input": "568814539 568814539", "output": "568814539" }, { "input": "720270740 720270743", "output": "2" }, { "input": "871232720 871232722", "output": "2" }, { "input": "305693653 305693653", "output": "305693653" }, { "input": "634097178 634097179", "output": "2" }, { "input": "450868287 450868290", "output": "2" }, { "input": "252662256 252662260", "output": "2" }, { "input": "575062045 575062049", "output": "2" }, { "input": "273072892 273072894", "output": "2" }, { "input": "770439256 770439256", "output": "770439256" }, { "input": "2 1000000000", "output": "2" }, { "input": "6 8", "output": "2" }, { "input": "2 879190747", "output": "2" }, { "input": "5 5", "output": "5" }, { "input": "999999937 999999937", "output": "999999937" }, { "input": "3 3", "output": "3" }, { "input": "5 100", "output": "2" }, { "input": "2 2", "output": "2" }, { "input": "3 18", "output": "2" }, { "input": "7 7", "output": "7" }, { "input": "39916801 39916801", "output": "39916801" }, { "input": "3 8", "output": "2" }, { "input": "13 13", "output": "13" }, { "input": "4 8", "output": "2" }, { "input": "3 12", "output": "2" }, { "input": "6 12", "output": "2" }, { "input": "999999103 999999103", "output": "999999103" }, { "input": "100000007 100000007", "output": "100000007" }, { "input": "3 99", "output": "2" }, { "input": "999999733 999999733", "output": "999999733" }, { "input": "5 10", "output": "2" }, { "input": "982451653 982451653", "output": "982451653" }, { "input": "999900001 1000000000", "output": "2" }, { "input": "999727999 999727999", "output": "999727999" }, { "input": "2 999999999", "output": "2" }, { "input": "242 244", "output": "2" }, { "input": "3 10", "output": "2" }, { "input": "15 27", "output": "2" }, { "input": "998244353 998244353", "output": "998244353" }, { "input": "5 15", "output": "2" }, { "input": "999999797 999999797", "output": "999999797" }, { "input": "2 3", "output": "2" }, { "input": "999999929 999999929", "output": "999999929" }, { "input": "3 111111", "output": "2" }, { "input": "12 18", "output": "2" }, { "input": "479001599 479001599", "output": "479001599" }, { "input": "10000019 10000019", "output": "10000019" }, { "input": "715827883 715827883", "output": "715827883" }, { "input": "999992977 999992977", "output": "999992977" }, { "input": "11 11", "output": "11" }, { "input": "29 29", "output": "29" }, { "input": "1000003 1000003", "output": "1000003" }, { "input": "6 15", "output": "2" }, { "input": "1200007 1200007", "output": "1200007" }, { "input": "3 1000000000", "output": "2" }, { "input": "990000023 990000023", "output": "990000023" }, { "input": "1717 1717", "output": "1717" }, { "input": "141650963 141650963", "output": "141650963" }, { "input": "1002523 1002523", "output": "1002523" }, { "input": "900000011 900000011", "output": "900000011" }, { "input": "104729 104729", "output": "104729" }, { "input": "4 12", "output": "2" }, { "input": "100003 100003", "output": "100003" }, { "input": "17 17", "output": "17" }, { "input": "10 100", "output": "2" } ]
1,663,323,014
2,147,483,647
Python 3
OK
TESTS
93
61
0
n,m=map(int,input().split());print(n if n==m else 2)
Title: Fake NP Time Limit: None seconds Memory Limit: None megabytes Problem Description: Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path. You are given *l* and *r*. For all integers from *l* to *r*, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times. Solve the problem to show that it's not a NP problem. Input Specification: The first line contains two integers *l* and *r* (2<=≤<=*l*<=≤<=*r*<=≤<=109). Output Specification: Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them. Demo Input: ['19 29\n', '3 6\n'] Demo Output: ['2\n', '3\n'] Note: Definition of a divisor: [https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html](https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html) The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}. The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.
```python n,m=map(int,input().split());print(n if n==m else 2) ```
3
675
A
Infinite Sequence
PROGRAMMING
1,100
[ "math" ]
null
null
Vasya likes everything infinite. Now he is studying the properties of a sequence *s*, such that its first element is equal to *a* (*s*1<==<=*a*), and the difference between any two neighbouring elements is equal to *c* (*s**i*<=-<=*s**i*<=-<=1<==<=*c*). In particular, Vasya wonders if his favourite integer *b* appears in this sequence, that is, there exists a positive integer *i*, such that *s**i*<==<=*b*. Of course, you are the person he asks for a help.
The first line of the input contain three integers *a*, *b* and *c* (<=-<=109<=≤<=*a*,<=*b*,<=*c*<=≤<=109) — the first element of the sequence, Vasya's favorite number and the difference between any two neighbouring elements of the sequence, respectively.
If *b* appears in the sequence *s* print "YES" (without quotes), otherwise print "NO" (without quotes).
[ "1 7 3\n", "10 10 0\n", "1 -4 5\n", "0 60 50\n" ]
[ "YES\n", "YES\n", "NO\n", "NO\n" ]
In the first sample, the sequence starts from integers 1, 4, 7, so 7 is its element. In the second sample, the favorite integer of Vasya is equal to the first element of the sequence. In the third sample all elements of the sequence are greater than Vasya's favorite integer. In the fourth sample, the sequence starts from 0, 50, 100, and all the following elements are greater than Vasya's favorite integer.
500
[ { "input": "1 7 3", "output": "YES" }, { "input": "10 10 0", "output": "YES" }, { "input": "1 -4 5", "output": "NO" }, { "input": "0 60 50", "output": "NO" }, { "input": "1 -4 -5", "output": "YES" }, { "input": "0 1 0", "output": "NO" }, { "input": "10 10 42", "output": "YES" }, { "input": "-1000000000 1000000000 -1", "output": "NO" }, { "input": "10 16 4", "output": "NO" }, { "input": "-1000000000 1000000000 5", "output": "YES" }, { "input": "1000000000 -1000000000 5", "output": "NO" }, { "input": "1000000000 -1000000000 0", "output": "NO" }, { "input": "1000000000 1000000000 0", "output": "YES" }, { "input": "115078364 -899474523 -1", "output": "YES" }, { "input": "-245436499 416383245 992", "output": "YES" }, { "input": "-719636354 536952440 2", "output": "YES" }, { "input": "-198350539 963391024 68337739", "output": "YES" }, { "input": "-652811055 875986516 1091", "output": "YES" }, { "input": "119057893 -516914539 -39748277", "output": "YES" }, { "input": "989140430 731276607 -36837689", "output": "YES" }, { "input": "677168390 494583489 -985071853", "output": "NO" }, { "input": "58090193 777423708 395693923", "output": "NO" }, { "input": "479823846 -403424770 -653472589", "output": "NO" }, { "input": "-52536829 -132023273 -736287999", "output": "NO" }, { "input": "-198893776 740026818 -547885271", "output": "NO" }, { "input": "-2 -2 -2", "output": "YES" }, { "input": "-2 -2 -1", "output": "YES" }, { "input": "-2 -2 0", "output": "YES" }, { "input": "-2 -2 1", "output": "YES" }, { "input": "-2 -2 2", "output": "YES" }, { "input": "-2 -1 -2", "output": "NO" }, { "input": "-2 -1 -1", "output": "NO" }, { "input": "-2 -1 0", "output": "NO" }, { "input": "-2 -1 1", "output": "YES" }, { "input": "-2 -1 2", "output": "NO" }, { "input": "-2 0 -2", "output": "NO" }, { "input": "-2 0 -1", "output": "NO" }, { "input": "-2 0 0", "output": "NO" }, { "input": "-2 0 1", "output": "YES" }, { "input": "-2 0 2", "output": "YES" }, { "input": "-2 1 -2", "output": "NO" }, { "input": "-2 1 -1", "output": "NO" }, { "input": "-2 1 0", "output": "NO" }, { "input": "-2 1 1", "output": "YES" }, { "input": "-2 1 2", "output": "NO" }, { "input": "-2 2 -2", "output": "NO" }, { "input": "-2 2 -1", "output": "NO" }, { "input": "-2 2 0", "output": "NO" }, { "input": "-2 2 1", "output": "YES" }, { "input": "-2 2 2", "output": "YES" }, { "input": "-1 -2 -2", "output": "NO" }, { "input": "-1 -2 -1", "output": "YES" }, { "input": "-1 -2 0", "output": "NO" }, { "input": "-1 -2 1", "output": "NO" }, { "input": "-1 -2 2", "output": "NO" }, { "input": "-1 -1 -2", "output": "YES" }, { "input": "-1 -1 -1", "output": "YES" }, { "input": "-1 -1 0", "output": "YES" }, { "input": "-1 -1 1", "output": "YES" }, { "input": "-1 -1 2", "output": "YES" }, { "input": "-1 0 -2", "output": "NO" }, { "input": "-1 0 -1", "output": "NO" }, { "input": "-1 0 0", "output": "NO" }, { "input": "-1 0 1", "output": "YES" }, { "input": "-1 0 2", "output": "NO" }, { "input": "-1 1 -2", "output": "NO" }, { "input": "-1 1 -1", "output": "NO" }, { "input": "-1 1 0", "output": "NO" }, { "input": "-1 1 1", "output": "YES" }, { "input": "-1 1 2", "output": "YES" }, { "input": "-1 2 -2", "output": "NO" }, { "input": "-1 2 -1", "output": "NO" }, { "input": "-1 2 0", "output": "NO" }, { "input": "-1 2 1", "output": "YES" }, { "input": "-1 2 2", "output": "NO" }, { "input": "0 -2 -2", "output": "YES" }, { "input": "0 -2 -1", "output": "YES" }, { "input": "0 -2 0", "output": "NO" }, { "input": "0 -2 1", "output": "NO" }, { "input": "0 -2 2", "output": "NO" }, { "input": "0 -1 -2", "output": "NO" }, { "input": "0 -1 -1", "output": "YES" }, { "input": "0 -1 0", "output": "NO" }, { "input": "0 -1 1", "output": "NO" }, { "input": "0 -1 2", "output": "NO" }, { "input": "0 0 -2", "output": "YES" }, { "input": "0 0 -1", "output": "YES" }, { "input": "0 0 0", "output": "YES" }, { "input": "0 0 1", "output": "YES" }, { "input": "0 0 2", "output": "YES" }, { "input": "0 1 -2", "output": "NO" }, { "input": "0 1 -1", "output": "NO" }, { "input": "0 1 0", "output": "NO" }, { "input": "0 1 1", "output": "YES" }, { "input": "0 1 2", "output": "NO" }, { "input": "0 2 -2", "output": "NO" }, { "input": "0 2 -1", "output": "NO" }, { "input": "0 2 0", "output": "NO" }, { "input": "0 2 1", "output": "YES" }, { "input": "0 2 2", "output": "YES" }, { "input": "1 -2 -2", "output": "NO" }, { "input": "1 -2 -1", "output": "YES" }, { "input": "1 -2 0", "output": "NO" }, { "input": "1 -2 1", "output": "NO" }, { "input": "1 -2 2", "output": "NO" }, { "input": "1 -1 -2", "output": "YES" }, { "input": "1 -1 -1", "output": "YES" }, { "input": "1 -1 0", "output": "NO" }, { "input": "1 -1 1", "output": "NO" }, { "input": "1 -1 2", "output": "NO" }, { "input": "1 0 -2", "output": "NO" }, { "input": "1 0 -1", "output": "YES" }, { "input": "1 0 0", "output": "NO" }, { "input": "1 0 1", "output": "NO" }, { "input": "1 0 2", "output": "NO" }, { "input": "1 1 -2", "output": "YES" }, { "input": "1 1 -1", "output": "YES" }, { "input": "1 1 0", "output": "YES" }, { "input": "1 1 1", "output": "YES" }, { "input": "1 1 2", "output": "YES" }, { "input": "1 2 -2", "output": "NO" }, { "input": "1 2 -1", "output": "NO" }, { "input": "1 2 0", "output": "NO" }, { "input": "1 2 1", "output": "YES" }, { "input": "1 2 2", "output": "NO" }, { "input": "2 -2 -2", "output": "YES" }, { "input": "2 -2 -1", "output": "YES" }, { "input": "2 -2 0", "output": "NO" }, { "input": "2 -2 1", "output": "NO" }, { "input": "2 -2 2", "output": "NO" }, { "input": "2 -1 -2", "output": "NO" }, { "input": "2 -1 -1", "output": "YES" }, { "input": "2 -1 0", "output": "NO" }, { "input": "2 -1 1", "output": "NO" }, { "input": "2 -1 2", "output": "NO" }, { "input": "2 0 -2", "output": "YES" }, { "input": "2 0 -1", "output": "YES" }, { "input": "2 0 0", "output": "NO" }, { "input": "2 0 1", "output": "NO" }, { "input": "2 0 2", "output": "NO" }, { "input": "2 1 -2", "output": "NO" }, { "input": "2 1 -1", "output": "YES" }, { "input": "2 1 0", "output": "NO" }, { "input": "2 1 1", "output": "NO" }, { "input": "2 1 2", "output": "NO" }, { "input": "2 2 -2", "output": "YES" }, { "input": "2 2 -1", "output": "YES" }, { "input": "2 2 0", "output": "YES" }, { "input": "2 2 1", "output": "YES" }, { "input": "2 2 2", "output": "YES" }, { "input": "-1000000000 1000000000 1", "output": "YES" }, { "input": "-1000000000 1000000000 2", "output": "YES" }, { "input": "1000000000 -1000000000 -1", "output": "YES" }, { "input": "5 2 3", "output": "NO" }, { "input": "2 1 -1", "output": "YES" }, { "input": "3 2 1", "output": "NO" }, { "input": "0 -5 -3", "output": "NO" }, { "input": "2 5 5", "output": "NO" }, { "input": "0 10 1", "output": "YES" }, { "input": "15 5 -5", "output": "YES" }, { "input": "2 1 1", "output": "NO" }, { "input": "20 10 0", "output": "NO" }, { "input": "20 15 5", "output": "NO" }, { "input": "1 6 1", "output": "YES" }, { "input": "1000000000 0 -1000000000", "output": "YES" }, { "input": "1 1 -5", "output": "YES" }, { "input": "4 6 1", "output": "YES" }, { "input": "-5 -10 -5", "output": "YES" }, { "input": "2 0 0", "output": "NO" }, { "input": "10 9 -1", "output": "YES" }, { "input": "-2 -1 -1", "output": "NO" }, { "input": "1 13 3", "output": "YES" }, { "input": "2 3 0", "output": "NO" }, { "input": "1 1 -1", "output": "YES" }, { "input": "5 -10 -5", "output": "YES" }, { "input": "5 3 1", "output": "NO" }, { "input": "1 1000000000 1", "output": "YES" }, { "input": "-1000000000 1000000000 1000000000", "output": "YES" } ]
1,670,702,533
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
5
77
2,867,200
import sys, math input = sys.stdin.readline a, b, c = [int(x) for x in input().split()] if (c == 0 and a == b) or (((b - a) / c) >= 0 and ((b - a) / c) == (b - a) // c): print("YES") else: print("NO")
Title: Infinite Sequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya likes everything infinite. Now he is studying the properties of a sequence *s*, such that its first element is equal to *a* (*s*1<==<=*a*), and the difference between any two neighbouring elements is equal to *c* (*s**i*<=-<=*s**i*<=-<=1<==<=*c*). In particular, Vasya wonders if his favourite integer *b* appears in this sequence, that is, there exists a positive integer *i*, such that *s**i*<==<=*b*. Of course, you are the person he asks for a help. Input Specification: The first line of the input contain three integers *a*, *b* and *c* (<=-<=109<=≤<=*a*,<=*b*,<=*c*<=≤<=109) — the first element of the sequence, Vasya's favorite number and the difference between any two neighbouring elements of the sequence, respectively. Output Specification: If *b* appears in the sequence *s* print "YES" (without quotes), otherwise print "NO" (without quotes). Demo Input: ['1 7 3\n', '10 10 0\n', '1 -4 5\n', '0 60 50\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n', 'NO\n'] Note: In the first sample, the sequence starts from integers 1, 4, 7, so 7 is its element. In the second sample, the favorite integer of Vasya is equal to the first element of the sequence. In the third sample all elements of the sequence are greater than Vasya's favorite integer. In the fourth sample, the sequence starts from 0, 50, 100, and all the following elements are greater than Vasya's favorite integer.
```python import sys, math input = sys.stdin.readline a, b, c = [int(x) for x in input().split()] if (c == 0 and a == b) or (((b - a) / c) >= 0 and ((b - a) / c) == (b - a) // c): print("YES") else: print("NO") ```
-1
839
A
Arya and Bran
PROGRAMMING
900
[ "implementation" ]
null
null
Bran and his older sister Arya are from the same house. Bran like candies so much, so Arya is going to give him some Candies. At first, Arya and Bran have 0 Candies. There are *n* days, at the *i*-th day, Arya finds *a**i* candies in a box, that is given by the Many-Faced God. Every day she can give Bran at most 8 of her candies. If she don't give him the candies at the same day, they are saved for her and she can give them to him later. Your task is to find the minimum number of days Arya needs to give Bran *k* candies before the end of the *n*-th day. Formally, you need to output the minimum day index to the end of which *k* candies will be given out (the days are indexed from 1 to *n*). Print -1 if she can't give him *k* candies during *n* given days.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=10000). The second line contains *n* integers *a*1,<=*a*2,<=*a*3,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
If it is impossible for Arya to give Bran *k* candies within *n* days, print -1. Otherwise print a single integer — the minimum number of days Arya needs to give Bran *k* candies before the end of the *n*-th day.
[ "2 3\n1 2\n", "3 17\n10 10 10\n", "1 9\n10\n" ]
[ "2", "3", "-1" ]
In the first sample, Arya can give Bran 3 candies in 2 days. In the second sample, Arya can give Bran 17 candies in 3 days, because she can give him at most 8 candies per day. In the third sample, Arya can't give Bran 9 candies, because she can give him at most 8 candies per day and she must give him the candies within 1 day.
500
[ { "input": "2 3\n1 2", "output": "2" }, { "input": "3 17\n10 10 10", "output": "3" }, { "input": "1 9\n10", "output": "-1" }, { "input": "10 70\n6 5 2 3 3 2 1 4 3 2", "output": "-1" }, { "input": "20 140\n40 4 81 40 10 54 34 50 84 60 16 1 90 78 38 93 99 60 81 99", "output": "18" }, { "input": "30 133\n3 2 3 4 3 7 4 5 5 6 7 2 1 3 4 6 7 4 6 4 7 5 7 1 3 4 1 6 8 5", "output": "30" }, { "input": "40 320\n70 79 21 64 95 36 63 29 66 89 30 34 100 76 42 12 4 56 80 78 83 1 39 9 34 45 6 71 27 31 55 52 72 71 38 21 43 83 48 47", "output": "40" }, { "input": "50 300\n5 3 11 8 7 4 9 5 5 1 6 3 5 7 4 2 2 10 8 1 7 10 4 4 11 5 2 4 9 1 5 4 11 9 11 2 7 4 4 8 10 9 1 11 10 2 4 11 6 9", "output": "-1" }, { "input": "37 30\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "30" }, { "input": "100 456\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "57" }, { "input": "90 298\n94 90 98 94 93 90 99 98 90 96 93 96 92 92 97 98 94 94 96 100 93 96 95 98 94 91 95 95 94 90 93 96 93 100 99 98 94 95 98 91 91 98 97 100 98 93 92 93 91 100 92 97 95 95 97 94 98 97 99 100 90 96 93 100 95 99 92 100 99 91 97 99 98 93 90 93 97 95 94 96 90 100 94 93 91 92 97 97 97 100", "output": "38" }, { "input": "7 43\n4 3 7 9 3 8 10", "output": "-1" }, { "input": "99 585\n8 2 3 3 10 7 9 4 7 4 6 8 7 11 5 8 7 4 7 7 6 7 11 8 1 7 3 2 10 1 6 10 10 5 10 2 5 5 11 6 4 1 5 10 5 8 1 3 7 10 6 1 1 3 8 11 5 8 2 2 5 4 7 6 7 5 8 7 10 9 6 11 4 8 2 7 1 7 1 4 11 1 9 6 1 10 6 10 1 5 6 5 2 5 11 5 1 10 8", "output": "-1" }, { "input": "30 177\n8 7 5 8 3 7 2 4 3 8 11 3 9 11 2 4 1 4 5 6 11 5 8 3 6 3 11 2 11 8", "output": "-1" }, { "input": "19 129\n3 3 10 11 4 7 3 8 10 2 11 6 11 9 4 2 11 10 5", "output": "-1" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "13 104\n94 55 20 96 86 76 13 71 13 1 32 76 69", "output": "13" }, { "input": "85 680\n61 44 55 6 30 74 27 26 17 45 73 1 67 71 39 32 13 25 79 66 4 59 49 28 29 22 10 17 98 80 36 99 52 24 59 44 27 79 29 46 29 12 47 72 82 25 6 30 81 72 95 65 30 71 72 45 39 16 16 89 48 42 59 71 50 58 31 65 91 70 48 56 28 34 53 89 94 98 49 55 94 65 91 11 53", "output": "85" }, { "input": "100 458\n3 6 4 1 8 4 1 5 4 4 5 8 4 4 6 6 5 1 2 2 2 1 7 1 1 2 6 5 7 8 3 3 8 3 7 5 7 6 6 2 4 2 2 1 1 8 6 1 5 3 3 4 1 4 6 8 5 4 8 5 4 5 5 1 3 1 6 7 6 2 7 3 4 8 1 8 6 7 1 2 4 6 7 4 8 8 8 4 8 7 5 2 8 4 2 5 6 8 8 5", "output": "100" }, { "input": "98 430\n4 7 6 3 4 1 7 1 1 6 6 1 5 4 6 1 5 4 6 6 1 5 1 1 8 1 6 6 2 6 8 4 4 6 6 8 8 7 4 1 2 4 1 5 4 3 7 3 2 5 7 7 7 2 2 2 7 2 8 7 3 4 5 7 8 3 7 6 7 3 2 4 7 1 4 4 7 1 1 8 4 5 8 3 1 5 3 5 2 1 3 3 8 1 3 5 8 6", "output": "98" }, { "input": "90 80\n6 1 7 1 1 8 6 6 6 1 5 4 2 2 8 4 8 7 7 2 5 7 7 8 5 5 6 3 3 8 3 5 6 3 4 2 6 5 5 3 3 3 8 6 6 1 8 3 6 5 4 8 5 4 3 7 1 3 2 3 3 7 7 7 3 5 2 6 2 3 6 4 6 5 5 3 2 1 1 7 3 3 4 3 4 2 1 2 3 1", "output": "18" }, { "input": "89 99\n7 7 3 5 2 7 8 8 1 1 5 7 7 4 1 5 3 4 4 8 8 3 3 2 6 3 8 2 7 5 8 1 3 5 3 6 4 3 6 2 3 3 4 5 1 6 1 7 7 7 6 7 7 7 8 8 8 2 1 7 5 8 6 7 7 4 7 5 7 8 1 3 5 8 7 1 4 2 5 8 3 4 4 5 5 6 2 4 2", "output": "21" }, { "input": "50 700\n4 3 2 8 8 5 5 3 3 4 7 2 6 6 3 3 8 4 2 4 8 6 5 4 5 4 5 8 6 5 4 7 2 4 1 6 2 6 8 6 2 5 8 1 3 8 3 8 4 1", "output": "-1" }, { "input": "82 359\n95 98 95 90 90 96 91 94 93 99 100 100 92 99 96 94 99 90 94 96 91 91 90 93 97 96 90 94 97 99 93 90 99 98 96 100 93 97 100 91 100 92 93 100 92 90 90 94 99 95 100 98 99 96 94 96 96 99 99 91 97 100 95 100 99 91 94 91 98 98 100 97 93 93 96 97 94 94 92 100 91 91", "output": "45" }, { "input": "60 500\n93 93 100 99 91 92 95 93 95 99 93 91 97 98 90 91 98 100 95 100 94 93 92 91 91 98 98 90 93 91 90 96 92 93 92 94 94 91 96 94 98 100 97 96 96 97 91 99 97 95 96 94 91 92 99 95 97 92 98 90", "output": "-1" }, { "input": "98 776\n48 63 26 3 88 81 27 33 37 10 2 89 41 84 98 93 25 44 42 90 41 65 97 1 28 69 42 14 86 18 96 28 28 94 78 8 44 31 96 45 26 52 93 25 48 39 3 75 94 93 63 59 67 86 18 74 27 38 68 7 31 60 69 67 20 11 19 34 47 43 86 96 3 49 56 60 35 49 89 28 92 69 48 15 17 73 99 69 2 73 27 35 28 53 11 1 96 50", "output": "97" }, { "input": "100 189\n15 14 32 65 28 96 33 93 48 28 57 20 32 20 90 42 57 53 18 58 94 21 27 29 37 22 94 45 67 60 83 23 20 23 35 93 3 42 6 46 68 46 34 25 17 16 50 5 49 91 23 76 69 100 58 68 81 32 88 41 64 29 37 13 95 25 6 59 74 58 31 35 16 80 13 80 10 59 85 18 16 70 51 40 44 28 8 76 8 87 53 86 28 100 2 73 14 100 52 9", "output": "24" }, { "input": "99 167\n72 4 79 73 49 58 15 13 92 92 42 36 35 21 13 10 51 94 64 35 86 50 6 80 93 77 59 71 2 88 22 10 27 30 87 12 77 6 34 56 31 67 78 84 36 27 15 15 12 56 80 7 56 14 10 9 14 59 15 20 34 81 8 49 51 72 4 58 38 77 31 86 18 61 27 86 95 36 46 36 39 18 78 39 48 37 71 12 51 92 65 48 39 22 16 87 4 5 42", "output": "21" }, { "input": "90 4\n48 4 4 78 39 3 85 29 69 52 70 39 11 98 42 56 65 98 77 24 61 31 6 59 60 62 84 46 67 59 15 44 99 23 12 74 2 48 84 60 51 28 17 90 10 82 3 43 50 100 45 57 57 95 53 71 20 74 52 46 64 59 72 33 74 16 44 44 80 71 83 1 70 59 61 6 82 69 81 45 88 28 17 24 22 25 53 97 1 100", "output": "1" }, { "input": "30 102\n55 94 3 96 3 47 92 85 25 78 27 70 97 83 40 2 55 12 74 84 91 37 31 85 7 40 33 54 72 5", "output": "13" }, { "input": "81 108\n61 59 40 100 8 75 5 74 87 12 6 23 98 26 59 68 27 4 98 79 14 44 4 11 89 77 29 90 33 3 43 1 87 91 28 24 4 84 75 7 37 46 15 46 8 87 68 66 5 21 36 62 77 74 91 95 88 28 12 48 18 93 14 51 33 5 99 62 99 38 49 15 56 87 52 64 69 46 41 12 92", "output": "14" }, { "input": "2 16\n10 6", "output": "2" }, { "input": "2 8\n7 8", "output": "2" }, { "input": "2 9\n4 8", "output": "2" }, { "input": "3 19\n9 9 1", "output": "3" }, { "input": "4 32\n9 9 9 5", "output": "4" }, { "input": "2 15\n14 1", "output": "2" }, { "input": "2 3\n3 3", "output": "1" }, { "input": "3 10\n10 1 1", "output": "2" }, { "input": "12 20\n3 16 19 10 1 6 17 8 6 20 1 4", "output": "4" }, { "input": "4 15\n14 3 3 3", "output": "2" }, { "input": "5 40\n10 10 10 10 1", "output": "5" }, { "input": "4 31\n9 9 8 5", "output": "4" }, { "input": "4 31\n20 7 1 1", "output": "-1" }, { "input": "2 10\n9 1", "output": "2" }, { "input": "10 50\n100 10 1 1 1 1 1 1 1 1", "output": "7" }, { "input": "2 11\n10 2", "output": "2" }, { "input": "3 21\n10 10 1", "output": "3" }, { "input": "2 2\n1 2", "output": "2" }, { "input": "3 2\n1 8 8", "output": "2" }, { "input": "2 11\n10 1", "output": "2" }, { "input": "2 16\n12 4", "output": "2" }, { "input": "3 11\n9 2 2", "output": "2" }, { "input": "3 11\n4 3 4", "output": "3" }, { "input": "2 13\n7 6", "output": "2" }, { "input": "3 24\n14 3 4", "output": "-1" }, { "input": "2 13\n10 3", "output": "2" }, { "input": "3 11\n9 2 1", "output": "2" }, { "input": "2 15\n12 3", "output": "2" }, { "input": "2 14\n11 4", "output": "2" } ]
1,594,811,933
2,147,483,647
Python 3
OK
TESTS
60
109
6,656,000
n,k=map(int, input().split()) a=list(map(int, input().split())) for i in range(n): c=min(k,a[i],8) if i!=n-1: a[i+1]+=a[i]-c k-=c if k==0: print(i+1) break else: print("-1")
Title: Arya and Bran Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bran and his older sister Arya are from the same house. Bran like candies so much, so Arya is going to give him some Candies. At first, Arya and Bran have 0 Candies. There are *n* days, at the *i*-th day, Arya finds *a**i* candies in a box, that is given by the Many-Faced God. Every day she can give Bran at most 8 of her candies. If she don't give him the candies at the same day, they are saved for her and she can give them to him later. Your task is to find the minimum number of days Arya needs to give Bran *k* candies before the end of the *n*-th day. Formally, you need to output the minimum day index to the end of which *k* candies will be given out (the days are indexed from 1 to *n*). Print -1 if she can't give him *k* candies during *n* given days. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=10000). The second line contains *n* integers *a*1,<=*a*2,<=*a*3,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100). Output Specification: If it is impossible for Arya to give Bran *k* candies within *n* days, print -1. Otherwise print a single integer — the minimum number of days Arya needs to give Bran *k* candies before the end of the *n*-th day. Demo Input: ['2 3\n1 2\n', '3 17\n10 10 10\n', '1 9\n10\n'] Demo Output: ['2', '3', '-1'] Note: In the first sample, Arya can give Bran 3 candies in 2 days. In the second sample, Arya can give Bran 17 candies in 3 days, because she can give him at most 8 candies per day. In the third sample, Arya can't give Bran 9 candies, because she can give him at most 8 candies per day and she must give him the candies within 1 day.
```python n,k=map(int, input().split()) a=list(map(int, input().split())) for i in range(n): c=min(k,a[i],8) if i!=n-1: a[i+1]+=a[i]-c k-=c if k==0: print(i+1) break else: print("-1") ```
3
940
B
Our Tanya is Crying Out Loud
PROGRAMMING
1,400
[ "dp", "greedy" ]
null
null
Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109).
Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1.
[ "9\n2\n3\n1\n", "5\n5\n2\n20\n", "19\n3\n4\n2\n" ]
[ "6\n", "8\n", "12\n" ]
In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
1,250
[ { "input": "9\n2\n3\n1", "output": "6" }, { "input": "5\n5\n2\n20", "output": "8" }, { "input": "19\n3\n4\n2", "output": "12" }, { "input": "1845999546\n999435865\n1234234\n2323423", "output": "1044857680578777" }, { "input": "1604353664\n1604353665\n9993432\n1", "output": "16032999235141416" }, { "input": "777888456\n1\n98\n43", "output": "76233068590" }, { "input": "1162261467\n3\n1\n2000000000", "output": "1162261466" }, { "input": "1000000000\n1999999999\n789987\n184569875", "output": "789986999210013" }, { "input": "2000000000\n2\n1\n2000000000", "output": "1999999999" }, { "input": "1999888325\n3\n2\n2000000000", "output": "3333258884" }, { "input": "1897546487\n687\n89798979\n879876541", "output": "110398404423" }, { "input": "20\n1\n20\n1", "output": "380" }, { "input": "16\n5\n17\n3", "output": "54" }, { "input": "19\n19\n19\n1", "output": "1" }, { "input": "18\n2\n3\n16", "output": "40" }, { "input": "1\n11\n8\n9", "output": "0" }, { "input": "9\n10\n1\n20", "output": "8" }, { "input": "19\n10\n19\n2", "output": "173" }, { "input": "16\n9\n14\n2", "output": "100" }, { "input": "15\n2\n5\n2", "output": "21" }, { "input": "14\n7\n13\n1", "output": "14" }, { "input": "43\n3\n45\n3", "output": "189" }, { "input": "99\n1\n98\n1", "output": "9604" }, { "input": "77\n93\n100\n77", "output": "7600" }, { "input": "81\n3\n91\n95", "output": "380" }, { "input": "78\n53\n87\n34", "output": "2209" }, { "input": "80\n3\n15\n1", "output": "108" }, { "input": "97\n24\n4\n24", "output": "40" }, { "input": "100\n100\n1\n100", "output": "99" }, { "input": "87\n4\n17\n7", "output": "106" }, { "input": "65\n2\n3\n6", "output": "36" }, { "input": "1000000\n1435\n3\n999999", "output": "1005804" }, { "input": "783464\n483464\n2\n966928", "output": "1566926" }, { "input": "248035\n11\n3\n20", "output": "202" }, { "input": "524287\n2\n945658\n999756", "output": "34963354" }, { "input": "947352\n78946\n85\n789654", "output": "790589" }, { "input": "1000000\n1\n999899\n60", "output": "999898000101" }, { "input": "753687\n977456\n6547\n456", "output": "4934382242" }, { "input": "1000000\n500000\n1\n999997", "output": "999998" }, { "input": "997458\n843596\n1\n843596", "output": "997457" }, { "input": "821109\n92\n6547\n98787", "output": "394566" }, { "input": "1073741823\n2\n9543\n8923453", "output": "188412866" }, { "input": "1000999777\n1934999345\n2356346\n34534565", "output": "2358701818178496" }, { "input": "2000000000\n1\n2000000000\n98", "output": "3999999998000000000" }, { "input": "1999324353\n978435356\n1\n978435356", "output": "1020888998" }, { "input": "2000000000\n2\n2000000000\n2000000000", "output": "84000000000" }, { "input": "241375690\n17\n2\n1998789654", "output": "482751378" }, { "input": "171507000\n350\n789\n6548687", "output": "14216965" }, { "input": "1100220011\n10001\n2\n1999778654", "output": "1999998674" }, { "input": "1867622656\n43216\n789644\n12315468", "output": "24630936" }, { "input": "1867622656\n43216\n1\n1879865413", "output": "1867622655" }, { "input": "1999999999\n1000000000\n789987\n184569875", "output": "789987183779888" }, { "input": "1987987897\n103546\n7\n98754563", "output": "98946650" }, { "input": "10\n2\n2\n5", "output": "13" }, { "input": "7\n2\n1\n100000", "output": "6" }, { "input": "7\n2\n3\n1", "output": "8" }, { "input": "2000000000\n666666667\n1\n1", "output": "666666668" }, { "input": "1999999997\n666666666\n2\n2", "output": "1333333334" } ]
1,538,550,110
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
108
0
n = int(input()) k = int(input()) A = int(input()) B = int(input()) res1 = A*n res2 = 0 x = n while x != 1: res2 += A*(x%k) + B x -= (x % k) x = x // k print(res1, res2) print(res1 if res1 < res2 else res2);
Title: Our Tanya is Crying Out Loud Time Limit: None seconds Memory Limit: None megabytes Problem Description: Right now she actually isn't. But she will be, if you don't solve this problem. You are given integers *n*, *k*, *A* and *B*. There is a number *x*, which is initially equal to *n*. You are allowed to perform two types of operations: 1. Subtract 1 from *x*. This operation costs you *A* coins. 1. Divide *x* by *k*. Can be performed only if *x* is divisible by *k*. This operation costs you *B* coins. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). The second line contains a single integer *k* (1<=≤<=*k*<=≤<=2·109). The third line contains a single integer *A* (1<=≤<=*A*<=≤<=2·109). The fourth line contains a single integer *B* (1<=≤<=*B*<=≤<=2·109). Output Specification: Output a single integer — the minimum amount of coins you have to pay to make *x* equal to 1. Demo Input: ['9\n2\n3\n1\n', '5\n5\n2\n20\n', '19\n3\n4\n2\n'] Demo Output: ['6\n', '8\n', '12\n'] Note: In the first testcase, the optimal strategy is as follows: - Subtract 1 from *x* (9 → 8) paying 3 coins. - Divide *x* by 2 (8 → 4) paying 1 coin. - Divide *x* by 2 (4 → 2) paying 1 coin. - Divide *x* by 2 (2 → 1) paying 1 coin. The total cost is 6 coins. In the second test case the optimal strategy is to subtract 1 from *x* 4 times paying 8 coins in total.
```python n = int(input()) k = int(input()) A = int(input()) B = int(input()) res1 = A*n res2 = 0 x = n while x != 1: res2 += A*(x%k) + B x -= (x % k) x = x // k print(res1, res2) print(res1 if res1 < res2 else res2); ```
0
282
A
Bit++
PROGRAMMING
800
[ "implementation" ]
null
null
The classic programming language of Bitland is Bit++. This language is so peculiar and complicated. The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations: - Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1. A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains. A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains. You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed).
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme. Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order.
Print a single integer — the final value of *x*.
[ "1\n++X\n", "2\nX++\n--X\n" ]
[ "1\n", "0\n" ]
none
500
[ { "input": "1\n++X", "output": "1" }, { "input": "2\nX++\n--X", "output": "0" }, { "input": "3\n++X\n++X\n++X", "output": "3" }, { "input": "2\n--X\n--X", "output": "-2" }, { "input": "5\n++X\n--X\n++X\n--X\n--X", "output": "-1" }, { "input": "28\nX--\n++X\nX++\nX++\nX++\n--X\n--X\nX++\nX--\n++X\nX++\n--X\nX--\nX++\nX--\n++X\n++X\nX++\nX++\nX++\nX++\n--X\n++X\n--X\n--X\n--X\n--X\nX++", "output": "4" }, { "input": "94\nX++\nX++\n++X\n++X\nX--\n--X\nX++\n--X\nX++\n++X\nX++\n++X\n--X\n--X\n++X\nX++\n--X\nX--\nX--\n--X\nX--\nX--\n--X\n++X\n--X\nX--\nX--\nX++\n++X\n--X\nX--\n++X\n--X\n--X\nX--\nX--\nX++\nX++\nX--\nX++\nX--\nX--\nX--\n--X\nX--\nX--\nX--\nX++\n++X\nX--\n++X\nX++\n--X\n--X\n--X\n--X\n++X\nX--\n--X\n--X\n++X\nX--\nX--\nX++\n++X\nX++\n++X\n--X\n--X\nX--\n++X\nX--\nX--\n++X\n++X\n++X\n++X\nX++\n++X\n--X\nX++\n--X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\nX--\nX--\n--X\n++X\nX++", "output": "-10" }, { "input": "56\n--X\nX--\n--X\n--X\nX--\nX--\n--X\nX++\n++X\n--X\nX++\nX--\n--X\n++X\n--X\nX--\nX--\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\n++X\nX++\nX++\n--X\nX++\nX--\n--X\nX--\n--X\nX++\n++X\n--X\n++X\nX++\nX--\n--X\n--X\n++X\nX--\nX--\n--X\nX--\n--X\nX++\n--X\n++X\n--X", "output": "-14" }, { "input": "59\nX--\n--X\nX++\n++X\nX--\n--X\n--X\n++X\n++X\n++X\n++X\nX++\n++X\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX++\n--X\n++X\nX++\n--X\n--X\nX++\nX++\n--X\nX++\nX++\nX++\nX--\nX--\n--X\nX++\nX--\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\nX--\n++X\n--X\nX++\nX++\nX--\nX++\n++X\nX--\nX++\nX--\nX--\n++X", "output": "3" }, { "input": "87\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\nX--\n++X\n--X\n--X\nX++\n--X\nX--\nX++\n++X\n--X\n++X\n++X\n--X\n++X\n--X\nX--\n++X\n++X\nX--\nX++\nX++\n--X\n--X\n++X\nX--\n--X\n++X\n--X\nX++\n--X\n--X\nX--\n++X\n++X\n--X\nX--\nX--\nX--\nX--\nX--\nX++\n--X\n++X\n--X\nX++\n++X\nX++\n++X\n--X\nX++\n++X\nX--\n--X\nX++\n++X\nX++\nX++\n--X\n--X\n++X\n--X\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX--\n--X\n++X\n++X", "output": "-5" }, { "input": "101\nX++\nX++\nX++\n++X\n--X\nX--\nX++\nX--\nX--\n--X\n--X\n++X\nX++\n++X\n++X\nX--\n--X\n++X\nX++\nX--\n++X\n--X\n--X\n--X\n++X\n--X\n++X\nX++\nX++\n++X\n--X\nX++\nX--\nX++\n++X\n++X\nX--\nX--\nX--\nX++\nX++\nX--\nX--\nX++\n++X\n++X\n++X\n--X\n--X\n++X\nX--\nX--\n--X\n++X\nX--\n++X\nX++\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n++X\n--X\nX++\n++X\nX--\n++X\nX--\n++X\nX++\nX--\n++X\nX++\n--X\nX++\nX++\n++X\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\n++X\n++X\n--X\nX--\nX--\nX--\nX--\n--X\n--X\n--X\n++X\n--X\n--X", "output": "1" }, { "input": "63\n--X\nX--\n++X\n--X\n++X\nX++\n--X\n--X\nX++\n--X\n--X\nX++\nX--\nX--\n--X\n++X\nX--\nX--\nX++\n++X\nX++\nX++\n--X\n--X\n++X\nX--\nX--\nX--\n++X\nX++\nX--\n--X\nX--\n++X\n++X\nX++\n++X\nX++\nX++\n--X\nX--\n++X\nX--\n--X\nX--\nX--\nX--\n++X\n++X\n++X\n++X\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n++X\nX--\n++X\n++X\nX--", "output": "1" }, { "input": "45\n--X\n++X\nX--\n++X\n++X\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX++\n++X\nX--\n++X\n++X\nX--\nX++\nX--\n--X\nX--\n++X\n++X\n--X\n--X\nX--\nX--\n--X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\nX--\n++X\n++X\nX++\nX++\n++X\n++X\nX++", "output": "-3" }, { "input": "21\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX--\nX++\nX--\nX--\nX--\nX++\n++X\nX++\n++X\n--X\nX--\n--X\nX++\n++X", "output": "1" }, { "input": "100\n--X\n++X\nX++\n++X\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\n++X\nX--\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n++X\nX++\n++X\nX--\n--X\n++X\nX--\n--X\n++X\n++X\nX--\nX++\nX++\nX++\n++X\n--X\n++X\nX++\nX--\n++X\n++X\n--X\n++X\nX--\nX--\nX--\nX++\nX--\nX--\nX++\nX++\n--X\nX++\nX++\n--X\nX--\n--X\n++X\n--X\n++X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\n++X\nX++\nX--\nX++\nX--\nX++\nX++\n--X\nX--\nX--\n++X\nX--\n--X\n--X\nX++\n--X\n--X\nX--\nX--\n++X\n++X\nX--\n++X\nX++\n--X\n++X\n++X\nX++\n--X\n--X\nX++", "output": "8" }, { "input": "17\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n--X\nX--\nX++\nX--\n--X\n--X\nX--\n++X\nX--\nX++", "output": "-1" }, { "input": "77\n++X\nX++\n--X\nX--\n--X\n--X\nX--\nX++\nX--\nX++\nX--\n++X\n--X\n--X\n--X\n--X\n++X\nX--\nX++\nX--\n--X\nX--\n--X\nX--\n++X\n--X\n++X\n++X\nX++\nX++\nX--\n--X\nX--\nX--\nX++\n--X\n--X\n++X\nX--\nX--\n++X\nX++\nX--\n++X\n--X\nX++\nX--\n++X\n++X\n++X\nX--\nX--\nX--\n--X\n++X\n++X\n++X\nX++\n--X\n--X\n++X\n--X\nX--\nX++\n++X\nX++\n++X\nX--\nX++\nX++\n--X\nX++\nX++\nX++\n--X\nX++\nX--", "output": "-5" }, { "input": "21\nX--\n++X\n--X\nX--\n++X\nX--\n++X\nX--\n--X\n++X\nX++\n++X\nX++\n++X\nX--\n--X\nX++\nX++\nX--\n++X\nX--", "output": "1" }, { "input": "1\nX--", "output": "-1" } ]
1,696,788,153
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
0
for t in range(int(input())): X = 0 n = input() print(X)
Title: Bit++ Time Limit: None seconds Memory Limit: None megabytes Problem Description: The classic programming language of Bitland is Bit++. This language is so peculiar and complicated. The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations: - Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1. A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains. A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains. You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed). Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme. Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order. Output Specification: Print a single integer — the final value of *x*. Demo Input: ['1\n++X\n', '2\nX++\n--X\n'] Demo Output: ['1\n', '0\n'] Note: none
```python for t in range(int(input())): X = 0 n = input() print(X) ```
0
837
B
Flag of Berland
PROGRAMMING
1,600
[ "brute force", "implementation" ]
null
null
The flag of Berland is such rectangular field *n*<=×<=*m* that satisfies following conditions: - Flag consists of three colors which correspond to letters 'R', 'G' and 'B'. - Flag consists of three equal in width and height stripes, parralel to each other and to sides of the flag. Each stripe has exactly one color. - Each color should be used in exactly one stripe. You are given a field *n*<=×<=*m*, consisting of characters 'R', 'G' and 'B'. Output "YES" (without quotes) if this field corresponds to correct flag of Berland. Otherwise, print "NO" (without quotes).
The first line contains two integer numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the sizes of the field. Each of the following *n* lines consisting of *m* characters 'R', 'G' and 'B' — the description of the field.
Print "YES" (without quotes) if the given field corresponds to correct flag of Berland . Otherwise, print "NO" (without quotes).
[ "6 5\nRRRRR\nRRRRR\nBBBBB\nBBBBB\nGGGGG\nGGGGG\n", "4 3\nBRG\nBRG\nBRG\nBRG\n", "6 7\nRRRGGGG\nRRRGGGG\nRRRGGGG\nRRRBBBB\nRRRBBBB\nRRRBBBB\n", "4 4\nRRRR\nRRRR\nBBBB\nGGGG\n" ]
[ "YES\n", "YES\n", "NO\n", "NO\n" ]
The field in the third example doesn't have three parralel stripes. Rows of the field in the fourth example are parralel to each other and to borders. But they have different heights — 2, 1 and 1.
0
[ { "input": "6 5\nRRRRR\nRRRRR\nBBBBB\nBBBBB\nGGGGG\nGGGGG", "output": "YES" }, { "input": "4 3\nBRG\nBRG\nBRG\nBRG", "output": "YES" }, { "input": "6 7\nRRRGGGG\nRRRGGGG\nRRRGGGG\nRRRBBBB\nRRRBBBB\nRRRBBBB", "output": "NO" }, { "input": "4 4\nRRRR\nRRRR\nBBBB\nGGGG", "output": "NO" }, { "input": "1 3\nGRB", "output": "YES" }, { "input": "3 1\nR\nG\nB", "output": "YES" }, { "input": "4 3\nRGB\nGRB\nGRB\nGRB", "output": "NO" }, { "input": "4 6\nGGRRBB\nGGRRBB\nGGRRBB\nRRGGBB", "output": "NO" }, { "input": "100 3\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nRGB\nGRB", "output": "NO" }, { "input": "3 100\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRG", "output": "NO" }, { "input": "3 1\nR\nR\nB", "output": "NO" }, { "input": "3 2\nRR\nBB\nRR", "output": "NO" }, { "input": "3 2\nRR\nBG\nBG", "output": "NO" }, { "input": "3 2\nBB\nRR\nBB", "output": "NO" }, { "input": "3 3\nRRR\nRRR\nRRR", "output": "NO" }, { "input": "3 3\nGGG\nGGG\nGGG", "output": "NO" }, { "input": "1 3\nRGG", "output": "NO" }, { "input": "4 3\nRGR\nRGR\nRGR\nRGR", "output": "NO" }, { "input": "3 4\nRRGG\nRRGG\nBBBB", "output": "NO" }, { "input": "3 3\nBRG\nBRG\nBRG", "output": "YES" }, { "input": "3 1\nR\nG\nR", "output": "NO" }, { "input": "5 3\nBBG\nBBG\nBBG\nBBG\nBBG", "output": "NO" }, { "input": "3 3\nRRR\nGGG\nRRR", "output": "NO" }, { "input": "1 3\nRGR", "output": "NO" }, { "input": "3 6\nRRBBGG\nRRBBGG\nRRBBGG", "output": "YES" }, { "input": "6 6\nRRBBGG\nRRBBGG\nRRBBGG\nRRBBGG\nRRBBGG\nRRBBGG", "output": "YES" }, { "input": "4 3\nRRR\nGGG\nBBB\nBBB", "output": "NO" }, { "input": "3 3\nRRR\nBBB\nRRR", "output": "NO" }, { "input": "3 1\nB\nR\nB", "output": "NO" }, { "input": "1 3\nBGB", "output": "NO" }, { "input": "3 1\nB\nB\nB", "output": "NO" }, { "input": "3 4\nRRRR\nBBBB\nRRRR", "output": "NO" }, { "input": "1 6\nRGGGBB", "output": "NO" }, { "input": "9 3\nBBB\nBBB\nBBB\nGGG\nGGG\nGRG\nRGR\nRRR\nRRR", "output": "NO" }, { "input": "4 4\nRGBB\nRGBB\nRGBB\nRGBB", "output": "NO" }, { "input": "3 3\nRBR\nRBR\nRBR", "output": "NO" }, { "input": "1 6\nRRRRBB", "output": "NO" }, { "input": "1 6\nRRRRRR", "output": "NO" }, { "input": "1 6\nRRGGGG", "output": "NO" }, { "input": "4 4\nRRRR\nRRRR\nRRRR\nRRRR", "output": "NO" }, { "input": "3 1\nB\nG\nB", "output": "NO" }, { "input": "3 1\nR\nR\nR", "output": "NO" }, { "input": "1 9\nRRRGGGBBB", "output": "YES" }, { "input": "1 3\nRRR", "output": "NO" }, { "input": "3 5\nRRRRR\nBBBBB\nBBBBB", "output": "NO" }, { "input": "3 3\nRRR\nGGG\nGGG", "output": "NO" }, { "input": "1 1\nR", "output": "NO" }, { "input": "3 3\nRGR\nRGR\nRGR", "output": "NO" }, { "input": "1 3\nGGG", "output": "NO" }, { "input": "3 3\nRBG\nGBR\nRGB", "output": "NO" }, { "input": "3 3\nRGB\nRGB\nRGB", "output": "YES" }, { "input": "1 3\nBRB", "output": "NO" }, { "input": "2 1\nR\nB", "output": "NO" }, { "input": "1 3\nRBR", "output": "NO" }, { "input": "3 5\nRRGBB\nRRGBB\nRRGBB", "output": "NO" }, { "input": "5 3\nBBR\nBBR\nBBR\nBBR\nBBR", "output": "NO" }, { "input": "3 3\nRGB\nRBG\nRGB", "output": "NO" }, { "input": "1 2\nRB", "output": "NO" }, { "input": "4 3\nBBB\nBBB\nBBB\nBBB", "output": "NO" }, { "input": "36 6\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR\nBBRRRR", "output": "NO" }, { "input": "4 1\nR\nB\nG\nR", "output": "NO" }, { "input": "13 12\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR\nRRRRGGGGRRRR", "output": "NO" }, { "input": "2 2\nRR\nRR", "output": "NO" }, { "input": "6 6\nRRGGBB\nGRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB", "output": "NO" }, { "input": "70 3\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG\nBGG", "output": "NO" }, { "input": "4 3\nBBG\nBBG\nBBG\nBBG", "output": "NO" }, { "input": "6 3\nBBB\nGGG\nRRR\nBRG\nBRG\nBRG", "output": "NO" }, { "input": "3 6\nRRBBGG\nRBBBGG\nRBBBGG", "output": "NO" }, { "input": "6 6\nGGGGGG\nGGGGGG\nBBBBBB\nBBBBBB\nGGGGGG\nGGGGGG", "output": "NO" }, { "input": "6 1\nR\nB\nG\nR\nB\nG", "output": "NO" }, { "input": "6 5\nRRRRR\nBBBBB\nGGGGG\nRRRRR\nBBBBB\nGGGGG", "output": "NO" }, { "input": "6 3\nRRR\nGGG\nBBB\nRRR\nGGG\nBBB", "output": "NO" }, { "input": "6 5\nRRRRR\nRRRRR\nRRRRR\nGGGGG\nGGGGG\nGGGGG", "output": "NO" }, { "input": "15 28\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nGGGGGGGGGGGGGGGGGGGGGGGGGGGG\nGGGGGGGGGGGGGGGGGGGGGGGGGGGG\nGGGGGGGGGGGGGGGGGGGGGGGGGGGG\nGGGGGGGGGGGGGGGGGGGGGGGGGGGG\nGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "NO" }, { "input": "21 10\nRRRRRRRRRR\nRRRRRRRRRR\nRRRRRRRRRR\nRRRRRRRRRR\nRRRRRRRRRR\nRRRRRRRRRR\nRRRRRRRRRR\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBGBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nBBBBBBBBBB\nGGGGGGGGGG\nGGGGGGGGGG\nGGGGGGGGGG\nGGGGGGGGGG\nGGGGGGGGGG\nGGGGGGGGGG\nGGGGGGGGGG", "output": "NO" }, { "input": "3 2\nRR\nGB\nGB", "output": "NO" }, { "input": "3 2\nRG\nRG\nBB", "output": "NO" }, { "input": "6 5\nRRRRR\nRRRRR\nBBBBB\nBBBBB\nRRRRR\nRRRRR", "output": "NO" }, { "input": "3 3\nRGB\nGBR\nBRG", "output": "NO" }, { "input": "1 3\nRBB", "output": "NO" }, { "input": "3 3\nBGR\nBGR\nBGR", "output": "YES" }, { "input": "6 6\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB", "output": "YES" }, { "input": "4 2\nRR\nGG\nRR\nBB", "output": "NO" }, { "input": "3 3\nRRR\nRRR\nGGG", "output": "NO" }, { "input": "8 6\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR", "output": "NO" }, { "input": "3 4\nRRRR\nRRRR\nGGGG", "output": "NO" }, { "input": "3 4\nRRRR\nRRRR\nRRRR", "output": "NO" }, { "input": "6 1\nR\nR\nR\nR\nR\nR", "output": "NO" }, { "input": "1 6\nRRBBGG", "output": "YES" }, { "input": "1 6\nRGBRGB", "output": "NO" }, { "input": "3 4\nRRRR\nGGGG\nRRRR", "output": "NO" }, { "input": "3 3\nRRB\nGRG\nGBB", "output": "NO" }, { "input": "3 7\nRRGGBBB\nRRGGBBB\nRRGGBBB", "output": "NO" }, { "input": "3 1\nG\nR\nR", "output": "NO" }, { "input": "2 3\nRGG\nRBB", "output": "NO" }, { "input": "3 3\nRRG\nGGG\nBBB", "output": "NO" }, { "input": "3 3\nRGB\nRBB\nRGB", "output": "NO" }, { "input": "3 3\nRGR\nRGB\nRGB", "output": "NO" }, { "input": "3 1\nB\nR\nR", "output": "NO" }, { "input": "1 3\nGRR", "output": "NO" }, { "input": "4 4\nRRRR\nGGGG\nBBBB\nBBBB", "output": "NO" }, { "input": "1 3\nGGR", "output": "NO" }, { "input": "3 3\nRGB\nGGB\nRGB", "output": "NO" }, { "input": "3 3\nRGR\nGGG\nBBB", "output": "NO" }, { "input": "6 6\nRRRRRR\nGGGGGG\nGGGGGG\nGGGGGG\nBBBBBB\nBBBBBB", "output": "NO" }, { "input": "6 6\nRRRRRR\nRRRRRR\nGGGGGG\nBBBBBB\nBBBBBB\nBBBBBB", "output": "NO" }, { "input": "3 1\nG\nB\nR", "output": "YES" }, { "input": "3 3\nGGB\nRGB\nRGB", "output": "NO" }, { "input": "3 3\nGRR\nGGG\nBBB", "output": "NO" }, { "input": "6 6\nRRRRRR\nRRRRRR\nGGGGGG\nGGGGGG\nBBBBBB\nRRRRRR", "output": "NO" }, { "input": "3 3\nRRR\nGBG\nBBB", "output": "NO" }, { "input": "3 8\nRRGGBBBB\nRRGGBBBB\nRRGGBBBB", "output": "NO" }, { "input": "2 2\nRR\nGG", "output": "NO" }, { "input": "3 3\nRGB\nRGR\nRGB", "output": "NO" }, { "input": "1 3\nRBG", "output": "YES" }, { "input": "2 6\nRRGGBB\nGGRRBB", "output": "NO" }, { "input": "6 2\nRR\nGG\nBB\nRR\nGG\nBB", "output": "NO" }, { "input": "1 5\nRRGGB", "output": "NO" }, { "input": "1 2\nRG", "output": "NO" }, { "input": "1 6\nRGBRBG", "output": "NO" }, { "input": "1 6\nRRRGGB", "output": "NO" }, { "input": "1 3\nRGB", "output": "YES" }, { "input": "4 3\nRRR\nBBR\nGBB\nGGG", "output": "NO" }, { "input": "6 3\nRRR\nBBB\nBBB\nBBB\nGGG\nGGG", "output": "NO" }, { "input": "3 3\nRBG\nRBG\nRBG", "output": "YES" }, { "input": "6 3\nRRR\nBBB\nGGG\nRRR\nBBB\nGGG", "output": "NO" }, { "input": "1 4\nRGBB", "output": "NO" }, { "input": "6 6\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR\nRRRRRR", "output": "NO" }, { "input": "6 5\nRRRRR\nRRRRR\nGGGGG\nGGGGG\nRRRRR\nRRRRR", "output": "NO" }, { "input": "3 3\nRGB\nBRG\nGBR", "output": "NO" }, { "input": "6 10\nRRRRRRRRRR\nGGGGGGGGGG\nBBBBBBBBBB\nRRRRRRRRRR\nGGGGGGGGGG\nBBBBBBBBBB", "output": "NO" }, { "input": "20 6\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB\nRRGGBB", "output": "YES" }, { "input": "4 1\nR\nG\nB\nR", "output": "NO" }, { "input": "1 4\nRGBR", "output": "NO" }, { "input": "2 4\nRGBB\nRRGB", "output": "NO" } ]
1,687,220,992
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
17
77
2,969,600
import sys input = lambda: sys.stdin.readline().rstrip() N,M = map(int, input().split()) S = [] for _ in range(N): S.append(input()) INF = float('inf') A = [[INF,INF,-1,-1],[INF,INF,-1,-1],[INF,INF,-1,-1]] for i in range(N): for j in range(M): if S[i][j]=='R': A[0][0] = min(A[0][0],i) A[0][1] = min(A[0][1],j) A[0][2] = max(A[0][2],i) A[0][3] = max(A[0][3],j) elif S[i][j]=='G': A[1][0] = min(A[1][0],i) A[1][1] = min(A[1][1],j) A[1][2] = max(A[1][2],i) A[1][3] = max(A[1][3],j) else: A[2][0] = min(A[2][0],i) A[2][1] = min(A[2][1],j) A[2][2] = max(A[2][2],i) A[2][3] = max(A[2][3],j) A.sort() #print(A) D = [] for x1,y1,x2,y2 in A: t = (x2-x1+1)*(y2-y1+1) D.append(t) if len(set(D))==1 and D[0]*3==N*M: print('YES') else: print('NO')
Title: Flag of Berland Time Limit: None seconds Memory Limit: None megabytes Problem Description: The flag of Berland is such rectangular field *n*<=×<=*m* that satisfies following conditions: - Flag consists of three colors which correspond to letters 'R', 'G' and 'B'. - Flag consists of three equal in width and height stripes, parralel to each other and to sides of the flag. Each stripe has exactly one color. - Each color should be used in exactly one stripe. You are given a field *n*<=×<=*m*, consisting of characters 'R', 'G' and 'B'. Output "YES" (without quotes) if this field corresponds to correct flag of Berland. Otherwise, print "NO" (without quotes). Input Specification: The first line contains two integer numbers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the sizes of the field. Each of the following *n* lines consisting of *m* characters 'R', 'G' and 'B' — the description of the field. Output Specification: Print "YES" (without quotes) if the given field corresponds to correct flag of Berland . Otherwise, print "NO" (without quotes). Demo Input: ['6 5\nRRRRR\nRRRRR\nBBBBB\nBBBBB\nGGGGG\nGGGGG\n', '4 3\nBRG\nBRG\nBRG\nBRG\n', '6 7\nRRRGGGG\nRRRGGGG\nRRRGGGG\nRRRBBBB\nRRRBBBB\nRRRBBBB\n', '4 4\nRRRR\nRRRR\nBBBB\nGGGG\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n', 'NO\n'] Note: The field in the third example doesn't have three parralel stripes. Rows of the field in the fourth example are parralel to each other and to borders. But they have different heights — 2, 1 and 1.
```python import sys input = lambda: sys.stdin.readline().rstrip() N,M = map(int, input().split()) S = [] for _ in range(N): S.append(input()) INF = float('inf') A = [[INF,INF,-1,-1],[INF,INF,-1,-1],[INF,INF,-1,-1]] for i in range(N): for j in range(M): if S[i][j]=='R': A[0][0] = min(A[0][0],i) A[0][1] = min(A[0][1],j) A[0][2] = max(A[0][2],i) A[0][3] = max(A[0][3],j) elif S[i][j]=='G': A[1][0] = min(A[1][0],i) A[1][1] = min(A[1][1],j) A[1][2] = max(A[1][2],i) A[1][3] = max(A[1][3],j) else: A[2][0] = min(A[2][0],i) A[2][1] = min(A[2][1],j) A[2][2] = max(A[2][2],i) A[2][3] = max(A[2][3],j) A.sort() #print(A) D = [] for x1,y1,x2,y2 in A: t = (x2-x1+1)*(y2-y1+1) D.append(t) if len(set(D))==1 and D[0]*3==N*M: print('YES') else: print('NO') ```
0
34
A
Reconnaissance 2
PROGRAMMING
800
[ "implementation" ]
A. Reconnaissance 2
2
256
*n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit.
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction.
Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle.
[ "5\n10 12 13 15 10\n", "4\n10 20 30 40\n" ]
[ "5 1\n", "1 2\n" ]
none
500
[ { "input": "5\n10 12 13 15 10", "output": "5 1" }, { "input": "4\n10 20 30 40", "output": "1 2" }, { "input": "6\n744 359 230 586 944 442", "output": "2 3" }, { "input": "5\n826 747 849 687 437", "output": "1 2" }, { "input": "5\n999 999 993 969 999", "output": "1 2" }, { "input": "5\n4 24 6 1 15", "output": "3 4" }, { "input": "2\n511 32", "output": "1 2" }, { "input": "3\n907 452 355", "output": "2 3" }, { "input": "4\n303 872 764 401", "output": "4 1" }, { "input": "10\n684 698 429 694 956 812 594 170 937 764", "output": "1 2" }, { "input": "20\n646 840 437 946 640 564 936 917 487 752 844 734 468 969 674 646 728 642 514 695", "output": "7 8" }, { "input": "30\n996 999 998 984 989 1000 996 993 1000 983 992 999 999 1000 979 992 987 1000 996 1000 1000 989 981 996 995 999 999 989 999 1000", "output": "12 13" }, { "input": "50\n93 27 28 4 5 78 59 24 19 134 31 128 118 36 90 32 32 1 44 32 33 13 31 10 12 25 38 50 25 12 4 22 28 53 48 83 4 25 57 31 71 24 8 7 28 86 23 80 101 58", "output": "16 17" }, { "input": "88\n1000 1000 1000 1000 1000 998 998 1000 1000 1000 1000 999 999 1000 1000 1000 999 1000 997 999 997 1000 999 998 1000 999 1000 1000 1000 999 1000 999 999 1000 1000 999 1000 999 1000 1000 998 1000 1000 1000 998 998 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 999 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 998 1000 1000 998 1000 999 1000 1000 1000 1000", "output": "1 2" }, { "input": "99\n4 4 21 6 5 3 13 2 6 1 3 4 1 3 1 9 11 1 6 17 4 5 20 4 1 9 5 11 3 4 14 1 3 3 1 4 3 5 27 1 1 2 10 7 11 4 19 7 11 6 11 13 3 1 10 7 2 1 16 1 9 4 29 13 2 12 14 2 21 1 9 8 26 12 12 5 2 14 7 8 8 8 9 4 12 2 6 6 7 16 8 14 2 10 20 15 3 7 4", "output": "1 2" }, { "input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438", "output": "86 87" }, { "input": "100\n31 75 86 68 111 27 22 22 26 30 54 163 107 75 160 122 14 23 17 26 27 20 43 58 59 71 21 148 9 32 43 91 133 286 132 70 90 156 84 14 77 93 23 18 13 72 18 131 33 28 72 175 30 86 249 20 14 208 28 57 63 199 6 10 24 30 62 267 43 479 60 28 138 1 45 3 19 47 7 166 116 117 50 140 28 14 95 85 93 43 61 15 2 70 10 51 7 95 9 25", "output": "7 8" }, { "input": "100\n896 898 967 979 973 709 961 968 806 967 896 967 826 975 936 903 986 856 851 931 852 971 786 837 949 978 686 936 952 909 965 749 908 916 943 973 983 975 939 886 964 928 960 976 907 788 994 773 949 871 947 980 945 985 726 981 887 943 907 990 931 874 840 867 948 951 961 904 888 901 976 967 994 921 828 970 972 722 755 970 860 855 914 869 714 899 969 978 898 862 642 939 904 936 819 934 884 983 955 964", "output": "1 2" }, { "input": "100\n994 927 872 970 815 986 952 996 965 1000 877 986 978 999 950 990 936 997 993 960 921 860 895 869 943 998 983 968 973 953 999 990 995 871 853 979 973 963 953 938 997 989 993 964 960 973 946 975 1000 962 920 746 989 957 904 965 920 979 966 961 1000 993 975 952 846 971 991 979 985 969 984 973 956 1000 952 778 983 974 956 927 995 997 980 997 1000 970 960 970 988 983 947 904 935 972 1000 863 992 996 932 967", "output": "81 82" }, { "input": "100\n48 108 63 21 27 8 49 21 75 8 24 42 149 18 8 28 21 18 25 35 59 70 59 33 40 1 67 34 120 82 4 115 72 87 3 15 15 63 37 12 40 27 83 14 38 20 14 58 93 10 31 3 39 6 197 77 54 16 31 146 9 49 14 8 77 82 5 11 80 116 8 61 50 24 7 103 29 11 3 3 1 12 46 24 21 131 39 29 36 2 107 40 16 99 31 41 29 48 17 17", "output": "36 37" } ]
1,660,057,960
2,147,483,647
Python 3
OK
TESTS
20
92
0
n = int(input()) data = list(map(int, input().split())) intial_diff = 99999999999999999999999999 solders = [1, 2] for i in range(len(data)): for j in range(len(data)): if i != j and abs(data[i] - data[j]) < intial_diff and (abs(i-j) == 1 or (i==0 and j==len(data)-1) or (i==len(data)-1 and j==0)): # print(data[i], data[j], i, j, abs(data[i] - data[j]), intial_diff) intial_diff = abs(data[i] - data[j]) solders = [i+1, j+1] print(*solders)
Title: Reconnaissance 2 Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: *n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit. Input Specification: The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction. Output Specification: Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle. Demo Input: ['5\n10 12 13 15 10\n', '4\n10 20 30 40\n'] Demo Output: ['5 1\n', '1 2\n'] Note: none
```python n = int(input()) data = list(map(int, input().split())) intial_diff = 99999999999999999999999999 solders = [1, 2] for i in range(len(data)): for j in range(len(data)): if i != j and abs(data[i] - data[j]) < intial_diff and (abs(i-j) == 1 or (i==0 and j==len(data)-1) or (i==len(data)-1 and j==0)): # print(data[i], data[j], i, j, abs(data[i] - data[j]), intial_diff) intial_diff = abs(data[i] - data[j]) solders = [i+1, j+1] print(*solders) ```
3.977
155
A
I_love_\%username\%
PROGRAMMING
800
[ "brute force" ]
null
null
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
[ "5\n100 50 200 150 200\n", "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n" ]
[ "2\n", "4\n" ]
In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
500
[ { "input": "5\n100 50 200 150 200", "output": "2" }, { "input": "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242", "output": "4" }, { "input": "1\n6", "output": "0" }, { "input": "2\n2 1", "output": "1" }, { "input": "5\n100 36 53 7 81", "output": "2" }, { "input": "5\n7 36 53 81 100", "output": "4" }, { "input": "5\n100 81 53 36 7", "output": "4" }, { "input": "10\n8 6 3 4 9 10 7 7 1 3", "output": "5" }, { "input": "10\n1627 1675 1488 1390 1812 1137 1746 1324 1952 1862", "output": "6" }, { "input": "10\n1 3 3 4 6 7 7 8 9 10", "output": "7" }, { "input": "10\n1952 1862 1812 1746 1675 1627 1488 1390 1324 1137", "output": "9" }, { "input": "25\n1448 4549 2310 2725 2091 3509 1565 2475 2232 3989 4231 779 2967 2702 608 3739 721 1552 2767 530 3114 665 1940 48 4198", "output": "5" }, { "input": "33\n1097 1132 1091 1104 1049 1038 1023 1080 1104 1029 1035 1061 1049 1060 1088 1106 1105 1087 1063 1076 1054 1103 1047 1041 1028 1120 1126 1063 1117 1110 1044 1093 1101", "output": "5" }, { "input": "34\n821 5536 2491 6074 7216 9885 764 1603 778 8736 8987 771 617 1587 8943 7922 439 7367 4115 8886 7878 6899 8811 5752 3184 3401 9760 9400 8995 4681 1323 6637 6554 6498", "output": "7" }, { "input": "68\n6764 6877 6950 6768 6839 6755 6726 6778 6699 6805 6777 6985 6821 6801 6791 6805 6940 6761 6677 6999 6911 6699 6959 6933 6903 6843 6972 6717 6997 6756 6789 6668 6735 6852 6735 6880 6723 6834 6810 6694 6780 6679 6698 6857 6826 6896 6979 6968 6957 6988 6960 6700 6919 6892 6984 6685 6813 6678 6715 6857 6976 6902 6780 6686 6777 6686 6842 6679", "output": "9" }, { "input": "60\n9000 9014 9034 9081 9131 9162 9174 9199 9202 9220 9221 9223 9229 9235 9251 9260 9268 9269 9270 9298 9307 9309 9313 9323 9386 9399 9407 9495 9497 9529 9531 9544 9614 9615 9627 9627 9643 9654 9656 9657 9685 9699 9701 9736 9745 9758 9799 9827 9843 9845 9854 9854 9885 9891 9896 9913 9942 9963 9986 9992", "output": "57" }, { "input": "100\n7 61 12 52 41 16 34 99 30 44 48 89 31 54 21 1 48 52 61 15 35 87 21 76 64 92 44 81 16 93 84 92 32 15 68 76 53 39 26 4 11 26 7 4 99 99 61 65 55 85 65 67 47 39 2 74 63 49 98 87 5 94 22 30 25 42 31 84 49 23 89 60 16 26 92 27 9 57 75 61 94 35 83 47 99 100 63 24 91 88 79 10 15 45 22 64 3 11 89 83", "output": "4" }, { "input": "100\n9999 9999 9999 9998 9998 9998 9997 9996 9996 9995 9993 9993 9991 9990 9989 9986 9984 9984 9983 9981 9981 9980 9980 9980 9979 9977 9977 9977 9977 9977 9976 9976 9975 9975 9973 9972 9972 9972 9972 9971 9969 9969 9969 9968 9967 9965 9962 9962 9962 9962 9960 9958 9958 9955 9954 9954 9954 9954 9950 9949 9949 9947 9943 9943 9940 9940 9939 9937 9937 9937 9936 9935 9932 9932 9931 9929 9927 9927 9926 9923 9919 9919 9918 9918 9918 9917 9917 9916 9916 9915 9914 9911 9910 9907 9907 9906 9905 9905 9904 9901", "output": "57" }, { "input": "100\n158 159 157 156 155 154 160 153 161 152 162 163 151 164 150 165 149 148 147 166 146 167 145 144 143 142 168 141 169 170 140 139 138 137 171 136 135 134 172 173 174 133 175 132 177 178 131 179 180 130 129 181 128 127 182 126 183 125 124 184 123 122 121 120 119 118 117 185 186 187 188 189 116 190 115 191 192 193 114 113 112 111 110 109 108 194 195 107 106 105 196 197 104 198 199 103 102 200 101 100", "output": "99" }, { "input": "2\n0 10000", "output": "1" }, { "input": "2\n5 5", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n10 10", "output": "0" }, { "input": "1\n0", "output": "0" } ]
1,693,987,080
2,147,483,647
Python 3
OK
TESTS
37
92
0
n = int(input()) points = list(map(int, input().split())) amazing_count = 0 best_score = worst_score = points[0] for j in range(1, n): if points[j] > best_score: amazing_count += 1 best_score = points[j] elif points[j] < worst_score: amazing_count += 1 worst_score = points[j] print(amazing_count)
Title: I_love_\%username\% Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him. Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000. Output Specification: Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests. Demo Input: ['5\n100 50 200 150 200\n', '10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n'] Demo Output: ['2\n', '4\n'] Note: In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
```python n = int(input()) points = list(map(int, input().split())) amazing_count = 0 best_score = worst_score = points[0] for j in range(1, n): if points[j] > best_score: amazing_count += 1 best_score = points[j] elif points[j] < worst_score: amazing_count += 1 worst_score = points[j] print(amazing_count) ```
3
869
B
The Eternal Immortality
PROGRAMMING
1,100
[ "math" ]
null
null
Even if the world is full of counterfeits, I still regard it as wonderful. Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this. The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1. Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer. As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
[ "2 4\n", "0 10\n", "107 109\n" ]
[ "2\n", "0\n", "2\n" ]
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2; In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0; In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
1,000
[ { "input": "2 4", "output": "2" }, { "input": "0 10", "output": "0" }, { "input": "107 109", "output": "2" }, { "input": "10 13", "output": "6" }, { "input": "998244355 998244359", "output": "4" }, { "input": "999999999000000000 1000000000000000000", "output": "0" }, { "input": "2 3", "output": "3" }, { "input": "3 15", "output": "0" }, { "input": "24 26", "output": "0" }, { "input": "14 60", "output": "0" }, { "input": "11 79", "output": "0" }, { "input": "1230 1232", "output": "2" }, { "input": "2633 2634", "output": "4" }, { "input": "535 536", "output": "6" }, { "input": "344319135 396746843", "output": "0" }, { "input": "696667767 696667767", "output": "1" }, { "input": "419530302 610096911", "output": "0" }, { "input": "238965115 821731161", "output": "0" }, { "input": "414626436 728903812", "output": "0" }, { "input": "274410639 293308324", "output": "0" }, { "input": "650636673091305697 650636673091305702", "output": "0" }, { "input": "651240548333620923 651240548333620924", "output": "4" }, { "input": "500000000000000000 1000000000000000000", "output": "0" }, { "input": "999999999999999999 1000000000000000000", "output": "0" }, { "input": "1000000000000000000 1000000000000000000", "output": "1" }, { "input": "0 4", "output": "4" }, { "input": "50000000062000007 50000000062000011", "output": "0" }, { "input": "0 0", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "0 2", "output": "2" }, { "input": "10000000000012 10000000000015", "output": "0" }, { "input": "5 5", "output": "1" }, { "input": "12 23", "output": "0" }, { "input": "0 11", "output": "0" }, { "input": "11111234567890 11111234567898", "output": "0" }, { "input": "0 3", "output": "6" }, { "input": "1 2", "output": "2" }, { "input": "999999999999999997 999999999999999999", "output": "2" }, { "input": "4 5", "output": "5" }, { "input": "0 1", "output": "1" }, { "input": "101 1002", "output": "0" }, { "input": "0 100000000000000001", "output": "0" }, { "input": "99999999999999997 99999999999999999", "output": "2" }, { "input": "14 15", "output": "5" }, { "input": "8 19", "output": "0" }, { "input": "12 22", "output": "0" }, { "input": "999999999999996 999999999999999", "output": "4" }, { "input": "1 3", "output": "6" }, { "input": "124 125", "output": "5" }, { "input": "11 32", "output": "0" }, { "input": "0 5", "output": "0" }, { "input": "0 999999", "output": "0" }, { "input": "151151151515 151151151526", "output": "0" }, { "input": "6 107", "output": "0" }, { "input": "5 16", "output": "0" }, { "input": "7 16", "output": "0" }, { "input": "6 19", "output": "0" }, { "input": "11113111111111 13111111111111", "output": "0" }, { "input": "1 1000", "output": "0" }, { "input": "24 25", "output": "5" }, { "input": "0 100000000000", "output": "0" }, { "input": "1 22", "output": "0" }, { "input": "999999999999999996 999999999999999999", "output": "4" } ]
1,531,395,038
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
124
0
import math a,b=input().split() a,b=[int(a),int(b)] c=1 l=min(a+10,b) while a!=l: c=(c*a)%10 a+=1 print(c)
Title: The Eternal Immortality Time Limit: None seconds Memory Limit: None megabytes Problem Description: Even if the world is full of counterfeits, I still regard it as wonderful. Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this. The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1. Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer. As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge. Input Specification: The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018). Output Specification: Output one line containing a single decimal digit — the last digit of the value that interests Koyomi. Demo Input: ['2 4\n', '0 10\n', '107 109\n'] Demo Output: ['2\n', '0\n', '2\n'] Note: In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2; In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0; In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
```python import math a,b=input().split() a,b=[int(a),int(b)] c=1 l=min(a+10,b) while a!=l: c=(c*a)%10 a+=1 print(c) ```
0
217
A
Ice Skating
PROGRAMMING
1,200
[ "brute force", "dfs and similar", "dsu", "graphs" ]
null
null
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates.
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
[ "2\n2 1\n1 2\n", "2\n2 1\n4 1\n" ]
[ "1\n", "0\n" ]
none
500
[ { "input": "2\n2 1\n1 2", "output": "1" }, { "input": "2\n2 1\n4 1", "output": "0" }, { "input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459", "output": "21" }, { "input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815", "output": "16" }, { "input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663", "output": "10" }, { "input": "1\n321 88", "output": "0" }, { "input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689", "output": "7" }, { "input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510", "output": "6" }, { "input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888", "output": "5" }, { "input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802", "output": "13" }, { "input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662", "output": "11" }, { "input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786", "output": "38" }, { "input": "3\n175 201\n907 909\n388 360", "output": "2" }, { "input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86", "output": "6" }, { "input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820", "output": "16" }, { "input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901", "output": "31" }, { "input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210", "output": "29" }, { "input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894", "output": "29" }, { "input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823", "output": "13" }, { "input": "5\n175 158\n16 2\n397 381\n668 686\n957 945", "output": "4" }, { "input": "5\n312 284\n490 509\n730 747\n504 497\n782 793", "output": "4" }, { "input": "2\n802 903\n476 348", "output": "1" }, { "input": "4\n325 343\n425 442\n785 798\n275 270", "output": "3" }, { "input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653", "output": "25" }, { "input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124", "output": "34" }, { "input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255", "output": "29" }, { "input": "5\n664 666\n951 941\n739 742\n844 842\n2 2", "output": "4" }, { "input": "3\n939 867\n411 427\n757 708", "output": "2" }, { "input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636", "output": "34" }, { "input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195", "output": "28" }, { "input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488", "output": "22" }, { "input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235", "output": "8" }, { "input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621", "output": "22" }, { "input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461", "output": "22" }, { "input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924", "output": "6" }, { "input": "3\n1 1\n2 1\n2 2", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "5\n1 1\n1 2\n2 2\n3 1\n3 3", "output": "0" }, { "input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3", "output": "0" }, { "input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10", "output": "1" }, { "input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11", "output": "1" }, { "input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11", "output": "3" }, { "input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25", "output": "7" }, { "input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28", "output": "5" }, { "input": "3\n1 2\n2 1\n2 2", "output": "0" }, { "input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "3\n1 1\n2 2\n1 2", "output": "0" }, { "input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4", "output": "1" }, { "input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100", "output": "6" }, { "input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4", "output": "0" }, { "input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3", "output": "0" }, { "input": "4\n3 1\n2 1\n2 2\n1 2", "output": "0" }, { "input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3", "output": "0" }, { "input": "3\n1 2\n1 3\n1 4", "output": "0" }, { "input": "4\n1 1\n2 2\n1 2\n2 1", "output": "0" }, { "input": "4\n1 3\n2 1\n3 2\n3 1", "output": "1" }, { "input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4", "output": "0" }, { "input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700", "output": "2" }, { "input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9", "output": "1" }, { "input": "4\n1 1\n2 2\n3 2\n3 1", "output": "0" }, { "input": "3\n1 2\n3 4\n3 2", "output": "0" }, { "input": "3\n1 1\n1 2\n2 2", "output": "0" }, { "input": "4\n5 5\n5 4\n6 3\n6 4", "output": "0" }, { "input": "3\n1 1\n2 2\n2 1", "output": "0" } ]
1,592,651,758
2,147,483,647
PyPy 3
OK
TESTS
76
280
1,536,000
n=int(input()) points=[list(map(int, input().split()))+[False] for i in range(n)] def visit(points,point): point[2]=True x,y=point[0],point[1] for point in points: if not point[2] and (point[0] == x or point[1] == y): visit(points,point) c=-1 for point in points: if not point[2]: c+=1 visit(points,point) print(c)
Title: Ice Skating Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates. Input Specification: The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct. Output Specification: Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one. Demo Input: ['2\n2 1\n1 2\n', '2\n2 1\n4 1\n'] Demo Output: ['1\n', '0\n'] Note: none
```python n=int(input()) points=[list(map(int, input().split()))+[False] for i in range(n)] def visit(points,point): point[2]=True x,y=point[0],point[1] for point in points: if not point[2] and (point[0] == x or point[1] == y): visit(points,point) c=-1 for point in points: if not point[2]: c+=1 visit(points,point) print(c) ```
3
242
B
Big Segment
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*]. You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1. Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment. It is guaranteed that no two segments coincide.
Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1. The segments are numbered starting from 1 in the order in which they appear in the input.
[ "3\n1 1\n2 2\n3 3\n", "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n" ]
[ "-1\n", "3\n" ]
none
1,000
[ { "input": "3\n1 1\n2 2\n3 3", "output": "-1" }, { "input": "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10", "output": "3" }, { "input": "4\n1 5\n2 2\n2 4\n2 5", "output": "1" }, { "input": "5\n3 3\n1 3\n2 2\n2 3\n1 2", "output": "2" }, { "input": "7\n7 7\n8 8\n3 7\n1 6\n1 7\n4 7\n2 8", "output": "-1" }, { "input": "3\n2 5\n3 4\n2 3", "output": "1" }, { "input": "16\n15 15\n8 12\n6 9\n15 16\n8 14\n3 12\n7 19\n9 13\n5 16\n9 17\n10 15\n9 14\n9 9\n18 19\n5 15\n6 19", "output": "-1" }, { "input": "9\n1 10\n7 8\n6 7\n1 4\n5 9\n2 8\n3 10\n1 1\n2 3", "output": "1" }, { "input": "1\n1 100000", "output": "1" }, { "input": "6\n2 2\n3 3\n3 5\n4 5\n1 1\n1 5", "output": "6" }, { "input": "33\n2 18\n4 14\n2 16\n10 12\n4 6\n9 17\n2 8\n4 12\n8 20\n1 10\n11 14\n11 17\n8 15\n3 16\n3 4\n6 9\n6 19\n4 17\n17 19\n6 16\n3 12\n1 7\n6 20\n8 16\n12 19\n1 3\n12 18\n6 11\n7 20\n16 18\n4 15\n3 15\n15 19", "output": "-1" }, { "input": "34\n3 8\n5 9\n2 9\n1 4\n3 7\n3 3\n8 9\n6 10\n4 7\n6 7\n5 8\n5 10\n1 5\n8 8\n2 5\n3 5\n7 7\n2 8\n4 5\n1 1\n7 9\n5 6\n2 3\n1 2\n2 4\n8 10\n7 8\n1 3\n4 8\n9 10\n1 7\n10 10\n2 2\n1 8", "output": "-1" }, { "input": "55\n3 4\n6 8\n9 10\n3 9\n9 9\n2 5\n4 8\n3 8\n8 10\n1 1\n4 9\n10 10\n6 6\n8 8\n1 8\n5 5\n4 5\n5 9\n2 2\n3 10\n4 6\n3 6\n1 6\n1 7\n6 10\n2 6\n3 7\n2 4\n4 4\n5 10\n1 4\n2 9\n1 3\n7 9\n7 8\n1 9\n1 10\n2 8\n8 9\n6 7\n1 2\n6 9\n7 7\n4 7\n3 3\n2 7\n4 10\n7 10\n2 3\n2 10\n5 7\n3 5\n5 8\n1 5\n5 6", "output": "37" }, { "input": "1\n999999999 1000000000", "output": "1" }, { "input": "3\n1 20\n2 22\n3 18", "output": "-1" }, { "input": "1\n1000000000 1000000000", "output": "1" }, { "input": "2\n100001 100008\n100005 100006", "output": "1" }, { "input": "1\n1000000 10000000", "output": "1" }, { "input": "3\n3 6\n2 4\n1 5", "output": "-1" }, { "input": "2\n3 5\n1 2", "output": "-1" } ]
1,678,696,589
2,147,483,647
Python 3
OK
TESTS
45
684
8,396,800
n=int(input()) mina,maxb=map(int,input().split()) x=[[mina,maxb]] for i in range(n-1): a,b=map(int,input().split()) mina=min(a,mina) maxb=max(b,maxb) x.append([a,b]) f=True for i in range(n): if x[i][0]==mina and x[i][1]==maxb: print(i+1) f=False break if f: print(-1)
Title: Big Segment Time Limit: None seconds Memory Limit: None megabytes Problem Description: A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*]. You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1. Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment. It is guaranteed that no two segments coincide. Output Specification: Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1. The segments are numbered starting from 1 in the order in which they appear in the input. Demo Input: ['3\n1 1\n2 2\n3 3\n', '6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n'] Demo Output: ['-1\n', '3\n'] Note: none
```python n=int(input()) mina,maxb=map(int,input().split()) x=[[mina,maxb]] for i in range(n-1): a,b=map(int,input().split()) mina=min(a,mina) maxb=max(b,maxb) x.append([a,b]) f=True for i in range(n): if x[i][0]==mina and x[i][1]==maxb: print(i+1) f=False break if f: print(-1) ```
3
791
A
Bear and Big Brother
PROGRAMMING
800
[ "implementation" ]
null
null
Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob. Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight. Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year. After how many full years will Limak become strictly larger (strictly heavier) than Bob?
The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively.
Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.
[ "4 7\n", "4 9\n", "1 1\n" ]
[ "2\n", "3\n", "1\n" ]
In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2. In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights. In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
500
[ { "input": "4 7", "output": "2" }, { "input": "4 9", "output": "3" }, { "input": "1 1", "output": "1" }, { "input": "4 6", "output": "2" }, { "input": "1 10", "output": "6" }, { "input": "1 1", "output": "1" }, { "input": "1 2", "output": "2" }, { "input": "1 3", "output": "3" }, { "input": "1 4", "output": "4" }, { "input": "1 5", "output": "4" }, { "input": "1 6", "output": "5" }, { "input": "1 7", "output": "5" }, { "input": "1 8", "output": "6" }, { "input": "1 9", "output": "6" }, { "input": "1 10", "output": "6" }, { "input": "2 2", "output": "1" }, { "input": "2 3", "output": "2" }, { "input": "2 4", "output": "2" }, { "input": "2 5", "output": "3" }, { "input": "2 6", "output": "3" }, { "input": "2 7", "output": "4" }, { "input": "2 8", "output": "4" }, { "input": "2 9", "output": "4" }, { "input": "2 10", "output": "4" }, { "input": "3 3", "output": "1" }, { "input": "3 4", "output": "1" }, { "input": "3 5", "output": "2" }, { "input": "3 6", "output": "2" }, { "input": "3 7", "output": "3" }, { "input": "3 8", "output": "3" }, { "input": "3 9", "output": "3" }, { "input": "3 10", "output": "3" }, { "input": "4 4", "output": "1" }, { "input": "4 5", "output": "1" }, { "input": "4 6", "output": "2" }, { "input": "4 7", "output": "2" }, { "input": "4 8", "output": "2" }, { "input": "4 9", "output": "3" }, { "input": "4 10", "output": "3" }, { "input": "5 5", "output": "1" }, { "input": "5 6", "output": "1" }, { "input": "5 7", "output": "1" }, { "input": "5 8", "output": "2" }, { "input": "5 9", "output": "2" }, { "input": "5 10", "output": "2" }, { "input": "6 6", "output": "1" }, { "input": "6 7", "output": "1" }, { "input": "6 8", "output": "1" }, { "input": "6 9", "output": "2" }, { "input": "6 10", "output": "2" }, { "input": "7 7", "output": "1" }, { "input": "7 8", "output": "1" }, { "input": "7 9", "output": "1" }, { "input": "7 10", "output": "1" }, { "input": "8 8", "output": "1" }, { "input": "8 9", "output": "1" }, { "input": "8 10", "output": "1" }, { "input": "9 9", "output": "1" }, { "input": "9 10", "output": "1" }, { "input": "10 10", "output": "1" }, { "input": "10 10", "output": "1" }, { "input": "1 2", "output": "2" } ]
1,698,116,963
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
77
2,867,200
import sys import math input = sys.stdin.readline a, b = int(input().split()) if a == b: sys.stdout.write("1") exit() n = math.ceil(math.log(b / a) / math.log(3 / 2)) if math.log(a, 2) == math.log(b, 3): n += 1 sys.stdout.write(f"{n}")
Title: Bear and Big Brother Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob. Right now, Limak and Bob weigh *a* and *b* respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight. Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year. After how many full years will Limak become strictly larger (strictly heavier) than Bob? Input Specification: The only line of the input contains two integers *a* and *b* (1<=≤<=*a*<=≤<=*b*<=≤<=10) — the weight of Limak and the weight of Bob respectively. Output Specification: Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob. Demo Input: ['4 7\n', '4 9\n', '1 1\n'] Demo Output: ['2\n', '3\n', '1\n'] Note: In the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4·3 = 12 and 7·2 = 14 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2. In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights. In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then.
```python import sys import math input = sys.stdin.readline a, b = int(input().split()) if a == b: sys.stdout.write("1") exit() n = math.ceil(math.log(b / a) / math.log(3 / 2)) if math.log(a, 2) == math.log(b, 3): n += 1 sys.stdout.write(f"{n}") ```
-1
667
B
Coat of Anticubism
PROGRAMMING
1,100
[ "constructive algorithms", "geometry" ]
null
null
As some of you know, cubism is a trend in art, where the problem of constructing volumetrical shape on a plane with a combination of three-dimensional geometric shapes comes to the fore. A famous sculptor Cicasso, whose self-portrait you can contemplate, hates cubism. He is more impressed by the idea to transmit two-dimensional objects through three-dimensional objects by using his magnificent sculptures. And his new project is connected with this. Cicasso wants to make a coat for the haters of anticubism. To do this, he wants to create a sculpture depicting a well-known geometric primitive — convex polygon. Cicasso prepared for this a few blanks, which are rods with integer lengths, and now he wants to bring them together. The *i*-th rod is a segment of length *l**i*. The sculptor plans to make a convex polygon with a nonzero area, using all rods he has as its sides. Each rod should be used as a side to its full length. It is forbidden to cut, break or bend rods. However, two sides may form a straight angle . Cicasso knows that it is impossible to make a convex polygon with a nonzero area out of the rods with the lengths which he had chosen. Cicasso does not want to leave the unused rods, so the sculptor decides to make another rod-blank with an integer length so that his problem is solvable. Of course, he wants to make it as short as possible, because the materials are expensive, and it is improper deed to spend money for nothing. Help sculptor!
The first line contains an integer *n* (3<=≤<=*n*<=≤<=105) — a number of rod-blanks. The second line contains *n* integers *l**i* (1<=≤<=*l**i*<=≤<=109) — lengths of rods, which Cicasso already has. It is guaranteed that it is impossible to make a polygon with *n* vertices and nonzero area using the rods Cicasso already has.
Print the only integer *z* — the minimum length of the rod, so that after adding it it can be possible to construct convex polygon with (*n*<=+<=1) vertices and nonzero area from all of the rods.
[ "3\n1 2 1\n", "5\n20 4 3 2 1\n" ]
[ "1\n", "11\n" ]
In the first example triangle with sides {1 + 1 = 2, 2, 1} can be formed from a set of lengths {1, 1, 1, 2}. In the second example you can make a triangle with lengths {20, 11, 4 + 3 + 2 + 1 = 10}.
1,000
[ { "input": "3\n1 2 1", "output": "1" }, { "input": "5\n20 4 3 2 1", "output": "11" }, { "input": "7\n77486105 317474713 89523018 332007362 7897847 949616701 54820086", "output": "70407571" }, { "input": "14\n245638694 2941428 4673577 12468 991349408 44735727 14046308 60637707 81525 104620306 88059371 53742651 8489205 3528194", "output": "360142248" }, { "input": "19\n479740 7703374 196076708 180202968 579604 17429 16916 11989886 30832424 6384983 8937497 431 62955 48167457 898566333 29534955 1485775 848444 372839845", "output": "2404943" }, { "input": "35\n306260 278 43508628 54350745 222255 842526 39010821 10627 14916465 3059978 61449 503809 2820 1609513 196062 65695 270869 15079297 2885093 189306 4682268 422616382 1642346 82340 6 2 975464673 1388191 70110665 272855 253160079 1849635 7837751 274070 10394", "output": "34445194" }, { "input": "53\n1014364 40727 75774 243769 314 406417 5272684 14138 10640282 64955 2763 5667043 2121887 204672692 567643 60183 5183 11361359 2792918 199155 174809 16182540 21 392221 19434423 9140891 159733 15438 67903 3816799 616 429181 30392293 413992581 10847741 20771 16366654 1163 414283 156163 55907108 310278 95949614 185865 976650886 197610 87 61264 4586815 107764 26390852 331828 541", "output": "25390787" }, { "input": "3\n1 1 1000000000", "output": "999999999" }, { "input": "10\n1 2 3 4 5 6 7 8 9 1000000000", "output": "999999956" }, { "input": "5\n100000000 100000000 100000000 100000000 500000000", "output": "100000001" }, { "input": "3\n300000000 300000000 600000000", "output": "1" }, { "input": "5\n10 4 3 2 1", "output": "1" }, { "input": "3\n800000000 1 1", "output": "799999999" }, { "input": "3\n1000000000 1 1", "output": "999999999" } ]
1,461,948,534
834
PyPy 3
WRONG_ANSWER
PRETESTS
2
93
23,142,400
n = int(input()) s = [int(i) for i in input().split()] a = max(s) b = min(s) c = sum(s) print(a-(c-a-b))
Title: Coat of Anticubism Time Limit: None seconds Memory Limit: None megabytes Problem Description: As some of you know, cubism is a trend in art, where the problem of constructing volumetrical shape on a plane with a combination of three-dimensional geometric shapes comes to the fore. A famous sculptor Cicasso, whose self-portrait you can contemplate, hates cubism. He is more impressed by the idea to transmit two-dimensional objects through three-dimensional objects by using his magnificent sculptures. And his new project is connected with this. Cicasso wants to make a coat for the haters of anticubism. To do this, he wants to create a sculpture depicting a well-known geometric primitive — convex polygon. Cicasso prepared for this a few blanks, which are rods with integer lengths, and now he wants to bring them together. The *i*-th rod is a segment of length *l**i*. The sculptor plans to make a convex polygon with a nonzero area, using all rods he has as its sides. Each rod should be used as a side to its full length. It is forbidden to cut, break or bend rods. However, two sides may form a straight angle . Cicasso knows that it is impossible to make a convex polygon with a nonzero area out of the rods with the lengths which he had chosen. Cicasso does not want to leave the unused rods, so the sculptor decides to make another rod-blank with an integer length so that his problem is solvable. Of course, he wants to make it as short as possible, because the materials are expensive, and it is improper deed to spend money for nothing. Help sculptor! Input Specification: The first line contains an integer *n* (3<=≤<=*n*<=≤<=105) — a number of rod-blanks. The second line contains *n* integers *l**i* (1<=≤<=*l**i*<=≤<=109) — lengths of rods, which Cicasso already has. It is guaranteed that it is impossible to make a polygon with *n* vertices and nonzero area using the rods Cicasso already has. Output Specification: Print the only integer *z* — the minimum length of the rod, so that after adding it it can be possible to construct convex polygon with (*n*<=+<=1) vertices and nonzero area from all of the rods. Demo Input: ['3\n1 2 1\n', '5\n20 4 3 2 1\n'] Demo Output: ['1\n', '11\n'] Note: In the first example triangle with sides {1 + 1 = 2, 2, 1} can be formed from a set of lengths {1, 1, 1, 2}. In the second example you can make a triangle with lengths {20, 11, 4 + 3 + 2 + 1 = 10}.
```python n = int(input()) s = [int(i) for i in input().split()] a = max(s) b = min(s) c = sum(s) print(a-(c-a-b)) ```
0
0
none
none
none
0
[ "none" ]
null
null
Petya loves hockey very much. One day, as he was watching a hockey match, he fell asleep. Petya dreamt of being appointed to change a hockey team's name. Thus, Petya was given the original team name *w* and the collection of forbidden substrings *s*1,<=*s*2,<=...,<=*s**n*. All those strings consist of uppercase and lowercase Latin letters. String *w* has the length of |*w*|, its characters are numbered from 1 to |*w*|. First Petya should find all the occurrences of forbidden substrings in the *w* string. During the search of substrings the case of letter shouldn't be taken into consideration. That is, strings "aBC" and "ABc" are considered equal. After that Petya should perform the replacement of all letters covered by the occurrences. More formally: a letter in the position *i* should be replaced by any other one if for position *i* in string *w* there exist pair of indices *l*,<=*r* (1<=≤<=*l*<=≤<=*i*<=≤<=*r*<=≤<=|*w*|) such that substring *w*[*l* ... *r*] is contained in the collection *s*1,<=*s*2,<=...,<=*s**n*, when using case insensitive comparison. During the replacement the letter's case should remain the same. Petya is not allowed to replace the letters that aren't covered by any forbidden substring. Letter *letter* (uppercase or lowercase) is considered lucky for the hockey players. That's why Petya should perform the changes so that the *letter* occurred in the resulting string as many times as possible. Help Petya to find such resulting string. If there are several such strings, find the one that comes first lexicographically. Note that the process of replacements is not repeated, it occurs only once. That is, if after Petya's replacements the string started to contain new occurrences of bad substrings, Petya pays no attention to them.
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of forbidden substrings in the collection. Next *n* lines contain these substrings. The next line contains string *w*. All those *n*<=+<=1 lines are non-empty strings consisting of uppercase and lowercase Latin letters whose length does not exceed 100. The last line contains a lowercase letter *letter*.
Output the only line — Petya's resulting string with the maximum number of letters *letter*. If there are several answers then output the one that comes first lexicographically. The lexicographical comparison is performed by the standard &lt; operator in modern programming languages. The line *a* is lexicographically smaller than the line *b*, if *a* is a prefix of *b*, or there exists such an *i* (1<=≤<=*i*<=≤<=|*a*|), that *a**i*<=&lt;<=*b**i*, and for any *j* (1<=≤<=*j*<=&lt;<=*i*) *a**j*<==<=*b**j*. |*a*| stands for the length of string *a*.
[ "3\nbers\nucky\nelu\nPetrLoveLuckyNumbers\nt\n", "4\nhello\nparty\nabefglghjdhfgj\nIVan\npetrsmatchwin\na\n", "2\naCa\ncba\nabAcaba\nc\n" ]
[ "PetrLovtTttttNumtttt\n", "petrsmatchwin\n", "abCacba\n" ]
none
0
[]
1,690,493,195
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
92
0
print("_RANDOM_GUESS_1690493195.802798")# 1690493195.802835
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves hockey very much. One day, as he was watching a hockey match, he fell asleep. Petya dreamt of being appointed to change a hockey team's name. Thus, Petya was given the original team name *w* and the collection of forbidden substrings *s*1,<=*s*2,<=...,<=*s**n*. All those strings consist of uppercase and lowercase Latin letters. String *w* has the length of |*w*|, its characters are numbered from 1 to |*w*|. First Petya should find all the occurrences of forbidden substrings in the *w* string. During the search of substrings the case of letter shouldn't be taken into consideration. That is, strings "aBC" and "ABc" are considered equal. After that Petya should perform the replacement of all letters covered by the occurrences. More formally: a letter in the position *i* should be replaced by any other one if for position *i* in string *w* there exist pair of indices *l*,<=*r* (1<=≤<=*l*<=≤<=*i*<=≤<=*r*<=≤<=|*w*|) such that substring *w*[*l* ... *r*] is contained in the collection *s*1,<=*s*2,<=...,<=*s**n*, when using case insensitive comparison. During the replacement the letter's case should remain the same. Petya is not allowed to replace the letters that aren't covered by any forbidden substring. Letter *letter* (uppercase or lowercase) is considered lucky for the hockey players. That's why Petya should perform the changes so that the *letter* occurred in the resulting string as many times as possible. Help Petya to find such resulting string. If there are several such strings, find the one that comes first lexicographically. Note that the process of replacements is not repeated, it occurs only once. That is, if after Petya's replacements the string started to contain new occurrences of bad substrings, Petya pays no attention to them. Input Specification: The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of forbidden substrings in the collection. Next *n* lines contain these substrings. The next line contains string *w*. All those *n*<=+<=1 lines are non-empty strings consisting of uppercase and lowercase Latin letters whose length does not exceed 100. The last line contains a lowercase letter *letter*. Output Specification: Output the only line — Petya's resulting string with the maximum number of letters *letter*. If there are several answers then output the one that comes first lexicographically. The lexicographical comparison is performed by the standard &lt; operator in modern programming languages. The line *a* is lexicographically smaller than the line *b*, if *a* is a prefix of *b*, or there exists such an *i* (1<=≤<=*i*<=≤<=|*a*|), that *a**i*<=&lt;<=*b**i*, and for any *j* (1<=≤<=*j*<=&lt;<=*i*) *a**j*<==<=*b**j*. |*a*| stands for the length of string *a*. Demo Input: ['3\nbers\nucky\nelu\nPetrLoveLuckyNumbers\nt\n', '4\nhello\nparty\nabefglghjdhfgj\nIVan\npetrsmatchwin\na\n', '2\naCa\ncba\nabAcaba\nc\n'] Demo Output: ['PetrLovtTttttNumtttt\n', 'petrsmatchwin\n', 'abCacba\n'] Note: none
```python print("_RANDOM_GUESS_1690493195.802798")# 1690493195.802835 ```
0
121
A
Lucky Sum
PROGRAMMING
1,100
[ "implementation" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem.
The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits.
In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator.
[ "2 7\n", "7 7\n" ]
[ "33\n", "7\n" ]
In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33 In the second sample: *next*(7) = 7
500
[ { "input": "2 7", "output": "33" }, { "input": "7 7", "output": "7" }, { "input": "1 9", "output": "125" }, { "input": "4 7", "output": "25" }, { "input": "12 47", "output": "1593" }, { "input": "6 77", "output": "4012" }, { "input": "1 100", "output": "14247" }, { "input": "1000000000 1000000000", "output": "4444444444" }, { "input": "77 77", "output": "77" }, { "input": "69 788", "output": "452195" }, { "input": "474 747", "output": "202794" }, { "input": "4 77777", "output": "4070145675" }, { "input": "1 1000000", "output": "1394675359387" }, { "input": "47 744447", "output": "381286992761" }, { "input": "47444 1000000000", "output": "1394672348253941136" }, { "input": "48 854888", "output": "749733199853" }, { "input": "854444 985555", "output": "582719941728" }, { "input": "774744 774747", "output": "3098985" }, { "input": "654 987654", "output": "1339803940266" }, { "input": "477777 1000000000", "output": "1394672167300009765" }, { "input": "77777 777777777", "output": "407018021649898097" }, { "input": "963 85555574", "output": "7526978888069560" }, { "input": "47 7444", "output": "38125896" }, { "input": "1 1000000000", "output": "1394672350065645019" }, { "input": "474 999888555", "output": "1394177038954402791" }, { "input": "777 1000000000", "output": "1394672350065239125" }, { "input": "7 777777774", "output": "407018023386632646" }, { "input": "369 852", "output": "606732" }, { "input": "47 47", "output": "47" }, { "input": "747 748", "output": "1521" }, { "input": "77777440 77777444", "output": "388887220" }, { "input": "987545885 999875584", "output": "54798666661186800" }, { "input": "2 777777776", "output": "407018024942188226" }, { "input": "1 1", "output": "4" }, { "input": "1 2", "output": "8" }, { "input": "999999999 1000000000", "output": "8888888888" }, { "input": "777777777 1000000000", "output": "987654325123456789" }, { "input": "777777778 1000000000", "output": "987654324345679012" }, { "input": "5 6", "output": "14" }, { "input": "49 49", "output": "74" }, { "input": "6 6", "output": "7" }, { "input": "3 4", "output": "8" } ]
1,664,136,374
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
7
77
1,126,400
s, e = [int(i) for i in input().split(" ")] # def get_closest_lucky(num): # if num == 0: # return "" # curr = num % 10 # if curr <= 4: # to_add = "4" # elif 4 < curr <= 7: # to_add = "7" # elif curr < 10: # to_add = "44" # return get_closest_lucky(num // 10) + to_add res = [] curr = [] def lucky_combinations(curr, ctr): if 0 < ctr < 9 and (curr not in res): res.append(int("".join(curr))) if ctr == 9: return curr.append("4") lucky_combinations(curr.copy(), ctr + 1) curr.pop() curr.append("7") lucky_combinations(curr.copy(), ctr + 1) curr.pop() lucky_combinations([], 0) res.sort() total = 0 for i in range(s, e + 1): for lucky in res: if lucky >= i: total += lucky break print(total)
Title: Lucky Sum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Let *next*(*x*) be the minimum lucky number which is larger than or equals *x*. Petya is interested what is the value of the expression *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Help him solve this problem. Input Specification: The single line contains two integers *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=109) — the left and right interval limits. Output Specification: In the single line print the only number — the sum *next*(*l*)<=+<=*next*(*l*<=+<=1)<=+<=...<=+<=*next*(*r*<=-<=1)<=+<=*next*(*r*). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator. Demo Input: ['2 7\n', '7 7\n'] Demo Output: ['33\n', '7\n'] Note: In the first sample: *next*(2) + *next*(3) + *next*(4) + *next*(5) + *next*(6) + *next*(7) = 4 + 4 + 4 + 7 + 7 + 7 = 33 In the second sample: *next*(7) = 7
```python s, e = [int(i) for i in input().split(" ")] # def get_closest_lucky(num): # if num == 0: # return "" # curr = num % 10 # if curr <= 4: # to_add = "4" # elif 4 < curr <= 7: # to_add = "7" # elif curr < 10: # to_add = "44" # return get_closest_lucky(num // 10) + to_add res = [] curr = [] def lucky_combinations(curr, ctr): if 0 < ctr < 9 and (curr not in res): res.append(int("".join(curr))) if ctr == 9: return curr.append("4") lucky_combinations(curr.copy(), ctr + 1) curr.pop() curr.append("7") lucky_combinations(curr.copy(), ctr + 1) curr.pop() lucky_combinations([], 0) res.sort() total = 0 for i in range(s, e + 1): for lucky in res: if lucky >= i: total += lucky break print(total) ```
0
735
A
Ostap and Grasshopper
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length *n* such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect. Ostap knows that grasshopper is able to jump to any empty cell that is exactly *k* cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if *k*<==<=1 the grasshopper can jump to a neighboring cell only, and if *k*<==<=2 the grasshopper can jump over a single cell. Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect.
The first line of the input contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1) — the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length *n* consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once.
If there exists a sequence of jumps (each jump of length *k*), such that the grasshopper can get from his initial position to the cell with the insect, print "YES" (without quotes) in the only line of the input. Otherwise, print "NO" (without quotes).
[ "5 2\n#G#T#\n", "6 1\nT....G\n", "7 3\nT..#..G\n", "6 2\n..GT..\n" ]
[ "YES\n", "YES\n", "NO\n", "NO\n" ]
In the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4. In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free — he can get there by jumping left 5 times. In the third sample, the grasshopper can't make a single jump. In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect.
500
[ { "input": "5 2\n#G#T#", "output": "YES" }, { "input": "6 1\nT....G", "output": "YES" }, { "input": "7 3\nT..#..G", "output": "NO" }, { "input": "6 2\n..GT..", "output": "NO" }, { "input": "2 1\nGT", "output": "YES" }, { "input": "100 5\nG####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####T####", "output": "YES" }, { "input": "100 5\nG####.####.####.####.####.####.####.####.####.####.####.####.####.#########.####.####.####.####T####", "output": "NO" }, { "input": "2 1\nTG", "output": "YES" }, { "input": "99 1\n...T.............................................................................................G.", "output": "YES" }, { "input": "100 2\nG............#.....#...........#....#...........##............#............#......................T.", "output": "NO" }, { "input": "100 1\n#.#.#.##..#..##.#....##.##.##.#....####..##.#.##..GT..##...###.#.##.#..#..##.###..#.####..#.#.##..##", "output": "YES" }, { "input": "100 2\n..#####.#.#.......#.#.#...##..####..###..#.#######GT####.#.#...##...##.#..###....##.#.#..#.###....#.", "output": "NO" }, { "input": "100 3\nG..................................................................................................T", "output": "YES" }, { "input": "100 3\nG..................................................................................................T", "output": "YES" }, { "input": "100 3\nG..................................#......#......#.......#.#..........#........#......#..........#.T", "output": "NO" }, { "input": "100 3\nG..............#..........#...#..............#.#.....................#......#........#.........#...T", "output": "NO" }, { "input": "100 3\nG##################################################################################################T", "output": "NO" }, { "input": "100 33\nG..................................................................................................T", "output": "YES" }, { "input": "100 33\nG..................................................................................................T", "output": "YES" }, { "input": "100 33\nG.........#........#..........#..............#.................#............................#.#....T", "output": "YES" }, { "input": "100 33\nG.......#..................#..............................#............................#..........T.", "output": "NO" }, { "input": "100 33\nG#..........##...#.#.....................#.#.#.........##..#...........#....#...........##...#..###T", "output": "YES" }, { "input": "100 33\nG..#.#..#..####......#......##...##...#.##........#...#...#.##....###..#...###..##.#.....#......#.T.", "output": "NO" }, { "input": "100 33\nG#....#..#..##.##..#.##.#......#.#.##..##.#.#.##.##....#.#.....####..##...#....##..##..........#...T", "output": "NO" }, { "input": "100 33\nG#######.#..##.##.#...#..#.###.#.##.##.#..#.###..####.##.#.##....####...##..####.#..##.##.##.#....#T", "output": "NO" }, { "input": "100 33\nG#####.#.##.###########.##..##..#######..########..###.###..#.####.######.############..####..#####T", "output": "NO" }, { "input": "100 99\nT..................................................................................................G", "output": "YES" }, { "input": "100 99\nT..................................................................................................G", "output": "YES" }, { "input": "100 99\nT.#...............................#............#..............................##...................G", "output": "YES" }, { "input": "100 99\nT..#....#.##...##########.#.#.#.#...####..#.....#..##..#######.######..#.....###..###...#.......#.#G", "output": "YES" }, { "input": "100 99\nG##################################################################################################T", "output": "YES" }, { "input": "100 9\nT..................................................................................................G", "output": "YES" }, { "input": "100 9\nT.................................................................................................G.", "output": "NO" }, { "input": "100 9\nT................................................................................................G..", "output": "NO" }, { "input": "100 1\nG..................................................................................................T", "output": "YES" }, { "input": "100 1\nT..................................................................................................G", "output": "YES" }, { "input": "100 1\n##########G.........T###############################################################################", "output": "YES" }, { "input": "100 1\n#################################################################################################G.T", "output": "YES" }, { "input": "100 17\n##########G################.################.################.################T#####################", "output": "YES" }, { "input": "100 17\n####.#..#.G######.#########.##..##########.#.################.################T######.####.#########", "output": "YES" }, { "input": "100 17\n.########.G##.####.#.######.###############..#.###########.##.#####.##.#####.#T.###..###.########.##", "output": "YES" }, { "input": "100 1\nG.............................................#....................................................T", "output": "NO" }, { "input": "100 1\nT.#................................................................................................G", "output": "NO" }, { "input": "100 1\n##########G....#....T###############################################################################", "output": "NO" }, { "input": "100 1\n#################################################################################################G#T", "output": "NO" }, { "input": "100 17\nG################.#################################.################T###############################", "output": "NO" }, { "input": "100 17\nG################.###############..###.######.#######.###.#######.##T######################.###.####", "output": "NO" }, { "input": "100 17\nG####.##.##.#####.####....##.####.#########.##.#..#.###############.T############.#########.#.####.#", "output": "NO" }, { "input": "48 1\nT..............................................G", "output": "YES" }, { "input": "23 1\nT.....................G", "output": "YES" }, { "input": "49 1\nG...............................................T", "output": "YES" }, { "input": "3 1\nTG#", "output": "YES" }, { "input": "6 2\n..TG..", "output": "NO" }, { "input": "14 3\n...G.....#..T.", "output": "NO" }, { "input": "5 4\n##GT#", "output": "NO" }, { "input": "6 2\nT#..G.", "output": "YES" }, { "input": "5 2\nT.G.#", "output": "YES" }, { "input": "6 1\nT...G#", "output": "YES" }, { "input": "5 1\nTG###", "output": "YES" }, { "input": "5 4\n.G..T", "output": "NO" }, { "input": "7 2\nT#...#G", "output": "YES" }, { "input": "7 1\n##TG###", "output": "YES" }, { "input": "7 1\n###GT##", "output": "YES" }, { "input": "5 2\nG..T.", "output": "NO" }, { "input": "5 1\nG.T##", "output": "YES" }, { "input": "6 2\nG.T###", "output": "YES" }, { "input": "6 2\nG#T###", "output": "YES" }, { "input": "10 2\n####T..G..", "output": "NO" }, { "input": "3 1\nGT#", "output": "YES" }, { "input": "4 1\nTG##", "output": "YES" }, { "input": "6 1\n.G..T.", "output": "YES" }, { "input": "10 3\n......G..T", "output": "YES" }, { "input": "3 2\nG.T", "output": "YES" }, { "input": "4 1\n#G.T", "output": "YES" }, { "input": "5 2\nT#G##", "output": "YES" }, { "input": "4 2\nG#.T", "output": "NO" }, { "input": "4 1\nGT##", "output": "YES" } ]
1,567,874,568
168
Python 3
WRONG_ANSWER
TESTS
12
124
0
l = [int(i) for i in input().split()] s = str(input()) n = l[0] k = l[1] i = 0 #find initial position while i < n: if s[i] =="G": break; i+=1 right = s[i:n:k] left = s[::-1] left = left[n-i-1:n:k] if ('T' in right and '#' not in right) or ('T' in left and '#' not in left): print("YES") else: print("NO")
Title: Ostap and Grasshopper Time Limit: None seconds Memory Limit: None megabytes Problem Description: On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length *n* such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect. Ostap knows that grasshopper is able to jump to any empty cell that is exactly *k* cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if *k*<==<=1 the grasshopper can jump to a neighboring cell only, and if *k*<==<=2 the grasshopper can jump over a single cell. Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect. Input Specification: The first line of the input contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1) — the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length *n* consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once. Output Specification: If there exists a sequence of jumps (each jump of length *k*), such that the grasshopper can get from his initial position to the cell with the insect, print "YES" (without quotes) in the only line of the input. Otherwise, print "NO" (without quotes). Demo Input: ['5 2\n#G#T#\n', '6 1\nT....G\n', '7 3\nT..#..G\n', '6 2\n..GT..\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n', 'NO\n'] Note: In the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4. In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free — he can get there by jumping left 5 times. In the third sample, the grasshopper can't make a single jump. In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect.
```python l = [int(i) for i in input().split()] s = str(input()) n = l[0] k = l[1] i = 0 #find initial position while i < n: if s[i] =="G": break; i+=1 right = s[i:n:k] left = s[::-1] left = left[n-i-1:n:k] if ('T' in right and '#' not in right) or ('T' in left and '#' not in left): print("YES") else: print("NO") ```
0
858
C
Did you mean...
PROGRAMMING
1,500
[ "dp", "greedy", "implementation" ]
null
null
Beroffice text editor has a wide range of features that help working with text. One of the features is an automatic search for typos and suggestions of how to fix them. Beroffice works only with small English letters (i.e. with 26 letters from a to z). Beroffice thinks that a word is typed with a typo if there are three or more consonants in a row in the word. The only exception is that if the block of consonants has all letters the same, then this block (even if its length is greater than three) is not considered a typo. Formally, a word is typed with a typo if there is a block of not less that three consonants in a row, and there are at least two different letters in this block. For example: - the following words have typos: "hellno", "hackcerrs" and "backtothefutttture"; - the following words don't have typos: "helllllooooo", "tobeornottobe" and "oooooo". When Beroffice editor finds a word with a typo, it inserts as little as possible number of spaces in this word (dividing it into several words) in such a way that each of the resulting words is typed without any typos. Implement this feature of Beroffice editor. Consider the following letters as the only vowels: 'a', 'e', 'i', 'o' and 'u'. All the other letters are consonants in this problem.
The only line contains a non-empty word consisting of small English letters. The length of the word is between 1 and 3000 letters.
Print the given word without any changes if there are no typos. If there is at least one typo in the word, insert the minimum number of spaces into the word so that each of the resulting words doesn't have any typos. If there are multiple solutions, print any of them.
[ "hellno\n", "abacaba\n", "asdfasdf\n" ]
[ "hell no \n", "abacaba \n", "asd fasd f \n" ]
none
1,500
[ { "input": "hellno", "output": "hell no " }, { "input": "abacaba", "output": "abacaba " }, { "input": "asdfasdf", "output": "asd fasd f " }, { "input": "ooo", "output": "ooo " }, { "input": "moyaoborona", "output": "moyaoborona " }, { "input": "jxegxxx", "output": "jxegx xx " }, { "input": "orfyaenanabckumulsboloyhljhacdgcmnooxvxrtuhcslxgslfpnfnyejbxqisxjyoyvcvuddboxkqgbogkfz", "output": "orf yaenanabc kumuls boloyh lj hacd gc mnooxv xr tuhc sl xg sl fp nf nyejb xqisx jyoyv cvudd boxk qg bogk fz " }, { "input": "zxdgmhsjotvajkwshjpvzcuwehpeyfhakhtlvuoftkgdmvpafmxcliqvrztloocziqdkexhzcbdgxaoyvte", "output": "zx dg mh sjotvajk ws hj pv zcuwehpeyf hakh tl vuoft kg dm vpafm xc liqv rz tloocziqd kexh zc bd gxaoyv te " }, { "input": "niblehmwtycadhbfuginpyafszjbucaszihijndzjtuyuaxkrovotshtsajmdcflnfdmahzbvpymiczqqleedpofcnvhieknlz", "output": "niblehm wt ycadh bfuginp yafs zj bucaszihijn dz jtuyuaxk rovots ht sajm dc fl nf dmahz bv py micz qq leedpofc nv hiekn lz " }, { "input": "pqvtgtctpkgjgxnposjqedofficoyznxlerxyqypyzpoehejtjvyafjxjppywwgeakf", "output": "pq vt gt ct pk gj gx nposj qedofficoyz nx lerx yq yp yz poehejt jv yafj xj pp yw wgeakf " }, { "input": "mvjajoyeg", "output": "mv jajoyeg " }, { "input": "dipxocwjosvdaillxolmthjhzhsxskzqslebpixpuhpgeesrkedhohisdsjsrkiktbjzlhectrfcathvewzficirqbdvzq", "output": "dipxocw josv daill xolm th jh zh sx sk zq slebpixpuhp geesr kedhohisd sj sr kikt bj zl hect rf cath vewz ficirq bd vz q " }, { "input": "ibbtvelwjirxqermucqrgmoauonisgmarjxxybllktccdykvef", "output": "ibb tvelw jirx qermucq rg moauonisg marj xx yb ll kt cc dy kvef " }, { "input": "jxevkmrwlomaaahaubvjzqtyfqhqbhpqhomxqpiuersltohinvfyeykmlooujymldjqhgqjkvqknlyj", "output": "jxevk mr wlomaaahaubv jz qt yf qh qb hp qhomx qpiuers ltohinv fyeyk mlooujy ml dj qh gq jk vq kn ly j " }, { "input": "hzxkuwqxonsulnndlhygvmallghjerwp", "output": "hz xkuwq xonsuln nd lh yg vmall gh jerw p " }, { "input": "jbvcsjdyzlzmxwcvmixunfzxidzvwzaqqdhguvelwbdosbd", "output": "jb vc sj dy zl zm xw cv mixunf zxidz vw zaqq dh guvelw bdosb d " }, { "input": "uyrsxaqmtibbxpfabprvnvbinjoxubupvfyjlqnfrfdeptipketwghr", "output": "uyr sxaqm tibb xp fabp rv nv binjoxubupv fy jl qn fr fdeptipketw gh r " }, { "input": "xfcftysljytybkkzkpqdzralahgvbkxdtheqrhfxpecdjqofnyiahggnkiuusalu", "output": "xf cf ty sl jy ty bk kz kp qd zralahg vb kx dt heqr hf xpecd jqofn yiahg gn kiuusalu " }, { "input": "a", "output": "a " }, { "input": "b", "output": "b " }, { "input": "aa", "output": "aa " }, { "input": "ab", "output": "ab " }, { "input": "ba", "output": "ba " }, { "input": "bb", "output": "bb " }, { "input": "aaa", "output": "aaa " }, { "input": "aab", "output": "aab " }, { "input": "aba", "output": "aba " }, { "input": "abb", "output": "abb " }, { "input": "baa", "output": "baa " }, { "input": "bab", "output": "bab " }, { "input": "bba", "output": "bba " }, { "input": "bbb", "output": "bbb " }, { "input": "bbc", "output": "bb c " }, { "input": "bcb", "output": "bc b " }, { "input": "cbb", "output": "cb b " }, { "input": "bababcdfabbcabcdfacbbabcdfacacabcdfacbcabcdfaccbabcdfacaaabcdfabacabcdfabcbabcdfacbaabcdfabaaabcdfabbaabcdfacababcdfabbbabcdfabcaabcdfaaababcdfabccabcdfacccabcdfaacbabcdfaabaabcdfaabcabcdfaaacabcdfaccaabcdfaabbabcdfaaaaabcdfaacaabcdfaacc", "output": "bababc dfabb cabc dfacb babc dfacacabc dfacb cabc dfacc babc dfacaaabc dfabacabc dfabc babc dfacbaabc dfabaaabc dfabbaabc dfacababc dfabbbabc dfabcaabc dfaaababc dfabc cabc dfacccabc dfaacbabc dfaabaabc dfaabcabc dfaaacabc dfaccaabc dfaabbabc dfaaaaabc dfaacaabc dfaacc " }, { "input": "bddabcdfaccdabcdfadddabcdfabbdabcdfacddabcdfacdbabcdfacbbabcdfacbcabcdfacbdabcdfadbbabcdfabdbabcdfabdcabcdfabbcabcdfabccabcdfabbbabcdfaddcabcdfaccbabcdfadbdabcdfacccabcdfadcdabcdfadcbabcdfabcbabcdfadbcabcdfacdcabcdfabcdabcdfadccabcdfaddb", "output": "bd dabc dfacc dabc dfadddabc dfabb dabc dfacd dabc dfacd babc dfacb babc dfacb cabc dfacb dabc dfadb babc dfabd babc dfabd cabc dfabb cabc dfabc cabc dfabbbabc dfadd cabc dfacc babc dfadb dabc dfacccabc dfadc dabc dfadc babc dfabc babc dfadb cabc dfacd cabc dfabc dabc dfadc cabc dfadd b " }, { "input": "helllllooooo", "output": "helllllooooo " }, { "input": "bbbzxxx", "output": "bbb zx xx " }, { "input": "ffff", "output": "ffff " }, { "input": "cdddddddddddddddddd", "output": "cd ddddddddddddddddd " }, { "input": "bbbc", "output": "bbb c " }, { "input": "lll", "output": "lll " }, { "input": "bbbbb", "output": "bbbbb " }, { "input": "llll", "output": "llll " }, { "input": "bbbbbbccc", "output": "bbbbbb ccc " }, { "input": "lllllb", "output": "lllll b " }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz " }, { "input": "lllll", "output": "lllll " }, { "input": "bbbbbbbbbc", "output": "bbbbbbbbb c " }, { "input": "helllllno", "output": "helllll no " }, { "input": "nnnnnnnnnnnn", "output": "nnnnnnnnnnnn " }, { "input": "bbbbbccc", "output": "bbbbb ccc " }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzz " }, { "input": "nnnnnnnnnnnnnnnnnn", "output": "nnnnnnnnnnnnnnnnnn " }, { "input": "zzzzzzzzzzzzzzzzzzzzzzz", "output": "zzzzzzzzzzzzzzzzzzzzzzz " }, { "input": "hhhh", "output": "hhhh " }, { "input": "nnnnnnnnnnnnnnnnnnnnnnnnn", "output": "nnnnnnnnnnnnnnnnnnnnnnnnn " }, { "input": "zzzzzzzzzz", "output": "zzzzzzzzzz " }, { "input": "dddd", "output": "dddd " }, { "input": "heffffffgggggghhhhhh", "output": "heffffff gggggg hhhhhh " }, { "input": "bcddd", "output": "bc ddd " }, { "input": "x", "output": "x " }, { "input": "nnn", "output": "nnn " }, { "input": "xxxxxxxx", "output": "xxxxxxxx " }, { "input": "cclcc", "output": "cc lc c " }, { "input": "tttttttttttttt", "output": "tttttttttttttt " }, { "input": "xxxxxxx", "output": "xxxxxxx " }, { "input": "ccccb", "output": "cccc b " }, { "input": "bcecccc", "output": "bcecccc " }, { "input": "jjja", "output": "jjja " }, { "input": "zzz", "output": "zzz " }, { "input": "xxxxxxxxxzzzzzzzzzzzz", "output": "xxxxxxxxx zzzzzzzzzzzz " }, { "input": "alllewww", "output": "alllewww " }, { "input": "bbbbbbbbb", "output": "bbbbbbbbb " }, { "input": "jjj", "output": "jjj " }, { "input": "bbbbbbbbbbbbbbbbbbbbbbbbb", "output": "bbbbbbbbbbbbbbbbbbbbbbbbb " }, { "input": "kkkkkkkkkklllllllllllllll", "output": "kkkkkkkkkk lllllllllllllll " }, { "input": "helllllllllllo", "output": "helllllllllllo " }, { "input": "ttttsttttt", "output": "tttt st tttt " }, { "input": "tttttttsssssss", "output": "ttttttt sssssss " }, { "input": "assstttttatsfatsfdjfdhtsjdsaatttssssststsss", "output": "asss tttttats fats fd jf dh ts jd saattt sssss ts ts ss " }, { "input": "xxxxx", "output": "xxxxx " }, { "input": "bbbhbbb", "output": "bbb hb bb " }, { "input": "bbbbbbbb", "output": "bbbbbbbb " } ]
1,506,245,483
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
62
0
s = input() vowels = {'a', 'e', 'i', 'u', 'o'} def will_divide(x): for l in x: if l in vowels: return False if len(set(x)) == 1: return False return True space_positions = [] space_positions_set = set() i = 2 while i < len(s): if not space_positions_set.intersection({i-2, i-1, i}): if will_divide(s[i-2:i+1]): space_positions.append(i) space_positions_set.add(i) i += 1 space_positions.append(len(s)) space_positions.reverse() from_ = 0 while space_positions: until = space_positions.pop() print(s[from_:until], end=' ') from_ = until print() # print(space_positions)
Title: Did you mean... Time Limit: None seconds Memory Limit: None megabytes Problem Description: Beroffice text editor has a wide range of features that help working with text. One of the features is an automatic search for typos and suggestions of how to fix them. Beroffice works only with small English letters (i.e. with 26 letters from a to z). Beroffice thinks that a word is typed with a typo if there are three or more consonants in a row in the word. The only exception is that if the block of consonants has all letters the same, then this block (even if its length is greater than three) is not considered a typo. Formally, a word is typed with a typo if there is a block of not less that three consonants in a row, and there are at least two different letters in this block. For example: - the following words have typos: "hellno", "hackcerrs" and "backtothefutttture"; - the following words don't have typos: "helllllooooo", "tobeornottobe" and "oooooo". When Beroffice editor finds a word with a typo, it inserts as little as possible number of spaces in this word (dividing it into several words) in such a way that each of the resulting words is typed without any typos. Implement this feature of Beroffice editor. Consider the following letters as the only vowels: 'a', 'e', 'i', 'o' and 'u'. All the other letters are consonants in this problem. Input Specification: The only line contains a non-empty word consisting of small English letters. The length of the word is between 1 and 3000 letters. Output Specification: Print the given word without any changes if there are no typos. If there is at least one typo in the word, insert the minimum number of spaces into the word so that each of the resulting words doesn't have any typos. If there are multiple solutions, print any of them. Demo Input: ['hellno\n', 'abacaba\n', 'asdfasdf\n'] Demo Output: ['hell no \n', 'abacaba \n', 'asd fasd f \n'] Note: none
```python s = input() vowels = {'a', 'e', 'i', 'u', 'o'} def will_divide(x): for l in x: if l in vowels: return False if len(set(x)) == 1: return False return True space_positions = [] space_positions_set = set() i = 2 while i < len(s): if not space_positions_set.intersection({i-2, i-1, i}): if will_divide(s[i-2:i+1]): space_positions.append(i) space_positions_set.add(i) i += 1 space_positions.append(len(s)) space_positions.reverse() from_ = 0 while space_positions: until = space_positions.pop() print(s[from_:until], end=' ') from_ = until print() # print(space_positions) ```
0
595
A
Vitaly and Night
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment. Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on. Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively. Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'.
Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping.
[ "2 2\n0 0 0 1\n1 0 1 1\n", "1 3\n1 1 0 1 0 0\n" ]
[ "3\n", "2\n" ]
In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off. In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
500
[ { "input": "2 2\n0 0 0 1\n1 0 1 1", "output": "3" }, { "input": "1 3\n1 1 0 1 0 0", "output": "2" }, { "input": "3 3\n1 1 1 1 1 1\n1 1 0 1 1 0\n1 0 0 0 1 1", "output": "8" }, { "input": "1 5\n1 0 1 1 1 0 1 1 1 1", "output": "5" }, { "input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "99" }, { "input": "1 100\n0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "6" }, { "input": "1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n0 1\n1 1\n1 1\n1 0\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "100" }, { "input": "100 1\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n1 0", "output": "8" }, { "input": "100 1\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "1 1\n0 0", "output": "0" }, { "input": "1 1\n0 1", "output": "1" }, { "input": "1 1\n1 0", "output": "1" }, { "input": "1 1\n1 1", "output": "1" } ]
1,557,078,384
2,147,483,647
Python 3
OK
TESTS
36
124
0
n,m=map(int,input().split()) x=0 for i in range(n): a=list(map(int,input().split())) for j in range(len(a)-1): if j%2==0: if a[j]==1 or a[j+1]==1: x+=1 print(x)
Title: Vitaly and Night Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vitaly was going home late at night and wondering: how many people aren't sleeping at that moment? To estimate, Vitaly decided to look which windows are lit in the house he was passing by at that moment. Vitaly sees a building of *n* floors and 2·*m* windows on each floor. On each floor there are *m* flats numbered from 1 to *m*, and two consecutive windows correspond to each flat. If we number the windows from 1 to 2·*m* from left to right, then the *j*-th flat of the *i*-th floor has windows 2·*j*<=-<=1 and 2·*j* in the corresponding row of windows (as usual, floors are enumerated from the bottom). Vitaly thinks that people in the flat aren't sleeping at that moment if at least one of the windows corresponding to this flat has lights on. Given the information about the windows of the given house, your task is to calculate the number of flats where, according to Vitaly, people aren't sleeping. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of floors in the house and the number of flats on each floor respectively. Next *n* lines describe the floors from top to bottom and contain 2·*m* characters each. If the *i*-th window of the given floor has lights on, then the *i*-th character of this line is '1', otherwise it is '0'. Output Specification: Print a single integer — the number of flats that have lights on in at least one window, that is, the flats where, according to Vitaly, people aren't sleeping. Demo Input: ['2 2\n0 0 0 1\n1 0 1 1\n', '1 3\n1 1 0 1 0 0\n'] Demo Output: ['3\n', '2\n'] Note: In the first test case the house has two floors, two flats on each floor. That is, in total there are 4 flats. The light isn't on only on the second floor in the left flat. That is, in both rooms of the flat the light is off. In the second test case the house has one floor and the first floor has three flats. The light is on in the leftmost flat (in both windows) and in the middle flat (in one window). In the right flat the light is off.
```python n,m=map(int,input().split()) x=0 for i in range(n): a=list(map(int,input().split())) for j in range(len(a)-1): if j%2==0: if a[j]==1 or a[j+1]==1: x+=1 print(x) ```
3
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,660,657,777
2,147,483,647
Python 3
OK
TESTS
20
46
0
x,y,a=list(map(int,input().split())) n=x//a m=y//a if(x%a!=0): n+=1 if(y%a!=0): m+=1 print(n*m)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python x,y,a=list(map(int,input().split())) n=x//a m=y//a if(x%a!=0): n+=1 if(y%a!=0): m+=1 print(n*m) ```
3.977
118
A
String Task
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: - deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string. Help Petya cope with this easy task.
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Print the resulting string. It is guaranteed that this string is not empty.
[ "tour\n", "Codeforces\n", "aBAcAba\n" ]
[ ".t.r\n", ".c.d.f.r.c.s\n", ".b.c.b\n" ]
none
500
[ { "input": "tour", "output": ".t.r" }, { "input": "Codeforces", "output": ".c.d.f.r.c.s" }, { "input": "aBAcAba", "output": ".b.c.b" }, { "input": "obn", "output": ".b.n" }, { "input": "wpwl", "output": ".w.p.w.l" }, { "input": "ggdvq", "output": ".g.g.d.v.q" }, { "input": "pumesz", "output": ".p.m.s.z" }, { "input": "g", "output": ".g" }, { "input": "zjuotps", "output": ".z.j.t.p.s" }, { "input": "jzbwuehe", "output": ".j.z.b.w.h" }, { "input": "tnkgwuugu", "output": ".t.n.k.g.w.g" }, { "input": "kincenvizh", "output": ".k.n.c.n.v.z.h" }, { "input": "xattxjenual", "output": ".x.t.t.x.j.n.l" }, { "input": "ktajqhpqsvhw", "output": ".k.t.j.q.h.p.q.s.v.h.w" }, { "input": "xnhcigytnqcmy", "output": ".x.n.h.c.g.t.n.q.c.m" }, { "input": "jfmtbejyilxcec", "output": ".j.f.m.t.b.j.l.x.c.c" }, { "input": "D", "output": ".d" }, { "input": "ab", "output": ".b" }, { "input": "Ab", "output": ".b" }, { "input": "aB", "output": ".b" }, { "input": "AB", "output": ".b" }, { "input": "ba", "output": ".b" }, { "input": "bA", "output": ".b" }, { "input": "Ba", "output": ".b" }, { "input": "BA", "output": ".b" }, { "input": "aab", "output": ".b" }, { "input": "baa", "output": ".b" }, { "input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM", "output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m" }, { "input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN", "output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n" }, { "input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ", "output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j" }, { "input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea", "output": ".w.z.t.c.v.v.v.v.z.v" }, { "input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl", "output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l" }, { "input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg", "output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g" }, { "input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ", "output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q" }, { "input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg", "output": ".l.t.g.m.g" }, { "input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy", "output": ".k.z.d.x.f" }, { "input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ", "output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q" }, { "input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY", "output": ".m.r.c.g.p" }, { "input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx", "output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x" }, { "input": "YB", "output": ".b" }, { "input": "fly", "output": ".f.l" }, { "input": "YyyYYYyyYxdwdawdDAWDdaddYYYY", "output": ".x.d.w.d.w.d.d.w.d.d.d.d" } ]
1,694,149,087
2,147,483,647
Python 3
OK
TESTS
42
92
0
a=input() b=['A','E','I','O','U','Y','y','a','e','i','o','u','.'] for i in a: if i in b: a=a.replace(i,"") x='' for i in a: x+='.'+i print(x.lower())
Title: String Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: - deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string. Help Petya cope with this easy task. Input Specification: The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive. Output Specification: Print the resulting string. It is guaranteed that this string is not empty. Demo Input: ['tour\n', 'Codeforces\n', 'aBAcAba\n'] Demo Output: ['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n'] Note: none
```python a=input() b=['A','E','I','O','U','Y','y','a','e','i','o','u','.'] for i in a: if i in b: a=a.replace(i,"") x='' for i in a: x+='.'+i print(x.lower()) ```
3
47
A
Triangular numbers
PROGRAMMING
800
[ "brute force", "math" ]
A. Triangular numbers
2
256
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number.
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
If the given integer is a triangular number output YES, otherwise output NO.
[ "1\n", "2\n", "3\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "1", "output": "YES" }, { "input": "2", "output": "NO" }, { "input": "3", "output": "YES" }, { "input": "4", "output": "NO" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "7", "output": "NO" }, { "input": "8", "output": "NO" }, { "input": "12", "output": "NO" }, { "input": "10", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "9", "output": "NO" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "YES" }, { "input": "16", "output": "NO" }, { "input": "20", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "22", "output": "NO" }, { "input": "121", "output": "NO" }, { "input": "135", "output": "NO" }, { "input": "136", "output": "YES" }, { "input": "137", "output": "NO" }, { "input": "152", "output": "NO" }, { "input": "153", "output": "YES" }, { "input": "154", "output": "NO" }, { "input": "171", "output": "YES" }, { "input": "189", "output": "NO" }, { "input": "190", "output": "YES" }, { "input": "191", "output": "NO" }, { "input": "210", "output": "YES" }, { "input": "211", "output": "NO" }, { "input": "231", "output": "YES" }, { "input": "232", "output": "NO" }, { "input": "252", "output": "NO" }, { "input": "253", "output": "YES" }, { "input": "254", "output": "NO" }, { "input": "275", "output": "NO" }, { "input": "276", "output": "YES" }, { "input": "277", "output": "NO" }, { "input": "299", "output": "NO" }, { "input": "300", "output": "YES" }, { "input": "301", "output": "NO" }, { "input": "324", "output": "NO" }, { "input": "325", "output": "YES" }, { "input": "326", "output": "NO" }, { "input": "350", "output": "NO" }, { "input": "351", "output": "YES" }, { "input": "352", "output": "NO" }, { "input": "377", "output": "NO" }, { "input": "378", "output": "YES" }, { "input": "406", "output": "YES" }, { "input": "434", "output": "NO" }, { "input": "435", "output": "YES" }, { "input": "464", "output": "NO" }, { "input": "465", "output": "YES" }, { "input": "495", "output": "NO" }, { "input": "496", "output": "YES" }, { "input": "497", "output": "NO" }, { "input": "331", "output": "NO" }, { "input": "413", "output": "NO" }, { "input": "177", "output": "NO" }, { "input": "122", "output": "NO" }, { "input": "478", "output": "NO" }, { "input": "188", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "474", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "48", "output": "NO" }, { "input": "498", "output": "NO" }, { "input": "499", "output": "NO" }, { "input": "500", "output": "NO" } ]
1,541,777,740
2,147,483,647
PyPy 3
OK
TESTS
71
280
0
n = int(input()) ans = 0 for i in range(35): num = i * (i+1) // 2 if num == n: ans = 1 break print("YES" * ans + "NO" * ( 1 - ans))
Title: Triangular numbers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number. Input Specification: The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer. Output Specification: If the given integer is a triangular number output YES, otherwise output NO. Demo Input: ['1\n', '2\n', '3\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python n = int(input()) ans = 0 for i in range(35): num = i * (i+1) // 2 if num == n: ans = 1 break print("YES" * ans + "NO" * ( 1 - ans)) ```
3.93
804
A
Find Amir
PROGRAMMING
1,000
[ "constructive algorithms", "greedy", "math" ]
null
null
A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends. There are *n* schools numerated from 1 to *n*. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools *i* and *j* costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of schools.
Print single integer: the minimum cost of tickets needed to visit all schools.
[ "2\n", "10\n" ]
[ "0\n", "4\n" ]
In the first example we can buy a ticket between the schools that costs <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c67d72010e0498bfd065a6a38fdeaec90358507b.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
500
[ { "input": "2", "output": "0" }, { "input": "10", "output": "4" }, { "input": "43670", "output": "21834" }, { "input": "4217", "output": "2108" }, { "input": "17879", "output": "8939" }, { "input": "31809", "output": "15904" }, { "input": "40873", "output": "20436" }, { "input": "77859", "output": "38929" }, { "input": "53022", "output": "26510" }, { "input": "79227", "output": "39613" }, { "input": "100000", "output": "49999" }, { "input": "82801", "output": "41400" }, { "input": "5188", "output": "2593" }, { "input": "86539", "output": "43269" }, { "input": "12802", "output": "6400" }, { "input": "20289", "output": "10144" }, { "input": "32866", "output": "16432" }, { "input": "33377", "output": "16688" }, { "input": "31775", "output": "15887" }, { "input": "60397", "output": "30198" }, { "input": "100000", "output": "49999" }, { "input": "99999", "output": "49999" }, { "input": "99998", "output": "49998" }, { "input": "99997", "output": "49998" }, { "input": "99996", "output": "49997" }, { "input": "1", "output": "0" }, { "input": "2", "output": "0" }, { "input": "3", "output": "1" }, { "input": "4", "output": "1" }, { "input": "1", "output": "0" }, { "input": "3", "output": "1" } ]
1,650,626,059
2,147,483,647
PyPy 3
OK
TESTS
31
93
0
r = int(input()) if r%2 == 1: print (r//2) else: print(r//2-1)
Title: Find Amir Time Limit: None seconds Memory Limit: None megabytes Problem Description: A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends. There are *n* schools numerated from 1 to *n*. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools *i* and *j* costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of schools. Output Specification: Print single integer: the minimum cost of tickets needed to visit all schools. Demo Input: ['2\n', '10\n'] Demo Output: ['0\n', '4\n'] Note: In the first example we can buy a ticket between the schools that costs <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c67d72010e0498bfd065a6a38fdeaec90358507b.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python r = int(input()) if r%2 == 1: print (r//2) else: print(r//2-1) ```
3
0
none
none
none
0
[ "none" ]
null
null
We'll call an array of *n* non-negative integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] interesting, if it meets *m* constraints. The *i*-th of the *m* constraints consists of three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) meaning that value should be equal to *q**i*. Your task is to find any interesting array of *n* elements or state that such array doesn't exist. Expression *x*&amp;*y* means the bitwise AND of numbers *x* and *y*. In programming languages C++, Java and Python this operation is represented as "&amp;", in Pascal — as "and".
The first line contains two integers *n*, *m* (1<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=105) — the number of elements in the array and the number of limits. Each of the next *m* lines contains three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*, 0<=≤<=*q**i*<=&lt;<=230) describing the *i*-th limit.
If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print *n* integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] (0<=≤<=*a*[*i*]<=&lt;<=230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line.
[ "3 1\n1 3 3\n", "3 2\n1 3 3\n1 3 2\n" ]
[ "YES\n3 3 3\n", "NO\n" ]
none
0
[ { "input": "3 1\n1 3 3", "output": "YES\n3 3 3" }, { "input": "3 2\n1 3 3\n1 3 2", "output": "NO" }, { "input": "3 2\n1 2 536870912\n2 3 536870911", "output": "YES\n536870912 1073741823 536870911" }, { "input": "1 1\n1 1 10", "output": "YES\n10" }, { "input": "1 2\n1 1 10\n1 1 5", "output": "NO" }, { "input": "1 2\n1 1 1\n1 1 3", "output": "NO" } ]
1,642,201,452
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
109
12,595,200
class SegmentTreeSum: def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 self.load[l] += self.load[v] self.load[r] += self.load[v] self.val[v] += self.load[v] * (b-a+1) self.load[v] = 0 def _get(self, v, a, b, x, y): if a > y or b < x: return 0 if x<=a and b <= y: return self.val[v] + self.load[v] * (y-x+1) l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = self._get(l, a, mid, x, y) + self._get(r, mid+1, b, x, y) return res def _add(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] += k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 d = b-a+1 self._propagate(v, a, b) self._add(l, a, mid, x, y, k) self._add(r, mid + 1, b, x, y, k) self.val[v] = self.val[l] + self.val[r] + self.load[l]*d//2 + self.load[r]*d//2 def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def add(self, x, y, k): return self._add(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) class SegmentTreeOrAnd: def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 self.load[l] |= self.load[v] self.load[r] |= self.load[v] self.val[v] |= self.load[v] self.load[v] = 0 def _get(self, v, a, b, x, y): if a > y or b < x: return int('11111111111111111111111111111111', 2) if x<=a and b <= y: return self.val[v] | self.load[v] l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = self._get(l, a, mid, x, y) & self._get(r, mid+1, b, x, y) return res def _add(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] |= k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 d = b-a+1 self._propagate(v, a, b) self._add(l, a, mid, x, y, k) self._add(r, mid + 1, b, x, y, k) self.val[v] = (self.val[l] | (self.load[l]*d//2) ) & (self.val[r] | (self.load[r]*d//2) ) def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def add(self, x, y, k): return self._add(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) class SegmentTreeMax: # zakladamy ze najmniejsza wartosc to 0 def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 self.load[l] += self.load[v] self.load[r] += self.load[v] self.val[v] += self.load[v] self.load[v] = 0 def _get(self, v, a, b, x, y): if a > y or b < x: return 0 if x<=a and b <= y: return self.val[v] + self.load[v] l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = max(self._get(l, a, mid, x, y), self._get(r, mid+1, b, x, y)) return res def _add(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] += k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 self._propagate(v, a, b) self._add(l, a, mid, x, y, k) self._add(r, mid + 1, b, x, y, k) self.val[v] = max(self.val[l]+self.load[l], self.val[r]+self.load[r]) def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def add(self, x, y, k): return self._add(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) class SegmentTreeSet: # zakladamy ze najmniejsza wartosc to 0 NOTHING = 0 def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 if self.load[v] != self.NOTHING: self.load[l] = self.load[v] self.load[r] = self.load[v] self.val[v] += (b-a+1) * self.load[v] self.val[l] = (b-a+1)//2 * self.load[v] self.val[r] = (b-a+1)//2 * self.load[v] self.load[v] = self.NOTHING def _get(self, v, a, b, x, y): if a > y or b < x: return 0 if x<=a and b <= y: return self.val[v] l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = self._get(l, a, mid, x, y) + self._get(r, mid+1, b, x, y) return res def _set(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] = k self.val[v] = (b-a+1)*k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 self._propagate(v, a, b) self._set(l, a, mid, x, y, k) self._set(r, mid + 1, b, x, y, k) self.val[v] = self.val[l] + self.val[r] def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def set(self, x, y, k): return self._set(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) [n, m] = [int(a) for a in input().split(' ')] querries = [ [int(a) for a in input().split(' ')] for i in range(m)] tree = SegmentTreeOrAnd(19) for [l, r, q] in querries: tree.add(l, r, q) for [l, r, q] in querries: if tree.get(l, r) != q: print('NO') exit(0) print('YES') for i in range(1, n+1): print(tree.get(i, i), end=' ')
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: We'll call an array of *n* non-negative integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] interesting, if it meets *m* constraints. The *i*-th of the *m* constraints consists of three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) meaning that value should be equal to *q**i*. Your task is to find any interesting array of *n* elements or state that such array doesn't exist. Expression *x*&amp;*y* means the bitwise AND of numbers *x* and *y*. In programming languages C++, Java and Python this operation is represented as "&amp;", in Pascal — as "and". Input Specification: The first line contains two integers *n*, *m* (1<=≤<=*n*<=≤<=105, 1<=≤<=*m*<=≤<=105) — the number of elements in the array and the number of limits. Each of the next *m* lines contains three integers *l**i*, *r**i*, *q**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*, 0<=≤<=*q**i*<=&lt;<=230) describing the *i*-th limit. Output Specification: If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print *n* integers *a*[1],<=*a*[2],<=...,<=*a*[*n*] (0<=≤<=*a*[*i*]<=&lt;<=230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Demo Input: ['3 1\n1 3 3\n', '3 2\n1 3 3\n1 3 2\n'] Demo Output: ['YES\n3 3 3\n', 'NO\n'] Note: none
```python class SegmentTreeSum: def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 self.load[l] += self.load[v] self.load[r] += self.load[v] self.val[v] += self.load[v] * (b-a+1) self.load[v] = 0 def _get(self, v, a, b, x, y): if a > y or b < x: return 0 if x<=a and b <= y: return self.val[v] + self.load[v] * (y-x+1) l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = self._get(l, a, mid, x, y) + self._get(r, mid+1, b, x, y) return res def _add(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] += k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 d = b-a+1 self._propagate(v, a, b) self._add(l, a, mid, x, y, k) self._add(r, mid + 1, b, x, y, k) self.val[v] = self.val[l] + self.val[r] + self.load[l]*d//2 + self.load[r]*d//2 def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def add(self, x, y, k): return self._add(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) class SegmentTreeOrAnd: def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 self.load[l] |= self.load[v] self.load[r] |= self.load[v] self.val[v] |= self.load[v] self.load[v] = 0 def _get(self, v, a, b, x, y): if a > y or b < x: return int('11111111111111111111111111111111', 2) if x<=a and b <= y: return self.val[v] | self.load[v] l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = self._get(l, a, mid, x, y) & self._get(r, mid+1, b, x, y) return res def _add(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] |= k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 d = b-a+1 self._propagate(v, a, b) self._add(l, a, mid, x, y, k) self._add(r, mid + 1, b, x, y, k) self.val[v] = (self.val[l] | (self.load[l]*d//2) ) & (self.val[r] | (self.load[r]*d//2) ) def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def add(self, x, y, k): return self._add(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) class SegmentTreeMax: # zakladamy ze najmniejsza wartosc to 0 def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 self.load[l] += self.load[v] self.load[r] += self.load[v] self.val[v] += self.load[v] self.load[v] = 0 def _get(self, v, a, b, x, y): if a > y or b < x: return 0 if x<=a and b <= y: return self.val[v] + self.load[v] l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = max(self._get(l, a, mid, x, y), self._get(r, mid+1, b, x, y)) return res def _add(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] += k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 self._propagate(v, a, b) self._add(l, a, mid, x, y, k) self._add(r, mid + 1, b, x, y, k) self.val[v] = max(self.val[l]+self.load[l], self.val[r]+self.load[r]) def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def add(self, x, y, k): return self._add(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) class SegmentTreeSet: # zakladamy ze najmniejsza wartosc to 0 NOTHING = 0 def __init__(self, k): self.n = 2**k self.load = [0] * (2*self.n) self.val = [0] * (2*self.n) def _propagate(self, v, a, b): l = v*2 r = v*2+1 if self.load[v] != self.NOTHING: self.load[l] = self.load[v] self.load[r] = self.load[v] self.val[v] += (b-a+1) * self.load[v] self.val[l] = (b-a+1)//2 * self.load[v] self.val[r] = (b-a+1)//2 * self.load[v] self.load[v] = self.NOTHING def _get(self, v, a, b, x, y): if a > y or b < x: return 0 if x<=a and b <= y: return self.val[v] l = v*2 r = v*2+1 mid = (a+b)//2 self._propagate(v, a, b) res = self._get(l, a, mid, x, y) + self._get(r, mid+1, b, x, y) return res def _set(self, v, a, b, x, y, k): if a > y or b < x: return if x <= a and b <= y: self.load[v] = k self.val[v] = (b-a+1)*k return l = v * 2 r = v * 2 + 1 mid = (a + b) // 2 self._propagate(v, a, b) self._set(l, a, mid, x, y, k) self._set(r, mid + 1, b, x, y, k) self.val[v] = self.val[l] + self.val[r] def get(self, x, y): return self._get(1, self.n, 2*self.n-1, x+self.n, y+self.n) def set(self, x, y, k): return self._set(1, self.n, 2*self.n - 1, x+self.n, y+self.n, k) [n, m] = [int(a) for a in input().split(' ')] querries = [ [int(a) for a in input().split(' ')] for i in range(m)] tree = SegmentTreeOrAnd(19) for [l, r, q] in querries: tree.add(l, r, q) for [l, r, q] in querries: if tree.get(l, r) != q: print('NO') exit(0) print('YES') for i in range(1, n+1): print(tree.get(i, i), end=' ') ```
0
43
A
Football
PROGRAMMING
1,000
[ "strings" ]
A. Football
2
256
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
[ "1\nABC\n", "5\nA\nABA\nABA\nA\nA\n" ]
[ "ABC\n", "A\n" ]
none
500
[ { "input": "1\nABC", "output": "ABC" }, { "input": "5\nA\nABA\nABA\nA\nA", "output": "A" }, { "input": "2\nXTSJEP\nXTSJEP", "output": "XTSJEP" }, { "input": "3\nXZYDJAEDZ\nXZYDJAEDZ\nXZYDJAEDZ", "output": "XZYDJAEDZ" }, { "input": "3\nQCCYXL\nQCCYXL\nAXGLFQDD", "output": "QCCYXL" }, { "input": "3\nAZID\nEERWBC\nEERWBC", "output": "EERWBC" }, { "input": "3\nHNCGYL\nHNCGYL\nHNCGYL", "output": "HNCGYL" }, { "input": "4\nZZWZTG\nZZWZTG\nZZWZTG\nZZWZTG", "output": "ZZWZTG" }, { "input": "4\nA\nA\nKUDLJMXCSE\nA", "output": "A" }, { "input": "5\nPHBTW\nPHBTW\nPHBTW\nPHBTW\nPHBTW", "output": "PHBTW" }, { "input": "5\nPKUZYTFYWN\nPKUZYTFYWN\nSTC\nPKUZYTFYWN\nPKUZYTFYWN", "output": "PKUZYTFYWN" }, { "input": "5\nHH\nHH\nNTQWPA\nNTQWPA\nHH", "output": "HH" }, { "input": "10\nW\nW\nW\nW\nW\nD\nW\nD\nD\nW", "output": "W" }, { "input": "19\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nTGACNIH\nTGACNIH\nXBCP", "output": "XBCP" }, { "input": "33\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS", "output": "PYPAS" }, { "input": "51\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC", "output": "NC" }, { "input": "89\nH\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nVOCI\nVOCI\nH\nH\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nH\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI", "output": "VOCI" }, { "input": "100\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nM\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA", "output": "HA" }, { "input": "100\nG\nG\nS\nS\nG\nG\nS\nS\nG\nS\nS\nS\nG\nS\nG\nG\nS\nG\nS\nS\nG\nS\nS\nS\nS\nS\nG\nS\nG\nS\nS\nG\nG\nG\nS\nS\nS\nS\nG\nS\nS\nG\nG\nG\nG\nG\nS\nG\nG\nS\nS\nS\nS\nS\nG\nG\nS\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nS\nS\nG\nS\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nG\nG\nS\nG\nG\nG\nS", "output": "G" }, { "input": "100\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nOBH\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL", "output": "WL" } ]
1,426,273,685
2,147,483,647
Python 3
OK
TESTS
34
124
409,600
from collections import Counter n = int(input()) l = [] for i in range(n): l.append(input()) l_counter = Counter(l) l_counter_1 = dict((v,k) for k, v in l_counter.items()) print(l_counter_1[max(l_counter_1)])
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams. Output Specification: Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner. Demo Input: ['1\nABC\n', '5\nA\nABA\nABA\nA\nA\n'] Demo Output: ['ABC\n', 'A\n'] Note: none
```python from collections import Counter n = int(input()) l = [] for i in range(n): l.append(input()) l_counter = Counter(l) l_counter_1 = dict((v,k) for k, v in l_counter.items()) print(l_counter_1[max(l_counter_1)]) ```
3.968237
774
C
Maximum Number
PROGRAMMING
1,200
[ "*special", "constructive algorithms", "greedy", "implementation" ]
null
null
Stepan has the newest electronic device with a display. Different digits can be shown on it. Each digit is shown on a seven-section indicator like it is shown on the picture below. So, for example, to show the digit 3 on the display, 5 sections must be highlighted; and for the digit 6, 6 sections must be highlighted. The battery of the newest device allows to highlight at most *n* sections on the display. Stepan wants to know the maximum possible integer number which can be shown on the display of his newest device. Your task is to determine this number. Note that this number must not contain leading zeros. Assume that the size of the display is enough to show any integer.
The first line contains the integer *n* (2<=≤<=*n*<=≤<=100<=000) — the maximum number of sections which can be highlighted on the display.
Print the maximum integer which can be shown on the display of Stepan's newest device.
[ "2\n", "3\n" ]
[ "1\n", "7\n" ]
none
0
[ { "input": "2", "output": "1" }, { "input": "3", "output": "7" }, { "input": "4", "output": "11" }, { "input": "5", "output": "71" }, { "input": "6", "output": "111" }, { "input": "85651", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "85666", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99999", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "100000", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99998", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "9", "output": "7111" }, { "input": "99997", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99996", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99995", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "156", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "255", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "4568", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "5431", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "6782", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "8343", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "9514", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." } ]
1,596,106,477
2,147,483,647
Python 3
OK
TESTS
21
109
6,758,400
a=int(input()) if a%2==0:print("1"*(a//2)) else: print("7"+"1"*((a-3)//2))
Title: Maximum Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Stepan has the newest electronic device with a display. Different digits can be shown on it. Each digit is shown on a seven-section indicator like it is shown on the picture below. So, for example, to show the digit 3 on the display, 5 sections must be highlighted; and for the digit 6, 6 sections must be highlighted. The battery of the newest device allows to highlight at most *n* sections on the display. Stepan wants to know the maximum possible integer number which can be shown on the display of his newest device. Your task is to determine this number. Note that this number must not contain leading zeros. Assume that the size of the display is enough to show any integer. Input Specification: The first line contains the integer *n* (2<=≤<=*n*<=≤<=100<=000) — the maximum number of sections which can be highlighted on the display. Output Specification: Print the maximum integer which can be shown on the display of Stepan's newest device. Demo Input: ['2\n', '3\n'] Demo Output: ['1\n', '7\n'] Note: none
```python a=int(input()) if a%2==0:print("1"*(a//2)) else: print("7"+"1"*((a-3)//2)) ```
3
768
A
Oath of the Night's Watch
PROGRAMMING
900
[ "constructive algorithms", "sortings" ]
null
null
"Night gathers, and now my watch begins. It shall not end until my death. I shall take no wife, hold no lands, father no children. I shall wear no crowns and win no glory. I shall live and die at my post. I am the sword in the darkness. I am the watcher on the walls. I am the shield that guards the realms of men. I pledge my life and honor to the Night's Watch, for this night and all the nights to come." — The Night's Watch oath. With that begins the watch of Jon Snow. He is assigned the task to support the stewards. This time he has *n* stewards with him whom he has to provide support. Each steward has his own strength. Jon Snow likes to support a steward only if there exists at least one steward who has strength strictly less than him and at least one steward who has strength strictly greater than him. Can you find how many stewards will Jon support?
First line consists of a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of stewards with Jon Snow. Second line consists of *n* space separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) representing the values assigned to the stewards.
Output a single integer representing the number of stewards which Jon will feed.
[ "2\n1 5\n", "3\n1 2 5\n" ]
[ "0", "1" ]
In the first sample, Jon Snow cannot support steward with strength 1 because there is no steward with strength less than 1 and he cannot support steward with strength 5 because there is no steward with strength greater than 5. In the second sample, Jon Snow can support steward with strength 2 because there are stewards with strength less than 2 and greater than 2.
500
[ { "input": "2\n1 5", "output": "0" }, { "input": "3\n1 2 5", "output": "1" }, { "input": "4\n1 2 3 4", "output": "2" }, { "input": "8\n7 8 9 4 5 6 1 2", "output": "6" }, { "input": "1\n1", "output": "0" }, { "input": "1\n100", "output": "0" }, { "input": "205\n5 5 3 3 6 2 9 3 8 9 6 6 10 8 1 5 3 3 1 2 9 9 9 3 9 10 3 9 8 3 5 6 6 4 6 9 2 9 10 9 5 6 6 7 4 2 6 3 4 1 10 1 7 2 7 7 3 2 6 5 5 2 9 3 8 8 7 6 6 4 2 2 6 2 3 5 7 2 2 10 1 4 6 9 2 3 7 2 2 7 4 4 9 10 7 5 8 6 5 3 6 10 2 7 5 6 6 8 3 3 9 4 3 5 7 9 3 2 1 1 3 2 1 9 3 1 4 4 10 2 5 5 8 1 4 8 5 3 1 10 8 6 5 8 3 5 4 5 4 4 6 7 2 8 10 8 7 6 6 9 6 7 1 10 3 2 5 10 4 4 5 4 3 4 8 5 3 8 10 3 10 9 7 2 1 8 6 4 6 5 8 10 2 6 7 4 9 4 5 1 8 7 10 3 1", "output": "174" }, { "input": "4\n1000000000 99999999 1000000000 1000000000", "output": "0" }, { "input": "3\n2 2 2", "output": "0" }, { "input": "5\n1 1 1 1 1", "output": "0" }, { "input": "3\n1 1 1", "output": "0" }, { "input": "6\n1 1 3 3 2 2", "output": "2" }, { "input": "7\n1 1 1 1 1 1 1", "output": "0" }, { "input": "4\n1 1 2 5", "output": "1" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "5\n0 0 0 0 0", "output": "0" }, { "input": "5\n1 1 1 1 5", "output": "0" }, { "input": "5\n1 1 2 3 3", "output": "1" }, { "input": "3\n1 1 3", "output": "0" }, { "input": "3\n2 2 3", "output": "0" }, { "input": "1\n6", "output": "0" }, { "input": "5\n1 5 3 5 1", "output": "1" }, { "input": "7\n1 2 2 2 2 2 3", "output": "5" }, { "input": "4\n2 2 2 2", "output": "0" }, { "input": "9\n2 2 2 3 4 5 6 6 6", "output": "3" }, { "input": "10\n1 1 1 2 3 3 3 3 3 3", "output": "1" }, { "input": "6\n1 1 1 1 1 1", "output": "0" }, { "input": "3\n0 0 1", "output": "0" }, { "input": "9\n1 1 1 2 2 2 3 3 3", "output": "3" }, { "input": "3\n1 2 2", "output": "0" }, { "input": "6\n2 2 2 2 2 2", "output": "0" }, { "input": "5\n2 2 2 2 2", "output": "0" }, { "input": "5\n5 5 5 5 5", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "6\n1 2 5 5 5 5", "output": "1" }, { "input": "5\n1 2 3 3 3", "output": "1" }, { "input": "3\n1 1 2", "output": "0" }, { "input": "6\n1 1 1 1 1 2", "output": "0" }, { "input": "5\n1 1 2 4 4", "output": "1" }, { "input": "3\n999999 5999999 9999999", "output": "1" }, { "input": "4\n1 1 5 5", "output": "0" }, { "input": "9\n1 1 1 2 2 2 4 4 4", "output": "3" }, { "input": "5\n1 3 4 5 1", "output": "2" }, { "input": "5\n3 3 3 3 3", "output": "0" }, { "input": "5\n1 1 2 2 2", "output": "0" }, { "input": "5\n2 1 1 1 3", "output": "1" }, { "input": "5\n0 0 0 1 2", "output": "1" }, { "input": "4\n2 2 2 3", "output": "0" }, { "input": "7\n1 1 1 1 5 5 5", "output": "0" }, { "input": "5\n1 2 3 4 4", "output": "2" }, { "input": "2\n5 4", "output": "0" }, { "input": "4\n5 5 5 5", "output": "0" }, { "input": "5\n1 1 1 5 5", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "1\n3", "output": "0" }, { "input": "3\n2 1 2", "output": "0" }, { "input": "4\n1 2 2 2", "output": "0" }, { "input": "8\n1000000000 1000000000 1000000000 999999999 999999999 999999999 999999998 999999998", "output": "3" }, { "input": "5\n1 1 3 4 4", "output": "1" }, { "input": "6\n1 1 2 2 3 3", "output": "2" }, { "input": "4\n1 1 1 1", "output": "0" }, { "input": "9\n1 2 3 4 1 5 6 7 8", "output": "6" }, { "input": "8\n5 4 4 6 6 4 4 3", "output": "5" }, { "input": "8\n4 3 3 3 3 3 3 3", "output": "0" }, { "input": "7\n4 3 3 3 3 3 3", "output": "0" }, { "input": "6\n4 3 3 3 3 3", "output": "0" }, { "input": "5\n4 3 3 3 3", "output": "0" } ]
1,655,634,280
2,147,483,647
Python 3
OK
TESTS
88
62
8,806,400
n = int(input());a = [*map(int, input().split())];print(max(0, n-(a.count(min(a)) + a.count(max(a)))))
Title: Oath of the Night's Watch Time Limit: None seconds Memory Limit: None megabytes Problem Description: "Night gathers, and now my watch begins. It shall not end until my death. I shall take no wife, hold no lands, father no children. I shall wear no crowns and win no glory. I shall live and die at my post. I am the sword in the darkness. I am the watcher on the walls. I am the shield that guards the realms of men. I pledge my life and honor to the Night's Watch, for this night and all the nights to come." — The Night's Watch oath. With that begins the watch of Jon Snow. He is assigned the task to support the stewards. This time he has *n* stewards with him whom he has to provide support. Each steward has his own strength. Jon Snow likes to support a steward only if there exists at least one steward who has strength strictly less than him and at least one steward who has strength strictly greater than him. Can you find how many stewards will Jon support? Input Specification: First line consists of a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of stewards with Jon Snow. Second line consists of *n* space separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) representing the values assigned to the stewards. Output Specification: Output a single integer representing the number of stewards which Jon will feed. Demo Input: ['2\n1 5\n', '3\n1 2 5\n'] Demo Output: ['0', '1'] Note: In the first sample, Jon Snow cannot support steward with strength 1 because there is no steward with strength less than 1 and he cannot support steward with strength 5 because there is no steward with strength greater than 5. In the second sample, Jon Snow can support steward with strength 2 because there are stewards with strength less than 2 and greater than 2.
```python n = int(input());a = [*map(int, input().split())];print(max(0, n-(a.count(min(a)) + a.count(max(a))))) ```
3
1,003
A
Polycarp's Pockets
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
[ "6\n1 2 4 3 3 2\n", "1\n100\n" ]
[ "2\n", "1\n" ]
none
0
[ { "input": "6\n1 2 4 3 3 2", "output": "2" }, { "input": "1\n100", "output": "1" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71", "output": "51" }, { "input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29", "output": "1" }, { "input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24", "output": "2" }, { "input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6", "output": "10" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "99" }, { "input": "7\n1 2 3 3 3 1 2", "output": "3" }, { "input": "5\n1 2 3 4 5", "output": "1" }, { "input": "7\n1 2 3 4 5 6 7", "output": "1" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "11\n1 2 3 4 5 6 7 8 9 1 1", "output": "3" }, { "input": "12\n1 2 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "13" }, { "input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "14" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15" }, { "input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "16" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "10\n1 1 1 1 2 2 1 1 9 10", "output": "6" }, { "input": "2\n1 1", "output": "2" }, { "input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "56" }, { "input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92", "output": "6" }, { "input": "10\n1 2 2 3 3 3 4 4 4 4", "output": "4" }, { "input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21", "output": "3" }, { "input": "5\n5 5 5 5 1", "output": "4" }, { "input": "6\n2 3 2 5 2 6", "output": "3" }, { "input": "3\n58 59 58", "output": "2" }, { "input": "9\n1 2 3 4 5 6 7 8 8", "output": "2" }, { "input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "97" }, { "input": "3\n95 95 4", "output": "2" }, { "input": "3\n2 2 5", "output": "2" } ]
1,592,997,242
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
93
6,656,000
n=int(input()) a=list(map(int,input().split())) s=list(set(a)) if len(s)==n: print(1) else: print(2)
Title: Polycarp's Pockets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins. Output Specification: Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket. Demo Input: ['6\n1 2 4 3 3 2\n', '1\n100\n'] Demo Output: ['2\n', '1\n'] Note: none
```python n=int(input()) a=list(map(int,input().split())) s=list(set(a)) if len(s)==n: print(1) else: print(2) ```
0
226
A
Flying Saucer Segments
PROGRAMMING
1,400
[ "math" ]
null
null
An expedition group flew from planet ACM-1 to Earth in order to study the bipedal species (its representatives don't even have antennas on their heads!). The flying saucer, on which the brave pioneers set off, consists of three sections. These sections are connected by a chain: the 1-st section is adjacent only to the 2-nd one, the 2-nd one — to the 1-st and the 3-rd ones, the 3-rd one — only to the 2-nd one. The transitions are possible only between the adjacent sections. The spacecraft team consists of *n* aliens. Each of them is given a rank — an integer from 1 to *n*. The ranks of all astronauts are distinct. The rules established on the Saucer, state that an alien may move from section *a* to section *b* only if it is senior in rank to all aliens who are in the segments *a* and *b* (besides, the segments *a* and *b* are of course required to be adjacent). Any alien requires exactly 1 minute to make a move. Besides, safety regulations require that no more than one alien moved at the same minute along the ship. Alien *A* is senior in rank to alien *B*, if the number indicating rank *A*, is more than the corresponding number for *B*. At the moment the whole saucer team is in the 3-rd segment. They all need to move to the 1-st segment. One member of the crew, the alien with the identification number CFR-140, decided to calculate the minimum time (in minutes) they will need to perform this task. Help CFR-140, figure out the minimum time (in minutes) that all the astronauts will need to move from the 3-rd segment to the 1-st one. Since this number can be rather large, count it modulo *m*.
The first line contains two space-separated integers: *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=109) — the number of aliens on the saucer and the number, modulo which you should print the answer, correspondingly.
Print a single number — the answer to the problem modulo *m*.
[ "1 10\n", "3 8\n" ]
[ "2\n", "2\n" ]
In the first sample the only crew member moves from segment 3 to segment 2, and then from segment 2 to segment 1 without any problems. Thus, the whole moving will take two minutes. To briefly describe the movements in the second sample we will use value <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4c7c8e716067e9c6251e8ca82a4ca7fde74fbacb.png" style="max-width: 100.0%;max-height: 100.0%;"/>, which would correspond to an alien with rank *i* moving from the segment in which it is at the moment, to the segment number *j*. Using these values, we will describe the movements between the segments in the second sample: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/954e2f634474269f53df1edbf2e7b214d8a2611c.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d4fd9e68a9c6a277942eb188291d6d2744ea21d3.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b73a9870e1b41a5e048c3ab3e3fd4b92c336c9ec.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/954e2f634474269f53df1edbf2e7b214d8a2611c.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/49b1ffd4dcd2e0da0acec04559e0c3efc7854b07.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ef8b3f32ee76c86f57fa63f7251fa290642f17f8.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/954e2f634474269f53df1edbf2e7b214d8a2611c.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d4fd9e68a9c6a277942eb188291d6d2744ea21d3.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>; In total: the aliens need 26 moves. The remainder after dividing 26 by 8 equals 2, so the answer to this test is 2.
500
[ { "input": "1 10", "output": "2" }, { "input": "3 8", "output": "2" }, { "input": "8 12", "output": "8" }, { "input": "4 84", "output": "80" }, { "input": "9 95", "output": "17" }, { "input": "331358794 820674098", "output": "2619146" }, { "input": "5 56", "output": "18" }, { "input": "10 22", "output": "0" }, { "input": "8 73", "output": "63" }, { "input": "7 63", "output": "44" }, { "input": "1 57", "output": "2" }, { "input": "6 5", "output": "3" }, { "input": "6 25", "output": "3" }, { "input": "1 39", "output": "2" }, { "input": "3 60", "output": "26" }, { "input": "2 81", "output": "8" }, { "input": "5 35", "output": "32" }, { "input": "8 100", "output": "60" }, { "input": "6 29", "output": "3" }, { "input": "7 90", "output": "26" }, { "input": "1 37", "output": "2" }, { "input": "7 34", "output": "10" }, { "input": "3 49", "output": "26" }, { "input": "1 38", "output": "2" }, { "input": "7 88", "output": "74" }, { "input": "9 30", "output": "2" }, { "input": "333734901 647005907", "output": "40746267" }, { "input": "140068687 419634856", "output": "40442298" }, { "input": "725891944 969448805", "output": "599793690" }, { "input": "792362041 423498933", "output": "182386349" }, { "input": "108260816 609551797", "output": "237749529" }, { "input": "593511479 711449475", "output": "641995841" }, { "input": "853906091 809812670", "output": "50540996" }, { "input": "549662082 945236243", "output": "239869294" }, { "input": "296519935 960061928", "output": "171150618" }, { "input": "854939092 4244941", "output": "2105846" }, { "input": "519976508 777084731", "output": "290288763" }, { "input": "264926775 887044705", "output": "448954191" }, { "input": "602799218 494169337", "output": "105935725" }, { "input": "880162386 653879733", "output": "193558859" }, { "input": "868095112 994962872", "output": "606909752" }, { "input": "622152471 448257864", "output": "210299666" }, { "input": "523061914 144515354", "output": "127493116" }, { "input": "596386879 356583466", "output": "134606022" }, { "input": "592821498 42617080", "output": "2923848" }, { "input": "647732356 84460643", "output": "28044795" }, { "input": "451688701 6561", "output": "6560" }, { "input": "661983283 9", "output": "8" }, { "input": "474026177 729", "output": "728" }, { "input": "822957727 6561", "output": "6560" }, { "input": "286996517 27", "output": "26" }, { "input": "321823343 19683", "output": "19682" }, { "input": "422262807 3", "output": "2" }, { "input": "624216668 19683", "output": "19682" }, { "input": "514853447 9", "output": "8" }, { "input": "916546405 6561", "output": "6560" }, { "input": "238972792 59049", "output": "59048" }, { "input": "450526186 6561", "output": "6560" }, { "input": "591892483 729", "output": "728" }, { "input": "357780112 9", "output": "8" }, { "input": "528551307 729", "output": "728" }, { "input": "199154351 3", "output": "2" }, { "input": "234899623 6561", "output": "6560" }, { "input": "576449056 59049", "output": "59048" }, { "input": "508185014 3", "output": "2" }, { "input": "969271595 9", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "2 9", "output": "8" }, { "input": "3 27", "output": "26" }, { "input": "2 3", "output": "2" }, { "input": "1 3", "output": "2" }, { "input": "3 9", "output": "8" }, { "input": "10 3", "output": "2" }, { "input": "4 81", "output": "80" }, { "input": "1 2", "output": "0" }, { "input": "4 27", "output": "26" }, { "input": "3 1", "output": "0" }, { "input": "3 3", "output": "2" } ]
1,689,342,742
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
62
0
print("_RANDOM_GUESS_1689342742.045868")# 1689342742.0459
Title: Flying Saucer Segments Time Limit: None seconds Memory Limit: None megabytes Problem Description: An expedition group flew from planet ACM-1 to Earth in order to study the bipedal species (its representatives don't even have antennas on their heads!). The flying saucer, on which the brave pioneers set off, consists of three sections. These sections are connected by a chain: the 1-st section is adjacent only to the 2-nd one, the 2-nd one — to the 1-st and the 3-rd ones, the 3-rd one — only to the 2-nd one. The transitions are possible only between the adjacent sections. The spacecraft team consists of *n* aliens. Each of them is given a rank — an integer from 1 to *n*. The ranks of all astronauts are distinct. The rules established on the Saucer, state that an alien may move from section *a* to section *b* only if it is senior in rank to all aliens who are in the segments *a* and *b* (besides, the segments *a* and *b* are of course required to be adjacent). Any alien requires exactly 1 minute to make a move. Besides, safety regulations require that no more than one alien moved at the same minute along the ship. Alien *A* is senior in rank to alien *B*, if the number indicating rank *A*, is more than the corresponding number for *B*. At the moment the whole saucer team is in the 3-rd segment. They all need to move to the 1-st segment. One member of the crew, the alien with the identification number CFR-140, decided to calculate the minimum time (in minutes) they will need to perform this task. Help CFR-140, figure out the minimum time (in minutes) that all the astronauts will need to move from the 3-rd segment to the 1-st one. Since this number can be rather large, count it modulo *m*. Input Specification: The first line contains two space-separated integers: *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=109) — the number of aliens on the saucer and the number, modulo which you should print the answer, correspondingly. Output Specification: Print a single number — the answer to the problem modulo *m*. Demo Input: ['1 10\n', '3 8\n'] Demo Output: ['2\n', '2\n'] Note: In the first sample the only crew member moves from segment 3 to segment 2, and then from segment 2 to segment 1 without any problems. Thus, the whole moving will take two minutes. To briefly describe the movements in the second sample we will use value <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4c7c8e716067e9c6251e8ca82a4ca7fde74fbacb.png" style="max-width: 100.0%;max-height: 100.0%;"/>, which would correspond to an alien with rank *i* moving from the segment in which it is at the moment, to the segment number *j*. Using these values, we will describe the movements between the segments in the second sample: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/954e2f634474269f53df1edbf2e7b214d8a2611c.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d4fd9e68a9c6a277942eb188291d6d2744ea21d3.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b73a9870e1b41a5e048c3ab3e3fd4b92c336c9ec.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/954e2f634474269f53df1edbf2e7b214d8a2611c.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/49b1ffd4dcd2e0da0acec04559e0c3efc7854b07.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ef8b3f32ee76c86f57fa63f7251fa290642f17f8.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/954e2f634474269f53df1edbf2e7b214d8a2611c.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/be5f59dacfc6f7ded42f8f260c7b7aedf17ec1f0.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d4fd9e68a9c6a277942eb188291d6d2744ea21d3.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7668900e59f9bc3ccc78b0a77dca322fcb02fa04.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/1adb8798904e42944c35bd49feff02db6c3ea10b.png" style="max-width: 100.0%;max-height: 100.0%;"/>; In total: the aliens need 26 moves. The remainder after dividing 26 by 8 equals 2, so the answer to this test is 2.
```python print("_RANDOM_GUESS_1689342742.045868")# 1689342742.0459 ```
0
1,006
C
Three Parts of the Array
PROGRAMMING
1,200
[ "binary search", "data structures", "two pointers" ]
null
null
You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible.
The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$.
Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$).
[ "5\n1 3 1 1 4\n", "5\n1 3 2 1 4\n", "3\n4 1 2\n" ]
[ "5\n", "4\n", "0\n" ]
In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
0
[ { "input": "5\n1 3 1 1 4", "output": "5" }, { "input": "5\n1 3 2 1 4", "output": "4" }, { "input": "3\n4 1 2", "output": "0" }, { "input": "1\n1000000000", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "5\n1 3 5 4 5", "output": "9" } ]
1,625,163,177
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
10
233
17,408,000
arr_size = int(input()) arr = [int(x) for x in input().split()] max_sum = 0 best_first = 0 first_sum = 0 third_sum = 0 first_cursor = 0 last_cursor = arr_size-1 while last_cursor >= first_cursor: if first_sum > third_sum: third_sum += arr[last_cursor] last_cursor -= 1 elif third_sum > first_sum: first_sum += arr[first_cursor] first_cursor += 1 else: max_sum = third_sum + first_sum best_first = first_sum third_sum += arr[last_cursor] last_cursor -= 1 first_sum += arr[first_cursor] first_cursor += 1 if third_sum == first_sum: print(first_sum) else: print(best_first)
Title: Three Parts of the Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array $d_1, d_2, \dots, d_n$ consisting of $n$ integer numbers. Your task is to split this array into three parts (some of which may be empty) in such a way that each element of the array belongs to exactly one of the three parts, and each of the parts forms a consecutive contiguous subsegment (possibly, empty) of the original array. Let the sum of elements of the first part be $sum_1$, the sum of elements of the second part be $sum_2$ and the sum of elements of the third part be $sum_3$. Among all possible ways to split the array you have to choose a way such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. More formally, if the first part of the array contains $a$ elements, the second part of the array contains $b$ elements and the third part contains $c$ elements, then: $$sum_1 = \sum\limits_{1 \le i \le a}d_i,$$ $$sum_2 = \sum\limits_{a + 1 \le i \le a + b}d_i,$$ $$sum_3 = \sum\limits_{a + b + 1 \le i \le a + b + c}d_i.$$ The sum of an empty array is $0$. Your task is to find a way to split the array such that $sum_1 = sum_3$ and $sum_1$ is maximum possible. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of elements in the array $d$. The second line of the input contains $n$ integers $d_1, d_2, \dots, d_n$ ($1 \le d_i \le 10^9$) — the elements of the array $d$. Output Specification: Print a single integer — the maximum possible value of $sum_1$, considering that the condition $sum_1 = sum_3$ must be met. Obviously, at least one valid way to split the array exists (use $a=c=0$ and $b=n$). Demo Input: ['5\n1 3 1 1 4\n', '5\n1 3 2 1 4\n', '3\n4 1 2\n'] Demo Output: ['5\n', '4\n', '0\n'] Note: In the first example there is only one possible splitting which maximizes $sum_1$: $[1, 3, 1], [~], [1, 4]$. In the second example the only way to have $sum_1=4$ is: $[1, 3], [2, 1], [4]$. In the third example there is only one way to split the array: $[~], [4, 1, 2], [~]$.
```python arr_size = int(input()) arr = [int(x) for x in input().split()] max_sum = 0 best_first = 0 first_sum = 0 third_sum = 0 first_cursor = 0 last_cursor = arr_size-1 while last_cursor >= first_cursor: if first_sum > third_sum: third_sum += arr[last_cursor] last_cursor -= 1 elif third_sum > first_sum: first_sum += arr[first_cursor] first_cursor += 1 else: max_sum = third_sum + first_sum best_first = first_sum third_sum += arr[last_cursor] last_cursor -= 1 first_sum += arr[first_cursor] first_cursor += 1 if third_sum == first_sum: print(first_sum) else: print(best_first) ```
0
32
A
Reconnaissance
PROGRAMMING
800
[ "brute force" ]
A. Reconnaissance
2
256
According to the regulations of Berland's army, a reconnaissance unit should consist of exactly two soldiers. Since these two soldiers shouldn't differ much, their heights can differ by at most *d* centimeters. Captain Bob has *n* soldiers in his detachment. Their heights are *a*1,<=*a*2,<=...,<=*a**n* centimeters. Some soldiers are of the same height. Bob wants to know, how many ways exist to form a reconnaissance unit of two soldiers from his detachment. Ways (1,<=2) and (2,<=1) should be regarded as different.
The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*d*<=≤<=109) — amount of soldiers in Bob's detachment and the maximum allowed height difference respectively. The second line contains *n* space-separated integers — heights of all the soldiers in Bob's detachment. These numbers don't exceed 109.
Output one number — amount of ways to form a reconnaissance unit of two soldiers, whose height difference doesn't exceed *d*.
[ "5 10\n10 20 50 60 65\n", "5 1\n55 30 29 31 55\n" ]
[ "6\n", "6\n" ]
none
500
[ { "input": "5 10\n10 20 50 60 65", "output": "6" }, { "input": "5 1\n55 30 29 31 55", "output": "6" }, { "input": "6 10\n4 6 4 1 9 3", "output": "30" }, { "input": "7 100\n19 1694 261 162 1 234 513", "output": "8" }, { "input": "8 42\n37 53 74 187 568 22 5 65", "output": "20" }, { "input": "10 4\n11 6 76 49 28 20 57 152 5 32", "output": "4" }, { "input": "100 100\n51 93 101 960 2 477 213 129 663 925 254 78 1486 274 160 481 132 156 412 372 5 57 152 298 1771 7 359 468 254 406 202 929 221 366 552 97 555 29 822 118 539 140 992 854 7 163 134 103 940 30 409 1003 398 43 555 79 107 40 23 103 643 171 310 382 770 337 18 189 570 177 29 54 855 171 205 291 299 935 620 180 114 358 88 292 118 400 218 537 369 60 683 192 13 537 59 824 264 191 3 300", "output": "2404" } ]
1,626,304,973
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
154
6,758,400
a,b=map(int,input().split()) c=sorted(list(map(int,input().split()))) s=0 for x,y in zip(c,c[1:]): if (y-x)<=b: s=s+1 print(2*s)
Title: Reconnaissance Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: According to the regulations of Berland's army, a reconnaissance unit should consist of exactly two soldiers. Since these two soldiers shouldn't differ much, their heights can differ by at most *d* centimeters. Captain Bob has *n* soldiers in his detachment. Their heights are *a*1,<=*a*2,<=...,<=*a**n* centimeters. Some soldiers are of the same height. Bob wants to know, how many ways exist to form a reconnaissance unit of two soldiers from his detachment. Ways (1,<=2) and (2,<=1) should be regarded as different. Input Specification: The first line contains two integers *n* and *d* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*d*<=≤<=109) — amount of soldiers in Bob's detachment and the maximum allowed height difference respectively. The second line contains *n* space-separated integers — heights of all the soldiers in Bob's detachment. These numbers don't exceed 109. Output Specification: Output one number — amount of ways to form a reconnaissance unit of two soldiers, whose height difference doesn't exceed *d*. Demo Input: ['5 10\n10 20 50 60 65\n', '5 1\n55 30 29 31 55\n'] Demo Output: ['6\n', '6\n'] Note: none
```python a,b=map(int,input().split()) c=sorted(list(map(int,input().split()))) s=0 for x,y in zip(c,c[1:]): if (y-x)<=b: s=s+1 print(2*s) ```
0
343
B
Alternating Current
PROGRAMMING
1,600
[ "data structures", "greedy", "implementation" ]
null
null
Mad scientist Mike has just finished constructing a new device to search for extraterrestrial intelligence! He was in such a hurry to launch it for the first time that he plugged in the power wires without giving it a proper glance and started experimenting right away. After a while Mike observed that the wires ended up entangled and now have to be untangled again. The device is powered by two wires "plus" and "minus". The wires run along the floor from the wall (on the left) to the device (on the right). Both the wall and the device have two contacts in them on the same level, into which the wires are plugged in some order. The wires are considered entangled if there are one or more places where one wire runs above the other one. For example, the picture below has four such places (top view): Mike knows the sequence in which the wires run above each other. Mike also noticed that on the left side, the "plus" wire is always plugged into the top contact (as seen on the picture). He would like to untangle the wires without unplugging them and without moving the device. Determine if it is possible to do that. A wire can be freely moved and stretched on the floor, but cannot be cut. To understand the problem better please read the notes to the test samples.
The single line of the input contains a sequence of characters "+" and "-" of length *n* (1<=≤<=*n*<=≤<=100000). The *i*-th (1<=≤<=*i*<=≤<=*n*) position of the sequence contains the character "+", if on the *i*-th step from the wall the "plus" wire runs above the "minus" wire, and the character "-" otherwise.
Print either "Yes" (without the quotes) if the wires can be untangled or "No" (without the quotes) if the wires cannot be untangled.
[ "-++-\n", "+-\n", "++\n", "-\n" ]
[ "Yes\n", "No\n", "Yes\n", "No\n" ]
The first testcase corresponds to the picture in the statement. To untangle the wires, one can first move the "plus" wire lower, thus eliminating the two crosses in the middle, and then draw it under the "minus" wire, eliminating also the remaining two crosses. In the second testcase the "plus" wire makes one full revolution around the "minus" wire. Thus the wires cannot be untangled: In the third testcase the "plus" wire simply runs above the "minus" wire twice in sequence. The wires can be untangled by lifting "plus" and moving it higher: In the fourth testcase the "minus" wire runs above the "plus" wire once. The wires cannot be untangled without moving the device itself:
1,000
[ { "input": "-++-", "output": "Yes" }, { "input": "+-", "output": "No" }, { "input": "++", "output": "Yes" }, { "input": "-", "output": "No" }, { "input": "+-+-", "output": "No" }, { "input": "-+-", "output": "No" }, { "input": "-++-+--+", "output": "Yes" }, { "input": "+", "output": "No" }, { "input": "-+", "output": "No" }, { "input": "--", "output": "Yes" }, { "input": "+++", "output": "No" }, { "input": "--+", "output": "No" }, { "input": "++--++", "output": "Yes" }, { "input": "+-++-+", "output": "Yes" }, { "input": "+-+--+", "output": "No" }, { "input": "--++-+", "output": "No" }, { "input": "-+-+--", "output": "No" }, { "input": "+-+++-", "output": "No" }, { "input": "-+-+-+", "output": "No" }, { "input": "-++-+--++--+-++-", "output": "Yes" }, { "input": "+-----+-++---+------+++-++++", "output": "No" }, { "input": "-+-++--+++-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-+-++-+-+-++++++---++--+++++-+--++--+-+--++-----+--+-++---+++---++----+++-++++--++-++-", "output": "No" }, { "input": "-+-----++++--++-+-++", "output": "Yes" }, { "input": "+--+--+------+++++++-+-+++--++---+--+-+---+--+++-+++-------+++++-+-++++--+-+-+++++++----+----+++----+-+++-+++-----+++-+-++-+-+++++-+--++----+--+-++-----+-+-++++---+++---+-+-+-++++--+--+++---+++++-+---+-----+++-++--+++---++-++-+-+++-+-+-+---+++--+--++++-+-+--++-------+--+---++-----+++--+-+++--++-+-+++-++--+++-++++++++++-++-++++++-+++--+--++-+++--+++-++++----+++---+-+----++++-+-+", "output": "Yes" }, { "input": "-+-+-++-+-+-", "output": "Yes" }, { "input": "-+-++-+-", "output": "Yes" }, { "input": "-+-++-+-+-", "output": "No" }, { "input": "++-+-+-+-+--+", "output": "No" }, { "input": "+++---", "output": "No" }, { "input": "+-+-+-+-+--+-+-+-+-++--++--+", "output": "Yes" }, { "input": "+-+-++", "output": "No" }, { "input": "-++--+--+++-+-+-+-+-", "output": "No" }, { "input": "+---+-+-", "output": "No" }, { "input": "+-+--+-+", "output": "Yes" }, { "input": "+++---+++---", "output": "No" }, { "input": "-+++++", "output": "No" }, { "input": "-+-+-+-+-+-+-++-+-+-+-+-+-+-", "output": "Yes" }, { "input": "-+++--", "output": "No" }, { "input": "+---+", "output": "No" }, { "input": "-++", "output": "No" }, { "input": "-+--+-", "output": "Yes" }, { "input": "+---++--++", "output": "No" }, { "input": "+++-", "output": "No" }, { "input": "--+++", "output": "No" }, { "input": "++-+", "output": "No" } ]
1,598,017,578
2,147,483,647
PyPy 3
OK
TESTS
62
310
25,190,400
from sys import stdin, stdout def fin(): return stdin.readline().strip() def fout(x): stdout.write(str(x) + '\n') stk = [] for i in fin(): if stk and stk[-1] == i: stk.pop() else: stk.append(i) if not stk: fout('Yes') else: print('No')
Title: Alternating Current Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mad scientist Mike has just finished constructing a new device to search for extraterrestrial intelligence! He was in such a hurry to launch it for the first time that he plugged in the power wires without giving it a proper glance and started experimenting right away. After a while Mike observed that the wires ended up entangled and now have to be untangled again. The device is powered by two wires "plus" and "minus". The wires run along the floor from the wall (on the left) to the device (on the right). Both the wall and the device have two contacts in them on the same level, into which the wires are plugged in some order. The wires are considered entangled if there are one or more places where one wire runs above the other one. For example, the picture below has four such places (top view): Mike knows the sequence in which the wires run above each other. Mike also noticed that on the left side, the "plus" wire is always plugged into the top contact (as seen on the picture). He would like to untangle the wires without unplugging them and without moving the device. Determine if it is possible to do that. A wire can be freely moved and stretched on the floor, but cannot be cut. To understand the problem better please read the notes to the test samples. Input Specification: The single line of the input contains a sequence of characters "+" and "-" of length *n* (1<=≤<=*n*<=≤<=100000). The *i*-th (1<=≤<=*i*<=≤<=*n*) position of the sequence contains the character "+", if on the *i*-th step from the wall the "plus" wire runs above the "minus" wire, and the character "-" otherwise. Output Specification: Print either "Yes" (without the quotes) if the wires can be untangled or "No" (without the quotes) if the wires cannot be untangled. Demo Input: ['-++-\n', '+-\n', '++\n', '-\n'] Demo Output: ['Yes\n', 'No\n', 'Yes\n', 'No\n'] Note: The first testcase corresponds to the picture in the statement. To untangle the wires, one can first move the "plus" wire lower, thus eliminating the two crosses in the middle, and then draw it under the "minus" wire, eliminating also the remaining two crosses. In the second testcase the "plus" wire makes one full revolution around the "minus" wire. Thus the wires cannot be untangled: In the third testcase the "plus" wire simply runs above the "minus" wire twice in sequence. The wires can be untangled by lifting "plus" and moving it higher: In the fourth testcase the "minus" wire runs above the "plus" wire once. The wires cannot be untangled without moving the device itself:
```python from sys import stdin, stdout def fin(): return stdin.readline().strip() def fout(x): stdout.write(str(x) + '\n') stk = [] for i in fin(): if stk and stk[-1] == i: stk.pop() else: stk.append(i) if not stk: fout('Yes') else: print('No') ```
3
687
B
Remainders Game
PROGRAMMING
1,800
[ "chinese remainder theorem", "math", "number theory" ]
null
null
Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer *x* and *k*, and tells Arya *k* but not *x*. Arya have to find the value . There are *n* ancient numbers *c*1,<=*c*2,<=...,<=*c**n* and Pari has to tell Arya if Arya wants. Given *k* and the ancient values, tell us if Arya has a winning strategy independent of value of *x* or not. Formally, is it true that Arya can understand the value for any positive integer *x*? Note, that means the remainder of *x* after dividing it by *y*.
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<= *k*<=≤<=1<=000<=000) — the number of ancient integers and value *k* that is chosen by Pari. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=1<=000<=000).
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of *x*, or "No" (without quotes) otherwise.
[ "4 5\n2 3 5 12\n", "2 7\n2 3\n" ]
[ "Yes\n", "No\n" ]
In the first sample, Arya can understand <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d170efffcde0907ee6bcf32de21051bce0677a2c.png" style="max-width: 100.0%;max-height: 100.0%;"/> because 5 is one of the ancient numbers. In the second sample, Arya can't be sure what <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/57b5f6a96f5db073270dd3ed4266c69299ec701d.png" style="max-width: 100.0%;max-height: 100.0%;"/> is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
1,000
[ { "input": "4 5\n2 3 5 12", "output": "Yes" }, { "input": "2 7\n2 3", "output": "No" }, { "input": "1 6\n8", "output": "No" }, { "input": "2 3\n9 4", "output": "Yes" }, { "input": "4 16\n19 16 13 9", "output": "Yes" }, { "input": "5 10\n5 16 19 9 17", "output": "Yes" }, { "input": "11 95\n31 49 8 139 169 121 71 17 43 29 125", "output": "No" }, { "input": "17 71\n173 43 139 73 169 199 49 81 11 89 131 107 23 29 125 152 17", "output": "No" }, { "input": "13 86\n41 64 17 31 13 97 19 25 81 47 61 37 71", "output": "No" }, { "input": "15 91\n49 121 83 67 128 125 27 113 41 169 149 19 37 29 71", "output": "Yes" }, { "input": "2 4\n2 2", "output": "No" }, { "input": "14 87\n1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619", "output": "No" }, { "input": "12 100\n1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766", "output": "No" }, { "input": "1 994619\n216000", "output": "No" }, { "input": "1 651040\n911250", "output": "No" }, { "input": "1 620622\n60060", "output": "No" }, { "input": "1 1\n559872", "output": "Yes" }, { "input": "88 935089\n967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967", "output": "No" }, { "input": "93 181476\n426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426", "output": "No" }, { "input": "91 4900\n630 630 70 630 910 630 630 630 770 70 770 630 630 770 70 630 70 630 70 630 70 630 630 70 910 630 630 630 770 630 630 630 70 910 70 630 70 630 770 630 630 70 630 770 70 630 70 70 630 630 70 70 70 70 630 70 70 770 910 630 70 630 770 70 910 70 630 910 630 70 770 70 70 630 770 630 70 630 70 70 630 70 630 770 630 70 630 630 70 910 630", "output": "No" }, { "input": "61 531012\n698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 698043 966694 698043 698043 698043 698043 698043 698043 636247 698043 963349 698043 698043 698043 698043 697838 698043 963349 698043 698043 966694 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 963349 698043 698043 698043 698043 963349 698043", "output": "No" }, { "input": "1 216000\n648000", "output": "Yes" }, { "input": "2 8\n4 4", "output": "No" }, { "input": "3 8\n4 4 4", "output": "No" }, { "input": "2 8\n2 4", "output": "No" }, { "input": "3 12\n2 2 3", "output": "No" }, { "input": "10 4\n2 2 2 2 2 2 2 2 2 2", "output": "No" }, { "input": "10 1024\n1 2 4 8 16 32 64 128 256 512", "output": "No" }, { "input": "3 24\n2 2 3", "output": "No" }, { "input": "1 8\n2", "output": "No" }, { "input": "2 9\n3 3", "output": "No" }, { "input": "3 4\n2 2 2", "output": "No" }, { "input": "3 4\n1 2 2", "output": "No" }, { "input": "1 4\n2", "output": "No" }, { "input": "1 100003\n2", "output": "No" }, { "input": "1 2\n12", "output": "Yes" }, { "input": "2 988027\n989018 995006", "output": "Yes" }, { "input": "3 9\n3 3 3", "output": "No" }, { "input": "1 49\n7", "output": "No" }, { "input": "2 600000\n200000 300000", "output": "Yes" }, { "input": "3 8\n2 2 2", "output": "No" }, { "input": "7 510510\n524288 531441 390625 823543 161051 371293 83521", "output": "Yes" }, { "input": "2 30\n6 10", "output": "Yes" }, { "input": "2 27000\n5400 4500", "output": "Yes" }, { "input": "3 8\n1 2 4", "output": "No" }, { "input": "4 16\n2 2 2 2", "output": "No" }, { "input": "2 16\n4 8", "output": "No" }, { "input": "2 8\n4 2", "output": "No" }, { "input": "3 4\n2 2 3", "output": "No" }, { "input": "1 8\n4", "output": "No" }, { "input": "1 999983\n2", "output": "No" }, { "input": "3 16\n2 4 8", "output": "No" }, { "input": "2 216\n12 18", "output": "No" }, { "input": "2 16\n8 8", "output": "No" }, { "input": "2 36\n18 12", "output": "Yes" }, { "input": "2 36\n12 18", "output": "Yes" }, { "input": "2 1000000\n1000000 1000000", "output": "Yes" }, { "input": "3 20\n2 2 5", "output": "No" }, { "input": "1 2\n6", "output": "Yes" }, { "input": "4 4\n2 3 6 5", "output": "No" }, { "input": "1 2\n1", "output": "No" }, { "input": "1 6\n6", "output": "Yes" }, { "input": "2 16\n4 4", "output": "No" }, { "input": "2 3779\n1 2", "output": "No" }, { "input": "2 8\n4 12", "output": "No" }, { "input": "2 24\n4 6", "output": "No" }, { "input": "1 1\n5", "output": "Yes" }, { "input": "10 255255\n1000000 700000 300000 110000 130000 170000 190000 230000 290000 310000", "output": "Yes" }, { "input": "2 1000\n500 2", "output": "No" }, { "input": "4 8\n2 2 2 2", "output": "No" }, { "input": "1 666013\n1", "output": "No" }, { "input": "1 999983\n1", "output": "No" }, { "input": "1 125\n5", "output": "No" }, { "input": "2 32\n4 8", "output": "No" }, { "input": "3 32\n2 4 8", "output": "No" }, { "input": "3 8\n2 4 11", "output": "No" }, { "input": "1 32\n2", "output": "No" }, { "input": "4 4\n2 2 2 2", "output": "No" }, { "input": "8 32\n2 2 2 2 2 2 2 2", "output": "No" }, { "input": "3 24\n2 4 3", "output": "No" }, { "input": "2 4\n2 6", "output": "No" }, { "input": "2 24\n6 4", "output": "No" }, { "input": "1 20998\n2", "output": "No" }, { "input": "1 1\n1", "output": "Yes" }, { "input": "2 20998\n2 10499", "output": "Yes" }, { "input": "1 5\n1", "output": "No" }, { "input": "2 25\n5 5", "output": "No" }, { "input": "5 2\n2 2 2 2 2", "output": "Yes" }, { "input": "3 12\n2 3 6", "output": "No" }, { "input": "1 1\n3", "output": "Yes" }, { "input": "2 16\n8 4", "output": "No" }, { "input": "40 10\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "No" } ]
1,686,042,203
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
46
0
import math def binary_search(l,num,left,right): if(left<=right): mid=left+(right-left)//2 if(num<l[mid]): return binary_search(l,num,left,mid-1) elif(num>l[mid]): return binary_search(l,num,mid+1,right) else: return mid else: return -1 # def find_primes(max,n): # primes=[] # is_prime=[True]*(n+1) # is_prime[0]=is_prime[1]=False # for i in range(2,n+1): # if(is_prime[i]): # for j in range(i*i,n+1,i): # is_prime[j]=False # for i in range(0,n+1): # if(is_prime[i]==True): # primes.append(i) # # print(i) # return primes l1=[int(i) for i in input().split()] x=l1[0] k=l1[1] l2=[int(i) for i in input().split()] result=binary_search(l2,l1[1],0,len(l2)-1) if(result!=-1): print("YES") else: print("NO")
Title: Remainders Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer *x* and *k*, and tells Arya *k* but not *x*. Arya have to find the value . There are *n* ancient numbers *c*1,<=*c*2,<=...,<=*c**n* and Pari has to tell Arya if Arya wants. Given *k* and the ancient values, tell us if Arya has a winning strategy independent of value of *x* or not. Formally, is it true that Arya can understand the value for any positive integer *x*? Note, that means the remainder of *x* after dividing it by *y*. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<= *k*<=≤<=1<=000<=000) — the number of ancient integers and value *k* that is chosen by Pari. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=1<=000<=000). Output Specification: Print "Yes" (without quotes) if Arya has a winning strategy independent of value of *x*, or "No" (without quotes) otherwise. Demo Input: ['4 5\n2 3 5 12\n', '2 7\n2 3\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first sample, Arya can understand <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d170efffcde0907ee6bcf32de21051bce0677a2c.png" style="max-width: 100.0%;max-height: 100.0%;"/> because 5 is one of the ancient numbers. In the second sample, Arya can't be sure what <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/57b5f6a96f5db073270dd3ed4266c69299ec701d.png" style="max-width: 100.0%;max-height: 100.0%;"/> is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
```python import math def binary_search(l,num,left,right): if(left<=right): mid=left+(right-left)//2 if(num<l[mid]): return binary_search(l,num,left,mid-1) elif(num>l[mid]): return binary_search(l,num,mid+1,right) else: return mid else: return -1 # def find_primes(max,n): # primes=[] # is_prime=[True]*(n+1) # is_prime[0]=is_prime[1]=False # for i in range(2,n+1): # if(is_prime[i]): # for j in range(i*i,n+1,i): # is_prime[j]=False # for i in range(0,n+1): # if(is_prime[i]==True): # primes.append(i) # # print(i) # return primes l1=[int(i) for i in input().split()] x=l1[0] k=l1[1] l2=[int(i) for i in input().split()] result=binary_search(l2,l1[1],0,len(l2)-1) if(result!=-1): print("YES") else: print("NO") ```
0
239
A
Two Bags of Potatoes
PROGRAMMING
1,200
[ "greedy", "implementation", "math" ]
null
null
Valera had two bags of potatoes, the first of these bags contains *x* (*x*<=≥<=1) potatoes, and the second — *y* (*y*<=≥<=1) potatoes. Valera — very scattered boy, so the first bag of potatoes (it contains *x* potatoes) Valera lost. Valera remembers that the total amount of potatoes (*x*<=+<=*y*) in the two bags, firstly, was not gerater than *n*, and, secondly, was divisible by *k*. Help Valera to determine how many potatoes could be in the first bag. Print all such possible numbers in ascending order.
The first line of input contains three integers *y*, *k*, *n* (1<=≤<=*y*,<=*k*,<=*n*<=≤<=109; <=≤<=105).
Print the list of whitespace-separated integers — all possible values of *x* in ascending order. You should print each possible value of *x* exactly once. If there are no such values of *x* print a single integer -1.
[ "10 1 10\n", "10 6 40\n" ]
[ "-1\n", "2 8 14 20 26 \n" ]
none
500
[ { "input": "10 1 10", "output": "-1" }, { "input": "10 6 40", "output": "2 8 14 20 26 " }, { "input": "10 1 20", "output": "1 2 3 4 5 6 7 8 9 10 " }, { "input": "1 10000 1000000000", "output": "9999 19999 29999 39999 49999 59999 69999 79999 89999 99999 109999 119999 129999 139999 149999 159999 169999 179999 189999 199999 209999 219999 229999 239999 249999 259999 269999 279999 289999 299999 309999 319999 329999 339999 349999 359999 369999 379999 389999 399999 409999 419999 429999 439999 449999 459999 469999 479999 489999 499999 509999 519999 529999 539999 549999 559999 569999 579999 589999 599999 609999 619999 629999 639999 649999 659999 669999 679999 689999 699999 709999 719999 729999 739999 7499..." }, { "input": "84817 1 33457", "output": "-1" }, { "input": "21 37 99", "output": "16 53 " }, { "input": "78 7 15", "output": "-1" }, { "input": "74 17 27", "output": "-1" }, { "input": "79 23 43", "output": "-1" }, { "input": "32 33 3", "output": "-1" }, { "input": "55 49 44", "output": "-1" }, { "input": "64 59 404", "output": "54 113 172 231 290 " }, { "input": "61 69 820", "output": "8 77 146 215 284 353 422 491 560 629 698 " }, { "input": "17 28 532", "output": "11 39 67 95 123 151 179 207 235 263 291 319 347 375 403 431 459 487 515 " }, { "input": "46592 52 232", "output": "-1" }, { "input": "1541 58 648", "output": "-1" }, { "input": "15946 76 360", "output": "-1" }, { "input": "30351 86 424", "output": "-1" }, { "input": "1 2 37493", "output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257 259 261 263 265 267 269 271 273 275 277 279 281 28..." }, { "input": "1 3 27764", "output": "2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 155 158 161 164 167 170 173 176 179 182 185 188 191 194 197 200 203 206 209 212 215 218 221 224 227 230 233 236 239 242 245 248 251 254 257 260 263 266 269 272 275 278 281 284 287 290 293 296 299 302 305 308 311 314 317 320 323 326 329 332 335 338 341 344 347 350 353 356 359 362 365 368 371 374 377 380 383 386 389 392 395 398 401 404 407 410..." }, { "input": "10 4 9174", "output": "2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 262 266 270 274 278 282 286 290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 362 366 370 374 378 382 386 390 394 398 402 406 410 414 418 422 426 430 434 438 442 446 450 454 458 462 466 470 474 478 482 486 490 494 498 502 506 510 514 518 522 526 530 534 53..." }, { "input": "33 7 4971", "output": "2 9 16 23 30 37 44 51 58 65 72 79 86 93 100 107 114 121 128 135 142 149 156 163 170 177 184 191 198 205 212 219 226 233 240 247 254 261 268 275 282 289 296 303 310 317 324 331 338 345 352 359 366 373 380 387 394 401 408 415 422 429 436 443 450 457 464 471 478 485 492 499 506 513 520 527 534 541 548 555 562 569 576 583 590 597 604 611 618 625 632 639 646 653 660 667 674 681 688 695 702 709 716 723 730 737 744 751 758 765 772 779 786 793 800 807 814 821 828 835 842 849 856 863 870 877 884 891 898 905 912 919..." }, { "input": "981 1 3387", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "386 1 2747", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "123 2 50000", "output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257 259 261 263 265 267 269 271 273 275 277 279 281 28..." }, { "input": "3123 100 10000000", "output": "77 177 277 377 477 577 677 777 877 977 1077 1177 1277 1377 1477 1577 1677 1777 1877 1977 2077 2177 2277 2377 2477 2577 2677 2777 2877 2977 3077 3177 3277 3377 3477 3577 3677 3777 3877 3977 4077 4177 4277 4377 4477 4577 4677 4777 4877 4977 5077 5177 5277 5377 5477 5577 5677 5777 5877 5977 6077 6177 6277 6377 6477 6577 6677 6777 6877 6977 7077 7177 7277 7377 7477 7577 7677 7777 7877 7977 8077 8177 8277 8377 8477 8577 8677 8777 8877 8977 9077 9177 9277 9377 9477 9577 9677 9777 9877 9977 10077 10177 10277 1037..." }, { "input": "2 10000 1000000000", "output": "9998 19998 29998 39998 49998 59998 69998 79998 89998 99998 109998 119998 129998 139998 149998 159998 169998 179998 189998 199998 209998 219998 229998 239998 249998 259998 269998 279998 289998 299998 309998 319998 329998 339998 349998 359998 369998 379998 389998 399998 409998 419998 429998 439998 449998 459998 469998 479998 489998 499998 509998 519998 529998 539998 549998 559998 569998 579998 589998 599998 609998 619998 629998 639998 649998 659998 669998 679998 689998 699998 709998 719998 729998 739998 7499..." }, { "input": "3 10000 1000000000", "output": "9997 19997 29997 39997 49997 59997 69997 79997 89997 99997 109997 119997 129997 139997 149997 159997 169997 179997 189997 199997 209997 219997 229997 239997 249997 259997 269997 279997 289997 299997 309997 319997 329997 339997 349997 359997 369997 379997 389997 399997 409997 419997 429997 439997 449997 459997 469997 479997 489997 499997 509997 519997 529997 539997 549997 559997 569997 579997 589997 599997 609997 619997 629997 639997 649997 659997 669997 679997 689997 699997 709997 719997 729997 739997 7499..." }, { "input": "12312223 10000 1000000000", "output": "7777 17777 27777 37777 47777 57777 67777 77777 87777 97777 107777 117777 127777 137777 147777 157777 167777 177777 187777 197777 207777 217777 227777 237777 247777 257777 267777 277777 287777 297777 307777 317777 327777 337777 347777 357777 367777 377777 387777 397777 407777 417777 427777 437777 447777 457777 467777 477777 487777 497777 507777 517777 527777 537777 547777 557777 567777 577777 587777 597777 607777 617777 627777 637777 647777 657777 667777 677777 687777 697777 707777 717777 727777 737777 7477..." }, { "input": "500000000 1000000000 1000000000", "output": "500000000 " }, { "input": "1 1000000000 1000000000", "output": "999999999 " }, { "input": "10 6 11", "output": "-1" }, { "input": "2 100 10", "output": "-1" }, { "input": "1 100000007 1000000000", "output": "100000006 200000013 300000020 400000027 500000034 600000041 700000048 800000055 900000062 " }, { "input": "1 999999999 1000000000", "output": "999999998 " }, { "input": "100000000 1000000000 1000000000", "output": "900000000 " }, { "input": "11 2 12", "output": "1 " }, { "input": "31 10 39", "output": "-1" }, { "input": "48 6 50", "output": "-1" }, { "input": "500000000 500000000 1000000000", "output": "500000000 " }, { "input": "1 1000000000 999999999", "output": "-1" }, { "input": "4 2 10", "output": "2 4 6 " }, { "input": "1000000000 1 1", "output": "-1" }, { "input": "1000000000 1 100000", "output": "-1" }, { "input": "1000000000 1 10", "output": "-1" }, { "input": "10 5 14", "output": "-1" }, { "input": "500000000 499999999 1000000000", "output": "499999998 " }, { "input": "1 999999997 1000000000", "output": "999999996 " } ]
1,675,833,790
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
92
0
y, k, n = list(map(int, input().split())) x = 0 li = [] while x + y < n: if (x + y) % k == 0: li.append(x) x += 1 if li: print(*li) else: print(-1)
Title: Two Bags of Potatoes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera had two bags of potatoes, the first of these bags contains *x* (*x*<=≥<=1) potatoes, and the second — *y* (*y*<=≥<=1) potatoes. Valera — very scattered boy, so the first bag of potatoes (it contains *x* potatoes) Valera lost. Valera remembers that the total amount of potatoes (*x*<=+<=*y*) in the two bags, firstly, was not gerater than *n*, and, secondly, was divisible by *k*. Help Valera to determine how many potatoes could be in the first bag. Print all such possible numbers in ascending order. Input Specification: The first line of input contains three integers *y*, *k*, *n* (1<=≤<=*y*,<=*k*,<=*n*<=≤<=109; <=≤<=105). Output Specification: Print the list of whitespace-separated integers — all possible values of *x* in ascending order. You should print each possible value of *x* exactly once. If there are no such values of *x* print a single integer -1. Demo Input: ['10 1 10\n', '10 6 40\n'] Demo Output: ['-1\n', '2 8 14 20 26 \n'] Note: none
```python y, k, n = list(map(int, input().split())) x = 0 li = [] while x + y < n: if (x + y) % k == 0: li.append(x) x += 1 if li: print(*li) else: print(-1) ```
0
75
C
Modified GCD
PROGRAMMING
1,600
[ "binary search", "number theory" ]
C. Modified GCD
2
256
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor *d* between two integers *a* and *b* that is in a given range from *low* to *high* (inclusive), i.e. *low*<=≤<=*d*<=≤<=*high*. It is possible that there is no common divisor in the given range. You will be given the two integers *a* and *b*, then *n* queries. Each query is a range from *low* to *high* and you have to answer each query.
The first line contains two integers *a* and *b*, the two integers as described above (1<=≤<=*a*,<=*b*<=≤<=109). The second line contains one integer *n*, the number of queries (1<=≤<=*n*<=≤<=104). Then *n* lines follow, each line contains one query consisting of two integers, *low* and *high* (1<=≤<=*low*<=≤<=*high*<=≤<=109).
Print *n* lines. The *i*-th of them should contain the result of the *i*-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query.
[ "9 27\n3\n1 5\n10 11\n9 11\n" ]
[ "3\n-1\n9\n" ]
none
1,500
[ { "input": "9 27\n3\n1 5\n10 11\n9 11", "output": "3\n-1\n9" }, { "input": "48 72\n2\n8 29\n29 37", "output": "24\n-1" }, { "input": "90 100\n10\n51 61\n6 72\n1 84\n33 63\n37 69\n18 21\n9 54\n49 90\n14 87\n37 90", "output": "-1\n10\n10\n-1\n-1\n-1\n10\n-1\n-1\n-1" }, { "input": "84 36\n1\n18 32", "output": "-1" }, { "input": "90 36\n16\n13 15\n5 28\n11 30\n26 35\n2 8\n19 36\n3 17\n5 14\n4 26\n22 33\n16 33\n18 27\n4 17\n1 2\n29 31\n18 36", "output": "-1\n18\n18\n-1\n6\n-1\n9\n9\n18\n-1\n18\n18\n9\n2\n-1\n18" }, { "input": "84 90\n18\n10 75\n2 40\n30 56\n49 62\n19 33\n5 79\n61 83\n13 56\n73 78\n1 18\n23 35\n14 72\n22 33\n1 21\n8 38\n54 82\n6 80\n57 75", "output": "-1\n6\n-1\n-1\n-1\n6\n-1\n-1\n-1\n6\n-1\n-1\n-1\n6\n-1\n-1\n6\n-1" }, { "input": "84 100\n16\n10 64\n3 61\n19 51\n42 67\n51 68\n12 40\n10 47\n52 53\n37 67\n2 26\n23 47\n17 75\n49 52\n3 83\n63 81\n8 43", "output": "-1\n4\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n4\n-1\n-1\n-1\n4\n-1\n-1" }, { "input": "36 60\n2\n17 25\n16 20", "output": "-1\n-1" }, { "input": "90 100\n8\n55 75\n46 68\n44 60\n32 71\n43 75\n23 79\n47 86\n11 57", "output": "-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1" }, { "input": "90 36\n8\n1 19\n10 12\n14 28\n21 24\n8 8\n33 34\n10 26\n15 21", "output": "18\n-1\n18\n-1\n-1\n-1\n18\n18" }, { "input": "48 80\n19\n1 1\n16 16\n1 16\n16 48\n16 80\n16 1000000000\n1000000000 1000000000\n1 1000000000\n500000000 1000000000\n15 17\n17 17\n15 15\n8 8\n8 15\n8 16\n8 17\n7 17\n7 15\n9 15", "output": "1\n16\n16\n16\n16\n16\n-1\n16\n-1\n16\n-1\n-1\n8\n8\n16\n16\n16\n8\n-1" }, { "input": "31607 999002449\n18\n31607 31607\n31606 31608\n31607 31608\n31606 31607\n31606 31606\n31608 31608\n1 31607\n1 31606\n1 31608\n1 1000000000\n31607 1000000000\n31606 1000000000\n31608 1000000000\n1000000000 1000000000\n1 1\n2 31606\n2 31607\n2 31608", "output": "31607\n31607\n31607\n31607\n-1\n-1\n31607\n1\n31607\n31607\n31607\n31607\n-1\n-1\n1\n-1\n31607\n31607" }, { "input": "999999937 999999929\n12\n999999929 999999937\n1 1\n1 1000000000\n2 1000000000\n1 2\n999999937 999999937\n999999929 999999929\n2 2\n3 3\n1 100\n1 999999937\n1 999999929", "output": "-1\n1\n1\n-1\n1\n-1\n-1\n-1\n-1\n1\n1\n1" } ]
1,654,306,105
2,147,483,647
PyPy 3-64
OK
TESTS
60
468
10,649,600
# 2022-06-04T08:16:23Z """ Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. """ import math import bisect def proc(): def factorize(g): f = set() for i in range(1, int(math.ceil(math.sqrt(g))) + 1): if g % i == 0: f.add(i) f.add(g // i) return sorted(f) def exist(m): bisect.bisect_right(f, m) return False g = math.gcd(a, b) f = list(reversed(factorize(g))) res = [] for low, high in q: ans = -1 for e in f: if low <= e <= high: ans = e break res.append(ans) return res a, b = map(int, input().split()) n = int(input()) q = [] for _ in range(n): low, high = map(int, input().split()) q.append((low, high)) ans = proc() for v in ans: print(v)
Title: Modified GCD Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor *d* between two integers *a* and *b* that is in a given range from *low* to *high* (inclusive), i.e. *low*<=≤<=*d*<=≤<=*high*. It is possible that there is no common divisor in the given range. You will be given the two integers *a* and *b*, then *n* queries. Each query is a range from *low* to *high* and you have to answer each query. Input Specification: The first line contains two integers *a* and *b*, the two integers as described above (1<=≤<=*a*,<=*b*<=≤<=109). The second line contains one integer *n*, the number of queries (1<=≤<=*n*<=≤<=104). Then *n* lines follow, each line contains one query consisting of two integers, *low* and *high* (1<=≤<=*low*<=≤<=*high*<=≤<=109). Output Specification: Print *n* lines. The *i*-th of them should contain the result of the *i*-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Demo Input: ['9 27\n3\n1 5\n10 11\n9 11\n'] Demo Output: ['3\n-1\n9\n'] Note: none
```python # 2022-06-04T08:16:23Z """ Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. """ import math import bisect def proc(): def factorize(g): f = set() for i in range(1, int(math.ceil(math.sqrt(g))) + 1): if g % i == 0: f.add(i) f.add(g // i) return sorted(f) def exist(m): bisect.bisect_right(f, m) return False g = math.gcd(a, b) f = list(reversed(factorize(g))) res = [] for low, high in q: ans = -1 for e in f: if low <= e <= high: ans = e break res.append(ans) return res a, b = map(int, input().split()) n = int(input()) q = [] for _ in range(n): low, high = map(int, input().split()) q.append((low, high)) ans = proc() for v in ans: print(v) ```
3.863164
630
F
Selection of Personnel
PROGRAMMING
1,300
[ "combinatorics", "math" ]
null
null
One company of IT City decided to create a group of innovative developments consisting from 5 to 7 people and hire new employees for it. After placing an advertisment the company received *n* resumes. Now the HR department has to evaluate each possible group composition and select one of them. Your task is to count the number of variants of group composition to evaluate.
The only line of the input contains one integer *n* (7<=≤<=*n*<=≤<=777) — the number of potential employees that sent resumes.
Output one integer — the number of different variants of group composition.
[ "7\n" ]
[ "29" ]
none
0
[ { "input": "7", "output": "29" }, { "input": "8", "output": "92" }, { "input": "9", "output": "246" }, { "input": "10", "output": "582" }, { "input": "321", "output": "66715035255088" }, { "input": "624", "output": "7147161340917624" }, { "input": "666", "output": "11292070960994226" }, { "input": "700", "output": "16017044425409540" }, { "input": "776", "output": "33019955679376860" }, { "input": "777", "output": "33319741730082870" } ]
1,694,340,992
2,147,483,647
PyPy 3-64
OK
TESTS
10
77
1,536,000
from math import factorial a = int(input()) s = ((factorial(a)//(factorial(5)*factorial(a-5)))+(factorial(a)//(factorial(6)*factorial(a-6)))+(factorial(a)//(factorial(7)*factorial(a-7)))) print(s)
Title: Selection of Personnel Time Limit: None seconds Memory Limit: None megabytes Problem Description: One company of IT City decided to create a group of innovative developments consisting from 5 to 7 people and hire new employees for it. After placing an advertisment the company received *n* resumes. Now the HR department has to evaluate each possible group composition and select one of them. Your task is to count the number of variants of group composition to evaluate. Input Specification: The only line of the input contains one integer *n* (7<=≤<=*n*<=≤<=777) — the number of potential employees that sent resumes. Output Specification: Output one integer — the number of different variants of group composition. Demo Input: ['7\n'] Demo Output: ['29'] Note: none
```python from math import factorial a = int(input()) s = ((factorial(a)//(factorial(5)*factorial(a-5)))+(factorial(a)//(factorial(6)*factorial(a-6)))+(factorial(a)//(factorial(7)*factorial(a-7)))) print(s) ```
3
34
A
Reconnaissance 2
PROGRAMMING
800
[ "implementation" ]
A. Reconnaissance 2
2
256
*n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit.
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction.
Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle.
[ "5\n10 12 13 15 10\n", "4\n10 20 30 40\n" ]
[ "5 1\n", "1 2\n" ]
none
500
[ { "input": "5\n10 12 13 15 10", "output": "5 1" }, { "input": "4\n10 20 30 40", "output": "1 2" }, { "input": "6\n744 359 230 586 944 442", "output": "2 3" }, { "input": "5\n826 747 849 687 437", "output": "1 2" }, { "input": "5\n999 999 993 969 999", "output": "1 2" }, { "input": "5\n4 24 6 1 15", "output": "3 4" }, { "input": "2\n511 32", "output": "1 2" }, { "input": "3\n907 452 355", "output": "2 3" }, { "input": "4\n303 872 764 401", "output": "4 1" }, { "input": "10\n684 698 429 694 956 812 594 170 937 764", "output": "1 2" }, { "input": "20\n646 840 437 946 640 564 936 917 487 752 844 734 468 969 674 646 728 642 514 695", "output": "7 8" }, { "input": "30\n996 999 998 984 989 1000 996 993 1000 983 992 999 999 1000 979 992 987 1000 996 1000 1000 989 981 996 995 999 999 989 999 1000", "output": "12 13" }, { "input": "50\n93 27 28 4 5 78 59 24 19 134 31 128 118 36 90 32 32 1 44 32 33 13 31 10 12 25 38 50 25 12 4 22 28 53 48 83 4 25 57 31 71 24 8 7 28 86 23 80 101 58", "output": "16 17" }, { "input": "88\n1000 1000 1000 1000 1000 998 998 1000 1000 1000 1000 999 999 1000 1000 1000 999 1000 997 999 997 1000 999 998 1000 999 1000 1000 1000 999 1000 999 999 1000 1000 999 1000 999 1000 1000 998 1000 1000 1000 998 998 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 999 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 998 1000 1000 998 1000 999 1000 1000 1000 1000", "output": "1 2" }, { "input": "99\n4 4 21 6 5 3 13 2 6 1 3 4 1 3 1 9 11 1 6 17 4 5 20 4 1 9 5 11 3 4 14 1 3 3 1 4 3 5 27 1 1 2 10 7 11 4 19 7 11 6 11 13 3 1 10 7 2 1 16 1 9 4 29 13 2 12 14 2 21 1 9 8 26 12 12 5 2 14 7 8 8 8 9 4 12 2 6 6 7 16 8 14 2 10 20 15 3 7 4", "output": "1 2" }, { "input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438", "output": "86 87" }, { "input": "100\n31 75 86 68 111 27 22 22 26 30 54 163 107 75 160 122 14 23 17 26 27 20 43 58 59 71 21 148 9 32 43 91 133 286 132 70 90 156 84 14 77 93 23 18 13 72 18 131 33 28 72 175 30 86 249 20 14 208 28 57 63 199 6 10 24 30 62 267 43 479 60 28 138 1 45 3 19 47 7 166 116 117 50 140 28 14 95 85 93 43 61 15 2 70 10 51 7 95 9 25", "output": "7 8" }, { "input": "100\n896 898 967 979 973 709 961 968 806 967 896 967 826 975 936 903 986 856 851 931 852 971 786 837 949 978 686 936 952 909 965 749 908 916 943 973 983 975 939 886 964 928 960 976 907 788 994 773 949 871 947 980 945 985 726 981 887 943 907 990 931 874 840 867 948 951 961 904 888 901 976 967 994 921 828 970 972 722 755 970 860 855 914 869 714 899 969 978 898 862 642 939 904 936 819 934 884 983 955 964", "output": "1 2" }, { "input": "100\n994 927 872 970 815 986 952 996 965 1000 877 986 978 999 950 990 936 997 993 960 921 860 895 869 943 998 983 968 973 953 999 990 995 871 853 979 973 963 953 938 997 989 993 964 960 973 946 975 1000 962 920 746 989 957 904 965 920 979 966 961 1000 993 975 952 846 971 991 979 985 969 984 973 956 1000 952 778 983 974 956 927 995 997 980 997 1000 970 960 970 988 983 947 904 935 972 1000 863 992 996 932 967", "output": "81 82" }, { "input": "100\n48 108 63 21 27 8 49 21 75 8 24 42 149 18 8 28 21 18 25 35 59 70 59 33 40 1 67 34 120 82 4 115 72 87 3 15 15 63 37 12 40 27 83 14 38 20 14 58 93 10 31 3 39 6 197 77 54 16 31 146 9 49 14 8 77 82 5 11 80 116 8 61 50 24 7 103 29 11 3 3 1 12 46 24 21 131 39 29 36 2 107 40 16 99 31 41 29 48 17 17", "output": "36 37" } ]
1,627,129,695
2,147,483,647
Python 3
OK
TESTS
20
124
6,963,200
n = int(input()) l=list(map(int , input().split())) m = 10e9 f = 0 e = 0 for i in range(n - 1): s = abs(l[i+1] - l[i]) if s < m: f = i+1 e = i + 2 m = s s = abs(l[-1] - l[0]) if s < m: f = 1 e = n print(f , e)
Title: Reconnaissance 2 Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: *n* soldiers stand in a circle. For each soldier his height *a**i* is known. A reconnaissance unit can be made of such two neighbouring soldiers, whose heights difference is minimal, i.e. |*a**i*<=-<=*a**j*| is minimal. So each of them will be less noticeable with the other. Output any pair of soldiers that can form a reconnaissance unit. Input Specification: The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of soldiers. Then follow the heights of the soldiers in their order in the circle — *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). The soldier heights are given in clockwise or counterclockwise direction. Output Specification: Output two integers — indexes of neighbouring soldiers, who should form a reconnaissance unit. If there are many optimum solutions, output any of them. Remember, that the soldiers stand in a circle. Demo Input: ['5\n10 12 13 15 10\n', '4\n10 20 30 40\n'] Demo Output: ['5 1\n', '1 2\n'] Note: none
```python n = int(input()) l=list(map(int , input().split())) m = 10e9 f = 0 e = 0 for i in range(n - 1): s = abs(l[i+1] - l[i]) if s < m: f = i+1 e = i + 2 m = s s = abs(l[-1] - l[0]) if s < m: f = 1 e = n print(f , e) ```
3.95603
691
A
Fashion in Berland
PROGRAMMING
1,000
[ "implementation" ]
null
null
According to rules of the Berland fashion, a jacket should be fastened by all the buttons except only one, but not necessarily it should be the last one. Also if the jacket has only one button, it should be fastened, so the jacket will not swinging open. You are given a jacket with *n* buttons. Determine if it is fastened in a right way.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of buttons on the jacket. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1). The number *a**i*<==<=0 if the *i*-th button is not fastened. Otherwise *a**i*<==<=1.
In the only line print the word "YES" if the jacket is fastened in a right way. Otherwise print the word "NO".
[ "3\n1 0 1\n", "3\n1 0 0\n" ]
[ "YES\n", "NO\n" ]
none
0
[ { "input": "3\n1 0 1", "output": "YES" }, { "input": "3\n1 0 0", "output": "NO" }, { "input": "3\n1 1 0", "output": "YES" }, { "input": "3\n1 1 1", "output": "NO" }, { "input": "3\n0 0 1", "output": "NO" }, { "input": "3\n0 0 0", "output": "NO" }, { "input": "3\n0 1 1", "output": "YES" }, { "input": "3\n0 1 0", "output": "NO" }, { "input": "2\n0 1", "output": "YES" }, { "input": "2\n1 0", "output": "YES" }, { "input": "2\n0 0", "output": "NO" }, { "input": "2\n1 1", "output": "NO" }, { "input": "1\n1", "output": "YES" }, { "input": "1\n0", "output": "NO" }, { "input": "10\n1 0 1 1 1 1 1 1 1 1", "output": "YES" }, { "input": "5\n1 1 1 1 0", "output": "YES" }, { "input": "4\n1 0 1 0", "output": "NO" }, { "input": "4\n1 1 0 0", "output": "NO" }, { "input": "10\n0 0 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "123\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "124\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "94\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "64\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "34\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "5\n1 1 1 1 1", "output": "NO" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "NO" }, { "input": "231\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "NO" }, { "input": "10\n1 1 0 1 1 1 0 1 1 1", "output": "NO" } ]
1,671,031,228
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
62
0
n=int(input()) a=list(map(int,input().split())) b=a.count(0) if (b>1) or (n==1 and a==[0]): print("NO") else: print("YES")
Title: Fashion in Berland Time Limit: None seconds Memory Limit: None megabytes Problem Description: According to rules of the Berland fashion, a jacket should be fastened by all the buttons except only one, but not necessarily it should be the last one. Also if the jacket has only one button, it should be fastened, so the jacket will not swinging open. You are given a jacket with *n* buttons. Determine if it is fastened in a right way. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of buttons on the jacket. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1). The number *a**i*<==<=0 if the *i*-th button is not fastened. Otherwise *a**i*<==<=1. Output Specification: In the only line print the word "YES" if the jacket is fastened in a right way. Otherwise print the word "NO". Demo Input: ['3\n1 0 1\n', '3\n1 0 0\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n=int(input()) a=list(map(int,input().split())) b=a.count(0) if (b>1) or (n==1 and a==[0]): print("NO") else: print("YES") ```
0
464
B
Restore Cube
PROGRAMMING
2,000
[ "brute force", "geometry" ]
null
null
Peter had a cube with non-zero length of a side. He put the cube into three-dimensional space in such a way that its vertices lay at integer points (it is possible that the cube's sides are not parallel to the coordinate axes). Then he took a piece of paper and wrote down eight lines, each containing three integers — coordinates of cube's vertex (a single line contains coordinates of a single vertex, each vertex is written exactly once), put the paper on the table and left. While Peter was away, his little brother Nick decided to play with the numbers on the paper. In one operation Nick could swap some numbers inside a single line (Nick didn't swap numbers from distinct lines). Nick could have performed any number of such operations. When Peter returned and found out about Nick's mischief, he started recollecting the original coordinates. Help Peter restore the original position of the points or else state that this is impossible and the numbers were initially recorded incorrectly.
Each of the eight lines contains three space-separated integers — the numbers written on the piece of paper after Nick's mischief. All numbers do not exceed 106 in their absolute value.
If there is a way to restore the cube, then print in the first line "YES". In each of the next eight lines print three integers — the restored coordinates of the points. The numbers in the *i*-th output line must be a permutation of the numbers in *i*-th input line. The numbers should represent the vertices of a cube with non-zero length of a side. If there are multiple possible ways, print any of them. If there is no valid way, print "NO" (without the quotes) in the first line. Do not print anything else.
[ "0 0 0\n0 0 1\n0 0 1\n0 0 1\n0 1 1\n0 1 1\n0 1 1\n1 1 1\n", "0 0 0\n0 0 0\n0 0 0\n0 0 0\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n" ]
[ "YES\n0 0 0\n0 0 1\n0 1 0\n1 0 0\n0 1 1\n1 0 1\n1 1 0\n1 1 1\n", "NO\n" ]
none
1,500
[ { "input": "0 0 0\n0 0 1\n0 0 1\n0 0 1\n0 1 1\n0 1 1\n0 1 1\n1 1 1", "output": "YES\n0 0 0\n0 0 1\n0 1 0\n1 0 0\n0 1 1\n1 0 1\n1 1 0\n1 1 1" }, { "input": "0 0 0\n0 0 0\n0 0 0\n0 0 0\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "NO" }, { "input": "0 0 0\n1 0 0\n0 1 0\n1 1 0\n0 0 1\n1 0 1\n0 1 1\n1 1 1", "output": "YES\n0 0 0\n0 0 1\n0 1 0\n0 1 1\n1 0 0\n1 0 1\n1 1 0\n1 1 1" }, { "input": "6 -2 -2\n-5 1 -6\n6 -6 7\n6 3 4\n9 -7 8\n-9 -2 -6\n-9 1 6\n-9 -1 0", "output": "NO" }, { "input": "-5 -3 -8\n-8 8 -5\n-3 3 6\n6 3 8\n-8 6 -3\n8 -8 6\n-3 -5 3\n-5 3 8", "output": "YES\n-8 -5 -3\n-8 -5 8\n3 6 -3\n3 6 8\n-8 6 -3\n-8 6 8\n3 -5 -3\n3 -5 8" }, { "input": "-6 1 3\n-6 1 3\n-5 0 0\n-3 -3 7\n-2 6 6\n0 4 9\n0 4 9\n3 3 10", "output": "YES\n-6 1 3\n3 1 -6\n0 -5 0\n-3 7 -3\n6 -2 6\n0 4 9\n9 4 0\n3 10 3" }, { "input": "-6 -10 -13\n2 -13 -15\n2 -6 -10\n2 2 -15\n6 -1 -13\n6 2 -1\n11 -3 -13\n11 2 -3", "output": "YES\n-13 -10 -6\n-13 2 -15\n2 -10 -6\n2 2 -15\n-13 -1 6\n2 -1 6\n-13 11 -3\n2 11 -3" }, { "input": "-6 -8 0\n-6 4 16\n-6 8 -12\n-6 20 4\n14 -8 0\n14 4 16\n14 8 -12\n14 20 4", "output": "YES\n-8 -6 0\n4 -6 16\n8 -6 -12\n20 -6 4\n-8 14 0\n4 14 16\n8 14 -12\n20 14 4" }, { "input": "5 6 5\n5 3 3\n3 3 3\n5 5 3\n5 3 3\n5 3 3\n5 5 3\n3 5 5", "output": "NO" }, { "input": "5 2 0\n3 -3 -4\n3 -6 0\n4 3 -4\n-1 -2 5\n-6 -3 1\n-5 6 -1\n2 0 6", "output": "NO" }, { "input": "-369 846 805\n-293 846 -369\n729 846 805\n-252 -369 805\n846 -293 729\n805 729 -252\n-252 -369 -293\n729 -293 -252", "output": "YES\n-369 805 846\n-369 -293 846\n729 805 846\n-369 805 -252\n729 -293 846\n729 805 -252\n-369 -293 -252\n729 -293 -252" }, { "input": "-4897 -1234 2265\n-4897 -3800 2265\n-4897 -1234 -301\n-3800 -2331 -301\n-2331 -1234 2265\n-2331 -1234 -301\n-3800 -2331 2265\n-4897 -3800 -301", "output": "YES\n-4897 -1234 2265\n-4897 -3800 2265\n-4897 -1234 -301\n-2331 -3800 -301\n-2331 -1234 2265\n-2331 -1234 -301\n-2331 -3800 2265\n-4897 -3800 -301" }, { "input": "93 68 15\n93 43 23\n40 40 -30\n43 40 23\n93 -2 -5\n68 40 15\n93 40 -30\n40 -2 -5", "output": "YES\n15 68 93\n43 23 93\n-30 40 40\n43 23 40\n-2 -5 93\n15 68 40\n-30 40 93\n-2 -5 40" }, { "input": "887691 577079 -337\n-193088 -342950 -683216\n740176 -59645 -120545\n592743 -30828 -283642\n724594 652051 -193925\n87788 -179853 -845476\n665286 -133780 -846313\n828383 -75309 -786168", "output": "YES\n-337 577079 887691\n-193088 -683216 -342950\n-59645 740176 -120545\n592743 -30828 -283642\n652051 -193925 724594\n-845476 87788 -179853\n-133780 -846313 665286\n-786168 -75309 828383" }, { "input": "-745038 -470013 -245590\n168756 -684402 -45561\n-75879 -670042 -603554\n-168996 -611497 -184954\n-609406 -27512 -217363\n207089 -195060 33124\n-542918 348573 -255696\n229392 -187045 -108360", "output": "YES\n-745038 -470013 -245590\n-684402 -45561 168756\n-603554 -75879 -670042\n-168996 -611497 -184954\n-27512 -217363 -609406\n33124 207089 -195060\n-542918 348573 -255696\n-108360 -187045 229392" }, { "input": "-407872 -56765 -493131\n188018 -394436 -612309\n62413 -209242 162348\n-705817 -294501 -652655\n88703 241800 -871148\n-413679 -990326 -109927\n-533477 360978 -507187\n-275258 386648 43170", "output": "YES\n-493131 -407872 -56765\n-612309 188018 -394436\n162348 -209242 62413\n-294501 -705817 -652655\n241800 88703 -871148\n-413679 -109927 -990326\n360978 -507187 -533477\n43170 386648 -275258" }, { "input": "411586 -316610 -430676\n-305714 -461321 402733\n-451106 423163 -312524\n-339083 407500 -437486\n391156 -440891 -309800\n387070 -332273 -447701\n-468131 -328187 398647\n-334997 419077 -457916", "output": "YES\n-430676 -316610 411586\n-461321 -305714 402733\n-451106 -312524 423163\n-437486 -339083 407500\n-440891 -309800 391156\n-447701 -332273 387070\n-468131 -328187 398647\n-457916 -334997 419077" }, { "input": "-604518 -792421 -794968\n-639604 -845386 -664545\n-668076 -739456 -703162\n-770475 -692569 -880696\n-933661 -784375 -706917\n-774006 -756127 -774766\n-600987 -731410 -898351\n-847933 -827731 -710448", "output": "YES\n-794968 -792421 -604518\n-639604 -845386 -664545\n-703162 -739456 -668076\n-692569 -880696 -770475\n-784375 -933661 -706917\n-756127 -774766 -774006\n-731410 -898351 -600987\n-847933 -827731 -710448" }, { "input": "-83163 759234 174591\n77931 -88533 920334\n72567 974034 158481\n18861 169227 893484\n-61689 8127 839784\n678684 34971 13497\n174597 115521 732384\n77937 255141 812934", "output": "YES\n-83163 174591 759234\n-88533 77931 920334\n72567 158481 974034\n169227 18861 893484\n8127 -61689 839784\n13497 34971 678684\n174597 115521 732384\n77937 255141 812934" }, { "input": "-845276 245666 -196657\n-353213 152573 375200\n-725585 -73510 322004\n-565997 524945 282107\n228911 298862 -938369\n-103564 -126706 -632492\n99377 -50368 -260120\n-143461 471749 -472904", "output": "YES\n-845276 -196657 245666\n-353213 375200 152573\n-725585 322004 -73510\n-565997 282107 524945\n-938369 228911 298862\n-632492 -103564 -126706\n-260120 -50368 99377\n-472904 -143461 471749" }, { "input": "554547 757123 -270279\n935546 -159145 137545\n-160481 19278 -805548\n655167 -983971 121234\n119898 315968 -261101\n833590 -576147 -592458\n-58525 452591 -91856\n-694414 17942 -397724", "output": "YES\n-270279 554547 757123\n137545 -159145 935546\n-805548 19278 -160481\n-983971 121234 655167\n315968 -261101 119898\n-576147 -592458 833590\n-91856 452591 -58525\n-397724 -694414 17942" }, { "input": "36924 92680 350843\n697100 521211 -77688\n-351925 -610088 36924\n867468 -160261 -98984\n-181557 697100 -780456\n-588792 -133444 329547\n207292 -330629 71384\n526732 -759160 499915", "output": "YES\n36924 92680 350843\n697100 -77688 521211\n36924 -610088 -351925\n867468 -98984 -160261\n697100 -780456 -181557\n-133444 -588792 329547\n207292 71384 -330629\n526732 -759160 499915" }, { "input": "-593659 350000 928723\n620619 638757 388513\n620619 -882416 -632172\n600244 312515 -843903\n292140 -535799 -881388\n-940276 -573284 -574312\n330653 696617 -573284\n-265180 658104 -901763", "output": "YES\n-593659 350000 928723\n638757 388513 620619\n-632172 -882416 620619\n600244 -843903 312515\n292140 -535799 -881388\n-940276 -574312 -573284\n330653 696617 -573284\n-901763 658104 -265180" }, { "input": "861017 -462500 -274005\n652263 66796 629450\n232201 -329899 -968706\n497126 89886 993064\n-197575 -694067 -406329\n463768 728693 -836382\n-164771 -429142 519939\n-561466 761497 -42438", "output": "YES\n-462500 -274005 861017\n66796 652263 629450\n232201 -968706 -329899\n993064 89886 497126\n-694067 -406329 -197575\n463768 -836382 728693\n-164771 519939 -429142\n761497 -42438 -561466" }, { "input": "484554 -73939 147289\n333153 -73939 -152694\n-737739 33170 970401\n670418 784537 -73939\n333153 -152694 -737739\n-737739 670418 784537\n33170 -73939 970401\n-737739 484555 147289", "output": "NO" }, { "input": "-37445 372374 21189\n398542 125861 400869\n479373 -209864 -50773\n-364789 163030 67227\n505541 -260117 189198\n374701 -520 335205\n41059 -155444 -236032\n-26688 230533 -63613", "output": "NO" }, { "input": "163459 129764 357112\n277260 476888 633667\n476888 504608 -146791\n163459 633667 277260\n705 476888 781163\n163459 781163 705\n-146791 163459 504608\n357112 129764 476888", "output": "YES\n129764 163459 357112\n277260 476888 633667\n-146791 476888 504608\n277260 163459 633667\n705 476888 781163\n705 163459 781163\n-146791 163459 504608\n129764 476888 357112" }, { "input": "486623 24823 303304\n-389873 -376490 -388969\n170755 -644350 631652\n291143 -838926 -571066\n984320 -169753 36666\n-157910 -911574 643812\n365331 -194393 -49365\n-716998 -37204 292047", "output": "NO" }, { "input": "120639 -932662 -1032\n983000 -56439 15066\n-322992 -369232 -780849\n339080 -136928 -886422\n419570 845049 337026\n900456 201129 -288742\n-700359 578496 274688\n764559 -224350 -564462", "output": "NO" }, { "input": "-223515 128661 119249\n-83250 119249 203469\n278216 128661 -223515\n-298323 268926 278216\n278216 -158058 343734\n119249 -158058 343734\n-83250 278216 203469\n119249 -298323 -391850", "output": "NO" }, { "input": "802442 276413 311941\n132940 -916927 26771\n-629566 336080 371608\n-165395 813416 86438\n-404063 742775 288571\n848944 86438 -200923\n-689233 -344396 -379924\n97412 26771 -881399", "output": "NO" }, { "input": "830446 -93089 -271247\n50376 285279 761701\n509464 371358 90913\n-242554 -825792 165148\n-552177 744367 417385\n-403353 -293940 446078\n-437405 141814 -586870\n101762 55735 -896493", "output": "NO" }, { "input": "-110591 329051 328269\n611888 45432 657925\n493733 776570 273666\n163587 -119250 273667\n392312 557286 877991\n557286 -220671 265008\n713309 173028 -55989\n891924 227630 429690", "output": "NO" }, { "input": "-431644 -468238 -47168\n-152500 38126 -96046\n-507008 604168 -871390\n33597 -320912 410318\n231976 -765065 -282142\n90050 317270 -485921\n-693104 -301158 -245547\n-134816 689462 -299825", "output": "NO" }, { "input": "-1 1 1\n0 1 1\n1 1 0\n1 0 0\n0 1 0\n1 1 1\n0 0 0\n0 0 1", "output": "NO" }, { "input": "-1000000 1000000 1000000\n-1000000 -1000000 -1000000\n-1000000 1000000 -1000000\n1000000 1000000 1000000\n1000000 -1000000 -1000000\n-1000000 1000000 1000000\n-1000000 -1000000 1000000\n1000000 1000000 -1000000", "output": "YES\n-1000000 1000000 1000000\n-1000000 -1000000 -1000000\n-1000000 -1000000 1000000\n1000000 1000000 1000000\n-1000000 1000000 -1000000\n1000000 -1000000 1000000\n1000000 -1000000 -1000000\n1000000 1000000 -1000000" }, { "input": "-1000000 1000000 1000000\n-1000000 1000000 -1000000\n-1000000 1000000 -1000000\n1000000 -1000000 1000000\n1000000 1000000 1000000\n-1000000 -1000000 1000000\n999999 1000000 -1000000\n-1000000 -1000000 -1000000", "output": "NO" }, { "input": "-96608 -96608 100000\n100000 100000 -96608\n100000 -96608 -96608\n-96608 -96608 -96608\n-96608 100000 100000\n100000 100000 100000\n100000 100000 -96608\n-96608 -96608 100000", "output": "YES\n-96608 -96608 100000\n-96608 100000 100000\n-96608 100000 -96608\n-96608 -96608 -96608\n100000 -96608 100000\n100000 100000 100000\n100000 100000 -96608\n100000 -96608 -96608" }, { "input": "65536 0 65536\n65536 0 0\n0 65536 0\n65536 65536 65536\n65536 0 65536\n0 0 0\n0 0 65536\n65536 0 65536", "output": "YES\n0 65536 65536\n0 0 65536\n0 65536 0\n65536 65536 65536\n65536 0 65536\n0 0 0\n65536 0 0\n65536 65536 0" }, { "input": "-524288 -524288 -524288\n-524288 524288 -524288\n-524288 -524288 524288\n-524288 524288 524288\n524288 -524288 -524288\n-524288 524288 524288\n524288 524288 524288\n524288 524288 -524288", "output": "YES\n-524288 -524288 -524288\n-524288 -524288 524288\n-524288 524288 -524288\n-524288 524288 524288\n524288 -524288 -524288\n524288 -524288 524288\n524288 524288 524288\n524288 524288 -524288" }, { "input": "524288 -524288 524288\n-524288 -524288 -524288\n524288 -524288 -524288\n524288 524288 -524288\n524288 -524288 524288\n524288 524288 524288\n-524288 524288 -524288\n-524289 524288 -524288", "output": "NO" }, { "input": "0 0 0\n1 1 1\n2 2 2\n3 3 3\n4 4 4\n5 5 5\n6 6 6\n7 7 7", "output": "NO" }, { "input": "0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0", "output": "NO" }, { "input": "0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0\n0 0 0", "output": "NO" }, { "input": "1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "NO" }, { "input": "0 0 1\n0 0 1\n0 0 1\n0 0 1\n0 0 1\n0 0 1\n0 0 1\n0 0 1", "output": "NO" }, { "input": "0 0 0\n0 0 939177\n0 0 939177\n0 0 939177\n0 939177 939177\n0 939177 939177\n0 939177 939177\n939177 939177 939177", "output": "YES\n0 0 0\n0 0 939177\n0 939177 0\n939177 0 0\n0 939177 939177\n939177 0 939177\n939177 939177 0\n939177 939177 939177" } ]
1,698,264,925
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
15
0
n,m,a,b=map(int,input().split()) print(min(n*a,-n//m*-b,n//m*b+n%m*a))
Title: Restore Cube Time Limit: None seconds Memory Limit: None megabytes Problem Description: Peter had a cube with non-zero length of a side. He put the cube into three-dimensional space in such a way that its vertices lay at integer points (it is possible that the cube's sides are not parallel to the coordinate axes). Then he took a piece of paper and wrote down eight lines, each containing three integers — coordinates of cube's vertex (a single line contains coordinates of a single vertex, each vertex is written exactly once), put the paper on the table and left. While Peter was away, his little brother Nick decided to play with the numbers on the paper. In one operation Nick could swap some numbers inside a single line (Nick didn't swap numbers from distinct lines). Nick could have performed any number of such operations. When Peter returned and found out about Nick's mischief, he started recollecting the original coordinates. Help Peter restore the original position of the points or else state that this is impossible and the numbers were initially recorded incorrectly. Input Specification: Each of the eight lines contains three space-separated integers — the numbers written on the piece of paper after Nick's mischief. All numbers do not exceed 106 in their absolute value. Output Specification: If there is a way to restore the cube, then print in the first line "YES". In each of the next eight lines print three integers — the restored coordinates of the points. The numbers in the *i*-th output line must be a permutation of the numbers in *i*-th input line. The numbers should represent the vertices of a cube with non-zero length of a side. If there are multiple possible ways, print any of them. If there is no valid way, print "NO" (without the quotes) in the first line. Do not print anything else. Demo Input: ['0 0 0\n0 0 1\n0 0 1\n0 0 1\n0 1 1\n0 1 1\n0 1 1\n1 1 1\n', '0 0 0\n0 0 0\n0 0 0\n0 0 0\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n'] Demo Output: ['YES\n0 0 0\n0 0 1\n0 1 0\n1 0 0\n0 1 1\n1 0 1\n1 1 0\n1 1 1\n', 'NO\n'] Note: none
```python n,m,a,b=map(int,input().split()) print(min(n*a,-n//m*-b,n//m*b+n%m*a)) ```
-1