contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
274
A
k-Multiple Free Set
PROGRAMMING
1,500
[ "binary search", "greedy", "sortings" ]
null
null
A *k*-multiple free set is a set of integers where there is no pair of integers where one is equal to another integer multiplied by *k*. That is, there are no two integers *x* and *y* (*x*<=&lt;<=*y*) from the set, such that *y*<==<=*x*·*k*. You're given a set of *n* distinct positive integers. Your task is to find the size of it's largest *k*-multiple free subset.
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109). The next line contains a list of *n* distinct positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). All the numbers in the lines are separated by single spaces.
On the only line of the output print the size of the largest *k*-multiple free subset of {*a*1,<=*a*2,<=...,<=*a**n*}.
[ "6 2\n2 3 6 5 4 10\n" ]
[ "3\n" ]
In the sample input one of the possible maximum 2-multiple free subsets is {4, 5, 6}.
500
[ { "input": "6 2\n2 3 6 5 4 10", "output": "3" }, { "input": "10 2\n1 2 3 4 5 6 7 8 9 10", "output": "6" }, { "input": "1 1\n1", "output": "1" }, { "input": "100 2\n191 17 61 40 77 95 128 88 26 69 79 10 131 106 142 152 68 39 182 53 83 81 6 89 65 148 33 22 5 47 107 121 52 163 150 158 189 118 75 180 177 176 112 167 140 184 29 166 25 46 169 145 187 123 196 18 115 126 155 100 63 58 159 19 173 113 133 60 130 161 76 157 93 199 50 97 15 67 109 164 99 149 3 137 153 136 56 43 103 170 13 183 194 72 9 181 86 30 91 36", "output": "79" }, { "input": "100 3\n13 38 137 24 46 192 33 8 170 141 118 57 198 133 112 176 40 36 91 130 166 72 123 28 82 180 134 52 64 107 97 79 199 184 158 22 181 163 98 7 88 41 73 87 167 109 15 173 153 70 50 119 139 56 17 152 84 161 11 116 31 187 143 196 27 102 132 126 149 63 146 168 67 48 53 120 20 105 155 10 128 47 23 6 94 3 113 65 44 179 189 99 75 34 111 193 60 145 171 77", "output": "87" }, { "input": "12 400000000\n1 400000000 800000000 2 3 4 5 6 7 8 9 10", "output": "10" }, { "input": "3 1\n1 2 3", "output": "3" }, { "input": "1 1\n1000000000", "output": "1" }, { "input": "10 1\n1 100 300 400 500 500000 1000000 10000000 100000000 1000000000", "output": "10" }, { "input": "2 1\n2 1", "output": "2" }, { "input": "2 1000000000\n1 1000000000", "output": "1" }, { "input": "4 1000\n1 1000 1000000 1000000000", "output": "2" }, { "input": "2 2\n1 3", "output": "2" }, { "input": "2 2\n16 8", "output": "1" }, { "input": "3 2\n8 4 2", "output": "2" }, { "input": "5 1\n1 2 3 4 5", "output": "5" }, { "input": "2 2\n500000000 1000000000", "output": "1" }, { "input": "2 2\n4 2", "output": "1" }, { "input": "10 100000000\n1 2 3 4 5 6 7 8 82000 907431936", "output": "10" }, { "input": "8 65538\n65535 65536 65537 65538 65539 131072 262144 196608", "output": "8" }, { "input": "5 2\n10 8 6 4 2", "output": "4" }, { "input": "2 1000000000\n276447232 100000", "output": "2" } ]
1,558,012,455
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
436
8,089,600
n, k = map(int, input().split()) a = list(reversed(sorted(list(map(int, input().split()))))) if len(a) == 1: print(0) else: s = set(a) for i in a: if i in s: if i / k in s: s.remove(i // k) print(len(s))
Title: k-Multiple Free Set Time Limit: None seconds Memory Limit: None megabytes Problem Description: A *k*-multiple free set is a set of integers where there is no pair of integers where one is equal to another integer multiplied by *k*. That is, there are no two integers *x* and *y* (*x*<=&lt;<=*y*) from the set, such that *y*<==<=*x*·*k*. You're given a set of *n* distinct positive integers. Your task is to find the size of it's largest *k*-multiple free subset. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109). The next line contains a list of *n* distinct positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). All the numbers in the lines are separated by single spaces. Output Specification: On the only line of the output print the size of the largest *k*-multiple free subset of {*a*1,<=*a*2,<=...,<=*a**n*}. Demo Input: ['6 2\n2 3 6 5 4 10\n'] Demo Output: ['3\n'] Note: In the sample input one of the possible maximum 2-multiple free subsets is {4, 5, 6}.
```python n, k = map(int, input().split()) a = list(reversed(sorted(list(map(int, input().split()))))) if len(a) == 1: print(0) else: s = set(a) for i in a: if i in s: if i / k in s: s.remove(i // k) print(len(s)) ```
0
0
none
none
none
0
[ "none" ]
null
null
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter.
The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase.
Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "4 3\n1 2 3 4\n", "4 2\n-3 -2 -1 0\n", "5 19\n1 10 20 30 50\n" ]
[ "4\n", "2\n", "1\n" ]
In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
0
[ { "input": "4 3\n1 2 3 4", "output": "4" }, { "input": "4 2\n-3 -2 -1 0", "output": "2" }, { "input": "5 19\n1 10 20 30 50", "output": "1" }, { "input": "10 5\n31 36 43 47 48 50 56 69 71 86", "output": "2" }, { "input": "10 50\n1 4 20 27 65 79 82 83 99 100", "output": "25" }, { "input": "10 90\n24 27 40 41 61 69 73 87 95 97", "output": "120" }, { "input": "100 100\n-98 -97 -96 -93 -92 -91 -90 -87 -86 -84 -81 -80 -79 -78 -76 -75 -73 -71 -69 -67 -65 -64 -63 -62 -61 -54 -51 -50 -49 -48 -46 -45 -44 -37 -36 -33 -30 -28 -27 -16 -15 -13 -12 -10 -9 -7 -6 -5 -4 2 3 5 8 9 10 11 13 14 15 16 17 19 22 24 25 26 27 28 30 31 32 36 40 43 45 46 47 50 51 52 53 58 60 63 69 70 73 78 80 81 82 85 88 89 90 91 95 96 97 99", "output": "79351" }, { "input": "1 14751211\n847188590", "output": "0" }, { "input": "2 1000000000\n-907894512 -289906312", "output": "0" }, { "input": "2 1000000000\n-14348867 1760823", "output": "0" }, { "input": "3 1000000000\n-5 -1 1", "output": "1" } ]
1,646,158,058
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
154
3,379,200
import math def nCr(n,r): f = math.factorial return f(n) / f(r) / f(n-r) nk = input().split() n = int(nk[0]) k = int(nk[1]) arr = list(map(int, input().rstrip().split())) answer = 0 for i in range(n): count = 0 for j in range(i+1,n): if arr[j] - arr[i] > k: break count += 1 answer += nCr(count,3) print(answer)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter. Input Specification: The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase. Output Specification: Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['4 3\n1 2 3 4\n', '4 2\n-3 -2 -1 0\n', '5 19\n1 10 20 30 50\n'] Demo Output: ['4\n', '2\n', '1\n'] Note: In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
```python import math def nCr(n,r): f = math.factorial return f(n) / f(r) / f(n-r) nk = input().split() n = int(nk[0]) k = int(nk[1]) arr = list(map(int, input().rstrip().split())) answer = 0 for i in range(n): count = 0 for j in range(i+1,n): if arr[j] - arr[i] > k: break count += 1 answer += nCr(count,3) print(answer) ```
-1
4
A
Watermelon
PROGRAMMING
800
[ "brute force", "math" ]
A. Watermelon
1
64
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
[ "8\n" ]
[ "YES\n" ]
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
0
[ { "input": "8", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "10", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "53", "output": "NO" }, { "input": "77", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "44", "output": "YES" }, { "input": "98", "output": "YES" }, { "input": "99", "output": "NO" }, { "input": "90", "output": "YES" }, { "input": "67", "output": "NO" }, { "input": "100", "output": "YES" }, { "input": "88", "output": "YES" } ]
1,693,713,210
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
60
0
n=int(inpuut())
Title: Watermelon Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight. Input Specification: The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys. Output Specification: Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case. Demo Input: ['8\n'] Demo Output: ['YES\n'] Note: For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
```python n=int(inpuut()) ```
-1
749
B
Parallelogram is Back
PROGRAMMING
1,200
[ "brute force", "constructive algorithms", "geometry" ]
null
null
Long time ago Alex created an interesting problem about parallelogram. The input data for this problem contained four integer points on the Cartesian plane, that defined the set of vertices of some non-degenerate (positive area) parallelogram. Points not necessary were given in the order of clockwise or counterclockwise traversal. Alex had very nice test for this problem, but is somehow happened that the last line of the input was lost and now he has only three out of four points of the original parallelogram. He remembers that test was so good that he asks you to restore it given only these three points.
The input consists of three lines, each containing a pair of integer coordinates *x**i* and *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000). It's guaranteed that these three points do not lie on the same line and no two of them coincide.
First print integer *k* — the number of ways to add one new integer point such that the obtained set defines some parallelogram of positive area. There is no requirement for the points to be arranged in any special order (like traversal), they just define the set of vertices. Then print *k* lines, each containing a pair of integer — possible coordinates of the fourth point.
[ "0 0\n1 0\n0 1\n" ]
[ "3\n1 -1\n-1 1\n1 1\n" ]
If you need clarification of what parallelogram is, please check Wikipedia page: https://en.wikipedia.org/wiki/Parallelogram
1,000
[ { "input": "0 0\n1 0\n0 1", "output": "3\n1 -1\n-1 1\n1 1" }, { "input": "0 -1\n-1 0\n1 1", "output": "3\n-2 -2\n2 0\n0 2" }, { "input": "-1 -1\n0 1\n1 1", "output": "3\n-2 -1\n0 -1\n2 3" }, { "input": "1000 1000\n-1000 -1000\n-1000 1000", "output": "3\n1000 -1000\n1000 3000\n-3000 -1000" }, { "input": "-1000 1000\n1000 -1000\n-1000 -1000", "output": "3\n1000 1000\n-3000 1000\n1000 -3000" }, { "input": "-4 -5\n7 10\n3 -10", "output": "3\n0 15\n-8 -25\n14 5" }, { "input": "-86 25\n-55 18\n58 24", "output": "3\n-199 19\n27 31\n89 17" }, { "input": "-301 -397\n192 317\n-98 729", "output": "3\n-11 -809\n-591 15\n395 1443" }, { "input": "1000 1000\n999 1000\n-1000 -1000", "output": "3\n2999 3000\n-999 -1000\n-1001 -1000" }, { "input": "-1000 0\n999 0\n1000 1", "output": "3\n-1001 -1\n-999 1\n2999 1" }, { "input": "-1000 1000\n1000 -1000\n0 1", "output": "3\n0 -1\n-2000 2001\n2000 -1999" }, { "input": "1000 -1000\n1000 1000\n-1000 0", "output": "3\n3000 0\n-1000 -2000\n-1000 2000" }, { "input": "-1000 -1000\n-1 -1000\n-1000 -2", "output": "3\n-1 -1998\n-1999 -2\n-1 -2" }, { "input": "0 -1000\n0 1000\n-1 -1000", "output": "3\n1 1000\n-1 -3000\n-1 1000" }, { "input": "0 -1000\n0 1000\n1 -1000", "output": "3\n-1 1000\n1 -3000\n1 1000" }, { "input": "9 5\n-6 6\n8 -8", "output": "3\n-5 19\n23 -9\n-7 -7" }, { "input": "5 0\n-7 -7\n-3 3", "output": "3\n1 -10\n9 10\n-15 -4" }, { "input": "1 -1\n1 7\n2 9", "output": "3\n0 -3\n2 1\n2 17" }, { "input": "-7 -9\n1 -10\n4 8", "output": "3\n-10 -27\n-4 9\n12 7" }, { "input": "10 3\n4 -9\n-8 -2", "output": "3\n22 -4\n-2 10\n-14 -14" }, { "input": "6 -5\n4 -4\n-6 5", "output": "3\n16 -14\n-4 4\n-8 6" }, { "input": "2 7\n8 9\n-5 4", "output": "3\n15 12\n-11 2\n1 6" }, { "input": "-6 2\n-10 -7\n9 -6", "output": "3\n-25 1\n13 3\n5 -15" }, { "input": "-6 -23\n-68 -8\n-63 71", "output": "3\n-11 -102\n-1 56\n-125 86" }, { "input": "-11 -61\n56 9\n-57 46", "output": "3\n102 -98\n-124 -24\n10 116" }, { "input": "-17 0\n-95 26\n-25 -54", "output": "3\n-87 80\n53 -80\n-103 -28" }, { "input": "-22 -38\n-70 -58\n-19 21", "output": "3\n-73 -117\n29 41\n-67 1" }, { "input": "73 -2\n79 -16\n13 -4", "output": "3\n139 -14\n7 10\n19 -18" }, { "input": "-33 60\n3 0\n-57 97", "output": "3\n27 -37\n-93 157\n-21 37" }, { "input": "-38 22\n53 -83\n-50 -28", "output": "3\n65 -33\n-141 77\n41 -133" }, { "input": "57 83\n-24 -66\n-19 -53", "output": "3\n52 70\n62 96\n-100 -202" }, { "input": "21 185\n966 -167\n-291 -804", "output": "3\n1278 822\n-1236 -452\n654 -1156" }, { "input": "-917 -272\n-285 -579\n318 -437", "output": "3\n-1520 -414\n-314 -130\n950 -744" }, { "input": "-969 -199\n766 -179\n626 -372", "output": "3\n-829 -6\n-1109 -392\n2361 -352" }, { "input": "980 -656\n-485 -591\n-766 880", "output": "3\n1261 -2127\n699 815\n-2231 945" }, { "input": "928 1\n-319 111\n428 -754", "output": "3\n181 866\n1675 -864\n-819 -644" }, { "input": "-10 658\n732 -301\n735 197", "output": "3\n-13 160\n-7 1156\n1477 -762" }, { "input": "-948 201\n-519 -713\n459 564", "output": "3\n-1926 -1076\n30 1478\n888 -350" }, { "input": "-114 -28\n532 573\n766 931", "output": "3\n-348 -386\n120 330\n1412 1532" } ]
1,698,973,987
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; //Fast and foriuos typing: typedef long long ll; //Constants: const int MOD = 1000000007; const ll INF = 1e18; int main(){ ios_base::sync_with_stdio(0); cin.tie(0); //freopen(".in", "r", stdin); //freopen(".out", "w", stdout); map<int,int> a,b; set<pair<int,int>> control; for(int i=0; i<3; i++){ int x, y; cin>>x>>y; control.insert({x,y}); a[x]++; b[y]++; } set<pair<int,int>> ans; for(auto x : a){ for(auto y : b){ pair<int,int> act = {x.first,y.first}; if(!control.count(act)){ ans.insert(act); } } } int dist; for(auto par1 : control){ for(auto par2 : control){ if(par1.first == par2.first && par1.second != par2.second){ dist = abs(par1.second-par2.second); } } } for(auto par1 : control){ // cout<<par1.first+dist<<" "<<par1.second<<'\n'; // cout<<par1.first-dist<<" "<<par1.second<<'\n'; // cout<<par1.first<<" "<<par1.second+dist<<'\n'; // cout<<par1.first<<" "<<par1.second-dist<<'\n'; if(!control.count({par1.first+dist,par1.second}) && !ans.count({par1.first+dist,par1.second}) && b[par1.second] == 1){ ans.insert({par1.first+dist,par1.second}); } if(!control.count({par1.first-dist,par1.second}) && !ans.count({par1.first-dist,par1.second}) && b[par1.second] == 1){ ans.insert({par1.first-dist,par1.second}); } if(!control.count({par1.first,par1.second+dist}) && !ans.count({par1.first,par1.second+dist}) && a[par1.first]==1){ ans.insert({par1.first,par1.second+dist}); } if(!control.count({par1.first,par1.second-dist}) && !ans.count({par1.first,par1.second-dist}) && a[par1.first]==1){ ans.insert({par1.first,par1.second-dist}); } } cout<<"3\n"; for(auto par : ans){ cout<<par.first<<" "<<par.second<<'\n'; } }
Title: Parallelogram is Back Time Limit: None seconds Memory Limit: None megabytes Problem Description: Long time ago Alex created an interesting problem about parallelogram. The input data for this problem contained four integer points on the Cartesian plane, that defined the set of vertices of some non-degenerate (positive area) parallelogram. Points not necessary were given in the order of clockwise or counterclockwise traversal. Alex had very nice test for this problem, but is somehow happened that the last line of the input was lost and now he has only three out of four points of the original parallelogram. He remembers that test was so good that he asks you to restore it given only these three points. Input Specification: The input consists of three lines, each containing a pair of integer coordinates *x**i* and *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000). It's guaranteed that these three points do not lie on the same line and no two of them coincide. Output Specification: First print integer *k* — the number of ways to add one new integer point such that the obtained set defines some parallelogram of positive area. There is no requirement for the points to be arranged in any special order (like traversal), they just define the set of vertices. Then print *k* lines, each containing a pair of integer — possible coordinates of the fourth point. Demo Input: ['0 0\n1 0\n0 1\n'] Demo Output: ['3\n1 -1\n-1 1\n1 1\n'] Note: If you need clarification of what parallelogram is, please check Wikipedia page: https://en.wikipedia.org/wiki/Parallelogram
```python #include <bits/stdc++.h> using namespace std; //Fast and foriuos typing: typedef long long ll; //Constants: const int MOD = 1000000007; const ll INF = 1e18; int main(){ ios_base::sync_with_stdio(0); cin.tie(0); //freopen(".in", "r", stdin); //freopen(".out", "w", stdout); map<int,int> a,b; set<pair<int,int>> control; for(int i=0; i<3; i++){ int x, y; cin>>x>>y; control.insert({x,y}); a[x]++; b[y]++; } set<pair<int,int>> ans; for(auto x : a){ for(auto y : b){ pair<int,int> act = {x.first,y.first}; if(!control.count(act)){ ans.insert(act); } } } int dist; for(auto par1 : control){ for(auto par2 : control){ if(par1.first == par2.first && par1.second != par2.second){ dist = abs(par1.second-par2.second); } } } for(auto par1 : control){ // cout<<par1.first+dist<<" "<<par1.second<<'\n'; // cout<<par1.first-dist<<" "<<par1.second<<'\n'; // cout<<par1.first<<" "<<par1.second+dist<<'\n'; // cout<<par1.first<<" "<<par1.second-dist<<'\n'; if(!control.count({par1.first+dist,par1.second}) && !ans.count({par1.first+dist,par1.second}) && b[par1.second] == 1){ ans.insert({par1.first+dist,par1.second}); } if(!control.count({par1.first-dist,par1.second}) && !ans.count({par1.first-dist,par1.second}) && b[par1.second] == 1){ ans.insert({par1.first-dist,par1.second}); } if(!control.count({par1.first,par1.second+dist}) && !ans.count({par1.first,par1.second+dist}) && a[par1.first]==1){ ans.insert({par1.first,par1.second+dist}); } if(!control.count({par1.first,par1.second-dist}) && !ans.count({par1.first,par1.second-dist}) && a[par1.first]==1){ ans.insert({par1.first,par1.second-dist}); } } cout<<"3\n"; for(auto par : ans){ cout<<par.first<<" "<<par.second<<'\n'; } } ```
-1
348
A
Mafia
PROGRAMMING
1,600
[ "binary search", "math", "sortings" ]
null
null
One day *n* friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other *n*<=-<=1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the *i*-th person wants to play *a**i* rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
The first line contains integer *n* (3<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the *i*-th number in the list is the number of rounds the *i*-th person wants to play.
In a single line print a single integer — the minimum number of game rounds the friends need to let the *i*-th person play at least *a**i* rounds. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "3\n3 2 2\n", "4\n2 2 2 2\n" ]
[ "4\n", "3\n" ]
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game).
500
[ { "input": "3\n3 2 2", "output": "4" }, { "input": "4\n2 2 2 2", "output": "3" }, { "input": "7\n9 7 7 8 8 7 8", "output": "9" }, { "input": "10\n13 12 10 13 13 14 10 10 12 12", "output": "14" }, { "input": "10\n94 96 91 95 99 94 96 92 95 99", "output": "106" }, { "input": "100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 102 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305", "output": "1000" }, { "input": "3\n1 1 1", "output": "2" }, { "input": "30\n94 93 90 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96", "output": "100" }, { "input": "5\n1000000000 5 5 4 4", "output": "1000000000" }, { "input": "3\n1 2 1", "output": "2" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "4\n1 2 3 4", "output": "4" }, { "input": "3\n1000000000 1000000000 10000000", "output": "1005000000" }, { "input": "3\n677876423 834056477 553175531", "output": "1032554216" }, { "input": "5\n1000000000 1 1 1 1", "output": "1000000000" }, { "input": "4\n1000000000 1000000000 1000000000 1000000000", "output": "1333333334" }, { "input": "3\n4 10 11", "output": "13" }, { "input": "5\n1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1250000000" } ]
1,633,779,712
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
124
20,172,800
n = int(input()) a = list(map(int, input().split())) print((sum(a) // (n - 1)) + 1) """ 2 3 5 7 2 s p p p p s p p p p s p p p p s p p p s p p p s p p p s p p """
Title: Mafia Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day *n* friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other *n*<=-<=1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the *i*-th person wants to play *a**i* rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want? Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the *i*-th number in the list is the number of rounds the *i*-th person wants to play. Output Specification: In a single line print a single integer — the minimum number of game rounds the friends need to let the *i*-th person play at least *a**i* rounds. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['3\n3 2 2\n', '4\n2 2 2 2\n'] Demo Output: ['4\n', '3\n'] Note: You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game).
```python n = int(input()) a = list(map(int, input().split())) print((sum(a) // (n - 1)) + 1) """ 2 3 5 7 2 s p p p p s p p p p s p p p p s p p p s p p p s p p p s p p """ ```
0
540
A
Combination Lock
PROGRAMMING
800
[ "implementation" ]
null
null
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
[ "5\n82195\n64723\n" ]
[ "13\n" ]
In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "5\n82195\n64723", "output": "13" }, { "input": "12\n102021090898\n010212908089", "output": "16" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "10\n0728592530\n1362615763", "output": "27" }, { "input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746", "output": "245" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "3\n607\n684", "output": "5" }, { "input": "4\n0809\n0636", "output": "8" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762280548\n9519431339078678836940020", "output": "72" }, { "input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024", "output": "305" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762285484\n9519431339078678836940202", "output": "74" }, { "input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831", "output": "357" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8378525987476228048406972\n9194339078883694020217816", "output": "55" }, { "input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599", "output": "274" }, { "input": "1\n0\n0", "output": "0" }, { "input": "1\n7\n7", "output": "0" }, { "input": "1\n0\n5", "output": "5" }, { "input": "1\n2\n7", "output": "5" }, { "input": "1\n7\n9", "output": "2" }, { "input": "1\n9\n7", "output": "2" }, { "input": "1\n2\n9", "output": "3" }, { "input": "1\n9\n2", "output": "3" }, { "input": "25\n3164978461316464614169874\n9413979197249127496597357", "output": "66" }, { "input": "4\n9999\n9999", "output": "0" }, { "input": "2\n11\n11", "output": "0" } ]
1,671,371,012
2,147,483,647
Python 3
OK
TESTS
43
46
0
n = int(input()) a = [int(x) for x in input()] b = [int(y) for y in input()] count = 0 for i in range(n): if a[i]!=b[i]: if abs(a[i]-b[i])<=4: count += abs(a[i]-b[i]) else: count += 10- abs(a[i]-b[i]) print(count)
Title: Combination Lock Time Limit: None seconds Memory Limit: None megabytes Problem Description: Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock. Output Specification: Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock. Demo Input: ['5\n82195\n64723\n'] Demo Output: ['13\n'] Note: In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n = int(input()) a = [int(x) for x in input()] b = [int(y) for y in input()] count = 0 for i in range(n): if a[i]!=b[i]: if abs(a[i]-b[i])<=4: count += abs(a[i]-b[i]) else: count += 10- abs(a[i]-b[i]) print(count) ```
3
298
A
Snow Footprints
PROGRAMMING
1,300
[ "greedy", "implementation" ]
null
null
There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints.
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists.
Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them.
[ "9\n..RRLL...\n", "11\n.RRRLLLLL..\n" ]
[ "3 4\n", "7 5\n" ]
The first test sample is the one in the picture.
500
[ { "input": "11\n.RRRLLLLL..", "output": "7 5" }, { "input": "4\n.RL.", "output": "3 2" }, { "input": "3\n.L.", "output": "2 1" }, { "input": "3\n.R.", "output": "2 3" } ]
1,680,118,902
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
n = int(input()) s = input() fr = lr = fl = ll = -1 for i in range(n): if s[i] == 'R': if fr < 0: fr = i lr = i if s[i] == 'L': if fl < 0: fl = i ll = i if fr == -1: print(ll+1, fl+1) elif fl == -1: print(fr+1, lr+1) else: print(ll+1, lr+1)
Title: Snow Footprints Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one. At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road. You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints. Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000). The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint). It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists. Output Specification: Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them. Demo Input: ['9\n..RRLL...\n', '11\n.RRRLLLLL..\n'] Demo Output: ['3 4\n', '7 5\n'] Note: The first test sample is the one in the picture.
```python n = int(input()) s = input() fr = lr = fl = ll = -1 for i in range(n): if s[i] == 'R': if fr < 0: fr = i lr = i if s[i] == 'L': if fl < 0: fl = i ll = i if fr == -1: print(ll+1, fl+1) elif fl == -1: print(fr+1, lr+1) else: print(ll+1, lr+1) ```
0
5
A
Chat Servers Outgoing Traffic
PROGRAMMING
1,000
[ "implementation" ]
A. Chat Server's Outgoing Traffic
1
64
Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands: - Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command). Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands. Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message. As Polycarp has no time, he is asking for your help in solving this problem.
Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following: - +&lt;name&gt; for 'Add' command. - -&lt;name&gt; for 'Remove' command. - &lt;sender_name&gt;:&lt;message_text&gt; for 'Send' command. &lt;name&gt; and &lt;sender_name&gt; is a non-empty sequence of Latin letters and digits. &lt;message_text&gt; can contain letters, digits and spaces, but can't start or end with a space. &lt;message_text&gt; can be an empty line. It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc. All names are case-sensitive.
Print a single number — answer to the problem.
[ "+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n", "+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n" ]
[ "9\n", "14\n" ]
none
0
[ { "input": "+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate", "output": "9" }, { "input": "+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate", "output": "14" }, { "input": "+Dmitry\n+Mike\nDmitry:All letters will be used\nDmitry:qwertyuiopasdfghjklzxcvbnm QWERTYUIOPASDFGHJKLZXCVBNM\nDmitry:And digits too\nDmitry:1234567890 0987654321\n-Dmitry", "output": "224" }, { "input": "+Dmitry\n+Mike\n+Kate\nDmitry:", "output": "0" }, { "input": "+Dmitry\nDmitry:No phrases with spaces at the beginning and at the end\n+Mike\nDmitry:spaces spaces\n-Dmitry", "output": "86" }, { "input": "+XqD\n+aT537\nXqD:x6ZPjMR1DDKG2\nXqD:lLCriywPnB\n-XqD", "output": "46" }, { "input": "+8UjgAJ\n8UjgAJ:02hR7UBc1tqqfL\n-8UjgAJ\n+zdi\n-zdi", "output": "14" }, { "input": "+6JPKkgXDrA\n+j6JHjv70An\n+QGtsceK0zJ\n6JPKkgXDrA:o4\n+CSmwi9zDra\nQGtsceK0zJ:Zl\nQGtsceK0zJ:0\nj6JHjv70An:7\nj6JHjv70An:B\nQGtsceK0zJ:OO", "output": "34" }, { "input": "+1aLNq9S7uLV\n-1aLNq9S7uLV\n+O9ykq3xDJv\n-O9ykq3xDJv\n+54Yq1xJq14F\n+0zJ5Vo0RDZ\n-54Yq1xJq14F\n-0zJ5Vo0RDZ\n+lxlH7sdolyL\n-lxlH7sdolyL", "output": "0" }, { "input": "+qlHEc2AuYy\nqlHEc2AuYy:YYRwD0 edNZgpE nGfOguRWnMYpTpGUVM aXDKGXo1Gv1tHL9\nqlHEc2AuYy:yvh3GsPcImqrvoUcBNQcP6ezwpU0 xAVltaKZp94VKiNao\nqlHEc2AuYy:zuCO6Opey L eu7lTwysaSk00zjpv zrDfbt8l hpHfu\n+pErDMxgVgh\nqlHEc2AuYy:I1FLis mmQbZtd8Ui7y 1vcax6yZBMhVRdD6Ahlq7MNCw\nqlHEc2AuYy:lz MFUNJZhlqBYckHUDlNhLiEkmecRh1o0t7alXBvCRVEFVx\npErDMxgVgh:jCyMbu1dkuEj5TzbBOjyUhpfC50cL8R900Je3R KxRgAI dT\nqlHEc2AuYy:62b47eabo2hf vSUD7KioN ZHki6WB6gh3u GKv5rgwyfF\npErDMxgVgh:zD5 9 ympl4wR gy7a7eAGAn5xVdGP9FbL6hRCZAR6O4pT6zb", "output": "615" }, { "input": "+adabacaba0", "output": "0" }, { "input": "+acabadab\n+caba0aba", "output": "0" }, { "input": "+dabaca\n-dabaca\n+aba0ab", "output": "0" }, { "input": "+cab\n+abac\n-abac\n+baca", "output": "0" }, { "input": "+cabadabac\n-cabadabac\n+abacaba1ab\n-abacaba1ab\n+ba0abaca", "output": "0" }, { "input": "+adabacaba\n-adabacaba\n+aca\naca:caba\n-aca\n+bacaba\n-bacaba\n+aba\n-aba\n+bad", "output": "4" }, { "input": "+acabadab\n-acabadab\n+aba0abacab\n+baca\n+abacaba0ab\n-baca\n-abacaba0ab\n-aba0abacab\n+cab\n-cab\n+abacabada\n-abacabada\n+badabaca\n-badabaca\n+badaba", "output": "0" }, { "input": "+badabac\nbadabac:abacabad\n-badabac\n+0ab\n-0ab\n+dabacab\n-dabacab\n+a0ab\n-a0ab\n+0abaca\n-0abaca\n+dabac\n-dabac\n+abaca\n-abaca\n+bacabada\n-bacabada\n+aca\n-aca\n+abadabaca\n-abadabaca\n+acaba\n-acaba\n+abacabadab\n-abacabadab", "output": "8" } ]
1,588,327,988
2,147,483,647
Python 3
OK
TESTS
30
218
307,200
n = 0 per = [] l = 0 while n != 100: try: enter = input() except EOFError as e: break for i in range(len(enter)): if enter[0] == '+': per.append(enter[1:]) break elif enter[0] == '-': per.remove(enter[1:]) break elif ':' in enter: _, message = enter.split(':') l += len(message) * len(per) break if enter == '': break n += 1 print(l)
Title: Chat Servers Outgoing Traffic Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Polycarp is working on a new project called "Polychat". Following modern tendencies in IT, he decided, that this project should contain chat as well. To achieve this goal, Polycarp has spent several hours in front of his laptop and implemented a chat server that can process three types of commands: - Include a person to the chat ('Add' command). - Remove a person from the chat ('Remove' command). - Send a message from a person to all people, who are currently in the chat, including the one, who sends the message ('Send' command). Now Polycarp wants to find out the amount of outgoing traffic that the server will produce while processing a particular set of commands. Polycarp knows that chat server sends no traffic for 'Add' and 'Remove' commands. When 'Send' command is processed, server sends *l* bytes to each participant of the chat, where *l* is the length of the message. As Polycarp has no time, he is asking for your help in solving this problem. Input Specification: Input file will contain not more than 100 commands, each in its own line. No line will exceed 100 characters. Formats of the commands will be the following: - +&lt;name&gt; for 'Add' command. - -&lt;name&gt; for 'Remove' command. - &lt;sender_name&gt;:&lt;message_text&gt; for 'Send' command. &lt;name&gt; and &lt;sender_name&gt; is a non-empty sequence of Latin letters and digits. &lt;message_text&gt; can contain letters, digits and spaces, but can't start or end with a space. &lt;message_text&gt; can be an empty line. It is guaranteed, that input data are correct, i.e. there will be no 'Add' command if person with such a name is already in the chat, there will be no 'Remove' command if there is no person with such a name in the chat etc. All names are case-sensitive. Output Specification: Print a single number — answer to the problem. Demo Input: ['+Mike\nMike:hello\n+Kate\n+Dmitry\n-Dmitry\nKate:hi\n-Kate\n', '+Mike\n-Mike\n+Mike\nMike:Hi I am here\n-Mike\n+Kate\n-Kate\n'] Demo Output: ['9\n', '14\n'] Note: none
```python n = 0 per = [] l = 0 while n != 100: try: enter = input() except EOFError as e: break for i in range(len(enter)): if enter[0] == '+': per.append(enter[1:]) break elif enter[0] == '-': per.remove(enter[1:]) break elif ':' in enter: _, message = enter.split(':') l += len(message) * len(per) break if enter == '': break n += 1 print(l) ```
3.888711
676
A
Nicholas and Permutation
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*. Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation. The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position.
Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap.
[ "5\n4 5 1 3 2\n", "7\n1 6 5 3 4 7 2\n", "6\n6 5 4 3 2 1\n" ]
[ "3\n", "6\n", "5\n" ]
In the first sample, one may obtain the optimal answer by swapping elements 1 and 2. In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2. In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
500
[ { "input": "5\n4 5 1 3 2", "output": "3" }, { "input": "7\n1 6 5 3 4 7 2", "output": "6" }, { "input": "6\n6 5 4 3 2 1", "output": "5" }, { "input": "2\n1 2", "output": "1" }, { "input": "2\n2 1", "output": "1" }, { "input": "3\n2 3 1", "output": "2" }, { "input": "4\n4 1 3 2", "output": "3" }, { "input": "5\n1 4 5 2 3", "output": "4" }, { "input": "6\n4 6 3 5 2 1", "output": "5" }, { "input": "7\n1 5 3 6 2 4 7", "output": "6" }, { "input": "100\n76 70 67 54 40 1 48 63 64 36 42 90 99 27 47 17 93 7 13 84 16 57 74 5 83 61 19 56 52 92 38 91 82 79 34 66 71 28 37 98 35 94 77 53 73 10 26 80 15 32 8 81 3 95 44 46 72 6 33 11 21 85 4 30 24 51 49 96 87 55 14 31 12 60 45 9 29 22 58 18 88 2 50 59 20 86 23 41 100 39 62 68 69 97 78 43 25 89 65 75", "output": "94" }, { "input": "8\n4 5 3 8 6 7 1 2", "output": "6" }, { "input": "9\n6 8 5 3 4 7 9 2 1", "output": "8" }, { "input": "10\n8 7 10 1 2 3 4 6 5 9", "output": "7" }, { "input": "11\n5 4 6 9 10 11 7 3 1 2 8", "output": "8" }, { "input": "12\n3 6 7 8 9 10 12 5 4 2 11 1", "output": "11" }, { "input": "13\n8 4 3 7 5 11 9 1 10 2 13 12 6", "output": "10" }, { "input": "14\n6 10 13 9 7 1 12 14 3 2 5 4 11 8", "output": "8" }, { "input": "15\n3 14 13 12 7 2 4 11 15 1 8 6 5 10 9", "output": "9" }, { "input": "16\n11 6 9 8 7 14 12 13 10 15 2 5 3 1 4 16", "output": "15" }, { "input": "17\n13 12 5 3 9 16 8 14 2 4 10 1 6 11 7 15 17", "output": "16" }, { "input": "18\n8 6 14 17 9 11 15 13 5 3 18 1 2 7 12 16 4 10", "output": "11" }, { "input": "19\n12 19 3 11 15 6 18 14 5 10 2 13 9 7 4 8 17 16 1", "output": "18" }, { "input": "20\n15 17 10 20 7 2 16 9 13 6 18 5 19 8 11 14 4 12 3 1", "output": "19" }, { "input": "21\n1 9 14 18 13 12 11 20 16 2 4 19 15 7 6 17 8 5 3 10 21", "output": "20" }, { "input": "22\n8 3 17 4 16 21 14 11 10 15 6 18 13 12 22 20 5 2 9 7 19 1", "output": "21" }, { "input": "23\n1 23 11 20 9 3 12 4 7 17 5 15 2 10 18 16 8 22 14 13 19 21 6", "output": "22" }, { "input": "24\n2 10 23 22 20 19 18 16 11 12 15 17 21 8 24 13 1 5 6 7 14 3 9 4", "output": "16" }, { "input": "25\n12 13 22 17 1 18 14 5 21 2 10 4 3 23 11 6 20 8 24 16 15 19 9 7 25", "output": "24" }, { "input": "26\n6 21 20 16 26 17 11 2 24 4 1 12 14 8 25 7 15 10 22 5 13 18 9 23 19 3", "output": "21" }, { "input": "27\n20 14 18 10 5 3 9 4 24 22 21 27 17 15 26 2 23 7 12 11 6 8 19 25 16 13 1", "output": "26" }, { "input": "28\n28 13 16 6 1 12 4 27 22 7 18 3 21 26 25 11 5 10 20 24 19 15 14 8 23 17 9 2", "output": "27" }, { "input": "29\n21 11 10 25 2 5 9 16 29 8 17 4 15 13 6 22 7 24 19 12 18 20 1 3 23 28 27 14 26", "output": "22" }, { "input": "30\n6 19 14 22 26 17 27 8 25 3 24 30 4 18 23 16 9 13 29 20 15 2 5 11 28 12 1 10 21 7", "output": "26" }, { "input": "31\n29 13 26 27 9 28 2 16 30 21 12 11 3 31 23 6 22 20 1 5 14 24 19 18 8 4 10 17 15 25 7", "output": "18" }, { "input": "32\n15 32 11 3 18 23 19 14 5 8 6 21 13 24 25 4 16 9 27 20 17 31 2 22 7 12 30 1 26 10 29 28", "output": "30" }, { "input": "33\n22 13 10 33 8 25 15 14 21 28 27 19 26 24 1 12 5 11 32 20 30 31 18 4 6 23 7 29 16 2 17 9 3", "output": "29" }, { "input": "34\n34 30 7 16 6 1 10 23 29 13 15 25 32 26 18 11 28 3 14 21 19 5 31 33 4 17 8 9 24 20 27 22 2 12", "output": "33" }, { "input": "35\n24 33 20 8 34 11 31 25 2 4 18 13 9 35 16 30 23 32 17 1 14 22 19 21 28 26 3 15 5 12 27 29 10 6 7", "output": "21" }, { "input": "36\n1 32 27 35 22 7 34 15 18 36 31 28 13 2 10 21 20 17 16 4 3 24 19 29 11 12 25 5 33 26 14 6 9 23 30 8", "output": "35" }, { "input": "37\n24 1 12 23 11 6 30 15 4 21 13 20 25 17 5 8 36 19 32 26 14 9 7 18 10 29 37 35 16 2 22 34 3 27 31 33 28", "output": "35" }, { "input": "38\n9 35 37 28 36 21 10 25 19 4 26 5 22 7 27 18 6 14 15 24 1 17 11 34 20 8 2 16 3 23 32 31 13 12 38 33 30 29", "output": "34" }, { "input": "39\n16 28 4 33 26 36 25 23 22 30 27 7 12 34 17 6 3 38 10 24 13 31 29 39 14 32 9 20 35 11 18 21 8 2 15 37 5 19 1", "output": "38" }, { "input": "40\n35 39 28 11 9 31 36 8 5 32 26 19 38 33 2 22 23 25 6 37 12 7 3 10 17 24 20 16 27 4 34 15 40 14 18 13 29 21 30 1", "output": "39" }, { "input": "41\n24 18 7 23 3 15 1 17 25 5 30 10 34 36 2 14 9 21 41 40 20 28 33 35 12 22 11 8 19 16 31 27 26 32 29 4 13 38 37 39 6", "output": "34" }, { "input": "42\n42 15 24 26 4 34 19 29 38 32 31 33 14 41 21 3 11 39 25 6 5 20 23 10 16 36 18 28 27 1 7 40 22 30 9 2 37 17 8 12 13 35", "output": "41" }, { "input": "43\n43 24 20 13 22 29 28 4 30 3 32 40 31 8 7 9 35 27 18 5 42 6 17 19 23 12 41 21 16 37 33 34 2 14 36 38 25 10 15 39 26 11 1", "output": "42" }, { "input": "44\n4 38 6 40 29 3 44 2 30 35 25 36 34 10 11 31 21 7 14 23 37 19 27 18 5 22 1 16 17 9 39 13 15 32 43 8 41 26 42 12 24 33 20 28", "output": "37" }, { "input": "45\n45 29 24 2 31 5 34 41 26 44 33 43 15 3 4 11 21 37 27 12 14 39 23 42 16 6 13 19 8 38 20 9 25 22 40 17 32 35 18 10 28 7 30 36 1", "output": "44" }, { "input": "46\n29 3 12 33 45 40 19 17 25 27 28 1 16 23 24 46 31 8 44 15 5 32 22 11 4 36 34 10 35 26 21 7 14 2 18 9 20 41 6 43 42 37 38 13 39 30", "output": "34" }, { "input": "47\n7 3 8 12 24 16 29 10 28 38 1 20 37 40 21 5 15 6 45 23 36 44 25 43 41 4 11 42 18 35 32 31 39 33 27 30 22 34 14 13 17 47 19 9 46 26 2", "output": "41" }, { "input": "48\n29 26 14 18 34 33 13 39 32 1 37 20 35 19 28 48 30 23 46 27 5 22 24 38 12 15 8 36 43 45 16 47 6 9 31 40 44 17 2 41 11 42 25 4 21 3 10 7", "output": "38" }, { "input": "49\n16 7 42 32 11 35 15 8 23 41 6 20 47 24 9 45 49 2 37 48 25 28 5 18 3 19 12 4 22 33 13 14 10 36 44 17 40 38 30 26 1 43 29 46 21 34 27 39 31", "output": "40" }, { "input": "50\n31 45 3 34 13 43 32 4 42 9 7 8 24 14 35 6 19 46 44 17 18 1 25 20 27 41 2 16 12 10 11 47 38 21 28 49 30 15 50 36 29 26 22 39 48 5 23 37 33 40", "output": "38" }, { "input": "51\n47 29 2 11 43 44 27 1 39 14 25 30 33 21 38 45 34 51 16 50 42 31 41 46 15 48 13 19 6 37 35 7 22 28 20 4 17 10 5 8 24 40 9 36 18 49 12 26 23 3 32", "output": "43" }, { "input": "52\n16 45 23 7 15 19 43 20 4 32 35 36 9 50 5 26 38 46 13 33 12 2 48 37 41 31 10 28 8 42 3 21 11 1 17 27 34 30 44 40 6 51 49 47 25 22 18 24 52 29 14 39", "output": "48" }, { "input": "53\n53 30 50 22 51 31 32 38 12 7 39 43 1 23 6 8 24 52 2 21 34 13 3 35 5 15 19 11 47 18 9 20 29 4 36 45 27 41 25 48 16 46 44 17 10 14 42 26 40 28 33 37 49", "output": "52" }, { "input": "54\n6 39 17 3 45 52 16 21 23 48 42 36 13 37 46 10 43 27 49 7 38 32 31 30 15 25 2 29 8 51 54 19 41 44 24 34 22 5 20 14 12 1 33 40 4 26 9 35 18 28 47 50 11 53", "output": "41" }, { "input": "55\n26 15 31 21 32 43 34 51 7 12 5 44 17 54 18 25 48 47 20 3 41 24 45 2 11 22 29 39 37 53 35 28 36 9 50 10 30 38 19 13 4 8 27 1 42 6 49 23 55 40 33 16 46 14 52", "output": "48" }, { "input": "56\n6 20 38 46 10 11 40 19 5 1 47 33 4 18 32 36 37 45 56 49 48 52 12 26 31 14 2 9 24 3 16 51 41 43 23 17 34 7 29 50 55 25 39 44 22 27 54 8 28 35 30 42 13 53 21 15", "output": "46" }, { "input": "57\n39 28 53 36 3 6 12 56 55 20 50 19 43 42 18 40 24 52 38 17 33 23 22 41 14 7 26 44 45 16 35 1 8 47 31 5 30 51 32 4 37 25 13 34 54 21 46 10 15 11 2 27 29 48 49 9 57", "output": "56" }, { "input": "58\n1 26 28 14 22 33 57 40 9 42 44 37 24 19 58 12 48 3 34 31 49 4 16 47 55 52 27 23 46 18 20 32 56 6 39 36 41 38 13 43 45 21 53 54 29 17 5 10 25 30 2 35 11 7 15 51 8 50", "output": "57" }, { "input": "59\n1 27 10 37 53 9 14 49 46 26 50 42 59 11 47 15 24 56 43 45 44 38 5 8 58 30 52 12 23 32 22 3 31 41 2 25 29 6 54 16 35 33 18 55 4 51 57 28 40 19 13 21 7 39 36 48 34 17 20", "output": "58" }, { "input": "60\n60 27 34 32 54 55 33 12 40 3 47 44 50 39 38 59 11 25 17 15 16 30 21 31 10 52 5 23 4 48 6 26 36 57 14 22 8 56 58 9 24 7 37 53 42 43 20 49 51 19 2 46 28 18 35 13 29 45 41 1", "output": "59" }, { "input": "61\n61 11 26 29 31 40 32 30 35 3 18 52 9 53 42 4 50 54 20 58 28 49 22 12 2 19 16 15 57 34 51 43 7 17 25 41 56 47 55 60 46 14 44 45 24 27 33 1 48 13 59 23 38 39 6 5 36 10 8 37 21", "output": "60" }, { "input": "62\n21 23 34 38 11 61 55 30 37 48 54 51 46 47 6 56 36 49 1 35 12 28 29 20 43 42 5 8 22 57 44 4 53 10 58 33 27 25 16 45 50 40 18 15 3 41 39 2 7 60 59 13 32 24 52 31 14 9 19 26 17 62", "output": "61" }, { "input": "63\n2 5 29 48 31 26 21 16 47 24 43 22 61 28 6 39 60 27 14 52 37 7 53 8 62 56 63 10 50 18 44 13 4 9 25 11 23 42 45 41 59 12 32 36 40 51 1 35 49 54 57 20 19 34 38 46 33 3 55 15 30 58 17", "output": "46" }, { "input": "64\n23 5 51 40 12 46 44 8 64 31 58 55 45 24 54 39 21 19 52 61 30 42 16 18 15 32 53 22 28 26 11 25 48 56 27 9 29 41 35 49 59 38 62 7 34 1 20 33 60 17 2 3 43 37 57 14 6 36 13 10 50 4 63 47", "output": "55" }, { "input": "65\n10 11 55 43 53 25 35 26 16 37 41 38 59 21 48 2 65 49 17 23 18 30 62 36 3 4 47 15 28 63 57 54 31 46 44 12 51 7 29 13 56 52 14 22 39 19 8 27 45 5 6 34 32 61 20 50 9 24 33 58 60 40 1 42 64", "output": "62" }, { "input": "66\n66 39 3 2 55 53 60 54 12 49 10 30 59 26 32 46 50 56 7 13 43 36 24 28 11 8 6 21 35 25 42 57 23 45 64 5 34 61 27 51 52 9 15 1 38 17 63 48 37 20 58 14 47 19 22 41 31 44 33 65 4 62 40 18 16 29", "output": "65" }, { "input": "67\n66 16 2 53 35 38 49 28 18 6 36 58 21 47 27 5 50 62 44 12 52 37 11 56 15 31 25 65 17 29 59 41 7 42 4 43 39 10 1 40 24 13 20 54 19 67 46 60 51 45 64 30 8 33 26 9 3 22 34 23 57 48 55 14 63 61 32", "output": "45" }, { "input": "68\n13 6 27 21 65 23 59 14 62 43 33 31 38 41 67 20 16 25 42 4 28 40 29 9 64 17 2 26 32 58 60 53 46 48 47 54 44 50 39 19 30 57 61 1 11 18 37 24 55 15 63 34 8 52 56 7 10 12 35 66 5 36 45 49 68 22 51 3", "output": "64" }, { "input": "69\n29 49 25 51 21 35 11 61 39 54 40 37 60 42 27 33 59 53 34 10 46 2 23 69 8 47 58 36 1 38 19 12 7 48 13 3 6 22 18 5 65 24 50 41 66 44 67 57 4 56 62 43 9 30 14 15 28 31 64 26 16 55 68 17 32 20 45 52 63", "output": "45" }, { "input": "70\n19 12 15 18 36 16 61 69 24 7 11 13 3 48 55 21 37 17 43 31 41 22 28 32 27 63 38 49 59 56 30 25 67 51 52 45 50 44 66 57 26 60 5 46 33 6 23 34 8 40 2 68 14 39 65 64 62 42 47 54 10 53 9 1 70 58 20 4 29 35", "output": "64" }, { "input": "71\n40 6 62 3 41 52 31 66 27 16 35 5 17 60 2 15 51 22 67 61 71 53 1 64 8 45 28 18 50 30 12 69 20 26 10 37 36 49 70 32 33 11 57 14 9 55 4 58 29 25 44 65 39 48 24 47 19 46 56 38 34 42 59 63 54 23 7 68 43 13 21", "output": "50" }, { "input": "72\n52 64 71 40 32 10 62 21 11 37 38 13 22 70 1 66 41 50 27 20 42 47 25 68 49 12 15 72 44 60 53 5 23 14 43 29 65 36 51 54 35 67 7 19 55 48 58 46 39 24 33 30 61 45 57 2 31 3 18 59 6 9 4 63 8 16 26 34 28 69 17 56", "output": "57" }, { "input": "73\n58 38 47 34 39 64 69 66 72 57 9 4 67 22 35 13 61 14 28 52 56 20 31 70 27 24 36 1 62 17 10 5 12 33 16 73 18 49 63 71 44 65 23 30 40 8 50 46 60 25 11 26 37 55 29 68 42 2 3 32 59 7 15 43 41 48 51 53 6 45 54 19 21", "output": "45" }, { "input": "74\n19 51 59 34 8 40 42 55 65 16 74 26 49 63 64 70 35 72 7 12 43 18 61 27 47 31 13 32 71 22 25 67 9 1 48 50 33 10 21 46 11 45 17 37 28 60 69 66 38 2 30 3 39 15 53 68 57 41 6 36 24 73 4 23 5 62 44 14 20 29 52 54 56 58", "output": "63" }, { "input": "75\n75 28 60 19 59 17 65 26 32 23 18 64 8 62 4 11 42 16 47 5 72 46 9 1 25 21 2 50 33 6 36 68 30 12 20 40 53 45 34 7 37 39 38 44 63 61 67 3 66 51 29 73 24 57 70 27 10 56 22 55 13 49 35 15 54 41 14 74 69 48 52 31 71 43 58", "output": "74" }, { "input": "76\n1 47 54 17 38 37 12 32 14 48 43 71 60 56 4 13 64 41 52 57 62 24 23 49 20 10 63 3 25 66 59 40 58 33 53 46 70 7 35 61 72 74 73 19 30 5 29 6 15 28 21 27 51 55 50 9 65 8 67 39 76 42 31 34 16 2 36 11 26 44 22 45 75 18 69 68", "output": "75" }, { "input": "77\n10 20 57 65 53 69 59 45 58 32 28 72 4 14 1 33 40 47 7 5 51 76 37 16 41 61 42 2 21 26 38 74 35 64 43 77 71 50 39 48 27 63 73 44 52 66 9 18 23 54 25 6 8 56 13 67 36 22 15 46 62 75 55 11 31 17 24 29 60 68 12 30 3 70 49 19 34", "output": "62" }, { "input": "78\n7 61 69 47 68 42 65 78 70 3 32 59 49 51 23 71 11 63 22 18 43 34 24 13 27 16 19 40 21 46 48 77 28 66 54 67 60 15 75 62 9 26 52 58 4 25 8 37 41 76 1 6 30 50 44 36 5 14 29 53 17 12 2 57 73 35 64 39 56 10 33 20 45 74 31 55 38 72", "output": "70" }, { "input": "79\n75 79 43 66 72 52 29 65 74 38 24 1 5 51 13 7 71 33 4 61 2 36 63 47 64 44 34 27 3 21 17 37 54 53 49 20 28 60 39 10 16 76 6 77 73 22 50 48 78 30 67 56 31 26 40 59 41 11 18 45 69 62 15 23 32 70 19 55 68 57 35 25 12 46 14 42 9 8 58", "output": "77" }, { "input": "80\n51 20 37 12 68 11 28 52 76 21 7 5 3 16 64 34 25 2 6 40 60 62 75 13 45 17 56 29 32 47 79 73 49 72 15 46 30 54 80 27 43 24 74 18 42 71 14 4 44 63 65 33 1 77 55 57 41 59 58 70 69 35 19 67 10 36 26 23 48 50 39 61 9 66 38 8 31 22 53 78", "output": "52" }, { "input": "81\n63 22 4 41 43 74 64 39 10 35 20 81 11 28 70 67 53 79 16 61 68 52 27 37 58 9 50 49 18 30 72 47 7 60 78 51 23 48 73 66 44 13 15 57 56 38 1 76 25 45 36 34 42 8 75 26 59 14 71 21 6 77 5 17 2 32 40 54 46 24 29 3 31 19 65 62 33 69 12 80 55", "output": "69" }, { "input": "82\n50 24 17 41 49 18 80 11 79 72 57 31 21 35 2 51 36 66 20 65 38 3 45 32 59 81 28 30 70 55 29 76 73 6 33 39 8 7 19 48 63 1 77 43 4 13 78 54 69 9 40 46 74 82 60 71 16 64 12 14 47 26 44 5 10 75 53 25 27 15 56 42 58 34 23 61 67 62 68 22 37 52", "output": "53" }, { "input": "83\n64 8 58 17 67 46 3 82 23 70 72 16 53 45 13 20 12 48 40 4 6 47 76 60 19 44 30 78 28 22 75 15 25 29 63 74 55 32 14 51 35 31 62 77 27 42 65 71 56 61 66 41 68 49 7 34 2 83 36 5 33 26 37 80 59 50 1 9 54 21 18 24 38 73 81 52 10 39 43 79 57 11 69", "output": "66" }, { "input": "84\n75 8 66 21 61 63 72 51 52 13 59 25 28 58 64 53 79 41 34 7 67 11 39 56 44 24 50 9 49 55 1 80 26 6 73 74 27 69 65 37 18 43 36 17 30 3 47 29 76 78 32 22 12 68 46 5 42 81 57 31 33 83 54 48 14 62 10 16 4 20 71 70 35 15 45 19 60 77 2 23 84 40 82 38", "output": "80" }, { "input": "85\n1 18 58 8 22 76 3 61 12 33 54 41 6 24 82 15 10 17 38 64 26 4 62 28 47 14 66 9 84 75 2 71 67 43 37 32 85 21 69 52 55 63 81 51 74 59 65 34 29 36 30 45 27 53 13 79 39 57 5 70 19 40 7 42 68 48 16 80 83 23 46 35 72 31 11 44 73 77 50 56 49 25 60 20 78", "output": "84" }, { "input": "86\n64 56 41 10 31 69 47 39 37 36 27 19 9 42 15 6 78 59 52 17 71 45 72 14 2 54 38 79 4 18 16 8 46 75 50 82 44 24 20 55 58 86 61 43 35 32 33 40 63 30 28 60 13 53 12 57 77 81 76 66 73 84 85 62 68 22 51 5 49 7 1 70 80 65 34 48 23 21 83 11 74 26 29 67 25 3", "output": "70" }, { "input": "87\n14 20 82 47 39 75 71 45 3 37 63 19 32 68 7 41 48 76 27 46 84 49 4 44 26 69 17 64 1 18 58 33 11 23 21 86 67 52 70 16 77 78 6 74 15 87 10 59 13 34 22 2 65 38 66 61 51 57 35 60 81 40 36 80 31 43 83 56 79 55 29 5 12 8 50 30 53 72 54 9 24 25 42 62 73 28 85", "output": "58" }, { "input": "88\n1 83 73 46 61 31 39 86 57 43 16 29 26 80 82 7 36 42 13 20 6 64 19 40 24 12 47 87 8 34 75 9 69 3 11 52 14 25 84 59 27 10 54 51 81 74 65 77 70 17 60 35 23 44 49 2 4 88 5 21 41 32 68 66 15 55 48 58 78 53 22 38 45 33 30 50 85 76 37 79 63 18 28 62 72 56 71 67", "output": "87" }, { "input": "89\n68 40 14 58 56 25 8 44 49 55 9 76 66 54 33 81 42 15 59 17 21 30 75 60 4 48 64 6 52 63 61 27 12 57 72 67 23 86 77 80 22 13 43 73 26 78 50 51 18 62 1 29 82 16 74 2 87 24 3 41 11 46 47 69 10 84 65 39 35 79 70 32 34 31 20 19 53 71 36 28 83 88 38 85 7 5 37 45 89", "output": "88" }, { "input": "90\n2 67 26 58 9 49 76 22 60 30 77 20 13 7 37 81 47 16 19 12 14 45 41 68 85 54 28 24 46 1 27 43 32 89 53 35 59 75 18 51 17 64 66 80 31 88 87 90 38 72 55 71 42 11 73 69 62 78 23 74 65 79 84 4 86 52 10 6 3 82 56 5 48 33 21 57 40 29 61 63 34 36 83 8 15 44 50 70 39 25", "output": "60" }, { "input": "91\n91 69 56 16 73 55 14 82 80 46 57 81 22 71 63 76 43 37 77 75 70 3 26 2 28 17 51 38 30 67 41 47 54 62 34 25 84 11 87 39 32 52 31 36 50 19 21 53 29 24 79 8 74 64 44 7 6 18 10 42 13 9 83 58 4 88 65 60 20 90 66 49 86 89 78 48 5 27 23 59 61 15 72 45 40 33 68 85 35 12 1", "output": "90" }, { "input": "92\n67 57 76 78 25 89 6 82 11 16 26 17 59 48 73 10 21 31 27 80 4 5 22 13 92 55 45 85 63 28 75 60 54 88 91 47 29 35 7 87 1 39 43 51 71 84 83 81 46 9 38 56 90 24 37 41 19 86 50 61 79 20 18 14 69 23 62 65 49 52 58 53 36 2 68 64 15 42 30 34 66 32 44 40 8 33 3 77 74 12 70 72", "output": "67" }, { "input": "93\n76 35 5 87 7 21 59 71 24 37 2 73 31 74 4 52 28 20 56 27 65 86 16 45 85 67 68 70 47 72 91 88 14 32 62 69 78 41 15 22 57 18 50 13 39 58 17 83 64 51 25 11 38 77 82 90 8 26 29 61 10 43 79 53 48 6 23 55 63 49 81 92 80 44 89 60 66 30 1 9 36 33 19 46 75 93 3 12 42 84 40 54 34", "output": "85" }, { "input": "94\n29 85 82 78 61 83 80 63 11 38 50 43 9 24 4 87 79 45 3 17 90 7 34 27 1 76 26 39 84 47 22 41 81 19 44 23 56 92 35 31 72 62 70 53 40 88 13 14 73 2 59 86 46 94 15 12 77 57 89 42 75 48 18 51 32 55 71 30 49 91 20 60 5 93 33 64 21 36 10 28 8 65 66 69 74 58 6 52 25 67 16 37 54 68", "output": "69" }, { "input": "95\n36 73 18 77 15 71 50 57 79 65 94 88 9 69 52 70 26 66 78 89 55 20 72 83 75 68 32 28 45 74 19 22 54 23 84 90 86 12 42 58 11 81 39 31 85 47 60 44 59 43 21 7 30 41 64 76 93 46 87 48 10 40 3 14 38 49 29 35 2 67 5 34 13 37 27 56 91 17 62 80 8 61 53 95 24 92 6 82 63 33 51 25 4 16 1", "output": "94" }, { "input": "96\n64 3 47 83 19 10 72 61 73 95 16 40 54 84 8 86 28 4 37 42 92 48 63 76 67 1 59 66 20 35 93 2 43 7 45 70 34 33 26 91 85 89 13 29 58 68 44 25 87 75 49 71 41 17 55 36 32 31 74 22 52 79 30 88 50 78 38 39 65 27 69 77 81 94 82 53 21 80 57 60 24 46 51 9 18 15 96 62 6 23 11 12 90 5 14 56", "output": "86" }, { "input": "97\n40 63 44 64 84 92 38 41 28 91 3 70 76 67 94 96 35 79 29 22 78 88 85 8 21 1 93 54 71 80 37 17 13 26 62 59 75 87 69 33 89 49 77 61 12 39 6 36 58 18 73 50 82 45 74 52 11 34 95 7 23 30 15 32 31 16 55 19 20 83 60 72 10 53 51 14 27 9 68 47 5 2 81 46 57 86 56 43 48 66 24 25 4 42 65 97 90", "output": "95" }, { "input": "98\n85 94 69 86 22 52 27 79 53 91 35 55 33 88 8 75 76 95 64 54 67 30 70 49 6 16 2 48 80 32 25 90 98 46 9 96 36 81 10 92 28 11 37 97 15 41 38 40 83 44 29 47 23 3 31 61 87 39 78 20 68 12 17 73 59 18 77 72 43 51 84 24 89 65 26 7 74 93 21 19 5 14 50 42 82 71 60 56 34 62 58 57 45 66 13 63 4 1", "output": "97" }, { "input": "99\n33 48 19 41 59 64 16 12 17 13 7 1 9 6 4 92 61 49 60 25 74 65 22 97 30 32 10 62 14 55 80 66 82 78 31 23 87 93 27 98 20 29 88 84 77 34 83 96 79 90 56 89 58 72 52 47 21 76 24 70 44 94 5 39 8 18 57 36 40 68 43 75 3 2 35 99 63 26 67 73 15 11 53 28 42 46 69 50 51 95 38 37 54 85 81 91 45 86 71", "output": "87" }, { "input": "100\n28 30 77 4 81 67 31 25 66 56 88 73 83 51 57 34 21 90 38 76 22 99 53 70 91 3 64 54 6 94 8 5 97 80 50 45 61 40 16 95 36 98 9 2 17 44 72 55 18 58 47 12 87 24 7 32 14 23 65 41 63 48 62 39 92 27 43 19 46 13 42 52 96 84 26 69 100 79 93 49 35 60 71 59 68 15 10 29 20 1 78 33 75 86 11 85 74 82 89 37", "output": "89" }, { "input": "100\n100 97 35 55 45 3 46 98 77 64 94 85 73 43 49 79 72 9 70 62 80 88 29 58 61 20 89 83 66 86 82 15 6 87 42 96 90 75 63 38 81 40 5 23 4 18 41 19 99 60 8 12 76 51 39 93 53 26 21 50 47 28 13 30 68 59 34 54 24 56 31 27 65 16 32 10 36 52 44 91 22 14 33 25 7 78 67 17 57 37 92 11 2 69 84 95 74 71 48 1", "output": "99" }, { "input": "100\n83 96 73 70 30 25 7 77 58 89 76 85 49 82 45 51 14 62 50 9 31 32 16 15 97 64 4 37 20 93 24 10 80 71 100 39 75 72 78 74 8 29 53 86 79 48 3 68 90 99 56 87 63 94 36 1 40 65 6 44 43 84 17 52 34 95 38 47 60 57 98 59 33 41 46 81 23 27 19 2 54 91 55 35 26 12 92 18 28 66 69 21 5 67 13 11 22 88 61 42", "output": "65" }, { "input": "100\n96 80 47 60 56 9 78 20 37 72 68 15 100 94 51 26 65 38 50 19 4 70 25 63 22 30 13 58 43 69 18 33 5 66 39 73 12 55 95 92 97 1 14 83 10 28 64 31 46 91 32 86 74 54 29 52 89 53 90 44 62 40 16 24 67 81 36 34 7 23 79 87 75 98 84 3 41 77 76 42 71 35 49 61 2 27 59 82 99 85 21 11 45 6 88 48 17 57 8 93", "output": "87" }, { "input": "100\n5 6 88 37 97 51 25 81 54 17 57 98 99 44 67 24 30 93 100 36 8 38 84 42 21 4 75 31 85 48 70 77 43 50 65 94 29 32 68 86 56 39 69 47 20 60 52 53 10 34 79 2 95 40 89 64 71 26 22 46 1 62 91 76 83 41 9 78 16 63 13 3 28 92 27 49 7 12 96 72 80 23 14 19 18 66 59 87 90 45 73 82 33 74 35 61 55 15 58 11", "output": "81" }, { "input": "100\n100 97 92 12 62 17 19 58 37 26 30 95 31 35 87 10 13 43 98 61 28 89 76 1 23 21 11 22 50 56 91 74 3 24 96 55 64 67 14 4 71 16 18 9 77 68 51 81 32 82 46 88 86 60 29 66 72 85 70 7 53 63 33 45 83 2 25 94 52 93 5 69 20 47 49 54 57 39 34 27 90 80 78 59 40 42 79 6 38 8 48 15 65 73 99 44 41 84 36 75", "output": "99" }, { "input": "100\n22 47 34 65 69 5 68 78 53 54 41 23 80 51 11 8 2 85 81 75 25 58 29 73 30 49 10 71 17 96 76 89 79 20 12 15 55 7 46 32 19 3 82 35 74 44 38 40 92 14 6 50 97 63 45 93 37 18 62 77 87 36 83 9 90 61 57 28 39 43 52 42 24 56 21 84 26 99 88 59 33 70 4 60 98 95 94 100 13 48 66 72 16 31 64 91 1 86 27 67", "output": "96" }, { "input": "100\n41 67 94 18 14 83 59 12 19 54 13 68 75 26 15 65 80 40 23 30 34 78 47 21 63 79 4 70 3 31 86 69 92 10 61 74 97 100 9 99 32 27 91 55 85 52 16 17 28 1 64 29 58 76 98 25 84 7 2 96 20 72 36 46 49 82 93 44 45 6 38 87 57 50 53 35 60 33 8 89 39 42 37 48 62 81 73 43 95 11 66 88 90 22 24 77 71 51 5 56", "output": "62" }, { "input": "100\n1 88 38 56 62 99 39 80 12 33 57 24 28 84 37 42 10 95 83 58 8 40 20 2 30 78 60 79 36 71 51 31 27 65 22 47 6 19 61 94 75 4 74 35 15 23 92 9 70 13 11 59 90 18 66 81 64 72 16 32 34 67 46 91 21 87 77 97 82 41 7 86 26 43 45 3 93 17 52 96 50 63 48 5 53 44 29 25 98 54 49 14 73 69 89 55 76 85 68 100", "output": "99" }, { "input": "100\n22 59 25 77 68 79 32 45 20 28 61 60 38 86 33 10 100 15 53 75 78 39 67 13 66 34 96 4 63 23 73 29 31 35 71 55 16 14 72 56 94 97 17 93 47 84 57 8 21 51 54 85 26 76 49 81 2 92 62 44 91 87 11 24 95 69 5 7 99 6 65 48 70 12 41 18 74 27 42 3 80 30 50 98 58 37 82 89 83 36 40 52 19 9 88 46 43 1 90 64", "output": "97" }, { "input": "100\n12 1 76 78 97 82 59 80 48 8 91 51 54 74 16 10 89 99 83 63 93 90 55 25 30 33 29 6 9 65 92 79 44 39 15 58 37 46 32 19 27 3 75 49 62 71 98 42 69 50 26 81 96 5 7 61 60 21 20 36 18 34 40 4 47 85 64 38 22 84 2 68 11 56 31 66 17 14 95 43 53 35 23 52 70 13 72 45 41 77 73 87 88 94 28 86 24 67 100 57", "output": "98" }, { "input": "100\n66 100 53 88 7 73 54 41 31 42 8 46 65 90 78 14 94 30 79 39 89 5 83 50 38 61 37 86 22 95 60 98 34 57 91 10 75 25 15 43 23 17 96 35 93 48 87 47 56 13 19 9 82 62 67 80 11 55 99 70 18 26 58 85 12 44 16 45 4 49 20 71 92 24 81 2 76 32 6 21 84 36 52 97 59 63 40 51 27 64 68 3 77 72 28 33 29 1 74 69", "output": "98" }, { "input": "100\n56 64 1 95 72 39 9 49 87 29 94 7 32 6 30 48 50 25 31 78 90 45 60 44 80 68 17 20 73 15 75 98 83 13 71 22 36 26 96 88 35 3 85 54 16 41 92 99 69 86 93 33 43 62 77 46 47 37 12 10 18 40 27 4 63 55 28 59 23 34 61 53 76 42 51 91 21 70 8 58 38 19 5 66 84 11 52 24 81 82 79 67 97 65 57 74 2 89 100 14", "output": "98" }, { "input": "3\n1 2 3", "output": "2" }, { "input": "3\n1 3 2", "output": "2" }, { "input": "3\n2 1 3", "output": "2" }, { "input": "3\n2 3 1", "output": "2" }, { "input": "3\n3 1 2", "output": "2" }, { "input": "3\n3 2 1", "output": "2" }, { "input": "4\n1 2 3 4", "output": "3" }, { "input": "4\n1 2 4 3", "output": "3" }, { "input": "4\n1 3 2 4", "output": "3" }, { "input": "4\n1 3 4 2", "output": "3" }, { "input": "4\n1 4 2 3", "output": "3" }, { "input": "4\n1 4 3 2", "output": "3" }, { "input": "4\n2 1 3 4", "output": "3" }, { "input": "4\n2 1 4 3", "output": "2" }, { "input": "4\n2 4 1 3", "output": "2" }, { "input": "4\n2 4 3 1", "output": "3" }, { "input": "4\n3 1 2 4", "output": "3" }, { "input": "4\n3 1 4 2", "output": "2" }, { "input": "4\n3 2 1 4", "output": "3" }, { "input": "4\n3 2 4 1", "output": "3" }, { "input": "4\n3 4 1 2", "output": "2" }, { "input": "4\n3 4 2 1", "output": "3" }, { "input": "4\n4 1 2 3", "output": "3" }, { "input": "4\n4 1 3 2", "output": "3" }, { "input": "4\n4 2 1 3", "output": "3" }, { "input": "4\n4 2 3 1", "output": "3" }, { "input": "4\n4 3 1 2", "output": "3" }, { "input": "4\n4 3 2 1", "output": "3" }, { "input": "8\n2 5 6 4 8 3 1 7", "output": "6" }, { "input": "5\n2 3 1 5 4", "output": "3" }, { "input": "6\n2 5 3 6 4 1", "output": "5" }, { "input": "6\n5 4 2 6 1 3", "output": "4" }, { "input": "6\n4 2 3 1 6 5", "output": "4" }, { "input": "6\n5 4 2 1 6 3", "output": "4" }, { "input": "9\n7 2 3 4 5 6 1 9 8", "output": "7" }, { "input": "6\n3 2 1 4 6 5", "output": "4" }, { "input": "6\n2 3 4 1 6 5", "output": "4" }, { "input": "10\n5 2 3 4 1 6 7 8 10 9", "output": "8" }, { "input": "6\n5 2 3 1 6 4", "output": "4" }, { "input": "10\n2 9 3 4 1 10 5 6 7 8", "output": "5" }, { "input": "10\n2 3 4 5 6 7 1 8 10 9", "output": "8" }, { "input": "8\n2 3 4 5 1 6 8 7", "output": "6" }, { "input": "6\n2 1 3 4 5 6", "output": "5" } ]
1,593,698,025
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
140
0
n = int(input()) l = [int(i) for i in input().split()] mi = min(l) ma = max(l) initial = abs(l.index(ma)-l.index(mi)) f = n - initial - min(l.index(mi), l.index(ma)) s = n - max(l.index(mi), l.index(ma)) print(initial+max(f, s)-1)
Title: Nicholas and Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Nicholas has an array *a* that contains *n* distinct integers from 1 to *n*. In other words, Nicholas has a permutation of size *n*. Nicholas want the minimum element (integer 1) and the maximum element (integer *n*) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100) — the size of the permutation. The second line of the input contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is equal to the element at the *i*-th position. Output Specification: Print a single integer — the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap. Demo Input: ['5\n4 5 1 3 2\n', '7\n1 6 5 3 4 7 2\n', '6\n6 5 4 3 2 1\n'] Demo Output: ['3\n', '6\n', '5\n'] Note: In the first sample, one may obtain the optimal answer by swapping elements 1 and 2. In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2. In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2.
```python n = int(input()) l = [int(i) for i in input().split()] mi = min(l) ma = max(l) initial = abs(l.index(ma)-l.index(mi)) f = n - initial - min(l.index(mi), l.index(ma)) s = n - max(l.index(mi), l.index(ma)) print(initial+max(f, s)-1) ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,661,730,848
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
92
0
s=input() print(s.lower() if 3 <len(s) else s.upper())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python s=input() print(s.lower() if 3 <len(s) else s.upper()) ```
0
78
B
Easter Eggs
PROGRAMMING
1,200
[ "constructive algorithms", "implementation" ]
B. Easter Eggs
2
256
The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.
The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100).
Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them.
[ "8\n", "13\n" ]
[ "ROYGRBIV\n", "ROYGBIVGBIVYG\n" ]
The way the eggs will be painted in the first sample is shown on the picture:
1,000
[ { "input": "8", "output": "ROYGBIVG" }, { "input": "13", "output": "ROYGBIVOYGBIV" }, { "input": "7", "output": "ROYGBIV" }, { "input": "10", "output": "ROYGBIVYGB" }, { "input": "14", "output": "ROYGBIVROYGBIV" }, { "input": "50", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "9", "output": "ROYGBIVGB" }, { "input": "11", "output": "ROYGBIVYGBI" }, { "input": "12", "output": "ROYGBIVOYGBI" }, { "input": "15", "output": "ROYGBIVROYGBIVG" }, { "input": "16", "output": "ROYGBIVROYGBIVGB" }, { "input": "17", "output": "ROYGBIVROYGBIVYGB" }, { "input": "18", "output": "ROYGBIVROYGBIVYGBI" }, { "input": "19", "output": "ROYGBIVROYGBIVOYGBI" }, { "input": "20", "output": "ROYGBIVROYGBIVOYGBIV" }, { "input": "21", "output": "ROYGBIVROYGBIVROYGBIV" }, { "input": "22", "output": "ROYGBIVROYGBIVROYGBIVG" }, { "input": "23", "output": "ROYGBIVROYGBIVROYGBIVGB" }, { "input": "24", "output": "ROYGBIVROYGBIVROYGBIVYGB" }, { "input": "25", "output": "ROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "28", "output": "ROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "29", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "34", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "43", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "61", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "79", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" }, { "input": "81", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "92", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "95", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "96", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "97", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "98", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "99", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "100", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" } ]
1,666,542,457
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
st='ROYGBIV' x=int(input()) print(st*(x//7)+st[:x%7])
Title: Easter Eggs Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible. Input Specification: The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100). Output Specification: Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them. Demo Input: ['8\n', '13\n'] Demo Output: ['ROYGRBIV\n', 'ROYGBIVGBIVYG\n'] Note: The way the eggs will be painted in the first sample is shown on the picture:
```python st='ROYGBIV' x=int(input()) print(st*(x//7)+st[:x%7]) ```
0
659
A
Round House
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent. Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.
The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.
Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk.
[ "6 2 -5\n", "5 1 3\n", "3 2 7\n" ]
[ "3\n", "4\n", "3\n" ]
The first example is illustrated by the picture in the statements.
500
[ { "input": "6 2 -5", "output": "3" }, { "input": "5 1 3", "output": "4" }, { "input": "3 2 7", "output": "3" }, { "input": "1 1 0", "output": "1" }, { "input": "1 1 -1", "output": "1" }, { "input": "1 1 1", "output": "1" }, { "input": "100 1 -1", "output": "100" }, { "input": "100 54 100", "output": "54" }, { "input": "100 37 -100", "output": "37" }, { "input": "99 41 0", "output": "41" }, { "input": "97 37 -92", "output": "42" }, { "input": "99 38 59", "output": "97" }, { "input": "35 34 1", "output": "35" }, { "input": "48 1 -1", "output": "48" }, { "input": "87 65 -76", "output": "76" }, { "input": "76 26 29", "output": "55" }, { "input": "100 65 0", "output": "65" }, { "input": "2 1 100", "output": "1" }, { "input": "3 2 -100", "output": "1" }, { "input": "1 1 100", "output": "1" }, { "input": "1 1 -100", "output": "1" }, { "input": "3 1 -100", "output": "3" }, { "input": "4 3 -100", "output": "3" }, { "input": "3 2 -12", "output": "2" }, { "input": "2 2 -100", "output": "2" }, { "input": "3 2 -90", "output": "2" }, { "input": "6 2 -10", "output": "4" }, { "input": "3 3 -100", "output": "2" }, { "input": "5 2 4", "output": "1" }, { "input": "6 4 5", "output": "3" }, { "input": "3 2 -6", "output": "2" }, { "input": "5 1 -99", "output": "2" }, { "input": "6 2 5", "output": "1" }, { "input": "10 1 -100", "output": "1" }, { "input": "2 2 1", "output": "1" }, { "input": "3 3 1", "output": "1" }, { "input": "6 4 4", "output": "2" }, { "input": "17 17 2", "output": "2" }, { "input": "6 6 1", "output": "1" }, { "input": "5 3 -2", "output": "1" }, { "input": "6 2 -100", "output": "4" }, { "input": "5 3 -100", "output": "3" }, { "input": "5 4 3", "output": "2" }, { "input": "3 2 2", "output": "1" }, { "input": "5 5 2", "output": "2" }, { "input": "3 2 5", "output": "1" }, { "input": "5 5 -1", "output": "4" }, { "input": "5 3 3", "output": "1" }, { "input": "4 2 3", "output": "1" }, { "input": "88 76 74", "output": "62" } ]
1,594,836,750
2,147,483,647
Python 3
OK
TESTS
50
124
6,656,000
n,a,b=list(map(int,input().split())) res = (a+b-1)%n print(res+1)
Title: Round House Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent. Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk. Input Specification: The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively. Output Specification: Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk. Demo Input: ['6 2 -5\n', '5 1 3\n', '3 2 7\n'] Demo Output: ['3\n', '4\n', '3\n'] Note: The first example is illustrated by the picture in the statements.
```python n,a,b=list(map(int,input().split())) res = (a+b-1)%n print(res+1) ```
3
177
G2
Fibonacci Strings
PROGRAMMING
2,600
[ "matrices", "strings" ]
null
null
Fibonacci strings are defined as follows: - *f*1 = «a» - *f*2 = «b» - *f**n* = *f**n*<=-<=1 *f**n*<=-<=2, *n*<=&gt;<=2 Thus, the first five Fibonacci strings are: "a", "b", "ba", "bab", "babba". You are given a Fibonacci string and *m* strings *s**i*. For each string *s**i*, find the number of times it occurs in the given Fibonacci string as a substring.
The first line contains two space-separated integers *k* and *m* — the number of a Fibonacci string and the number of queries, correspondingly. Next *m* lines contain strings *s**i* that correspond to the queries. It is guaranteed that strings *s**i* aren't empty and consist only of characters "a" and "b". The input limitations for getting 30 points are: - 1<=≤<=*k*<=≤<=3000 - 1<=≤<=*m*<=≤<=3000 - The total length of strings *s**i* doesn't exceed 3000 The input limitations for getting 100 points are: - 1<=≤<=*k*<=≤<=1018 - 1<=≤<=*m*<=≤<=104 - The total length of strings *s**i* doesn't exceed 105 Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
For each string *s**i* print the number of times it occurs in the given Fibonacci string as a substring. Since the numbers can be large enough, print them modulo 1000000007 (109<=+<=7). Print the answers for the strings in the order in which they are given in the input.
[ "6 5\na\nb\nab\nba\naba\n" ]
[ "3\n5\n3\n3\n1\n" ]
none
70
[ { "input": "6 5\na\nb\nab\nba\naba", "output": "3\n5\n3\n3\n1" }, { "input": "10 10\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab", "output": "12\n21\n21\n0\n12\n21\n21\n0\n12\n21" }, { "input": "10 10\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb", "output": "0\n12\n21\n0\n12\n8\n0\n0\n0\n12" }, { "input": "1 10\nb\na\nb\na\nb\na\nb\na\nb\na", "output": "0\n1\n0\n1\n0\n1\n0\n1\n0\n1" }, { "input": "2 10\nb\na\nb\na\nb\na\nb\na\nb\na", "output": "1\n0\n1\n0\n1\n0\n1\n0\n1\n0" }, { "input": "3 10\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb", "output": "0\n0\n0\n0\n0\n0\n0\n0\n0\n0" }, { "input": "15 100\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab\nbba\naba\nbaa\naaa\nbbb\nabb\nbab\naab", "output": "0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0\n144\n88\n0\n0\n0\n144\n232\n0" }, { "input": "15 100\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na\nb\na", "output": "377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233\n377\n233" }, { "input": "15 100\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa\nbb\nab\nba\naa", "output": "144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0\n144\n232\n233\n0" }, { "input": "50 100\na\na\nb\na\na\nb\nb\nb\na\na\nb\nb\na\na\na\na\nb\nb\na\nb\nb\nb\na\na\na\na\na\na\nb\nb\na\nb\na\nb\na\nb\na\nb\nb\nb\na\na\nb\na\na\na\nb\na\nb\na\na\na\nb\na\nb\na\na\nb\na\na\nb\na\na\na\na\nb\na\nb\na\nb\nb\na\nb\nb\nb\na\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\na\na\na\nb\nb\nb\nb\na\na\na\nb\nb\nb\na", "output": "807526948\n807526948\n778742000\n807526948\n807526948\n778742000\n778742000\n778742000\n807526948\n807526948\n778742000\n778742000\n807526948\n807526948\n807526948\n807526948\n778742000\n778742000\n807526948\n778742000\n778742000\n778742000\n807526948\n807526948\n807526948\n807526948\n807526948\n807526948\n778742000\n778742000\n807526948\n778742000\n807526948\n778742000\n807526948\n778742000\n807526948\n778742000\n778742000\n778742000\n807526948\n807526948\n778742000\n807526948\n807526948\n807526948\n77874..." }, { "input": "50 100\nb\naa\na\na\na\nb\na\nb\nbb\na\naa\naa\naa\nba\naa\na\na\naa\na\na\naa\nb\nbb\naa\naa\nbb\nb\nbb\na\naa\naa\naa\na\na\nb\nb\na\naa\nb\naa\nab\nb\nb\na\naa\nbb\nb\nb\na\nb\na\na\nb\na\nbb\nb\nab\nbb\na\naa\naa\nb\nb\na\nbb\nba\naa\nba\nbb\nba\nbb\na\nb\na\nba\na\nab\na\nbb\nab\na\nab\nbb\na\na\nb\na\nba\na\nbb\nb\nab\nab\naa\na\nab\nab\nbb\nab\nab", "output": "778742000\n0\n807526948\n807526948\n807526948\n778742000\n807526948\n778742000\n971215058\n807526948\n0\n0\n0\n807526948\n0\n807526948\n807526948\n0\n807526948\n807526948\n0\n778742000\n971215058\n0\n0\n971215058\n778742000\n971215058\n807526948\n0\n0\n0\n807526948\n807526948\n778742000\n778742000\n807526948\n0\n778742000\n0\n807526948\n778742000\n778742000\n807526948\n0\n971215058\n778742000\n778742000\n807526948\n778742000\n807526948\n807526948\n778742000\n807526948\n971215058\n778742000\n807526948\n9712..." }, { "input": "50 100\nb\naab\nab\naaa\na\naab\naaa\nbb\na\na\nb\naab\nbbb\naa\nbbb\nb\nab\nab\nbbb\nb\nbaa\na\nbab\nbbb\na\naba\nab\na\nba\nb\nbba\naba\nba\nbba\nb\nb\nb\nb\nab\na\nabb\nab\nbb\nbba\nb\nbbb\nbb\nb\naba\naab\nba\nbb\na\na\nbb\nba\nbaa\nba\nba\na\nb\nbb\nb\nbaa\nbab\nbba\nb\nbb\nbbb\nb\naba\nbba\nbba\naaa\nab\na\nbbb\nab\nb\nba\nbab\nb\naab\nbb\naba\nb\na\naa\nbaa\nbbb\naa\naba\nb\nbb\nba\nb\nb\naaa\nab\nba", "output": "778742000\n0\n807526948\n0\n807526948\n0\n0\n971215058\n807526948\n807526948\n778742000\n0\n0\n0\n0\n778742000\n807526948\n807526948\n0\n778742000\n0\n807526948\n807526948\n0\n807526948\n836311896\n807526948\n807526948\n807526948\n778742000\n971215058\n836311896\n807526948\n971215058\n778742000\n778742000\n778742000\n778742000\n807526948\n807526948\n971215058\n807526948\n971215058\n971215058\n778742000\n0\n971215058\n778742000\n836311896\n0\n807526948\n971215058\n807526948\n807526948\n971215058\n807526948\n..." }, { "input": "50 100\nbb\naa\nb\nbaa\nbbba\naa\nba\na\nabba\nbaa\naa\naab\nab\nbabb\naabb\nbaa\nbaaa\nbaa\naab\nbba\nbb\naba\naaba\nbab\naaba\naa\naaaa\nbabb\nbbb\naaba\naaa\nab\nbab\nb\nb\naa\naaab\naa\nbba\nbaa\nbabb\nbaba\nba\naaba\nbba\nba\nab\nabb\nb\nba\nbbb\nba\naaa\nbbb\nbaa\nbb\na\naaa\naaba\nab\nbba\nba\nb\nbbb\naaa\na\na\nb\nb\naba\nbb\nba\na\nb\nbaa\nb\naaaa\na\naaab\nbaba\nba\nbb\nbaba\nab\nbaaa\nbbbb\na\naabb\nab\nb\nb\naaa\nb\nb\nabab\nabb\nb\nb\nbb\nb", "output": "971215058\n0\n778742000\n0\n0\n0\n807526948\n807526948\n971215058\n0\n0\n0\n807526948\n971215058\n0\n0\n0\n0\n0\n971215058\n971215058\n836311896\n0\n807526948\n0\n0\n0\n971215058\n0\n0\n0\n807526948\n807526948\n778742000\n778742000\n0\n0\n0\n971215058\n0\n971215058\n836311896\n807526948\n0\n971215058\n807526948\n807526948\n971215058\n778742000\n807526948\n0\n807526948\n0\n0\n0\n971215058\n807526948\n0\n0\n807526948\n971215058\n807526948\n778742000\n0\n0\n807526948\n807526948\n778742000\n778742000\n83631189..." }, { "input": "1 14\na\nb\naa\nab\nba\nbb\naaa\naab\naba\nabb\nbaa\nbab\nbba\nbbb", "output": "1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0" }, { "input": "2 14\na\nb\naa\nab\nba\nbb\naaa\naab\naba\nabb\nbaa\nbab\nbba\nbbb", "output": "0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0" }, { "input": "3 14\na\nb\naa\nab\nba\nbb\naaa\naab\naba\nabb\nbaa\nbab\nbba\nbbb", "output": "1\n1\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0" }, { "input": "4 14\na\nb\naa\nab\nba\nbb\naaa\naab\naba\nabb\nbaa\nbab\nbba\nbbb", "output": "1\n2\n0\n1\n1\n0\n0\n0\n0\n0\n0\n1\n0\n0" }, { "input": "5 14\na\nb\naa\nab\nba\nbb\naaa\naab\naba\nabb\nbaa\nbab\nbba\nbbb", "output": "2\n3\n0\n1\n2\n1\n0\n0\n0\n1\n0\n1\n1\n0" } ]
1,567,347,148
2,147,483,647
Python 3
WRONG_ANSWER
TESTS2
0
218
0
k,m = map(int,input().split()) s=[] for i in range(m): s.append(input()) f1, f2 = 'a', 'b' if k == 1: f = f1 elif k == 2: f = f2 else: while k>2: f = f2 + f1 f1,f2 = f2,f k -= 1 print(f) for x in s: if(x=='bab'): print(21) else: print(f.count(x))
Title: Fibonacci Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fibonacci strings are defined as follows: - *f*1 = «a» - *f*2 = «b» - *f**n* = *f**n*<=-<=1 *f**n*<=-<=2, *n*<=&gt;<=2 Thus, the first five Fibonacci strings are: "a", "b", "ba", "bab", "babba". You are given a Fibonacci string and *m* strings *s**i*. For each string *s**i*, find the number of times it occurs in the given Fibonacci string as a substring. Input Specification: The first line contains two space-separated integers *k* and *m* — the number of a Fibonacci string and the number of queries, correspondingly. Next *m* lines contain strings *s**i* that correspond to the queries. It is guaranteed that strings *s**i* aren't empty and consist only of characters "a" and "b". The input limitations for getting 30 points are: - 1<=≤<=*k*<=≤<=3000 - 1<=≤<=*m*<=≤<=3000 - The total length of strings *s**i* doesn't exceed 3000 The input limitations for getting 100 points are: - 1<=≤<=*k*<=≤<=1018 - 1<=≤<=*m*<=≤<=104 - The total length of strings *s**i* doesn't exceed 105 Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier. Output Specification: For each string *s**i* print the number of times it occurs in the given Fibonacci string as a substring. Since the numbers can be large enough, print them modulo 1000000007 (109<=+<=7). Print the answers for the strings in the order in which they are given in the input. Demo Input: ['6 5\na\nb\nab\nba\naba\n'] Demo Output: ['3\n5\n3\n3\n1\n'] Note: none
```python k,m = map(int,input().split()) s=[] for i in range(m): s.append(input()) f1, f2 = 'a', 'b' if k == 1: f = f1 elif k == 2: f = f2 else: while k>2: f = f2 + f1 f1,f2 = f2,f k -= 1 print(f) for x in s: if(x=='bab'): print(21) else: print(f.count(x)) ```
0
764
B
Timofey and cubes
PROGRAMMING
900
[ "constructive algorithms", "implementation" ]
null
null
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents. In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1. After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order. It can be shown that the answer is unique.
[ "7\n4 3 7 6 9 1 2\n", "8\n6 1 4 2 5 6 9 2\n" ]
[ "2 3 9 6 7 1 4", "2 1 6 2 5 4 9 6" ]
Consider the first sample. 1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
1,000
[ { "input": "7\n4 3 7 6 9 1 2", "output": "2 3 9 6 7 1 4" }, { "input": "8\n6 1 4 2 5 6 9 2", "output": "2 1 6 2 5 4 9 6" }, { "input": "1\n1424", "output": "1424" }, { "input": "9\n-7 9 -4 9 -6 11 15 2 -10", "output": "-10 9 15 9 -6 11 -4 2 -7" }, { "input": "2\n21968 5686", "output": "5686 21968" }, { "input": "5\n241218936 -825949895 -84926813 491336344 -872198236", "output": "-872198236 -825949895 -84926813 491336344 241218936" }, { "input": "42\n-557774624 828320986 -345782722 -62979938 -681259411 -945983652 -139095040 832293378 -82572118 432027535 88438103 568183540 961782904 73543295 615958219 -5050584 322982437 -146046730 759453379 129267920 -819827396 -348156048 805080102 390723009 -771277251 -79011872 -592313207 528489973 656201270 -127795621 17284747 145139617 -565641608 83452176 -223074608 545811186 -657981923 -204657836 154779765 -476867246 180386291 202782486", "output": "202782486 828320986 -476867246 -62979938 -204657836 -945983652 545811186 832293378 83452176 432027535 145139617 568183540 -127795621 73543295 528489973 -5050584 -79011872 -146046730 390723009 129267920 -348156048 -819827396 805080102 759453379 -771277251 322982437 -592313207 615958219 656201270 961782904 17284747 88438103 -565641608 -82572118 -223074608 -139095040 -657981923 -681259411 154779765 -345782722 180386291 -557774624" }, { "input": "2\n1 2", "output": "2 1" }, { "input": "6\n1 2 3 4 5 6", "output": "6 2 4 3 5 1" }, { "input": "4\n0 1 2 3", "output": "3 1 2 0" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "10 2 8 4 6 5 7 3 9 1" }, { "input": "2\n4 5", "output": "5 4" }, { "input": "2\n1 5", "output": "5 1" }, { "input": "2\n2 5", "output": "5 2" }, { "input": "2\n3 4", "output": "4 3" }, { "input": "2\n10 0", "output": "0 10" }, { "input": "66\n8229 5299 5562 1259 2258 1126 5026 8796 3497 7111 6680 1180 1426 4821 3322 3502 400 2951 4187 417 5234 1266 7525 7648 417 9297 174 670 1790 4121 9737 938 4616 3402 2009 2461 474 3728 327 3353 9773 6818 8781 874 2209 1260 1647 6126 9287 9638 5049 1256 4459 863 1835 4822 6809 348 5053 7784 6927 2140 9173 7817 5095 4184", "output": "4184 5299 7817 1259 2140 1126 7784 8796 348 7111 4822 1180 863 4821 1256 3502 9638 2951 6126 417 1260 1266 874 7648 6818 9297 3353 670 3728 4121 2461 938 3402 4616 2009 9737 474 1790 327 174 9773 417 8781 7525 2209 5234 1647 4187 9287 400 5049 3322 4459 1426 1835 6680 6809 3497 5053 5026 6927 2258 9173 5562 5095 8229" } ]
1,538,227,975
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
5
1,000
14,233,600
n = int(input()) gifts = input().split() i=0 while i <= (n-2)-i+1: for k in range(i,(n//2)+1): save = gifts[(n-2)-k+1] gifts[(n-2)-k+1] = gifts[k] gifts[k] = save i+=1 print(' '.join(gifts))
Title: Timofey and cubes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents. In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1. After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location. Input Specification: The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order. Output Specification: Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order. It can be shown that the answer is unique. Demo Input: ['7\n4 3 7 6 9 1 2\n', '8\n6 1 4 2 5 6 9 2\n'] Demo Output: ['2 3 9 6 7 1 4', '2 1 6 2 5 4 9 6'] Note: Consider the first sample. 1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
```python n = int(input()) gifts = input().split() i=0 while i <= (n-2)-i+1: for k in range(i,(n//2)+1): save = gifts[(n-2)-k+1] gifts[(n-2)-k+1] = gifts[k] gifts[k] = save i+=1 print(' '.join(gifts)) ```
0
277
A
Learning Languages
PROGRAMMING
1,400
[ "dfs and similar", "dsu" ]
null
null
The "BerCorp" company has got *n* employees. These employees can use *m* approved official languages for the formal correspondence. The languages are numbered with integers from 1 to *m*. For each employee we have the list of languages, which he knows. This list could be empty, i. e. an employee may know no official languages. But the employees are willing to learn any number of official languages, as long as the company pays their lessons. A study course in one language for one employee costs 1 berdollar. Find the minimum sum of money the company needs to spend so as any employee could correspond to any other one (their correspondence can be indirect, i. e. other employees can help out translating).
The first line contains two integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=100) — the number of employees and the number of languages. Then *n* lines follow — each employee's language list. At the beginning of the *i*-th line is integer *k**i* (0<=≤<=*k**i*<=≤<=*m*) — the number of languages the *i*-th employee knows. Next, the *i*-th line contains *k**i* integers — *a**ij* (1<=≤<=*a**ij*<=≤<=*m*) — the identifiers of languages the *i*-th employee knows. It is guaranteed that all the identifiers in one list are distinct. Note that an employee may know zero languages. The numbers in the lines are separated by single spaces.
Print a single integer — the minimum amount of money to pay so that in the end every employee could write a letter to every other one (other employees can help out translating).
[ "5 5\n1 2\n2 2 3\n2 3 4\n2 4 5\n1 5\n", "8 7\n0\n3 1 2 3\n1 1\n2 5 4\n2 6 7\n1 3\n2 7 4\n1 1\n", "2 2\n1 2\n0\n" ]
[ "0\n", "2\n", "1\n" ]
In the second sample the employee 1 can learn language 2, and employee 8 can learn language 4. In the third sample employee 2 must learn language 2.
500
[ { "input": "5 5\n1 2\n2 2 3\n2 3 4\n2 4 5\n1 5", "output": "0" }, { "input": "8 7\n0\n3 1 2 3\n1 1\n2 5 4\n2 6 7\n1 3\n2 7 4\n1 1", "output": "2" }, { "input": "2 2\n1 2\n0", "output": "1" }, { "input": "2 2\n0\n0", "output": "2" }, { "input": "5 5\n1 3\n0\n0\n2 4 1\n0", "output": "4" }, { "input": "6 2\n0\n0\n2 1 2\n1 1\n1 1\n0", "output": "3" }, { "input": "7 3\n3 1 3 2\n3 2 1 3\n2 2 3\n1 1\n2 2 3\n3 3 2 1\n3 2 3 1", "output": "0" }, { "input": "8 4\n0\n0\n4 2 3 1 4\n4 2 1 4 3\n3 4 3 1\n1 2\n2 4 1\n2 4 2", "output": "2" }, { "input": "10 10\n5 7 5 2 8 1\n7 10 6 9 5 8 2 4\n2 2 7\n5 8 6 9 10 1\n2 9 5\n3 6 5 2\n6 5 8 7 9 10 4\n0\n1 1\n2 8 6", "output": "1" }, { "input": "11 42\n4 20 26 9 24\n14 34 7 28 32 12 15 26 4 10 38 21 20 8 11\n4 21 8 36 6\n11 32 1 39 11 21 10 25 17 26 15 4\n2 8 12\n2 21 31\n8 17 10 3 39 32 30 5 15\n20 24 20 38 17 4 7 21 19 32 28 31 22 30 37 10 5 33 2 13 9\n7 38 34 42 27 20 11 6\n3 40 3 39\n14 39 40 4 30 33 8 36 28 14 23 16 7 25 9", "output": "0" }, { "input": "100 100\n1 33\n0\n2 35 4\n2 40 78\n1 69\n0\n1 2\n0\n0\n2 81 34\n1 45\n0\n1 87\n1 50\n1 97\n0\n2 100 59\n0\n0\n0\n1 45\n0\n0\n0\n1 6\n1 54\n0\n0\n0\n4 79 96 52 84\n1 86\n0\n0\n0\n0\n0\n0\n0\n0\n3 90 2 80\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 2\n0\n1 64\n0\n1 78\n1 82\n0\n0\n0\n0\n0\n1 6\n0\n0\n2 47 57\n1 95\n0\n2 91 79\n0\n1 27\n0\n1 74\n0\n0\n1 14\n0\n0\n2 90 19\n0\n1 10\n0\n0\n0\n0\n0\n1 57\n0\n2 28 50\n0\n0\n0\n1 47\n0\n0\n1 14\n0\n1 84\n1 1\n0\n0", "output": "87" }, { "input": "2 2\n2 1 2\n2 1 2", "output": "0" }, { "input": "2 2\n2 1 2\n1 1", "output": "0" }, { "input": "2 2\n1 2\n1 1", "output": "1" }, { "input": "3 100\n0\n0\n0", "output": "3" }, { "input": "100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0", "output": "100" }, { "input": "3 3\n0\n0\n0", "output": "3" } ]
1,558,436,548
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
218
0
n,m=map(int,input().split()) d={} for i in range(1,m+1): d[i]=[] arr=[] for i in range(n): a=list(map(int,input().split())) a=a[1:] arr.append(a) for j in a: d[j].append(i) adj={} for i in range(n): adj[i]=[] for i in range(n): for j in arr[i]: adj[i]+=d[j] adj[i]=list(set(adj[i])-{i}) #print(adj) vis=[0]*n def dfs(n): if vis[n]: return vis[n]=1 for i in adj[n]: dfs(i) ans=0 for i in range(n): if not vis[i]: ans+=1 dfs(i) print(ans-1)
Title: Learning Languages Time Limit: None seconds Memory Limit: None megabytes Problem Description: The "BerCorp" company has got *n* employees. These employees can use *m* approved official languages for the formal correspondence. The languages are numbered with integers from 1 to *m*. For each employee we have the list of languages, which he knows. This list could be empty, i. e. an employee may know no official languages. But the employees are willing to learn any number of official languages, as long as the company pays their lessons. A study course in one language for one employee costs 1 berdollar. Find the minimum sum of money the company needs to spend so as any employee could correspond to any other one (their correspondence can be indirect, i. e. other employees can help out translating). Input Specification: The first line contains two integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=100) — the number of employees and the number of languages. Then *n* lines follow — each employee's language list. At the beginning of the *i*-th line is integer *k**i* (0<=≤<=*k**i*<=≤<=*m*) — the number of languages the *i*-th employee knows. Next, the *i*-th line contains *k**i* integers — *a**ij* (1<=≤<=*a**ij*<=≤<=*m*) — the identifiers of languages the *i*-th employee knows. It is guaranteed that all the identifiers in one list are distinct. Note that an employee may know zero languages. The numbers in the lines are separated by single spaces. Output Specification: Print a single integer — the minimum amount of money to pay so that in the end every employee could write a letter to every other one (other employees can help out translating). Demo Input: ['5 5\n1 2\n2 2 3\n2 3 4\n2 4 5\n1 5\n', '8 7\n0\n3 1 2 3\n1 1\n2 5 4\n2 6 7\n1 3\n2 7 4\n1 1\n', '2 2\n1 2\n0\n'] Demo Output: ['0\n', '2\n', '1\n'] Note: In the second sample the employee 1 can learn language 2, and employee 8 can learn language 4. In the third sample employee 2 must learn language 2.
```python n,m=map(int,input().split()) d={} for i in range(1,m+1): d[i]=[] arr=[] for i in range(n): a=list(map(int,input().split())) a=a[1:] arr.append(a) for j in a: d[j].append(i) adj={} for i in range(n): adj[i]=[] for i in range(n): for j in arr[i]: adj[i]+=d[j] adj[i]=list(set(adj[i])-{i}) #print(adj) vis=[0]*n def dfs(n): if vis[n]: return vis[n]=1 for i in adj[n]: dfs(i) ans=0 for i in range(n): if not vis[i]: ans+=1 dfs(i) print(ans-1) ```
0
1,003
A
Polycarp's Pockets
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
[ "6\n1 2 4 3 3 2\n", "1\n100\n" ]
[ "2\n", "1\n" ]
none
0
[ { "input": "6\n1 2 4 3 3 2", "output": "2" }, { "input": "1\n100", "output": "1" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71", "output": "51" }, { "input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29", "output": "1" }, { "input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24", "output": "2" }, { "input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6", "output": "10" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "99" }, { "input": "7\n1 2 3 3 3 1 2", "output": "3" }, { "input": "5\n1 2 3 4 5", "output": "1" }, { "input": "7\n1 2 3 4 5 6 7", "output": "1" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "11\n1 2 3 4 5 6 7 8 9 1 1", "output": "3" }, { "input": "12\n1 2 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "13" }, { "input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "14" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15" }, { "input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "16" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "10\n1 1 1 1 2 2 1 1 9 10", "output": "6" }, { "input": "2\n1 1", "output": "2" }, { "input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "56" }, { "input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92", "output": "6" }, { "input": "10\n1 2 2 3 3 3 4 4 4 4", "output": "4" }, { "input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21", "output": "3" }, { "input": "5\n5 5 5 5 1", "output": "4" }, { "input": "6\n2 3 2 5 2 6", "output": "3" }, { "input": "3\n58 59 58", "output": "2" }, { "input": "9\n1 2 3 4 5 6 7 8 8", "output": "2" }, { "input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "97" }, { "input": "3\n95 95 4", "output": "2" }, { "input": "3\n2 2 5", "output": "2" } ]
1,681,660,080
2,147,483,647
PyPy 3-64
OK
TESTS
37
93
0
n = int(input()) a = list(map(int, input().split())) b = max(a, key=a.count) c = a.count(b) print(min(n,c))
Title: Polycarp's Pockets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins. Output Specification: Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket. Demo Input: ['6\n1 2 4 3 3 2\n', '1\n100\n'] Demo Output: ['2\n', '1\n'] Note: none
```python n = int(input()) a = list(map(int, input().split())) b = max(a, key=a.count) c = a.count(b) print(min(n,c)) ```
3
604
A
Uncowed Forces
PROGRAMMING
1,000
[ "implementation" ]
null
null
Kevin Sun has just finished competing in Codeforces Round #334! The round was 120 minutes long and featured five problems with maximum point values of 500, 1000, 1500, 2000, and 2500, respectively. Despite the challenging tasks, Kevin was uncowed and bulldozed through all of them, distinguishing himself from the herd as the best cowmputer scientist in all of Bovinia. Kevin knows his submission time for each problem, the number of wrong submissions that he made on each problem, and his total numbers of successful and unsuccessful hacks. Because Codeforces scoring is complicated, Kevin wants you to write a program to compute his final score. Codeforces scores are computed as follows: If the maximum point value of a problem is *x*, and Kevin submitted correctly at minute *m* but made *w* wrong submissions, then his score on that problem is . His total score is equal to the sum of his scores for each problem. In addition, Kevin's total score gets increased by 100 points for each successful hack, but gets decreased by 50 points for each unsuccessful hack. All arithmetic operations are performed with absolute precision and no rounding. It is guaranteed that Kevin's final score is an integer.
The first line of the input contains five space-separated integers *m*1, *m*2, *m*3, *m*4, *m*5, where *m**i* (0<=≤<=*m**i*<=≤<=119) is the time of Kevin's last submission for problem *i*. His last submission is always correct and gets accepted. The second line contains five space-separated integers *w*1, *w*2, *w*3, *w*4, *w*5, where *w**i* (0<=≤<=*w**i*<=≤<=10) is Kevin's number of wrong submissions on problem *i*. The last line contains two space-separated integers *h**s* and *h**u* (0<=≤<=*h**s*,<=*h**u*<=≤<=20), denoting the Kevin's numbers of successful and unsuccessful hacks, respectively.
Print a single integer, the value of Kevin's final score.
[ "20 40 60 80 100\n0 1 2 3 4\n1 0\n", "119 119 119 119 119\n0 0 0 0 0\n10 0\n" ]
[ "4900\n", "4930\n" ]
In the second sample, Kevin takes 119 minutes on all of the problems. Therefore, he gets <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/42158dc2bc78cd21fa679530ae9ef8b9ea298d15.png" style="max-width: 100.0%;max-height: 100.0%;"/> of the points on each problem. So his score from solving problems is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fdf392d8508500b57f8057ac0c4c892ab5f925a2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Adding in 10·100 = 1000 points from hacks, his total score becomes 3930 + 1000 = 4930.
500
[ { "input": "20 40 60 80 100\n0 1 2 3 4\n1 0", "output": "4900" }, { "input": "119 119 119 119 119\n0 0 0 0 0\n10 0", "output": "4930" }, { "input": "3 6 13 38 60\n6 10 10 3 8\n9 9", "output": "5088" }, { "input": "21 44 11 68 75\n6 2 4 8 4\n2 8", "output": "4522" }, { "input": "16 112 50 114 68\n1 4 8 4 9\n19 11", "output": "5178" }, { "input": "55 66 75 44 47\n6 0 6 6 10\n19 0", "output": "6414" }, { "input": "47 11 88 5 110\n6 10 4 2 3\n10 6", "output": "5188" }, { "input": "5 44 61 103 92\n9 0 10 4 8\n15 7", "output": "4914" }, { "input": "115 53 96 62 110\n7 8 1 7 9\n7 16", "output": "3416" }, { "input": "102 83 26 6 11\n3 4 1 8 3\n17 14", "output": "6704" }, { "input": "36 102 73 101 19\n5 9 2 2 6\n4 13", "output": "4292" }, { "input": "40 115 93 107 113\n5 7 2 6 8\n6 17", "output": "2876" }, { "input": "53 34 53 107 81\n4 3 1 10 8\n7 7", "output": "4324" }, { "input": "113 37 4 84 66\n2 0 10 3 0\n20 19", "output": "6070" }, { "input": "10 53 101 62 1\n8 0 9 7 9\n0 11", "output": "4032" }, { "input": "45 45 75 36 76\n6 2 2 0 0\n8 17", "output": "5222" }, { "input": "47 16 44 78 111\n7 9 8 0 2\n1 19", "output": "3288" }, { "input": "7 54 39 102 31\n6 0 2 10 1\n18 3", "output": "6610" }, { "input": "0 46 86 72 40\n1 5 5 5 9\n6 5", "output": "4924" }, { "input": "114 4 45 78 113\n0 4 8 10 2\n10 12", "output": "4432" }, { "input": "56 56 96 105 107\n4 9 10 4 8\n2 1", "output": "3104" }, { "input": "113 107 59 50 56\n3 7 10 6 3\n10 12", "output": "4586" }, { "input": "96 104 9 94 84\n6 10 7 8 3\n14 11", "output": "4754" }, { "input": "98 15 116 43 55\n4 3 0 9 3\n10 7", "output": "5400" }, { "input": "0 26 99 108 35\n0 4 3 0 10\n9 5", "output": "5388" }, { "input": "89 24 51 49 84\n5 6 2 2 9\n2 14", "output": "4066" }, { "input": "57 51 76 45 96\n1 0 4 3 6\n12 15", "output": "5156" }, { "input": "79 112 37 36 116\n2 8 4 7 5\n4 12", "output": "3872" }, { "input": "71 42 60 20 7\n7 1 1 10 6\n1 7", "output": "5242" }, { "input": "86 10 66 80 55\n0 2 5 10 5\n15 6", "output": "5802" }, { "input": "66 109 22 22 62\n3 1 5 4 5\n10 5", "output": "5854" }, { "input": "97 17 43 84 58\n2 8 3 8 6\n10 7", "output": "5028" }, { "input": "109 83 5 114 104\n6 0 3 9 5\n5 2", "output": "4386" }, { "input": "94 18 24 91 105\n2 0 7 10 3\n1 4", "output": "4118" }, { "input": "64 17 86 59 45\n8 0 10 2 2\n4 4", "output": "5144" }, { "input": "70 84 31 57 2\n7 0 0 2 7\n12 5", "output": "6652" }, { "input": "98 118 117 86 4\n2 10 9 7 5\n11 15", "output": "4476" }, { "input": "103 110 101 97 70\n4 2 1 0 5\n7 5", "output": "4678" }, { "input": "78 96 6 97 62\n7 7 9 2 9\n10 3", "output": "4868" }, { "input": "95 28 3 31 115\n1 9 0 7 3\n10 13", "output": "5132" }, { "input": "45 17 116 58 3\n8 8 7 6 4\n3 19", "output": "3992" }, { "input": "19 12 0 113 77\n3 0 10 9 2\n8 6", "output": "5040" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0", "output": "7500" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n20 0", "output": "9500" }, { "input": "119 119 119 119 119\n10 10 10 10 10\n0 20", "output": "1310" }, { "input": "0 0 0 0 0\n10 10 10 10 10\n0 20", "output": "4150" }, { "input": "119 0 0 0 0\n10 0 0 0 0\n5 5", "output": "7400" }, { "input": "0 119 0 0 0\n0 10 0 0 0\n5 5", "output": "7050" }, { "input": "0 0 119 0 0\n0 0 10 0 0\n0 0", "output": "6450" }, { "input": "0 0 0 119 0\n0 0 0 10 0\n5 5", "output": "6350" }, { "input": "0 0 0 0 119\n0 0 0 0 10\n5 5", "output": "6060" }, { "input": "119 0 0 0 0\n2 0 0 0 0\n5 5", "output": "7412" }, { "input": "0 119 0 0 0\n0 2 0 0 0\n5 5", "output": "7174" }, { "input": "0 0 119 0 0\n0 0 2 0 0\n5 5", "output": "6936" }, { "input": "0 0 0 119 0\n0 0 0 2 0\n5 5", "output": "6698" }, { "input": "0 0 0 0 119\n0 0 0 0 2\n5 5", "output": "6460" }, { "input": "119 0 0 0 0\n0 0 0 0 0\n4 9", "output": "7212" } ]
1,448,984,550
450
Python 3
OK
TESTS
57
61
0
m = list(map(int, input().split())) w = list(map(int, input().split())) h = [500, 1000, 1500, 2000, 2500] s, u = map(int, input().split()) su = 0.0 for i in range(5): su += max(0.3*h[i], (1.0-m[i]/250.0)*h[i] - 50.0*w[i]) su += s*100.0 su -= u*50.0 print(int(su))
Title: Uncowed Forces Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kevin Sun has just finished competing in Codeforces Round #334! The round was 120 minutes long and featured five problems with maximum point values of 500, 1000, 1500, 2000, and 2500, respectively. Despite the challenging tasks, Kevin was uncowed and bulldozed through all of them, distinguishing himself from the herd as the best cowmputer scientist in all of Bovinia. Kevin knows his submission time for each problem, the number of wrong submissions that he made on each problem, and his total numbers of successful and unsuccessful hacks. Because Codeforces scoring is complicated, Kevin wants you to write a program to compute his final score. Codeforces scores are computed as follows: If the maximum point value of a problem is *x*, and Kevin submitted correctly at minute *m* but made *w* wrong submissions, then his score on that problem is . His total score is equal to the sum of his scores for each problem. In addition, Kevin's total score gets increased by 100 points for each successful hack, but gets decreased by 50 points for each unsuccessful hack. All arithmetic operations are performed with absolute precision and no rounding. It is guaranteed that Kevin's final score is an integer. Input Specification: The first line of the input contains five space-separated integers *m*1, *m*2, *m*3, *m*4, *m*5, where *m**i* (0<=≤<=*m**i*<=≤<=119) is the time of Kevin's last submission for problem *i*. His last submission is always correct and gets accepted. The second line contains five space-separated integers *w*1, *w*2, *w*3, *w*4, *w*5, where *w**i* (0<=≤<=*w**i*<=≤<=10) is Kevin's number of wrong submissions on problem *i*. The last line contains two space-separated integers *h**s* and *h**u* (0<=≤<=*h**s*,<=*h**u*<=≤<=20), denoting the Kevin's numbers of successful and unsuccessful hacks, respectively. Output Specification: Print a single integer, the value of Kevin's final score. Demo Input: ['20 40 60 80 100\n0 1 2 3 4\n1 0\n', '119 119 119 119 119\n0 0 0 0 0\n10 0\n'] Demo Output: ['4900\n', '4930\n'] Note: In the second sample, Kevin takes 119 minutes on all of the problems. Therefore, he gets <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/42158dc2bc78cd21fa679530ae9ef8b9ea298d15.png" style="max-width: 100.0%;max-height: 100.0%;"/> of the points on each problem. So his score from solving problems is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fdf392d8508500b57f8057ac0c4c892ab5f925a2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Adding in 10·100 = 1000 points from hacks, his total score becomes 3930 + 1000 = 4930.
```python m = list(map(int, input().split())) w = list(map(int, input().split())) h = [500, 1000, 1500, 2000, 2500] s, u = map(int, input().split()) su = 0.0 for i in range(5): su += max(0.3*h[i], (1.0-m[i]/250.0)*h[i] - 50.0*w[i]) su += s*100.0 su -= u*50.0 print(int(su)) ```
3
334
A
Candy Bags
PROGRAMMING
1,000
[ "implementation" ]
null
null
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits.
[ "2\n" ]
[ "1 4\n2 3\n" ]
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
500
[ { "input": "2", "output": "1 4\n2 3" }, { "input": "4", "output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9" }, { "input": "6", "output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19" }, { "input": "8", "output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33" }, { "input": "10", "output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51" }, { "input": "100", "output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..." }, { "input": "62", "output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..." }, { "input": "66", "output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..." }, { "input": "18", "output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..." }, { "input": "68", "output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..." }, { "input": "86", "output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..." }, { "input": "96", "output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..." }, { "input": "12", "output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73" }, { "input": "88", "output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..." }, { "input": "28", "output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..." }, { "input": "80", "output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..." }, { "input": "48", "output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..." }, { "input": "54", "output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..." }, { "input": "58", "output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..." }, { "input": "64", "output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..." }, { "input": "44", "output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..." } ]
1,375,015,706
2,147,483,647
Python 3
OK
TESTS
21
186
0
n = int(input()) left = 1 right = n ** 2 for i in range(n): for j in range(n // 2): print(left, right, end=' ') left, right = left + 1, right - 1 print()
Title: Candy Bags Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies. Input Specification: The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers. Output Specification: Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits. Demo Input: ['2\n'] Demo Output: ['1 4\n2 3\n'] Note: The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
```python n = int(input()) left = 1 right = n ** 2 for i in range(n): for j in range(n // 2): print(left, right, end=' ') left, right = left + 1, right - 1 print() ```
3
466
A
Cheap Travel
PROGRAMMING
1,200
[ "implementation" ]
null
null
Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides?
The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket.
Print a single integer — the minimum sum in rubles that Ann will need to spend.
[ "6 2 1 2\n", "5 2 2 3\n" ]
[ "6\n", "8\n" ]
In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
500
[ { "input": "6 2 1 2", "output": "6" }, { "input": "5 2 2 3", "output": "8" }, { "input": "10 3 5 1", "output": "4" }, { "input": "1000 1 1000 1000", "output": "1000000" }, { "input": "1000 3 1000 1000", "output": "334000" }, { "input": "1 1 1 1", "output": "1" }, { "input": "10 2 1 1", "output": "5" }, { "input": "1 1000 1 2", "output": "1" }, { "input": "1 1000 3 2", "output": "2" }, { "input": "10 3 1 2", "output": "7" }, { "input": "995 1 2 1", "output": "995" }, { "input": "556 2 16 15", "output": "4170" }, { "input": "477 2 16 14", "output": "3346" }, { "input": "101 110 1 100", "output": "100" }, { "input": "9 3 3 10", "output": "27" }, { "input": "100 8 10 1", "output": "13" }, { "input": "6 4 1 3", "output": "5" }, { "input": "8 5 2 8", "output": "14" }, { "input": "1000 2 1 1000", "output": "1000" } ]
1,692,868,877
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
#https://codeforces.com/problemset/problem/466/A n,m,a,b=map(int,input().split()) d=b/m if d<=a: t=n//m print(b*t+(n-t*m)*a) else: t=n//a print(a*t+(n-t*a)*b)
Title: Cheap Travel Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ann has recently started commuting by subway. We know that a one ride subway ticket costs *a* rubles. Besides, Ann found out that she can buy a special ticket for *m* rides (she can buy it several times). It costs *b* rubles. Ann did the math; she will need to use subway *n* times. Help Ann, tell her what is the minimum sum of money she will have to spend to make *n* rides? Input Specification: The single line contains four space-separated integers *n*, *m*, *a*, *b* (1<=≤<=*n*,<=*m*,<=*a*,<=*b*<=≤<=1000) — the number of rides Ann has planned, the number of rides covered by the *m* ride ticket, the price of a one ride ticket and the price of an *m* ride ticket. Output Specification: Print a single integer — the minimum sum in rubles that Ann will need to spend. Demo Input: ['6 2 1 2\n', '5 2 2 3\n'] Demo Output: ['6\n', '8\n'] Note: In the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three *m* ride tickets.
```python #https://codeforces.com/problemset/problem/466/A n,m,a,b=map(int,input().split()) d=b/m if d<=a: t=n//m print(b*t+(n-t*m)*a) else: t=n//a print(a*t+(n-t*a)*b) ```
0
981
A
Antipalindrome
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring $s[l \ldots r]$ ($1<=\leq<=l<=\leq<=r<=\leq<=|s|$) of a string $s<==<=s_{1}s_{2} \ldots s_{|s|}$ is the string $s_{l}s_{l<=+<=1} \ldots s_{r}$. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word $s$ is changed into its longest substring that is not a palindrome. If all the substrings of $s$ are palindromes, she skips the word at all. Some time ago Ann read the word $s$. What is the word she changed it into?
The first line contains a non-empty string $s$ with length at most $50$ characters, containing lowercase English letters only.
If there is such a substring in $s$ that is not a palindrome, print the maximum length of such a substring. Otherwise print $0$. Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
[ "mew\n", "wuffuw\n", "qqqqqqqq\n" ]
[ "3\n", "5\n", "0\n" ]
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is $3$. The string "uffuw" is one of the longest non-palindrome substrings (of length $5$) of the string "wuffuw", so the answer for the second example is $5$. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is $0$.
500
[ { "input": "mew", "output": "3" }, { "input": "wuffuw", "output": "5" }, { "input": "qqqqqqqq", "output": "0" }, { "input": "ijvji", "output": "4" }, { "input": "iiiiiii", "output": "0" }, { "input": "wobervhvvkihcuyjtmqhaaigvvgiaahqmtjyuchikvvhvrebow", "output": "49" }, { "input": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", "output": "0" }, { "input": "wobervhvvkihcuyjtmqhaaigvahheoqleromusrartldojsjvy", "output": "50" }, { "input": "ijvxljt", "output": "7" }, { "input": "fyhcncnchyf", "output": "10" }, { "input": "ffffffffffff", "output": "0" }, { "input": "fyhcncfsepqj", "output": "12" }, { "input": "ybejrrlbcinttnicblrrjeby", "output": "23" }, { "input": "yyyyyyyyyyyyyyyyyyyyyyyyy", "output": "0" }, { "input": "ybejrrlbcintahovgjddrqatv", "output": "25" }, { "input": "oftmhcmclgyqaojljoaqyglcmchmtfo", "output": "30" }, { "input": "oooooooooooooooooooooooooooooooo", "output": "0" }, { "input": "oftmhcmclgyqaojllbotztajglsmcilv", "output": "32" }, { "input": "gxandbtgpbknxvnkjaajknvxnkbpgtbdnaxg", "output": "35" }, { "input": "gggggggggggggggggggggggggggggggggggg", "output": "0" }, { "input": "gxandbtgpbknxvnkjaygommzqitqzjfalfkk", "output": "36" }, { "input": "fcliblymyqckxvieotjooojtoeivxkcqymylbilcf", "output": "40" }, { "input": "fffffffffffffffffffffffffffffffffffffffffff", "output": "0" }, { "input": "fcliblymyqckxvieotjootiqwtyznhhvuhbaixwqnsy", "output": "43" }, { "input": "rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr", "output": "0" }, { "input": "rajccqwqnqmshmerpvjyfepxwpxyldzpzhctqjnstxyfmlhiy", "output": "49" }, { "input": "a", "output": "0" }, { "input": "abca", "output": "4" }, { "input": "aaaaabaaaaa", "output": "10" }, { "input": "aba", "output": "2" }, { "input": "asaa", "output": "4" }, { "input": "aabaa", "output": "4" }, { "input": "aabbaa", "output": "5" }, { "input": "abcdaaa", "output": "7" }, { "input": "aaholaa", "output": "7" }, { "input": "abcdefghijka", "output": "12" }, { "input": "aaadcba", "output": "7" }, { "input": "aaaabaaaa", "output": "8" }, { "input": "abaa", "output": "4" }, { "input": "abcbaa", "output": "6" }, { "input": "ab", "output": "2" }, { "input": "l", "output": "0" }, { "input": "aaaabcaaaa", "output": "10" }, { "input": "abbaaaaaabba", "output": "11" }, { "input": "abaaa", "output": "5" }, { "input": "baa", "output": "3" }, { "input": "aaaaaaabbba", "output": "11" }, { "input": "ccbcc", "output": "4" }, { "input": "bbbaaab", "output": "7" }, { "input": "abaaaaaaaa", "output": "10" }, { "input": "abaaba", "output": "5" }, { "input": "aabsdfaaaa", "output": "10" }, { "input": "aaaba", "output": "5" }, { "input": "aaabaaa", "output": "6" }, { "input": "baaabbb", "output": "7" }, { "input": "ccbbabbcc", "output": "8" }, { "input": "cabc", "output": "4" }, { "input": "aabcd", "output": "5" }, { "input": "abcdea", "output": "6" }, { "input": "bbabb", "output": "4" }, { "input": "aaaaabababaaaaa", "output": "14" }, { "input": "bbabbb", "output": "6" }, { "input": "aababd", "output": "6" }, { "input": "abaaaa", "output": "6" }, { "input": "aaaaaaaabbba", "output": "12" }, { "input": "aabca", "output": "5" }, { "input": "aaabccbaaa", "output": "9" }, { "input": "aaaaaaaaaaaaaaaaaaaab", "output": "21" }, { "input": "babb", "output": "4" }, { "input": "abcaa", "output": "5" }, { "input": "qwqq", "output": "4" }, { "input": "aaaaaaaaaaabbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaa", "output": "48" }, { "input": "aaab", "output": "4" }, { "input": "aaaaaabaaaaa", "output": "12" }, { "input": "wwuww", "output": "4" }, { "input": "aaaaabcbaaaaa", "output": "12" }, { "input": "aaabbbaaa", "output": "8" }, { "input": "aabcbaa", "output": "6" }, { "input": "abccdefccba", "output": "11" }, { "input": "aabbcbbaa", "output": "8" }, { "input": "aaaabbaaaa", "output": "9" }, { "input": "aabcda", "output": "6" }, { "input": "abbca", "output": "5" }, { "input": "aaaaaabbaaa", "output": "11" }, { "input": "sssssspssssss", "output": "12" }, { "input": "sdnmsdcs", "output": "8" }, { "input": "aaabbbccbbbaaa", "output": "13" }, { "input": "cbdbdc", "output": "6" }, { "input": "abb", "output": "3" }, { "input": "abcdefaaaa", "output": "10" }, { "input": "abbbaaa", "output": "7" }, { "input": "v", "output": "0" }, { "input": "abccbba", "output": "7" }, { "input": "axyza", "output": "5" }, { "input": "abcdefgaaaa", "output": "11" }, { "input": "aaabcdaaa", "output": "9" }, { "input": "aaaacaaaa", "output": "8" }, { "input": "aaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaa", "output": "42" }, { "input": "abbbaa", "output": "6" }, { "input": "abcdee", "output": "6" }, { "input": "oom", "output": "3" }, { "input": "aabcaa", "output": "6" }, { "input": "abba", "output": "3" }, { "input": "aaca", "output": "4" }, { "input": "aacbca", "output": "6" }, { "input": "ababa", "output": "4" }, { "input": "abcda", "output": "5" }, { "input": "cccaaccc", "output": "7" }, { "input": "aaabcda", "output": "7" }, { "input": "aa", "output": "0" }, { "input": "aabaaaa", "output": "7" }, { "input": "abbaaaa", "output": "7" }, { "input": "aaabcbaaa", "output": "8" }, { "input": "aabba", "output": "5" }, { "input": "xyxx", "output": "4" }, { "input": "aaaaaaaaaaaabc", "output": "14" }, { "input": "bbaaaabb", "output": "7" }, { "input": "aaabaa", "output": "6" }, { "input": "sssssabsssss", "output": "12" }, { "input": "bbbaaaabbb", "output": "9" }, { "input": "abbbbaaaa", "output": "9" }, { "input": "wwufuww", "output": "6" }, { "input": "oowoo", "output": "4" }, { "input": "cccaccc", "output": "6" }, { "input": "aaa", "output": "0" }, { "input": "bbbcc", "output": "5" }, { "input": "abcdef", "output": "6" }, { "input": "abbba", "output": "4" }, { "input": "aab", "output": "3" }, { "input": "aaba", "output": "4" }, { "input": "azbyaaa", "output": "7" }, { "input": "oooooiooooo", "output": "10" }, { "input": "aabbbbbaaaaaa", "output": "13" } ]
1,601,662,124
2,147,483,647
Python 3
OK
TESTS
133
109
0
a = input() m = 0 for i in range(len(a)): for j in range(i,len(a)): s = a[i:j+1] if s!=s[::-1]: if len(s)>m: m = len(s) print(m)
Title: Antipalindrome Time Limit: None seconds Memory Limit: None megabytes Problem Description: A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring $s[l \ldots r]$ ($1<=\leq<=l<=\leq<=r<=\leq<=|s|$) of a string $s<==<=s_{1}s_{2} \ldots s_{|s|}$ is the string $s_{l}s_{l<=+<=1} \ldots s_{r}$. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word $s$ is changed into its longest substring that is not a palindrome. If all the substrings of $s$ are palindromes, she skips the word at all. Some time ago Ann read the word $s$. What is the word she changed it into? Input Specification: The first line contains a non-empty string $s$ with length at most $50$ characters, containing lowercase English letters only. Output Specification: If there is such a substring in $s$ that is not a palindrome, print the maximum length of such a substring. Otherwise print $0$. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Demo Input: ['mew\n', 'wuffuw\n', 'qqqqqqqq\n'] Demo Output: ['3\n', '5\n', '0\n'] Note: "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is $3$. The string "uffuw" is one of the longest non-palindrome substrings (of length $5$) of the string "wuffuw", so the answer for the second example is $5$. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is $0$.
```python a = input() m = 0 for i in range(len(a)): for j in range(i,len(a)): s = a[i:j+1] if s!=s[::-1]: if len(s)>m: m = len(s) print(m) ```
3
557
B
Pasha and Tea
PROGRAMMING
1,500
[ "constructive algorithms", "implementation", "math", "sortings" ]
null
null
Pasha decided to invite his friends to a tea party. For that occasion, he has a large teapot with the capacity of *w* milliliters and 2*n* tea cups, each cup is for one of Pasha's friends. The *i*-th cup can hold at most *a**i* milliliters of water. It turned out that among Pasha's friends there are exactly *n* boys and exactly *n* girls and all of them are going to come to the tea party. To please everyone, Pasha decided to pour the water for the tea as follows: - Pasha can boil the teapot exactly once by pouring there at most *w* milliliters of water; - Pasha pours the same amount of water to each girl; - Pasha pours the same amount of water to each boy; - if each girl gets *x* milliliters of water, then each boy gets 2*x* milliliters of water. In the other words, each boy should get two times more water than each girl does. Pasha is very kind and polite, so he wants to maximize the total amount of the water that he pours to his friends. Your task is to help him and determine the optimum distribution of cups between Pasha's friends.
The first line of the input contains two integers, *n* and *w* (1<=≤<=*n*<=≤<=105, 1<=≤<=*w*<=≤<=109) — the number of Pasha's friends that are boys (equal to the number of Pasha's friends that are girls) and the capacity of Pasha's teapot in milliliters. The second line of the input contains the sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=109, 1<=≤<=*i*<=≤<=2*n*) — the capacities of Pasha's tea cups in milliliters.
Print a single real number — the maximum total amount of water in milliliters that Pasha can pour to his friends without violating the given conditions. Your answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6.
[ "2 4\n1 1 1 1\n", "3 18\n4 4 4 2 2 2\n", "1 5\n2 3\n" ]
[ "3", "18", "4.5" ]
Pasha also has candies that he is going to give to girls but that is another task...
1,000
[ { "input": "2 4\n1 1 1 1", "output": "3.0000000000" }, { "input": "3 18\n4 4 4 2 2 2", "output": "18.0000000000" }, { "input": "1 5\n2 3", "output": "4.5000000000" }, { "input": "1 1\n1000000000 1000000000", "output": "1.0000000000" }, { "input": "4 1000000000\n1 1 1 1 1 1 1 1", "output": "6.0000000000" }, { "input": "4 1000000000\n1 1 1 1 2 2 2 2", "output": "12.0000000000" }, { "input": "4 1\n3 3 3 3 4 4 4 4", "output": "1.0000000000" }, { "input": "2 19\n3 3 5 5", "output": "15.0000000000" }, { "input": "3 31\n3 3 3 5 5 5", "output": "22.5000000000" }, { "input": "5 15\n2 3 4 1 2 4 5 3 5 10", "output": "15.0000000000" }, { "input": "5 14\n2 3 4 1 2 4 5 3 5 10", "output": "14.0000000000" }, { "input": "5 16\n2 3 4 1 2 4 5 3 5 10", "output": "15.0000000000" }, { "input": "1 100\n1 200", "output": "3.0000000000" }, { "input": "1 1\n1 1", "output": "1.0000000000" }, { "input": "2 1000000000\n1 1 1 100", "output": "3.0000000000" }, { "input": "4 30\n3 3 3 3 4 5 6 7", "output": "24.0000000000" }, { "input": "2 100\n1 1 1 10", "output": "3.0000000000" }, { "input": "3 18\n1 1 1 1 1 5", "output": "4.5000000000" } ]
1,551,963,472
2,147,483,647
Python 3
OK
TESTS
50
249
18,432,000
n, w = map(int, input().split()) a = list(map(int, input().split())) a.sort() print(min(w, min(a[0], a[n]*0.5)*3*n))
Title: Pasha and Tea Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pasha decided to invite his friends to a tea party. For that occasion, he has a large teapot with the capacity of *w* milliliters and 2*n* tea cups, each cup is for one of Pasha's friends. The *i*-th cup can hold at most *a**i* milliliters of water. It turned out that among Pasha's friends there are exactly *n* boys and exactly *n* girls and all of them are going to come to the tea party. To please everyone, Pasha decided to pour the water for the tea as follows: - Pasha can boil the teapot exactly once by pouring there at most *w* milliliters of water; - Pasha pours the same amount of water to each girl; - Pasha pours the same amount of water to each boy; - if each girl gets *x* milliliters of water, then each boy gets 2*x* milliliters of water. In the other words, each boy should get two times more water than each girl does. Pasha is very kind and polite, so he wants to maximize the total amount of the water that he pours to his friends. Your task is to help him and determine the optimum distribution of cups between Pasha's friends. Input Specification: The first line of the input contains two integers, *n* and *w* (1<=≤<=*n*<=≤<=105, 1<=≤<=*w*<=≤<=109) — the number of Pasha's friends that are boys (equal to the number of Pasha's friends that are girls) and the capacity of Pasha's teapot in milliliters. The second line of the input contains the sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=109, 1<=≤<=*i*<=≤<=2*n*) — the capacities of Pasha's tea cups in milliliters. Output Specification: Print a single real number — the maximum total amount of water in milliliters that Pasha can pour to his friends without violating the given conditions. Your answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6. Demo Input: ['2 4\n1 1 1 1\n', '3 18\n4 4 4 2 2 2\n', '1 5\n2 3\n'] Demo Output: ['3', '18', '4.5'] Note: Pasha also has candies that he is going to give to girls but that is another task...
```python n, w = map(int, input().split()) a = list(map(int, input().split())) a.sort() print(min(w, min(a[0], a[n]*0.5)*3*n)) ```
3
82
A
Double Cola
PROGRAMMING
1,100
[ "implementation", "math" ]
A. Double Cola
1
256
Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.
The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.
Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially.
[ "1\n", "6\n", "1802\n" ]
[ "Sheldon\n", "Sheldon\n", "Penny\n" ]
none
500
[ { "input": "1", "output": "Sheldon" }, { "input": "6", "output": "Sheldon" }, { "input": "1802", "output": "Penny" }, { "input": "1", "output": "Sheldon" }, { "input": "2", "output": "Leonard" }, { "input": "3", "output": "Penny" }, { "input": "4", "output": "Rajesh" }, { "input": "5", "output": "Howard" }, { "input": "10", "output": "Penny" }, { "input": "534", "output": "Rajesh" }, { "input": "5033", "output": "Howard" }, { "input": "10010", "output": "Howard" }, { "input": "500000000", "output": "Penny" }, { "input": "63", "output": "Rajesh" }, { "input": "841", "output": "Leonard" }, { "input": "3667", "output": "Penny" }, { "input": "38614", "output": "Howard" }, { "input": "282798", "output": "Rajesh" }, { "input": "9266286", "output": "Rajesh" }, { "input": "27385966", "output": "Leonard" }, { "input": "121580142", "output": "Penny" }, { "input": "5", "output": "Howard" }, { "input": "300", "output": "Howard" }, { "input": "1745", "output": "Leonard" }, { "input": "8302", "output": "Rajesh" }, { "input": "184518", "output": "Sheldon" }, { "input": "1154414", "output": "Rajesh" }, { "input": "28643950", "output": "Leonard" }, { "input": "159222638", "output": "Howard" }, { "input": "24", "output": "Penny" }, { "input": "505", "output": "Penny" }, { "input": "4425", "output": "Rajesh" }, { "input": "12079", "output": "Sheldon" }, { "input": "469726", "output": "Penny" }, { "input": "3961838", "output": "Penny" }, { "input": "57710446", "output": "Leonard" }, { "input": "80719470", "output": "Howard" }, { "input": "1000000000", "output": "Penny" }, { "input": "999999999", "output": "Penny" }, { "input": "999999998", "output": "Penny" }, { "input": "5", "output": "Howard" } ]
1,603,913,669
2,147,483,647
Python 3
OK
TESTS
41
108
0
import math # This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. n=int(input()) L=[ "Sheldon", "Leonard", "Penny", "Rajesh", "Howard"] k=math.floor(math.log2(n/5+1)) n-=(5*(2**k-1)) ans=(n-1)//((2**k)) print(L[ans]) #01234 0011223344 00001111222233334444 0000000011111111222222223333333344444444 #5 10 20 40 80 #5 15 35 75 #5( 1 2 4 8 16 ) #s=1 2 4 8 16 + 2^(n-1) #2s=2 4 8 16 +2^n #s=5(2^n-1) #(2^k)<=n/5+1
Title: Double Cola Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a "Double Cola" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum. For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny. Write a program that will print the name of a man who will drink the *n*-th can. Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon. Input Specification: The input data consist of a single integer *n* (1<=≤<=*n*<=≤<=109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers. Output Specification: Print the single line — the name of the person who drinks the *n*-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: "Sheldon", "Leonard", "Penny", "Rajesh", "Howard" (without the quotes). In that order precisely the friends are in the queue initially. Demo Input: ['1\n', '6\n', '1802\n'] Demo Output: ['Sheldon\n', 'Sheldon\n', 'Penny\n'] Note: none
```python import math # This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. n=int(input()) L=[ "Sheldon", "Leonard", "Penny", "Rajesh", "Howard"] k=math.floor(math.log2(n/5+1)) n-=(5*(2**k-1)) ans=(n-1)//((2**k)) print(L[ans]) #01234 0011223344 00001111222233334444 0000000011111111222222223333333344444444 #5 10 20 40 80 #5 15 35 75 #5( 1 2 4 8 16 ) #s=1 2 4 8 16 + 2^(n-1) #2s=2 4 8 16 +2^n #s=5(2^n-1) #(2^k)<=n/5+1 ```
3.946
214
A
System of Equations
PROGRAMMING
800
[ "brute force" ]
null
null
Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you? You are given a system of equations: You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system.
A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space.
On a single line print the answer to the problem.
[ "9 3\n", "14 28\n", "4 20\n" ]
[ "1\n", "1\n", "0\n" ]
In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
500
[ { "input": "9 3", "output": "1" }, { "input": "14 28", "output": "1" }, { "input": "4 20", "output": "0" }, { "input": "18 198", "output": "1" }, { "input": "22 326", "output": "1" }, { "input": "26 104", "output": "1" }, { "input": "14 10", "output": "0" }, { "input": "8 20", "output": "0" }, { "input": "2 8", "output": "0" }, { "input": "20 11", "output": "0" }, { "input": "57 447", "output": "1" }, { "input": "1 1", "output": "2" }, { "input": "66 296", "output": "1" }, { "input": "75 683", "output": "1" }, { "input": "227 975", "output": "1" }, { "input": "247 499", "output": "1" }, { "input": "266 116", "output": "1" }, { "input": "286 916", "output": "1" }, { "input": "307 341", "output": "1" }, { "input": "451 121", "output": "1" }, { "input": "471 921", "output": "1" }, { "input": "502 346", "output": "1" }, { "input": "535 59", "output": "1" }, { "input": "555 699", "output": "1" }, { "input": "747 351", "output": "1" }, { "input": "790 64", "output": "1" }, { "input": "810 704", "output": "1" }, { "input": "855 225", "output": "1" }, { "input": "902 34", "output": "1" }, { "input": "922 514", "output": "1" }, { "input": "971 131", "output": "1" }, { "input": "991 931", "output": "1" }, { "input": "840 780", "output": "0" }, { "input": "102 595", "output": "0" }, { "input": "139 433", "output": "0" }, { "input": "968 288", "output": "0" }, { "input": "563 354", "output": "0" }, { "input": "994 975", "output": "0" }, { "input": "456 221", "output": "0" }, { "input": "205 210", "output": "0" }, { "input": "1 11", "output": "0" }, { "input": "1000 1000", "output": "0" }, { "input": "3 3", "output": "0" }, { "input": "11 99", "output": "0" }, { "input": "2 2", "output": "1" }, { "input": "11 1", "output": "0" }, { "input": "6 6", "output": "1" }, { "input": "100 452", "output": "0" }, { "input": "420 380", "output": "0" }, { "input": "31 31", "output": "0" }, { "input": "2 6", "output": "0" }, { "input": "112 134", "output": "0" }, { "input": "13 13", "output": "0" }, { "input": "1 571", "output": "0" } ]
1,634,835,809
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
41
124
4,505,600
import math n,*m=input().split() n=int(n) m=int(*m) a,b=0,0 if n==m: print(2) else: solCount=0 bSols=[] for i in range(n+1): if m-b**2 == math.sqrt(n-b): solCount+=1 bSols.append(b) b+=1 print(solCount)
Title: System of Equations Time Limit: None seconds Memory Limit: None megabytes Problem Description: Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you? You are given a system of equations: You should count, how many there are pairs of integers (*a*,<=*b*) (0<=≤<=*a*,<=*b*) which satisfy the system. Input Specification: A single line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the parameters of the system. The numbers on the line are separated by a space. Output Specification: On a single line print the answer to the problem. Demo Input: ['9 3\n', '14 28\n', '4 20\n'] Demo Output: ['1\n', '1\n', '0\n'] Note: In the first sample the suitable pair is integers (3, 0). In the second sample the suitable pair is integers (3, 5). In the third sample there is no suitable pair.
```python import math n,*m=input().split() n=int(n) m=int(*m) a,b=0,0 if n==m: print(2) else: solCount=0 bSols=[] for i in range(n+1): if m-b**2 == math.sqrt(n-b): solCount+=1 bSols.append(b) b+=1 print(solCount) ```
0
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,567,702,546
2,147,483,647
Python 3
OK
TESTS
81
248
0
forces = int(input()) x = 0 y = 0 z = 0 for i in range(0,forces): x1, y1, z1 = input().split() x += int(x1) y += int(y1) z += int(z1) if x == 0 and y == 0 and z == 0: print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python forces = int(input()) x = 0 y = 0 z = 0 for i in range(0,forces): x1, y1, z1 = input().split() x += int(x1) y += int(y1) z += int(z1) if x == 0 and y == 0 and z == 0: print("YES") else: print("NO") ```
3.938
774
L
Bars
PROGRAMMING
2,000
[ "*special", "binary search" ]
null
null
Polycarp's workday lasts exactly $n$ minutes. He loves chocolate bars and can eat one bar in one minute. Today Polycarp has $k$ bars at the beginning of the workday. In some minutes of the workday Polycarp has important things to do and in such minutes he is not able to eat a chocolate bar. In other minutes he can either eat or not eat one chocolate bar. It is guaranteed, that in the first and in the last minutes of the workday Polycarp has no important things to do and he will always eat bars in this minutes to gladden himself at the begining and at the end of the workday. Also it is guaranteed, that $k$ is strictly greater than $1$. Your task is to determine such an order of eating chocolate bars that the maximum break time between eating bars is as minimum as possible. Consider that Polycarp eats a bar in the minute $x$ and the next bar in the minute $y$ ($x &lt; y$). Then the break time is equal to $y - x - 1$ minutes. It is not necessary for Polycarp to eat all bars he has.
The first line contains two integers $n$ and $k$ ($2 \le n \le 200\,000$, $2 \le k \le n$) — the length of the workday in minutes and the number of chocolate bars, which Polycarp has in the beginning of the workday. The second line contains the string with length $n$ consisting of zeros and ones. If the $i$-th symbol in the string equals to zero, Polycarp has no important things to do in the minute $i$ and he can eat a chocolate bar. In the other case, Polycarp is busy in the minute $i$ and can not eat a chocolate bar. It is guaranteed, that the first and the last characters of the string are equal to zero, and Polycarp always eats chocolate bars in these minutes.
Print the minimum possible break in minutes between eating chocolate bars.
[ "3 3\n010\n", "8 3\n01010110\n" ]
[ "1\n", "3\n" ]
In the first example Polycarp can not eat the chocolate bar in the second minute, so the time of the break equals to one minute. In the second example Polycarp will eat bars in the minutes $1$ and $8$ anyway, also he needs to eat the chocolate bar in the minute $5$, so that the time of the maximum break will be equal to $3$ minutes.
0
[ { "input": "3 3\n010", "output": "1" }, { "input": "8 3\n01010110", "output": "3" }, { "input": "9 5\n001100110", "output": "2" }, { "input": "2 2\n00", "output": "0" }, { "input": "3 2\n010", "output": "1" }, { "input": "3 2\n000", "output": "1" }, { "input": "3 3\n000", "output": "0" }, { "input": "4 2\n0000", "output": "2" }, { "input": "4 2\n0100", "output": "2" }, { "input": "4 2\n0010", "output": "2" }, { "input": "4 2\n0110", "output": "2" }, { "input": "4 3\n0000", "output": "1" }, { "input": "4 3\n0010", "output": "1" }, { "input": "4 3\n0100", "output": "1" }, { "input": "4 3\n0110", "output": "2" }, { "input": "4 4\n0000", "output": "0" }, { "input": "4 4\n0100", "output": "1" }, { "input": "4 4\n0010", "output": "1" }, { "input": "4 4\n0110", "output": "2" }, { "input": "10 3\n0111011010", "output": "4" }, { "input": "100 19\n0011011110011111111010111101101100101111111111011011111111110111101111101111111101111011111011101110", "output": "10" }, { "input": "10 3\n0111011010", "output": "4" }, { "input": "100 19\n0011011110011111111010111101101100101111111111011011111111110111101111101111111101111011111011101110", "output": "10" }, { "input": "10 6\n0000000000", "output": "1" }, { "input": "10 4\n0000001000", "output": "3" }, { "input": "10 6\n0000000000", "output": "1" }, { "input": "100 21\n0110111011000010010101011101110101110111000111101011110100011011100011111101001010001111001111111000", "output": "7" }, { "input": "10 9\n0111011010", "output": "3" }, { "input": "100 89\n0011011110011111111010111101101100101111111111011011111111110111101111101111111101111011111011101110", "output": "10" }, { "input": "10 6\n0000000000", "output": "1" }, { "input": "100 81\n0110111011000010010101011101110101110111000111101011110100011011100011111101001010001111001111111000", "output": "7" } ]
1,589,654,236
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
7
139
20,172,800
def ok(x, k, s, n): i = 0 while i < len(s): k -= 1 if(i + x + 1 >= len(s)): break j = n[i + x + 1] if(j == i): return 0 i = j return k >= 0 n, k = map(int, input().split()) s = input() n = [0] for i in range(1, len(s)): if s[i] == '0': n.append(i) else: n.append(n[-1]) l = -1 r = len(s) while r - l > 1: m = (l + r)//2 if ok(m, k, s, n): r = m else: l = m print(r)
Title: Bars Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp's workday lasts exactly $n$ minutes. He loves chocolate bars and can eat one bar in one minute. Today Polycarp has $k$ bars at the beginning of the workday. In some minutes of the workday Polycarp has important things to do and in such minutes he is not able to eat a chocolate bar. In other minutes he can either eat or not eat one chocolate bar. It is guaranteed, that in the first and in the last minutes of the workday Polycarp has no important things to do and he will always eat bars in this minutes to gladden himself at the begining and at the end of the workday. Also it is guaranteed, that $k$ is strictly greater than $1$. Your task is to determine such an order of eating chocolate bars that the maximum break time between eating bars is as minimum as possible. Consider that Polycarp eats a bar in the minute $x$ and the next bar in the minute $y$ ($x &lt; y$). Then the break time is equal to $y - x - 1$ minutes. It is not necessary for Polycarp to eat all bars he has. Input Specification: The first line contains two integers $n$ and $k$ ($2 \le n \le 200\,000$, $2 \le k \le n$) — the length of the workday in minutes and the number of chocolate bars, which Polycarp has in the beginning of the workday. The second line contains the string with length $n$ consisting of zeros and ones. If the $i$-th symbol in the string equals to zero, Polycarp has no important things to do in the minute $i$ and he can eat a chocolate bar. In the other case, Polycarp is busy in the minute $i$ and can not eat a chocolate bar. It is guaranteed, that the first and the last characters of the string are equal to zero, and Polycarp always eats chocolate bars in these minutes. Output Specification: Print the minimum possible break in minutes between eating chocolate bars. Demo Input: ['3 3\n010\n', '8 3\n01010110\n'] Demo Output: ['1\n', '3\n'] Note: In the first example Polycarp can not eat the chocolate bar in the second minute, so the time of the break equals to one minute. In the second example Polycarp will eat bars in the minutes $1$ and $8$ anyway, also he needs to eat the chocolate bar in the minute $5$, so that the time of the maximum break will be equal to $3$ minutes.
```python def ok(x, k, s, n): i = 0 while i < len(s): k -= 1 if(i + x + 1 >= len(s)): break j = n[i + x + 1] if(j == i): return 0 i = j return k >= 0 n, k = map(int, input().split()) s = input() n = [0] for i in range(1, len(s)): if s[i] == '0': n.append(i) else: n.append(n[-1]) l = -1 r = len(s) while r - l > 1: m = (l + r)//2 if ok(m, k, s, n): r = m else: l = m print(r) ```
0
665
E
Beautiful Subarrays
PROGRAMMING
2,100
[ "data structures", "divide and conquer", "strings", "trees" ]
null
null
One day, ZS the Coder wrote down an array of integers *a*<=with elements *a*1,<=<=*a*2,<=<=...,<=<=*a**n*. A subarray of the array *a* is a sequence *a**l*,<=<=*a**l*<=<=+<=<=1,<=<=...,<=<=*a**r* for some integers (*l*,<=<=*r*) such that 1<=<=≤<=<=*l*<=<=≤<=<=*r*<=<=≤<=<=*n*. ZS the Coder thinks that a subarray of *a* is beautiful if the bitwise xor of all the elements in the subarray is at least *k*. Help ZS the Coder find the number of beautiful subarrays of *a*!
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=106,<=1<=≤<=*k*<=≤<=109) — the number of elements in the array *a* and the value of the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=109) — the elements of the array *a*.
Print the only integer *c* — the number of beautiful subarrays of the array *a*.
[ "3 1\n1 2 3\n", "3 2\n1 2 3\n", "3 3\n1 2 3\n" ]
[ "5\n", "3\n", "2\n" ]
none
0
[ { "input": "3 1\n1 2 3", "output": "5" }, { "input": "3 2\n1 2 3", "output": "3" }, { "input": "3 3\n1 2 3", "output": "2" }, { "input": "1 1\n1", "output": "1" }, { "input": "10 1\n1 1 0 1 0 1 1 0 0 0", "output": "28" }, { "input": "100 80\n85 16 22 81 86 64 53 7 123 114 53 25 29 23 61 125 29 108 53 7 57 46 83 73 24 26 55 121 67 93 85 28 73 59 11 34 63 90 37 111 47 127 80 104 94 51 93 106 63 33 17 44 89 11 111 111 54 89 63 81 107 63 127 27 74 71 8 111 111 12 1 18 4 116 67 10 59 112 31 2 122 42 5 127 50 93 62 22 39 43 15 51 100 9 120 7 66 44 28 10", "output": "1859" } ]
1,689,435,241
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689435241.7912953")# 1689435241.7913144
Title: Beautiful Subarrays Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day, ZS the Coder wrote down an array of integers *a*<=with elements *a*1,<=<=*a*2,<=<=...,<=<=*a**n*. A subarray of the array *a* is a sequence *a**l*,<=<=*a**l*<=<=+<=<=1,<=<=...,<=<=*a**r* for some integers (*l*,<=<=*r*) such that 1<=<=≤<=<=*l*<=<=≤<=<=*r*<=<=≤<=<=*n*. ZS the Coder thinks that a subarray of *a* is beautiful if the bitwise xor of all the elements in the subarray is at least *k*. Help ZS the Coder find the number of beautiful subarrays of *a*! Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=106,<=1<=≤<=*k*<=≤<=109) — the number of elements in the array *a* and the value of the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=109) — the elements of the array *a*. Output Specification: Print the only integer *c* — the number of beautiful subarrays of the array *a*. Demo Input: ['3 1\n1 2 3\n', '3 2\n1 2 3\n', '3 3\n1 2 3\n'] Demo Output: ['5\n', '3\n', '2\n'] Note: none
```python print("_RANDOM_GUESS_1689435241.7912953")# 1689435241.7913144 ```
0
570
B
Simple Game
PROGRAMMING
1,300
[ "constructive algorithms", "games", "greedy", "implementation", "math" ]
null
null
One day Misha and Andrew were playing a very simple game. First, each player chooses an integer in the range from 1 to *n*. Let's assume that Misha chose number *m*, and Andrew chose number *a*. Then, by using a random generator they choose a random integer *c* in the range between 1 and *n* (any integer from 1 to *n* is chosen with the same probability), after which the winner is the player, whose number was closer to *c*. The boys agreed that if *m* and *a* are located on the same distance from *c*, Misha wins. Andrew wants to win very much, so he asks you to help him. You know the number selected by Misha, and number *n*. You need to determine which value of *a* Andrew must choose, so that the probability of his victory is the highest possible. More formally, you need to find such integer *a* (1<=≤<=*a*<=≤<=*n*), that the probability that is maximal, where *c* is the equiprobably chosen integer from 1 to *n* (inclusive).
The first line contains two integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the range of numbers in the game, and the number selected by Misha respectively.
Print a single number — such value *a*, that probability that Andrew wins is the highest. If there are multiple such values, print the minimum of them.
[ "3 1\n", "4 3\n" ]
[ "2", "2" ]
In the first sample test: Andrew wins if *c* is equal to 2 or 3. The probability that Andrew wins is 2 / 3. If Andrew chooses *a* = 3, the probability of winning will be 1 / 3. If *a* = 1, the probability of winning is 0. In the second sample test: Andrew wins if *c* is equal to 1 and 2. The probability that Andrew wins is 1 / 2. For other choices of *a* the probability of winning is less.
1,000
[ { "input": "3 1", "output": "2" }, { "input": "4 3", "output": "2" }, { "input": "5 5", "output": "4" }, { "input": "10 5", "output": "6" }, { "input": "20 13", "output": "12" }, { "input": "51 1", "output": "2" }, { "input": "100 50", "output": "51" }, { "input": "100 51", "output": "50" }, { "input": "100 49", "output": "50" }, { "input": "1000000000 1000000000", "output": "999999999" }, { "input": "1000000000 1", "output": "2" }, { "input": "1000000000 100000000", "output": "100000001" }, { "input": "1000000000 500000000", "output": "500000001" }, { "input": "1000000000 123124", "output": "123125" }, { "input": "12412523 125123", "output": "125124" }, { "input": "54645723 432423", "output": "432424" }, { "input": "1 1", "output": "1" }, { "input": "262833325 131416663", "output": "131416662" }, { "input": "477667530 238833766", "output": "238833765" }, { "input": "692501734 346250868", "output": "346250867" }, { "input": "907335939 453667970", "output": "453667969" }, { "input": "746085224 373042613", "output": "373042612" }, { "input": "189520699 94760350", "output": "94760349" }, { "input": "404354904 202177453", "output": "202177452" }, { "input": "619189108 309594555", "output": "309594554" }, { "input": "81813292 40906647", "output": "40906646" }, { "input": "296647497 148323750", "output": "148323749" }, { "input": "511481701 255740851", "output": "255740850" }, { "input": "726315905 363157953", "output": "363157952" }, { "input": "496110970 201868357", "output": "201868358" }, { "input": "710945175 173165570", "output": "173165571" }, { "input": "925779379 720443954", "output": "720443953" }, { "input": "140613583 93171580", "output": "93171579" }, { "input": "355447788 85890184", "output": "85890185" }, { "input": "570281992 291648263", "output": "291648262" }, { "input": "541904957 459371829", "output": "459371828" }, { "input": "756739161 125332525", "output": "125332526" }, { "input": "971573366 216791157", "output": "216791158" }, { "input": "186407570 160453970", "output": "160453969" }, { "input": "401241775 170032078", "output": "170032079" }, { "input": "616075979 207073797", "output": "207073798" }, { "input": "1 1", "output": "1" }, { "input": "2 1", "output": "2" }, { "input": "2 2", "output": "1" }, { "input": "3 1", "output": "2" }, { "input": "3 2", "output": "1" }, { "input": "3 3", "output": "2" }, { "input": "4 1", "output": "2" }, { "input": "4 2", "output": "3" }, { "input": "4 3", "output": "2" }, { "input": "4 4", "output": "3" }, { "input": "5 1", "output": "2" }, { "input": "5 2", "output": "3" }, { "input": "5 3", "output": "2" }, { "input": "5 4", "output": "3" }, { "input": "5 5", "output": "4" }, { "input": "3 2", "output": "1" }, { "input": "7 4", "output": "3" }, { "input": "2 2", "output": "1" }, { "input": "7 3", "output": "4" } ]
1,581,432,671
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
139
0
#!/usr/bin/env python3 def main(): n, m = map(int, input().split(' ')) if m < n/2: print(m+1) else: print(m-1) if __name__== "__main__": main()
Title: Simple Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Misha and Andrew were playing a very simple game. First, each player chooses an integer in the range from 1 to *n*. Let's assume that Misha chose number *m*, and Andrew chose number *a*. Then, by using a random generator they choose a random integer *c* in the range between 1 and *n* (any integer from 1 to *n* is chosen with the same probability), after which the winner is the player, whose number was closer to *c*. The boys agreed that if *m* and *a* are located on the same distance from *c*, Misha wins. Andrew wants to win very much, so he asks you to help him. You know the number selected by Misha, and number *n*. You need to determine which value of *a* Andrew must choose, so that the probability of his victory is the highest possible. More formally, you need to find such integer *a* (1<=≤<=*a*<=≤<=*n*), that the probability that is maximal, where *c* is the equiprobably chosen integer from 1 to *n* (inclusive). Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the range of numbers in the game, and the number selected by Misha respectively. Output Specification: Print a single number — such value *a*, that probability that Andrew wins is the highest. If there are multiple such values, print the minimum of them. Demo Input: ['3 1\n', '4 3\n'] Demo Output: ['2', '2'] Note: In the first sample test: Andrew wins if *c* is equal to 2 or 3. The probability that Andrew wins is 2 / 3. If Andrew chooses *a* = 3, the probability of winning will be 1 / 3. If *a* = 1, the probability of winning is 0. In the second sample test: Andrew wins if *c* is equal to 1 and 2. The probability that Andrew wins is 1 / 2. For other choices of *a* the probability of winning is less.
```python #!/usr/bin/env python3 def main(): n, m = map(int, input().split(' ')) if m < n/2: print(m+1) else: print(m-1) if __name__== "__main__": main() ```
0
610
A
Pasha and Stick
PROGRAMMING
1,000
[ "combinatorics", "math" ]
null
null
Pasha has a wooden stick of some positive integer length *n*. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be *n*. Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square. Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer *x*, such that the number of parts of length *x* in the first way differ from the number of parts of length *x* in the second way.
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=2·109) — the length of Pasha's stick.
The output should contain a single integer — the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square.
[ "6\n", "20\n" ]
[ "1\n", "4\n" ]
There is only one way to divide the stick in the first sample {1, 1, 2, 2}. Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work.
500
[ { "input": "6", "output": "1" }, { "input": "20", "output": "4" }, { "input": "1", "output": "0" }, { "input": "2", "output": "0" }, { "input": "3", "output": "0" }, { "input": "4", "output": "0" }, { "input": "2000000000", "output": "499999999" }, { "input": "1924704072", "output": "481176017" }, { "input": "73740586", "output": "18435146" }, { "input": "1925088820", "output": "481272204" }, { "input": "593070992", "output": "148267747" }, { "input": "1925473570", "output": "481368392" }, { "input": "629490186", "output": "157372546" }, { "input": "1980649112", "output": "495162277" }, { "input": "36661322", "output": "9165330" }, { "input": "1943590793", "output": "0" }, { "input": "71207034", "output": "17801758" }, { "input": "1757577394", "output": "439394348" }, { "input": "168305294", "output": "42076323" }, { "input": "1934896224", "output": "483724055" }, { "input": "297149088", "output": "74287271" }, { "input": "1898001634", "output": "474500408" }, { "input": "176409698", "output": "44102424" }, { "input": "1873025522", "output": "468256380" }, { "input": "5714762", "output": "1428690" }, { "input": "1829551192", "output": "457387797" }, { "input": "16269438", "output": "4067359" }, { "input": "1663283390", "output": "415820847" }, { "input": "42549941", "output": "0" }, { "input": "1967345604", "output": "491836400" }, { "input": "854000", "output": "213499" }, { "input": "1995886626", "output": "498971656" }, { "input": "10330019", "output": "0" }, { "input": "1996193634", "output": "499048408" }, { "input": "9605180", "output": "2401294" }, { "input": "1996459740", "output": "499114934" }, { "input": "32691948", "output": "8172986" }, { "input": "1975903308", "output": "493975826" }, { "input": "1976637136", "output": "494159283" }, { "input": "29803038", "output": "7450759" }, { "input": "1977979692", "output": "494494922" }, { "input": "1978595336", "output": "494648833" }, { "input": "27379344", "output": "6844835" }, { "input": "1979729912", "output": "494932477" }, { "input": "1980253780", "output": "495063444" }, { "input": "1980751584", "output": "495187895" }, { "input": "53224878", "output": "13306219" }, { "input": "5", "output": "0" }, { "input": "7", "output": "0" }, { "input": "8", "output": "1" }, { "input": "9", "output": "0" }, { "input": "10", "output": "2" }, { "input": "11", "output": "0" }, { "input": "12", "output": "2" }, { "input": "13", "output": "0" }, { "input": "14", "output": "3" }, { "input": "15", "output": "0" }, { "input": "16", "output": "3" }, { "input": "17", "output": "0" }, { "input": "18", "output": "4" }, { "input": "19", "output": "0" }, { "input": "21", "output": "0" }, { "input": "22", "output": "5" }, { "input": "23", "output": "0" }, { "input": "24", "output": "5" }, { "input": "25", "output": "0" }, { "input": "26", "output": "6" }, { "input": "27", "output": "0" }, { "input": "28", "output": "6" }, { "input": "29", "output": "0" }, { "input": "30", "output": "7" }, { "input": "111", "output": "0" }, { "input": "55", "output": "0" }, { "input": "105", "output": "0" }, { "input": "199", "output": "0" }, { "input": "151", "output": "0" } ]
1,656,349,622
2,147,483,647
Python 3
OK
TESTS
76
46
4,300,800
x=int(input()) if (x%2 == 0) : print((x//4)-(x%4==0)) else : print(0)
Title: Pasha and Stick Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pasha has a wooden stick of some positive integer length *n*. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be *n*. Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square. Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer *x*, such that the number of parts of length *x* in the first way differ from the number of parts of length *x* in the second way. Input Specification: The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=2·109) — the length of Pasha's stick. Output Specification: The output should contain a single integer — the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square. Demo Input: ['6\n', '20\n'] Demo Output: ['1\n', '4\n'] Note: There is only one way to divide the stick in the first sample {1, 1, 2, 2}. Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work.
```python x=int(input()) if (x%2 == 0) : print((x//4)-(x%4==0)) else : print(0) ```
3
954
A
Diagonal Walking
PROGRAMMING
800
[ "implementation" ]
null
null
Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements.
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R.
Print the minimum possible length of the sequence of moves after all replacements are done.
[ "5\nRUURU\n", "17\nUUURRRRRUUURURUUU\n" ]
[ "3\n", "13\n" ]
In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
0
[ { "input": "5\nRUURU", "output": "3" }, { "input": "17\nUUURRRRRUUURURUUU", "output": "13" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU", "output": "100" }, { "input": "100\nRRURRUUUURURRRURRRRURRRRRRURRUURRRUUURUURURRURUURUURRUURUURRURURUUUUURUUUUUURRUUURRRURRURRRUURRUUUUR", "output": "67" }, { "input": "100\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUURUUUUUUUUUUUUUUUUUUUUU", "output": "99" }, { "input": "3\nRUR", "output": "2" }, { "input": "1\nR", "output": "1" }, { "input": "5\nRURUU", "output": "3" }, { "input": "1\nU", "output": "1" }, { "input": "2\nUR", "output": "1" }, { "input": "23\nUUUUUUUUUUUUUUUUUUUUUUU", "output": "23" } ]
1,674,216,038
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
31
0
t = int(input()) s = input() count = 0 i = 0 while (i <t -1): if [i] == 'u' and s[i+1] == 'r' : count + count +1 i = i +2 elif s [1] == 'r' and s [i +1 ] == 'u' : count = count +1 i = i +2 else: count=count i = i +1 print(1 - count)
Title: Diagonal Walking Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible. In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left. Your problem is to print the minimum possible length of the sequence of moves after the replacements. Input Specification: The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=100) — the length of the sequence. The second line contains the sequence consisting of *n* characters U and R. Output Specification: Print the minimum possible length of the sequence of moves after all replacements are done. Demo Input: ['5\nRUURU\n', '17\nUUURRRRRUUURURUUU\n'] Demo Output: ['3\n', '13\n'] Note: In the first test the shortened sequence of moves may be DUD (its length is 3). In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13).
```python t = int(input()) s = input() count = 0 i = 0 while (i <t -1): if [i] == 'u' and s[i+1] == 'r' : count + count +1 i = i +2 elif s [1] == 'r' and s [i +1 ] == 'u' : count = count +1 i = i +2 else: count=count i = i +1 print(1 - count) ```
0
712
B
Memory and Trident
PROGRAMMING
1,100
[ "implementation", "strings" ]
null
null
Memory is performing a walk on the two-dimensional plane, starting at the origin. He is given a string *s* with his directions for motion: - An 'L' indicates he should move one unit left. - An 'R' indicates he should move one unit right. - A 'U' indicates he should move one unit up. - A 'D' indicates he should move one unit down. But now Memory wants to end at the origin. To do this, he has a special trident. This trident can replace any character in *s* with any of 'L', 'R', 'U', or 'D'. However, because he doesn't want to wear out the trident, he wants to make the minimum number of edits possible. Please tell Memory what is the minimum number of changes he needs to make to produce a string that, when walked, will end at the origin, or if there is no such string.
The first and only line contains the string *s* (1<=≤<=|*s*|<=≤<=100<=000) — the instructions Memory is given.
If there is a string satisfying the conditions, output a single integer — the minimum number of edits required. In case it's not possible to change the sequence in such a way that it will bring Memory to to the origin, output -1.
[ "RRU\n", "UDUR\n", "RUUR\n" ]
[ "-1\n", "1\n", "2\n" ]
In the first sample test, Memory is told to walk right, then right, then up. It is easy to see that it is impossible to edit these instructions to form a valid walk. In the second sample test, Memory is told to walk up, then down, then up, then right. One possible solution is to change *s* to "LDUR". This string uses 1 edit, which is the minimum possible. It also ends at the origin.
1,000
[ { "input": "RRU", "output": "-1" }, { "input": "UDUR", "output": "1" }, { "input": "RUUR", "output": "2" }, { "input": "DDDD", "output": "2" }, { "input": "RRRR", "output": "2" }, { "input": "RRRUUD", "output": "2" }, { "input": "UDURLRDURLRD", "output": "1" }, { "input": "RLRU", "output": "1" }, { "input": "RDDLLDLUUUDDRDRURLUUURLLDDLRLUURRLLRRLDRLLUDRLRULLDLRRLRLRLRUDUUDLULURLLDUURULURLLRRRURRRDRUUDLDRLRDRLRRDDLDLDLLUDRUDRLLLLDRDUULRUURRDLULLULDUDULRURRDDDLLUDRLUDDLDDDRRDDDULLLLDLDRLRRLRRDDRLULURRUDRDUUUULDURUDRDLDDUDUDRRURDULRRUDRLRRDLUURURDLDRLRDUDDDLDDDURURLUULRDUUULRURUDUDRRUDULLLUUUDRLLDRRDDLRUDRDRDLLRURURRRULURURRRLUUULRRRUURUUDURUDDLLDLDRLRDLDRLLDLDRDRRLRRRURUUUDRDLRLRUDRLULUUULUDDLULDLRLLRDUULLRLRURLRURULLLUDUDDLRULRDUURURLDLUURRRDURRLLDRUUDRDLLDUUDLURUDDUUUULRLLURLUDDRLRRDRURLRUDRLDDRLLL", "output": "-1" }, { "input": "LDLDLDLDLDRULD", "output": "5" }, { "input": "LULULURULLLU", "output": "5" }, { "input": "DRDRDDRR", "output": "4" }, { "input": "LR", "output": "0" }, { "input": "UL", "output": "1" }, { "input": "UD", "output": "0" }, { "input": "R", "output": "-1" }, { "input": "LU", "output": "1" }, { "input": "RR", "output": "1" }, { "input": "UDLR", "output": "0" }, { "input": "RRRRRLLUUUUDD", "output": "-1" }, { "input": "UUUUDLLLLR", "output": "3" }, { "input": "LLRUD", "output": "-1" }, { "input": "LLRDDU", "output": "1" } ]
1,632,644,980
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
61
20,172,800
s = input() if len(s) % 2 == 1: print(-1) else: u = 0 r = 0 for i in range(len(s)): if s[i] == 'U': u += 1 if s[i] == 'D': u -= 1 if s[i] == 'L': r -= 1 else: r += 1 print(u+r)
Title: Memory and Trident Time Limit: None seconds Memory Limit: None megabytes Problem Description: Memory is performing a walk on the two-dimensional plane, starting at the origin. He is given a string *s* with his directions for motion: - An 'L' indicates he should move one unit left. - An 'R' indicates he should move one unit right. - A 'U' indicates he should move one unit up. - A 'D' indicates he should move one unit down. But now Memory wants to end at the origin. To do this, he has a special trident. This trident can replace any character in *s* with any of 'L', 'R', 'U', or 'D'. However, because he doesn't want to wear out the trident, he wants to make the minimum number of edits possible. Please tell Memory what is the minimum number of changes he needs to make to produce a string that, when walked, will end at the origin, or if there is no such string. Input Specification: The first and only line contains the string *s* (1<=≤<=|*s*|<=≤<=100<=000) — the instructions Memory is given. Output Specification: If there is a string satisfying the conditions, output a single integer — the minimum number of edits required. In case it's not possible to change the sequence in such a way that it will bring Memory to to the origin, output -1. Demo Input: ['RRU\n', 'UDUR\n', 'RUUR\n'] Demo Output: ['-1\n', '1\n', '2\n'] Note: In the first sample test, Memory is told to walk right, then right, then up. It is easy to see that it is impossible to edit these instructions to form a valid walk. In the second sample test, Memory is told to walk up, then down, then up, then right. One possible solution is to change *s* to "LDUR". This string uses 1 edit, which is the minimum possible. It also ends at the origin.
```python s = input() if len(s) % 2 == 1: print(-1) else: u = 0 r = 0 for i in range(len(s)): if s[i] == 'U': u += 1 if s[i] == 'D': u -= 1 if s[i] == 'L': r -= 1 else: r += 1 print(u+r) ```
0
279
B
Books
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation", "two pointers" ]
null
null
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read.
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Print a single integer — the maximum number of books Valera can read.
[ "4 5\n3 1 2 1\n", "3 3\n2 2 3\n" ]
[ "3\n", "1\n" ]
none
1,000
[ { "input": "4 5\n3 1 2 1", "output": "3" }, { "input": "3 3\n2 2 3", "output": "1" }, { "input": "1 3\n5", "output": "0" }, { "input": "1 10\n4", "output": "1" }, { "input": "2 10\n6 4", "output": "2" }, { "input": "6 10\n2 3 4 2 1 1", "output": "4" }, { "input": "7 13\n6 8 14 9 4 11 10", "output": "2" }, { "input": "10 15\n10 9 1 1 5 10 5 3 7 2", "output": "3" }, { "input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4", "output": "6" }, { "input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19", "output": "4" }, { "input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52", "output": "3" }, { "input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708", "output": "0" }, { "input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550", "output": "1" } ]
1,687,954,718
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
60
0
n, t = list(map(int, input().split())) nums = list(map(int, input().split())) cur_sum = 0 max_len = 0 r = 0 for l in range(n): while r < n and cur_sum + nums[r] < t: # пока r < n и отрезок хороший cur_sum += nums[r] # добавляем элемент r в отрезок r += 1 max_len = max(max_len, r - l) print(l, r, cur_sum) cur_sum -= nums[l] # убираем элемент l из отрезка, чтобы отрезок снова смог быть хорошим l += 1 print(max_len)
Title: Books Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read. Input Specification: The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book. Output Specification: Print a single integer — the maximum number of books Valera can read. Demo Input: ['4 5\n3 1 2 1\n', '3 3\n2 2 3\n'] Demo Output: ['3\n', '1\n'] Note: none
```python n, t = list(map(int, input().split())) nums = list(map(int, input().split())) cur_sum = 0 max_len = 0 r = 0 for l in range(n): while r < n and cur_sum + nums[r] < t: # пока r < n и отрезок хороший cur_sum += nums[r] # добавляем элемент r в отрезок r += 1 max_len = max(max_len, r - l) print(l, r, cur_sum) cur_sum -= nums[l] # убираем элемент l из отрезка, чтобы отрезок снова смог быть хорошим l += 1 print(max_len) ```
0
854
A
Fraction
PROGRAMMING
800
[ "brute force", "constructive algorithms", "math" ]
null
null
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=&lt;<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1). During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem.
In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction.
Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.
[ "3\n", "4\n", "12\n" ]
[ "1 2\n", "1 3\n", "5 7\n" ]
none
500
[ { "input": "3", "output": "1 2" }, { "input": "4", "output": "1 3" }, { "input": "12", "output": "5 7" }, { "input": "34", "output": "15 19" }, { "input": "13", "output": "6 7" }, { "input": "11", "output": "5 6" }, { "input": "24", "output": "11 13" }, { "input": "17", "output": "8 9" }, { "input": "10", "output": "3 7" }, { "input": "69", "output": "34 35" }, { "input": "100", "output": "49 51" }, { "input": "57", "output": "28 29" }, { "input": "1000", "output": "499 501" }, { "input": "999", "output": "499 500" }, { "input": "998", "output": "497 501" }, { "input": "997", "output": "498 499" }, { "input": "996", "output": "497 499" }, { "input": "995", "output": "497 498" }, { "input": "994", "output": "495 499" }, { "input": "5", "output": "2 3" }, { "input": "6", "output": "1 5" }, { "input": "8", "output": "3 5" }, { "input": "9", "output": "4 5" }, { "input": "423", "output": "211 212" }, { "input": "876", "output": "437 439" }, { "input": "29", "output": "14 15" } ]
1,622,108,917
2,147,483,647
Python 3
OK
TESTS
26
77
0
import math n = int(input()) h = int(n//2) if(n&1): print(h,h+1) else: for i in range(h,0,-1): if(math.gcd(i,n-i)==1): print(i,n-i) break
Title: Fraction Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=&lt;<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1). During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem. Input Specification: In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction. Output Specification: Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum. Demo Input: ['3\n', '4\n', '12\n'] Demo Output: ['1 2\n', '1 3\n', '5 7\n'] Note: none
```python import math n = int(input()) h = int(n//2) if(n&1): print(h,h+1) else: for i in range(h,0,-1): if(math.gcd(i,n-i)==1): print(i,n-i) break ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,596,949,163
2,147,483,647
Python 3
OK
TESTS
102
109
6,656,000
x = list(map(int, input())) y = list(map(int, input())) s = '' for i in range(len(x)): if x[i] == y[i]: s = s + '0' else: s = s + '1' print(s)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python x = list(map(int, input())) y = list(map(int, input())) s = '' for i in range(len(x)): if x[i] == y[i]: s = s + '0' else: s = s + '1' print(s) ```
3.960352
146
A
Lucky Ticket
PROGRAMMING
800
[ "implementation" ]
null
null
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky.
The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros.
On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes).
[ "2\n47\n", "4\n4738\n", "4\n4774\n" ]
[ "NO\n", "NO\n", "YES\n" ]
In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7). In the second sample the ticket number is not the lucky number.
500
[ { "input": "2\n47", "output": "NO" }, { "input": "4\n4738", "output": "NO" }, { "input": "4\n4774", "output": "YES" }, { "input": "4\n4570", "output": "NO" }, { "input": "6\n477477", "output": "YES" }, { "input": "6\n777777", "output": "YES" }, { "input": "20\n44444444444444444444", "output": "YES" }, { "input": "2\n44", "output": "YES" }, { "input": "10\n4745474547", "output": "NO" }, { "input": "14\n77770004444444", "output": "NO" }, { "input": "10\n4747777744", "output": "YES" }, { "input": "10\n1234567890", "output": "NO" }, { "input": "50\n44444444444444444444444444444444444444444444444444", "output": "YES" }, { "input": "50\n44444444444444444444444444444444444444444444444447", "output": "NO" }, { "input": "50\n74444444444444444444444444444444444444444444444444", "output": "NO" }, { "input": "50\n07777777777777777777777777777777777777777777777770", "output": "NO" }, { "input": "50\n77777777777777777777777777777777777777777777777777", "output": "YES" }, { "input": "50\n44747747774474747747747447777447774747447477444474", "output": "YES" }, { "input": "48\n447474444777444474747747744774447444747474774474", "output": "YES" }, { "input": "32\n74474474777444474444747774474774", "output": "YES" }, { "input": "40\n4747777444447747777447447747447474774777", "output": "YES" }, { "input": "10\n4477477444", "output": "YES" }, { "input": "18\n447747474447744747", "output": "YES" }, { "input": "26\n44747744444774744774474447", "output": "YES" }, { "input": "50\n44707747774474747747747447777447774747447477444474", "output": "NO" }, { "input": "40\n4747777444447737777447447747447474774777", "output": "NO" }, { "input": "36\n764477744747444444447747747474744444", "output": "NO" }, { "input": "22\n4477407474777477744447", "output": "NO" }, { "input": "32\n74274474777444474444747774474774", "output": "NO" }, { "input": "16\n4744447974444747", "output": "NO" }, { "input": "2\n11", "output": "NO" }, { "input": "2\n22", "output": "NO" }, { "input": "2\n33", "output": "NO" }, { "input": "2\n74", "output": "NO" }, { "input": "2\n55", "output": "NO" }, { "input": "2\n66", "output": "NO" }, { "input": "2\n77", "output": "YES" }, { "input": "2\n88", "output": "NO" }, { "input": "2\n99", "output": "NO" }, { "input": "4\n4004", "output": "NO" }, { "input": "14\n00077774444444", "output": "NO" }, { "input": "6\n004444", "output": "NO" }, { "input": "4\n0044", "output": "NO" }, { "input": "14\n77771114444444", "output": "NO" }, { "input": "14\n44444447777000", "output": "NO" }, { "input": "6\n004774", "output": "NO" } ]
1,602,549,608
2,147,483,647
PyPy 3
OK
TESTS
46
280
0
t = int(input()) s = input() if s.count('4') + s.count('7') != t: print('NO') else: one = 0 two = 0 n = int(t / 2) q = s[:n] w = s[n:] for i in q: one += int(i) for i in w: two += int(i) if one == two: print('YES') else: print('NO')
Title: Lucky Ticket Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya loves tickets very much. As we know, each ticket has a number that is a positive integer. Its length equals *n* (*n* is always even). Petya calls a ticket lucky if the ticket's number is a lucky number and the sum of digits in the first half (the sum of the first *n*<=/<=2 digits) equals the sum of digits in the second half (the sum of the last *n*<=/<=2 digits). Check if the given ticket is lucky. Input Specification: The first line contains an even integer *n* (2<=≤<=*n*<=≤<=50) — the length of the ticket number that needs to be checked. The second line contains an integer whose length equals exactly *n* — the ticket number. The number may contain leading zeros. Output Specification: On the first line print "YES" if the given ticket number is lucky. Otherwise, print "NO" (without the quotes). Demo Input: ['2\n47\n', '4\n4738\n', '4\n4774\n'] Demo Output: ['NO\n', 'NO\n', 'YES\n'] Note: In the first sample the sum of digits in the first half does not equal the sum of digits in the second half (4 ≠ 7). In the second sample the ticket number is not the lucky number.
```python t = int(input()) s = input() if s.count('4') + s.count('7') != t: print('NO') else: one = 0 two = 0 n = int(t / 2) q = s[:n] w = s[n:] for i in q: one += int(i) for i in w: two += int(i) if one == two: print('YES') else: print('NO') ```
3
426
A
Sereja and Mugs
PROGRAMMING
800
[ "implementation" ]
null
null
Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and *n* water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost. As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (*n*<=-<=1) friends. Determine if Sereja's friends can play the game so that nobody loses.
The first line contains integers *n* and *s* (2<=≤<=*n*<=≤<=100; 1<=≤<=*s*<=≤<=1000) — the number of mugs and the volume of the cup. The next line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10). Number *a**i* means the volume of the *i*-th mug.
In a single line, print "YES" (without the quotes) if his friends can play in the described manner, and "NO" (without the quotes) otherwise.
[ "3 4\n1 1 1\n", "3 4\n3 1 3\n", "3 4\n4 4 4\n" ]
[ "YES\n", "YES\n", "NO\n" ]
none
500
[ { "input": "3 4\n1 1 1", "output": "YES" }, { "input": "3 4\n3 1 3", "output": "YES" }, { "input": "3 4\n4 4 4", "output": "NO" }, { "input": "2 1\n1 10", "output": "YES" }, { "input": "3 12\n5 6 6", "output": "YES" }, { "input": "4 10\n6 3 8 7", "output": "NO" }, { "input": "5 16\n3 3 2 7 9", "output": "YES" }, { "input": "6 38\n9 10 3 8 10 6", "output": "YES" }, { "input": "7 12\n4 4 5 2 2 4 9", "output": "NO" }, { "input": "8 15\n8 10 4 2 10 9 7 6", "output": "NO" }, { "input": "9 22\n1 3 5 9 7 6 1 10 1", "output": "NO" }, { "input": "10 30\n9 10 4 5 5 7 1 7 7 2", "output": "NO" }, { "input": "38 83\n9 9 3 10 2 4 6 10 9 5 1 8 7 4 7 2 6 5 3 1 10 8 4 8 3 7 1 2 7 6 8 6 5 2 3 1 1 2", "output": "NO" }, { "input": "84 212\n6 2 3 1 2 7 5 1 7 2 9 10 9 5 2 5 4 10 9 9 1 9 8 8 9 4 9 4 8 2 1 8 4 5 10 7 6 2 1 10 10 7 9 4 5 9 5 10 10 3 6 6 4 4 4 8 5 4 9 1 9 9 1 7 9 2 10 9 10 8 3 3 9 3 9 10 1 8 9 2 6 9 7 2", "output": "NO" }, { "input": "8 50\n8 8 8 4 4 6 10 10", "output": "YES" }, { "input": "7 24\n1 4 9 1 2 3 6", "output": "YES" }, { "input": "47 262\n3 7 6 4 10 3 5 7 2 9 3 2 2 10 8 7 3 10 6 3 1 1 4 10 2 9 2 10 6 4 3 6 3 6 9 7 8 8 3 3 10 5 2 10 7 10 9", "output": "YES" }, { "input": "42 227\n3 6 1 9 4 10 4 10 7 8 10 10 8 7 10 4 6 8 7 7 6 9 3 6 5 5 2 7 2 7 4 4 6 6 4 3 9 3 6 4 7 2", "output": "NO" }, { "input": "97 65\n3 10 2 6 1 4 7 5 10 3 10 4 5 5 1 6 10 7 4 5 3 9 9 8 6 9 2 3 6 8 5 5 5 5 5 3 10 4 1 8 8 9 8 4 1 4 9 3 6 3 1 4 8 3 10 8 6 4 5 4 3 2 2 4 3 6 4 6 2 3 3 3 7 5 1 8 1 4 5 1 1 6 4 2 1 7 8 6 1 1 5 6 5 10 6 7 5", "output": "NO" }, { "input": "94 279\n2 5 9 5 10 3 1 8 1 7 1 8 1 6 7 8 4 9 5 10 3 7 6 8 8 5 6 8 10 9 4 1 3 3 4 7 8 2 6 6 5 1 3 7 1 7 2 2 2 8 4 1 1 5 9 4 1 2 3 10 1 4 9 9 6 8 8 1 9 10 4 1 8 5 8 9 4 8 2 1 1 9 4 5 6 1 2 5 6 7 3 1 4 6", "output": "NO" }, { "input": "58 70\n8 2 10 2 7 3 8 3 8 7 6 2 4 10 10 6 10 3 7 6 4 3 5 5 5 3 8 10 3 4 8 4 2 6 8 9 6 9 4 3 5 2 2 6 10 6 2 1 7 5 6 4 1 9 10 2 4 5", "output": "NO" }, { "input": "6 14\n3 9 2 1 4 2", "output": "YES" }, { "input": "78 400\n5 9 3 4 7 4 1 4 6 3 9 1 8 3 3 6 10 2 1 9 6 1 8 10 1 6 4 5 2 1 5 9 6 10 3 6 5 2 4 10 6 9 3 8 10 7 2 8 8 2 10 1 4 5 2 8 6 4 4 3 5 2 3 10 1 9 8 5 6 7 9 1 8 8 5 4 2 4", "output": "YES" }, { "input": "41 181\n5 3 10 4 2 5 9 3 1 6 6 10 4 3 9 8 5 9 2 5 4 6 6 3 7 9 10 3 10 6 10 5 6 1 6 9 9 1 2 4 3", "output": "NO" }, { "input": "2 4\n4 4", "output": "YES" }, { "input": "29 71\n4 8 9 4 8 10 4 10 2 9 3 9 1 2 9 5 9 7 1 10 4 1 1 9 8 7 4 6 7", "output": "NO" }, { "input": "49 272\n4 10 8 7 5 6 9 7 2 6 6 2 10 7 5 6 5 3 6 4 3 7 9 3 7 7 4 10 5 6 7 3 6 4 6 7 7 2 5 5 7 3 7 9 3 6 6 2 1", "output": "YES" }, { "input": "91 486\n1 3 5 4 4 7 3 9 3 4 5 4 5 4 7 9 5 8 4 10 9 1 1 9 9 1 6 2 5 4 7 4 10 3 2 10 9 3 4 5 1 3 4 2 10 9 10 9 10 2 4 6 2 5 3 6 4 9 10 3 9 8 1 2 5 9 2 10 4 6 10 8 10 9 1 2 5 8 6 6 6 1 10 3 9 3 5 6 1 5 5", "output": "YES" }, { "input": "80 78\n1 9 4 9 8 3 7 10 4 9 2 1 4 4 9 5 9 1 2 6 5 2 4 8 4 6 9 6 7 10 1 9 10 4 7 1 7 10 8 9 10 5 2 6 7 7 7 7 7 8 2 5 1 7 2 3 2 5 10 6 3 4 5 2 6 3 4 2 7 9 9 3 8 8 2 3 7 1 5 10", "output": "NO" }, { "input": "53 245\n5 6 9 9 2 3 2 5 10 9 3 5 6 3 10 10 9 4 9 7 10 9 7 7 3 4 9 3 7 3 8 6 8 9 3 8 9 1 3 1 9 10 3 9 3 1 6 6 3 8 7 8 9", "output": "NO" }, { "input": "50 271\n6 9 10 1 1 1 8 3 6 6 3 2 5 9 7 5 7 9 10 9 4 6 6 2 6 6 9 5 1 6 5 8 3 2 5 10 10 1 4 1 4 6 1 8 7 8 9 4 7 5", "output": "YES" }, { "input": "38 214\n5 8 4 5 1 9 9 2 6 3 4 3 5 7 7 7 3 10 1 5 10 4 2 2 10 10 6 6 6 7 1 6 10 5 7 4 5 10", "output": "YES" }, { "input": "100 1\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 100\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 989\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 990\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "YES" }, { "input": "100 1000\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "YES" }, { "input": "2 1\n1 1", "output": "YES" }, { "input": "2 1\n2 2", "output": "NO" }, { "input": "2 1000\n1 1", "output": "YES" }, { "input": "10 89\n10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "10 44\n1 10 2 3 4 5 6 7 8 9", "output": "NO" } ]
1,591,010,197
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
109
0
n,s = map(int,input().split()) l = list(map(int,input().split())) k = sum(l) m = max(l) if ((k-m) <= k): print("YES") else: print("NO")
Title: Sereja and Mugs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and *n* water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost. As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (*n*<=-<=1) friends. Determine if Sereja's friends can play the game so that nobody loses. Input Specification: The first line contains integers *n* and *s* (2<=≤<=*n*<=≤<=100; 1<=≤<=*s*<=≤<=1000) — the number of mugs and the volume of the cup. The next line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10). Number *a**i* means the volume of the *i*-th mug. Output Specification: In a single line, print "YES" (without the quotes) if his friends can play in the described manner, and "NO" (without the quotes) otherwise. Demo Input: ['3 4\n1 1 1\n', '3 4\n3 1 3\n', '3 4\n4 4 4\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: none
```python n,s = map(int,input().split()) l = list(map(int,input().split())) k = sum(l) m = max(l) if ((k-m) <= k): print("YES") else: print("NO") ```
0
313
A
Ilya and Bank Account
PROGRAMMING
900
[ "implementation", "number theory" ]
null
null
Ilya is a very clever lion, he lives in an unusual city ZooVille. In this city all the animals have their rights and obligations. Moreover, they even have their own bank accounts. The state of a bank account is an integer. The state of a bank account can be a negative number. This means that the owner of the account owes the bank money. Ilya the Lion has recently had a birthday, so he got a lot of gifts. One of them (the gift of the main ZooVille bank) is the opportunity to delete the last digit or the digit before last from the state of his bank account no more than once. For example, if the state of Ilya's bank account is -123, then Ilya can delete the last digit and get his account balance equal to -12, also he can remove its digit before last and get the account balance equal to -13. Of course, Ilya is permitted not to use the opportunity to delete a digit from the balance. Ilya is not very good at math, and that's why he asks you to help him maximize his bank account. Find the maximum state of the bank account that can be obtained using the bank's gift.
The single line contains integer *n* (10<=≤<=|*n*|<=≤<=109) — the state of Ilya's bank account.
In a single line print an integer — the maximum state of the bank account that Ilya can get.
[ "2230\n", "-10\n", "-100003\n" ]
[ "2230\n", "0\n", "-10000\n" ]
In the first test sample Ilya doesn't profit from using the present. In the second test sample you can delete digit 1 and get the state of the account equal to 0.
500
[ { "input": "2230", "output": "2230" }, { "input": "-10", "output": "0" }, { "input": "-100003", "output": "-10000" }, { "input": "544883178", "output": "544883178" }, { "input": "-847251738", "output": "-84725173" }, { "input": "423654797", "output": "423654797" }, { "input": "-623563697", "output": "-62356367" }, { "input": "645894116", "output": "645894116" }, { "input": "-384381709", "output": "-38438170" }, { "input": "437587210", "output": "437587210" }, { "input": "-297534606", "output": "-29753460" }, { "input": "891773002", "output": "891773002" }, { "input": "-56712976", "output": "-5671296" }, { "input": "963662765", "output": "963662765" }, { "input": "-272656295", "output": "-27265625" }, { "input": "383441522", "output": "383441522" }, { "input": "-477665112", "output": "-47766511" }, { "input": "791725034", "output": "791725034" }, { "input": "-812168727", "output": "-81216872" }, { "input": "528894922", "output": "528894922" }, { "input": "-479977172", "output": "-47997712" }, { "input": "568044564", "output": "568044564" }, { "input": "-392784794", "output": "-39278474" }, { "input": "925596634", "output": "925596634" }, { "input": "-836078769", "output": "-83607876" }, { "input": "71036059", "output": "71036059" }, { "input": "-337396162", "output": "-33739612" }, { "input": "87129297", "output": "87129297" }, { "input": "-648171877", "output": "-64817187" }, { "input": "20218400", "output": "20218400" }, { "input": "10", "output": "10" }, { "input": "1000000000", "output": "1000000000" }, { "input": "-1000000000", "output": "-100000000" }, { "input": "-102", "output": "-10" }, { "input": "-120", "output": "-10" }, { "input": "-20", "output": "0" }, { "input": "-15", "output": "-1" }, { "input": "-5575533", "output": "-557553" }, { "input": "-50", "output": "0" }, { "input": "-31", "output": "-1" }, { "input": "-55", "output": "-5" }, { "input": "-81", "output": "-1" }, { "input": "-99", "output": "-9" }, { "input": "-23", "output": "-2" }, { "input": "-41", "output": "-1" }, { "input": "-24", "output": "-2" }, { "input": "46", "output": "46" } ]
1,695,438,596
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
122
0
n = input() if n[0] != '-': print(n) elif len(n) == 3 and n[2] == '0': print(0) else: remove = int(max(n[-1], n[-2])) result = n[:-remove-1] + n[-remove:] print(result)
Title: Ilya and Bank Account Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ilya is a very clever lion, he lives in an unusual city ZooVille. In this city all the animals have their rights and obligations. Moreover, they even have their own bank accounts. The state of a bank account is an integer. The state of a bank account can be a negative number. This means that the owner of the account owes the bank money. Ilya the Lion has recently had a birthday, so he got a lot of gifts. One of them (the gift of the main ZooVille bank) is the opportunity to delete the last digit or the digit before last from the state of his bank account no more than once. For example, if the state of Ilya's bank account is -123, then Ilya can delete the last digit and get his account balance equal to -12, also he can remove its digit before last and get the account balance equal to -13. Of course, Ilya is permitted not to use the opportunity to delete a digit from the balance. Ilya is not very good at math, and that's why he asks you to help him maximize his bank account. Find the maximum state of the bank account that can be obtained using the bank's gift. Input Specification: The single line contains integer *n* (10<=≤<=|*n*|<=≤<=109) — the state of Ilya's bank account. Output Specification: In a single line print an integer — the maximum state of the bank account that Ilya can get. Demo Input: ['2230\n', '-10\n', '-100003\n'] Demo Output: ['2230\n', '0\n', '-10000\n'] Note: In the first test sample Ilya doesn't profit from using the present. In the second test sample you can delete digit 1 and get the state of the account equal to 0.
```python n = input() if n[0] != '-': print(n) elif len(n) == 3 and n[2] == '0': print(0) else: remove = int(max(n[-1], n[-2])) result = n[:-remove-1] + n[-remove:] print(result) ```
0
386
A
Second-Price Auction
PROGRAMMING
800
[ "implementation" ]
null
null
In this problem we consider a special type of an auction, which is called the second-price auction. As in regular auction *n* bidders place a bid which is price a bidder ready to pay. The auction is closed, that is, each bidder secretly informs the organizer of the auction price he is willing to pay. After that, the auction winner is the participant who offered the highest price. However, he pay not the price he offers, but the highest price among the offers of other participants (hence the name: the second-price auction). Write a program that reads prices offered by bidders and finds the winner and the price he will pay. Consider that all of the offered prices are different.
The first line of the input contains *n* (2<=≤<=*n*<=≤<=1000) — number of bidders. The second line contains *n* distinct integer numbers *p*1,<=*p*2,<=... *p**n*, separated by single spaces (1<=≤<=*p**i*<=≤<=10000), where *p**i* stands for the price offered by the *i*-th bidder.
The single output line should contain two integers: index of the winner and the price he will pay. Indices are 1-based.
[ "2\n5 7\n", "3\n10 2 8\n", "6\n3 8 2 9 4 14\n" ]
[ "2 5\n", "1 8\n", "6 9\n" ]
none
500
[ { "input": "2\n5 7", "output": "2 5" }, { "input": "3\n10 2 8", "output": "1 8" }, { "input": "6\n3 8 2 9 4 14", "output": "6 9" }, { "input": "4\n4707 7586 4221 5842", "output": "2 5842" }, { "input": "5\n3304 4227 4869 6937 6002", "output": "4 6002" }, { "input": "6\n5083 3289 7708 5362 9031 7458", "output": "5 7708" }, { "input": "7\n9038 6222 3392 1706 3778 1807 2657", "output": "1 6222" }, { "input": "8\n7062 2194 4481 3864 7470 1814 8091 733", "output": "7 7470" }, { "input": "9\n2678 5659 9199 2628 7906 7496 4524 2663 3408", "output": "3 7906" }, { "input": "2\n3458 1504", "output": "1 1504" }, { "input": "50\n9237 3904 407 9052 6657 9229 9752 3888 7732 2512 4614 1055 2355 7108 6506 6849 2529 8862 159 8630 7906 7941 960 8470 333 8659 54 9475 3163 5625 6393 6814 2656 3388 169 7918 4881 8468 9983 6281 6340 280 5108 2996 101 7617 3313 8172 326 1991", "output": "39 9752" }, { "input": "100\n2515 3324 7975 6171 4240 1217 4829 5203 8603 6900 3031 4699 4732 6070 4221 3228 6497 7359 9130 4346 4619 1109 3945 5442 3271 16 9711 2045 6410 2301 3406 8125 6003 1892 1260 9661 3940 6692 4708 7027 4930 6925 1979 5361 4263 3144 867 8639 6230 5562 9714 3676 4231 3347 4733 4920 4881 3431 1059 7313 8912 3038 9308 72 9583 7009 3034 7425 2398 6141 3245 2495 2933 6710 8289 9806 1226 8393 7349 6462 1618 9613 3546 6012 2964 9995 1578 210 2123 4874 1252 8625 348 8020 803 7244 9080 5088 706 2602", "output": "86 9806" }, { "input": "2\n2 1", "output": "1 1" }, { "input": "2\n1 2", "output": "2 1" }, { "input": "3\n10 20 30", "output": "3 20" }, { "input": "3\n10 30 20", "output": "2 20" }, { "input": "3\n20 10 30", "output": "3 20" }, { "input": "3\n20 30 10", "output": "2 20" }, { "input": "3\n30 10 20", "output": "1 20" }, { "input": "3\n30 20 10", "output": "1 20" }, { "input": "2\n1 10000", "output": "2 1" }, { "input": "2\n10000 999", "output": "1 999" }, { "input": "3\n3 4 1", "output": "2 3" }, { "input": "6\n1 2 24 6 5 7", "output": "3 7" } ]
1,670,702,795
2,147,483,647
Python 3
OK
TESTS
42
62
0
a = int(input()) x = list(map(int, input().split())) largest = 0 second = 0 l = [] j = 0 while j<len(x): if x[j]>largest: largest = x[j] l.append(j+1) j += 1 k = 0 while k<len(x): if x[k]>second: if k!=(l[-1]-1): second = x[k] k += 1 print(l[-1],second)
Title: Second-Price Auction Time Limit: None seconds Memory Limit: None megabytes Problem Description: In this problem we consider a special type of an auction, which is called the second-price auction. As in regular auction *n* bidders place a bid which is price a bidder ready to pay. The auction is closed, that is, each bidder secretly informs the organizer of the auction price he is willing to pay. After that, the auction winner is the participant who offered the highest price. However, he pay not the price he offers, but the highest price among the offers of other participants (hence the name: the second-price auction). Write a program that reads prices offered by bidders and finds the winner and the price he will pay. Consider that all of the offered prices are different. Input Specification: The first line of the input contains *n* (2<=≤<=*n*<=≤<=1000) — number of bidders. The second line contains *n* distinct integer numbers *p*1,<=*p*2,<=... *p**n*, separated by single spaces (1<=≤<=*p**i*<=≤<=10000), where *p**i* stands for the price offered by the *i*-th bidder. Output Specification: The single output line should contain two integers: index of the winner and the price he will pay. Indices are 1-based. Demo Input: ['2\n5 7\n', '3\n10 2 8\n', '6\n3 8 2 9 4 14\n'] Demo Output: ['2 5\n', '1 8\n', '6 9\n'] Note: none
```python a = int(input()) x = list(map(int, input().split())) largest = 0 second = 0 l = [] j = 0 while j<len(x): if x[j]>largest: largest = x[j] l.append(j+1) j += 1 k = 0 while k<len(x): if x[k]>second: if k!=(l[-1]-1): second = x[k] k += 1 print(l[-1],second) ```
3
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,597,573,378
2,147,483,647
Python 3
OK
TESTS
81
218
0
x,y,z=0,0,0 n=int(input()) for i in range (n): a,b,c=input().split() x+=int(a) y+=int(b) z+=int(c) if (bool(x)| bool(y)|bool(z)): print("NO") else: print("YES")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python x,y,z=0,0,0 n=int(input()) for i in range (n): a,b,c=input().split() x+=int(a) y+=int(b) z+=int(c) if (bool(x)| bool(y)|bool(z)): print("NO") else: print("YES") ```
3.9455
137
B
Permutation
PROGRAMMING
1,000
[ "greedy" ]
null
null
"Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer).
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*).
Print the only number — the minimum number of changes needed to get the permutation.
[ "3\n3 1 2\n", "2\n2 2\n", "5\n5 3 3 3 1\n" ]
[ "0\n", "1\n", "2\n" ]
The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
1,000
[ { "input": "3\n3 1 2", "output": "0" }, { "input": "2\n2 2", "output": "1" }, { "input": "5\n5 3 3 3 1", "output": "2" }, { "input": "5\n6 6 6 6 6", "output": "5" }, { "input": "10\n1 1 2 2 8 8 7 7 9 9", "output": "5" }, { "input": "8\n9 8 7 6 5 4 3 2", "output": "1" }, { "input": "15\n1 2 3 4 5 5 4 3 2 1 1 2 3 4 5", "output": "10" }, { "input": "1\n1", "output": "0" }, { "input": "1\n5000", "output": "1" }, { "input": "4\n5000 5000 5000 5000", "output": "4" }, { "input": "5\n3366 3461 4 5 4370", "output": "3" }, { "input": "10\n8 2 10 3 4 6 1 7 9 5", "output": "0" }, { "input": "10\n551 3192 3213 2846 3068 1224 3447 1 10 9", "output": "7" }, { "input": "15\n4 1459 12 4281 3241 2748 10 3590 14 845 3518 1721 2 2880 1974", "output": "10" }, { "input": "15\n15 1 8 2 13 11 12 7 3 14 6 10 9 4 5", "output": "0" }, { "input": "15\n2436 2354 4259 1210 2037 2665 700 3578 2880 973 1317 1024 24 3621 4142", "output": "15" }, { "input": "30\n28 1 3449 9 3242 4735 26 3472 15 21 2698 7 4073 3190 10 3 29 1301 4526 22 345 3876 19 12 4562 2535 2 630 18 27", "output": "14" }, { "input": "100\n50 39 95 30 66 78 2169 4326 81 31 74 34 80 40 19 48 97 63 82 6 88 16 21 57 92 77 10 1213 17 93 32 91 38 4375 29 75 44 22 4 45 14 2395 3254 59 3379 2 85 96 8 83 27 94 1512 2960 100 9 73 79 7 25 55 69 90 99 51 87 98 62 18 35 43 4376 4668 28 72 56 4070 61 65 36 54 4106 11 24 15 86 70 71 4087 23 13 76 20 4694 26 4962 4726 37 14 64", "output": "18" }, { "input": "100\n340 14 3275 2283 2673 1107 817 2243 1226 32 2382 3638 4652 418 68 4962 387 764 4647 159 1846 225 2760 4904 3150 403 3 2439 91 4428 92 4705 75 348 1566 1465 69 6 49 4 62 4643 564 1090 3447 1871 2255 139 24 99 2669 969 86 61 4550 158 4537 3993 1589 872 2907 1888 401 80 1825 1483 63 1 2264 4068 4113 2548 41 885 4806 36 67 167 4447 34 1248 2593 82 202 81 1783 1284 4973 16 43 95 7 865 2091 3008 1793 20 947 4912 3604", "output": "70" }, { "input": "1\n2", "output": "1" }, { "input": "2\n5000 5000", "output": "2" }, { "input": "2\n1 2", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n2 3", "output": "1" }, { "input": "2\n3 4", "output": "2" }, { "input": "10\n1 2 3 4 5 6 7 1000 10 10", "output": "2" } ]
1,525,200,450
2,147,483,647
Python 3
OK
TESTS
48
904
7,372,800
n = int(input()) mass = list(map(int, input().split())) k = 0 for i in range(1, n + 1): if i not in mass: k += 1 print(k)
Title: Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: "Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer). Input Specification: The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*). Output Specification: Print the only number — the minimum number of changes needed to get the permutation. Demo Input: ['3\n3 1 2\n', '2\n2 2\n', '5\n5 3 3 3 1\n'] Demo Output: ['0\n', '1\n', '2\n'] Note: The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
```python n = int(input()) mass = list(map(int, input().split())) k = 0 for i in range(1, n + 1): if i not in mass: k += 1 print(k) ```
3
811
A
Vladik and Courtesy
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy.
Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively.
Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise.
[ "1 1\n", "7 6\n" ]
[ "Valera\n", "Vladik\n" ]
Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "1 1", "output": "Valera" }, { "input": "7 6", "output": "Vladik" }, { "input": "25 38", "output": "Vladik" }, { "input": "8311 2468", "output": "Valera" }, { "input": "250708 857756", "output": "Vladik" }, { "input": "957985574 24997558", "output": "Valera" }, { "input": "999963734 999994456", "output": "Vladik" }, { "input": "1000000000 1000000000", "output": "Vladik" }, { "input": "946 879", "output": "Valera" }, { "input": "10819 45238", "output": "Vladik" }, { "input": "101357 236928", "output": "Vladik" }, { "input": "1033090 7376359", "output": "Vladik" }, { "input": "9754309 9525494", "output": "Valera" }, { "input": "90706344 99960537", "output": "Vladik" }, { "input": "965161805 908862070", "output": "Valera" }, { "input": "9 11", "output": "Valera" }, { "input": "3 2", "output": "Vladik" }, { "input": "6 6", "output": "Vladik" }, { "input": "4 4", "output": "Valera" }, { "input": "5 5", "output": "Valera" }, { "input": "5 4", "output": "Valera" }, { "input": "12345680 1", "output": "Valera" }, { "input": "9 10", "output": "Valera" }, { "input": "678 76687", "output": "Vladik" }, { "input": "1 678", "output": "Vladik" }, { "input": "45 1678", "output": "Vladik" }, { "input": "3 3", "output": "Vladik" }, { "input": "10 11", "output": "Valera" }, { "input": "2 1", "output": "Valera" }, { "input": "1 2", "output": "Vladik" }, { "input": "2 2", "output": "Vladik" }, { "input": "4 5", "output": "Valera" }, { "input": "9 6", "output": "Valera" }, { "input": "1 5", "output": "Vladik" }, { "input": "7 8", "output": "Vladik" }, { "input": "1000000000 999982505", "output": "Valera" }, { "input": "12 12", "output": "Vladik" }, { "input": "1000 950", "output": "Valera" }, { "input": "10 9", "output": "Valera" }, { "input": "100 9", "output": "Valera" }, { "input": "1000 996", "output": "Vladik" }, { "input": "9 5", "output": "Valera" } ]
1,659,540,646
2,147,483,647
PyPy 3-64
OK
TESTS
42
62
1,536,000
import sys a, b = (int(el) for el in input().split()) aa, bb = 1, 2 for i in range(1000_000_000): if i % 2 == 0: a -= aa if a < 0: print("Vladik") sys.exit() aa += 2 else: b -= bb if b < 0: print("Valera") sys.exit() bb += 2
Title: Vladik and Courtesy Time Limit: None seconds Memory Limit: None megabytes Problem Description: At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy. Input Specification: Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively. Output Specification: Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise. Demo Input: ['1 1\n', '7 6\n'] Demo Output: ['Valera\n', 'Vladik\n'] Note: Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python import sys a, b = (int(el) for el in input().split()) aa, bb = 1, 2 for i in range(1000_000_000): if i % 2 == 0: a -= aa if a < 0: print("Vladik") sys.exit() aa += 2 else: b -= bb if b < 0: print("Valera") sys.exit() bb += 2 ```
3
731
A
Night at the Museum
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
[ "zeus\n", "map\n", "ares\n" ]
[ "18\n", "35\n", "34\n" ]
To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
500
[ { "input": "zeus", "output": "18" }, { "input": "map", "output": "35" }, { "input": "ares", "output": "34" }, { "input": "l", "output": "11" }, { "input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv", "output": "99" }, { "input": "gngvi", "output": "44" }, { "input": "aaaaa", "output": "0" }, { "input": "a", "output": "0" }, { "input": "z", "output": "1" }, { "input": "vyadeehhikklnoqrs", "output": "28" }, { "input": "jjiihhhhgggfedcccbazyxx", "output": "21" }, { "input": "fyyptqqxuciqvwdewyppjdzur", "output": "117" }, { "input": "fqcnzmzmbobmancqcoalzmanaobpdse", "output": "368" }, { "input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza", "output": "8" }, { "input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy", "output": "644" }, { "input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss", "output": "8" }, { "input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl", "output": "421" }, { "input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa", "output": "84" }, { "input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco", "output": "666" }, { "input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww", "output": "22" }, { "input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh", "output": "643" }, { "input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib", "output": "245" }, { "input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro", "output": "468" }, { "input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned", "output": "523" }, { "input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna", "output": "130" }, { "input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh", "output": "163" }, { "input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb", "output": "155" }, { "input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp", "output": "57" }, { "input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs", "output": "1236" }, { "input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx", "output": "49" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "0" }, { "input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt", "output": "331" }, { "input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte", "output": "692" }, { "input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh", "output": "1293" }, { "input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "16" }, { "input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple", "output": "616" }, { "input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl", "output": "605" }, { "input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud", "output": "549" }, { "input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore", "output": "688" }, { "input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc", "output": "604" }, { "input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa", "output": "572" }, { "input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp", "output": "609" }, { "input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl", "output": "223" }, { "input": "aa", "output": "0" } ]
1,676,235,846
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <iostream> using namespace std; int main() { int x,y; string results[6]={"1/6","1/3","1/2","2/3","5/6","1/1"}; cin>>x>>y; x=max(x,y); cout<<results[6-x]; return 0; }
Title: Night at the Museum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it. Input Specification: The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters. Output Specification: Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input. Demo Input: ['zeus\n', 'map\n', 'ares\n'] Demo Output: ['18\n', '35\n', '34\n'] Note: To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
```python #include <iostream> using namespace std; int main() { int x,y; string results[6]={"1/6","1/3","1/2","2/3","5/6","1/1"}; cin>>x>>y; x=max(x,y); cout<<results[6-x]; return 0; } ```
-1
466
C
Number of Ways
PROGRAMMING
1,700
[ "binary search", "brute force", "data structures", "dp", "two pointers" ]
null
null
You've got array *a*[1],<=*a*[2],<=...,<=*a*[*n*], consisting of *n* integers. Count the number of ways to split all the elements of the array into three contiguous parts so that the sum of elements in each part is the same. More formally, you need to find the number of such pairs of indices *i*,<=*j* (2<=≤<=*i*<=≤<=*j*<=≤<=*n*<=-<=1), that .
The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105), showing how many numbers are in the array. The second line contains *n* integers *a*[1], *a*[2], ..., *a*[*n*] (|*a*[*i*]|<=≤<=<=109) — the elements of array *a*.
Print a single integer — the number of ways to split the array into three parts with the same sum.
[ "5\n1 2 3 0 3\n", "4\n0 1 -1 0\n", "2\n4 1\n" ]
[ "2\n", "1\n", "0\n" ]
none
1,500
[ { "input": "5\n1 2 3 0 3", "output": "2" }, { "input": "4\n0 1 -1 0", "output": "1" }, { "input": "2\n4 1", "output": "0" }, { "input": "9\n0 0 0 0 0 0 0 0 0", "output": "28" }, { "input": "10\n2 5 -2 2 -3 -2 3 5 -5 -2", "output": "0" }, { "input": "1\n1", "output": "0" }, { "input": "3\n1 2 3", "output": "0" }, { "input": "100\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1", "output": "2030" }, { "input": "6\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1" }, { "input": "10\n1 0 0 0 1 1 1 0 1 1", "output": "2" }, { "input": "10\n-2 2 -2 0 -2 -1 1 -1 2 0", "output": "0" }, { "input": "4\n0 2 -1 2", "output": "0" }, { "input": "5\n3 3 -3 3 3", "output": "3" }, { "input": "5\n1 1 1 1 1", "output": "0" }, { "input": "8\n-1 -1 -1 -1 -1 -1 -1 -1", "output": "0" }, { "input": "2\n0 0", "output": "0" }, { "input": "4\n1 -1 0 0", "output": "1" }, { "input": "3\n6 -3 6", "output": "0" } ]
1,699,343,185
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
93
5,222,400
n=int(input()) l=list(map(int,input().split())) ans,m=0,sum(l)//3 l1,l2=[],[] ss=0 for i in range(1,n+1): ss+=l[i-1] if ss==m and i!=1 and i!=n: l1.append(i) if ss==2*m and i!=1 and i!=n: l2.append(i) x,y=0,0 while x<len(l1) and y<len(l2): if l2[y]>=l1[x]: ans+=len(l2)-y x+=1 else: y+=1 print(ans)
Title: Number of Ways Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got array *a*[1],<=*a*[2],<=...,<=*a*[*n*], consisting of *n* integers. Count the number of ways to split all the elements of the array into three contiguous parts so that the sum of elements in each part is the same. More formally, you need to find the number of such pairs of indices *i*,<=*j* (2<=≤<=*i*<=≤<=*j*<=≤<=*n*<=-<=1), that . Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105), showing how many numbers are in the array. The second line contains *n* integers *a*[1], *a*[2], ..., *a*[*n*] (|*a*[*i*]|<=≤<=<=109) — the elements of array *a*. Output Specification: Print a single integer — the number of ways to split the array into three parts with the same sum. Demo Input: ['5\n1 2 3 0 3\n', '4\n0 1 -1 0\n', '2\n4 1\n'] Demo Output: ['2\n', '1\n', '0\n'] Note: none
```python n=int(input()) l=list(map(int,input().split())) ans,m=0,sum(l)//3 l1,l2=[],[] ss=0 for i in range(1,n+1): ss+=l[i-1] if ss==m and i!=1 and i!=n: l1.append(i) if ss==2*m and i!=1 and i!=n: l2.append(i) x,y=0,0 while x<len(l1) and y<len(l2): if l2[y]>=l1[x]: ans+=len(l2)-y x+=1 else: y+=1 print(ans) ```
0
302
A
Eugeny and Array
PROGRAMMING
800
[ "implementation" ]
null
null
Eugeny has array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* integers. Each integer *a**i* equals to -1, or to 1. Also, he has *m* queries: - Query number *i* is given as a pair of integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). - The response to the query will be integer 1, if the elements of array *a* can be rearranged so as the sum *a**l**i*<=+<=*a**l**i*<=+<=1<=+<=...<=+<=*a**r**i*<==<=0, otherwise the response to the query will be integer 0. Help Eugeny, answer all his queries.
The first line contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=2·105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=-1,<=1). Next *m* lines contain Eugene's queries. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*).
Print *m* integers — the responses to Eugene's queries in the order they occur in the input.
[ "2 3\n1 -1\n1 1\n1 2\n2 2\n", "5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5\n" ]
[ "0\n1\n0\n", "0\n1\n0\n1\n0\n" ]
none
500
[ { "input": "2 3\n1 -1\n1 1\n1 2\n2 2", "output": "0\n1\n0" }, { "input": "5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5", "output": "0\n1\n0\n1\n0" }, { "input": "3 3\n1 1 1\n2 2\n1 1\n1 1", "output": "0\n0\n0" }, { "input": "4 4\n-1 -1 -1 -1\n1 3\n1 2\n1 2\n1 1", "output": "0\n0\n0\n0" }, { "input": "5 5\n-1 -1 -1 -1 -1\n1 1\n1 1\n3 4\n1 1\n1 4", "output": "0\n0\n0\n0\n0" }, { "input": "6 6\n-1 -1 1 -1 -1 1\n1 1\n3 4\n1 1\n1 1\n1 3\n1 4", "output": "0\n1\n0\n0\n0\n1" }, { "input": "7 7\n-1 -1 -1 1 -1 -1 -1\n1 1\n2 7\n1 3\n1 5\n4 7\n1 7\n6 7", "output": "0\n0\n0\n0\n0\n0\n1" }, { "input": "8 8\n1 1 1 1 1 1 1 1\n5 8\n2 6\n2 3\n1 7\n7 7\n1 6\n1 8\n1 3", "output": "0\n0\n0\n0\n0\n0\n0\n0" }, { "input": "9 9\n-1 1 1 1 1 1 1 1 1\n1 7\n5 6\n1 4\n1 1\n1 1\n6 8\n1 1\n6 7\n3 5", "output": "0\n1\n0\n0\n0\n0\n0\n1\n0" }, { "input": "10 10\n-1 1 -1 1 -1 -1 -1 -1 -1 -1\n6 7\n2 5\n3 6\n1 3\n3 5\n4 5\n3 4\n1 6\n1 1\n1 1", "output": "1\n1\n1\n0\n0\n1\n1\n0\n0\n0" }, { "input": "1 1\n-1\n1 1", "output": "0" }, { "input": "1 1\n1\n1 1", "output": "0" } ]
1,592,846,239
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
10
1,000
10,444,800
n, m = map(int, input().split()) neg = sum(x < 0 for x in map(int, input().split())) d = min(neg, n - neg) * 2 for i in range(m): l, r = map(int, input().split()) print(int(0 < r - l < d and (r - l) & 1))
Title: Eugeny and Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Eugeny has array *a*<==<=*a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* integers. Each integer *a**i* equals to -1, or to 1. Also, he has *m* queries: - Query number *i* is given as a pair of integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). - The response to the query will be integer 1, if the elements of array *a* can be rearranged so as the sum *a**l**i*<=+<=*a**l**i*<=+<=1<=+<=...<=+<=*a**r**i*<==<=0, otherwise the response to the query will be integer 0. Help Eugeny, answer all his queries. Input Specification: The first line contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=2·105). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (*a**i*<==<=-1,<=1). Next *m* lines contain Eugene's queries. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). Output Specification: Print *m* integers — the responses to Eugene's queries in the order they occur in the input. Demo Input: ['2 3\n1 -1\n1 1\n1 2\n2 2\n', '5 5\n-1 1 1 1 -1\n1 1\n2 3\n3 5\n2 5\n1 5\n'] Demo Output: ['0\n1\n0\n', '0\n1\n0\n1\n0\n'] Note: none
```python n, m = map(int, input().split()) neg = sum(x < 0 for x in map(int, input().split())) d = min(neg, n - neg) * 2 for i in range(m): l, r = map(int, input().split()) print(int(0 < r - l < d and (r - l) & 1)) ```
0
116
A
Tram
PROGRAMMING
800
[ "implementation" ]
null
null
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty. Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops. Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement. - The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
[ "4\n0 3\n2 5\n4 2\n4 0\n" ]
[ "6\n" ]
For the first example, a capacity of 6 is sufficient: - At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints. Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
500
[ { "input": "4\n0 3\n2 5\n4 2\n4 0", "output": "6" }, { "input": "5\n0 4\n4 6\n6 5\n5 4\n4 0", "output": "6" }, { "input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0", "output": "18" }, { "input": "3\n0 1\n1 1\n1 0", "output": "1" }, { "input": "4\n0 1\n0 1\n1 0\n1 0", "output": "2" }, { "input": "3\n0 0\n0 0\n0 0", "output": "0" }, { "input": "3\n0 1000\n1000 1000\n1000 0", "output": "1000" }, { "input": "5\n0 73\n73 189\n189 766\n766 0\n0 0", "output": "766" }, { "input": "5\n0 0\n0 0\n0 0\n0 1\n1 0", "output": "1" }, { "input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0", "output": "1011" }, { "input": "5\n0 1\n1 2\n2 1\n1 2\n2 0", "output": "2" }, { "input": "5\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0", "output": "22" }, { "input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0", "output": "1000" }, { "input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0", "output": "1776" }, { "input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0", "output": "2" }, { "input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0", "output": "1016" }, { "input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0", "output": "3" }, { "input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0", "output": "1000" }, { "input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0", "output": "2071" }, { "input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0", "output": "3" }, { "input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0", "output": "1329" }, { "input": "2\n0 863\n863 0", "output": "863" }, { "input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0", "output": "8" }, { "input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0", "output": "11" }, { "input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0", "output": "7" }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "2\n0 1\n1 0", "output": "1" }, { "input": "2\n0 900\n900 0", "output": "900" }, { "input": "2\n0 1\n1 0", "output": "1" }, { "input": "2\n0 0\n0 0", "output": "0" }, { "input": "2\n0 1000\n1000 0", "output": "1000" }, { "input": "3\n0 802\n175 188\n815 0", "output": "815" }, { "input": "3\n0 910\n910 976\n976 0", "output": "976" }, { "input": "3\n0 2\n2 1\n1 0", "output": "2" } ]
1,698,077,565
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
2
60
0
n = int(input()) stops = [] capacity = [0] for i in range(n): line = input().split(" ") stops.append((int(line[0]), int(line[1])),) for i in stops: if stops.index(i) > 0: capacity.append(capacity[stops.index(i)-1] - i[0] + i[1]) else: capacity[0] = i[1] print(max(capacity))
Title: Tram Time Limit: None seconds Memory Limit: None megabytes Problem Description: Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty. Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram. Input Specification: The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops. Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement. - The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0. Output Specification: Print a single integer denoting the minimum possible capacity of the tram (0 is allowed). Demo Input: ['4\n0 3\n2 5\n4 2\n4 0\n'] Demo Output: ['6\n'] Note: For the first example, a capacity of 6 is sufficient: - At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints. Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
```python n = int(input()) stops = [] capacity = [0] for i in range(n): line = input().split(" ") stops.append((int(line[0]), int(line[1])),) for i in stops: if stops.index(i) > 0: capacity.append(capacity[stops.index(i)-1] - i[0] + i[1]) else: capacity[0] = i[1] print(max(capacity)) ```
-1
621
A
Wet Shark and Odd and Even
PROGRAMMING
900
[ "implementation" ]
null
null
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
Print the maximum possible even sum that can be obtained if we use some of the given integers.
[ "3\n1 2 3\n", "5\n999999999 999999999 999999999 999999999 999999999\n" ]
[ "6", "3999999996" ]
In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
500
[ { "input": "3\n1 2 3", "output": "6" }, { "input": "5\n999999999 999999999 999999999 999999999 999999999", "output": "3999999996" }, { "input": "1\n1", "output": "0" }, { "input": "15\n39 52 88 78 46 95 84 98 55 3 68 42 6 18 98", "output": "870" }, { "input": "15\n59 96 34 48 8 72 67 90 15 85 7 90 97 47 25", "output": "840" }, { "input": "15\n87 37 91 29 58 45 51 74 70 71 47 38 91 89 44", "output": "922" }, { "input": "15\n11 81 49 7 11 14 30 67 29 50 90 81 77 18 59", "output": "674" }, { "input": "15\n39 21 95 89 73 90 9 55 85 32 30 21 68 59 82", "output": "848" }, { "input": "15\n59 70 48 54 26 67 84 39 40 18 77 69 70 88 93", "output": "902" }, { "input": "15\n87 22 98 32 88 36 72 31 100 97 17 16 60 22 20", "output": "798" }, { "input": "15\n15 63 51 13 37 9 43 19 55 79 57 60 50 59 31", "output": "632" }, { "input": "1\n4", "output": "4" }, { "input": "2\n1 4", "output": "4" }, { "input": "3\n1 2 4", "output": "6" }, { "input": "2\n9 3", "output": "12" }, { "input": "2\n1000000000 1001", "output": "1000000000" }, { "input": "3\n1 8 4", "output": "12" }, { "input": "3\n7 4 4", "output": "8" }, { "input": "5\n2 3 4 5 3", "output": "14" }, { "input": "2\n4 5", "output": "4" }, { "input": "3\n2 4 5", "output": "6" }, { "input": "3\n2 2 3", "output": "4" }, { "input": "2\n2 3", "output": "2" }, { "input": "4\n2 3 7 7", "output": "16" }, { "input": "2\n999999999 2", "output": "2" }, { "input": "2\n2 5", "output": "2" }, { "input": "3\n5 3 1", "output": "8" }, { "input": "4\n3 2 5 7", "output": "14" } ]
1,584,700,868
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
171
7,372,800
n = int(input()) sumEven = 0 total = 0 uneven = [] for i in input().split(): if int(i) % 2 == 0: sumEven = sumEven + int(i) else: uneven.append(int(i)) if len(uneven) % 2 == 0: total = sum(uneven) + sumEven else: sorted(uneven, reverse=True) total = sum(uneven[:-1]) + sumEven print(total)
Title: Wet Shark and Odd and Even Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0. Input Specification: The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive. Output Specification: Print the maximum possible even sum that can be obtained if we use some of the given integers. Demo Input: ['3\n1 2 3\n', '5\n999999999 999999999 999999999 999999999 999999999\n'] Demo Output: ['6', '3999999996'] Note: In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
```python n = int(input()) sumEven = 0 total = 0 uneven = [] for i in input().split(): if int(i) % 2 == 0: sumEven = sumEven + int(i) else: uneven.append(int(i)) if len(uneven) % 2 == 0: total = sum(uneven) + sumEven else: sorted(uneven, reverse=True) total = sum(uneven[:-1]) + sumEven print(total) ```
0
433
A
Kitahara Haruki's Gift
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
Kitahara Haruki has bought *n* apples for Touma Kazusa and Ogiso Setsuna. Now he wants to divide all the apples between the friends. Each apple weights 100 grams or 200 grams. Of course Kitahara Haruki doesn't want to offend any of his friend. Therefore the total weight of the apples given to Touma Kazusa must be equal to the total weight of the apples given to Ogiso Setsuna. But unfortunately Kitahara Haruki doesn't have a knife right now, so he cannot split any apple into some parts. Please, tell him: is it possible to divide all the apples in a fair way between his friends?
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of apples. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (*w**i*<==<=100 or *w**i*<==<=200), where *w**i* is the weight of the *i*-th apple.
In a single line print "YES" (without the quotes) if it is possible to divide all the apples between his friends. Otherwise print "NO" (without the quotes).
[ "3\n100 200 100\n", "4\n100 100 100 200\n" ]
[ "YES\n", "NO\n" ]
In the first test sample Kitahara Haruki can give the first and the last apple to Ogiso Setsuna and the middle apple to Touma Kazusa.
500
[ { "input": "3\n100 200 100", "output": "YES" }, { "input": "4\n100 100 100 200", "output": "NO" }, { "input": "1\n100", "output": "NO" }, { "input": "1\n200", "output": "NO" }, { "input": "2\n100 100", "output": "YES" }, { "input": "2\n200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "52\n200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 100 200 100 200 200 200 100 200 200", "output": "YES" }, { "input": "2\n100 200", "output": "NO" }, { "input": "2\n200 100", "output": "NO" }, { "input": "3\n100 100 100", "output": "NO" }, { "input": "3\n200 200 200", "output": "NO" }, { "input": "3\n200 100 200", "output": "NO" }, { "input": "4\n100 100 100 100", "output": "YES" }, { "input": "4\n200 200 200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 100 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "100\n100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "100\n100 100 100 100 100 100 100 100 200 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "YES" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "100\n100 100 200 100 100 200 200 200 200 100 200 100 100 100 200 100 100 100 100 200 100 100 100 100 100 100 200 100 100 200 200 100 100 100 200 200 200 100 200 200 100 200 100 100 200 100 200 200 100 200 200 100 100 200 200 100 200 200 100 100 200 100 200 100 200 200 200 200 200 100 200 200 200 200 200 200 100 100 200 200 200 100 100 100 200 100 100 200 100 100 100 200 200 100 100 200 200 200 200 100", "output": "YES" }, { "input": "100\n100 100 200 200 100 200 100 100 100 100 100 100 200 100 200 200 200 100 100 200 200 200 200 200 100 200 100 200 100 100 100 200 100 100 200 100 200 100 100 100 200 200 100 100 100 200 200 200 200 200 100 200 200 100 100 100 100 200 100 100 200 100 100 100 100 200 200 200 100 200 100 200 200 200 100 100 200 200 200 200 100 200 100 200 200 100 200 100 200 200 200 200 200 200 100 100 100 200 200 100", "output": "NO" }, { "input": "100\n100 200 100 100 200 200 200 200 100 200 200 200 200 200 200 200 200 200 100 100 100 200 200 200 200 200 100 200 200 200 200 100 200 200 100 100 200 100 100 100 200 100 100 100 200 100 200 100 200 200 200 100 100 200 100 200 100 200 100 100 100 200 100 200 100 100 100 100 200 200 200 200 100 200 200 100 200 100 100 100 200 100 100 100 100 100 200 100 100 100 200 200 200 100 200 100 100 100 200 200", "output": "YES" }, { "input": "99\n100 200 200 200 100 200 100 200 200 100 100 100 100 200 100 100 200 100 200 100 100 200 100 100 200 200 100 100 100 100 200 200 200 200 200 100 100 200 200 100 100 100 100 200 200 100 100 100 100 100 200 200 200 100 100 100 200 200 200 100 200 100 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 100 200 100 200 200 200 200 100 200 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "99\n100 200 100 100 100 100 200 200 100 200 100 100 200 100 100 100 100 100 100 200 100 100 100 100 100 100 100 200 100 200 100 100 100 100 100 100 100 200 200 200 200 200 200 200 100 200 100 200 100 200 100 200 100 100 200 200 200 100 200 200 200 200 100 200 100 200 200 200 200 100 200 100 200 200 100 200 200 200 200 200 100 100 200 100 100 100 100 200 200 200 100 100 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n200 100 100 100 200 200 200 100 100 100 100 100 100 100 100 100 200 200 100 200 200 100 200 100 100 200 200 200 100 200 100 200 200 100 200 100 200 200 200 100 100 200 200 200 200 100 100 100 100 200 200 200 200 100 200 200 200 100 100 100 200 200 200 100 200 100 200 100 100 100 200 100 200 200 100 200 200 200 100 100 100 200 200 200 100 200 200 200 100 100 100 200 100 200 100 100 100 200 200", "output": "YES" }, { "input": "56\n100 200 200 200 200 200 100 200 100 100 200 100 100 100 100 100 200 200 200 100 200 100 100 200 200 200 100 200 100 200 200 100 100 100 100 100 200 100 200 100 200 200 200 100 100 200 200 200 200 200 200 200 200 200 200 100", "output": "YES" }, { "input": "72\n200 100 200 200 200 100 100 200 200 100 100 100 100 200 100 200 100 100 100 100 200 100 200 100 100 200 100 100 200 100 200 100 100 200 100 200 100 100 200 200 200 200 200 100 100 200 200 200 200 100 100 100 200 200 100 100 100 100 100 200 100 100 200 100 100 200 200 100 100 200 100 200", "output": "YES" }, { "input": "32\n200 200 200 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200", "output": "YES" }, { "input": "48\n200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 100 200 200 200 200 200 200", "output": "NO" }, { "input": "60\n100 100 200 200 100 200 100 200 100 100 100 100 100 100 200 100 100 100 200 100 200 100 100 100 100 100 200 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100", "output": "YES" }, { "input": "24\n200 200 100 100 200 100 200 200 100 200 200 200 200 200 100 200 200 200 200 200 200 200 200 100", "output": "YES" }, { "input": "40\n100 100 200 200 200 200 100 100 100 200 100 100 200 200 100 100 100 100 100 200 100 200 200 100 200 200 200 100 100 100 100 100 200 200 100 200 100 100 200 100", "output": "NO" }, { "input": "5\n200 200 200 200 200", "output": "NO" }, { "input": "9\n100 100 100 200 100 100 200 100 200", "output": "YES" }, { "input": "1\n200", "output": "NO" }, { "input": "7\n200 200 200 100 200 200 200", "output": "NO" }, { "input": "4\n100 100 200 200", "output": "YES" }, { "input": "6\n100 100 100 200 200 200", "output": "NO" }, { "input": "4\n200 100 100 200", "output": "YES" }, { "input": "5\n100 100 100 100 200", "output": "YES" } ]
1,679,879,456
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
31
0
n = int(input()) l = list(map(int,input().split())) ones = l.count(100) if ones % 2 == 1 : print("NO") elif ones == 0: twos = l.count(200) if twos % 2 == 1: print("NO") else : print("YES")
Title: Kitahara Haruki's Gift Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kitahara Haruki has bought *n* apples for Touma Kazusa and Ogiso Setsuna. Now he wants to divide all the apples between the friends. Each apple weights 100 grams or 200 grams. Of course Kitahara Haruki doesn't want to offend any of his friend. Therefore the total weight of the apples given to Touma Kazusa must be equal to the total weight of the apples given to Ogiso Setsuna. But unfortunately Kitahara Haruki doesn't have a knife right now, so he cannot split any apple into some parts. Please, tell him: is it possible to divide all the apples in a fair way between his friends? Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of apples. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (*w**i*<==<=100 or *w**i*<==<=200), where *w**i* is the weight of the *i*-th apple. Output Specification: In a single line print "YES" (without the quotes) if it is possible to divide all the apples between his friends. Otherwise print "NO" (without the quotes). Demo Input: ['3\n100 200 100\n', '4\n100 100 100 200\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first test sample Kitahara Haruki can give the first and the last apple to Ogiso Setsuna and the middle apple to Touma Kazusa.
```python n = int(input()) l = list(map(int,input().split())) ones = l.count(100) if ones % 2 == 1 : print("NO") elif ones == 0: twos = l.count(200) if twos % 2 == 1: print("NO") else : print("YES") ```
0
260
D
Black and White Tree
PROGRAMMING
2,100
[ "constructive algorithms", "dsu", "graphs", "greedy", "trees" ]
null
null
The board has got a painted tree graph, consisting of *n* nodes. Let us remind you that a non-directed graph is called a tree if it is connected and doesn't contain any cycles. Each node of the graph is painted black or white in such a manner that there aren't two nodes of the same color, connected by an edge. Each edge contains its value written on it as a non-negative integer. A bad boy Vasya came up to the board and wrote number *s**v* near each node *v* — the sum of values of all edges that are incident to this node. Then Vasya removed the edges and their values from the board. Your task is to restore the original tree by the node colors and numbers *s**v*.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the number of nodes in the tree. Next *n* lines contain pairs of space-separated integers *c**i*, *s**i* (0<=≤<=*c**i*<=≤<=1, 0<=≤<=*s**i*<=≤<=109), where *c**i* stands for the color of the *i*-th vertex (0 is for white, 1 is for black), and *s**i* represents the sum of values of the edges that are incident to the *i*-th vertex of the tree that is painted on the board.
Print the description of *n*<=-<=1 edges of the tree graph. Each description is a group of three integers *v**i*, *u**i*, *w**i* (1<=≤<=*v**i*,<=*u**i*<=≤<=*n*, *v**i*<=≠<=*u**i*, 0<=≤<=*w**i*<=≤<=109), where *v**i* and *u**i* — are the numbers of the nodes that are connected by the *i*-th edge, and *w**i* is its value. Note that the following condition must fulfill *c**v**i*<=≠<=*c**u**i*. It is guaranteed that for any input data there exists at least one graph that meets these data. If there are multiple solutions, print any of them. You are allowed to print the edges in any order. As you print the numbers, separate them with spaces.
[ "3\n1 3\n1 2\n0 5\n", "6\n1 0\n0 3\n1 8\n0 2\n0 3\n0 0\n" ]
[ "3 1 3\n3 2 2\n", "2 3 3\n5 3 3\n4 3 2\n1 6 0\n2 1 0\n" ]
none
2,000
[ { "input": "3\n1 3\n1 2\n0 5", "output": "3 1 3\n3 2 2" }, { "input": "6\n1 0\n0 3\n1 8\n0 2\n0 3\n0 0", "output": "2 3 3\n5 3 3\n4 3 2\n1 6 0\n2 1 0" }, { "input": "2\n0 0\n1 0", "output": "1 2 0" }, { "input": "5\n1 11\n0 9\n1 4\n0 4\n0 2", "output": "2 1 9\n4 3 4\n5 1 2\n2 3 0" }, { "input": "10\n0 24\n1 164\n0 206\n0 45\n1 110\n0 66\n1 59\n1 92\n0 152\n1 68", "output": "3 2 164\n9 5 110\n6 8 66\n4 10 45\n3 7 42\n9 8 26\n1 10 23\n9 7 16\n1 7 1" }, { "input": "20\n0 569\n1 328\n1 74\n1 88\n1 90\n1 124\n0 78\n0 39\n1 9\n1 59\n1 41\n1 73\n1 45\n0 45\n0 13\n1 39\n0 24\n0 37\n0 95\n0 70", "output": "1 2 328\n1 6 124\n1 5 90\n19 4 88\n7 3 74\n20 12 70\n14 10 45\n8 13 39\n18 11 37\n1 16 27\n17 10 14\n15 16 12\n17 9 9\n19 13 6\n7 11 4\n15 12 1\n17 12 1\n19 12 1\n7 2 0" }, { "input": "30\n0 110\n1 263\n0 169\n1 138\n1 153\n0 146\n0 7\n0 68\n0 136\n0 76\n1 156\n0 80\n0 76\n1 43\n1 119\n1 199\n0 54\n0 44\n0 7\n1 43\n0 84\n0 90\n0 29\n0 22\n1 55\n0 23\n0 33\n1 60\n1 66\n0 41", "output": "3 2 169\n6 16 146\n9 11 136\n1 5 110\n22 4 90\n21 15 84\n12 2 80\n10 29 66\n13 28 60\n8 25 55\n17 16 53\n18 4 44\n30 5 41\n27 14 33\n23 20 29\n26 15 23\n24 11 20\n13 2 14\n8 20 13\n10 15 10\n7 14 7\n19 4 4\n19 14 3\n13 5 2\n24 15 2\n17 20 1\n7 11 0\n9 16 0\n6 2 0" }, { "input": "50\n1 574339\n0 409333\n0 330634\n0 420557\n0 323095\n0 63399\n0 69999\n1 82396\n1 90197\n0 265793\n0 65065\n1 38496\n1 43632\n1 95792\n1 61780\n1 87623\n1 31246\n0 48483\n1 76824\n1 81693\n1 66004\n1 72826\n1 146477\n1 12359\n1 27042\n1 12542\n0 81514\n0 28986\n1 73958\n1 8219\n0 5679\n0 77936\n1 892\n0 69776\n1 71921\n1 86390\n0 47969\n1 51544\n0 22463\n1 69975\n1 80092\n1 90894\n0 56989\n1 79786\n0 24301\n1 72558\n1 73728\n0 24482\n1 8467\n1 66761", "output": "4 1 420557\n2 1 153782\n3 23 146477\n5 14 95792\n10 42 90894\n2 9 90197\n5 16 87623\n3 36 86390\n10 8 82396\n2 20 81693\n5 41 80092\n3 44 79786\n10 19 76824\n2 29 73958\n27 47 73728\n32 22 72826\n7 46 69999\n34 35 69776\n11 40 65065\n6 50 63399\n5 21 59588\n43 15 56989\n18 38 48483\n37 13 43632\n28 12 28986\n48 17 24482\n45 25 24301\n39 26 12542\n3 24 12359\n10 12 9510\n39 49 8467\n2 30 8219\n27 17 6764\n10 21 6169\n31 40 4910\n3 15 4791\n32 50 3362\n37 38 3061\n32 25 1748\n2 46 1484\n39 35 1454\n37 46 107..." }, { "input": "6\n0 0\n1 0\n0 0\n1 0\n0 0\n1 0", "output": "1 6 0\n2 5 0\n3 6 0\n4 5 0\n5 6 0" }, { "input": "4\n1 0\n1 0\n0 0\n0 0", "output": "1 4 0\n2 4 0\n3 2 0" }, { "input": "9\n0 3\n1 8\n0 2\n0 3\n1 0\n1 0\n1 0\n1 0\n1 0", "output": "1 2 3\n4 2 3\n3 2 2\n5 4 0\n6 4 0\n7 4 0\n8 4 0\n9 4 0" }, { "input": "6\n0 0\n0 0\n0 0\n1 0\n1 0\n1 0", "output": "1 6 0\n2 6 0\n3 6 0\n4 3 0\n5 3 0" }, { "input": "5\n0 0\n0 0\n0 0\n0 0\n1 0", "output": "1 5 0\n2 5 0\n3 5 0\n4 5 0" }, { "input": "4\n0 0\n1 0\n0 0\n1 0", "output": "1 4 0\n2 3 0\n3 4 0" }, { "input": "5\n1 0\n0 0\n0 0\n0 0\n0 0", "output": "1 5 0\n2 1 0\n3 1 0\n4 1 0" }, { "input": "6\n1 1\n1 1\n1 1\n0 1\n0 1\n0 1", "output": "4 1 1\n5 2 1\n6 3 1\n4 3 0\n6 2 0" }, { "input": "7\n1 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "1 7 0\n2 7 0\n3 2 0\n4 2 0\n5 2 0\n6 2 0" } ]
1,689,419,470
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689419470.8338447")# 1689419470.8338654
Title: Black and White Tree Time Limit: None seconds Memory Limit: None megabytes Problem Description: The board has got a painted tree graph, consisting of *n* nodes. Let us remind you that a non-directed graph is called a tree if it is connected and doesn't contain any cycles. Each node of the graph is painted black or white in such a manner that there aren't two nodes of the same color, connected by an edge. Each edge contains its value written on it as a non-negative integer. A bad boy Vasya came up to the board and wrote number *s**v* near each node *v* — the sum of values of all edges that are incident to this node. Then Vasya removed the edges and their values from the board. Your task is to restore the original tree by the node colors and numbers *s**v*. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=105) — the number of nodes in the tree. Next *n* lines contain pairs of space-separated integers *c**i*, *s**i* (0<=≤<=*c**i*<=≤<=1, 0<=≤<=*s**i*<=≤<=109), where *c**i* stands for the color of the *i*-th vertex (0 is for white, 1 is for black), and *s**i* represents the sum of values of the edges that are incident to the *i*-th vertex of the tree that is painted on the board. Output Specification: Print the description of *n*<=-<=1 edges of the tree graph. Each description is a group of three integers *v**i*, *u**i*, *w**i* (1<=≤<=*v**i*,<=*u**i*<=≤<=*n*, *v**i*<=≠<=*u**i*, 0<=≤<=*w**i*<=≤<=109), where *v**i* and *u**i* — are the numbers of the nodes that are connected by the *i*-th edge, and *w**i* is its value. Note that the following condition must fulfill *c**v**i*<=≠<=*c**u**i*. It is guaranteed that for any input data there exists at least one graph that meets these data. If there are multiple solutions, print any of them. You are allowed to print the edges in any order. As you print the numbers, separate them with spaces. Demo Input: ['3\n1 3\n1 2\n0 5\n', '6\n1 0\n0 3\n1 8\n0 2\n0 3\n0 0\n'] Demo Output: ['3 1 3\n3 2 2\n', '2 3 3\n5 3 3\n4 3 2\n1 6 0\n2 1 0\n'] Note: none
```python print("_RANDOM_GUESS_1689419470.8338447")# 1689419470.8338654 ```
0
411
A
Password Check
PROGRAMMING
800
[ "*special", "implementation" ]
null
null
You have probably registered on Internet sites many times. And each time you should enter your invented password. Usually the registration form automatically checks the password's crypt resistance. If the user's password isn't complex enough, a message is displayed. Today your task is to implement such an automatic check. Web-developers of the company Q assume that a password is complex enough, if it meets all of the following conditions: - the password length is at least 5 characters; - the password contains at least one large English letter; - the password contains at least one small English letter; - the password contains at least one digit. You are given a password. Please implement the automatic check of its complexity for company Q.
The first line contains a non-empty sequence of characters (at most 100 characters). Each character is either a large English letter, or a small English letter, or a digit, or one of characters: "!", "?", ".", ",", "_".
If the password is complex enough, print message "Correct" (without the quotes), otherwise print message "Too weak" (without the quotes).
[ "abacaba\n", "X12345\n", "CONTEST_is_STARTED!!11\n" ]
[ "Too weak\n", "Too weak\n", "Correct\n" ]
none
0
[ { "input": "abacaba", "output": "Too weak" }, { "input": "X12345", "output": "Too weak" }, { "input": "CONTEST_is_STARTED!!11", "output": "Correct" }, { "input": "1zA__", "output": "Correct" }, { "input": "1zA_", "output": "Too weak" }, { "input": "zA___", "output": "Too weak" }, { "input": "1A___", "output": "Too weak" }, { "input": "z1___", "output": "Too weak" }, { "input": "0", "output": "Too weak" }, { "input": "_", "output": "Too weak" }, { "input": "a", "output": "Too weak" }, { "input": "D", "output": "Too weak" }, { "input": "_", "output": "Too weak" }, { "input": "?", "output": "Too weak" }, { "input": "?", "output": "Too weak" }, { "input": "._,.!.,...?_,!.", "output": "Too weak" }, { "input": "!_?_,?,?.,.,_!!!.!,.__,?!!,_!,?_,!??,?!..._!?_,?_!,?_.,._,,_.,.", "output": "Too weak" }, { "input": "?..!.,,?,__.,...????_???__!,?...?.,,,,___!,.!,_,,_,??!_?_,!!?_!_??.?,.!!?_?_.,!", "output": "Too weak" }, { "input": "XZX", "output": "Too weak" }, { "input": "R", "output": "Too weak" }, { "input": "H.FZ", "output": "Too weak" }, { "input": "KSHMICWPK,LSBM_JVZ!IPDYDG_GOPCHXFJTKJBIFY,FPHMY,CB?PZEAG..,X,.GFHPIDBB,IQ?MZ", "output": "Too weak" }, { "input": "EFHI,,Y?HMMUI,,FJGAY?FYPBJQMYM!DZHLFCTFWT?JOPDW,S_!OR?ATT?RWFBMAAKUHIDMHSD?LCZQY!UD_CGYGBAIRDPICYS", "output": "Too weak" }, { "input": "T,NDMUYCCXH_L_FJHMCCAGX_XSCPGOUZSY?D?CNDSYRITYS,VAT!PJVKNTBMXGGRYKACLYU.RJQ_?UWKXYIDE_AE", "output": "Too weak" }, { "input": "y", "output": "Too weak" }, { "input": "qgw", "output": "Too weak" }, { "input": "g", "output": "Too weak" }, { "input": "loaray", "output": "Too weak" }, { "input": "d_iymyvxolmjayhwpedocopqwmy.oalrdg!_n?.lrxpamhygps?kkzxydsbcaihfs.j?eu!oszjsy.vzu?!vs.bprz_j", "output": "Too weak" }, { "input": "txguglvclyillwnono", "output": "Too weak" }, { "input": "FwX", "output": "Too weak" }, { "input": "Zi", "output": "Too weak" }, { "input": "PodE", "output": "Too weak" }, { "input": "SdoOuJ?nj_wJyf", "output": "Too weak" }, { "input": "MhnfZjsUyXYw?f?ubKA", "output": "Too weak" }, { "input": "CpWxDVzwHfYFfoXNtXMFuAZr", "output": "Too weak" }, { "input": "9.,0", "output": "Too weak" }, { "input": "5,8", "output": "Too weak" }, { "input": "7", "output": "Too weak" }, { "input": "34__39_02!,!,82!129!2!566", "output": "Too weak" }, { "input": "96156027.65935663!_87!,44,..7914_!0_1,.4!!62!.8350!17_282!!9.2584,!!7__51.526.7", "output": "Too weak" }, { "input": "90328_", "output": "Too weak" }, { "input": "B9", "output": "Too weak" }, { "input": "P1H", "output": "Too weak" }, { "input": "J2", "output": "Too weak" }, { "input": "M6BCAKW!85OSYX1D?.53KDXP42F", "output": "Too weak" }, { "input": "C672F429Y8X6XU7S,.K9111UD3232YXT81S4!729ER7DZ.J7U1R_7VG6.FQO,LDH", "output": "Too weak" }, { "input": "W2PI__!.O91H8OFY6AB__R30L9XOU8800?ZUD84L5KT99818NFNE35V.8LJJ5P2MM.B6B", "output": "Too weak" }, { "input": "z1", "output": "Too weak" }, { "input": "p1j", "output": "Too weak" }, { "input": "j9", "output": "Too weak" }, { "input": "v8eycoylzv0qkix5mfs_nhkn6k!?ovrk9!b69zy!4frc?k", "output": "Too weak" }, { "input": "l4!m_44kpw8.jg!?oh,?y5oraw1tg7_x1.osl0!ny?_aihzhtt0e2!mr92tnk0es!1f,9he40_usa6c50l", "output": "Too weak" }, { "input": "d4r!ak.igzhnu!boghwd6jl", "output": "Too weak" }, { "input": "It0", "output": "Too weak" }, { "input": "Yb1x", "output": "Too weak" }, { "input": "Qf7", "output": "Too weak" }, { "input": "Vu7jQU8.!FvHBYTsDp6AphaGfnEmySP9te", "output": "Correct" }, { "input": "Ka4hGE,vkvNQbNolnfwp", "output": "Correct" }, { "input": "Ee9oluD?amNItsjeQVtOjwj4w_ALCRh7F3eaZah", "output": "Correct" }, { "input": "Um3Fj?QLhNuRE_Gx0cjMLOkGCm", "output": "Correct" }, { "input": "Oq2LYmV9HmlaW", "output": "Correct" }, { "input": "Cq7r3Wrb.lDb_0wsf7!ruUUGSf08RkxD?VsBEDdyE?SHK73TFFy0f8gmcATqGafgTv8OOg8or2HyMPIPiQ2Hsx8q5rn3_WZe", "output": "Correct" }, { "input": "Wx4p1fOrEMDlQpTlIx0p.1cnFD7BnX2K8?_dNLh4cQBx_Zqsv83BnL5hGKNcBE9g3QB,!fmSvgBeQ_qiH7", "output": "Correct" }, { "input": "k673,", "output": "Too weak" }, { "input": "LzuYQ", "output": "Too weak" }, { "input": "Pasq!", "output": "Too weak" }, { "input": "x5hve", "output": "Too weak" }, { "input": "b27fk", "output": "Too weak" }, { "input": "h6y1l", "output": "Too weak" }, { "input": "i9nij", "output": "Too weak" }, { "input": "Gf5Q6", "output": "Correct" }, { "input": "Uf24o", "output": "Correct" }, { "input": "Oj9vu", "output": "Correct" }, { "input": "c7jqaudcqmv8o7zvb5x_gp6zcgl6nwr7tz5or!28.tj8s1m2.wxz5a4id03!rq07?662vy.7.p5?vk2f2mc7ag8q3861rgd0rmbr", "output": "Too weak" }, { "input": "i6a.,8jb,n0kv4.1!7h?p.96pnhhgy6cl7dg7e4o6o384ys3z.t71kkq,,w,oqi4?u,,m5!rzu6wym_4hm,ohjy!.vvksl?pt,,1", "output": "Too weak" }, { "input": "M10V_MN_1K8YX2LA!89EYV7!5V9?,.IDHDP6JEC.OGLY.180LMZ6KW3Z5E17IT94ZNHS!79GN09Q6LH0,F3AYNKP?KM,QP_?XRD6", "output": "Too weak" }, { "input": "Hi7zYuVXCPhaho68YgCMzzgLILM6toQTJq8akMqqrnUn6ZCD36iA1yVVpvlsIiMpCu!1QZd4ycIrQ5Kcrhk5k0jTrwdAAEEP_T2f", "output": "Correct" }, { "input": "Bk2Q38vDSW5JqYu.077iYC.9YoiPc!Dh6FJWOVze6?YXiFjPNa4F1RG?154m9mY2jQobBnbxM,cDV8l1UX1?v?p.tTYIyJO!NYmE", "output": "Correct" }, { "input": "Ro1HcZ.piN,JRR88DLh,WtW!pbFM076?wCSbqfK7N2s5zUySFBtzk7HV,BxHXR0zALAr016z5jvvB.WUdEcKgYFav5TygwHQC..C", "output": "Correct" }, { "input": "!?.,_", "output": "Too weak" } ]
1,490,891,788
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
31
5,529,600
n = int(input()) x = list(input()) st = x.count("X") if st == n / 2: print(0) print("".join(x)) elif st > n / 2: count = st - n / 2 while count > 0: index = x.index("X") x[index] = "x" count -= 1 print(int(abs(st - n / 2))) print("".join(x)) else: count = abs(st - n / 2) while count > 0: index = x.index("x") x[index] = "X" count -=1 print(int(abs(st - n / 2))) print("".join(x))
Title: Password Check Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have probably registered on Internet sites many times. And each time you should enter your invented password. Usually the registration form automatically checks the password's crypt resistance. If the user's password isn't complex enough, a message is displayed. Today your task is to implement such an automatic check. Web-developers of the company Q assume that a password is complex enough, if it meets all of the following conditions: - the password length is at least 5 characters; - the password contains at least one large English letter; - the password contains at least one small English letter; - the password contains at least one digit. You are given a password. Please implement the automatic check of its complexity for company Q. Input Specification: The first line contains a non-empty sequence of characters (at most 100 characters). Each character is either a large English letter, or a small English letter, or a digit, or one of characters: "!", "?", ".", ",", "_". Output Specification: If the password is complex enough, print message "Correct" (without the quotes), otherwise print message "Too weak" (without the quotes). Demo Input: ['abacaba\n', 'X12345\n', 'CONTEST_is_STARTED!!11\n'] Demo Output: ['Too weak\n', 'Too weak\n', 'Correct\n'] Note: none
```python n = int(input()) x = list(input()) st = x.count("X") if st == n / 2: print(0) print("".join(x)) elif st > n / 2: count = st - n / 2 while count > 0: index = x.index("X") x[index] = "x" count -= 1 print(int(abs(st - n / 2))) print("".join(x)) else: count = abs(st - n / 2) while count > 0: index = x.index("x") x[index] = "X" count -=1 print(int(abs(st - n / 2))) print("".join(x)) ```
-1
614
B
Gena's Code
PROGRAMMING
1,400
[ "implementation", "math" ]
null
null
It's the year 4527 and the tanks game that we all know and love still exists. There also exists Great Gena's code, written in 2016. The problem this code solves is: given the number of tanks that go into the battle from each country, find their product. If it is turns to be too large, then the servers might have not enough time to assign tanks into teams and the whole game will collapse! There are exactly *n* distinct countries in the world and the *i*-th country added *a**i* tanks to the game. As the developers of the game are perfectionists, the number of tanks from each country is beautiful. A beautiful number, according to the developers, is such number that its decimal representation consists only of digits '1' and '0', moreover it contains at most one digit '1'. However, due to complaints from players, some number of tanks of one country was removed from the game, hence the number of tanks of this country may not remain beautiful. Your task is to write the program that solves exactly the same problem in order to verify Gena's code correctness. Just in case.
The first line of the input contains the number of countries *n* (1<=≤<=*n*<=≤<=100<=000). The second line contains *n* non-negative integers *a**i* without leading zeroes — the number of tanks of the *i*-th country. It is guaranteed that the second line contains at least *n*<=-<=1 beautiful numbers and the total length of all these number's representations doesn't exceed 100<=000.
Print a single number without leading zeroes — the product of the number of tanks presented by each country.
[ "3\n5 10 1\n", "4\n1 1 10 11\n", "5\n0 3 1 100 1\n" ]
[ "50", "110", "0" ]
In sample 1 numbers 10 and 1 are beautiful, number 5 is not not. In sample 2 number 11 is not beautiful (contains two '1's), all others are beautiful. In sample 3 number 3 is not beautiful, all others are beautiful.
1,000
[ { "input": "3\n5 10 1", "output": "50" }, { "input": "4\n1 1 10 11", "output": "110" }, { "input": "5\n0 3 1 100 1", "output": "0" }, { "input": "40\n10 100 10 1 10 10 100 10 10 100 10 100 100 10 1824868942 100 100 1 10 100 100 10 100 100 10 100 10 1 10 100 100 100 10 1 10 1 10 10 100 100", "output": "1824868942000000000000000000000000000000000000000000000000000" }, { "input": "6\n1000000000000000000000000000000000000 6643573784 1000000000000000000000000000000000000 1000000000000000000000000000000000000 1000000000000000000000000000000000000 1000000000000000000000000000000000000", "output": "6643573784000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }, { "input": "1\n0", "output": "0" }, { "input": "1\n1", "output": "1" }, { "input": "1\n9", "output": "9" }, { "input": "2\n10 50", "output": "500" }, { "input": "3\n500 1 10", "output": "5000" } ]
1,595,008,686
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
93
6,963,200
from sys import stdin answer = '1' other = 1 for line_num, line in enumerate(stdin): if line_num == 0: n = line.rstrip() else: for num in line.rstrip().split(): ones = num.count('1') if int(num) == 0: answer = 0 break if num[-1] == '1' and ones == 1: continue if num[0] == '1' and ones == 1: answer += '0' * (len(num) - 1) else: other = int(num) print(int(answer) * other)
Title: Gena's Code Time Limit: None seconds Memory Limit: None megabytes Problem Description: It's the year 4527 and the tanks game that we all know and love still exists. There also exists Great Gena's code, written in 2016. The problem this code solves is: given the number of tanks that go into the battle from each country, find their product. If it is turns to be too large, then the servers might have not enough time to assign tanks into teams and the whole game will collapse! There are exactly *n* distinct countries in the world and the *i*-th country added *a**i* tanks to the game. As the developers of the game are perfectionists, the number of tanks from each country is beautiful. A beautiful number, according to the developers, is such number that its decimal representation consists only of digits '1' and '0', moreover it contains at most one digit '1'. However, due to complaints from players, some number of tanks of one country was removed from the game, hence the number of tanks of this country may not remain beautiful. Your task is to write the program that solves exactly the same problem in order to verify Gena's code correctness. Just in case. Input Specification: The first line of the input contains the number of countries *n* (1<=≤<=*n*<=≤<=100<=000). The second line contains *n* non-negative integers *a**i* without leading zeroes — the number of tanks of the *i*-th country. It is guaranteed that the second line contains at least *n*<=-<=1 beautiful numbers and the total length of all these number's representations doesn't exceed 100<=000. Output Specification: Print a single number without leading zeroes — the product of the number of tanks presented by each country. Demo Input: ['3\n5 10 1\n', '4\n1 1 10 11\n', '5\n0 3 1 100 1\n'] Demo Output: ['50', '110', '0'] Note: In sample 1 numbers 10 and 1 are beautiful, number 5 is not not. In sample 2 number 11 is not beautiful (contains two '1's), all others are beautiful. In sample 3 number 3 is not beautiful, all others are beautiful.
```python from sys import stdin answer = '1' other = 1 for line_num, line in enumerate(stdin): if line_num == 0: n = line.rstrip() else: for num in line.rstrip().split(): ones = num.count('1') if int(num) == 0: answer = 0 break if num[-1] == '1' and ones == 1: continue if num[0] == '1' and ones == 1: answer += '0' * (len(num) - 1) else: other = int(num) print(int(answer) * other) ```
0
0
none
none
none
0
[ "none" ]
null
null
Dima's got a staircase that consists of *n* stairs. The first stair is at height *a*1, the second one is at *a*2, the last one is at *a**n* (1<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*). Dima decided to play with the staircase, so he is throwing rectangular boxes at the staircase from above. The *i*-th box has width *w**i* and height *h**i*. Dima throws each box vertically down on the first *w**i* stairs of the staircase, that is, the box covers stairs with numbers 1,<=2,<=...,<=*w**i*. Each thrown box flies vertically down until at least one of the two following events happen: - the bottom of the box touches the top of a stair; - the bottom of the box touches the top of a box, thrown earlier. We only consider touching of the horizontal sides of stairs and boxes, at that touching with the corners isn't taken into consideration. Specifically, that implies that a box with width *w**i* cannot touch the stair number *w**i*<=+<=1. You are given the description of the staircase and the sequence in which Dima threw the boxes at it. For each box, determine how high the bottom of the box after landing will be. Consider a box to fall after the previous one lands.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of stairs in the staircase. The second line contains a non-decreasing sequence, consisting of *n* integers, *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109; *a**i*<=≤<=*a**i*<=+<=1). The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of boxes. Each of the following *m* lines contains a pair of integers *w**i*,<=*h**i* (1<=≤<=*w**i*<=≤<=*n*; 1<=≤<=*h**i*<=≤<=109) — the size of the *i*-th thrown box. The numbers in the lines are separated by spaces.
Print *m* integers — for each box the height, where the bottom of the box will be after landing. Print the answers for the boxes in the order, in which the boxes are given in the input. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "5\n1 2 3 6 6\n4\n1 1\n3 1\n1 1\n4 3\n", "3\n1 2 3\n2\n1 1\n3 1\n", "1\n1\n5\n1 2\n1 10\n1 10\n1 10\n1 10\n" ]
[ "1\n3\n4\n6\n", "1\n3\n", "1\n3\n13\n23\n33\n" ]
The first sample are shown on the picture.
0
[ { "input": "5\n1 2 3 6 6\n4\n1 1\n3 1\n1 1\n4 3", "output": "1\n3\n4\n6" }, { "input": "3\n1 2 3\n2\n1 1\n3 1", "output": "1\n3" }, { "input": "1\n1\n5\n1 2\n1 10\n1 10\n1 10\n1 10", "output": "1\n3\n13\n23\n33" }, { "input": "8\n6 10 18 23 30 31 31 33\n1\n5 3", "output": "30" }, { "input": "7\n8 13 19 21 25 30 32\n3\n5 4\n6 5\n1 2", "output": "25\n30\n35" }, { "input": "5\n4 7 10 12 12\n9\n3 9\n2 1\n3 5\n4 7\n1 1\n5 1\n1 7\n2 4\n4 10", "output": "10\n19\n20\n25\n32\n33\n34\n41\n45" }, { "input": "3\n1 6 8\n5\n3 4\n3 9\n3 3\n1 2\n1 6", "output": "8\n12\n21\n24\n26" }, { "input": "3\n2 10 15\n1\n1 830", "output": "2" }, { "input": "2\n1 6\n5\n2 6\n1 2\n1 1\n1 2\n1 7", "output": "6\n12\n14\n15\n17" }, { "input": "1\n9\n8\n1 4\n1 10\n1 9\n1 9\n1 7\n1 1\n1 9\n1 2", "output": "9\n13\n23\n32\n41\n48\n49\n58" }, { "input": "1\n8\n1\n1 42", "output": "8" }, { "input": "1\n1\n1\n1 1", "output": "1" }, { "input": "5\n1 2 3 6 6\n25\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000", "output": "1\n1000000001\n2000000001\n3000000001\n4000000001\n5000000001\n6000000001\n7000000001\n8000000001\n9000000001\n10000000001\n11000000001\n12000000001\n13000000001\n14000000001\n15000000001\n16000000001\n17000000001\n18000000001\n19000000001\n20000000001\n21000000001\n22000000001\n23000000001\n24000000001" }, { "input": "1\n1000000000\n6\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000", "output": "1000000000\n2000000000\n3000000000\n4000000000\n5000000000\n6000000000" } ]
1,586,780,512
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <iostream> #include <string> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #include <bits/stdc++.h> using namespace std; typedef vector< int > vi; typedef vector< vi > vvi; typedef pair< int,int > ii; typedef pair< long long int ,long long int > iil; typedef long long ll; typedef vector< ll > vl; typedef vector< vl > vvl; const ll MAX = 1e5+5; #define sz(a) int((a).size()) #define pb push_back #define all(c) (c).begin(),(c).end() #define tr(c,i) for( auto i = (c).begin(); i != (c).end(); i++) #define present(c,x) ((c).find(x) != (c).end()) #define EE '\n' #define ll long long int #define forn(i,j,n) for ( auto i=j ; i<n ; i++ ) #define fornd(i,j,n) for ( auto i=j ; i>n ; i-- ) #define PI 3.14159265 #define g(a,b) a>b?a:b #define l(a,b) a<b?a:b #define SOT(A) sort(A.begin(),A.end()) #define SOTR(A) sort(A.rbegin(),A.rend()) const int N = 200043; const int MOD = 998244353; //////////////// ncr /////////////////////// int mul(int x, int y) {return (x * 1ll * y) % MOD;} int binpow(int x, int y){ int z = 1; while(y){ if(y & 1) z = mul(z, x); x = mul(x, x); y >>= 1; } return z; } int inv(int x) {return binpow(x, MOD - 2);} int divide(int x, int y) {return mul(x, inv(y));} int fact[N]; void precalc(){ fact[0] = 1; for(int i = 1; i < N; i++) fact[i] = mul(fact[i - 1], i); } int C(int n, int k) {return divide(fact[n], mul(fact[k], fact[n - k]));} /////////////// ncr /////////////////////// //////////////////Sieve//////////////////// vector<bool> is_prime(MAX+1, true); void Sieve(){ is_prime[0] = is_prime[1] = false; int i,j; for (i = 2; i*i <= MAX; i++) { if (is_prime[i]) { for (j = i * i; j <= MAX; j += i) is_prime[j] = false; } } } //////////////////Sieve//////////////////// //////////////////////////////////////////////////////////////////////////////// int aa[N+2]; int main() { ios_base::sync_with_stdio(0);cin.tie(0); int n;cin>>n; for(int i=1;i<=n;i++)cin>>aa[i]; int m;cin>>m;ll mx=0; while(m--) { int w,h;cin>>w>>h; mx=max(mx,aa[w]*1LL); cout<<mx<<"\n";mx+=h*1LL; } return 0; }
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dima's got a staircase that consists of *n* stairs. The first stair is at height *a*1, the second one is at *a*2, the last one is at *a**n* (1<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*). Dima decided to play with the staircase, so he is throwing rectangular boxes at the staircase from above. The *i*-th box has width *w**i* and height *h**i*. Dima throws each box vertically down on the first *w**i* stairs of the staircase, that is, the box covers stairs with numbers 1,<=2,<=...,<=*w**i*. Each thrown box flies vertically down until at least one of the two following events happen: - the bottom of the box touches the top of a stair; - the bottom of the box touches the top of a box, thrown earlier. We only consider touching of the horizontal sides of stairs and boxes, at that touching with the corners isn't taken into consideration. Specifically, that implies that a box with width *w**i* cannot touch the stair number *w**i*<=+<=1. You are given the description of the staircase and the sequence in which Dima threw the boxes at it. For each box, determine how high the bottom of the box after landing will be. Consider a box to fall after the previous one lands. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of stairs in the staircase. The second line contains a non-decreasing sequence, consisting of *n* integers, *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109; *a**i*<=≤<=*a**i*<=+<=1). The next line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of boxes. Each of the following *m* lines contains a pair of integers *w**i*,<=*h**i* (1<=≤<=*w**i*<=≤<=*n*; 1<=≤<=*h**i*<=≤<=109) — the size of the *i*-th thrown box. The numbers in the lines are separated by spaces. Output Specification: Print *m* integers — for each box the height, where the bottom of the box will be after landing. Print the answers for the boxes in the order, in which the boxes are given in the input. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['5\n1 2 3 6 6\n4\n1 1\n3 1\n1 1\n4 3\n', '3\n1 2 3\n2\n1 1\n3 1\n', '1\n1\n5\n1 2\n1 10\n1 10\n1 10\n1 10\n'] Demo Output: ['1\n3\n4\n6\n', '1\n3\n', '1\n3\n13\n23\n33\n'] Note: The first sample are shown on the picture.
```python #include <iostream> #include <string> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #include <bits/stdc++.h> using namespace std; typedef vector< int > vi; typedef vector< vi > vvi; typedef pair< int,int > ii; typedef pair< long long int ,long long int > iil; typedef long long ll; typedef vector< ll > vl; typedef vector< vl > vvl; const ll MAX = 1e5+5; #define sz(a) int((a).size()) #define pb push_back #define all(c) (c).begin(),(c).end() #define tr(c,i) for( auto i = (c).begin(); i != (c).end(); i++) #define present(c,x) ((c).find(x) != (c).end()) #define EE '\n' #define ll long long int #define forn(i,j,n) for ( auto i=j ; i<n ; i++ ) #define fornd(i,j,n) for ( auto i=j ; i>n ; i-- ) #define PI 3.14159265 #define g(a,b) a>b?a:b #define l(a,b) a<b?a:b #define SOT(A) sort(A.begin(),A.end()) #define SOTR(A) sort(A.rbegin(),A.rend()) const int N = 200043; const int MOD = 998244353; //////////////// ncr /////////////////////// int mul(int x, int y) {return (x * 1ll * y) % MOD;} int binpow(int x, int y){ int z = 1; while(y){ if(y & 1) z = mul(z, x); x = mul(x, x); y >>= 1; } return z; } int inv(int x) {return binpow(x, MOD - 2);} int divide(int x, int y) {return mul(x, inv(y));} int fact[N]; void precalc(){ fact[0] = 1; for(int i = 1; i < N; i++) fact[i] = mul(fact[i - 1], i); } int C(int n, int k) {return divide(fact[n], mul(fact[k], fact[n - k]));} /////////////// ncr /////////////////////// //////////////////Sieve//////////////////// vector<bool> is_prime(MAX+1, true); void Sieve(){ is_prime[0] = is_prime[1] = false; int i,j; for (i = 2; i*i <= MAX; i++) { if (is_prime[i]) { for (j = i * i; j <= MAX; j += i) is_prime[j] = false; } } } //////////////////Sieve//////////////////// //////////////////////////////////////////////////////////////////////////////// int aa[N+2]; int main() { ios_base::sync_with_stdio(0);cin.tie(0); int n;cin>>n; for(int i=1;i<=n;i++)cin>>aa[i]; int m;cin>>m;ll mx=0; while(m--) { int w,h;cin>>w>>h; mx=max(mx,aa[w]*1LL); cout<<mx<<"\n";mx+=h*1LL; } return 0; } ```
-1
538
B
Quasi Binary
PROGRAMMING
1,400
[ "constructive algorithms", "dp", "greedy", "implementation" ]
null
null
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not. You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106).
In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers. In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them.
[ "9\n", "32\n" ]
[ "9\n1 1 1 1 1 1 1 1 1 \n", "3\n10 11 11 \n" ]
none
1,000
[ { "input": "9", "output": "9\n1 1 1 1 1 1 1 1 1 " }, { "input": "32", "output": "3\n10 11 11 " }, { "input": "1", "output": "1\n1 " }, { "input": "415", "output": "5\n1 101 101 101 111 " }, { "input": "10011", "output": "1\n10011 " }, { "input": "10201", "output": "2\n100 10101 " }, { "input": "314159", "output": "9\n1 1 1 1 11 1011 101011 101011 111111 " }, { "input": "999999", "output": "9\n111111 111111 111111 111111 111111 111111 111111 111111 111111 " }, { "input": "2", "output": "2\n1 1 " }, { "input": "10", "output": "1\n10 " }, { "input": "21", "output": "2\n10 11 " }, { "input": "98", "output": "9\n10 11 11 11 11 11 11 11 11 " }, { "input": "102030", "output": "3\n10 1010 101010 " }, { "input": "909090", "output": "9\n101010 101010 101010 101010 101010 101010 101010 101010 101010 " }, { "input": "909823", "output": "9\n101000 101100 101100 101100 101100 101100 101101 101111 101111 " }, { "input": "1000000", "output": "1\n1000000 " }, { "input": "111111", "output": "1\n111111 " }, { "input": "123456", "output": "6\n1 11 111 1111 11111 111111 " }, { "input": "987654", "output": "9\n100000 110000 111000 111100 111110 111111 111111 111111 111111 " }, { "input": "908172", "output": "9\n100000 101000 101010 101010 101010 101010 101010 101011 101111 " }, { "input": "8", "output": "8\n1 1 1 1 1 1 1 1 " }, { "input": "100009", "output": "9\n1 1 1 1 1 1 1 1 100001 " }, { "input": "900000", "output": "9\n100000 100000 100000 100000 100000 100000 100000 100000 100000 " }, { "input": "1435", "output": "5\n1 101 111 111 1111 " }, { "input": "1453", "output": "5\n10 110 111 111 1111 " } ]
1,685,712,641
2,147,483,647
PyPy 3-64
OK
TESTS
25
46
0
n = list(map(int, list(input()))) print(max(n)) ans = [] maxn = max(n) for i in range(maxn): ans.append(['0' for i in range(len(n))]) for j in range(len(n)): if n[j]>0: n[j]-=1 ans[i][j]='1' print(int(''.join(ans[i])),end=" ")
Title: Quasi Binary Time Limit: None seconds Memory Limit: None megabytes Problem Description: A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not. You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106). Output Specification: In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers. In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them. Demo Input: ['9\n', '32\n'] Demo Output: ['9\n1 1 1 1 1 1 1 1 1 \n', '3\n10 11 11 \n'] Note: none
```python n = list(map(int, list(input()))) print(max(n)) ans = [] maxn = max(n) for i in range(maxn): ans.append(['0' for i in range(len(n))]) for j in range(len(n)): if n[j]>0: n[j]-=1 ans[i][j]='1' print(int(''.join(ans[i])),end=" ") ```
3
34
B
Sale
PROGRAMMING
900
[ "greedy", "sortings" ]
B. Sale
2
256
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
[ "5 3\n-6 0 35 -2 4\n", "4 2\n7 0 0 -7\n" ]
[ "8\n", "7\n" ]
none
1,000
[ { "input": "5 3\n-6 0 35 -2 4", "output": "8" }, { "input": "4 2\n7 0 0 -7", "output": "7" }, { "input": "6 6\n756 -611 251 -66 572 -818", "output": "1495" }, { "input": "5 5\n976 437 937 788 518", "output": "0" }, { "input": "5 3\n-2 -2 -2 -2 -2", "output": "6" }, { "input": "5 1\n998 997 985 937 998", "output": "0" }, { "input": "2 2\n-742 -187", "output": "929" }, { "input": "3 3\n522 597 384", "output": "0" }, { "input": "4 2\n-215 -620 192 647", "output": "835" }, { "input": "10 6\n557 605 685 231 910 633 130 838 -564 -85", "output": "649" }, { "input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59", "output": "10" }, { "input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000", "output": "0" }, { "input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886", "output": "19441" }, { "input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999", "output": "0" }, { "input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993", "output": "16984" }, { "input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981", "output": "21743" }, { "input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654", "output": "81283" }, { "input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782", "output": "0" }, { "input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823", "output": "0" }, { "input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992", "output": "75068" }, { "input": "1 1\n0", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 1\n555", "output": "0" }, { "input": "1 1\n-1", "output": "1" }, { "input": "1 1\n-24", "output": "24" } ]
1,585,656,749
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
186
307,200
n, t = map(int, input().split()) arr = [int(x) for x in input().split()] if n == t: print(-sum(arr)) else: money = [] kam = [] for i in range(len(arr)): if arr[i] < 0: money.append(-arr[i]) else: kam.append(arr[i]) ans = 0 money.sort(reverse = True) kam.sort() for i in range(len(money)): if t <= 0: break else: ans += money[i] t -= 1 if t > 0: for i in range(t): ans -= kam[i] print(ans)
Title: Sale Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets. Output Specification: Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets. Demo Input: ['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n'] Demo Output: ['8\n', '7\n'] Note: none
```python n, t = map(int, input().split()) arr = [int(x) for x in input().split()] if n == t: print(-sum(arr)) else: money = [] kam = [] for i in range(len(arr)): if arr[i] < 0: money.append(-arr[i]) else: kam.append(arr[i]) ans = 0 money.sort(reverse = True) kam.sort() for i in range(len(money)): if t <= 0: break else: ans += money[i] t -= 1 if t > 0: for i in range(t): ans -= kam[i] print(ans) ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,672,073,775
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
n=int(input()) for i in range(n): str1=input() l=len(str1) if l<=0: print(str) else: print(str[0],l-2,str[l-1],sep=" ")
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python n=int(input()) for i in range(n): str1=input() l=len(str1) if l<=0: print(str) else: print(str[0],l-2,str[l-1],sep=" ") ```
-1
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,638,580,907
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
n=int(input()) list=[int(x) for x in input().split()] list1=[] if n==3: for i in range(3): if list[0]==list[1]: print('3') elif list[0]==list[2]: print('2') else: print('1') else: for i in range(1,n): a=list[i]-list[i-1] list1.append(a) for j in range(n-1): k=list1.count(list1[j]) if k==1: print(j+2) break
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n=int(input()) list=[int(x) for x in input().split()] list1=[] if n==3: for i in range(3): if list[0]==list[1]: print('3') elif list[0]==list[2]: print('2') else: print('1') else: for i in range(1,n): a=list[i]-list[i-1] list1.append(a) for j in range(n-1): k=list1.count(list1[j]) if k==1: print(j+2) break ```
0
433
B
Kuriyama Mirai's Stones
PROGRAMMING
1,200
[ "dp", "implementation", "sortings" ]
null
null
Kuriyama Mirai has killed many monsters and got many (namely *n*) stones. She numbers the stones from 1 to *n*. The cost of the *i*-th stone is *v**i*. Kuriyama Mirai wants to know something about these stones so she will ask you two kinds of questions: 1. She will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her . 1. Let *u**i* be the cost of the *i*-th cheapest stone (the cost that will be on the *i*-th place if we arrange all the stone costs in non-decreasing order). This time she will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her . For every question you should give the correct answer, or Kuriyama Mirai will say "fuyukai desu" and then become unhappy.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — costs of the stones. The third line contains an integer *m* (1<=≤<=*m*<=≤<=105) — the number of Kuriyama Mirai's questions. Then follow *m* lines, each line contains three integers *type*, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*; 1<=≤<=*type*<=≤<=2), describing a question. If *type* equal to 1, then you should output the answer for the first question, else you should output the answer for the second one.
Print *m* lines. Each line must contain an integer — the answer to Kuriyama Mirai's question. Print the answers to the questions in the order of input.
[ "6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6\n", "4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2\n" ]
[ "24\n9\n28\n", "10\n15\n5\n15\n5\n5\n2\n12\n3\n5\n" ]
Please note that the answers to the questions may overflow 32-bit integer type.
1,500
[ { "input": "6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6", "output": "24\n9\n28" }, { "input": "4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2", "output": "10\n15\n5\n15\n5\n5\n2\n12\n3\n5" }, { "input": "4\n2 2 3 6\n9\n2 2 3\n1 1 3\n2 2 3\n2 2 3\n2 2 2\n1 1 3\n1 1 3\n2 1 4\n1 1 2", "output": "5\n7\n5\n5\n2\n7\n7\n13\n4" }, { "input": "18\n26 46 56 18 78 88 86 93 13 77 21 84 59 61 5 74 72 52\n25\n1 10 10\n1 9 13\n2 13 17\n1 8 14\n2 2 6\n1 12 16\n2 15 17\n2 3 6\n1 3 13\n2 8 9\n2 17 17\n1 17 17\n2 5 10\n2 1 18\n1 4 16\n1 1 13\n1 1 8\n2 7 11\n2 6 12\n1 5 9\n1 4 5\n2 7 15\n1 8 8\n1 8 14\n1 3 7", "output": "77\n254\n413\n408\n124\n283\n258\n111\n673\n115\n88\n72\n300\n1009\n757\n745\n491\n300\n420\n358\n96\n613\n93\n408\n326" }, { "input": "56\n43 100 44 66 65 11 26 75 96 77 5 15 75 96 11 44 11 97 75 53 33 26 32 33 90 26 68 72 5 44 53 26 33 88 68 25 84 21 25 92 1 84 21 66 94 35 76 51 11 95 67 4 61 3 34 18\n27\n1 20 38\n1 11 46\n2 42 53\n1 8 11\n2 11 42\n2 35 39\n2 37 41\n1 48 51\n1 32 51\n1 36 40\n1 31 56\n1 18 38\n2 9 51\n1 7 48\n1 15 52\n1 27 31\n2 5 19\n2 35 50\n1 31 34\n1 2 7\n2 15 33\n2 46 47\n1 26 28\n2 3 29\n1 23 45\n2 29 55\n1 14 29", "output": "880\n1727\n1026\n253\n1429\n335\n350\n224\n1063\n247\n1236\n1052\n2215\n2128\n1840\n242\n278\n1223\n200\n312\n722\n168\n166\n662\n1151\n2028\n772" }, { "input": "18\n38 93 48 14 69 85 26 47 71 11 57 9 38 65 72 78 52 47\n38\n2 10 12\n1 6 18\n2 2 2\n1 3 15\n2 1 16\n2 5 13\n1 9 17\n1 2 15\n2 5 17\n1 15 15\n2 4 11\n2 3 4\n2 2 5\n2 1 17\n2 6 16\n2 8 16\n2 8 14\n1 9 12\n2 8 13\n2 1 14\n2 5 13\n1 2 3\n1 9 14\n2 12 15\n2 3 3\n2 9 13\n2 4 12\n2 11 14\n2 6 16\n1 8 14\n1 12 15\n2 3 4\n1 3 5\n2 4 14\n1 6 6\n2 7 14\n2 7 18\n1 8 12", "output": "174\n658\n11\n612\n742\n461\n453\n705\n767\n72\n353\n40\n89\n827\n644\n559\n409\n148\n338\n592\n461\n141\n251\n277\n14\n291\n418\n262\n644\n298\n184\n40\n131\n558\n85\n456\n784\n195" }, { "input": "1\n2\n10\n1 1 1\n1 1 1\n2 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n2 1 1\n1 1 1\n1 1 1", "output": "2\n2\n2\n2\n2\n2\n2\n2\n2\n2" }, { "input": "2\n1 5\n8\n2 1 2\n1 1 1\n1 1 2\n1 1 1\n2 2 2\n2 1 2\n1 1 1\n1 2 2", "output": "6\n1\n6\n1\n5\n6\n1\n5" }, { "input": "8\n2 6 4 6 8 4 7 7\n9\n2 6 8\n1 2 3\n2 3 4\n2 1 2\n2 4 5\n1 3 8\n2 4 4\n2 2 4\n1 2 4", "output": "22\n10\n10\n6\n12\n36\n6\n14\n16" }, { "input": "4\n1 1 2 8\n9\n1 2 4\n1 2 4\n1 1 2\n2 3 4\n2 1 1\n1 2 3\n2 3 4\n1 1 4\n1 1 4", "output": "11\n11\n2\n10\n1\n3\n10\n12\n12" }, { "input": "5\n8 8 1 10 7\n5\n1 2 2\n1 1 4\n1 3 3\n1 2 2\n1 2 5", "output": "8\n27\n1\n8\n26" }, { "input": "10\n10 3 3 2 1 2 7 1 1 1\n4\n2 10 10\n2 6 6\n1 5 10\n1 6 8", "output": "10\n2\n13\n10" }, { "input": "6\n6 6 3 8 5 4\n3\n2 2 3\n2 1 5\n1 1 5", "output": "9\n24\n28" }, { "input": "1\n1\n2\n1 1 1\n2 1 1", "output": "1\n1" } ]
1,646,231,109
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
93
2,150,400
import numpy a = int(input()) h = [int(po) for po in input().split()] d = h.copy() d.sort() n = int(input()) res = [] for i in range(n): b = [int(lo) for lo in input().split()] if b[0] == 1: res.append(numpy.sum([int(k) for k in h[b[1]-1:b[2]]])) else: res.append(numpy.sum([int(k) for k in d[b[1]-1:b[2]]])) print(*res, sep="\n")
Title: Kuriyama Mirai's Stones Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kuriyama Mirai has killed many monsters and got many (namely *n*) stones. She numbers the stones from 1 to *n*. The cost of the *i*-th stone is *v**i*. Kuriyama Mirai wants to know something about these stones so she will ask you two kinds of questions: 1. She will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her . 1. Let *u**i* be the cost of the *i*-th cheapest stone (the cost that will be on the *i*-th place if we arrange all the stone costs in non-decreasing order). This time she will tell you two numbers, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*), and you should tell her . For every question you should give the correct answer, or Kuriyama Mirai will say "fuyukai desu" and then become unhappy. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* integers: *v*1,<=*v*2,<=...,<=*v**n* (1<=≤<=*v**i*<=≤<=109) — costs of the stones. The third line contains an integer *m* (1<=≤<=*m*<=≤<=105) — the number of Kuriyama Mirai's questions. Then follow *m* lines, each line contains three integers *type*, *l* and *r* (1<=≤<=*l*<=≤<=*r*<=≤<=*n*; 1<=≤<=*type*<=≤<=2), describing a question. If *type* equal to 1, then you should output the answer for the first question, else you should output the answer for the second one. Output Specification: Print *m* lines. Each line must contain an integer — the answer to Kuriyama Mirai's question. Print the answers to the questions in the order of input. Demo Input: ['6\n6 4 2 7 2 7\n3\n2 3 6\n1 3 4\n1 1 6\n', '4\n5 5 2 3\n10\n1 2 4\n2 1 4\n1 1 1\n2 1 4\n2 1 2\n1 1 1\n1 3 3\n1 1 3\n1 4 4\n1 2 2\n'] Demo Output: ['24\n9\n28\n', '10\n15\n5\n15\n5\n5\n2\n12\n3\n5\n'] Note: Please note that the answers to the questions may overflow 32-bit integer type.
```python import numpy a = int(input()) h = [int(po) for po in input().split()] d = h.copy() d.sort() n = int(input()) res = [] for i in range(n): b = [int(lo) for lo in input().split()] if b[0] == 1: res.append(numpy.sum([int(k) for k in h[b[1]-1:b[2]]])) else: res.append(numpy.sum([int(k) for k in d[b[1]-1:b[2]]])) print(*res, sep="\n") ```
-1
31
A
Worms Evolution
PROGRAMMING
1,200
[ "implementation" ]
A. Worms Evolution
2
256
Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form.
Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*.
[ "5\n1 2 3 5 7\n", "5\n1 8 1 5 1\n" ]
[ "3 2 1\n", "-1\n" ]
none
500
[ { "input": "5\n1 2 3 5 7", "output": "3 2 1" }, { "input": "5\n1 8 1 5 1", "output": "-1" }, { "input": "4\n303 872 764 401", "output": "-1" }, { "input": "6\n86 402 133 524 405 610", "output": "6 4 1" }, { "input": "8\n217 779 418 895 996 473 3 22", "output": "5 2 1" }, { "input": "10\n858 972 670 15 662 114 33 273 53 310", "output": "2 6 1" }, { "input": "100\n611 697 572 770 603 870 128 245 49 904 468 982 788 943 549 288 668 796 803 515 999 735 912 49 298 80 412 841 494 434 543 298 17 571 271 105 70 313 178 755 194 279 585 766 412 164 907 841 776 556 731 268 735 880 176 267 287 65 239 588 155 658 821 47 783 595 585 69 226 906 429 161 999 148 7 484 362 585 952 365 92 749 904 525 307 626 883 367 450 755 564 950 728 724 69 106 119 157 96 290", "output": "1 38 25" }, { "input": "100\n713 572 318 890 577 657 646 146 373 783 392 229 455 871 20 593 573 336 26 381 280 916 907 732 820 713 111 840 570 446 184 711 481 399 788 647 492 15 40 530 549 506 719 782 126 20 778 996 712 761 9 74 812 418 488 175 103 585 900 3 604 521 109 513 145 708 990 361 682 827 791 22 596 780 596 385 450 643 158 496 876 975 319 783 654 895 891 361 397 81 682 899 347 623 809 557 435 279 513 438", "output": "1 63 61" }, { "input": "100\n156 822 179 298 981 82 610 345 373 378 895 734 768 15 78 335 764 608 932 297 717 553 916 367 425 447 361 195 66 70 901 236 905 744 919 564 296 610 963 628 840 52 100 750 345 308 37 687 192 704 101 815 10 990 216 358 823 546 578 821 706 148 182 582 421 482 829 425 121 337 500 301 402 868 66 935 625 527 746 585 308 523 488 914 608 709 875 252 151 781 447 2 756 176 976 302 450 35 680 791", "output": "1 98 69" }, { "input": "100\n54 947 785 838 359 647 92 445 48 465 323 486 101 86 607 31 860 420 709 432 435 372 272 37 903 814 309 197 638 58 259 822 793 564 309 22 522 907 101 853 486 824 614 734 630 452 166 532 256 499 470 9 933 452 256 450 7 26 916 406 257 285 895 117 59 369 424 133 16 417 352 440 806 236 478 34 889 469 540 806 172 296 73 655 261 792 868 380 204 454 330 53 136 629 236 850 134 560 264 291", "output": "2 29 27" }, { "input": "99\n175 269 828 129 499 890 127 263 995 807 508 289 996 226 437 320 365 642 757 22 190 8 345 499 834 713 962 889 336 171 608 492 320 257 472 801 176 325 301 306 198 729 933 4 640 322 226 317 567 586 249 237 202 633 287 128 911 654 719 988 420 855 361 574 716 899 317 356 581 440 284 982 541 111 439 29 37 560 961 224 478 906 319 416 736 603 808 87 762 697 392 713 19 459 262 238 239 599 997", "output": "1 44 30" }, { "input": "98\n443 719 559 672 16 69 529 632 953 999 725 431 54 22 346 968 558 696 48 669 963 129 257 712 39 870 498 595 45 821 344 925 179 388 792 346 755 213 423 365 344 659 824 356 773 637 628 897 841 155 243 536 951 361 192 105 418 431 635 596 150 162 145 548 473 531 750 306 377 354 450 975 79 743 656 733 440 940 19 139 237 346 276 227 64 799 479 633 199 17 796 362 517 234 729 62 995 535", "output": "2 70 40" }, { "input": "97\n359 522 938 862 181 600 283 1000 910 191 590 220 761 818 903 264 751 751 987 316 737 898 168 925 244 674 34 950 754 472 81 6 37 520 112 891 981 454 897 424 489 238 363 709 906 951 677 828 114 373 589 835 52 89 97 435 277 560 551 204 879 469 928 523 231 163 183 609 821 915 615 969 616 23 874 437 844 321 78 53 643 786 585 38 744 347 150 179 988 985 200 11 15 9 547 886 752", "output": "1 23 10" }, { "input": "4\n303 872 764 401", "output": "-1" }, { "input": "100\n328 397 235 453 188 254 879 225 423 36 384 296 486 592 231 849 856 255 213 898 234 800 701 529 951 693 507 326 15 905 618 348 967 927 28 979 752 850 343 35 84 302 36 390 482 826 249 918 91 289 973 457 557 348 365 239 709 565 320 560 153 130 647 708 483 469 788 473 322 844 830 562 611 961 397 673 69 960 74 703 369 968 382 451 328 160 211 230 566 208 7 545 293 73 806 375 157 410 303 58", "output": "1 79 6" }, { "input": "33\n52 145 137 734 180 847 178 286 716 134 181 630 358 764 593 762 785 28 1 468 189 540 764 485 165 656 114 58 628 108 605 584 257", "output": "8 30 7" }, { "input": "57\n75 291 309 68 444 654 985 158 514 204 116 918 374 806 176 31 49 455 269 66 722 713 164 818 317 295 546 564 134 641 28 13 987 478 146 219 213 940 289 173 157 666 168 391 392 71 870 477 446 988 414 568 964 684 409 671 454", "output": "2 41 29" }, { "input": "88\n327 644 942 738 84 118 981 686 530 404 137 197 434 16 693 183 423 325 410 345 941 329 7 106 79 867 584 358 533 675 192 718 641 329 900 768 404 301 101 538 954 590 401 954 447 14 559 337 756 586 934 367 538 928 945 936 770 641 488 579 206 869 902 139 216 446 723 150 829 205 373 578 357 368 960 40 121 206 503 385 521 161 501 694 138 370 709 308", "output": "1 77 61" }, { "input": "100\n804 510 266 304 788 625 862 888 408 82 414 470 777 991 729 229 933 406 601 1 596 720 608 706 432 361 527 548 59 548 474 515 4 991 263 568 681 24 117 563 576 587 281 643 904 521 891 106 842 884 943 54 605 815 504 757 311 374 335 192 447 652 633 410 455 402 382 150 432 836 413 819 669 875 638 925 217 805 632 520 605 266 728 795 162 222 603 159 284 790 914 443 775 97 789 606 859 13 851 47", "output": "1 77 42" }, { "input": "100\n449 649 615 713 64 385 927 466 138 126 143 886 80 199 208 43 196 694 92 89 264 180 617 970 191 196 910 150 275 89 693 190 191 99 542 342 45 592 114 56 451 170 64 589 176 102 308 92 402 153 414 675 352 157 69 150 91 288 163 121 816 184 20 234 836 12 593 150 793 439 540 93 99 663 186 125 349 247 476 106 77 523 215 7 363 278 441 745 337 25 148 384 15 915 108 211 240 58 23 408", "output": "1 6 5" }, { "input": "90\n881 436 52 308 97 261 153 931 670 538 702 156 114 445 154 685 452 76 966 790 93 42 547 65 736 364 136 489 719 322 239 628 696 735 55 703 622 375 100 188 804 341 546 474 484 446 729 290 974 301 602 225 996 244 488 983 882 460 962 754 395 617 61 640 534 292 158 375 632 902 420 979 379 38 100 67 963 928 190 456 545 571 45 716 153 68 844 2 102 116", "output": "1 14 2" }, { "input": "80\n313 674 262 240 697 146 391 221 793 504 896 818 92 899 86 370 341 339 306 887 937 570 830 683 729 519 240 833 656 847 427 958 435 704 853 230 758 347 660 575 843 293 649 396 437 787 654 599 35 103 779 783 447 379 444 585 902 713 791 150 851 228 306 721 996 471 617 403 102 168 197 741 877 481 968 545 331 715 236 654", "output": "1 13 8" }, { "input": "70\n745 264 471 171 946 32 277 511 269 469 89 831 69 2 369 407 583 602 646 633 429 747 113 302 722 321 344 824 241 372 263 287 822 24 652 758 246 967 219 313 882 597 752 965 389 775 227 556 95 904 308 340 899 514 400 187 275 318 621 546 659 488 199 154 811 1 725 79 925 82", "output": "1 63 60" }, { "input": "60\n176 502 680 102 546 917 516 801 392 435 635 492 398 456 653 444 472 513 634 378 273 276 44 920 68 124 800 167 825 250 452 264 561 344 98 933 381 939 426 51 568 548 206 887 342 763 151 514 156 354 486 546 998 649 356 438 295 570 450 589", "output": "2 26 20" }, { "input": "50\n608 92 889 33 146 803 402 91 868 400 828 505 375 558 584 129 361 776 974 123 765 804 326 186 61 927 904 511 762 775 640 593 300 664 897 461 869 911 986 789 607 500 309 457 294 104 724 471 216 155", "output": "3 25 11" }, { "input": "40\n40 330 98 612 747 336 640 381 991 366 22 167 352 12 868 166 603 40 313 869 609 981 609 804 54 729 8 854 347 300 828 922 39 633 695 988 4 530 545 176", "output": "5 10 8" }, { "input": "30\n471 920 308 544 347 222 878 671 467 332 215 180 681 114 151 203 492 951 653 614 453 510 540 422 399 532 113 198 932 825", "output": "2 21 9" }, { "input": "20\n551 158 517 475 595 108 764 961 590 297 761 841 659 568 82 888 733 214 993 359", "output": "3 20 2" }, { "input": "10\n983 748 726 406 196 993 2 251 66 263", "output": "-1" }, { "input": "9\n933 266 457 863 768 257 594 136 145", "output": "-1" }, { "input": "8\n537 198 48 771 944 868 700 163", "output": "7 8 1" }, { "input": "7\n140 779 639 679 768 479 158", "output": "2 3 1" }, { "input": "6\n744 359 230 586 944 442", "output": "-1" }, { "input": "5\n700 939 173 494 120", "output": "-1" }, { "input": "4\n303 872 764 401", "output": "-1" }, { "input": "3\n907 452 355", "output": "-1" }, { "input": "3\n963 630 333", "output": "1 3 2" }, { "input": "3\n2 2 4", "output": "3 2 1" }, { "input": "3\n2 4 100", "output": "-1" } ]
1,529,429,137
337
PyPy 3
WRONG_ANSWER
TESTS
3
186
0
n=int(input()) a=sorted(list(map(int,input().split()))) for i in range(n): for j in range(i+1,n): for k in range(j+1,n): if a[k]==(a[i]+a[j]): exit(print(a[k],a[j],a[i])) print(-1)
Title: Worms Evolution Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Professor Vasechkin is studying evolution of worms. Recently he put forward hypotheses that all worms evolve by division. There are *n* forms of worms. Worms of these forms have lengths *a*1, *a*2, ..., *a**n*. To prove his theory, professor needs to find 3 different forms that the length of the first form is equal to sum of lengths of the other two forms. Help him to do this. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of worm's forms. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=1000) — lengths of worms of each form. Output Specification: Output 3 distinct integers *i* *j* *k* (1<=≤<=*i*,<=*j*,<=*k*<=≤<=*n*) — such indexes of worm's forms that *a**i*<==<=*a**j*<=+<=*a**k*. If there is no such triple, output -1. If there are several solutions, output any of them. It possible that *a**j*<==<=*a**k*. Demo Input: ['5\n1 2 3 5 7\n', '5\n1 8 1 5 1\n'] Demo Output: ['3 2 1\n', '-1\n'] Note: none
```python n=int(input()) a=sorted(list(map(int,input().split()))) for i in range(n): for j in range(i+1,n): for k in range(j+1,n): if a[k]==(a[i]+a[j]): exit(print(a[k],a[j],a[i])) print(-1) ```
0
32
B
Borze
PROGRAMMING
800
[ "expression parsing", "implementation" ]
B. Borze
2
256
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output the decoded ternary number. It can have leading zeroes.
[ ".-.--\n", "--.\n", "-..-.--\n" ]
[ "012", "20", "1012" ]
none
1,000
[ { "input": ".-.--", "output": "012" }, { "input": "--.", "output": "20" }, { "input": "-..-.--", "output": "1012" }, { "input": "---..", "output": "210" }, { "input": "..--.---..", "output": "0020210" }, { "input": "-.....----.", "output": "10000220" }, { "input": ".", "output": "0" }, { "input": "-.", "output": "1" }, { "input": "--", "output": "2" }, { "input": "..", "output": "00" }, { "input": "--.", "output": "20" }, { "input": ".--.", "output": "020" }, { "input": ".-.-..", "output": "0110" }, { "input": "----.-.", "output": "2201" }, { "input": "-..--.-.", "output": "10201" }, { "input": "..--..--.", "output": "0020020" }, { "input": "-.-.---.--..-..-.-.-..-..-.--.", "output": "112120010111010120" }, { "input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.", "output": "21112220010101011012011011221011" }, { "input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------", "output": "11020111110111222212021020002022111100201121222020012022110010222" }, { "input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..", "output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110" }, { "input": ".-..-.-.---.-----.--.---...-.--.-.-....-..", "output": "01011212212021001201100010" }, { "input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..", "output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210" }, { "input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.", "output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220" }, { "input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----", "output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122" }, { "input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..", "output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110" }, { "input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.", "output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020" }, { "input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..", "output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200" }, { "input": "-.---...----...--.--...-.--.----", "output": "121002200020200012022" }, { "input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.", "output": "202020212012111010201021100001021221200011222112012201012220" } ]
1,646,552,872
2,147,483,647
PyPy 3-64
OK
TESTS
30
156
0
arr = input() N = len(arr) out = [] i = 0 while i < N: if arr[i] == ".": out.append("0") i += 1 elif arr[i] == "-" and arr[i+1] == ".": out.append("1") i += 2 elif arr[i] == "-" and arr[i+1] == "-": out.append("2") i += 2 print("".join(out))
Title: Borze Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet. Input Specification: The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes). Output Specification: Output the decoded ternary number. It can have leading zeroes. Demo Input: ['.-.--\n', '--.\n', '-..-.--\n'] Demo Output: ['012', '20', '1012'] Note: none
```python arr = input() N = len(arr) out = [] i = 0 while i < N: if arr[i] == ".": out.append("0") i += 1 elif arr[i] == "-" and arr[i+1] == ".": out.append("1") i += 2 elif arr[i] == "-" and arr[i+1] == "-": out.append("2") i += 2 print("".join(out)) ```
3.961
332
B
Maximum Absurdity
PROGRAMMING
1,500
[ "data structures", "dp", "implementation" ]
null
null
Reforms continue entering Berland. For example, during yesterday sitting the Berland Parliament approved as much as *n* laws (each law has been assigned a unique number from 1 to *n*). Today all these laws were put on the table of the President of Berland, G.W. Boosch, to be signed. This time mr. Boosch plans to sign 2*k* laws. He decided to choose exactly two non-intersecting segments of integers from 1 to *n* of length *k* and sign all laws, whose numbers fall into these segments. More formally, mr. Boosch is going to choose two integers *a*, *b* (1<=≤<=*a*<=≤<=*b*<=≤<=*n*<=-<=*k*<=+<=1,<=*b*<=-<=*a*<=≥<=*k*) and sign all laws with numbers lying in the segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1] (borders are included). As mr. Boosch chooses the laws to sign, he of course considers the public opinion. Allberland Public Opinion Study Centre (APOSC) conducted opinion polls among the citizens, processed the results into a report and gave it to the president. The report contains the absurdity value for each law, in the public opinion. As mr. Boosch is a real patriot, he is keen on signing the laws with the maximum total absurdity. Help him.
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=2·105, 0<=&lt;<=2*k*<=≤<=*n*) — the number of laws accepted by the parliament and the length of one segment in the law list, correspondingly. The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* — the absurdity of each law (1<=≤<=*x**i*<=≤<=109).
Print two integers *a*, *b* — the beginning of segments that mr. Boosch should choose. That means that the president signs laws with numbers from segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1]. If there are multiple solutions, print the one with the minimum number *a*. If there still are multiple solutions, print the one with the minimum *b*.
[ "5 2\n3 6 1 1 6\n", "6 2\n1 1 1 1 1 1\n" ]
[ "1 4\n", "1 3\n" ]
In the first sample mr. Boosch signs laws with numbers from segments [1;2] and [4;5]. The total absurdity of the signed laws equals 3 + 6 + 1 + 6 = 16. In the second sample mr. Boosch signs laws with numbers from segments [1;2] and [3;4]. The total absurdity of the signed laws equals 1 + 1 + 1 + 1 = 4.
1,000
[ { "input": "5 2\n3 6 1 1 6", "output": "1 4" }, { "input": "6 2\n1 1 1 1 1 1", "output": "1 3" }, { "input": "6 2\n1 4 1 2 5 6", "output": "1 5" }, { "input": "4 1\n1 2 2 2", "output": "2 3" }, { "input": "6 3\n15 20 1 15 43 6", "output": "1 4" }, { "input": "12 3\n1 2 1 15 2 3 6 8 3 3 8 6", "output": "4 7" }, { "input": "14 2\n2 1 2 3 1 2 2 3 1 2 2 3 2 3", "output": "3 7" }, { "input": "2 1\n1 1", "output": "1 2" }, { "input": "2 1\n1000000000 999999999", "output": "1 2" }, { "input": "3 1\n100 30 563", "output": "1 3" }, { "input": "3 1\n547468 78578678 6467834", "output": "2 3" }, { "input": "4 1\n90000 34567 90000 90001", "output": "1 4" }, { "input": "4 2\n999999 8888888 7777777 666666", "output": "1 3" }, { "input": "5 1\n2 1 2 1 2", "output": "1 3" }, { "input": "5 2\n98 96 98 96 96", "output": "1 3" }, { "input": "6 2\n4 4 7 1 1 7", "output": "2 5" }, { "input": "98 24\n91 20 12 75 44 22 22 67 28 100 8 41 31 47 95 87 5 54 7 49 32 46 42 37 45 22 29 15 54 98 46 94 69 47 60 1 15 76 17 82 46 22 32 34 91 37 30 26 92 77 69 11 59 78 24 66 88 15 32 49 46 14 57 20 5 69 53 99 81 70 67 22 54 31 49 52 46 51 46 2 53 59 8 66 28 53 54 5 85 75 15 55 87 16 68 6 36 98", "output": "30 67" }, { "input": "6 3\n1 2 2 2 1 1", "output": "1 4" }, { "input": "10 4\n9 3 3 9 1 9 9 4 4 9", "output": "1 6" }, { "input": "7 3\n1 2 5 5 5 5 5", "output": "2 5" } ]
1,696,128,110
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
92
0
n, k = map(int, input().split()) absurdities = list(map(int, input().split())) # Calculate prefix sums prefix_sums = [sum(absurdities[:k])] for i in range(k,n): prefix_sums.append(prefix_sums[-1] + absurdities[i] - absurdities[i-k]) max_total_absurdity = -1 max_prefix_sum = [prefix_sums[0]] b = 0 for i in prefix_sums: max_prefix_sum.append(max(i,max_prefix_sum[-1])) for i in range(k,len(prefix_sums)): if prefix_sums[i] + max_prefix_sum[i-k] > max_total_absurdity: max_total_absurdity = prefix_sums[i] + max_prefix_sum[i-k] b = i sum_at_a = max_total_absurdity - prefix_sums[i] a = 0 for i in range(len(prefix_sums)): if prefix_sums[i] == sum_at_a: a = i break print(a+1, b+1)
Title: Maximum Absurdity Time Limit: None seconds Memory Limit: None megabytes Problem Description: Reforms continue entering Berland. For example, during yesterday sitting the Berland Parliament approved as much as *n* laws (each law has been assigned a unique number from 1 to *n*). Today all these laws were put on the table of the President of Berland, G.W. Boosch, to be signed. This time mr. Boosch plans to sign 2*k* laws. He decided to choose exactly two non-intersecting segments of integers from 1 to *n* of length *k* and sign all laws, whose numbers fall into these segments. More formally, mr. Boosch is going to choose two integers *a*, *b* (1<=≤<=*a*<=≤<=*b*<=≤<=*n*<=-<=*k*<=+<=1,<=*b*<=-<=*a*<=≥<=*k*) and sign all laws with numbers lying in the segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1] (borders are included). As mr. Boosch chooses the laws to sign, he of course considers the public opinion. Allberland Public Opinion Study Centre (APOSC) conducted opinion polls among the citizens, processed the results into a report and gave it to the president. The report contains the absurdity value for each law, in the public opinion. As mr. Boosch is a real patriot, he is keen on signing the laws with the maximum total absurdity. Help him. Input Specification: The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=2·105, 0<=&lt;<=2*k*<=≤<=*n*) — the number of laws accepted by the parliament and the length of one segment in the law list, correspondingly. The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* — the absurdity of each law (1<=≤<=*x**i*<=≤<=109). Output Specification: Print two integers *a*, *b* — the beginning of segments that mr. Boosch should choose. That means that the president signs laws with numbers from segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1]. If there are multiple solutions, print the one with the minimum number *a*. If there still are multiple solutions, print the one with the minimum *b*. Demo Input: ['5 2\n3 6 1 1 6\n', '6 2\n1 1 1 1 1 1\n'] Demo Output: ['1 4\n', '1 3\n'] Note: In the first sample mr. Boosch signs laws with numbers from segments [1;2] and [4;5]. The total absurdity of the signed laws equals 3 + 6 + 1 + 6 = 16. In the second sample mr. Boosch signs laws with numbers from segments [1;2] and [3;4]. The total absurdity of the signed laws equals 1 + 1 + 1 + 1 = 4.
```python n, k = map(int, input().split()) absurdities = list(map(int, input().split())) # Calculate prefix sums prefix_sums = [sum(absurdities[:k])] for i in range(k,n): prefix_sums.append(prefix_sums[-1] + absurdities[i] - absurdities[i-k]) max_total_absurdity = -1 max_prefix_sum = [prefix_sums[0]] b = 0 for i in prefix_sums: max_prefix_sum.append(max(i,max_prefix_sum[-1])) for i in range(k,len(prefix_sums)): if prefix_sums[i] + max_prefix_sum[i-k] > max_total_absurdity: max_total_absurdity = prefix_sums[i] + max_prefix_sum[i-k] b = i sum_at_a = max_total_absurdity - prefix_sums[i] a = 0 for i in range(len(prefix_sums)): if prefix_sums[i] == sum_at_a: a = i break print(a+1, b+1) ```
0
588
B
Duff in Love
PROGRAMMING
1,300
[ "math" ]
null
null
Duff is in love with lovely numbers! A positive integer *x* is called lovely if and only if there is no such positive integer *a*<=&gt;<=1 such that *a*2 is a divisor of *x*. Malek has a number store! In his store, he has only divisors of positive integer *n* (and he has all of them). As a birthday present, Malek wants to give her a lovely number from his store. He wants this number to be as big as possible. Malek always had issues in math, so he asked for your help. Please tell him what is the biggest lovely number in his store.
The first and only line of input contains one integer, *n* (1<=≤<=*n*<=≤<=1012).
Print the answer in one line.
[ "10\n", "12\n" ]
[ "10\n", "6\n" ]
In first sample case, there are numbers 1, 2, 5 and 10 in the shop. 10 isn't divisible by any perfect square, so 10 is lovely. In second sample case, there are numbers 1, 2, 3, 4, 6 and 12 in the shop. 12 is divisible by 4 = 2<sup class="upper-index">2</sup>, so 12 is not lovely, while 6 is indeed lovely.
1,000
[ { "input": "10", "output": "10" }, { "input": "12", "output": "6" }, { "input": "1", "output": "1" }, { "input": "2", "output": "2" }, { "input": "4", "output": "2" }, { "input": "8", "output": "2" }, { "input": "3", "output": "3" }, { "input": "31", "output": "31" }, { "input": "97", "output": "97" }, { "input": "1000000000000", "output": "10" }, { "input": "15", "output": "15" }, { "input": "894", "output": "894" }, { "input": "271", "output": "271" }, { "input": "2457", "output": "273" }, { "input": "2829", "output": "2829" }, { "input": "5000", "output": "10" }, { "input": "20", "output": "10" }, { "input": "68", "output": "34" }, { "input": "3096", "output": "258" }, { "input": "1024", "output": "2" }, { "input": "1048576", "output": "2" }, { "input": "413933789280", "output": "25870861830" }, { "input": "817634153013", "output": "817634153013" }, { "input": "56517269141", "output": "56517269141" }, { "input": "30707328551", "output": "30707328551" }, { "input": "279564127218", "output": "10354226934" }, { "input": "491159577042", "output": "18191095446" }, { "input": "734337660466", "output": "734337660466" }, { "input": "808453785117", "output": "808453785117" }, { "input": "55926835837", "output": "55926835837" }, { "input": "294809951965", "output": "294809951965" }, { "input": "537988035389", "output": "76855433627" }, { "input": "822722434952", "output": "205680608738" }, { "input": "699511759613", "output": "699511759613" }, { "input": "942689843037", "output": "104743315893" }, { "input": "663634158717", "output": "663634158717" }, { "input": "213612977250", "output": "11730" }, { "input": "999999999989", "output": "999999999989" }, { "input": "999999999988", "output": "499999999994" }, { "input": "87178291200", "output": "30030" }, { "input": "927668721948", "output": "463834360974" }, { "input": "562436815639", "output": "37927" }, { "input": "302981118597", "output": "35853" }, { "input": "5", "output": "5" }, { "input": "9", "output": "3" }, { "input": "36", "output": "6" }, { "input": "2231", "output": "2231" }, { "input": "27648", "output": "6" }, { "input": "40320", "output": "210" }, { "input": "648000", "output": "30" }, { "input": "999966000289", "output": "999983" }, { "input": "999985999949", "output": "999985999949" }, { "input": "991921850317", "output": "9973" } ]
1,554,733,807
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
9
2,000
65,126,400
import math perfect_sq = [i**2 for i in range(2, 1000001)] n = int(input()) for i in range(n, 0, -1): if n % i != 0: continue eh_divisivel = False for j in range(0, int(math.sqrt(i)) - 1): sq = perfect_sq[j] if i % sq == 0: eh_divisivel = True if not eh_divisivel: print(i) break
Title: Duff in Love Time Limit: None seconds Memory Limit: None megabytes Problem Description: Duff is in love with lovely numbers! A positive integer *x* is called lovely if and only if there is no such positive integer *a*<=&gt;<=1 such that *a*2 is a divisor of *x*. Malek has a number store! In his store, he has only divisors of positive integer *n* (and he has all of them). As a birthday present, Malek wants to give her a lovely number from his store. He wants this number to be as big as possible. Malek always had issues in math, so he asked for your help. Please tell him what is the biggest lovely number in his store. Input Specification: The first and only line of input contains one integer, *n* (1<=≤<=*n*<=≤<=1012). Output Specification: Print the answer in one line. Demo Input: ['10\n', '12\n'] Demo Output: ['10\n', '6\n'] Note: In first sample case, there are numbers 1, 2, 5 and 10 in the shop. 10 isn't divisible by any perfect square, so 10 is lovely. In second sample case, there are numbers 1, 2, 3, 4, 6 and 12 in the shop. 12 is divisible by 4 = 2<sup class="upper-index">2</sup>, so 12 is not lovely, while 6 is indeed lovely.
```python import math perfect_sq = [i**2 for i in range(2, 1000001)] n = int(input()) for i in range(n, 0, -1): if n % i != 0: continue eh_divisivel = False for j in range(0, int(math.sqrt(i)) - 1): sq = perfect_sq[j] if i % sq == 0: eh_divisivel = True if not eh_divisivel: print(i) break ```
0
870
C
Maximum splitting
PROGRAMMING
1,300
[ "dp", "greedy", "math", "number theory" ]
null
null
You are given several queries. In the *i*-th query you are given a single positive integer *n**i*. You are to represent *n**i* as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings. An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.
The first line contains single integer *q* (1<=≤<=*q*<=≤<=105) — the number of queries. *q* lines follow. The (*i*<=+<=1)-th line contains single integer *n**i* (1<=≤<=*n**i*<=≤<=109) — the *i*-th query.
For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.
[ "1\n12\n", "2\n6\n8\n", "3\n1\n2\n3\n" ]
[ "3\n", "1\n2\n", "-1\n-1\n-1\n" ]
12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands. 8 = 4 + 4, 6 can't be split into several composite summands. 1, 2, 3 are less than any composite number, so they do not have valid splittings.
1,500
[ { "input": "1\n12", "output": "3" }, { "input": "2\n6\n8", "output": "1\n2" }, { "input": "3\n1\n2\n3", "output": "-1\n-1\n-1" }, { "input": "6\n1\n2\n3\n5\n7\n11", "output": "-1\n-1\n-1\n-1\n-1\n-1" }, { "input": "3\n4\n6\n9", "output": "1\n1\n1" }, { "input": "20\n8\n13\n20\n12\n9\n16\n4\n19\n7\n15\n10\n6\n14\n11\n3\n2\n5\n17\n18\n1", "output": "2\n2\n5\n3\n1\n4\n1\n3\n-1\n2\n2\n1\n3\n-1\n-1\n-1\n-1\n3\n4\n-1" }, { "input": "100\n611\n513\n544\n463\n38\n778\n347\n317\n848\n664\n382\n108\n718\n33\n334\n876\n234\n22\n944\n305\n159\n245\n513\n691\n639\n135\n308\n324\n813\n459\n304\n116\n331\n993\n184\n224\n853\n769\n121\n687\n93\n930\n751\n308\n485\n914\n400\n695\n95\n981\n175\n972\n121\n654\n242\n610\n617\n999\n237\n548\n742\n767\n613\n172\n223\n391\n102\n907\n673\n116\n230\n355\n189\n552\n399\n493\n903\n201\n985\n459\n776\n641\n693\n919\n253\n540\n427\n394\n655\n101\n461\n854\n417\n249\n66\n380\n213\n906\n212\n528", "output": "151\n127\n136\n114\n9\n194\n85\n78\n212\n166\n95\n27\n179\n7\n83\n219\n58\n5\n236\n75\n38\n60\n127\n171\n158\n32\n77\n81\n202\n113\n76\n29\n81\n247\n46\n56\n212\n191\n29\n170\n22\n232\n186\n77\n120\n228\n100\n172\n22\n244\n42\n243\n29\n163\n60\n152\n153\n248\n58\n137\n185\n190\n152\n43\n54\n96\n25\n225\n167\n29\n57\n87\n46\n138\n98\n122\n224\n49\n245\n113\n194\n159\n172\n228\n62\n135\n105\n98\n162\n24\n114\n213\n103\n61\n16\n95\n52\n226\n53\n132" }, { "input": "1\n10000001", "output": "2499999" } ]
1,584,341,706
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
140
0
q=int(input()) while q: n=int(input()) if(n==4):print(1) elif(n==6):print(1) elif(n==8):print(2) elif(n==9):print(1) elif(n==10):print(2) elif(n==12):print(3) elif(n==14):print(3) elif(n<14):print(-1) elif(n%2==0): if(n%4==0):print(n//4) else:print((n-6)//4+1) else: n-=9 if(n%4==0):print(n//4+2) else:print((n-6)//4+1+2) q-=1
Title: Maximum splitting Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given several queries. In the *i*-th query you are given a single positive integer *n**i*. You are to represent *n**i* as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings. An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself. Input Specification: The first line contains single integer *q* (1<=≤<=*q*<=≤<=105) — the number of queries. *q* lines follow. The (*i*<=+<=1)-th line contains single integer *n**i* (1<=≤<=*n**i*<=≤<=109) — the *i*-th query. Output Specification: For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings. Demo Input: ['1\n12\n', '2\n6\n8\n', '3\n1\n2\n3\n'] Demo Output: ['3\n', '1\n2\n', '-1\n-1\n-1\n'] Note: 12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands. 8 = 4 + 4, 6 can't be split into several composite summands. 1, 2, 3 are less than any composite number, so they do not have valid splittings.
```python q=int(input()) while q: n=int(input()) if(n==4):print(1) elif(n==6):print(1) elif(n==8):print(2) elif(n==9):print(1) elif(n==10):print(2) elif(n==12):print(3) elif(n==14):print(3) elif(n<14):print(-1) elif(n%2==0): if(n%4==0):print(n//4) else:print((n-6)//4+1) else: n-=9 if(n%4==0):print(n//4+2) else:print((n-6)//4+1+2) q-=1 ```
0
332
B
Maximum Absurdity
PROGRAMMING
1,500
[ "data structures", "dp", "implementation" ]
null
null
Reforms continue entering Berland. For example, during yesterday sitting the Berland Parliament approved as much as *n* laws (each law has been assigned a unique number from 1 to *n*). Today all these laws were put on the table of the President of Berland, G.W. Boosch, to be signed. This time mr. Boosch plans to sign 2*k* laws. He decided to choose exactly two non-intersecting segments of integers from 1 to *n* of length *k* and sign all laws, whose numbers fall into these segments. More formally, mr. Boosch is going to choose two integers *a*, *b* (1<=≤<=*a*<=≤<=*b*<=≤<=*n*<=-<=*k*<=+<=1,<=*b*<=-<=*a*<=≥<=*k*) and sign all laws with numbers lying in the segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1] (borders are included). As mr. Boosch chooses the laws to sign, he of course considers the public opinion. Allberland Public Opinion Study Centre (APOSC) conducted opinion polls among the citizens, processed the results into a report and gave it to the president. The report contains the absurdity value for each law, in the public opinion. As mr. Boosch is a real patriot, he is keen on signing the laws with the maximum total absurdity. Help him.
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=2·105, 0<=&lt;<=2*k*<=≤<=*n*) — the number of laws accepted by the parliament and the length of one segment in the law list, correspondingly. The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* — the absurdity of each law (1<=≤<=*x**i*<=≤<=109).
Print two integers *a*, *b* — the beginning of segments that mr. Boosch should choose. That means that the president signs laws with numbers from segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1]. If there are multiple solutions, print the one with the minimum number *a*. If there still are multiple solutions, print the one with the minimum *b*.
[ "5 2\n3 6 1 1 6\n", "6 2\n1 1 1 1 1 1\n" ]
[ "1 4\n", "1 3\n" ]
In the first sample mr. Boosch signs laws with numbers from segments [1;2] and [4;5]. The total absurdity of the signed laws equals 3 + 6 + 1 + 6 = 16. In the second sample mr. Boosch signs laws with numbers from segments [1;2] and [3;4]. The total absurdity of the signed laws equals 1 + 1 + 1 + 1 = 4.
1,000
[ { "input": "5 2\n3 6 1 1 6", "output": "1 4" }, { "input": "6 2\n1 1 1 1 1 1", "output": "1 3" }, { "input": "6 2\n1 4 1 2 5 6", "output": "1 5" }, { "input": "4 1\n1 2 2 2", "output": "2 3" }, { "input": "6 3\n15 20 1 15 43 6", "output": "1 4" }, { "input": "12 3\n1 2 1 15 2 3 6 8 3 3 8 6", "output": "4 7" }, { "input": "14 2\n2 1 2 3 1 2 2 3 1 2 2 3 2 3", "output": "3 7" }, { "input": "2 1\n1 1", "output": "1 2" }, { "input": "2 1\n1000000000 999999999", "output": "1 2" }, { "input": "3 1\n100 30 563", "output": "1 3" }, { "input": "3 1\n547468 78578678 6467834", "output": "2 3" }, { "input": "4 1\n90000 34567 90000 90001", "output": "1 4" }, { "input": "4 2\n999999 8888888 7777777 666666", "output": "1 3" }, { "input": "5 1\n2 1 2 1 2", "output": "1 3" }, { "input": "5 2\n98 96 98 96 96", "output": "1 3" }, { "input": "6 2\n4 4 7 1 1 7", "output": "2 5" }, { "input": "98 24\n91 20 12 75 44 22 22 67 28 100 8 41 31 47 95 87 5 54 7 49 32 46 42 37 45 22 29 15 54 98 46 94 69 47 60 1 15 76 17 82 46 22 32 34 91 37 30 26 92 77 69 11 59 78 24 66 88 15 32 49 46 14 57 20 5 69 53 99 81 70 67 22 54 31 49 52 46 51 46 2 53 59 8 66 28 53 54 5 85 75 15 55 87 16 68 6 36 98", "output": "30 67" }, { "input": "6 3\n1 2 2 2 1 1", "output": "1 4" }, { "input": "10 4\n9 3 3 9 1 9 9 4 4 9", "output": "1 6" }, { "input": "7 3\n1 2 5 5 5 5 5", "output": "2 5" } ]
1,610,652,068
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
7
2,000
15,769,600
n, k = map(int, input().split()) values = [int(i) for i in input().split()] psa, best, besta, bestb = [values[0]], -1, -1, -1 for i in range(n): psa.append(psa[i] + values[i]) for i in range(n - k + 1): for j in range(i + k, n - k + 1): if (psa[i + k] - psa[i] + psa[j + k] - psa[j]) > best: best = psa[i + k] - psa[i] + psa[j + k] - psa[j] besta = i + 1 bestb = j + 1 print(besta, bestb)
Title: Maximum Absurdity Time Limit: None seconds Memory Limit: None megabytes Problem Description: Reforms continue entering Berland. For example, during yesterday sitting the Berland Parliament approved as much as *n* laws (each law has been assigned a unique number from 1 to *n*). Today all these laws were put on the table of the President of Berland, G.W. Boosch, to be signed. This time mr. Boosch plans to sign 2*k* laws. He decided to choose exactly two non-intersecting segments of integers from 1 to *n* of length *k* and sign all laws, whose numbers fall into these segments. More formally, mr. Boosch is going to choose two integers *a*, *b* (1<=≤<=*a*<=≤<=*b*<=≤<=*n*<=-<=*k*<=+<=1,<=*b*<=-<=*a*<=≥<=*k*) and sign all laws with numbers lying in the segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1] (borders are included). As mr. Boosch chooses the laws to sign, he of course considers the public opinion. Allberland Public Opinion Study Centre (APOSC) conducted opinion polls among the citizens, processed the results into a report and gave it to the president. The report contains the absurdity value for each law, in the public opinion. As mr. Boosch is a real patriot, he is keen on signing the laws with the maximum total absurdity. Help him. Input Specification: The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=2·105, 0<=&lt;<=2*k*<=≤<=*n*) — the number of laws accepted by the parliament and the length of one segment in the law list, correspondingly. The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* — the absurdity of each law (1<=≤<=*x**i*<=≤<=109). Output Specification: Print two integers *a*, *b* — the beginning of segments that mr. Boosch should choose. That means that the president signs laws with numbers from segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1]. If there are multiple solutions, print the one with the minimum number *a*. If there still are multiple solutions, print the one with the minimum *b*. Demo Input: ['5 2\n3 6 1 1 6\n', '6 2\n1 1 1 1 1 1\n'] Demo Output: ['1 4\n', '1 3\n'] Note: In the first sample mr. Boosch signs laws with numbers from segments [1;2] and [4;5]. The total absurdity of the signed laws equals 3 + 6 + 1 + 6 = 16. In the second sample mr. Boosch signs laws with numbers from segments [1;2] and [3;4]. The total absurdity of the signed laws equals 1 + 1 + 1 + 1 = 4.
```python n, k = map(int, input().split()) values = [int(i) for i in input().split()] psa, best, besta, bestb = [values[0]], -1, -1, -1 for i in range(n): psa.append(psa[i] + values[i]) for i in range(n - k + 1): for j in range(i + k, n - k + 1): if (psa[i + k] - psa[i] + psa[j + k] - psa[j]) > best: best = psa[i + k] - psa[i] + psa[j + k] - psa[j] besta = i + 1 bestb = j + 1 print(besta, bestb) ```
0
283
A
Cows and Sequence
PROGRAMMING
1,600
[ "constructive algorithms", "data structures", "implementation" ]
null
null
Bessie and the cows are playing with sequences and need your help. They start with a sequence, initially containing just the number 0, and perform *n* operations. Each operation is one of the following: 1. Add the integer *x**i* to the first *a**i* elements of the sequence. 1. Append an integer *k**i* to the end of the sequence. (And hence the size of the sequence increases by 1) 1. Remove the last element of the sequence. So, the size of the sequence decreases by one. Note, that this operation can only be done if there are at least two elements in the sequence. After each operation, the cows would like to know the average of all the numbers in the sequence. Help them!
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of operations. The next *n* lines describe the operations. Each line will start with an integer *t**i* (1<=≤<=*t**i*<=≤<=3), denoting the type of the operation (see above). If *t**i*<==<=1, it will be followed by two integers *a**i*,<=*x**i* (|*x**i*|<=≤<=103; 1<=≤<=*a**i*). If *t**i*<==<=2, it will be followed by a single integer *k**i* (|*k**i*|<=≤<=103). If *t**i*<==<=3, it will not be followed by anything. It is guaranteed that all operations are correct (don't touch nonexistent elements) and that there will always be at least one element in the sequence.
Output *n* lines each containing the average of the numbers in the sequence after the corresponding operation. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6.
[ "5\n2 1\n3\n2 3\n2 1\n3\n", "6\n2 1\n1 2 20\n2 2\n1 2 -3\n3\n3\n" ]
[ "0.500000\n0.000000\n1.500000\n1.333333\n1.500000\n", "0.500000\n20.500000\n14.333333\n12.333333\n17.500000\n17.000000\n" ]
In the second sample, the sequence becomes <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fb5aaaa5dc516fe540cef52fd153768bfdb941c8.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "5\n2 1\n3\n2 3\n2 1\n3", "output": "0.500000\n0.000000\n1.500000\n1.333333\n1.500000" }, { "input": "6\n2 1\n1 2 20\n2 2\n1 2 -3\n3\n3", "output": "0.500000\n20.500000\n14.333333\n12.333333\n17.500000\n17.000000" }, { "input": "1\n1 1 1", "output": "1.000000" }, { "input": "1\n2 1", "output": "0.500000" }, { "input": "2\n2 1\n1 2 1", "output": "0.500000\n1.500000" }, { "input": "5\n2 1\n1 2 1\n2 1\n2 1\n1 2 1", "output": "0.500000\n1.500000\n1.333333\n1.250000\n1.750000" }, { "input": "5\n1 1 7\n1 1 7\n1 1 7\n2 5\n1 2 2", "output": "7.000000\n14.000000\n21.000000\n13.000000\n15.000000" }, { "input": "5\n1 1 -48\n1 1 19\n1 1 -35\n2 -67\n1 2 -13", "output": "-48.000000\n-29.000000\n-64.000000\n-65.500000\n-78.500000" }, { "input": "1\n1 1 0", "output": "0.000000" }, { "input": "1\n2 0", "output": "0.000000" }, { "input": "5\n2 -980\n1 2 -156\n2 641\n2 -253\n2 -514", "output": "-490.000000\n-646.000000\n-217.000000\n-226.000000\n-283.600000" } ]
1,595,873,358
2,147,483,647
Python 3
OK
TESTS
46
1,091
34,611,200
n=int(input()) s=0 c=1 l=[0] d=[0] ans=[0]*n for i in range(n): x=list(map(int,input().split())) if x[0]==1: d[x[1]-1]+=x[2] s=s+x[1]*x[2] elif x[0]==2: l.append(x[1]) d.append(0) s=s+x[1] c=c+1 else: t=d[-1] s=s-l[-1]-t c=c-1 l.pop() d.pop() d[-1]+=t ans[i]=str(s/c) print('\n'.join(ans))
Title: Cows and Sequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bessie and the cows are playing with sequences and need your help. They start with a sequence, initially containing just the number 0, and perform *n* operations. Each operation is one of the following: 1. Add the integer *x**i* to the first *a**i* elements of the sequence. 1. Append an integer *k**i* to the end of the sequence. (And hence the size of the sequence increases by 1) 1. Remove the last element of the sequence. So, the size of the sequence decreases by one. Note, that this operation can only be done if there are at least two elements in the sequence. After each operation, the cows would like to know the average of all the numbers in the sequence. Help them! Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of operations. The next *n* lines describe the operations. Each line will start with an integer *t**i* (1<=≤<=*t**i*<=≤<=3), denoting the type of the operation (see above). If *t**i*<==<=1, it will be followed by two integers *a**i*,<=*x**i* (|*x**i*|<=≤<=103; 1<=≤<=*a**i*). If *t**i*<==<=2, it will be followed by a single integer *k**i* (|*k**i*|<=≤<=103). If *t**i*<==<=3, it will not be followed by anything. It is guaranteed that all operations are correct (don't touch nonexistent elements) and that there will always be at least one element in the sequence. Output Specification: Output *n* lines each containing the average of the numbers in the sequence after the corresponding operation. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6. Demo Input: ['5\n2 1\n3\n2 3\n2 1\n3\n', '6\n2 1\n1 2 20\n2 2\n1 2 -3\n3\n3\n'] Demo Output: ['0.500000\n0.000000\n1.500000\n1.333333\n1.500000\n', '0.500000\n20.500000\n14.333333\n12.333333\n17.500000\n17.000000\n'] Note: In the second sample, the sequence becomes <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fb5aaaa5dc516fe540cef52fd153768bfdb941c8.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n=int(input()) s=0 c=1 l=[0] d=[0] ans=[0]*n for i in range(n): x=list(map(int,input().split())) if x[0]==1: d[x[1]-1]+=x[2] s=s+x[1]*x[2] elif x[0]==2: l.append(x[1]) d.append(0) s=s+x[1] c=c+1 else: t=d[-1] s=s-l[-1]-t c=c-1 l.pop() d.pop() d[-1]+=t ans[i]=str(s/c) print('\n'.join(ans)) ```
3
998
A
Balloons
PROGRAMMING
1,000
[ "constructive algorithms", "implementation" ]
null
null
There are quite a lot of ways to have fun with inflatable balloons. For example, you can fill them with water and see what happens. Grigory and Andrew have the same opinion. So, once upon a time, they went to the shop and bought $n$ packets with inflatable balloons, where $i$-th of them has exactly $a_i$ balloons inside. They want to divide the balloons among themselves. In addition, there are several conditions to hold: - Do not rip the packets (both Grigory and Andrew should get unbroken packets); - Distribute all packets (every packet should be given to someone); - Give both Grigory and Andrew at least one packet; - To provide more fun, the total number of balloons in Grigory's packets should not be equal to the total number of balloons in Andrew's packets. Help them to divide the balloons or determine that it's impossible under these conditions.
The first line of input contains a single integer $n$ ($1 \le n \le 10$) — the number of packets with balloons. The second line contains $n$ integers: $a_1$, $a_2$, $\ldots$, $a_n$ ($1 \le a_i \le 1000$) — the number of balloons inside the corresponding packet.
If it's impossible to divide the balloons satisfying the conditions above, print $-1$. Otherwise, print an integer $k$ — the number of packets to give to Grigory followed by $k$ distinct integers from $1$ to $n$ — the indices of those. The order of packets doesn't matter. If there are multiple ways to divide balloons, output any of them.
[ "3\n1 2 1\n", "2\n5 5\n", "1\n10\n" ]
[ "2\n1 2\n", "-1\n", "-1\n" ]
In the first test Grigory gets $3$ balloons in total while Andrey gets $1$. In the second test there's only one way to divide the packets which leads to equal numbers of balloons. In the third test one of the boys won't get a packet at all.
500
[ { "input": "3\n1 2 1", "output": "1\n1" }, { "input": "2\n5 5", "output": "-1" }, { "input": "1\n10", "output": "-1" }, { "input": "1\n1", "output": "-1" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "1\n1" }, { "input": "10\n1 1 1 1 1 1 1 1 1 9", "output": "1\n1" }, { "input": "10\n26 723 970 13 422 968 875 329 234 983", "output": "1\n4" }, { "input": "3\n3 2 1", "output": "1\n3" }, { "input": "10\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "1\n1" }, { "input": "10\n1 9 7 6 2 4 7 8 1 3", "output": "1\n1" }, { "input": "2\n9 6", "output": "1\n2" }, { "input": "2\n89 7", "output": "1\n2" }, { "input": "2\n101 807", "output": "1\n1" }, { "input": "5\n8 7 4 8 3", "output": "1\n5" }, { "input": "5\n55 62 70 100 90", "output": "1\n1" }, { "input": "5\n850 840 521 42 169", "output": "1\n4" }, { "input": "6\n7 1 4 1 6 1", "output": "1\n2" }, { "input": "6\n36 80 38 88 79 69", "output": "1\n1" }, { "input": "6\n108 318 583 10 344 396", "output": "1\n4" }, { "input": "9\n10 9 10 10 8 3 5 10 2", "output": "1\n9" }, { "input": "9\n90 31 28 63 57 57 27 62 42", "output": "1\n7" }, { "input": "9\n665 646 152 829 190 64 555 536 321", "output": "1\n6" }, { "input": "10\n99 62 10 47 53 9 83 33 15 24", "output": "1\n6" }, { "input": "4\n600 200 100 300", "output": "1\n3" }, { "input": "2\n4 5", "output": "1\n1" }, { "input": "2\n5 12", "output": "1\n1" }, { "input": "2\n1 2", "output": "1\n1" }, { "input": "3\n1 1 2", "output": "1\n1" }, { "input": "2\n3 2", "output": "1\n2" }, { "input": "3\n1 4 5", "output": "1\n1" }, { "input": "4\n5 5 5 5", "output": "1\n1" }, { "input": "1\n5", "output": "-1" }, { "input": "3\n5 5 5", "output": "1\n1" }, { "input": "5\n5 5 5 5 5", "output": "1\n1" }, { "input": "4\n2 7 10 1", "output": "1\n4" }, { "input": "3\n1 1 1", "output": "1\n1" }, { "input": "4\n8 4 2 2", "output": "1\n3" }, { "input": "2\n3 4", "output": "1\n1" }, { "input": "4\n1 1 3 1", "output": "1\n1" }, { "input": "7\n1 2 3 4 5 6 7", "output": "1\n1" }, { "input": "2\n18 19", "output": "1\n1" }, { "input": "2\n17 18", "output": "1\n1" }, { "input": "2\n1 3", "output": "1\n1" }, { "input": "4\n5 5 4 4", "output": "1\n3" }, { "input": "2\n10 11", "output": "1\n1" }, { "input": "2\n10 20", "output": "1\n1" }, { "input": "2\n2 1", "output": "1\n2" }, { "input": "4\n2 3 2 3", "output": "1\n1" }, { "input": "2\n5 6", "output": "1\n1" } ]
1,602,828,152
332
PyPy 3
WRONG_ANSWER
TESTS
0
108
0
from sys import * from math import * from bisect import * n=int(stdin.readline()) a=list(map(int,stdin.readline().split())) m=min(a) i=0 for i in range(n): if a[i]==m: break if sum(a)-2*m==0 or n==1: print(-1) else: print(1) print(i)
Title: Balloons Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are quite a lot of ways to have fun with inflatable balloons. For example, you can fill them with water and see what happens. Grigory and Andrew have the same opinion. So, once upon a time, they went to the shop and bought $n$ packets with inflatable balloons, where $i$-th of them has exactly $a_i$ balloons inside. They want to divide the balloons among themselves. In addition, there are several conditions to hold: - Do not rip the packets (both Grigory and Andrew should get unbroken packets); - Distribute all packets (every packet should be given to someone); - Give both Grigory and Andrew at least one packet; - To provide more fun, the total number of balloons in Grigory's packets should not be equal to the total number of balloons in Andrew's packets. Help them to divide the balloons or determine that it's impossible under these conditions. Input Specification: The first line of input contains a single integer $n$ ($1 \le n \le 10$) — the number of packets with balloons. The second line contains $n$ integers: $a_1$, $a_2$, $\ldots$, $a_n$ ($1 \le a_i \le 1000$) — the number of balloons inside the corresponding packet. Output Specification: If it's impossible to divide the balloons satisfying the conditions above, print $-1$. Otherwise, print an integer $k$ — the number of packets to give to Grigory followed by $k$ distinct integers from $1$ to $n$ — the indices of those. The order of packets doesn't matter. If there are multiple ways to divide balloons, output any of them. Demo Input: ['3\n1 2 1\n', '2\n5 5\n', '1\n10\n'] Demo Output: ['2\n1 2\n', '-1\n', '-1\n'] Note: In the first test Grigory gets $3$ balloons in total while Andrey gets $1$. In the second test there's only one way to divide the packets which leads to equal numbers of balloons. In the third test one of the boys won't get a packet at all.
```python from sys import * from math import * from bisect import * n=int(stdin.readline()) a=list(map(int,stdin.readline().split())) m=min(a) i=0 for i in range(n): if a[i]==m: break if sum(a)-2*m==0 or n==1: print(-1) else: print(1) print(i) ```
0
450
A
Jzzhu and Children
PROGRAMMING
1,000
[ "implementation" ]
null
null
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies. Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm: 1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty. Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
Output a single integer, representing the number of the last child.
[ "5 2\n1 3 1 4 2\n", "6 4\n1 1 2 2 3 3\n" ]
[ "4\n", "6\n" ]
Let's consider the first sample. Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home. Child 4 is the last one who goes home.
500
[ { "input": "5 2\n1 3 1 4 2", "output": "4" }, { "input": "6 4\n1 1 2 2 3 3", "output": "6" }, { "input": "7 3\n6 1 5 4 2 3 1", "output": "4" }, { "input": "10 5\n2 7 3 6 2 5 1 3 4 5", "output": "4" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "100" }, { "input": "9 3\n9 5 2 3 7 1 8 4 6", "output": "7" }, { "input": "20 10\n58 4 32 10 73 7 30 39 47 6 59 21 24 66 79 79 46 13 29 58", "output": "16" }, { "input": "50 5\n89 56 3 2 40 37 56 52 83 59 43 83 43 59 29 74 22 58 53 41 53 67 78 30 57 32 58 29 95 46 45 85 60 49 41 82 8 71 52 40 45 26 6 71 84 91 4 93 40 54", "output": "48" }, { "input": "50 1\n4 3 9 7 6 8 3 7 10 9 8 8 10 2 9 3 2 4 4 10 4 6 8 10 9 9 4 2 8 9 4 4 9 5 1 5 2 4 4 9 10 2 5 10 7 2 8 6 8 1", "output": "44" }, { "input": "50 5\n3 9 10 8 3 3 4 6 8 2 9 9 3 1 2 10 6 8 7 2 7 4 2 7 5 10 2 2 2 5 10 5 6 6 8 7 10 4 3 2 10 8 6 6 8 6 4 4 1 3", "output": "46" }, { "input": "50 2\n56 69 72 15 95 92 51 1 74 87 100 29 46 54 18 81 84 72 84 83 20 63 71 27 45 74 50 89 48 8 21 15 47 3 39 73 80 84 6 99 17 25 56 3 74 64 71 39 89 78", "output": "40" }, { "input": "50 3\n31 39 64 16 86 3 1 9 25 54 98 42 20 3 49 41 73 37 55 62 33 77 64 22 33 82 26 13 10 13 7 40 48 18 46 79 94 72 19 12 11 61 16 37 10 49 14 94 48 69", "output": "11" }, { "input": "50 100\n67 67 61 68 42 29 70 77 12 61 71 27 4 73 87 52 59 38 93 90 31 27 87 47 26 57 76 6 28 72 81 68 50 84 69 79 39 93 52 6 88 12 46 13 90 68 71 38 90 95", "output": "50" }, { "input": "100 3\n4 14 20 11 19 11 14 20 5 7 6 12 11 17 5 11 7 6 2 10 13 5 12 8 5 17 20 18 7 19 11 7 7 20 20 8 10 17 17 19 20 5 15 16 19 7 11 16 4 17 2 10 1 20 20 16 19 9 9 11 5 7 12 9 9 6 20 18 13 19 8 4 8 1 2 4 10 11 15 14 1 7 17 12 13 19 12 2 3 14 15 15 5 17 14 12 17 14 16 9", "output": "86" }, { "input": "100 5\n16 8 14 16 12 11 17 19 19 2 8 9 5 6 19 9 11 18 6 9 14 16 14 18 17 17 17 5 15 20 19 7 7 10 10 5 14 20 5 19 11 16 16 19 17 9 7 12 14 10 2 11 14 5 20 8 10 11 19 2 14 14 19 17 5 10 8 8 4 2 1 10 20 12 14 11 7 6 6 15 1 5 9 15 3 17 16 17 5 14 11 9 16 15 1 11 10 6 15 7", "output": "93" }, { "input": "100 1\n58 94 18 50 17 14 96 62 83 80 75 5 9 22 25 41 3 96 74 45 66 37 2 37 13 85 68 54 77 11 85 19 25 21 52 59 90 61 72 89 82 22 10 16 3 68 61 29 55 76 28 85 65 76 27 3 14 10 56 37 86 18 35 38 56 68 23 88 33 38 52 87 55 83 94 34 100 41 83 56 91 77 32 74 97 13 67 31 57 81 53 39 5 88 46 1 79 4 49 42", "output": "77" }, { "input": "100 2\n1 51 76 62 34 93 90 43 57 59 52 78 3 48 11 60 57 48 5 54 28 81 87 23 44 77 67 61 14 73 29 53 21 89 67 41 47 9 63 37 1 71 40 85 4 14 77 40 78 75 89 74 4 70 32 65 81 95 49 90 72 41 76 55 69 83 73 84 85 93 46 6 74 90 62 37 97 7 7 37 83 30 37 88 34 16 11 59 85 19 57 63 85 20 63 97 97 65 61 48", "output": "97" }, { "input": "100 3\n30 83 14 55 61 66 34 98 90 62 89 74 45 93 33 31 75 35 82 100 63 69 48 18 99 2 36 71 14 30 70 76 96 85 97 90 49 36 6 76 37 94 70 3 63 73 75 48 39 29 13 2 46 26 9 56 1 18 54 53 85 34 2 12 1 93 75 67 77 77 14 26 33 25 55 9 57 70 75 6 87 66 18 3 41 69 73 24 49 2 20 72 39 58 91 54 74 56 66 78", "output": "20" }, { "input": "100 4\n69 92 76 3 32 50 15 38 21 22 14 3 67 41 95 12 10 62 83 52 78 1 18 58 94 35 62 71 58 75 13 73 60 34 50 97 50 70 19 96 53 10 100 26 20 39 62 59 88 26 24 83 70 68 66 8 6 38 16 93 2 91 81 89 78 74 21 8 31 56 28 53 77 5 81 5 94 42 77 75 92 15 59 36 61 18 55 45 69 68 81 51 12 42 85 74 98 31 17 41", "output": "97" }, { "input": "100 5\n2 72 10 60 6 50 72 34 97 77 35 43 80 64 40 53 46 6 90 22 29 70 26 68 52 19 72 88 83 18 55 32 99 81 11 21 39 42 41 63 60 97 30 23 55 78 89 35 24 50 99 52 27 76 24 8 20 27 51 37 17 82 69 18 46 19 26 77 52 83 76 65 43 66 84 84 13 30 66 88 84 23 37 1 17 26 11 50 73 56 54 37 40 29 35 8 1 39 50 82", "output": "51" }, { "input": "100 7\n6 73 7 54 92 33 66 65 80 47 2 53 28 59 61 16 54 89 37 48 77 40 49 59 27 52 17 22 78 80 81 80 8 93 50 7 87 57 29 16 89 55 20 7 51 54 30 98 44 96 27 70 1 1 32 61 22 92 84 98 31 89 91 90 28 56 49 25 86 49 55 16 19 1 18 8 88 47 16 18 73 86 2 96 16 91 74 49 38 98 94 25 34 85 29 27 99 31 31 58", "output": "97" }, { "input": "100 9\n36 4 45 16 19 6 10 87 44 82 71 49 70 35 83 19 40 76 45 94 44 96 10 54 82 77 86 63 11 37 21 3 15 89 80 88 89 16 72 23 25 9 51 25 10 45 96 5 6 18 51 31 42 57 41 51 42 15 89 61 45 82 16 48 61 67 19 40 9 33 90 36 78 36 79 79 16 10 83 87 9 22 84 12 23 76 36 14 2 81 56 33 56 23 57 84 76 55 35 88", "output": "47" }, { "input": "100 10\n75 81 39 64 90 58 92 28 75 9 96 78 92 83 77 68 76 71 14 46 58 60 80 25 78 11 13 63 22 82 65 68 47 6 33 63 90 50 85 43 73 94 80 48 67 11 83 17 22 15 94 80 66 99 66 4 46 35 52 1 62 39 96 57 37 47 97 49 64 12 36 63 90 16 4 75 85 82 85 56 13 4 92 45 44 93 17 35 22 46 18 44 29 7 52 4 100 98 87 51", "output": "98" }, { "input": "100 20\n21 19 61 70 54 97 98 14 61 72 25 94 24 56 55 25 12 80 76 11 35 17 80 26 11 94 52 47 84 61 10 2 74 25 10 21 2 79 55 50 30 75 10 64 44 5 60 96 52 16 74 41 20 77 20 44 8 86 74 36 49 61 99 13 54 64 19 99 50 43 12 73 48 48 83 55 72 73 63 81 30 27 95 9 97 82 24 3 89 90 33 14 47 88 22 78 12 75 58 67", "output": "94" }, { "input": "100 30\n56 79 59 23 11 23 67 82 81 80 99 79 8 58 93 36 98 81 46 39 34 67 3 50 4 68 70 71 2 21 52 30 75 23 33 21 16 100 56 43 8 27 40 8 56 24 17 40 94 10 67 49 61 36 95 87 17 41 7 94 33 19 17 50 26 11 94 54 38 46 77 9 53 35 98 42 50 20 43 6 78 6 38 24 100 45 43 16 1 50 16 46 14 91 95 88 10 1 50 19", "output": "95" }, { "input": "100 40\n86 11 97 17 38 95 11 5 13 83 67 75 50 2 46 39 84 68 22 85 70 23 64 46 59 93 39 80 35 78 93 21 83 19 64 1 49 59 99 83 44 81 70 58 15 82 83 47 55 65 91 10 2 92 4 77 37 32 12 57 78 11 42 8 59 21 96 69 61 30 44 29 12 70 91 14 10 83 11 75 14 10 19 39 8 98 5 81 66 66 79 55 36 29 22 45 19 24 55 49", "output": "88" }, { "input": "100 50\n22 39 95 69 94 53 80 73 33 90 40 60 2 4 84 50 70 38 92 12 36 74 87 70 51 36 57 5 54 6 35 81 52 17 55 100 95 81 32 76 21 1 100 1 95 1 40 91 98 59 84 19 11 51 79 19 47 86 45 15 62 2 59 77 31 68 71 92 17 33 10 33 85 57 5 2 88 97 91 99 63 20 63 54 79 93 24 62 46 27 30 87 3 64 95 88 16 50 79 1", "output": "99" }, { "input": "100 70\n61 48 89 17 97 6 93 13 64 50 66 88 24 52 46 99 6 65 93 64 82 37 57 41 47 1 84 5 97 83 79 46 16 35 40 7 64 15 44 96 37 17 30 92 51 67 26 3 14 56 27 68 66 93 36 39 51 6 40 55 79 26 71 54 8 48 18 2 71 12 55 60 29 37 31 97 26 37 25 68 67 70 3 87 100 41 5 82 65 92 24 66 76 48 89 8 40 93 31 95", "output": "100" }, { "input": "100 90\n87 32 30 15 10 52 93 63 84 1 82 41 27 51 75 32 42 94 39 53 70 13 4 22 99 35 44 38 5 23 18 100 61 80 9 12 42 93 9 77 3 7 60 95 66 78 95 42 69 8 1 88 93 66 96 20 76 63 15 36 92 52 2 72 36 57 48 63 29 20 74 88 49 47 81 61 94 74 70 93 47 3 19 52 59 41 5 40 22 3 76 97 91 37 95 88 91 99 76 15", "output": "98" }, { "input": "100 100\n79 75 7 28 6 96 38 35 57 95 41 74 24 96 32 78 81 13 63 84 24 95 3 23 66 1 60 6 96 49 41 5 14 18 31 97 66 19 49 89 49 70 51 28 20 99 18 1 28 77 24 46 69 21 40 32 31 66 28 6 66 97 9 16 70 90 91 30 34 82 93 41 65 11 39 52 1 88 63 43 80 50 60 49 28 56 18 76 24 57 74 1 28 99 36 35 79 54 18 16", "output": "100" }, { "input": "1 3\n5", "output": "1" }, { "input": "1 1\n100", "output": "1" }, { "input": "2 3\n4 2", "output": "1" }, { "input": "2 5\n99 97", "output": "2" }, { "input": "3 4\n7 5 2", "output": "2" }, { "input": "3 50\n47 86 51", "output": "3" }, { "input": "5 100\n82 100 85 1 37", "output": "5" }, { "input": "5 20\n40 39 21 5 20", "output": "3" }, { "input": "1 27\n81", "output": "1" }, { "input": "20 13\n7 8 29 83 74 28 93 85 7 8 3 9 8 70 49 50 39 41 57 1", "output": "7" }, { "input": "2 1\n100 2", "output": "1" }, { "input": "2 2\n6 4", "output": "1" }, { "input": "5 2\n6 4 4 1 1", "output": "1" }, { "input": "1 4\n3", "output": "1" }, { "input": "3 2\n1 5 3", "output": "2" }, { "input": "3 1\n3 2 2", "output": "1" }, { "input": "3 1\n2 3 2", "output": "2" }, { "input": "5 1\n5 1 1 1 1", "output": "1" }, { "input": "2 3\n7 4", "output": "1" } ]
1,644,148,673
2,147,483,647
Python 3
OK
TESTS
49
46
0
n,m= map(int,input().split()) a=list(map(int,input().split())) a_idx=list( [a[i],i] for i in range(len(a))) j=0 while len(a_idx)>1: if a_idx[j][0]<=m: a_idx.remove(a_idx[j]) elif a_idx[j][0]>m: a_idx[j][0]-=m a_idx.append(a_idx[j]) a_idx.pop(0) print(a_idx[0][1]+1)
Title: Jzzhu and Children Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies. Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm: 1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty. Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order? Input Specification: The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100). Output Specification: Output a single integer, representing the number of the last child. Demo Input: ['5 2\n1 3 1 4 2\n', '6 4\n1 1 2 2 3 3\n'] Demo Output: ['4\n', '6\n'] Note: Let's consider the first sample. Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home. Child 4 is the last one who goes home.
```python n,m= map(int,input().split()) a=list(map(int,input().split())) a_idx=list( [a[i],i] for i in range(len(a))) j=0 while len(a_idx)>1: if a_idx[j][0]<=m: a_idx.remove(a_idx[j]) elif a_idx[j][0]>m: a_idx[j][0]-=m a_idx.append(a_idx[j]) a_idx.pop(0) print(a_idx[0][1]+1) ```
3
617
A
Elephant
PROGRAMMING
800
[ "math" ]
null
null
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
[ "5\n", "12\n" ]
[ "1\n", "3\n" ]
In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
500
[ { "input": "5", "output": "1" }, { "input": "12", "output": "3" }, { "input": "999999", "output": "200000" }, { "input": "41", "output": "9" }, { "input": "1000000", "output": "200000" }, { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "3", "output": "1" }, { "input": "4", "output": "1" }, { "input": "534204", "output": "106841" }, { "input": "469569", "output": "93914" }, { "input": "502877", "output": "100576" }, { "input": "942212", "output": "188443" }, { "input": "97", "output": "20" }, { "input": "53", "output": "11" }, { "input": "89", "output": "18" }, { "input": "574", "output": "115" }, { "input": "716", "output": "144" }, { "input": "729", "output": "146" }, { "input": "8901", "output": "1781" }, { "input": "3645", "output": "729" }, { "input": "4426", "output": "886" }, { "input": "46573", "output": "9315" }, { "input": "86380", "output": "17276" }, { "input": "94190", "output": "18838" }, { "input": "999990", "output": "199998" }, { "input": "999991", "output": "199999" }, { "input": "999992", "output": "199999" }, { "input": "999993", "output": "199999" }, { "input": "999994", "output": "199999" }, { "input": "999995", "output": "199999" }, { "input": "999996", "output": "200000" }, { "input": "999997", "output": "200000" }, { "input": "999998", "output": "200000" } ]
1,697,699,270
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
0
n=int(input()) ans=n/5 if(n%5!=0): ans+=1 print(ans)
Title: Elephant Time Limit: None seconds Memory Limit: None megabytes Problem Description: An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house. Input Specification: The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house. Output Specification: Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*. Demo Input: ['5\n', '12\n'] Demo Output: ['1\n', '3\n'] Note: In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
```python n=int(input()) ans=n/5 if(n%5!=0): ans+=1 print(ans) ```
0
283
A
Cows and Sequence
PROGRAMMING
1,600
[ "constructive algorithms", "data structures", "implementation" ]
null
null
Bessie and the cows are playing with sequences and need your help. They start with a sequence, initially containing just the number 0, and perform *n* operations. Each operation is one of the following: 1. Add the integer *x**i* to the first *a**i* elements of the sequence. 1. Append an integer *k**i* to the end of the sequence. (And hence the size of the sequence increases by 1) 1. Remove the last element of the sequence. So, the size of the sequence decreases by one. Note, that this operation can only be done if there are at least two elements in the sequence. After each operation, the cows would like to know the average of all the numbers in the sequence. Help them!
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of operations. The next *n* lines describe the operations. Each line will start with an integer *t**i* (1<=≤<=*t**i*<=≤<=3), denoting the type of the operation (see above). If *t**i*<==<=1, it will be followed by two integers *a**i*,<=*x**i* (|*x**i*|<=≤<=103; 1<=≤<=*a**i*). If *t**i*<==<=2, it will be followed by a single integer *k**i* (|*k**i*|<=≤<=103). If *t**i*<==<=3, it will not be followed by anything. It is guaranteed that all operations are correct (don't touch nonexistent elements) and that there will always be at least one element in the sequence.
Output *n* lines each containing the average of the numbers in the sequence after the corresponding operation. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6.
[ "5\n2 1\n3\n2 3\n2 1\n3\n", "6\n2 1\n1 2 20\n2 2\n1 2 -3\n3\n3\n" ]
[ "0.500000\n0.000000\n1.500000\n1.333333\n1.500000\n", "0.500000\n20.500000\n14.333333\n12.333333\n17.500000\n17.000000\n" ]
In the second sample, the sequence becomes <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fb5aaaa5dc516fe540cef52fd153768bfdb941c8.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "5\n2 1\n3\n2 3\n2 1\n3", "output": "0.500000\n0.000000\n1.500000\n1.333333\n1.500000" }, { "input": "6\n2 1\n1 2 20\n2 2\n1 2 -3\n3\n3", "output": "0.500000\n20.500000\n14.333333\n12.333333\n17.500000\n17.000000" }, { "input": "1\n1 1 1", "output": "1.000000" }, { "input": "1\n2 1", "output": "0.500000" }, { "input": "2\n2 1\n1 2 1", "output": "0.500000\n1.500000" }, { "input": "5\n2 1\n1 2 1\n2 1\n2 1\n1 2 1", "output": "0.500000\n1.500000\n1.333333\n1.250000\n1.750000" }, { "input": "5\n1 1 7\n1 1 7\n1 1 7\n2 5\n1 2 2", "output": "7.000000\n14.000000\n21.000000\n13.000000\n15.000000" }, { "input": "5\n1 1 -48\n1 1 19\n1 1 -35\n2 -67\n1 2 -13", "output": "-48.000000\n-29.000000\n-64.000000\n-65.500000\n-78.500000" }, { "input": "1\n1 1 0", "output": "0.000000" }, { "input": "1\n2 0", "output": "0.000000" }, { "input": "5\n2 -980\n1 2 -156\n2 641\n2 -253\n2 -514", "output": "-490.000000\n-646.000000\n-217.000000\n-226.000000\n-283.600000" } ]
1,616,654,203
2,147,483,647
PyPy 3
OK
TESTS
46
872
19,968,000
import sys,os,io import math,bisect,operator inf,mod = float('inf'),10**9+7 # sys.setrecursionlimit(10 ** 6) from itertools import groupby,accumulate from heapq import heapify,heappop,heappush from collections import deque,Counter,defaultdict input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__ Neo = lambda : list(map(int,input().split())) # test, = Neo() n, = Neo() arr, cnt, curr_len, curr_sum = [0] * (n+1), [0] * (n+1), 1, 0 for _ in range(n): s = input() if s[0] == '1': _, x, y = map(int, s.split()) curr_sum += x*y cnt[x-1] += y elif s[0] == '2': _, x = map(int, s.split()) curr_sum += x arr[curr_len] = x curr_len += 1 else: curr_len -= 1 curr_sum -= arr[curr_len] + cnt[curr_len] cnt[curr_len-1] += cnt[curr_len] cnt[curr_len] = 0 print('%.9f' % (curr_sum / curr_len))
Title: Cows and Sequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bessie and the cows are playing with sequences and need your help. They start with a sequence, initially containing just the number 0, and perform *n* operations. Each operation is one of the following: 1. Add the integer *x**i* to the first *a**i* elements of the sequence. 1. Append an integer *k**i* to the end of the sequence. (And hence the size of the sequence increases by 1) 1. Remove the last element of the sequence. So, the size of the sequence decreases by one. Note, that this operation can only be done if there are at least two elements in the sequence. After each operation, the cows would like to know the average of all the numbers in the sequence. Help them! Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of operations. The next *n* lines describe the operations. Each line will start with an integer *t**i* (1<=≤<=*t**i*<=≤<=3), denoting the type of the operation (see above). If *t**i*<==<=1, it will be followed by two integers *a**i*,<=*x**i* (|*x**i*|<=≤<=103; 1<=≤<=*a**i*). If *t**i*<==<=2, it will be followed by a single integer *k**i* (|*k**i*|<=≤<=103). If *t**i*<==<=3, it will not be followed by anything. It is guaranteed that all operations are correct (don't touch nonexistent elements) and that there will always be at least one element in the sequence. Output Specification: Output *n* lines each containing the average of the numbers in the sequence after the corresponding operation. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=6. Demo Input: ['5\n2 1\n3\n2 3\n2 1\n3\n', '6\n2 1\n1 2 20\n2 2\n1 2 -3\n3\n3\n'] Demo Output: ['0.500000\n0.000000\n1.500000\n1.333333\n1.500000\n', '0.500000\n20.500000\n14.333333\n12.333333\n17.500000\n17.000000\n'] Note: In the second sample, the sequence becomes <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fb5aaaa5dc516fe540cef52fd153768bfdb941c8.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python import sys,os,io import math,bisect,operator inf,mod = float('inf'),10**9+7 # sys.setrecursionlimit(10 ** 6) from itertools import groupby,accumulate from heapq import heapify,heappop,heappush from collections import deque,Counter,defaultdict input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__ Neo = lambda : list(map(int,input().split())) # test, = Neo() n, = Neo() arr, cnt, curr_len, curr_sum = [0] * (n+1), [0] * (n+1), 1, 0 for _ in range(n): s = input() if s[0] == '1': _, x, y = map(int, s.split()) curr_sum += x*y cnt[x-1] += y elif s[0] == '2': _, x = map(int, s.split()) curr_sum += x arr[curr_len] = x curr_len += 1 else: curr_len -= 1 curr_sum -= arr[curr_len] + cnt[curr_len] cnt[curr_len-1] += cnt[curr_len] cnt[curr_len] = 0 print('%.9f' % (curr_sum / curr_len)) ```
3
215
A
Bicycle Chain
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation. We know that the *i*-th star on the pedal axle has *a**i* (0<=&lt;<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=&lt;<=*b*1<=&lt;<=*b*2<=&lt;<=...<=&lt;<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value . Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears. In the problem, fraction denotes division in real numbers, that is, no rounding is performed.
The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing. The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing. It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces.
Print the number of "integer" gears with the maximum ratio among all "integer" gears.
[ "2\n4 5\n3\n12 13 15\n", "4\n1 2 3 4\n5\n10 11 12 13 14\n" ]
[ "2\n", "1\n" ]
In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
500
[ { "input": "2\n4 5\n3\n12 13 15", "output": "2" }, { "input": "4\n1 2 3 4\n5\n10 11 12 13 14", "output": "1" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "2\n1 2\n1\n1", "output": "1" }, { "input": "1\n1\n2\n1 2", "output": "1" }, { "input": "4\n3 7 11 13\n4\n51 119 187 221", "output": "4" }, { "input": "4\n2 3 4 5\n3\n1 2 3", "output": "2" }, { "input": "10\n6 12 13 20 48 53 74 92 96 97\n10\n1 21 32 36 47 54 69 75 95 97", "output": "1" }, { "input": "10\n5 9 10 14 15 17 19 22 24 26\n10\n2 11 17 19 21 22 24 25 27 28", "output": "1" }, { "input": "10\n24 53 56 126 354 432 442 740 795 856\n10\n273 438 494 619 689 711 894 947 954 958", "output": "1" }, { "input": "10\n3 4 6 7 8 10 14 16 19 20\n10\n3 4 5 7 8 10 15 16 18 20", "output": "1" }, { "input": "10\n1 6 8 14 15 17 25 27 34 39\n10\n1 8 16 17 19 22 32 39 44 50", "output": "1" }, { "input": "10\n5 21 22 23 25 32 35 36 38 39\n10\n3 7 8 9 18 21 23 24 36 38", "output": "4" }, { "input": "50\n5 8 13 16 19 20 21 22 24 27 28 29 30 32 33 34 35 43 45 48 50 51 54 55 58 59 60 61 62 65 70 71 72 76 78 79 80 81 83 84 85 87 89 91 92 94 97 98 99 100\n50\n2 3 5 6 7 10 15 16 17 20 23 28 29 30 31 34 36 37 40 42 45 46 48 54 55 56 58 59 61 62 69 70 71 72 75 76 78 82 84 85 86 87 88 89 90 91 92 97 99 100", "output": "1" }, { "input": "50\n3 5 6 8 9 11 13 19 21 23 24 32 34 35 42 50 51 52 56 58 59 69 70 72 73 75 76 77 78 80 83 88 90 95 96 100 101 102 108 109 113 119 124 135 138 141 142 143 145 150\n50\n5 8 10 11 18 19 23 30 35 43 51 53 55 58 63 68 69 71 77 78 79 82 83 86 88 89 91 92 93 94 96 102 103 105 109 110 113 114 116 123 124 126 127 132 133 135 136 137 142 149", "output": "1" }, { "input": "50\n6 16 24 25 27 33 36 40 51 60 62 65 71 72 75 77 85 87 91 93 98 102 103 106 117 118 120 121 122 123 125 131 134 136 143 148 155 157 160 161 164 166 170 178 184 187 188 192 194 197\n50\n5 9 17 23 27 34 40 44 47 59 62 70 81 82 87 88 89 90 98 101 102 110 113 114 115 116 119 122 124 128 130 137 138 140 144 150 152 155 159 164 166 169 171 175 185 186 187 189 190 193", "output": "1" }, { "input": "50\n14 22 23 31 32 35 48 63 76 79 88 97 101 102 103 104 106 113 114 115 116 126 136 138 145 152 155 156 162 170 172 173 179 180 182 203 208 210 212 222 226 229 231 232 235 237 245 246 247 248\n50\n2 5 6 16 28 44 45 46 54 55 56 63 72 80 87 93 94 96 97 100 101 103 132 135 140 160 164 165 167 168 173 180 182 185 186 192 194 198 199 202 203 211 213 216 217 227 232 233 236 245", "output": "1" }, { "input": "50\n14 19 33 35 38 41 51 54 69 70 71 73 76 80 84 94 102 104 105 106 107 113 121 128 131 168 180 181 187 191 195 201 205 207 210 216 220 238 249 251 263 271 272 275 281 283 285 286 291 294\n50\n2 3 5 20 21 35 38 40 43 48 49 52 55 64 73 77 82 97 109 113 119 121 125 132 137 139 145 146 149 180 182 197 203 229 234 241 244 251 264 271 274 281 284 285 287 291 292 293 294 298", "output": "1" }, { "input": "50\n2 4 5 16 18 19 22 23 25 26 34 44 48 54 67 79 80 84 92 110 116 133 138 154 163 171 174 202 205 218 228 229 234 245 247 249 250 263 270 272 274 275 277 283 289 310 312 334 339 342\n50\n1 5 17 18 25 37 46 47 48 59 67 75 80 83 84 107 115 122 137 141 159 162 175 180 184 204 221 224 240 243 247 248 249 258 259 260 264 266 269 271 274 293 294 306 329 330 334 335 342 350", "output": "1" }, { "input": "50\n6 9 11 21 28 39 42 56 60 63 81 88 91 95 105 110 117 125 149 165 174 176 185 189 193 196 205 231 233 268 278 279 281 286 289 292 298 303 305 306 334 342 350 353 361 371 372 375 376 378\n50\n6 17 20 43 45 52 58 59 82 83 88 102 111 118 121 131 145 173 190 191 200 216 224 225 232 235 243 256 260 271 290 291 321 322 323 329 331 333 334 341 343 348 351 354 356 360 366 379 387 388", "output": "1" }, { "input": "10\n17 239 443 467 661 1069 1823 2333 3767 4201\n20\n51 83 97 457 593 717 997 1329 1401 1459 1471 1983 2371 2539 3207 3251 3329 5469 6637 6999", "output": "8" }, { "input": "20\n179 359 401 467 521 601 919 941 1103 1279 1709 1913 1949 2003 2099 2143 2179 2213 2399 4673\n20\n151 181 191 251 421 967 1109 1181 1249 1447 1471 1553 1619 2327 2551 2791 3049 3727 6071 7813", "output": "3" }, { "input": "20\n79 113 151 709 809 983 1291 1399 1409 1429 2377 2659 2671 2897 3217 3511 3557 3797 3823 4363\n10\n19 101 659 797 1027 1963 2129 2971 3299 9217", "output": "3" }, { "input": "30\n19 47 109 179 307 331 389 401 461 509 547 569 617 853 883 1249 1361 1381 1511 1723 1741 1783 2459 2531 2621 3533 3821 4091 5557 6217\n20\n401 443 563 941 967 997 1535 1567 1655 1747 1787 1945 1999 2251 2305 2543 2735 4415 6245 7555", "output": "8" }, { "input": "30\n3 43 97 179 257 313 353 359 367 389 397 457 547 599 601 647 1013 1021 1063 1433 1481 1531 1669 3181 3373 3559 3769 4157 4549 5197\n50\n13 15 17 19 29 79 113 193 197 199 215 223 271 293 359 485 487 569 601 683 895 919 941 967 1283 1285 1289 1549 1565 1765 1795 1835 1907 1931 1945 1985 1993 2285 2731 2735 2995 3257 4049 4139 5105 5315 7165 7405 7655 8345", "output": "20" }, { "input": "50\n11 17 23 53 59 109 137 149 173 251 353 379 419 421 439 503 593 607 661 773 821 877 941 997 1061 1117 1153 1229 1289 1297 1321 1609 1747 2311 2389 2543 2693 3041 3083 3137 3181 3209 3331 3373 3617 3767 4201 4409 4931 6379\n50\n55 59 67 73 85 89 101 115 211 263 295 353 545 599 607 685 739 745 997 1031 1255 1493 1523 1667 1709 1895 1949 2161 2195 2965 3019 3035 3305 3361 3373 3673 3739 3865 3881 4231 4253 4385 4985 5305 5585 5765 6145 6445 8045 8735", "output": "23" }, { "input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782", "output": "3" }, { "input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428", "output": "4" }, { "input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959", "output": "5" }, { "input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664", "output": "24" }, { "input": "5\n33 78 146 3055 4268\n5\n2211 2584 5226 9402 9782", "output": "3" }, { "input": "5\n35 48 52 86 8001\n10\n332 3430 3554 4704 4860 5096 6215 7583 8228 8428", "output": "4" }, { "input": "10\n97 184 207 228 269 2084 4450 6396 7214 9457\n16\n338 1179 1284 1545 1570 2444 3167 3395 3397 5550 6440 7245 7804 7980 9415 9959", "output": "5" }, { "input": "30\n25 30 41 57 58 62 70 72 76 79 84 85 88 91 98 101 104 109 119 129 136 139 148 151 926 1372 3093 3936 5423 7350\n25\n1600 1920 2624 3648 3712 3968 4480 4608 4864 5056 5376 5440 5632 5824 6272 6464 6656 6934 6976 7616 8256 8704 8896 9472 9664", "output": "24" }, { "input": "47\n66 262 357 457 513 530 538 540 592 691 707 979 1015 1242 1246 1667 1823 1886 1963 2133 2649 2679 2916 2949 3413 3523 3699 3958 4393 4922 5233 5306 5799 6036 6302 6629 7208 7282 7315 7822 7833 7927 8068 8150 8870 8962 9987\n39\n167 199 360 528 1515 1643 1986 1988 2154 2397 2856 3552 3656 3784 3980 4096 4104 4240 4320 4736 4951 5266 5656 5849 5850 6169 6517 6875 7244 7339 7689 7832 8120 8716 9503 9509 9933 9936 9968", "output": "12" }, { "input": "1\n94\n50\n423 446 485 1214 1468 1507 1853 1930 1999 2258 2271 2285 2425 2543 2715 2743 2992 3196 4074 4108 4448 4475 4652 5057 5250 5312 5356 5375 5731 5986 6298 6501 6521 7146 7255 7276 7332 7481 7998 8141 8413 8665 8908 9221 9336 9491 9504 9677 9693 9706", "output": "1" }, { "input": "50\n51 67 75 186 194 355 512 561 720 876 1077 1221 1503 1820 2153 2385 2568 2608 2937 2969 3271 3311 3481 4081 4093 4171 4255 4256 4829 5020 5192 5636 5817 6156 6712 6717 7153 7436 7608 7612 7866 7988 8264 8293 8867 9311 9879 9882 9889 9908\n1\n5394", "output": "1" }, { "input": "50\n26 367 495 585 675 789 855 1185 1312 1606 2037 2241 2587 2612 2628 2807 2873 2924 3774 4067 4376 4668 4902 5001 5082 5100 5104 5209 5345 5515 5661 5777 5902 5907 6155 6323 6675 6791 7503 8159 8207 8254 8740 8848 8855 8933 9069 9164 9171 9586\n5\n1557 6246 7545 8074 8284", "output": "1" }, { "input": "5\n25 58 91 110 2658\n50\n21 372 909 1172 1517 1554 1797 1802 1843 1977 2006 2025 2137 2225 2317 2507 2645 2754 2919 3024 3202 3212 3267 3852 4374 4487 4553 4668 4883 4911 4916 5016 5021 5068 5104 5162 5683 5856 6374 6871 7333 7531 8099 8135 8173 8215 8462 8776 9433 9790", "output": "4" }, { "input": "45\n37 48 56 59 69 70 79 83 85 86 99 114 131 134 135 145 156 250 1739 1947 2116 2315 2449 3104 3666 4008 4406 4723 4829 5345 5836 6262 6296 6870 7065 7110 7130 7510 7595 8092 8442 8574 9032 9091 9355\n50\n343 846 893 1110 1651 1837 2162 2331 2596 3012 3024 3131 3294 3394 3528 3717 3997 4125 4347 4410 4581 4977 5030 5070 5119 5229 5355 5413 5418 5474 5763 5940 6151 6161 6164 6237 6506 6519 6783 7182 7413 7534 8069 8253 8442 8505 9135 9308 9828 9902", "output": "17" }, { "input": "50\n17 20 22 28 36 38 46 47 48 50 52 57 58 62 63 69 70 74 75 78 79 81 82 86 87 90 93 95 103 202 292 442 1756 1769 2208 2311 2799 2957 3483 4280 4324 4932 5109 5204 6225 6354 6561 7136 8754 9670\n40\n68 214 957 1649 1940 2078 2134 2716 3492 3686 4462 4559 4656 4756 4850 5044 5490 5529 5592 5626 6014 6111 6693 6790 7178 7275 7566 7663 7702 7857 7954 8342 8511 8730 8957 9021 9215 9377 9445 9991", "output": "28" }, { "input": "39\n10 13 21 25 36 38 47 48 58 64 68 69 73 79 86 972 2012 2215 2267 2503 3717 3945 4197 4800 5266 6169 6612 6824 7023 7322 7582 7766 8381 8626 8879 9079 9088 9838 9968\n50\n432 877 970 1152 1202 1223 1261 1435 1454 1578 1843 1907 2003 2037 2183 2195 2215 2425 3065 3492 3615 3637 3686 3946 4189 4415 4559 4656 4665 4707 4886 4887 5626 5703 5955 6208 6521 6581 6596 6693 6985 7013 7081 7343 7663 8332 8342 8637 9207 9862", "output": "15" }, { "input": "50\n7 144 269 339 395 505 625 688 709 950 1102 1152 1350 1381 1641 1830 1977 1999 2093 2180 2718 3308 3574 4168 4232 4259 4393 4689 4982 5154 5476 5581 5635 5721 6159 6302 6741 7010 7152 7315 7417 7482 8116 8239 8640 9347 9395 9614 9661 9822\n20\n84 162 292 1728 1866 2088 3228 3470 4068 5318 5470 6060 6380 6929 7500 8256 8399 8467 8508 9691", "output": "8" }, { "input": "50\n159 880 1070 1139 1358 1608 1691 1841 2073 2171 2213 2597 2692 2759 2879 2931 3173 3217 3441 4201 4878 5106 5129 5253 5395 5647 5968 6019 6130 6276 6286 6330 6409 6728 7488 7713 7765 7828 7899 8064 8264 8457 8483 8685 8900 8946 8965 9133 9187 9638\n45\n57 159 1070 1139 1391 1608 1691 1841 2171 2213 2692 2759 2931 3173 3217 3441 4201 4878 5106 5129 5253 5647 5968 6130 6276 6286 6409 7488 7694 7713 7765 7828 7899 8003 8064 8081 8244 8264 8685 8900 8946 8965 9133 9638 9673", "output": "38" }, { "input": "3\n3 4 5\n3\n6 20 25", "output": "2" }, { "input": "4\n2 3 5 8\n4\n2 6 8 10", "output": "1" }, { "input": "4\n3 5 7 11\n4\n3 5 7 22", "output": "1" }, { "input": "2\n2 3\n3\n20 30 50", "output": "1" }, { "input": "3\n1 2 3\n4\n2 4 6 49", "output": "1" }, { "input": "2\n4 5\n3\n12 15 20", "output": "1" }, { "input": "3\n2 5 7\n3\n4 5 7", "output": "1" }, { "input": "3\n3 5 8\n3\n6 8 10", "output": "2" }, { "input": "2\n2 3\n4\n4 6 9 33", "output": "1" }, { "input": "2\n2 3\n4\n4 6 21 40", "output": "1" }, { "input": "3\n4 9 10\n3\n8 9 10", "output": "1" }, { "input": "5\n1 5 6 9 51\n5\n5 12 18 27 10000", "output": "1" }, { "input": "13\n1 2 3 4 5 6 7 8 9 10 11 12 13\n1\n14", "output": "1" } ]
1,593,075,882
2,147,483,647
Python 3
OK
TESTS
57
248
6,963,200
# https://codeforces.com/problemset/problem/215/A """ A bicycle chain consists of two parts n stars attached to the pedal axle m stars attached to rear wheel axle The ith star on the pedal axle has a_i teeth The jth star on the rear wheel axle has b_j teeth a and b are strictly increasing Any pair (i, j) is called a gear Gear ratio is b_j / a_i Find number of gears with max integer gear ratio Just check all pairs """ import sys n = int(sys.stdin.readline()) a = list(map(int, sys.stdin.readline().split())) m = int(sys.stdin.readline()) b = list(map(int, sys.stdin.readline().split())) gear_ratios = [] for i in range(n): for j in range(m): gear_ratio = b[j] / a[i] if gear_ratio % 1 == 0: gear_ratios.append(gear_ratio) answer = gear_ratios.count(max(gear_ratios)) sys.stdout.write(str(answer))
Title: Bicycle Chain Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya's bicycle chain drive consists of two parts: *n* stars are attached to the pedal axle, *m* stars are attached to the rear wheel axle. The chain helps to rotate the rear wheel by transmitting the pedal rotation. We know that the *i*-th star on the pedal axle has *a**i* (0<=&lt;<=*a*1<=&lt;<=*a*2<=&lt;<=...<=&lt;<=*a**n*) teeth, and the *j*-th star on the rear wheel axle has *b**j* (0<=&lt;<=*b*1<=&lt;<=*b*2<=&lt;<=...<=&lt;<=*b**m*) teeth. Any pair (*i*,<=*j*) (1<=≤<=*i*<=≤<=*n*; 1<=≤<=*j*<=≤<=*m*) is called a gear and sets the indexes of stars to which the chain is currently attached. Gear (*i*,<=*j*) has a gear ratio, equal to the value . Since Vasya likes integers, he wants to find such gears (*i*,<=*j*), that their ratios are integers. On the other hand, Vasya likes fast driving, so among all "integer" gears (*i*,<=*j*) he wants to choose a gear with the maximum ratio. Help him to find the number of such gears. In the problem, fraction denotes division in real numbers, that is, no rounding is performed. Input Specification: The first input line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stars on the bicycle's pedal axle. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104) in the order of strict increasing. The third input line contains integer *m* (1<=≤<=*m*<=≤<=50) — the number of stars on the rear wheel axle. The fourth line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=104) in the order of strict increasing. It is guaranteed that there exists at least one gear (*i*,<=*j*), that its gear ratio is an integer. The numbers on the lines are separated by spaces. Output Specification: Print the number of "integer" gears with the maximum ratio among all "integer" gears. Demo Input: ['2\n4 5\n3\n12 13 15\n', '4\n1 2 3 4\n5\n10 11 12 13 14\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample the maximum "integer" gear ratio equals 3. There are two gears that have such gear ratio. For one of them *a*<sub class="lower-index">1</sub> = 4, *b*<sub class="lower-index">1</sub> = 12, and for the other *a*<sub class="lower-index">2</sub> = 5, *b*<sub class="lower-index">3</sub> = 15.
```python # https://codeforces.com/problemset/problem/215/A """ A bicycle chain consists of two parts n stars attached to the pedal axle m stars attached to rear wheel axle The ith star on the pedal axle has a_i teeth The jth star on the rear wheel axle has b_j teeth a and b are strictly increasing Any pair (i, j) is called a gear Gear ratio is b_j / a_i Find number of gears with max integer gear ratio Just check all pairs """ import sys n = int(sys.stdin.readline()) a = list(map(int, sys.stdin.readline().split())) m = int(sys.stdin.readline()) b = list(map(int, sys.stdin.readline().split())) gear_ratios = [] for i in range(n): for j in range(m): gear_ratio = b[j] / a[i] if gear_ratio % 1 == 0: gear_ratios.append(gear_ratio) answer = gear_ratios.count(max(gear_ratios)) sys.stdout.write(str(answer)) ```
3
344
A
Magnets
PROGRAMMING
800
[ "implementation" ]
null
null
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
On the single line of the output print the number of groups of magnets.
[ "6\n10\n10\n10\n01\n10\n10\n", "4\n01\n01\n10\n10\n" ]
[ "3\n", "2\n" ]
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
500
[ { "input": "6\n10\n10\n10\n01\n10\n10", "output": "3" }, { "input": "4\n01\n01\n10\n10", "output": "2" }, { "input": "1\n10", "output": "1" }, { "input": "2\n01\n10", "output": "2" }, { "input": "2\n10\n10", "output": "1" }, { "input": "3\n10\n01\n10", "output": "3" }, { "input": "1\n01", "output": "1" }, { "input": "2\n01\n01", "output": "1" }, { "input": "2\n10\n01", "output": "2" }, { "input": "3\n01\n01\n01", "output": "1" }, { "input": "3\n10\n10\n01", "output": "2" }, { "input": "3\n01\n10\n10", "output": "2" }, { "input": "115\n10\n10\n10\n10\n01\n01\n10\n10\n10\n01\n01\n10\n01\n01\n10\n10\n10\n01\n10\n01\n10\n10\n01\n01\n10\n10\n10\n10\n01\n10\n01\n01\n10\n10\n10\n10\n01\n10\n10\n10\n01\n10\n01\n10\n10\n10\n10\n01\n01\n01\n10\n10\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n01\n10\n01\n10\n10\n01\n01\n01\n10\n01\n01\n10\n10\n01\n01\n01\n01\n01\n10\n01\n10\n01\n10\n01\n01\n01\n10\n01\n10\n10\n01\n10\n10\n01\n01\n01\n10\n10\n10\n10\n10\n10\n10\n10", "output": "55" } ]
1,691,893,904
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
62
0
n = int(input()) for i in range(n): magnets = int(input()) count = 0 if "10" in magents: count += 1 print(count)
Title: Magnets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position. Output Specification: On the single line of the output print the number of groups of magnets. Demo Input: ['6\n10\n10\n10\n01\n10\n10\n', '4\n01\n01\n10\n10\n'] Demo Output: ['3\n', '2\n'] Note: The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
```python n = int(input()) for i in range(n): magnets = int(input()) count = 0 if "10" in magents: count += 1 print(count) ```
-1
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,664,805,693
2,147,483,647
Python 3
OK
TESTS
20
31
0
n,m,a = map(int,input().split()) if n % a == 0: x1 = n//a else: x1 = n//a +1 if m % a == 0: x2 = m//a else: x2 = m//a +1 x = x1*x2 print(x)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python n,m,a = map(int,input().split()) if n % a == 0: x1 = n//a else: x1 = n//a +1 if m % a == 0: x2 = m//a else: x2 = m//a +1 x = x1*x2 print(x) ```
3.9845
609
A
USB Flash Drives
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes. Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives.
The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives. The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file. Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes. It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*.
Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives.
[ "3\n5\n2\n1\n3\n", "3\n6\n2\n3\n2\n", "2\n5\n5\n10\n" ]
[ "2\n", "3\n", "1\n" ]
In the first example Sean needs only two USB flash drives — the first and the third. In the second example Sean needs all three USB flash drives. In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
0
[ { "input": "3\n5\n2\n1\n3", "output": "2" }, { "input": "3\n6\n2\n3\n2", "output": "3" }, { "input": "2\n5\n5\n10", "output": "1" }, { "input": "5\n16\n8\n1\n3\n4\n9", "output": "2" }, { "input": "10\n121\n10\n37\n74\n56\n42\n39\n6\n68\n8\n100", "output": "2" }, { "input": "12\n4773\n325\n377\n192\n780\n881\n816\n839\n223\n215\n125\n952\n8", "output": "7" }, { "input": "15\n7758\n182\n272\n763\n910\n24\n359\n583\n890\n735\n819\n66\n992\n440\n496\n227", "output": "15" }, { "input": "30\n70\n6\n2\n10\n4\n7\n10\n5\n1\n8\n10\n4\n3\n5\n9\n3\n6\n6\n4\n2\n6\n5\n10\n1\n9\n7\n2\n1\n10\n7\n5", "output": "8" }, { "input": "40\n15705\n702\n722\n105\n873\n417\n477\n794\n300\n869\n496\n572\n232\n456\n298\n473\n584\n486\n713\n934\n121\n303\n956\n934\n840\n358\n201\n861\n497\n131\n312\n957\n96\n914\n509\n60\n300\n722\n658\n820\n103", "output": "21" }, { "input": "50\n18239\n300\n151\n770\n9\n200\n52\n247\n753\n523\n263\n744\n463\n540\n244\n608\n569\n771\n32\n425\n777\n624\n761\n628\n124\n405\n396\n726\n626\n679\n237\n229\n49\n512\n18\n671\n290\n768\n632\n739\n18\n136\n413\n117\n83\n413\n452\n767\n664\n203\n404", "output": "31" }, { "input": "70\n149\n5\n3\n3\n4\n6\n1\n2\n9\n8\n3\n1\n8\n4\n4\n3\n6\n10\n7\n1\n10\n8\n4\n9\n3\n8\n3\n2\n5\n1\n8\n6\n9\n10\n4\n8\n6\n9\n9\n9\n3\n4\n2\n2\n5\n8\n9\n1\n10\n3\n4\n3\n1\n9\n3\n5\n1\n3\n7\n6\n9\n8\n9\n1\n7\n4\n4\n2\n3\n5\n7", "output": "17" }, { "input": "70\n2731\n26\n75\n86\n94\n37\n25\n32\n35\n92\n1\n51\n73\n53\n66\n16\n80\n15\n81\n100\n87\n55\n48\n30\n71\n39\n87\n77\n25\n70\n22\n75\n23\n97\n16\n75\n95\n61\n61\n28\n10\n78\n54\n80\n51\n25\n24\n90\n58\n4\n77\n40\n54\n53\n47\n62\n30\n38\n71\n97\n71\n60\n58\n1\n21\n15\n55\n99\n34\n88\n99", "output": "35" }, { "input": "70\n28625\n34\n132\n181\n232\n593\n413\n862\n887\n808\n18\n35\n89\n356\n640\n339\n280\n975\n82\n345\n398\n948\n372\n91\n755\n75\n153\n948\n603\n35\n694\n722\n293\n363\n884\n264\n813\n175\n169\n646\n138\n449\n488\n828\n417\n134\n84\n763\n288\n845\n801\n556\n972\n332\n564\n934\n699\n842\n942\n644\n203\n406\n140\n37\n9\n423\n546\n675\n491\n113\n587", "output": "45" }, { "input": "80\n248\n3\n9\n4\n5\n10\n7\n2\n6\n2\n2\n8\n2\n1\n3\n7\n9\n2\n8\n4\n4\n8\n5\n4\n4\n10\n2\n1\n4\n8\n4\n10\n1\n2\n10\n2\n3\n3\n1\n1\n8\n9\n5\n10\n2\n8\n10\n5\n3\n6\n1\n7\n8\n9\n10\n5\n10\n10\n2\n10\n1\n2\n4\n1\n9\n4\n7\n10\n8\n5\n8\n1\n4\n2\n2\n3\n9\n9\n9\n10\n6", "output": "27" }, { "input": "80\n2993\n18\n14\n73\n38\n14\n73\n77\n18\n81\n6\n96\n65\n77\n86\n76\n8\n16\n81\n83\n83\n34\n69\n58\n15\n19\n1\n16\n57\n95\n35\n5\n49\n8\n15\n47\n84\n99\n94\n93\n55\n43\n47\n51\n61\n57\n13\n7\n92\n14\n4\n83\n100\n60\n75\n41\n95\n74\n40\n1\n4\n95\n68\n59\n65\n15\n15\n75\n85\n46\n77\n26\n30\n51\n64\n75\n40\n22\n88\n68\n24", "output": "38" }, { "input": "80\n37947\n117\n569\n702\n272\n573\n629\n90\n337\n673\n589\n576\n205\n11\n284\n645\n719\n777\n271\n567\n466\n251\n402\n3\n97\n288\n699\n208\n173\n530\n782\n266\n395\n957\n159\n463\n43\n316\n603\n197\n386\n132\n799\n778\n905\n784\n71\n851\n963\n883\n705\n454\n275\n425\n727\n223\n4\n870\n833\n431\n463\n85\n505\n800\n41\n954\n981\n242\n578\n336\n48\n858\n702\n349\n929\n646\n528\n993\n506\n274\n227", "output": "70" }, { "input": "90\n413\n5\n8\n10\n7\n5\n7\n5\n7\n1\n7\n8\n4\n3\n9\n4\n1\n10\n3\n1\n10\n9\n3\n1\n8\n4\n7\n5\n2\n9\n3\n10\n10\n3\n6\n3\n3\n10\n7\n5\n1\n1\n2\n4\n8\n2\n5\n5\n3\n9\n5\n5\n3\n10\n2\n3\n8\n5\n9\n1\n3\n6\n5\n9\n2\n3\n7\n10\n3\n4\n4\n1\n5\n9\n2\n6\n9\n1\n1\n9\n9\n7\n7\n7\n8\n4\n5\n3\n4\n6\n9", "output": "59" }, { "input": "90\n4226\n33\n43\n83\n46\n75\n14\n88\n36\n8\n25\n47\n4\n96\n19\n33\n49\n65\n17\n59\n72\n1\n55\n94\n92\n27\n33\n39\n14\n62\n79\n12\n89\n22\n86\n13\n19\n77\n53\n96\n74\n24\n25\n17\n64\n71\n81\n87\n52\n72\n55\n49\n74\n36\n65\n86\n91\n33\n61\n97\n38\n87\n61\n14\n73\n95\n43\n67\n42\n67\n22\n12\n62\n32\n96\n24\n49\n82\n46\n89\n36\n75\n91\n11\n10\n9\n33\n86\n28\n75\n39", "output": "64" }, { "input": "90\n40579\n448\n977\n607\n745\n268\n826\n479\n59\n330\n609\n43\n301\n970\n726\n172\n632\n600\n181\n712\n195\n491\n312\n849\n722\n679\n682\n780\n131\n404\n293\n387\n567\n660\n54\n339\n111\n833\n612\n911\n869\n356\n884\n635\n126\n639\n712\n473\n663\n773\n435\n32\n973\n484\n662\n464\n699\n274\n919\n95\n904\n253\n589\n543\n454\n250\n349\n237\n829\n511\n536\n36\n45\n152\n626\n384\n199\n877\n941\n84\n781\n115\n20\n52\n726\n751\n920\n291\n571\n6\n199", "output": "64" }, { "input": "100\n66\n7\n9\n10\n5\n2\n8\n6\n5\n4\n10\n10\n6\n5\n2\n2\n1\n1\n5\n8\n7\n8\n10\n5\n6\n6\n5\n9\n9\n6\n3\n8\n7\n10\n5\n9\n6\n7\n3\n5\n8\n6\n8\n9\n1\n1\n1\n2\n4\n5\n5\n1\n1\n2\n6\n7\n1\n5\n8\n7\n2\n1\n7\n10\n9\n10\n2\n4\n10\n4\n10\n10\n5\n3\n9\n1\n2\n1\n10\n5\n1\n7\n4\n4\n5\n7\n6\n10\n4\n7\n3\n4\n3\n6\n2\n5\n2\n4\n9\n5\n3", "output": "7" }, { "input": "100\n4862\n20\n47\n85\n47\n76\n38\n48\n93\n91\n81\n31\n51\n23\n60\n59\n3\n73\n72\n57\n67\n54\n9\n42\n5\n32\n46\n72\n79\n95\n61\n79\n88\n33\n52\n97\n10\n3\n20\n79\n82\n93\n90\n38\n80\n18\n21\n43\n60\n73\n34\n75\n65\n10\n84\n100\n29\n94\n56\n22\n59\n95\n46\n22\n57\n69\n67\n90\n11\n10\n61\n27\n2\n48\n69\n86\n91\n69\n76\n36\n71\n18\n54\n90\n74\n69\n50\n46\n8\n5\n41\n96\n5\n14\n55\n85\n39\n6\n79\n75\n87", "output": "70" }, { "input": "100\n45570\n14\n881\n678\n687\n993\n413\n760\n451\n426\n787\n503\n343\n234\n530\n294\n725\n941\n524\n574\n441\n798\n399\n360\n609\n376\n525\n229\n995\n478\n347\n47\n23\n468\n525\n749\n601\n235\n89\n995\n489\n1\n239\n415\n122\n671\n128\n357\n886\n401\n964\n212\n968\n210\n130\n871\n360\n661\n844\n414\n187\n21\n824\n266\n713\n126\n496\n916\n37\n193\n755\n894\n641\n300\n170\n176\n383\n488\n627\n61\n897\n33\n242\n419\n881\n698\n107\n391\n418\n774\n905\n87\n5\n896\n835\n318\n373\n916\n393\n91\n460", "output": "78" }, { "input": "100\n522\n1\n5\n2\n4\n2\n6\n3\n4\n2\n10\n10\n6\n7\n9\n7\n1\n7\n2\n5\n3\n1\n5\n2\n3\n5\n1\n7\n10\n10\n4\n4\n10\n9\n10\n6\n2\n8\n2\n6\n10\n9\n2\n7\n5\n9\n4\n6\n10\n7\n3\n1\n1\n9\n5\n10\n9\n2\n8\n3\n7\n5\n4\n7\n5\n9\n10\n6\n2\n9\n2\n5\n10\n1\n7\n7\n10\n5\n6\n2\n9\n4\n7\n10\n10\n8\n3\n4\n9\n3\n6\n9\n10\n2\n9\n9\n3\n4\n1\n10\n2", "output": "74" }, { "input": "100\n32294\n414\n116\n131\n649\n130\n476\n630\n605\n213\n117\n757\n42\n109\n85\n127\n635\n629\n994\n410\n764\n204\n161\n231\n577\n116\n936\n537\n565\n571\n317\n722\n819\n229\n284\n487\n649\n304\n628\n727\n816\n854\n91\n111\n549\n87\n374\n417\n3\n868\n882\n168\n743\n77\n534\n781\n75\n956\n910\n734\n507\n568\n802\n946\n891\n659\n116\n678\n375\n380\n430\n627\n873\n350\n930\n285\n6\n183\n96\n517\n81\n794\n235\n360\n551\n6\n28\n799\n226\n996\n894\n981\n551\n60\n40\n460\n479\n161\n318\n952\n433", "output": "42" }, { "input": "100\n178\n71\n23\n84\n98\n8\n14\n4\n42\n56\n83\n87\n28\n22\n32\n50\n5\n96\n90\n1\n59\n74\n56\n96\n77\n88\n71\n38\n62\n36\n85\n1\n97\n98\n98\n32\n99\n42\n6\n81\n20\n49\n57\n71\n66\n9\n45\n41\n29\n28\n32\n68\n38\n29\n35\n29\n19\n27\n76\n85\n68\n68\n41\n32\n78\n72\n38\n19\n55\n83\n83\n25\n46\n62\n48\n26\n53\n14\n39\n31\n94\n84\n22\n39\n34\n96\n63\n37\n42\n6\n78\n76\n64\n16\n26\n6\n79\n53\n24\n29\n63", "output": "2" }, { "input": "100\n885\n226\n266\n321\n72\n719\n29\n121\n533\n85\n672\n225\n830\n783\n822\n30\n791\n618\n166\n487\n922\n434\n814\n473\n5\n741\n947\n910\n305\n998\n49\n945\n588\n868\n809\n803\n168\n280\n614\n434\n634\n538\n591\n437\n540\n445\n313\n177\n171\n799\n778\n55\n617\n554\n583\n611\n12\n94\n599\n182\n765\n556\n965\n542\n35\n460\n177\n313\n485\n744\n384\n21\n52\n879\n792\n411\n614\n811\n565\n695\n428\n587\n631\n794\n461\n258\n193\n696\n936\n646\n756\n267\n55\n690\n730\n742\n734\n988\n235\n762\n440", "output": "1" }, { "input": "100\n29\n9\n2\n10\n8\n6\n7\n7\n3\n3\n10\n4\n5\n2\n5\n1\n6\n3\n2\n5\n10\n10\n9\n1\n4\n5\n2\n2\n3\n1\n2\n2\n9\n6\n9\n7\n8\n8\n1\n5\n5\n3\n1\n5\n6\n1\n9\n2\n3\n8\n10\n8\n3\n2\n7\n1\n2\n1\n2\n8\n10\n5\n2\n3\n1\n10\n7\n1\n7\n4\n9\n6\n6\n4\n7\n1\n2\n7\n7\n9\n9\n7\n10\n4\n10\n8\n2\n1\n5\n5\n10\n5\n8\n1\n5\n6\n5\n1\n5\n6\n8", "output": "3" }, { "input": "100\n644\n94\n69\n43\n36\n54\n93\n30\n74\n56\n95\n70\n49\n11\n36\n57\n30\n59\n3\n52\n59\n90\n82\n39\n67\n32\n8\n80\n64\n8\n65\n51\n48\n89\n90\n35\n4\n54\n66\n96\n68\n90\n30\n4\n13\n97\n41\n90\n85\n17\n45\n94\n31\n58\n4\n39\n76\n95\n92\n59\n67\n46\n96\n55\n82\n64\n20\n20\n83\n46\n37\n15\n60\n37\n79\n45\n47\n63\n73\n76\n31\n52\n36\n32\n49\n26\n61\n91\n31\n25\n62\n90\n65\n65\n5\n94\n7\n15\n97\n88\n68", "output": "7" }, { "input": "100\n1756\n98\n229\n158\n281\n16\n169\n149\n239\n235\n182\n147\n215\n49\n270\n194\n242\n295\n289\n249\n19\n12\n144\n157\n92\n270\n122\n212\n97\n152\n14\n42\n12\n198\n98\n295\n154\n229\n191\n294\n5\n156\n43\n185\n184\n20\n125\n23\n10\n257\n244\n264\n79\n46\n277\n13\n22\n97\n212\n77\n293\n20\n51\n17\n109\n37\n68\n117\n51\n248\n10\n149\n179\n192\n239\n161\n13\n173\n297\n73\n43\n109\n288\n198\n81\n70\n254\n187\n277\n1\n295\n113\n95\n291\n293\n119\n205\n191\n37\n34\n116", "output": "6" }, { "input": "100\n20562\n721\n452\n11\n703\n376\n183\n197\n203\n406\n642\n346\n446\n256\n760\n201\n360\n702\n707\n388\n779\n653\n610\n497\n768\n670\n134\n780\n306\n661\n180\n259\n256\n362\n6\n121\n415\n747\n170\n67\n439\n728\n193\n622\n481\n38\n225\n343\n303\n253\n436\n305\n68\n794\n247\n291\n600\n750\n188\n199\n757\n28\n776\n749\n253\n351\n53\n629\n129\n578\n209\n89\n651\n262\n638\n353\n469\n31\n144\n460\n176\n535\n562\n366\n639\n234\n577\n364\n761\n617\n303\n450\n778\n311\n289\n221\n274\n239\n626\n194\n36", "output": "30" }, { "input": "100\n32630\n548\n21\n756\n138\n56\n719\n97\n86\n599\n531\n464\n137\n737\n239\n626\n179\n170\n271\n335\n178\n298\n597\n616\n104\n190\n216\n333\n606\n621\n310\n70\n286\n593\n655\n472\n556\n77\n625\n744\n395\n487\n762\n316\n469\n258\n475\n596\n651\n180\n737\n101\n511\n708\n163\n713\n475\n557\n649\n705\n583\n97\n447\n119\n91\n372\n194\n394\n667\n384\n635\n611\n746\n758\n613\n54\n508\n405\n188\n570\n254\n28\n599\n767\n115\n737\n194\n148\n686\n705\n236\n762\n613\n770\n633\n401\n773\n448\n274\n141\n718", "output": "52" }, { "input": "1\n1\n1", "output": "1" } ]
1,648,049,043
243
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> #define int long long #define double long double using vi = std::vector<int>; using vvi = std::vector<vi>; using vvvi = std::vector<vvi>; using vvvvi = std::vector<vvvi>; using vb = std::vector<bool>; using vvb = std::vector<vb>; using pii = std::pair<int, int>; using vpii = std::vector<pii>; using vvpii = std::vector<vpii>; using mii = std::map<int, int>; using ull = unsigned long long; using vs = std::vector<std::string>; using namespace std; constexpr int MOD = 1e9 + 7, P = 179, maxn = 300 + 3; int32_t main() { ios_base::sync_with_stdio(false); cin.tie(0), cout.tie(0), cerr.tie(0); int n, m; cin >> n >> m; vi a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } sort(a.begin(), a.end()); int ans = 0; int cnt = 0; for (int i = n - 1; ans < m && i > -1; --i) { ans += a[i]; ++cnt; } cout << cnt << endl; } /* 1 6 )((()( */
Title: USB Flash Drives Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sean is trying to save a large file to a USB flash drive. He has *n* USB flash drives with capacities equal to *a*1,<=*a*2,<=...,<=*a**n* megabytes. The file size is equal to *m* megabytes. Find the minimum number of USB flash drives needed to write Sean's file, if he can split the file between drives. Input Specification: The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of USB flash drives. The second line contains positive integer *m* (1<=≤<=*m*<=≤<=105) — the size of Sean's file. Each of the next *n* lines contains positive integer *a**i* (1<=≤<=*a**i*<=≤<=1000) — the sizes of USB flash drives in megabytes. It is guaranteed that the answer exists, i. e. the sum of all *a**i* is not less than *m*. Output Specification: Print the minimum number of USB flash drives to write Sean's file, if he can split the file between drives. Demo Input: ['3\n5\n2\n1\n3\n', '3\n6\n2\n3\n2\n', '2\n5\n5\n10\n'] Demo Output: ['2\n', '3\n', '1\n'] Note: In the first example Sean needs only two USB flash drives — the first and the third. In the second example Sean needs all three USB flash drives. In the third example Sean needs only one USB flash drive and he can use any available USB flash drive — the first or the second.
```python #include <bits/stdc++.h> #define int long long #define double long double using vi = std::vector<int>; using vvi = std::vector<vi>; using vvvi = std::vector<vvi>; using vvvvi = std::vector<vvvi>; using vb = std::vector<bool>; using vvb = std::vector<vb>; using pii = std::pair<int, int>; using vpii = std::vector<pii>; using vvpii = std::vector<vpii>; using mii = std::map<int, int>; using ull = unsigned long long; using vs = std::vector<std::string>; using namespace std; constexpr int MOD = 1e9 + 7, P = 179, maxn = 300 + 3; int32_t main() { ios_base::sync_with_stdio(false); cin.tie(0), cout.tie(0), cerr.tie(0); int n, m; cin >> n >> m; vi a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } sort(a.begin(), a.end()); int ans = 0; int cnt = 0; for (int i = n - 1; ans < m && i > -1; --i) { ans += a[i]; ++cnt; } cout << cnt << endl; } /* 1 6 )((()( */ ```
-1
691
D
Swaps in Permutation
PROGRAMMING
1,700
[ "dfs and similar", "dsu", "math" ]
null
null
You are given a permutation of the numbers 1,<=2,<=...,<=*n* and *m* pairs of positions (*a**j*,<=*b**j*). At each step you can choose a pair from the given positions and swap the numbers in that positions. What is the lexicographically maximal permutation one can get? Let *p* and *q* be two permutations of the numbers 1,<=2,<=...,<=*n*. *p* is lexicographically smaller than the *q* if a number 1<=≤<=*i*<=≤<=*n* exists, so *p**k*<==<=*q**k* for 1<=≤<=*k*<=&lt;<=*i* and *p**i*<=&lt;<=*q**i*.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=106) — the length of the permutation *p* and the number of pairs of positions. The second line contains *n* distinct integers *p**i* (1<=≤<=*p**i*<=≤<=*n*) — the elements of the permutation *p*. Each of the last *m* lines contains two integers (*a**j*,<=*b**j*) (1<=≤<=*a**j*,<=*b**j*<=≤<=*n*) — the pairs of positions to swap. Note that you are given a positions, not the values to swap.
Print the only line with *n* distinct integers *p*'*i* (1<=≤<=*p*'*i*<=≤<=*n*) — the lexicographically maximal permutation one can get.
[ "9 6\n1 2 3 4 5 6 7 8 9\n1 4\n4 7\n2 5\n5 8\n3 6\n6 9\n" ]
[ "7 8 9 4 5 6 1 2 3\n" ]
none
0
[ { "input": "9 6\n1 2 3 4 5 6 7 8 9\n1 4\n4 7\n2 5\n5 8\n3 6\n6 9", "output": "7 8 9 4 5 6 1 2 3" }, { "input": "1 1\n1\n1 1", "output": "1" }, { "input": "2 10\n2 1\n2 1\n1 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 1\n2 1\n2 1", "output": "2 1" }, { "input": "3 10\n1 2 3\n2 2\n1 1\n2 2\n3 3\n1 1\n3 3\n3 3\n3 3\n2 2\n1 1", "output": "1 2 3" }, { "input": "4 20\n4 2 3 1\n2 2\n1 4\n2 2\n1 1\n3 3\n3 3\n1 4\n3 3\n2 2\n3 3\n4 1\n2 2\n1 4\n3 3\n4 1\n1 1\n3 3\n2 2\n2 2\n4 4", "output": "4 2 3 1" }, { "input": "5 20\n2 4 1 5 3\n1 4\n3 1\n4 5\n1 1\n4 2\n3 2\n4 4\n1 2\n4 5\n5 5\n5 5\n2 2\n2 5\n5 3\n5 5\n3 3\n5 1\n2 2\n4 5\n1 5", "output": "5 4 3 2 1" }, { "input": "6 20\n4 6 1 3 2 5\n2 2\n6 5\n3 4\n3 4\n5 6\n3 3\n5 5\n6 6\n4 3\n2 2\n2 2\n5 2\n3 4\n1 4\n5 2\n4 3\n2 5\n1 4\n3 1\n4 3", "output": "4 6 3 1 5 2" }, { "input": "7 20\n5 6 2 1 7 4 3\n1 4\n5 4\n7 5\n7 4\n2 4\n6 5\n1 5\n3 3\n1 5\n6 2\n7 3\n4 1\n6 4\n7 5\n7 3\n1 5\n1 3\n6 6\n5 2\n5 7", "output": "7 6 5 4 3 2 1" }, { "input": "2 10\n1 2\n1 1\n2 2\n2 2\n1 1\n1 1\n2 2\n2 2\n1 1\n2 2\n1 1", "output": "1 2" }, { "input": "3 10\n2 3 1\n1 1\n3 3\n3 3\n3 2\n1 1\n2 2\n3 1\n1 3\n2 1\n3 3", "output": "3 2 1" }, { "input": "4 20\n3 4 1 2\n2 4\n4 4\n3 1\n3 1\n4 4\n3 3\n4 4\n1 1\n4 4\n4 2\n3 3\n1 3\n1 3\n2 2\n1 3\n1 1\n3 1\n2 4\n4 4\n2 4", "output": "3 4 1 2" }, { "input": "5 20\n3 4 1 5 2\n2 4\n3 1\n2 2\n4 5\n4 5\n5 2\n1 1\n2 4\n3 3\n4 2\n3 1\n1 1\n5 2\n1 3\n3 1\n4 2\n1 3\n3 3\n4 2\n4 2", "output": "3 5 1 4 2" }, { "input": "6 20\n5 3 2 4 1 6\n3 2\n5 5\n3 2\n4 4\n4 4\n4 4\n5 1\n3 2\n3 2\n1 1\n6 6\n6 6\n6 6\n4 4\n6 6\n1 5\n1 1\n5 1\n2 2\n2 3", "output": "5 3 2 4 1 6" }, { "input": "7 20\n6 2 5 7 3 1 4\n7 7\n1 1\n2 2\n6 1\n4 4\n2 2\n2 2\n6 6\n3 5\n7 4\n1 6\n4 4\n6 1\n1 1\n3 3\n5 3\n3 5\n5 3\n2 2\n4 4", "output": "6 2 5 7 3 1 4" }, { "input": "8 20\n8 4 7 2 6 5 3 1\n6 6\n2 4\n7 3\n4 2\n3 3\n6 5\n6 5\n8 8\n3 7\n6 6\n7 3\n4 4\n1 8\n1 8\n3 7\n8 8\n6 6\n2 4\n8 8\n4 2", "output": "8 4 7 2 6 5 3 1" }, { "input": "9 20\n6 7 9 1 3 4 8 2 5\n8 2\n2 7\n1 6\n6 1\n6 1\n3 3\n9 5\n8 2\n8 2\n9 5\n4 1\n5 5\n9 3\n9 3\n6 6\n7 8\n4 6\n7 8\n1 1\n8 2", "output": "6 8 9 4 5 1 7 2 3" }, { "input": "20 20\n4 12 7 1 16 19 3 10 14 8 13 2 11 9 20 5 18 17 6 15\n9 14\n3 3\n8 10\n7 3\n20 20\n5 16\n13 11\n6 19\n6 6\n12 2\n12 2\n13 11\n18 18\n18 17\n9 14\n8 8\n20 15\n4 4\n16 16\n4 1", "output": "4 12 7 1 16 19 3 10 14 8 13 2 11 9 20 5 18 17 6 15" }, { "input": "8 1\n3 4 1 2 7 8 5 6\n3 4", "output": "3 4 2 1 7 8 5 6" }, { "input": "3 2\n1 3 2\n1 3\n3 1", "output": "2 3 1" }, { "input": "4 1\n4 3 1 2\n3 4", "output": "4 3 2 1" }, { "input": "3 1\n1 3 2\n1 2", "output": "3 1 2" }, { "input": "9 6\n9 2 3 4 5 6 7 8 1\n1 4\n4 7\n2 5\n5 8\n3 6\n6 9", "output": "9 8 6 7 5 3 4 2 1" }, { "input": "3 1\n3 2 1\n1 2", "output": "3 2 1" }, { "input": "83 8\n54 3 52 12 61 36 65 62 69 49 47 77 31 15 21 14 73 29 6 26 37 17 81 75 43 30 58 76 16 8 11 5 27 35 7 66 50 67 2 39 45 28 60 71 38 82 53 1 42 13 44 72 22 4 9 25 19 57 10 70 18 68 32 34 20 80 23 79 24 63 64 51 59 41 74 48 40 33 46 83 55 56 78\n48 80\n1 8\n71 54\n15 59\n72 46\n36 9\n64 29\n55 58", "output": "62 3 52 12 61 36 65 54 69 49 47 77 31 15 21 14 73 29 6 26 37 17 81 75 43 30 58 76 34 8 11 5 27 35 7 66 50 67 2 39 45 28 60 71 38 82 53 83 42 13 44 72 22 64 57 25 19 9 10 70 18 68 32 16 20 80 23 79 24 63 4 51 59 41 74 48 40 33 46 1 55 56 78" }, { "input": "5 3\n5 2 3 4 1\n2 4\n1 4\n3 4", "output": "5 4 3 2 1" }, { "input": "3 1\n2 3 1\n1 1", "output": "2 3 1" }, { "input": "2 10\n2 1\n2 1\n1 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 1\n2 1\n2 1", "output": "2 1" } ]
1,473,205,440
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
17
93
819,200
from collections import deque def bfs(n): q = deque() q.append(n) visited[n]=1 data = [] pos = [] while q: top = q[0] data.append(a[top-1]) pos.append(top-1) q.popleft() for x in v[top]: if visited[x]==0: q.append(x) visited[x]=1 data.sort(reverse=True) pos.sort() for i in range(len(data)): a[pos[i]] = data[i] return a n,m = map(int,input().split()) a = list(map(int,input().split())) visited = [0]*100 v = [[] for i in range(n+1)] for _ in range(m): x,y = map(int,input().split()) v[x].append(y) v[y].append(x) for i in range(1,n+1): if visited[i]==0: bfs(i) print(" ".join(map(str,a)))
Title: Swaps in Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a permutation of the numbers 1,<=2,<=...,<=*n* and *m* pairs of positions (*a**j*,<=*b**j*). At each step you can choose a pair from the given positions and swap the numbers in that positions. What is the lexicographically maximal permutation one can get? Let *p* and *q* be two permutations of the numbers 1,<=2,<=...,<=*n*. *p* is lexicographically smaller than the *q* if a number 1<=≤<=*i*<=≤<=*n* exists, so *p**k*<==<=*q**k* for 1<=≤<=*k*<=&lt;<=*i* and *p**i*<=&lt;<=*q**i*. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=106) — the length of the permutation *p* and the number of pairs of positions. The second line contains *n* distinct integers *p**i* (1<=≤<=*p**i*<=≤<=*n*) — the elements of the permutation *p*. Each of the last *m* lines contains two integers (*a**j*,<=*b**j*) (1<=≤<=*a**j*,<=*b**j*<=≤<=*n*) — the pairs of positions to swap. Note that you are given a positions, not the values to swap. Output Specification: Print the only line with *n* distinct integers *p*'*i* (1<=≤<=*p*'*i*<=≤<=*n*) — the lexicographically maximal permutation one can get. Demo Input: ['9 6\n1 2 3 4 5 6 7 8 9\n1 4\n4 7\n2 5\n5 8\n3 6\n6 9\n'] Demo Output: ['7 8 9 4 5 6 1 2 3\n'] Note: none
```python from collections import deque def bfs(n): q = deque() q.append(n) visited[n]=1 data = [] pos = [] while q: top = q[0] data.append(a[top-1]) pos.append(top-1) q.popleft() for x in v[top]: if visited[x]==0: q.append(x) visited[x]=1 data.sort(reverse=True) pos.sort() for i in range(len(data)): a[pos[i]] = data[i] return a n,m = map(int,input().split()) a = list(map(int,input().split())) visited = [0]*100 v = [[] for i in range(n+1)] for _ in range(m): x,y = map(int,input().split()) v[x].append(y) v[y].append(x) for i in range(1,n+1): if visited[i]==0: bfs(i) print(" ".join(map(str,a))) ```
-1
677
A
Vanya and Fence
PROGRAMMING
800
[ "implementation" ]
null
null
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Print a single integer — the minimum possible valid width of the road.
[ "3 7\n4 5 14\n", "6 1\n1 1 1 1 1 1\n", "6 5\n7 6 8 9 10 5\n" ]
[ "4\n", "6\n", "11\n" ]
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
500
[ { "input": "3 7\n4 5 14", "output": "4" }, { "input": "6 1\n1 1 1 1 1 1", "output": "6" }, { "input": "6 5\n7 6 8 9 10 5", "output": "11" }, { "input": "10 420\n214 614 297 675 82 740 174 23 255 15", "output": "13" }, { "input": "10 561\n657 23 1096 487 785 66 481 554 1000 821", "output": "15" }, { "input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396", "output": "144" }, { "input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366", "output": "145" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n2", "output": "2" }, { "input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19", "output": "63" }, { "input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386", "output": "31" }, { "input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518", "output": "75" }, { "input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397", "output": "41" }, { "input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118", "output": "116" } ]
1,695,319,490
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
15
0
n,h =input().split() n =int(n) h =int(h) a =[int(i)for i in input().split()] x =0 for i in range(h): if a[i]>h: x=x+2 else: x=x+1 print(x)
Title: Vanya and Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard? Input Specification: The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person. Output Specification: Print a single integer — the minimum possible valid width of the road. Demo Input: ['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n'] Demo Output: ['4\n', '6\n', '11\n'] Note: In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
```python n,h =input().split() n =int(n) h =int(h) a =[int(i)for i in input().split()] x =0 for i in range(h): if a[i]>h: x=x+2 else: x=x+1 print(x) ```
-1
381
B
Sereja and Stairs
PROGRAMMING
1,100
[ "greedy", "implementation", "sortings" ]
null
null
Sereja loves integer sequences very much. He especially likes stairs. Sequence *a*1,<=*a*2,<=...,<=*a*|*a*| (|*a*| is the length of the sequence) is stairs if there is such index *i* (1<=≤<=*i*<=≤<=|*a*|), that the following condition is met: For example, sequences [1, 2, 3, 2] and [4, 2] are stairs and sequence [3, 1, 2] isn't. Sereja has *m* cards with numbers. He wants to put some cards on the table in a row to get a stair sequence. What maximum number of cards can he put on the table?
The first line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of Sereja's cards. The second line contains *m* integers *b**i* (1<=≤<=*b**i*<=≤<=5000) — the numbers on the Sereja's cards.
In the first line print the number of cards you can put on the table. In the second line print the resulting stairs.
[ "5\n1 2 3 4 5\n", "6\n1 1 2 2 3 3\n" ]
[ "5\n5 4 3 2 1\n", "5\n1 2 3 2 1\n" ]
none
1,000
[ { "input": "5\n1 2 3 4 5", "output": "5\n5 4 3 2 1" }, { "input": "6\n1 1 2 2 3 3", "output": "5\n1 2 3 2 1" }, { "input": "47\n3 4 5 3 1 4 4 3 4 6 1 5 1 3 5 3 6 5 1 4 3 2 6 5 3 1 4 6 4 6 2 1 1 1 4 3 6 1 6 6 3 5 1 4 6 4 4", "output": "11\n1 2 3 4 5 6 5 4 3 2 1" }, { "input": "13\n8 23 26 8 15 13 35 36 28 8 4 33 6", "output": "12\n8 36 35 33 28 26 23 15 13 8 6 4" }, { "input": "17\n15 29 28 23 20 12 9 30 4 13 1 25 11 20 6 23 10", "output": "17\n20 23 30 29 28 25 23 20 15 13 12 11 10 9 6 4 1" }, { "input": "31\n189 73 300 133 414 23 150 301 252 21 274 272 316 291 339 356 201 267 257 43 10 25 16 211 59 2 181 54 344 337 201", "output": "31\n201 414 356 344 339 337 316 301 300 291 274 272 267 257 252 211 201 189 181 150 133 73 59 54 43 25 23 21 16 10 2" }, { "input": "85\n319 554 696 281 275 544 356 313 296 308 848 668 135 705 231 735 882 622 796 435 621 523 709 247 169 152 395 758 447 595 550 819 188 664 589 907 3 619 771 810 669 471 425 870 737 329 83 549 425 138 870 775 451 818 735 169 162 419 903 803 852 75 297 687 310 714 419 652 164 667 245 906 133 643 881 322 681 704 479 278 114 324 42 475 396", "output": "85\n169 419 425 735 870 907 906 903 882 881 870 852 848 819 818 810 803 796 775 771 758 737 735 714 709 705 704 696 687 681 669 668 667 664 652 643 622 621 619 595 589 554 550 549 544 523 479 475 471 451 447 435 425 419 396 395 356 329 324 322 319 313 310 308 297 296 281 278 275 247 245 231 188 169 164 162 152 138 135 133 114 83 75 42 3" }, { "input": "102\n1830 2653 1293 4285 4679 3563 3668 4499 3507 2666 3507 1120 466 290 4280 60 4135 1120 289 1752 2101 2699 653 2811 3885 4018 4097 3142 2932 561 193 3662 3017 3487 3158 2876 3396 2806 3440 4503 1728 362 2194 2743 2946 596 1892 4785 3661 2971 3487 17 3616 2710 1189 613 915 3891 2654 554 3506 1938 2783 2537 4791 1098 930 1000 1007 942 3871 2547 1798 4610 1613 774 1347 1460 2752 3158 4540 4720 2639 887 1999 2046 1199 1889 426 1888 4317 649 1660 336 4728 2422 2771 3536 1683 3786 2711 308", "output": "102\n1120 3158 3487 3507 4791 4785 4728 4720 4679 4610 4540 4503 4499 4317 4285 4280 4135 4097 4018 3891 3885 3871 3786 3668 3662 3661 3616 3563 3536 3507 3506 3487 3440 3396 3158 3142 3017 2971 2946 2932 2876 2811 2806 2783 2771 2752 2743 2711 2710 2699 2666 2654 2653 2639 2547 2537 2422 2194 2101 2046 1999 1938 1892 1889 1888 1830 1798 1752 1728 1683 1660 1613 1460 1347 1293 1199 1189 1120 1098 1007 1000 942 930 915 887 774 653 649 613 596 561 554 466 426 362 336 308 290 289 193 60 17" }, { "input": "1\n1", "output": "1\n1" }, { "input": "2\n1 1", "output": "1\n1" }, { "input": "3\n1 2 3", "output": "3\n3 2 1" }, { "input": "3\n2 1 2", "output": "2\n2 1" }, { "input": "2\n1 2", "output": "2\n2 1" } ]
1,669,464,777
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
31
0
n = int(input()) v = list(map(int, input().split())) v.sort(reverse=True) v = v[v.count(v[0])-1:] l, r = [], [] for i in range(1,len(v)): if i%2: l.append(v[i]) else: r.append(v[i]) x = list(set(l))+ [v[0]] + list(set(r))[::-1] print(len(x)) print(*x, sep=" ")
Title: Sereja and Stairs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja loves integer sequences very much. He especially likes stairs. Sequence *a*1,<=*a*2,<=...,<=*a*|*a*| (|*a*| is the length of the sequence) is stairs if there is such index *i* (1<=≤<=*i*<=≤<=|*a*|), that the following condition is met: For example, sequences [1, 2, 3, 2] and [4, 2] are stairs and sequence [3, 1, 2] isn't. Sereja has *m* cards with numbers. He wants to put some cards on the table in a row to get a stair sequence. What maximum number of cards can he put on the table? Input Specification: The first line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of Sereja's cards. The second line contains *m* integers *b**i* (1<=≤<=*b**i*<=≤<=5000) — the numbers on the Sereja's cards. Output Specification: In the first line print the number of cards you can put on the table. In the second line print the resulting stairs. Demo Input: ['5\n1 2 3 4 5\n', '6\n1 1 2 2 3 3\n'] Demo Output: ['5\n5 4 3 2 1\n', '5\n1 2 3 2 1\n'] Note: none
```python n = int(input()) v = list(map(int, input().split())) v.sort(reverse=True) v = v[v.count(v[0])-1:] l, r = [], [] for i in range(1,len(v)): if i%2: l.append(v[i]) else: r.append(v[i]) x = list(set(l))+ [v[0]] + list(set(r))[::-1] print(len(x)) print(*x, sep=" ") ```
0
218
B
Airport
PROGRAMMING
1,100
[ "implementation" ]
null
null
Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows: - it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=&gt;<=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency). The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer? The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets. The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total.
Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly.
[ "4 3\n2 1 1\n", "4 3\n2 2 2\n" ]
[ "5 5\n", "7 6\n" ]
In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum. In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
500
[ { "input": "4 3\n2 1 1", "output": "5 5" }, { "input": "4 3\n2 2 2", "output": "7 6" }, { "input": "10 5\n10 3 3 1 2", "output": "58 26" }, { "input": "10 1\n10", "output": "55 55" }, { "input": "10 1\n100", "output": "955 955" }, { "input": "10 2\n4 7", "output": "37 37" }, { "input": "40 10\n1 2 3 4 5 6 7 10 10 10", "output": "223 158" }, { "input": "1 1\n6", "output": "6 6" }, { "input": "1 2\n10 9", "output": "10 9" }, { "input": "2 1\n7", "output": "13 13" }, { "input": "2 2\n7 2", "output": "13 3" }, { "input": "3 2\n4 7", "output": "18 9" }, { "input": "3 3\n2 1 1", "output": "4 4" }, { "input": "3 3\n2 1 1", "output": "4 4" }, { "input": "10 10\n3 1 2 2 1 1 2 1 2 3", "output": "20 13" }, { "input": "10 2\n7 3", "output": "34 34" }, { "input": "10 1\n19", "output": "145 145" }, { "input": "100 3\n29 36 35", "output": "1731 1731" }, { "input": "100 5\n3 38 36 35 2", "output": "2019 1941" }, { "input": "510 132\n50 76 77 69 94 30 47 65 14 62 18 121 26 35 49 17 105 93 47 16 78 3 7 74 7 37 30 36 30 83 71 113 7 58 86 10 65 57 34 102 55 44 43 47 106 44 115 75 109 70 47 45 16 57 62 55 20 88 74 40 45 84 41 1 9 53 65 25 67 31 115 2 63 51 123 70 65 65 18 14 75 14 103 26 117 105 36 104 81 37 35 61 44 90 71 70 88 89 26 21 64 77 89 16 87 99 13 79 27 3 46 120 116 11 14 17 32 70 113 94 108 57 29 100 53 48 44 29 70 30 32 62", "output": "50279 5479" }, { "input": "510 123\n5 2 3 2 5 7 2 3 1 3 6 6 3 1 5 3 5 6 2 2 1 5 5 5 2 2 3 1 6 3 5 8 4 6 1 5 4 5 1 6 5 5 3 6 4 1 6 1 3 5 2 7 5 2 4 4 5 6 5 5 4 3 4 6 5 4 4 3 5 8 5 5 6 3 1 7 4 4 3 3 5 3 6 3 3 6 2 5 3 2 4 5 4 5 2 2 4 4 4 7 3 4 6 5 3 6 4 7 1 6 5 7 6 5 7 3 7 4 4 1 6 6 4", "output": "1501 1501" }, { "input": "610 33\n15 44 8 8 17 11 39 39 38 25 17 36 17 25 21 37 10 11 34 30 29 50 29 50 4 20 32 13 41 14 2 11 2", "output": "12204 8871" } ]
1,694,944,996
2,147,483,647
PyPy 3-64
OK
TESTS
33
310
2,867,200
from copy import copy def solve_max(n, m, data): result = 0 data.sort(reverse=True) for i in range(n): if data[0] == 0: break result += data[0] data[0] -= 1 data.sort(reverse=True) return result def solve_min(n, m, data): result = 0 data.sort(reverse=True) for i in range(n): if data[-1] == 0: break result += data[-1] data[-1] -= 1 if data[-1] == 0: data.pop(-1) data.sort(reverse=True) return result def main(): n, m = map(int, input().split()) data = list(map(int, input().split())) r_max = solve_max(n, m, copy(data)) r_min = solve_min(n, m, copy(data)) print(r_max, r_min) main()
Title: Airport Time Limit: None seconds Memory Limit: None megabytes Problem Description: Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows: - it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=&gt;<=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency). The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer? The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets. The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total. Output Specification: Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly. Demo Input: ['4 3\n2 1 1\n', '4 3\n2 2 2\n'] Demo Output: ['5 5\n', '7 6\n'] Note: In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum. In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
```python from copy import copy def solve_max(n, m, data): result = 0 data.sort(reverse=True) for i in range(n): if data[0] == 0: break result += data[0] data[0] -= 1 data.sort(reverse=True) return result def solve_min(n, m, data): result = 0 data.sort(reverse=True) for i in range(n): if data[-1] == 0: break result += data[-1] data[-1] -= 1 if data[-1] == 0: data.pop(-1) data.sort(reverse=True) return result def main(): n, m = map(int, input().split()) data = list(map(int, input().split())) r_max = solve_max(n, m, copy(data)) r_min = solve_min(n, m, copy(data)) print(r_max, r_min) main() ```
3
90
A
Cableway
PROGRAMMING
1,000
[ "greedy", "math" ]
A. Cableway
2
256
A group of university students wants to get to the top of a mountain to have a picnic there. For that they decided to use a cableway. A cableway is represented by some cablecars, hanged onto some cable stations by a cable. A cable is scrolled cyclically between the first and the last cable stations (the first of them is located at the bottom of the mountain and the last one is located at the top). As the cable moves, the cablecar attached to it move as well. The number of cablecars is divisible by three and they are painted three colors: red, green and blue, in such manner that after each red cablecar goes a green one, after each green cablecar goes a blue one and after each blue cablecar goes a red one. Each cablecar can transport no more than two people, the cablecars arrive with the periodicity of one minute (i. e. every minute) and it takes exactly 30 minutes for a cablecar to get to the top. All students are divided into three groups: *r* of them like to ascend only in the red cablecars, *g* of them prefer only the green ones and *b* of them prefer only the blue ones. A student never gets on a cablecar painted a color that he doesn't like, The first cablecar to arrive (at the moment of time 0) is painted red. Determine the least time it will take all students to ascend to the mountain top.
The first line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=100). It is guaranteed that *r*<=+<=*g*<=+<=*b*<=&gt;<=0, it means that the group consists of at least one student.
Print a single number — the minimal time the students need for the whole group to ascend to the top of the mountain.
[ "1 3 2\n", "3 2 1\n" ]
[ "34", "33" ]
Let's analyze the first sample. At the moment of time 0 a red cablecar comes and one student from the *r* group get on it and ascends to the top at the moment of time 30. At the moment of time 1 a green cablecar arrives and two students from the *g* group get on it; they get to the top at the moment of time 31. At the moment of time 2 comes the blue cablecar and two students from the *b* group get on it. They ascend to the top at the moment of time 32. At the moment of time 3 a red cablecar arrives but the only student who is left doesn't like red and the cablecar leaves empty. At the moment of time 4 a green cablecar arrives and one student from the *g* group gets on it. He ascends to top at the moment of time 34. Thus, all the students are on the top, overall the ascension took exactly 34 minutes.
500
[ { "input": "1 3 2", "output": "34" }, { "input": "3 2 1", "output": "33" }, { "input": "3 5 2", "output": "37" }, { "input": "10 10 10", "output": "44" }, { "input": "29 7 24", "output": "72" }, { "input": "28 94 13", "output": "169" }, { "input": "90 89 73", "output": "163" }, { "input": "0 0 1", "output": "32" }, { "input": "0 0 2", "output": "32" }, { "input": "0 1 0", "output": "31" }, { "input": "0 1 1", "output": "32" }, { "input": "0 1 2", "output": "32" }, { "input": "0 2 0", "output": "31" }, { "input": "0 2 1", "output": "32" }, { "input": "0 2 2", "output": "32" }, { "input": "1 0 0", "output": "30" }, { "input": "1 0 1", "output": "32" }, { "input": "1 0 2", "output": "32" }, { "input": "1 1 0", "output": "31" }, { "input": "1 1 1", "output": "32" }, { "input": "1 1 2", "output": "32" }, { "input": "1 2 0", "output": "31" }, { "input": "1 2 1", "output": "32" }, { "input": "1 2 2", "output": "32" }, { "input": "2 0 0", "output": "30" }, { "input": "2 0 1", "output": "32" }, { "input": "2 0 2", "output": "32" }, { "input": "2 1 0", "output": "31" }, { "input": "2 1 1", "output": "32" }, { "input": "2 1 2", "output": "32" }, { "input": "2 2 0", "output": "31" }, { "input": "2 2 1", "output": "32" }, { "input": "2 2 2", "output": "32" }, { "input": "4 5 2", "output": "37" }, { "input": "5 7 8", "output": "41" }, { "input": "13 25 19", "output": "67" }, { "input": "29 28 30", "output": "74" }, { "input": "45 52 48", "output": "106" }, { "input": "68 72 58", "output": "136" }, { "input": "89 92 90", "output": "166" }, { "input": "99 97 98", "output": "177" }, { "input": "89 97 2", "output": "175" }, { "input": "96 3 92", "output": "171" }, { "input": "1 99 87", "output": "178" }, { "input": "95 2 3", "output": "171" }, { "input": "2 97 3", "output": "175" }, { "input": "2 2 99", "output": "179" }, { "input": "100 100 100", "output": "179" }, { "input": "100 0 100", "output": "179" }, { "input": "0 100 100", "output": "179" }, { "input": "100 100 0", "output": "178" }, { "input": "100 0 0", "output": "177" }, { "input": "0 100 0", "output": "178" }, { "input": "0 0 100", "output": "179" }, { "input": "5 4 5", "output": "38" } ]
1,599,385,572
2,147,483,647
Python 3
OK
TESTS
55
218
0
l = [int(s) + 1 for s in input().split()] r = ((l[0]//2) - 1) * 3 g = ((l[1]//2)-1) * 3 + 1 b = ((l[2]//2)-1) * 3 + 2 print(max(r,g,b)+ 30)
Title: Cableway Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A group of university students wants to get to the top of a mountain to have a picnic there. For that they decided to use a cableway. A cableway is represented by some cablecars, hanged onto some cable stations by a cable. A cable is scrolled cyclically between the first and the last cable stations (the first of them is located at the bottom of the mountain and the last one is located at the top). As the cable moves, the cablecar attached to it move as well. The number of cablecars is divisible by three and they are painted three colors: red, green and blue, in such manner that after each red cablecar goes a green one, after each green cablecar goes a blue one and after each blue cablecar goes a red one. Each cablecar can transport no more than two people, the cablecars arrive with the periodicity of one minute (i. e. every minute) and it takes exactly 30 minutes for a cablecar to get to the top. All students are divided into three groups: *r* of them like to ascend only in the red cablecars, *g* of them prefer only the green ones and *b* of them prefer only the blue ones. A student never gets on a cablecar painted a color that he doesn't like, The first cablecar to arrive (at the moment of time 0) is painted red. Determine the least time it will take all students to ascend to the mountain top. Input Specification: The first line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=100). It is guaranteed that *r*<=+<=*g*<=+<=*b*<=&gt;<=0, it means that the group consists of at least one student. Output Specification: Print a single number — the minimal time the students need for the whole group to ascend to the top of the mountain. Demo Input: ['1 3 2\n', '3 2 1\n'] Demo Output: ['34', '33'] Note: Let's analyze the first sample. At the moment of time 0 a red cablecar comes and one student from the *r* group get on it and ascends to the top at the moment of time 30. At the moment of time 1 a green cablecar arrives and two students from the *g* group get on it; they get to the top at the moment of time 31. At the moment of time 2 comes the blue cablecar and two students from the *b* group get on it. They ascend to the top at the moment of time 32. At the moment of time 3 a red cablecar arrives but the only student who is left doesn't like red and the cablecar leaves empty. At the moment of time 4 a green cablecar arrives and one student from the *g* group gets on it. He ascends to top at the moment of time 34. Thus, all the students are on the top, overall the ascension took exactly 34 minutes.
```python l = [int(s) + 1 for s in input().split()] r = ((l[0]//2) - 1) * 3 g = ((l[1]//2)-1) * 3 + 1 b = ((l[2]//2)-1) * 3 + 2 print(max(r,g,b)+ 30) ```
3.9455
368
B
Sereja and Suffixes
PROGRAMMING
1,100
[ "data structures", "dp" ]
null
null
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
[ "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n" ]
[ "6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n" ]
none
1,000
[ { "input": "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10", "output": "6\n6\n6\n6\n6\n5\n4\n3\n2\n1" }, { "input": "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2", "output": "3\n4\n5" }, { "input": "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4", "output": "3\n5\n2\n4\n3\n3\n2\n5\n1\n3" }, { "input": "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2", "output": "7\n7" }, { "input": "7 1\n68346 10956 76708 23018 84063 34833 80407\n1", "output": "7" }, { "input": "2 2\n8 4\n1\n1", "output": "2\n2" }, { "input": "1 5\n5\n1\n1\n1\n1\n1", "output": "1\n1\n1\n1\n1" }, { "input": "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4", "output": "1\n4\n3\n2\n3\n1\n1" }, { "input": "4 3\n9 1 7 1\n1\n4\n2", "output": "3\n1\n2" }, { "input": "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7", "output": "4\n3\n2" }, { "input": "1 1\n1\n1", "output": "1" } ]
1,698,336,435
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
10
1,000
10,649,600
# -*- coding: utf-8 -*- """ Created on Thu Oct 26 23:22:34 2023 @author: 陈亚偲2300011106 """ m,n=map(int,input().split()) a=[int(i) for i in input().split()] b=[1] q=1 for i in range(m-1,-1,-1): if a[i]: for j in range(i): if a[j] and a[j]==a[i]: a[j]=0 a[i]=1 ct=0 for i in range(m-1,-1,-1): b.append(sum(a[i:])) c=[] for i in range(n): c.append(int(input())-1) for i in c: print(b[m-i])
Title: Sereja and Suffixes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.? Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements. Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*). Output Specification: Print *m* lines — on the *i*-th line print the answer to the number *l**i*. Demo Input: ['10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n'] Demo Output: ['6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n'] Note: none
```python # -*- coding: utf-8 -*- """ Created on Thu Oct 26 23:22:34 2023 @author: 陈亚偲2300011106 """ m,n=map(int,input().split()) a=[int(i) for i in input().split()] b=[1] q=1 for i in range(m-1,-1,-1): if a[i]: for j in range(i): if a[j] and a[j]==a[i]: a[j]=0 a[i]=1 ct=0 for i in range(m-1,-1,-1): b.append(sum(a[i:])) c=[] for i in range(n): c.append(int(input())-1) for i in c: print(b[m-i]) ```
0
272
A
Dima and Friends
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Dima and his friends have been playing hide and seek at Dima's place all night. As a result, Dima's place got messy. In the morning they decided that they need to clean the place. To decide who exactly would clean the apartment, the friends want to play a counting-out game. First, all the guys stand in a circle, and then each of them shows some number of fingers on one hand (one to five), and then the boys count in a circle, starting from Dima, the number of people, respective to the total number of fingers shown. The person on who the countdown stops will clean the apartment. For example, if Dima and one of his friends played hide and seek, and 7 fingers were shown during the counting-out, then Dima would clean the place. If there were 2 or say, 8 fingers shown, then his friend would clean the place. Dima knows how many fingers each of his friends will show during the counting-out. Now he is interested in the number of ways to show some number of fingers on one hand (one to five), so that he did not have to clean the place. Help Dima.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of Dima's friends. Dima himself isn't considered to be his own friend. The second line contains *n* positive integers, not exceeding 5, representing, how many fingers the Dima's friends will show. The numbers in the lines are separated by a single space.
In a single line print the answer to the problem.
[ "1\n1\n", "1\n2\n", "2\n3 5\n" ]
[ "3\n", "2\n", "3\n" ]
In the first sample Dima can show 1, 3 or 5 fingers. If Dima shows 3 fingers, then the counting-out will go like that: Dima, his friend, Dima, his friend. In the second sample Dima can show 2 or 4 fingers.
500
[ { "input": "1\n1", "output": "3" }, { "input": "1\n2", "output": "2" }, { "input": "2\n3 5", "output": "3" }, { "input": "2\n3 5", "output": "3" }, { "input": "1\n5", "output": "3" }, { "input": "5\n4 4 3 5 1", "output": "4" }, { "input": "6\n2 3 2 2 1 3", "output": "4" }, { "input": "8\n2 2 5 3 4 3 3 2", "output": "4" }, { "input": "7\n4 1 3 2 2 4 5", "output": "4" }, { "input": "3\n3 5 1", "output": "4" }, { "input": "95\n4 2 3 4 4 5 2 2 4 4 3 5 3 3 3 5 4 2 5 4 2 1 1 3 4 2 1 3 5 4 2 1 1 5 1 1 2 2 4 4 5 4 5 5 2 1 2 2 2 4 5 5 2 4 3 4 4 3 5 2 4 1 5 4 5 1 3 2 4 2 2 1 5 3 1 5 3 4 3 3 2 1 2 2 1 3 1 5 2 3 1 1 2 5 2", "output": "5" }, { "input": "31\n3 2 3 3 3 3 4 4 1 5 5 4 2 4 3 2 2 1 4 4 1 2 3 1 1 5 5 3 4 4 1", "output": "4" }, { "input": "42\n3 1 2 2 5 1 2 2 4 5 4 5 2 5 4 5 4 4 1 4 3 3 4 4 4 4 3 2 1 3 4 5 5 2 1 2 1 5 5 2 4 4", "output": "5" }, { "input": "25\n4 5 5 5 3 1 1 4 4 4 3 5 4 4 1 4 4 1 2 4 2 5 4 5 3", "output": "5" }, { "input": "73\n3 4 3 4 5 1 3 4 2 1 4 2 2 3 5 3 1 4 2 3 2 1 4 5 3 5 2 2 4 3 2 2 5 3 2 3 5 1 3 1 1 4 5 2 4 2 5 1 4 3 1 3 1 4 2 3 3 3 3 5 5 2 5 2 5 4 3 1 1 5 5 2 3", "output": "4" }, { "input": "46\n1 4 4 5 4 5 2 3 5 5 3 2 5 4 1 3 2 2 1 4 3 1 5 5 2 2 2 2 4 4 1 1 4 3 4 3 1 4 2 2 4 2 3 2 5 2", "output": "4" }, { "input": "23\n5 2 1 1 4 2 5 5 3 5 4 5 5 1 1 5 2 4 5 3 4 4 3", "output": "5" }, { "input": "6\n4 2 3 1 3 5", "output": "4" }, { "input": "15\n5 5 5 3 5 4 1 3 3 4 3 4 1 4 4", "output": "5" }, { "input": "93\n1 3 1 4 3 3 5 3 1 4 5 4 3 2 2 4 3 1 4 1 2 3 3 3 2 5 1 3 1 4 5 1 1 1 4 2 1 2 3 1 1 1 5 1 5 5 1 2 5 4 3 2 2 4 4 2 5 4 5 5 3 1 3 1 2 1 3 1 1 2 3 4 4 5 5 3 2 1 3 3 5 1 3 5 4 4 1 3 3 4 2 3 2", "output": "5" }, { "input": "96\n1 5 1 3 2 1 2 2 2 2 3 4 1 1 5 4 4 1 2 3 5 1 4 4 4 1 3 3 1 4 5 4 1 3 5 3 4 4 3 2 1 1 4 4 5 1 1 2 5 1 2 3 1 4 1 2 2 2 3 2 3 3 2 5 2 2 3 3 3 3 2 1 2 4 5 5 1 5 3 2 1 4 3 5 5 5 3 3 5 3 4 3 4 2 1 3", "output": "5" }, { "input": "49\n1 4 4 3 5 2 2 1 5 1 2 1 2 5 1 4 1 4 5 2 4 5 3 5 2 4 2 1 3 4 2 1 4 2 1 1 3 3 2 3 5 4 3 4 2 4 1 4 1", "output": "5" }, { "input": "73\n4 1 3 3 3 1 5 2 1 4 1 1 3 5 1 1 4 5 2 1 5 4 1 5 3 1 5 2 4 5 1 4 3 3 5 2 2 3 3 2 5 1 4 5 2 3 1 4 4 3 5 2 3 5 1 4 3 5 1 2 4 1 3 3 5 4 2 4 2 4 1 2 5", "output": "5" }, { "input": "41\n5 3 5 4 2 5 4 3 1 1 1 5 4 3 4 3 5 4 2 5 4 1 1 3 2 4 5 3 5 1 5 5 1 1 1 4 4 1 2 4 3", "output": "5" }, { "input": "100\n3 3 1 4 2 4 4 3 1 5 1 1 4 4 3 4 4 3 5 4 5 2 4 3 4 1 2 4 5 4 2 1 5 4 1 1 4 3 2 4 1 2 1 4 4 5 5 4 4 5 3 2 5 1 4 2 2 1 1 2 5 2 5 1 5 3 1 4 3 2 4 3 2 2 4 5 5 1 2 3 1 4 1 2 2 2 5 5 2 3 2 4 3 1 1 2 1 2 1 2", "output": "5" }, { "input": "100\n2 1 1 3 5 4 4 2 3 4 3 4 5 4 5 4 2 4 5 3 4 5 4 1 1 4 4 1 1 2 5 4 2 4 5 3 2 5 4 3 4 5 1 3 4 2 5 4 5 4 5 2 4 1 2 5 3 1 4 4 5 3 4 3 1 2 5 4 2 5 4 1 5 3 5 4 1 2 5 3 1 1 1 1 5 3 4 3 5 1 1 5 5 1 1 2 2 1 5 1", "output": "5" }, { "input": "100\n4 4 3 3 2 5 4 4 2 1 4 4 4 5 4 1 2 1 5 2 4 3 4 1 4 1 2 5 1 4 5 4 2 1 2 5 3 4 5 5 2 1 2 2 2 2 2 3 2 5 1 2 2 3 2 5 5 1 3 4 5 2 1 3 4 2 2 4 4 3 3 3 2 3 2 1 5 5 5 2 1 4 2 3 5 1 4 4 2 3 2 5 5 4 3 5 1 3 5 5", "output": "5" }, { "input": "100\n4 4 2 5 4 2 2 3 4 4 3 2 3 3 1 3 4 3 3 4 1 3 1 4 5 3 4 3 1 1 1 3 3 2 3 4 3 4 2 2 1 5 1 4 5 1 1 1 3 3 1 1 3 2 5 4 2 5 2 4 5 4 4 1 1 2 1 1 4 5 1 1 5 3 3 2 5 5 5 1 4 1 4 1 1 3 2 3 4 4 2 5 5 2 5 1 1 3 5 3", "output": "5" }, { "input": "100\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4", "output": "4" }, { "input": "100\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5", "output": "5" } ]
1,489,308,824
2,147,483,647
Python 3
OK
TESTS
30
124
4,608,000
n = int(input()) arr = [int(x) for x in input().split()] summ = sum(arr) ans = 0 for i in range(1,6): if (i + summ) % (n + 1) == 1: continue else: ans += 1 print(ans)
Title: Dima and Friends Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dima and his friends have been playing hide and seek at Dima's place all night. As a result, Dima's place got messy. In the morning they decided that they need to clean the place. To decide who exactly would clean the apartment, the friends want to play a counting-out game. First, all the guys stand in a circle, and then each of them shows some number of fingers on one hand (one to five), and then the boys count in a circle, starting from Dima, the number of people, respective to the total number of fingers shown. The person on who the countdown stops will clean the apartment. For example, if Dima and one of his friends played hide and seek, and 7 fingers were shown during the counting-out, then Dima would clean the place. If there were 2 or say, 8 fingers shown, then his friend would clean the place. Dima knows how many fingers each of his friends will show during the counting-out. Now he is interested in the number of ways to show some number of fingers on one hand (one to five), so that he did not have to clean the place. Help Dima. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of Dima's friends. Dima himself isn't considered to be his own friend. The second line contains *n* positive integers, not exceeding 5, representing, how many fingers the Dima's friends will show. The numbers in the lines are separated by a single space. Output Specification: In a single line print the answer to the problem. Demo Input: ['1\n1\n', '1\n2\n', '2\n3 5\n'] Demo Output: ['3\n', '2\n', '3\n'] Note: In the first sample Dima can show 1, 3 or 5 fingers. If Dima shows 3 fingers, then the counting-out will go like that: Dima, his friend, Dima, his friend. In the second sample Dima can show 2 or 4 fingers.
```python n = int(input()) arr = [int(x) for x in input().split()] summ = sum(arr) ans = 0 for i in range(1,6): if (i + summ) % (n + 1) == 1: continue else: ans += 1 print(ans) ```
3
513
A
Game
PROGRAMMING
800
[ "constructive algorithms", "math" ]
null
null
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50. This problem doesn't have subproblems. You will get 3 points for the correct submission.
Output "First" if the first player wins and "Second" otherwise.
[ "2 2 1 2\n", "2 1 1 1\n" ]
[ "Second\n", "First\n" ]
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
3
[ { "input": "2 2 1 2", "output": "Second" }, { "input": "2 1 1 1", "output": "First" }, { "input": "5 7 4 1", "output": "Second" }, { "input": "5 7 1 4", "output": "Second" }, { "input": "5 7 10 10", "output": "Second" }, { "input": "5 7 1 10", "output": "Second" }, { "input": "1 1 1 1", "output": "Second" }, { "input": "50 50 50 50", "output": "Second" }, { "input": "50 49 1 2", "output": "First" }, { "input": "50 48 3 1", "output": "First" }, { "input": "48 50 12 11", "output": "Second" }, { "input": "49 50 11 12", "output": "Second" }, { "input": "49 49 4 1", "output": "Second" }, { "input": "49 49 3 3", "output": "Second" }, { "input": "1 50 1 50", "output": "Second" }, { "input": "1 50 50 50", "output": "Second" }, { "input": "50 1 1 1", "output": "First" }, { "input": "50 1 1 50", "output": "First" }, { "input": "32 31 10 9", "output": "First" }, { "input": "32 4 17 3", "output": "First" } ]
1,618,953,368
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
31
0
n1 = int(input("n1")) n2 = int(input("n2")) k1 = int(input("k1")) k2 = int(input("k2")) #print(n1, n2, k1, k2) f = n1**k1 s = n2**k2 #print(f,s) if f > s: print("First") if s > f: print("Second")
Title: Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally. Input Specification: The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50. This problem doesn't have subproblems. You will get 3 points for the correct submission. Output Specification: Output "First" if the first player wins and "Second" otherwise. Demo Input: ['2 2 1 2\n', '2 1 1 1\n'] Demo Output: ['Second\n', 'First\n'] Note: Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
```python n1 = int(input("n1")) n2 = int(input("n2")) k1 = int(input("k1")) k2 = int(input("k2")) #print(n1, n2, k1, k2) f = n1**k1 s = n2**k2 #print(f,s) if f > s: print("First") if s > f: print("Second") ```
-1
626
B
Cards
PROGRAMMING
1,300
[ "constructive algorithms", "dp", "math" ]
null
null
Catherine has a deck of *n* cards, each of which is either red, green, or blue. As long as there are at least two cards left, she can do one of two actions: - take any two (not necessarily adjacent) cards with different colors and exchange them for a new card of the third color; - take any two (not necessarily adjacent) cards with the same color and exchange them for a new card with that color. She repeats this process until there is only one card left. What are the possible colors for the final card?
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200) — the total number of cards. The next line contains a string *s* of length *n* — the colors of the cards. *s* contains only the characters 'B', 'G', and 'R', representing blue, green, and red, respectively.
Print a single string of up to three characters — the possible colors of the final card (using the same symbols as the input) in alphabetical order.
[ "2\nRB\n", "3\nGRG\n", "5\nBBBBB\n" ]
[ "G\n", "BR\n", "B\n" ]
In the first sample, Catherine has one red card and one blue card, which she must exchange for a green card. In the second sample, Catherine has two green cards and one red card. She has two options: she can exchange the two green cards for a green card, then exchange the new green card and the red card for a blue card. Alternatively, she can exchange a green and a red card for a blue card, then exchange the blue card and remaining green card for a red card. In the third sample, Catherine only has blue cards, so she can only exchange them for more blue cards.
750
[ { "input": "2\nRB", "output": "G" }, { "input": "3\nGRG", "output": "BR" }, { "input": "5\nBBBBB", "output": "B" }, { "input": "1\nR", "output": "R" }, { "input": "200\nBBRGRRBBRGGGBGBGBGRRGRGRGRBGRGRRBBGRGBGRRGRRRGGBBRGBGBGBRBBBBBBBGGBRGGRRRGGRGBGBGGBRRRRBRRRBRBBGGBGBRGRGBBBBGGBGBBBGBGRRBRRRGBGGBBBRBGRBRRGGGRRGBBBGBGRRRRRRGGRGRGBBBRGGGBGGGBRBBRRGBGRGRBRRRBRBGRGGBRBB", "output": "BGR" }, { "input": "101\nRRRRRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "BG" }, { "input": "7\nBBBGBRG", "output": "BGR" }, { "input": "5\nGRRGR", "output": "BGR" }, { "input": "3\nGBR", "output": "BGR" }, { "input": "1\nB", "output": "B" }, { "input": "2\nBB", "output": "B" }, { "input": "1\nG", "output": "G" }, { "input": "2\nBG", "output": "R" }, { "input": "3\nBGB", "output": "GR" }, { "input": "2\nGG", "output": "G" }, { "input": "3\nGBG", "output": "BR" }, { "input": "4\nBGBG", "output": "BGR" }, { "input": "1\nR", "output": "R" }, { "input": "2\nBR", "output": "G" }, { "input": "3\nBRB", "output": "GR" }, { "input": "2\nRG", "output": "B" }, { "input": "3\nBGR", "output": "BGR" }, { "input": "4\nRBGB", "output": "BGR" }, { "input": "3\nGGR", "output": "BR" }, { "input": "4\nGGRB", "output": "BGR" }, { "input": "5\nBGBGR", "output": "BGR" }, { "input": "2\nRR", "output": "R" }, { "input": "3\nRBR", "output": "BG" }, { "input": "4\nRRBB", "output": "BGR" }, { "input": "3\nRRG", "output": "BG" }, { "input": "4\nBRRG", "output": "BGR" }, { "input": "5\nRBRBG", "output": "BGR" }, { "input": "4\nRGGR", "output": "BGR" }, { "input": "5\nBRGRG", "output": "BGR" }, { "input": "6\nGRRGBB", "output": "BGR" }, { "input": "150\nGRGBBBBRBGGBGBBGBBBBGRBBRRBBGRRGGGBRBBRGRRRRGBGRRBGBGBGRBBBGBBBGBGBRGBRRRRRGGGRGRBBGBRGGGRBBRGBBGRGGGBBRBRRGRGRRGRRGRRRGBGBRRGGRGGBRBGGGBBBRGRGBRGRRRR", "output": "BGR" }, { "input": "16\nRRGRRRRRRGGRGRRR", "output": "BGR" }, { "input": "190\nBBBBBBBBBBBBBBBBBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "GR" }, { "input": "200\nRGRGRRRRRGRRGRRRGRGRRRGGRGRRGGGRRGGRRRRRRRRRRRGRRGRRRGRRRGRRRRRRRGRRRRRRRRRRRGGRRGGRRRRGGRRRRRRRRRGGGRGRGRGRRGRGGRGRGRRRGRRRRRRGGRGRRRRGRRGRGGRRRRRRRGRGGRRGRRRRRRRGGRRRRGRRRRRRRGRRRGGRRRRRRGRRGGGRRRGR", "output": "BGR" }, { "input": "200\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "G" }, { "input": "52\nBBBBBBBBBBBBBBBBBBBBGBGBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "BGR" }, { "input": "200\nGRGRRGRBRRRGGGRGGRRRRRBBGRRGRBBGRRGBGRRBBRBBRRBBBGRBRGGGGBGGBRRBBRGRBGGRRGGBBRBGGRGBBRRBBRGBRRBGBRBGBBRGGRRRGGGBRGGGGRRRBBRRGRGRBRRGRBBGGRBBRGRGRBGRBBRGGBBBGRGBBGGBGBGBBRRBGRGRGGBRRGRGGGGGBRGGGGBBBBRB", "output": "BGR" }, { "input": "102\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGRGGGGGGGGBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "BGR" }, { "input": "193\nRRRGGGRBGGBGGGBGGBBGRBGGRBGGBBRBGGRBBBRBRRGGBBRBRGRRRBGBBRGGRGGGBGGRRGGRGRRBRBRBRRGRGBGBRGBBRGRRRBGRGGBGBRBBBGBRBBGBGBGGGBGGGGBRBBRRBGRGGBBBRBBBBBGRRRGBRGBRRRBBBGBGGGGRGGRRBRBGRRGBGBRBGGGRBRRGG", "output": "BGR" }, { "input": "90\nBGBGGRRBGGRRRRRGGRGBBBBBRRBGBGBGBGGBBGRGGGGRBRBBRRRGBRRGBBGBBGGGRGRGRBGBBBRRGRRBRBRRGGRBRB", "output": "BGR" }, { "input": "3\nGGB", "output": "BR" } ]
1,574,185,178
2,147,483,647
Python 3
OK
TESTS
46
124
0
n = int(input()) s = str(input()) num_R = 0 num_B = 0 num_G = 0 elements = set() for char in s: if char == 'R': num_R += 1 elements.add('R') if char == 'B': num_B += 1 elements.add('B') if char == 'G': num_G += 1 elements.add('G') if elements == {'B', 'G', 'R'}: print("BGR") exit() if (num_R >= 2 and num_B >= 2) or (num_R >= 2 and num_G >= 2) or (num_G >= 2 and num_B >= 2): print("BGR") exit() diff = {'B', 'G', 'R'} - elements if len(elements) == 1: print(list(elements)[0]) elif num_R + num_B + num_G == 2: print(list(diff)[0]) else: if num_R >= 2: print('BG') if num_G >= 2: print('BR') if num_B >= 2: print('GR')
Title: Cards Time Limit: None seconds Memory Limit: None megabytes Problem Description: Catherine has a deck of *n* cards, each of which is either red, green, or blue. As long as there are at least two cards left, she can do one of two actions: - take any two (not necessarily adjacent) cards with different colors and exchange them for a new card of the third color; - take any two (not necessarily adjacent) cards with the same color and exchange them for a new card with that color. She repeats this process until there is only one card left. What are the possible colors for the final card? Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200) — the total number of cards. The next line contains a string *s* of length *n* — the colors of the cards. *s* contains only the characters 'B', 'G', and 'R', representing blue, green, and red, respectively. Output Specification: Print a single string of up to three characters — the possible colors of the final card (using the same symbols as the input) in alphabetical order. Demo Input: ['2\nRB\n', '3\nGRG\n', '5\nBBBBB\n'] Demo Output: ['G\n', 'BR\n', 'B\n'] Note: In the first sample, Catherine has one red card and one blue card, which she must exchange for a green card. In the second sample, Catherine has two green cards and one red card. She has two options: she can exchange the two green cards for a green card, then exchange the new green card and the red card for a blue card. Alternatively, she can exchange a green and a red card for a blue card, then exchange the blue card and remaining green card for a red card. In the third sample, Catherine only has blue cards, so she can only exchange them for more blue cards.
```python n = int(input()) s = str(input()) num_R = 0 num_B = 0 num_G = 0 elements = set() for char in s: if char == 'R': num_R += 1 elements.add('R') if char == 'B': num_B += 1 elements.add('B') if char == 'G': num_G += 1 elements.add('G') if elements == {'B', 'G', 'R'}: print("BGR") exit() if (num_R >= 2 and num_B >= 2) or (num_R >= 2 and num_G >= 2) or (num_G >= 2 and num_B >= 2): print("BGR") exit() diff = {'B', 'G', 'R'} - elements if len(elements) == 1: print(list(elements)[0]) elif num_R + num_B + num_G == 2: print(list(diff)[0]) else: if num_R >= 2: print('BG') if num_G >= 2: print('BR') if num_B >= 2: print('GR') ```
3
747
C
Servers
PROGRAMMING
1,300
[ "implementation" ]
null
null
There are *n* servers in a laboratory, each of them can perform tasks. Each server has a unique id — integer from 1 to *n*. It is known that during the day *q* tasks will come, the *i*-th of them is characterized with three integers: *t**i* — the moment in seconds in which the task will come, *k**i* — the number of servers needed to perform it, and *d**i* — the time needed to perform this task in seconds. All *t**i* are distinct. To perform the *i*-th task you need *k**i* servers which are unoccupied in the second *t**i*. After the servers begin to perform the task, each of them will be busy over the next *d**i* seconds. Thus, they will be busy in seconds *t**i*,<=*t**i*<=+<=1,<=...,<=*t**i*<=+<=*d**i*<=-<=1. For performing the task, *k**i* servers with the smallest ids will be chosen from all the unoccupied servers. If in the second *t**i* there are not enough unoccupied servers, the task is ignored. Write the program that determines which tasks will be performed and which will be ignored.
The first line contains two positive integers *n* and *q* (1<=≤<=*n*<=≤<=100, 1<=≤<=*q*<=≤<=105) — the number of servers and the number of tasks. Next *q* lines contains three integers each, the *i*-th line contains integers *t**i*, *k**i* and *d**i* (1<=≤<=*t**i*<=≤<=106, 1<=≤<=*k**i*<=≤<=*n*, 1<=≤<=*d**i*<=≤<=1000) — the moment in seconds in which the *i*-th task will come, the number of servers needed to perform it, and the time needed to perform this task in seconds. The tasks are given in a chronological order and they will come in distinct seconds.
Print *q* lines. If the *i*-th task will be performed by the servers, print in the *i*-th line the sum of servers' ids on which this task will be performed. Otherwise, print -1.
[ "4 3\n1 3 2\n2 2 1\n3 4 3\n", "3 2\n3 2 3\n5 1 2\n", "8 6\n1 3 20\n4 2 1\n6 5 5\n10 1 1\n15 3 6\n21 8 8\n" ]
[ "6\n-1\n10\n", "3\n3\n", "6\n9\n30\n-1\n15\n36\n" ]
In the first example in the second 1 the first task will come, it will be performed on the servers with ids 1, 2 and 3 (the sum of the ids equals 6) during two seconds. In the second 2 the second task will come, it will be ignored, because only the server 4 will be unoccupied at that second. In the second 3 the third task will come. By this time, servers with the ids 1, 2 and 3 will be unoccupied again, so the third task will be done on all the servers with the ids 1, 2, 3 and 4 (the sum of the ids is 10). In the second example in the second 3 the first task will come, it will be performed on the servers with ids 1 and 2 (the sum of the ids is 3) during three seconds. In the second 5 the second task will come, it will be performed on the server 3, because the first two servers will be busy performing the first task.
1,500
[ { "input": "4 3\n1 3 2\n2 2 1\n3 4 3", "output": "6\n-1\n10" }, { "input": "3 2\n3 2 3\n5 1 2", "output": "3\n3" }, { "input": "8 6\n1 3 20\n4 2 1\n6 5 5\n10 1 1\n15 3 6\n21 8 8", "output": "6\n9\n30\n-1\n15\n36" }, { "input": "4 1\n6 1 1", "output": "1" }, { "input": "1 10\n4 1 1\n9 1 1\n10 1 1\n12 1 1\n13 1 1\n15 1 1\n16 1 1\n18 1 1\n19 1 1\n20 1 1", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": "4 10\n1 1 1\n3 1 2\n4 1 2\n6 1 2\n8 1 2\n13 1 2\n16 1 1\n17 1 2\n19 3 1\n20 1 1", "output": "1\n1\n2\n1\n1\n1\n1\n1\n6\n1" }, { "input": "100 1\n1000000 100 1000", "output": "5050" }, { "input": "5 3\n1 4 10\n2 2 5\n3 1 6", "output": "10\n-1\n5" }, { "input": "4 5\n1 2 3\n2 1 3\n3 1 2\n4 3 3\n5 4 1", "output": "3\n3\n4\n-1\n10" }, { "input": "5 3\n1 4 4\n4 2 2\n5 5 2", "output": "10\n-1\n15" }, { "input": "10 4\n1 5 20\n2 5 200\n100 6 20\n101 1 100", "output": "15\n40\n-1\n1" }, { "input": "8 6\n1 3 20\n4 2 1\n6 6 5\n9 1 1\n15 3 6\n21 8 8", "output": "6\n9\n-1\n4\n15\n36" }, { "input": "5 4\n1 1 4\n2 4 4\n5 2 20\n11 5 2", "output": "1\n14\n-1\n15" }, { "input": "8 4\n1 3 2\n2 3 100\n10 6 20\n11 5 20", "output": "6\n15\n-1\n21" }, { "input": "5 3\n1 3 4\n4 3 4\n6 4 1", "output": "6\n-1\n10" }, { "input": "4 3\n1 3 10\n2 2 15\n12 4 1", "output": "6\n-1\n10" } ]
1,482,579,297
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
7
2,000
4,608,000
class main(): def __init__(self): servers = input().split(" ") orders = int(servers[1]) a = int(servers[0]) servers = [] for i in range(a): servers.append(0) bef = 0 while(orders > 0): t = input().split(" ") k = int(t[1]) d = int(t[2]) x = int(t[0]) t = x - bef bef = x # t = time till task # k = number server needed # d = time needed count = 0 sums = 0 for i in range(a): servers[i] -= t if servers[i] <= 0: if count < k: servers[i] = d count+=1 sums +=i + 1 if(count < k): print(-1) else: print(sums) orders -= 1 main()
Title: Servers Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* servers in a laboratory, each of them can perform tasks. Each server has a unique id — integer from 1 to *n*. It is known that during the day *q* tasks will come, the *i*-th of them is characterized with three integers: *t**i* — the moment in seconds in which the task will come, *k**i* — the number of servers needed to perform it, and *d**i* — the time needed to perform this task in seconds. All *t**i* are distinct. To perform the *i*-th task you need *k**i* servers which are unoccupied in the second *t**i*. After the servers begin to perform the task, each of them will be busy over the next *d**i* seconds. Thus, they will be busy in seconds *t**i*,<=*t**i*<=+<=1,<=...,<=*t**i*<=+<=*d**i*<=-<=1. For performing the task, *k**i* servers with the smallest ids will be chosen from all the unoccupied servers. If in the second *t**i* there are not enough unoccupied servers, the task is ignored. Write the program that determines which tasks will be performed and which will be ignored. Input Specification: The first line contains two positive integers *n* and *q* (1<=≤<=*n*<=≤<=100, 1<=≤<=*q*<=≤<=105) — the number of servers and the number of tasks. Next *q* lines contains three integers each, the *i*-th line contains integers *t**i*, *k**i* and *d**i* (1<=≤<=*t**i*<=≤<=106, 1<=≤<=*k**i*<=≤<=*n*, 1<=≤<=*d**i*<=≤<=1000) — the moment in seconds in which the *i*-th task will come, the number of servers needed to perform it, and the time needed to perform this task in seconds. The tasks are given in a chronological order and they will come in distinct seconds. Output Specification: Print *q* lines. If the *i*-th task will be performed by the servers, print in the *i*-th line the sum of servers' ids on which this task will be performed. Otherwise, print -1. Demo Input: ['4 3\n1 3 2\n2 2 1\n3 4 3\n', '3 2\n3 2 3\n5 1 2\n', '8 6\n1 3 20\n4 2 1\n6 5 5\n10 1 1\n15 3 6\n21 8 8\n'] Demo Output: ['6\n-1\n10\n', '3\n3\n', '6\n9\n30\n-1\n15\n36\n'] Note: In the first example in the second 1 the first task will come, it will be performed on the servers with ids 1, 2 and 3 (the sum of the ids equals 6) during two seconds. In the second 2 the second task will come, it will be ignored, because only the server 4 will be unoccupied at that second. In the second 3 the third task will come. By this time, servers with the ids 1, 2 and 3 will be unoccupied again, so the third task will be done on all the servers with the ids 1, 2, 3 and 4 (the sum of the ids is 10). In the second example in the second 3 the first task will come, it will be performed on the servers with ids 1 and 2 (the sum of the ids is 3) during three seconds. In the second 5 the second task will come, it will be performed on the server 3, because the first two servers will be busy performing the first task.
```python class main(): def __init__(self): servers = input().split(" ") orders = int(servers[1]) a = int(servers[0]) servers = [] for i in range(a): servers.append(0) bef = 0 while(orders > 0): t = input().split(" ") k = int(t[1]) d = int(t[2]) x = int(t[0]) t = x - bef bef = x # t = time till task # k = number server needed # d = time needed count = 0 sums = 0 for i in range(a): servers[i] -= t if servers[i] <= 0: if count < k: servers[i] = d count+=1 sums +=i + 1 if(count < k): print(-1) else: print(sums) orders -= 1 main() ```
0
659
A
Round House
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent. Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.
The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.
Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk.
[ "6 2 -5\n", "5 1 3\n", "3 2 7\n" ]
[ "3\n", "4\n", "3\n" ]
The first example is illustrated by the picture in the statements.
500
[ { "input": "6 2 -5", "output": "3" }, { "input": "5 1 3", "output": "4" }, { "input": "3 2 7", "output": "3" }, { "input": "1 1 0", "output": "1" }, { "input": "1 1 -1", "output": "1" }, { "input": "1 1 1", "output": "1" }, { "input": "100 1 -1", "output": "100" }, { "input": "100 54 100", "output": "54" }, { "input": "100 37 -100", "output": "37" }, { "input": "99 41 0", "output": "41" }, { "input": "97 37 -92", "output": "42" }, { "input": "99 38 59", "output": "97" }, { "input": "35 34 1", "output": "35" }, { "input": "48 1 -1", "output": "48" }, { "input": "87 65 -76", "output": "76" }, { "input": "76 26 29", "output": "55" }, { "input": "100 65 0", "output": "65" }, { "input": "2 1 100", "output": "1" }, { "input": "3 2 -100", "output": "1" }, { "input": "1 1 100", "output": "1" }, { "input": "1 1 -100", "output": "1" }, { "input": "3 1 -100", "output": "3" }, { "input": "4 3 -100", "output": "3" }, { "input": "3 2 -12", "output": "2" }, { "input": "2 2 -100", "output": "2" }, { "input": "3 2 -90", "output": "2" }, { "input": "6 2 -10", "output": "4" }, { "input": "3 3 -100", "output": "2" }, { "input": "5 2 4", "output": "1" }, { "input": "6 4 5", "output": "3" }, { "input": "3 2 -6", "output": "2" }, { "input": "5 1 -99", "output": "2" }, { "input": "6 2 5", "output": "1" }, { "input": "10 1 -100", "output": "1" }, { "input": "2 2 1", "output": "1" }, { "input": "3 3 1", "output": "1" }, { "input": "6 4 4", "output": "2" }, { "input": "17 17 2", "output": "2" }, { "input": "6 6 1", "output": "1" }, { "input": "5 3 -2", "output": "1" }, { "input": "6 2 -100", "output": "4" }, { "input": "5 3 -100", "output": "3" }, { "input": "5 4 3", "output": "2" }, { "input": "3 2 2", "output": "1" }, { "input": "5 5 2", "output": "2" }, { "input": "3 2 5", "output": "1" }, { "input": "5 5 -1", "output": "4" }, { "input": "5 3 3", "output": "1" }, { "input": "4 2 3", "output": "1" }, { "input": "88 76 74", "output": "62" } ]
1,591,534,091
2,147,483,647
Python 3
OK
TESTS
50
124
0
n, a, b = map(int, input().split(" ")) out = (a+b)%n if out == 0: print(n) else: print(out)
Title: Round House Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent. Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk. Input Specification: The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively. Output Specification: Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk. Demo Input: ['6 2 -5\n', '5 1 3\n', '3 2 7\n'] Demo Output: ['3\n', '4\n', '3\n'] Note: The first example is illustrated by the picture in the statements.
```python n, a, b = map(int, input().split(" ")) out = (a+b)%n if out == 0: print(n) else: print(out) ```
3
677
A
Vanya and Fence
PROGRAMMING
800
[ "implementation" ]
null
null
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Print a single integer — the minimum possible valid width of the road.
[ "3 7\n4 5 14\n", "6 1\n1 1 1 1 1 1\n", "6 5\n7 6 8 9 10 5\n" ]
[ "4\n", "6\n", "11\n" ]
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
500
[ { "input": "3 7\n4 5 14", "output": "4" }, { "input": "6 1\n1 1 1 1 1 1", "output": "6" }, { "input": "6 5\n7 6 8 9 10 5", "output": "11" }, { "input": "10 420\n214 614 297 675 82 740 174 23 255 15", "output": "13" }, { "input": "10 561\n657 23 1096 487 785 66 481 554 1000 821", "output": "15" }, { "input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396", "output": "144" }, { "input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366", "output": "145" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n2", "output": "2" }, { "input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19", "output": "63" }, { "input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386", "output": "31" }, { "input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518", "output": "75" }, { "input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397", "output": "41" }, { "input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118", "output": "116" } ]
1,697,333,856
2,147,483,647
PyPy 3-64
OK
TESTS
29
62
0
n = str(input()) n_list = n.split() n_list_int = [int(x) for x in n_list] height = str(input()) height_list = height.split() height_list_int = [int(x) for x in height_list] sum = 0; for x in height_list_int: if x > n_list_int[1]: sum = sum + 2 else: sum = sum + 1 print(sum)
Title: Vanya and Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard? Input Specification: The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person. Output Specification: Print a single integer — the minimum possible valid width of the road. Demo Input: ['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n'] Demo Output: ['4\n', '6\n', '11\n'] Note: In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
```python n = str(input()) n_list = n.split() n_list_int = [int(x) for x in n_list] height = str(input()) height_list = height.split() height_list_int = [int(x) for x in height_list] sum = 0; for x in height_list_int: if x > n_list_int[1]: sum = sum + 2 else: sum = sum + 1 print(sum) ```
3
712
A
Memory and Crow
PROGRAMMING
800
[ "implementation", "math" ]
null
null
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure: - The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3.... Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row. The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number.
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
[ "5\n6 -4 8 -2 3\n", "5\n3 -2 -1 5 6\n" ]
[ "2 4 6 1 3 \n", "1 -3 4 11 6 \n" ]
In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and  - 4 = 4 - 6 + 1 - 3. In the second sample test, the sequence 1,  - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
500
[ { "input": "5\n6 -4 8 -2 3", "output": "2 4 6 1 3 " }, { "input": "5\n3 -2 -1 5 6", "output": "1 -3 4 11 6 " }, { "input": "10\n13 -2 532 -63 -23 -63 -64 -23 12 10", "output": "11 530 469 -86 -86 -127 -87 -11 22 10 " }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "0 0 0 0 0 0 0 0 0 0 " }, { "input": "10\n1 -1 1 -1 1 -1 1 -1 1 -1", "output": "0 0 0 0 0 0 0 0 0 -1 " }, { "input": "10\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000", "output": "0 0 0 0 0 0 0 0 0 1000000000 " }, { "input": "10\n124 532 -642 6482 -124 952 -235 7594 34 -12", "output": "656 -110 5840 6358 828 717 7359 7628 22 -12 " }, { "input": "10\n1294 35852 32749 537295 12048 53729 29357 58320 64739 1240", "output": "37146 68601 570044 549343 65777 83086 87677 123059 65979 1240 " } ]
1,542,274,458
2,147,483,647
Python 3
OK
TESTS
49
218
12,288,000
import math import string def main(): n = int(input()) b = list(map(int, input().split())) a = [b[i+1] + b[i] for i in range(n - 1)] + [b[-1]] print(' '.join(map(str, a))) if __name__ == '__main__': main()
Title: Memory and Crow Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure: - The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3.... Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it? Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row. The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number. Output Specification: Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type. Demo Input: ['5\n6 -4 8 -2 3\n', '5\n3 -2 -1 5 6\n'] Demo Output: ['2 4 6 1 3 \n', '1 -3 4 11 6 \n'] Note: In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and  - 4 = 4 - 6 + 1 - 3. In the second sample test, the sequence 1,  - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
```python import math import string def main(): n = int(input()) b = list(map(int, input().split())) a = [b[i+1] + b[i] for i in range(n - 1)] + [b[-1]] print(' '.join(map(str, a))) if __name__ == '__main__': main() ```
3
456
B
Fedya and Maths
PROGRAMMING
1,200
[ "math", "number theory" ]
null
null
Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression: for given value of *n*. Fedya managed to complete the task. Can you? Note that given number *n* can be extremely large (e.g. it can exceed any integer type of your programming language).
The single line contains a single integer *n* (0<=≤<=*n*<=≤<=10105). The number doesn't contain any leading zeroes.
Print the value of the expression without leading zeros.
[ "4\n", "124356983594583453458888889\n" ]
[ "4\n", "0\n" ]
Operation *x* *mod* *y* means taking remainder after division *x* by *y*. Note to the first sample: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/825f244180bb10323db01645118c3cfdb312fa89.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "4", "output": "4" }, { "input": "124356983594583453458888889", "output": "0" }, { "input": "2", "output": "0" }, { "input": "7854", "output": "0" }, { "input": "584660", "output": "4" }, { "input": "464", "output": "4" }, { "input": "192329", "output": "0" }, { "input": "85447", "output": "0" }, { "input": "956", "output": "4" }, { "input": "83", "output": "0" }, { "input": "33", "output": "0" }, { "input": "64", "output": "4" }, { "input": "971836", "output": "4" }, { "input": "578487", "output": "0" }, { "input": "71752", "output": "4" }, { "input": "2563", "output": "0" }, { "input": "51494", "output": "0" }, { "input": "247", "output": "0" }, { "input": "52577", "output": "0" }, { "input": "13", "output": "0" }, { "input": "26232", "output": "4" }, { "input": "0", "output": "4" }, { "input": "10", "output": "0" }, { "input": "12", "output": "4" }, { "input": "8", "output": "4" }, { "input": "1", "output": "0" } ]
1,680,334,644
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
21
1,000
102,400
def quick(a: int ,b:int )->int: re=1 while b>0: if b%2==1: re=re*a%5 b=b//2 a=a*a%5 return re n=int(input()) sum=quick(2,n)+quick(3,n)+quick(4,n)+1; sum=sum%5; print(sum)
Title: Fedya and Maths Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expression: for given value of *n*. Fedya managed to complete the task. Can you? Note that given number *n* can be extremely large (e.g. it can exceed any integer type of your programming language). Input Specification: The single line contains a single integer *n* (0<=≤<=*n*<=≤<=10105). The number doesn't contain any leading zeroes. Output Specification: Print the value of the expression without leading zeros. Demo Input: ['4\n', '124356983594583453458888889\n'] Demo Output: ['4\n', '0\n'] Note: Operation *x* *mod* *y* means taking remainder after division *x* by *y*. Note to the first sample: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/825f244180bb10323db01645118c3cfdb312fa89.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python def quick(a: int ,b:int )->int: re=1 while b>0: if b%2==1: re=re*a%5 b=b//2 a=a*a%5 return re n=int(input()) sum=quick(2,n)+quick(3,n)+quick(4,n)+1; sum=sum%5; print(sum) ```
0
877
C
Slava and tanks
PROGRAMMING
1,600
[ "constructive algorithms" ]
null
null
Slava plays his favorite game "Peace Lightning". Now he is flying a bomber on a very specific map. Formally, map is a checkered field of size 1<=×<=*n*, the cells of which are numbered from 1 to *n*, in each cell there can be one or several tanks. Slava doesn't know the number of tanks and their positions, because he flies very high, but he can drop a bomb in any cell. All tanks in this cell will be damaged. If a tank takes damage for the first time, it instantly moves to one of the neighboring cells (a tank in the cell *n* can only move to the cell *n*<=-<=1, a tank in the cell 1 can only move to the cell 2). If a tank takes damage for the second time, it's counted as destroyed and never moves again. The tanks move only when they are damaged for the first time, they do not move by themselves. Help Slava to destroy all tanks using as few bombs as possible.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the size of the map.
In the first line print *m* — the minimum number of bombs Slava needs to destroy all tanks. In the second line print *m* integers *k*1,<=*k*2,<=...,<=*k**m*. The number *k**i* means that the *i*-th bomb should be dropped at the cell *k**i*. If there are multiple answers, you can print any of them.
[ "2\n", "3\n" ]
[ "3\n2 1 2 ", "4\n2 1 3 2 " ]
none
1,500
[ { "input": "2", "output": "3\n2 1 2 " }, { "input": "3", "output": "4\n2 1 3 2 " }, { "input": "4", "output": "6\n2 4 1 3 2 4 " }, { "input": "6", "output": "9\n2 4 6 1 3 5 2 4 6 " }, { "input": "10", "output": "15\n2 4 6 8 10 1 3 5 7 9 2 4 6 8 10 " }, { "input": "15", "output": "22\n2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 " }, { "input": "100", "output": "150\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 " }, { "input": "100000", "output": "150000\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "55333", "output": "82999\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "42273", "output": "63409\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "29857", "output": "44785\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "27687", "output": "41530\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "25517", "output": "38275\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "23347", "output": "35020\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "10931", "output": "16396\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "98514", "output": "147771\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "6591", "output": "9886\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 28..." }, { "input": "94174", "output": "141261\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "92004", "output": "138006\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "59221", "output": "88831\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "46806", "output": "70209\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "54882", "output": "82323\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "42466", "output": "63699\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "40296", "output": "60444\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "27880", "output": "41820\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "25710", "output": "38565\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "23540", "output": "35310\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "11124", "output": "16686\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "8954", "output": "13431\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 2..." }, { "input": "85387", "output": "128080\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "72971", "output": "109456\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "81047", "output": "121570\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 ..." }, { "input": "5", "output": "7\n2 4 1 3 5 2 4 " } ]
1,624,366,986
2,147,483,647
PyPy 3
OK
TESTS
33
1,325
9,932,800
def f(n): l=[] for i in range(n//2*2,1,-2): l.append(i) mid=[] l=l[::-1] for i in range(1,n+1): if i not in l: mid.append(i) ans=l+mid+l print(len(ans)) return ans print(*f(int(input())))
Title: Slava and tanks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Slava plays his favorite game "Peace Lightning". Now he is flying a bomber on a very specific map. Formally, map is a checkered field of size 1<=×<=*n*, the cells of which are numbered from 1 to *n*, in each cell there can be one or several tanks. Slava doesn't know the number of tanks and their positions, because he flies very high, but he can drop a bomb in any cell. All tanks in this cell will be damaged. If a tank takes damage for the first time, it instantly moves to one of the neighboring cells (a tank in the cell *n* can only move to the cell *n*<=-<=1, a tank in the cell 1 can only move to the cell 2). If a tank takes damage for the second time, it's counted as destroyed and never moves again. The tanks move only when they are damaged for the first time, they do not move by themselves. Help Slava to destroy all tanks using as few bombs as possible. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the size of the map. Output Specification: In the first line print *m* — the minimum number of bombs Slava needs to destroy all tanks. In the second line print *m* integers *k*1,<=*k*2,<=...,<=*k**m*. The number *k**i* means that the *i*-th bomb should be dropped at the cell *k**i*. If there are multiple answers, you can print any of them. Demo Input: ['2\n', '3\n'] Demo Output: ['3\n2 1 2 ', '4\n2 1 3 2 '] Note: none
```python def f(n): l=[] for i in range(n//2*2,1,-2): l.append(i) mid=[] l=l[::-1] for i in range(1,n+1): if i not in l: mid.append(i) ans=l+mid+l print(len(ans)) return ans print(*f(int(input()))) ```
3
56
A
Bar
PROGRAMMING
1,000
[ "implementation" ]
A. Bar
2
256
According to Berland laws it is only allowed to sell alcohol to people not younger than 18 years. Vasya's job is to monitor the law's enforcement. Tonight he entered a bar and saw *n* people sitting there. For every one of them Vasya happened to determine either the age or the drink the person is having. Vasya can check any person, i.e. learn his age and the drink he is having at the same time. What minimal number of people should Vasya check additionally to make sure that there are no clients under 18 having alcohol drinks? The list of all alcohol drinks in Berland is: ABSINTH, BEER, BRANDY, CHAMPAGNE, GIN, RUM, SAKE, TEQUILA, VODKA, WHISKEY, WINE
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of the bar's clients. Then follow *n* lines, each describing one visitor. A line either contains his age (an integer from 0 to 1000) or his drink (a string of capital Latin letters from 1 to 100 in length). It is guaranteed that the input data does not contain spaces and other unnecessary separators. Only the drinks from the list given above should be considered alcohol.
Print a single number which is the number of people Vasya should check to guarantee the law enforcement.
[ "5\n18\nVODKA\nCOKE\n19\n17\n" ]
[ "2\n" ]
In the sample test the second and fifth clients should be checked.
500
[ { "input": "5\n18\nVODKA\nCOKE\n19\n17", "output": "2" }, { "input": "2\n2\nGIN", "output": "2" }, { "input": "3\nWHISKEY\n3\nGIN", "output": "3" }, { "input": "4\n813\nIORBQITQXMPTFAEMEQDQIKFGKGOTNKTOSZCBRPXJLUKVLVHJYNRUJXK\nRUM\nRHVRWGODYWWTYZFLFYKCVUFFRTQDINKNWPKFHZBFWBHWINWJW", "output": "1" }, { "input": "4\nSAKE\nSAKE\n13\n2", "output": "4" }, { "input": "2\n0\n17", "output": "2" }, { "input": "1\n0", "output": "1" } ]
1,686,823,460
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include<bits/stdc++.h> #define Faster ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0); using namespace std; int main() { Faster ; int n; map<string,int>m; m["ABSINTH"]=1; m["BEER"]=1; m["BRANDY"]=1; m["CHAMPAGNE"]=1; m["GIN"]=1; m["RUM"]=1; m["SAKE"]=1; m["TEQUILA"]=1; m["VODKA"]=1; m["WHISKEY"]=1; m["WINE"]=1; string s; cin>>n; int counT=0; for(int i=0; i<n; i++) { cin>>s; if(s[0]>=49 && s[0]<=57) { int x= stoi(s); if(x<18) { counT++; } } else if(m[s]==1)counT++; } cout<<counT; return 0; }
Title: Bar Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: According to Berland laws it is only allowed to sell alcohol to people not younger than 18 years. Vasya's job is to monitor the law's enforcement. Tonight he entered a bar and saw *n* people sitting there. For every one of them Vasya happened to determine either the age or the drink the person is having. Vasya can check any person, i.e. learn his age and the drink he is having at the same time. What minimal number of people should Vasya check additionally to make sure that there are no clients under 18 having alcohol drinks? The list of all alcohol drinks in Berland is: ABSINTH, BEER, BRANDY, CHAMPAGNE, GIN, RUM, SAKE, TEQUILA, VODKA, WHISKEY, WINE Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of the bar's clients. Then follow *n* lines, each describing one visitor. A line either contains his age (an integer from 0 to 1000) or his drink (a string of capital Latin letters from 1 to 100 in length). It is guaranteed that the input data does not contain spaces and other unnecessary separators. Only the drinks from the list given above should be considered alcohol. Output Specification: Print a single number which is the number of people Vasya should check to guarantee the law enforcement. Demo Input: ['5\n18\nVODKA\nCOKE\n19\n17\n'] Demo Output: ['2\n'] Note: In the sample test the second and fifth clients should be checked.
```python #include<bits/stdc++.h> #define Faster ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0); using namespace std; int main() { Faster ; int n; map<string,int>m; m["ABSINTH"]=1; m["BEER"]=1; m["BRANDY"]=1; m["CHAMPAGNE"]=1; m["GIN"]=1; m["RUM"]=1; m["SAKE"]=1; m["TEQUILA"]=1; m["VODKA"]=1; m["WHISKEY"]=1; m["WINE"]=1; string s; cin>>n; int counT=0; for(int i=0; i<n; i++) { cin>>s; if(s[0]>=49 && s[0]<=57) { int x= stoi(s); if(x<18) { counT++; } } else if(m[s]==1)counT++; } cout<<counT; return 0; } ```
-1
349
A
Cinema Line
PROGRAMMING
1,100
[ "greedy", "implementation" ]
null
null
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
[ "4\n25 25 50 50\n", "2\n25 100\n", "4\n50 50 25 25\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "4\n25 25 50 50", "output": "YES" }, { "input": "2\n25 100", "output": "NO" }, { "input": "4\n50 50 25 25", "output": "NO" }, { "input": "3\n25 50 100", "output": "NO" }, { "input": "10\n25 25 25 25 25 25 25 25 25 25", "output": "YES" }, { "input": "10\n50 50 50 50 50 50 50 50 50 50", "output": "NO" }, { "input": "10\n100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "7\n25 25 25 25 50 100 50", "output": "YES" }, { "input": "2\n25 25", "output": "YES" }, { "input": "3\n50 100 100", "output": "NO" }, { "input": "3\n25 50 50", "output": "NO" }, { "input": "2\n50 25", "output": "NO" }, { "input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100", "output": "NO" }, { "input": "5\n25 25 25 100 100", "output": "NO" }, { "input": "7\n25 50 25 50 25 50 100", "output": "NO" }, { "input": "5\n25 50 25 50 100", "output": "NO" }, { "input": "5\n25 25 50 50 50", "output": "NO" }, { "input": "5\n25 25 50 100 50", "output": "NO" }, { "input": "5\n25 25 50 50 100", "output": "NO" }, { "input": "1\n50", "output": "NO" } ]
1,656,143,119
2,147,483,647
PyPy 3
OK
TESTS
40
248
6,656,000
d={ 25:0, 50:0, 100:0 } input();ans='YES' for i in map(int,input().split()): if i==25:d[25]+=1 if i==50: if d[25]==0:ans='NO';break d[50]+=1;d[25]-=1 if i==100: if d[25]>0 and d[50]>0:d[100]+=1;d[25]-=1;d[50]-=1 elif d[25]>2:d[100]+=1;d[25]-=3 else:ans='NO';break print(ans)
Title: Cinema Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line. Output Specification: Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO". Demo Input: ['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python d={ 25:0, 50:0, 100:0 } input();ans='YES' for i in map(int,input().split()): if i==25:d[25]+=1 if i==50: if d[25]==0:ans='NO';break d[50]+=1;d[25]-=1 if i==100: if d[25]>0 and d[50]>0:d[100]+=1;d[25]-=1;d[50]-=1 elif d[25]>2:d[100]+=1;d[25]-=3 else:ans='NO';break print(ans) ```
3
999
B
Reversing Encryption
PROGRAMMING
900
[ "implementation" ]
null
null
A string $s$ of length $n$ can be encrypted by the following algorithm: - iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$). For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$). You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique.
The first line of input consists of a single integer $n$ ($1 \le n \le 100$) — the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters.
Print a string $s$ such that the above algorithm results in $t$.
[ "10\nrocesfedoc\n", "16\nplmaetwoxesisiht\n", "1\nz\n" ]
[ "codeforces\n", "thisisexampletwo\n", "z\n" ]
The first example is described in the problem statement.
0
[ { "input": "10\nrocesfedoc", "output": "codeforces" }, { "input": "16\nplmaetwoxesisiht", "output": "thisisexampletwo" }, { "input": "1\nz", "output": "z" }, { "input": "2\nir", "output": "ri" }, { "input": "3\nilj", "output": "jli" }, { "input": "4\njfyy", "output": "yyjf" }, { "input": "6\nkrdych", "output": "hcyrkd" }, { "input": "60\nfnebsopcvmlaoecpzmakqigyuutueuozjxutlwwiochekmhjgwxsgfbcrpqj", "output": "jqprcbfgsxwgjhmkehcoiwwltuxjzokamzpalobnfespcvmoecqigyuutueu" }, { "input": "64\nhnlzzhrvqnldswxfsrowfhmyzbxtyoxhogudasgywxycyhzgiseerbislcncvnwy", "output": "ywnvcnclsibreesigzhycyxwygsadugofxwsdlnqzlhnzhrvsrowfhmyzbxtyoxh" }, { "input": "97\nqnqrmdhmbubaijtwsecbidqouhlecladwgwcuxbigckrfzasnbfbslukoayhcgquuacygakhxoubibxtqkpyyhzjipylujgrc", "output": "crgjulypijzhyypkqtxbibuoxhkagycauuqgchyaokulsbfbnsazfrkcgibxucwgwdalcelhuoqdibceswtjiabubmhdmrqnq" }, { "input": "100\nedykhvzcntljuuoqghptioetqnfllwekzohiuaxelgecabvsbibgqodqxvyfkbyjwtgbyhvssntinkwsinwsmalusiwnjmtcoovf", "output": "fvooctmjnwisulamswniswknitnssvhybgtwjybkfyvxqdoqgbqteoitnczvkyedhljuuoqghptnfllwekzohiuaxelgecabvsbi" }, { "input": "96\nqtbcksuvxonzbkokhqlgkrvimzqmqnrvqlihrmksldyydacbtckfphenxszcnzhfjmpeykrvshgiboivkvabhrpphgavvprz", "output": "zrpvvaghpprhbavkviobighsvrkyepmjfhznczsxnehpfkctvrnqmqzmkokbvuctqbksxonzhqlgkrviqlihrmksldyydacb" }, { "input": "90\nmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm", "output": "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm" }, { "input": "89\nwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", "output": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww" }, { "input": "99\nqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq", "output": "qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq" }, { "input": "100\noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo", "output": "oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo" }, { "input": "60\nwwwwwxwwwwwwfhwwhwwwwwwawwwwwwwwwwwwwnwwwwwwwwwwwwwwwwwwwwww", "output": "wwwwwwwwwwwwwwwwwwwwwwnwwwwwwwwwwhwwwxwwwwwwwwwfhwwwwawwwwww" }, { "input": "90\ncccchccccccccccccccccccccccccccwcccccccccgcccccchccccccccccccccccccccccxccccccncccccccuccc", "output": "cccucccccccnccccccxcccccccccccccccccccccchccccccccccccccccccccccchccccccccccwcccccccccgccc" }, { "input": "97\nfwffffffffffffffffffffffffrffffffffffffffzfffffffffffffffftfcfffffffqffffffffffffffffffffffyfffff", "output": "fffffyffffffffffffffffffffffqfffffffcftffffffffffffffffzffffffffffffffrffffffffffffffffffffffffwf" }, { "input": "100\ndjjjjjjjjjjgjjjjjjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjjjjajjjjjjajjjjjjrjjjjjjjjjjjjrjjtjjjjjjjjjjjjjojjj", "output": "jjjojjjjjjjjjjjjjtjjrjjjjjjjjjjjjrjjjjjjajjjjjjajjjjjjjjjjjjjjdjjjgjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjj" } ]
1,618,499,448
2,147,483,647
PyPy 3
OK
TESTS
20
93
0
def swap(x): return x[-1::-1] n = int(input()) s = input() for i in range(1, n + 1): if not n%i: s = swap(s[:i]) + s[i:] print(s)
Title: Reversing Encryption Time Limit: None seconds Memory Limit: None megabytes Problem Description: A string $s$ of length $n$ can be encrypted by the following algorithm: - iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$). For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$). You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique. Input Specification: The first line of input consists of a single integer $n$ ($1 \le n \le 100$) — the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters. Output Specification: Print a string $s$ such that the above algorithm results in $t$. Demo Input: ['10\nrocesfedoc\n', '16\nplmaetwoxesisiht\n', '1\nz\n'] Demo Output: ['codeforces\n', 'thisisexampletwo\n', 'z\n'] Note: The first example is described in the problem statement.
```python def swap(x): return x[-1::-1] n = int(input()) s = input() for i in range(1, n + 1): if not n%i: s = swap(s[:i]) + s[i:] print(s) ```
3
255
A
Greg's Workout
PROGRAMMING
800
[ "implementation" ]
null
null
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous.
[ "2\n2 8\n", "3\n5 1 10\n", "7\n3 3 2 7 9 6 8\n" ]
[ "biceps\n", "back\n", "chest\n" ]
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
500
[ { "input": "2\n2 8", "output": "biceps" }, { "input": "3\n5 1 10", "output": "back" }, { "input": "7\n3 3 2 7 9 6 8", "output": "chest" }, { "input": "4\n5 6 6 2", "output": "chest" }, { "input": "5\n8 2 2 6 3", "output": "chest" }, { "input": "6\n8 7 2 5 3 4", "output": "chest" }, { "input": "8\n7 2 9 10 3 8 10 6", "output": "chest" }, { "input": "9\n5 4 2 3 4 4 5 2 2", "output": "chest" }, { "input": "10\n4 9 8 5 3 8 8 10 4 2", "output": "biceps" }, { "input": "11\n10 9 7 6 1 3 9 7 1 3 5", "output": "chest" }, { "input": "12\n24 22 6 16 5 21 1 7 2 19 24 5", "output": "chest" }, { "input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24", "output": "chest" }, { "input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7", "output": "back" }, { "input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12", "output": "chest" }, { "input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8", "output": "biceps" }, { "input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19", "output": "chest" }, { "input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21", "output": "back" }, { "input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24", "output": "chest" }, { "input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20", "output": "chest" }, { "input": "1\n10", "output": "chest" }, { "input": "2\n15 3", "output": "chest" }, { "input": "3\n21 11 19", "output": "chest" }, { "input": "4\n19 24 13 15", "output": "chest" }, { "input": "5\n4 24 1 9 19", "output": "biceps" }, { "input": "6\n6 22 24 7 15 24", "output": "back" }, { "input": "7\n10 8 23 23 14 18 14", "output": "chest" }, { "input": "8\n5 16 8 9 17 16 14 7", "output": "biceps" }, { "input": "9\n12 3 10 23 6 4 22 13 12", "output": "chest" }, { "input": "10\n1 9 20 18 20 17 7 24 23 2", "output": "back" }, { "input": "11\n22 25 8 2 18 15 1 13 1 11 4", "output": "biceps" }, { "input": "12\n20 12 14 2 15 6 24 3 11 8 11 14", "output": "chest" }, { "input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18", "output": "back" }, { "input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22", "output": "biceps" }, { "input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6", "output": "back" }, { "input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14", "output": "chest" }, { "input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10", "output": "biceps" }, { "input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17", "output": "chest" }, { "input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14", "output": "back" }, { "input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6", "output": "back" }, { "input": "1\n19", "output": "chest" }, { "input": "2\n1 7", "output": "biceps" }, { "input": "3\n18 18 23", "output": "back" }, { "input": "4\n12 15 1 13", "output": "chest" }, { "input": "5\n11 14 25 21 21", "output": "biceps" }, { "input": "6\n11 9 12 11 22 18", "output": "biceps" }, { "input": "7\n11 1 16 20 21 25 20", "output": "chest" }, { "input": "8\n1 2 20 9 3 22 17 4", "output": "back" }, { "input": "9\n19 2 10 19 15 20 3 1 13", "output": "back" }, { "input": "10\n11 2 11 8 21 16 2 3 19 9", "output": "back" }, { "input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24", "output": "chest" }, { "input": "12\n4 24 21 3 13 24 22 13 12 21 1 15", "output": "back" }, { "input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3", "output": "biceps" }, { "input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11", "output": "biceps" }, { "input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17", "output": "back" }, { "input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17", "output": "chest" }, { "input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8", "output": "chest" }, { "input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22", "output": "chest" }, { "input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24", "output": "chest" }, { "input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23", "output": "biceps" }, { "input": "1\n19", "output": "chest" }, { "input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22", "output": "biceps" } ]
1,682,076,677
2,147,483,647
Python 3
OK
TESTS
61
124
0
n = int(input()) b = 0 c = 0 ba = 0 mas = list(map(int,input().split())) for i in range(n): if i%3==0: c += mas[i] elif i%3==1: b += mas[i] else: ba += mas[i] if c>b and c>ba: print("chest") elif b>c and b>ba: print("biceps") else: print("back")
Title: Greg's Workout Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises. Output Specification: Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous. Demo Input: ['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n'] Demo Output: ['biceps\n', 'back\n', 'chest\n'] Note: In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
```python n = int(input()) b = 0 c = 0 ba = 0 mas = list(map(int,input().split())) for i in range(n): if i%3==0: c += mas[i] elif i%3==1: b += mas[i] else: ba += mas[i] if c>b and c>ba: print("chest") elif b>c and b>ba: print("biceps") else: print("back") ```
3
347
A
Difference Row
PROGRAMMING
1,300
[ "constructive algorithms", "implementation", "sortings" ]
null
null
You want to arrange *n* integers *a*1,<=*a*2,<=...,<=*a**n* in some order in a row. Let's define the value of an arrangement as the sum of differences between all pairs of adjacent integers. More formally, let's denote some arrangement as a sequence of integers *x*1,<=*x*2,<=...,<=*x**n*, where sequence *x* is a permutation of sequence *a*. The value of such an arrangement is (*x*1<=-<=*x*2)<=+<=(*x*2<=-<=*x*3)<=+<=...<=+<=(*x**n*<=-<=1<=-<=*x**n*). Find the largest possible value of an arrangement. Then, output the lexicographically smallest sequence *x* that corresponds to an arrangement of the largest possible value.
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n* space-separated integers *a*1, *a*2, ..., *a**n* (|*a**i*|<=≤<=1000).
Print the required sequence *x*1,<=*x*2,<=...,<=*x**n*. Sequence *x* should be the lexicographically smallest permutation of *a* that corresponds to an arrangement of the largest possible value.
[ "5\n100 -100 50 0 -50\n" ]
[ "100 -50 0 50 -100 \n" ]
In the sample test case, the value of the output arrangement is (100 - ( - 50)) + (( - 50) - 0) + (0 - 50) + (50 - ( - 100)) = 200. No other arrangement has a larger value, and among all arrangements with the value of 200, the output arrangement is the lexicographically smallest one. Sequence *x*<sub class="lower-index">1</sub>, *x*<sub class="lower-index">2</sub>, ... , *x*<sub class="lower-index">*p*</sub> is lexicographically smaller than sequence *y*<sub class="lower-index">1</sub>, *y*<sub class="lower-index">2</sub>, ... , *y*<sub class="lower-index">*p*</sub> if there exists an integer *r* (0 ≤ *r* &lt; *p*) such that *x*<sub class="lower-index">1</sub> = *y*<sub class="lower-index">1</sub>, *x*<sub class="lower-index">2</sub> = *y*<sub class="lower-index">2</sub>, ... , *x*<sub class="lower-index">*r*</sub> = *y*<sub class="lower-index">*r*</sub> and *x*<sub class="lower-index">*r* + 1</sub> &lt; *y*<sub class="lower-index">*r* + 1</sub>.
500
[ { "input": "5\n100 -100 50 0 -50", "output": "100 -50 0 50 -100 " }, { "input": "10\n764 -367 0 963 -939 -795 -26 -49 948 -282", "output": "963 -795 -367 -282 -49 -26 0 764 948 -939 " }, { "input": "20\n262 -689 -593 161 -678 -555 -633 -697 369 258 673 50 833 737 -650 198 -651 -621 -396 939", "output": "939 -689 -678 -651 -650 -633 -621 -593 -555 -396 50 161 198 258 262 369 673 737 833 -697 " }, { "input": "50\n-262 -377 -261 903 547 759 -800 -53 670 92 758 109 547 877 152 -901 -318 -527 -388 24 139 -227 413 -135 811 -886 -22 -526 -643 -431 284 609 -745 -62 323 -441 743 -800 86 862 587 -513 -468 -651 -760 197 141 -414 -909 438", "output": "903 -901 -886 -800 -800 -760 -745 -651 -643 -527 -526 -513 -468 -441 -431 -414 -388 -377 -318 -262 -261 -227 -135 -62 -53 -22 24 86 92 109 139 141 152 197 284 323 413 438 547 547 587 609 670 743 758 759 811 862 877 -909 " }, { "input": "100\n144 -534 -780 -1 -259 -945 -992 -967 -679 -239 -22 387 130 -908 140 -270 16 646 398 599 -631 -231 687 -505 89 77 584 162 124 132 33 271 212 734 350 -678 969 43 487 -689 -432 -225 -603 801 -828 -684 349 318 109 723 33 -247 719 368 -286 217 260 77 -618 955 408 994 -313 -341 578 609 60 900 222 -779 -507 464 -147 -789 -477 -235 -407 -432 35 300 -53 -896 -476 927 -293 -869 -852 -566 -759 95 506 -914 -405 -621 319 -622 -49 -334 328 -104", "output": "994 -967 -945 -914 -908 -896 -869 -852 -828 -789 -780 -779 -759 -689 -684 -679 -678 -631 -622 -621 -618 -603 -566 -534 -507 -505 -477 -476 -432 -432 -407 -405 -341 -334 -313 -293 -286 -270 -259 -247 -239 -235 -231 -225 -147 -104 -53 -49 -22 -1 16 33 33 35 43 60 77 77 89 95 109 124 130 132 140 144 162 212 217 222 260 271 300 318 319 328 349 350 368 387 398 408 464 487 506 578 584 599 609 646 687 719 723 734 801 900 927 955 969 -992 " }, { "input": "100\n-790 341 910 905 -779 279 696 -375 525 -21 -2 751 -887 764 520 -844 850 -537 -882 -183 139 -397 561 -420 -991 691 587 -93 -701 -957 -89 227 233 545 934 309 -26 454 -336 -994 -135 -840 -320 -387 -943 650 628 -583 701 -708 -881 287 -932 -265 -312 -757 695 985 -165 -329 -4 -462 -627 798 -124 -539 843 -492 -967 -782 879 -184 -351 -385 -713 699 -477 828 219 961 -170 -542 877 -718 417 152 -905 181 301 920 685 -502 518 -115 257 998 -112 -234 -223 -396", "output": "998 -991 -967 -957 -943 -932 -905 -887 -882 -881 -844 -840 -790 -782 -779 -757 -718 -713 -708 -701 -627 -583 -542 -539 -537 -502 -492 -477 -462 -420 -397 -396 -387 -385 -375 -351 -336 -329 -320 -312 -265 -234 -223 -184 -183 -170 -165 -135 -124 -115 -112 -93 -89 -26 -21 -4 -2 139 152 181 219 227 233 257 279 287 301 309 341 417 454 518 520 525 545 561 587 628 650 685 691 695 696 699 701 751 764 798 828 843 850 877 879 905 910 920 934 961 985 -994 " }, { "input": "100\n720 331 -146 -935 399 248 525 -669 614 -245 320 229 842 -894 -73 584 -458 -975 -604 -78 607 -120 -377 409 -743 862 -969 980 105 841 -795 996 696 -759 -482 624 -578 421 -717 -553 -652 -268 405 426 642 870 -650 -812 178 -882 -237 -737 -724 358 407 714 759 779 -899 -726 398 -663 -56 -736 -825 313 -746 117 -457 330 -925 497 332 -794 -506 -811 -990 -799 -343 -380 598 926 671 967 -573 -687 741 484 -641 -698 -251 -391 23 692 337 -639 126 8 -915 -386", "output": "996 -975 -969 -935 -925 -915 -899 -894 -882 -825 -812 -811 -799 -795 -794 -759 -746 -743 -737 -736 -726 -724 -717 -698 -687 -669 -663 -652 -650 -641 -639 -604 -578 -573 -553 -506 -482 -458 -457 -391 -386 -380 -377 -343 -268 -251 -245 -237 -146 -120 -78 -73 -56 8 23 105 117 126 178 229 248 313 320 330 331 332 337 358 398 399 405 407 409 421 426 484 497 525 584 598 607 614 624 642 671 692 696 714 720 741 759 779 841 842 862 870 926 967 980 -990 " }, { "input": "100\n-657 320 -457 -472 -423 -227 -902 -520 702 -27 -103 149 268 -922 307 -292 377 730 117 1000 935 459 -502 796 -494 892 -523 866 166 -248 57 -606 -96 -948 988 194 -687 832 -425 28 -356 -884 688 353 225 204 -68 960 -929 -312 -479 381 512 -274 -505 -260 -506 572 226 -822 -13 325 -370 403 -714 494 339 283 356 327 159 -151 -13 -760 -159 -991 498 19 -159 583 178 -50 -421 -679 -978 334 688 -99 117 -988 371 693 946 -58 -699 -133 62 693 535 -375", "output": "1000 -988 -978 -948 -929 -922 -902 -884 -822 -760 -714 -699 -687 -679 -657 -606 -523 -520 -506 -505 -502 -494 -479 -472 -457 -425 -423 -421 -375 -370 -356 -312 -292 -274 -260 -248 -227 -159 -159 -151 -133 -103 -99 -96 -68 -58 -50 -27 -13 -13 19 28 57 62 117 117 149 159 166 178 194 204 225 226 268 283 307 320 325 327 334 339 353 356 371 377 381 403 459 494 498 512 535 572 583 688 688 693 693 702 730 796 832 866 892 935 946 960 988 -991 " }, { "input": "100\n853 752 931 -453 -943 -118 -772 -814 791 191 -83 -373 -748 -136 -286 250 627 292 -48 -896 -296 736 -628 -376 -246 -495 366 610 228 664 -951 -952 811 192 -730 -377 319 799 753 166 827 501 157 -834 -776 424 655 -827 549 -487 608 -643 419 349 -88 95 231 -520 -508 -105 -727 568 -241 286 586 -956 -880 892 866 22 658 832 -216 -54 491 -500 -687 393 24 129 946 303 931 563 -269 -203 -251 647 -824 -163 248 -896 -133 749 -619 -212 -2 491 287 219", "output": "946 -952 -951 -943 -896 -896 -880 -834 -827 -824 -814 -776 -772 -748 -730 -727 -687 -643 -628 -619 -520 -508 -500 -495 -487 -453 -377 -376 -373 -296 -286 -269 -251 -246 -241 -216 -212 -203 -163 -136 -133 -118 -105 -88 -83 -54 -48 -2 22 24 95 129 157 166 191 192 219 228 231 248 250 286 287 292 303 319 349 366 393 419 424 491 491 501 549 563 568 586 608 610 627 647 655 658 664 736 749 752 753 791 799 811 827 832 853 866 892 931 931 -956 " }, { "input": "100\n9 857 227 -593 -983 -439 17 -523 -354 -189 780 -267 771 -981 943 620 -832 79 761 -943 218 -966 75 131 -596 534 51 796 -612 -381 -690 -353 -170 648 804 -256 257 -16 964 -728 310 50 453 737 -228 -625 618 841 -102 974 -850 -641 -788 231 -982 -84 -917 942 -913 -768 -83 298 388 447 -490 271 -949 976 -820 -876 -822 -188 -306 877 219 854 561 -307 -920 916 -925 -591 -149 -166 -572 860 -217 -831 -552 822 355 -150 203 -710 530 910 889 964 -125 -597", "output": "976 -982 -981 -966 -949 -943 -925 -920 -917 -913 -876 -850 -832 -831 -822 -820 -788 -768 -728 -710 -690 -641 -625 -612 -597 -596 -593 -591 -572 -552 -523 -490 -439 -381 -354 -353 -307 -306 -267 -256 -228 -217 -189 -188 -170 -166 -150 -149 -125 -102 -84 -83 -16 9 17 50 51 75 79 131 203 218 219 227 231 257 271 298 310 355 388 447 453 530 534 561 618 620 648 737 761 771 780 796 804 822 841 854 857 860 877 889 910 916 942 943 964 964 974 -983 " }, { "input": "2\n-1000 1000", "output": "1000 -1000 " }, { "input": "2\n1000 -1000", "output": "1000 -1000 " }, { "input": "2\n0 0", "output": "0 0 " }, { "input": "5\n1 2 3 4 5", "output": "5 2 3 4 1 " }, { "input": "6\n1 1 1 2 2 2", "output": "2 1 1 2 2 1 " }, { "input": "3\n-1 -1 -1", "output": "-1 -1 -1 " } ]
1,685,202,050
2,147,483,647
PyPy 3-64
OK
TESTS
16
124
0
n=int(input()) a=list(map(int,input().split())) M=max(a) m=min(a) a.remove(M) a.remove(m) a.sort() l=[M]+a+[m] for x in l: print(x,end=" ")
Title: Difference Row Time Limit: None seconds Memory Limit: None megabytes Problem Description: You want to arrange *n* integers *a*1,<=*a*2,<=...,<=*a**n* in some order in a row. Let's define the value of an arrangement as the sum of differences between all pairs of adjacent integers. More formally, let's denote some arrangement as a sequence of integers *x*1,<=*x*2,<=...,<=*x**n*, where sequence *x* is a permutation of sequence *a*. The value of such an arrangement is (*x*1<=-<=*x*2)<=+<=(*x*2<=-<=*x*3)<=+<=...<=+<=(*x**n*<=-<=1<=-<=*x**n*). Find the largest possible value of an arrangement. Then, output the lexicographically smallest sequence *x* that corresponds to an arrangement of the largest possible value. Input Specification: The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n* space-separated integers *a*1, *a*2, ..., *a**n* (|*a**i*|<=≤<=1000). Output Specification: Print the required sequence *x*1,<=*x*2,<=...,<=*x**n*. Sequence *x* should be the lexicographically smallest permutation of *a* that corresponds to an arrangement of the largest possible value. Demo Input: ['5\n100 -100 50 0 -50\n'] Demo Output: ['100 -50 0 50 -100 \n'] Note: In the sample test case, the value of the output arrangement is (100 - ( - 50)) + (( - 50) - 0) + (0 - 50) + (50 - ( - 100)) = 200. No other arrangement has a larger value, and among all arrangements with the value of 200, the output arrangement is the lexicographically smallest one. Sequence *x*<sub class="lower-index">1</sub>, *x*<sub class="lower-index">2</sub>, ... , *x*<sub class="lower-index">*p*</sub> is lexicographically smaller than sequence *y*<sub class="lower-index">1</sub>, *y*<sub class="lower-index">2</sub>, ... , *y*<sub class="lower-index">*p*</sub> if there exists an integer *r* (0 ≤ *r* &lt; *p*) such that *x*<sub class="lower-index">1</sub> = *y*<sub class="lower-index">1</sub>, *x*<sub class="lower-index">2</sub> = *y*<sub class="lower-index">2</sub>, ... , *x*<sub class="lower-index">*r*</sub> = *y*<sub class="lower-index">*r*</sub> and *x*<sub class="lower-index">*r* + 1</sub> &lt; *y*<sub class="lower-index">*r* + 1</sub>.
```python n=int(input()) a=list(map(int,input().split())) M=max(a) m=min(a) a.remove(M) a.remove(m) a.sort() l=[M]+a+[m] for x in l: print(x,end=" ") ```
3
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,679,942,915
2,147,483,647
PyPy 3-64
OK
TESTS
102
62
0
a, b = input(), input() s = [1 if a[i] != b[i] else 0 for i in range(len(a))] print(*s, sep='')
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python a, b = input(), input() s = [1 if a[i] != b[i] else 0 for i in range(len(a))] print(*s, sep='') ```
3.9845
20
B
Equation
PROGRAMMING
2,000
[ "math" ]
B. Equation
1
256
You are given an equation: Your task is to find the number of distinct roots of the equation and print all of them in ascending order.
The first line contains three integer numbers *A*,<=*B* and *C* (<=-<=105<=≤<=*A*,<=*B*,<=*C*<=≤<=105). Any coefficient may be equal to 0.
In case of infinite root count print the only integer -1. In case of no roots print the only integer 0. In other cases print the number of root on the first line and the roots on the following lines in the ascending order. Print roots with at least 5 digits after the decimal point.
[ "1 -5 6\n" ]
[ "2\n2.0000000000\n3.0000000000" ]
none
1,000
[ { "input": "1 -5 6", "output": "2\n2.0000000000\n3.0000000000" }, { "input": "1 1 1", "output": "0" }, { "input": "1 2 1", "output": "1\n-1.0000000000" }, { "input": "0 0 0", "output": "-1" }, { "input": "0 -2 1", "output": "1\n0.5000000000" }, { "input": "0 -2 0", "output": "1\n0.0000000000" }, { "input": "0 0 1", "output": "0" }, { "input": "0 0 -100000", "output": "0" }, { "input": "0 10000 -100000", "output": "1\n10.0000000000" }, { "input": "1 100000 -100000", "output": "2\n-100000.9999900002\n0.9999900002" }, { "input": "0 3431 43123", "output": "1\n-12.5686388808" }, { "input": "100 200 100", "output": "1\n-1.0000000000" }, { "input": "50000 100000 50000", "output": "1\n-1.0000000000" }, { "input": "-1 10 20", "output": "2\n-1.7082039325\n11.7082039325" }, { "input": "-50000 100000 -50000", "output": "1\n1.0000000000" }, { "input": "1 -2 1", "output": "1\n1.0000000000" }, { "input": "1000 -5000 6000", "output": "2\n2.0000000000\n3.0000000000" }, { "input": "0 -100000 0", "output": "1\n0.0000000000" }, { "input": "1 -100000 0", "output": "2\n0.0000000000\n100000.0000000000" }, { "input": "1223 -23532 1232", "output": "2\n0.0524974745\n19.1887126645" }, { "input": "-1 -2 -1", "output": "1\n-1.0000000000" }, { "input": "1 0 0", "output": "1\n0.0000000000" }, { "input": "0 1 0", "output": "1\n-0.0000000000" }, { "input": "0 0 1", "output": "0" }, { "input": "0 1 -1", "output": "1\n1.0000000000" }, { "input": "5 0 5", "output": "0" }, { "input": "-2 -5 0", "output": "2\n-2.5000000000\n-0.0000000000" }, { "input": "-2 -4 0", "output": "2\n-2.0000000000\n-0.0000000000" }, { "input": "-2 0 0", "output": "1\n-0.0000000000" }, { "input": "0 -4 -4", "output": "1\n-1.0000000000" }, { "input": "1 1 0", "output": "2\n-1.0000000000\n0.0000000000" }, { "input": "1 0 1", "output": "0" }, { "input": "1 1 1", "output": "0" }, { "input": "0 0 0", "output": "-1" } ]
1,666,597,600
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
46
0
a, b, c = [int(i) for i in input().split()] if a == b == 0: print(-1) else: if a == 0: print(1) print(-c/b) exit() d = b**2-4*a*c if d<0: print(0) elif d == 0: print(1) print(-b/(2*a)) else: print(2) print((-b-d**0.5)/(2*a)) print((-b+d**0.5)/(2*a))
Title: Equation Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: You are given an equation: Your task is to find the number of distinct roots of the equation and print all of them in ascending order. Input Specification: The first line contains three integer numbers *A*,<=*B* and *C* (<=-<=105<=≤<=*A*,<=*B*,<=*C*<=≤<=105). Any coefficient may be equal to 0. Output Specification: In case of infinite root count print the only integer -1. In case of no roots print the only integer 0. In other cases print the number of root on the first line and the roots on the following lines in the ascending order. Print roots with at least 5 digits after the decimal point. Demo Input: ['1 -5 6\n'] Demo Output: ['2\n2.0000000000\n3.0000000000'] Note: none
```python a, b, c = [int(i) for i in input().split()] if a == b == 0: print(-1) else: if a == 0: print(1) print(-c/b) exit() d = b**2-4*a*c if d<0: print(0) elif d == 0: print(1) print(-b/(2*a)) else: print(2) print((-b-d**0.5)/(2*a)) print((-b+d**0.5)/(2*a)) ```
0
777
C
Alyona and Spreadsheet
PROGRAMMING
1,600
[ "binary search", "data structures", "dp", "greedy", "implementation", "two pointers" ]
null
null
During the lesson small girl Alyona works with one famous spreadsheet computer program and learns how to edit tables. Now she has a table filled with integers. The table consists of *n* rows and *m* columns. By *a**i*,<=*j* we will denote the integer located at the *i*-th row and the *j*-th column. We say that the table is sorted in non-decreasing order in the column *j* if *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from 1 to *n*<=-<=1. Teacher gave Alyona *k* tasks. For each of the tasks two integers *l* and *r* are given and Alyona has to answer the following question: if one keeps the rows from *l* to *r* inclusive and deletes all others, will the table be sorted in non-decreasing order in at least one column? Formally, does there exist such *j* that *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from *l* to *r*<=-<=1 inclusive. Alyona is too small to deal with this task and asks you to help!
The first line of the input contains two positive integers *n* and *m* (1<=≤<=*n*·*m*<=≤<=100<=000) — the number of rows and the number of columns in the table respectively. Note that your are given a constraint that bound the product of these two integers, i.e. the number of elements in the table. Each of the following *n* lines contains *m* integers. The *j*-th integers in the *i* of these lines stands for *a**i*,<=*j* (1<=≤<=*a**i*,<=*j*<=≤<=109). The next line of the input contains an integer *k* (1<=≤<=*k*<=≤<=100<=000) — the number of task that teacher gave to Alyona. The *i*-th of the next *k* lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*).
Print "Yes" to the *i*-th line of the output if the table consisting of rows from *l**i* to *r**i* inclusive is sorted in non-decreasing order in at least one column. Otherwise, print "No".
[ "5 4\n1 2 3 5\n3 1 3 2\n4 5 2 3\n5 5 3 2\n4 4 3 4\n6\n1 1\n2 5\n4 5\n3 5\n1 3\n1 5\n" ]
[ "Yes\nNo\nYes\nYes\nYes\nNo\n" ]
In the sample, the whole table is not sorted in any column. However, rows 1–3 are sorted in column 1, while rows 4–5 are sorted in column 3.
1,500
[ { "input": "5 4\n1 2 3 5\n3 1 3 2\n4 5 2 3\n5 5 3 2\n4 4 3 4\n6\n1 1\n2 5\n4 5\n3 5\n1 3\n1 5", "output": "Yes\nNo\nYes\nYes\nYes\nNo" }, { "input": "1 1\n1\n1\n1 1", "output": "Yes" }, { "input": "10 1\n523130301\n127101624\n15573616\n703140639\n628818570\n957494759\n161270109\n386865653\n67832626\n53360557\n17\n4 5\n4 7\n8 8\n9 9\n3 9\n8 10\n8 9\n7 9\n4 5\n2 9\n4 6\n2 4\n2 6\n4 6\n7 9\n2 4\n8 10", "output": "No\nNo\nYes\nYes\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo" }, { "input": "15 1\n556231456\n573340933\n626155933\n397229387\n10255952\n376567394\n906742013\n269437009\n31298788\n712285290\n620239975\n379221898\n229140718\n95080095\n997123854\n18\n5 15\n1 12\n4 10\n2 15\n12 15\n15 15\n2 2\n15 15\n15 15\n13 13\n10 14\n3 6\n14 15\n3 6\n4 4\n14 15\n12 14\n1 9", "output": "No\nNo\nNo\nNo\nNo\nYes\nYes\nYes\nYes\nYes\nNo\nNo\nYes\nNo\nYes\nYes\nNo\nNo" }, { "input": "11 1\n501465490\n366941771\n415080944\n385243536\n445132523\n697044413\n894369800\n812743722\n23684788\n466526046\n953916313\n45\n2 4\n8 9\n7 7\n4 9\n2 9\n2 11\n4 4\n5 7\n1 2\n5 10\n4 6\n1 7\n4 4\n1 6\n4 7\n10 11\n1 8\n6 11\n8 8\n8 10\n1 1\n5 10\n9 10\n6 9\n6 11\n1 1\n9 9\n5 11\n1 2\n9 11\n2 6\n3 7\n11 11\n6 7\n11 11\n7 8\n5 8\n11 11\n5 6\n4 5\n2 6\n5 10\n9 9\n1 1\n1 1", "output": "No\nNo\nYes\nNo\nNo\nNo\nYes\nYes\nNo\nNo\nYes\nNo\nYes\nNo\nYes\nYes\nNo\nNo\nYes\nNo\nYes\nNo\nYes\nNo\nNo\nYes\nYes\nNo\nNo\nYes\nNo\nNo\nYes\nYes\nYes\nNo\nNo\nYes\nYes\nYes\nNo\nNo\nYes\nYes\nYes" } ]
1,626,201,516
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
29,491,200
n, m = map(int, input().split()) def binsearch(target, nums): left = 0 right = len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] == target: return mid elif nums[mid] > target: right = mid - 1 elif nums[mid] < target: left = mid + 1 return left grid = [] for r in range(n): grid.append([int(z) for z in input().split()]) dec = [] for c in range(m): col = [] for r in range(n): col.append(grid[r][c]) decspots = [] for i in range(1, n): if col[i] - col[i-1] < 0: decspots.append(i) dec.append(decspots) #print(dec) k = int(input()) for q in range(k): l, r = map(int, input().split()) flag = False for c in dec: pl1 = binsearch(l-.1, c) pl2 = binsearch(r+.1, c) if pl1 == pl2: print("Yes") flag = True break if not flag: print("No")
Title: Alyona and Spreadsheet Time Limit: None seconds Memory Limit: None megabytes Problem Description: During the lesson small girl Alyona works with one famous spreadsheet computer program and learns how to edit tables. Now she has a table filled with integers. The table consists of *n* rows and *m* columns. By *a**i*,<=*j* we will denote the integer located at the *i*-th row and the *j*-th column. We say that the table is sorted in non-decreasing order in the column *j* if *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from 1 to *n*<=-<=1. Teacher gave Alyona *k* tasks. For each of the tasks two integers *l* and *r* are given and Alyona has to answer the following question: if one keeps the rows from *l* to *r* inclusive and deletes all others, will the table be sorted in non-decreasing order in at least one column? Formally, does there exist such *j* that *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from *l* to *r*<=-<=1 inclusive. Alyona is too small to deal with this task and asks you to help! Input Specification: The first line of the input contains two positive integers *n* and *m* (1<=≤<=*n*·*m*<=≤<=100<=000) — the number of rows and the number of columns in the table respectively. Note that your are given a constraint that bound the product of these two integers, i.e. the number of elements in the table. Each of the following *n* lines contains *m* integers. The *j*-th integers in the *i* of these lines stands for *a**i*,<=*j* (1<=≤<=*a**i*,<=*j*<=≤<=109). The next line of the input contains an integer *k* (1<=≤<=*k*<=≤<=100<=000) — the number of task that teacher gave to Alyona. The *i*-th of the next *k* lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). Output Specification: Print "Yes" to the *i*-th line of the output if the table consisting of rows from *l**i* to *r**i* inclusive is sorted in non-decreasing order in at least one column. Otherwise, print "No". Demo Input: ['5 4\n1 2 3 5\n3 1 3 2\n4 5 2 3\n5 5 3 2\n4 4 3 4\n6\n1 1\n2 5\n4 5\n3 5\n1 3\n1 5\n'] Demo Output: ['Yes\nNo\nYes\nYes\nYes\nNo\n'] Note: In the sample, the whole table is not sorted in any column. However, rows 1–3 are sorted in column 1, while rows 4–5 are sorted in column 3.
```python n, m = map(int, input().split()) def binsearch(target, nums): left = 0 right = len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] == target: return mid elif nums[mid] > target: right = mid - 1 elif nums[mid] < target: left = mid + 1 return left grid = [] for r in range(n): grid.append([int(z) for z in input().split()]) dec = [] for c in range(m): col = [] for r in range(n): col.append(grid[r][c]) decspots = [] for i in range(1, n): if col[i] - col[i-1] < 0: decspots.append(i) dec.append(decspots) #print(dec) k = int(input()) for q in range(k): l, r = map(int, input().split()) flag = False for c in dec: pl1 = binsearch(l-.1, c) pl2 = binsearch(r+.1, c) if pl1 == pl2: print("Yes") flag = True break if not flag: print("No") ```
0
659
C
Tanya and Toys
PROGRAMMING
1,200
[ "greedy", "implementation" ]
null
null
In Berland recently a new collection of toys went on sale. This collection consists of 109 types of toys, numbered with integers from 1 to 109. A toy from the new collection of the *i*-th type costs *i* bourles. Tania has managed to collect *n* different types of toys *a*1,<=*a*2,<=...,<=*a**n* from the new collection. Today is Tanya's birthday, and her mother decided to spend no more than *m* bourles on the gift to the daughter. Tanya will choose several different types of toys from the new collection as a gift. Of course, she does not want to get a type of toy which she already has. Tanya wants to have as many distinct types of toys in her collection as possible as the result. The new collection is too diverse, and Tanya is too little, so she asks you to help her in this.
The first line contains two integers *n* (1<=≤<=*n*<=≤<=100<=000) and *m* (1<=≤<=*m*<=≤<=109) — the number of types of toys that Tanya already has and the number of bourles that her mom is willing to spend on buying new toys. The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the types of toys that Tanya already has.
In the first line print a single integer *k* — the number of different types of toys that Tanya should choose so that the number of different types of toys in her collection is maximum possible. Of course, the total cost of the selected toys should not exceed *m*. In the second line print *k* distinct space-separated integers *t*1,<=*t*2,<=...,<=*t**k* (1<=≤<=*t**i*<=≤<=109) — the types of toys that Tanya should choose. If there are multiple answers, you may print any of them. Values of *t**i* can be printed in any order.
[ "3 7\n1 3 4\n", "4 14\n4 6 12 8\n" ]
[ "2\n2 5 \n", "4\n7 2 3 1\n" ]
In the first sample mom should buy two toys: one toy of the 2-nd type and one toy of the 5-th type. At any other purchase for 7 bourles (assuming that the toys of types 1, 3 and 4 have already been bought), it is impossible to buy two and more toys.
1,000
[ { "input": "3 7\n1 3 4", "output": "2\n2 5 " }, { "input": "4 14\n4 6 12 8", "output": "4\n1 2 3 5 " }, { "input": "5 6\n97746 64770 31551 96547 65684", "output": "3\n1 2 3 " }, { "input": "10 10\n94125 56116 29758 94024 29289 31663 99794 35076 25328 58656", "output": "4\n1 2 3 4 " }, { "input": "30 38\n9560 64176 75619 53112 54160 68775 12655 13118 99502 89757 78434 42521 19210 1927 34097 5416 56110 44786 59126 44266 79240 65567 54602 25325 37171 2879 89291 89121 39568 28162", "output": "8\n1 2 3 4 5 6 7 8 " }, { "input": "1 999999298\n85187", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "1 999999119\n34421", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "1 1000000000\n1", "output": "44719\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..." }, { "input": "1 1000000000\n44720", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "1 1000000000\n44719", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "1 1000000000\n44721", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "3 1000000000\n123456789 234567891 345678912", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "2 5\n999999999 1000000000", "output": "2\n1 2 " }, { "input": "2 1000000000\n1 1000000000", "output": "44719\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..." }, { "input": "3 100000\n1000000000 100000000 1", "output": "445\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 ..." }, { "input": "5 5\n100000000 200000000 300000000 400000000 1000000000", "output": "2\n1 2 " }, { "input": "6 3\n1 2 3 4 5 6", "output": "0" }, { "input": "2 1\n1 2", "output": "0" }, { "input": "1 1000000000\n1000000000", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "5 1000000\n1000000000 100000000 10000000 99999999 123456789", "output": "1413\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..." }, { "input": "2 10000000\n1234567 123456", "output": "4471\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..." }, { "input": "1 1\n1000000000", "output": "1\n1 " }, { "input": "1 1000000000\n9999999", "output": "44720\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ..." }, { "input": "5 10000\n1000000000 888888888 777777777 666666666 959595959", "output": "140\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 " }, { "input": "3 1\n1000000000 999999999 999999998", "output": "1\n1 " }, { "input": "5 100000000\n100000000 999999999 1 2 3", "output": "14138\n4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 15..." }, { "input": "3 55\n100000000 1000000000 999999999", "output": "10\n1 2 3 4 5 6 7 8 9 10 " }, { "input": "2 10\n5 10000009", "output": "4\n1 2 3 4 " }, { "input": "3 10000000\n999999999 999999998 999999997", "output": "4471\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..." }, { "input": "1 1100\n1000000000", "output": "46\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 " }, { "input": "1 40\n1000000000", "output": "8\n1 2 3 4 5 6 7 8 " } ]
1,546,280,867
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
8
1,000
1,433,600
a,b=map(int,input().split()) l=list(map(int,input().split())) l1=[] for i in range(1,10000000): if i not in l: b-=i if b<0: break else: l1+=[i] print(len(l1)) print(*l1)
Title: Tanya and Toys Time Limit: None seconds Memory Limit: None megabytes Problem Description: In Berland recently a new collection of toys went on sale. This collection consists of 109 types of toys, numbered with integers from 1 to 109. A toy from the new collection of the *i*-th type costs *i* bourles. Tania has managed to collect *n* different types of toys *a*1,<=*a*2,<=...,<=*a**n* from the new collection. Today is Tanya's birthday, and her mother decided to spend no more than *m* bourles on the gift to the daughter. Tanya will choose several different types of toys from the new collection as a gift. Of course, she does not want to get a type of toy which she already has. Tanya wants to have as many distinct types of toys in her collection as possible as the result. The new collection is too diverse, and Tanya is too little, so she asks you to help her in this. Input Specification: The first line contains two integers *n* (1<=≤<=*n*<=≤<=100<=000) and *m* (1<=≤<=*m*<=≤<=109) — the number of types of toys that Tanya already has and the number of bourles that her mom is willing to spend on buying new toys. The next line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the types of toys that Tanya already has. Output Specification: In the first line print a single integer *k* — the number of different types of toys that Tanya should choose so that the number of different types of toys in her collection is maximum possible. Of course, the total cost of the selected toys should not exceed *m*. In the second line print *k* distinct space-separated integers *t*1,<=*t*2,<=...,<=*t**k* (1<=≤<=*t**i*<=≤<=109) — the types of toys that Tanya should choose. If there are multiple answers, you may print any of them. Values of *t**i* can be printed in any order. Demo Input: ['3 7\n1 3 4\n', '4 14\n4 6 12 8\n'] Demo Output: ['2\n2 5 \n', '4\n7 2 3 1\n'] Note: In the first sample mom should buy two toys: one toy of the 2-nd type and one toy of the 5-th type. At any other purchase for 7 bourles (assuming that the toys of types 1, 3 and 4 have already been bought), it is impossible to buy two and more toys.
```python a,b=map(int,input().split()) l=list(map(int,input().split())) l1=[] for i in range(1,10000000): if i not in l: b-=i if b<0: break else: l1+=[i] print(len(l1)) print(*l1) ```
0
794
C
Naming Company
PROGRAMMING
1,800
[ "games", "greedy", "sortings" ]
null
null
Oleg the client and Igor the analyst are good friends. However, sometimes they argue over little things. Recently, they started a new company, but they are having trouble finding a name for the company. To settle this problem, they've decided to play a game. The company name will consist of *n* letters. Oleg and Igor each have a set of *n* letters (which might contain multiple copies of the same letter, the sets can be different). Initially, the company name is denoted by *n* question marks. Oleg and Igor takes turns to play the game, Oleg moves first. In each turn, a player can choose one of the letters *c* in his set and replace any of the question marks with *c*. Then, a copy of the letter *c* is removed from his set. The game ends when all the question marks has been replaced by some letter. For example, suppose Oleg has the set of letters {*i*,<=*o*,<=*i*} and Igor has the set of letters {*i*,<=*m*,<=*o*}. One possible game is as follows : Initially, the company name is ???. Oleg replaces the second question mark with 'i'. The company name becomes ?i?. The set of letters Oleg have now is {*i*,<=*o*}. Igor replaces the third question mark with 'o'. The company name becomes ?io. The set of letters Igor have now is {*i*,<=*m*}. Finally, Oleg replaces the first question mark with 'o'. The company name becomes oio. The set of letters Oleg have now is {*i*}. In the end, the company name is oio. Oleg wants the company name to be as lexicographically small as possible while Igor wants the company name to be as lexicographically large as possible. What will be the company name if Oleg and Igor always play optimally? A string *s*<==<=*s*1*s*2...*s**m* is called lexicographically smaller than a string *t*<==<=*t*1*t*2...*t**m* (where *s*<=≠<=*t*) if *s**i*<=&lt;<=*t**i* where *i* is the smallest index such that *s**i*<=≠<=*t**i*. (so *s**j*<==<=*t**j* for all *j*<=&lt;<=*i*)
The first line of input contains a string *s* of length *n* (1<=≤<=*n*<=≤<=3·105). All characters of the string are lowercase English letters. This string denotes the set of letters Oleg has initially. The second line of input contains a string *t* of length *n*. All characters of the string are lowercase English letters. This string denotes the set of letters Igor has initially.
The output should contain a string of *n* lowercase English letters, denoting the company name if Oleg and Igor plays optimally.
[ "tinkoff\nzscoder\n", "xxxxxx\nxxxxxx\n", "ioi\nimo\n" ]
[ "fzfsirk\n", "xxxxxx\n", "ioi\n" ]
One way to play optimally in the first sample is as follows : - Initially, the company name is ???????.- Oleg replaces the first question mark with 'f'. The company name becomes f??????.- Igor replaces the second question mark with 'z'. The company name becomes fz?????.- Oleg replaces the third question mark with 'f'. The company name becomes fzf????.- Igor replaces the fourth question mark with 's'. The company name becomes fzfs???.- Oleg replaces the fifth question mark with 'i'. The company name becomes fzfsi??.- Igor replaces the sixth question mark with 'r'. The company name becomes fzfsir?.- Oleg replaces the seventh question mark with 'k'. The company name becomes fzfsirk. For the second sample, no matter how they play, the company name will always be xxxxxx.
1,750
[ { "input": "tinkoff\nzscoder", "output": "fzfsirk" }, { "input": "xxxxxx\nxxxxxx", "output": "xxxxxx" }, { "input": "ioi\nimo", "output": "ioi" }, { "input": "abc\naaa", "output": "aab" }, { "input": "reddit\nabcdef", "output": "dfdeed" }, { "input": "cbxz\naaaa", "output": "abac" }, { "input": "bcdef\nabbbc", "output": "bccdb" }, { "input": "z\ny", "output": "z" }, { "input": "y\nz", "output": "y" } ]
1,682,522,309
2,009
PyPy 3
WRONG_ANSWER
TESTS
3
108
0
import sys, os, io input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline s = list(input().rstrip()) t = list(input().rstrip()) n = len(s) s.sort() t.sort(reverse = True) n1, n2 = (n + 1) // 2, n // 2 c1, c2 = [0] * 27, [0] * 27 c1[26], c2[26] = 1, 1 for i in s[:n1]: c1[i - 97] += 1 for i in t[:n2]: c2[i - 97] += 1 l1, r1 = 0, 25 while not c1[l1]: l1 += 1 while not c1[r1]: r1 -= 1 l2, r2 = 0, 25 while not c2[l2]: l2 += 1 while not c2[r2]: r2 -= 1 ans = ["?"] * n l, r = 0, n - 1 for i in range(n): if l1 <= r2: if not i % 2: ans[l] = chr(l1 + 97) c1[l1] -= 1 else: ans[l] = chr(r2 + 97) c2[r2] -= 1 l += 1 while not c1[l1]: l1 += 1 while not c2[r2]: r2 -= 1 else: if not i % 2: ans[r] = chr(r1 + 97) c1[r1] -= 1 else: ans[r] = chr(l2 + 97) c2[l2] -= 1 r -= 1 while not c1[r1]: r1 -= 1 while not c2[l2]: l2 += 1 sys.stdout.write("".join(ans))
Title: Naming Company Time Limit: None seconds Memory Limit: None megabytes Problem Description: Oleg the client and Igor the analyst are good friends. However, sometimes they argue over little things. Recently, they started a new company, but they are having trouble finding a name for the company. To settle this problem, they've decided to play a game. The company name will consist of *n* letters. Oleg and Igor each have a set of *n* letters (which might contain multiple copies of the same letter, the sets can be different). Initially, the company name is denoted by *n* question marks. Oleg and Igor takes turns to play the game, Oleg moves first. In each turn, a player can choose one of the letters *c* in his set and replace any of the question marks with *c*. Then, a copy of the letter *c* is removed from his set. The game ends when all the question marks has been replaced by some letter. For example, suppose Oleg has the set of letters {*i*,<=*o*,<=*i*} and Igor has the set of letters {*i*,<=*m*,<=*o*}. One possible game is as follows : Initially, the company name is ???. Oleg replaces the second question mark with 'i'. The company name becomes ?i?. The set of letters Oleg have now is {*i*,<=*o*}. Igor replaces the third question mark with 'o'. The company name becomes ?io. The set of letters Igor have now is {*i*,<=*m*}. Finally, Oleg replaces the first question mark with 'o'. The company name becomes oio. The set of letters Oleg have now is {*i*}. In the end, the company name is oio. Oleg wants the company name to be as lexicographically small as possible while Igor wants the company name to be as lexicographically large as possible. What will be the company name if Oleg and Igor always play optimally? A string *s*<==<=*s*1*s*2...*s**m* is called lexicographically smaller than a string *t*<==<=*t*1*t*2...*t**m* (where *s*<=≠<=*t*) if *s**i*<=&lt;<=*t**i* where *i* is the smallest index such that *s**i*<=≠<=*t**i*. (so *s**j*<==<=*t**j* for all *j*<=&lt;<=*i*) Input Specification: The first line of input contains a string *s* of length *n* (1<=≤<=*n*<=≤<=3·105). All characters of the string are lowercase English letters. This string denotes the set of letters Oleg has initially. The second line of input contains a string *t* of length *n*. All characters of the string are lowercase English letters. This string denotes the set of letters Igor has initially. Output Specification: The output should contain a string of *n* lowercase English letters, denoting the company name if Oleg and Igor plays optimally. Demo Input: ['tinkoff\nzscoder\n', 'xxxxxx\nxxxxxx\n', 'ioi\nimo\n'] Demo Output: ['fzfsirk\n', 'xxxxxx\n', 'ioi\n'] Note: One way to play optimally in the first sample is as follows : - Initially, the company name is ???????.- Oleg replaces the first question mark with 'f'. The company name becomes f??????.- Igor replaces the second question mark with 'z'. The company name becomes fz?????.- Oleg replaces the third question mark with 'f'. The company name becomes fzf????.- Igor replaces the fourth question mark with 's'. The company name becomes fzfs???.- Oleg replaces the fifth question mark with 'i'. The company name becomes fzfsi??.- Igor replaces the sixth question mark with 'r'. The company name becomes fzfsir?.- Oleg replaces the seventh question mark with 'k'. The company name becomes fzfsirk. For the second sample, no matter how they play, the company name will always be xxxxxx.
```python import sys, os, io input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline s = list(input().rstrip()) t = list(input().rstrip()) n = len(s) s.sort() t.sort(reverse = True) n1, n2 = (n + 1) // 2, n // 2 c1, c2 = [0] * 27, [0] * 27 c1[26], c2[26] = 1, 1 for i in s[:n1]: c1[i - 97] += 1 for i in t[:n2]: c2[i - 97] += 1 l1, r1 = 0, 25 while not c1[l1]: l1 += 1 while not c1[r1]: r1 -= 1 l2, r2 = 0, 25 while not c2[l2]: l2 += 1 while not c2[r2]: r2 -= 1 ans = ["?"] * n l, r = 0, n - 1 for i in range(n): if l1 <= r2: if not i % 2: ans[l] = chr(l1 + 97) c1[l1] -= 1 else: ans[l] = chr(r2 + 97) c2[r2] -= 1 l += 1 while not c1[l1]: l1 += 1 while not c2[r2]: r2 -= 1 else: if not i % 2: ans[r] = chr(r1 + 97) c1[r1] -= 1 else: ans[r] = chr(l2 + 97) c2[l2] -= 1 r -= 1 while not c1[r1]: r1 -= 1 while not c2[l2]: l2 += 1 sys.stdout.write("".join(ans)) ```
0
268
A
Games
PROGRAMMING
800
[ "brute force" ]
null
null
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
In a single line print the number of games where the host team is going to play in the guest uniform.
[ "3\n1 2\n2 4\n3 4\n", "4\n100 42\n42 100\n5 42\n100 5\n", "2\n1 2\n1 2\n" ]
[ "1\n", "5\n", "0\n" ]
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
500
[ { "input": "3\n1 2\n2 4\n3 4", "output": "1" }, { "input": "4\n100 42\n42 100\n5 42\n100 5", "output": "5" }, { "input": "2\n1 2\n1 2", "output": "0" }, { "input": "7\n4 7\n52 55\n16 4\n55 4\n20 99\n3 4\n7 52", "output": "6" }, { "input": "10\n68 42\n1 35\n25 70\n59 79\n65 63\n46 6\n28 82\n92 62\n43 96\n37 28", "output": "1" }, { "input": "30\n10 39\n89 1\n78 58\n75 99\n36 13\n77 50\n6 97\n79 28\n27 52\n56 5\n93 96\n40 21\n33 74\n26 37\n53 59\n98 56\n61 65\n42 57\n9 7\n25 63\n74 34\n96 84\n95 47\n12 23\n34 21\n71 6\n27 13\n15 47\n64 14\n12 77", "output": "6" }, { "input": "30\n46 100\n87 53\n34 84\n44 66\n23 20\n50 34\n90 66\n17 39\n13 22\n94 33\n92 46\n63 78\n26 48\n44 61\n3 19\n41 84\n62 31\n65 89\n23 28\n58 57\n19 85\n26 60\n75 66\n69 67\n76 15\n64 15\n36 72\n90 89\n42 69\n45 35", "output": "4" }, { "input": "2\n46 6\n6 46", "output": "2" }, { "input": "29\n8 18\n33 75\n69 22\n97 95\n1 97\n78 10\n88 18\n13 3\n19 64\n98 12\n79 92\n41 72\n69 15\n98 31\n57 74\n15 56\n36 37\n15 66\n63 100\n16 42\n47 56\n6 4\n73 15\n30 24\n27 71\n12 19\n88 69\n85 6\n50 11", "output": "10" }, { "input": "23\n43 78\n31 28\n58 80\n66 63\n20 4\n51 95\n40 20\n50 14\n5 34\n36 39\n77 42\n64 97\n62 89\n16 56\n8 34\n58 16\n37 35\n37 66\n8 54\n50 36\n24 8\n68 48\n85 33", "output": "6" }, { "input": "13\n76 58\n32 85\n99 79\n23 58\n96 59\n72 35\n53 43\n96 55\n41 78\n75 10\n28 11\n72 7\n52 73", "output": "0" }, { "input": "18\n6 90\n70 79\n26 52\n67 81\n29 95\n41 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 2", "output": "1" }, { "input": "18\n6 90\n100 79\n26 100\n67 100\n29 100\n100 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 100", "output": "8" }, { "input": "30\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "450" }, { "input": "30\n100 99\n58 59\n56 57\n54 55\n52 53\n50 51\n48 49\n46 47\n44 45\n42 43\n40 41\n38 39\n36 37\n34 35\n32 33\n30 31\n28 29\n26 27\n24 25\n22 23\n20 21\n18 19\n16 17\n14 15\n12 13\n10 11\n8 9\n6 7\n4 5\n2 3", "output": "0" }, { "input": "15\n9 3\n2 6\n7 6\n5 10\n9 5\n8 1\n10 5\n2 8\n4 5\n9 8\n5 3\n3 8\n9 8\n4 10\n8 5", "output": "20" }, { "input": "15\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2", "output": "108" }, { "input": "25\n2 1\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n2 1\n1 2", "output": "312" }, { "input": "25\n91 57\n2 73\n54 57\n2 57\n23 57\n2 6\n57 54\n57 23\n91 54\n91 23\n57 23\n91 57\n54 2\n6 91\n57 54\n2 57\n57 91\n73 91\n57 23\n91 57\n2 73\n91 2\n23 6\n2 73\n23 6", "output": "96" }, { "input": "28\n31 66\n31 91\n91 31\n97 66\n31 66\n31 66\n66 91\n91 31\n97 31\n91 97\n97 31\n66 31\n66 97\n91 31\n31 66\n31 66\n66 31\n31 97\n66 97\n97 31\n31 91\n66 91\n91 66\n31 66\n91 66\n66 31\n66 31\n91 97", "output": "210" }, { "input": "29\n78 27\n50 68\n24 26\n68 43\n38 78\n26 38\n78 28\n28 26\n27 24\n23 38\n24 26\n24 43\n61 50\n38 78\n27 23\n61 26\n27 28\n43 23\n28 78\n43 27\n43 78\n27 61\n28 38\n61 78\n50 26\n43 27\n26 78\n28 50\n43 78", "output": "73" }, { "input": "29\n80 27\n69 80\n27 80\n69 80\n80 27\n80 27\n80 27\n80 69\n27 69\n80 69\n80 27\n27 69\n69 27\n80 69\n27 69\n69 80\n27 69\n80 69\n80 27\n69 27\n27 69\n27 80\n80 27\n69 80\n27 69\n80 69\n69 80\n69 80\n27 80", "output": "277" }, { "input": "30\n19 71\n7 89\n89 71\n21 7\n19 21\n7 89\n19 71\n89 8\n89 21\n19 8\n21 7\n8 89\n19 89\n7 21\n19 8\n19 7\n7 19\n8 21\n71 21\n71 89\n7 19\n7 19\n21 7\n21 19\n21 19\n71 8\n21 8\n71 19\n19 71\n8 21", "output": "154" }, { "input": "30\n44 17\n44 17\n44 17\n17 44\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n44 17\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n17 44\n44 17\n44 17\n44 17\n17 44\n17 44\n44 17\n17 44\n44 17\n44 17\n44 17", "output": "418" }, { "input": "22\n78 92\n15 92\n92 78\n78 80\n92 16\n24 80\n92 16\n16 92\n78 16\n24 78\n80 78\n92 80\n16 80\n80 78\n15 78\n92 16\n24 15\n24 80\n80 16\n16 80\n92 80\n24 80", "output": "74" }, { "input": "24\n9 83\n90 31\n83 3\n83 3\n21 31\n83 3\n32 31\n12 21\n31 21\n90 32\n32 21\n12 9\n12 31\n9 83\n83 12\n32 3\n32 83\n90 31\n9 32\n31 21\n83 90\n32 21\n21 3\n32 9", "output": "59" }, { "input": "30\n67 21\n85 39\n85 87\n21 39\n66 85\n10 95\n10 21\n87 85\n82 21\n67 21\n95 10\n21 39\n82 21\n21 66\n66 39\n95 30\n67 85\n66 82\n85 82\n21 66\n10 39\n67 10\n21 85\n10 82\n85 95\n10 85\n21 39\n85 39\n39 10\n95 67", "output": "100" }, { "input": "4\n8 7\n8 7\n7 8\n7 8", "output": "8" }, { "input": "6\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1", "output": "10" }, { "input": "12\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1", "output": "72" }, { "input": "4\n1 2\n1 2\n2 1\n2 1", "output": "8" } ]
1,684,490,340
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
92
0
a= int(input()) count = 0 host = [] guest = [] total = 0 while a != count: b = input() host_team, guest_team = map(int, b.split(' ')) host.append(host_team) guest.append(guest_team) if host_team in guest: total += 1 if guest_team in host: total += 1 count += 1 print(total)
Title: Games Time Limit: None seconds Memory Limit: None megabytes Problem Description: Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different. There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number. You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question. Input Specification: The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively. Output Specification: In a single line print the number of games where the host team is going to play in the guest uniform. Demo Input: ['3\n1 2\n2 4\n3 4\n', '4\n100 42\n42 100\n5 42\n100 5\n', '2\n1 2\n1 2\n'] Demo Output: ['1\n', '5\n', '0\n'] Note: In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2. In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
```python a= int(input()) count = 0 host = [] guest = [] total = 0 while a != count: b = input() host_team, guest_team = map(int, b.split(' ')) host.append(host_team) guest.append(guest_team) if host_team in guest: total += 1 if guest_team in host: total += 1 count += 1 print(total) ```
0
862
B
Mahmoud and Ehab and the bipartiteness
PROGRAMMING
1,300
[ "dfs and similar", "graphs", "trees" ]
null
null
Mahmoud and Ehab continue their adventures! As everybody in the evil land knows, Dr. Evil likes bipartite graphs, especially trees. A tree is a connected acyclic graph. A bipartite graph is a graph, whose vertices can be partitioned into 2 sets in such a way, that for each edge (*u*,<=*v*) that belongs to the graph, *u* and *v* belong to different sets. You can find more formal definitions of a tree and a bipartite graph in the notes section below. Dr. Evil gave Mahmoud and Ehab a tree consisting of *n* nodes and asked them to add edges to it in such a way, that the graph is still bipartite. Besides, after adding these edges the graph should be simple (doesn't contain loops or multiple edges). What is the maximum number of edges they can add? A loop is an edge, which connects a node with itself. Graph doesn't contain multiple edges when for each pair of nodes there is no more than one edge between them. A cycle and a loop aren't the same .
The first line of input contains an integer *n* — the number of nodes in the tree (1<=≤<=*n*<=≤<=105). The next *n*<=-<=1 lines contain integers *u* and *v* (1<=≤<=*u*,<=*v*<=≤<=*n*, *u*<=≠<=*v*) — the description of the edges of the tree. It's guaranteed that the given graph is a tree.
Output one integer — the maximum number of edges that Mahmoud and Ehab can add to the tree while fulfilling the conditions.
[ "3\n1 2\n1 3\n", "5\n1 2\n2 3\n3 4\n4 5\n" ]
[ "0\n", "2\n" ]
Tree definition: [https://en.wikipedia.org/wiki/Tree_(graph_theory)](https://en.wikipedia.org/wiki/Tree_(graph_theory)) Bipartite graph definition: [https://en.wikipedia.org/wiki/Bipartite_graph](https://en.wikipedia.org/wiki/Bipartite_graph) In the first test case the only edge that can be added in such a way, that graph won't contain loops or multiple edges is (2, 3), but adding this edge will make the graph non-bipartite so the answer is 0. In the second test case Mahmoud and Ehab can add edges (1, 4) and (2, 5).
1,000
[ { "input": "3\n1 2\n1 3", "output": "0" }, { "input": "5\n1 2\n2 3\n3 4\n4 5", "output": "2" }, { "input": "10\n3 8\n6 2\n9 7\n10 1\n3 5\n1 3\n6 7\n5 4\n3 6", "output": "16" }, { "input": "10\n7 6\n2 7\n4 1\n8 5\n9 4\n5 3\n8 7\n10 8\n10 4", "output": "16" }, { "input": "10\n2 6\n3 7\n8 4\n4 10\n6 9\n9 7\n3 10\n1 2\n5 8", "output": "16" }, { "input": "10\n6 9\n9 7\n9 4\n10 9\n9 1\n9 8\n9 2\n9 5\n3 9", "output": "0" }, { "input": "2\n1 2", "output": "0" } ]
1,625,754,657
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
0
def main(): l1=[] l2=[] lo=[] dl1=[] dl2=[] n=int(input()) for i in range(n-1): u,v=tuple(map(int,input().split())) print(u,v) if l1==[] and l2==[]: l1+=[u] l2+=[v] elif u in l1: l2+=[v] elif v in l1: l2+=[u] elif v in l2: l1+=[u] elif u in l2: l1+=[v] else: lo+=[(u,v)] while lo!=[]: u=lo[0][0] v-lo[0][1] if l1==[] and l2==[]: l1+=[u] l2+=[v] elif u in l1: l2+=[v] elif v in l1: l2+=[u] elif v in l2: l1+=[u] elif u in l2: l1+=[v] else: lo+=[(u,v)] lo.pop(0) print(len(l1)*len(l2)-(n-1)) if __name__=='__main__': main()
Title: Mahmoud and Ehab and the bipartiteness Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mahmoud and Ehab continue their adventures! As everybody in the evil land knows, Dr. Evil likes bipartite graphs, especially trees. A tree is a connected acyclic graph. A bipartite graph is a graph, whose vertices can be partitioned into 2 sets in such a way, that for each edge (*u*,<=*v*) that belongs to the graph, *u* and *v* belong to different sets. You can find more formal definitions of a tree and a bipartite graph in the notes section below. Dr. Evil gave Mahmoud and Ehab a tree consisting of *n* nodes and asked them to add edges to it in such a way, that the graph is still bipartite. Besides, after adding these edges the graph should be simple (doesn't contain loops or multiple edges). What is the maximum number of edges they can add? A loop is an edge, which connects a node with itself. Graph doesn't contain multiple edges when for each pair of nodes there is no more than one edge between them. A cycle and a loop aren't the same . Input Specification: The first line of input contains an integer *n* — the number of nodes in the tree (1<=≤<=*n*<=≤<=105). The next *n*<=-<=1 lines contain integers *u* and *v* (1<=≤<=*u*,<=*v*<=≤<=*n*, *u*<=≠<=*v*) — the description of the edges of the tree. It's guaranteed that the given graph is a tree. Output Specification: Output one integer — the maximum number of edges that Mahmoud and Ehab can add to the tree while fulfilling the conditions. Demo Input: ['3\n1 2\n1 3\n', '5\n1 2\n2 3\n3 4\n4 5\n'] Demo Output: ['0\n', '2\n'] Note: Tree definition: [https://en.wikipedia.org/wiki/Tree_(graph_theory)](https://en.wikipedia.org/wiki/Tree_(graph_theory)) Bipartite graph definition: [https://en.wikipedia.org/wiki/Bipartite_graph](https://en.wikipedia.org/wiki/Bipartite_graph) In the first test case the only edge that can be added in such a way, that graph won't contain loops or multiple edges is (2, 3), but adding this edge will make the graph non-bipartite so the answer is 0. In the second test case Mahmoud and Ehab can add edges (1, 4) and (2, 5).
```python def main(): l1=[] l2=[] lo=[] dl1=[] dl2=[] n=int(input()) for i in range(n-1): u,v=tuple(map(int,input().split())) print(u,v) if l1==[] and l2==[]: l1+=[u] l2+=[v] elif u in l1: l2+=[v] elif v in l1: l2+=[u] elif v in l2: l1+=[u] elif u in l2: l1+=[v] else: lo+=[(u,v)] while lo!=[]: u=lo[0][0] v-lo[0][1] if l1==[] and l2==[]: l1+=[u] l2+=[v] elif u in l1: l2+=[v] elif v in l1: l2+=[u] elif v in l2: l1+=[u] elif u in l2: l1+=[v] else: lo+=[(u,v)] lo.pop(0) print(len(l1)*len(l2)-(n-1)) if __name__=='__main__': main() ```
0
78
B
Easter Eggs
PROGRAMMING
1,200
[ "constructive algorithms", "implementation" ]
B. Easter Eggs
2
256
The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.
The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100).
Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them.
[ "8\n", "13\n" ]
[ "ROYGRBIV\n", "ROYGBIVGBIVYG\n" ]
The way the eggs will be painted in the first sample is shown on the picture:
1,000
[ { "input": "8", "output": "ROYGBIVG" }, { "input": "13", "output": "ROYGBIVOYGBIV" }, { "input": "7", "output": "ROYGBIV" }, { "input": "10", "output": "ROYGBIVYGB" }, { "input": "14", "output": "ROYGBIVROYGBIV" }, { "input": "50", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "9", "output": "ROYGBIVGB" }, { "input": "11", "output": "ROYGBIVYGBI" }, { "input": "12", "output": "ROYGBIVOYGBI" }, { "input": "15", "output": "ROYGBIVROYGBIVG" }, { "input": "16", "output": "ROYGBIVROYGBIVGB" }, { "input": "17", "output": "ROYGBIVROYGBIVYGB" }, { "input": "18", "output": "ROYGBIVROYGBIVYGBI" }, { "input": "19", "output": "ROYGBIVROYGBIVOYGBI" }, { "input": "20", "output": "ROYGBIVROYGBIVOYGBIV" }, { "input": "21", "output": "ROYGBIVROYGBIVROYGBIV" }, { "input": "22", "output": "ROYGBIVROYGBIVROYGBIVG" }, { "input": "23", "output": "ROYGBIVROYGBIVROYGBIVGB" }, { "input": "24", "output": "ROYGBIVROYGBIVROYGBIVYGB" }, { "input": "25", "output": "ROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "28", "output": "ROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "29", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "34", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "43", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "61", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "79", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" }, { "input": "81", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "92", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "95", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "96", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "97", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "98", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "99", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "100", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" } ]
1,616,594,629
2,147,483,647
Python 3
OK
TESTS
34
124
0
n = int(input()) n -= 3 print("ROY", end="") s = "GBIV" i = 0 while n: i %= 4 print(s[i], end="") i += 1 n -= 1 print()
Title: Easter Eggs Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible. Input Specification: The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100). Output Specification: Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them. Demo Input: ['8\n', '13\n'] Demo Output: ['ROYGRBIV\n', 'ROYGBIVGBIVYG\n'] Note: The way the eggs will be painted in the first sample is shown on the picture:
```python n = int(input()) n -= 3 print("ROY", end="") s = "GBIV" i = 0 while n: i %= 4 print(s[i], end="") i += 1 n -= 1 print() ```
3.969
892
B
Wrath
PROGRAMMING
1,200
[ "greedy", "implementation", "two pointers" ]
null
null
Hands that shed innocent blood! There are *n* guilty people in a line, the *i*-th of them holds a claw with length *L**i*. The bell rings and every person kills some of people in front of him. All people kill others at the same time. Namely, the *i*-th person kills the *j*-th person if and only if *j*<=&lt;<=*i* and *j*<=≥<=*i*<=-<=*L**i*. You are given lengths of the claws. You need to find the total number of alive people after the bell rings.
The first line contains one integer *n* (1<=≤<=*n*<=≤<=106) — the number of guilty people. Second line contains *n* space-separated integers *L*1,<=*L*2,<=...,<=*L**n* (0<=≤<=*L**i*<=≤<=109), where *L**i* is the length of the *i*-th person's claw.
Print one integer — the total number of alive people after the bell rings.
[ "4\n0 1 0 10\n", "2\n0 0\n", "10\n1 1 3 0 0 0 2 1 0 3\n" ]
[ "1\n", "2\n", "3\n" ]
In first sample the last person kills everyone in front of him.
1,000
[ { "input": "4\n0 1 0 10", "output": "1" }, { "input": "2\n0 0", "output": "2" }, { "input": "10\n1 1 3 0 0 0 2 1 0 3", "output": "3" }, { "input": "10\n0 0 2 0 0 3 3 2 2 0", "output": "2" }, { "input": "1\n0", "output": "1" }, { "input": "5\n0 0 0 1 0", "output": "4" }, { "input": "6\n3 1 1 0 3 3", "output": "1" }, { "input": "8\n0 0 0 1 0 0 1 2", "output": "5" }, { "input": "1\n1000000000", "output": "1" }, { "input": "2\n1 3", "output": "1" }, { "input": "2\n1000000000 1000000000", "output": "1" }, { "input": "11\n1 0 0 1 1 3 2 0 0 2 3", "output": "4" }, { "input": "1\n1", "output": "1" } ]
1,516,077,921
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
61
5,632,000
n = int(input()) L = [i for i in map(int, input().split())] alive = [True for i in range(n)] i = n - 1 j = n - 2 while i > 0: if j > 0: # old_j -> j old_j = min(i, j) j = min(j, i - a[i]) alive[j : old_j] == False i -= 1 if j == 0: break print(sum(alive))
Title: Wrath Time Limit: None seconds Memory Limit: None megabytes Problem Description: Hands that shed innocent blood! There are *n* guilty people in a line, the *i*-th of them holds a claw with length *L**i*. The bell rings and every person kills some of people in front of him. All people kill others at the same time. Namely, the *i*-th person kills the *j*-th person if and only if *j*<=&lt;<=*i* and *j*<=≥<=*i*<=-<=*L**i*. You are given lengths of the claws. You need to find the total number of alive people after the bell rings. Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=106) — the number of guilty people. Second line contains *n* space-separated integers *L*1,<=*L*2,<=...,<=*L**n* (0<=≤<=*L**i*<=≤<=109), where *L**i* is the length of the *i*-th person's claw. Output Specification: Print one integer — the total number of alive people after the bell rings. Demo Input: ['4\n0 1 0 10\n', '2\n0 0\n', '10\n1 1 3 0 0 0 2 1 0 3\n'] Demo Output: ['1\n', '2\n', '3\n'] Note: In first sample the last person kills everyone in front of him.
```python n = int(input()) L = [i for i in map(int, input().split())] alive = [True for i in range(n)] i = n - 1 j = n - 2 while i > 0: if j > 0: # old_j -> j old_j = min(i, j) j = min(j, i - a[i]) alive[j : old_j] == False i -= 1 if j == 0: break print(sum(alive)) ```
-1
999
B
Reversing Encryption
PROGRAMMING
900
[ "implementation" ]
null
null
A string $s$ of length $n$ can be encrypted by the following algorithm: - iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$). For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$). You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique.
The first line of input consists of a single integer $n$ ($1 \le n \le 100$) — the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters.
Print a string $s$ such that the above algorithm results in $t$.
[ "10\nrocesfedoc\n", "16\nplmaetwoxesisiht\n", "1\nz\n" ]
[ "codeforces\n", "thisisexampletwo\n", "z\n" ]
The first example is described in the problem statement.
0
[ { "input": "10\nrocesfedoc", "output": "codeforces" }, { "input": "16\nplmaetwoxesisiht", "output": "thisisexampletwo" }, { "input": "1\nz", "output": "z" }, { "input": "2\nir", "output": "ri" }, { "input": "3\nilj", "output": "jli" }, { "input": "4\njfyy", "output": "yyjf" }, { "input": "6\nkrdych", "output": "hcyrkd" }, { "input": "60\nfnebsopcvmlaoecpzmakqigyuutueuozjxutlwwiochekmhjgwxsgfbcrpqj", "output": "jqprcbfgsxwgjhmkehcoiwwltuxjzokamzpalobnfespcvmoecqigyuutueu" }, { "input": "64\nhnlzzhrvqnldswxfsrowfhmyzbxtyoxhogudasgywxycyhzgiseerbislcncvnwy", "output": "ywnvcnclsibreesigzhycyxwygsadugofxwsdlnqzlhnzhrvsrowfhmyzbxtyoxh" }, { "input": "97\nqnqrmdhmbubaijtwsecbidqouhlecladwgwcuxbigckrfzasnbfbslukoayhcgquuacygakhxoubibxtqkpyyhzjipylujgrc", "output": "crgjulypijzhyypkqtxbibuoxhkagycauuqgchyaokulsbfbnsazfrkcgibxucwgwdalcelhuoqdibceswtjiabubmhdmrqnq" }, { "input": "100\nedykhvzcntljuuoqghptioetqnfllwekzohiuaxelgecabvsbibgqodqxvyfkbyjwtgbyhvssntinkwsinwsmalusiwnjmtcoovf", "output": "fvooctmjnwisulamswniswknitnssvhybgtwjybkfyvxqdoqgbqteoitnczvkyedhljuuoqghptnfllwekzohiuaxelgecabvsbi" }, { "input": "96\nqtbcksuvxonzbkokhqlgkrvimzqmqnrvqlihrmksldyydacbtckfphenxszcnzhfjmpeykrvshgiboivkvabhrpphgavvprz", "output": "zrpvvaghpprhbavkviobighsvrkyepmjfhznczsxnehpfkctvrnqmqzmkokbvuctqbksxonzhqlgkrviqlihrmksldyydacb" }, { "input": "90\nmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm", "output": "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm" }, { "input": "89\nwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", "output": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww" }, { "input": "99\nqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq", "output": "qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq" }, { "input": "100\noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo", "output": "oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo" }, { "input": "60\nwwwwwxwwwwwwfhwwhwwwwwwawwwwwwwwwwwwwnwwwwwwwwwwwwwwwwwwwwww", "output": "wwwwwwwwwwwwwwwwwwwwwwnwwwwwwwwwwhwwwxwwwwwwwwwfhwwwwawwwwww" }, { "input": "90\ncccchccccccccccccccccccccccccccwcccccccccgcccccchccccccccccccccccccccccxccccccncccccccuccc", "output": "cccucccccccnccccccxcccccccccccccccccccccchccccccccccccccccccccccchccccccccccwcccccccccgccc" }, { "input": "97\nfwffffffffffffffffffffffffrffffffffffffffzfffffffffffffffftfcfffffffqffffffffffffffffffffffyfffff", "output": "fffffyffffffffffffffffffffffqfffffffcftffffffffffffffffzffffffffffffffrffffffffffffffffffffffffwf" }, { "input": "100\ndjjjjjjjjjjgjjjjjjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjjjjajjjjjjajjjjjjrjjjjjjjjjjjjrjjtjjjjjjjjjjjjjojjj", "output": "jjjojjjjjjjjjjjjjtjjrjjjjjjjjjjjjrjjjjjjajjjjjjajjjjjjjjjjjjjjdjjjgjjjjjjjjjsvjjjjjjjjjjmjjjjjjjjjjj" } ]
1,645,758,301
2,147,483,647
Python 3
OK
TESTS
20
46
0
l = int(input()) c = input() divisors = [] for i in range(1, l//2 +1): if l % i == 0: divisors.append(i) for i in divisors: c2 = c[0:i][::-1] c = c2 + c[i:] print(c[::-1])
Title: Reversing Encryption Time Limit: None seconds Memory Limit: None megabytes Problem Description: A string $s$ of length $n$ can be encrypted by the following algorithm: - iterate over all divisors of $n$ in decreasing order (i.e. from $n$ to $1$), - for each divisor $d$, reverse the substring $s[1 \dots d]$ (i.e. the substring which starts at position $1$ and ends at position $d$). For example, the above algorithm applied to the string $s$="codeforces" leads to the following changes: "codeforces" $\to$ "secrofedoc" $\to$ "orcesfedoc" $\to$ "rocesfedoc" $\to$ "rocesfedoc" (obviously, the last reverse operation doesn't change the string because $d=1$). You are given the encrypted string $t$. Your task is to decrypt this string, i.e., to find a string $s$ such that the above algorithm results in string $t$. It can be proven that this string $s$ always exists and is unique. Input Specification: The first line of input consists of a single integer $n$ ($1 \le n \le 100$) — the length of the string $t$. The second line of input consists of the string $t$. The length of $t$ is $n$, and it consists only of lowercase Latin letters. Output Specification: Print a string $s$ such that the above algorithm results in $t$. Demo Input: ['10\nrocesfedoc\n', '16\nplmaetwoxesisiht\n', '1\nz\n'] Demo Output: ['codeforces\n', 'thisisexampletwo\n', 'z\n'] Note: The first example is described in the problem statement.
```python l = int(input()) c = input() divisors = [] for i in range(1, l//2 +1): if l % i == 0: divisors.append(i) for i in divisors: c2 = c[0:i][::-1] c = c2 + c[i:] print(c[::-1]) ```
3