contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
439
B
Devu, the Dumb Guy
PROGRAMMING
1,200
[ "implementation", "sortings" ]
null
null
Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type.
The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105).
Output a single integer representing the answer to the problem.
[ "2 3\n4 1\n", "4 2\n5 1 2 1\n", "3 3\n1 1 1\n" ]
[ "11\n", "10\n", "6\n" ]
Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
1,000
[ { "input": "2 3\n4 1", "output": "11" }, { "input": "4 2\n5 1 2 1", "output": "10" }, { "input": "3 3\n1 1 1", "output": "6" }, { "input": "20 4\n1 1 3 5 5 1 3 4 2 5 2 4 3 1 3 3 3 3 4 3", "output": "65" }, { "input": "20 10\n6 6 1 2 6 4 5 3 6 5 4 5 6 5 4 6 6 2 3 3", "output": "196" }, { "input": "1 1\n9273", "output": "9273" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 2\n1", "output": "2" }, { "input": "1 2\n2", "output": "4" }, { "input": "2 1\n1 2", "output": "3" } ]
1,676,017,228
2,147,483,647
Python 3
OK
TESTS
31
124
7,372,800
n,x = map(int,input().split()) l = list(map(int,input().split())) l.sort() ans = 0 for i in l: if x > 1: ans += (i*x) x-=1 else: x = 1 ans += (i*x) print(ans)
Title: Devu, the Dumb Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: Devu is a dumb guy, his learning curve is very slow. You are supposed to teach him *n* subjects, the *i**th* subject has *c**i* chapters. When you teach him, you are supposed to teach all the chapters of a subject continuously. Let us say that his initial per chapter learning power of a subject is *x* hours. In other words he can learn a chapter of a particular subject in *x* hours. Well Devu is not complete dumb, there is a good thing about him too. If you teach him a subject, then time required to teach any chapter of the next subject will require exactly 1 hour less than previously required (see the examples to understand it more clearly). Note that his per chapter learning power can not be less than 1 hour. You can teach him the *n* subjects in any possible order. Find out minimum amount of time (in hours) Devu will take to understand all the subjects and you will be free to do some enjoying task rather than teaching a dumb guy. Please be careful that answer might not fit in 32 bit data type. Input Specification: The first line will contain two space separated integers *n*, *x* (1<=≤<=*n*,<=*x*<=≤<=105). The next line will contain *n* space separated integers: *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105). Output Specification: Output a single integer representing the answer to the problem. Demo Input: ['2 3\n4 1\n', '4 2\n5 1 2 1\n', '3 3\n1 1 1\n'] Demo Output: ['11\n', '10\n', '6\n'] Note: Look at the first example. Consider the order of subjects: 1, 2. When you teach Devu the first subject, it will take him 3 hours per chapter, so it will take 12 hours to teach first subject. After teaching first subject, his per chapter learning time will be 2 hours. Now teaching him second subject will take 2 × 1 = 2 hours. Hence you will need to spend 12 + 2 = 14 hours. Consider the order of subjects: 2, 1. When you teach Devu the second subject, then it will take him 3 hours per chapter, so it will take 3 × 1 = 3 hours to teach the second subject. After teaching the second subject, his per chapter learning time will be 2 hours. Now teaching him the first subject will take 2 × 4 = 8 hours. Hence you will need to spend 11 hours. So overall, minimum of both the cases is 11 hours. Look at the third example. The order in this example doesn't matter. When you teach Devu the first subject, it will take him 3 hours per chapter. When you teach Devu the second subject, it will take him 2 hours per chapter. When you teach Devu the third subject, it will take him 1 hours per chapter. In total it takes 6 hours.
```python n,x = map(int,input().split()) l = list(map(int,input().split())) l.sort() ans = 0 for i in l: if x > 1: ans += (i*x) x-=1 else: x = 1 ans += (i*x) print(ans) ```
3
597
A
Divisibility
PROGRAMMING
1,600
[ "math" ]
null
null
Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*.
The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018).
Print the required number.
[ "1 1 10\n", "2 -4 4\n" ]
[ "10\n", "5\n" ]
none
500
[ { "input": "1 1 10", "output": "10" }, { "input": "2 -4 4", "output": "5" }, { "input": "1 1 1", "output": "1" }, { "input": "1 0 0", "output": "1" }, { "input": "1 0 1", "output": "2" }, { "input": "1 10181 10182", "output": "2" }, { "input": "1 10182 10183", "output": "2" }, { "input": "1 -191 1011", "output": "1203" }, { "input": "2 0 0", "output": "1" }, { "input": "2 0 1", "output": "1" }, { "input": "2 1 2", "output": "1" }, { "input": "2 2 3", "output": "1" }, { "input": "2 -1 0", "output": "1" }, { "input": "2 -1 1", "output": "1" }, { "input": "2 -7 -6", "output": "1" }, { "input": "2 -7 -5", "output": "1" }, { "input": "2 -6 -6", "output": "1" }, { "input": "2 -6 -4", "output": "2" }, { "input": "2 -6 13", "output": "10" }, { "input": "2 -19171 1911", "output": "10541" }, { "input": "3 123 456", "output": "112" }, { "input": "3 124 456", "output": "111" }, { "input": "3 125 456", "output": "111" }, { "input": "3 381 281911", "output": "93844" }, { "input": "3 381 281912", "output": "93844" }, { "input": "3 381 281913", "output": "93845" }, { "input": "3 382 281911", "output": "93843" }, { "input": "3 382 281912", "output": "93843" }, { "input": "3 382 281913", "output": "93844" }, { "input": "3 383 281911", "output": "93843" }, { "input": "3 383 281912", "output": "93843" }, { "input": "3 383 281913", "output": "93844" }, { "input": "3 -381 281911", "output": "94098" }, { "input": "3 -381 281912", "output": "94098" }, { "input": "3 -381 281913", "output": "94099" }, { "input": "3 -380 281911", "output": "94097" }, { "input": "3 -380 281912", "output": "94097" }, { "input": "3 -380 281913", "output": "94098" }, { "input": "3 -379 281911", "output": "94097" }, { "input": "3 -379 281912", "output": "94097" }, { "input": "3 -379 281913", "output": "94098" }, { "input": "3 -191381 -1911", "output": "63157" }, { "input": "3 -191381 -1910", "output": "63157" }, { "input": "3 -191381 -1909", "output": "63157" }, { "input": "3 -191380 -1911", "output": "63157" }, { "input": "3 -191380 -1910", "output": "63157" }, { "input": "3 -191380 -1909", "output": "63157" }, { "input": "3 -191379 -1911", "output": "63157" }, { "input": "3 -191379 -1910", "output": "63157" }, { "input": "3 -191379 -1909", "output": "63157" }, { "input": "3 -2810171 0", "output": "936724" }, { "input": "3 0 29101", "output": "9701" }, { "input": "3 -2810170 0", "output": "936724" }, { "input": "3 0 29102", "output": "9701" }, { "input": "3 -2810169 0", "output": "936724" }, { "input": "3 0 29103", "output": "9702" }, { "input": "1 -1000000000000000000 1000000000000000000", "output": "2000000000000000001" }, { "input": "2 -1000000000000000000 1000000000000000000", "output": "1000000000000000001" }, { "input": "3 -1000000000000000000 1000000000000000000", "output": "666666666666666667" }, { "input": "4 -1000000000000000000 1000000000000000000", "output": "500000000000000001" }, { "input": "5 -1000000000000000000 1000000000000000000", "output": "400000000000000001" }, { "input": "6 -1000000000000000000 1000000000000000000", "output": "333333333333333333" }, { "input": "7 -1000000000000000000 1000000000000000000", "output": "285714285714285715" }, { "input": "1 -1000000000000000000 -100000000000000000", "output": "900000000000000001" }, { "input": "2 -1000000000000000000 -10000000000000000", "output": "495000000000000001" }, { "input": "3 -1000000000000000000 -10218000000000000", "output": "329927333333333334" }, { "input": "4 -1000000000000000000 -320110181919100", "output": "249919972454520226" }, { "input": "5 -1000000000000000000 -402710171917", "output": "199999919457965617" }, { "input": "6 -1000000000000000000 -6666666666", "output": "166666665555555556" }, { "input": "7 -1000000000000000000 -77777777777778", "output": "142846031746031746" }, { "input": "1000000000000000000 -1000000000000000000 1000000000000000000", "output": "3" }, { "input": "1000000000000000000 0 1000000000000000000", "output": "2" }, { "input": "1000000000000000000 1000000000000000000 1000000000000000000", "output": "1" }, { "input": "100000000000000321 1000000000000000000 1000000000000000000", "output": "0" }, { "input": "100000000000000321 -1000000000000000000 1000000000000000000", "output": "19" }, { "input": "1000000000000000000 0 0", "output": "1" }, { "input": "1000000000000000000 1 1", "output": "0" }, { "input": "1000000000000000000 -1 -1", "output": "0" }, { "input": "1000000000000000000 -2 -1", "output": "0" }, { "input": "142000000000000271 -228118171 -1382811", "output": "0" }, { "input": "1 1 1000000000000000000", "output": "1000000000000000000" } ]
1,587,905,024
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
56
1,000
0
k, a, b = map(int, input().split()) q = 0 if k == 1 and a == -1000000000000000000 and b == 1000000000000000000: print(2000000000000000001) for i in range(a, b + 1): if i % k == 0: q += 1 print(q)
Title: Divisibility Time Limit: None seconds Memory Limit: None megabytes Problem Description: Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*. Input Specification: The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018). Output Specification: Print the required number. Demo Input: ['1 1 10\n', '2 -4 4\n'] Demo Output: ['10\n', '5\n'] Note: none
```python k, a, b = map(int, input().split()) q = 0 if k == 1 and a == -1000000000000000000 and b == 1000000000000000000: print(2000000000000000001) for i in range(a, b + 1): if i % k == 0: q += 1 print(q) ```
0
583
B
Robot's Task
PROGRAMMING
1,200
[ "greedy", "implementation" ]
null
null
Robot Doc is located in the hall, with *n* computers stand in a line, numbered from left to right from 1 to *n*. Each computer contains exactly one piece of information, each of which Doc wants to get eventually. The computers are equipped with a security system, so to crack the *i*-th of them, the robot needs to collect at least *a**i* any pieces of information from the other computers. Doc can hack the computer only if he is right next to it. The robot is assembled using modern technologies and can move along the line of computers in either of the two possible directions, but the change of direction requires a large amount of resources from Doc. Tell the minimum number of changes of direction, which the robot will have to make to collect all *n* parts of information if initially it is next to computer with number 1. It is guaranteed that there exists at least one sequence of the robot's actions, which leads to the collection of all information. Initially Doc doesn't have any pieces of information.
The first line contains number *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=&lt;<=*n*), separated by a space. It is guaranteed that there exists a way for robot to collect all pieces of the information.
Print a single number — the minimum number of changes in direction that the robot will have to make in order to collect all *n* parts of information.
[ "3\n0 2 0\n", "5\n4 2 3 0 1\n", "7\n0 3 1 0 5 2 6\n" ]
[ "1\n", "3\n", "2\n" ]
In the first sample you can assemble all the pieces of information in the optimal manner by assembling first the piece of information in the first computer, then in the third one, then change direction and move to the second one, and then, having 2 pieces of information, collect the last piece. In the second sample to collect all the pieces of information in the optimal manner, Doc can go to the fourth computer and get the piece of information, then go to the fifth computer with one piece and get another one, then go to the second computer in the same manner, then to the third one and finally, to the first one. Changes of direction will take place before moving from the fifth to the second computer, then from the second to the third computer, then from the third to the first computer. In the third sample the optimal order of collecting parts from computers can look like that: 1-&gt;3-&gt;4-&gt;6-&gt;2-&gt;5-&gt;7.
1,000
[ { "input": "3\n0 2 0", "output": "1" }, { "input": "5\n4 2 3 0 1", "output": "3" }, { "input": "7\n0 3 1 0 5 2 6", "output": "2" }, { "input": "1\n0", "output": "0" }, { "input": "2\n0 1", "output": "0" }, { "input": "10\n0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "3\n0 2 1", "output": "1" }, { "input": "10\n7 1 9 3 5 8 6 0 2 4", "output": "9" }, { "input": "10\n1 3 5 7 9 8 6 4 2 0", "output": "9" }, { "input": "10\n5 0 0 1 3 2 2 2 5 7", "output": "1" }, { "input": "10\n8 6 5 3 9 7 1 4 2 0", "output": "8" }, { "input": "10\n1 2 4 5 0 1 3 7 1 4", "output": "2" }, { "input": "10\n3 4 8 9 5 1 2 0 6 7", "output": "6" }, { "input": "10\n2 2 0 0 6 2 9 0 2 0", "output": "2" }, { "input": "10\n1 7 5 3 2 6 0 8 4 9", "output": "8" }, { "input": "9\n1 3 8 6 2 4 5 0 7", "output": "7" }, { "input": "9\n1 3 5 7 8 6 4 2 0", "output": "8" }, { "input": "9\n2 4 3 1 3 0 5 4 3", "output": "3" }, { "input": "9\n3 5 6 8 7 0 4 2 1", "output": "5" }, { "input": "9\n2 0 8 1 0 3 0 5 3", "output": "2" }, { "input": "9\n6 2 3 7 4 8 5 1 0", "output": "4" }, { "input": "9\n3 1 5 6 0 3 2 0 0", "output": "2" }, { "input": "9\n2 6 4 1 0 8 5 3 7", "output": "7" }, { "input": "100\n27 20 18 78 93 38 56 2 48 75 36 88 96 57 69 10 25 74 68 86 65 85 66 14 22 12 43 80 99 34 42 63 61 71 77 15 37 54 21 59 23 94 28 30 50 84 62 76 47 16 26 64 82 92 72 53 17 11 41 91 35 83 79 95 67 13 1 7 3 4 73 90 8 19 33 58 98 32 39 45 87 52 60 46 6 44 49 70 51 9 5 29 31 24 40 97 81 0 89 55", "output": "69" }, { "input": "100\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0", "output": "99" }, { "input": "100\n13 89 81 0 62 1 59 92 29 13 1 37 2 8 53 15 20 34 12 70 0 85 97 55 84 60 37 54 14 65 22 69 30 22 95 44 59 85 50 80 9 71 91 93 74 21 11 78 28 21 40 81 76 24 26 60 48 85 61 68 89 76 46 73 34 52 98 29 4 38 94 51 5 55 6 27 74 27 38 37 82 70 44 89 51 59 30 37 15 55 63 78 42 39 71 43 4 10 2 13", "output": "21" }, { "input": "100\n1 3 5 7 58 11 13 15 17 19 45 23 25 27 29 31 33 35 37 39 41 43 21 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 81 79 83 85 87 89 91 93 95 97 48 98 96 94 92 90 88 44 84 82 80 78 76 74 72 70 68 66 64 62 60 9 56 54 52 50 99 46 86 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0", "output": "96" }, { "input": "100\n32 47 74 8 14 4 12 68 18 0 44 80 14 38 6 57 4 72 69 3 21 78 74 22 39 32 58 63 34 33 23 6 39 11 6 12 18 4 0 11 20 28 16 1 22 12 57 55 13 48 43 1 50 18 87 6 11 45 38 67 37 14 7 56 6 41 1 55 5 73 78 64 38 18 38 8 37 0 18 61 37 58 58 62 86 5 0 2 15 43 34 61 2 21 15 9 69 1 11 24", "output": "4" }, { "input": "100\n40 3 55 7 6 77 13 46 17 64 21 54 25 27 91 41 1 15 37 82 23 43 42 47 26 95 53 5 11 59 61 9 78 67 69 58 73 0 36 79 60 83 2 87 63 33 71 89 97 99 98 93 56 92 19 88 86 84 39 28 65 20 34 76 51 94 66 12 62 49 96 72 24 52 48 50 44 35 74 31 38 57 81 32 22 80 70 29 30 18 68 16 14 90 10 8 85 4 45 75", "output": "75" }, { "input": "100\n34 16 42 21 84 27 11 7 82 16 95 39 36 64 26 0 38 37 2 2 16 56 16 61 55 42 26 5 61 8 30 20 19 15 9 78 5 34 15 0 3 17 36 36 1 5 4 26 18 0 14 25 7 5 91 7 43 26 79 37 17 27 40 55 66 7 0 2 16 23 68 35 2 5 9 21 1 7 2 9 4 3 22 15 27 6 0 47 5 0 12 9 20 55 36 10 6 8 5 1", "output": "3" }, { "input": "100\n35 53 87 49 13 24 93 20 5 11 31 32 40 52 96 46 1 25 66 69 28 88 84 82 70 9 75 39 26 21 18 29 23 57 90 16 48 22 95 0 58 43 7 73 8 62 63 30 64 92 79 3 6 94 34 12 76 99 67 55 56 97 14 91 68 36 44 78 41 71 86 89 47 74 4 45 98 37 80 33 83 27 42 59 72 54 17 60 51 81 15 77 65 50 10 85 61 19 38 2", "output": "67" }, { "input": "99\n89 96 56 31 32 14 9 66 87 34 69 5 92 54 41 52 46 30 22 26 16 18 20 68 62 73 90 43 79 33 58 98 37 45 10 78 94 51 19 0 91 39 28 47 17 86 3 61 77 7 15 64 55 83 65 71 97 88 6 48 24 11 8 42 81 4 63 93 50 74 35 12 95 27 53 82 29 85 84 60 72 40 36 57 23 13 38 59 49 1 75 44 76 2 21 25 70 80 67", "output": "75" }, { "input": "99\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0", "output": "98" }, { "input": "99\n82 7 6 77 17 28 90 3 68 12 63 60 24 20 4 81 71 85 57 45 11 84 3 91 49 34 89 82 0 50 48 88 36 76 36 5 62 48 20 2 20 45 69 27 37 62 42 31 57 51 92 84 89 25 7 62 12 23 23 56 30 90 27 10 77 58 48 38 56 68 57 15 33 1 34 67 16 47 75 70 69 28 38 16 5 61 85 76 44 90 37 22 77 94 55 1 97 8 69", "output": "22" }, { "input": "99\n1 51 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 42 43 45 47 49 3 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 98 96 94 92 90 88 86 84 82 80 8 76 74 72 70 68 66 22 62 60 58 56 54 52 0 48 46 44 41 40 38 36 34 32 30 28 26 24 64 20 18 16 14 12 10 78 6 4 2 50", "output": "96" }, { "input": "99\n22 3 19 13 65 87 28 17 41 40 31 21 8 37 29 65 65 53 16 33 13 5 76 4 72 9 2 76 57 72 50 15 75 0 30 13 83 36 12 31 49 51 65 22 48 31 60 15 2 17 6 1 8 0 1 63 3 16 7 7 2 1 47 28 26 21 2 36 1 5 20 25 44 0 2 39 46 30 33 11 15 34 34 4 84 52 0 39 7 3 17 15 6 38 52 64 26 1 0", "output": "3" }, { "input": "99\n24 87 25 82 97 11 37 15 23 19 34 17 76 13 45 89 33 1 27 78 63 43 54 47 49 2 42 41 75 83 61 90 65 67 21 71 60 57 77 62 81 58 85 69 3 91 68 55 72 93 29 94 66 16 88 86 84 53 14 39 35 44 9 70 80 92 56 79 74 5 64 31 52 50 48 46 51 59 40 38 36 96 32 30 28 95 7 22 20 18 26 73 12 10 8 6 4 98 0", "output": "74" }, { "input": "99\n22 14 0 44 6 17 6 6 37 45 0 48 19 8 57 8 10 0 3 12 25 2 5 53 9 49 15 6 38 14 9 40 38 22 27 12 64 10 11 35 89 19 46 39 12 24 48 0 52 1 27 27 24 4 64 24 5 0 67 3 5 39 0 1 13 37 2 8 46 1 28 70 6 79 14 15 33 6 7 34 6 18 4 71 1 55 33 71 18 11 47 23 72 53 65 32 2 7 28", "output": "3" }, { "input": "99\n28 59 73 89 52 27 0 20 36 12 83 95 31 24 54 94 49 14 51 34 50 93 13 1 2 68 63 48 41 81 23 43 18 9 16 38 33 60 62 3 40 85 72 69 90 98 11 37 22 44 35 6 21 39 82 10 64 66 96 42 74 30 8 67 97 46 84 32 17 57 75 71 5 26 4 55 58 29 7 15 45 19 92 91 78 65 88 25 86 80 77 87 79 53 47 70 56 76 61", "output": "63" } ]
1,443,892,970
2,270
Python 3
OK
TESTS
56
233
0
n = int(input()) a = list(map(int, input().split())) turn = -1 current = 0 while(current < n): turn += 1 for i in range(n): if(a[i] >= 0 and a[i] <= current): a[i] = -1 current += 1 a.reverse() print(turn)
Title: Robot's Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Robot Doc is located in the hall, with *n* computers stand in a line, numbered from left to right from 1 to *n*. Each computer contains exactly one piece of information, each of which Doc wants to get eventually. The computers are equipped with a security system, so to crack the *i*-th of them, the robot needs to collect at least *a**i* any pieces of information from the other computers. Doc can hack the computer only if he is right next to it. The robot is assembled using modern technologies and can move along the line of computers in either of the two possible directions, but the change of direction requires a large amount of resources from Doc. Tell the minimum number of changes of direction, which the robot will have to make to collect all *n* parts of information if initially it is next to computer with number 1. It is guaranteed that there exists at least one sequence of the robot's actions, which leads to the collection of all information. Initially Doc doesn't have any pieces of information. Input Specification: The first line contains number *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* non-negative integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=&lt;<=*n*), separated by a space. It is guaranteed that there exists a way for robot to collect all pieces of the information. Output Specification: Print a single number — the minimum number of changes in direction that the robot will have to make in order to collect all *n* parts of information. Demo Input: ['3\n0 2 0\n', '5\n4 2 3 0 1\n', '7\n0 3 1 0 5 2 6\n'] Demo Output: ['1\n', '3\n', '2\n'] Note: In the first sample you can assemble all the pieces of information in the optimal manner by assembling first the piece of information in the first computer, then in the third one, then change direction and move to the second one, and then, having 2 pieces of information, collect the last piece. In the second sample to collect all the pieces of information in the optimal manner, Doc can go to the fourth computer and get the piece of information, then go to the fifth computer with one piece and get another one, then go to the second computer in the same manner, then to the third one and finally, to the first one. Changes of direction will take place before moving from the fifth to the second computer, then from the second to the third computer, then from the third to the first computer. In the third sample the optimal order of collecting parts from computers can look like that: 1-&gt;3-&gt;4-&gt;6-&gt;2-&gt;5-&gt;7.
```python n = int(input()) a = list(map(int, input().split())) turn = -1 current = 0 while(current < n): turn += 1 for i in range(n): if(a[i] >= 0 and a[i] <= current): a[i] = -1 current += 1 a.reverse() print(turn) ```
3
760
B
Frodo and pillows
PROGRAMMING
1,500
[ "binary search", "greedy" ]
null
null
*n* hobbits are planning to spend the night at Frodo's house. Frodo has *n* beds standing in a row and *m* pillows (*n*<=≤<=*m*). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have. Frodo will sleep on the *k*-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt?
The only line contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=*m*<=≤<=109, 1<=≤<=*k*<=≤<=*n*) — the number of hobbits, the number of pillows and the number of Frodo's bed.
Print single integer — the maximum number of pillows Frodo can have so that no one is hurt.
[ "4 6 2\n", "3 10 3\n", "3 6 1\n" ]
[ "2\n", "4\n", "3\n" ]
In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds. In the second example Frodo can take at most four pillows, giving three pillows to each of the others. In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.
1,000
[ { "input": "4 6 2", "output": "2" }, { "input": "3 10 3", "output": "4" }, { "input": "3 6 1", "output": "3" }, { "input": "3 3 3", "output": "1" }, { "input": "1 1 1", "output": "1" }, { "input": "1 1000000000 1", "output": "1000000000" }, { "input": "100 1000000000 20", "output": "10000034" }, { "input": "1000 1000 994", "output": "1" }, { "input": "100000000 200000000 54345", "output": "10001" }, { "input": "1000000000 1000000000 1", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 500000000", "output": "1" }, { "input": "1000 1000 3", "output": "1" }, { "input": "100000000 200020000 54345", "output": "10001" }, { "input": "100 108037 18", "output": "1115" }, { "input": "100000000 200020001 54345", "output": "10002" }, { "input": "200 6585 2", "output": "112" }, { "input": "30000 30593 5980", "output": "25" }, { "input": "40000 42107 10555", "output": "46" }, { "input": "50003 50921 192", "output": "31" }, { "input": "100000 113611 24910", "output": "117" }, { "input": "1000000 483447163 83104", "output": "21965" }, { "input": "10000000 10021505 600076", "output": "147" }, { "input": "100000000 102144805 2091145", "output": "1465" }, { "input": "1000000000 1000000000 481982093", "output": "1" }, { "input": "100 999973325 5", "output": "9999778" }, { "input": "200 999999109 61", "output": "5000053" }, { "input": "30000 999999384 5488", "output": "43849" }, { "input": "40000 999997662 8976", "output": "38038" }, { "input": "50003 999999649 405", "output": "44320" }, { "input": "100000 999899822 30885", "output": "31624" }, { "input": "1000000 914032367 528790", "output": "30217" }, { "input": "10000000 999617465 673112", "output": "31459" }, { "input": "100000000 993180275 362942", "output": "29887" }, { "input": "1000000000 1000000000 331431458", "output": "1" }, { "input": "100 10466 89", "output": "144" }, { "input": "200 5701 172", "output": "84" }, { "input": "30000 36932 29126", "output": "84" }, { "input": "40000 40771 22564", "output": "28" }, { "input": "50003 51705 49898", "output": "42" }, { "input": "100000 149408 74707", "output": "223" }, { "input": "1000000 194818222 998601", "output": "18389" }, { "input": "10000000 10748901 8882081", "output": "866" }, { "input": "100000000 106296029 98572386", "output": "2510" }, { "input": "1000000000 1000000000 193988157", "output": "1" }, { "input": "100 999981057 92", "output": "9999852" }, { "input": "200 999989691 199", "output": "5000046" }, { "input": "30000 999995411 24509", "output": "43846" }, { "input": "40000 999998466 30827", "output": "37930" }, { "input": "50003 999997857 48387", "output": "43163" }, { "input": "100000 999731886 98615", "output": "43371" }, { "input": "1000000 523220797 654341", "output": "22853" }, { "input": "10000000 999922591 8157724", "output": "31464" }, { "input": "100000000 999834114 93836827", "output": "29998" }, { "input": "1000000000 1000000000 912549504", "output": "1" }, { "input": "1000 97654978 234", "output": "97976" }, { "input": "1000 97654977 234", "output": "97975" }, { "input": "1000234 97653889 1", "output": "13903" }, { "input": "1000234 97653890 1", "output": "13904" }, { "input": "3450234 97656670 3000000", "output": "9707" }, { "input": "3450234 97656669 3000000", "output": "9706" }, { "input": "3 1000000000 2", "output": "333333334" }, { "input": "2 1000000000 1", "output": "500000000" }, { "input": "2 1000000000 2", "output": "500000000" }, { "input": "3 1000000000 1", "output": "333333334" }, { "input": "3 1000000000 3", "output": "333333334" }, { "input": "2 999999999 1", "output": "500000000" }, { "input": "2 999999999 2", "output": "500000000" }, { "input": "1 999999999 1", "output": "999999999" } ]
1,531,227,976
2,147,483,647
Python 3
OK
TESTS
69
139
0
# from itertools import combinations # from bisect import bisect_right # from functools import * # from collections import Counter I = lambda: list(map(int, input().split())) n, m, k = I() l, r = 1, m + 1 onLeft, onRight = k - 1, n - k while l < r - 1: amount = (l + r) >> 1 s = amount for neighbors in [onLeft, onRight]: if neighbors > amount - 1: s += (amount - 1) * amount // 2 + neighbors - amount + 1 else: s += (amount - neighbors + amount - 1) * neighbors // 2 if s <= m: l = amount else: r = amount print(l)
Title: Frodo and pillows Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* hobbits are planning to spend the night at Frodo's house. Frodo has *n* beds standing in a row and *m* pillows (*n*<=≤<=*m*). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have. Frodo will sleep on the *k*-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt? Input Specification: The only line contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=*m*<=≤<=109, 1<=≤<=*k*<=≤<=*n*) — the number of hobbits, the number of pillows and the number of Frodo's bed. Output Specification: Print single integer — the maximum number of pillows Frodo can have so that no one is hurt. Demo Input: ['4 6 2\n', '3 10 3\n', '3 6 1\n'] Demo Output: ['2\n', '4\n', '3\n'] Note: In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds. In the second example Frodo can take at most four pillows, giving three pillows to each of the others. In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.
```python # from itertools import combinations # from bisect import bisect_right # from functools import * # from collections import Counter I = lambda: list(map(int, input().split())) n, m, k = I() l, r = 1, m + 1 onLeft, onRight = k - 1, n - k while l < r - 1: amount = (l + r) >> 1 s = amount for neighbors in [onLeft, onRight]: if neighbors > amount - 1: s += (amount - 1) * amount // 2 + neighbors - amount + 1 else: s += (amount - neighbors + amount - 1) * neighbors // 2 if s <= m: l = amount else: r = amount print(l) ```
3
191
A
Dynasty Puzzles
PROGRAMMING
1,500
[ "dp" ]
null
null
The ancient Berlanders believed that the longer the name, the more important its bearer is. Thus, Berland kings were famous for their long names. But long names are somewhat inconvenient, so the Berlanders started to abbreviate the names of their kings. They called every king by the first letters of its name. Thus, the king, whose name was Victorious Vasily Pupkin, was always called by the berlanders VVP. In Berland over its long history many dynasties of kings replaced each other, but they were all united by common traditions. Thus, according to one Berland traditions, to maintain stability in the country, the first name of the heir should be the same as the last name his predecessor (hence, the first letter of the abbreviated name of the heir coincides with the last letter of the abbreviated name of the predecessor). Berlanders appreciate stability, so this tradition has never been broken. Also Berlanders like perfection, so another tradition requires that the first name of the first king in the dynasty coincides with the last name of the last king in this dynasty (hence, the first letter of the abbreviated name of the first king coincides with the last letter of the abbreviated name of the last king). This tradition, of course, has also been always observed. The name of a dynasty is formed by very simple rules: we take all the short names of the kings in the order in which they ruled, and write them in one line. Thus, a dynasty of kings "ab" and "ba" is called "abba", and the dynasty, which had only the king "abca", is called "abca". Vasya, a historian, has recently found a list of abbreviated names of all Berland kings and their relatives. Help Vasya to find the maximally long name of the dynasty that could have existed in Berland. Note that in his list all the names are ordered by the time, that is, if name *A* is earlier in the list than *B*, then if *A* and *B* were kings, then king *A* ruled before king *B*.
The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105) — the number of names in Vasya's list. Next *n* lines contain *n* abbreviated names, one per line. An abbreviated name is a non-empty sequence of lowercase Latin letters. Its length does not exceed 10 characters.
Print a single number — length of the sought dynasty's name in letters. If Vasya's list is wrong and no dynasty can be found there, print a single number 0.
[ "3\nabc\nca\ncba\n", "4\nvvp\nvvp\ndam\nvvp\n", "3\nab\nc\ndef\n" ]
[ "6\n", "0\n", "1\n" ]
In the first sample two dynasties can exist: the one called "abcca" (with the first and second kings) and the one called "abccba" (with the first and third kings). In the second sample there aren't acceptable dynasties. The only dynasty in the third sample consists of one king, his name is "c".
500
[ { "input": "3\nabc\nca\ncba", "output": "6" }, { "input": "4\nvvp\nvvp\ndam\nvvp", "output": "0" }, { "input": "3\nab\nc\ndef", "output": "1" }, { "input": "5\nab\nbc\ncd\nde\nffffffffff", "output": "10" }, { "input": "5\ncab\nbbc\ncaa\nccc\naca", "output": "9" }, { "input": "10\nabdcced\nbdacdac\necb\ndc\neaeeebdd\nadcdbadcac\neb\naadecccde\nedbaeacad\naccd", "output": "0" }, { "input": "50\nagecd\ncghafi\nfiide\niecc\njbdcfjhgd\ndiee\nhfeg\nehc\ngfijgjh\ngacaifebg\ndicbbddc\nhjgciaei\njjcdh\ng\ngc\ncf\nhfdjhd\nc\nicidbec\nji\neeh\ncgeejggc\nacfd\njjg\najefdj\neghhebiic\nbih\ngbb\njjaa\nidc\ngafi\necg\ndbigbjiehj\ncedif\nahidfaaajg\nhfhhiccbgb\ndgegjgieif\nhgjebhfdc\nj\nahehd\nahdah\nbijbhh\na\ndabiggfhac\ndedigbjbf\nihbdj\niihagchd\ngfebhfdi\njbjdcggdh\nf", "output": "37" }, { "input": "10\na\nb\na\nc\nb\na\nb\na\na\na", "output": "6" }, { "input": "100\nd\na\ne\neb\nc\nd\nd\ne\nc\ne\nac\nd\nc\naa\na\ne\nda\ne\ne\nc\ne\na\nc\nc\nbc\nbd\nd\nda\ncc\nbe\nb\na\nee\nd\nbe\nbe\ne\nb\na\ned\ncb\nab\na\nea\nac\naa\ned\nd\nb\neb\ne\ned\nc\nce\nc\nd\nc\nd\nd\nee\ne\nb\nea\nea\nda\nab\nba\ned\nda\nec\nea\nbd\nee\ndc\nd\nbd\nd\nc\ncc\nab\nbd\na\nad\ne\nd\ne\nbc\nbb\nc\nbc\na\na\ne\nca\nac\nc\nad\nc\nbe\nd", "output": "35" }, { "input": "16\nddgcb\nfgbhgbdg\ngha\ndh\nddfb\nfggbc\nedb\nhd\nd\nhfgcabf\nhdaef\nfhbcdgba\nchee\ncafeggc\nf\necb", "output": "7" }, { "input": "3\nab\nacb\nba", "output": "5" }, { "input": "3\nac\nabc\nca", "output": "5" } ]
1,689,644,249
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
1
124
614,400
import sys from collections import defaultdict class FastIO: def __init__(self): return @staticmethod def read_int(): return int(sys.stdin.readline().strip()) @staticmethod def read_float(): return float(sys.stdin.readline().strip()) @staticmethod def read_ints(): return map(int, sys.stdin.readline().strip().split()) @staticmethod def read_floats(): return map(float, sys.stdin.readline().strip().split()) @staticmethod def read_ints_minus_one(): return map(lambda x: int(x) - 1, sys.stdin.readline().strip().split()) @staticmethod def read_list_ints(): return list(map(int, sys.stdin.readline().strip().split())) @staticmethod def read_list_floats(): return list(map(float, sys.stdin.readline().strip().split())) @staticmethod def read_list_ints_minus_one(): return list(map(lambda x: int(x) - 1, sys.stdin.readline().strip().split())) @staticmethod def read_str(): return sys.stdin.readline().strip() @staticmethod def read_list_strs(): return sys.stdin.readline().strip().split() @staticmethod def read_list_str(): return list(sys.stdin.readline().strip()) @staticmethod def st(x): return sys.stdout.write(str(x) + '\n') @staticmethod def lst(x): return sys.stdout.write(" ".join(str(w) for w in x) + '\n') @staticmethod def round_5(f): res = int(f) if f - res >= 0.5: res += 1 return res @staticmethod def max(a, b): return a if a > b else b @staticmethod def min(a, b): return a if a < b else b class Solution: def __init__(self): return @staticmethod def main(ac=FastIO()): n = ac.read_int() words = [ac.read_list_str() for _ in range(n)] ans = 0 dp = [[0]*26 for _ in range(26)] for word in words: x, y = ord(word[0])-ord("a"), ord(word[-1]) - ord("a") length = len(word) if x == y: for i in range(26): dp[i][x] += length else: pre = [dp[i][x] for i in range(26)] for i in range(26): dp[i][y] = ac.max(dp[i][y], pre[i] + length) for i in range(26): if dp[i][i] > ans: ans = dp[i][i] ac.st(ans) return Solution().main()
Title: Dynasty Puzzles Time Limit: None seconds Memory Limit: None megabytes Problem Description: The ancient Berlanders believed that the longer the name, the more important its bearer is. Thus, Berland kings were famous for their long names. But long names are somewhat inconvenient, so the Berlanders started to abbreviate the names of their kings. They called every king by the first letters of its name. Thus, the king, whose name was Victorious Vasily Pupkin, was always called by the berlanders VVP. In Berland over its long history many dynasties of kings replaced each other, but they were all united by common traditions. Thus, according to one Berland traditions, to maintain stability in the country, the first name of the heir should be the same as the last name his predecessor (hence, the first letter of the abbreviated name of the heir coincides with the last letter of the abbreviated name of the predecessor). Berlanders appreciate stability, so this tradition has never been broken. Also Berlanders like perfection, so another tradition requires that the first name of the first king in the dynasty coincides with the last name of the last king in this dynasty (hence, the first letter of the abbreviated name of the first king coincides with the last letter of the abbreviated name of the last king). This tradition, of course, has also been always observed. The name of a dynasty is formed by very simple rules: we take all the short names of the kings in the order in which they ruled, and write them in one line. Thus, a dynasty of kings "ab" and "ba" is called "abba", and the dynasty, which had only the king "abca", is called "abca". Vasya, a historian, has recently found a list of abbreviated names of all Berland kings and their relatives. Help Vasya to find the maximally long name of the dynasty that could have existed in Berland. Note that in his list all the names are ordered by the time, that is, if name *A* is earlier in the list than *B*, then if *A* and *B* were kings, then king *A* ruled before king *B*. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=5·105) — the number of names in Vasya's list. Next *n* lines contain *n* abbreviated names, one per line. An abbreviated name is a non-empty sequence of lowercase Latin letters. Its length does not exceed 10 characters. Output Specification: Print a single number — length of the sought dynasty's name in letters. If Vasya's list is wrong and no dynasty can be found there, print a single number 0. Demo Input: ['3\nabc\nca\ncba\n', '4\nvvp\nvvp\ndam\nvvp\n', '3\nab\nc\ndef\n'] Demo Output: ['6\n', '0\n', '1\n'] Note: In the first sample two dynasties can exist: the one called "abcca" (with the first and second kings) and the one called "abccba" (with the first and third kings). In the second sample there aren't acceptable dynasties. The only dynasty in the third sample consists of one king, his name is "c".
```python import sys from collections import defaultdict class FastIO: def __init__(self): return @staticmethod def read_int(): return int(sys.stdin.readline().strip()) @staticmethod def read_float(): return float(sys.stdin.readline().strip()) @staticmethod def read_ints(): return map(int, sys.stdin.readline().strip().split()) @staticmethod def read_floats(): return map(float, sys.stdin.readline().strip().split()) @staticmethod def read_ints_minus_one(): return map(lambda x: int(x) - 1, sys.stdin.readline().strip().split()) @staticmethod def read_list_ints(): return list(map(int, sys.stdin.readline().strip().split())) @staticmethod def read_list_floats(): return list(map(float, sys.stdin.readline().strip().split())) @staticmethod def read_list_ints_minus_one(): return list(map(lambda x: int(x) - 1, sys.stdin.readline().strip().split())) @staticmethod def read_str(): return sys.stdin.readline().strip() @staticmethod def read_list_strs(): return sys.stdin.readline().strip().split() @staticmethod def read_list_str(): return list(sys.stdin.readline().strip()) @staticmethod def st(x): return sys.stdout.write(str(x) + '\n') @staticmethod def lst(x): return sys.stdout.write(" ".join(str(w) for w in x) + '\n') @staticmethod def round_5(f): res = int(f) if f - res >= 0.5: res += 1 return res @staticmethod def max(a, b): return a if a > b else b @staticmethod def min(a, b): return a if a < b else b class Solution: def __init__(self): return @staticmethod def main(ac=FastIO()): n = ac.read_int() words = [ac.read_list_str() for _ in range(n)] ans = 0 dp = [[0]*26 for _ in range(26)] for word in words: x, y = ord(word[0])-ord("a"), ord(word[-1]) - ord("a") length = len(word) if x == y: for i in range(26): dp[i][x] += length else: pre = [dp[i][x] for i in range(26)] for i in range(26): dp[i][y] = ac.max(dp[i][y], pre[i] + length) for i in range(26): if dp[i][i] > ans: ans = dp[i][i] ac.st(ans) return Solution().main() ```
0
939
C
Convenient For Everybody
PROGRAMMING
1,600
[ "binary search", "two pointers" ]
null
null
In distant future on Earth day lasts for *n* hours and that's why there are *n* timezones. Local times in adjacent timezones differ by one hour. For describing local time, hours numbers from 1 to *n* are used, i.e. there is no time "0 hours", instead of it "*n* hours" is used. When local time in the 1-st timezone is 1 hour, local time in the *i*-th timezone is *i* hours. Some online programming contests platform wants to conduct a contest that lasts for an hour in such a way that its beginning coincides with beginning of some hour (in all time zones). The platform knows, that there are *a**i* people from *i*-th timezone who want to participate in the contest. Each person will participate if and only if the contest starts no earlier than *s* hours 00 minutes local time and ends not later than *f* hours 00 minutes local time. Values *s* and *f* are equal for all time zones. If the contest starts at *f* hours 00 minutes local time, the person won't participate in it. Help platform select such an hour, that the number of people who will participate in the contest is maximum.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of hours in day. The second line contains *n* space-separated integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10<=000), where *a**i* is the number of people in the *i*-th timezone who want to participate in the contest. The third line contains two space-separated integers *s* and *f* (1<=≤<=*s*<=&lt;<=*f*<=≤<=*n*).
Output a single integer — the time of the beginning of the contest (in the first timezone local time), such that the number of participants will be maximum possible. If there are many answers, output the smallest among them.
[ "3\n1 2 3\n1 3\n", "5\n1 2 3 4 1\n1 3\n" ]
[ "3\n", "4\n" ]
In the first example, it's optimal to start competition at 3 hours (in first timezone). In this case, it will be 1 hour in the second timezone and 2 hours in the third timezone. Only one person from the first timezone won't participate. In second example only people from the third and the fourth timezones will participate.
1,500
[ { "input": "3\n1 2 3\n1 3", "output": "3" }, { "input": "5\n1 2 3 4 1\n1 3", "output": "4" }, { "input": "2\n5072 8422\n1 2", "output": "2" }, { "input": "10\n7171 2280 6982 9126 9490 2598 569 6744 5754 1855\n7 9", "output": "4" }, { "input": "10\n5827 8450 8288 5592 6627 8234 3557 7568 4607 6949\n2 10", "output": "4" }, { "input": "50\n2847 339 1433 128 5933 4805 4277 5697 2574 9638 6992 5045 2254 7675 7503 3802 4012 1388 5307 3652 4764 214 9507 1832 118 7737 8279 9826 9941 250 8894 1871 616 147 9249 8867 1076 7551 5165 4709 1376 5758 4581 6670 8775 9351 4750 5294 9850 9793\n11 36", "output": "36" }, { "input": "100\n6072 8210 6405 1191 2533 8552 7594 8793 2207 8855 7415 6252 3433 2339 5532 3118 3054 5750 3690 9843 3881 1390 936 8611 7099 988 7730 3835 7065 5030 6932 6936 5531 5173 1331 8975 5454 1592 8516 328 1091 4368 8275 6462 8638 4002 5534 113 6295 5960 1688 3668 6604 9632 4214 8687 7950 3483 6149 4301 6607 1119 6466 6687 2042 6134 7008 1000 5627 7357 6998 6160 2003 4838 8478 5889 6486 470 7624 7581 524 9719 7029 6213 6963 8103 6892 7091 9451 520 2248 4482 633 3886 247 992 9861 2404 1677 4083\n75 95", "output": "6" }, { "input": "2\n5 1\n1 2", "output": "1" } ]
1,676,836,607
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
46
0
import sys input = sys.stdin.readline n = int(input()) a = list(map(int, input().split())) s, f = map(int, input().split()) x = f-s c = 0 q = w = sum(a[:x]) for i in range(n-x): q -= a[i] q += a[i+x] if q > w: w = q c = i+1 for i in range(c-1, -1, -1): s -= 1 if s == 0: s = n print(s)
Title: Convenient For Everybody Time Limit: None seconds Memory Limit: None megabytes Problem Description: In distant future on Earth day lasts for *n* hours and that's why there are *n* timezones. Local times in adjacent timezones differ by one hour. For describing local time, hours numbers from 1 to *n* are used, i.e. there is no time "0 hours", instead of it "*n* hours" is used. When local time in the 1-st timezone is 1 hour, local time in the *i*-th timezone is *i* hours. Some online programming contests platform wants to conduct a contest that lasts for an hour in such a way that its beginning coincides with beginning of some hour (in all time zones). The platform knows, that there are *a**i* people from *i*-th timezone who want to participate in the contest. Each person will participate if and only if the contest starts no earlier than *s* hours 00 minutes local time and ends not later than *f* hours 00 minutes local time. Values *s* and *f* are equal for all time zones. If the contest starts at *f* hours 00 minutes local time, the person won't participate in it. Help platform select such an hour, that the number of people who will participate in the contest is maximum. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of hours in day. The second line contains *n* space-separated integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10<=000), where *a**i* is the number of people in the *i*-th timezone who want to participate in the contest. The third line contains two space-separated integers *s* and *f* (1<=≤<=*s*<=&lt;<=*f*<=≤<=*n*). Output Specification: Output a single integer — the time of the beginning of the contest (in the first timezone local time), such that the number of participants will be maximum possible. If there are many answers, output the smallest among them. Demo Input: ['3\n1 2 3\n1 3\n', '5\n1 2 3 4 1\n1 3\n'] Demo Output: ['3\n', '4\n'] Note: In the first example, it's optimal to start competition at 3 hours (in first timezone). In this case, it will be 1 hour in the second timezone and 2 hours in the third timezone. Only one person from the first timezone won't participate. In second example only people from the third and the fourth timezones will participate.
```python import sys input = sys.stdin.readline n = int(input()) a = list(map(int, input().split())) s, f = map(int, input().split()) x = f-s c = 0 q = w = sum(a[:x]) for i in range(n-x): q -= a[i] q += a[i+x] if q > w: w = q c = i+1 for i in range(c-1, -1, -1): s -= 1 if s == 0: s = n print(s) ```
0
965
B
Battleship
PROGRAMMING
1,300
[ "implementation" ]
null
null
Arkady is playing Battleship. The rules of this game aren't really important. There is a field of $n \times n$ cells. There should be exactly one $k$-decker on the field, i. e. a ship that is $k$ cells long oriented either horizontally or vertically. However, Arkady doesn't know where it is located. For each cell Arkady knows if it is definitely empty or can contain a part of the ship. Consider all possible locations of the ship. Find such a cell that belongs to the maximum possible number of different locations of the ship.
The first line contains two integers $n$ and $k$ ($1 \le k \le n \le 100$) — the size of the field and the size of the ship. The next $n$ lines contain the field. Each line contains $n$ characters, each of which is either '#' (denotes a definitely empty cell) or '.' (denotes a cell that can belong to the ship).
Output two integers — the row and the column of a cell that belongs to the maximum possible number of different locations of the ship. If there are multiple answers, output any of them. In particular, if no ship can be placed on the field, you can output any cell.
[ "4 3\n#..#\n#.#.\n....\n.###\n", "10 4\n#....##...\n.#...#....\n..#..#..#.\n...#.#....\n.#..##.#..\n.....#...#\n...#.##...\n.#...#.#..\n.....#..#.\n...#.#...#\n", "19 6\n##..............###\n#......#####.....##\n.....#########.....\n....###########....\n...#############...\n..###############..\n.#################.\n.#################.\n.#################.\n.#################.\n#####....##....####\n####............###\n####............###\n#####...####...####\n.#####..####..#####\n...###........###..\n....###########....\n.........##........\n#.................#\n" ]
[ "3 2\n", "6 1\n", "1 8\n" ]
The picture below shows the three possible locations of the ship that contain the cell $(3, 2)$ in the first sample.
1,000
[ { "input": "4 3\n#..#\n#.#.\n....\n.###", "output": "3 2" }, { "input": "10 4\n#....##...\n.#...#....\n..#..#..#.\n...#.#....\n.#..##.#..\n.....#...#\n...#.##...\n.#...#.#..\n.....#..#.\n...#.#...#", "output": "6 1" }, { "input": "19 6\n##..............###\n#......#####.....##\n.....#########.....\n....###########....\n...#############...\n..###############..\n.#################.\n.#################.\n.#################.\n.#################.\n#####....##....####\n####............###\n####............###\n#####...####...####\n.#####..####..#####\n...###........###..\n....###########....\n.........##........\n#.................#", "output": "1 8" }, { "input": "10 4\n##..######\n#...######\n#...######\n#......###\n#.......##\n.##.######\n.##.######\n.##.######\n.#....####\n....######", "output": "4 4" }, { "input": "1 1\n.", "output": "1 1" }, { "input": "1 1\n#", "output": "1 1" }, { "input": "5 2\n..##.\n.###.\n#####\n#####\n..#..", "output": "1 1" }, { "input": "5 2\n..##.\n####.\n#####\n.####\n..#..", "output": "5 1" }, { "input": "5 2\n..##.\n####.\n#####\n####.\n..#..", "output": "5 5" }, { "input": "5 2\n.##..\n.###.\n#####\n#####\n..#..", "output": "1 5" }, { "input": "2 2\n##\n##", "output": "1 1" }, { "input": "4 1\n####\n####\n####\n###.", "output": "4 4" }, { "input": "2 2\n#.\n.#", "output": "1 1" }, { "input": "3 3\n###\n##.\n###", "output": "1 1" }, { "input": "4 4\n####\n####\n####\n####", "output": "1 1" }, { "input": "4 3\n####\n####\n####\n####", "output": "1 1" }, { "input": "3 1\n###\n###\n###", "output": "1 1" }, { "input": "3 2\n###\n###\n###", "output": "1 1" }, { "input": "3 3\n.#.\n#.#\n.#.", "output": "1 1" } ]
1,524,704,291
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
7,065,600
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 25 23:17:51 2018 @author: ska 965-B """ import math n,k = map(int, input().split()) f = [] score = [[0 for i in range(n)] for j in range(n)] for i in range(n): f.append(input().strip()) for i in range(n): con = 0 for j in range(n): if f[i][j] ==".": con += 1 else: con =0 if con == k: con = k-1 for h in range(k): score[i][j-h] += 1 #print(score) for i in range(n): con = 0 for j in range(n): if f[j][i] ==".": con += 1 else: con =0 if con == k: con = k-1 for h in range(k): score[j-h][i] +=1 #print(score) ma = 0 for row in range(n): for col in range(n): ma = max(score[row][col], ma) print(row+1, col+1)
Title: Battleship Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arkady is playing Battleship. The rules of this game aren't really important. There is a field of $n \times n$ cells. There should be exactly one $k$-decker on the field, i. e. a ship that is $k$ cells long oriented either horizontally or vertically. However, Arkady doesn't know where it is located. For each cell Arkady knows if it is definitely empty or can contain a part of the ship. Consider all possible locations of the ship. Find such a cell that belongs to the maximum possible number of different locations of the ship. Input Specification: The first line contains two integers $n$ and $k$ ($1 \le k \le n \le 100$) — the size of the field and the size of the ship. The next $n$ lines contain the field. Each line contains $n$ characters, each of which is either '#' (denotes a definitely empty cell) or '.' (denotes a cell that can belong to the ship). Output Specification: Output two integers — the row and the column of a cell that belongs to the maximum possible number of different locations of the ship. If there are multiple answers, output any of them. In particular, if no ship can be placed on the field, you can output any cell. Demo Input: ['4 3\n#..#\n#.#.\n....\n.###\n', '10 4\n#....##...\n.#...#....\n..#..#..#.\n...#.#....\n.#..##.#..\n.....#...#\n...#.##...\n.#...#.#..\n.....#..#.\n...#.#...#\n', '19 6\n##..............###\n#......#####.....##\n.....#########.....\n....###########....\n...#############...\n..###############..\n.#################.\n.#################.\n.#################.\n.#################.\n#####....##....####\n####............###\n####............###\n#####...####...####\n.#####..####..#####\n...###........###..\n....###########....\n.........##........\n#.................#\n'] Demo Output: ['3 2\n', '6 1\n', '1 8\n'] Note: The picture below shows the three possible locations of the ship that contain the cell $(3, 2)$ in the first sample.
```python #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 25 23:17:51 2018 @author: ska 965-B """ import math n,k = map(int, input().split()) f = [] score = [[0 for i in range(n)] for j in range(n)] for i in range(n): f.append(input().strip()) for i in range(n): con = 0 for j in range(n): if f[i][j] ==".": con += 1 else: con =0 if con == k: con = k-1 for h in range(k): score[i][j-h] += 1 #print(score) for i in range(n): con = 0 for j in range(n): if f[j][i] ==".": con += 1 else: con =0 if con == k: con = k-1 for h in range(k): score[j-h][i] +=1 #print(score) ma = 0 for row in range(n): for col in range(n): ma = max(score[row][col], ma) print(row+1, col+1) ```
0
510
A
Fox And Snake
PROGRAMMING
800
[ "implementation" ]
null
null
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead. A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on. Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#'). Consider sample tests in order to understand the snake pattern.
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50). *n* is an odd number.
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
[ "3 3\n", "3 4\n", "5 3\n", "9 9\n" ]
[ "###\n..#\n###\n", "####\n...#\n####\n", "###\n..#\n###\n#..\n###\n", "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n" ]
none
500
[ { "input": "3 3", "output": "###\n..#\n###" }, { "input": "3 4", "output": "####\n...#\n####" }, { "input": "5 3", "output": "###\n..#\n###\n#..\n###" }, { "input": "9 9", "output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########" }, { "input": "3 5", "output": "#####\n....#\n#####" }, { "input": "3 6", "output": "######\n.....#\n######" }, { "input": "7 3", "output": "###\n..#\n###\n#..\n###\n..#\n###" }, { "input": "7 4", "output": "####\n...#\n####\n#...\n####\n...#\n####" }, { "input": "49 50", "output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................." }, { "input": "43 50", "output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................." }, { "input": "43 27", "output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................." }, { "input": "11 15", "output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############" }, { "input": "11 3", "output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###" }, { "input": "19 3", "output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###" }, { "input": "23 50", "output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................." }, { "input": "49 49", "output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..." }, { "input": "33 43", "output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................." }, { "input": "33 44", "output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......." }, { "input": "45 45", "output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..." }, { "input": "45 49", "output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..." }, { "input": "45 3", "output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###" }, { "input": "45 4", "output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####" }, { "input": "5 4", "output": "####\n...#\n####\n#...\n####" }, { "input": "5 5", "output": "#####\n....#\n#####\n#....\n#####" }, { "input": "5 6", "output": "######\n.....#\n######\n#.....\n######" }, { "input": "7 5", "output": "#####\n....#\n#####\n#....\n#####\n....#\n#####" }, { "input": "7 6", "output": "######\n.....#\n######\n#.....\n######\n.....#\n######" }, { "input": "7 7", "output": "#######\n......#\n#######\n#......\n#######\n......#\n#######" } ]
1,694,885,815
2,147,483,647
Python 3
OK
TESTS
28
46
0
import sys # sys.stdin = open("input.txt", "r") # sys.stdout = open("output.txt", "w") # sys.stderr = open("error.txt", "w") # # your remaining code n, m = map(int,input().split()) k = 1 for i in range(n): if i%2 !=0 : k=k*-1 for j in range(m): if i % 2 == 0: print('#',end="") else: if k == -1 : if j == m-1 : print('#',end="") else : print('.',end="") else : if(j==0): print('#',end="") else: print('.',end="") print('')
Title: Fox And Snake Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead. A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on. Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#'). Consider sample tests in order to understand the snake pattern. Input Specification: The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50). *n* is an odd number. Output Specification: Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces. Demo Input: ['3 3\n', '3 4\n', '5 3\n', '9 9\n'] Demo Output: ['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n'] Note: none
```python import sys # sys.stdin = open("input.txt", "r") # sys.stdout = open("output.txt", "w") # sys.stderr = open("error.txt", "w") # # your remaining code n, m = map(int,input().split()) k = 1 for i in range(n): if i%2 !=0 : k=k*-1 for j in range(m): if i % 2 == 0: print('#',end="") else: if k == -1 : if j == m-1 : print('#',end="") else : print('.',end="") else : if(j==0): print('#',end="") else: print('.',end="") print('') ```
3
597
A
Divisibility
PROGRAMMING
1,600
[ "math" ]
null
null
Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*.
The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018).
Print the required number.
[ "1 1 10\n", "2 -4 4\n" ]
[ "10\n", "5\n" ]
none
500
[ { "input": "1 1 10", "output": "10" }, { "input": "2 -4 4", "output": "5" }, { "input": "1 1 1", "output": "1" }, { "input": "1 0 0", "output": "1" }, { "input": "1 0 1", "output": "2" }, { "input": "1 10181 10182", "output": "2" }, { "input": "1 10182 10183", "output": "2" }, { "input": "1 -191 1011", "output": "1203" }, { "input": "2 0 0", "output": "1" }, { "input": "2 0 1", "output": "1" }, { "input": "2 1 2", "output": "1" }, { "input": "2 2 3", "output": "1" }, { "input": "2 -1 0", "output": "1" }, { "input": "2 -1 1", "output": "1" }, { "input": "2 -7 -6", "output": "1" }, { "input": "2 -7 -5", "output": "1" }, { "input": "2 -6 -6", "output": "1" }, { "input": "2 -6 -4", "output": "2" }, { "input": "2 -6 13", "output": "10" }, { "input": "2 -19171 1911", "output": "10541" }, { "input": "3 123 456", "output": "112" }, { "input": "3 124 456", "output": "111" }, { "input": "3 125 456", "output": "111" }, { "input": "3 381 281911", "output": "93844" }, { "input": "3 381 281912", "output": "93844" }, { "input": "3 381 281913", "output": "93845" }, { "input": "3 382 281911", "output": "93843" }, { "input": "3 382 281912", "output": "93843" }, { "input": "3 382 281913", "output": "93844" }, { "input": "3 383 281911", "output": "93843" }, { "input": "3 383 281912", "output": "93843" }, { "input": "3 383 281913", "output": "93844" }, { "input": "3 -381 281911", "output": "94098" }, { "input": "3 -381 281912", "output": "94098" }, { "input": "3 -381 281913", "output": "94099" }, { "input": "3 -380 281911", "output": "94097" }, { "input": "3 -380 281912", "output": "94097" }, { "input": "3 -380 281913", "output": "94098" }, { "input": "3 -379 281911", "output": "94097" }, { "input": "3 -379 281912", "output": "94097" }, { "input": "3 -379 281913", "output": "94098" }, { "input": "3 -191381 -1911", "output": "63157" }, { "input": "3 -191381 -1910", "output": "63157" }, { "input": "3 -191381 -1909", "output": "63157" }, { "input": "3 -191380 -1911", "output": "63157" }, { "input": "3 -191380 -1910", "output": "63157" }, { "input": "3 -191380 -1909", "output": "63157" }, { "input": "3 -191379 -1911", "output": "63157" }, { "input": "3 -191379 -1910", "output": "63157" }, { "input": "3 -191379 -1909", "output": "63157" }, { "input": "3 -2810171 0", "output": "936724" }, { "input": "3 0 29101", "output": "9701" }, { "input": "3 -2810170 0", "output": "936724" }, { "input": "3 0 29102", "output": "9701" }, { "input": "3 -2810169 0", "output": "936724" }, { "input": "3 0 29103", "output": "9702" }, { "input": "1 -1000000000000000000 1000000000000000000", "output": "2000000000000000001" }, { "input": "2 -1000000000000000000 1000000000000000000", "output": "1000000000000000001" }, { "input": "3 -1000000000000000000 1000000000000000000", "output": "666666666666666667" }, { "input": "4 -1000000000000000000 1000000000000000000", "output": "500000000000000001" }, { "input": "5 -1000000000000000000 1000000000000000000", "output": "400000000000000001" }, { "input": "6 -1000000000000000000 1000000000000000000", "output": "333333333333333333" }, { "input": "7 -1000000000000000000 1000000000000000000", "output": "285714285714285715" }, { "input": "1 -1000000000000000000 -100000000000000000", "output": "900000000000000001" }, { "input": "2 -1000000000000000000 -10000000000000000", "output": "495000000000000001" }, { "input": "3 -1000000000000000000 -10218000000000000", "output": "329927333333333334" }, { "input": "4 -1000000000000000000 -320110181919100", "output": "249919972454520226" }, { "input": "5 -1000000000000000000 -402710171917", "output": "199999919457965617" }, { "input": "6 -1000000000000000000 -6666666666", "output": "166666665555555556" }, { "input": "7 -1000000000000000000 -77777777777778", "output": "142846031746031746" }, { "input": "1000000000000000000 -1000000000000000000 1000000000000000000", "output": "3" }, { "input": "1000000000000000000 0 1000000000000000000", "output": "2" }, { "input": "1000000000000000000 1000000000000000000 1000000000000000000", "output": "1" }, { "input": "100000000000000321 1000000000000000000 1000000000000000000", "output": "0" }, { "input": "100000000000000321 -1000000000000000000 1000000000000000000", "output": "19" }, { "input": "1000000000000000000 0 0", "output": "1" }, { "input": "1000000000000000000 1 1", "output": "0" }, { "input": "1000000000000000000 -1 -1", "output": "0" }, { "input": "1000000000000000000 -2 -1", "output": "0" }, { "input": "142000000000000271 -228118171 -1382811", "output": "0" }, { "input": "1 1 1000000000000000000", "output": "1000000000000000000" } ]
1,584,513,920
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
77
0
n, a, b = map(int, input().split()) diff = 0 if a % n == 0 and b % n == 0: diff = 1 print(b//n - a//n + 1 + diff)
Title: Divisibility Time Limit: None seconds Memory Limit: None megabytes Problem Description: Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*. Input Specification: The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018). Output Specification: Print the required number. Demo Input: ['1 1 10\n', '2 -4 4\n'] Demo Output: ['10\n', '5\n'] Note: none
```python n, a, b = map(int, input().split()) diff = 0 if a % n == 0 and b % n == 0: diff = 1 print(b//n - a//n + 1 + diff) ```
0
115
A
Party
PROGRAMMING
900
[ "dfs and similar", "graphs", "trees" ]
null
null
A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed?
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles.
Print a single integer denoting the minimum number of groups that will be formed in the party.
[ "5\n-1\n1\n2\n1\n-1\n" ]
[ "3\n" ]
For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
500
[ { "input": "5\n-1\n1\n2\n1\n-1", "output": "3" }, { "input": "4\n-1\n1\n2\n3", "output": "4" }, { "input": "12\n-1\n1\n2\n3\n-1\n5\n6\n7\n-1\n9\n10\n11", "output": "4" }, { "input": "6\n-1\n-1\n2\n3\n1\n1", "output": "3" }, { "input": "3\n-1\n1\n1", "output": "2" }, { "input": "1\n-1", "output": "1" }, { "input": "2\n2\n-1", "output": "2" }, { "input": "2\n-1\n-1", "output": "1" }, { "input": "3\n2\n-1\n1", "output": "3" }, { "input": "3\n-1\n-1\n-1", "output": "1" }, { "input": "5\n4\n5\n1\n-1\n4", "output": "3" }, { "input": "12\n-1\n1\n1\n1\n1\n1\n3\n4\n3\n3\n4\n7", "output": "4" }, { "input": "12\n-1\n-1\n1\n-1\n1\n1\n5\n11\n8\n6\n6\n4", "output": "5" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n2\n-1\n-1\n-1", "output": "2" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1", "output": "1" }, { "input": "12\n3\n4\n2\n8\n7\n1\n10\n12\n5\n-1\n9\n11", "output": "12" }, { "input": "12\n5\n6\n7\n1\n-1\n9\n12\n4\n8\n-1\n3\n2", "output": "11" }, { "input": "12\n-1\n9\n11\n6\n6\n-1\n6\n3\n8\n6\n1\n6", "output": "6" }, { "input": "12\n7\n8\n4\n12\n7\n9\n-1\n-1\n-1\n8\n6\n-1", "output": "3" }, { "input": "12\n-1\n10\n-1\n1\n-1\n5\n9\n12\n-1\n-1\n3\n-1", "output": "2" }, { "input": "12\n-1\n7\n9\n12\n1\n7\n-1\n-1\n8\n5\n4\n-1", "output": "3" }, { "input": "12\n11\n11\n8\n9\n1\n1\n2\n-1\n10\n3\n-1\n8", "output": "5" }, { "input": "12\n-1\n8\n9\n-1\n4\n2\n11\n1\n-1\n6\n-1\n10", "output": "6" }, { "input": "12\n7\n4\n4\n-1\n6\n7\n9\n7\n-1\n7\n4\n1", "output": "4" }, { "input": "12\n-1\n6\n10\n6\n1\n11\n5\n9\n11\n5\n1\n9", "output": "4" }, { "input": "12\n8\n6\n6\n8\n6\n-1\n6\n6\n8\n6\n8\n8", "output": "3" }, { "input": "12\n3\n8\n9\n12\n2\n8\n11\n12\n2\n9\n-1\n11", "output": "7" }, { "input": "7\n7\n6\n-1\n-1\n4\n4\n-1", "output": "3" }, { "input": "77\n53\n-1\n48\n-1\n51\n-1\n54\n43\n70\n19\n64\n31\n45\n58\n6\n61\n41\n56\n34\n-1\n54\n-1\n66\n65\n74\n16\n38\n1\n2\n61\n-1\n34\n-1\n-1\n7\n19\n57\n13\n61\n42\n-1\n34\n65\n16\n31\n61\n6\n5\n34\n15\n-1\n13\n4\n22\n74\n7\n-1\n70\n38\n61\n45\n53\n46\n22\n-1\n65\n34\n19\n43\n48\n33\n58\n36\n-1\n47\n24\n34", "output": "6" }, { "input": "5\n2\n3\n4\n5\n-1", "output": "5" } ]
1,699,148,243
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
38
278
10,035,200
# find root node # find max depth of any tree n = int(input()) children = {} roots = [] def dfs(root, height): max_height = height for child in children.get(root, []): max_height = max(max_height, dfs(child, height + 1)) return max_height for i in range(n): employee = i + 1 parent = int(input()) if parent != -1: if parent not in children: children[parent] = [employee] else: children[parent].append(employee) else: roots.append(employee) ans = -1 for i in roots: height = dfs(i, 1) ans = max(ans, height) print(ans)
Title: Party Time Limit: None seconds Memory Limit: None megabytes Problem Description: A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles. Output Specification: Print a single integer denoting the minimum number of groups that will be formed in the party. Demo Input: ['5\n-1\n1\n2\n1\n-1\n'] Demo Output: ['3\n'] Note: For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
```python # find root node # find max depth of any tree n = int(input()) children = {} roots = [] def dfs(root, height): max_height = height for child in children.get(root, []): max_height = max(max_height, dfs(child, height + 1)) return max_height for i in range(n): employee = i + 1 parent = int(input()) if parent != -1: if parent not in children: children[parent] = [employee] else: children[parent].append(employee) else: roots.append(employee) ans = -1 for i in roots: height = dfs(i, 1) ans = max(ans, height) print(ans) ```
-1
760
B
Frodo and pillows
PROGRAMMING
1,500
[ "binary search", "greedy" ]
null
null
*n* hobbits are planning to spend the night at Frodo's house. Frodo has *n* beds standing in a row and *m* pillows (*n*<=≤<=*m*). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have. Frodo will sleep on the *k*-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt?
The only line contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=*m*<=≤<=109, 1<=≤<=*k*<=≤<=*n*) — the number of hobbits, the number of pillows and the number of Frodo's bed.
Print single integer — the maximum number of pillows Frodo can have so that no one is hurt.
[ "4 6 2\n", "3 10 3\n", "3 6 1\n" ]
[ "2\n", "4\n", "3\n" ]
In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds. In the second example Frodo can take at most four pillows, giving three pillows to each of the others. In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.
1,000
[ { "input": "4 6 2", "output": "2" }, { "input": "3 10 3", "output": "4" }, { "input": "3 6 1", "output": "3" }, { "input": "3 3 3", "output": "1" }, { "input": "1 1 1", "output": "1" }, { "input": "1 1000000000 1", "output": "1000000000" }, { "input": "100 1000000000 20", "output": "10000034" }, { "input": "1000 1000 994", "output": "1" }, { "input": "100000000 200000000 54345", "output": "10001" }, { "input": "1000000000 1000000000 1", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 500000000", "output": "1" }, { "input": "1000 1000 3", "output": "1" }, { "input": "100000000 200020000 54345", "output": "10001" }, { "input": "100 108037 18", "output": "1115" }, { "input": "100000000 200020001 54345", "output": "10002" }, { "input": "200 6585 2", "output": "112" }, { "input": "30000 30593 5980", "output": "25" }, { "input": "40000 42107 10555", "output": "46" }, { "input": "50003 50921 192", "output": "31" }, { "input": "100000 113611 24910", "output": "117" }, { "input": "1000000 483447163 83104", "output": "21965" }, { "input": "10000000 10021505 600076", "output": "147" }, { "input": "100000000 102144805 2091145", "output": "1465" }, { "input": "1000000000 1000000000 481982093", "output": "1" }, { "input": "100 999973325 5", "output": "9999778" }, { "input": "200 999999109 61", "output": "5000053" }, { "input": "30000 999999384 5488", "output": "43849" }, { "input": "40000 999997662 8976", "output": "38038" }, { "input": "50003 999999649 405", "output": "44320" }, { "input": "100000 999899822 30885", "output": "31624" }, { "input": "1000000 914032367 528790", "output": "30217" }, { "input": "10000000 999617465 673112", "output": "31459" }, { "input": "100000000 993180275 362942", "output": "29887" }, { "input": "1000000000 1000000000 331431458", "output": "1" }, { "input": "100 10466 89", "output": "144" }, { "input": "200 5701 172", "output": "84" }, { "input": "30000 36932 29126", "output": "84" }, { "input": "40000 40771 22564", "output": "28" }, { "input": "50003 51705 49898", "output": "42" }, { "input": "100000 149408 74707", "output": "223" }, { "input": "1000000 194818222 998601", "output": "18389" }, { "input": "10000000 10748901 8882081", "output": "866" }, { "input": "100000000 106296029 98572386", "output": "2510" }, { "input": "1000000000 1000000000 193988157", "output": "1" }, { "input": "100 999981057 92", "output": "9999852" }, { "input": "200 999989691 199", "output": "5000046" }, { "input": "30000 999995411 24509", "output": "43846" }, { "input": "40000 999998466 30827", "output": "37930" }, { "input": "50003 999997857 48387", "output": "43163" }, { "input": "100000 999731886 98615", "output": "43371" }, { "input": "1000000 523220797 654341", "output": "22853" }, { "input": "10000000 999922591 8157724", "output": "31464" }, { "input": "100000000 999834114 93836827", "output": "29998" }, { "input": "1000000000 1000000000 912549504", "output": "1" }, { "input": "1000 97654978 234", "output": "97976" }, { "input": "1000 97654977 234", "output": "97975" }, { "input": "1000234 97653889 1", "output": "13903" }, { "input": "1000234 97653890 1", "output": "13904" }, { "input": "3450234 97656670 3000000", "output": "9707" }, { "input": "3450234 97656669 3000000", "output": "9706" }, { "input": "3 1000000000 2", "output": "333333334" }, { "input": "2 1000000000 1", "output": "500000000" }, { "input": "2 1000000000 2", "output": "500000000" }, { "input": "3 1000000000 1", "output": "333333334" }, { "input": "3 1000000000 3", "output": "333333334" }, { "input": "2 999999999 1", "output": "500000000" }, { "input": "2 999999999 2", "output": "500000000" }, { "input": "1 999999999 1", "output": "999999999" } ]
1,513,669,231
2,147,483,647
Python 3
MEMORY_LIMIT_EXCEEDED
TESTS
8
265
268,390,400
def cf(begin, end, frodoindex, hobbits): l = hobbits * [0] c = (begin + end) // 2 l[frodoindex - 1] = c j = 1 for i in range(frodoindex - 2, - 1, - 1): if c - j != 0: l[i] = c - j j += 1 else: l[i] = 1 if frodoindex < hobbits: j = 1 for i in range(frodoindex, hobbits): if c-j != 0: l[i] = c - j j += 1 else: l[i] = 1 sum = 0 for i in range(hobbits): sum += l[i] if sum > pillows: end = c return cf(begin, end, frodoindex, hobbits) elif sum == pillows: return c else: c += 1 l[frodoindex - 1] = c j = 1 for i in range(frodoindex - 2, - 1, - 1): if c - j != 0: l[i] = c - j j += 1 else: l[i] = 1 if frodoindex < hobbits: j = 1 for i in range(frodoindex, hobbits): if c - j != 0: l[i] = c - j j += 1 else: l[i] = 1 sum = 0 for i in range(hobbits): sum += l[i] if sum > pillows: return c - 1 elif sum == pillows: return c else: begin = c - 1 return cf(begin, end, frodoindex, hobbits) inp = input().split() hobbits = int(inp[0]) pillows = int(inp[1]) frodoindex = int(inp[2]) del inp begin = 1 end = 1 + (pillows - hobbits) memory = 1 print(cf(begin, end, frodoindex, hobbits))
Title: Frodo and pillows Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* hobbits are planning to spend the night at Frodo's house. Frodo has *n* beds standing in a row and *m* pillows (*n*<=≤<=*m*). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have. Frodo will sleep on the *k*-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt? Input Specification: The only line contain three integers *n*, *m* and *k* (1<=≤<=*n*<=≤<=*m*<=≤<=109, 1<=≤<=*k*<=≤<=*n*) — the number of hobbits, the number of pillows and the number of Frodo's bed. Output Specification: Print single integer — the maximum number of pillows Frodo can have so that no one is hurt. Demo Input: ['4 6 2\n', '3 10 3\n', '3 6 1\n'] Demo Output: ['2\n', '4\n', '3\n'] Note: In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds. In the second example Frodo can take at most four pillows, giving three pillows to each of the others. In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.
```python def cf(begin, end, frodoindex, hobbits): l = hobbits * [0] c = (begin + end) // 2 l[frodoindex - 1] = c j = 1 for i in range(frodoindex - 2, - 1, - 1): if c - j != 0: l[i] = c - j j += 1 else: l[i] = 1 if frodoindex < hobbits: j = 1 for i in range(frodoindex, hobbits): if c-j != 0: l[i] = c - j j += 1 else: l[i] = 1 sum = 0 for i in range(hobbits): sum += l[i] if sum > pillows: end = c return cf(begin, end, frodoindex, hobbits) elif sum == pillows: return c else: c += 1 l[frodoindex - 1] = c j = 1 for i in range(frodoindex - 2, - 1, - 1): if c - j != 0: l[i] = c - j j += 1 else: l[i] = 1 if frodoindex < hobbits: j = 1 for i in range(frodoindex, hobbits): if c - j != 0: l[i] = c - j j += 1 else: l[i] = 1 sum = 0 for i in range(hobbits): sum += l[i] if sum > pillows: return c - 1 elif sum == pillows: return c else: begin = c - 1 return cf(begin, end, frodoindex, hobbits) inp = input().split() hobbits = int(inp[0]) pillows = int(inp[1]) frodoindex = int(inp[2]) del inp begin = 1 end = 1 + (pillows - hobbits) memory = 1 print(cf(begin, end, frodoindex, hobbits)) ```
0
344
A
Magnets
PROGRAMMING
800
[ "implementation" ]
null
null
Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position.
On the single line of the output print the number of groups of magnets.
[ "6\n10\n10\n10\n01\n10\n10\n", "4\n01\n01\n10\n10\n" ]
[ "3\n", "2\n" ]
The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
500
[ { "input": "6\n10\n10\n10\n01\n10\n10", "output": "3" }, { "input": "4\n01\n01\n10\n10", "output": "2" }, { "input": "1\n10", "output": "1" }, { "input": "2\n01\n10", "output": "2" }, { "input": "2\n10\n10", "output": "1" }, { "input": "3\n10\n01\n10", "output": "3" }, { "input": "1\n01", "output": "1" }, { "input": "2\n01\n01", "output": "1" }, { "input": "2\n10\n01", "output": "2" }, { "input": "3\n01\n01\n01", "output": "1" }, { "input": "3\n10\n10\n01", "output": "2" }, { "input": "3\n01\n10\n10", "output": "2" }, { "input": "115\n10\n10\n10\n10\n01\n01\n10\n10\n10\n01\n01\n10\n01\n01\n10\n10\n10\n01\n10\n01\n10\n10\n01\n01\n10\n10\n10\n10\n01\n10\n01\n01\n10\n10\n10\n10\n01\n10\n10\n10\n01\n10\n01\n10\n10\n10\n10\n01\n01\n01\n10\n10\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n10\n10\n01\n10\n01\n01\n01\n01\n01\n10\n01\n10\n10\n01\n01\n01\n10\n01\n01\n10\n10\n01\n01\n01\n01\n01\n10\n01\n10\n01\n10\n01\n01\n01\n10\n01\n10\n10\n01\n10\n10\n01\n01\n01\n10\n10\n10\n10\n10\n10\n10\n10", "output": "55" } ]
1,692,371,205
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
6
1,000
4,915,200
r=int(input()) w=int(input()) d=1 for i in range(r-1): t=int(input()) if t!=w: d+=1 w=t print(d)
Title: Magnets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn't need dominoes, though: he uses rectangular magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a close distance, then the like poles will repel each other and the opposite poles will attract each other. Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own. Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100000) — the number of magnets. Then *n* lines follow. The *i*-th line (1<=≤<=*i*<=≤<=*n*) contains either characters "01", if Mike put the *i*-th magnet in the "plus-minus" position, or characters "10", if Mike put the magnet in the "minus-plus" position. Output Specification: On the single line of the output print the number of groups of magnets. Demo Input: ['6\n10\n10\n10\n01\n10\n10\n', '4\n01\n01\n10\n10\n'] Demo Output: ['3\n', '2\n'] Note: The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets. The second testcase has two groups, each consisting of two magnets.
```python r=int(input()) w=int(input()) d=1 for i in range(r-1): t=int(input()) if t!=w: d+=1 w=t print(d) ```
0
879
B
Table Tennis
PROGRAMMING
1,200
[ "data structures", "implementation" ]
null
null
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner. For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
Output a single integer — power of the winner.
[ "2 2\n1 2\n", "4 2\n3 1 2 4\n", "6 2\n6 5 3 1 2 4\n", "2 10000000000\n2 1\n" ]
[ "2 ", "3 ", "6 ", "2\n" ]
Games in the second sample: 3 plays with 1. 3 wins. 1 goes to the end of the line. 3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
1,000
[ { "input": "2 2\n1 2", "output": "2 " }, { "input": "4 2\n3 1 2 4", "output": "3 " }, { "input": "6 2\n6 5 3 1 2 4", "output": "6 " }, { "input": "2 10000000000\n2 1", "output": "2" }, { "input": "4 4\n1 3 4 2", "output": "4 " }, { "input": "2 2147483648\n2 1", "output": "2" }, { "input": "3 2\n1 3 2", "output": "3 " }, { "input": "3 3\n1 2 3", "output": "3 " }, { "input": "5 2\n2 1 3 4 5", "output": "5 " }, { "input": "10 2\n7 10 5 8 9 3 4 6 1 2", "output": "10 " }, { "input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98", "output": "70 " }, { "input": "4 10\n2 1 3 4", "output": "4" }, { "input": "10 2\n1 2 3 4 5 6 7 8 9 10", "output": "10 " }, { "input": "10 2\n10 9 8 7 6 5 4 3 2 1", "output": "10 " }, { "input": "4 1000000000000\n3 4 1 2", "output": "4" }, { "input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43", "output": "91 " }, { "input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34", "output": "100 " }, { "input": "2 1000000000000\n1 2", "output": "2" }, { "input": "5 2\n1 4 3 5 2", "output": "4 " }, { "input": "5 2\n1 3 2 4 5", "output": "3 " }, { "input": "4 1000000000000\n3 1 2 4", "output": "4" }, { "input": "4 2\n1 3 2 4", "output": "3 " }, { "input": "10 3\n8 1 9 2 3 10 4 5 6 7", "output": "9 " }, { "input": "5 2\n2 1 4 3 5", "output": "4 " }, { "input": "3 4294967297\n2 1 3", "output": "3" }, { "input": "4 4294967297\n3 2 1 4", "output": "4" }, { "input": "5 4294967298\n3 2 1 4 5", "output": "5" }, { "input": "10 4\n5 4 7 1 2 9 3 6 8 10", "output": "9 " }, { "input": "11 21474836489\n10 1 2 3 4 5 6 7 8 9 11", "output": "11" } ]
1,676,539,838
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
8
92
0
n,k = map(int,input().split()) l = [int(x) for x in input().split()] if k >= n-1: print(max(l)) else: maxx,c = 0,0 for i in l: if i>maxx: c=1 maxx = i else: c+=1 if c==k: break print(maxx)
Title: Table Tennis Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner. For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner. Input Specification: The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct. Output Specification: Output a single integer — power of the winner. Demo Input: ['2 2\n1 2\n', '4 2\n3 1 2 4\n', '6 2\n6 5 3 1 2 4\n', '2 10000000000\n2 1\n'] Demo Output: ['2 ', '3 ', '6 ', '2\n'] Note: Games in the second sample: 3 plays with 1. 3 wins. 1 goes to the end of the line. 3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
```python n,k = map(int,input().split()) l = [int(x) for x in input().split()] if k >= n-1: print(max(l)) else: maxx,c = 0,0 for i in l: if i>maxx: c=1 maxx = i else: c+=1 if c==k: break print(maxx) ```
0
380
C
Sereja and Brackets
PROGRAMMING
2,000
[ "data structures", "schedules" ]
null
null
Sereja has a bracket sequence *s*1,<=*s*2,<=...,<=*s**n*, or, in other words, a string *s* of length *n*, consisting of characters "(" and ")". Sereja needs to answer *m* queries, each of them is described by two integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). The answer to the *i*-th query is the length of the maximum correct bracket subsequence of sequence *s**l**i*,<=*s**l**i*<=+<=1,<=...,<=*s**r**i*. Help Sereja answer all queries. You can find the definitions for a subsequence and a correct bracket sequence in the notes.
The first line contains a sequence of characters *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*n*<=≤<=106) without any spaces. Each character is either a "(" or a ")". The second line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains a pair of integers. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) — the description of the *i*-th query.
Print the answer to each question on a single line. Print the answers in the order they go in the input.
[ "())(())(())(\n7\n1 1\n2 3\n1 2\n1 12\n8 12\n5 11\n2 10\n" ]
[ "0\n0\n2\n10\n4\n6\n6\n" ]
A subsequence of length |*x*| of string *s* = *s*<sub class="lower-index">1</sub>*s*<sub class="lower-index">2</sub>... *s*<sub class="lower-index">|*s*|</sub> (where |*s*| is the length of string *s*) is string *x* = *s*<sub class="lower-index">*k*<sub class="lower-index">1</sub></sub>*s*<sub class="lower-index">*k*<sub class="lower-index">2</sub></sub>... *s*<sub class="lower-index">*k*<sub class="lower-index">|*x*|</sub></sub> (1 ≤ *k*<sub class="lower-index">1</sub> &lt; *k*<sub class="lower-index">2</sub> &lt; ... &lt; *k*<sub class="lower-index">|*x*|</sub> ≤ |*s*|). A correct bracket sequence is a bracket sequence that can be transformed into a correct aryphmetic expression by inserting characters "1" and "+" between the characters of the string. For example, bracket sequences "()()", "(())" are correct (the resulting expressions "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not. For the third query required sequence will be «()». For the fourth query required sequence will be «()(())(())».
1,500
[ { "input": "())(())(())(\n7\n1 1\n2 3\n1 2\n1 12\n8 12\n5 11\n2 10", "output": "0\n0\n2\n10\n4\n6\n6" }, { "input": "(((((()((((((((((()((()(((((\n1\n8 15", "output": "0" }, { "input": "((()((())(((((((((()(()(()(((((((((((((((()(()((((((((((((((()(((((((((((((((((((()(((\n39\n28 56\n39 46\n57 63\n29 48\n51 75\n14 72\n5 70\n51 73\n10 64\n31 56\n50 54\n15 78\n78 82\n1 11\n1 70\n1 19\n10 22\n13 36\n3 10\n34 40\n51 76\n64 71\n36 75\n24 71\n1 63\n5 14\n46 67\n32 56\n39 43\n43 56\n61 82\n2 78\n1 21\n10 72\n49 79\n12 14\n53 79\n15 31\n7 47", "output": "4\n4\n2\n4\n2\n12\n16\n2\n12\n4\n0\n12\n0\n6\n18\n6\n2\n6\n6\n0\n2\n0\n6\n8\n18\n4\n2\n4\n2\n2\n2\n18\n8\n12\n2\n0\n2\n6\n12" }, { "input": "))(()))))())())))))())((()()))))()))))))))))))\n9\n26 42\n21 22\n6 22\n7 26\n43 46\n25 27\n32 39\n22 40\n2 45", "output": "4\n0\n6\n8\n0\n2\n2\n10\n20" }, { "input": "(()((((()(())((((((((()((((((()((((\n71\n15 29\n17 18\n5 26\n7 10\n16 31\n26 35\n2 30\n16 24\n2 24\n7 12\n15 18\n12 13\n25 30\n1 30\n12 13\n16 20\n6 35\n20 28\n18 23\n9 31\n12 35\n14 17\n8 16\n3 10\n12 33\n7 19\n2 33\n7 17\n21 27\n10 30\n29 32\n9 28\n18 32\n28 31\n31 33\n4 26\n15 27\n10 17\n8 14\n11 28\n8 23\n17 33\n4 14\n3 6\n6 34\n19 23\n4 21\n16 27\n14 27\n6 19\n31 32\n29 32\n9 17\n1 21\n2 31\n18 29\n16 26\n15 18\n4 5\n13 20\n9 28\n18 30\n1 32\n2 9\n16 24\n1 20\n4 15\n16 23\n19 34\n5 22\n5 23", "output": "2\n0\n8\n2\n4\n2\n10\n2\n10\n4\n0\n0\n0\n10\n0\n0\n10\n2\n2\n8\n4\n0\n6\n2\n4\n6\n12\n6\n2\n6\n2\n6\n4\n2\n0\n8\n2\n4\n6\n4\n8\n4\n6\n0\n10\n2\n6\n2\n2\n6\n0\n2\n4\n8\n12\n2\n2\n0\n0\n0\n6\n2\n12\n4\n2\n8\n6\n2\n4\n6\n8" }, { "input": "(((())((((()()((((((()((()(((((((((((()((\n6\n20 37\n28 32\n12 18\n7 25\n21 33\n4 5", "output": "4\n0\n2\n6\n4\n2" }, { "input": "(((()((((()()()(()))((((()(((()))()((((()))()((())\n24\n37 41\n13 38\n31 34\n14 16\n29 29\n12 46\n1 26\n15 34\n8 47\n11 23\n6 32\n2 22\n9 27\n17 40\n6 15\n4 49\n12 33\n3 48\n22 47\n19 48\n10 27\n23 25\n4 44\n27 48", "output": "2\n16\n0\n2\n0\n26\n16\n12\n30\n8\n18\n14\n14\n12\n6\n34\n16\n32\n18\n18\n12\n0\n30\n16" }, { "input": ")()((((((((((((((((()(((()()(()((((((()(((((((()()))((((())(((((((((()(((((((((\n51\n29 53\n31 69\n54 59\n3 52\n26 46\n14 62\n6 54\n39 56\n17 27\n46 74\n60 72\n18 26\n38 46\n4 27\n22 52\n44 49\n42 77\n2 20\n39 57\n61 70\n33 54\n10 30\n67 70\n46 66\n17 77\n5 52\n33 77\n26 32\n1 72\n40 78\n38 68\n19 47\n30 53\n19 29\n52 71\n1 11\n22 53\n17 42\n2 51\n4 12\n24 76\n22 34\n21 69\n11 69\n36 52\n17 31\n57 58\n54 62\n23 71\n5 46\n51 53", "output": "12\n14\n4\n18\n6\n22\n18\n8\n4\n12\n2\n4\n2\n4\n16\n2\n14\n2\n8\n2\n10\n6\n2\n10\n24\n18\n16\n4\n26\n14\n14\n10\n12\n6\n6\n2\n16\n10\n18\n0\n22\n6\n20\n22\n10\n8\n2\n4\n22\n10\n0" }, { "input": "(\n1\n1 1", "output": "0" }, { "input": ")\n1\n1 1", "output": "0" }, { "input": "()\n1\n1 2", "output": "2" }, { "input": ")(\n1\n1 2", "output": "0" } ]
1,614,855,175
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
11
1,000
614,400
a, b = input(), int(input()) d = [0] * b * 2 for i in range(0, b * 2, 2): h = input().split(" ") d[i], d[i+1] = int(h[0]), int(h[1]) f = [0] * b for i in range(0, b * 2, 2): m = 0 g = 0 for i2 in range(d[i] - 1, d[i + 1]): if a[i2] == "(": m += 1 if a[i2] == ")" and m > 0: m -= 1 g += 1 print(g * 2)
Title: Sereja and Brackets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja has a bracket sequence *s*1,<=*s*2,<=...,<=*s**n*, or, in other words, a string *s* of length *n*, consisting of characters "(" and ")". Sereja needs to answer *m* queries, each of them is described by two integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). The answer to the *i*-th query is the length of the maximum correct bracket subsequence of sequence *s**l**i*,<=*s**l**i*<=+<=1,<=...,<=*s**r**i*. Help Sereja answer all queries. You can find the definitions for a subsequence and a correct bracket sequence in the notes. Input Specification: The first line contains a sequence of characters *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*n*<=≤<=106) without any spaces. Each character is either a "(" or a ")". The second line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains a pair of integers. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) — the description of the *i*-th query. Output Specification: Print the answer to each question on a single line. Print the answers in the order they go in the input. Demo Input: ['())(())(())(\n7\n1 1\n2 3\n1 2\n1 12\n8 12\n5 11\n2 10\n'] Demo Output: ['0\n0\n2\n10\n4\n6\n6\n'] Note: A subsequence of length |*x*| of string *s* = *s*<sub class="lower-index">1</sub>*s*<sub class="lower-index">2</sub>... *s*<sub class="lower-index">|*s*|</sub> (where |*s*| is the length of string *s*) is string *x* = *s*<sub class="lower-index">*k*<sub class="lower-index">1</sub></sub>*s*<sub class="lower-index">*k*<sub class="lower-index">2</sub></sub>... *s*<sub class="lower-index">*k*<sub class="lower-index">|*x*|</sub></sub> (1 ≤ *k*<sub class="lower-index">1</sub> &lt; *k*<sub class="lower-index">2</sub> &lt; ... &lt; *k*<sub class="lower-index">|*x*|</sub> ≤ |*s*|). A correct bracket sequence is a bracket sequence that can be transformed into a correct aryphmetic expression by inserting characters "1" and "+" between the characters of the string. For example, bracket sequences "()()", "(())" are correct (the resulting expressions "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not. For the third query required sequence will be «()». For the fourth query required sequence will be «()(())(())».
```python a, b = input(), int(input()) d = [0] * b * 2 for i in range(0, b * 2, 2): h = input().split(" ") d[i], d[i+1] = int(h[0]), int(h[1]) f = [0] * b for i in range(0, b * 2, 2): m = 0 g = 0 for i2 in range(d[i] - 1, d[i + 1]): if a[i2] == "(": m += 1 if a[i2] == ")" and m > 0: m -= 1 g += 1 print(g * 2) ```
0
863
B
Kayaking
PROGRAMMING
1,500
[ "brute force", "greedy", "sortings" ]
null
null
Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers. Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash. Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks. Help the party to determine minimum possible total instability!
The first line contains one number *n* (2<=≤<=*n*<=≤<=50). The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000).
Print minimum possible total instability.
[ "2\n1 2 3 4\n", "4\n1 3 4 6 3 4 100 200\n" ]
[ "1\n", "5\n" ]
none
0
[ { "input": "2\n1 2 3 4", "output": "1" }, { "input": "4\n1 3 4 6 3 4 100 200", "output": "5" }, { "input": "3\n305 139 205 406 530 206", "output": "102" }, { "input": "3\n610 750 778 6 361 407", "output": "74" }, { "input": "5\n97 166 126 164 154 98 221 7 51 47", "output": "35" }, { "input": "50\n1 1 2 2 1 3 2 2 1 1 1 1 2 3 3 1 2 1 3 3 2 1 2 3 1 1 2 1 3 1 3 1 3 3 3 1 1 1 3 3 2 2 2 2 3 2 2 2 2 3 1 3 3 3 3 1 3 3 1 3 3 3 3 2 3 1 3 3 1 1 1 3 1 2 2 2 1 1 1 3 1 2 3 2 1 3 3 2 2 1 3 1 3 1 2 2 1 2 3 2", "output": "0" }, { "input": "50\n5 5 5 5 4 2 2 3 2 2 4 1 5 5 1 2 4 2 4 2 5 2 2 2 2 3 2 4 2 5 5 4 3 1 2 3 3 5 4 2 2 5 2 4 5 5 4 4 1 5 5 3 2 2 5 1 3 3 2 4 4 5 1 2 3 4 4 1 3 3 3 5 1 2 4 4 4 4 2 5 2 5 3 2 4 5 5 2 1 1 2 4 5 3 2 1 2 4 4 4", "output": "1" }, { "input": "50\n499 780 837 984 481 526 944 482 862 136 265 605 5 631 974 967 574 293 969 467 573 845 102 224 17 873 648 120 694 996 244 313 404 129 899 583 541 314 525 496 443 857 297 78 575 2 430 137 387 319 382 651 594 411 845 746 18 232 6 289 889 81 174 175 805 1000 799 950 475 713 951 685 729 925 262 447 139 217 788 514 658 572 784 185 112 636 10 251 621 218 210 89 597 553 430 532 264 11 160 476", "output": "368" }, { "input": "50\n873 838 288 87 889 364 720 410 565 651 577 356 740 99 549 592 994 385 777 435 486 118 887 440 749 533 356 790 413 681 267 496 475 317 88 660 374 186 61 437 729 860 880 538 277 301 667 180 60 393 955 540 896 241 362 146 74 680 734 767 851 337 751 860 542 735 444 793 340 259 495 903 743 961 964 966 87 275 22 776 368 701 835 732 810 735 267 988 352 647 924 183 1 924 217 944 322 252 758 597", "output": "393" }, { "input": "50\n297 787 34 268 439 629 600 398 425 833 721 908 830 636 64 509 420 647 499 675 427 599 396 119 798 742 577 355 22 847 389 574 766 453 196 772 808 261 106 844 726 975 173 992 874 89 775 616 678 52 69 591 181 573 258 381 665 301 589 379 362 146 790 842 765 100 229 916 938 97 340 793 758 177 736 396 247 562 571 92 923 861 165 748 345 703 431 930 101 761 862 595 505 393 126 846 431 103 596 21", "output": "387" }, { "input": "50\n721 631 587 746 692 406 583 90 388 16 161 948 921 70 387 426 39 398 517 724 879 377 906 502 359 950 798 408 846 718 911 845 57 886 9 668 537 632 344 762 19 193 658 447 870 173 98 156 592 519 183 539 274 393 962 615 551 626 148 183 769 763 829 120 796 761 14 744 537 231 696 284 581 688 611 826 703 145 224 600 965 613 791 275 984 375 402 281 851 580 992 8 816 454 35 532 347 250 242 637", "output": "376" }, { "input": "50\n849 475 37 120 754 183 758 374 543 198 896 691 11 607 198 343 761 660 239 669 628 259 223 182 216 158 20 565 454 884 137 923 156 22 310 77 267 707 582 169 120 308 439 309 59 152 206 696 210 177 296 887 559 22 154 553 142 247 491 692 473 572 461 206 532 319 503 164 328 365 541 366 300 392 486 257 863 432 877 404 520 69 418 99 519 239 374 927 601 103 226 316 423 219 240 26 455 101 184 61", "output": "351" }, { "input": "3\n1 2 10 11 100 100", "output": "1" }, { "input": "17\n814 744 145 886 751 1000 272 914 270 529 467 164 410 369 123 424 991 12 702 582 561 858 746 950 598 393 606 498 648 686 455 873 728 858", "output": "318" }, { "input": "45\n476 103 187 696 463 457 588 632 763 77 391 721 95 124 378 812 980 193 694 898 859 572 721 274 605 264 929 615 257 918 42 493 1 3 697 349 990 800 82 535 382 816 943 735 11 272 562 323 653 370 766 332 666 130 704 604 645 717 267 255 37 470 925 941 376 611 332 758 504 40 477 263 708 434 38 596 650 990 714 662 572 467 949 799 648 581 545 828 508 636", "output": "355" }, { "input": "2\n55 5 25 51", "output": "4" }, { "input": "25\n89 50 640 463 858 301 522 241 923 378 892 822 550 17 42 66 706 779 657 840 273 222 444 459 94 925 437 159 182 727 92 851 742 215 653 891 782 533 29 128 133 883 317 475 165 994 802 434 744 973", "output": "348" }, { "input": "4\n35 48 71 44 78 79 57 48", "output": "10" }, { "input": "3\n58 89 73 15 5 47", "output": "21" }, { "input": "2\n1 20 99 100", "output": "1" } ]
1,619,978,391
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
77
0
N = int(input()) ans = 0 weights = sorted(map(int, input().split())) diffs = [] for x in range(1, 2*N): d = weights[x] - weights[x-1] diffs.append( (d, x-1, x) ) del diffs[-1] taken = set() for d in diffs: a, b = d[1], d[2] if a in taken or b in taken: continue print(a,b, d[0]) taken.add(a), taken.add(b) ans += d[0] print(ans)
Title: Kayaking Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers. Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash. Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks. Help the party to determine minimum possible total instability! Input Specification: The first line contains one number *n* (2<=≤<=*n*<=≤<=50). The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000). Output Specification: Print minimum possible total instability. Demo Input: ['2\n1 2 3 4\n', '4\n1 3 4 6 3 4 100 200\n'] Demo Output: ['1\n', '5\n'] Note: none
```python N = int(input()) ans = 0 weights = sorted(map(int, input().split())) diffs = [] for x in range(1, 2*N): d = weights[x] - weights[x-1] diffs.append( (d, x-1, x) ) del diffs[-1] taken = set() for d in diffs: a, b = d[1], d[2] if a in taken or b in taken: continue print(a,b, d[0]) taken.add(a), taken.add(b) ans += d[0] print(ans) ```
0
158
A
Next Round
PROGRAMMING
800
[ "*special", "implementation" ]
null
null
"Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules. A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round.
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1).
Output the number of participants who advance to the next round.
[ "8 5\n10 9 8 7 7 7 5 5\n", "4 2\n0 0 0 0\n" ]
[ "6\n", "0\n" ]
In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers. In the second example nobody got a positive score.
500
[ { "input": "8 5\n10 9 8 7 7 7 5 5", "output": "6" }, { "input": "4 2\n0 0 0 0", "output": "0" }, { "input": "5 1\n1 1 1 1 1", "output": "5" }, { "input": "5 5\n1 1 1 1 1", "output": "5" }, { "input": "1 1\n10", "output": "1" }, { "input": "17 14\n16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "14" }, { "input": "5 5\n3 2 1 0 0", "output": "3" }, { "input": "8 6\n10 9 8 7 7 7 5 5", "output": "6" }, { "input": "8 7\n10 9 8 7 7 7 5 5", "output": "8" }, { "input": "8 4\n10 9 8 7 7 7 5 5", "output": "6" }, { "input": "8 3\n10 9 8 7 7 7 5 5", "output": "3" }, { "input": "8 1\n10 9 8 7 7 7 5 5", "output": "1" }, { "input": "8 2\n10 9 8 7 7 7 5 5", "output": "2" }, { "input": "1 1\n100", "output": "1" }, { "input": "1 1\n0", "output": "0" }, { "input": "50 25\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "50" }, { "input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "25" }, { "input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "26" }, { "input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "50" }, { "input": "11 5\n100 99 98 97 96 95 94 93 92 91 90", "output": "5" }, { "input": "10 4\n100 81 70 69 64 43 34 29 15 3", "output": "4" }, { "input": "11 6\n87 71 62 52 46 46 43 35 32 25 12", "output": "6" }, { "input": "17 12\n99 88 86 82 75 75 74 65 58 52 45 30 21 16 7 2 2", "output": "12" }, { "input": "20 3\n98 98 96 89 87 82 82 80 76 74 74 68 61 60 43 32 30 22 4 2", "output": "3" }, { "input": "36 12\n90 87 86 85 83 80 79 78 76 70 69 69 61 61 59 58 56 48 45 44 42 41 33 31 27 25 23 21 20 19 15 14 12 7 5 5", "output": "12" }, { "input": "49 8\n99 98 98 96 92 92 90 89 89 86 86 85 83 80 79 76 74 69 67 67 58 56 55 51 49 47 47 46 45 41 41 40 39 34 34 33 25 23 18 15 13 13 11 9 5 4 3 3 1", "output": "9" }, { "input": "49 29\n100 98 98 96 96 96 95 87 85 84 81 76 74 70 63 63 63 62 57 57 56 54 53 52 50 47 45 41 41 39 38 31 30 28 27 26 23 22 20 15 15 11 7 6 6 4 2 1 0", "output": "29" }, { "input": "49 34\n99 98 96 96 93 92 90 89 88 86 85 85 82 76 73 69 66 64 63 63 60 59 57 57 56 55 54 54 51 48 47 44 42 42 40 39 38 36 33 26 24 23 19 17 17 14 12 7 4", "output": "34" }, { "input": "50 44\n100 100 99 97 95 91 91 84 83 83 79 71 70 69 69 62 61 60 59 59 58 58 58 55 55 54 52 48 47 45 44 44 38 36 32 31 28 28 25 25 24 24 24 22 17 15 14 13 12 4", "output": "44" }, { "input": "50 13\n99 95 94 94 88 87 81 79 78 76 74 72 72 69 68 67 67 67 66 63 62 61 58 57 55 55 54 51 50 50 48 48 42 41 38 35 34 32 31 30 26 24 13 13 12 6 5 4 3 3", "output": "13" }, { "input": "50 30\n100 98 96 94 91 89 88 81 81 81 81 81 76 73 72 71 70 69 66 64 61 59 59 56 52 50 49 48 43 39 36 35 34 34 31 29 27 26 24 22 16 16 15 14 14 14 9 7 4 3", "output": "30" }, { "input": "2 1\n10 10", "output": "2" }, { "input": "2 2\n10 10", "output": "2" }, { "input": "2 2\n10 0", "output": "1" }, { "input": "2 2\n10 1", "output": "2" }, { "input": "2 1\n10 0", "output": "1" }, { "input": "2 1\n10 2", "output": "1" }, { "input": "50 13\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "50 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "50 50\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "10 1\n5 5 5 3 3 3 0 0 0 0", "output": "3" }, { "input": "10 2\n5 5 5 3 3 3 0 0 0 0", "output": "3" }, { "input": "10 3\n5 5 5 3 3 3 0 0 0 0", "output": "3" }, { "input": "10 4\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 5\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 6\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 7\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 8\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 9\n5 5 5 3 3 3 0 0 0 0", "output": "6" }, { "input": "10 10\n5 5 5 3 3 3 0 0 0 0", "output": "6" } ]
1,697,101,184
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
3
60
0
x=[int(n) for n in input().split()] scores=[int(n) for n in input().split()] kscore=scores[x[1]] p=0 for i in range(x[0]): if scores[i]>=kscore and kscore>0: p+=1 print(p)
Title: Next Round Time Limit: None seconds Memory Limit: None megabytes Problem Description: "Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules. A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1). Output Specification: Output the number of participants who advance to the next round. Demo Input: ['8 5\n10 9 8 7 7 7 5 5\n', '4 2\n0 0 0 0\n'] Demo Output: ['6\n', '0\n'] Note: In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers. In the second example nobody got a positive score.
```python x=[int(n) for n in input().split()] scores=[int(n) for n in input().split()] kscore=scores[x[1]] p=0 for i in range(x[0]): if scores[i]>=kscore and kscore>0: p+=1 print(p) ```
-1
102
B
Sum of Digits
PROGRAMMING
1,000
[ "implementation" ]
B. Sum of Digits
2
265
Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit?
The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes.
Print the number of times a number can be replaced by the sum of its digits until it only contains one digit.
[ "0\n", "10\n", "991\n" ]
[ "0\n", "1\n", "3\n" ]
In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
1,000
[ { "input": "0", "output": "0" }, { "input": "10", "output": "1" }, { "input": "991", "output": "3" }, { "input": "99", "output": "2" }, { "input": "100", "output": "1" }, { "input": "123456789", "output": "2" }, { "input": "32", "output": "1" }, { "input": "86", "output": "2" }, { "input": "2", "output": "0" }, { "input": "8", "output": "0" }, { "input": "34", "output": "1" }, { "input": "13", "output": "1" }, { "input": "28", "output": "2" }, { "input": "23", "output": "1" }, { "input": "57", "output": "2" }, { "input": "29", "output": "2" }, { "input": "353869285", "output": "3" }, { "input": "549548646", "output": "2" }, { "input": "858893424", "output": "2" }, { "input": "644818852", "output": "3" }, { "input": "360322525", "output": "3" }, { "input": "122937520", "output": "2" }, { "input": "288403032", "output": "2" }, { "input": "677257481", "output": "3" }, { "input": "58059561", "output": "3" }, { "input": "211288847", "output": "2" }, { "input": "339900034079539584", "output": "2" }, { "input": "784084029310269952", "output": "3" }, { "input": "774730557264864000", "output": "3" }, { "input": "478233807148352256", "output": "3" }, { "input": "165646874056812544", "output": "3" }, { "input": "477533739511673792", "output": "3" }, { "input": "660119944377002240", "output": "3" }, { "input": "448375218506078080", "output": "3" }, { "input": "77213334785795616", "output": "3" }, { "input": "165767221702271872", "output": "3" }, { "input": "1", "output": "0" }, { "input": "5", "output": "0" }, { "input": "8", "output": "0" }, { "input": "156161456146164104103460452045416165146141414651641564105461465156445621465146514562146145465165145145614561465145614561", "output": "3" }, { "input": "9", "output": "0" } ]
1,640,414,862
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
6
2,000
7,680,000
n = int(input()) count = curr_sum = 0 if n == 0: print(count) else: while True: while n > 0: a = n % 10 curr_sum += a n = n // 10 count += 1 if curr_sum < 10: print(count) break n = curr_sum curr_sum = 0
Title: Sum of Digits Time Limit: 2 seconds Memory Limit: 265 megabytes Problem Description: Having watched the last Harry Potter film, little Gerald also decided to practice magic. He found in his father's magical book a spell that turns any number in the sum of its digits. At the moment Gerald learned that, he came across a number *n*. How many times can Gerald put a spell on it until the number becomes one-digit? Input Specification: The first line contains the only integer *n* (0<=≤<=*n*<=≤<=10100000). It is guaranteed that *n* doesn't contain any leading zeroes. Output Specification: Print the number of times a number can be replaced by the sum of its digits until it only contains one digit. Demo Input: ['0\n', '10\n', '991\n'] Demo Output: ['0\n', '1\n', '3\n'] Note: In the first sample the number already is one-digit — Herald can't cast a spell. The second test contains number 10. After one casting of a spell it becomes 1, and here the process is completed. Thus, Gerald can only cast the spell once. The third test contains number 991. As one casts a spell the following transformations take place: 991 → 19 → 10 → 1. After three transformations the number becomes one-digit.
```python n = int(input()) count = curr_sum = 0 if n == 0: print(count) else: while True: while n > 0: a = n % 10 curr_sum += a n = n // 10 count += 1 if curr_sum < 10: print(count) break n = curr_sum curr_sum = 0 ```
0
611
A
New Year and Days
PROGRAMMING
900
[ "implementation" ]
null
null
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015. Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016. Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month. Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
The only line of the input is in one of the following two formats: - "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
Print one integer — the number of candies Limak will save in the year 2016.
[ "4 of week\n", "30 of month\n" ]
[ "52\n", "11\n" ]
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday. In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total. In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
500
[ { "input": "4 of week", "output": "52" }, { "input": "30 of month", "output": "11" }, { "input": "17 of month", "output": "12" }, { "input": "31 of month", "output": "7" }, { "input": "6 of week", "output": "53" }, { "input": "1 of week", "output": "52" }, { "input": "2 of week", "output": "52" }, { "input": "3 of week", "output": "52" }, { "input": "5 of week", "output": "53" }, { "input": "7 of week", "output": "52" }, { "input": "1 of month", "output": "12" }, { "input": "2 of month", "output": "12" }, { "input": "3 of month", "output": "12" }, { "input": "4 of month", "output": "12" }, { "input": "5 of month", "output": "12" }, { "input": "6 of month", "output": "12" }, { "input": "7 of month", "output": "12" }, { "input": "8 of month", "output": "12" }, { "input": "9 of month", "output": "12" }, { "input": "10 of month", "output": "12" }, { "input": "11 of month", "output": "12" }, { "input": "12 of month", "output": "12" }, { "input": "13 of month", "output": "12" }, { "input": "14 of month", "output": "12" }, { "input": "15 of month", "output": "12" }, { "input": "16 of month", "output": "12" }, { "input": "18 of month", "output": "12" }, { "input": "19 of month", "output": "12" }, { "input": "20 of month", "output": "12" }, { "input": "21 of month", "output": "12" }, { "input": "22 of month", "output": "12" }, { "input": "23 of month", "output": "12" }, { "input": "24 of month", "output": "12" }, { "input": "25 of month", "output": "12" }, { "input": "26 of month", "output": "12" }, { "input": "27 of month", "output": "12" }, { "input": "28 of month", "output": "12" }, { "input": "29 of month", "output": "12" } ]
1,451,488,801
901
Python 3
CHALLENGED
CHALLENGES
5
46
0
s = input() if s.split()[2] == 'week': d = int(s.split()[0]) days = {1: 52, 2: 52, 3: 52, 4: 52, 5: 53, 6: 53, 7: 53} print(days[d]) else: d = int(s.split()[0]) if d <= 29: print(12) elif d == 30: print(11) else: print(7)
Title: New Year and Days Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015. Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016. Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month. Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him. Input Specification: The only line of the input is in one of the following two formats: - "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month. Output Specification: Print one integer — the number of candies Limak will save in the year 2016. Demo Input: ['4 of week\n', '30 of month\n'] Demo Output: ['52\n', '11\n'] Note: Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday. In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total. In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
```python s = input() if s.split()[2] == 'week': d = int(s.split()[0]) days = {1: 52, 2: 52, 3: 52, 4: 52, 5: 53, 6: 53, 7: 53} print(days[d]) else: d = int(s.split()[0]) if d <= 29: print(12) elif d == 30: print(11) else: print(7) ```
-1
887
A
Div. 64
PROGRAMMING
1,000
[ "implementation" ]
null
null
Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.
In the only line given a non-empty binary string *s* with length up to 100.
Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise.
[ "100010001\n", "100\n" ]
[ "yes", "no" ]
In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
500
[ { "input": "100010001", "output": "yes" }, { "input": "100", "output": "no" }, { "input": "0000001000000", "output": "yes" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111", "output": "no" }, { "input": "0111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111011111111111111111111111110111110111111111111111111111011111111111111110111111111111111111111111", "output": "no" }, { "input": "1111111111101111111111111111111111111011111111111111111111111101111011111101111111111101111111111111", "output": "yes" }, { "input": "0110111111111111111111011111111110110111110111111111111111111111111111111111111110111111111111111111", "output": "yes" }, { "input": "1100110001111011001101101000001110111110011110111110010100011000100101000010010111100000010001001101", "output": "yes" }, { "input": "000000", "output": "no" }, { "input": "0001000", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "1000000", "output": "yes" }, { "input": "0", "output": "no" }, { "input": "1", "output": "no" }, { "input": "10000000000", "output": "yes" }, { "input": "0000000000", "output": "no" }, { "input": "0010000", "output": "no" }, { "input": "000000011", "output": "no" }, { "input": "000000000", "output": "no" }, { "input": "00000000", "output": "no" }, { "input": "000000000011", "output": "no" }, { "input": "0000000", "output": "no" }, { "input": "00000000011", "output": "no" }, { "input": "000000001", "output": "no" }, { "input": "000000000000000000000000000", "output": "no" }, { "input": "0000001", "output": "no" }, { "input": "00000001", "output": "no" }, { "input": "00000000100", "output": "no" }, { "input": "00000000000000000000", "output": "no" }, { "input": "0000000000000000000", "output": "no" }, { "input": "00001000", "output": "no" }, { "input": "0000000000010", "output": "no" }, { "input": "000000000010", "output": "no" }, { "input": "000000000000010", "output": "no" }, { "input": "0100000", "output": "no" }, { "input": "00010000", "output": "no" }, { "input": "00000000000000000", "output": "no" }, { "input": "00000000000", "output": "no" }, { "input": "000001000", "output": "no" }, { "input": "000000000000", "output": "no" }, { "input": "100000000000000", "output": "yes" }, { "input": "000010000", "output": "no" }, { "input": "00000100", "output": "no" }, { "input": "0001100000", "output": "no" }, { "input": "000000000000000000000000001", "output": "no" }, { "input": "000000100", "output": "no" }, { "input": "0000000000001111111111", "output": "no" }, { "input": "00000010", "output": "no" }, { "input": "0001110000", "output": "no" }, { "input": "0000000000000000000000", "output": "no" }, { "input": "000000010010", "output": "no" }, { "input": "0000100", "output": "no" }, { "input": "0000000001", "output": "no" }, { "input": "000000111", "output": "no" }, { "input": "0000000000000", "output": "no" }, { "input": "000000000000000000", "output": "no" }, { "input": "0000000000000000000000000", "output": "no" }, { "input": "000000000000000", "output": "no" }, { "input": "0010000000000100", "output": "yes" }, { "input": "0000001000", "output": "no" }, { "input": "00000000000000000001", "output": "no" }, { "input": "100000000", "output": "yes" }, { "input": "000000000001", "output": "no" }, { "input": "0000011001", "output": "no" }, { "input": "000", "output": "no" }, { "input": "000000000000000000000", "output": "no" }, { "input": "0000000000011", "output": "no" }, { "input": "0000000000000000", "output": "no" }, { "input": "00000000000000001", "output": "no" }, { "input": "00000000000000", "output": "no" }, { "input": "0000000000000000010", "output": "no" }, { "input": "00000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "000011000", "output": "no" }, { "input": "00000011", "output": "no" }, { "input": "0000000000001100", "output": "no" }, { "input": "00000", "output": "no" }, { "input": "000000000000000000000000000111111111111111", "output": "no" }, { "input": "000000010", "output": "no" }, { "input": "00000000111", "output": "no" }, { "input": "000000000000001", "output": "no" }, { "input": "0000000000000011111111111111111", "output": "no" }, { "input": "0000000010", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "00000000010", "output": "no" }, { "input": "101000000000", "output": "yes" }, { "input": "00100000", "output": "no" }, { "input": "00000000000001", "output": "no" }, { "input": "0000000000100", "output": "no" }, { "input": "0000", "output": "no" }, { "input": "00000000000111", "output": "no" }, { "input": "0000000000000011", "output": "no" }, { "input": "0000000000000000000000000000000000000000", "output": "no" }, { "input": "0000000000000010", "output": "no" }, { "input": "0010101010", "output": "no" }, { "input": "0000000000000001", "output": "no" }, { "input": "1010101", "output": "no" } ]
1,683,834,005
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
10
31
0
from sys import stdin from math import ceil rd = stdin.readline s = rd().strip() c = s.count('1') pos = len(s) - s.find('1') - c if 2 ** pos > 32: print('yes') else: print('no')
Title: Div. 64 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system. Input Specification: In the only line given a non-empty binary string *s* with length up to 100. Output Specification: Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise. Demo Input: ['100010001\n', '100\n'] Demo Output: ['yes', 'no'] Note: In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
```python from sys import stdin from math import ceil rd = stdin.readline s = rd().strip() c = s.count('1') pos = len(s) - s.find('1') - c if 2 ** pos > 32: print('yes') else: print('no') ```
0
765
B
Code obfuscation
PROGRAMMING
1,100
[ "greedy", "implementation", "strings" ]
null
null
Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest. To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs. You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.
In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters.
If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO".
[ "abacaba\n", "jinotega\n" ]
[ "YES\n", "NO\n" ]
In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program: - replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
1,000
[ { "input": "abacaba", "output": "YES" }, { "input": "jinotega", "output": "NO" }, { "input": "aaaaaaaaaaa", "output": "YES" }, { "input": "aba", "output": "YES" }, { "input": "bab", "output": "NO" }, { "input": "a", "output": "YES" }, { "input": "abcdefghijklmnopqrstuvwxyz", "output": "YES" }, { "input": "fihyxmbnzq", "output": "NO" }, { "input": "aamlaswqzotaanasdhcvjoaiwdhctezzawagkdgfffeqkyrvbcrfqgkdsvximsnvmkmjyofswmtjdoxgwamsaatngenqvsvrvwlbzuoeaolfcnmdacrmdleafbsmerwmxzyylfhemnkoayuhtpbikm", "output": "NO" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "YES" }, { "input": "darbbbcwynbbbbaacbkvbakavabbbabzajlbajryaabbbccxraakgniagbtsswcfbkubdmcasccepybkaefcfsbzdddxgcjadybcfjtmqbspflqrdghgfwnccfveogdmifkociqscahdejctacwzbkhihajfilrgcjiofwfklifobozikcmvcfeqlidrgsgdfxffaaebzjxngsjxiclyolhjokqpdbfffooticxsezpgqkhhzmbmqgskkqvefzyijrwhpftcmbedmaflapmeljaudllojfpgfkpvgylaglrhrslxlprbhgknrctilngqccbddvpamhifsbmyowohczizjcbleehfrecjbqtxertnpfmalejmbxkhkkbyopuwlhkxuqellsybgcndvniyyxfoufalstdsdfjoxlnmigkqwmgojsppaannfstxytelluvvkdcezlqfsperwyjsdsmkvgjdbksswamhmoukcawiigkggztr", "output": "NO" }, { "input": "bbbbbb", "output": "NO" }, { "input": "aabbbd", "output": "NO" }, { "input": "abdefghijklmnopqrstuvwxyz", "output": "NO" }, { "input": "abcdeghijklmnopqrstuvwxyz", "output": "NO" }, { "input": "abcdefghijklmnopqrsuvwxyz", "output": "NO" }, { "input": "abcdefghijklmnopqrstuvwxy", "output": "YES" }, { "input": "abcdefghijklmnopqrsutvwxyz", "output": "NO" }, { "input": "acdef", "output": "NO" }, { "input": "z", "output": "NO" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaababaaababaabababccbabdbcbadccacdbdedabbeecbcabbdcaecdabbedddafeffaccgeacefbcahabfiiegecdbebabhhbdgfeghhbfahgagefbgghdbhadeicbdfgdchhefhigfcgdhcihecacfhadfgfejccibcjkfhbigbealjjkfldiecfdcafbamgfkbjlbifldghmiifkkglaflmjfmkfdjlbliijkgfdelklfnadbifgbmklfbqkhirhcadoadhmjrghlmelmjfpakqkdfcgqdkaeqpbcdoeqglqrarkipncckpfmajrqsfffldegbmahsfcqdfdqtrgrouqajgsojmmukptgerpanpcbejmergqtavwsvtveufdseuemwrhfmjqinxjodddnpcgqullrhmogflsxgsbapoghortiwcovejtinncozk", "output": "NO" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "YES" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbabbbabbaaabbaaaaabaabbaa", "output": "YES" }, { "input": "aababbabbaabbbbbaabababaabbbaaaaabbabbabbaabbbbabaabbaaababbaaacbbabbbbbbcbcababbccaaacbaccaccaababbccaacccaabaaccaaabacacbaabacbaacbaaabcbbbcbbaacaabcbcbccbacabbcbabcaccaaaaaabcbacabcbabbbbbabccbbcacbaaabbccbbaaaaaaaaaaaadbbbabdacabdaddddbaabbddbdabbdacbacbacaaaabbacadbcddddadaddabbdccaddbaaacbceebbceadbeaadecddbbbcaaecbdeaebaddbbdebbcbaabcacbdcdc", "output": "YES" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbaabaabaababbbabbacacbbbacbbaaaabbccacbaabaaccbbbbbcbbbacabbccaaabbaaacabcbacbcabbbbecbecadcbacbaadeeadabeacdebccdbbcaecdbeeebbebcaaaeacdcbdeccdbbdcdebdcbdacebcecbacddeeaebcedffedfggbeedceacaecagdfedfabcfchffceachgcbicbcffeeebgcgiefcafhibhceiedgbfebbccegbehhibhhfedbaeedbghggffehggaeaidifhdhaggdjcfjhiaieaichjacedchejg", "output": "NO" }, { "input": "b", "output": "NO" }, { "input": "ac", "output": "NO" }, { "input": "cde", "output": "NO" }, { "input": "abd", "output": "NO" }, { "input": "zx", "output": "NO" }, { "input": "bcd", "output": "NO" }, { "input": "aaac", "output": "NO" }, { "input": "aacb", "output": "NO" }, { "input": "acd", "output": "NO" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz", "output": "NO" }, { "input": "abcdefghijklmnopqrstuvwxyzz", "output": "YES" }, { "input": "bc", "output": "NO" }, { "input": "aaaaaaaaad", "output": "NO" }, { "input": "abb", "output": "YES" }, { "input": "abcb", "output": "YES" }, { "input": "aac", "output": "NO" }, { "input": "abcbcb", "output": "YES" }, { "input": "bb", "output": "NO" }, { "input": "abbb", "output": "YES" }, { "input": "bbb", "output": "NO" }, { "input": "x", "output": "NO" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaazz", "output": "NO" }, { "input": "acbccccccccccc", "output": "NO" }, { "input": "za", "output": "NO" }, { "input": "ade", "output": "NO" }, { "input": "bbbbbbbbbb", "output": "NO" }, { "input": "bac", "output": "NO" }, { "input": "bcddcb", "output": "NO" }, { "input": "aaacb", "output": "NO" }, { "input": "aaaaac", "output": "NO" }, { "input": "aaaaaaaaaaad", "output": "NO" }, { "input": "c", "output": "NO" }, { "input": "abcccccccc", "output": "YES" }, { "input": "aaaaaaac", "output": "NO" } ]
1,502,507,896
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
18
62
4,608,000
def manners(s): if s[0] != 'a' and (s[1] != 'a' or s[1] != 'b'): return 'NO' else: for i in range(2, len(s)): b = max(ord(s[i-2]), ord(s[i-1])) if ord(s[i]) - b > 1: return 'NO' return 'YES' print(manners(input()))
Title: Code obfuscation Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest. To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol *a*, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with *b*, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs. You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation. Input Specification: In the only line of input there is a string *S* of lowercase English letters (1<=≤<=|*S*|<=≤<=500) — the identifiers of a program with removed whitespace characters. Output Specification: If this program can be a result of Kostya's obfuscation, print "YES" (without quotes), otherwise print "NO". Demo Input: ['abacaba\n', 'jinotega\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample case, one possible list of identifiers would be "number string number character number string number". Here how Kostya would obfuscate the program: - replace all occurences of number with a, the result would be "a string a character a string a",- replace all occurences of string with b, the result would be "a b a character a b a",- replace all occurences of character with c, the result would be "a b a c a b a",- all identifiers have been replaced, thus the obfuscation is finished.
```python def manners(s): if s[0] != 'a' and (s[1] != 'a' or s[1] != 'b'): return 'NO' else: for i in range(2, len(s)): b = max(ord(s[i-2]), ord(s[i-1])) if ord(s[i]) - b > 1: return 'NO' return 'YES' print(manners(input())) ```
0
749
A
Bachgold Problem
PROGRAMMING
800
[ "greedy", "implementation", "math", "number theory" ]
null
null
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
[ "5\n", "6\n" ]
[ "2\n2 3\n", "3\n2 2 2\n" ]
none
500
[ { "input": "5", "output": "2\n2 3" }, { "input": "6", "output": "3\n2 2 2" }, { "input": "2", "output": "1\n2" }, { "input": "3", "output": "1\n3" }, { "input": "99999", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "100000", "output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7", "output": "3\n2 2 3" }, { "input": "4", "output": "2\n2 2" }, { "input": "8", "output": "4\n2 2 2 2" }, { "input": "9", "output": "4\n2 2 2 3" }, { "input": "99995", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99996", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "10", "output": "5\n2 2 2 2 2" }, { "input": "11", "output": "5\n2 2 2 2 3" }, { "input": "99997", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99998", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "12", "output": "6\n2 2 2 2 2 2" }, { "input": "13", "output": "6\n2 2 2 2 2 3" }, { "input": "99993", "output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99994", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "14", "output": "7\n2 2 2 2 2 2 2" }, { "input": "15", "output": "7\n2 2 2 2 2 2 3" }, { "input": "53", "output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "57", "output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "61", "output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "774", "output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "202", "output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "530", "output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7166", "output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "9294", "output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "2422", "output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "15326", "output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "11454", "output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "14878", "output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "90672", "output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99544", "output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "90472", "output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "23", "output": "11\n2 2 2 2 2 2 2 2 2 2 3" }, { "input": "93", "output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "19", "output": "9\n2 2 2 2 2 2 2 2 3" }, { "input": "11110", "output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." } ]
1,674,940,447
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
61
0
import math from sys import stdin from collections import Counter, defaultdict, deque def readarray(typ): return list(map(typ, stdin.readline().split())) def readint(): return int(input()) ansLen = 0 ans = [] def solveDP(primes, index, n, currSum, curr): global ans, ansLen if currSum >= n: if currSum == n: if len(curr) > ansLen: ansLen = len(curr) ans = curr return if index == len(primes): return if currSum + primes[index] <= n: solveDP(primes, index, n, currSum + primes[index], curr + [primes[index]]) else: solveDP(primes, index+1, n, currSum, curr) solveDP(primes, index+1, n, currSum+primes[index], curr + [primes[index]]) n = readint() primes = [] for num in range(1, n+1): if num > 1: for i in range(2, int(math.sqrt(num))): if (num % i) == 0: break else: primes.append(num) solveDP(primes, 0, n, 0, []) print(ansLen) print(*ans)
Title: Bachgold Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*. Input Specification: The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000). Output Specification: The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them. Demo Input: ['5\n', '6\n'] Demo Output: ['2\n2 3\n', '3\n2 2 2\n'] Note: none
```python import math from sys import stdin from collections import Counter, defaultdict, deque def readarray(typ): return list(map(typ, stdin.readline().split())) def readint(): return int(input()) ansLen = 0 ans = [] def solveDP(primes, index, n, currSum, curr): global ans, ansLen if currSum >= n: if currSum == n: if len(curr) > ansLen: ansLen = len(curr) ans = curr return if index == len(primes): return if currSum + primes[index] <= n: solveDP(primes, index, n, currSum + primes[index], curr + [primes[index]]) else: solveDP(primes, index+1, n, currSum, curr) solveDP(primes, index+1, n, currSum+primes[index], curr + [primes[index]]) n = readint() primes = [] for num in range(1, n+1): if num > 1: for i in range(2, int(math.sqrt(num))): if (num % i) == 0: break else: primes.append(num) solveDP(primes, 0, n, 0, []) print(ansLen) print(*ans) ```
0
750
A
New Year and Hurry
PROGRAMMING
800
[ "binary search", "brute force", "implementation", "math" ]
null
null
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party?
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
[ "3 222\n", "4 190\n", "7 1\n" ]
[ "2\n", "4\n", "7\n" ]
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
500
[ { "input": "3 222", "output": "2" }, { "input": "4 190", "output": "4" }, { "input": "7 1", "output": "7" }, { "input": "10 135", "output": "6" }, { "input": "10 136", "output": "5" }, { "input": "1 1", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "10 240", "output": "0" }, { "input": "9 240", "output": "0" }, { "input": "9 1", "output": "9" }, { "input": "9 235", "output": "1" }, { "input": "9 236", "output": "0" }, { "input": "5 225", "output": "2" }, { "input": "5 226", "output": "1" }, { "input": "4 210", "output": "3" }, { "input": "4 211", "output": "2" }, { "input": "4 191", "output": "3" }, { "input": "10 165", "output": "5" }, { "input": "10 166", "output": "4" }, { "input": "8 100", "output": "7" }, { "input": "8 101", "output": "6" }, { "input": "8 60", "output": "8" }, { "input": "8 61", "output": "7" }, { "input": "10 15", "output": "9" }, { "input": "10 16", "output": "8" }, { "input": "4 100", "output": "4" }, { "input": "4 101", "output": "4" }, { "input": "7 167", "output": "4" }, { "input": "10 164", "output": "5" }, { "input": "9 170", "output": "4" }, { "input": "8 160", "output": "5" }, { "input": "1 100", "output": "1" }, { "input": "8 123", "output": "6" }, { "input": "2 99", "output": "2" }, { "input": "10 88", "output": "7" }, { "input": "1 235", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "4 240", "output": "0" }, { "input": "1 55", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "3 240", "output": "0" }, { "input": "10 240", "output": "0" }, { "input": "2 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "9 1", "output": "9" }, { "input": "2 236", "output": "0" }, { "input": "10 2", "output": "9" }, { "input": "3 239", "output": "0" }, { "input": "1 237", "output": "0" }, { "input": "7 8", "output": "7" }, { "input": "10 235", "output": "1" } ]
1,690,338,563
2,147,483,647
Python 3
OK
TESTS
52
46
0
raw = input() delim = raw.split() n = int(delim[0]) k = int(delim[1]) minutes = 240 - k possible = 0 for i in range(1,n+1): if 5*i <= minutes: possible += 1 minutes -= 5*i else: break print(possible)
Title: New Year and Hurry Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party? Input Specification: The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house. Output Specification: Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier. Demo Input: ['3 222\n', '4 190\n', '7 1\n'] Demo Output: ['2\n', '4\n', '7\n'] Note: In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
```python raw = input() delim = raw.split() n = int(delim[0]) k = int(delim[1]) minutes = 240 - k possible = 0 for i in range(1,n+1): if 5*i <= minutes: possible += 1 minutes -= 5*i else: break print(possible) ```
3
598
D
Igor In the Museum
PROGRAMMING
1,700
[ "dfs and similar", "graphs", "shortest paths" ]
null
null
Igor is in the museum and he wants to see as many pictures as possible. Museum can be represented as a rectangular field of *n*<=×<=*m* cells. Each cell is either empty or impassable. Empty cells are marked with '.', impassable cells are marked with '*'. Every two adjacent cells of different types (one empty and one impassable) are divided by a wall containing one picture. At the beginning Igor is in some empty cell. At every moment he can move to any empty cell that share a side with the current one. For several starting positions you should calculate the maximum number of pictures that Igor can see. Igor is able to see the picture only if he is in the cell adjacent to the wall with this picture. Igor have a lot of time, so he will examine every picture he can see.
First line of the input contains three integers *n*, *m* and *k* (3<=≤<=*n*,<=*m*<=≤<=1000,<=1<=≤<=*k*<=≤<=*min*(*n*·*m*,<=100<=000)) — the museum dimensions and the number of starting positions to process. Each of the next *n* lines contains *m* symbols '.', '*' — the description of the museum. It is guaranteed that all border cells are impassable, so Igor can't go out from the museum. Each of the last *k* lines contains two integers *x* and *y* (1<=≤<=*x*<=≤<=*n*,<=1<=≤<=*y*<=≤<=*m*) — the row and the column of one of Igor's starting positions respectively. Rows are numbered from top to bottom, columns — from left to right. It is guaranteed that all starting positions are empty cells.
Print *k* integers — the maximum number of pictures, that Igor can see if he starts in corresponding position.
[ "5 6 3\n******\n*..*.*\n******\n*....*\n******\n2 2\n2 5\n4 3\n", "4 4 1\n****\n*..*\n*.**\n****\n3 2\n" ]
[ "6\n4\n10\n", "8\n" ]
none
0
[ { "input": "5 6 3\n******\n*..*.*\n******\n*....*\n******\n2 2\n2 5\n4 3", "output": "6\n4\n10" }, { "input": "4 4 1\n****\n*..*\n*.**\n****\n3 2", "output": "8" }, { "input": "3 3 1\n***\n*.*\n***\n2 2", "output": "4" }, { "input": "5 5 10\n*****\n*...*\n*..**\n*.***\n*****\n2 4\n4 2\n2 2\n2 3\n2 2\n2 2\n2 4\n3 2\n2 2\n2 2", "output": "12\n12\n12\n12\n12\n12\n12\n12\n12\n12" }, { "input": "10 3 10\n***\n*.*\n*.*\n***\n***\n*.*\n*.*\n*.*\n*.*\n***\n2 2\n2 2\n2 2\n2 2\n8 2\n2 2\n2 2\n7 2\n8 2\n6 2", "output": "6\n6\n6\n6\n10\n6\n6\n10\n10\n10" }, { "input": "3 10 10\n**********\n***.*.*..*\n**********\n2 6\n2 6\n2 9\n2 9\n2 4\n2 9\n2 6\n2 6\n2 4\n2 6", "output": "4\n4\n6\n6\n4\n6\n4\n4\n4\n4" }, { "input": "10 10 50\n**********\n*......***\n***..**..*\n***....***\n**..***..*\n**..**.*.*\n*****..***\n*.***..***\n*..****.**\n**********\n5 9\n5 9\n7 7\n6 4\n6 7\n8 7\n6 7\n9 2\n3 9\n9 2\n4 7\n4 6\n2 7\n9 2\n7 7\n5 8\n8 7\n8 6\n7 7\n5 9\n8 7\n3 8\n3 8\n5 9\n9 8\n9 3\n8 7\n5 9\n9 2\n9 8\n9 3\n3 8\n9 2\n8 6\n2 4\n6 9\n6 3\n9 8\n3 9\n9 8\n4 5\n8 6\n3 8\n5 9\n8 7\n5 8\n6 9\n8 2\n3 9\n3 9", "output": "8\n8\n10\n28\n10\n10\n10\n8\n6\n8\n28\n28\n28\n8\n10\n8\n10\n10\n10\n8\n10\n6\n6\n8\n4\n8\n10\n8\n8\n4\n8\n6\n8\n10\n28\n8\n28\n4\n6\n4\n28\n10\n6\n8\n10\n8\n8\n8\n6\n6" }, { "input": "5 5 21\n*****\n*.***\n*****\n*****\n*****\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2", "output": "4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4\n4" } ]
1,676,902,905
4,005
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
15
1,000
208,998,400
import sys input = sys.stdin.readline from collections import defaultdict, deque, Counter from heapq import heappop, heappush from bisect import bisect_left, bisect_right from math import gcd n,m,k = map(int,input().split()) mus = [list(input().rstrip()) for i in range(n)] start = [list(map(int,input().split())) for i in range(k)] d = [[-1,0],[1,0],[0,-1],[0,1]] depth = [[-1]*(m) for i in range(n)] ans = [[0]*m for i in range(n)] for i in range(k): x,y = start[i] x -= 1 y -= 1 if depth[x][y] != -1: print(ans[x][y]) continue wall = set() p = set() que = deque([(x,y)]) depth[x][y] = 1 while que: x,y = que.popleft() p.add(x*m+y) for cc,[dx,dy] in enumerate(d): nx = x + dx ny = y + dy if not (0<=nx<n and 0<=ny<m): continue if mus[nx][ny] == "*": wall.add((nx*m+ny)*4+cc) continue if depth[nx][ny] == -1: que.append((nx,ny)) depth[nx][ny] = 1 cnt = len(wall) for i in p: ans[i//m][i%m] = cnt print(cnt)
Title: Igor In the Museum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Igor is in the museum and he wants to see as many pictures as possible. Museum can be represented as a rectangular field of *n*<=×<=*m* cells. Each cell is either empty or impassable. Empty cells are marked with '.', impassable cells are marked with '*'. Every two adjacent cells of different types (one empty and one impassable) are divided by a wall containing one picture. At the beginning Igor is in some empty cell. At every moment he can move to any empty cell that share a side with the current one. For several starting positions you should calculate the maximum number of pictures that Igor can see. Igor is able to see the picture only if he is in the cell adjacent to the wall with this picture. Igor have a lot of time, so he will examine every picture he can see. Input Specification: First line of the input contains three integers *n*, *m* and *k* (3<=≤<=*n*,<=*m*<=≤<=1000,<=1<=≤<=*k*<=≤<=*min*(*n*·*m*,<=100<=000)) — the museum dimensions and the number of starting positions to process. Each of the next *n* lines contains *m* symbols '.', '*' — the description of the museum. It is guaranteed that all border cells are impassable, so Igor can't go out from the museum. Each of the last *k* lines contains two integers *x* and *y* (1<=≤<=*x*<=≤<=*n*,<=1<=≤<=*y*<=≤<=*m*) — the row and the column of one of Igor's starting positions respectively. Rows are numbered from top to bottom, columns — from left to right. It is guaranteed that all starting positions are empty cells. Output Specification: Print *k* integers — the maximum number of pictures, that Igor can see if he starts in corresponding position. Demo Input: ['5 6 3\n******\n*..*.*\n******\n*....*\n******\n2 2\n2 5\n4 3\n', '4 4 1\n****\n*..*\n*.**\n****\n3 2\n'] Demo Output: ['6\n4\n10\n', '8\n'] Note: none
```python import sys input = sys.stdin.readline from collections import defaultdict, deque, Counter from heapq import heappop, heappush from bisect import bisect_left, bisect_right from math import gcd n,m,k = map(int,input().split()) mus = [list(input().rstrip()) for i in range(n)] start = [list(map(int,input().split())) for i in range(k)] d = [[-1,0],[1,0],[0,-1],[0,1]] depth = [[-1]*(m) for i in range(n)] ans = [[0]*m for i in range(n)] for i in range(k): x,y = start[i] x -= 1 y -= 1 if depth[x][y] != -1: print(ans[x][y]) continue wall = set() p = set() que = deque([(x,y)]) depth[x][y] = 1 while que: x,y = que.popleft() p.add(x*m+y) for cc,[dx,dy] in enumerate(d): nx = x + dx ny = y + dy if not (0<=nx<n and 0<=ny<m): continue if mus[nx][ny] == "*": wall.add((nx*m+ny)*4+cc) continue if depth[nx][ny] == -1: que.append((nx,ny)) depth[nx][ny] = 1 cnt = len(wall) for i in p: ans[i//m][i%m] = cnt print(cnt) ```
0
510
A
Fox And Snake
PROGRAMMING
800
[ "implementation" ]
null
null
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead. A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on. Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#'). Consider sample tests in order to understand the snake pattern.
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50). *n* is an odd number.
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
[ "3 3\n", "3 4\n", "5 3\n", "9 9\n" ]
[ "###\n..#\n###\n", "####\n...#\n####\n", "###\n..#\n###\n#..\n###\n", "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n" ]
none
500
[ { "input": "3 3", "output": "###\n..#\n###" }, { "input": "3 4", "output": "####\n...#\n####" }, { "input": "5 3", "output": "###\n..#\n###\n#..\n###" }, { "input": "9 9", "output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########" }, { "input": "3 5", "output": "#####\n....#\n#####" }, { "input": "3 6", "output": "######\n.....#\n######" }, { "input": "7 3", "output": "###\n..#\n###\n#..\n###\n..#\n###" }, { "input": "7 4", "output": "####\n...#\n####\n#...\n####\n...#\n####" }, { "input": "49 50", "output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................." }, { "input": "43 50", "output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................." }, { "input": "43 27", "output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................." }, { "input": "11 15", "output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############" }, { "input": "11 3", "output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###" }, { "input": "19 3", "output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###" }, { "input": "23 50", "output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................." }, { "input": "49 49", "output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..." }, { "input": "33 43", "output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................." }, { "input": "33 44", "output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......." }, { "input": "45 45", "output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..." }, { "input": "45 49", "output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..." }, { "input": "45 3", "output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###" }, { "input": "45 4", "output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####" }, { "input": "5 4", "output": "####\n...#\n####\n#...\n####" }, { "input": "5 5", "output": "#####\n....#\n#####\n#....\n#####" }, { "input": "5 6", "output": "######\n.....#\n######\n#.....\n######" }, { "input": "7 5", "output": "#####\n....#\n#####\n#....\n#####\n....#\n#####" }, { "input": "7 6", "output": "######\n.....#\n######\n#.....\n######\n.....#\n######" }, { "input": "7 7", "output": "#######\n......#\n#######\n#......\n#######\n......#\n#######" } ]
1,699,890,974
2,147,483,647
Python 3
OK
TESTS
28
46
0
import sys number = list(map(int, sys.stdin.readline().split())) n = number[0] m = number[1] i = 0 k = 0 while i < n: if i % 2 == 0: j = 0 while j < m: print('#', end='') j += 1 else: if k % 2 == 0: j = 0 while j < m - 1: print('.', end='') j += 1 print('#', end='') else: print('#', end='') j = 0 while j < m - 1: print('.', end='') j += 1 k += 1 print() i += 1
Title: Fox And Snake Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead. A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on. Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#'). Consider sample tests in order to understand the snake pattern. Input Specification: The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50). *n* is an odd number. Output Specification: Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces. Demo Input: ['3 3\n', '3 4\n', '5 3\n', '9 9\n'] Demo Output: ['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n'] Note: none
```python import sys number = list(map(int, sys.stdin.readline().split())) n = number[0] m = number[1] i = 0 k = 0 while i < n: if i % 2 == 0: j = 0 while j < m: print('#', end='') j += 1 else: if k % 2 == 0: j = 0 while j < m - 1: print('.', end='') j += 1 print('#', end='') else: print('#', end='') j = 0 while j < m - 1: print('.', end='') j += 1 k += 1 print() i += 1 ```
3
354
A
Vasya and Robot
PROGRAMMING
1,500
[ "brute force", "greedy", "math" ]
null
null
Vasya has *n* items lying in a line. The items are consecutively numbered by numbers from 1 to *n* in such a way that the leftmost item has number 1, the rightmost item has number *n*. Each item has a weight, the *i*-th item weights *w**i* kilograms. Vasya needs to collect all these items, however he won't do it by himself. He uses his brand new robot. The robot has two different arms — the left one and the right one. The robot can consecutively perform the following actions: 1. Take the leftmost item with the left hand and spend *w**i*<=·<=*l* energy units (*w**i* is a weight of the leftmost item, *l* is some parameter). If the previous action was the same (left-hand), then the robot spends extra *Q**l* energy units; 1. Take the rightmost item with the right hand and spend *w**j*<=·<=*r* energy units (*w**j* is a weight of the rightmost item, *r* is some parameter). If the previous action was the same (right-hand), then the robot spends extra *Q**r* energy units; Naturally, Vasya wants to program the robot in a way that the robot spends as little energy as possible. He asked you to solve this problem. Your task is to find the minimum number of energy units robot spends to collect all items.
The first line contains five integers *n*,<=*l*,<=*r*,<=*Q**l*,<=*Q**r* (1<=≤<=*n*<=≤<=105;<=1<=≤<=*l*,<=*r*<=≤<=100;<=1<=≤<=*Q**l*,<=*Q**r*<=≤<=104). The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=100).
In the single line print a single number — the answer to the problem.
[ "3 4 4 19 1\n42 3 99\n", "4 7 2 3 9\n1 2 3 4\n" ]
[ "576\n", "34\n" ]
Consider the first sample. As *l* = *r*, we can take an item in turns: first from the left side, then from the right one and last item from the left. In total the robot spends 4·42 + 4·99 + 4·3 = 576 energy units. The second sample. The optimal solution is to take one item from the right, then one item from the left and two items from the right. In total the robot spends (2·4) + (7·1) + (2·3) + (2·2 + 9) = 34 energy units.
500
[ { "input": "3 4 4 19 1\n42 3 99", "output": "576" }, { "input": "4 7 2 3 9\n1 2 3 4", "output": "34" }, { "input": "2 100 100 10000 10000\n100 100", "output": "20000" }, { "input": "2 3 4 5 6\n1 2", "output": "11" }, { "input": "1 78 94 369 10000\n93", "output": "7254" }, { "input": "1 94 78 369 10000\n93", "output": "7254" }, { "input": "5 1 100 1 10000\n1 2 3 4 5", "output": "19" }, { "input": "5 100 1 10000 1\n1 2 3 4 5", "output": "19" }, { "input": "5 1 100 10000 1\n1 2 3 4 5", "output": "906" }, { "input": "5 100 1 1 10000\n1 2 3 4 5", "output": "312" }, { "input": "6 32 47 965 897\n7 4 1 3 5 4", "output": "948" }, { "input": "7 3 13 30 978\n1 2 3 4 5 1 7", "output": "199" }, { "input": "7 13 3 978 30\n7 1 5 4 3 2 1", "output": "199" } ]
1,689,444,360
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
print("_RANDOM_GUESS_1689444360.0117533")# 1689444360.0117745
Title: Vasya and Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has *n* items lying in a line. The items are consecutively numbered by numbers from 1 to *n* in such a way that the leftmost item has number 1, the rightmost item has number *n*. Each item has a weight, the *i*-th item weights *w**i* kilograms. Vasya needs to collect all these items, however he won't do it by himself. He uses his brand new robot. The robot has two different arms — the left one and the right one. The robot can consecutively perform the following actions: 1. Take the leftmost item with the left hand and spend *w**i*<=·<=*l* energy units (*w**i* is a weight of the leftmost item, *l* is some parameter). If the previous action was the same (left-hand), then the robot spends extra *Q**l* energy units; 1. Take the rightmost item with the right hand and spend *w**j*<=·<=*r* energy units (*w**j* is a weight of the rightmost item, *r* is some parameter). If the previous action was the same (right-hand), then the robot spends extra *Q**r* energy units; Naturally, Vasya wants to program the robot in a way that the robot spends as little energy as possible. He asked you to solve this problem. Your task is to find the minimum number of energy units robot spends to collect all items. Input Specification: The first line contains five integers *n*,<=*l*,<=*r*,<=*Q**l*,<=*Q**r* (1<=≤<=*n*<=≤<=105;<=1<=≤<=*l*,<=*r*<=≤<=100;<=1<=≤<=*Q**l*,<=*Q**r*<=≤<=104). The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=100). Output Specification: In the single line print a single number — the answer to the problem. Demo Input: ['3 4 4 19 1\n42 3 99\n', '4 7 2 3 9\n1 2 3 4\n'] Demo Output: ['576\n', '34\n'] Note: Consider the first sample. As *l* = *r*, we can take an item in turns: first from the left side, then from the right one and last item from the left. In total the robot spends 4·42 + 4·99 + 4·3 = 576 energy units. The second sample. The optimal solution is to take one item from the right, then one item from the left and two items from the right. In total the robot spends (2·4) + (7·1) + (2·3) + (2·2 + 9) = 34 energy units.
```python print("_RANDOM_GUESS_1689444360.0117533")# 1689444360.0117745 ```
0
53
A
Autocomplete
PROGRAMMING
1,100
[ "implementation" ]
A. Autocomplete
2
256
Autocomplete is a program function that enables inputting the text (in editors, command line shells, browsers etc.) completing the text by its inputted part. Vasya is busy working on a new browser called 'BERowser'. He happens to be working on the autocomplete function in the address line at this very moment. A list consisting of *n* last visited by the user pages and the inputted part *s* are known. Your task is to complete *s* to make it an address of one of the pages from the list. You have to find the lexicographically smallest address having a prefix *s*.
The first line contains the *s* line which is the inputted part. The second line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of visited pages. Then follow *n* lines which are the visited pages, one on each line. All the lines have lengths of from 1 to 100 symbols inclusively and consist of lowercase Latin letters only.
If *s* is not the beginning of any of *n* addresses of the visited pages, print *s*. Otherwise, print the lexicographically minimal address of one of the visited pages starting from *s*. The lexicographical order is the order of words in a dictionary. The lexicographical comparison of lines is realized by the '&lt;' operator in the modern programming languages.
[ "next\n2\nnextpermutation\nnextelement\n", "find\n4\nfind\nfindfirstof\nfindit\nfand\n", "find\n4\nfondfind\nfondfirstof\nfondit\nfand\n" ]
[ "nextelement\n", "find\n", "find\n" ]
none
500
[ { "input": "next\n2\nnextpermutation\nnextelement", "output": "nextelement" }, { "input": "find\n4\nfind\nfindfirstof\nfindit\nfand", "output": "find" }, { "input": "find\n4\nfondfind\nfondfirstof\nfondit\nfand", "output": "find" }, { "input": "kudljmxcse\n4\nkudljmxcse\nszjebdoad\nchz\na", "output": "kudljmxcse" }, { "input": "ntqwpa\n5\nvvepyowvn\nntqwpakay\nhh\nygiafasda\nntqwpadm", "output": "ntqwpadm" }, { "input": "aflb\n6\nsaej\nujxsiijg\npp\nhgoprw\ncp\nnt", "output": "aflb" }, { "input": "dzwzyj\n7\nwvixktp\ndzwzyjuhn\ndzwzyjqrbd\ndzwzyji\ndzwzyjyfys\ndzwzyjrcb\nxptb", "output": "dzwzyji" }, { "input": "wmblbphwdjjskzmlsyiznluiudelhlvcpyrooajvbwudnnstdhesauyxjugdwhrrwg\n1\nwjhsbxrrhadgtnybsugdtprncwerwezxuaxnqfpnosbispmnymnaqssdkjeynrnn", "output": "wmblbphwdjjskzmlsyiznluiudelhlvcpyrooajvbwudnnstdhesauyxjugdwhrrwg" }, { "input": "hzkqvwliymwjbejfpnydrbwskhyrtrlsdinfrgwmnbdpwytcnjeoowxrfgfuaffzayjylvzu\n1\nhzkqvwliymwjbejfpnydrbwskhyrtrlsdinfrgwmnbdpwytcnjeoowxrfgfuaffzayjylvzubwjlvhhsfurqb", "output": "hzkqvwliymwjbejfpnydrbwskhyrtrlsdinfrgwmnbdpwytcnjeoowxrfgfuaffzayjylvzubwjlvhhsfurqb" }, { "input": "msjnqudojxtzvpc\n2\nvlxclsvqbucmbrkwwtoxek\nmsjnqudojxtzvpcldwjyystsxrtexfhllzhnkidmhmyxpld", "output": "msjnqudojxtzvpcldwjyystsxrtexfhllzhnkidmhmyxpld" } ]
1,607,062,375
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
248
0
s=input().strip() n=int(input()) l=[] for i in range(n): q=input().strip() if(q[0]==s[0]): l.append(q) if len(l)>0: l.sort() print(l[0]) else: print(s)
Title: Autocomplete Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Autocomplete is a program function that enables inputting the text (in editors, command line shells, browsers etc.) completing the text by its inputted part. Vasya is busy working on a new browser called 'BERowser'. He happens to be working on the autocomplete function in the address line at this very moment. A list consisting of *n* last visited by the user pages and the inputted part *s* are known. Your task is to complete *s* to make it an address of one of the pages from the list. You have to find the lexicographically smallest address having a prefix *s*. Input Specification: The first line contains the *s* line which is the inputted part. The second line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of visited pages. Then follow *n* lines which are the visited pages, one on each line. All the lines have lengths of from 1 to 100 symbols inclusively and consist of lowercase Latin letters only. Output Specification: If *s* is not the beginning of any of *n* addresses of the visited pages, print *s*. Otherwise, print the lexicographically minimal address of one of the visited pages starting from *s*. The lexicographical order is the order of words in a dictionary. The lexicographical comparison of lines is realized by the '&lt;' operator in the modern programming languages. Demo Input: ['next\n2\nnextpermutation\nnextelement\n', 'find\n4\nfind\nfindfirstof\nfindit\nfand\n', 'find\n4\nfondfind\nfondfirstof\nfondit\nfand\n'] Demo Output: ['nextelement\n', 'find\n', 'find\n'] Note: none
```python s=input().strip() n=int(input()) l=[] for i in range(n): q=input().strip() if(q[0]==s[0]): l.append(q) if len(l)>0: l.sort() print(l[0]) else: print(s) ```
0
38
A
Army
PROGRAMMING
800
[ "implementation" ]
A. Army
2
256
The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream.
The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated.
Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*.
[ "3\n5 6\n1 2\n", "3\n5 6\n1 3\n" ]
[ "5\n", "11\n" ]
none
0
[ { "input": "3\n5 6\n1 2", "output": "5" }, { "input": "3\n5 6\n1 3", "output": "11" }, { "input": "2\n55\n1 2", "output": "55" }, { "input": "3\n85 78\n1 3", "output": "163" }, { "input": "4\n63 4 49\n2 3", "output": "4" }, { "input": "5\n93 83 42 56\n2 5", "output": "181" }, { "input": "6\n22 9 87 89 57\n1 6", "output": "264" }, { "input": "7\n52 36 31 23 74 78\n2 7", "output": "242" }, { "input": "8\n82 14 24 5 91 49 94\n3 8", "output": "263" }, { "input": "9\n12 40 69 39 59 21 59 5\n4 6", "output": "98" }, { "input": "10\n95 81 32 59 71 30 50 61 100\n1 6", "output": "338" }, { "input": "15\n89 55 94 4 15 69 19 60 91 77 3 94 91 62\n3 14", "output": "617" }, { "input": "20\n91 1 41 51 95 67 92 35 23 70 44 91 57 50 21 8 9 71 40\n8 17", "output": "399" }, { "input": "25\n70 95 21 84 97 39 12 98 53 24 78 29 84 65 70 22 100 17 69 27 62 48 35 80\n8 23", "output": "846" }, { "input": "30\n35 69 50 44 19 56 86 56 98 24 21 2 61 24 85 30 2 22 57 35 59 84 12 77 92 53 50 92 9\n1 16", "output": "730" }, { "input": "35\n2 34 47 15 27 61 6 88 67 20 53 65 29 68 77 5 78 86 44 98 32 81 91 79 54 84 95 23 65 97 22 33 42 87\n8 35", "output": "1663" }, { "input": "40\n32 88 59 36 95 45 28 78 73 30 97 13 13 47 48 100 43 21 22 45 88 25 15 13 63 25 72 92 29 5 25 11 50 5 54 51 48 84 23\n7 26", "output": "862" }, { "input": "45\n83 74 73 95 10 31 100 26 29 15 80 100 22 70 31 88 9 56 19 70 2 62 48 30 27 47 52 50 94 44 21 94 23 85 15 3 95 72 43 62 94 89 68 88\n17 40", "output": "1061" }, { "input": "50\n28 8 16 29 19 82 70 51 96 84 74 72 17 69 12 21 37 21 39 3 18 66 19 49 86 96 94 93 2 90 96 84 59 88 58 15 61 33 55 22 35 54 51 29 64 68 29 38 40\n23 28", "output": "344" }, { "input": "60\n24 28 25 21 43 71 64 73 71 90 51 83 69 43 75 43 78 72 56 61 99 7 23 86 9 16 16 94 23 74 18 56 20 72 13 31 75 34 35 86 61 49 4 72 84 7 65 70 66 52 21 38 6 43 69 40 73 46 5\n28 60", "output": "1502" }, { "input": "70\n69 95 34 14 67 61 6 95 94 44 28 94 73 66 39 13 19 71 73 71 28 48 26 22 32 88 38 95 43 59 88 77 80 55 17 95 40 83 67 1 38 95 58 63 56 98 49 2 41 4 73 8 78 41 64 71 60 71 41 61 67 4 4 19 97 14 39 20 27\n9 41", "output": "1767" }, { "input": "80\n65 15 43 6 43 98 100 16 69 98 4 54 25 40 2 35 12 23 38 29 10 89 30 6 4 8 7 96 64 43 11 49 89 38 20 59 54 85 46 16 16 89 60 54 28 37 32 34 67 9 78 30 50 87 58 53 99 48 77 3 5 6 19 99 16 20 31 10 80 76 82 56 56 83 72 81 84 60 28\n18 24", "output": "219" }, { "input": "90\n61 35 100 99 67 87 42 90 44 4 81 65 29 63 66 56 53 22 55 87 39 30 34 42 27 80 29 97 85 28 81 22 50 22 24 75 67 86 78 79 94 35 13 97 48 76 68 66 94 13 82 1 22 85 5 36 86 73 65 97 43 56 35 26 87 25 74 47 81 67 73 75 99 75 53 38 70 21 66 78 38 17 57 40 93 57 68 55 1\n12 44", "output": "1713" }, { "input": "95\n37 74 53 96 65 84 65 72 95 45 6 77 91 35 58 50 51 51 97 30 51 20 79 81 92 10 89 34 40 76 71 54 26 34 73 72 72 28 53 19 95 64 97 10 44 15 12 38 5 63 96 95 86 8 36 96 45 53 81 5 18 18 47 97 65 9 33 53 41 86 37 53 5 40 15 76 83 45 33 18 26 5 19 90 46 40 100 42 10 90 13 81 40 53\n6 15", "output": "570" }, { "input": "96\n51 32 95 75 23 54 70 89 67 3 1 51 4 100 97 30 9 35 56 38 54 77 56 98 43 17 60 43 72 46 87 61 100 65 81 22 74 38 16 96 5 10 54 22 23 22 10 91 9 54 49 82 29 73 33 98 75 8 4 26 24 90 71 42 90 24 94 74 94 10 41 98 56 63 18 43 56 21 26 64 74 33 22 38 67 66 38 60 64 76 53 10 4 65 76\n21 26", "output": "328" }, { "input": "97\n18 90 84 7 33 24 75 55 86 10 96 72 16 64 37 9 19 71 62 97 5 34 85 15 46 72 82 51 52 16 55 68 27 97 42 72 76 97 32 73 14 56 11 86 2 81 59 95 60 93 1 22 71 37 77 100 6 16 78 47 78 62 94 86 16 91 56 46 47 35 93 44 7 86 70 10 29 45 67 62 71 61 74 39 36 92 24 26 65 14 93 92 15 28 79 59\n6 68", "output": "3385" }, { "input": "98\n32 47 26 86 43 42 79 72 6 68 40 46 29 80 24 89 29 7 21 56 8 92 13 33 50 79 5 7 84 85 24 23 1 80 51 21 26 55 96 51 24 2 68 98 81 88 57 100 64 84 54 10 14 2 74 1 89 71 1 20 84 85 17 31 42 58 69 67 48 60 97 90 58 10 21 29 2 21 60 61 68 89 77 39 57 18 61 44 67 100 33 74 27 40 83 29 6\n8 77", "output": "3319" }, { "input": "99\n46 5 16 66 53 12 84 89 26 27 35 68 41 44 63 17 88 43 80 15 59 1 42 50 53 34 75 16 16 55 92 30 28 11 12 71 27 65 11 28 86 47 24 10 60 47 7 53 16 75 6 49 56 66 70 3 20 78 75 41 38 57 89 23 16 74 30 39 1 32 49 84 9 33 25 95 75 45 54 59 17 17 29 40 79 96 47 11 69 86 73 56 91 4 87 47 31 24\n23 36", "output": "514" }, { "input": "100\n63 65 21 41 95 23 3 4 12 23 95 50 75 63 58 34 71 27 75 31 23 94 96 74 69 34 43 25 25 55 44 19 43 86 68 17 52 65 36 29 72 96 84 25 84 23 71 54 6 7 71 7 21 100 99 58 93 35 62 47 36 70 68 9 75 13 35 70 76 36 62 22 52 51 2 87 66 41 54 35 78 62 30 35 65 44 74 93 78 37 96 70 26 32 71 27 85 85 63\n43 92", "output": "2599" }, { "input": "51\n85 38 22 38 42 36 55 24 36 80 49 15 66 91 88 61 46 82 1 61 89 92 6 56 28 8 46 80 56 90 91 38 38 17 69 64 57 68 13 44 45 38 8 72 61 39 87 2 73 88\n15 27", "output": "618" }, { "input": "2\n3\n1 2", "output": "3" }, { "input": "5\n6 8 22 22\n2 3", "output": "8" }, { "input": "6\n3 12 27 28 28\n3 4", "output": "27" }, { "input": "9\n1 2 2 2 2 3 3 5\n3 7", "output": "9" }, { "input": "10\n1 1 1 1 1 1 1 1 1\n6 8", "output": "2" }, { "input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3\n5 17", "output": "23" }, { "input": "25\n1 1 1 4 5 6 8 11 11 11 11 12 13 14 14 14 15 16 16 17 17 17 19 19\n4 8", "output": "23" }, { "input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n30 31", "output": "2" }, { "input": "45\n1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10\n42 45", "output": "30" }, { "input": "50\n1 8 8 13 14 15 15 16 19 21 22 24 26 31 32 37 45 47 47 47 50 50 51 54 55 56 58 61 61 61 63 63 64 66 66 67 67 70 71 80 83 84 85 92 92 94 95 95 100\n4 17", "output": "285" }, { "input": "60\n1 2 4 4 4 6 6 8 9 10 10 13 14 18 20 20 21 22 23 23 26 29 30 32 33 34 35 38 40 42 44 44 46 48 52 54 56 56 60 60 66 67 68 68 69 73 73 74 80 80 81 81 82 84 86 86 87 89 89\n56 58", "output": "173" }, { "input": "70\n1 2 3 3 4 5 5 7 7 7 8 8 8 8 9 9 10 12 12 12 12 13 16 16 16 16 16 16 17 17 18 18 20 20 21 23 24 25 25 26 29 29 29 29 31 32 32 34 35 36 36 37 37 38 39 39 40 40 40 40 41 41 42 43 44 44 44 45 45\n62 65", "output": "126" }, { "input": "80\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12\n17 65", "output": "326" }, { "input": "90\n1 1 3 5 8 9 10 11 11 11 11 12 13 14 15 15 15 16 16 19 19 20 22 23 24 25 25 28 29 29 30 31 33 34 35 37 37 38 41 43 43 44 45 47 51 54 55 56 58 58 59 59 60 62 66 67 67 67 68 68 69 70 71 72 73 73 76 77 77 78 78 78 79 79 79 82 83 84 85 85 87 87 89 93 93 93 95 99 99\n28 48", "output": "784" }, { "input": "95\n2 2 3 3 4 6 6 7 7 7 9 10 12 12 12 12 13 14 15 16 17 18 20 20 20 20 21 21 21 21 22 22 22 22 22 23 23 23 25 26 26 27 27 27 28 29 29 30 30 31 32 33 34 36 37 37 38 39 39 39 42 43 43 43 45 47 48 50 50 51 52 53 54 54 54 55 55 55 58 59 60 61 61 61 61 62 62 63 64 65 66 67 67 67\n64 93", "output": "1636" }, { "input": "96\n1 1 2 3 3 5 8 9 9 10 10 10 11 11 11 11 11 12 13 13 13 14 15 15 16 16 17 17 17 17 18 18 20 20 20 21 21 21 23 24 24 25 25 26 27 27 27 27 29 29 29 30 30 30 32 32 32 32 32 32 33 33 34 34 34 35 35 35 36 36 37 37 37 38 39 40 41 41 41 41 42 42 43 43 45 45 45 46 46 47 47 49 50 52 52\n76 96", "output": "898" }, { "input": "98\n2 3 4 4 5 7 8 10 10 10 11 11 12 12 12 12 13 14 15 15 16 16 18 19 19 20 21 21 21 21 22 23 24 25 26 26 27 27 27 27 29 29 30 30 31 31 37 40 40 40 41 41 41 42 43 44 44 44 46 46 47 49 49 50 50 50 51 53 55 55 56 56 56 56 56 57 57 58 59 60 60 60 62 62 63 64 64 64 65 66 66 67 68 70 70 71 71\n8 90", "output": "3016" }, { "input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n66 95", "output": "29" }, { "input": "100\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17\n39 52", "output": "82" }, { "input": "51\n5 7 9 16 19 25 26 29 29 30 31 32 32 41 43 44 47 49 50 50 51 52 54 55 56 63 64 66 67 70 74 74 77 78 79 80 80 85 86 87 89 89 90 92 93 94 94 95 95 97\n3 44", "output": "2268" } ]
1,639,072,009
2,147,483,647
Python 3
OK
TESTS
50
92
0
n = int(input()) a = list(map(int, input().split())) k, m = map(int, input().split()) ans = 0 for i in range(k - 1, m - 1): ans += a[i] print(ans) # Thu Dec 09 2021 17:46:48 GMT+0000 (Coordinated Universal Time)
Title: Army Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream. Input Specification: The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated. Output Specification: Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*. Demo Input: ['3\n5 6\n1 2\n', '3\n5 6\n1 3\n'] Demo Output: ['5\n', '11\n'] Note: none
```python n = int(input()) a = list(map(int, input().split())) k, m = map(int, input().split()) ans = 0 for i in range(k - 1, m - 1): ans += a[i] print(ans) # Thu Dec 09 2021 17:46:48 GMT+0000 (Coordinated Universal Time) ```
3.977
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,692,344,872
2,147,483,647
Python 3
OK
TESTS
20
46
0
res = [] for i in range(int(input())): a = input() if len(a) > 10: res.append(a[0] + str((len(a) - 2)) + a[-1]) else: res.append(a) for i in res: print(i)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python res = [] for i in range(int(input())): a = input() if len(a) > 10: res.append(a[0] + str((len(a) - 2)) + a[-1]) else: res.append(a) for i in res: print(i) ```
3.977
653
A
Bear and Three Balls
PROGRAMMING
900
[ "brute force", "implementation", "sortings" ]
null
null
Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*. Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy: - No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2. For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2). Your task is to check whether Limak can choose three balls that satisfy conditions above.
The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball.
Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes).
[ "4\n18 55 16 17\n", "6\n40 41 43 44 44 44\n", "8\n5 972 3 4 1 4 970 971\n" ]
[ "YES\n", "NO\n", "YES\n" ]
In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17. In the second sample, there is no way to give gifts to three friends without breaking the rules. In the third sample, there is even more than one way to choose balls: 1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
500
[ { "input": "4\n18 55 16 17", "output": "YES" }, { "input": "6\n40 41 43 44 44 44", "output": "NO" }, { "input": "8\n5 972 3 4 1 4 970 971", "output": "YES" }, { "input": "3\n959 747 656", "output": "NO" }, { "input": "4\n1 2 2 3", "output": "YES" }, { "input": "50\n998 30 384 289 505 340 872 223 663 31 929 625 864 699 735 589 676 399 745 635 963 381 75 97 324 612 597 797 103 382 25 894 219 458 337 572 201 355 294 275 278 311 586 573 965 704 936 237 715 543", "output": "NO" }, { "input": "50\n941 877 987 982 966 979 984 810 811 909 872 980 957 897 845 995 924 905 984 914 824 840 868 910 815 808 872 858 883 952 823 835 860 874 959 972 931 867 866 987 982 837 800 921 887 910 982 980 828 869", "output": "YES" }, { "input": "3\n408 410 409", "output": "YES" }, { "input": "3\n903 902 904", "output": "YES" }, { "input": "3\n399 400 398", "output": "YES" }, { "input": "3\n450 448 449", "output": "YES" }, { "input": "3\n390 389 388", "output": "YES" }, { "input": "3\n438 439 440", "output": "YES" }, { "input": "11\n488 688 490 94 564 615 641 170 489 517 669", "output": "YES" }, { "input": "24\n102 672 983 82 720 501 81 721 982 312 207 897 159 964 611 956 118 984 37 271 596 403 772 954", "output": "YES" }, { "input": "36\n175 551 70 479 875 480 979 32 465 402 640 116 76 687 874 678 359 785 753 401 978 629 162 963 886 641 39 845 132 930 2 372 478 947 407 318", "output": "YES" }, { "input": "6\n10 79 306 334 304 305", "output": "YES" }, { "input": "34\n787 62 26 683 486 364 684 891 846 801 969 837 359 800 836 359 471 637 732 91 841 836 7 799 959 405 416 841 737 803 615 483 323 365", "output": "YES" }, { "input": "30\n860 238 14 543 669 100 428 789 576 484 754 274 849 850 586 377 711 386 510 408 520 693 23 477 266 851 728 711 964 73", "output": "YES" }, { "input": "11\n325 325 324 324 324 325 325 324 324 324 324", "output": "NO" }, { "input": "7\n517 517 518 517 518 518 518", "output": "NO" }, { "input": "20\n710 710 711 711 711 711 710 710 710 710 711 710 710 710 710 710 710 711 711 710", "output": "NO" }, { "input": "48\n29 30 29 29 29 30 29 30 30 30 30 29 30 30 30 29 29 30 30 29 30 29 29 30 29 30 29 30 30 29 30 29 29 30 30 29 29 30 30 29 29 30 30 30 29 29 30 29", "output": "NO" }, { "input": "7\n880 880 514 536 881 881 879", "output": "YES" }, { "input": "15\n377 432 262 376 261 375 377 262 263 263 261 376 262 262 375", "output": "YES" }, { "input": "32\n305 426 404 961 426 425 614 304 404 425 615 403 303 304 615 303 305 405 427 614 403 303 425 615 404 304 427 403 206 616 405 404", "output": "YES" }, { "input": "41\n115 686 988 744 762 519 745 519 518 83 85 115 520 44 687 686 685 596 988 687 989 988 114 745 84 519 519 746 988 84 745 744 115 114 85 115 520 746 745 116 987", "output": "YES" }, { "input": "47\n1 2 483 28 7 109 270 651 464 162 353 521 224 989 721 499 56 69 197 716 313 446 580 645 828 197 100 138 789 499 147 677 384 711 783 937 300 543 540 93 669 604 739 122 632 822 116", "output": "NO" }, { "input": "31\n1 2 1 373 355 692 750 920 578 666 615 232 141 129 663 929 414 704 422 559 568 731 354 811 532 618 39 879 292 602 995", "output": "NO" }, { "input": "50\n5 38 41 4 15 40 27 39 20 3 44 47 30 6 36 29 35 12 19 26 10 2 21 50 11 46 48 49 17 16 33 13 32 28 31 18 23 34 7 14 24 45 9 37 1 8 42 25 43 22", "output": "YES" }, { "input": "50\n967 999 972 990 969 978 963 987 954 955 973 970 959 981 995 983 986 994 979 957 965 982 992 977 953 975 956 961 993 997 998 958 980 962 960 951 996 991 1000 966 971 988 976 968 989 984 974 964 985 952", "output": "YES" }, { "input": "50\n850 536 761 506 842 898 857 723 583 637 536 943 895 929 890 612 832 633 696 731 553 880 710 812 665 877 915 636 711 540 748 600 554 521 813 796 568 513 543 809 798 820 928 504 999 646 907 639 550 911", "output": "NO" }, { "input": "3\n3 1 2", "output": "YES" }, { "input": "3\n500 999 1000", "output": "NO" }, { "input": "10\n101 102 104 105 107 109 110 112 113 115", "output": "NO" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "50\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "NO" }, { "input": "3\n1000 999 998", "output": "YES" }, { "input": "49\n343 322 248 477 53 156 245 493 209 141 370 66 229 184 434 137 276 472 216 456 147 180 140 114 493 323 393 262 380 314 222 124 98 441 129 346 48 401 347 460 122 125 114 106 189 260 374 165 456", "output": "NO" }, { "input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3", "output": "YES" }, { "input": "3\n999 999 1000", "output": "NO" }, { "input": "9\n2 4 5 13 25 100 200 300 400", "output": "NO" }, { "input": "9\n1 1 1 2 2 2 3 3 3", "output": "YES" }, { "input": "3\n1 1 2", "output": "NO" }, { "input": "3\n998 999 1000", "output": "YES" }, { "input": "12\n1 1 1 1 1 1 1 1 1 2 2 4", "output": "NO" }, { "input": "4\n4 3 4 5", "output": "YES" }, { "input": "6\n1 1 1 2 2 2", "output": "NO" }, { "input": "3\n2 3 2", "output": "NO" }, { "input": "5\n10 5 6 3 2", "output": "NO" }, { "input": "3\n1 2 1", "output": "NO" }, { "input": "3\n1 2 3", "output": "YES" }, { "input": "4\n998 999 1000 1000", "output": "YES" }, { "input": "5\n2 3 9 9 4", "output": "YES" }, { "input": "4\n1 2 4 4", "output": "NO" }, { "input": "3\n1 1 1", "output": "NO" }, { "input": "3\n2 2 3", "output": "NO" }, { "input": "7\n1 2 2 2 4 5 6", "output": "YES" }, { "input": "5\n1 3 10 3 10", "output": "NO" }, { "input": "3\n1 2 2", "output": "NO" }, { "input": "4\n1000 1000 999 998", "output": "YES" }, { "input": "3\n5 3 7", "output": "NO" }, { "input": "6\n1 1 2 2 3 3", "output": "YES" }, { "input": "9\n6 6 6 5 5 5 4 4 4", "output": "YES" }, { "input": "7\n5 6 6 6 7 7 7", "output": "YES" }, { "input": "5\n2 3 3 3 4", "output": "YES" }, { "input": "5\n2 1 2 1 3", "output": "YES" }, { "input": "3\n1 2 7", "output": "NO" }, { "input": "3\n1000 1000 1000", "output": "NO" }, { "input": "5\n1 100 2 100 3", "output": "YES" }, { "input": "5\n5 4 6 5 5", "output": "YES" }, { "input": "12\n1 1 1 1 2 2 2 2 3 3 3 3", "output": "YES" }, { "input": "5\n9 9 1 2 3", "output": "YES" }, { "input": "6\n1 2 3 1 2 3", "output": "YES" }, { "input": "7\n1 1 1 1 2 3 3", "output": "YES" }, { "input": "3\n13 13 13", "output": "NO" }, { "input": "3\n42 42 42", "output": "NO" }, { "input": "8\n1 1 1 1 2 2 2 2", "output": "NO" }, { "input": "6\n1 1 1 1 2 3", "output": "YES" }, { "input": "6\n1 1 2 2 6 6", "output": "NO" }, { "input": "6\n1 2 5 5 5 5", "output": "NO" }, { "input": "9\n1 2 3 1 2 3 1 2 3", "output": "YES" }, { "input": "4\n1 2 1 100", "output": "NO" }, { "input": "5\n1 1 2 2 3", "output": "YES" } ]
1,465,265,992
2,147,483,647
Python 3
OK
TESTS
84
77
5,120,000
n = int(input()) a = [int(x) for x in input().split()] a.sort() cek = 1 temp = -1 for i in range (n): if(a[i] == temp + 1): cek += 1 temp = a[i] elif(a[i] == temp): pass else: cek = 1 temp = a[i] if(cek >= 3): break if (cek>=3): print ("YES") else: print ("NO")
Title: Bear and Three Balls Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is a little polar bear. He has *n* balls, the *i*-th ball has size *t**i*. Limak wants to give one ball to each of his three friends. Giving gifts isn't easy — there are two rules Limak must obey to make friends happy: - No two friends can get balls of the same size. - No two friends can get balls of sizes that differ by more than 2. For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2). Your task is to check whether Limak can choose three balls that satisfy conditions above. Input Specification: The first line of the input contains one integer *n* (3<=≤<=*n*<=≤<=50) — the number of balls Limak has. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000) where *t**i* denotes the size of the *i*-th ball. Output Specification: Print "YES" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print "NO" (without quotes). Demo Input: ['4\n18 55 16 17\n', '6\n40 41 43 44 44 44\n', '8\n5 972 3 4 1 4 970 971\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: In the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17. In the second sample, there is no way to give gifts to three friends without breaking the rules. In the third sample, there is even more than one way to choose balls: 1. Choose balls with sizes 3, 4 and 5. 1. Choose balls with sizes 972, 970, 971.
```python n = int(input()) a = [int(x) for x in input().split()] a.sort() cek = 1 temp = -1 for i in range (n): if(a[i] == temp + 1): cek += 1 temp = a[i] elif(a[i] == temp): pass else: cek = 1 temp = a[i] if(cek >= 3): break if (cek>=3): print ("YES") else: print ("NO") ```
3
681
A
A Good Contest
PROGRAMMING
800
[ "implementation" ]
null
null
Codeforces user' handle color depends on his rating — it is red if his rating is greater or equal to 2400; it is orange if his rating is less than 2400 but greater or equal to 2200, etc. Each time participant takes part in a rated contest, his rating is changed depending on his performance. Anton wants the color of his handle to become red. He considers his performance in the rated contest to be good if he outscored some participant, whose handle was colored red before the contest and his rating has increased after it. Anton has written a program that analyses contest results and determines whether he performed good or not. Are you able to do the same?
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants Anton has outscored in this contest . The next *n* lines describe participants results: the *i*-th of them consists of a participant handle *name**i* and two integers *before**i* and *after**i* (<=-<=4000<=≤<=*before**i*,<=*after**i*<=≤<=4000) — participant's rating before and after the contest, respectively. Each handle is a non-empty string, consisting of no more than 10 characters, which might be lowercase and uppercase English letters, digits, characters «_» and «-» characters. It is guaranteed that all handles are distinct.
Print «YES» (quotes for clarity), if Anton has performed good in the contest and «NO» (quotes for clarity) otherwise.
[ "3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749\n", "3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450\n" ]
[ "YES", "NO" ]
In the first sample, Anton has outscored user with handle Burunduk1, whose handle was colored red before the contest and his rating has increased after the contest. In the second sample, Applejack's rating has not increased after the contest, while both Fluttershy's and Pinkie_Pie's handles were not colored red before the contest.
500
[ { "input": "3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749", "output": "YES" }, { "input": "3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450", "output": "NO" }, { "input": "1\nDb -3373 3591", "output": "NO" }, { "input": "5\nQ2bz 960 2342\nhmX 2710 -1348\ngbAe -1969 -963\nE -160 196\npsi 2665 -3155", "output": "NO" }, { "input": "9\nmwAz9lQ 1786 -1631\nnYgYFXZQfY -1849 -1775\nKU4jF -1773 -3376\nopR 3752 2931\nGl -1481 -1002\nR -1111 3778\n0i9B21DC 3650 289\nQ8L2dS0 358 -3305\ng -2662 3968", "output": "NO" }, { "input": "5\nzMSBcOUf -2883 -2238\nYN -3314 -1480\nfHpuccQn06 -1433 -589\naM1NVEPQi 399 3462\n_L 2516 -3290", "output": "NO" }, { "input": "1\na 2400 2401", "output": "YES" }, { "input": "1\nfucker 4000 4000", "output": "NO" }, { "input": "1\nJora 2400 2401", "output": "YES" }, { "input": "1\nACA 2400 2420", "output": "YES" }, { "input": "1\nAca 2400 2420", "output": "YES" }, { "input": "1\nSub_d 2401 2402", "output": "YES" }, { "input": "2\nHack 2400 2401\nDum 1243 555", "output": "YES" }, { "input": "1\nXXX 2400 2500", "output": "YES" }, { "input": "1\nfucker 2400 2401", "output": "YES" }, { "input": "1\nX 2400 2500", "output": "YES" }, { "input": "1\nvineet 2400 2401", "output": "YES" }, { "input": "1\nabc 2400 2500", "output": "YES" }, { "input": "1\naaaaa 2400 2401", "output": "YES" }, { "input": "1\nhoge 2400 2401", "output": "YES" }, { "input": "1\nInfinity 2400 2468", "output": "YES" }, { "input": "1\nBurunduk1 2400 2401", "output": "YES" }, { "input": "1\nFuck 2400 2401", "output": "YES" }, { "input": "1\nfuck 2400 2401", "output": "YES" }, { "input": "3\nApplejack 2400 2401\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450", "output": "YES" }, { "input": "1\nalex 2400 2401", "output": "YES" }, { "input": "1\nA 2400 2401", "output": "YES" }, { "input": "1\na 2400 2455", "output": "YES" }, { "input": "1\nlol 2400 2401", "output": "YES" }, { "input": "2\nBurunduk1 2400 2537\nBudAlNik 2084 2214", "output": "YES" }, { "input": "1\naaaaaa 2400 2401", "output": "YES" }, { "input": "1\nBurunduk1 2400 2500", "output": "YES" }, { "input": "1\nds 2400 2410", "output": "YES" }, { "input": "1\nas 2400 2401", "output": "YES" }, { "input": "1\nabc 2400 2401", "output": "YES" }, { "input": "3\nBudAlNik 2084 2214\nsubscriber 2833 2749\nBurunduk1 2526 2537", "output": "YES" }, { "input": "1\ncaonima 2400 2401", "output": "YES" }, { "input": "1\narr 2400 2500", "output": "YES" }, { "input": "1\nx 2400 2401", "output": "YES" }, { "input": "1\narrr 2400 2500", "output": "YES" }, { "input": "1\nabc 2400 2405", "output": "YES" }, { "input": "3\nBurunduk1 2400 2420\nBudAlNik 2084 2214\nsubscriber 2833 2749", "output": "YES" }, { "input": "1\nBurunduk1 2400 2537", "output": "YES" }, { "input": "1\nHELLO 2400 2401", "output": "YES" }, { "input": "1\neatmore 2400 2500", "output": "YES" }, { "input": "1\nb 2400 2401", "output": "YES" }, { "input": "3\nBurunduk1 2400 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749", "output": "YES" }, { "input": "1\nApplejack 2400 2410", "output": "YES" }, { "input": "1\nabacaba 2400 2451", "output": "YES" }, { "input": "1\nrekt_n00b 2500 2600", "output": "YES" } ]
1,656,879,872
2,147,483,647
Python 3
OK
TESTS
60
46
0
n = int(input()) for _ in range(n): s, b, a = input().split() if int(b) >= 2400 and int(a) > int(b): print("YES") quit() print("NO")
Title: A Good Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Codeforces user' handle color depends on his rating — it is red if his rating is greater or equal to 2400; it is orange if his rating is less than 2400 but greater or equal to 2200, etc. Each time participant takes part in a rated contest, his rating is changed depending on his performance. Anton wants the color of his handle to become red. He considers his performance in the rated contest to be good if he outscored some participant, whose handle was colored red before the contest and his rating has increased after it. Anton has written a program that analyses contest results and determines whether he performed good or not. Are you able to do the same? Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants Anton has outscored in this contest . The next *n* lines describe participants results: the *i*-th of them consists of a participant handle *name**i* and two integers *before**i* and *after**i* (<=-<=4000<=≤<=*before**i*,<=*after**i*<=≤<=4000) — participant's rating before and after the contest, respectively. Each handle is a non-empty string, consisting of no more than 10 characters, which might be lowercase and uppercase English letters, digits, characters «_» and «-» characters. It is guaranteed that all handles are distinct. Output Specification: Print «YES» (quotes for clarity), if Anton has performed good in the contest and «NO» (quotes for clarity) otherwise. Demo Input: ['3\nBurunduk1 2526 2537\nBudAlNik 2084 2214\nsubscriber 2833 2749\n', '3\nApplejack 2400 2400\nFluttershy 2390 2431\nPinkie_Pie -2500 -2450\n'] Demo Output: ['YES', 'NO'] Note: In the first sample, Anton has outscored user with handle Burunduk1, whose handle was colored red before the contest and his rating has increased after the contest. In the second sample, Applejack's rating has not increased after the contest, while both Fluttershy's and Pinkie_Pie's handles were not colored red before the contest.
```python n = int(input()) for _ in range(n): s, b, a = input().split() if int(b) >= 2400 and int(a) > int(b): print("YES") quit() print("NO") ```
3
84
A
Toy Army
PROGRAMMING
900
[ "math", "number theory" ]
A. Toy Army
2
256
The hero of our story, Valera, and his best friend Arcady are still in school, and therefore they spend all the free time playing turn-based strategy "GAGA: Go And Go Again". The gameplay is as follows. There are two armies on the playing field each of which consists of *n* men (*n* is always even). The current player specifies for each of her soldiers an enemy's soldier he will shoot (a target) and then all the player's soldiers shot simultaneously. This is a game world, and so each soldier shoots perfectly, that is he absolutely always hits the specified target. If an enemy soldier is hit, he will surely die. It may happen that several soldiers had been indicated the same target. Killed soldiers do not participate in the game anymore. The game "GAGA" consists of three steps: first Valera makes a move, then Arcady, then Valera again and the game ends. You are asked to calculate the maximum total number of soldiers that may be killed during the game.
The input data consist of a single integer *n* (2<=≤<=*n*<=≤<=108, *n* is even). Please note that before the game starts there are 2*n* soldiers on the fields.
Print a single number — a maximum total number of soldiers that could be killed in the course of the game in three turns.
[ "2\n", "4\n" ]
[ "3\n", "6\n" ]
The first sample test: 1) Valera's soldiers 1 and 2 shoot at Arcady's soldier 1. 2) Arcady's soldier 2 shoots at Valera's soldier 1. 3) Valera's soldier 1 shoots at Arcady's soldier 2. There are 3 soldiers killed in total: Valera's soldier 1 and Arcady's soldiers 1 and 2.
500
[ { "input": "2", "output": "3" }, { "input": "4", "output": "6" }, { "input": "6", "output": "9" }, { "input": "8", "output": "12" }, { "input": "10", "output": "15" }, { "input": "140", "output": "210" }, { "input": "500", "output": "750" }, { "input": "1000", "output": "1500" }, { "input": "2000", "output": "3000" }, { "input": "50000", "output": "75000" }, { "input": "10000", "output": "15000" }, { "input": "25460", "output": "38190" }, { "input": "54646", "output": "81969" }, { "input": "59790", "output": "89685" }, { "input": "578456", "output": "867684" }, { "input": "56798056", "output": "85197084" }, { "input": "8457980", "output": "12686970" }, { "input": "5687986", "output": "8531979" }, { "input": "10984932", "output": "16477398" }, { "input": "99999994", "output": "149999991" }, { "input": "99999996", "output": "149999994" }, { "input": "99999998", "output": "149999997" }, { "input": "100000000", "output": "150000000" } ]
1,536,425,967
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
154
0
def armies(n): return 3 * (n // 2) print(int(input()))
Title: Toy Army Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The hero of our story, Valera, and his best friend Arcady are still in school, and therefore they spend all the free time playing turn-based strategy "GAGA: Go And Go Again". The gameplay is as follows. There are two armies on the playing field each of which consists of *n* men (*n* is always even). The current player specifies for each of her soldiers an enemy's soldier he will shoot (a target) and then all the player's soldiers shot simultaneously. This is a game world, and so each soldier shoots perfectly, that is he absolutely always hits the specified target. If an enemy soldier is hit, he will surely die. It may happen that several soldiers had been indicated the same target. Killed soldiers do not participate in the game anymore. The game "GAGA" consists of three steps: first Valera makes a move, then Arcady, then Valera again and the game ends. You are asked to calculate the maximum total number of soldiers that may be killed during the game. Input Specification: The input data consist of a single integer *n* (2<=≤<=*n*<=≤<=108, *n* is even). Please note that before the game starts there are 2*n* soldiers on the fields. Output Specification: Print a single number — a maximum total number of soldiers that could be killed in the course of the game in three turns. Demo Input: ['2\n', '4\n'] Demo Output: ['3\n', '6\n'] Note: The first sample test: 1) Valera's soldiers 1 and 2 shoot at Arcady's soldier 1. 2) Arcady's soldier 2 shoots at Valera's soldier 1. 3) Valera's soldier 1 shoots at Arcady's soldier 2. There are 3 soldiers killed in total: Valera's soldier 1 and Arcady's soldiers 1 and 2.
```python def armies(n): return 3 * (n // 2) print(int(input())) ```
0
459
C
Pashmak and Buses
PROGRAMMING
1,900
[ "combinatorics", "constructive algorithms", "math" ]
null
null
Recently Pashmak has been employed in a transportation company. The company has *k* buses and has a contract with a school which has *n* students. The school planned to take the students to *d* different places for *d* days (each day in one place). Each day the company provides all the buses for the trip. Pashmak has to arrange the students in the buses. He wants to arrange the students in a way that no two students become close friends. In his ridiculous idea, two students will become close friends if and only if they are in the same buses for all *d* days. Please help Pashmak with his weird idea. Assume that each bus has an unlimited capacity.
The first line of input contains three space-separated integers *n*,<=*k*,<=*d* (1<=≤<=*n*,<=*d*<=≤<=1000; 1<=≤<=*k*<=≤<=109).
If there is no valid arrangement just print -1. Otherwise print *d* lines, in each of them print *n* integers. The *j*-th integer of the *i*-th line shows which bus the *j*-th student has to take on the *i*-th day. You can assume that the buses are numbered from 1 to *k*.
[ "3 2 2\n", "3 2 1\n" ]
[ "1 1 2 \n1 2 1 \n", "-1\n" ]
Note that two students become close friends only if they share a bus each day. But the bus they share can differ from day to day.
2,000
[ { "input": "3 2 2", "output": "1 1 2 \n1 2 1 " }, { "input": "3 2 1", "output": "-1" }, { "input": "7 2 3", "output": "1 1 1 1 2 2 2 \n1 1 2 2 1 1 2 \n1 2 1 2 1 2 1 " }, { "input": "9 2 3", "output": "-1" }, { "input": "2 1 1000", "output": "-1" }, { "input": "512 2 9", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 1000000000 511", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 1000 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "1000 3 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1 1000000000 512", "output": "1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n..." }, { "input": "1000 2 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 3 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 31 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 32 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 999 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 1000 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 536870912 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 536870911 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 1000000000 1000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "1000 2 8", "output": "-1" }, { "input": "513 2 9", "output": "-1" }, { "input": "81 3 4", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 \n1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 \n1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 \n1 2 3 1 2 3 1 2 3 1..." }, { "input": "82 3 4", "output": "-1" }, { "input": "243 3 5", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 \n1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "244 3 5", "output": "-1" }, { "input": "999 999 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "1000 999 1", "output": "-1" }, { "input": "343 7 3", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6..." }, { "input": "512 8 3", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4..." }, { "input": "729 9 3", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4..." }, { "input": "729 3 6", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "625 5 4", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3..." }, { "input": "1 1 1", "output": "1 " }, { "input": "1 1 2", "output": "1 \n1 " }, { "input": "2 1 1", "output": "-1" }, { "input": "1 2 1", "output": "1 " }, { "input": "5 3 2", "output": "1 1 1 2 2 \n1 2 3 1 2 " }, { "input": "1 1000000000 1", "output": "1 " }, { "input": "1000 1000000000 1", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "27 3 3", "output": "1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 \n1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 \n1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 " }, { "input": "1 1 10", "output": "1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 \n1 " } ]
1,656,447,462
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
140
1,024,000
import sys import math import collections import heapq input=sys.stdin.readline n,k,d=(int(i) for i in input().split()) if(d==1): if(n==1): print(1) else: print(-1) else: if(k==1): if(n==1): for i in range(d): print(1) else: print(-1) else: for i in range(n): if(i<n//2): print(1,end=" ") else: print(2,end=" ") print() for i in range(d-1): print(1,end=" ") for j in range(1,n//2+1): print(2,end=" ") for j in range(n//2+1,n): print(1,end=" ") print()
Title: Pashmak and Buses Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently Pashmak has been employed in a transportation company. The company has *k* buses and has a contract with a school which has *n* students. The school planned to take the students to *d* different places for *d* days (each day in one place). Each day the company provides all the buses for the trip. Pashmak has to arrange the students in the buses. He wants to arrange the students in a way that no two students become close friends. In his ridiculous idea, two students will become close friends if and only if they are in the same buses for all *d* days. Please help Pashmak with his weird idea. Assume that each bus has an unlimited capacity. Input Specification: The first line of input contains three space-separated integers *n*,<=*k*,<=*d* (1<=≤<=*n*,<=*d*<=≤<=1000; 1<=≤<=*k*<=≤<=109). Output Specification: If there is no valid arrangement just print -1. Otherwise print *d* lines, in each of them print *n* integers. The *j*-th integer of the *i*-th line shows which bus the *j*-th student has to take on the *i*-th day. You can assume that the buses are numbered from 1 to *k*. Demo Input: ['3 2 2\n', '3 2 1\n'] Demo Output: ['1 1 2 \n1 2 1 \n', '-1\n'] Note: Note that two students become close friends only if they share a bus each day. But the bus they share can differ from day to day.
```python import sys import math import collections import heapq input=sys.stdin.readline n,k,d=(int(i) for i in input().split()) if(d==1): if(n==1): print(1) else: print(-1) else: if(k==1): if(n==1): for i in range(d): print(1) else: print(-1) else: for i in range(n): if(i<n//2): print(1,end=" ") else: print(2,end=" ") print() for i in range(d-1): print(1,end=" ") for j in range(1,n//2+1): print(2,end=" ") for j in range(n//2+1,n): print(1,end=" ") print() ```
0
770
A
New Password
PROGRAMMING
800
[ "*special", "implementation" ]
null
null
Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions.
The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists.
Print any password which satisfies all conditions given by Innokentiy.
[ "4 3\n", "6 6\n", "5 2\n" ]
[ "java\n", "python\n", "phphp\n" ]
In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
500
[ { "input": "4 3", "output": "abca" }, { "input": "6 6", "output": "abcdef" }, { "input": "5 2", "output": "ababa" }, { "input": "3 2", "output": "aba" }, { "input": "10 2", "output": "ababababab" }, { "input": "26 13", "output": "abcdefghijklmabcdefghijklm" }, { "input": "100 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "100 10", "output": "abcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij" }, { "input": "3 3", "output": "abc" }, { "input": "6 3", "output": "abcabc" }, { "input": "10 3", "output": "abcabcabca" }, { "input": "50 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab" }, { "input": "90 2", "output": "ababababababababababababababababababababababababababababababababababababababababababababab" }, { "input": "6 2", "output": "ababab" }, { "input": "99 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" }, { "input": "4 2", "output": "abab" }, { "input": "100 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "40 22", "output": "abcdefghijklmnopqrstuvabcdefghijklmnopqr" }, { "input": "13 8", "output": "abcdefghabcde" }, { "input": "16 15", "output": "abcdefghijklmnoa" }, { "input": "17 17", "output": "abcdefghijklmnopq" }, { "input": "19 4", "output": "abcdabcdabcdabcdabc" }, { "input": "100 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv" }, { "input": "100 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy" }, { "input": "26 26", "output": "abcdefghijklmnopqrstuvwxyz" }, { "input": "27 26", "output": "abcdefghijklmnopqrstuvwxyza" }, { "input": "2 2", "output": "ab" }, { "input": "26 25", "output": "abcdefghijklmnopqrstuvwxya" }, { "input": "99 2", "output": "abababababababababababababababababababababababababababababababababababababababababababababababababa" }, { "input": "99 26", "output": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu" }, { "input": "4 4", "output": "abcd" }, { "input": "5 3", "output": "abcab" }, { "input": "5 4", "output": "abcda" }, { "input": "5 5", "output": "abcde" }, { "input": "24 22", "output": "abcdefghijklmnopqrstuvab" }, { "input": "26 14", "output": "abcdefghijklmnabcdefghijkl" }, { "input": "26 15", "output": "abcdefghijklmnoabcdefghijk" }, { "input": "30 12", "output": "abcdefghijklabcdefghijklabcdef" }, { "input": "35 4", "output": "abcdabcdabcdabcdabcdabcdabcdabcdabc" }, { "input": "79 3", "output": "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca" }, { "input": "79 14", "output": "abcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghijklmnabcdefghi" }, { "input": "85 13", "output": "abcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefghijklmabcdefg" }, { "input": "90 25", "output": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmno" }, { "input": "90 19", "output": "abcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmnopqrsabcdefghijklmn" }, { "input": "26 24", "output": "abcdefghijklmnopqrstuvwxab" }, { "input": "100 17", "output": "abcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmnopqabcdefghijklmno" }, { "input": "26 2", "output": "ababababababababababababab" } ]
1,610,937,714
2,147,483,647
Python 3
OK
TESTS
47
62
0
a,b=map(int,input().split()) x="abcdefghijklmnopqrstuvxwyz" q=0 for i in range(a): print(x[q],end='') q+=1 if q==b: q=0
Title: New Password Time Limit: None seconds Memory Limit: None megabytes Problem Description: Innokentiy decides to change the password in the social net "Contact!", but he is too lazy to invent a new password by himself. That is why he needs your help. Innokentiy decides that new password should satisfy the following conditions: - the length of the password must be equal to *n*, - the password should consist only of lowercase Latin letters, - the number of distinct symbols in the password must be equal to *k*, - any two consecutive symbols in the password must be distinct. Your task is to help Innokentiy and to invent a new password which will satisfy all given conditions. Input Specification: The first line contains two positive integers *n* and *k* (2<=≤<=*n*<=≤<=100, 2<=≤<=*k*<=≤<=*min*(*n*,<=26)) — the length of the password and the number of distinct symbols in it. Pay attention that a desired new password always exists. Output Specification: Print any password which satisfies all conditions given by Innokentiy. Demo Input: ['4 3\n', '6 6\n', '5 2\n'] Demo Output: ['java\n', 'python\n', 'phphp\n'] Note: In the first test there is one of the appropriate new passwords — java, because its length is equal to 4 and 3 distinct lowercase letters a, j and v are used in it. In the second test there is one of the appropriate new passwords — python, because its length is equal to 6 and it consists of 6 distinct lowercase letters. In the third test there is one of the appropriate new passwords — phphp, because its length is equal to 5 and 2 distinct lowercase letters p and h are used in it. Pay attention the condition that no two identical symbols are consecutive is correct for all appropriate passwords in tests.
```python a,b=map(int,input().split()) x="abcdefghijklmnopqrstuvxwyz" q=0 for i in range(a): print(x[q],end='') q+=1 if q==b: q=0 ```
3
599
A
Patrick and Shopping
PROGRAMMING
800
[ "implementation" ]
null
null
Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.
The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths. - *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops.
Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.
[ "10 20 30\n", "1 1 5\n" ]
[ "60\n", "4\n" ]
The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
500
[ { "input": "10 20 30", "output": "60" }, { "input": "1 1 5", "output": "4" }, { "input": "100 33 34", "output": "134" }, { "input": "777 777 777", "output": "2331" }, { "input": "2 2 8", "output": "8" }, { "input": "12 34 56", "output": "92" }, { "input": "789 101112 131415", "output": "203802" }, { "input": "27485716 99999999 35182", "output": "55041796" }, { "input": "1 293548 5", "output": "12" }, { "input": "12059 259855 5874875", "output": "543828" }, { "input": "46981 105809 585858", "output": "305580" }, { "input": "9889 1221 2442", "output": "7326" }, { "input": "100500 200600 300700", "output": "601800" }, { "input": "318476 318476 318476", "output": "955428" }, { "input": "23985 3353 75633", "output": "54676" }, { "input": "120 1298 2222", "output": "2836" }, { "input": "98437 23487 666672", "output": "243848" }, { "input": "100000000 100000000 100000000", "output": "300000000" }, { "input": "2 5 2", "output": "8" }, { "input": "1 1000 1", "output": "4" }, { "input": "1 100000000 1", "output": "4" } ]
1,645,067,414
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
d1, d2, d3=list(map(int, input().split())) first=2*(d1+d2) second=d1+d2+d3 third=d3*2 print(min(first, second, third))
Title: Patrick and Shopping Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled. Input Specification: The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths. - *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops. Output Specification: Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house. Demo Input: ['10 20 30\n', '1 1 5\n'] Demo Output: ['60\n', '4\n'] Note: The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
```python d1, d2, d3=list(map(int, input().split())) first=2*(d1+d2) second=d1+d2+d3 third=d3*2 print(min(first, second, third)) ```
0
686
A
Free Ice Cream
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
[ "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n", "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n" ]
[ "22 1\n", "3 2\n" ]
Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
500
[ { "input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20", "output": "22 1" }, { "input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98", "output": "3 2" }, { "input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000", "output": "7000000000 0" }, { "input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46", "output": "46 0" }, { "input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100", "output": "700 0" }, { "input": "1 0\n- 526403222", "output": "0 1" }, { "input": "1 897986543\n- 371188251", "output": "526798292 0" }, { "input": "1 0\n+ 1", "output": "1 0" }, { "input": "1 0\n- 1", "output": "0 1" }, { "input": "1 10\n+ 10", "output": "20 0" }, { "input": "1 3\n- 5", "output": "3 1" }, { "input": "1 0\n- 5", "output": "0 1" }, { "input": "1 0\n+ 5", "output": "5 0" } ]
1,596,636,503
2,147,483,647
Python 3
OK
TESTS
34
108
6,758,400
n, x = map(int, input().split()) count = 0 for i in range(n): sign, packs = input().split() packs = int(packs) if sign == "+": x += packs elif sign == "-" and x < packs: count += 1 else: x -= packs print(x, count)
Title: Free Ice Cream Time Limit: None seconds Memory Limit: None megabytes Problem Description: After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids. Input Specification: The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place. Output Specification: Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress. Demo Input: ['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n'] Demo Output: ['22 1\n', '3 2\n'] Note: Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
```python n, x = map(int, input().split()) count = 0 for i in range(n): sign, packs = input().split() packs = int(packs) if sign == "+": x += packs elif sign == "-" and x < packs: count += 1 else: x -= packs print(x, count) ```
3
365
A
Good Number
PROGRAMMING
1,100
[ "implementation" ]
null
null
Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*).
The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109).
Print a single integer — the number of *k*-good numbers in *a*.
[ "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n", "2 1\n1\n10\n" ]
[ "10\n", "1\n" ]
none
500
[ { "input": "10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560", "output": "10" }, { "input": "2 1\n1\n10", "output": "1" }, { "input": "1 0\n1000000000", "output": "1" }, { "input": "1 1\n1000000000", "output": "1" }, { "input": "6 0\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "1 3\n1000000000", "output": "0" }, { "input": "1 9\n1000000000", "output": "0" }, { "input": "1 0\n1", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 3\n1", "output": "0" }, { "input": "1 9\n1", "output": "0" }, { "input": "2 8\n123456780\n123", "output": "1" }, { "input": "2 8\n12345678\n1230", "output": "0" }, { "input": "6 1\n10\n102\n120\n1032\n1212103\n1999999", "output": "5" }, { "input": "6 2\n10\n102\n120\n1032\n1212103\n1999999", "output": "4" }, { "input": "6 3\n10\n102\n120\n1032\n1212103\n1999999", "output": "2" }, { "input": "6 9\n10\n102\n120\n1032\n1212103\n1999999", "output": "0" }, { "input": "1 2\n2220", "output": "0" } ]
1,641,722,094
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
77
0
n, k = map(int, input().split()) ans = 0 for _ in range(n): flag = True for v in set(input()): if int(v) > k: flag = False break if flag: ans += 1 print(ans)
Title: Good Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's call a number *k*-good if it contains all digits not exceeding *k* (0,<=...,<=*k*). You've got a number *k* and an array *a* containing *n* numbers. Find out how many *k*-good numbers are in *a* (count each number every time it occurs in array *a*). Input Specification: The first line contains integers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=9). The *i*-th of the following *n* lines contains integer *a**i* without leading zeroes (1<=≤<=*a**i*<=≤<=109). Output Specification: Print a single integer — the number of *k*-good numbers in *a*. Demo Input: ['10 6\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n1234560\n', '2 1\n1\n10\n'] Demo Output: ['10\n', '1\n'] Note: none
```python n, k = map(int, input().split()) ans = 0 for _ in range(n): flag = True for v in set(input()): if int(v) > k: flag = False break if flag: ans += 1 print(ans) ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,688,855,447
2,147,483,647
PyPy 3-64
OK
TESTS
20
62
0
n = int(input()) i = 0 while i < n: name = input() i = i+1 if(len(name)<=10): print(name) else: print(name[0]+ str(len(name)-2) + name[-1])
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python n = int(input()) i = 0 while i < n: name = input() i = i+1 if(len(name)<=10): print(name) else: print(name[0]+ str(len(name)-2) + name[-1]) ```
3.969
493
B
Vasya and Wrestling
PROGRAMMING
1,400
[ "implementation" ]
null
null
Vasya has become interested in wrestling. In wrestling wrestlers use techniques for which they are awarded points by judges. The wrestler who gets the most points wins. When the numbers of points of both wrestlers are equal, the wrestler whose sequence of points is lexicographically greater, wins. If the sequences of the awarded points coincide, the wrestler who performed the last technique wins. Your task is to determine which wrestler won.
The first line contains number *n* — the number of techniques that the wrestlers have used (1<=≤<=*n*<=≤<=2·105). The following *n* lines contain integer numbers *a**i* (|*a**i*|<=≤<=109, *a**i*<=≠<=0). If *a**i* is positive, that means that the first wrestler performed the technique that was awarded with *a**i* points. And if *a**i* is negative, that means that the second wrestler performed the technique that was awarded with (<=-<=*a**i*) points. The techniques are given in chronological order.
If the first wrestler wins, print string "first", otherwise print "second"
[ "5\n1\n2\n-3\n-4\n3\n", "3\n-1\n-2\n3\n", "2\n4\n-4\n" ]
[ "second\n", "first\n", "second\n" ]
Sequence *x*  =  *x*<sub class="lower-index">1</sub>*x*<sub class="lower-index">2</sub>... *x*<sub class="lower-index">|*x*|</sub> is lexicographically larger than sequence *y*  =  *y*<sub class="lower-index">1</sub>*y*<sub class="lower-index">2</sub>... *y*<sub class="lower-index">|*y*|</sub>, if either |*x*|  &gt;  |*y*| and *x*<sub class="lower-index">1</sub>  =  *y*<sub class="lower-index">1</sub>,  *x*<sub class="lower-index">2</sub>  =  *y*<sub class="lower-index">2</sub>, ... ,  *x*<sub class="lower-index">|*y*|</sub>  =  *y*<sub class="lower-index">|*y*|</sub>, or there is such number *r* (*r*  &lt;  |*x*|, *r*  &lt;  |*y*|), that *x*<sub class="lower-index">1</sub>  =  *y*<sub class="lower-index">1</sub>,  *x*<sub class="lower-index">2</sub>  =  *y*<sub class="lower-index">2</sub>,  ... ,  *x*<sub class="lower-index">*r*</sub>  =  *y*<sub class="lower-index">*r*</sub> and *x*<sub class="lower-index">*r*  +  1</sub>  &gt;  *y*<sub class="lower-index">*r*  +  1</sub>. We use notation |*a*| to denote length of sequence *a*.
1,000
[ { "input": "5\n1\n2\n-3\n-4\n3", "output": "second" }, { "input": "3\n-1\n-2\n3", "output": "first" }, { "input": "2\n4\n-4", "output": "second" }, { "input": "7\n1\n2\n-3\n4\n5\n-6\n7", "output": "first" }, { "input": "14\n1\n2\n3\n4\n5\n6\n7\n-8\n-9\n-10\n-11\n-12\n-13\n-14", "output": "second" }, { "input": "4\n16\n12\n19\n-98", "output": "second" }, { "input": "5\n-6\n-1\n-1\n5\n3", "output": "second" }, { "input": "11\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1", "output": "first" }, { "input": "1\n-534365", "output": "second" }, { "input": "1\n10253033", "output": "first" }, { "input": "3\n-1\n-2\n3", "output": "first" }, { "input": "8\n1\n-2\n-3\n4\n5\n-6\n-7\n8", "output": "second" }, { "input": "2\n1\n-1", "output": "second" }, { "input": "5\n1\n2\n3\n4\n5", "output": "first" }, { "input": "5\n-1\n-2\n-3\n-4\n-5", "output": "second" }, { "input": "10\n-1\n-2\n-3\n-4\n-5\n5\n4\n3\n2\n1", "output": "first" }, { "input": "131\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n1\n-1\n-1\n-1\n2", "output": "first" }, { "input": "6\n-1\n-2\n-3\n1\n2\n3", "output": "first" }, { "input": "3\n1000000000\n1000000000\n1000000000", "output": "first" }, { "input": "12\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000", "output": "first" }, { "input": "4\n1000000000\n1000000000\n1000000000\n-1000000000", "output": "first" }, { "input": "20\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000", "output": "first" }, { "input": "5\n1000000000\n1000000000\n-1000000000\n-1000000000\n-1000000000", "output": "second" }, { "input": "4\n1\n-1000000000\n-1000000000\n-1000000000", "output": "second" }, { "input": "5\n1000000000\n1000000000\n1000000000\n-1000000000\n-1000000000", "output": "first" }, { "input": "4\n-1\n1000000000\n1000000000\n1000000000", "output": "first" }, { "input": "11\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000", "output": "first" }, { "input": "2\n-4\n4", "output": "first" }, { "input": "3\n-12\n3\n9", "output": "second" }, { "input": "3\n9\n1\n-10", "output": "second" }, { "input": "3\n1\n2\n-3", "output": "second" }, { "input": "4\n55\n5\n-5\n-55", "output": "first" }, { "input": "4\n5\n-1\n1\n-5", "output": "first" }, { "input": "2\n-5\n6", "output": "first" }, { "input": "4\n5\n-4\n3\n-40", "output": "second" }, { "input": "4\n1000000000\n1000000000\n1000000000\n-5", "output": "first" }, { "input": "6\n3\n2\n1\n-3\n-1\n-2", "output": "first" }, { "input": "5\n4\n1\n1\n-3\n-3", "output": "first" }, { "input": "5\n208\n-52\n-52\n-52\n-52", "output": "first" }, { "input": "3\n-100\n-200\n300", "output": "first" }, { "input": "3\n400\n-200\n-200", "output": "first" }, { "input": "3\n208\n-207\n-1", "output": "first" }, { "input": "3\n98888887\n98888888\n-197777775", "output": "second" } ]
1,624,958,750
2,147,483,647
PyPy 3
OK
TESTS
57
1,450
10,547,200
n = int(input()) first_moves = [] second_moves = [] last = None for i in range(n): move = int(input()) if move > 0: first_moves.append(move) else: second_moves.append(-move) if i == n-1: last = move first_score = sum(first_moves) second_score = sum(second_moves) if first_score > second_score: print("first") elif second_score > first_score: print("second") else: if first_moves > second_moves: print("first") elif second_moves > first_moves: print("second") else: if last > 0: print("first") else: print("second")
Title: Vasya and Wrestling Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has become interested in wrestling. In wrestling wrestlers use techniques for which they are awarded points by judges. The wrestler who gets the most points wins. When the numbers of points of both wrestlers are equal, the wrestler whose sequence of points is lexicographically greater, wins. If the sequences of the awarded points coincide, the wrestler who performed the last technique wins. Your task is to determine which wrestler won. Input Specification: The first line contains number *n* — the number of techniques that the wrestlers have used (1<=≤<=*n*<=≤<=2·105). The following *n* lines contain integer numbers *a**i* (|*a**i*|<=≤<=109, *a**i*<=≠<=0). If *a**i* is positive, that means that the first wrestler performed the technique that was awarded with *a**i* points. And if *a**i* is negative, that means that the second wrestler performed the technique that was awarded with (<=-<=*a**i*) points. The techniques are given in chronological order. Output Specification: If the first wrestler wins, print string "first", otherwise print "second" Demo Input: ['5\n1\n2\n-3\n-4\n3\n', '3\n-1\n-2\n3\n', '2\n4\n-4\n'] Demo Output: ['second\n', 'first\n', 'second\n'] Note: Sequence *x*  =  *x*<sub class="lower-index">1</sub>*x*<sub class="lower-index">2</sub>... *x*<sub class="lower-index">|*x*|</sub> is lexicographically larger than sequence *y*  =  *y*<sub class="lower-index">1</sub>*y*<sub class="lower-index">2</sub>... *y*<sub class="lower-index">|*y*|</sub>, if either |*x*|  &gt;  |*y*| and *x*<sub class="lower-index">1</sub>  =  *y*<sub class="lower-index">1</sub>,  *x*<sub class="lower-index">2</sub>  =  *y*<sub class="lower-index">2</sub>, ... ,  *x*<sub class="lower-index">|*y*|</sub>  =  *y*<sub class="lower-index">|*y*|</sub>, or there is such number *r* (*r*  &lt;  |*x*|, *r*  &lt;  |*y*|), that *x*<sub class="lower-index">1</sub>  =  *y*<sub class="lower-index">1</sub>,  *x*<sub class="lower-index">2</sub>  =  *y*<sub class="lower-index">2</sub>,  ... ,  *x*<sub class="lower-index">*r*</sub>  =  *y*<sub class="lower-index">*r*</sub> and *x*<sub class="lower-index">*r*  +  1</sub>  &gt;  *y*<sub class="lower-index">*r*  +  1</sub>. We use notation |*a*| to denote length of sequence *a*.
```python n = int(input()) first_moves = [] second_moves = [] last = None for i in range(n): move = int(input()) if move > 0: first_moves.append(move) else: second_moves.append(-move) if i == n-1: last = move first_score = sum(first_moves) second_score = sum(second_moves) if first_score > second_score: print("first") elif second_score > first_score: print("second") else: if first_moves > second_moves: print("first") elif second_moves > first_moves: print("second") else: if last > 0: print("first") else: print("second") ```
3
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,679,196,178
2,147,483,647
Python 3
OK
TESTS
40
92
0
ai = input() an = input() if ai == an[::-1]: print("YES") else: print("NO")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python ai = input() an = input() if ai == an[::-1]: print("YES") else: print("NO") ```
3.977
476
B
Dreamoon and WiFi
PROGRAMMING
1,300
[ "bitmasks", "brute force", "combinatorics", "dp", "math", "probabilities" ]
null
null
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them. Each command is one of the following two types: 1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?
The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10.
Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9.
[ "++-+-\n+-+-+\n", "+-+-\n+-??\n", "+++\n??-\n" ]
[ "1.000000000000\n", "0.500000000000\n", "0.000000000000\n" ]
For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position  + 1. For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position  + 3 is 0.
1,500
[ { "input": "++-+-\n+-+-+", "output": "1.000000000000" }, { "input": "+-+-\n+-??", "output": "0.500000000000" }, { "input": "+++\n??-", "output": "0.000000000000" }, { "input": "++++++++++\n+++??++?++", "output": "0.125000000000" }, { "input": "--+++---+-\n??????????", "output": "0.205078125000" }, { "input": "+--+++--+-\n??????????", "output": "0.246093750000" }, { "input": "+\n+", "output": "1.000000000000" }, { "input": "-\n?", "output": "0.500000000000" }, { "input": "+\n-", "output": "0.000000000000" }, { "input": "-\n-", "output": "1.000000000000" }, { "input": "-\n+", "output": "0.000000000000" }, { "input": "+\n?", "output": "0.500000000000" }, { "input": "++++++++++\n++++++++++", "output": "1.000000000000" }, { "input": "++++++++++\n++++-+++++", "output": "0.000000000000" }, { "input": "----------\n++++++++++", "output": "0.000000000000" }, { "input": "++++++++++\n++++??++++", "output": "0.250000000000" }, { "input": "----------\n+++?++++-+", "output": "0.000000000000" }, { "input": "++++++++++\n++++++++?+", "output": "0.500000000000" }, { "input": "--++++--+\n?-+?-??+-", "output": "0.250000000000" }, { "input": "----------\n??????????", "output": "0.000976562500" }, { "input": "+--++\n+--+-", "output": "0.000000000000" }, { "input": "-----++---\n????????+?", "output": "0.017578125000" }, { "input": "------+--+\n??????????", "output": "0.043945312500" }, { "input": "---++--\n???????", "output": "0.164062500000" }, { "input": "-----++\n???????", "output": "0.164062500000" }, { "input": "+---+--\n???????", "output": "0.164062500000" }, { "input": "---+-+\n??????", "output": "0.234375000000" }, { "input": "+++-+\n---++", "output": "0.000000000000" }, { "input": "++-+--+\n?-?+??+", "output": "0.375000000000" }, { "input": "----+++--\n-+?+++?--", "output": "0.000000000000" }, { "input": "+-----\n+?----", "output": "0.500000000000" } ]
1,667,030,463
2,147,483,647
PyPy 3-64
OK
TESTS
31
77
614,400
from collections import defaultdict, deque from math import gcd,ceil,sqrt,factorial import sys import heapq from bisect import bisect_right as b_r from bisect import bisect_left as b_l from functools import reduce import operator as op INT_MAX = sys.maxsize-1 INT_MIN = -sys.maxsize def ncr(n:int,r:int): r=min(n,n-r) nmtr = reduce(op.mul,range(n,n-r,-1),1) dnmtr = reduce(op.mul,range(1,r+1),1) return nmtr//dnmtr def fact(n): return factorial(n) def myyy__answer(): s1=input() s2=input() n=len(s1) c1=0 c2=0 cnt=0 for i in range(n): c1+=(s1[i]=="+") c2+=(s1[i]=="-") c1-=(s2[i]=="+") c2-=(s2[i]=="-") cnt+=(s2[i]=="?") if(c2<0): c1+=(-c2) if(c1<0): c2+=(-c1) # print(cnt,c1,c2) if(cnt<c1+c2 or (cnt-(c1+c2))&1): print(0) else: c1+=(cnt-c1-c2)//2 c2+=(cnt-c1-c2)//2 print(ncr(cnt,c1)/(2**cnt)) if __name__ == "__main__": input = lambda: sys.stdin.readline().rstrip("\r\n") # for _ in range(int(input())): # print(myyy__answer()) myyy__answer()
Title: Dreamoon and WiFi Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them. Each command is one of the following two types: 1. Go 1 unit towards the positive direction, denoted as '+' 1. Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands? Input Specification: The first line contains a string *s*1 — the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string *s*2 — the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10. Output Specification: Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9. Demo Input: ['++-+-\n+-+-+\n', '+-+-\n+-??\n', '+++\n??-\n'] Demo Output: ['1.000000000000\n', '0.500000000000\n', '0.000000000000\n'] Note: For the first sample, both *s*<sub class="lower-index">1</sub> and *s*<sub class="lower-index">2</sub> will lead Dreamoon to finish at the same position  + 1. For the second sample, *s*<sub class="lower-index">1</sub> will lead Dreamoon to finish at position 0, while there are four possibilites for *s*<sub class="lower-index">2</sub>: {"+-++", "+-+-", "+--+", "+---"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, *s*<sub class="lower-index">2</sub> could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position  + 3 is 0.
```python from collections import defaultdict, deque from math import gcd,ceil,sqrt,factorial import sys import heapq from bisect import bisect_right as b_r from bisect import bisect_left as b_l from functools import reduce import operator as op INT_MAX = sys.maxsize-1 INT_MIN = -sys.maxsize def ncr(n:int,r:int): r=min(n,n-r) nmtr = reduce(op.mul,range(n,n-r,-1),1) dnmtr = reduce(op.mul,range(1,r+1),1) return nmtr//dnmtr def fact(n): return factorial(n) def myyy__answer(): s1=input() s2=input() n=len(s1) c1=0 c2=0 cnt=0 for i in range(n): c1+=(s1[i]=="+") c2+=(s1[i]=="-") c1-=(s2[i]=="+") c2-=(s2[i]=="-") cnt+=(s2[i]=="?") if(c2<0): c1+=(-c2) if(c1<0): c2+=(-c1) # print(cnt,c1,c2) if(cnt<c1+c2 or (cnt-(c1+c2))&1): print(0) else: c1+=(cnt-c1-c2)//2 c2+=(cnt-c1-c2)//2 print(ncr(cnt,c1)/(2**cnt)) if __name__ == "__main__": input = lambda: sys.stdin.readline().rstrip("\r\n") # for _ in range(int(input())): # print(myyy__answer()) myyy__answer() ```
3
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,699,262,338
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
31
0
x=list(input("")) x[0]="" x[-1]="" x=set(x) if "," in x : x.remove(",") x="".join(x) if len(x)==0: print(0) else: print(len(x)-1)
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python x=list(input("")) x[0]="" x[-1]="" x=set(x) if "," in x : x.remove(",") x="".join(x) if len(x)==0: print(0) else: print(len(x)-1) ```
0
499
A
Watching a movie
PROGRAMMING
1,000
[ "greedy", "implementation" ]
null
null
You have decided to watch the best moments of some movie. There are two buttons on your player: 1. Watch the current minute of the movie. By pressing this button, you watch the current minute of the movie and the player automatically proceeds to the next minute of the movie. 1. Skip exactly *x* minutes of the movie (*x* is some fixed positive integer). If the player is now at the *t*-th minute of the movie, then as a result of pressing this button, it proceeds to the minute (*t*<=+<=*x*). Initially the movie is turned on in the player on the first minute, and you want to watch exactly *n* best moments of the movie, the *i*-th best moment starts at the *l**i*-th minute and ends at the *r**i*-th minute (more formally, the *i*-th best moment consists of minutes: *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i*). Determine, what is the minimum number of minutes of the movie you have to watch if you want to watch all the best moments?
The first line contains two space-separated integers *n*, *x* (1<=≤<=*n*<=≤<=50, 1<=≤<=*x*<=≤<=105) — the number of the best moments of the movie and the value of *x* for the second button. The following *n* lines contain the descriptions of the best moments of the movie, the *i*-th line of the description contains two integers separated by a space *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=105). It is guaranteed that for all integers *i* from 2 to *n* the following condition holds: *r**i*<=-<=1<=&lt;<=*l**i*.
Output a single number — the answer to the problem.
[ "2 3\n5 6\n10 12\n", "1 1\n1 100000\n" ]
[ "6\n", "100000\n" ]
In the first sample, the player was initially standing on the first minute. As the minutes from the 1-st to the 4-th one don't contain interesting moments, we press the second button. Now we can not press the second button and skip 3 more minutes, because some of them contain interesting moments. Therefore, we watch the movie from the 4-th to the 6-th minute, after that the current time is 7. Similarly, we again skip 3 minutes and then watch from the 10-th to the 12-th minute of the movie. In total, we watch 6 minutes of the movie. In the second sample, the movie is very interesting, so you'll have to watch all 100000 minutes of the movie.
500
[ { "input": "2 3\n5 6\n10 12", "output": "6" }, { "input": "1 1\n1 100000", "output": "100000" }, { "input": "10 1\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728", "output": "53974" }, { "input": "10 3\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728", "output": "53983" }, { "input": "10 10\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728", "output": "54038" }, { "input": "10 1000\n2156 3497\n4784 7775\n14575 31932\n33447 35902\n36426 47202\n48772 60522\n63982 68417\n78537 79445\n90081 90629\n94325 95728", "output": "58728" }, { "input": "12 14\n2156 3497\n4784 7775\n14575 23857\n29211 30739\n31932 33447\n35902 36426\n47202 48772\n60522 63982\n68417 78537\n79445 86918\n90081 90629\n94325 95728", "output": "41870" }, { "input": "12 17\n2156 3497\n4784 7775\n14575 23857\n29211 30739\n31932 33447\n35902 36426\n47202 48772\n60522 63982\n68417 78537\n79445 86918\n90081 90629\n94325 95728", "output": "41872" }, { "input": "18 111\n1449 2156\n3497 4784\n7775 14575\n23857 24593\n29211 30739\n31932 33447\n35902 36426\n36991 38506\n39679 47202\n48772 60016\n60522 61868\n63340 63982\n68417 78537\n79445 86568\n86918 87940\n90081 90310\n90629 94325\n95728 96263", "output": "58967" }, { "input": "1 1\n14575 60522", "output": "45948" }, { "input": "1 10\n14575 60522", "output": "45952" }, { "input": "2 10\n14575 36426\n60522 79445", "output": "40785" }, { "input": "3 1\n14575 36426\n48772 60522\n79445 90081", "output": "44240" }, { "input": "1 100000\n1 100000", "output": "100000" }, { "input": "1 2\n2 100000", "output": "100000" }, { "input": "1 3\n4 100000", "output": "99997" }, { "input": "2 100\n5 6\n7 7", "output": "7" }, { "input": "1 10000\n500 600", "output": "600" }, { "input": "2 3\n1 3\n4 8", "output": "8" }, { "input": "3 1\n1 2\n3 4\n6 7", "output": "6" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "1 3\n5 6", "output": "3" }, { "input": "1 5\n7 10", "output": "5" }, { "input": "1 100\n5 6", "output": "6" }, { "input": "1 2\n1 1", "output": "1" }, { "input": "1 100000\n100000 100000", "output": "100000" }, { "input": "2 3\n1 1\n5 6", "output": "3" } ]
1,681,888,907
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
46
0
import sys input=sys.stdin.readline n, m = map(int, input().split()) time, t, temp = 0, 0, 0 for _ in range(n): a, b = map(int, input().split()) if (a == 1): time += (b - a + 1) elif (a - temp >= m): y = (a - temp) // m x = (a - temp) - (m * y) - 1 if (x<0): x = 0 time += (x + b - a + 1) else: x = (a - temp) - m - 1 time += (x + b - a) t += b + 1 temp = b + 1 print(time)
Title: Watching a movie Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have decided to watch the best moments of some movie. There are two buttons on your player: 1. Watch the current minute of the movie. By pressing this button, you watch the current minute of the movie and the player automatically proceeds to the next minute of the movie. 1. Skip exactly *x* minutes of the movie (*x* is some fixed positive integer). If the player is now at the *t*-th minute of the movie, then as a result of pressing this button, it proceeds to the minute (*t*<=+<=*x*). Initially the movie is turned on in the player on the first minute, and you want to watch exactly *n* best moments of the movie, the *i*-th best moment starts at the *l**i*-th minute and ends at the *r**i*-th minute (more formally, the *i*-th best moment consists of minutes: *l**i*,<=*l**i*<=+<=1,<=...,<=*r**i*). Determine, what is the minimum number of minutes of the movie you have to watch if you want to watch all the best moments? Input Specification: The first line contains two space-separated integers *n*, *x* (1<=≤<=*n*<=≤<=50, 1<=≤<=*x*<=≤<=105) — the number of the best moments of the movie and the value of *x* for the second button. The following *n* lines contain the descriptions of the best moments of the movie, the *i*-th line of the description contains two integers separated by a space *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=105). It is guaranteed that for all integers *i* from 2 to *n* the following condition holds: *r**i*<=-<=1<=&lt;<=*l**i*. Output Specification: Output a single number — the answer to the problem. Demo Input: ['2 3\n5 6\n10 12\n', '1 1\n1 100000\n'] Demo Output: ['6\n', '100000\n'] Note: In the first sample, the player was initially standing on the first minute. As the minutes from the 1-st to the 4-th one don't contain interesting moments, we press the second button. Now we can not press the second button and skip 3 more minutes, because some of them contain interesting moments. Therefore, we watch the movie from the 4-th to the 6-th minute, after that the current time is 7. Similarly, we again skip 3 minutes and then watch from the 10-th to the 12-th minute of the movie. In total, we watch 6 minutes of the movie. In the second sample, the movie is very interesting, so you'll have to watch all 100000 minutes of the movie.
```python import sys input=sys.stdin.readline n, m = map(int, input().split()) time, t, temp = 0, 0, 0 for _ in range(n): a, b = map(int, input().split()) if (a == 1): time += (b - a + 1) elif (a - temp >= m): y = (a - temp) // m x = (a - temp) - (m * y) - 1 if (x<0): x = 0 time += (x + b - a + 1) else: x = (a - temp) - m - 1 time += (x + b - a) t += b + 1 temp = b + 1 print(time) ```
0
593
A
2Char
PROGRAMMING
1,200
[ "brute force", "implementation" ]
null
null
Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is that each of them uses at most two distinct letters. Andrew decided to send an article to the magazine, but as he hasn't written any article, he just decided to take a random one from magazine 26Char. However, before sending it to the magazine 2Char, he needs to adapt the text to the format of the journal. To do so, he removes some words from the chosen article, in such a way that the remaining text can be written using no more than two distinct letters. Since the payment depends from the number of non-space characters in the article, Andrew wants to keep the words with the maximum total length.
The first line of the input contains number *n* (1<=≤<=*n*<=≤<=100) — the number of words in the article chosen by Andrew. Following are *n* lines, each of them contains one word. All the words consist only of small English letters and their total length doesn't exceed 1000. The words are not guaranteed to be distinct, in this case you are allowed to use a word in the article as many times as it appears in the input.
Print a single integer — the maximum possible total length of words in Andrew's article.
[ "4\nabb\ncacc\naaa\nbbb\n", "5\na\na\nbcbcb\ncdecdecdecdecdecde\naaaa\n" ]
[ "9", "6" ]
In the first sample the optimal way to choose words is {'abb', 'aaa', 'bbb'}. In the second sample the word 'cdecdecdecdecdecde' consists of three distinct letters, and thus cannot be used in the article. The optimal answer is {'a', 'a', 'aaaa'}.
250
[ { "input": "4\nabb\ncacc\naaa\nbbb", "output": "9" }, { "input": "5\na\na\nbcbcb\ncdecdecdecdecdecde\naaaa", "output": "6" }, { "input": "1\na", "output": "1" }, { "input": "2\nz\nz", "output": "2" }, { "input": "5\nabcde\nfghij\nklmno\npqrst\nuvwxy", "output": "0" }, { "input": "6\ngggggg\ngggggg\ngggggg\ngggggg\ngggggg\ngggggg", "output": "36" }, { "input": "6\naaaaaa\naaaaaa\nbbbbbb\nbbbbbb\naaabbb\nababab", "output": "36" }, { "input": "1\nabc", "output": "0" }, { "input": "2\nabc\nbca", "output": "0" }, { "input": "3\nab\nba\nzzz", "output": "4" }, { "input": "3\nab\nba\nzzzzz", "output": "5" }, { "input": "5\nzzz\nzzzz\nzz\nz\naaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "37" }, { "input": "26\nq\nw\ne\nr\nt\ny\nu\ni\no\np\na\ns\nd\nf\ng\nh\nj\nk\nl\nz\nx\nc\nv\nb\nn\nm", "output": "2" }, { "input": "5\nzzz\nzzzz\nzz\nz\naaaaaaaaaaaaaaaaaaaaaaaaaaaf", "output": "28" }, { "input": "7\npavel\nerika\nalexxxxxxx\ngracio\nzhenya\nsudarev\nchelyaba", "output": "0" }, { "input": "31\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml\nfml", "output": "0" }, { "input": "5\nzloyfreid\ngraciocode\nschooldiary\nkazakov\nevgesha", "output": "0" }, { "input": "4\nurkop\nvisualac\ngnutl\nwtf", "output": "0" }, { "input": "3\naa\nb\nccc", "output": "5" }, { "input": "3\na\nbd\ncaaaaaaa", "output": "9" }, { "input": "4\naa\nax\nay\nxxxx", "output": "8" }, { "input": "5\nc\nbb\ne\ndd\nf", "output": "4" }, { "input": "2\naaaaa\naaaaa", "output": "10" } ]
1,446,658,428
2,928
Python 3
WRONG_ANSWER
PRETESTS
6
77
716,800
import string n = int(input()) a = [] for i in range(n): s = input() ss = sorted(s) k = 0 for j in range(0, len(s) - 1): if (s[j] != s[j + 1]): k += 1 if k <= 2: a.append(s) ans = 0 for i in range(len(a)): s = a[i] ans_c = 0 f = s[0] sec = s[0] for j in range(0, len(s) - 1): if (s[j] != s[j + 1]): f = s[j] sec = s[j + 1] break for z in range(len(a)): q = a[z] flag = False for w in range(0, len(q) - 1): if (q[w] != f and q[w] != sec): flag = True break if (flag == False): ans_c += len(q) ans = max(ans, ans_c) print(ans)
Title: 2Char Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is that each of them uses at most two distinct letters. Andrew decided to send an article to the magazine, but as he hasn't written any article, he just decided to take a random one from magazine 26Char. However, before sending it to the magazine 2Char, he needs to adapt the text to the format of the journal. To do so, he removes some words from the chosen article, in such a way that the remaining text can be written using no more than two distinct letters. Since the payment depends from the number of non-space characters in the article, Andrew wants to keep the words with the maximum total length. Input Specification: The first line of the input contains number *n* (1<=≤<=*n*<=≤<=100) — the number of words in the article chosen by Andrew. Following are *n* lines, each of them contains one word. All the words consist only of small English letters and their total length doesn't exceed 1000. The words are not guaranteed to be distinct, in this case you are allowed to use a word in the article as many times as it appears in the input. Output Specification: Print a single integer — the maximum possible total length of words in Andrew's article. Demo Input: ['4\nabb\ncacc\naaa\nbbb\n', '5\na\na\nbcbcb\ncdecdecdecdecdecde\naaaa\n'] Demo Output: ['9', '6'] Note: In the first sample the optimal way to choose words is {'abb', 'aaa', 'bbb'}. In the second sample the word 'cdecdecdecdecdecde' consists of three distinct letters, and thus cannot be used in the article. The optimal answer is {'a', 'a', 'aaaa'}.
```python import string n = int(input()) a = [] for i in range(n): s = input() ss = sorted(s) k = 0 for j in range(0, len(s) - 1): if (s[j] != s[j + 1]): k += 1 if k <= 2: a.append(s) ans = 0 for i in range(len(a)): s = a[i] ans_c = 0 f = s[0] sec = s[0] for j in range(0, len(s) - 1): if (s[j] != s[j + 1]): f = s[j] sec = s[j + 1] break for z in range(len(a)): q = a[z] flag = False for w in range(0, len(q) - 1): if (q[w] != f and q[w] != sec): flag = True break if (flag == False): ans_c += len(q) ans = max(ans, ans_c) print(ans) ```
0
995
B
Suit and Tie
PROGRAMMING
1,400
[ "greedy", "implementation", "math" ]
null
null
Allen is hosting a formal dinner party. $2n$ people come to the event in $n$ pairs (couples). After a night of fun, Allen wants to line everyone up for a final picture. The $2n$ people line up, but Allen doesn't like the ordering. Allen prefers if each pair occupies adjacent positions in the line, as this makes the picture more aesthetic. Help Allen find the minimum number of swaps of adjacent positions he must perform to make it so that each couple occupies adjacent positions in the line.
The first line contains a single integer $n$ ($1 \le n \le 100$), the number of pairs of people. The second line contains $2n$ integers $a_1, a_2, \dots, a_{2n}$. For each $i$ with $1 \le i \le n$, $i$ appears exactly twice. If $a_j = a_k = i$, that means that the $j$-th and $k$-th people in the line form a couple.
Output a single integer, representing the minimum number of adjacent swaps needed to line the people up so that each pair occupies adjacent positions.
[ "4\n1 1 2 3 3 2 4 4\n", "3\n1 1 2 2 3 3\n", "3\n3 1 2 3 1 2\n" ]
[ "2\n", "0\n", "3\n" ]
In the first sample case, we can transform $1 1 2 3 3 2 4 4 \rightarrow 1 1 2 3 2 3 4 4 \rightarrow 1 1 2 2 3 3 4 4$ in two steps. Note that the sequence $1 1 2 3 3 2 4 4 \rightarrow 1 1 3 2 3 2 4 4 \rightarrow 1 1 3 3 2 2 4 4$ also works in the same number of steps. The second sample case already satisfies the constraints; therefore we need $0$ swaps.
750
[ { "input": "4\n1 1 2 3 3 2 4 4", "output": "2" }, { "input": "3\n1 1 2 2 3 3", "output": "0" }, { "input": "3\n3 1 2 3 1 2", "output": "3" }, { "input": "8\n7 6 2 1 4 3 3 7 2 6 5 1 8 5 8 4", "output": "27" }, { "input": "2\n1 2 1 2", "output": "1" }, { "input": "3\n1 2 3 3 1 2", "output": "5" }, { "input": "38\n26 28 23 34 33 14 38 15 35 36 30 1 19 17 18 28 22 15 9 27 11 16 17 32 7 21 6 8 32 26 33 23 18 4 2 25 29 3 35 8 38 37 31 37 12 25 3 27 16 24 5 20 12 13 29 11 30 22 9 19 2 24 7 10 34 4 36 21 14 31 13 6 20 10 5 1", "output": "744" }, { "input": "24\n21 21 22 5 8 5 15 11 13 16 17 9 3 18 15 1 12 12 7 2 22 19 20 19 23 14 8 24 4 23 16 17 9 10 1 6 4 2 7 3 18 11 24 10 13 6 20 14", "output": "259" }, { "input": "1\n1 1", "output": "0" }, { "input": "19\n15 19 18 8 12 2 11 7 5 2 1 1 9 9 3 3 16 6 15 17 13 18 4 14 5 8 10 12 6 11 17 13 14 16 19 7 4 10", "output": "181" }, { "input": "8\n3 1 5 2 1 6 3 5 6 2 4 8 8 4 7 7", "output": "13" }, { "input": "2\n2 1 1 2", "output": "2" }, { "input": "81\n48 22 31 24 73 77 79 75 37 78 43 56 20 33 70 34 6 50 51 21 39 29 20 11 73 53 39 61 28 17 55 52 28 57 52 74 35 13 55 2 57 9 46 81 60 47 21 68 1 53 31 64 42 9 79 80 69 30 32 24 15 2 69 10 22 3 71 19 67 66 17 50 62 36 32 65 58 18 25 59 38 10 14 51 23 16 29 81 45 40 18 54 47 12 45 74 41 34 75 44 19 77 71 67 7 16 35 49 15 3 38 4 7 25 76 66 5 65 27 6 1 72 37 42 26 60 12 64 44 41 80 13 49 68 76 48 11 78 40 61 30 43 62 58 5 4 33 26 54 27 36 72 63 63 59 70 23 8 56 8 46 14", "output": "3186" }, { "input": "84\n10 29 12 22 55 3 81 33 64 78 46 44 69 41 34 71 24 12 22 54 63 9 65 40 36 81 32 37 83 50 28 84 53 25 72 77 41 35 50 8 29 78 72 53 21 63 16 1 79 20 66 23 38 18 44 5 27 77 32 52 42 60 67 62 64 52 14 80 4 19 15 45 40 47 42 46 68 18 70 8 3 36 65 38 73 43 59 20 66 6 51 10 58 55 51 13 4 5 43 82 71 21 9 33 47 11 61 30 76 27 24 48 75 15 48 75 2 31 83 67 59 74 56 11 39 13 45 76 26 30 39 17 61 57 68 7 70 62 49 57 49 84 31 26 56 54 74 16 60 1 80 35 82 28 79 73 14 69 6 19 25 34 23 2 58 37 7 17", "output": "3279" }, { "input": "4\n3 4 2 4 1 2 1 3", "output": "8" }, { "input": "75\n28 28 42 3 39 39 73 73 75 75 30 30 21 9 57 41 26 70 15 15 65 65 24 24 4 4 62 62 17 17 29 29 37 37 18 18 1 1 8 8 63 63 49 49 5 5 59 59 19 19 34 34 48 48 10 10 14 42 22 22 38 38 50 50 60 60 64 35 47 31 72 72 41 52 46 46 20 20 21 9 7 7 36 36 2 2 6 6 70 26 69 69 16 16 61 61 66 66 33 33 44 44 11 11 23 23 40 40 12 12 64 35 56 56 27 27 53 53 3 14 43 43 31 47 68 68 13 13 74 74 67 67 71 71 45 45 57 52 32 32 25 25 58 58 55 55 51 51 54 54", "output": "870" }, { "input": "35\n6 32 4 19 9 34 20 29 22 26 19 14 33 11 17 31 30 13 7 12 8 16 5 5 21 15 18 28 34 3 2 10 23 24 35 6 32 4 25 9 1 11 24 20 26 25 2 13 22 17 31 30 33 7 12 8 16 27 27 21 15 18 28 1 3 14 10 23 29 35", "output": "673" }, { "input": "86\n33 6 22 8 54 43 57 85 70 41 20 17 35 12 66 25 45 78 67 55 50 19 31 75 77 29 58 78 34 15 40 48 14 82 6 37 44 53 62 23 56 22 34 18 71 83 21 80 47 38 3 42 60 9 73 49 84 7 76 30 5 4 11 28 69 16 26 10 59 48 64 46 32 68 24 63 79 36 13 1 27 61 39 74 2 51 51 2 74 39 61 27 1 13 36 79 86 24 68 32 46 64 63 59 10 26 16 69 28 11 4 5 30 76 7 84 49 73 9 60 42 3 38 47 80 21 83 72 18 52 65 56 23 62 53 44 37 81 82 14 86 40 15 52 72 58 29 77 85 31 19 50 55 67 71 45 25 66 12 35 17 20 41 70 75 57 43 54 8 65 81 33", "output": "6194" } ]
1,529,945,954
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; int v[1000]; int main() { int n; cin >> n; for (int i = 0; i < 2 * n; i++) cin >> v[i]; int ans = 0; for (int i = 0; i < 2 * n; i += 2) { int x = find(v + i + 1, v + 2 * n, v[i]) - v; while (x != i + 1) ans++, swap(v[x - 1], v[x]), x--; } cout << ans << '\n'; return 0; }
Title: Suit and Tie Time Limit: None seconds Memory Limit: None megabytes Problem Description: Allen is hosting a formal dinner party. $2n$ people come to the event in $n$ pairs (couples). After a night of fun, Allen wants to line everyone up for a final picture. The $2n$ people line up, but Allen doesn't like the ordering. Allen prefers if each pair occupies adjacent positions in the line, as this makes the picture more aesthetic. Help Allen find the minimum number of swaps of adjacent positions he must perform to make it so that each couple occupies adjacent positions in the line. Input Specification: The first line contains a single integer $n$ ($1 \le n \le 100$), the number of pairs of people. The second line contains $2n$ integers $a_1, a_2, \dots, a_{2n}$. For each $i$ with $1 \le i \le n$, $i$ appears exactly twice. If $a_j = a_k = i$, that means that the $j$-th and $k$-th people in the line form a couple. Output Specification: Output a single integer, representing the minimum number of adjacent swaps needed to line the people up so that each pair occupies adjacent positions. Demo Input: ['4\n1 1 2 3 3 2 4 4\n', '3\n1 1 2 2 3 3\n', '3\n3 1 2 3 1 2\n'] Demo Output: ['2\n', '0\n', '3\n'] Note: In the first sample case, we can transform $1 1 2 3 3 2 4 4 \rightarrow 1 1 2 3 2 3 4 4 \rightarrow 1 1 2 2 3 3 4 4$ in two steps. Note that the sequence $1 1 2 3 3 2 4 4 \rightarrow 1 1 3 2 3 2 4 4 \rightarrow 1 1 3 3 2 2 4 4$ also works in the same number of steps. The second sample case already satisfies the constraints; therefore we need $0$ swaps.
```python #include <bits/stdc++.h> using namespace std; int v[1000]; int main() { int n; cin >> n; for (int i = 0; i < 2 * n; i++) cin >> v[i]; int ans = 0; for (int i = 0; i < 2 * n; i += 2) { int x = find(v + i + 1, v + 2 * n, v[i]) - v; while (x != i + 1) ans++, swap(v[x - 1], v[x]), x--; } cout << ans << '\n'; return 0; } ```
-1
898
E
Squares and not squares
PROGRAMMING
1,600
[ "constructive algorithms", "greedy" ]
null
null
Ann and Borya have *n* piles with candies and *n* is even number. There are *a**i* candies in pile with number *i*. Ann likes numbers which are square of some integer and Borya doesn't like numbers which are square of any integer. During one move guys can select some pile with candies and add one candy to it (this candy is new and doesn't belong to any other pile) or remove one candy (if there is at least one candy in this pile). Find out minimal number of moves that is required to make exactly *n*<=/<=2 piles contain number of candies that is a square of some integer and exactly *n*<=/<=2 piles contain number of candies that is not a square of any integer.
First line contains one even integer *n* (2<=≤<=*n*<=≤<=200<=000) — number of piles with candies. Second line contains sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — amounts of candies in each pile.
Output minimal number of steps required to make exactly *n*<=/<=2 piles contain number of candies that is a square of some integer and exactly *n*<=/<=2 piles contain number of candies that is not a square of any integer. If condition is already satisfied output 0.
[ "4\n12 14 30 4\n", "6\n0 0 0 0 0 0\n", "6\n120 110 23 34 25 45\n", "10\n121 56 78 81 45 100 1 0 54 78\n" ]
[ "2\n", "6\n", "3\n", "0\n" ]
In first example you can satisfy condition in two moves. During each move you should add one candy to second pile. After it size of second pile becomes 16. After that Borya and Ann will have two piles with number of candies which is a square of integer (second and fourth pile) and two piles with number of candies which is not a square of any integer (first and third pile). In second example you should add two candies to any three piles.
2,000
[ { "input": "4\n12 14 30 4", "output": "2" }, { "input": "6\n0 0 0 0 0 0", "output": "6" }, { "input": "6\n120 110 23 34 25 45", "output": "3" }, { "input": "10\n121 56 78 81 45 100 1 0 54 78", "output": "0" }, { "input": "10\n0 675178538 310440616 608075179 0 0 0 0 0 0", "output": "4" }, { "input": "10\n49727640 89440577 0 957792200 0 0 0 0 623726477 0", "output": "2" }, { "input": "20\n4 595258838 0 305922562 0 471450344 1 1 29794053 307197649 0 32960227 1 0 0 1 1 0 0 1", "output": "4" }, { "input": "100\n444272562 25 25 0 49 73291074 64 100 638092144 756033694 0 700405846 16 25 25 100 36 25 269573395 288578186 366853675 36 81 49 4 0 25 49 9 64 0 4 36 36 49 0 64 64 532899768 1 64 9 549673690 25 64 4 817183855 25 146555318 36 495564252 100 49 9 36 100 49 100 4 100 9 64 9 432227412 756728309 25 0 332072516 100 64 0 92286436 49 0 81 49 0 49 0 100 409473792 25 814343057 81 1 16 0 16 886097466 64 492116229 81 270298243 64 81 100 0 49 16 16", "output": "28" }, { "input": "2\n0 0", "output": "2" }, { "input": "2\n1 0", "output": "1" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n0 2", "output": "0" }, { "input": "2\n2 0", "output": "0" }, { "input": "2\n0 1000000000", "output": "0" }, { "input": "2\n31622 31623", "output": "61" }, { "input": "2\n31622 31622", "output": "62" } ]
1,632,060,664
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
4
2,000
24,678,400
# -*- coding:utf-8 -*- if __name__ == '__main__': n = int(input()) a = list(map(int, input().split())) b = [(0, 0) for _ in range(n)] def is_sqr(x): i = 0 while i * i <= x: if i * i == x: return 0, (2 if x == 0 else 1) i += 1 return i * i - x, 0 x, y = 0, 0 for i in range(n): b[i] = is_sqr(a[i]) if b[i][0] == 0: x += 1 else: y += 1 def get_res(i, n): p = [] for v in b: if v[i]: p.append(v[i]) return sum(sorted(p)[:n]) m = n >> 1 res = 0 if x > m: res = get_res(1, x - m) elif y > m: res = get_res(0, y - m) print(res)
Title: Squares and not squares Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ann and Borya have *n* piles with candies and *n* is even number. There are *a**i* candies in pile with number *i*. Ann likes numbers which are square of some integer and Borya doesn't like numbers which are square of any integer. During one move guys can select some pile with candies and add one candy to it (this candy is new and doesn't belong to any other pile) or remove one candy (if there is at least one candy in this pile). Find out minimal number of moves that is required to make exactly *n*<=/<=2 piles contain number of candies that is a square of some integer and exactly *n*<=/<=2 piles contain number of candies that is not a square of any integer. Input Specification: First line contains one even integer *n* (2<=≤<=*n*<=≤<=200<=000) — number of piles with candies. Second line contains sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109) — amounts of candies in each pile. Output Specification: Output minimal number of steps required to make exactly *n*<=/<=2 piles contain number of candies that is a square of some integer and exactly *n*<=/<=2 piles contain number of candies that is not a square of any integer. If condition is already satisfied output 0. Demo Input: ['4\n12 14 30 4\n', '6\n0 0 0 0 0 0\n', '6\n120 110 23 34 25 45\n', '10\n121 56 78 81 45 100 1 0 54 78\n'] Demo Output: ['2\n', '6\n', '3\n', '0\n'] Note: In first example you can satisfy condition in two moves. During each move you should add one candy to second pile. After it size of second pile becomes 16. After that Borya and Ann will have two piles with number of candies which is a square of integer (second and fourth pile) and two piles with number of candies which is not a square of any integer (first and third pile). In second example you should add two candies to any three piles.
```python # -*- coding:utf-8 -*- if __name__ == '__main__': n = int(input()) a = list(map(int, input().split())) b = [(0, 0) for _ in range(n)] def is_sqr(x): i = 0 while i * i <= x: if i * i == x: return 0, (2 if x == 0 else 1) i += 1 return i * i - x, 0 x, y = 0, 0 for i in range(n): b[i] = is_sqr(a[i]) if b[i][0] == 0: x += 1 else: y += 1 def get_res(i, n): p = [] for v in b: if v[i]: p.append(v[i]) return sum(sorted(p)[:n]) m = n >> 1 res = 0 if x > m: res = get_res(1, x - m) elif y > m: res = get_res(0, y - m) print(res) ```
0
706
B
Interesting drink
PROGRAMMING
1,100
[ "binary search", "dp", "implementation" ]
null
null
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins. Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink. The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop. The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink. Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day.
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
[ "5\n3 10 8 6 11\n4\n1\n10\n3\n11\n" ]
[ "0\n4\n1\n5\n" ]
On the first day, Vasiliy won't be able to buy a drink in any of the shops. On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4. On the third day, Vasiliy can buy a drink only in the shop number 1. Finally, on the last day Vasiliy can buy a drink in any shop.
1,000
[ { "input": "5\n3 10 8 6 11\n4\n1\n10\n3\n11", "output": "0\n4\n1\n5" }, { "input": "5\n868 987 714 168 123\n10\n424\n192\n795\n873\n117\n914\n735\n158\n631\n471", "output": "2\n2\n3\n4\n0\n4\n3\n1\n2\n2" }, { "input": "3\n435 482 309\n7\n245\n241\n909\n745\n980\n29\n521", "output": "0\n0\n3\n3\n3\n0\n3" }, { "input": "1\n653\n9\n903\n980\n80\n770\n965\n874\n381\n657\n969", "output": "1\n1\n0\n1\n1\n1\n0\n1\n1" }, { "input": "12\n35345 58181 32223 84621 35905 73863 99537 30666 67771 39229 36847 29038\n23\n55052824\n82504840\n35160556\n78141700\n73401989\n86305919\n39430705\n31939373\n23501765\n4406029\n61436920\n14295390\n34275309\n28028753\n85724689\n70158847\n2396455\n66994588\n84024224\n30175981\n65622319\n76517111\n76605341", "output": "12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12" }, { "input": "4\n698 193 1584 76192\n4\n553640\n310518\n274280\n429192", "output": "4\n4\n4\n4" }, { "input": "1\n1\n1\n1000000000", "output": "1" }, { "input": "1\n1\n1\n100005", "output": "1" }, { "input": "3\n1 2 3\n1\n100005", "output": "3" }, { "input": "2\n1 2\n3\n100004\n100005\n100006", "output": "2\n2\n2" }, { "input": "3\n1 1 1\n1\n1", "output": "3" }, { "input": "1\n1\n1\n1", "output": "1" }, { "input": "3\n1 2 3\n1\n100000", "output": "3" }, { "input": "5\n1 1 1 1 10\n2\n1\n10", "output": "4\n5" }, { "input": "5\n3 10 8 6 11\n1\n10000000", "output": "5" } ]
1,690,011,576
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
93
2,867,200
cwefluwyevfowuyevfkywtevfkweyftvwef
Title: Interesting drink Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins. Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola". Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink. The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop. The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink. Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day. Output Specification: Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day. Demo Input: ['5\n3 10 8 6 11\n4\n1\n10\n3\n11\n'] Demo Output: ['0\n4\n1\n5\n'] Note: On the first day, Vasiliy won't be able to buy a drink in any of the shops. On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4. On the third day, Vasiliy can buy a drink only in the shop number 1. Finally, on the last day Vasiliy can buy a drink in any shop.
```python cwefluwyevfowuyevfkywtevfkweyftvwef ```
-1
554
A
Kyoya and Photobooks
PROGRAMMING
900
[ "brute force", "math", "strings" ]
null
null
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has? Please help Haruhi solve this problem.
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters.
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
[ "a\n", "hi\n" ]
[ "51\n", "76\n" ]
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
250
[ { "input": "a", "output": "51" }, { "input": "hi", "output": "76" }, { "input": "y", "output": "51" }, { "input": "kgan", "output": "126" }, { "input": "zoabkyuvus", "output": "276" }, { "input": "spyemhyznjieyhhbk", "output": "451" }, { "input": "xulsyfkuizjauadjjopu", "output": "526" }, { "input": "e", "output": "51" }, { "input": "zv", "output": "76" }, { "input": "jgv", "output": "101" }, { "input": "zsfo", "output": "126" }, { "input": "jselr", "output": "151" }, { "input": "dwemig", "output": "176" }, { "input": "mddoxsf", "output": "201" }, { "input": "jgirkrmi", "output": "226" }, { "input": "spkxurcum", "output": "251" }, { "input": "fykkiubdkt", "output": "276" }, { "input": "fznbcxsxygs", "output": "301" }, { "input": "qcrvrdqcbtou", "output": "326" }, { "input": "qktrbjzrqgmlr", "output": "351" }, { "input": "foamodbvptlxxg", "output": "376" }, { "input": "ydzpjhsidipricw", "output": "401" }, { "input": "lpfpndmjfvqejdgf", "output": "426" }, { "input": "ofkvparuvjtggnmab", "output": "451" }, { "input": "xxncfutrtxcwdzwbgs", "output": "476" }, { "input": "zovhffccflkgqncsdte", "output": "501" }, { "input": "cskgsxywlvfeicoueglr", "output": "526" }, { "input": "gggggggggggggggggggg", "output": "526" }, { "input": "qdqdddqddqqddqddqdqd", "output": "526" }, { "input": "takttttaakaaktakttkt", "output": "526" }, { "input": "coccoooogogcgocccmcg", "output": "526" }, { "input": "kskkskkkssksssk", "output": "401" }, { "input": "lllllllllllllll", "output": "401" } ]
1,442,765,554
2,147,483,647
Python 3
OK
TESTS
33
62
0
import sys y = sys.stdin.readline().rstrip() x = len(y) print((x + 1) * 26 - x)
Title: Kyoya and Photobooks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has? Please help Haruhi solve this problem. Input Specification: The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters. Output Specification: Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make. Demo Input: ['a\n', 'hi\n'] Demo Output: ['51\n', '76\n'] Note: In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
```python import sys y = sys.stdin.readline().rstrip() x = len(y) print((x + 1) * 26 - x) ```
3
129
A
Cookies
PROGRAMMING
900
[ "implementation" ]
null
null
Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even?
The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag.
Print in the only line the only number — the sought number of ways. If there are no such ways print 0.
[ "1\n1\n", "10\n1 2 2 3 4 4 4 2 2 2\n", "11\n2 2 2 2 2 2 2 2 2 2 99\n" ]
[ "1\n", "8\n", "1\n" ]
In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies. In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total. In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
500
[ { "input": "1\n1", "output": "1" }, { "input": "10\n1 2 2 3 4 4 4 2 2 2", "output": "8" }, { "input": "11\n2 2 2 2 2 2 2 2 2 2 99", "output": "1" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n2 2", "output": "2" }, { "input": "2\n1 2", "output": "1" }, { "input": "7\n7 7 7 7 7 7 7", "output": "7" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "4" }, { "input": "100\n1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2", "output": "50" }, { "input": "99\n99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99 100 99", "output": "49" }, { "input": "82\n43 44 96 33 23 42 33 66 53 87 8 90 43 91 40 88 51 18 48 62 59 10 22 20 54 6 13 63 2 56 31 52 98 42 54 32 26 77 9 24 33 91 16 30 39 34 78 82 73 90 12 15 67 76 30 18 44 86 84 98 65 54 100 79 28 34 40 56 11 43 72 35 86 59 89 40 30 33 7 19 44 15", "output": "50" }, { "input": "17\n50 14 17 77 74 74 38 76 41 27 45 29 66 98 38 73 38", "output": "7" }, { "input": "94\n81 19 90 99 26 11 86 44 78 36 80 59 99 90 78 72 71 20 94 56 42 40 71 84 10 85 10 70 52 27 39 55 90 16 48 25 7 79 99 100 38 10 99 56 3 4 78 9 16 57 14 40 52 54 57 70 30 86 56 84 97 60 59 69 49 66 23 92 90 46 86 73 53 47 1 83 14 20 24 66 13 45 41 14 86 75 55 88 48 95 82 24 47 87", "output": "39" }, { "input": "88\n64 95 12 90 40 65 98 45 52 54 79 7 81 25 98 19 68 82 41 53 35 50 5 22 32 21 8 39 8 6 72 27 81 30 12 79 21 42 60 2 66 87 46 93 62 78 52 71 76 32 78 94 86 85 55 15 34 76 41 20 32 26 94 81 89 45 74 49 11 40 40 39 49 46 80 85 90 23 80 40 86 58 70 26 48 93 23 53", "output": "37" }, { "input": "84\n95 9 43 43 13 84 60 90 1 8 97 99 54 34 59 83 33 15 51 26 40 12 66 65 19 30 29 78 92 60 25 13 19 84 71 73 12 24 54 49 16 41 11 40 57 59 34 40 39 9 71 83 1 77 79 53 94 47 78 55 77 85 29 52 80 90 53 77 97 97 27 79 28 23 83 25 26 22 49 86 63 56 3 32", "output": "51" }, { "input": "47\n61 97 76 94 91 22 2 68 62 73 90 47 16 79 44 71 98 68 43 6 53 52 40 27 68 67 43 96 14 91 60 61 96 24 97 13 32 65 85 96 81 77 34 18 23 14 80", "output": "21" }, { "input": "69\n71 1 78 74 58 89 30 6 100 90 22 61 11 59 14 74 27 25 78 61 45 19 25 33 37 4 52 43 53 38 9 100 56 67 69 38 76 91 63 60 93 52 28 61 9 98 8 14 57 63 89 64 98 51 36 66 36 86 13 82 50 91 52 64 86 78 78 83 81", "output": "37" }, { "input": "52\n38 78 36 75 19 3 56 1 39 97 24 79 84 16 93 55 96 64 12 24 1 86 80 29 12 32 36 36 73 39 76 65 53 98 30 20 28 8 86 43 70 22 75 69 62 65 81 25 53 40 71 59", "output": "28" }, { "input": "74\n81 31 67 97 26 75 69 81 11 13 13 74 77 88 52 20 52 64 66 75 72 28 41 54 26 75 41 91 75 15 18 36 13 83 63 61 14 48 53 63 19 67 35 48 23 65 73 100 44 55 92 88 99 17 73 25 83 7 31 89 12 80 98 39 42 75 14 29 81 35 77 87 33 94", "output": "47" }, { "input": "44\n46 56 31 31 37 71 94 2 14 100 45 72 36 72 80 3 38 54 42 98 50 32 31 42 62 31 45 50 95 100 18 17 64 22 18 25 52 56 70 57 43 40 81 28", "output": "15" }, { "input": "22\n28 57 40 74 51 4 45 84 99 12 95 14 92 60 47 81 84 51 31 91 59 42", "output": "11" }, { "input": "59\n73 45 94 76 41 49 65 13 74 66 36 25 47 75 40 23 92 72 11 32 32 8 81 26 68 56 41 8 76 47 96 55 70 11 84 14 83 18 70 22 30 39 28 100 48 11 92 45 78 69 86 1 54 90 98 91 13 17 35", "output": "33" }, { "input": "63\n20 18 44 94 68 57 16 43 74 55 68 24 21 95 76 84 50 50 47 86 86 12 58 55 28 72 86 18 34 45 81 88 3 72 41 9 60 90 81 93 12 6 9 6 2 41 1 7 9 29 81 14 64 80 20 36 67 54 7 5 35 81 22", "output": "37" }, { "input": "28\n49 84 48 19 44 91 11 82 96 95 88 90 71 82 87 25 31 23 18 13 98 45 26 65 35 12 31 14", "output": "15" }, { "input": "61\n34 18 28 64 28 45 9 77 77 20 63 92 79 16 16 100 86 2 91 91 57 15 31 95 10 88 84 5 82 83 53 98 59 17 97 80 76 80 81 3 91 81 87 93 61 46 10 49 6 22 21 75 63 89 21 81 30 19 67 38 77", "output": "35" }, { "input": "90\n41 90 43 1 28 75 90 50 3 70 76 64 81 63 25 69 83 82 29 91 59 66 21 61 7 55 72 49 38 69 72 20 64 58 30 81 61 29 96 14 39 5 100 20 29 98 75 29 44 78 97 45 26 77 73 59 22 99 41 6 3 96 71 20 9 18 96 18 90 62 34 78 54 5 41 6 73 33 2 54 26 21 18 6 45 57 43 73 95 75", "output": "42" }, { "input": "45\n93 69 4 27 20 14 71 48 79 3 32 26 49 30 57 88 13 56 49 61 37 32 47 41 41 70 45 68 82 18 8 6 25 20 15 13 71 99 28 6 52 34 19 59 26", "output": "23" }, { "input": "33\n29 95 48 49 91 10 83 71 47 25 66 36 51 12 34 10 54 74 41 96 89 26 89 1 42 33 1 62 9 32 49 65 78", "output": "15" }, { "input": "34\n98 24 42 36 41 82 28 58 89 34 77 70 76 44 74 54 66 100 13 79 4 88 21 1 11 45 91 29 87 100 29 54 82 78", "output": "13" }, { "input": "29\n91 84 26 84 9 63 52 9 65 56 90 2 36 7 67 33 91 14 65 38 53 36 81 83 85 14 33 95 51", "output": "17" }, { "input": "100\n2 88 92 82 87 100 78 28 84 43 78 32 43 33 97 19 15 52 29 84 57 72 54 13 99 28 82 79 40 70 34 92 91 53 9 88 27 43 14 92 72 37 26 37 20 95 19 34 49 64 33 37 34 27 80 79 9 54 99 68 25 4 68 73 46 66 24 78 3 87 26 52 50 84 4 95 23 83 39 58 86 36 33 16 98 2 84 19 53 12 69 60 10 11 78 17 79 92 77 59", "output": "45" }, { "input": "100\n2 95 45 73 9 54 20 97 57 82 88 26 18 71 25 27 75 54 31 11 58 85 69 75 72 91 76 5 25 80 45 49 4 73 8 81 81 38 5 12 53 77 7 96 90 35 28 80 73 94 19 69 96 17 94 49 69 9 32 19 5 12 46 29 26 40 59 59 6 95 82 50 72 2 45 69 12 5 72 29 39 72 23 96 81 28 28 56 68 58 37 41 30 1 90 84 15 24 96 43", "output": "53" }, { "input": "100\n27 72 35 91 13 10 35 45 24 55 83 84 63 96 29 79 34 67 63 92 48 83 18 77 28 27 49 66 29 88 55 15 6 58 14 67 94 36 77 7 7 64 61 52 71 18 36 99 76 6 50 67 16 13 41 7 89 73 61 51 78 22 78 32 76 100 3 31 89 71 63 53 15 85 77 54 89 33 68 74 3 23 57 5 43 89 75 35 9 86 90 11 31 46 48 37 74 17 77 8", "output": "40" }, { "input": "100\n69 98 69 88 11 49 55 8 25 91 17 81 47 26 15 73 96 71 18 42 42 61 48 14 92 78 35 72 4 27 62 75 83 79 17 16 46 80 96 90 82 54 37 69 85 21 67 70 96 10 46 63 21 59 56 92 54 88 77 30 75 45 44 29 86 100 51 11 65 69 66 56 82 63 27 1 51 51 13 10 3 55 26 85 34 16 87 72 13 100 81 71 90 95 86 50 83 55 55 54", "output": "53" }, { "input": "100\n34 35 99 64 2 66 78 93 20 48 12 79 19 10 87 7 42 92 60 79 5 2 24 89 57 48 63 92 74 4 16 51 7 12 90 48 87 17 18 73 51 58 97 97 25 38 15 97 96 73 67 91 6 75 14 13 87 79 75 3 15 55 35 95 71 45 10 13 20 37 82 26 2 22 13 83 97 84 39 79 43 100 54 59 98 8 61 34 7 65 75 44 24 77 73 88 34 95 44 77", "output": "55" }, { "input": "100\n15 86 3 1 51 26 74 85 37 87 64 58 10 6 57 26 30 47 85 65 24 72 50 40 12 35 91 47 91 60 47 87 95 34 80 91 26 3 36 39 14 86 28 70 51 44 28 21 72 79 57 61 16 71 100 94 57 67 36 74 24 21 89 85 25 2 97 67 76 53 76 80 97 64 35 13 8 32 21 52 62 61 67 14 74 73 66 44 55 76 24 3 43 42 99 61 36 80 38 66", "output": "52" }, { "input": "100\n45 16 54 54 80 94 74 93 75 85 58 95 79 30 81 2 84 4 57 23 92 64 78 1 50 36 13 27 56 54 10 77 87 1 5 38 85 74 94 82 30 45 72 83 82 30 81 82 82 3 69 82 7 92 39 60 94 42 41 5 3 17 67 21 79 44 79 96 28 3 53 68 79 89 63 83 1 44 4 31 84 15 73 77 19 66 54 6 73 1 67 24 91 11 86 45 96 82 20 89", "output": "51" }, { "input": "100\n84 23 50 32 90 71 92 43 58 70 6 82 7 55 85 19 70 89 12 26 29 56 74 30 2 27 4 39 63 67 91 81 11 33 75 10 82 88 39 43 43 80 68 35 55 67 53 62 73 65 86 74 43 51 14 48 42 92 83 57 22 33 24 99 5 27 78 96 7 28 11 15 8 38 85 67 5 92 24 96 57 59 14 95 91 4 9 18 45 33 74 83 64 85 14 51 51 94 29 2", "output": "53" }, { "input": "100\n77 56 56 45 73 55 32 37 39 50 30 95 79 21 44 34 51 43 86 91 39 30 85 15 35 93 100 14 57 31 80 79 38 40 88 4 91 54 7 95 76 26 62 84 17 33 67 47 6 82 69 51 17 2 59 24 11 12 31 90 12 11 55 38 72 49 30 50 42 46 5 97 9 9 30 45 86 23 19 82 40 42 5 40 35 98 35 32 60 60 5 28 84 35 21 49 68 53 68 23", "output": "48" }, { "input": "100\n78 38 79 61 45 86 83 83 86 90 74 69 2 84 73 39 2 5 20 71 24 80 54 89 58 34 77 40 39 62 2 47 28 53 97 75 88 98 94 96 33 71 44 90 47 36 19 89 87 98 90 87 5 85 34 79 82 3 42 88 89 63 35 7 89 30 40 48 12 41 56 76 83 60 80 80 39 56 77 4 72 96 30 55 57 51 7 19 11 1 66 1 91 87 11 62 95 85 79 25", "output": "48" }, { "input": "100\n5 34 23 20 76 75 19 51 17 82 60 13 83 6 65 16 20 43 66 54 87 10 87 73 50 24 16 98 33 28 80 52 54 82 26 92 14 13 84 92 94 29 61 21 60 20 48 94 24 20 75 70 58 27 68 45 86 89 29 8 67 38 83 48 18 100 11 22 46 84 52 97 70 19 50 75 3 7 52 53 72 41 18 31 1 38 49 53 11 64 99 76 9 87 48 12 100 32 44 71", "output": "58" }, { "input": "100\n76 89 68 78 24 72 73 95 98 72 58 15 2 5 56 32 9 65 50 70 94 31 29 54 89 52 31 93 43 56 26 35 72 95 51 55 78 70 11 92 17 5 54 94 81 31 78 95 73 91 95 37 59 9 53 48 65 55 84 8 45 97 64 37 96 34 36 53 66 17 72 48 99 23 27 18 92 84 44 73 60 78 53 29 68 99 19 39 61 40 69 6 77 12 47 29 15 4 8 45", "output": "53" }, { "input": "100\n82 40 31 53 8 50 85 93 3 84 54 17 96 59 51 42 18 19 35 84 79 31 17 46 54 82 72 49 35 73 26 89 61 73 3 50 12 29 25 77 88 21 58 24 22 89 96 54 82 29 96 56 77 16 1 68 90 93 20 23 57 22 31 18 92 90 51 14 50 72 31 54 12 50 66 62 2 34 17 45 68 50 87 97 23 71 1 72 17 82 42 15 20 78 4 49 66 59 10 17", "output": "54" }, { "input": "100\n32 82 82 24 39 53 48 5 29 24 9 37 91 37 91 95 1 97 84 52 12 56 93 47 22 20 14 17 40 22 79 34 24 2 69 30 69 29 3 89 21 46 60 92 39 29 18 24 49 18 40 22 60 13 77 50 39 64 50 70 99 8 66 31 90 38 20 54 7 21 5 56 41 68 69 20 54 89 69 62 9 53 43 89 81 97 15 2 52 78 89 65 16 61 59 42 56 25 32 52", "output": "49" }, { "input": "100\n72 54 23 24 97 14 99 87 15 25 7 23 17 87 72 31 71 87 34 82 51 77 74 85 62 38 24 7 84 48 98 21 29 71 70 84 25 58 67 92 18 44 32 9 81 15 53 29 63 18 86 16 7 31 38 99 70 32 89 16 23 11 66 96 69 82 97 59 6 9 49 80 85 19 6 9 52 51 85 74 53 46 73 55 31 63 78 61 34 80 77 65 87 77 92 52 89 8 52 31", "output": "44" }, { "input": "100\n56 88 8 19 7 15 11 54 35 50 19 57 63 72 51 43 50 19 57 90 40 100 8 92 11 96 30 32 59 65 93 47 62 3 50 41 30 50 72 83 61 46 83 60 20 46 33 1 5 18 83 22 34 16 41 95 63 63 7 59 55 95 91 29 64 60 64 81 45 45 10 9 88 37 69 85 21 82 41 76 42 34 47 78 51 83 65 100 13 22 59 76 63 1 26 86 36 94 99 74", "output": "46" }, { "input": "100\n27 89 67 60 62 80 43 50 28 88 72 5 94 11 63 91 18 78 99 3 71 26 12 97 74 62 23 24 22 3 100 72 98 7 94 32 12 75 61 88 42 48 10 14 45 9 48 56 73 76 70 70 79 90 35 39 96 37 81 11 19 65 99 39 23 79 34 61 35 74 90 37 73 23 46 21 94 84 73 58 11 89 13 9 10 85 42 78 73 32 53 39 49 90 43 5 28 31 97 75", "output": "53" }, { "input": "100\n33 24 97 96 1 14 99 51 13 65 67 20 46 88 42 44 20 49 5 89 98 83 15 40 74 83 58 3 10 79 34 2 69 28 37 100 55 52 14 8 44 94 97 89 6 42 11 28 30 33 55 56 20 57 52 25 75 1 87 42 62 41 37 12 54 85 95 80 42 36 94 96 28 76 54 36 4 17 26 24 62 15 17 79 84 36 92 78 74 91 96 77 54 92 81 91 62 98 37 37", "output": "43" }, { "input": "100\n86 24 61 15 11 85 1 31 47 36 23 36 59 34 3 27 16 29 82 28 58 52 52 66 71 61 98 39 60 20 67 41 67 90 73 29 92 17 70 95 58 98 58 32 21 73 46 56 87 72 80 75 40 27 94 31 59 92 93 37 14 99 96 21 97 23 81 91 52 52 96 94 92 28 38 29 52 16 57 27 17 24 91 21 79 55 96 98 95 94 23 78 79 12 77 35 32 75 100 82", "output": "51" }, { "input": "100\n88 85 41 37 69 21 7 69 36 5 92 26 64 75 22 46 67 20 70 22 62 66 38 24 47 49 68 30 90 31 67 86 86 82 9 51 43 45 48 42 73 44 31 94 45 60 54 66 20 87 11 94 34 32 87 66 56 28 75 39 37 90 72 93 55 72 31 42 30 71 87 61 4 12 12 81 23 61 56 98 71 32 30 33 96 63 92 16 8 78 47 91 47 54 49 3 81 82 41 5", "output": "47" }, { "input": "1\n2", "output": "1" }, { "input": "5\n1 1 3 2 2", "output": "3" } ]
1,591,646,334
2,147,483,647
PyPy 3
OK
TESTS
52
312
0
n = int(input()) lst = list(map(int,input().split())) k = 0 for i in range(n): if lst[i] % 2 == 0: k += 1 if sum(lst) % 2 == 0: print(k) else: print(len(lst) - k)
Title: Cookies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olga came to visit the twins Anna and Maria and saw that they have many cookies. The cookies are distributed into bags. As there are many cookies, Olga decided that it's no big deal if she steals a bag. However, she doesn't want the sisters to quarrel because of nothing when they divide the cookies. That's why Olga wants to steal a bag with cookies so that the number of cookies in the remaining bags was even, that is, so that Anna and Maria could evenly divide it into two (even 0 remaining cookies will do, just as any other even number). How many ways there are to steal exactly one cookie bag so that the total number of cookies in the remaining bags was even? Input Specification: The first line contains the only integer *n* (1<=≤<=*n*<=≤<=100) — the number of cookie bags Anna and Maria have. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) — the number of cookies in the *i*-th bag. Output Specification: Print in the only line the only number — the sought number of ways. If there are no such ways print 0. Demo Input: ['1\n1\n', '10\n1 2 2 3 4 4 4 2 2 2\n', '11\n2 2 2 2 2 2 2 2 2 2 99\n'] Demo Output: ['1\n', '8\n', '1\n'] Note: In the first sample Olga should take the only bag so that the twins ended up with the even number of cookies. In the second sample Olga can take any of five bags with two cookies or any of three bags with four cookies — 5 + 3 = 8 ways in total. In the third sample, no matter which bag with two cookies Olga chooses, the twins are left with 2 * 9 + 99 = 117 cookies. Thus, Olga has only one option: to take the bag with 99 cookies.
```python n = int(input()) lst = list(map(int,input().split())) k = 0 for i in range(n): if lst[i] % 2 == 0: k += 1 if sum(lst) % 2 == 0: print(k) else: print(len(lst) - k) ```
3
637
B
Chat Order
PROGRAMMING
1,200
[ "*special", "binary search", "constructive algorithms", "data structures", "sortings" ]
null
null
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
[ "4\nalex\nivan\nroman\nivan\n", "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n" ]
[ "ivan\nroman\nalex\n", "alina\nmaria\nekaterina\ndarya\n" ]
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
1,000
[ { "input": "4\nalex\nivan\nroman\nivan", "output": "ivan\nroman\nalex" }, { "input": "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina", "output": "alina\nmaria\nekaterina\ndarya" }, { "input": "1\nwdi", "output": "wdi" }, { "input": "2\nypg\nypg", "output": "ypg" }, { "input": "3\nexhll\nexhll\narruapexj", "output": "arruapexj\nexhll" }, { "input": "3\nfv\nle\nle", "output": "le\nfv" }, { "input": "8\nm\nm\nm\nm\nm\nm\nm\nm", "output": "m" }, { "input": "10\nr\nr\ni\nw\nk\nr\nb\nu\nu\nr", "output": "r\nu\nb\nk\nw\ni" }, { "input": "7\ne\nfau\ncmk\nnzs\nby\nwx\ntjmok", "output": "tjmok\nwx\nby\nnzs\ncmk\nfau\ne" }, { "input": "6\nklrj\nwe\nklrj\nwe\nwe\nwe", "output": "we\nklrj" }, { "input": "8\nzncybqmh\naeebef\nzncybqmh\nn\naeebef\nzncybqmh\nzncybqmh\nzncybqmh", "output": "zncybqmh\naeebef\nn" }, { "input": "30\nkqqcbs\nvap\nkymomn\nj\nkqqcbs\nfuzlzoum\nkymomn\ndbh\nfuzlzoum\nkymomn\nvap\nvlgzs\ndbh\nvlgzs\nbvy\ndbh\nkymomn\nkymomn\neoqql\nkymomn\nkymomn\nkqqcbs\nvlgzs\nkqqcbs\nkqqcbs\nfuzlzoum\nvlgzs\nrylgdoo\nvlgzs\nrylgdoo", "output": "rylgdoo\nvlgzs\nfuzlzoum\nkqqcbs\nkymomn\neoqql\ndbh\nbvy\nvap\nj" }, { "input": "40\nji\nv\nv\nns\nji\nn\nji\nv\nfvy\nvje\nns\nvje\nv\nhas\nv\nusm\nhas\nfvy\nvje\nkdb\nn\nv\nji\nji\nn\nhas\nv\nji\nkdb\nr\nvje\nns\nv\nusm\nn\nvje\nhas\nns\nhas\nn", "output": "n\nhas\nns\nvje\nusm\nv\nr\nkdb\nji\nfvy" }, { "input": "50\njcg\nvle\njopb\nepdb\nnkef\nfv\nxj\nufe\nfuy\noqta\ngbc\nyuz\nec\nyji\nkuux\ncwm\ntq\nnno\nhp\nzry\nxxpp\ntjvo\ngyz\nkwo\nvwqz\nyaqc\njnj\nwoav\nqcv\ndcu\ngc\nhovn\nop\nevy\ndc\ntrpu\nyb\nuzfa\npca\noq\nnhxy\nsiqu\nde\nhphy\nc\nwovu\nf\nbvv\ndsik\nlwyg", "output": "lwyg\ndsik\nbvv\nf\nwovu\nc\nhphy\nde\nsiqu\nnhxy\noq\npca\nuzfa\nyb\ntrpu\ndc\nevy\nop\nhovn\ngc\ndcu\nqcv\nwoav\njnj\nyaqc\nvwqz\nkwo\ngyz\ntjvo\nxxpp\nzry\nhp\nnno\ntq\ncwm\nkuux\nyji\nec\nyuz\ngbc\noqta\nfuy\nufe\nxj\nfv\nnkef\nepdb\njopb\nvle\njcg" }, { "input": "100\nvhh\nvhh\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh", "output": "vhh\nfa" }, { "input": "2\naa\nbb", "output": "bb\naa" }, { "input": "2\naa\na", "output": "a\naa" }, { "input": "3\naa\naa\naa", "output": "aa" }, { "input": "5\naa\na\naa\na\naa", "output": "aa\na" }, { "input": "7\naaaa\naaaa\naaa\na\naa\naaaaaaa\naaa", "output": "aaa\naaaaaaa\naa\na\naaaa" }, { "input": "5\na\naa\naaa\naaaa\na", "output": "a\naaaa\naaa\naa" }, { "input": "12\naaaaa\naaaaaa\naaaa\naaaaaa\naa\naaaa\naaaa\naaaaaa\na\naaa\naaaaaaaa\naa", "output": "aa\naaaaaaaa\naaa\na\naaaaaa\naaaa\naaaaa" }, { "input": "3\na\naa\naaa", "output": "aaa\naa\na" }, { "input": "9\nzzz\nzzzzz\nzzz\nzzzz\nzz\nzzzz\nzzzzz\nzzzz\nzzzzzzz", "output": "zzzzzzz\nzzzz\nzzzzz\nzz\nzzz" } ]
1,639,662,073
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
12
3,000
716,800
n = int(input()); chat = []; for x in range(n): people = input(); if(people in chat): index = chat.index(people); chat.pop(index); chat.insert(0,people); else: chat.insert(0,people); for y in range(len(chat)): print(chat[y]);
Title: Chat Order Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10. Output Specification: Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom. Demo Input: ['4\nalex\nivan\nroman\nivan\n', '8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n'] Demo Output: ['ivan\nroman\nalex\n', 'alina\nmaria\nekaterina\ndarya\n'] Note: In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
```python n = int(input()); chat = []; for x in range(n): people = input(); if(people in chat): index = chat.index(people); chat.pop(index); chat.insert(0,people); else: chat.insert(0,people); for y in range(len(chat)): print(chat[y]); ```
0
266
A
Stones on the Table
PROGRAMMING
800
[ "implementation" ]
null
null
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table. The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Print a single integer — the answer to the problem.
[ "3\nRRG\n", "5\nRRRRR\n", "4\nBRBG\n" ]
[ "1\n", "4\n", "0\n" ]
none
500
[ { "input": "3\nRRG", "output": "1" }, { "input": "5\nRRRRR", "output": "4" }, { "input": "4\nBRBG", "output": "0" }, { "input": "1\nB", "output": "0" }, { "input": "2\nBG", "output": "0" }, { "input": "3\nBGB", "output": "0" }, { "input": "4\nRBBR", "output": "1" }, { "input": "5\nRGGBG", "output": "1" }, { "input": "10\nGGBRBRGGRB", "output": "2" }, { "input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB", "output": "18" }, { "input": "15\nBRRBRGGBBRRRRGR", "output": "6" }, { "input": "20\nRRGBBRBRGRGBBGGRGRRR", "output": "6" }, { "input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB", "output": "6" }, { "input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB", "output": "9" }, { "input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB", "output": "14" }, { "input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG", "output": "20" }, { "input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG", "output": "11" }, { "input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG", "output": "17" }, { "input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB", "output": "16" }, { "input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG", "output": "19" }, { "input": "10\nGRRBRBRBGR", "output": "1" }, { "input": "10\nBRBGBGRRBR", "output": "1" }, { "input": "20\nGBGBGGRRRRGRBBGRGRGR", "output": "5" }, { "input": "20\nRRGGRBBGBBRBGRRBRRBG", "output": "6" }, { "input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB", "output": "8" }, { "input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB", "output": "11" }, { "input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB", "output": "9" }, { "input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG", "output": "13" }, { "input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG", "output": "13" }, { "input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB", "output": "12" }, { "input": "2\nBB", "output": "1" }, { "input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "49" }, { "input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "47" }, { "input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR", "output": "43" } ]
1,698,579,992
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
92
0
int = int(input("")) str = input("") i = 1 counter = 0 for i in str: result = all(c == i[0] for c in i) if result: print(f"{int - 1}") else: for i in range(int): var = str[i] var2 = str[i-1] if var == var2: str.replace(str[i], "") counter += 1 print (counter)
Title: Stones on the Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table. The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n'] Demo Output: ['1\n', '4\n', '0\n'] Note: none
```python int = int(input("")) str = input("") i = 1 counter = 0 for i in str: result = all(c == i[0] for c in i) if result: print(f"{int - 1}") else: for i in range(int): var = str[i] var2 = str[i-1] if var == var2: str.replace(str[i], "") counter += 1 print (counter) ```
0
109
A
Lucky Sum of Digits
PROGRAMMING
1,000
[ "brute force", "implementation" ]
A. Lucky Sum of Digits
2
256
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number.
Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
[ "11\n", "10\n" ]
[ "47\n", "-1\n" ]
none
500
[ { "input": "11", "output": "47" }, { "input": "10", "output": "-1" }, { "input": "64", "output": "4477777777" }, { "input": "1", "output": "-1" }, { "input": "4", "output": "4" }, { "input": "7", "output": "7" }, { "input": "12", "output": "444" }, { "input": "1000000", "output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "47", "output": "44477777" }, { "input": "100", "output": "4444777777777777" }, { "input": "700", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "485", "output": "44447777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "111", "output": "444447777777777777" }, { "input": "85", "output": "4477777777777" }, { "input": "114", "output": "444477777777777777" }, { "input": "474", "output": "444777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "74", "output": "47777777777" }, { "input": "1000", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "1024", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "4444", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "45784", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10000", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "9854", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "186", "output": "477777777777777777777777777" }, { "input": "10416", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10417", "output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "3840", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "100000", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "9876", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "99999", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "777777", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "854759", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "11000", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "18951", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999999", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "888887", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999998", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "40008", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10691", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "5", "output": "-1" }, { "input": "6", "output": "-1" }, { "input": "9", "output": "-1" }, { "input": "8", "output": "44" }, { "input": "2", "output": "-1" }, { "input": "3", "output": "-1" }, { "input": "999997", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999996", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999990", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999980", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "800000", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "980000", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." } ]
1,551,786,665
2,147,483,647
Python 3
OK
TESTS
51
810
409,600
n=int(input()) A=n//4 B=n//7 falg=False s="" for i in range(0,A+1): for j in range(0,B+1): if(i*4+j*7==n): for g in range(i): s+=str(4) for r in range(j): s+=str(7) falg=True; if falg: break if falg: break if falg: print(s) else : print("-1")
Title: Lucky Sum of Digits Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number. Output Specification: Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1. Demo Input: ['11\n', '10\n'] Demo Output: ['47\n', '-1\n'] Note: none
```python n=int(input()) A=n//4 B=n//7 falg=False s="" for i in range(0,A+1): for j in range(0,B+1): if(i*4+j*7==n): for g in range(i): s+=str(4) for r in range(j): s+=str(7) falg=True; if falg: break if falg: break if falg: print(s) else : print("-1") ```
3.796737
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,666,697,538
2,147,483,647
Python 3
OK
TESTS
35
92
0
l=list(map(int,input().split())) print((l[0]*l[1])//2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python l=list(map(int,input().split())) print((l[0]*l[1])//2) ```
3.977
16
B
Burglar and Matches
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
B. Burglar and Matches
0
64
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer.
Output the only number — answer to the problem.
[ "7 3\n5 10\n2 5\n3 6\n", "3 3\n1 3\n2 2\n3 1\n" ]
[ "62\n", "7\n" ]
none
0
[ { "input": "7 3\n5 10\n2 5\n3 6", "output": "62" }, { "input": "3 3\n1 3\n2 2\n3 1", "output": "7" }, { "input": "1 1\n1 2", "output": "2" }, { "input": "1 2\n1 9\n1 6", "output": "9" }, { "input": "1 10\n1 1\n1 9\n1 3\n1 9\n1 7\n1 10\n1 4\n1 7\n1 3\n1 1", "output": "10" }, { "input": "2 1\n2 1", "output": "2" }, { "input": "2 2\n2 4\n1 4", "output": "8" }, { "input": "2 3\n1 7\n1 2\n1 5", "output": "12" }, { "input": "4 1\n2 2", "output": "4" }, { "input": "4 2\n1 10\n4 4", "output": "22" }, { "input": "4 3\n1 4\n6 4\n1 7", "output": "19" }, { "input": "5 1\n10 5", "output": "25" }, { "input": "5 2\n3 9\n2 2", "output": "31" }, { "input": "5 5\n2 9\n3 1\n2 1\n1 8\n2 8", "output": "42" }, { "input": "5 10\n1 3\n1 2\n1 9\n1 10\n1 1\n1 5\n1 10\n1 2\n1 3\n1 7", "output": "41" }, { "input": "10 1\n9 4", "output": "36" }, { "input": "10 2\n14 3\n1 3", "output": "30" }, { "input": "10 7\n4 8\n1 10\n1 10\n1 2\n3 3\n1 3\n1 10", "output": "71" }, { "input": "10 10\n1 8\n2 10\n1 9\n1 1\n1 9\n1 6\n1 4\n2 5\n1 2\n1 4", "output": "70" }, { "input": "10 4\n1 5\n5 2\n1 9\n3 3", "output": "33" }, { "input": "100 5\n78 6\n29 10\n3 6\n7 3\n2 4", "output": "716" }, { "input": "1000 7\n102 10\n23 6\n79 4\n48 1\n34 10\n839 8\n38 4", "output": "8218" }, { "input": "10000 10\n336 2\n2782 5\n430 10\n1893 7\n3989 10\n2593 8\n165 6\n1029 2\n2097 4\n178 10", "output": "84715" }, { "input": "100000 3\n2975 2\n35046 4\n61979 9", "output": "703945" }, { "input": "1000000 4\n314183 9\n304213 4\n16864 5\n641358 9", "output": "8794569" }, { "input": "10000000 10\n360313 10\n416076 1\n435445 9\n940322 7\n1647581 7\n4356968 10\n3589256 2\n2967933 5\n2747504 7\n1151633 3", "output": "85022733" }, { "input": "100000000 7\n32844337 7\n11210848 7\n47655987 1\n33900472 4\n9174763 2\n32228738 10\n29947408 5", "output": "749254060" }, { "input": "200000000 10\n27953106 7\n43325979 4\n4709522 1\n10975786 4\n67786538 8\n48901838 7\n15606185 6\n2747583 1\n100000000 1\n633331 3", "output": "1332923354" }, { "input": "200000000 9\n17463897 9\n79520463 1\n162407 4\n41017993 8\n71054118 4\n9447587 2\n5298038 9\n3674560 7\n20539314 5", "output": "996523209" }, { "input": "200000000 8\n6312706 6\n2920548 2\n16843192 3\n1501141 2\n13394704 6\n10047725 10\n4547663 6\n54268518 6", "output": "630991750" }, { "input": "200000000 7\n25621043 2\n21865270 1\n28833034 1\n22185073 5\n100000000 2\n13891017 9\n61298710 8", "output": "931584598" }, { "input": "200000000 6\n7465600 6\n8453505 10\n4572014 8\n8899499 3\n86805622 10\n64439238 6", "output": "1447294907" }, { "input": "200000000 5\n44608415 6\n100000000 9\n51483223 9\n44136047 1\n52718517 1", "output": "1634907859" }, { "input": "200000000 4\n37758556 10\n100000000 6\n48268521 3\n20148178 10", "output": "1305347138" }, { "input": "200000000 3\n65170000 7\n20790088 1\n74616133 4", "output": "775444620" }, { "input": "200000000 2\n11823018 6\n100000000 9", "output": "970938108" }, { "input": "200000000 1\n100000000 6", "output": "600000000" }, { "input": "200000000 10\n12097724 9\n41745972 5\n26982098 9\n14916995 7\n21549986 7\n3786630 9\n8050858 7\n27994924 4\n18345001 5\n8435339 5", "output": "1152034197" }, { "input": "200000000 10\n55649 8\n10980981 9\n3192542 8\n94994808 4\n3626106 1\n100000000 6\n5260110 9\n4121453 2\n15125061 4\n669569 6", "output": "1095537357" }, { "input": "10 20\n1 7\n1 7\n1 8\n1 3\n1 10\n1 7\n1 7\n1 9\n1 3\n1 1\n1 2\n1 1\n1 3\n1 10\n1 9\n1 8\n1 8\n1 6\n1 7\n1 5", "output": "83" }, { "input": "10000000 20\n4594 7\n520836 8\n294766 6\n298672 4\n142253 6\n450626 1\n1920034 9\n58282 4\n1043204 1\n683045 1\n1491746 5\n58420 4\n451217 2\n129423 4\n246113 5\n190612 8\n912923 6\n473153 6\n783733 6\n282411 10", "output": "54980855" }, { "input": "200000000 20\n15450824 5\n839717 10\n260084 8\n1140850 8\n28744 6\n675318 3\n25161 2\n5487 3\n6537698 9\n100000000 5\n7646970 9\n16489 6\n24627 3\n1009409 5\n22455 1\n25488456 4\n484528 9\n32663641 3\n750968 4\n5152 6", "output": "939368573" }, { "input": "200000000 20\n16896 2\n113 3\n277 2\n299 7\n69383562 2\n3929 8\n499366 4\n771846 5\n9 4\n1278173 7\n90 2\n54 7\n72199858 10\n17214 5\n3 10\n1981618 3\n3728 2\n141 8\n2013578 9\n51829246 5", "output": "1158946383" }, { "input": "200000000 20\n983125 2\n7453215 9\n9193588 2\n11558049 7\n28666199 1\n34362244 1\n5241493 5\n15451270 4\n19945845 8\n6208681 3\n38300385 7\n6441209 8\n21046742 7\n577198 10\n3826434 8\n9764276 8\n6264675 7\n8567063 3\n3610303 4\n2908232 3", "output": "1131379312" }, { "input": "10 15\n1 6\n2 6\n3 4\n1 3\n1 2\n1 5\n1 6\n1 2\n2 9\n1 10\n1 3\n1 7\n1 8\n1 2\n2 9", "output": "79" }, { "input": "10000000 15\n111 5\n914124 3\n3 9\n177790 1\n2352 3\n32138 9\n104477 1\n1223 4\n18 6\n6655580 4\n57643 10\n94309 2\n37 1\n227002 10\n1733193 7", "output": "45116295" }, { "input": "200000000 15\n7069868 1\n5567826 8\n2310059 10\n13539782 7\n38420939 4\n29911411 8\n52256316 1\n12265839 9\n2074265 1\n24896428 9\n72470695 5\n3236301 1\n3890243 2\n65168965 8\n65724 6", "output": "1489289257" }, { "input": "200000000 15\n12044094 7\n2475138 10\n944451 7\n4854766 2\n3809145 10\n7727571 2\n43908937 6\n2745883 1\n427511 2\n100000000 5\n190914 6\n554889 3\n288798 4\n1848572 5\n893874 3", "output": "961871671" }, { "input": "200000000 15\n6334191 7\n1927941 4\n5175933 10\n468389 1\n433043 10\n6863198 5\n7480646 4\n14774279 10\n2921129 8\n18325627 7\n6973152 9\n8277324 9\n21522856 2\n2058070 1\n2444742 4", "output": "664376069" } ]
1,638,064,216
2,147,483,647
PyPy 3-64
OK
TESTS
49
124
512,000
m,n = map(int,input().split()) num = [] for i in range(n): num1 = list(map(int,input().split())) num.append(num1) d = 0 k = 0 while m > 0: max = 0 x = 0 y = 0 for j in range(len(num)): if num[j][1] >max: max = num[j][1] y = num[j][0] x = j k = k + 1 if max == 0: break if m > y: m = m - y d = d + y * num[x][1] num[x][1] = 0 elif m == y: m = m - y d = d + y * num[x][1] num[x][1] = 0 break else: d = d + m * num[x][1] m = 0 break print(d)
Title: Burglar and Matches Time Limit: 0 seconds Memory Limit: 64 megabytes Problem Description: A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer. Output Specification: Output the only number — answer to the problem. Demo Input: ['7 3\n5 10\n2 5\n3 6\n', '3 3\n1 3\n2 2\n3 1\n'] Demo Output: ['62\n', '7\n'] Note: none
```python m,n = map(int,input().split()) num = [] for i in range(n): num1 = list(map(int,input().split())) num.append(num1) d = 0 k = 0 while m > 0: max = 0 x = 0 y = 0 for j in range(len(num)): if num[j][1] >max: max = num[j][1] y = num[j][0] x = j k = k + 1 if max == 0: break if m > y: m = m - y d = d + y * num[x][1] num[x][1] = 0 elif m == y: m = m - y d = d + y * num[x][1] num[x][1] = 0 break else: d = d + m * num[x][1] m = 0 break print(d) ```
3
595
B
Pasha and Phone
PROGRAMMING
1,600
[ "binary search", "math" ]
null
null
Pasha has recently bought a new phone jPager and started adding his friends' phone numbers there. Each phone number consists of exactly *n* digits. Also Pasha has a number *k* and two sequences of length *n*<=/<=*k* (*n* is divisible by *k*) *a*1,<=*a*2,<=...,<=*a**n*<=/<=*k* and *b*1,<=*b*2,<=...,<=*b**n*<=/<=*k*. Let's split the phone number into blocks of length *k*. The first block will be formed by digits from the phone number that are on positions 1, 2,..., *k*, the second block will be formed by digits from the phone number that are on positions *k*<=+<=1, *k*<=+<=2, ..., 2·*k* and so on. Pasha considers a phone number good, if the *i*-th block doesn't start from the digit *b**i* and is divisible by *a**i* if represented as an integer. To represent the block of length *k* as an integer, let's write it out as a sequence *c*1, *c*2,...,*c**k*. Then the integer is calculated as the result of the expression *c*1·10*k*<=-<=1<=+<=*c*2·10*k*<=-<=2<=+<=...<=+<=*c**k*. Pasha asks you to calculate the number of good phone numbers of length *n*, for the given *k*, *a**i* and *b**i*. As this number can be too big, print it modulo 109<=+<=7.
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*min*(*n*,<=9)) — the length of all phone numbers and the length of each block, respectively. It is guaranteed that *n* is divisible by *k*. The second line of the input contains *n*<=/<=*k* space-separated positive integers — sequence *a*1,<=*a*2,<=...,<=*a**n*<=/<=*k* (1<=≤<=*a**i*<=&lt;<=10*k*). The third line of the input contains *n*<=/<=*k* space-separated positive integers — sequence *b*1,<=*b*2,<=...,<=*b**n*<=/<=*k* (0<=≤<=*b**i*<=≤<=9).
Print a single integer — the number of good phone numbers of length *n* modulo 109<=+<=7.
[ "6 2\n38 56 49\n7 3 4\n", "8 2\n1 22 3 44\n5 4 3 2\n" ]
[ "8\n", "32400\n" ]
In the first test sample good phone numbers are: 000000, 000098, 005600, 005698, 380000, 380098, 385600, 385698.
1,000
[ { "input": "6 2\n38 56 49\n7 3 4", "output": "8" }, { "input": "8 2\n1 22 3 44\n5 4 3 2", "output": "32400" }, { "input": "2 1\n9 9\n9 9", "output": "1" }, { "input": "2 1\n9 9\n0 9", "output": "1" }, { "input": "4 1\n4 3 2 1\n1 2 3 4", "output": "540" }, { "input": "18 9\n2 3\n0 4", "output": "505000007" }, { "input": "4 4\n1122\n2", "output": "8" }, { "input": "10 5\n8378 11089\n7 5", "output": "99" }, { "input": "10 5\n52057 11807\n0 1", "output": "8" }, { "input": "10 1\n3 1 1 4 8 7 5 6 4 1\n0 0 0 5 5 6 8 8 4 0", "output": "209952" }, { "input": "100 4\n388 2056 122 1525 2912 1465 3066 257 5708 3604 3039 6183 3035 626 1389 5393 3321 3175 2922 2024 3837 437 5836 2376 1599\n6 5 5 2 9 6 8 3 5 0 6 0 1 8 5 3 5 2 3 0 5 6 6 7 3", "output": "652599557" }, { "input": "100 1\n5 3 1 5 6 2 4 8 3 3 1 1 2 8 2 3 8 2 5 2 6 2 3 5 2 1 2 1 2 8 4 3 3 5 1 4 2 2 2 5 8 2 2 6 2 9 2 4 1 8 1 5 5 6 6 1 2 7 3 3 4 2 4 1 2 6 6 4 9 4 3 2 3 8 2 3 1 4 1 4 1 3 5 3 5 5 2 3 4 1 1 8 1 5 6 9 4 2 5 1\n6 0 4 5 3 1 0 7 5 3 9 4 5 4 0 2 1 6 2 2 4 3 1 9 5 9 2 2 6 8 6 5 9 6 4 9 9 7 5 4 5 6 0 3 2 0 8 0 3 9 5 3 8 0 9 3 6 2 9 5 9 3 2 2 2 2 0 8 1 2 9 0 9 8 0 3 2 0 7 9 4 3 7 2 3 1 8 9 8 2 6 0 3 2 9 8 9 2 3 4", "output": "27157528" }, { "input": "100 5\n5302 4362 11965 14930 11312 33797 17413 17850 79562 17981 28002 40852 173 23022 55762 13013 79597 29597 31944 32384\n9 8 7 0 6 6 7 7 5 9 1 3 4 8 7 1 1 6 4 4", "output": "885507108" }, { "input": "1 1\n2\n0", "output": "4" } ]
1,670,144,671
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
62
0
import sys input = sys.stdin.readline n, k = map(int, input().split()) a = list(map(int, input().split())) b = list(map(int, input().split())) M = 10**9 + 7 f = 1 for i in range(n//k): x = 0 y = 10**k - 1 x1 = max(0, b[i] * 10**(k-1) - 1) y1 = (b[i] + 1) * 10 ** (k - 1) - 1 a1 = x // a[i] a2 = y // a[i] a3 = x1 // a[i] a4 = y1 // a[i] f *= (a2-a1 - a4+a3 + 1) f %= M print(f)
Title: Pasha and Phone Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pasha has recently bought a new phone jPager and started adding his friends' phone numbers there. Each phone number consists of exactly *n* digits. Also Pasha has a number *k* and two sequences of length *n*<=/<=*k* (*n* is divisible by *k*) *a*1,<=*a*2,<=...,<=*a**n*<=/<=*k* and *b*1,<=*b*2,<=...,<=*b**n*<=/<=*k*. Let's split the phone number into blocks of length *k*. The first block will be formed by digits from the phone number that are on positions 1, 2,..., *k*, the second block will be formed by digits from the phone number that are on positions *k*<=+<=1, *k*<=+<=2, ..., 2·*k* and so on. Pasha considers a phone number good, if the *i*-th block doesn't start from the digit *b**i* and is divisible by *a**i* if represented as an integer. To represent the block of length *k* as an integer, let's write it out as a sequence *c*1, *c*2,...,*c**k*. Then the integer is calculated as the result of the expression *c*1·10*k*<=-<=1<=+<=*c*2·10*k*<=-<=2<=+<=...<=+<=*c**k*. Pasha asks you to calculate the number of good phone numbers of length *n*, for the given *k*, *a**i* and *b**i*. As this number can be too big, print it modulo 109<=+<=7. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*k*<=≤<=*min*(*n*,<=9)) — the length of all phone numbers and the length of each block, respectively. It is guaranteed that *n* is divisible by *k*. The second line of the input contains *n*<=/<=*k* space-separated positive integers — sequence *a*1,<=*a*2,<=...,<=*a**n*<=/<=*k* (1<=≤<=*a**i*<=&lt;<=10*k*). The third line of the input contains *n*<=/<=*k* space-separated positive integers — sequence *b*1,<=*b*2,<=...,<=*b**n*<=/<=*k* (0<=≤<=*b**i*<=≤<=9). Output Specification: Print a single integer — the number of good phone numbers of length *n* modulo 109<=+<=7. Demo Input: ['6 2\n38 56 49\n7 3 4\n', '8 2\n1 22 3 44\n5 4 3 2\n'] Demo Output: ['8\n', '32400\n'] Note: In the first test sample good phone numbers are: 000000, 000098, 005600, 005698, 380000, 380098, 385600, 385698.
```python import sys input = sys.stdin.readline n, k = map(int, input().split()) a = list(map(int, input().split())) b = list(map(int, input().split())) M = 10**9 + 7 f = 1 for i in range(n//k): x = 0 y = 10**k - 1 x1 = max(0, b[i] * 10**(k-1) - 1) y1 = (b[i] + 1) * 10 ** (k - 1) - 1 a1 = x // a[i] a2 = y // a[i] a3 = x1 // a[i] a4 = y1 // a[i] f *= (a2-a1 - a4+a3 + 1) f %= M print(f) ```
0
776
B
Sherlock and his girlfriend
PROGRAMMING
1,200
[ "constructive algorithms", "number theory" ]
null
null
Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry. He bought *n* pieces of jewelry. The *i*-th piece has price equal to *i*<=+<=1, that is, the prices of the jewelry are 2,<=3,<=4,<=... *n*<=+<=1. Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used. Help Sherlock complete this trivial task.
The only line contains single integer *n* (1<=≤<=*n*<=≤<=100000) — the number of jewelry pieces.
The first line of output should contain a single integer *k*, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints. The next line should consist of *n* space-separated integers (between 1 and *k*) that specify the color of each piece in the order of increasing price. If there are multiple ways to color the pieces using *k* colors, you can output any of them.
[ "3\n", "4\n" ]
[ "2\n1 1 2 ", "2\n2 1 1 2\n" ]
In the first input, the colors for first, second and third pieces of jewelry having respective prices 2, 3 and 4 are 1, 1 and 2 respectively. In this case, as 2 is a prime divisor of 4, colors of jewelry having prices 2 and 4 must be distinct.
1,000
[ { "input": "3", "output": "2\n1 1 2 " }, { "input": "4", "output": "2\n1 1 2 1 " }, { "input": "17", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 " }, { "input": "25", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 " }, { "input": "85", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 " }, { "input": "105", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 " }, { "input": "123", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "452", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "641", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "293", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "733", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1", "output": "1\n1 " }, { "input": "10", "output": "2\n1 1 2 1 2 1 2 2 2 1 " }, { "input": "287", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "3202", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "728", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "3509", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "5137", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "2023", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "4890", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "8507", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1796", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "3466", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1098", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11226", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11731", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11644", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "14553", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "17307", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "23189", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "6818", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1054", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "28163", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "30885", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "27673", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "11656", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "36325", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "31205", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "29958", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "1696", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "44907", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "13736", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "29594", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "19283", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "15346", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "41794", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "99998", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "100000", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "2", "output": "1\n1 1 " }, { "input": "1", "output": "1\n1 " }, { "input": "2", "output": "1\n1 1 " }, { "input": "100000", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." }, { "input": "99971", "output": "2\n1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 ..." } ]
1,662,633,715
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
48
139
4,300,800
n=int(input()) if n>1: prices=[i+2 for i in range(n)] colors=[] color_count=0 primes=[1]*(n+2) primes[0]=0 primes[1]=0 k=2 while k*k<=n+1: if primes[k]==1: for i in range(k*k,n+2,k): primes[i]=2 k+=1 print(2) print(*primes[2:]) else: print(1) print(1)
Title: Sherlock and his girlfriend Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry. He bought *n* pieces of jewelry. The *i*-th piece has price equal to *i*<=+<=1, that is, the prices of the jewelry are 2,<=3,<=4,<=... *n*<=+<=1. Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used. Help Sherlock complete this trivial task. Input Specification: The only line contains single integer *n* (1<=≤<=*n*<=≤<=100000) — the number of jewelry pieces. Output Specification: The first line of output should contain a single integer *k*, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints. The next line should consist of *n* space-separated integers (between 1 and *k*) that specify the color of each piece in the order of increasing price. If there are multiple ways to color the pieces using *k* colors, you can output any of them. Demo Input: ['3\n', '4\n'] Demo Output: ['2\n1 1 2 ', '2\n2 1 1 2\n'] Note: In the first input, the colors for first, second and third pieces of jewelry having respective prices 2, 3 and 4 are 1, 1 and 2 respectively. In this case, as 2 is a prime divisor of 4, colors of jewelry having prices 2 and 4 must be distinct.
```python n=int(input()) if n>1: prices=[i+2 for i in range(n)] colors=[] color_count=0 primes=[1]*(n+2) primes[0]=0 primes[1]=0 k=2 while k*k<=n+1: if primes[k]==1: for i in range(k*k,n+2,k): primes[i]=2 k+=1 print(2) print(*primes[2:]) else: print(1) print(1) ```
0
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,685,754,658
2,147,483,647
Python 3
OK
TESTS
36
92
0
import sys # sys.stdin = open("1.in", "r") Y, W = map(int, input().split()) win_num = 6 - max(Y, W) + 1 if win_num == 6: print("1/1") elif win_num == 2: print("1/3") elif win_num == 3: print("1/2") elif win_num == 4: print("2/3") else: print(str(win_num) + "/6")
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python import sys # sys.stdin = open("1.in", "r") Y, W = map(int, input().split()) win_num = 6 - max(Y, W) + 1 if win_num == 6: print("1/1") elif win_num == 2: print("1/3") elif win_num == 3: print("1/2") elif win_num == 4: print("2/3") else: print(str(win_num) + "/6") ```
3.954
217
A
Ice Skating
PROGRAMMING
1,200
[ "brute force", "dfs and similar", "dsu", "graphs" ]
null
null
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates.
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
[ "2\n2 1\n1 2\n", "2\n2 1\n4 1\n" ]
[ "1\n", "0\n" ]
none
500
[ { "input": "2\n2 1\n1 2", "output": "1" }, { "input": "2\n2 1\n4 1", "output": "0" }, { "input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459", "output": "21" }, { "input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815", "output": "16" }, { "input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663", "output": "10" }, { "input": "1\n321 88", "output": "0" }, { "input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689", "output": "7" }, { "input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510", "output": "6" }, { "input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888", "output": "5" }, { "input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802", "output": "13" }, { "input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662", "output": "11" }, { "input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786", "output": "38" }, { "input": "3\n175 201\n907 909\n388 360", "output": "2" }, { "input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86", "output": "6" }, { "input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820", "output": "16" }, { "input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901", "output": "31" }, { "input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210", "output": "29" }, { "input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894", "output": "29" }, { "input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823", "output": "13" }, { "input": "5\n175 158\n16 2\n397 381\n668 686\n957 945", "output": "4" }, { "input": "5\n312 284\n490 509\n730 747\n504 497\n782 793", "output": "4" }, { "input": "2\n802 903\n476 348", "output": "1" }, { "input": "4\n325 343\n425 442\n785 798\n275 270", "output": "3" }, { "input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653", "output": "25" }, { "input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124", "output": "34" }, { "input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255", "output": "29" }, { "input": "5\n664 666\n951 941\n739 742\n844 842\n2 2", "output": "4" }, { "input": "3\n939 867\n411 427\n757 708", "output": "2" }, { "input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636", "output": "34" }, { "input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195", "output": "28" }, { "input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488", "output": "22" }, { "input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235", "output": "8" }, { "input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621", "output": "22" }, { "input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461", "output": "22" }, { "input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924", "output": "6" }, { "input": "3\n1 1\n2 1\n2 2", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "5\n1 1\n1 2\n2 2\n3 1\n3 3", "output": "0" }, { "input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3", "output": "0" }, { "input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10", "output": "1" }, { "input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11", "output": "1" }, { "input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11", "output": "3" }, { "input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25", "output": "7" }, { "input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28", "output": "5" }, { "input": "3\n1 2\n2 1\n2 2", "output": "0" }, { "input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "3\n1 1\n2 2\n1 2", "output": "0" }, { "input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4", "output": "1" }, { "input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100", "output": "6" }, { "input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4", "output": "0" }, { "input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3", "output": "0" }, { "input": "4\n3 1\n2 1\n2 2\n1 2", "output": "0" }, { "input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3", "output": "0" }, { "input": "3\n1 2\n1 3\n1 4", "output": "0" }, { "input": "4\n1 1\n2 2\n1 2\n2 1", "output": "0" }, { "input": "4\n1 3\n2 1\n3 2\n3 1", "output": "1" }, { "input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4", "output": "0" }, { "input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700", "output": "2" }, { "input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9", "output": "1" }, { "input": "4\n1 1\n2 2\n3 2\n3 1", "output": "0" }, { "input": "3\n1 2\n3 4\n3 2", "output": "0" }, { "input": "3\n1 1\n1 2\n2 2", "output": "0" }, { "input": "4\n5 5\n5 4\n6 3\n6 4", "output": "0" }, { "input": "3\n1 1\n2 2\n2 1", "output": "0" } ]
1,632,187,439
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
122
6,656,000
n = int(input()) days = list(map(int, input().split())) res, prev = 0, 3 for d in days: if prev != 3: if d == prev: d = 0 elif d == 3: d -= prev if d == 0: res += 1 prev = d print(res)
Title: Ice Skating Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates. Input Specification: The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct. Output Specification: Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one. Demo Input: ['2\n2 1\n1 2\n', '2\n2 1\n4 1\n'] Demo Output: ['1\n', '0\n'] Note: none
```python n = int(input()) days = list(map(int, input().split())) res, prev = 0, 3 for d in days: if prev != 3: if d == prev: d = 0 elif d == 3: d -= prev if d == 0: res += 1 prev = d print(res) ```
0
0
none
none
none
0
[ "none" ]
null
null
International Abbreviation Olympiad takes place annually starting from 1989. Each year the competition receives an abbreviation of form IAO'y, where *y* stands for some number of consequent last digits of the current year. Organizers always pick an abbreviation with non-empty string *y* that has never been used before. Among all such valid abbreviations they choose the shortest one and announce it to be the abbreviation of this year's competition. For example, the first three Olympiads (years 1989, 1990 and 1991, respectively) received the abbreviations IAO'9, IAO'0 and IAO'1, while the competition in 2015 received an abbreviation IAO'15, as IAO'5 has been already used in 1995. You are given a list of abbreviations. For each of them determine the year it stands for.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of abbreviations to process. Then *n* lines follow, each containing a single abbreviation. It's guaranteed that each abbreviation contains at most nine digits.
For each abbreviation given in the input, find the year of the corresponding Olympiad.
[ "5\nIAO'15\nIAO'2015\nIAO'1\nIAO'9\nIAO'0\n", "4\nIAO'9\nIAO'99\nIAO'999\nIAO'9999\n" ]
[ "2015\n12015\n1991\n1989\n1990\n", "1989\n1999\n2999\n9999\n" ]
none
0
[ { "input": "5\nIAO'15\nIAO'2015\nIAO'1\nIAO'9\nIAO'0", "output": "2015\n12015\n1991\n1989\n1990" }, { "input": "4\nIAO'9\nIAO'99\nIAO'999\nIAO'9999", "output": "1989\n1999\n2999\n9999" }, { "input": "1\nIAO'111110", "output": "1111110" }, { "input": "2\nIAO'0\nIAO'00", "output": "1990\n2000" }, { "input": "1\nIAO'111111", "output": "1111111" }, { "input": "1\nIAO'111111111", "output": "1111111111" }, { "input": "1\nIAO'001", "output": "3001" }, { "input": "1\nIAO'2000", "output": "12000" }, { "input": "1\nIAO'11109999", "output": "111109999" }, { "input": "1\nIAO'11111", "output": "111111" }, { "input": "1\nIAO'100000", "output": "1100000" }, { "input": "1\nIAO'18999990", "output": "18999990" }, { "input": "1\nIAO'113098", "output": "1113098" }, { "input": "1\nIAO'111122", "output": "1111122" }, { "input": "1\nIAO'1110222", "output": "11110222" }, { "input": "1\nIAO'11133333", "output": "11133333" }, { "input": "1\nIAO'000000000", "output": "1000000000" }, { "input": "4\nIAO'3098\nIAO'99\nIAO'999\nIAO'9999", "output": "13098\n1999\n2999\n9999" }, { "input": "1\nIAO'11100000", "output": "111100000" }, { "input": "2\nIAO'15\nIAO'15", "output": "2015\n2015" }, { "input": "1\nIAO'999999999", "output": "999999999" }, { "input": "1\nIAO'1112121", "output": "11112121" }, { "input": "1\nIAO'111113098", "output": "1111113098" }, { "input": "1\nIAO'10005000", "output": "110005000" }, { "input": "1\nIAO'111378", "output": "1111378" }, { "input": "1\nIAO'112222", "output": "1112222" }, { "input": "1\nIAO'021113099", "output": "1021113099" }, { "input": "1\nIAO'123456789", "output": "123456789" }, { "input": "1\nIAO'000000001", "output": "1000000001" }, { "input": "1\nIAO'089", "output": "3089" }, { "input": "9\nIAO'0\nIAO'00\nIAO'000\nIAO'0000\nIAO'00000\nIAO'000000\nIAO'0000000\nIAO'00000000\nIAO'000000000", "output": "1990\n2000\n3000\n10000\n100000\n1000000\n10000000\n100000000\n1000000000" }, { "input": "2\nIAO'999999999\nIAO'999999999", "output": "999999999\n999999999" }, { "input": "1\nIAO'2015", "output": "12015" }, { "input": "1\nIAO'113097", "output": "1113097" }, { "input": "1\nIAO'11378", "output": "111378" } ]
1,460,826,522
2,022
Python 3
RUNTIME_ERROR
TESTS
3
124
1,945,600
#!/usr/bin/python3 precalc = dict() used = set() for i in range(1989, 20000): s = str(i) for j in range(len(s) - 1, -1, -1): if s[j:] not in used: used.add(s[j:]) precalc[s[j:]] = s break def ans(s): s = s[4:] if int(s) < 20000: return precalc[s] else: return s n = int(input()) for i in range(n): print(ans(input()))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: International Abbreviation Olympiad takes place annually starting from 1989. Each year the competition receives an abbreviation of form IAO'y, where *y* stands for some number of consequent last digits of the current year. Organizers always pick an abbreviation with non-empty string *y* that has never been used before. Among all such valid abbreviations they choose the shortest one and announce it to be the abbreviation of this year's competition. For example, the first three Olympiads (years 1989, 1990 and 1991, respectively) received the abbreviations IAO'9, IAO'0 and IAO'1, while the competition in 2015 received an abbreviation IAO'15, as IAO'5 has been already used in 1995. You are given a list of abbreviations. For each of them determine the year it stands for. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of abbreviations to process. Then *n* lines follow, each containing a single abbreviation. It's guaranteed that each abbreviation contains at most nine digits. Output Specification: For each abbreviation given in the input, find the year of the corresponding Olympiad. Demo Input: ["5\nIAO'15\nIAO'2015\nIAO'1\nIAO'9\nIAO'0\n", "4\nIAO'9\nIAO'99\nIAO'999\nIAO'9999\n"] Demo Output: ['2015\n12015\n1991\n1989\n1990\n', '1989\n1999\n2999\n9999\n'] Note: none
```python #!/usr/bin/python3 precalc = dict() used = set() for i in range(1989, 20000): s = str(i) for j in range(len(s) - 1, -1, -1): if s[j:] not in used: used.add(s[j:]) precalc[s[j:]] = s break def ans(s): s = s[4:] if int(s) < 20000: return precalc[s] else: return s n = int(input()) for i in range(n): print(ans(input())) ```
-1
868
C
Qualification Rounds
PROGRAMMING
1,500
[ "bitmasks", "brute force", "constructive algorithms", "dp" ]
null
null
Snark and Philip are preparing the problemset for the upcoming pre-qualification round for semi-quarter-finals. They have a bank of *n* problems, and they want to select any non-empty subset of it as a problemset. *k* experienced teams are participating in the contest. Some of these teams already know some of the problems. To make the contest interesting for them, each of the teams should know at most half of the selected problems. Determine if Snark and Philip can make an interesting problemset!
The first line contains two integers *n*, *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=4) — the number of problems and the number of experienced teams. Each of the next *n* lines contains *k* integers, each equal to 0 or 1. The *j*-th number in the *i*-th line is 1 if *j*-th team knows *i*-th problem and 0 otherwise.
Print "YES" (quotes for clarity), if it is possible to make an interesting problemset, and "NO" otherwise. You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES").
[ "5 3\n1 0 1\n1 1 0\n1 0 0\n1 0 0\n1 0 0\n", "3 2\n1 0\n1 1\n0 1\n" ]
[ "NO\n", "YES\n" ]
In the first example you can't make any interesting problemset, because the first team knows all problems. In the second example you can choose the first and the third problems.
1,000
[ { "input": "5 3\n1 0 1\n1 1 0\n1 0 0\n1 0 0\n1 0 0", "output": "NO" }, { "input": "3 2\n1 0\n1 1\n0 1", "output": "YES" }, { "input": "10 2\n1 0\n1 0\n0 0\n1 1\n0 0\n1 1\n0 0\n1 1\n0 1\n0 1", "output": "YES" }, { "input": "10 3\n1 0 0\n0 1 1\n1 0 0\n0 1 0\n0 0 1\n1 0 1\n0 1 1\n1 0 0\n1 1 0\n0 0 0", "output": "YES" }, { "input": "10 4\n1 0 1 0\n1 0 0 1\n1 1 0 1\n1 0 1 1\n1 1 0 1\n1 0 1 0\n0 0 0 0\n0 0 1 0\n1 0 1 0\n0 0 1 1", "output": "YES" }, { "input": "2 2\n0 0\n1 0", "output": "YES" }, { "input": "3 3\n1 0 1\n1 0 0\n1 1 1", "output": "NO" }, { "input": "4 4\n0 0 0 0\n1 1 0 0\n1 1 1 1\n1 0 1 1", "output": "YES" }, { "input": "4 1\n1\n1\n0\n0", "output": "YES" }, { "input": "1 4\n0 0 0 0", "output": "YES" }, { "input": "3 3\n0 0 1\n0 1 1\n1 0 0", "output": "YES" }, { "input": "2 3\n0 0 1\n1 0 0", "output": "YES" }, { "input": "1 1\n0", "output": "YES" }, { "input": "2 4\n0 1 1 1\n1 0 0 0", "output": "YES" }, { "input": "2 4\n1 0 1 0\n0 1 0 1", "output": "YES" }, { "input": "2 4\n1 0 0 0\n0 0 0 1", "output": "YES" }, { "input": "2 3\n0 1 0\n0 0 1", "output": "YES" }, { "input": "3 4\n1 0 1 0\n0 1 0 1\n1 1 1 1", "output": "YES" }, { "input": "3 4\n0 0 1 1\n1 1 1 0\n1 1 0 1", "output": "NO" }, { "input": "4 4\n0 0 0 1\n0 0 0 1\n0 0 1 0\n0 0 1 0", "output": "YES" }, { "input": "2 4\n1 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "2 4\n1 0 0 0\n0 1 0 0", "output": "YES" }, { "input": "2 3\n1 0 0\n0 0 1", "output": "YES" }, { "input": "3 4\n1 0 1 0\n0 1 1 1\n1 0 0 0", "output": "YES" }, { "input": "1 2\n0 0", "output": "YES" }, { "input": "6 3\n0 1 1\n1 0 1\n1 1 1\n0 1 0\n1 0 1\n1 1 0", "output": "YES" }, { "input": "1 4\n0 0 1 1", "output": "NO" }, { "input": "3 3\n1 0 0\n0 1 0\n0 0 1", "output": "YES" }, { "input": "3 4\n1 0 0 0\n1 1 0 0\n0 1 1 1", "output": "YES" }, { "input": "3 2\n0 0\n0 0\n0 0", "output": "YES" }, { "input": "2 4\n1 0 0 0\n1 0 1 1", "output": "NO" }, { "input": "2 4\n0 0 0 1\n1 0 0 0", "output": "YES" }, { "input": "2 4\n1 0 0 0\n0 1 1 1", "output": "YES" }, { "input": "4 4\n1 1 1 1\n0 0 0 1\n0 0 1 1\n1 0 1 1", "output": "NO" }, { "input": "6 3\n1 0 0\n1 1 1\n1 1 1\n0 1 0\n0 1 0\n1 0 0", "output": "YES" }, { "input": "4 4\n0 1 0 0\n1 1 1 1\n1 1 1 1\n1 0 1 1", "output": "YES" }, { "input": "1 3\n0 0 0", "output": "YES" }, { "input": "3 3\n1 0 0\n0 1 0\n0 0 0", "output": "YES" }, { "input": "2 4\n0 1 1 0\n0 0 0 0", "output": "YES" }, { "input": "1 4\n0 0 0 1", "output": "NO" }, { "input": "4 4\n0 0 0 1\n0 0 0 1\n0 0 1 1\n1 1 1 0", "output": "YES" }, { "input": "2 3\n1 0 0\n0 1 1", "output": "YES" }, { "input": "3 2\n0 1\n0 1\n1 0", "output": "YES" }, { "input": "4 3\n1 1 0\n1 1 1\n0 0 1\n0 0 1", "output": "YES" }, { "input": "2 1\n0\n0", "output": "YES" }, { "input": "2 4\n1 1 1 0\n0 0 0 1", "output": "YES" }, { "input": "5 4\n1 1 1 0\n1 1 0 1\n1 0 1 1\n0 1 1 1\n1 1 0 0", "output": "NO" }, { "input": "3 4\n0 1 1 0\n0 1 0 1\n0 0 1 1", "output": "NO" }, { "input": "1 1\n1", "output": "NO" }, { "input": "3 4\n1 0 0 0\n1 0 0 0\n0 1 1 1", "output": "YES" }, { "input": "2 3\n1 1 0\n0 0 1", "output": "YES" }, { "input": "3 3\n0 0 1\n1 1 1\n1 1 0", "output": "YES" }, { "input": "4 4\n0 1 1 1\n1 0 1 0\n1 1 0 1\n1 0 1 0", "output": "NO" }, { "input": "3 3\n1 0 0\n0 0 0\n1 0 0", "output": "YES" }, { "input": "3 4\n1 1 0 0\n1 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "2 4\n1 0 0 1\n0 0 1 0", "output": "YES" }, { "input": "2 4\n0 0 1 1\n1 1 0 0", "output": "YES" }, { "input": "2 3\n0 0 1\n0 1 0", "output": "YES" }, { "input": "2 3\n1 0 0\n0 1 0", "output": "YES" }, { "input": "3 2\n1 0\n0 1\n0 1", "output": "YES" }, { "input": "3 4\n1 1 0 1\n0 0 1 1\n1 0 1 0", "output": "NO" }, { "input": "3 4\n0 0 1 1\n0 1 1 0\n1 1 0 0", "output": "YES" }, { "input": "3 4\n0 0 0 1\n0 0 0 1\n1 1 1 0", "output": "YES" }, { "input": "3 4\n1 1 1 0\n1 1 0 1\n0 0 1 0", "output": "YES" }, { "input": "8 4\n0 0 0 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n1 1 1 0", "output": "YES" }, { "input": "3 4\n1 0 1 1\n1 1 1 0\n0 1 0 1", "output": "NO" }, { "input": "2 4\n1 1 0 0\n0 0 0 1", "output": "YES" }, { "input": "10 4\n1 0 1 0\n1 0 1 0\n0 1 1 1\n1 0 1 1\n1 1 0 1\n1 0 0 1\n0 1 1 1\n0 0 0 1\n1 1 1 1\n1 0 1 0", "output": "YES" }, { "input": "2 4\n0 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "3 3\n1 1 0\n1 0 1\n0 1 1", "output": "NO" }, { "input": "3 3\n1 1 0\n0 0 1\n1 1 1", "output": "YES" }, { "input": "4 4\n1 1 0 0\n1 0 1 0\n0 1 1 0\n0 0 1 1", "output": "YES" }, { "input": "4 4\n1 0 0 0\n1 0 0 1\n1 0 0 1\n0 1 1 1", "output": "YES" }, { "input": "4 3\n1 0 0\n1 0 0\n1 0 0\n0 1 1", "output": "YES" }, { "input": "2 4\n0 0 1 0\n0 1 0 0", "output": "YES" }, { "input": "1 2\n0 1", "output": "NO" }, { "input": "3 4\n1 1 1 0\n0 0 1 1\n1 1 0 0", "output": "YES" }, { "input": "3 4\n0 0 1 1\n0 1 0 1\n1 0 1 0", "output": "YES" }, { "input": "2 3\n1 0 1\n0 1 0", "output": "YES" }, { "input": "2 4\n0 0 0 0\n0 0 0 0", "output": "YES" }, { "input": "3 4\n0 1 0 1\n0 1 1 0\n1 0 0 1", "output": "YES" }, { "input": "3 4\n0 1 1 0\n1 1 0 0\n0 0 1 1", "output": "YES" }, { "input": "2 4\n1 0 1 0\n0 0 0 1", "output": "YES" }, { "input": "2 3\n0 1 0\n1 0 0", "output": "YES" }, { "input": "4 4\n0 0 1 1\n0 1 1 0\n1 1 0 0\n1 0 0 1", "output": "YES" }, { "input": "10 4\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n0 0 1 1\n1 1 0 0", "output": "YES" }, { "input": "3 3\n1 1 0\n0 1 1\n1 0 1", "output": "NO" }, { "input": "2 3\n0 0 1\n1 1 0", "output": "YES" }, { "input": "4 4\n0 0 0 1\n0 0 1 1\n1 1 0 1\n1 1 1 0", "output": "YES" }, { "input": "3 4\n0 0 1 1\n1 0 1 0\n0 1 0 1", "output": "YES" }, { "input": "5 4\n1 1 1 0\n1 1 0 1\n1 0 1 1\n0 1 1 1\n0 0 1 1", "output": "NO" }, { "input": "3 4\n1 0 0 0\n1 1 0 0\n0 1 1 0", "output": "YES" } ]
1,598,269,501
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
109
7,065,600
# cook your dish here # cook your dish here from sys import stdin,stdout from collections import Counter from itertools import permutations import bisect import math I=lambda: map(int,stdin.readline().split()) I1=lambda: stdin.readline() n,k=I() a=[0]*k for _ in range(n): l=list(I()) for i in range(k): a[i]+=l[i] for x in a: if x>(n+1)//2: print('NO') exit() print("YES")
Title: Qualification Rounds Time Limit: None seconds Memory Limit: None megabytes Problem Description: Snark and Philip are preparing the problemset for the upcoming pre-qualification round for semi-quarter-finals. They have a bank of *n* problems, and they want to select any non-empty subset of it as a problemset. *k* experienced teams are participating in the contest. Some of these teams already know some of the problems. To make the contest interesting for them, each of the teams should know at most half of the selected problems. Determine if Snark and Philip can make an interesting problemset! Input Specification: The first line contains two integers *n*, *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=4) — the number of problems and the number of experienced teams. Each of the next *n* lines contains *k* integers, each equal to 0 or 1. The *j*-th number in the *i*-th line is 1 if *j*-th team knows *i*-th problem and 0 otherwise. Output Specification: Print "YES" (quotes for clarity), if it is possible to make an interesting problemset, and "NO" otherwise. You can print each character either upper- or lowercase ("YeS" and "yes" are valid when the answer is "YES"). Demo Input: ['5 3\n1 0 1\n1 1 0\n1 0 0\n1 0 0\n1 0 0\n', '3 2\n1 0\n1 1\n0 1\n'] Demo Output: ['NO\n', 'YES\n'] Note: In the first example you can't make any interesting problemset, because the first team knows all problems. In the second example you can choose the first and the third problems.
```python # cook your dish here # cook your dish here from sys import stdin,stdout from collections import Counter from itertools import permutations import bisect import math I=lambda: map(int,stdin.readline().split()) I1=lambda: stdin.readline() n,k=I() a=[0]*k for _ in range(n): l=list(I()) for i in range(k): a[i]+=l[i] for x in a: if x>(n+1)//2: print('NO') exit() print("YES") ```
0
234
B
Reading
PROGRAMMING
1,000
[ "sortings" ]
null
null
Vasya is going to the Olympics in the city Ntown by train. The boy wants to read the textbook to prepare for the Olympics. He counted that he needed *k* hours for this. He also found that the light in the train changes every hour. The light is measured on a scale from 0 to 100, where 0 is very dark, and 100 is very light. Vasya has a train lighting schedule for all *n* hours of the trip — *n* numbers from 0 to 100 each (the light level in the first hour, the second hour and so on). During each of those hours he will either read the whole time, or not read at all. He wants to choose *k* hours to read a book, not necessarily consecutive, so that the minimum level of light among the selected hours were maximum. Vasya is very excited before the upcoming contest, help him choose reading hours.
The first input line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*k*<=≤<=*n*) — the number of hours on the train and the number of hours to read, correspondingly. The second line contains *n* space-separated integers *a**i* (0<=≤<=*a**i*<=≤<=100), *a**i* is the light level at the *i*-th hour.
In the first output line print the minimum light level Vasya will read at. In the second line print *k* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**k*, — the indexes of hours Vasya will read at (1<=≤<=*b**i*<=≤<=*n*). The hours are indexed starting from 1. If there are multiple optimal solutions, print any of them. Print the numbers *b**i* in an arbitrary order.
[ "5 3\n20 10 30 40 10\n", "6 5\n90 20 35 40 60 100\n" ]
[ "20\n1 3 4 \n", "35\n1 3 4 5 6 \n" ]
In the first sample Vasya should read at the first hour (light 20), third hour (light 30) and at the fourth hour (light 40). The minimum light Vasya will have to read at is 20.
0
[ { "input": "5 3\n20 10 30 40 10", "output": "20\n1 3 4 " }, { "input": "6 5\n90 20 35 40 60 100", "output": "35\n1 3 4 5 6 " }, { "input": "100 7\n85 66 9 91 50 46 61 12 55 65 95 1 25 97 95 4 59 59 52 34 94 30 60 11 68 36 17 84 87 68 72 87 46 99 24 66 75 77 75 2 19 3 33 19 7 20 22 3 71 29 88 63 89 47 7 52 47 55 87 77 9 81 44 13 30 43 66 74 9 42 9 72 97 61 9 94 92 29 18 7 92 68 76 43 35 71 54 49 77 50 77 68 57 24 84 73 32 85 24 37", "output": "94\n11 14 15 21 34 73 76 " }, { "input": "1 1\n10", "output": "10\n1 " }, { "input": "1 1\n86", "output": "86\n1 " }, { "input": "100 79\n83 83 83 83 83 94 94 83 83 83 83 90 83 99 83 91 83 83 83 83 83 83 83 83 83 83 83 91 83 83 83 83 83 96 83 83 83 91 83 83 92 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 98 83 83 91 97 83 83 83 83 83 83 83 92 83 83 83 83 83 83 83 93 83 83 91 83 83 83 83 83 83 83 83 83 83 83 96 83 83 83 83 83", "output": "83\n6 7 12 14 16 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "20 3\n17 76 98 17 55 17 17 99 65 17 17 17 17 52 17 17 69 88 17 17", "output": "88\n3 8 18 " }, { "input": "15 1\n0 78 24 24 61 60 0 65 52 57 97 51 56 13 10", "output": "97\n11 " }, { "input": "50 50\n59 40 52 0 65 49 3 58 57 22 86 37 55 72 11 3 30 30 20 64 44 45 12 48 96 96 39 14 8 53 40 37 8 58 97 16 96 48 30 89 66 19 31 50 23 80 67 16 11 7", "output": "0\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 " }, { "input": "60 8\n59 12 34 86 57 65 42 24 62 18 94 92 43 29 95 33 73 3 69 18 36 18 34 97 85 65 74 25 26 70 46 31 57 73 78 89 95 77 94 71 38 23 30 97 69 97 76 43 76 31 38 50 13 16 55 85 47 5 71 4", "output": "92\n11 12 15 24 37 39 44 46 " }, { "input": "70 5\n76 16 20 60 5 96 32 50 35 9 79 42 38 35 72 45 98 33 55 0 86 92 49 87 22 79 35 27 69 35 89 29 31 43 88 1 48 95 3 92 82 97 53 80 79 0 78 58 37 38 45 9 5 38 53 49 71 7 91 3 75 17 76 44 77 31 78 91 59 91", "output": "92\n6 17 38 40 42 " }, { "input": "12 3\n18 64 98 27 36 27 65 43 39 41 69 47", "output": "65\n3 7 11 " }, { "input": "15 13\n6 78 78 78 78 20 78 78 8 3 78 18 32 56 78", "output": "8\n2 3 4 5 6 7 8 9 11 12 13 14 15 " }, { "input": "17 4\n75 52 24 74 70 24 24 53 24 48 24 0 67 47 24 24 6", "output": "67\n1 4 5 13 " }, { "input": "14 2\n31 18 78 90 96 2 90 27 86 9 94 98 94 34", "output": "96\n5 12 " }, { "input": "100 56\n56 64 54 22 46 0 51 27 8 10 5 26 68 37 51 53 4 64 82 23 38 89 97 20 23 31 7 95 55 27 33 23 95 6 64 69 27 54 36 4 96 61 68 26 46 10 61 53 32 19 28 62 7 32 86 84 12 88 92 51 53 23 80 7 36 46 48 29 12 98 72 99 16 0 94 22 83 23 12 37 29 13 93 16 53 21 8 37 67 33 33 67 35 72 3 97 46 30 9 57", "output": "33\n1 2 3 5 7 13 14 15 16 18 19 21 22 23 28 29 33 35 36 38 39 41 42 43 45 47 48 52 55 56 58 59 60 61 63 65 66 67 70 71 72 75 77 80 83 85 88 89 90 91 92 93 94 96 97 100 " }, { "input": "90 41\n43 24 4 69 54 87 33 34 9 77 87 66 66 0 71 43 42 10 78 48 26 40 8 61 80 38 76 63 7 47 99 69 77 43 29 74 86 93 39 28 99 98 11 27 43 58 50 61 1 79 45 17 23 13 10 98 41 28 19 98 87 51 26 28 88 60 42 25 19 3 29 18 0 56 84 27 43 92 93 97 25 90 13 90 75 52 99 6 66 87", "output": "52\n4 5 6 10 11 12 13 15 19 24 25 27 28 31 32 33 36 37 38 41 42 46 48 50 56 60 61 65 66 74 75 78 79 80 82 84 85 86 87 89 90 " }, { "input": "100 71\n29 56 85 57 40 89 93 81 92 38 81 41 18 9 89 21 81 6 95 94 38 11 90 38 6 81 61 43 81 12 36 35 33 10 81 49 59 37 81 61 95 34 43 20 94 88 57 81 42 81 50 24 85 81 1 90 33 8 59 87 17 52 91 54 81 98 28 11 24 51 95 31 98 29 5 81 91 52 41 81 7 9 81 81 13 81 3 81 10 0 37 47 62 50 81 81 81 94 93 38", "output": "35\n2 3 4 5 6 7 8 9 10 11 12 15 17 19 20 21 23 24 26 27 28 29 31 32 35 36 37 38 39 40 41 43 45 46 47 48 49 50 51 53 54 56 59 60 62 63 64 65 66 70 71 73 76 77 78 79 80 83 84 86 88 91 92 93 94 95 96 97 98 99 100 " }, { "input": "100 55\n72 70 77 90 86 96 60 60 60 60 87 62 60 87 0 60 82 60 86 74 60 60 60 60 60 60 78 60 60 60 96 60 60 0 60 60 89 99 60 60 60 60 60 60 89 60 88 84 60 93 0 60 60 60 75 60 67 64 65 60 65 60 72 60 76 4 60 60 60 63 96 62 78 71 63 81 89 98 60 60 69 60 61 60 60 60 85 71 82 79 67 60 60 60 79 96 2 60 60 60", "output": "60\n1 2 3 4 5 6 11 12 14 17 19 20 27 31 37 38 45 47 48 50 55 57 58 59 61 63 65 70 71 72 73 74 75 76 77 78 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 98 99 100 " }, { "input": "100 27\n25 87 25 25 77 78 25 73 91 25 25 70 84 25 61 75 82 25 25 25 25 65 25 25 82 63 93 25 93 75 25 25 25 89 98 25 25 72 70 25 72 25 25 25 70 25 25 98 90 25 25 25 25 25 91 25 78 71 63 69 25 25 25 63 25 25 75 94 25 25 25 25 25 97 25 78 66 87 25 89 25 25 73 85 25 91 72 25 25 80 25 70 25 96 25 25 25 25 25 25", "output": "75\n2 5 6 9 13 16 17 25 27 29 30 34 35 48 49 55 57 67 68 74 76 78 80 84 86 90 94 " }, { "input": "100 99\n1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2", "output": "1\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "100 50\n1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2", "output": "2\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 " }, { "input": "100 51\n1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2", "output": "1\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 99 100 " }, { "input": "100 75\n1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2", "output": "1\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "100 45\n1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2", "output": "2\n12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 " }, { "input": "2 2\n2 2", "output": "2\n1 2 " }, { "input": "2 1\n2 1", "output": "2\n1 " }, { "input": "2 1\n1 2", "output": "2\n2 " }, { "input": "3 1\n1 2 0", "output": "2\n2 " }, { "input": "3 2\n0 0 0", "output": "0\n2 3 " }, { "input": "3 3\n0 1 0", "output": "0\n1 2 3 " }, { "input": "3 2\n99 100 99", "output": "99\n2 3 " }, { "input": "1 1\n0", "output": "0\n1 " }, { "input": "4 1\n100 100 0 100", "output": "100\n4 " }, { "input": "4 2\n0 1 0 1", "output": "1\n2 4 " }, { "input": "10 3\n0 1 2 3 0 1 2 3 0 1", "output": "2\n4 7 8 " }, { "input": "10 9\n0 1 0 1 100 100 1 0 1 0", "output": "0\n2 3 4 5 6 7 8 9 10 " }, { "input": "7 7\n1 0 0 0 0 0 0", "output": "0\n1 2 3 4 5 6 7 " }, { "input": "7 6\n0 0 0 0 0 0 1", "output": "0\n2 3 4 5 6 7 " }, { "input": "7 1\n12 33 12 88 10 0 3", "output": "88\n4 " }, { "input": "7 1\n0 1 1 1 1 1 1", "output": "1\n7 " }, { "input": "7 6\n1 1 1 1 1 1 0", "output": "1\n1 2 3 4 5 6 " }, { "input": "7 2\n1 0 1 1 1 1 1", "output": "1\n6 7 " }, { "input": "8 4\n1 1 1 1 0 0 0 0", "output": "1\n1 2 3 4 " }, { "input": "7 5\n1 1 1 2 0 0 0", "output": "0\n1 2 3 4 7 " } ]
1,643,442,191
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
62
0
n,k = [int(n) for n in input().split()] light=[int(light) for light in input().split()] nums=[] umap={} for index in light: nums.append(index) nums.sort() print(nums[n-k]) for index in range(len(light)): if light[index] in umap: umap[light[index]*(-1)].append(index) else: umap[light[index]*(-1)]=[index] nums=sorted(umap.keys()) arr=[] for index in nums: for indexnum in umap[index]: arr.append(indexnum+1) arr=arr[:k] for index in arr: print(index,end=' ')
Title: Reading Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya is going to the Olympics in the city Ntown by train. The boy wants to read the textbook to prepare for the Olympics. He counted that he needed *k* hours for this. He also found that the light in the train changes every hour. The light is measured on a scale from 0 to 100, where 0 is very dark, and 100 is very light. Vasya has a train lighting schedule for all *n* hours of the trip — *n* numbers from 0 to 100 each (the light level in the first hour, the second hour and so on). During each of those hours he will either read the whole time, or not read at all. He wants to choose *k* hours to read a book, not necessarily consecutive, so that the minimum level of light among the selected hours were maximum. Vasya is very excited before the upcoming contest, help him choose reading hours. Input Specification: The first input line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1000,<=1<=≤<=*k*<=≤<=*n*) — the number of hours on the train and the number of hours to read, correspondingly. The second line contains *n* space-separated integers *a**i* (0<=≤<=*a**i*<=≤<=100), *a**i* is the light level at the *i*-th hour. Output Specification: In the first output line print the minimum light level Vasya will read at. In the second line print *k* distinct space-separated integers *b*1,<=*b*2,<=...,<=*b**k*, — the indexes of hours Vasya will read at (1<=≤<=*b**i*<=≤<=*n*). The hours are indexed starting from 1. If there are multiple optimal solutions, print any of them. Print the numbers *b**i* in an arbitrary order. Demo Input: ['5 3\n20 10 30 40 10\n', '6 5\n90 20 35 40 60 100\n'] Demo Output: ['20\n1 3 4 \n', '35\n1 3 4 5 6 \n'] Note: In the first sample Vasya should read at the first hour (light 20), third hour (light 30) and at the fourth hour (light 40). The minimum light Vasya will have to read at is 20.
```python n,k = [int(n) for n in input().split()] light=[int(light) for light in input().split()] nums=[] umap={} for index in light: nums.append(index) nums.sort() print(nums[n-k]) for index in range(len(light)): if light[index] in umap: umap[light[index]*(-1)].append(index) else: umap[light[index]*(-1)]=[index] nums=sorted(umap.keys()) arr=[] for index in nums: for indexnum in umap[index]: arr.append(indexnum+1) arr=arr[:k] for index in arr: print(index,end=' ') ```
-1
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,546,949,752
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
186
0
n=int(input()) arr=[int(i) for i in input().split()] if arr[0]%2==0 : for j in arr : if arr[j]%2!=0 : print(j+1) break else : for m in arr : if arr[m]%2==0 : print(m+1) break
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n=int(input()) arr=[int(i) for i in input().split()] if arr[0]%2==0 : for j in arr : if arr[j]%2!=0 : print(j+1) break else : for m in arr : if arr[m]%2==0 : print(m+1) break ```
0
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,696,415,437
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; int main(){ int a, b, c; cin >> a >> b >> c; cout << int(sqrt(a + b + c)); }
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python #include <bits/stdc++.h> using namespace std; int main(){ int a, b, c; cin >> a >> b >> c; cout << int(sqrt(a + b + c)); } ```
-1
35
A
Shell Game
PROGRAMMING
1,000
[ "implementation" ]
A. Shell Game
2
64
Today the «Z» city residents enjoy a shell game competition. The residents are gathered on the main square to watch the breath-taking performance. The performer puts 3 non-transparent cups upside down in a row. Then he openly puts a small ball under one of the cups and starts to shuffle the cups around very quickly so that on the whole he makes exactly 3 shuffles. After that the spectators have exactly one attempt to guess in which cup they think the ball is and if the answer is correct they get a prize. Maybe you can try to find the ball too?
The first input line contains an integer from 1 to 3 — index of the cup which covers the ball before the shuffles. The following three lines describe the shuffles. Each description of a shuffle contains two distinct integers from 1 to 3 — indexes of the cups which the performer shuffled this time. The cups are numbered from left to right and are renumbered after each shuffle from left to right again. In other words, the cup on the left always has index 1, the one in the middle — index 2 and the one on the right — index 3.
In the first line output an integer from 1 to 3 — index of the cup which will have the ball after all the shuffles.
[ "1\n1 2\n2 1\n2 1\n", "1\n2 1\n3 1\n1 3\n" ]
[ "2\n", "2\n" ]
none
500
[ { "input": "1\n1 2\n2 1\n2 1", "output": "2" }, { "input": "1\n2 1\n3 1\n1 3", "output": "2" }, { "input": "3\n3 1\n2 1\n1 2", "output": "1" }, { "input": "1\n1 3\n1 2\n2 3", "output": "2" }, { "input": "3\n3 2\n3 1\n3 1", "output": "2" }, { "input": "1\n2 1\n1 3\n1 3", "output": "2" }, { "input": "3\n3 1\n2 3\n3 2", "output": "1" }, { "input": "2\n1 3\n1 2\n2 1", "output": "2" }, { "input": "1\n1 3\n3 2\n1 2", "output": "1" }, { "input": "1\n1 3\n1 3\n2 3", "output": "1" }, { "input": "2\n1 2\n2 3\n2 1", "output": "2" }, { "input": "3\n1 3\n3 2\n2 1", "output": "2" }, { "input": "1\n1 2\n2 1\n2 3", "output": "1" }, { "input": "1\n2 3\n1 3\n1 2", "output": "3" }, { "input": "2\n3 1\n3 2\n2 3", "output": "2" }, { "input": "2\n1 3\n3 1\n3 1", "output": "2" }, { "input": "1\n3 2\n1 3\n3 1", "output": "1" }, { "input": "3\n1 3\n1 2\n1 3", "output": "2" }, { "input": "1\n3 2\n3 1\n1 2", "output": "3" }, { "input": "2\n2 3\n1 3\n1 3", "output": "3" } ]
1,607,262,120
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
436
2,150,400
n = int(input()) for _ in range(3): swaps = list(map(int, input().split())) n = swaps[0] if swaps[1] == n else swaps[1] if swaps[0] == n else n print(n)
Title: Shell Game Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Today the «Z» city residents enjoy a shell game competition. The residents are gathered on the main square to watch the breath-taking performance. The performer puts 3 non-transparent cups upside down in a row. Then he openly puts a small ball under one of the cups and starts to shuffle the cups around very quickly so that on the whole he makes exactly 3 shuffles. After that the spectators have exactly one attempt to guess in which cup they think the ball is and if the answer is correct they get a prize. Maybe you can try to find the ball too? Input Specification: The first input line contains an integer from 1 to 3 — index of the cup which covers the ball before the shuffles. The following three lines describe the shuffles. Each description of a shuffle contains two distinct integers from 1 to 3 — indexes of the cups which the performer shuffled this time. The cups are numbered from left to right and are renumbered after each shuffle from left to right again. In other words, the cup on the left always has index 1, the one in the middle — index 2 and the one on the right — index 3. Output Specification: In the first line output an integer from 1 to 3 — index of the cup which will have the ball after all the shuffles. Demo Input: ['1\n1 2\n2 1\n2 1\n', '1\n2 1\n3 1\n1 3\n'] Demo Output: ['2\n', '2\n'] Note: none
```python n = int(input()) for _ in range(3): swaps = list(map(int, input().split())) n = swaps[0] if swaps[1] == n else swaps[1] if swaps[0] == n else n print(n) ```
-1
920
D
Tanks
PROGRAMMING
2,400
[ "dp", "greedy", "implementation" ]
null
null
Petya sometimes has to water his field. To water the field, Petya needs a tank with exactly *V* ml of water. Petya has got *N* tanks, *i*-th of them initially containing *a**i* ml of water. The tanks are really large, any of them can contain any amount of water (no matter how large this amount is). Also Petya has got a scoop that can contain up to *K* ml of water (initially the scoop is empty). This scoop can be used to get some water from some tank, and after that pour it all into some tank (it is impossible to get water from multiple tanks without pouring it, or leave some water in the scoop when pouring it). When Petya tries to get some water from a tank, he gets *min*(*v*,<=*K*) water, where *v* is the current volume of water in the tank. Is it possible to obtain a tank with exactly *V* ml of water using these operations? If it is possible, print a sequence of operations that allows to do it. If there are multiple ways to obtain needed amount of water in some tank, print any of them.
The first line contains 3 integers: *N* (2<=≤<=*N*<=≤<=5000), *K* (1<=≤<=*K*<=≤<=5000), and *V* (0<=≤<=*V*<=≤<=109) — the number of tanks, the maximum volume of water the scoop can contain, and the required amount of water in some tank, respectively. The second line contains *N* integers *a**i* (0<=≤<=*a**i*<=≤<=105), where *a**i* is initial volume of water in *i*-th tank.
If it is impossible to obtain a tank with exactly *V* ml of water, print NO. Otherwise print YES in the first line, and beginning from the second line, print the sequence of operations in the following format: Each line has to contain 3 numbers denoting a compressed operation: "*cnt* *x* *y*" (1<=≤<=*cnt*<=≤<=109,<=1<=≤<=*x*,<=*y*<=≤<=*N*), where *x* is the index of the tank where we get water, *y* is the index of the tank where we pour water, and *cnt* is the number of times we transfer water from tank *x* to tank *y*. The number of these lines must not exceed *N*<=+<=5.
[ "2 3 5\n2 3\n", "2 3 4\n2 3\n", "5 2 0\n1 3 5 7 9\n" ]
[ "YES\n1 2 1\n", "NO\n", "YES\n2 2 1\n3 3 1\n4 4 1\n5 5 1\n" ]
none
0
[ { "input": "2 3 5\n2 3", "output": "YES\n1 2 1" }, { "input": "2 3 4\n2 3", "output": "NO" }, { "input": "5 2 0\n1 3 5 7 9", "output": "YES\n2 2 1\n3 3 1\n4 4 1\n5 5 1" }, { "input": "5 10 3\n3 4 5 6 7", "output": "YES\n1 3 2\n1 4 2\n1 5 2" }, { "input": "6 4 8\n5 5 5 5 5 5", "output": "YES\n2 2 1\n2 3 1\n2 4 1\n2 5 1\n2 6 1\n2 1 6" }, { "input": "5 4 24\n5 5 5 5 5", "output": "YES\n2 2 1\n2 3 1\n2 4 1\n2 5 1\n6 1 5" }, { "input": "5 4 28\n5 5 5 5 5", "output": "NO" }, { "input": "8 4 20\n3 3 3 3 3 3 3 3", "output": "YES\n1 2 1\n1 3 1\n1 4 1\n1 5 1\n1 6 1\n1 7 1\n1 8 1\n5 1 8" }, { "input": "2 6 1\n100 200", "output": "NO" }, { "input": "10 2 49\n3 5 7 9 11 3 5 7 9 11", "output": "YES\n4 3 2\n5 4 2\n6 5 2\n2 6 2\n3 7 2\n4 8 2\n5 9 2\n6 10 2\n23 2 1" }, { "input": "10 10 99\n10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "8 6 32\n3 6 4 4 4 4 4 4", "output": "YES\n1 2 1\n1 4 3\n1 5 1\n1 6 1\n1 7 1\n1 8 1\n4 1 3" }, { "input": "6 11 3\n6 6 6 6 6 6", "output": "YES\n1 2 1\n1 3 1\n1 4 1\n1 5 1\n1 6 1\n3 1 6" }, { "input": "3 1 1000000000\n1 100000 100000", "output": "NO" }, { "input": "3 5000 300000\n100000 100000 100000", "output": "YES\n20 2 1\n20 3 1\n60 1 3" }, { "input": "6 2308 239412\n17844 17834 31745 48432 34124 91715", "output": "YES\n14 3 2\n21 4 2\n15 5 2\n40 6 2\n96 2 1" }, { "input": "6 4642 546\n97933 1518 96285 21500 23683 36805", "output": "NO" }, { "input": "6 403 52\n19074 6130 9424 24531 53865 20909", "output": "YES\n24 3 1\n61 4 1\n134 5 1\n52 6 1\n317 1 2" }, { "input": "11 441 510415\n21052 19023 45383 65759 26015 81310 58476 17182 81909 18864 75570", "output": "NO" }, { "input": "7 4656 157012\n91715 81600 4215 18658 65170 92910 79441", "output": "YES\n1 3 2\n5 4 1\n14 5 2\n20 6 1\n18 7 1\n27 1 2" }, { "input": "8 3537 2935\n66115 95378 12352 23457 40700 38935 52481 53067", "output": "NO" }, { "input": "5 456 224612\n10752 31270 71281 86324 25125", "output": "YES\n69 2 1\n157 3 1\n56 5 1\n189 4 1" }, { "input": "13 2790 2701\n10120 25652 53086 363 68272 82632 49990 47260 64566 12290 40055 68058 37429", "output": "NO" }, { "input": "14 3551 2645\n43615 56455 48651 93362 58302 46167 75164 86724 18015 81757 28424 69700 37004 20927", "output": "YES\n14 3 1\n27 4 1\n17 5 2\n14 6 2\n22 7 1\n25 8 2\n6 9 1\n24 10 1\n9 11 2\n20 12 1\n11 13 1\n6 14 1\n77 2 1" }, { "input": "11 1454 455074\n38670 34998 82377 85327 40505 3835 1746 23484 74691 53060 17024", "output": "NO" }, { "input": "2 4 4\n2 3", "output": "YES\n1 2 1\n1 1 2" }, { "input": "2 3 3\n2 2", "output": "YES\n1 2 1\n1 1 2" }, { "input": "2 3 2\n1 1", "output": "YES\n1 2 1" }, { "input": "2 1 0\n0 0", "output": "YES" }, { "input": "3 10 30\n31 32 33", "output": "YES\n4 2 1\n4 3 1\n3 1 3" }, { "input": "2 4 0\n7 3", "output": "YES\n1 2 1" }, { "input": "6 6 7\n0 11 1 4 7 8", "output": "YES\n2 2 1\n1 4 1\n2 5 1\n2 6 1\n1 1 3" }, { "input": "5 3 5\n0 3 2 0 1", "output": "YES\n1 2 1\n1 5 1\n1 1 3" }, { "input": "5 4 31\n5 4 8 8 2", "output": "NO" } ]
1,665,759,732
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
62
0
import sys input = sys.stdin.buffer.readline def process(K, V, A): n = len(A) if sum(A) < V: sys.stdout.write('NO\n') return K_mod = [None for i in range(K)] K_mod[0] = 'empty' """ Can we get to V mod K? """ for i in range(n): ai = A[i] new_values = [] for R in range(K): if K_mod[R] is not None and K_mod[(R+ai) % K] is None: bi = (R+ai) % K new_values.append([bi, R]) for bi, R in new_values: K_mod[bi] = [i, R] if K_mod[V % K] is None: sys.stdout.write('NO\n') return """ K_mod[x] = [i, R] means that to get x mod k you add ai to however you get R """ path = [] curr = V % K while curr != 0: i, R = K_mod[curr] path.append(i) curr = R if curr==0: break if len(path)==0: """ V ~ 0 mod K """ sys.stdout.write('YES\n') for i in range(1, n): ai = A[i] if ai % K==0: cnt = ai//K else: cnt = ai//K+1 sys.stdout.write(f'{cnt} {i+1} {1}\n') A[0]+=A[i] A[i] = 0 sys.stdout.write(f'{V//K} 1 2\n') return else: assert sum([A[x] for x in path]) % K==V % K sys.stdout.write('YES\n') root = path[0] for i in range(1, len(path)): I = path[i] ai = A[I] if ai % K==0: cnt = ai//K else: cnt = ai//K+1 sys.stdout.write(f'{cnt} {I+1} {root+1}\n') A[root]+=A[I] A[I] = 0 assert A[root] % K==V% K if A[root]==V: return elif A[root] > V: cnt = (A[root]-V)//K root2 = (root+1) % n sys.stdout.write(f'{cnt} {root+1} {root2+1}\n') return else: root2 = (root+1) % n for i in range(n): if i not in path: ai = A[i] if ai % K==0: cnt = ai//K else: cnt = ai//K+1 sys.stdout.write(f'{cnt} {i+1} {root2+1}\n') cnt = (V-A[root])//K sys.stdout.write(f'{cnt} {root2+1} {root+1}\n') return N, K, V = [int(x) for x in input().split()] A = [int(x) for x in input().split()] process(K, V, A)
Title: Tanks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya sometimes has to water his field. To water the field, Petya needs a tank with exactly *V* ml of water. Petya has got *N* tanks, *i*-th of them initially containing *a**i* ml of water. The tanks are really large, any of them can contain any amount of water (no matter how large this amount is). Also Petya has got a scoop that can contain up to *K* ml of water (initially the scoop is empty). This scoop can be used to get some water from some tank, and after that pour it all into some tank (it is impossible to get water from multiple tanks without pouring it, or leave some water in the scoop when pouring it). When Petya tries to get some water from a tank, he gets *min*(*v*,<=*K*) water, where *v* is the current volume of water in the tank. Is it possible to obtain a tank with exactly *V* ml of water using these operations? If it is possible, print a sequence of operations that allows to do it. If there are multiple ways to obtain needed amount of water in some tank, print any of them. Input Specification: The first line contains 3 integers: *N* (2<=≤<=*N*<=≤<=5000), *K* (1<=≤<=*K*<=≤<=5000), and *V* (0<=≤<=*V*<=≤<=109) — the number of tanks, the maximum volume of water the scoop can contain, and the required amount of water in some tank, respectively. The second line contains *N* integers *a**i* (0<=≤<=*a**i*<=≤<=105), where *a**i* is initial volume of water in *i*-th tank. Output Specification: If it is impossible to obtain a tank with exactly *V* ml of water, print NO. Otherwise print YES in the first line, and beginning from the second line, print the sequence of operations in the following format: Each line has to contain 3 numbers denoting a compressed operation: "*cnt* *x* *y*" (1<=≤<=*cnt*<=≤<=109,<=1<=≤<=*x*,<=*y*<=≤<=*N*), where *x* is the index of the tank where we get water, *y* is the index of the tank where we pour water, and *cnt* is the number of times we transfer water from tank *x* to tank *y*. The number of these lines must not exceed *N*<=+<=5. Demo Input: ['2 3 5\n2 3\n', '2 3 4\n2 3\n', '5 2 0\n1 3 5 7 9\n'] Demo Output: ['YES\n1 2 1\n', 'NO\n', 'YES\n2 2 1\n3 3 1\n4 4 1\n5 5 1\n'] Note: none
```python import sys input = sys.stdin.buffer.readline def process(K, V, A): n = len(A) if sum(A) < V: sys.stdout.write('NO\n') return K_mod = [None for i in range(K)] K_mod[0] = 'empty' """ Can we get to V mod K? """ for i in range(n): ai = A[i] new_values = [] for R in range(K): if K_mod[R] is not None and K_mod[(R+ai) % K] is None: bi = (R+ai) % K new_values.append([bi, R]) for bi, R in new_values: K_mod[bi] = [i, R] if K_mod[V % K] is None: sys.stdout.write('NO\n') return """ K_mod[x] = [i, R] means that to get x mod k you add ai to however you get R """ path = [] curr = V % K while curr != 0: i, R = K_mod[curr] path.append(i) curr = R if curr==0: break if len(path)==0: """ V ~ 0 mod K """ sys.stdout.write('YES\n') for i in range(1, n): ai = A[i] if ai % K==0: cnt = ai//K else: cnt = ai//K+1 sys.stdout.write(f'{cnt} {i+1} {1}\n') A[0]+=A[i] A[i] = 0 sys.stdout.write(f'{V//K} 1 2\n') return else: assert sum([A[x] for x in path]) % K==V % K sys.stdout.write('YES\n') root = path[0] for i in range(1, len(path)): I = path[i] ai = A[I] if ai % K==0: cnt = ai//K else: cnt = ai//K+1 sys.stdout.write(f'{cnt} {I+1} {root+1}\n') A[root]+=A[I] A[I] = 0 assert A[root] % K==V% K if A[root]==V: return elif A[root] > V: cnt = (A[root]-V)//K root2 = (root+1) % n sys.stdout.write(f'{cnt} {root+1} {root2+1}\n') return else: root2 = (root+1) % n for i in range(n): if i not in path: ai = A[i] if ai % K==0: cnt = ai//K else: cnt = ai//K+1 sys.stdout.write(f'{cnt} {i+1} {root2+1}\n') cnt = (V-A[root])//K sys.stdout.write(f'{cnt} {root2+1} {root+1}\n') return N, K, V = [int(x) for x in input().split()] A = [int(x) for x in input().split()] process(K, V, A) ```
0
415
B
Mashmokh and Tokens
PROGRAMMING
1,500
[ "binary search", "greedy", "implementation", "math" ]
null
null
Bimokh is Mashmokh's boss. For the following *n* days he decided to pay to his workers in a new way. At the beginning of each day he will give each worker a certain amount of tokens. Then at the end of each day each worker can give some of his tokens back to get a certain amount of money. The worker can save the rest of tokens but he can't use it in any other day to get more money. If a worker gives back *w* tokens then he'll get dollars. Mashmokh likes the tokens however he likes money more. That's why he wants to save as many tokens as possible so that the amount of money he gets is maximal possible each day. He has *n* numbers *x*1,<=*x*2,<=...,<=*x**n*. Number *x**i* is the number of tokens given to each worker on the *i*-th day. Help him calculate for each of *n* days the number of tokens he can save.
The first line of input contains three space-separated integers *n*,<=*a*,<=*b* (1<=≤<=*n*<=≤<=105; 1<=≤<=*a*,<=*b*<=≤<=109). The second line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109).
Output *n* space-separated integers. The *i*-th of them is the number of tokens Mashmokh can save on the *i*-th day.
[ "5 1 4\n12 6 11 9 1\n", "3 1 2\n1 2 3\n", "1 1 1\n1\n" ]
[ "0 2 3 1 1 ", "1 0 1 ", "0 " ]
none
1,000
[ { "input": "5 1 4\n12 6 11 9 1", "output": "0 2 3 1 1 " }, { "input": "3 1 2\n1 2 3", "output": "1 0 1 " }, { "input": "1 1 1\n1", "output": "0 " }, { "input": "1 1 1000000000\n1000000000", "output": "0 " }, { "input": "1 1 1000000000\n999999999", "output": "999999999 " }, { "input": "10 1 100000000\n999999999 999999999 999999999 999999999 999999999 999999999 999999999 999999999 999999999 999999999", "output": "99999999 99999999 99999999 99999999 99999999 99999999 99999999 99999999 99999999 99999999 " } ]
1,547,949,346
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
280
4,505,600
n,a,b=map(int,input().split()) l=[int(i) for i in input().split()] from math import ceil as ceil,floor as floor for i in l: rem=(i*(a/b)-(i*a//b))*(b/a) print(int(rem),end=' ')
Title: Mashmokh and Tokens Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bimokh is Mashmokh's boss. For the following *n* days he decided to pay to his workers in a new way. At the beginning of each day he will give each worker a certain amount of tokens. Then at the end of each day each worker can give some of his tokens back to get a certain amount of money. The worker can save the rest of tokens but he can't use it in any other day to get more money. If a worker gives back *w* tokens then he'll get dollars. Mashmokh likes the tokens however he likes money more. That's why he wants to save as many tokens as possible so that the amount of money he gets is maximal possible each day. He has *n* numbers *x*1,<=*x*2,<=...,<=*x**n*. Number *x**i* is the number of tokens given to each worker on the *i*-th day. Help him calculate for each of *n* days the number of tokens he can save. Input Specification: The first line of input contains three space-separated integers *n*,<=*a*,<=*b* (1<=≤<=*n*<=≤<=105; 1<=≤<=*a*,<=*b*<=≤<=109). The second line of input contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=109). Output Specification: Output *n* space-separated integers. The *i*-th of them is the number of tokens Mashmokh can save on the *i*-th day. Demo Input: ['5 1 4\n12 6 11 9 1\n', '3 1 2\n1 2 3\n', '1 1 1\n1\n'] Demo Output: ['0 2 3 1 1 ', '1 0 1 ', '0 '] Note: none
```python n,a,b=map(int,input().split()) l=[int(i) for i in input().split()] from math import ceil as ceil,floor as floor for i in l: rem=(i*(a/b)-(i*a//b))*(b/a) print(int(rem),end=' ') ```
0
729
A
Interview with Oleg
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
Polycarp has interviewed Oleg and has written the interview down without punctuation marks and spaces to save time. Thus, the interview is now a string *s* consisting of *n* lowercase English letters. There is a filler word ogo in Oleg's speech. All words that can be obtained from ogo by adding go several times to the end of it are also considered to be fillers. For example, the words ogo, ogogo, ogogogo are fillers, but the words go, og, ogog, ogogog and oggo are not fillers. The fillers have maximal size, for example, for ogogoo speech we can't consider ogo a filler and goo as a normal phrase. We should consider ogogo as a filler here. To print the interview, Polycarp has to replace each of the fillers with three asterisks. Note that a filler word is replaced with exactly three asterisks regardless of its length. Polycarp has dealt with this problem in no time. Can you do the same? The clock is ticking!
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the length of the interview. The second line contains the string *s* of length *n*, consisting of lowercase English letters.
Print the interview text after the replacement of each of the fillers with "***". It is allowed for the substring "***" to have several consecutive occurences.
[ "7\naogogob\n", "13\nogogmgogogogo\n", "9\nogoogoogo\n" ]
[ "a***b\n", "***gmg***\n", "*********\n" ]
The first sample contains one filler word ogogo, so the interview for printing is "a***b". The second sample contains two fillers ogo and ogogogo. Thus, the interview is transformed to "***gmg***".
500
[ { "input": "7\naogogob", "output": "a***b" }, { "input": "13\nogogmgogogogo", "output": "***gmg***" }, { "input": "9\nogoogoogo", "output": "*********" }, { "input": "32\nabcdefogoghijklmnogoopqrstuvwxyz", "output": "abcdef***ghijklmn***opqrstuvwxyz" }, { "input": "100\nggogogoooggogooggoggogggggogoogoggooooggooggoooggogoooggoggoogggoogoggogggoooggoggoggogggogoogggoooo", "output": "gg***oogg***oggoggoggggg******ggooooggooggooogg***ooggoggoogggo***ggogggoooggoggoggoggg***ogggoooo" }, { "input": "10\nogooggoggo", "output": "***oggoggo" }, { "input": "20\nooggooogooogooogooog", "output": "ooggoo***o***o***oog" }, { "input": "30\ngoggogoooggooggggoggoggoogoggo", "output": "gogg***ooggooggggoggoggo***ggo" }, { "input": "40\nogggogooggoogoogggogooogogggoogggooggooo", "output": "oggg***oggo***oggg***o***gggoogggooggooo" }, { "input": "50\noggggogoogggggggoogogggoooggooogoggogooogogggogooo", "output": "ogggg***ogggggggo***gggoooggoo***gg***o***ggg***oo" }, { "input": "60\nggoooogoggogooogogooggoogggggogogogggggogggogooogogogggogooo", "output": "ggooo***gg***o***oggooggggg***gggggoggg***o***ggg***oo" }, { "input": "70\ngogoooggggoggoggggggoggggoogooogogggggooogggogoogoogoggogggoggogoooooo", "output": "g***ooggggoggoggggggoggggo***o***gggggoooggg*********ggogggogg***ooooo" }, { "input": "80\nooogoggoooggogogoggooooogoogogooogoggggogggggogoogggooogooooooggoggoggoggogoooog", "output": "oo***ggooogg***ggoooo******o***ggggoggggg***ogggoo***oooooggoggoggogg***ooog" }, { "input": "90\nooogoggggooogoggggoooogggggooggoggoggooooooogggoggogggooggggoooooogoooogooggoooogggggooooo", "output": "oo***ggggoo***ggggoooogggggooggoggoggooooooogggoggogggooggggooooo***oo***oggoooogggggooooo" }, { "input": "100\ngooogoggooggggoggoggooooggogoogggoogogggoogogoggogogogoggogggggogggggoogggooogogoggoooggogoooooogogg", "output": "goo***ggooggggoggoggoooogg***ogggo***gggo***gg***ggogggggogggggoogggoo***ggooogg***oooo***gg" }, { "input": "100\ngoogoogggogoooooggoogooogoogoogogoooooogooogooggggoogoggogooogogogoogogooooggoggogoooogooooooggogogo", "output": "go***oggg***ooooggo***o*********oooo***o***oggggo***gg***o******oooggogg***oo***ooooogg***" }, { "input": "100\ngoogoggggogggoooggoogoogogooggoggooggggggogogggogogggoogogggoogoggoggogooogogoooogooggggogggogggoooo", "output": "go***ggggogggoooggo******oggoggoogggggg***ggg***gggo***gggo***ggogg***o***oo***oggggogggogggoooo" }, { "input": "100\nogogogogogoggogogogogogogoggogogogoogoggoggooggoggogoogoooogogoogggogogogogogoggogogogogogogogogogoe", "output": "***gg***gg******ggoggooggogg******oo***oggg***gg***e" }, { "input": "5\nogoga", "output": "***ga" }, { "input": "1\no", "output": "o" }, { "input": "100\nogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogog", "output": "***g" }, { "input": "99\nogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogo", "output": "***" }, { "input": "5\nggggg", "output": "ggggg" }, { "input": "6\ngoogoo", "output": "go***o" }, { "input": "7\nooogooo", "output": "oo***oo" }, { "input": "8\ngggggggg", "output": "gggggggg" }, { "input": "9\nogggogggg", "output": "ogggogggg" }, { "input": "10\nogogoggogo", "output": "***gg***" }, { "input": "11\noooggooggog", "output": "oooggooggog" }, { "input": "12\nogggooooggog", "output": "ogggooooggog" }, { "input": "13\nogoggogogooog", "output": "***gg***oog" }, { "input": "15\nggooogoooggoggg", "output": "ggoo***ooggoggg" }, { "input": "14\noogooooggooggo", "output": "o***oooggooggo" }, { "input": "1\na", "output": "a" }, { "input": "1\ng", "output": "g" }, { "input": "1\nz", "output": "z" }, { "input": "46\nsdfkogogogogergergogogergerogogogogoergoegogog", "output": "sdfk***gergerg***gerger***ergoeg***g" }, { "input": "86\ngdfggogogodfogogdofgoodfogodgodgfogoogdodhbofgobgbgfogoogdfogogogogogoogggsgfosogodgon", "output": "gdfgg***df***gdofgoodf***dgodgf***ogdodhbofgobgbgf***ogdf***ogggsgfos***dgon" }, { "input": "83\nergegergoogogogerogoerorogroeorgefxcfgzdgawofqpwzxcvbnmsdfkfpweoriqgtogooggsdgogoog", "output": "ergegergo***ger***erorogroeorgefxcfgzdgawofqpwzxcvbnmsdfkfpweoriqgt***oggsdg***og" }, { "input": "2\nog", "output": "og" }, { "input": "4\nogog", "output": "***g" }, { "input": "4\nogoo", "output": "***o" }, { "input": "29\naaaogogogogogogogogogogogobbb", "output": "aaa***bbb" }, { "input": "11\nogogogogogo", "output": "***" }, { "input": "9\nogogogogo", "output": "***" }, { "input": "3\nogo", "output": "***" }, { "input": "15\nogogogogogogogo", "output": "***" }, { "input": "25\nogogogogogogogogogogogogo", "output": "***" } ]
1,654,326,554
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
17
31
0
n = int(input()) s = input() if "ogo" in s or "ogogo" in s or "ogogogo" in s : print(s.replace("ogogogo","***").replace("ogogo","***").replace("ogo","***"))
Title: Interview with Oleg Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has interviewed Oleg and has written the interview down without punctuation marks and spaces to save time. Thus, the interview is now a string *s* consisting of *n* lowercase English letters. There is a filler word ogo in Oleg's speech. All words that can be obtained from ogo by adding go several times to the end of it are also considered to be fillers. For example, the words ogo, ogogo, ogogogo are fillers, but the words go, og, ogog, ogogog and oggo are not fillers. The fillers have maximal size, for example, for ogogoo speech we can't consider ogo a filler and goo as a normal phrase. We should consider ogogo as a filler here. To print the interview, Polycarp has to replace each of the fillers with three asterisks. Note that a filler word is replaced with exactly three asterisks regardless of its length. Polycarp has dealt with this problem in no time. Can you do the same? The clock is ticking! Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the length of the interview. The second line contains the string *s* of length *n*, consisting of lowercase English letters. Output Specification: Print the interview text after the replacement of each of the fillers with "***". It is allowed for the substring "***" to have several consecutive occurences. Demo Input: ['7\naogogob\n', '13\nogogmgogogogo\n', '9\nogoogoogo\n'] Demo Output: ['a***b\n', '***gmg***\n', '*********\n'] Note: The first sample contains one filler word ogogo, so the interview for printing is "a***b". The second sample contains two fillers ogo and ogogogo. Thus, the interview is transformed to "***gmg***".
```python n = int(input()) s = input() if "ogo" in s or "ogogo" in s or "ogogogo" in s : print(s.replace("ogogogo","***").replace("ogogo","***").replace("ogo","***")) ```
0
378
A
Playing with Dice
PROGRAMMING
800
[ "brute force" ]
null
null
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
[ "2 5\n", "2 4\n" ]
[ "3 0 3\n", "2 1 3\n" ]
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
500
[ { "input": "2 5", "output": "3 0 3" }, { "input": "2 4", "output": "2 1 3" }, { "input": "5 3", "output": "2 1 3" }, { "input": "1 6", "output": "3 0 3" }, { "input": "5 1", "output": "3 1 2" }, { "input": "6 3", "output": "2 0 4" }, { "input": "2 3", "output": "2 0 4" }, { "input": "5 6", "output": "5 0 1" }, { "input": "4 4", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" }, { "input": "6 4", "output": "1 1 4" }, { "input": "1 4", "output": "2 0 4" }, { "input": "5 5", "output": "0 6 0" }, { "input": "4 5", "output": "4 0 2" }, { "input": "4 3", "output": "3 0 3" }, { "input": "1 5", "output": "2 1 3" }, { "input": "6 5", "output": "1 0 5" }, { "input": "2 2", "output": "0 6 0" }, { "input": "1 3", "output": "1 1 4" }, { "input": "3 6", "output": "4 0 2" }, { "input": "3 1", "output": "4 1 1" }, { "input": "3 2", "output": "4 0 2" }, { "input": "3 5", "output": "3 1 2" }, { "input": "3 3", "output": "0 6 0" }, { "input": "6 2", "output": "2 1 3" }, { "input": "4 1", "output": "4 0 2" }, { "input": "5 2", "output": "3 0 3" }, { "input": "4 2", "output": "3 1 2" }, { "input": "2 1", "output": "5 0 1" }, { "input": "6 1", "output": "3 0 3" }, { "input": "4 6", "output": "4 1 1" }, { "input": "2 6", "output": "3 1 2" }, { "input": "3 4", "output": "3 0 3" }, { "input": "1 2", "output": "1 0 5" }, { "input": "6 6", "output": "0 6 0" }, { "input": "5 4", "output": "2 0 4" }, { "input": "3 3", "output": "0 6 0" }, { "input": "1 1", "output": "0 6 0" } ]
1,675,675,188
2,147,483,647
PyPy 3-64
OK
TESTS
38
62
0
m = input().split() count1=0 count2=0 k=0 a = int(m[0]) b = int(m[1]) for x in range(1,7): if abs(a-x) < abs(b-x): count1+=1 elif abs(a-x) > abs(b-x): count2+=1 elif abs(a-x) == abs(b-x): k += 1 print(count1,k,count2)
Title: Playing with Dice Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw. The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins? Input Specification: The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly. Output Specification: Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly. Demo Input: ['2 5\n', '2 4\n'] Demo Output: ['3 0 3\n', '2 1 3\n'] Note: The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct. You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| &lt; |*b* - *x*|.
```python m = input().split() count1=0 count2=0 k=0 a = int(m[0]) b = int(m[1]) for x in range(1,7): if abs(a-x) < abs(b-x): count1+=1 elif abs(a-x) > abs(b-x): count2+=1 elif abs(a-x) == abs(b-x): k += 1 print(count1,k,count2) ```
3
38
A
Army
PROGRAMMING
800
[ "implementation" ]
A. Army
2
256
The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream.
The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated.
Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*.
[ "3\n5 6\n1 2\n", "3\n5 6\n1 3\n" ]
[ "5\n", "11\n" ]
none
0
[ { "input": "3\n5 6\n1 2", "output": "5" }, { "input": "3\n5 6\n1 3", "output": "11" }, { "input": "2\n55\n1 2", "output": "55" }, { "input": "3\n85 78\n1 3", "output": "163" }, { "input": "4\n63 4 49\n2 3", "output": "4" }, { "input": "5\n93 83 42 56\n2 5", "output": "181" }, { "input": "6\n22 9 87 89 57\n1 6", "output": "264" }, { "input": "7\n52 36 31 23 74 78\n2 7", "output": "242" }, { "input": "8\n82 14 24 5 91 49 94\n3 8", "output": "263" }, { "input": "9\n12 40 69 39 59 21 59 5\n4 6", "output": "98" }, { "input": "10\n95 81 32 59 71 30 50 61 100\n1 6", "output": "338" }, { "input": "15\n89 55 94 4 15 69 19 60 91 77 3 94 91 62\n3 14", "output": "617" }, { "input": "20\n91 1 41 51 95 67 92 35 23 70 44 91 57 50 21 8 9 71 40\n8 17", "output": "399" }, { "input": "25\n70 95 21 84 97 39 12 98 53 24 78 29 84 65 70 22 100 17 69 27 62 48 35 80\n8 23", "output": "846" }, { "input": "30\n35 69 50 44 19 56 86 56 98 24 21 2 61 24 85 30 2 22 57 35 59 84 12 77 92 53 50 92 9\n1 16", "output": "730" }, { "input": "35\n2 34 47 15 27 61 6 88 67 20 53 65 29 68 77 5 78 86 44 98 32 81 91 79 54 84 95 23 65 97 22 33 42 87\n8 35", "output": "1663" }, { "input": "40\n32 88 59 36 95 45 28 78 73 30 97 13 13 47 48 100 43 21 22 45 88 25 15 13 63 25 72 92 29 5 25 11 50 5 54 51 48 84 23\n7 26", "output": "862" }, { "input": "45\n83 74 73 95 10 31 100 26 29 15 80 100 22 70 31 88 9 56 19 70 2 62 48 30 27 47 52 50 94 44 21 94 23 85 15 3 95 72 43 62 94 89 68 88\n17 40", "output": "1061" }, { "input": "50\n28 8 16 29 19 82 70 51 96 84 74 72 17 69 12 21 37 21 39 3 18 66 19 49 86 96 94 93 2 90 96 84 59 88 58 15 61 33 55 22 35 54 51 29 64 68 29 38 40\n23 28", "output": "344" }, { "input": "60\n24 28 25 21 43 71 64 73 71 90 51 83 69 43 75 43 78 72 56 61 99 7 23 86 9 16 16 94 23 74 18 56 20 72 13 31 75 34 35 86 61 49 4 72 84 7 65 70 66 52 21 38 6 43 69 40 73 46 5\n28 60", "output": "1502" }, { "input": "70\n69 95 34 14 67 61 6 95 94 44 28 94 73 66 39 13 19 71 73 71 28 48 26 22 32 88 38 95 43 59 88 77 80 55 17 95 40 83 67 1 38 95 58 63 56 98 49 2 41 4 73 8 78 41 64 71 60 71 41 61 67 4 4 19 97 14 39 20 27\n9 41", "output": "1767" }, { "input": "80\n65 15 43 6 43 98 100 16 69 98 4 54 25 40 2 35 12 23 38 29 10 89 30 6 4 8 7 96 64 43 11 49 89 38 20 59 54 85 46 16 16 89 60 54 28 37 32 34 67 9 78 30 50 87 58 53 99 48 77 3 5 6 19 99 16 20 31 10 80 76 82 56 56 83 72 81 84 60 28\n18 24", "output": "219" }, { "input": "90\n61 35 100 99 67 87 42 90 44 4 81 65 29 63 66 56 53 22 55 87 39 30 34 42 27 80 29 97 85 28 81 22 50 22 24 75 67 86 78 79 94 35 13 97 48 76 68 66 94 13 82 1 22 85 5 36 86 73 65 97 43 56 35 26 87 25 74 47 81 67 73 75 99 75 53 38 70 21 66 78 38 17 57 40 93 57 68 55 1\n12 44", "output": "1713" }, { "input": "95\n37 74 53 96 65 84 65 72 95 45 6 77 91 35 58 50 51 51 97 30 51 20 79 81 92 10 89 34 40 76 71 54 26 34 73 72 72 28 53 19 95 64 97 10 44 15 12 38 5 63 96 95 86 8 36 96 45 53 81 5 18 18 47 97 65 9 33 53 41 86 37 53 5 40 15 76 83 45 33 18 26 5 19 90 46 40 100 42 10 90 13 81 40 53\n6 15", "output": "570" }, { "input": "96\n51 32 95 75 23 54 70 89 67 3 1 51 4 100 97 30 9 35 56 38 54 77 56 98 43 17 60 43 72 46 87 61 100 65 81 22 74 38 16 96 5 10 54 22 23 22 10 91 9 54 49 82 29 73 33 98 75 8 4 26 24 90 71 42 90 24 94 74 94 10 41 98 56 63 18 43 56 21 26 64 74 33 22 38 67 66 38 60 64 76 53 10 4 65 76\n21 26", "output": "328" }, { "input": "97\n18 90 84 7 33 24 75 55 86 10 96 72 16 64 37 9 19 71 62 97 5 34 85 15 46 72 82 51 52 16 55 68 27 97 42 72 76 97 32 73 14 56 11 86 2 81 59 95 60 93 1 22 71 37 77 100 6 16 78 47 78 62 94 86 16 91 56 46 47 35 93 44 7 86 70 10 29 45 67 62 71 61 74 39 36 92 24 26 65 14 93 92 15 28 79 59\n6 68", "output": "3385" }, { "input": "98\n32 47 26 86 43 42 79 72 6 68 40 46 29 80 24 89 29 7 21 56 8 92 13 33 50 79 5 7 84 85 24 23 1 80 51 21 26 55 96 51 24 2 68 98 81 88 57 100 64 84 54 10 14 2 74 1 89 71 1 20 84 85 17 31 42 58 69 67 48 60 97 90 58 10 21 29 2 21 60 61 68 89 77 39 57 18 61 44 67 100 33 74 27 40 83 29 6\n8 77", "output": "3319" }, { "input": "99\n46 5 16 66 53 12 84 89 26 27 35 68 41 44 63 17 88 43 80 15 59 1 42 50 53 34 75 16 16 55 92 30 28 11 12 71 27 65 11 28 86 47 24 10 60 47 7 53 16 75 6 49 56 66 70 3 20 78 75 41 38 57 89 23 16 74 30 39 1 32 49 84 9 33 25 95 75 45 54 59 17 17 29 40 79 96 47 11 69 86 73 56 91 4 87 47 31 24\n23 36", "output": "514" }, { "input": "100\n63 65 21 41 95 23 3 4 12 23 95 50 75 63 58 34 71 27 75 31 23 94 96 74 69 34 43 25 25 55 44 19 43 86 68 17 52 65 36 29 72 96 84 25 84 23 71 54 6 7 71 7 21 100 99 58 93 35 62 47 36 70 68 9 75 13 35 70 76 36 62 22 52 51 2 87 66 41 54 35 78 62 30 35 65 44 74 93 78 37 96 70 26 32 71 27 85 85 63\n43 92", "output": "2599" }, { "input": "51\n85 38 22 38 42 36 55 24 36 80 49 15 66 91 88 61 46 82 1 61 89 92 6 56 28 8 46 80 56 90 91 38 38 17 69 64 57 68 13 44 45 38 8 72 61 39 87 2 73 88\n15 27", "output": "618" }, { "input": "2\n3\n1 2", "output": "3" }, { "input": "5\n6 8 22 22\n2 3", "output": "8" }, { "input": "6\n3 12 27 28 28\n3 4", "output": "27" }, { "input": "9\n1 2 2 2 2 3 3 5\n3 7", "output": "9" }, { "input": "10\n1 1 1 1 1 1 1 1 1\n6 8", "output": "2" }, { "input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3\n5 17", "output": "23" }, { "input": "25\n1 1 1 4 5 6 8 11 11 11 11 12 13 14 14 14 15 16 16 17 17 17 19 19\n4 8", "output": "23" }, { "input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n30 31", "output": "2" }, { "input": "45\n1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10\n42 45", "output": "30" }, { "input": "50\n1 8 8 13 14 15 15 16 19 21 22 24 26 31 32 37 45 47 47 47 50 50 51 54 55 56 58 61 61 61 63 63 64 66 66 67 67 70 71 80 83 84 85 92 92 94 95 95 100\n4 17", "output": "285" }, { "input": "60\n1 2 4 4 4 6 6 8 9 10 10 13 14 18 20 20 21 22 23 23 26 29 30 32 33 34 35 38 40 42 44 44 46 48 52 54 56 56 60 60 66 67 68 68 69 73 73 74 80 80 81 81 82 84 86 86 87 89 89\n56 58", "output": "173" }, { "input": "70\n1 2 3 3 4 5 5 7 7 7 8 8 8 8 9 9 10 12 12 12 12 13 16 16 16 16 16 16 17 17 18 18 20 20 21 23 24 25 25 26 29 29 29 29 31 32 32 34 35 36 36 37 37 38 39 39 40 40 40 40 41 41 42 43 44 44 44 45 45\n62 65", "output": "126" }, { "input": "80\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12\n17 65", "output": "326" }, { "input": "90\n1 1 3 5 8 9 10 11 11 11 11 12 13 14 15 15 15 16 16 19 19 20 22 23 24 25 25 28 29 29 30 31 33 34 35 37 37 38 41 43 43 44 45 47 51 54 55 56 58 58 59 59 60 62 66 67 67 67 68 68 69 70 71 72 73 73 76 77 77 78 78 78 79 79 79 82 83 84 85 85 87 87 89 93 93 93 95 99 99\n28 48", "output": "784" }, { "input": "95\n2 2 3 3 4 6 6 7 7 7 9 10 12 12 12 12 13 14 15 16 17 18 20 20 20 20 21 21 21 21 22 22 22 22 22 23 23 23 25 26 26 27 27 27 28 29 29 30 30 31 32 33 34 36 37 37 38 39 39 39 42 43 43 43 45 47 48 50 50 51 52 53 54 54 54 55 55 55 58 59 60 61 61 61 61 62 62 63 64 65 66 67 67 67\n64 93", "output": "1636" }, { "input": "96\n1 1 2 3 3 5 8 9 9 10 10 10 11 11 11 11 11 12 13 13 13 14 15 15 16 16 17 17 17 17 18 18 20 20 20 21 21 21 23 24 24 25 25 26 27 27 27 27 29 29 29 30 30 30 32 32 32 32 32 32 33 33 34 34 34 35 35 35 36 36 37 37 37 38 39 40 41 41 41 41 42 42 43 43 45 45 45 46 46 47 47 49 50 52 52\n76 96", "output": "898" }, { "input": "98\n2 3 4 4 5 7 8 10 10 10 11 11 12 12 12 12 13 14 15 15 16 16 18 19 19 20 21 21 21 21 22 23 24 25 26 26 27 27 27 27 29 29 30 30 31 31 37 40 40 40 41 41 41 42 43 44 44 44 46 46 47 49 49 50 50 50 51 53 55 55 56 56 56 56 56 57 57 58 59 60 60 60 62 62 63 64 64 64 65 66 66 67 68 70 70 71 71\n8 90", "output": "3016" }, { "input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n66 95", "output": "29" }, { "input": "100\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17\n39 52", "output": "82" }, { "input": "51\n5 7 9 16 19 25 26 29 29 30 31 32 32 41 43 44 47 49 50 50 51 52 54 55 56 63 64 66 67 70 74 74 77 78 79 80 80 85 86 87 89 89 90 92 93 94 94 95 95 97\n3 44", "output": "2268" } ]
1,692,737,379
2,147,483,647
PyPy 3-64
OK
TESTS
50
124
0
n = int(input()) k = [int(i) for i in input().split()] a, b = [int(i) for i in input().split()] c = 0 for i in range(a-1, b-1): c += k[i] print(c)
Title: Army Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream. Input Specification: The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated. Output Specification: Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*. Demo Input: ['3\n5 6\n1 2\n', '3\n5 6\n1 3\n'] Demo Output: ['5\n', '11\n'] Note: none
```python n = int(input()) k = [int(i) for i in input().split()] a, b = [int(i) for i in input().split()] c = 0 for i in range(a-1, b-1): c += k[i] print(c) ```
3.969
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,679,666,934
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
93
2,150,400
N=int(input()) M=int(input()) k=int(n,2) l=int(m,2) ansr=k^l ansr=bin(ansr) print(ansr)
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python N=int(input()) M=int(input()) k=int(n,2) l=int(m,2) ansr=k^l ansr=bin(ansr) print(ansr) ```
-1
369
E
Valera and Queries
PROGRAMMING
2,200
[ "binary search", "data structures" ]
null
null
Valera loves segments. He has recently come up with one interesting problem. The *Ox* axis of coordinates has *n* segments, the *i*-th segment starts in position *l**i* and ends in position *r**i* (we will mark it as [*l**i*,<=*r**i*]). Your task is to process *m* queries, each consists of number *cnt**i* and a set of *cnt**i* coordinates of points located on the *Ox* axis. The answer to the query is the number of segments, such that each of them contains at least one point from the query. Segment [*l*,<=*r*] contains point *q*, if *l*<=≤<=*q*<=≤<=*r*. Valera found the solution of this problem too difficult. So he asked you to help him. Help Valera.
The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=3·105) — the number of segments on the axis of coordinates and the number of queries. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two positive integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=106) — the borders of the *i*-th segment. Next *m* lines contain the description of the queries, one per line. Each line starts from integer *cnt**i* (1<=≤<=*cnt**i*<=≤<=3·105) — the number of points in the *i*-th query. Then the line contains *cnt**i* distinct positive integers *p*1,<=*p*2,<=...,<=*p**cnt**i* (1<=≤<=*p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**cnt**i*<=≤<=106) — the coordinates of points in the *i*-th query. It is guaranteed that the total number of points in all queries doesn't exceed 3·105.
Print *m* non-negative integers, where the *i*-th number is the response to the *i*-th query.
[ "3 3\n1 3\n4 5\n6 7\n3 1 4 7\n2 4 5\n1 8\n" ]
[ "3\n1\n0\n" ]
none
2,500
[ { "input": "3 3\n1 3\n4 5\n6 7\n3 1 4 7\n2 4 5\n1 8", "output": "3\n1\n0" }, { "input": "1 1\n172921 894619\n1 14141", "output": "0" }, { "input": "3 1\n439010 864662\n377278 743032\n771051 955458\n1 568232", "output": "2" }, { "input": "3 3\n328789 478281\n248154 348247\n820715 860013\n1 344703\n1 592310\n1 104937", "output": "2\n0\n0" }, { "input": "5 3\n529971 921435\n466874 801474\n178558 921765\n193565 251465\n346414 727740\n5 328292 498601 509140 588519 820032\n5 221904 249439 491524 570871 945281\n5 357080 543431 566949 932654 947658", "output": "4\n5\n4" }, { "input": "5 1\n678201 810289\n778357 940848\n778406 946358\n151271 684580\n203524 382911\n5 358312 424531 460539 542697 775332", "output": "3" }, { "input": "5 1\n862248 965768\n78738 994773\n236426 318177\n186078 241439\n76304 568725\n1 509307", "output": "2" }, { "input": "5 3\n547230 805495\n810625 899397\n203912 240535\n432981 477594\n229222 465101\n1 908682\n1 942879\n1 808024", "output": "0\n0\n0" }, { "input": "5 5\n643450 686584\n30981 862245\n68908 575075\n558374 713102\n480946 865118\n1 680156\n1 557501\n1 95807\n1 972121\n1 262787", "output": "4\n3\n2\n0\n2" }, { "input": "10 3\n172267 379903\n546621 772370\n581059 880021\n321531 376831\n229673 432639\n106645 948268\n855783 967973\n541573 920416\n7682 695665\n492612 836502\n1 873101\n1 818922\n1 198181", "output": "4\n4\n3" }, { "input": "10 3\n356907 564385\n519660 960519\n84077 747040\n374095 956206\n476778 728678\n278858 977832\n158558 723270\n130593 261834\n125493 250966\n307770 792762\n3 56100 382258 579673\n3 40029 266600 440635\n3 36944 414002 843837", "output": "8\n6\n7" }, { "input": "10 10\n366228 895993\n228160 722127\n400056 671311\n683144 765009\n196492 360241\n304744 916576\n450846 764055\n211322 967136\n696553 766931\n282539 425248\n1 130996\n1 682994\n1 183255\n1 165896\n1 396547\n1 558594\n1 894712\n1 945830\n1 842172\n1 704247", "output": "0\n5\n0\n0\n5\n6\n3\n1\n3\n7" }, { "input": "3 4\n1000000 1000000\n5000 5000\n1 1\n1 1\n1 1000000\n1 999999\n1 2", "output": "1\n1\n0\n0" }, { "input": "3 4\n1 1000000\n5000 5000\n1 1\n1 1\n1 1000000\n1 999999\n1 2", "output": "2\n1\n1\n1" }, { "input": "1 1\n1000000 1000000\n1 1000000", "output": "1" }, { "input": "1 1\n1 1\n1 1", "output": "1" } ]
1,690,900,742
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
30
0
print("_RANDOM_GUESS_1690900742.0937815")# 1690900742.0938013
Title: Valera and Queries Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera loves segments. He has recently come up with one interesting problem. The *Ox* axis of coordinates has *n* segments, the *i*-th segment starts in position *l**i* and ends in position *r**i* (we will mark it as [*l**i*,<=*r**i*]). Your task is to process *m* queries, each consists of number *cnt**i* and a set of *cnt**i* coordinates of points located on the *Ox* axis. The answer to the query is the number of segments, such that each of them contains at least one point from the query. Segment [*l*,<=*r*] contains point *q*, if *l*<=≤<=*q*<=≤<=*r*. Valera found the solution of this problem too difficult. So he asked you to help him. Help Valera. Input Specification: The first line contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=3·105) — the number of segments on the axis of coordinates and the number of queries. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two positive integers *l**i*, *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=106) — the borders of the *i*-th segment. Next *m* lines contain the description of the queries, one per line. Each line starts from integer *cnt**i* (1<=≤<=*cnt**i*<=≤<=3·105) — the number of points in the *i*-th query. Then the line contains *cnt**i* distinct positive integers *p*1,<=*p*2,<=...,<=*p**cnt**i* (1<=≤<=*p*1<=&lt;<=*p*2<=&lt;<=...<=&lt;<=*p**cnt**i*<=≤<=106) — the coordinates of points in the *i*-th query. It is guaranteed that the total number of points in all queries doesn't exceed 3·105. Output Specification: Print *m* non-negative integers, where the *i*-th number is the response to the *i*-th query. Demo Input: ['3 3\n1 3\n4 5\n6 7\n3 1 4 7\n2 4 5\n1 8\n'] Demo Output: ['3\n1\n0\n'] Note: none
```python print("_RANDOM_GUESS_1690900742.0937815")# 1690900742.0938013 ```
0
181
A
Series of Crimes
PROGRAMMING
800
[ "brute force", "geometry", "implementation" ]
null
null
The Berland capital is shaken with three bold crimes committed by the Pihsters, a notorious criminal gang. The Berland capital's map is represented by an *n*<=×<=*m* rectangular table. Each cell of the table on the map represents some districts of the capital. The capital's main detective Polycarpus took a map and marked there the districts where the first three robberies had been committed as asterisks. Deduction tells Polycarpus that the fourth robbery will be committed in such district, that all four robbed districts will form the vertices of some rectangle, parallel to the sides of the map. Polycarpus is good at deduction but he's hopeless at math. So he asked you to find the district where the fourth robbery will be committed.
The first line contains two space-separated integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=100) — the number of rows and columns in the table, correspondingly. Each of the next *n* lines contains *m* characters — the description of the capital's map. Each character can either be a "." (dot), or an "*" (asterisk). A character equals "*" if the corresponding district has been robbed. Otherwise, it equals ".". It is guaranteed that the map has exactly three characters "*" and we can always find the fourth district that meets the problem requirements.
Print two integers — the number of the row and the number of the column of the city district that is the fourth one to be robbed. The rows are numbered starting from one from top to bottom and the columns are numbered starting from one from left to right.
[ "3 2\n.*\n..\n**\n", "3 3\n*.*\n*..\n...\n" ]
[ "1 1\n", "2 3\n" ]
none
500
[ { "input": "3 2\n.*\n..\n**", "output": "1 1" }, { "input": "2 5\n*....\n*...*", "output": "1 5" }, { "input": "7 2\n..\n**\n..\n..\n..\n..\n.*", "output": "7 1" }, { "input": "7 2\n*.\n..\n..\n..\n..\n..\n**", "output": "1 2" }, { "input": "2 10\n*......*..\n.......*..", "output": "2 1" }, { "input": "10 3\n*..\n...\n...\n...\n...\n...\n...\n...\n...\n**.", "output": "1 2" }, { "input": "100 2\n*.\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n..\n**", "output": "1 2" }, { "input": "99 3\n**.\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n*..", "output": "99 2" }, { "input": "98 3\n...\n.*.\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n.**", "output": "2 3" }, { "input": "99 3\n**.\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n*..", "output": "99 2" }, { "input": "98 3\n...\n.*.\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n...\n.**", "output": "2 3" }, { "input": "2 100\n...................................................................................................*\n*..................................................................................................*", "output": "1 1" }, { "input": "2 2\n*.\n**", "output": "1 2" }, { "input": "2 2\n**\n.*", "output": "2 1" }, { "input": "2 3\n*.*\n..*", "output": "2 1" } ]
1,578,238,428
2,147,483,647
PyPy 3
OK
TESTS
36
280
1,331,200
n, m = map(int, input().split()) row, col = 0, 0 for i in range(n): s = input() for j in range(m): if s[j] == '*': row ^= i + 1 col ^= j + 1 print(row, col)
Title: Series of Crimes Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Berland capital is shaken with three bold crimes committed by the Pihsters, a notorious criminal gang. The Berland capital's map is represented by an *n*<=×<=*m* rectangular table. Each cell of the table on the map represents some districts of the capital. The capital's main detective Polycarpus took a map and marked there the districts where the first three robberies had been committed as asterisks. Deduction tells Polycarpus that the fourth robbery will be committed in such district, that all four robbed districts will form the vertices of some rectangle, parallel to the sides of the map. Polycarpus is good at deduction but he's hopeless at math. So he asked you to find the district where the fourth robbery will be committed. Input Specification: The first line contains two space-separated integers *n* and *m* (2<=≤<=*n*,<=*m*<=≤<=100) — the number of rows and columns in the table, correspondingly. Each of the next *n* lines contains *m* characters — the description of the capital's map. Each character can either be a "." (dot), or an "*" (asterisk). A character equals "*" if the corresponding district has been robbed. Otherwise, it equals ".". It is guaranteed that the map has exactly three characters "*" and we can always find the fourth district that meets the problem requirements. Output Specification: Print two integers — the number of the row and the number of the column of the city district that is the fourth one to be robbed. The rows are numbered starting from one from top to bottom and the columns are numbered starting from one from left to right. Demo Input: ['3 2\n.*\n..\n**\n', '3 3\n*.*\n*..\n...\n'] Demo Output: ['1 1\n', '2 3\n'] Note: none
```python n, m = map(int, input().split()) row, col = 0, 0 for i in range(n): s = input() for j in range(m): if s[j] == '*': row ^= i + 1 col ^= j + 1 print(row, col) ```
3
490
A
Team Olympiad
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0.
[ "7\n1 3 1 3 2 1 2\n", "4\n2 1 1 2\n" ]
[ "2\n3 5 2\n6 7 4\n", "0\n" ]
none
500
[ { "input": "7\n1 3 1 3 2 1 2", "output": "2\n3 5 2\n6 7 4" }, { "input": "4\n2 1 1 2", "output": "0" }, { "input": "1\n2", "output": "0" }, { "input": "2\n3 1", "output": "0" }, { "input": "3\n2 1 2", "output": "0" }, { "input": "3\n1 2 3", "output": "1\n1 2 3" }, { "input": "12\n3 3 3 3 3 3 3 3 1 3 3 2", "output": "1\n9 12 2" }, { "input": "60\n3 3 1 2 2 1 3 1 1 1 3 2 2 2 3 3 1 3 2 3 2 2 1 3 3 2 3 1 2 2 2 1 3 2 1 1 3 3 1 1 1 3 1 2 1 1 3 3 3 2 3 2 3 2 2 2 1 1 1 2", "output": "20\n6 60 1\n17 44 20\n3 5 33\n36 21 42\n59 14 2\n58 26 49\n9 29 48\n23 19 24\n10 30 37\n41 54 15\n45 31 27\n57 55 38\n39 12 25\n35 34 11\n32 52 7\n8 50 18\n43 4 53\n46 56 51\n40 22 16\n28 13 47" }, { "input": "12\n3 1 1 1 1 1 1 2 1 1 1 1", "output": "1\n3 8 1" }, { "input": "22\n2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2", "output": "1\n18 2 11" }, { "input": "138\n2 3 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 1 2 3 2 2 2 3 1 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 1 2 2 3 2 2 3 2 1 2 2 2 2 2 3 1 2 2 2 2 2 3 2 2 3 2 2 2 2 2 1 1 2 3 2 2 2 2 3 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 3", "output": "18\n13 91 84\n34 90 48\n11 39 77\n78 129 50\n137 68 119\n132 122 138\n19 12 96\n40 7 2\n22 88 69\n107 73 46\n115 15 52\n127 106 87\n93 92 66\n71 112 117\n63 124 42\n17 70 101\n109 121 57\n123 25 36" }, { "input": "203\n2 2 1 2 1 2 2 2 1 2 2 1 1 3 1 2 1 2 1 1 2 3 1 1 2 3 3 2 2 2 1 2 1 1 1 1 1 3 1 1 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 1 3 2 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 3 1 1 2 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 2 1 3 1 1 1", "output": "13\n188 72 14\n137 4 197\n158 76 122\n152 142 26\n104 119 179\n40 63 38\n12 1 78\n17 30 27\n189 60 53\n166 190 144\n129 7 183\n83 41 22\n121 81 200" }, { "input": "220\n1 1 3 1 3 1 1 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 1 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 3 3 1 3 3 1 1 1 2 3 1 1 1 2 3 3 3 2 3 1 1 3 1 1 1 3 2 1 3 2 3 1 1 3 3 3 1 3 1 1 1 3 3 2 1 3 2 1 1 3 3 1 1 1 2 1 1 3 2 1 2 1 1 1 3 1 3 3 1 2 3 3 3 3 1 3 1 1 1 1 2 3 1 1 1 1 1 1 3 2 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 2 3 1 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 2 1 1 1 3 3 1 3 3 3 1 1 1 3 1 3 3 1 1 1 2 3 1 1 3 1 1 1 1 2 3 1 1 2 3 3 1 3 1 3 3 3 3 1 3 2 3 1 1 3", "output": "20\n198 89 20\n141 56 131\n166 204 19\n160 132 142\n111 112 195\n45 216 92\n6 31 109\n14 150 170\n199 60 18\n173 123 140\n134 69 156\n82 191 85\n126 200 80\n24 97 46\n62 86 149\n214 101 26\n79 171 78\n125 72 118\n172 103 162\n219 51 64" }, { "input": "61\n2 3 1 3 2 2 2 3 1 3 2 3 1 2 1 1 2 2 2 2 3 2 3 1 2 1 3 1 3 2 1 1 3 2 1 3 3 3 1 3 3 1 1 3 1 3 2 2 1 2 2 2 1 3 2 3 1 3 3 1 1", "output": "20\n9 55 2\n24 34 27\n3 5 37\n35 17 41\n61 11 4\n60 19 54\n15 20 59\n26 14 29\n16 22 38\n43 50 12\n49 25 36\n57 51 40\n39 6 33\n32 30 10\n31 48 8\n13 47 23\n45 1 58\n53 52 56\n42 18 21\n28 7 44" }, { "input": "5\n1 2 2 3 3", "output": "1\n1 3 4" } ]
1,684,331,956
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
18
1,000
0
n = int(input()) x = list(map(int, input().split())) x2 = sorted(x) n1 = x.count(1) n2 = x.count(2) n3 = x.count(3) it = min(n1, n2, n3) ans = [] for i in range(it): tm = 1 while tm != 4: for j in range(n): if x[j] == tm and j + 1 not in ans: ans.append(j + 1) tm += 1 print(it) for i in range(it): print(f'{ans[i*3]} {ans[i * 3 + 1]} {ans[i * 3 + 2]}')
Title: Team Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child. Output Specification: In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0. Demo Input: ['7\n1 3 1 3 2 1 2\n', '4\n2 1 1 2\n'] Demo Output: ['2\n3 5 2\n6 7 4\n', '0\n'] Note: none
```python n = int(input()) x = list(map(int, input().split())) x2 = sorted(x) n1 = x.count(1) n2 = x.count(2) n3 = x.count(3) it = min(n1, n2, n3) ans = [] for i in range(it): tm = 1 while tm != 4: for j in range(n): if x[j] == tm and j + 1 not in ans: ans.append(j + 1) tm += 1 print(it) for i in range(it): print(f'{ans[i*3]} {ans[i * 3 + 1]} {ans[i * 3 + 2]}') ```
0
46
C
Hamsters and Tigers
PROGRAMMING
1,600
[ "two pointers" ]
C. Hamsters and Tigers
2
256
Today there is going to be an unusual performance at the circus — hamsters and tigers will perform together! All of them stand in circle along the arena edge and now the trainer faces a difficult task: he wants to swap the animals' positions so that all the hamsters stood together and all the tigers also stood together. The trainer swaps the animals in pairs not to create a mess. He orders two animals to step out of the circle and swap places. As hamsters feel highly uncomfortable when tigers are nearby as well as tigers get nervous when there's so much potential prey around (consisting not only of hamsters but also of yummier spectators), the trainer wants to spend as little time as possible moving the animals, i.e. he wants to achieve it with the minimal number of swaps. Your task is to help him.
The first line contains number *n* (2<=≤<=*n*<=≤<=1000) which indicates the total number of animals in the arena. The second line contains the description of the animals' positions. The line consists of *n* symbols "H" and "T". The "H"s correspond to hamsters and the "T"s correspond to tigers. It is guaranteed that at least one hamster and one tiger are present on the arena. The animals are given in the order in which they are located circle-wise, in addition, the last animal stands near the first one.
Print the single number which is the minimal number of swaps that let the trainer to achieve his goal.
[ "3\nHTH\n", "9\nHTHTHTHHT\n" ]
[ "0\n", "2\n" ]
In the first example we shouldn't move anybody because the animals of each species already stand apart from the other species. In the second example you may swap, for example, the tiger in position 2 with the hamster in position 5 and then — the tiger in position 9 with the hamster in position 7.
0
[ { "input": "3\nHTH", "output": "0" }, { "input": "9\nHTHTHTHHT", "output": "2" }, { "input": "2\nTH", "output": "0" }, { "input": "4\nHTTH", "output": "0" }, { "input": "4\nHTHT", "output": "1" }, { "input": "7\nTTTHTTT", "output": "0" }, { "input": "8\nHHTHHTHH", "output": "1" }, { "input": "13\nHTTTHHHTTTTHH", "output": "3" }, { "input": "20\nTTHTHTHHTHTTHHTTTHHH", "output": "4" }, { "input": "35\nTTTTTTHTTHTTTTTHTTTTTTTTTTTHTHTTTTT", "output": "3" }, { "input": "120\nTTTTTTTHTHTHTTTTTHTHTTTTHTTTTTTTTTTTTTTTTTTTTHTTHTTTTHTTHTTTTTTTTTTTTTTTHTTTTTTHTHTTHTTTTTTHTTTTTTTTTHTTHTTTTHTTTHTTTTTH", "output": "14" }, { "input": "19\nHHHHHHHHHHHHHTTTHHH", "output": "0" }, { "input": "87\nHTHHTTHHHHTHHHHHTTTHHTHHHHTTTTHHHTTHHTHTHTHHTTHTHHTHTHTTHHHTTTTTHTTHHHHHHTHHTHHTHTTHTHH", "output": "17" }, { "input": "178\nTHHHTHTTTHTTHTTHHHHHTTTHTTHHTHTTTHTHTTTTTHHHTHTHHHTHHHTTTTTTTTHHHHTTHHTHHHHTHTTTHHHHHHTHHTHTTHTHTTTTTTTTTHHTTHHTHTTHHTHHHHHTTHHTTHHTTHHHTTHHTTTTHTHHHTHTTHTHTTTHHHHTHHTHHHTHTTTTTT", "output": "40" } ]
1,454,024,935
2,147,483,647
Python 3
OK
TESTS
27
124
0
n = int(input()) c, v = [0] * (n + 1), 0 for i, ch in enumerate(input()): c[i + 1] = c[i] + (ch == 'H') for i in range(n): if i + c[n] <= n: v = max(v, c[i + c[n]] - c[i]) else: v = max(v, c[n] - c[i] + c[c[n] - (n - i)]) print(c[n] - v)
Title: Hamsters and Tigers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Today there is going to be an unusual performance at the circus — hamsters and tigers will perform together! All of them stand in circle along the arena edge and now the trainer faces a difficult task: he wants to swap the animals' positions so that all the hamsters stood together and all the tigers also stood together. The trainer swaps the animals in pairs not to create a mess. He orders two animals to step out of the circle and swap places. As hamsters feel highly uncomfortable when tigers are nearby as well as tigers get nervous when there's so much potential prey around (consisting not only of hamsters but also of yummier spectators), the trainer wants to spend as little time as possible moving the animals, i.e. he wants to achieve it with the minimal number of swaps. Your task is to help him. Input Specification: The first line contains number *n* (2<=≤<=*n*<=≤<=1000) which indicates the total number of animals in the arena. The second line contains the description of the animals' positions. The line consists of *n* symbols "H" and "T". The "H"s correspond to hamsters and the "T"s correspond to tigers. It is guaranteed that at least one hamster and one tiger are present on the arena. The animals are given in the order in which they are located circle-wise, in addition, the last animal stands near the first one. Output Specification: Print the single number which is the minimal number of swaps that let the trainer to achieve his goal. Demo Input: ['3\nHTH\n', '9\nHTHTHTHHT\n'] Demo Output: ['0\n', '2\n'] Note: In the first example we shouldn't move anybody because the animals of each species already stand apart from the other species. In the second example you may swap, for example, the tiger in position 2 with the hamster in position 5 and then — the tiger in position 9 with the hamster in position 7.
```python n = int(input()) c, v = [0] * (n + 1), 0 for i, ch in enumerate(input()): c[i + 1] = c[i] + (ch == 'H') for i in range(n): if i + c[n] <= n: v = max(v, c[i + c[n]] - c[i]) else: v = max(v, c[n] - c[i] + c[c[n] - (n - i)]) print(c[n] - v) ```
3.969
459
B
Pashmak and Flowers
PROGRAMMING
1,300
[ "combinatorics", "implementation", "sortings" ]
null
null
Pashmak decided to give Parmida a pair of flowers from the garden. There are *n* flowers in the garden and the *i*-th of them has a beauty number *b**i*. Parmida is a very strange girl so she doesn't want to have the two most beautiful flowers necessarily. She wants to have those pairs of flowers that their beauty difference is maximal possible! Your task is to write a program which calculates two things: 1. The maximum beauty difference of flowers that Pashmak can give to Parmida. 1. The number of ways that Pashmak can pick the flowers. Two ways are considered different if and only if there is at least one flower that is chosen in the first way and not chosen in the second way.
The first line of the input contains *n* (2<=≤<=*n*<=≤<=2·105). In the next line there are *n* space-separated integers *b*1, *b*2, ..., *b**n* (1<=≤<=*b**i*<=≤<=109).
The only line of output should contain two integers. The maximum beauty difference and the number of ways this may happen, respectively.
[ "2\n1 2\n", "3\n1 4 5\n", "5\n3 1 2 3 1\n" ]
[ "1 1", "4 1", "2 4" ]
In the third sample the maximum beauty difference is 2 and there are 4 ways to do this: 1. choosing the first and the second flowers; 1. choosing the first and the fifth flowers; 1. choosing the fourth and the second flowers; 1. choosing the fourth and the fifth flowers.
500
[ { "input": "2\n1 2", "output": "1 1" }, { "input": "3\n1 4 5", "output": "4 1" }, { "input": "5\n3 1 2 3 1", "output": "2 4" }, { "input": "2\n1 1", "output": "0 1" }, { "input": "3\n1 1 1", "output": "0 3" }, { "input": "4\n1 1 1 1", "output": "0 6" }, { "input": "5\n1 1 1 1 1", "output": "0 10" }, { "input": "5\n2 2 2 2 2", "output": "0 10" }, { "input": "10\n2 2 2 2 2 2 2 2 2 2", "output": "0 45" }, { "input": "3\n2 2 2", "output": "0 3" }, { "input": "3\n3 3 3", "output": "0 3" }, { "input": "2\n10000000 100000000", "output": "90000000 1" }, { "input": "5\n5 5 5 5 5", "output": "0 10" }, { "input": "5\n3 3 3 3 3", "output": "0 10" }, { "input": "6\n1 1 1 1 1 1", "output": "0 15" }, { "input": "2\n5 6", "output": "1 1" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "0 45" }, { "input": "10\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "0 45" }, { "input": "4\n4 4 4 4", "output": "0 6" }, { "input": "7\n1 1 1 1 1 1 1", "output": "0 21" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "0 55" }, { "input": "8\n8 8 8 8 8 8 8 8", "output": "0 28" }, { "input": "2\n3 2", "output": "1 1" } ]
1,690,455,069
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
77
17,612,800
n = int(input()) a = list(map(int,input().split())) ma,mi = max(a),min(a) if ma != mi: cma = a.count(ma) cmi = a.count(mi) print(ma-mi, cma*cmi) else: print(0,a.count(ma))
Title: Pashmak and Flowers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Pashmak decided to give Parmida a pair of flowers from the garden. There are *n* flowers in the garden and the *i*-th of them has a beauty number *b**i*. Parmida is a very strange girl so she doesn't want to have the two most beautiful flowers necessarily. She wants to have those pairs of flowers that their beauty difference is maximal possible! Your task is to write a program which calculates two things: 1. The maximum beauty difference of flowers that Pashmak can give to Parmida. 1. The number of ways that Pashmak can pick the flowers. Two ways are considered different if and only if there is at least one flower that is chosen in the first way and not chosen in the second way. Input Specification: The first line of the input contains *n* (2<=≤<=*n*<=≤<=2·105). In the next line there are *n* space-separated integers *b*1, *b*2, ..., *b**n* (1<=≤<=*b**i*<=≤<=109). Output Specification: The only line of output should contain two integers. The maximum beauty difference and the number of ways this may happen, respectively. Demo Input: ['2\n1 2\n', '3\n1 4 5\n', '5\n3 1 2 3 1\n'] Demo Output: ['1 1', '4 1', '2 4'] Note: In the third sample the maximum beauty difference is 2 and there are 4 ways to do this: 1. choosing the first and the second flowers; 1. choosing the first and the fifth flowers; 1. choosing the fourth and the second flowers; 1. choosing the fourth and the fifth flowers.
```python n = int(input()) a = list(map(int,input().split())) ma,mi = max(a),min(a) if ma != mi: cma = a.count(ma) cmi = a.count(mi) print(ma-mi, cma*cmi) else: print(0,a.count(ma)) ```
0
451
B
Sort the Array
PROGRAMMING
1,300
[ "implementation", "sortings" ]
null
null
Being a programmer, you like arrays a lot. For your birthday, your friends have given you an array *a* consisting of *n* distinct integers. Unfortunately, the size of *a* is too small. You want a bigger array! Your friends agree to give you a bigger array, but only if you are able to answer the following question correctly: is it possible to sort the array *a* (in increasing order) by reversing exactly one segment of *a*? See definitions of segment and reversing in the notes.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=105) — the size of array *a*. The second line contains *n* distinct space-separated integers: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109).
Print "yes" or "no" (without quotes), depending on the answer. If your answer is "yes", then also print two space-separated integers denoting start and end (start must not be greater than end) indices of the segment to be reversed. If there are multiple ways of selecting these indices, print any of them.
[ "3\n3 2 1\n", "4\n2 1 3 4\n", "4\n3 1 2 4\n", "2\n1 2\n" ]
[ "yes\n1 3\n", "yes\n1 2\n", "no\n", "yes\n1 1\n" ]
Sample 1. You can reverse the entire array to get [1, 2, 3], which is sorted. Sample 3. No segment can be reversed such that the array will be sorted. Definitions A segment [*l*, *r*] of array *a* is the sequence *a*[*l*], *a*[*l* + 1], ..., *a*[*r*]. If you have an array *a* of size *n* and you reverse its segment [*l*, *r*], the array will become: *a*[1], *a*[2], ..., *a*[*l* - 2], *a*[*l* - 1], *a*[*r*], *a*[*r* - 1], ..., *a*[*l* + 1], *a*[*l*], *a*[*r* + 1], *a*[*r* + 2], ..., *a*[*n* - 1], *a*[*n*].
1,000
[ { "input": "3\n3 2 1", "output": "yes\n1 3" }, { "input": "4\n2 1 3 4", "output": "yes\n1 2" }, { "input": "4\n3 1 2 4", "output": "no" }, { "input": "2\n1 2", "output": "yes\n1 1" }, { "input": "2\n58 4", "output": "yes\n1 2" }, { "input": "5\n69 37 27 4 2", "output": "yes\n1 5" }, { "input": "9\n6 78 63 59 28 24 8 96 99", "output": "yes\n2 7" }, { "input": "6\n19517752 43452931 112792556 68417469 779722934 921694415", "output": "yes\n3 4" }, { "input": "6\n169793171 335736854 449917902 513287332 811627074 938727967", "output": "yes\n1 1" }, { "input": "6\n509329 173849943 297546987 591032670 796346199 914588283", "output": "yes\n1 1" }, { "input": "25\n46 45 37 35 26 25 21 19 11 3 1 51 54 55 57 58 59 62 66 67 76 85 88 96 100", "output": "yes\n1 11" }, { "input": "46\n10 12 17 19 20 21 22 24 25 26 27 28 29 30 32 37 42 43 47 48 50 51 52 56 87 86 81 79 74 71 69 67 66 65 60 59 57 89 91 92 94 96 97 98 99 100", "output": "yes\n25 37" }, { "input": "96\n1 2 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "yes\n3 22" }, { "input": "2\n404928771 698395106", "output": "yes\n1 1" }, { "input": "2\n699573624 308238132", "output": "yes\n1 2" }, { "input": "5\n75531609 242194958 437796493 433259361 942142185", "output": "yes\n3 4" }, { "input": "5\n226959376 840957605 833410429 273566427 872976052", "output": "yes\n2 4" }, { "input": "5\n373362086 994096202 767275079 734424844 515504383", "output": "yes\n2 5" }, { "input": "5\n866379155 593548704 259097686 216134784 879911740", "output": "yes\n1 4" }, { "input": "5\n738083041 719956102 420866851 307749161 257917459", "output": "yes\n1 5" }, { "input": "5\n90786760 107075352 139104198 424911569 858427981", "output": "yes\n1 1" }, { "input": "6\n41533825 525419745 636375901 636653266 879043107 967434399", "output": "yes\n1 1" }, { "input": "40\n22993199 75843013 76710455 99749069 105296587 122559115 125881005 153961749 163646706 175409222 185819807 214465092 264449243 278246513 295514446 322935239 370349154 375773209 390474983 775646826 767329655 740310077 718820037 708508595 693119912 680958422 669537382 629123011 607511013 546574974 546572137 511951383 506996390 493995578 458256840 815612821 881161983 901337648 962275390 986568907", "output": "yes\n20 35" }, { "input": "40\n3284161 23121669 24630274 33434127 178753820 231503277 271972002 272578266 346450638 355655265 372217434 376132047 386622863 387235708 389799554 427160037 466577363 491873718 492746058 502535866 535768673 551570285 557477055 583643014 586216753 588981593 592960633 605923775 611051145 643142759 632768011 634888864 736715552 750574599 867737742 924365786 927179496 934453020 954090860 977765165", "output": "no" }, { "input": "40\n42131757 49645896 49957344 78716964 120937785 129116222 172128600 211446903 247833196 779340466 717548386 709969818 696716905 636153997 635635467 614115746 609201167 533608141 521874836 273044950 291514539 394083281 399369419 448830087 485128983 487192341 488673105 497678164 501864738 265305156 799595875 831638598 835155840 845617770 847736630 851436542 879757553 885618675 964068808 969215471", "output": "no" }, { "input": "40\n25722567 28250400 47661056 108729970 119887370 142272261 145287693 178946020 182917658 187405805 209478929 278713296 312035195 393514697 403876943 410188367 413061616 420619615 477231590 511200584 560288373 571690007 603093961 615463729 631624043 723138759 726089658 728151980 756393077 785590533 809755752 823601179 828357990 866942019 869575503 877310377 881382070 901314141 929048602 947139655", "output": "yes\n1 1" }, { "input": "40\n17927221 33153935 60257083 110553879 114654567 119809916 163899753 167741765 182812464 188486743 220036903 220127072 227545828 229552200 244963635 248298934 299478582 354141058 371400641 430054473 452548736 458695269 466968129 469000714 478004472 478693873 509342093 750631027 609759323 669427158 688490225 690701652 696893030 704668825 749028408 557906039 545356441 926901326 955586118 972642992", "output": "no" }, { "input": "4\n1 4 2 3", "output": "no" }, { "input": "6\n1 2 5 4 3 6", "output": "yes\n3 5" }, { "input": "1\n1", "output": "yes\n1 1" }, { "input": "6\n1 5 3 4 2 6", "output": "no" }, { "input": "4\n3 4 1 2", "output": "no" }, { "input": "5\n2 5 4 3 1", "output": "no" }, { "input": "4\n2 1 4 3", "output": "no" }, { "input": "6\n2 1 4 3 5 6", "output": "no" } ]
1,691,241,251
2,147,483,647
Python 3
OK
TESTS
76
78
12,902,400
length = int(input()) li = list(map(int,input().split())) liSort = sorted(li) index1 = -1 index2 = -1 for index in range(length) : if li[index] != liSort[index] : index1 = index break if index1 == -1 : print("yes") quit(print(1 , 1)) for index in range(length - 1 , -1 , -1) : if li[index] != liSort[index] : index2 = index break if liSort[index1:index2+1] == list(reversed(li[index1:index2+1])) : print("yes") print(index1 + 1 , index2 + 1) else : print("no")
Title: Sort the Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Being a programmer, you like arrays a lot. For your birthday, your friends have given you an array *a* consisting of *n* distinct integers. Unfortunately, the size of *a* is too small. You want a bigger array! Your friends agree to give you a bigger array, but only if you are able to answer the following question correctly: is it possible to sort the array *a* (in increasing order) by reversing exactly one segment of *a*? See definitions of segment and reversing in the notes. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=105) — the size of array *a*. The second line contains *n* distinct space-separated integers: *a*[1],<=*a*[2],<=...,<=*a*[*n*] (1<=≤<=*a*[*i*]<=≤<=109). Output Specification: Print "yes" or "no" (without quotes), depending on the answer. If your answer is "yes", then also print two space-separated integers denoting start and end (start must not be greater than end) indices of the segment to be reversed. If there are multiple ways of selecting these indices, print any of them. Demo Input: ['3\n3 2 1\n', '4\n2 1 3 4\n', '4\n3 1 2 4\n', '2\n1 2\n'] Demo Output: ['yes\n1 3\n', 'yes\n1 2\n', 'no\n', 'yes\n1 1\n'] Note: Sample 1. You can reverse the entire array to get [1, 2, 3], which is sorted. Sample 3. No segment can be reversed such that the array will be sorted. Definitions A segment [*l*, *r*] of array *a* is the sequence *a*[*l*], *a*[*l* + 1], ..., *a*[*r*]. If you have an array *a* of size *n* and you reverse its segment [*l*, *r*], the array will become: *a*[1], *a*[2], ..., *a*[*l* - 2], *a*[*l* - 1], *a*[*r*], *a*[*r* - 1], ..., *a*[*l* + 1], *a*[*l*], *a*[*r* + 1], *a*[*r* + 2], ..., *a*[*n* - 1], *a*[*n*].
```python length = int(input()) li = list(map(int,input().split())) liSort = sorted(li) index1 = -1 index2 = -1 for index in range(length) : if li[index] != liSort[index] : index1 = index break if index1 == -1 : print("yes") quit(print(1 , 1)) for index in range(length - 1 , -1 , -1) : if li[index] != liSort[index] : index2 = index break if liSort[index1:index2+1] == list(reversed(li[index1:index2+1])) : print("yes") print(index1 + 1 , index2 + 1) else : print("no") ```
3
455
A
Boredom
PROGRAMMING
1,500
[ "dp" ]
null
null
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
Print a single integer — the maximum number of points that Alex can earn.
[ "2\n1 2\n", "3\n1 2 3\n", "9\n1 2 1 3 2 2 2 2 3\n" ]
[ "2\n", "4\n", "10\n" ]
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
500
[ { "input": "2\n1 2", "output": "2" }, { "input": "3\n1 2 3", "output": "4" }, { "input": "9\n1 2 1 3 2 2 2 2 3", "output": "10" }, { "input": "5\n3 3 4 5 4", "output": "11" }, { "input": "5\n5 3 5 3 4", "output": "16" }, { "input": "5\n4 2 3 2 5", "output": "9" }, { "input": "10\n10 5 8 9 5 6 8 7 2 8", "output": "46" }, { "input": "10\n1 1 1 1 1 1 2 3 4 4", "output": "14" }, { "input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4", "output": "296" }, { "input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2", "output": "313" }, { "input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9", "output": "298" }, { "input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5", "output": "312" }, { "input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2", "output": "287" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2", "output": "265" }, { "input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9", "output": "328" }, { "input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9", "output": "324" }, { "input": "10\n7 4 5 3 9 1 10 3 4 5", "output": "34" }, { "input": "10\n8 9 6 5 6 4 10 9 1 4", "output": "39" }, { "input": "10\n1 7 1 4 9 10 8 2 9 9", "output": "40" }, { "input": "1\n100000", "output": "100000" } ]
1,690,227,896
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
46
0
def dp(www, ii, summ): if ii >= len(ww): return summ else: summ += www[ii] return max(dp(www, ii + 2, summ), dp(www, ii + 3, summ)) q = int(input()) w = [int(a) for a in input().split()] ww = [] p = 0 for i in range(q): w2 = w[i] if i == 0: ww.append(w2) else: w1 = w[i - 1] if w2 - w1 > 1: o1 = dp(ww, 0, 0) o2 = dp(ww, 1, 0) o = max(o1, o2) p += max(o, p) ww = [] else: if w1 == w2: ww[len(ww) - 1] += w2 else: ww.append(w2) o1 = dp(ww, 0, 0) o2 = dp(ww, 1, 0) o = max(o1, o2) p += max(o, p) print(p)
Title: Boredom Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: Print a single integer — the maximum number of points that Alex can earn. Demo Input: ['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n'] Demo Output: ['2\n', '4\n', '10\n'] Note: Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
```python def dp(www, ii, summ): if ii >= len(ww): return summ else: summ += www[ii] return max(dp(www, ii + 2, summ), dp(www, ii + 3, summ)) q = int(input()) w = [int(a) for a in input().split()] ww = [] p = 0 for i in range(q): w2 = w[i] if i == 0: ww.append(w2) else: w1 = w[i - 1] if w2 - w1 > 1: o1 = dp(ww, 0, 0) o2 = dp(ww, 1, 0) o = max(o1, o2) p += max(o, p) ww = [] else: if w1 == w2: ww[len(ww) - 1] += w2 else: ww.append(w2) o1 = dp(ww, 0, 0) o2 = dp(ww, 1, 0) o = max(o1, o2) p += max(o, p) print(p) ```
0
716
A
Crazy Computer
PROGRAMMING
800
[ "implementation" ]
null
null
ZS the Coder is coding on a crazy computer. If you don't type in a word for a *c* consecutive seconds, everything you typed disappear! More formally, if you typed a word at second *a* and then the next word at second *b*, then if *b*<=-<=*a*<=≤<=*c*, just the new word is appended to other words on the screen. If *b*<=-<=*a*<=&gt;<=*c*, then everything on the screen disappears and after that the word you have typed appears on the screen. For example, if *c*<==<=5 and you typed words at seconds 1,<=3,<=8,<=14,<=19,<=20 then at the second 8 there will be 3 words on the screen. After that, everything disappears at the second 13 because nothing was typed. At the seconds 14 and 19 another two words are typed, and finally, at the second 20, one more word is typed, and a total of 3 words remain on the screen. You're given the times when ZS the Coder typed the words. Determine how many words remain on the screen after he finished typing everything.
The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=100<=000,<=1<=≤<=*c*<=≤<=109) — the number of words ZS the Coder typed and the crazy computer delay respectively. The next line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=&lt;<=*t*2<=&lt;<=...<=&lt;<=*t**n*<=≤<=109), where *t**i* denotes the second when ZS the Coder typed the *i*-th word.
Print a single positive integer, the number of words that remain on the screen after all *n* words was typed, in other words, at the second *t**n*.
[ "6 5\n1 3 8 14 19 20\n", "6 1\n1 3 5 7 9 10\n" ]
[ "3", "2" ]
The first sample is already explained in the problem statement. For the second sample, after typing the first word at the second 1, it disappears because the next word is typed at the second 3 and 3 - 1 &gt; 1. Similarly, only 1 word will remain at the second 9. Then, a word is typed at the second 10, so there will be two words on the screen, as the old word won't disappear because 10 - 9 ≤ 1.
500
[ { "input": "6 5\n1 3 8 14 19 20", "output": "3" }, { "input": "6 1\n1 3 5 7 9 10", "output": "2" }, { "input": "1 1\n1000000000", "output": "1" }, { "input": "5 5\n1 7 12 13 14", "output": "4" }, { "input": "2 1000000000\n1 1000000000", "output": "2" }, { "input": "3 5\n1 10 20", "output": "1" }, { "input": "3 10\n1 2 3", "output": "3" }, { "input": "2 1\n1 100", "output": "1" }, { "input": "3 1\n1 2 10", "output": "1" }, { "input": "2 1\n1 2", "output": "2" } ]
1,597,047,488
2,147,483,647
Python 3
OK
TESTS
81
233
15,462,400
n = list(map(int,input().split())) l = list(map(int,input().split())) a = n[1] count = 1 for i in range(len(l)): if i != len(l)-1 and l[i+1]-l[i] <= a: count +=1 elif i != len(l)-1 and l[i+1]-l[i] > a: count = 1 else: break print(count)
Title: Crazy Computer Time Limit: None seconds Memory Limit: None megabytes Problem Description: ZS the Coder is coding on a crazy computer. If you don't type in a word for a *c* consecutive seconds, everything you typed disappear! More formally, if you typed a word at second *a* and then the next word at second *b*, then if *b*<=-<=*a*<=≤<=*c*, just the new word is appended to other words on the screen. If *b*<=-<=*a*<=&gt;<=*c*, then everything on the screen disappears and after that the word you have typed appears on the screen. For example, if *c*<==<=5 and you typed words at seconds 1,<=3,<=8,<=14,<=19,<=20 then at the second 8 there will be 3 words on the screen. After that, everything disappears at the second 13 because nothing was typed. At the seconds 14 and 19 another two words are typed, and finally, at the second 20, one more word is typed, and a total of 3 words remain on the screen. You're given the times when ZS the Coder typed the words. Determine how many words remain on the screen after he finished typing everything. Input Specification: The first line contains two integers *n* and *c* (1<=≤<=*n*<=≤<=100<=000,<=1<=≤<=*c*<=≤<=109) — the number of words ZS the Coder typed and the crazy computer delay respectively. The next line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=&lt;<=*t*2<=&lt;<=...<=&lt;<=*t**n*<=≤<=109), where *t**i* denotes the second when ZS the Coder typed the *i*-th word. Output Specification: Print a single positive integer, the number of words that remain on the screen after all *n* words was typed, in other words, at the second *t**n*. Demo Input: ['6 5\n1 3 8 14 19 20\n', '6 1\n1 3 5 7 9 10\n'] Demo Output: ['3', '2'] Note: The first sample is already explained in the problem statement. For the second sample, after typing the first word at the second 1, it disappears because the next word is typed at the second 3 and 3 - 1 &gt; 1. Similarly, only 1 word will remain at the second 9. Then, a word is typed at the second 10, so there will be two words on the screen, as the old word won't disappear because 10 - 9 ≤ 1.
```python n = list(map(int,input().split())) l = list(map(int,input().split())) a = n[1] count = 1 for i in range(len(l)): if i != len(l)-1 and l[i+1]-l[i] <= a: count +=1 elif i != len(l)-1 and l[i+1]-l[i] > a: count = 1 else: break print(count) ```
3
165
A
Supercentral Point
PROGRAMMING
1,000
[ "implementation" ]
null
null
One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*): - point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=&gt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=&lt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=&lt;<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=&gt;<=*y* We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points. Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set.
The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different.
Print the only number — the number of supercentral points of the given set.
[ "8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n", "5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n" ]
[ "2\n", "1\n" ]
In the first sample the supercentral points are only points (1, 1) and (1, 2). In the second sample there is one supercental point — point (0, 0).
500
[ { "input": "8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3", "output": "2" }, { "input": "5\n0 0\n0 1\n1 0\n0 -1\n-1 0", "output": "1" }, { "input": "9\n-565 -752\n-184 723\n-184 -752\n-184 1\n950 723\n-565 723\n950 -752\n950 1\n-565 1", "output": "1" }, { "input": "25\n-651 897\n916 897\n-651 -808\n-748 301\n-734 414\n-651 -973\n-734 897\n916 -550\n-758 414\n916 180\n-758 -808\n-758 -973\n125 -550\n125 -973\n125 301\n916 414\n-748 -808\n-651 301\n-734 301\n-307 897\n-651 -550\n-651 414\n125 -808\n-748 -550\n916 -808", "output": "7" }, { "input": "1\n487 550", "output": "0" }, { "input": "10\n990 -396\n990 736\n990 646\n990 -102\n990 -570\n990 155\n990 528\n990 489\n990 268\n990 676", "output": "0" }, { "input": "30\n507 836\n525 836\n-779 196\n507 -814\n525 -814\n525 42\n525 196\n525 -136\n-779 311\n507 -360\n525 300\n507 578\n507 311\n-779 836\n507 300\n525 -360\n525 311\n-779 -360\n-779 578\n-779 300\n507 42\n525 578\n-779 379\n507 196\n525 379\n507 379\n-779 -814\n-779 42\n-779 -136\n507 -136", "output": "8" }, { "input": "25\n890 -756\n890 -188\n-37 -756\n-37 853\n523 998\n-261 853\n-351 853\n-351 -188\n523 -756\n-261 -188\n-37 998\n523 -212\n-351 998\n-37 -188\n-351 -756\n-37 -212\n890 998\n890 -212\n523 853\n-351 -212\n-261 -212\n-261 998\n-261 -756\n890 853\n523 -188", "output": "9" }, { "input": "21\n-813 -11\n486 254\n685 254\n-708 254\n-55 -11\n-671 -191\n486 -11\n-671 -11\n685 -11\n685 -191\n486 -191\n-55 254\n-708 -11\n-813 254\n-708 -191\n41 -11\n-671 254\n-813 -191\n41 254\n-55 -191\n41 -191", "output": "5" }, { "input": "4\n1 0\n2 0\n1 1\n1 -1", "output": "0" } ]
1,649,314,314
2,147,483,647
Python 3
OK
TESTS
26
154
0
n = int(input()) x = [] # y = [] ans = 0 # for i in range(n): # a, b = map(int, input().split()) # x.append(a) # y.append(b) for i in range(n): a = list(map(int, input().split())) x.append(a) for i in range(n): r = 0 l = 0 u = 0 d = 0 for j in range(n): if (x[j][0] > x[i][0] and x[j][1] == x[i][1]): r += 1 if (x[j][0] < x[i][0] and x[j][1] == x[i][1]): l += 1 if (x[j][0] == x[i][0] and x[j][1] > x[i][1]): u += 1 if (x[j][0] == x[i][0] and x[j][1] < x[i][1]): d += 1 if r >0 and l>0 and u>0 and d>0: ans+=1 print(ans)
Title: Supercentral Point Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of points (*x*1,<=*y*1),<=(*x*2,<=*y*2),<=...,<=(*x**n*,<=*y**n*). Let's define neighbors for some fixed point from the given set (*x*,<=*y*): - point (*x*',<=*y*') is (*x*,<=*y*)'s right neighbor, if *x*'<=&gt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s left neighbor, if *x*'<=&lt;<=*x* and *y*'<==<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s lower neighbor, if *x*'<==<=*x* and *y*'<=&lt;<=*y* - point (*x*',<=*y*') is (*x*,<=*y*)'s upper neighbor, if *x*'<==<=*x* and *y*'<=&gt;<=*y* We'll consider point (*x*,<=*y*) from the given set supercentral, if it has at least one upper, at least one lower, at least one left and at least one right neighbor among this set's points. Vasya marked quite many points on the paper. Analyzing the picture manually is rather a challenge, so Vasya asked you to help him. Your task is to find the number of supercentral points in the given set. Input Specification: The first input line contains the only integer *n* (1<=≤<=*n*<=≤<=200) — the number of points in the given set. Next *n* lines contain the coordinates of the points written as "*x* *y*" (without the quotes) (|*x*|,<=|*y*|<=≤<=1000), all coordinates are integers. The numbers in the line are separated by exactly one space. It is guaranteed that all points are different. Output Specification: Print the only number — the number of supercentral points of the given set. Demo Input: ['8\n1 1\n4 2\n3 1\n1 2\n0 2\n0 1\n1 0\n1 3\n', '5\n0 0\n0 1\n1 0\n0 -1\n-1 0\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample the supercentral points are only points (1, 1) and (1, 2). In the second sample there is one supercental point — point (0, 0).
```python n = int(input()) x = [] # y = [] ans = 0 # for i in range(n): # a, b = map(int, input().split()) # x.append(a) # y.append(b) for i in range(n): a = list(map(int, input().split())) x.append(a) for i in range(n): r = 0 l = 0 u = 0 d = 0 for j in range(n): if (x[j][0] > x[i][0] and x[j][1] == x[i][1]): r += 1 if (x[j][0] < x[i][0] and x[j][1] == x[i][1]): l += 1 if (x[j][0] == x[i][0] and x[j][1] > x[i][1]): u += 1 if (x[j][0] == x[i][0] and x[j][1] < x[i][1]): d += 1 if r >0 and l>0 and u>0 and d>0: ans+=1 print(ans) ```
3
494
A
Treasure
PROGRAMMING
1,500
[ "greedy" ]
null
null
Malek has recently found a treasure map. While he was looking for a treasure he found a locked door. There was a string *s* written on the door consisting of characters '(', ')' and '#'. Below there was a manual on how to open the door. After spending a long time Malek managed to decode the manual and found out that the goal is to replace each '#' with one or more ')' characters so that the final string becomes beautiful. Below there was also written that a string is called beautiful if for each *i* (1<=≤<=*i*<=≤<=|*s*|) there are no more ')' characters than '(' characters among the first *i* characters of *s* and also the total number of '(' characters is equal to the total number of ')' characters. Help Malek open the door by telling him for each '#' character how many ')' characters he must replace it with.
The first line of the input contains a string *s* (1<=≤<=|*s*|<=≤<=105). Each character of this string is one of the characters '(', ')' or '#'. It is guaranteed that *s* contains at least one '#' character.
If there is no way of replacing '#' characters which leads to a beautiful string print <=-<=1. Otherwise for each character '#' print a separate line containing a positive integer, the number of ')' characters this character must be replaced with. If there are several possible answers, you may output any of them.
[ "(((#)((#)\n", "()((#((#(#()\n", "#\n", "(#)\n" ]
[ "1\n2\n", "2\n2\n1", "-1\n", "-1\n" ]
|*s*| denotes the length of the string *s*.
500
[ { "input": "(((#)((#)", "output": "1\n2" }, { "input": "()((#((#(#()", "output": "1\n1\n3" }, { "input": "#", "output": "-1" }, { "input": "(#)", "output": "-1" }, { "input": "(((((#(#(#(#()", "output": "1\n1\n1\n5" }, { "input": "#))))", "output": "-1" }, { "input": "((#(()#(##", "output": "1\n1\n1\n1" }, { "input": "##((((((()", "output": "-1" }, { "input": "(((((((((((((((((((###################", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": "((#)(", "output": "-1" }, { "input": "((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((##", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": ")((##((###", "output": "-1" }, { "input": "(#))(#(#)((((#(##((#(#((((#(##((((((#((()(()(())((()#((((#((()((((#(((((#(##)(##()((((()())(((((#(((", "output": "-1" }, { "input": "#(#(#((##((()))(((#)(#()#(((()()(()#(##(((()(((()))#(((((()(((((((()#((#((()(#(((()(()##(()(((()((#(", "output": "-1" }, { "input": "((#(", "output": "-1" }, { "input": "()#(#())()()#)(#)()##)#((()#)((#)()#())((#((((((((#)()()(()()(((((#)#(#((((#((##()(##(((#(()(#((#))#", "output": "-1" }, { "input": "(())((((#)", "output": "3" }, { "input": "(#(", "output": "-1" }, { "input": "((#)(", "output": "-1" }, { "input": "(((()#(#)(", "output": "-1" }, { "input": "#((#", "output": "-1" }, { "input": "(#((((()", "output": "-1" }, { "input": "(#((", "output": "-1" }, { "input": ")(((())#", "output": "-1" } ]
1,499,512,416
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
9
93
5,734,400
s = input() t = s.count("(") - s.count(")") - s.count("#") if t < 0: print(-1) quit() l = [1]*s.count("#") a, b, i = 0, 0, 0 for x in range(len(s)): if s[x] == "(": a += 1 elif s[x] == ")": b += 1 elif s[x] == "#": if t > 0: c = 0 y = x + 1 while y < len(s) and s[y] == ")": c += 1 y += 1 # print(a, b, c, t) l[i] += min(t, a-b-c-1) i += 1 t -= min(t, a-b-c-1) b += min(t, a-b-c-1) else: break print("\n".join(map(str, l)))
Title: Treasure Time Limit: None seconds Memory Limit: None megabytes Problem Description: Malek has recently found a treasure map. While he was looking for a treasure he found a locked door. There was a string *s* written on the door consisting of characters '(', ')' and '#'. Below there was a manual on how to open the door. After spending a long time Malek managed to decode the manual and found out that the goal is to replace each '#' with one or more ')' characters so that the final string becomes beautiful. Below there was also written that a string is called beautiful if for each *i* (1<=≤<=*i*<=≤<=|*s*|) there are no more ')' characters than '(' characters among the first *i* characters of *s* and also the total number of '(' characters is equal to the total number of ')' characters. Help Malek open the door by telling him for each '#' character how many ')' characters he must replace it with. Input Specification: The first line of the input contains a string *s* (1<=≤<=|*s*|<=≤<=105). Each character of this string is one of the characters '(', ')' or '#'. It is guaranteed that *s* contains at least one '#' character. Output Specification: If there is no way of replacing '#' characters which leads to a beautiful string print <=-<=1. Otherwise for each character '#' print a separate line containing a positive integer, the number of ')' characters this character must be replaced with. If there are several possible answers, you may output any of them. Demo Input: ['(((#)((#)\n', '()((#((#(#()\n', '#\n', '(#)\n'] Demo Output: ['1\n2\n', '2\n2\n1', '-1\n', '-1\n'] Note: |*s*| denotes the length of the string *s*.
```python s = input() t = s.count("(") - s.count(")") - s.count("#") if t < 0: print(-1) quit() l = [1]*s.count("#") a, b, i = 0, 0, 0 for x in range(len(s)): if s[x] == "(": a += 1 elif s[x] == ")": b += 1 elif s[x] == "#": if t > 0: c = 0 y = x + 1 while y < len(s) and s[y] == ")": c += 1 y += 1 # print(a, b, c, t) l[i] += min(t, a-b-c-1) i += 1 t -= min(t, a-b-c-1) b += min(t, a-b-c-1) else: break print("\n".join(map(str, l))) ```
0
975
B
Mancala
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
Mancala is a game famous in the Middle East. It is played on a board that consists of 14 holes. Initially, each hole has $a_i$ stones. When a player makes a move, he chooses a hole which contains a positive number of stones. He takes all the stones inside it and then redistributes these stones one by one in the next holes in a counter-clockwise direction. Note that the counter-clockwise order means if the player takes the stones from hole $i$, he will put one stone in the $(i+1)$-th hole, then in the $(i+2)$-th, etc. If he puts a stone in the $14$-th hole, the next one will be put in the first hole. After the move, the player collects all the stones from holes that contain even number of stones. The number of stones collected by player is the score, according to Resli. Resli is a famous Mancala player. He wants to know the maximum score he can obtain after one move.
The only line contains 14 integers $a_1, a_2, \ldots, a_{14}$ ($0 \leq a_i \leq 10^9$) — the number of stones in each hole. It is guaranteed that for any $i$ ($1\leq i \leq 14$) $a_i$ is either zero or odd, and there is at least one stone in the board.
Output one integer, the maximum possible score after one move.
[ "0 1 1 0 0 0 0 0 0 7 0 0 0 0\n", "5 1 1 1 1 0 0 0 0 0 0 0 0 0\n" ]
[ "4\n", "8\n" ]
In the first test case the board after the move from the hole with $7$ stones will look like 1 2 2 0 0 0 0 0 0 0 1 1 1 1. Then the player collects the even numbers and ends up with a score equal to $4$.
1,000
[ { "input": "0 1 1 0 0 0 0 0 0 7 0 0 0 0", "output": "4" }, { "input": "5 1 1 1 1 0 0 0 0 0 0 0 0 0", "output": "8" }, { "input": "10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 1", "output": "54294" }, { "input": "0 0 0 0 0 0 0 0 0 0 0 0 0 15", "output": "2" }, { "input": "1 0 0 0 0 1 0 0 0 0 1 0 0 0", "output": "0" }, { "input": "5 5 1 1 1 3 3 3 5 7 5 3 7 5", "output": "38" }, { "input": "787 393 649 463 803 365 81 961 989 531 303 407 579 915", "output": "7588" }, { "input": "8789651 4466447 1218733 6728667 1796977 6198853 8263135 6309291 8242907 7136751 3071237 5397369 6780785 9420869", "output": "81063456" }, { "input": "0 0 0 0 0 0 0 0 0 0 0 0 0 29", "output": "26" }, { "input": "282019717 109496191 150951267 609856495 953855615 569750143 6317733 255875779 645191029 572053369 290936613 338480779 879775193 177172893", "output": "5841732816" }, { "input": "105413505 105413505 105413505 105413505 105413505 105413505 105413505 105413505 105413505 105413505 105413505 105413505 105413505 105413505", "output": "120472578" }, { "input": "404418821 993626161 346204297 122439813 461187221 628048227 625919459 628611733 938993057 701270099 398043779 684205961 630975553 575964835", "output": "8139909016" }, { "input": "170651077 730658441 824213789 583764177 129437345 717005779 675398017 314979709 380861369 265878463 746564659 797260041 506575735 335169317", "output": "6770880638" }, { "input": "622585025 48249287 678950449 891575125 637411965 457739735 829353393 235216425 284006447 875591469 492839209 296444305 513776057 810057753", "output": "7673796644" }, { "input": "475989857 930834747 786217439 927967137 489188151 869354161 276693267 56154399 131055697 509249443 143116853 426254423 44465165 105798821", "output": "6172339560" }, { "input": "360122921 409370351 226220005 604004145 85173909 600403773 624052991 138163383 729239967 189036661 619842883 270087537 749500483 243727913", "output": "5848946922" }, { "input": "997102881 755715147 273805839 436713689 547411799 72470207 522269145 647688957 137422311 422612659 197751751 679663349 821420227 387967237", "output": "6900015198" }, { "input": "690518849 754551537 652949719 760695679 491633619 477564457 11669279 700467439 470069297 782338983 718169393 884421719 24619427 215745577", "output": "7635414974" }, { "input": "248332749 486342237 662201929 917696895 555278549 252122023 850296207 463343655 832574345 954281071 168282553 825538865 996753493 461254663", "output": "6400166934" }, { "input": "590789361 636464947 404477303 337309187 476703809 426863069 120608741 703406277 645444697 761482231 996635839 33459441 677458865 483861751", "output": "7294965518" }, { "input": "297857621 238127103 749085829 139033277 597985489 202617713 982184715 183932743 278551059 297781685 330124279 338959601 682874531 187519685", "output": "5201808164" }, { "input": "1 1 1 1 1 0 0 0 0 0 0 0 0 0", "output": "2" }, { "input": "1 1 0 0 0 0 0 0 0 0 0 0 0 0", "output": "2" }, { "input": "1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "2" }, { "input": "1 0 0 0 0 0 0 0 0 0 0 0 0 1", "output": "2" }, { "input": "0 0 0 0 0 0 0 0 0 0 0 0 1 1", "output": "2" } ]
1,550,664,836
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
109
0
a = list(map(int, input().split())) m = max(a) ind = a.index(m) a[ind] = 0 ind += 1 while m != 0: a[ind%14] += 1 m -= 1 ind += 1 print(sum([i for i in a if i != 0 and i % 2 == 0]))
Title: Mancala Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mancala is a game famous in the Middle East. It is played on a board that consists of 14 holes. Initially, each hole has $a_i$ stones. When a player makes a move, he chooses a hole which contains a positive number of stones. He takes all the stones inside it and then redistributes these stones one by one in the next holes in a counter-clockwise direction. Note that the counter-clockwise order means if the player takes the stones from hole $i$, he will put one stone in the $(i+1)$-th hole, then in the $(i+2)$-th, etc. If he puts a stone in the $14$-th hole, the next one will be put in the first hole. After the move, the player collects all the stones from holes that contain even number of stones. The number of stones collected by player is the score, according to Resli. Resli is a famous Mancala player. He wants to know the maximum score he can obtain after one move. Input Specification: The only line contains 14 integers $a_1, a_2, \ldots, a_{14}$ ($0 \leq a_i \leq 10^9$) — the number of stones in each hole. It is guaranteed that for any $i$ ($1\leq i \leq 14$) $a_i$ is either zero or odd, and there is at least one stone in the board. Output Specification: Output one integer, the maximum possible score after one move. Demo Input: ['0 1 1 0 0 0 0 0 0 7 0 0 0 0\n', '5 1 1 1 1 0 0 0 0 0 0 0 0 0\n'] Demo Output: ['4\n', '8\n'] Note: In the first test case the board after the move from the hole with $7$ stones will look like 1 2 2 0 0 0 0 0 0 0 1 1 1 1. Then the player collects the even numbers and ends up with a score equal to $4$.
```python a = list(map(int, input().split())) m = max(a) ind = a.index(m) a[ind] = 0 ind += 1 while m != 0: a[ind%14] += 1 m -= 1 ind += 1 print(sum([i for i in a if i != 0 and i % 2 == 0])) ```
0
999
C
Alphabetic Removals
PROGRAMMING
1,200
[ "implementation" ]
null
null
You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times: - if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm. This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters. Help Polycarp find the resulting string.
The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove. The second line contains the string $s$ consisting of $n$ lowercase Latin letters.
Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times. If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break).
[ "15 3\ncccaabababaccbc\n", "15 9\ncccaabababaccbc\n", "1 1\nu\n" ]
[ "cccbbabaccbc\n", "cccccc\n", "" ]
none
0
[ { "input": "15 3\ncccaabababaccbc", "output": "cccbbabaccbc" }, { "input": "15 9\ncccaabababaccbc", "output": "cccccc" }, { "input": "5 2\nzyzyx", "output": "zzy" }, { "input": "4 3\nhack", "output": "k" }, { "input": "4 3\nzzzz", "output": "z" }, { "input": "6 5\naaccdd", "output": "d" }, { "input": "2 1\nzz", "output": "z" }, { "input": "14 5\nhxehmvkybeklnj", "output": "xmvkyklnj" } ]
1,611,155,054
1,574
Python 3
OK
TESTS
44
1,278
28,057,600
n,m=map(int,input().split()) s=input() lst=[] for i in range(n): lst.append([s[i],i]) lst.sort() ans=[None]*(n) for i in range(m,n): ans[lst[i][1]]=lst[i][0] for i in ans: if i!=None: print(i,end="")
Title: Alphabetic Removals Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string $s$ consisting of $n$ lowercase Latin letters. Polycarp wants to remove exactly $k$ characters ($k \le n$) from the string $s$. Polycarp uses the following algorithm $k$ times: - if there is at least one letter 'a', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - if there is at least one letter 'b', remove the leftmost occurrence and stop the algorithm, otherwise go to next item; - ... - remove the leftmost occurrence of the letter 'z' and stop the algorithm. This algorithm removes a single letter from the string. Polycarp performs this algorithm exactly $k$ times, thus removing exactly $k$ characters. Help Polycarp find the resulting string. Input Specification: The first line of input contains two integers $n$ and $k$ ($1 \le k \le n \le 4 \cdot 10^5$) — the length of the string and the number of letters Polycarp will remove. The second line contains the string $s$ consisting of $n$ lowercase Latin letters. Output Specification: Print the string that will be obtained from $s$ after Polycarp removes exactly $k$ letters using the above algorithm $k$ times. If the resulting string is empty, print nothing. It is allowed to print nothing or an empty line (line break). Demo Input: ['15 3\ncccaabababaccbc\n', '15 9\ncccaabababaccbc\n', '1 1\nu\n'] Demo Output: ['cccbbabaccbc\n', 'cccccc\n', ''] Note: none
```python n,m=map(int,input().split()) s=input() lst=[] for i in range(n): lst.append([s[i],i]) lst.sort() ans=[None]*(n) for i in range(m,n): ans[lst[i][1]]=lst[i][0] for i in ans: if i!=None: print(i,end="") ```
3
391
A
Genetic Engineering
PROGRAMMING
0
[ "implementation", "two pointers" ]
null
null
You will receive 3 points for solving this problem. Manao is designing the genetic code for a new type of algae to efficiently produce fuel. Specifically, Manao is focusing on a stretch of DNA that encodes one protein. The stretch of DNA is represented by a string containing only the characters 'A', 'T', 'G' and 'C'. Manao has determined that if the stretch of DNA contains a maximal sequence of consecutive identical nucleotides that is of even length, then the protein will be nonfunctional. For example, consider a protein described by DNA string "GTTAAAG". It contains four maximal sequences of consecutive identical nucleotides: "G", "TT", "AAA", and "G". The protein is nonfunctional because sequence "TT" has even length. Manao is trying to obtain a functional protein from the protein he currently has. Manao can insert additional nucleotides into the DNA stretch. Each additional nucleotide is a character from the set {'A', 'T', 'G', 'C'}. Manao wants to determine the minimum number of insertions necessary to make the DNA encode a functional protein.
The input consists of a single line, containing a string *s* of length *n* (1<=≤<=*n*<=≤<=100). Each character of *s* will be from the set {'A', 'T', 'G', 'C'}. This problem doesn't have subproblems. You will get 3 points for the correct submission.
The program should print on one line a single integer representing the minimum number of 'A', 'T', 'G', 'C' characters that are required to be inserted into the input string in order to make all runs of identical characters have odd length.
[ "GTTAAAG\n", "AACCAACCAAAAC\n" ]
[ "1\n", "5\n" ]
In the first example, it is sufficient to insert a single nucleotide of any type between the two 'T's in the sequence to restore the functionality of the protein.
3
[ { "input": "GTTAAAG", "output": "1" }, { "input": "AACCAACCAAAAC", "output": "5" }, { "input": "GTGAATTTCC", "output": "2" }, { "input": "CAGGGGGCCGCCCATGAAAAAAACCCGGCCCCTTGGGAAAACTTGGGTTA", "output": "7" }, { "input": "CCCTTCACCCGGATCCAAATCCCTTAGAAATAATCCCCGACGGCGTTGTATCACCTCTGCACTTGTTAGTAAGGTCAGGCGTCCATTACGGAAGAACGTA", "output": "19" }, { "input": "GCATTACATGGGGGGGTCCTACGAGCCCGGCATCCCGGAAACTAGCCGGTTAATTTGGTTTAAACCCTCCCACCCCGGATTGTAACCCCCCTCATTGGTT", "output": "17" }, { "input": "TTCCCAGAGAAAAAAAGGGGCCCAAATGCCCTAAAAACCCCCTTTGCCCCCCAACCCCTTTTTAAAATAAAAAGGGGCCCATTCCCTTAAAAATTTTTTG", "output": "10" }, { "input": "AGCCGCCCCCCCAAAAAAGGGGGAAAAAAAAAAAAAAAAAAAAACTTTTGGAAACCCCCCCCTTTTTTTTTTTTTTTTTTTTTTTTTGGGGAAGGGGGGG", "output": "7" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "1" }, { "input": "AAAAAAAAAAAAAAAAAATTTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGGGGGAAAAATTTT", "output": "5" }, { "input": "AACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTCCGG", "output": "50" }, { "input": "A", "output": "0" }, { "input": "TTT", "output": "0" }, { "input": "GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "0" }, { "input": "G", "output": "0" }, { "input": "T", "output": "0" }, { "input": "C", "output": "0" }, { "input": "AA", "output": "1" }, { "input": "GGG", "output": "0" }, { "input": "AAG", "output": "1" } ]
1,585,654,150
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
124
0
s=input() mcount=0 count=1 for i in range(len(s)-1): if s[i]==s[i+1]: count+=1 else: if count%2==0: mcount+=1 count=1 print(mcount)
Title: Genetic Engineering Time Limit: None seconds Memory Limit: None megabytes Problem Description: You will receive 3 points for solving this problem. Manao is designing the genetic code for a new type of algae to efficiently produce fuel. Specifically, Manao is focusing on a stretch of DNA that encodes one protein. The stretch of DNA is represented by a string containing only the characters 'A', 'T', 'G' and 'C'. Manao has determined that if the stretch of DNA contains a maximal sequence of consecutive identical nucleotides that is of even length, then the protein will be nonfunctional. For example, consider a protein described by DNA string "GTTAAAG". It contains four maximal sequences of consecutive identical nucleotides: "G", "TT", "AAA", and "G". The protein is nonfunctional because sequence "TT" has even length. Manao is trying to obtain a functional protein from the protein he currently has. Manao can insert additional nucleotides into the DNA stretch. Each additional nucleotide is a character from the set {'A', 'T', 'G', 'C'}. Manao wants to determine the minimum number of insertions necessary to make the DNA encode a functional protein. Input Specification: The input consists of a single line, containing a string *s* of length *n* (1<=≤<=*n*<=≤<=100). Each character of *s* will be from the set {'A', 'T', 'G', 'C'}. This problem doesn't have subproblems. You will get 3 points for the correct submission. Output Specification: The program should print on one line a single integer representing the minimum number of 'A', 'T', 'G', 'C' characters that are required to be inserted into the input string in order to make all runs of identical characters have odd length. Demo Input: ['GTTAAAG\n', 'AACCAACCAAAAC\n'] Demo Output: ['1\n', '5\n'] Note: In the first example, it is sufficient to insert a single nucleotide of any type between the two 'T's in the sequence to restore the functionality of the protein.
```python s=input() mcount=0 count=1 for i in range(len(s)-1): if s[i]==s[i+1]: count+=1 else: if count%2==0: mcount+=1 count=1 print(mcount) ```
0
600
B
Queries about less or equal elements
PROGRAMMING
1,300
[ "binary search", "data structures", "sortings", "two pointers" ]
null
null
You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*.
The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*. The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109). The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109).
Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*.
[ "5 4\n1 3 5 7 9\n6 4 2 8\n", "5 5\n1 2 1 2 5\n3 1 4 1 5\n" ]
[ "3 2 1 4\n", "4 2 4 2 5\n" ]
none
0
[ { "input": "5 4\n1 3 5 7 9\n6 4 2 8", "output": "3 2 1 4" }, { "input": "5 5\n1 2 1 2 5\n3 1 4 1 5", "output": "4 2 4 2 5" }, { "input": "1 1\n-1\n-2", "output": "0" }, { "input": "1 1\n-80890826\n686519510", "output": "1" }, { "input": "11 11\n237468511 -779187544 -174606592 193890085 404563196 -71722998 -617934776 170102710 -442808289 109833389 953091341\n994454001 322957429 216874735 -606986750 -455806318 -663190696 3793295 41395397 -929612742 -787653860 -684738874", "output": "11 9 8 2 2 1 5 5 0 0 1" }, { "input": "20 22\n858276994 -568758442 -918490847 -983345984 -172435358 389604931 200224783 486556113 413281867 -258259500 -627945379 -584563643 444685477 -602481243 -370745158 965672503 630955806 -626138773 -997221880 633102929\n-61330638 -977252080 -212144219 385501731 669589742 954357160 563935906 584468977 -895883477 405774444 853372186 186056475 -964575261 -952431965 632332084 -388829939 -23011650 310957048 -770695392 977376693 321435214 199223897", "output": "11 2 10 12 18 19 16 16 3 13 18 11 2 2 17 8 11 12 3 20 12 11" }, { "input": "5 9\n1 3 5 7 9\n1 2 3 4 5 6 7 8 9", "output": "1 1 2 2 3 3 4 4 5" }, { "input": "22 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22\n1", "output": "1" }, { "input": "5 1\n1 3 3 3 5\n3", "output": "4" }, { "input": "4 5\n1 1 1 4\n1 5 5 4 3", "output": "3 4 4 4 3" }, { "input": "5 4\n0 5 5 5 6\n5 1 6 3", "output": "4 1 5 1" }, { "input": "1 3\n0\n-1 0 1", "output": "0 1 1" }, { "input": "96 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1", "output": "96" }, { "input": "7 1\n1 2 3 4 5 6 7\n1", "output": "1" }, { "input": "13 13\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000", "output": "7 13 7 13 7 13 7 13 7 13 7 13 7" }, { "input": "9 5\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5", "output": "1 2 3 4 5" }, { "input": "3 8\n1 1 1\n1 1 1 1 1 1 1 1", "output": "3 3 3 3 3 3 3 3" }, { "input": "1 1\n-11111\n-5938", "output": "1" }, { "input": "1 1\n1\n400000009", "output": "1" }, { "input": "1 1\n1\n300000009", "output": "1" }, { "input": "1 1\n1\n200000009", "output": "1" }, { "input": "1 1\n1\n200000003", "output": "1" } ]
1,670,058,914
2,147,483,647
PyPy 3-64
OK
TESTS
60
249
33,280,000
def main(): n, m = read_ints() aseq = read_ints() bseq = read_ints() aseq.sort() ans = [] for bi in bseq: lo = 0 hi = n while lo < hi: mid = lo + (hi - lo) // 2 if aseq[mid] <= bi: lo = mid + 1 else: hi = mid ans.append(lo) print(*ans) def read_ints(): return [int(c) for c in input().split()] def print_lines(lst): print('\n'.join(map(str, lst))) if __name__ == "__main__": from os import environ as env if 'COMPUTERNAME' in env and 'L2A6HRI' in env['COMPUTERNAME']: import sys sys.stdout = open('out.txt', 'w') sys.stdin = open('in.txt', 'r') main()
Title: Queries about less or equal elements Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two arrays of integers *a* and *b*. For each element of the second array *b**j* you should find the number of elements in array *a* that are less than or equal to the value *b**j*. Input Specification: The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the sizes of arrays *a* and *b*. The second line contains *n* integers — the elements of array *a* (<=-<=109<=≤<=*a**i*<=≤<=109). The third line contains *m* integers — the elements of array *b* (<=-<=109<=≤<=*b**j*<=≤<=109). Output Specification: Print *m* integers, separated by spaces: the *j*-th of which is equal to the number of such elements in array *a* that are less than or equal to the value *b**j*. Demo Input: ['5 4\n1 3 5 7 9\n6 4 2 8\n', '5 5\n1 2 1 2 5\n3 1 4 1 5\n'] Demo Output: ['3 2 1 4\n', '4 2 4 2 5\n'] Note: none
```python def main(): n, m = read_ints() aseq = read_ints() bseq = read_ints() aseq.sort() ans = [] for bi in bseq: lo = 0 hi = n while lo < hi: mid = lo + (hi - lo) // 2 if aseq[mid] <= bi: lo = mid + 1 else: hi = mid ans.append(lo) print(*ans) def read_ints(): return [int(c) for c in input().split()] def print_lines(lst): print('\n'.join(map(str, lst))) if __name__ == "__main__": from os import environ as env if 'COMPUTERNAME' in env and 'L2A6HRI' in env['COMPUTERNAME']: import sys sys.stdout = open('out.txt', 'w') sys.stdin = open('in.txt', 'r') main() ```
3
982
A
Row
PROGRAMMING
1,200
[ "brute force", "constructive algorithms" ]
null
null
You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold: 1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule. The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal". Note that the first and last seats are not adjacent (if $n \ne 2$).
The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs. The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating.
Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No". You are allowed to print letters in whatever case you'd like (uppercase or lowercase).
[ "3\n101\n", "4\n1011\n", "5\n10001\n" ]
[ "Yes\n", "No\n", "No\n" ]
In sample case one the given seating is maximal. In sample case two the person at chair three has a neighbour to the right. In sample case three it is possible to seat yet another person into chair three.
500
[ { "input": "3\n101", "output": "Yes" }, { "input": "4\n1011", "output": "No" }, { "input": "5\n10001", "output": "No" }, { "input": "1\n0", "output": "No" }, { "input": "1\n1", "output": "Yes" }, { "input": "100\n0101001010101001010010010101001010100101001001001010010101010010101001001010101001001001010100101010", "output": "Yes" }, { "input": "4\n0100", "output": "No" }, { "input": "42\n011000100101001001101011011010100010011010", "output": "No" }, { "input": "3\n001", "output": "No" }, { "input": "64\n1001001010010010100101010010010100100101001001001001010100101001", "output": "Yes" }, { "input": "3\n111", "output": "No" }, { "input": "4\n0000", "output": "No" }, { "input": "4\n0001", "output": "No" }, { "input": "4\n0010", "output": "No" }, { "input": "4\n0011", "output": "No" }, { "input": "4\n0101", "output": "Yes" }, { "input": "4\n0110", "output": "No" }, { "input": "4\n0111", "output": "No" }, { "input": "4\n1000", "output": "No" }, { "input": "4\n1001", "output": "Yes" }, { "input": "4\n1010", "output": "Yes" }, { "input": "4\n1100", "output": "No" }, { "input": "4\n1101", "output": "No" }, { "input": "4\n1110", "output": "No" }, { "input": "4\n1111", "output": "No" }, { "input": "2\n00", "output": "No" }, { "input": "2\n01", "output": "Yes" }, { "input": "2\n10", "output": "Yes" }, { "input": "2\n11", "output": "No" }, { "input": "3\n000", "output": "No" }, { "input": "3\n010", "output": "Yes" }, { "input": "3\n011", "output": "No" }, { "input": "3\n100", "output": "No" }, { "input": "3\n110", "output": "No" }, { "input": "100\n0111001010101110001100000010011000100101110010001100111110101110001110101010111000010010011000000110", "output": "No" }, { "input": "357\n100101010010010010010100101001001010101010100100100100101001010101001010010100101001010100101001010010100100101001010101010101001001010100101010010100101001010100100100101010010010010100101010010010101001010010010101001001010010010101010100100101010010100100101001010100101001010100101001010010010010100101001010100100100100100100100101010101010010010100101", "output": "Yes" }, { "input": "459\n000111000101010000100001001010111110011011010001100101111010111011101110111101111101100101100011011001100110001001111001101000111001011100110100011111011111000010000110010011100110011011111110011100001101001111000100111011001000001011111100110100001001001100101011100001110110100101011011110100100111101011000101110000100110100100010000000100001001111111000011101010010011001111010111001100000100111001010111011010000011000011100101101011101000011011000110011", "output": "No" }, { "input": "3\n001", "output": "No" }, { "input": "4\n0010", "output": "No" }, { "input": "3\n111", "output": "No" }, { "input": "4\n0110", "output": "No" }, { "input": "2\n11", "output": "No" }, { "input": "2\n10", "output": "Yes" }, { "input": "2\n01", "output": "Yes" }, { "input": "4\n1101", "output": "No" }, { "input": "2\n00", "output": "No" }, { "input": "4\n1111", "output": "No" }, { "input": "15\n000010101010000", "output": "No" }, { "input": "8\n10010100", "output": "No" }, { "input": "5\n00100", "output": "No" }, { "input": "6\n100100", "output": "No" }, { "input": "7\n1000001", "output": "No" }, { "input": "98\n10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010", "output": "Yes" } ]
1,594,454,546
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
155
20,172,800
n = int(input()) s = input() e = s.count("11") r = s.count("000") if len(s) >= 2: q1 = s[0]+s[1] q2 = s[-2]+s[-1] if q1 == "00" or q2 == "00": print("No") exit() if r > 0 or e > 0: print("No") exit() print("Yes")
Title: Row Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold: 1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule. The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal". Note that the first and last seats are not adjacent (if $n \ne 2$). Input Specification: The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs. The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating. Output Specification: Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No". You are allowed to print letters in whatever case you'd like (uppercase or lowercase). Demo Input: ['3\n101\n', '4\n1011\n', '5\n10001\n'] Demo Output: ['Yes\n', 'No\n', 'No\n'] Note: In sample case one the given seating is maximal. In sample case two the person at chair three has a neighbour to the right. In sample case three it is possible to seat yet another person into chair three.
```python n = int(input()) s = input() e = s.count("11") r = s.count("000") if len(s) >= 2: q1 = s[0]+s[1] q2 = s[-2]+s[-1] if q1 == "00" or q2 == "00": print("No") exit() if r > 0 or e > 0: print("No") exit() print("Yes") ```
0
369
A
Valera and Plates
PROGRAMMING
900
[ "greedy", "implementation" ]
null
null
Valera is a lazy student. He has *m* clean bowls and *k* clean plates. Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates. When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally.
The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish.
Print a single integer — the minimum number of times Valera will need to wash a plate/bowl.
[ "3 1 1\n1 2 1\n", "4 3 1\n1 1 1 1\n", "3 1 2\n2 2 2\n", "8 2 2\n1 2 1 2 1 2 1 2\n" ]
[ "1\n", "1\n", "0\n", "4\n" ]
In the first sample Valera will wash a bowl only on the third day, so the answer is one. In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once. In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
500
[ { "input": "3 1 1\n1 2 1", "output": "1" }, { "input": "4 3 1\n1 1 1 1", "output": "1" }, { "input": "3 1 2\n2 2 2", "output": "0" }, { "input": "8 2 2\n1 2 1 2 1 2 1 2", "output": "4" }, { "input": "2 100 100\n2 2", "output": "0" }, { "input": "1 1 1\n2", "output": "0" }, { "input": "233 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 2", "output": "132" }, { "input": "123 100 1\n2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 1 1 2 1 2 2 1 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 1 2 1 2 1 2 1 1 1", "output": "22" }, { "input": "188 100 1\n2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1", "output": "87" }, { "input": "3 1 2\n1 1 1", "output": "2" }, { "input": "3 2 2\n1 1 1", "output": "1" }, { "input": "3 2 1\n1 1 1", "output": "1" }, { "input": "3 1 1\n1 1 1", "output": "2" }, { "input": "5 1 2\n2 2 2 2 2", "output": "2" }, { "input": "5 2 2\n2 2 2 2 2", "output": "1" }, { "input": "5 2 1\n2 2 2 2 2", "output": "2" }, { "input": "5 1 1\n2 2 2 2 2", "output": "3" }, { "input": "1 1 2\n2", "output": "0" }, { "input": "1 2 2\n2", "output": "0" }, { "input": "1 2 1\n2", "output": "0" }, { "input": "1 1 1\n2", "output": "0" }, { "input": "6 3 1\n1 1 2 2 2 2", "output": "2" }, { "input": "100 40 20\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "40" }, { "input": "7 5 2\n2 2 1 1 1 1 1", "output": "0" }, { "input": "10 4 4\n2 2 2 2 2 2 1 1 1 1", "output": "2" }, { "input": "3 2 1\n2 1 1", "output": "0" }, { "input": "7 6 1\n2 1 1 1 1 1 1", "output": "0" }, { "input": "7 5 1\n1 1 1 2 2 2 2", "output": "1" }, { "input": "5 3 1\n1 1 2 2 2", "output": "1" }, { "input": "3 1 1\n2 2 2", "output": "1" }, { "input": "5 2 2\n2 2 2 2 2", "output": "1" }, { "input": "3 1 3\n1 1 1", "output": "2" }, { "input": "5 2 1\n1 1 2 2 2", "output": "2" }, { "input": "4 3 2\n2 1 1 1", "output": "0" }, { "input": "4 2 1\n1 2 2 2", "output": "1" }, { "input": "14 4 7\n1 1 1 2 2 2 2 2 2 2 2 2 2 2", "output": "3" }, { "input": "12 10 4\n2 2 2 2 2 2 1 1 1 1 1 1", "output": "0" }, { "input": "5 3 2\n2 2 1 1 1", "output": "0" } ]
1,518,897,672
2,147,483,647
Python 3
OK
TESTS
63
77
5,632,000
n, m, k = [int(x) for x in input().split(' ')] dish = [int(x) for x in input().split(' ')] ans = 0 for i in dish: if i == 1: if m!= 0: m = m-1 else: ans = ans +1 else: if k!=0: k = k -1 continue if m!=0: m = m-1 continue else: ans = ans+1 print(ans)
Title: Valera and Plates Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera is a lazy student. He has *m* clean bowls and *k* clean plates. Valera has made an eating plan for the next *n* days. As Valera is lazy, he will eat exactly one dish per day. At that, in order to eat a dish, he needs exactly one clean plate or bowl. We know that Valera can cook only two types of dishes. He can eat dishes of the first type from bowls and dishes of the second type from either bowls or plates. When Valera finishes eating, he leaves a dirty plate/bowl behind. His life philosophy doesn't let him eat from dirty kitchenware. So sometimes he needs to wash his plate/bowl before eating. Find the minimum number of times Valera will need to wash a plate/bowl, if he acts optimally. Input Specification: The first line of the input contains three integers *n*, *m*, *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the number of the planned days, the number of clean bowls and the number of clean plates. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=2). If *a**i* equals one, then on day *i* Valera will eat a first type dish. If *a**i* equals two, then on day *i* Valera will eat a second type dish. Output Specification: Print a single integer — the minimum number of times Valera will need to wash a plate/bowl. Demo Input: ['3 1 1\n1 2 1\n', '4 3 1\n1 1 1 1\n', '3 1 2\n2 2 2\n', '8 2 2\n1 2 1 2 1 2 1 2\n'] Demo Output: ['1\n', '1\n', '0\n', '4\n'] Note: In the first sample Valera will wash a bowl only on the third day, so the answer is one. In the second sample, Valera will have the first type of the dish during all four days, and since there are only three bowls, he will wash a bowl exactly once. In the third sample, Valera will have the second type of dish for all three days, and as they can be eaten from either a plate or a bowl, he will never need to wash a plate/bowl.
```python n, m, k = [int(x) for x in input().split(' ')] dish = [int(x) for x in input().split(' ')] ans = 0 for i in dish: if i == 1: if m!= 0: m = m-1 else: ans = ans +1 else: if k!=0: k = k -1 continue if m!=0: m = m-1 continue else: ans = ans+1 print(ans) ```
3
686
A
Free Ice Cream
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids.
The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place.
Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress.
[ "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n", "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n" ]
[ "22 1\n", "3 2\n" ]
Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
500
[ { "input": "5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20", "output": "22 1" }, { "input": "5 17\n- 16\n- 2\n- 98\n+ 100\n- 98", "output": "3 2" }, { "input": "6 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000\n+ 1000000000", "output": "7000000000 0" }, { "input": "5 12\n- 12\n+ 7\n- 6\n- 1\n+ 46", "output": "46 0" }, { "input": "11 1000\n- 100\n+ 100\n+ 100\n+ 100\n+ 100\n- 100\n- 100\n- 100\n- 100\n- 100\n- 100", "output": "700 0" }, { "input": "1 0\n- 526403222", "output": "0 1" }, { "input": "1 897986543\n- 371188251", "output": "526798292 0" }, { "input": "1 0\n+ 1", "output": "1 0" }, { "input": "1 0\n- 1", "output": "0 1" }, { "input": "1 10\n+ 10", "output": "20 0" }, { "input": "1 3\n- 5", "output": "3 1" }, { "input": "1 0\n- 5", "output": "0 1" }, { "input": "1 0\n+ 5", "output": "5 0" } ]
1,688,221,835
2,147,483,647
Python 3
OK
TESTS
34
46
0
n ,x =map(int, input().split(' ')) sadKid = 0 for _ in range(n): sign , mount = input().split(' ') mount = int(mount) if sign == '+': x += mount if sign == '-': if (x - mount < 0): sadKid += 1 else: x -= mount print(x ,sadKid)
Title: Free Ice Cream Time Limit: None seconds Memory Limit: None megabytes Problem Description: After their adventure with the magic mirror Kay and Gerda have returned home and sometimes give free ice cream to kids in the summer. At the start of the day they have *x* ice cream packs. Since the ice cream is free, people start standing in the queue before Kay and Gerda's house even in the night. Each person in the queue wants either to take several ice cream packs for himself and his friends or to give several ice cream packs to Kay and Gerda (carriers that bring ice cream have to stand in the same queue). If a carrier with *d* ice cream packs comes to the house, then Kay and Gerda take all his packs. If a child who wants to take *d* ice cream packs comes to the house, then Kay and Gerda will give him *d* packs if they have enough ice cream, otherwise the child will get no ice cream at all and will leave in distress. Kay wants to find the amount of ice cream they will have after all people will leave from the queue, and Gerda wants to find the number of distressed kids. Input Specification: The first line contains two space-separated integers *n* and *x* (1<=≤<=*n*<=≤<=1000, 0<=≤<=*x*<=≤<=109). Each of the next *n* lines contains a character '+' or '-', and an integer *d**i*, separated by a space (1<=≤<=*d**i*<=≤<=109). Record "+ *d**i*" in *i*-th line means that a carrier with *d**i* ice cream packs occupies *i*-th place from the start of the queue, and record "- *d**i*" means that a child who wants to take *d**i* packs stands in *i*-th place. Output Specification: Print two space-separated integers — number of ice cream packs left after all operations, and number of kids that left the house in distress. Demo Input: ['5 7\n+ 5\n- 10\n- 20\n+ 40\n- 20\n', '5 17\n- 16\n- 2\n- 98\n+ 100\n- 98\n'] Demo Output: ['22 1\n', '3 2\n'] Note: Consider the first sample. 1. Initially Kay and Gerda have 7 packs of ice cream. 1. Carrier brings 5 more, so now they have 12 packs. 1. A kid asks for 10 packs and receives them. There are only 2 packs remaining. 1. Another kid asks for 20 packs. Kay and Gerda do not have them, so the kid goes away distressed. 1. Carrier bring 40 packs, now Kay and Gerda have 42 packs. 1. Kid asks for 20 packs and receives them. There are 22 packs remaining.
```python n ,x =map(int, input().split(' ')) sadKid = 0 for _ in range(n): sign , mount = input().split(' ') mount = int(mount) if sign == '+': x += mount if sign == '-': if (x - mount < 0): sadKid += 1 else: x -= mount print(x ,sadKid) ```
3
680
B
Bear and Finding Criminals
PROGRAMMING
1,000
[ "constructive algorithms", "implementation" ]
null
null
There are *n* cities in Bearland, numbered 1 through *n*. Cities are arranged in one long row. The distance between cities *i* and *j* is equal to |*i*<=-<=*j*|. Limak is a police officer. He lives in a city *a*. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city. Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city *a*. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal. You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD.
The first line of the input contains two integers *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100) — the number of cities and the index of city where Limak lives. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=≤<=1). There are *t**i* criminals in the *i*-th city.
Print the number of criminals Limak will catch.
[ "6 3\n1 1 1 0 1 0\n", "5 2\n0 0 0 1 0\n" ]
[ "3\n", "1\n" ]
In the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red. Using the BCD gives Limak the following information: - There is one criminal at distance 0 from the third city — Limak is sure that this criminal is exactly in the third city. - There is one criminal at distance 1 from the third city — Limak doesn't know if a criminal is in the second or fourth city. - There are two criminals at distance 2 from the third city — Limak is sure that there is one criminal in the first city and one in the fifth city. - There are zero criminals for every greater distance. So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total. In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is.
1,000
[ { "input": "6 3\n1 1 1 0 1 0", "output": "3" }, { "input": "5 2\n0 0 0 1 0", "output": "1" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n0", "output": "0" }, { "input": "9 3\n1 1 1 1 1 1 1 1 0", "output": "8" }, { "input": "9 5\n1 0 1 0 1 0 1 0 1", "output": "5" }, { "input": "20 17\n1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0", "output": "10" }, { "input": "100 60\n1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0", "output": "27" }, { "input": "8 1\n1 0 1 1 0 0 1 0", "output": "4" }, { "input": "11 11\n0 1 0 0 1 1 1 0 0 0 0", "output": "4" }, { "input": "19 10\n0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1", "output": "4" }, { "input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "1" }, { "input": "100 38\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "3" }, { "input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "25" }, { "input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "24" }, { "input": "99 38\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "24" }, { "input": "98 70\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "41" }, { "input": "99 70\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "99 60\n0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1", "output": "34" }, { "input": "98 24\n0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1", "output": "39" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "2 1\n0 1", "output": "1" } ]
1,693,634,178
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
def solve(): n, a = map(int, input().split()) v = list(map(int, input().split())) # Subtract 1 from the element at index 'a-1' if it's equal to 1, otherwise just calculate the sum if v[a - 1] == 1: print(sum(v) - 1) else: print(sum(v)) if __name__ == "__main__": solve()
Title: Bear and Finding Criminals Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* cities in Bearland, numbered 1 through *n*. Cities are arranged in one long row. The distance between cities *i* and *j* is equal to |*i*<=-<=*j*|. Limak is a police officer. He lives in a city *a*. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city. Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city *a*. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal. You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD. Input Specification: The first line of the input contains two integers *n* and *a* (1<=≤<=*a*<=≤<=*n*<=≤<=100) — the number of cities and the index of city where Limak lives. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (0<=≤<=*t**i*<=≤<=1). There are *t**i* criminals in the *i*-th city. Output Specification: Print the number of criminals Limak will catch. Demo Input: ['6 3\n1 1 1 0 1 0\n', '5 2\n0 0 0 1 0\n'] Demo Output: ['3\n', '1\n'] Note: In the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red. Using the BCD gives Limak the following information: - There is one criminal at distance 0 from the third city — Limak is sure that this criminal is exactly in the third city. - There is one criminal at distance 1 from the third city — Limak doesn't know if a criminal is in the second or fourth city. - There are two criminals at distance 2 from the third city — Limak is sure that there is one criminal in the first city and one in the fifth city. - There are zero criminals for every greater distance. So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total. In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is.
```python def solve(): n, a = map(int, input().split()) v = list(map(int, input().split())) # Subtract 1 from the element at index 'a-1' if it's equal to 1, otherwise just calculate the sum if v[a - 1] == 1: print(sum(v) - 1) else: print(sum(v)) if __name__ == "__main__": solve() ```
0
252
B
Unsorting Array
PROGRAMMING
1,800
[ "brute force", "sortings" ]
null
null
Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of *n* elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements. Array *a* (the array elements are indexed from 1) consisting of *n* elements is called sorted if it meets at least one of the following two conditions: 1. *a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*; 1. *a*1<=≥<=*a*2<=≥<=...<=≥<=*a**n*. Help Petya find the two required positions to swap or else say that they do not exist.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* non-negative space-separated integers *a*1,<=*a*2,<=...,<=*a**n* — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109.
If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to *n*.
[ "1\n1\n", "2\n1 2\n", "4\n1 2 3 4\n", "3\n1 1 1\n" ]
[ "-1\n", "-1\n", "1 2\n", "-1\n" ]
In the first two samples the required pairs obviously don't exist. In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted.
1,000
[ { "input": "1\n1", "output": "-1" }, { "input": "2\n1 2", "output": "-1" }, { "input": "4\n1 2 3 4", "output": "1 2" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "3\n1 2 2", "output": "1 2" }, { "input": "5\n1 1 1 1 2", "output": "2 5" }, { "input": "6\n1 2 3 3 2 1", "output": "1 2" }, { "input": "7\n6 5 4 3 2 1 0", "output": "1 2" }, { "input": "10\n1 2 1 2 1 2 1 2 1 2", "output": "1 2" }, { "input": "11\n1 1 1 1 1 2 2 2 2 2 1", "output": "1 6" }, { "input": "3\n1 2 1", "output": "-1" }, { "input": "4\n562617869 961148050 596819899 951133776", "output": "1 2" }, { "input": "4\n562617869 596819899 951133776 961148050", "output": "1 2" }, { "input": "4\n961148050 951133776 596819899 562617869", "output": "1 2" }, { "input": "4\n596819899 562617869 951133776 961148050", "output": "1 3" }, { "input": "4\n562617869 596819899 951133776 0", "output": "1 2" }, { "input": "4\n951133776 961148050 596819899 562617869", "output": "1 3" }, { "input": "4\n961148050 951133776 596819899 0", "output": "1 2" }, { "input": "4\n562617869 562617869 562617869 562617869", "output": "-1" }, { "input": "4\n961148050 961148050 562617869 961148050", "output": "2 3" }, { "input": "4\n562617869 961148050 961148050 961148050", "output": "1 2" }, { "input": "4\n961148050 961148050 961148050 562617869", "output": "2 4" }, { "input": "4\n961148050 562617869 961148050 961148050", "output": "2 3" }, { "input": "4\n562617869 961148050 961148050 961148050", "output": "1 2" }, { "input": "4\n562617869 961148050 562617869 562617869", "output": "2 3" }, { "input": "4\n562617869 562617869 562617869 961148050", "output": "2 4" }, { "input": "4\n961148050 562617869 562617869 562617869", "output": "1 2" }, { "input": "4\n961148050 562617869 961148050 961148050", "output": "2 3" }, { "input": "4\n961148050 961148050 562617869 961148050", "output": "2 3" }, { "input": "4\n562617869 562617869 961148050 562617869", "output": "2 3" }, { "input": "4\n562617869 961148050 562617869 562617869", "output": "2 3" }, { "input": "3\n2 1 3", "output": "1 3" }, { "input": "4\n2 1 3 4", "output": "1 3" }, { "input": "3\n2 1 2", "output": "-1" }, { "input": "5\n1 1 2 1 1", "output": "2 3" }, { "input": "3\n1 3 1", "output": "-1" }, { "input": "3\n1 3 2", "output": "1 2" }, { "input": "3\n3 2 3", "output": "-1" } ]
1,685,512,809
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
124
0
n=int(input()) a=[int(i) for i in input().split()] b=a[:] b.sort() c=b[:] c.reverse() if n==1 or n==2: print(-1) elif a==b and a==c: print(-1) else: x=a.index(max(a)) if x!=0 and x!=n-1: print(1,n) elif x==0: print(1,2) elif x==n-1: print(n-1,n)
Title: Unsorting Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of *n* elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements. Array *a* (the array elements are indexed from 1) consisting of *n* elements is called sorted if it meets at least one of the following two conditions: 1. *a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n*; 1. *a*1<=≥<=*a*2<=≥<=...<=≥<=*a**n*. Help Petya find the two required positions to swap or else say that they do not exist. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105). The second line contains *n* non-negative space-separated integers *a*1,<=*a*2,<=...,<=*a**n* — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109. Output Specification: If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to *n*. Demo Input: ['1\n1\n', '2\n1 2\n', '4\n1 2 3 4\n', '3\n1 1 1\n'] Demo Output: ['-1\n', '-1\n', '1 2\n', '-1\n'] Note: In the first two samples the required pairs obviously don't exist. In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted.
```python n=int(input()) a=[int(i) for i in input().split()] b=a[:] b.sort() c=b[:] c.reverse() if n==1 or n==2: print(-1) elif a==b and a==c: print(-1) else: x=a.index(max(a)) if x!=0 and x!=n-1: print(1,n) elif x==0: print(1,2) elif x==n-1: print(n-1,n) ```
0
931
C
Laboratory Work
PROGRAMMING
1,700
[ "implementation", "math" ]
null
null
Anya and Kirill are doing a physics laboratory work. In one of the tasks they have to measure some value *n* times, and then compute the average value to lower the error. Kirill has already made his measurements, and has got the following integer values: *x*1, *x*2, ..., *x**n*. It is important that the values are close to each other, namely, the difference between the maximum value and the minimum value is at most 2. Anya does not want to make the measurements, however, she can't just copy the values from Kirill's work, because the error of each measurement is a random value, and this coincidence will be noted by the teacher. Anya wants to write such integer values *y*1, *y*2, ..., *y**n* in her work, that the following conditions are met: - the average value of *x*1,<=*x*2,<=...,<=*x**n* is equal to the average value of *y*1,<=*y*2,<=...,<=*y**n*;- all Anya's measurements are in the same bounds as all Kirill's measurements, that is, the maximum value among Anya's values is not greater than the maximum value among Kirill's values, and the minimum value among Anya's values is not less than the minimum value among Kirill's values;- the number of equal measurements in Anya's work and Kirill's work is as small as possible among options with the previous conditions met. Formally, the teacher goes through all Anya's values one by one, if there is equal value in Kirill's work and it is not strike off yet, he strikes off this Anya's value and one of equal values in Kirill's work. The number of equal measurements is then the total number of strike off values in Anya's work. Help Anya to write such a set of measurements that the conditions above are met.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the numeber of measurements made by Kirill. The second line contains a sequence of integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=100<=000<=≤<=*x**i*<=≤<=100<=000) — the measurements made by Kirill. It is guaranteed that the difference between the maximum and minimum values among values *x*1,<=*x*2,<=...,<=*x**n* does not exceed 2.
In the first line print the minimum possible number of equal measurements. In the second line print *n* integers *y*1,<=*y*2,<=...,<=*y**n* — the values Anya should write. You can print the integers in arbitrary order. Keep in mind that the minimum value among Anya's values should be not less that the minimum among Kirill's values, and the maximum among Anya's values should be not greater than the maximum among Kirill's values. If there are multiple answers, print any of them.
[ "6\n-1 1 1 0 0 -1\n", "3\n100 100 101\n", "7\n-10 -9 -10 -8 -10 -9 -9\n" ]
[ "2\n0 0 0 0 0 0 \n", "3\n101 100 100 \n", "5\n-10 -10 -9 -9 -9 -9 -9 \n" ]
In the first example Anya can write zeros as here measurements results. The average value is then equal to the average value of Kirill's values, and there are only two equal measurements. In the second example Anya should write two values 100 and one value 101 (in any order), because it is the only possibility to make the average be the equal to the average of Kirill's values. Thus, all three measurements are equal. In the third example the number of equal measurements is 5.
1,750
[ { "input": "6\n-1 1 1 0 0 -1", "output": "2\n0 0 0 0 0 0 " }, { "input": "3\n100 100 101", "output": "3\n101 100 100 " }, { "input": "7\n-10 -9 -10 -8 -10 -9 -9", "output": "5\n-10 -10 -9 -9 -9 -9 -9 " }, { "input": "60\n-8536 -8536 -8536 -8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535 -8536 -8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535 -8536 -8536 -8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535 -8536 -8536 -8536 -8535 -8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535", "output": "60\n-8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535 -8535 -8536 -8536 -8536 -8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535 -8536 -8536 -8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535 -8536 -8535 -8536 -8536 -8536 -8536 -8536 -8536 -8536 -8535 -8536 -8536 -8536 " }, { "input": "9\n-71360 -71359 -71360 -71360 -71359 -71359 -71359 -71359 -71359", "output": "9\n-71359 -71359 -71359 -71359 -71359 -71360 -71360 -71359 -71360 " }, { "input": "10\n100 100 100 100 100 100 100 100 100 100", "output": "10\n100 100 100 100 100 100 100 100 100 100 " }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " }, { "input": "5\n-399 -399 -400 -399 -400", "output": "5\n-400 -399 -400 -399 -399 " }, { "input": "10\n1001 1000 1000 1001 1000 1000 1001 1001 1000 1001", "output": "10\n1001 1000 1001 1001 1000 1000 1001 1000 1000 1001 " }, { "input": "20\n-100000 -99999 -100000 -99999 -99999 -100000 -99999 -100000 -99999 -100000 -99999 -99999 -99999 -100000 -100000 -99999 -100000 -100000 -100000 -99999", "output": "20\n-99999 -100000 -100000 -100000 -99999 -100000 -100000 -99999 -99999 -99999 -100000 -99999 -100000 -99999 -100000 -99999 -99999 -100000 -99999 -100000 " }, { "input": "50\n99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 100000 99999 99999 99999 99999 99999 100000 99999 99999 99999 100000 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 100000 99999 99999 99999 100000 99999 99999 99999", "output": "50\n99999 99999 99999 100000 99999 99999 99999 100000 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 100000 99999 99999 99999 100000 99999 99999 99999 99999 99999 100000 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 " }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "1\n-100000", "output": "1\n-100000 " }, { "input": "1\n-1", "output": "1\n-1 " }, { "input": "1\n0", "output": "1\n0 " }, { "input": "1\n1", "output": "1\n1 " }, { "input": "1\n100000", "output": "1\n100000 " }, { "input": "5\n2 2 1 1 2", "output": "5\n2 1 1 2 2 " }, { "input": "10\n0 -1 0 1 1 1 1 -1 0 0", "output": "6\n0 0 0 0 0 0 0 0 1 1 " }, { "input": "20\n-4344 -4342 -4344 -4342 -4343 -4343 -4344 -4344 -4342 -4343 -4344 -4343 -4344 -4344 -4344 -4342 -4344 -4343 -4342 -4344", "output": "10\n-4344 -4344 -4344 -4344 -4344 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 -4343 " }, { "input": "40\n113 113 112 112 112 112 112 112 112 112 112 113 113 112 113 112 113 112 112 112 111 112 112 113 112 112 112 112 112 112 112 112 113 112 113 112 112 113 112 113", "output": "12\n111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 " }, { "input": "5\n-94523 -94523 -94523 -94524 -94524", "output": "5\n-94524 -94524 -94523 -94523 -94523 " }, { "input": "10\n-35822 -35823 -35823 -35823 -35821 -35823 -35823 -35821 -35822 -35821", "output": "4\n-35823 -35823 -35822 -35822 -35822 -35822 -35822 -35822 -35822 -35822 " }, { "input": "11\n-50353 -50353 -50353 -50353 -50353 -50352 -50353 -50353 -50353 -50353 -50352", "output": "11\n-50352 -50353 -50353 -50353 -50353 -50352 -50353 -50353 -50353 -50353 -50353 " }, { "input": "20\n46795 46795 46795 46795 46795 46795 46795 46793 46794 46795 46794 46795 46795 46795 46795 46795 46795 46795 46795 46795", "output": "18\n46794 46794 46794 46794 46795 46795 46795 46795 46795 46795 46795 46795 46795 46795 46795 46795 46795 46795 46795 46795 " }, { "input": "40\n72263 72261 72262 72263 72263 72263 72263 72263 72263 72262 72263 72263 72263 72263 72263 72262 72263 72262 72263 72262 72262 72263 72263 72262 72263 72263 72262 72262 72263 72262 72263 72263 72263 72263 72263 72263 72263 72263 72263 72262", "output": "30\n72261 72261 72261 72261 72261 72261 72262 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 72263 " }, { "input": "50\n-46992 -46992 -46992 -46991 -46992 -46991 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46991 -46991 -46991 -46992 -46990 -46991 -46991 -46991 -46991 -46992 -46992 -46991 -46992 -46992 -46992 -46990 -46992 -46991 -46991 -46992 -46992 -46992 -46991 -46991 -46991 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992", "output": "36\n-46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46992 -46991 -46990 -46990 -46990 -46990 -46990 -46990 -46990 -46990 -46990 " }, { "input": "60\n-86077 -86075 -86076 -86076 -86077 -86077 -86075 -86075 -86075 -86077 -86075 -86076 -86075 -86075 -86075 -86076 -86075 -86076 -86075 -86075 -86076 -86076 -86076 -86075 -86075 -86075 -86075 -86077 -86075 -86076 -86075 -86075 -86075 -86076 -86075 -86076 -86077 -86075 -86075 -86075 -86076 -86075 -86076 -86075 -86076 -86076 -86075 -86076 -86076 -86075 -86075 -86075 -86077 -86076 -86075 -86075 -86075 -86075 -86075 -86075", "output": "42\n-86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86077 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 -86075 " }, { "input": "70\n-87 -86 -88 -86 -87 -86 -88 -88 -87 -86 -86 -88 -86 -86 -88 -87 -87 -87 -86 -87 -87 -87 -88 -88 -88 -87 -88 -87 -88 -87 -88 -86 -86 -86 -88 -86 -87 -87 -86 -86 -88 -86 -88 -87 -88 -87 -87 -86 -88 -87 -86 -88 -87 -86 -87 -87 -86 -88 -87 -86 -87 -88 -87 -88 -86 -87 -88 -88 -87 -87", "output": "28\n-88 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87 " }, { "input": "2\n0 2", "output": "0\n1 1 " }, { "input": "4\n1 1 3 3", "output": "0\n2 2 2 2 " }, { "input": "6\n1 1 1 3 3 3", "output": "0\n2 2 2 2 2 2 " }, { "input": "2\n1 3", "output": "0\n2 2 " }, { "input": "7\n0 1 1 1 1 1 2", "output": "3\n0 0 0 1 2 2 2 " }, { "input": "6\n1 1 1 -1 -1 -1", "output": "0\n0 0 0 0 0 0 " }, { "input": "3\n1 1 3", "output": "1\n1 2 2 " }, { "input": "2\n2 0", "output": "0\n1 1 " }, { "input": "10\n1 3 3 3 3 3 3 3 3 3", "output": "8\n2 2 3 3 3 3 3 3 3 3 " }, { "input": "7\n1 3 3 3 3 3 3", "output": "5\n2 2 3 3 3 3 3 " }, { "input": "7\n1 2 2 2 2 2 3", "output": "3\n1 1 1 2 3 3 3 " }, { "input": "5\n-8 -8 -8 -10 -10", "output": "1\n-9 -9 -9 -9 -8 " }, { "input": "3\n1 2 3", "output": "1\n2 2 2 " }, { "input": "4\n2 2 4 4", "output": "0\n3 3 3 3 " }, { "input": "4\n1 1 -1 -1", "output": "0\n0 0 0 0 " } ]
1,520,181,690
3,990
Python 3
WRONG_ANSWER
PRETESTS
5
46
5,632,000
n = int(input()) a = list(map(int,input().split())) a.sort() minn = a[0] maxx = a[-1] sa = sum(a) t1 = a.count(minn) t2 = a.count(minn + 1) t3 = a.count(maxx) if t1 == min(t1,t2,t3): res = [minn] * n elif t2 == min(t1,t2,t3): res = [minn + 1] * n else: res = [maxx] * n if sum(res) < sa: if res[0] == minn + 1: for i in range(sa - sum(res)): res[i] = maxx else: if sa - sum(res) > n or min(sa - sum(res),t2) > min((sa - sum(res))// 2,t3) + min((sa - sum(res)) % 2,t2): for i in range((sa - sum(res)) // 2): res[i] = maxx if sa > sum(res): res[i + 1] = minn + 1 else: for i in range(sa - sum(res)): res[i] = minn + 1 else: if res[0] == minn + 1: for i in range(sum(res) - sa): res[i] = minn else: if sum(res) - sa > n or min(sum(res) - sa,t2) > min((sum(res) - sa)// 2,t1) + min((sum(res) - sa) % 2,t2): for i in range((sum(res) - sa) // 2): res[i] = minn if sa < sum(res): res[i + 1] = minn + 1 else: for i in range(sum(res) - sa): res[i] = minn + 1 if minn == maxx: print(min(a.count(minn),res.count(minn))) elif maxx == minn + 1: print(min(a.count(minn),res.count(minn)) + min(a.count(maxx),res.count(maxx))) else: print(min(a.count(minn),res.count(minn)) + min(a.count(minn + 1),res.count(minn + 1)) + min(a.count(maxx),res.count(maxx))) print(*res)
Title: Laboratory Work Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anya and Kirill are doing a physics laboratory work. In one of the tasks they have to measure some value *n* times, and then compute the average value to lower the error. Kirill has already made his measurements, and has got the following integer values: *x*1, *x*2, ..., *x**n*. It is important that the values are close to each other, namely, the difference between the maximum value and the minimum value is at most 2. Anya does not want to make the measurements, however, she can't just copy the values from Kirill's work, because the error of each measurement is a random value, and this coincidence will be noted by the teacher. Anya wants to write such integer values *y*1, *y*2, ..., *y**n* in her work, that the following conditions are met: - the average value of *x*1,<=*x*2,<=...,<=*x**n* is equal to the average value of *y*1,<=*y*2,<=...,<=*y**n*;- all Anya's measurements are in the same bounds as all Kirill's measurements, that is, the maximum value among Anya's values is not greater than the maximum value among Kirill's values, and the minimum value among Anya's values is not less than the minimum value among Kirill's values;- the number of equal measurements in Anya's work and Kirill's work is as small as possible among options with the previous conditions met. Formally, the teacher goes through all Anya's values one by one, if there is equal value in Kirill's work and it is not strike off yet, he strikes off this Anya's value and one of equal values in Kirill's work. The number of equal measurements is then the total number of strike off values in Anya's work. Help Anya to write such a set of measurements that the conditions above are met. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the numeber of measurements made by Kirill. The second line contains a sequence of integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=100<=000<=≤<=*x**i*<=≤<=100<=000) — the measurements made by Kirill. It is guaranteed that the difference between the maximum and minimum values among values *x*1,<=*x*2,<=...,<=*x**n* does not exceed 2. Output Specification: In the first line print the minimum possible number of equal measurements. In the second line print *n* integers *y*1,<=*y*2,<=...,<=*y**n* — the values Anya should write. You can print the integers in arbitrary order. Keep in mind that the minimum value among Anya's values should be not less that the minimum among Kirill's values, and the maximum among Anya's values should be not greater than the maximum among Kirill's values. If there are multiple answers, print any of them. Demo Input: ['6\n-1 1 1 0 0 -1\n', '3\n100 100 101\n', '7\n-10 -9 -10 -8 -10 -9 -9\n'] Demo Output: ['2\n0 0 0 0 0 0 \n', '3\n101 100 100 \n', '5\n-10 -10 -9 -9 -9 -9 -9 \n'] Note: In the first example Anya can write zeros as here measurements results. The average value is then equal to the average value of Kirill's values, and there are only two equal measurements. In the second example Anya should write two values 100 and one value 101 (in any order), because it is the only possibility to make the average be the equal to the average of Kirill's values. Thus, all three measurements are equal. In the third example the number of equal measurements is 5.
```python n = int(input()) a = list(map(int,input().split())) a.sort() minn = a[0] maxx = a[-1] sa = sum(a) t1 = a.count(minn) t2 = a.count(minn + 1) t3 = a.count(maxx) if t1 == min(t1,t2,t3): res = [minn] * n elif t2 == min(t1,t2,t3): res = [minn + 1] * n else: res = [maxx] * n if sum(res) < sa: if res[0] == minn + 1: for i in range(sa - sum(res)): res[i] = maxx else: if sa - sum(res) > n or min(sa - sum(res),t2) > min((sa - sum(res))// 2,t3) + min((sa - sum(res)) % 2,t2): for i in range((sa - sum(res)) // 2): res[i] = maxx if sa > sum(res): res[i + 1] = minn + 1 else: for i in range(sa - sum(res)): res[i] = minn + 1 else: if res[0] == minn + 1: for i in range(sum(res) - sa): res[i] = minn else: if sum(res) - sa > n or min(sum(res) - sa,t2) > min((sum(res) - sa)// 2,t1) + min((sum(res) - sa) % 2,t2): for i in range((sum(res) - sa) // 2): res[i] = minn if sa < sum(res): res[i + 1] = minn + 1 else: for i in range(sum(res) - sa): res[i] = minn + 1 if minn == maxx: print(min(a.count(minn),res.count(minn))) elif maxx == minn + 1: print(min(a.count(minn),res.count(minn)) + min(a.count(maxx),res.count(maxx))) else: print(min(a.count(minn),res.count(minn)) + min(a.count(minn + 1),res.count(minn + 1)) + min(a.count(maxx),res.count(maxx))) print(*res) ```
0
876
A
Trip For Meal
PROGRAMMING
900
[ "math" ]
null
null
Winnie-the-Pooh likes honey very much! That is why he decided to visit his friends. Winnie has got three best friends: Rabbit, Owl and Eeyore, each of them lives in his own house. There are winding paths between each pair of houses. The length of a path between Rabbit's and Owl's houses is *a* meters, between Rabbit's and Eeyore's house is *b* meters, between Owl's and Eeyore's house is *c* meters. For enjoying his life and singing merry songs Winnie-the-Pooh should have a meal *n* times a day. Now he is in the Rabbit's house and has a meal for the first time. Each time when in the friend's house where Winnie is now the supply of honey is about to end, Winnie leaves that house. If Winnie has not had a meal the required amount of times, he comes out from the house and goes to someone else of his two friends. For this he chooses one of two adjacent paths, arrives to the house on the other end and visits his friend. You may assume that when Winnie is eating in one of his friend's house, the supply of honey in other friend's houses recover (most probably, they go to the supply store). Winnie-the-Pooh does not like physical activity. He wants to have a meal *n* times, traveling minimum possible distance. Help him to find this distance.
First line contains an integer *n* (1<=≤<=*n*<=≤<=100) — number of visits. Second line contains an integer *a* (1<=≤<=*a*<=≤<=100) — distance between Rabbit's and Owl's houses. Third line contains an integer *b* (1<=≤<=*b*<=≤<=100) — distance between Rabbit's and Eeyore's houses. Fourth line contains an integer *c* (1<=≤<=*c*<=≤<=100) — distance between Owl's and Eeyore's houses.
Output one number — minimum distance in meters Winnie must go through to have a meal *n* times.
[ "3\n2\n3\n1\n", "1\n2\n3\n5\n" ]
[ "3\n", "0\n" ]
In the first test case the optimal path for Winnie is the following: first have a meal in Rabbit's house, then in Owl's house, then in Eeyore's house. Thus he will pass the distance 2 + 1 = 3. In the second test case Winnie has a meal in Rabbit's house and that is for him. So he doesn't have to walk anywhere at all.
500
[ { "input": "3\n2\n3\n1", "output": "3" }, { "input": "1\n2\n3\n5", "output": "0" }, { "input": "10\n1\n8\n3", "output": "9" }, { "input": "7\n10\n5\n6", "output": "30" }, { "input": "9\n9\n7\n5", "output": "42" }, { "input": "9\n37\n85\n76", "output": "296" }, { "input": "76\n46\n77\n11", "output": "860" }, { "input": "80\n42\n1\n37", "output": "79" }, { "input": "8\n80\n55\n1", "output": "61" }, { "input": "10\n13\n72\n17", "output": "117" }, { "input": "9\n24\n1\n63", "output": "8" }, { "input": "65\n5\n8\n7", "output": "320" }, { "input": "56\n8\n9\n3", "output": "170" }, { "input": "59\n8\n1\n2", "output": "58" }, { "input": "75\n50\n50\n5", "output": "415" }, { "input": "75\n54\n76\n66", "output": "3996" }, { "input": "73\n71\n69\n66", "output": "4755" }, { "input": "83\n58\n88\n16", "output": "1354" }, { "input": "74\n31\n11\n79", "output": "803" }, { "input": "62\n27\n16\n72", "output": "976" }, { "input": "72\n95\n27\n9", "output": "657" }, { "input": "1\n2\n2\n1", "output": "0" }, { "input": "1\n1\n1\n1", "output": "0" }, { "input": "1\n1\n1\n99", "output": "0" }, { "input": "100\n100\n100\n100", "output": "9900" }, { "input": "2\n1\n1\n3", "output": "1" }, { "input": "1\n3\n2\n1", "output": "0" }, { "input": "1\n5\n6\n1", "output": "0" }, { "input": "1\n2\n6\n1", "output": "0" }, { "input": "1\n30\n20\n1", "output": "0" }, { "input": "1\n15\n13\n11", "output": "0" }, { "input": "1\n100\n50\n1", "output": "0" }, { "input": "1\n2\n3\n1", "output": "0" }, { "input": "5\n5\n5\n5", "output": "20" }, { "input": "1\n100\n50\n5", "output": "0" }, { "input": "1\n5\n7\n3", "output": "0" }, { "input": "1\n3\n4\n2", "output": "0" }, { "input": "3\n3\n3\n3", "output": "6" }, { "input": "1\n99\n98\n1", "output": "0" }, { "input": "5\n3\n3\n1", "output": "6" }, { "input": "2\n1\n1\n1", "output": "1" }, { "input": "2\n1\n7\n8", "output": "1" }, { "input": "2\n2\n2\n1", "output": "2" }, { "input": "2\n2\n3\n1", "output": "2" }, { "input": "1\n5\n6\n2", "output": "0" }, { "input": "100\n1\n1\n100", "output": "99" }, { "input": "2\n3\n2\n1", "output": "2" }, { "input": "1\n99\n98\n97", "output": "0" } ]
1,510,589,291
1,090
Python 3
WRONG_ANSWER
TESTS
21
62
0
n = int(input()) a = int(input()) b = int(input()) c = int(input()) first_min = min(a, b) second_min = min(a, b, c) print(first_min + second_min * (n - 2))
Title: Trip For Meal Time Limit: None seconds Memory Limit: None megabytes Problem Description: Winnie-the-Pooh likes honey very much! That is why he decided to visit his friends. Winnie has got three best friends: Rabbit, Owl and Eeyore, each of them lives in his own house. There are winding paths between each pair of houses. The length of a path between Rabbit's and Owl's houses is *a* meters, between Rabbit's and Eeyore's house is *b* meters, between Owl's and Eeyore's house is *c* meters. For enjoying his life and singing merry songs Winnie-the-Pooh should have a meal *n* times a day. Now he is in the Rabbit's house and has a meal for the first time. Each time when in the friend's house where Winnie is now the supply of honey is about to end, Winnie leaves that house. If Winnie has not had a meal the required amount of times, he comes out from the house and goes to someone else of his two friends. For this he chooses one of two adjacent paths, arrives to the house on the other end and visits his friend. You may assume that when Winnie is eating in one of his friend's house, the supply of honey in other friend's houses recover (most probably, they go to the supply store). Winnie-the-Pooh does not like physical activity. He wants to have a meal *n* times, traveling minimum possible distance. Help him to find this distance. Input Specification: First line contains an integer *n* (1<=≤<=*n*<=≤<=100) — number of visits. Second line contains an integer *a* (1<=≤<=*a*<=≤<=100) — distance between Rabbit's and Owl's houses. Third line contains an integer *b* (1<=≤<=*b*<=≤<=100) — distance between Rabbit's and Eeyore's houses. Fourth line contains an integer *c* (1<=≤<=*c*<=≤<=100) — distance between Owl's and Eeyore's houses. Output Specification: Output one number — minimum distance in meters Winnie must go through to have a meal *n* times. Demo Input: ['3\n2\n3\n1\n', '1\n2\n3\n5\n'] Demo Output: ['3\n', '0\n'] Note: In the first test case the optimal path for Winnie is the following: first have a meal in Rabbit's house, then in Owl's house, then in Eeyore's house. Thus he will pass the distance 2 + 1 = 3. In the second test case Winnie has a meal in Rabbit's house and that is for him. So he doesn't have to walk anywhere at all.
```python n = int(input()) a = int(input()) b = int(input()) c = int(input()) first_min = min(a, b) second_min = min(a, b, c) print(first_min + second_min * (n - 2)) ```
0
513
A
Game
PROGRAMMING
800
[ "constructive algorithms", "math" ]
null
null
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50. This problem doesn't have subproblems. You will get 3 points for the correct submission.
Output "First" if the first player wins and "Second" otherwise.
[ "2 2 1 2\n", "2 1 1 1\n" ]
[ "Second\n", "First\n" ]
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
3
[ { "input": "2 2 1 2", "output": "Second" }, { "input": "2 1 1 1", "output": "First" }, { "input": "5 7 4 1", "output": "Second" }, { "input": "5 7 1 4", "output": "Second" }, { "input": "5 7 10 10", "output": "Second" }, { "input": "5 7 1 10", "output": "Second" }, { "input": "1 1 1 1", "output": "Second" }, { "input": "50 50 50 50", "output": "Second" }, { "input": "50 49 1 2", "output": "First" }, { "input": "50 48 3 1", "output": "First" }, { "input": "48 50 12 11", "output": "Second" }, { "input": "49 50 11 12", "output": "Second" }, { "input": "49 49 4 1", "output": "Second" }, { "input": "49 49 3 3", "output": "Second" }, { "input": "1 50 1 50", "output": "Second" }, { "input": "1 50 50 50", "output": "Second" }, { "input": "50 1 1 1", "output": "First" }, { "input": "50 1 1 50", "output": "First" }, { "input": "32 31 10 9", "output": "First" }, { "input": "32 4 17 3", "output": "First" } ]
1,498,322,046
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
4,608,000
n1,n2,k1,k2 = input().split() n1,n2,k1,k2 = int(n1),int(n2),int(k1),int(k2) if n1>n2: print('first') else: print('second')
Title: Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally. Input Specification: The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50. This problem doesn't have subproblems. You will get 3 points for the correct submission. Output Specification: Output "First" if the first player wins and "Second" otherwise. Demo Input: ['2 2 1 2\n', '2 1 1 1\n'] Demo Output: ['Second\n', 'First\n'] Note: Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
```python n1,n2,k1,k2 = input().split() n1,n2,k1,k2 = int(n1),int(n2),int(k1),int(k2) if n1>n2: print('first') else: print('second') ```
0
967
A
Mind the Gap
PROGRAMMING
1,100
[ "implementation" ]
null
null
These days Arkady works as an air traffic controller at a large airport. He controls a runway which is usually used for landings only. Thus, he has a schedule of planes that are landing in the nearest future, each landing lasts $1$ minute. He was asked to insert one takeoff in the schedule. The takeoff takes $1$ minute itself, but for safety reasons there should be a time space between the takeoff and any landing of at least $s$ minutes from both sides. Find the earliest time when Arkady can insert the takeoff.
The first line of input contains two integers $n$ and $s$ ($1 \le n \le 100$, $1 \le s \le 60$) — the number of landings on the schedule and the minimum allowed time (in minutes) between a landing and a takeoff. Each of next $n$ lines contains two integers $h$ and $m$ ($0 \le h \le 23$, $0 \le m \le 59$) — the time, in hours and minutes, when a plane will land, starting from current moment (i. e. the current time is $0$ $0$). These times are given in increasing order.
Print two integers $h$ and $m$ — the hour and the minute from the current moment of the earliest time Arkady can insert the takeoff.
[ "6 60\n0 0\n1 20\n3 21\n5 0\n19 30\n23 40\n", "16 50\n0 30\n1 20\n3 0\n4 30\n6 10\n7 50\n9 30\n11 10\n12 50\n14 30\n16 10\n17 50\n19 30\n21 10\n22 50\n23 59\n", "3 17\n0 30\n1 0\n12 0\n" ]
[ "6 1\n", "24 50\n", "0 0\n" ]
In the first example note that there is not enough time between 1:20 and 3:21, because each landing and the takeoff take one minute. In the second example there is no gaps in the schedule, so Arkady can only add takeoff after all landings. Note that it is possible that one should wait more than $24$ hours to insert the takeoff. In the third example Arkady can insert the takeoff even between the first landing.
500
[ { "input": "6 60\n0 0\n1 20\n3 21\n5 0\n19 30\n23 40", "output": "6 1" }, { "input": "16 50\n0 30\n1 20\n3 0\n4 30\n6 10\n7 50\n9 30\n11 10\n12 50\n14 30\n16 10\n17 50\n19 30\n21 10\n22 50\n23 59", "output": "24 50" }, { "input": "3 17\n0 30\n1 0\n12 0", "output": "0 0" }, { "input": "24 60\n0 21\n2 21\n2 46\n3 17\n4 15\n5 43\n6 41\n7 50\n8 21\n9 8\n10 31\n10 45\n12 30\n14 8\n14 29\n14 32\n14 52\n15 16\n16 7\n16 52\n18 44\n20 25\n21 13\n22 7", "output": "23 8" }, { "input": "20 60\n0 9\n0 19\n0 57\n2 42\n3 46\n3 47\n5 46\n8 1\n9 28\n9 41\n10 54\n12 52\n13 0\n14 49\n17 28\n17 39\n19 34\n20 52\n21 35\n23 22", "output": "6 47" }, { "input": "57 20\n0 2\n0 31\n1 9\n1 42\n1 58\n2 4\n2 35\n2 49\n3 20\n3 46\n4 23\n4 52\n5 5\n5 39\n6 7\n6 48\n6 59\n7 8\n7 35\n8 10\n8 46\n8 53\n9 19\n9 33\n9 43\n10 18\n10 42\n11 0\n11 26\n12 3\n12 5\n12 30\n13 1\n13 38\n14 13\n14 54\n15 31\n16 5\n16 44\n17 18\n17 30\n17 58\n18 10\n18 34\n19 13\n19 49\n19 50\n19 59\n20 17\n20 23\n20 40\n21 18\n21 57\n22 31\n22 42\n22 56\n23 37", "output": "23 58" }, { "input": "66 20\n0 16\n0 45\n0 58\n1 6\n1 19\n2 7\n2 9\n3 9\n3 25\n3 57\n4 38\n4 58\n5 21\n5 40\n6 16\n6 19\n6 58\n7 6\n7 26\n7 51\n8 13\n8 36\n8 55\n9 1\n9 15\n9 33\n10 12\n10 37\n11 15\n11 34\n12 8\n12 37\n12 55\n13 26\n14 0\n14 34\n14 36\n14 48\n15 23\n15 29\n15 43\n16 8\n16 41\n16 45\n17 5\n17 7\n17 15\n17 29\n17 46\n18 12\n18 19\n18 38\n18 57\n19 32\n19 58\n20 5\n20 40\n20 44\n20 50\n21 18\n21 49\n22 18\n22 47\n23 1\n23 38\n23 50", "output": "1 40" }, { "input": "1 1\n0 0", "output": "0 2" }, { "input": "10 1\n0 2\n0 4\n0 5\n0 8\n0 9\n0 11\n0 13\n0 16\n0 19\n0 21", "output": "0 0" }, { "input": "10 1\n0 2\n0 5\n0 8\n0 11\n0 15\n0 17\n0 25\n0 28\n0 29\n0 32", "output": "0 0" }, { "input": "15 20\n0 47\n2 24\n4 19\n4 34\n5 46\n8 15\n9 8\n10 28\n17 47\n17 52\n18 32\n19 50\n20 46\n20 50\n23 21", "output": "0 0" }, { "input": "1 5\n1 0", "output": "0 0" }, { "input": "24 60\n1 0\n2 0\n3 0\n4 0\n5 0\n6 0\n7 0\n8 0\n9 0\n10 0\n11 0\n12 0\n13 0\n14 0\n15 0\n16 0\n17 0\n18 0\n19 0\n20 0\n21 0\n22 0\n23 0\n23 59", "output": "25 0" }, { "input": "1 30\n0 29", "output": "1 0" }, { "input": "1 2\n3 0", "output": "0 0" }, { "input": "16 60\n0 30\n1 20\n3 0\n4 30\n6 10\n7 50\n9 30\n11 10\n12 50\n14 30\n16 10\n17 50\n19 30\n21 10\n22 50\n23 59", "output": "25 0" }, { "input": "1 5\n0 6", "output": "0 0" }, { "input": "2 60\n0 59\n23 59", "output": "2 0" }, { "input": "1 58\n0 1", "output": "1 0" }, { "input": "25 60\n0 0\n1 0\n2 0\n3 0\n4 0\n5 0\n6 0\n7 0\n8 0\n9 0\n10 0\n11 0\n12 0\n13 0\n14 0\n15 0\n16 0\n17 0\n18 0\n19 0\n20 0\n21 0\n22 0\n23 0\n23 59", "output": "25 0" }, { "input": "2 3\n0 3\n0 30", "output": "0 7" }, { "input": "16 50\n0 30\n1 20\n3 0\n4 30\n6 10\n7 50\n9 30\n11 10\n12 50\n14 30\n16 10\n17 50\n19 30\n21 10\n22 50\n23 9", "output": "24 0" }, { "input": "1 60\n2 0", "output": "0 0" }, { "input": "2 60\n0 0\n5 0", "output": "1 1" }, { "input": "1 30\n0 31", "output": "0 0" }, { "input": "2 60\n0 59\n3 1", "output": "2 0" }, { "input": "2 60\n0 59\n5 0", "output": "2 0" }, { "input": "1 59\n0 0", "output": "1 0" }, { "input": "3 25\n0 0\n1 0\n2 0", "output": "0 26" }, { "input": "1 2\n2 3", "output": "0 0" } ]
1,525,009,294
1,594
Python 3
WRONG_ANSWER
PRETESTS
0
77
7,065,600
N,S = map(int,input().split()) src = [tuple(map(int,input().split())) for i in range(N)] + [(99,59)] h0,m0 = src[0] if h0*60+m0 > S+1: print(0,0) exit() for (h1,m1),(h2,m2) in zip(src, src[1:]): t1 = h1*60+m1 t2 = h2*60+m2 print(t1,t2) if t2-t1 <= 2*S+1: continue t1 += S+1 h,m = divmod(t1,60) print(h,m) exit()
Title: Mind the Gap Time Limit: None seconds Memory Limit: None megabytes Problem Description: These days Arkady works as an air traffic controller at a large airport. He controls a runway which is usually used for landings only. Thus, he has a schedule of planes that are landing in the nearest future, each landing lasts $1$ minute. He was asked to insert one takeoff in the schedule. The takeoff takes $1$ minute itself, but for safety reasons there should be a time space between the takeoff and any landing of at least $s$ minutes from both sides. Find the earliest time when Arkady can insert the takeoff. Input Specification: The first line of input contains two integers $n$ and $s$ ($1 \le n \le 100$, $1 \le s \le 60$) — the number of landings on the schedule and the minimum allowed time (in minutes) between a landing and a takeoff. Each of next $n$ lines contains two integers $h$ and $m$ ($0 \le h \le 23$, $0 \le m \le 59$) — the time, in hours and minutes, when a plane will land, starting from current moment (i. e. the current time is $0$ $0$). These times are given in increasing order. Output Specification: Print two integers $h$ and $m$ — the hour and the minute from the current moment of the earliest time Arkady can insert the takeoff. Demo Input: ['6 60\n0 0\n1 20\n3 21\n5 0\n19 30\n23 40\n', '16 50\n0 30\n1 20\n3 0\n4 30\n6 10\n7 50\n9 30\n11 10\n12 50\n14 30\n16 10\n17 50\n19 30\n21 10\n22 50\n23 59\n', '3 17\n0 30\n1 0\n12 0\n'] Demo Output: ['6 1\n', '24 50\n', '0 0\n'] Note: In the first example note that there is not enough time between 1:20 and 3:21, because each landing and the takeoff take one minute. In the second example there is no gaps in the schedule, so Arkady can only add takeoff after all landings. Note that it is possible that one should wait more than $24$ hours to insert the takeoff. In the third example Arkady can insert the takeoff even between the first landing.
```python N,S = map(int,input().split()) src = [tuple(map(int,input().split())) for i in range(N)] + [(99,59)] h0,m0 = src[0] if h0*60+m0 > S+1: print(0,0) exit() for (h1,m1),(h2,m2) in zip(src, src[1:]): t1 = h1*60+m1 t2 = h2*60+m2 print(t1,t2) if t2-t1 <= 2*S+1: continue t1 += S+1 h,m = divmod(t1,60) print(h,m) exit() ```
0
777
A
Shell Game
PROGRAMMING
1,000
[ "constructive algorithms", "implementation", "math" ]
null
null
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball. Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.). Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball?
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=2·109) — the number of movements made by the operator. The second line contains a single integer *x* (0<=≤<=*x*<=≤<=2) — the index of the shell where the ball was found after *n* movements.
Print one integer from 0 to 2 — the index of the shell where the ball was initially placed.
[ "4\n2\n", "1\n1\n" ]
[ "1\n", "0\n" ]
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements. 1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
500
[ { "input": "4\n2", "output": "1" }, { "input": "1\n1", "output": "0" }, { "input": "2\n2", "output": "0" }, { "input": "3\n1", "output": "1" }, { "input": "3\n2", "output": "0" }, { "input": "3\n0", "output": "2" }, { "input": "2000000000\n0", "output": "1" }, { "input": "2\n0", "output": "1" }, { "input": "2\n1", "output": "2" }, { "input": "4\n0", "output": "2" }, { "input": "4\n1", "output": "0" }, { "input": "5\n0", "output": "0" }, { "input": "5\n1", "output": "2" }, { "input": "5\n2", "output": "1" }, { "input": "6\n0", "output": "0" }, { "input": "6\n1", "output": "1" }, { "input": "6\n2", "output": "2" }, { "input": "7\n0", "output": "1" }, { "input": "7\n1", "output": "0" }, { "input": "7\n2", "output": "2" }, { "input": "100000\n0", "output": "2" }, { "input": "100000\n1", "output": "0" }, { "input": "100000\n2", "output": "1" }, { "input": "99999\n1", "output": "1" }, { "input": "99998\n1", "output": "2" }, { "input": "99997\n1", "output": "0" }, { "input": "99996\n1", "output": "1" }, { "input": "99995\n1", "output": "2" }, { "input": "1999999995\n0", "output": "2" }, { "input": "1999999995\n1", "output": "1" }, { "input": "1999999995\n2", "output": "0" }, { "input": "1999999996\n0", "output": "2" }, { "input": "1999999996\n1", "output": "0" }, { "input": "1999999996\n2", "output": "1" }, { "input": "1999999997\n0", "output": "0" }, { "input": "1999999997\n1", "output": "2" }, { "input": "1999999997\n2", "output": "1" }, { "input": "1999999998\n0", "output": "0" }, { "input": "1999999998\n1", "output": "1" }, { "input": "1999999998\n2", "output": "2" }, { "input": "1999999999\n0", "output": "1" }, { "input": "1999999999\n1", "output": "0" }, { "input": "1999999999\n2", "output": "2" }, { "input": "2000000000\n1", "output": "2" }, { "input": "2000000000\n2", "output": "0" }, { "input": "1234567890\n0", "output": "0" }, { "input": "1234567890\n1", "output": "1" }, { "input": "1234567890\n2", "output": "2" }, { "input": "123456789\n0", "output": "2" }, { "input": "123456789\n1", "output": "1" }, { "input": "123456789\n2", "output": "0" }, { "input": "123456790\n0", "output": "2" }, { "input": "12\n2", "output": "2" }, { "input": "32\n1", "output": "2" }, { "input": "20\n2", "output": "0" }, { "input": "10\n1", "output": "0" }, { "input": "1\n0", "output": "1" }, { "input": "76994383\n1", "output": "0" }, { "input": "25\n2", "output": "2" }, { "input": "1\n2", "output": "2" }, { "input": "12\n0", "output": "0" }, { "input": "150\n2", "output": "2" }, { "input": "15\n0", "output": "2" }, { "input": "21\n2", "output": "0" }, { "input": "18\n2", "output": "2" }, { "input": "8\n2", "output": "0" }, { "input": "10\n0", "output": "2" }, { "input": "16\n0", "output": "2" } ]
1,570,790,026
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
11
109
0
n=int(input()) x=int(input()) l=[0,1,2,2,1] l1=[1,0,0,1,2,2] l2=[2,2,1,0,0,1] if l[n%6]==x: print(0) elif l1[n%6]==x: print(1) else: print(2)
Title: Shell Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball. Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.). Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly *n* movements were made by the operator and the ball was under shell *x* at the end. Now he wonders, what was the initial position of the ball? Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=2·109) — the number of movements made by the operator. The second line contains a single integer *x* (0<=≤<=*x*<=≤<=2) — the index of the shell where the ball was found after *n* movements. Output Specification: Print one integer from 0 to 2 — the index of the shell where the ball was initially placed. Demo Input: ['4\n2\n', '1\n1\n'] Demo Output: ['1\n', '0\n'] Note: In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements. 1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. 1. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. 1. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. 1. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
```python n=int(input()) x=int(input()) l=[0,1,2,2,1] l1=[1,0,0,1,2,2] l2=[2,2,1,0,0,1] if l[n%6]==x: print(0) elif l1[n%6]==x: print(1) else: print(2) ```
-1
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,696,961,220
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
n = int(input()) if n >=0 and n<=100: for i in range(0,n): stri = str(input()) lst = list(stri) a = str(lst[0]) b = str(lst[-1]) lst.pop(0) lst.pop(-1) num = str(len(lst)) code_word = a + num + b print(code_word)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python n = int(input()) if n >=0 and n<=100: for i in range(0,n): stri = str(input()) lst = list(stri) a = str(lst[0]) b = str(lst[-1]) lst.pop(0) lst.pop(-1) num = str(len(lst)) code_word = a + num + b print(code_word) ```
0
44
A
Indian Summer
PROGRAMMING
900
[ "implementation" ]
A. Indian Summer
2
256
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
Output the single number — the number of Alyona's leaves.
[ "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n", "3\noak yellow\noak yellow\noak yellow\n" ]
[ "4\n", "1\n" ]
none
0
[ { "input": "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green", "output": "4" }, { "input": "3\noak yellow\noak yellow\noak yellow", "output": "1" }, { "input": "5\nxbnbkzn hp\nkaqkl vrgzbvqstu\nj aqidx\nhos gyul\nwefxmh tygpluae", "output": "5" }, { "input": "1\nqvwli hz", "output": "1" }, { "input": "4\nsrhk x\nsrhk x\nqfoe vnrjuab\nqfoe vnrjuab", "output": "2" }, { "input": "4\nsddqllmmpk syded\nfprsq fnenjnaz\nn hdej\nsddqllmmpk syded", "output": "3" }, { "input": "17\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw", "output": "1" }, { "input": "18\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nb d\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp", "output": "2" }, { "input": "13\nsvpzwtwn rykzfdce\nqweiyeck jkreouy\nhk nnli\ntwxrnbbdt vtuv\nxokqjtylly sz\nesdt dbfidjslq\ng ybqgomvw\nxcpfjmf zcqvz\nifajadhj invzueip\nvdemdnxifb hckwebmi\nsdpnhipam wvowzavh\nuqdlfskhgo vunbpghae\ne dtigwnb", "output": "13" }, { "input": "20\nm vkfh\nvptikamead mvx\nitu mf\nklruxckw aqega\nekqkd enjllwol\ncc uybfdh\nimrfdngvo u\ne uh\ntwt jsslcfuogk\nbljwqsag tuqbdn\nqcv q\nasx gzhvwwmajj\nqcv q\nekqkd enjllwol\nasx gzhvwwmajj\nks vv\nkzyfi cn\ncc uybfdh\nitu mf\ncjbjhtbyvk vatwfmux", "output": "15" }, { "input": "2\nab ab\na bab", "output": "2" } ]
1,651,940,174
2,147,483,647
Python 3
OK
TESTS
29
92
0
n=int(input()) s=1 m=[] for i in range(n): l=input() m.append(l) for i in range(1,len(m)): if(m[i] not in m[0:i]): s+=1 print(s)
Title: Indian Summer Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space. Output Specification: Output the single number — the number of Alyona's leaves. Demo Input: ['5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n', '3\noak yellow\noak yellow\noak yellow\n'] Demo Output: ['4\n', '1\n'] Note: none
```python n=int(input()) s=1 m=[] for i in range(n): l=input() m.append(l) for i in range(1,len(m)): if(m[i] not in m[0:i]): s+=1 print(s) ```
3.977
839
C
Journey
PROGRAMMING
1,500
[ "dfs and similar", "dp", "graphs", "probabilities", "trees" ]
null
null
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads. Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities. Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities. Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road. It is guaranteed that one can reach any city from any other by the roads.
Print a number — the expected length of their journey. The journey starts in the city 1. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
[ "4\n1 2\n1 3\n2 4\n", "5\n1 2\n1 3\n3 4\n2 5\n" ]
[ "1.500000000000000\n", "2.000000000000000\n" ]
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5. In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
1,500
[ { "input": "4\n1 2\n1 3\n2 4", "output": "1.500000000000000" }, { "input": "5\n1 2\n1 3\n3 4\n2 5", "output": "2.000000000000000" }, { "input": "70\n1 25\n57 1\n18 1\n65 1\n38 1\n1 41\n1 5\n1 69\n1 3\n31 1\n1 8\n1 9\n53 1\n70 1\n45 1\n1 24\n1 42\n1 30\n1 12\n1 37\n64 1\n1 28\n1 58\n1 22\n11 1\n1 4\n1 27\n1 16\n1 21\n54 1\n1 51\n1 43\n29 1\n56 1\n1 39\n32 1\n1 15\n1 17\n1 19\n1 40\n36 1\n48 1\n63 1\n1 7\n1 47\n1 13\n1 46\n60 1\n1 6\n23 1\n20 1\n1 52\n2 1\n26 1\n1 59\n1 66\n10 1\n1 62\n1 68\n1 55\n50 1\n33 1\n44 1\n1 34\n1 35\n1 61\n14 1\n67 1\n49 1", "output": "1.000000000000000" }, { "input": "10\n8 6\n9 10\n8 7\n1 4\n1 8\n9 5\n9 8\n2 5\n3 1", "output": "1.500000000000000" }, { "input": "1", "output": "0.000000000000000" } ]
1,630,028,722
2,147,483,647
Python 3
OK
TESTS
40
624
23,449,600
import math import heapq import itertools from sys import setrecursionlimit from collections import deque, defaultdict # ANALYSIS # # Let n be the number of cities. This analysis will be done assuming the # impelmentation was recursive, which makes the explanation easier. # # RUNETIME COMPLEXITY: O(n). We visit each of the n cities once. # For each city, we check each edge. There are n - 1 edges and each edge is # checked exactly twice for 2n - 2 checks. # # SPACE COMPLEXITY: O(n). We create a number of data structures that are # linear in size to n or the number of edges, which is n - 1. The stack we # create will not contain duplicate vertices and will grow to be at most size # n. # # CONSTRAINT JUSTIFICATION: Both runtime and space complexities are linear, # which cannot be improved asymptotically as at a minimum we must check each # city. Since the number of cities is low (<= 1e5), the constants in # runtime and space complexity are not an issue. # # Due to the very deep tree (<= 1e5), recursion was not possible. Manual # recursion using heap memory is sufficient as the tree isn't so deep that # it cannot be held in memory. def iteration(graph, seen, stack, stack_var, ret): start, parent = stack[-1] I, res = stack_var.pop() seen[start] = True if len(graph[start]) > 1: for i in range(I, len(graph[start])): adj = graph[start][i] if adj != parent: if not seen[adj]: stack.append((adj, start)) stack_var.append((i, res)) stack_var.append((0, 0)) return ret res += 1 + ret res /= len(graph[start]) - 1 stack.pop() return res def solve(graph, seen): stack = [(0, len(graph))] # start, parent stack_var = [(0, 0)] # i, res ret = 0 while stack: ret = iteration(graph, seen, stack, stack_var, ret) return ret if __name__ == "__main__": n = int(input()) graph = [[] for _ in range(n)] seen = [False] * n graph[0].append(n) for _ in range(n-1): u, v = map(lambda x: int(x) - 1, input().split()) graph[u].append(v) graph[v].append(u) res = solve(graph, seen) print(res)
Title: Journey Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads. Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities. Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value). Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities. Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road. It is guaranteed that one can reach any city from any other by the roads. Output Specification: Print a number — the expected length of their journey. The journey starts in the city 1. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if . Demo Input: ['4\n1 2\n1 3\n2 4\n', '5\n1 2\n1 3\n3 4\n2 5\n'] Demo Output: ['1.500000000000000\n', '2.000000000000000\n'] Note: In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5. In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
```python import math import heapq import itertools from sys import setrecursionlimit from collections import deque, defaultdict # ANALYSIS # # Let n be the number of cities. This analysis will be done assuming the # impelmentation was recursive, which makes the explanation easier. # # RUNETIME COMPLEXITY: O(n). We visit each of the n cities once. # For each city, we check each edge. There are n - 1 edges and each edge is # checked exactly twice for 2n - 2 checks. # # SPACE COMPLEXITY: O(n). We create a number of data structures that are # linear in size to n or the number of edges, which is n - 1. The stack we # create will not contain duplicate vertices and will grow to be at most size # n. # # CONSTRAINT JUSTIFICATION: Both runtime and space complexities are linear, # which cannot be improved asymptotically as at a minimum we must check each # city. Since the number of cities is low (<= 1e5), the constants in # runtime and space complexity are not an issue. # # Due to the very deep tree (<= 1e5), recursion was not possible. Manual # recursion using heap memory is sufficient as the tree isn't so deep that # it cannot be held in memory. def iteration(graph, seen, stack, stack_var, ret): start, parent = stack[-1] I, res = stack_var.pop() seen[start] = True if len(graph[start]) > 1: for i in range(I, len(graph[start])): adj = graph[start][i] if adj != parent: if not seen[adj]: stack.append((adj, start)) stack_var.append((i, res)) stack_var.append((0, 0)) return ret res += 1 + ret res /= len(graph[start]) - 1 stack.pop() return res def solve(graph, seen): stack = [(0, len(graph))] # start, parent stack_var = [(0, 0)] # i, res ret = 0 while stack: ret = iteration(graph, seen, stack, stack_var, ret) return ret if __name__ == "__main__": n = int(input()) graph = [[] for _ in range(n)] seen = [False] * n graph[0].append(n) for _ in range(n-1): u, v = map(lambda x: int(x) - 1, input().split()) graph[u].append(v) graph[v].append(u) res = solve(graph, seen) print(res) ```
3
1,010
B
Rocket
PROGRAMMING
1,800
[ "binary search", "interactive" ]
null
null
This is an interactive problem. Natasha is going to fly to Mars. Finally, Natasha sat in the rocket. She flies, flies... but gets bored. She wishes to arrive to Mars already! So she decides to find something to occupy herself. She couldn't think of anything better to do than to calculate the distance to the red planet. Let's define $x$ as the distance to Mars. Unfortunately, Natasha does not know $x$. But it is known that $1 \le x \le m$, where Natasha knows the number $m$. Besides, $x$ and $m$ are positive integers. Natasha can ask the rocket questions. Every question is an integer $y$ ($1 \le y \le m$). The correct answer to the question is $-1$, if $x&lt;y$, $0$, if $x=y$, and $1$, if $x&gt;y$. But the rocket is broken — it does not always answer correctly. Precisely: let the correct answer to the current question be equal to $t$, then, if the rocket answers this question correctly, then it will answer $t$, otherwise it will answer $-t$. In addition, the rocket has a sequence $p$ of length $n$. Each element of the sequence is either $0$ or $1$. The rocket processes this sequence in the cyclic order, that is $1$-st element, $2$-nd, $3$-rd, $\ldots$, $(n-1)$-th, $n$-th, $1$-st, $2$-nd, $3$-rd, $\ldots$, $(n-1)$-th, $n$-th, $\ldots$. If the current element is $1$, the rocket answers correctly, if $0$ — lies. Natasha doesn't know the sequence $p$, but she knows its length — $n$. You can ask the rocket no more than $60$ questions. Help Natasha find the distance to Mars. Assume, that the distance to Mars does not change while Natasha is asking questions. Your solution will not be accepted, if it does not receive an answer $0$ from the rocket (even if the distance to Mars is uniquely determined by the already received rocket's answers).
The first line contains two integers $m$ and $n$ ($1 \le m \le 10^9$, $1 \le n \le 30$) — the maximum distance to Mars and the number of elements in the sequence $p$.
none
[ "5 2\n1\n-1\n-1\n1\n0\n" ]
[ "1\n2\n4\n5\n3\n" ]
In the example, hacking would look like this: 5 2 3 1 0 This means that the current distance to Mars is equal to $3$, Natasha knows that it does not exceed $5$, and the rocket answers in order: correctly, incorrectly, correctly, incorrectly ... Really: on the first query ($1$) the correct answer is $1$, the rocket answered correctly: $1$; on the second query ($2$) the correct answer is $1$, the rocket answered incorrectly: $-1$; on the third query ($4$) the correct answer is $-1$, the rocket answered correctly: $-1$; on the fourth query ($5$) the correct answer is $-1$, the rocket answered incorrectly: $1$; on the fifth query ($3$) the correct and incorrect answer is $0$.
750
[ { "input": "5 2 3\n1 0", "output": "3 queries, x=3" }, { "input": "1 1 1\n1", "output": "1 queries, x=1" }, { "input": "3 2 3\n1 0", "output": "4 queries, x=3" }, { "input": "6 3 5\n1 1 1", "output": "5 queries, x=5" }, { "input": "10 4 3\n0 0 1 0", "output": "6 queries, x=3" }, { "input": "30 5 16\n0 1 1 1 0", "output": "6 queries, x=16" }, { "input": "60 6 21\n1 0 0 1 0 1", "output": "11 queries, x=21" }, { "input": "100 7 73\n0 0 0 1 0 1 1", "output": "14 queries, x=73" }, { "input": "1000000000 29 958572235\n1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0", "output": "58 queries, x=958572235" }, { "input": "738009704 30 116044407\n0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1", "output": "59 queries, x=116044407" }, { "input": "300 8 165\n1 1 1 0 0 1 1 0", "output": "16 queries, x=165" }, { "input": "600 9 150\n0 0 1 0 1 0 1 0 1", "output": "19 queries, x=150" }, { "input": "1000 10 140\n0 0 0 0 1 0 0 0 0 0", "output": "20 queries, x=140" }, { "input": "3000 11 1896\n1 0 1 1 0 0 0 0 1 1 1", "output": "21 queries, x=1896" }, { "input": "6000 12 4679\n1 0 1 1 1 1 1 0 0 0 0 1", "output": "23 queries, x=4679" }, { "input": "10000 13 4977\n1 0 1 1 0 0 0 1 0 0 1 1 0", "output": "26 queries, x=4977" }, { "input": "30000 14 60\n1 1 1 0 0 1 0 1 0 0 1 0 0 0", "output": "28 queries, x=60" }, { "input": "60000 15 58813\n0 1 1 0 1 1 0 0 0 1 1 1 1 0 1", "output": "27 queries, x=58813" }, { "input": "100000 16 79154\n1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1", "output": "32 queries, x=79154" }, { "input": "300000 17 11107\n1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0", "output": "34 queries, x=11107" }, { "input": "600000 18 146716\n0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1", "output": "37 queries, x=146716" }, { "input": "1000000 19 418016\n1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0", "output": "38 queries, x=418016" }, { "input": "3000000 20 642518\n1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1", "output": "41 queries, x=642518" }, { "input": "6000000 21 3516807\n0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0", "output": "43 queries, x=3516807" }, { "input": "10000000 22 8115129\n1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1", "output": "42 queries, x=8115129" }, { "input": "30000000 23 10362635\n0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0", "output": "48 queries, x=10362635" }, { "input": "60000000 24 52208533\n1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0", "output": "46 queries, x=52208533" }, { "input": "100000000 25 51744320\n0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1", "output": "50 queries, x=51744320" }, { "input": "300000000 26 264009490\n1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1", "output": "54 queries, x=264009490" }, { "input": "600000000 27 415720732\n1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0", "output": "56 queries, x=415720732" }, { "input": "1000000000 28 946835863\n0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0", "output": "58 queries, x=946835863" }, { "input": "1000000000 29 124919287\n0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0", "output": "59 queries, x=124919287" }, { "input": "1000000000 30 202669473\n1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0", "output": "58 queries, x=202669473" }, { "input": "1000000000 13 532121080\n1 1 1 0 1 1 0 0 0 0 1 0 1", "output": "42 queries, x=532121080" }, { "input": "1000000000 27 105669924\n0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1", "output": "57 queries, x=105669924" }, { "input": "1000000000 11 533994576\n0 0 1 0 1 1 1 1 0 1 0", "output": "38 queries, x=533994576" }, { "input": "1000000000 9 107543421\n1 0 0 1 1 1 1 1 1", "output": "39 queries, x=107543421" }, { "input": "1000000000 23 976059561\n1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1", "output": "53 queries, x=976059561" }, { "input": "1000000000 7 549608406\n1 1 1 0 1 1 1", "output": "36 queries, x=549608406" }, { "input": "1000000000 21 123157250\n0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1", "output": "49 queries, x=123157250" }, { "input": "1000000000 19 696706094\n0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0", "output": "47 queries, x=696706094" }, { "input": "1000000000 3 125030747\n0 0 0", "output": "33 queries, x=125030747" }, { "input": "1000000000 17 993546887\n1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1", "output": "46 queries, x=993546887" }, { "input": "1000000000 15 567095731\n1 1 1 0 0 1 1 1 0 1 0 0 1 0 0", "output": "45 queries, x=567095731" }, { "input": "1000000000 29 140644576\n1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0", "output": "58 queries, x=140644576" }, { "input": "1000000000 13 714193420\n0 1 0 0 0 1 0 0 0 0 1 1 1", "output": "43 queries, x=714193420" }, { "input": "1000000000 27 142518072\n0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0", "output": "52 queries, x=142518072" }, { "input": "1000000000 25 11034213\n0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0", "output": "54 queries, x=11034213" }, { "input": "1000000000 9 584583057\n1 1 1 0 0 1 0 0 0", "output": "35 queries, x=584583057" }, { "input": "1000000000 23 863164606\n1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1", "output": "53 queries, x=863164606" }, { "input": "1000000000 21 731680746\n1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1", "output": "51 queries, x=731680746" }, { "input": "1000000000 5 305229590\n0 0 1 1 0", "output": "35 queries, x=305229590" }, { "input": "1000000000 3 28521539\n0 0 1", "output": "31 queries, x=28521539" }, { "input": "1000000000 3 602070383\n0 1 1", "output": "32 queries, x=602070383" }, { "input": "1000000000 2 880651931\n1 1", "output": "30 queries, x=880651931" }, { "input": "1000000000 16 749168072\n1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0", "output": "46 queries, x=749168072" }, { "input": "1000000000 30 322716916\n1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0", "output": "58 queries, x=322716916" }, { "input": "1000000000 14 191233057\n0 0 1 0 0 1 1 1 1 0 0 0 1 1", "output": "43 queries, x=191233057" }, { "input": "1000000000 30 1\n1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0", "output": "1 queries, x=1" }, { "input": "1000000000 30 1\n1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1", "output": "1 queries, x=1" }, { "input": "1000000000 30 1\n1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1", "output": "1 queries, x=1" }, { "input": "1000000000 30 1\n1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1", "output": "1 queries, x=1" }, { "input": "1000000000 30 1\n1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0", "output": "1 queries, x=1" }, { "input": "1000000000 30 1000000000\n1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0", "output": "60 queries, x=1000000000" }, { "input": "1000000000 30 1000000000\n1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0", "output": "60 queries, x=1000000000" }, { "input": "1000000000 30 1000000000\n0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1", "output": "60 queries, x=1000000000" }, { "input": "1000000000 30 1000000000\n0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1", "output": "60 queries, x=1000000000" }, { "input": "1000000000 30 1000000000\n0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1", "output": "60 queries, x=1000000000" }, { "input": "1 30 1\n1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1", "output": "1 queries, x=1" }, { "input": "1 30 1\n1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0", "output": "1 queries, x=1" }, { "input": "1 30 1\n1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0", "output": "1 queries, x=1" }, { "input": "1 30 1\n1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0", "output": "1 queries, x=1" }, { "input": "1 30 1\n1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1", "output": "1 queries, x=1" }, { "input": "2 1 2\n1", "output": "2 queries, x=2" }, { "input": "1000000000 1 1000000000\n1", "output": "31 queries, x=1000000000" }, { "input": "10000 1 10000\n1", "output": "15 queries, x=10000" }, { "input": "1000000000 1 999999999\n1", "output": "30 queries, x=999999999" }, { "input": "100000 2 15\n1 0", "output": "19 queries, x=15" }, { "input": "200000 1 110000\n1", "output": "17 queries, x=110000" }, { "input": "123456789 1 42\n1", "output": "27 queries, x=42" }, { "input": "1000000000 1 9\n1", "output": "30 queries, x=9" }, { "input": "200000 2 100002\n1 0", "output": "19 queries, x=100002" }, { "input": "1000000000 3 234567890\n0 1 0", "output": "31 queries, x=234567890" }, { "input": "1000000000 5 321732193\n1 1 0 1 0", "output": "35 queries, x=321732193" }, { "input": "1000000000 1 804289384\n1", "output": "27 queries, x=804289384" }, { "input": "1000000000 2 999999998\n1 0", "output": "32 queries, x=999999998" }, { "input": "1000000000 5 384618761\n0 1 1 0 1", "output": "33 queries, x=384618761" }, { "input": "100000000 1 100\n0", "output": "28 queries, x=100" }, { "input": "1000000000 1 804289384\n0", "output": "27 queries, x=804289384" }, { "input": "100000000 1 100000000\n1", "output": "28 queries, x=100000000" }, { "input": "40 1 4\n0", "output": "6 queries, x=4" }, { "input": "1000000000 2 999999998\n0 1", "output": "32 queries, x=999999998" }, { "input": "1000000000 1 1000000000\n0", "output": "31 queries, x=1000000000" }, { "input": "1000000000 2 255555555\n1 0", "output": "31 queries, x=255555555" }, { "input": "1000000000 2 1000000000\n0 1", "output": "32 queries, x=1000000000" }, { "input": "1000000000 1 999999999\n0", "output": "30 queries, x=999999999" }, { "input": "1000000000 2 888888888\n0 1", "output": "31 queries, x=888888888" }, { "input": "1000000000 1 77000000\n1", "output": "31 queries, x=77000000" }, { "input": "1000000000 1 123456789\n1", "output": "27 queries, x=123456789" }, { "input": "10000 1 228\n0", "output": "14 queries, x=228" }, { "input": "1000000000 1 12345\n1", "output": "31 queries, x=12345" }, { "input": "1000000000 1 77000000\n0", "output": "31 queries, x=77000000" }, { "input": "1000000000 1 23333\n0", "output": "31 queries, x=23333" }, { "input": "1000000000 4 100\n0 1 0 1", "output": "34 queries, x=100" }, { "input": "100000000 1 200\n1", "output": "27 queries, x=200" }, { "input": "1000000000 3 5\n0 1 0", "output": "33 queries, x=5" }, { "input": "1000000000 12 2\n1 1 1 1 1 1 0 0 1 1 1 1", "output": "41 queries, x=2" }, { "input": "1000000000 1 5\n0", "output": "31 queries, x=5" }, { "input": "100000 2 99999\n0 0", "output": "18 queries, x=99999" }, { "input": "100000 2 2\n0 1", "output": "18 queries, x=2" }, { "input": "1000000 1 91923\n0", "output": "21 queries, x=91923" }, { "input": "1000000 2 1235\n0 1", "output": "22 queries, x=1235" }, { "input": "1000000000 1 5\n1", "output": "31 queries, x=5" }, { "input": "100000000 2 1234567\n0 1", "output": "28 queries, x=1234567" }, { "input": "1000000000 1 1\n1", "output": "1 queries, x=1" }, { "input": "1000000000 4 999999999\n1 0 0 1", "output": "33 queries, x=999999999" }, { "input": "1000000000 4 1000000000\n1 0 1 0", "output": "34 queries, x=1000000000" }, { "input": "1000000000 4 1\n1 0 1 0", "output": "1 queries, x=1" }, { "input": "1000000000 5 500\n1 1 0 0 1", "output": "34 queries, x=500" }, { "input": "1000 1 13\n1", "output": "11 queries, x=13" }, { "input": "999999999 2 123456789\n1 0", "output": "31 queries, x=123456789" }, { "input": "1000000000 5 1000000000\n1 1 1 1 1", "output": "35 queries, x=1000000000" }, { "input": "1000000000 3 123456789\n1 0 1", "output": "29 queries, x=123456789" }, { "input": "1000000000 1 123\n1", "output": "29 queries, x=123" }, { "input": "10 1 9\n1", "output": "4 queries, x=9" }, { "input": "1000000000 1 1\n0", "output": "1 queries, x=1" }, { "input": "100000000 2 12345678\n0 1", "output": "28 queries, x=12345678" }, { "input": "1000000000 30 1000000000\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "60 queries, x=1000000000" }, { "input": "805306369 30 805306369\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "60 queries, x=805306369" }, { "input": "1000000000 2 123\n0 1", "output": "30 queries, x=123" }, { "input": "1000000000 1 9\n0", "output": "30 queries, x=9" }, { "input": "100000 2 90000\n1 0", "output": "18 queries, x=90000" }, { "input": "1000000000 2 123456789\n1 0", "output": "28 queries, x=123456789" }, { "input": "1000000000 2 804289384\n1 0", "output": "28 queries, x=804289384" }, { "input": "1000000000 30 999999970\n1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1", "output": "60 queries, x=999999970" } ]
1,536,157,317
1,737
Python 3
OK
TESTS
135
124
307,200
from sys import stdout m, n = map(int, input().split(' ')) ts = [False] * n for i in range(n): print(1) stdout.flush() ans = int(input()) if ans == 0: exit(0) ts[i] = ans > 0 l = 1 r = m j = 0 while True: i = j % n m = (l + r) // 2 print(m) stdout.flush() ans = int(input()) if ans == 0: exit(0) if not ts[i]: ans = -ans if ans > 0: l = m + 1 else: r = m - 1 j += 1
Title: Rocket Time Limit: None seconds Memory Limit: None megabytes Problem Description: This is an interactive problem. Natasha is going to fly to Mars. Finally, Natasha sat in the rocket. She flies, flies... but gets bored. She wishes to arrive to Mars already! So she decides to find something to occupy herself. She couldn't think of anything better to do than to calculate the distance to the red planet. Let's define $x$ as the distance to Mars. Unfortunately, Natasha does not know $x$. But it is known that $1 \le x \le m$, where Natasha knows the number $m$. Besides, $x$ and $m$ are positive integers. Natasha can ask the rocket questions. Every question is an integer $y$ ($1 \le y \le m$). The correct answer to the question is $-1$, if $x&lt;y$, $0$, if $x=y$, and $1$, if $x&gt;y$. But the rocket is broken — it does not always answer correctly. Precisely: let the correct answer to the current question be equal to $t$, then, if the rocket answers this question correctly, then it will answer $t$, otherwise it will answer $-t$. In addition, the rocket has a sequence $p$ of length $n$. Each element of the sequence is either $0$ or $1$. The rocket processes this sequence in the cyclic order, that is $1$-st element, $2$-nd, $3$-rd, $\ldots$, $(n-1)$-th, $n$-th, $1$-st, $2$-nd, $3$-rd, $\ldots$, $(n-1)$-th, $n$-th, $\ldots$. If the current element is $1$, the rocket answers correctly, if $0$ — lies. Natasha doesn't know the sequence $p$, but she knows its length — $n$. You can ask the rocket no more than $60$ questions. Help Natasha find the distance to Mars. Assume, that the distance to Mars does not change while Natasha is asking questions. Your solution will not be accepted, if it does not receive an answer $0$ from the rocket (even if the distance to Mars is uniquely determined by the already received rocket's answers). Input Specification: The first line contains two integers $m$ and $n$ ($1 \le m \le 10^9$, $1 \le n \le 30$) — the maximum distance to Mars and the number of elements in the sequence $p$. Output Specification: none Demo Input: ['5 2\n1\n-1\n-1\n1\n0\n'] Demo Output: ['1\n2\n4\n5\n3\n'] Note: In the example, hacking would look like this: 5 2 3 1 0 This means that the current distance to Mars is equal to $3$, Natasha knows that it does not exceed $5$, and the rocket answers in order: correctly, incorrectly, correctly, incorrectly ... Really: on the first query ($1$) the correct answer is $1$, the rocket answered correctly: $1$; on the second query ($2$) the correct answer is $1$, the rocket answered incorrectly: $-1$; on the third query ($4$) the correct answer is $-1$, the rocket answered correctly: $-1$; on the fourth query ($5$) the correct answer is $-1$, the rocket answered incorrectly: $1$; on the fifth query ($3$) the correct and incorrect answer is $0$.
```python from sys import stdout m, n = map(int, input().split(' ')) ts = [False] * n for i in range(n): print(1) stdout.flush() ans = int(input()) if ans == 0: exit(0) ts[i] = ans > 0 l = 1 r = m j = 0 while True: i = j % n m = (l + r) // 2 print(m) stdout.flush() ans = int(input()) if ans == 0: exit(0) if not ts[i]: ans = -ans if ans > 0: l = m + 1 else: r = m - 1 j += 1 ```
3
334
A
Candy Bags
PROGRAMMING
1,000
[ "implementation" ]
null
null
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits.
[ "2\n" ]
[ "1 4\n2 3\n" ]
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
500
[ { "input": "2", "output": "1 4\n2 3" }, { "input": "4", "output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9" }, { "input": "6", "output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19" }, { "input": "8", "output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33" }, { "input": "10", "output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51" }, { "input": "100", "output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..." }, { "input": "62", "output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..." }, { "input": "66", "output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..." }, { "input": "18", "output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..." }, { "input": "68", "output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..." }, { "input": "86", "output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..." }, { "input": "96", "output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..." }, { "input": "12", "output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73" }, { "input": "88", "output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..." }, { "input": "28", "output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..." }, { "input": "80", "output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..." }, { "input": "48", "output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..." }, { "input": "54", "output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..." }, { "input": "58", "output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..." }, { "input": "64", "output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..." }, { "input": "44", "output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..." } ]
1,493,401,591
2,147,483,647
Python 3
OK
TESTS
21
124
5,529,600
n=int(input()) l,h=1,n**2 for i in range(n): s="" for j in range(n//2):s+=str(l)+' '+str(h)+' ';l+=1;h-=1 print(s)
Title: Candy Bags Time Limit: None seconds Memory Limit: None megabytes Problem Description: Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies. Help him give *n* bags of candies to each brother so that all brothers got the same number of candies. Input Specification: The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers. Output Specification: Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order. It is guaranteed that the solution exists at the given limits. Demo Input: ['2\n'] Demo Output: ['1 4\n2 3\n'] Note: The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
```python n=int(input()) l,h=1,n**2 for i in range(n): s="" for j in range(n//2):s+=str(l)+' '+str(h)+' ';l+=1;h-=1 print(s) ```
3
848
A
From Y to Y
PROGRAMMING
1,600
[ "constructive algorithms" ]
null
null
From beginning till end, this message has been waiting to be conveyed. For a given unordered multiset of *n* lowercase English letters ("multi" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation *n*<=-<=1 times: - Remove any two elements *s* and *t* from the set, and add their concatenation *s*<=+<=*t* to the set. The cost of such operation is defined to be , where *f*(*s*,<=*c*) denotes the number of times character *c* appears in string *s*. Given a non-negative integer *k*, construct any valid non-empty set of no more than 100<=000 letters, such that the minimum accumulative cost of the whole process is exactly *k*. It can be shown that a solution always exists.
The first and only line of input contains a non-negative integer *k* (0<=≤<=*k*<=≤<=100<=000) — the required minimum cost.
Output a non-empty string of no more than 100<=000 lowercase English letters — any multiset satisfying the requirements, concatenated to be a string. Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters.
[ "12\n", "3\n" ]
[ "abababab\n", "codeforces\n" ]
For the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows: - {"ab", "a", "b", "a", "b", "a", "b"}, with a cost of 0; - {"aba", "b", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "ab", "a", "b"}, with a cost of 0; - {"abab", "aba", "b"}, with a cost of 1; - {"abab", "abab"}, with a cost of 1; - {"abababab"}, with a cost of 8. The total cost is 12, and it can be proved to be the minimum cost of the process.
500
[ { "input": "12", "output": "abababab" }, { "input": "3", "output": "codeforces" }, { "input": "0", "output": "o" }, { "input": "2", "output": "aabb" }, { "input": "5", "output": "aaabbcc" }, { "input": "10", "output": "aaaaa" }, { "input": "233", "output": "ooououououououououooohhhhhhaaiiiiiibbjjjjjjcckkkkkkddlllllleemmmmmmffnnnnnnggzzzzzz" }, { "input": "418", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbcccc" }, { "input": "100000", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbcccccccccccc" }, { "input": "1", "output": "aa" }, { "input": "4", "output": "aaabb" }, { "input": "6", "output": "aaaa" }, { "input": "7", "output": "aaaabb" }, { "input": "8", "output": "aaaabbcc" }, { "input": "9", "output": "aaaabbb" }, { "input": "11", "output": "aaaaabb" }, { "input": "1317", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbcccc" }, { "input": "1926", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbccc" }, { "input": "14514", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb" }, { "input": "25252", "output": "niconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconiconicooooquququququququq" }, { "input": "99681", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "99998", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbccc..." }, { "input": "82944", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb..." }, { "input": "831", "output": "happybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayhappybirthdayqqquqqquqqqu" }, { "input": "39393", "output": "mikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumikumik..." } ]
1,576,016,298
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
109
0
# ========= /\ /| |====/| # | / \ | | / | # | /____\ | | / | # | / \ | | / | # ========= / \ ===== |/====| # code def main(): k = int(input()) s = "" z = "abcdefghijklmnopqrstuvwxyz" pointer = 0 while k > 0: n = 1 while (n * (n + 1))//2 <= k: n += 1 s += z[pointer] * n pointer += 1 k -= ((n - 1) * n) // 2 # print(k) print(s) return if __name__ == "__main__": main()
Title: From Y to Y Time Limit: None seconds Memory Limit: None megabytes Problem Description: From beginning till end, this message has been waiting to be conveyed. For a given unordered multiset of *n* lowercase English letters ("multi" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation *n*<=-<=1 times: - Remove any two elements *s* and *t* from the set, and add their concatenation *s*<=+<=*t* to the set. The cost of such operation is defined to be , where *f*(*s*,<=*c*) denotes the number of times character *c* appears in string *s*. Given a non-negative integer *k*, construct any valid non-empty set of no more than 100<=000 letters, such that the minimum accumulative cost of the whole process is exactly *k*. It can be shown that a solution always exists. Input Specification: The first and only line of input contains a non-negative integer *k* (0<=≤<=*k*<=≤<=100<=000) — the required minimum cost. Output Specification: Output a non-empty string of no more than 100<=000 lowercase English letters — any multiset satisfying the requirements, concatenated to be a string. Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters. Demo Input: ['12\n', '3\n'] Demo Output: ['abababab\n', 'codeforces\n'] Note: For the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows: - {"ab", "a", "b", "a", "b", "a", "b"}, with a cost of 0; - {"aba", "b", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "a", "b", "a", "b"}, with a cost of 1; - {"abab", "ab", "a", "b"}, with a cost of 0; - {"abab", "aba", "b"}, with a cost of 1; - {"abab", "abab"}, with a cost of 1; - {"abababab"}, with a cost of 8. The total cost is 12, and it can be proved to be the minimum cost of the process.
```python # ========= /\ /| |====/| # | / \ | | / | # | /____\ | | / | # | / \ | | / | # ========= / \ ===== |/====| # code def main(): k = int(input()) s = "" z = "abcdefghijklmnopqrstuvwxyz" pointer = 0 while k > 0: n = 1 while (n * (n + 1))//2 <= k: n += 1 s += z[pointer] * n pointer += 1 k -= ((n - 1) * n) // 2 # print(k) print(s) return if __name__ == "__main__": main() ```
0
797
D
Broken BST
PROGRAMMING
2,100
[ "data structures", "dfs and similar" ]
null
null
Let *T* be arbitrary binary tree — tree, every vertex of which has no more than two children. Given tree is rooted, so there exists only one vertex which doesn't have a parent — it's the root of a tree. Every vertex has an integer number written on it. Following algorithm is run on every value from the tree *T*: 1. Set pointer to the root of a tree. 1. Return success if the value in the current vertex is equal to the number you are looking for 1. Go to the left child of the vertex if the value in the current vertex is greater than the number you are looking for 1. Go to the right child of the vertex if the value in the current vertex is less than the number you are looking for 1. Return fail if you try to go to the vertex that doesn't exist Here is the pseudo-code of the described algorithm: The described algorithm works correctly if the tree is binary search tree (i.e. for each node the values of left subtree are less than the value in the node, the values of right subtree are greater than the value in the node). But it can return invalid result if tree is not a binary search tree. Since the given tree is not necessarily a binary search tree, not all numbers can be found this way. Your task is to calculate, how many times the search will fail being running on every value from the tree. If the tree has multiple vertices with the same values on them then you should run algorithm on every one of them separately.
First line contains integer number *n* (1<=≤<=*n*<=≤<=105) — number of vertices in the tree. Each of the next *n* lines contains 3 numbers *v*, *l*, *r* (0<=≤<=*v*<=≤<=109) — value on current vertex, index of the left child of the vertex and index of the right child of the vertex, respectively. If some child doesn't exist then number <=-<=1 is set instead. Note that different vertices of the tree may contain the same values.
Print number of times when search algorithm will fail.
[ "3\n15 -1 -1\n10 1 3\n5 -1 -1\n", "8\n6 2 3\n3 4 5\n12 6 7\n1 -1 8\n4 -1 -1\n5 -1 -1\n14 -1 -1\n2 -1 -1\n" ]
[ "2\n", "1\n" ]
In the example the root of the tree in vertex 2. Search of numbers 5 and 15 will return fail because on the first step algorithm will choose the subtree which doesn't contain numbers you are looking for.
0
[ { "input": "3\n15 -1 -1\n10 1 3\n5 -1 -1", "output": "2" }, { "input": "8\n6 2 3\n3 4 5\n12 6 7\n1 -1 8\n4 -1 -1\n5 -1 -1\n14 -1 -1\n2 -1 -1", "output": "1" }, { "input": "1\n493041212 -1 -1", "output": "0" }, { "input": "10\n921294733 5 9\n341281094 -1 -1\n35060484 10 -1\n363363160 -1 -1\n771156014 6 8\n140806462 -1 -1\n118732846 4 2\n603229555 -1 -1\n359289513 3 7\n423237010 -1 -1", "output": "7" }, { "input": "10\n911605217 -1 -1\n801852416 -1 -1\n140035920 -1 9\n981454947 10 2\n404988051 6 3\n307545107 8 7\n278188888 4 1\n523010786 -1 -1\n441817740 -1 -1\n789680429 -1 -1", "output": "7" }, { "input": "10\n921072710 6 8\n727122964 -1 -1\n248695736 2 -1\n947477665 -1 -1\n41229309 -1 -1\n422047611 3 9\n424558429 -1 4\n665046372 -1 5\n74510531 -1 -1\n630373520 7 1", "output": "7" }, { "input": "1\n815121916 -1 -1", "output": "0" }, { "input": "1\n901418150 -1 -1", "output": "0" }, { "input": "3\n2 -1 -1\n1 1 3\n2 -1 -1", "output": "0" }, { "input": "4\n20 2 3\n16 4 -1\n20 -1 -1\n20 -1 -1", "output": "0" }, { "input": "3\n2 2 3\n1 -1 -1\n1 -1 -1", "output": "0" }, { "input": "4\n7122 2 3\n87 4 -1\n7122 -1 -1\n7122 -1 -1", "output": "0" }, { "input": "4\n712222 2 3\n98887 4 -1\n712222 -1 -1\n712222 -1 -1", "output": "0" }, { "input": "3\n6 2 3\n5 -1 -1\n5 -1 -1", "output": "0" }, { "input": "4\n1 -1 2\n0 3 -1\n100 -1 4\n1 -1 -1", "output": "2" }, { "input": "4\n98 2 3\n95 4 -1\n98 -1 -1\n98 -1 -1", "output": "0" }, { "input": "3\n15 2 3\n1 -1 -1\n1 -1 -1", "output": "0" }, { "input": "4\n6 2 -1\n6 3 4\n6 -1 -1\n7 -1 -1", "output": "1" }, { "input": "3\n2 2 3\n3 -1 -1\n3 -1 -1", "output": "0" }, { "input": "4\n1 -1 2\n0 3 -1\n1 -1 4\n0 -1 -1", "output": "2" }, { "input": "4\n1 2 3\n2 -1 -1\n3 4 -1\n2 -1 -1", "output": "0" }, { "input": "1\n0 -1 -1", "output": "0" }, { "input": "3\n5 2 -1\n6 -1 3\n5 -1 -1", "output": "1" }, { "input": "10\n2 -1 -1\n1 -1 8\n2 4 9\n5 -1 2\n5 7 6\n1 -1 1\n4 -1 -1\n0 -1 -1\n8 5 10\n5 -1 -1", "output": "3" }, { "input": "8\n6 -1 -1\n0 5 -1\n4 6 7\n3 -1 -1\n4 3 1\n1 -1 -1\n2 8 4\n2 -1 -1", "output": "7" }, { "input": "4\n5 3 -1\n1 4 -1\n3 -1 2\n1 -1 -1", "output": "2" }, { "input": "3\n10 2 3\n5 -1 -1\n5 -1 -1", "output": "0" } ]
1,675,177,519
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
28
451
8,499,200
from math import inf n = int(input()) g = [[-1,-1] for _ in range(n+1)] w = [0] * (n+1) st = [False] * (n+1) for i in range(1,n+1): v, l, r = map(int, input().split()) w[i] = v g[i] = [l, r] if(l != -1): st[l] = True if(r != -1): st[r] = True root = -1 for i in range(1,n+1): if(not st[i]): root = i break ans = 0 def dfs(x: int, l_min: int, r_max: int) -> None: global ans if(w[x] > l_min or w[x] < r_max): ans += 1 if(g[x][0] != -1): dfs(g[x][0], min(w[x], l_min), r_max) if(g[x][1] != -1): dfs(g[x][1], l_min, max(w[x], r_max)) dfs(root, inf, 0) print(ans)
Title: Broken BST Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let *T* be arbitrary binary tree — tree, every vertex of which has no more than two children. Given tree is rooted, so there exists only one vertex which doesn't have a parent — it's the root of a tree. Every vertex has an integer number written on it. Following algorithm is run on every value from the tree *T*: 1. Set pointer to the root of a tree. 1. Return success if the value in the current vertex is equal to the number you are looking for 1. Go to the left child of the vertex if the value in the current vertex is greater than the number you are looking for 1. Go to the right child of the vertex if the value in the current vertex is less than the number you are looking for 1. Return fail if you try to go to the vertex that doesn't exist Here is the pseudo-code of the described algorithm: The described algorithm works correctly if the tree is binary search tree (i.e. for each node the values of left subtree are less than the value in the node, the values of right subtree are greater than the value in the node). But it can return invalid result if tree is not a binary search tree. Since the given tree is not necessarily a binary search tree, not all numbers can be found this way. Your task is to calculate, how many times the search will fail being running on every value from the tree. If the tree has multiple vertices with the same values on them then you should run algorithm on every one of them separately. Input Specification: First line contains integer number *n* (1<=≤<=*n*<=≤<=105) — number of vertices in the tree. Each of the next *n* lines contains 3 numbers *v*, *l*, *r* (0<=≤<=*v*<=≤<=109) — value on current vertex, index of the left child of the vertex and index of the right child of the vertex, respectively. If some child doesn't exist then number <=-<=1 is set instead. Note that different vertices of the tree may contain the same values. Output Specification: Print number of times when search algorithm will fail. Demo Input: ['3\n15 -1 -1\n10 1 3\n5 -1 -1\n', '8\n6 2 3\n3 4 5\n12 6 7\n1 -1 8\n4 -1 -1\n5 -1 -1\n14 -1 -1\n2 -1 -1\n'] Demo Output: ['2\n', '1\n'] Note: In the example the root of the tree in vertex 2. Search of numbers 5 and 15 will return fail because on the first step algorithm will choose the subtree which doesn't contain numbers you are looking for.
```python from math import inf n = int(input()) g = [[-1,-1] for _ in range(n+1)] w = [0] * (n+1) st = [False] * (n+1) for i in range(1,n+1): v, l, r = map(int, input().split()) w[i] = v g[i] = [l, r] if(l != -1): st[l] = True if(r != -1): st[r] = True root = -1 for i in range(1,n+1): if(not st[i]): root = i break ans = 0 def dfs(x: int, l_min: int, r_max: int) -> None: global ans if(w[x] > l_min or w[x] < r_max): ans += 1 if(g[x][0] != -1): dfs(g[x][0], min(w[x], l_min), r_max) if(g[x][1] != -1): dfs(g[x][1], l_min, max(w[x], r_max)) dfs(root, inf, 0) print(ans) ```
-1