contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
listlengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
707
|
C
|
Pythagorean Triples
|
PROGRAMMING
| 1,500
|
[
"math",
"number theory"
] | null | null |
Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.
For example, triples (3,<=4,<=5), (5,<=12,<=13) and (6,<=8,<=10) are Pythagorean triples.
Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.
Katya had no problems with completing this task. Will you do the same?
|
The only line of the input contains single integer *n* (1<=≤<=*n*<=≤<=109) — the length of some side of a right triangle.
|
Print two integers *m* and *k* (1<=≤<=*m*,<=*k*<=≤<=1018), such that *n*, *m* and *k* form a Pythagorean triple, in the only line.
In case if there is no any Pythagorean triple containing integer *n*, print <=-<=1 in the only line. If there are many answers, print any of them.
|
[
"3\n",
"6\n",
"1\n",
"17\n",
"67\n"
] |
[
"4 5",
"8 10",
"-1",
"144 145",
"2244 2245"
] |
Illustration for the first sample.
| 1,500
|
[
{
"input": "3",
"output": "4 5"
},
{
"input": "6",
"output": "8 10"
},
{
"input": "1",
"output": "-1"
},
{
"input": "17",
"output": "144 145"
},
{
"input": "67",
"output": "2244 2245"
},
{
"input": "10",
"output": "24 26"
},
{
"input": "14",
"output": "48 50"
},
{
"input": "22",
"output": "120 122"
},
{
"input": "23",
"output": "264 265"
},
{
"input": "246",
"output": "15128 15130"
},
{
"input": "902",
"output": "203400 203402"
},
{
"input": "1000000000",
"output": "1250000000 750000000"
},
{
"input": "1998",
"output": "998000 998002"
},
{
"input": "2222222",
"output": "1234567654320 1234567654322"
},
{
"input": "2222226",
"output": "1234572098768 1234572098770"
},
{
"input": "1111110",
"output": "308641358024 308641358026"
},
{
"input": "9999998",
"output": "24999990000000 24999990000002"
},
{
"input": "1024",
"output": "1280 768"
},
{
"input": "8388608",
"output": "10485760 6291456"
},
{
"input": "4",
"output": "5 3"
},
{
"input": "8",
"output": "10 6"
},
{
"input": "16",
"output": "20 12"
},
{
"input": "492",
"output": "615 369"
},
{
"input": "493824",
"output": "617280 370368"
},
{
"input": "493804",
"output": "617255 370353"
},
{
"input": "493800",
"output": "617250 370350"
},
{
"input": "2048",
"output": "2560 1536"
},
{
"input": "8388612",
"output": "10485765 6291459"
},
{
"input": "44",
"output": "55 33"
},
{
"input": "444",
"output": "555 333"
},
{
"input": "4444",
"output": "5555 3333"
},
{
"input": "44444",
"output": "55555 33333"
},
{
"input": "444444",
"output": "555555 333333"
},
{
"input": "4444444",
"output": "5555555 3333333"
},
{
"input": "100000000",
"output": "125000000 75000000"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "4 5"
},
{
"input": "5",
"output": "12 13"
},
{
"input": "7",
"output": "24 25"
},
{
"input": "9",
"output": "40 41"
},
{
"input": "11",
"output": "60 61"
},
{
"input": "13",
"output": "84 85"
},
{
"input": "15",
"output": "112 113"
},
{
"input": "19",
"output": "180 181"
},
{
"input": "111",
"output": "6160 6161"
},
{
"input": "113",
"output": "6384 6385"
},
{
"input": "115",
"output": "6612 6613"
},
{
"input": "117",
"output": "6844 6845"
},
{
"input": "119",
"output": "7080 7081"
},
{
"input": "111111",
"output": "6172827160 6172827161"
},
{
"input": "111113",
"output": "6173049384 6173049385"
},
{
"input": "111115",
"output": "6173271612 6173271613"
},
{
"input": "111117",
"output": "6173493844 6173493845"
},
{
"input": "111119",
"output": "6173716080 6173716081"
},
{
"input": "9999993",
"output": "49999930000024 49999930000025"
},
{
"input": "9999979",
"output": "49999790000220 49999790000221"
},
{
"input": "9999990",
"output": "24999950000024 24999950000026"
},
{
"input": "9999991",
"output": "49999910000040 49999910000041"
},
{
"input": "9999992",
"output": "12499990 7499994"
},
{
"input": "9999973",
"output": "49999730000364 49999730000365"
},
{
"input": "9999994",
"output": "24999970000008 24999970000010"
},
{
"input": "9999995",
"output": "49999950000012 49999950000013"
},
{
"input": "9999996",
"output": "12499995 7499997"
},
{
"input": "9999997",
"output": "49999970000004 49999970000005"
},
{
"input": "9999978",
"output": "24999890000120 24999890000122"
},
{
"input": "99999993",
"output": "4999999300000024 4999999300000025"
},
{
"input": "99999979",
"output": "4999997900000220 4999997900000221"
},
{
"input": "99999990",
"output": "2499999500000024 2499999500000026"
},
{
"input": "99999991",
"output": "4999999100000040 4999999100000041"
},
{
"input": "99999992",
"output": "124999990 74999994"
},
{
"input": "99999973",
"output": "4999997300000364 4999997300000365"
},
{
"input": "99999994",
"output": "2499999700000008 2499999700000010"
},
{
"input": "99999995",
"output": "4999999500000012 4999999500000013"
},
{
"input": "99999996",
"output": "124999995 74999997"
},
{
"input": "99999997",
"output": "4999999700000004 4999999700000005"
},
{
"input": "99999978",
"output": "2499998900000120 2499998900000122"
},
{
"input": "987654323",
"output": "487730530870294164 487730530870294165"
},
{
"input": "2",
"output": "-1"
},
{
"input": "4",
"output": "5 3"
},
{
"input": "8",
"output": "10 6"
},
{
"input": "64",
"output": "80 48"
},
{
"input": "999999999",
"output": "499999999000000000 499999999000000001"
},
{
"input": "16",
"output": "20 12"
},
{
"input": "999999937",
"output": "499999937000001984 499999937000001985"
},
{
"input": "999999998",
"output": "249999999000000000 249999999000000002"
},
{
"input": "433494437",
"output": "93958713454973484 93958713454973485"
},
{
"input": "484916147",
"output": "117571834810662804 117571834810662805"
},
{
"input": "999999929",
"output": "499999929000002520 499999929000002521"
},
{
"input": "982451653",
"output": "482605625241216204 482605625241216205"
},
{
"input": "2048",
"output": "2560 1536"
}
] | 1,659,032,302
| 2,147,483,647
|
PyPy 3-64
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
s = int(input())
if (s <= 2):
print(-1)
elif (s%2 == 0):
s = int(s/2)
print(s**2-1, s**2+1)
else:
else:
print(int((s**2-1)/2), int((s**2+1)/2))
|
Title: Pythagorean Triples
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.
For example, triples (3,<=4,<=5), (5,<=12,<=13) and (6,<=8,<=10) are Pythagorean triples.
Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.
Katya had no problems with completing this task. Will you do the same?
Input Specification:
The only line of the input contains single integer *n* (1<=≤<=*n*<=≤<=109) — the length of some side of a right triangle.
Output Specification:
Print two integers *m* and *k* (1<=≤<=*m*,<=*k*<=≤<=1018), such that *n*, *m* and *k* form a Pythagorean triple, in the only line.
In case if there is no any Pythagorean triple containing integer *n*, print <=-<=1 in the only line. If there are many answers, print any of them.
Demo Input:
['3\n', '6\n', '1\n', '17\n', '67\n']
Demo Output:
['4 5', '8 10', '-1', '144 145', '2244 2245']
Note:
Illustration for the first sample.
|
```python
s = int(input())
if (s <= 2):
print(-1)
elif (s%2 == 0):
s = int(s/2)
print(s**2-1, s**2+1)
else:
else:
print(int((s**2-1)/2), int((s**2+1)/2))
```
| -1
|
|
266
|
A
|
Stones on the Table
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
|
Print a single integer — the answer to the problem.
|
[
"3\nRRG\n",
"5\nRRRRR\n",
"4\nBRBG\n"
] |
[
"1\n",
"4\n",
"0\n"
] |
none
| 500
|
[
{
"input": "3\nRRG",
"output": "1"
},
{
"input": "5\nRRRRR",
"output": "4"
},
{
"input": "4\nBRBG",
"output": "0"
},
{
"input": "1\nB",
"output": "0"
},
{
"input": "2\nBG",
"output": "0"
},
{
"input": "3\nBGB",
"output": "0"
},
{
"input": "4\nRBBR",
"output": "1"
},
{
"input": "5\nRGGBG",
"output": "1"
},
{
"input": "10\nGGBRBRGGRB",
"output": "2"
},
{
"input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB",
"output": "18"
},
{
"input": "15\nBRRBRGGBBRRRRGR",
"output": "6"
},
{
"input": "20\nRRGBBRBRGRGBBGGRGRRR",
"output": "6"
},
{
"input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB",
"output": "6"
},
{
"input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB",
"output": "9"
},
{
"input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB",
"output": "14"
},
{
"input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG",
"output": "20"
},
{
"input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG",
"output": "11"
},
{
"input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG",
"output": "17"
},
{
"input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB",
"output": "16"
},
{
"input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG",
"output": "19"
},
{
"input": "10\nGRRBRBRBGR",
"output": "1"
},
{
"input": "10\nBRBGBGRRBR",
"output": "1"
},
{
"input": "20\nGBGBGGRRRRGRBBGRGRGR",
"output": "5"
},
{
"input": "20\nRRGGRBBGBBRBGRRBRRBG",
"output": "6"
},
{
"input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB",
"output": "8"
},
{
"input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB",
"output": "11"
},
{
"input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB",
"output": "9"
},
{
"input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG",
"output": "13"
},
{
"input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG",
"output": "13"
},
{
"input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB",
"output": "12"
},
{
"input": "2\nBB",
"output": "1"
},
{
"input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "49"
},
{
"input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "47"
},
{
"input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR",
"output": "43"
}
] | 1,698,424,528
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
num = int(input())
string = input()
x=0
for i in range(len(string)-1):
if string[i]==string[i+1]:
x+=1
else:pass
print(x)
|
Title: Stones on the Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n']
Demo Output:
['1\n', '4\n', '0\n']
Note:
none
|
```python
num = int(input())
string = input()
x=0
for i in range(len(string)-1):
if string[i]==string[i+1]:
x+=1
else:pass
print(x)
```
| 3
|
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,619,105,087
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 154
| 0
|
n = input()
n = n.replace("--","2").replace("-.", "1").replace(".", "0")
print(n)
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
n = input()
n = n.replace("--","2").replace("-.", "1").replace(".", "0")
print(n)
```
| 3.9615
|
401
|
C
|
Team
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"greedy",
"implementation"
] | null | null |
Now it's time of Olympiads. Vanya and Egor decided to make his own team to take part in a programming Olympiad. They've been best friends ever since primary school and hopefully, that can somehow help them in teamwork.
For each team Olympiad, Vanya takes his play cards with numbers. He takes only the cards containing numbers 1 and 0. The boys are very superstitious. They think that they can do well at the Olympiad if they begin with laying all the cards in a row so that:
- there wouldn't be a pair of any side-adjacent cards with zeroes in a row; - there wouldn't be a group of three consecutive cards containing numbers one.
Today Vanya brought *n* cards with zeroes and *m* cards with numbers one. The number of cards was so much that the friends do not know how to put all those cards in the described way. Help them find the required arrangement of the cards or else tell the guys that it is impossible to arrange cards in such a way.
|
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=106) — the number of cards containing number 0; *m* (1<=≤<=*m*<=≤<=106) — the number of cards containing number 1.
|
In a single line print the required sequence of zeroes and ones without any spaces. If such sequence is impossible to obtain, print -1.
|
[
"1 2\n",
"4 8\n",
"4 10\n",
"1 5\n"
] |
[
"101\n",
"110110110101\n",
"11011011011011\n",
"-1\n"
] |
none
| 1,500
|
[
{
"input": "1 2",
"output": "101"
},
{
"input": "4 8",
"output": "110110110101"
},
{
"input": "4 10",
"output": "11011011011011"
},
{
"input": "1 5",
"output": "-1"
},
{
"input": "3 4",
"output": "1010101"
},
{
"input": "3 10",
"output": "-1"
},
{
"input": "74 99",
"output": "11011011011011011011011011011011011011011011011011011011011011011011011010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101"
},
{
"input": "19 30",
"output": "1101101101101101101101101101101010101010101010101"
},
{
"input": "33 77",
"output": "-1"
},
{
"input": "3830 6966",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "1000000 1000000",
"output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..."
},
{
"input": "1027 2030",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "4610 4609",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "3342 3339",
"output": "-1"
},
{
"input": "7757 7755",
"output": "-1"
},
{
"input": "10 8",
"output": "-1"
},
{
"input": "4247 8495",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "7101 14204",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "9801 19605",
"output": "-1"
},
{
"input": "4025 6858",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "7129 13245",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "8826 12432",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "6322 9256",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "8097 14682",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "6196 6197",
"output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..."
},
{
"input": "1709 2902",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "455 512",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..."
},
{
"input": "1781 1272",
"output": "-1"
},
{
"input": "3383 5670",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "954 1788",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "9481 15554",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "9079 100096",
"output": "-1"
},
{
"input": "481533 676709",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "423472 564888",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "227774 373297",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "42346 51898",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "739107 1000000",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "455043 798612",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "801460 801459",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "303498 503791",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "518822 597833",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "32342 64687",
"output": "-1"
},
{
"input": "873192 873189",
"output": "-1"
},
{
"input": "384870 450227",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "201106 208474",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "775338 980888",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "263338 393171",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "241043 330384",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "307203 614408",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "379310 417986",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "661101 785111",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "284634 319008",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "500000 1000000",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "499999 1000000",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "3 1",
"output": "-1"
},
{
"input": "14124 242112",
"output": "-1"
},
{
"input": "2 1",
"output": "010"
},
{
"input": "2 3",
"output": "10101"
},
{
"input": "1 4",
"output": "11011"
},
{
"input": "2 6",
"output": "11011011"
},
{
"input": "2 5",
"output": "1101101"
},
{
"input": "2 4",
"output": "110101"
},
{
"input": "2 3",
"output": "10101"
},
{
"input": "2 2",
"output": "1010"
},
{
"input": "2 1",
"output": "010"
},
{
"input": "1 1",
"output": "10"
},
{
"input": "1 3",
"output": "1101"
},
{
"input": "3 2",
"output": "01010"
},
{
"input": "5 4",
"output": "010101010"
},
{
"input": "4 3",
"output": "0101010"
},
{
"input": "11 10",
"output": "010101010101010101010"
},
{
"input": "8 7",
"output": "010101010101010"
},
{
"input": "4 2",
"output": "-1"
},
{
"input": "6 5",
"output": "01010101010"
},
{
"input": "3 7",
"output": "1101101101"
},
{
"input": "5 1",
"output": "-1"
},
{
"input": "10 1",
"output": "-1"
},
{
"input": "4 9",
"output": "1101101101101"
},
{
"input": "6 4",
"output": "-1"
},
{
"input": "12 10",
"output": "-1"
},
{
"input": "4 100",
"output": "-1"
}
] | 1,635,796,438
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 4
| 171
| 36,556,800
|
import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time, functools,copy
inf = float('inf')
mod = 10**9+7
def LI(): return [int(x) for x in sys.stdin.readline().split()]
def LF(): return [float(x) for x in sys.stdin.readline().split()]
def I(): return int(sys.stdin.readline())
def F(): return float(sys.stdin.readline())
def S(): return input()
def LS(): return input().split()
def endl(): return print('\n')
def lcm(a,b): return (a*b) // fractions.gcd(a,b)
def grayCode (n): return n ^ (n >> 1);
sys.setrecursionlimit(20000) # adjust numbers
graph = collections.defaultdict(list)
grid = []
visited = set()
ways = ["D","U","R","L"]
dx = [1,-1,0,0]
dy = [0,0,1,-1]
def initGraph(m):
for _ in range(m):
u,v = LI()
graph[u-1].append(v-1)
graph[v-1].append(u-1)
return graph
def initGraphW(m):
for _ in range(m):
a,b,c = LI()
graph[a-1].append((b-1,c))
graph[b-1].append((a-1,c))
def initGrid(h,w):
for i in range(h):
s = S()
grid.append(list(s))
return grid
def soe(limit):
a = [True] * limit # Initialize the primality list
a[0] = a[1] = False
for (i, isprime) in enumerate(a):
if isprime:
yield i
for n in range(i*i, limit, i): # Mark factors non-prime
a[n] = False
return a
################### Main (Author - 9th) ##################
zero,one = LI()
if zero > one or one-zero*2 >= 3:
print(-1)
else:
ans = ""
while one:
if zero > 0:
ans += "110"
one -=2
zero -= 1
else:
ans += "1"*one
one = 0
print(ans)
|
Title: Team
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Now it's time of Olympiads. Vanya and Egor decided to make his own team to take part in a programming Olympiad. They've been best friends ever since primary school and hopefully, that can somehow help them in teamwork.
For each team Olympiad, Vanya takes his play cards with numbers. He takes only the cards containing numbers 1 and 0. The boys are very superstitious. They think that they can do well at the Olympiad if they begin with laying all the cards in a row so that:
- there wouldn't be a pair of any side-adjacent cards with zeroes in a row; - there wouldn't be a group of three consecutive cards containing numbers one.
Today Vanya brought *n* cards with zeroes and *m* cards with numbers one. The number of cards was so much that the friends do not know how to put all those cards in the described way. Help them find the required arrangement of the cards or else tell the guys that it is impossible to arrange cards in such a way.
Input Specification:
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=106) — the number of cards containing number 0; *m* (1<=≤<=*m*<=≤<=106) — the number of cards containing number 1.
Output Specification:
In a single line print the required sequence of zeroes and ones without any spaces. If such sequence is impossible to obtain, print -1.
Demo Input:
['1 2\n', '4 8\n', '4 10\n', '1 5\n']
Demo Output:
['101\n', '110110110101\n', '11011011011011\n', '-1\n']
Note:
none
|
```python
import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time, functools,copy
inf = float('inf')
mod = 10**9+7
def LI(): return [int(x) for x in sys.stdin.readline().split()]
def LF(): return [float(x) for x in sys.stdin.readline().split()]
def I(): return int(sys.stdin.readline())
def F(): return float(sys.stdin.readline())
def S(): return input()
def LS(): return input().split()
def endl(): return print('\n')
def lcm(a,b): return (a*b) // fractions.gcd(a,b)
def grayCode (n): return n ^ (n >> 1);
sys.setrecursionlimit(20000) # adjust numbers
graph = collections.defaultdict(list)
grid = []
visited = set()
ways = ["D","U","R","L"]
dx = [1,-1,0,0]
dy = [0,0,1,-1]
def initGraph(m):
for _ in range(m):
u,v = LI()
graph[u-1].append(v-1)
graph[v-1].append(u-1)
return graph
def initGraphW(m):
for _ in range(m):
a,b,c = LI()
graph[a-1].append((b-1,c))
graph[b-1].append((a-1,c))
def initGrid(h,w):
for i in range(h):
s = S()
grid.append(list(s))
return grid
def soe(limit):
a = [True] * limit # Initialize the primality list
a[0] = a[1] = False
for (i, isprime) in enumerate(a):
if isprime:
yield i
for n in range(i*i, limit, i): # Mark factors non-prime
a[n] = False
return a
################### Main (Author - 9th) ##################
zero,one = LI()
if zero > one or one-zero*2 >= 3:
print(-1)
else:
ans = ""
while one:
if zero > 0:
ans += "110"
one -=2
zero -= 1
else:
ans += "1"*one
one = 0
print(ans)
```
| 0
|
|
299
|
A
|
Ksusha and Array
|
PROGRAMMING
| 1,000
|
[
"brute force",
"number theory",
"sortings"
] | null | null |
Ksusha is a beginner coder. Today she starts studying arrays. She has array *a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* positive integers.
Her university teacher gave her a task. Find such number in the array, that all array elements are divisible by it. Help her and find the number!
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105), showing how many numbers the array has. The next line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the array elements.
|
Print a single integer — the number from the array, such that all array elements are divisible by it. If such number doesn't exist, print -1.
If there are multiple answers, you are allowed to print any of them.
|
[
"3\n2 2 4\n",
"5\n2 1 3 1 6\n",
"3\n2 3 5\n"
] |
[
"2\n",
"1\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "3\n2 2 4",
"output": "2"
},
{
"input": "5\n2 1 3 1 6",
"output": "1"
},
{
"input": "3\n2 3 5",
"output": "-1"
},
{
"input": "1\n331358794",
"output": "331358794"
},
{
"input": "5\n506904227 214303304 136194869 838256937 183952885",
"output": "-1"
},
{
"input": "2\n500000000 1000000000",
"output": "500000000"
},
{
"input": "2\n4 6",
"output": "-1"
},
{
"input": "5\n10 8 6 4 2",
"output": "2"
},
{
"input": "2\n6 10",
"output": "-1"
},
{
"input": "1\n1000000000",
"output": "1000000000"
},
{
"input": "2\n6 8",
"output": "-1"
},
{
"input": "5\n2 2 2 2 1000000000",
"output": "2"
},
{
"input": "2\n6 4",
"output": "-1"
}
] | 1,614,307,554
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 32
| 404
| 10,854,400
|
import math
n=int(input())
l=list(map(int,input().split()))
gc=l[0]
for i in range(1,n):
gc=math.gcd(gc,l[i])
print(gc if gc in l else "-1")
|
Title: Ksusha and Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ksusha is a beginner coder. Today she starts studying arrays. She has array *a*1,<=*a*2,<=...,<=*a**n*, consisting of *n* positive integers.
Her university teacher gave her a task. Find such number in the array, that all array elements are divisible by it. Help her and find the number!
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105), showing how many numbers the array has. The next line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the array elements.
Output Specification:
Print a single integer — the number from the array, such that all array elements are divisible by it. If such number doesn't exist, print -1.
If there are multiple answers, you are allowed to print any of them.
Demo Input:
['3\n2 2 4\n', '5\n2 1 3 1 6\n', '3\n2 3 5\n']
Demo Output:
['2\n', '1\n', '-1\n']
Note:
none
|
```python
import math
n=int(input())
l=list(map(int,input().split()))
gc=l[0]
for i in range(1,n):
gc=math.gcd(gc,l[i])
print(gc if gc in l else "-1")
```
| 3
|
|
570
|
A
|
Elections
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
|
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
|
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
|
[
"3 3\n1 2 3\n2 3 1\n1 2 1\n",
"3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n"
] |
[
"2",
"1"
] |
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
| 500
|
[
{
"input": "3 3\n1 2 3\n2 3 1\n1 2 1",
"output": "2"
},
{
"input": "3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7",
"output": "1"
},
{
"input": "1 3\n5\n3\n2",
"output": "1"
},
{
"input": "3 1\n1 2 3",
"output": "3"
},
{
"input": "3 1\n100 100 100",
"output": "1"
},
{
"input": "2 2\n1 2\n2 1",
"output": "1"
},
{
"input": "2 2\n2 1\n2 1",
"output": "1"
},
{
"input": "2 2\n1 2\n1 2",
"output": "2"
},
{
"input": "3 3\n0 0 0\n1 1 1\n2 2 2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "1"
},
{
"input": "5 5\n1 2 3 4 5\n2 3 4 5 6\n3 4 5 6 7\n4 5 6 7 8\n5 6 7 8 9",
"output": "5"
},
{
"input": "4 4\n1 3 1 3\n3 1 3 1\n2 0 0 2\n0 1 1 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 3\n3 1 2 1\n1 0 0 2\n0 1 10 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 300\n3 1 2 1\n5 0 0 2\n0 1 10 100",
"output": "1"
},
{
"input": "5 5\n15 45 15 300 10\n53 15 25 51 10\n5 50 50 2 10\n1000 1 10 100 10\n10 10 10 10 10",
"output": "1"
},
{
"input": "1 100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "1"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "1 100\n859\n441\n272\n47\n355\n345\n612\n569\n545\n599\n410\n31\n720\n303\n58\n537\n561\n730\n288\n275\n446\n955\n195\n282\n153\n455\n996\n121\n267\n702\n769\n560\n353\n89\n990\n282\n801\n335\n573\n258\n722\n768\n324\n41\n249\n125\n557\n303\n664\n945\n156\n884\n985\n816\n433\n65\n976\n963\n85\n647\n46\n877\n665\n523\n714\n182\n377\n549\n994\n385\n184\n724\n447\n99\n766\n353\n494\n747\n324\n436\n915\n472\n879\n582\n928\n84\n627\n156\n972\n651\n159\n372\n70\n903\n590\n480\n184\n540\n270\n892",
"output": "1"
},
{
"input": "100 1\n439 158 619 538 187 153 973 781 610 475 94 947 449 531 220 51 788 118 189 501 54 434 465 902 280 635 688 214 737 327 682 690 683 519 261 923 254 388 529 659 662 276 376 735 976 664 521 285 42 147 187 259 407 977 879 465 522 17 550 701 114 921 577 265 668 812 232 267 135 371 586 201 608 373 771 358 101 412 195 582 199 758 507 882 16 484 11 712 916 699 783 618 405 124 904 257 606 610 230 718",
"output": "54"
},
{
"input": "1 99\n511\n642\n251\n30\n494\n128\n189\n324\n884\n656\n120\n616\n959\n328\n411\n933\n895\n350\n1\n838\n996\n761\n619\n131\n824\n751\n707\n688\n915\n115\n244\n476\n293\n986\n29\n787\n607\n259\n756\n864\n394\n465\n303\n387\n521\n582\n485\n355\n299\n997\n683\n472\n424\n948\n339\n383\n285\n957\n591\n203\n866\n79\n835\n980\n344\n493\n361\n159\n160\n947\n46\n362\n63\n553\n793\n754\n429\n494\n523\n227\n805\n313\n409\n243\n927\n350\n479\n971\n825\n460\n544\n235\n660\n327\n216\n729\n147\n671\n738",
"output": "1"
},
{
"input": "99 1\n50 287 266 159 551 198 689 418 809 43 691 367 160 664 86 805 461 55 127 950 576 351 721 493 972 560 934 885 492 92 321 759 767 989 883 7 127 413 404 604 80 645 666 874 371 718 893 158 722 198 563 293 134 255 742 913 252 378 859 721 502 251 839 284 133 209 962 514 773 124 205 903 785 859 911 93 861 786 747 213 690 69 942 697 211 203 284 961 351 137 962 952 408 249 238 850 944 40 346",
"output": "34"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "100"
},
{
"input": "1 1\n0",
"output": "1"
},
{
"input": "2 1\n0 0",
"output": "1"
},
{
"input": "2 2\n0 0\n0 0",
"output": "1"
},
{
"input": "2 2\n1 2\n0 0",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 3\n0 0\n0 0\n0 1",
"output": "1"
},
{
"input": "3 2\n1 1 3\n0 0 0",
"output": "1"
},
{
"input": "3 4\n1 10 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 4\n2 1\n1 2\n0 0\n1 2",
"output": "1"
},
{
"input": "2 2\n0 1\n0 1",
"output": "2"
},
{
"input": "2 3\n1 2\n0 0\n2 1",
"output": "1"
},
{
"input": "2 2\n0 0\n4 5",
"output": "1"
},
{
"input": "3 2\n10 15 20\n0 0 0",
"output": "1"
},
{
"input": "3 4\n0 0 0\n0 0 0\n0 0 0\n1 2 3",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 1",
"output": "1"
},
{
"input": "3 3\n0 0 0\n1 2 3\n1 3 2",
"output": "1"
},
{
"input": "3 1\n0 0 0",
"output": "1"
},
{
"input": "3 3\n0 0 1\n0 0 0\n0 0 0",
"output": "1"
}
] | 1,591,355,178
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 15
| 109
| 307,200
|
n,m=map(int,input().split())
dic={}
for i in range(m):
ac=list(map(int,input().split()))
ind=ac.index(max(ac))
dic[ind]=dic.get(ind,0)+1
val=-1; k=10e9+1
for key,value in dic.items():
if value>=val and key<k:
k=key
val=value
print(k+1)
|
Title: Elections
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
Input Specification:
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
Output Specification:
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
Demo Input:
['3 3\n1 2 3\n2 3 1\n1 2 1\n', '3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n']
Demo Output:
['2', '1']
Note:
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
|
```python
n,m=map(int,input().split())
dic={}
for i in range(m):
ac=list(map(int,input().split()))
ind=ac.index(max(ac))
dic[ind]=dic.get(ind,0)+1
val=-1; k=10e9+1
for key,value in dic.items():
if value>=val and key<k:
k=key
val=value
print(k+1)
```
| 0
|
|
285
|
A
|
Slightly Decreasing Permutations
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
The decreasing coefficient of permutation *p*1,<=*p*2,<=...,<=*p**n* is the number of such *i* (1<=≤<=*i*<=<<=*n*), that *p**i*<=><=*p**i*<=+<=1.
You have numbers *n* and *k*. Your task is to print the permutation of length *n* with decreasing coefficient *k*.
|
The single line contains two space-separated integers: *n*,<=*k* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*k*<=<<=*n*) — the permutation length and the decreasing coefficient.
|
In a single line print *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* — the permutation of length *n* with decreasing coefficient *k*.
If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.
|
[
"5 2\n",
"3 0\n",
"3 2\n"
] |
[
"1 5 2 4 3\n",
"1 2 3\n",
"3 2 1\n"
] |
none
| 500
|
[
{
"input": "5 2",
"output": "1 5 2 4 3"
},
{
"input": "3 0",
"output": "1 2 3"
},
{
"input": "3 2",
"output": "3 2 1"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "2 0",
"output": "1 2"
},
{
"input": "2 1",
"output": "2 1"
},
{
"input": "10 4",
"output": "10 9 8 7 1 2 3 4 5 6"
},
{
"input": "56893 5084",
"output": "56893 56892 56891 56890 56889 56888 56887 56886 56885 56884 56883 56882 56881 56880 56879 56878 56877 56876 56875 56874 56873 56872 56871 56870 56869 56868 56867 56866 56865 56864 56863 56862 56861 56860 56859 56858 56857 56856 56855 56854 56853 56852 56851 56850 56849 56848 56847 56846 56845 56844 56843 56842 56841 56840 56839 56838 56837 56836 56835 56834 56833 56832 56831 56830 56829 56828 56827 56826 56825 56824 56823 56822 56821 56820 56819 56818 56817 56816 56815 56814 56813 56812 56811 56810 56809 5..."
},
{
"input": "6 3",
"output": "6 5 4 1 2 3"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "310 186",
"output": "310 309 308 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183..."
},
{
"input": "726 450",
"output": "726 725 724 723 722 721 720 719 718 717 716 715 714 713 712 711 710 709 708 707 706 705 704 703 702 701 700 699 698 697 696 695 694 693 692 691 690 689 688 687 686 685 684 683 682 681 680 679 678 677 676 675 674 673 672 671 670 669 668 667 666 665 664 663 662 661 660 659 658 657 656 655 654 653 652 651 650 649 648 647 646 645 644 643 642 641 640 639 638 637 636 635 634 633 632 631 630 629 628 627 626 625 624 623 622 621 620 619 618 617 616 615 614 613 612 611 610 609 608 607 606 605 604 603 602 601 600 599..."
},
{
"input": "438 418",
"output": "438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402 401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 380 379 378 377 376 375 374 373 372 371 370 369 368 367 366 365 364 363 362 361 360 359 358 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 333 332 331 330 329 328 327 326 325 324 323 322 321 320 319 318 317 316 315 314 313 312 311..."
},
{
"input": "854 829",
"output": "854 853 852 851 850 849 848 847 846 845 844 843 842 841 840 839 838 837 836 835 834 833 832 831 830 829 828 827 826 825 824 823 822 821 820 819 818 817 816 815 814 813 812 811 810 809 808 807 806 805 804 803 802 801 800 799 798 797 796 795 794 793 792 791 790 789 788 787 786 785 784 783 782 781 780 779 778 777 776 775 774 773 772 771 770 769 768 767 766 765 764 763 762 761 760 759 758 757 756 755 754 753 752 751 750 749 748 747 746 745 744 743 742 741 740 739 738 737 736 735 734 733 732 731 730 729 728 727..."
},
{
"input": "214 167",
"output": "214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 ..."
},
{
"input": "85705 56268",
"output": "85705 85704 85703 85702 85701 85700 85699 85698 85697 85696 85695 85694 85693 85692 85691 85690 85689 85688 85687 85686 85685 85684 85683 85682 85681 85680 85679 85678 85677 85676 85675 85674 85673 85672 85671 85670 85669 85668 85667 85666 85665 85664 85663 85662 85661 85660 85659 85658 85657 85656 85655 85654 85653 85652 85651 85650 85649 85648 85647 85646 85645 85644 85643 85642 85641 85640 85639 85638 85637 85636 85635 85634 85633 85632 85631 85630 85629 85628 85627 85626 85625 85624 85623 85622 85621 8..."
},
{
"input": "11417 4583",
"output": "11417 11416 11415 11414 11413 11412 11411 11410 11409 11408 11407 11406 11405 11404 11403 11402 11401 11400 11399 11398 11397 11396 11395 11394 11393 11392 11391 11390 11389 11388 11387 11386 11385 11384 11383 11382 11381 11380 11379 11378 11377 11376 11375 11374 11373 11372 11371 11370 11369 11368 11367 11366 11365 11364 11363 11362 11361 11360 11359 11358 11357 11356 11355 11354 11353 11352 11351 11350 11349 11348 11347 11346 11345 11344 11343 11342 11341 11340 11339 11338 11337 11336 11335 11334 11333 1..."
},
{
"input": "53481 20593",
"output": "53481 53480 53479 53478 53477 53476 53475 53474 53473 53472 53471 53470 53469 53468 53467 53466 53465 53464 53463 53462 53461 53460 53459 53458 53457 53456 53455 53454 53453 53452 53451 53450 53449 53448 53447 53446 53445 53444 53443 53442 53441 53440 53439 53438 53437 53436 53435 53434 53433 53432 53431 53430 53429 53428 53427 53426 53425 53424 53423 53422 53421 53420 53419 53418 53417 53416 53415 53414 53413 53412 53411 53410 53409 53408 53407 53406 53405 53404 53403 53402 53401 53400 53399 53398 53397 5..."
},
{
"input": "79193 77281",
"output": "79193 79192 79191 79190 79189 79188 79187 79186 79185 79184 79183 79182 79181 79180 79179 79178 79177 79176 79175 79174 79173 79172 79171 79170 79169 79168 79167 79166 79165 79164 79163 79162 79161 79160 79159 79158 79157 79156 79155 79154 79153 79152 79151 79150 79149 79148 79147 79146 79145 79144 79143 79142 79141 79140 79139 79138 79137 79136 79135 79134 79133 79132 79131 79130 79129 79128 79127 79126 79125 79124 79123 79122 79121 79120 79119 79118 79117 79116 79115 79114 79113 79112 79111 79110 79109 7..."
},
{
"input": "42607 42144",
"output": "42607 42606 42605 42604 42603 42602 42601 42600 42599 42598 42597 42596 42595 42594 42593 42592 42591 42590 42589 42588 42587 42586 42585 42584 42583 42582 42581 42580 42579 42578 42577 42576 42575 42574 42573 42572 42571 42570 42569 42568 42567 42566 42565 42564 42563 42562 42561 42560 42559 42558 42557 42556 42555 42554 42553 42552 42551 42550 42549 42548 42547 42546 42545 42544 42543 42542 42541 42540 42539 42538 42537 42536 42535 42534 42533 42532 42531 42530 42529 42528 42527 42526 42525 42524 42523 4..."
},
{
"input": "100000 0",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "100000 99999",
"output": "100000 99999 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 ..."
},
{
"input": "100000 53860",
"output": "100000 99999 99998 99997 99996 99995 99994 99993 99992 99991 99990 99989 99988 99987 99986 99985 99984 99983 99982 99981 99980 99979 99978 99977 99976 99975 99974 99973 99972 99971 99970 99969 99968 99967 99966 99965 99964 99963 99962 99961 99960 99959 99958 99957 99956 99955 99954 99953 99952 99951 99950 99949 99948 99947 99946 99945 99944 99943 99942 99941 99940 99939 99938 99937 99936 99935 99934 99933 99932 99931 99930 99929 99928 99927 99926 99925 99924 99923 99922 99921 99920 99919 99918 99917 99916 ..."
},
{
"input": "4 0",
"output": "1 2 3 4"
},
{
"input": "4 1",
"output": "4 1 2 3"
},
{
"input": "4 2",
"output": "4 3 1 2"
},
{
"input": "4 3",
"output": "4 3 2 1"
},
{
"input": "3 1",
"output": "3 1 2"
}
] | 1,695,305,771
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 30
| 0
|
n,k=map(int,input().split())
lastindex=n
arr=[]
if k!=0:
while k>=0:
arr.append(lastindex)
lastindex-=1
k-=1
for i in range(1,lastindex+1):
arr.append(i)
print(*arr)
|
Title: Slightly Decreasing Permutations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Permutation *p* is an ordered set of integers *p*1,<=<=*p*2,<=<=...,<=<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. We'll denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size or the length of permutation *p*1,<=<=*p*2,<=<=...,<=<=*p**n*.
The decreasing coefficient of permutation *p*1,<=*p*2,<=...,<=*p**n* is the number of such *i* (1<=≤<=*i*<=<<=*n*), that *p**i*<=><=*p**i*<=+<=1.
You have numbers *n* and *k*. Your task is to print the permutation of length *n* with decreasing coefficient *k*.
Input Specification:
The single line contains two space-separated integers: *n*,<=*k* (1<=≤<=*n*<=≤<=105,<=0<=≤<=*k*<=<<=*n*) — the permutation length and the decreasing coefficient.
Output Specification:
In a single line print *n* space-separated integers: *p*1,<=*p*2,<=...,<=*p**n* — the permutation of length *n* with decreasing coefficient *k*.
If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.
Demo Input:
['5 2\n', '3 0\n', '3 2\n']
Demo Output:
['1 5 2 4 3\n', '1 2 3\n', '3 2 1\n']
Note:
none
|
```python
n,k=map(int,input().split())
lastindex=n
arr=[]
if k!=0:
while k>=0:
arr.append(lastindex)
lastindex-=1
k-=1
for i in range(1,lastindex+1):
arr.append(i)
print(*arr)
```
| 0
|
|
1,010
|
A
|
Fly
|
PROGRAMMING
| 1,500
|
[
"binary search",
"math"
] | null | null |
Natasha is going to fly on a rocket to Mars and return to Earth. Also, on the way to Mars, she will land on $n - 2$ intermediate planets. Formally: we number all the planets from $1$ to $n$. $1$ is Earth, $n$ is Mars. Natasha will make exactly $n$ flights: $1 \to 2 \to \ldots n \to 1$.
Flight from $x$ to $y$ consists of two phases: take-off from planet $x$ and landing to planet $y$. This way, the overall itinerary of the trip will be: the $1$-st planet $\to$ take-off from the $1$-st planet $\to$ landing to the $2$-nd planet $\to$ $2$-nd planet $\to$ take-off from the $2$-nd planet $\to$ $\ldots$ $\to$ landing to the $n$-th planet $\to$ the $n$-th planet $\to$ take-off from the $n$-th planet $\to$ landing to the $1$-st planet $\to$ the $1$-st planet.
The mass of the rocket together with all the useful cargo (but without fuel) is $m$ tons. However, Natasha does not know how much fuel to load into the rocket. Unfortunately, fuel can only be loaded on Earth, so if the rocket runs out of fuel on some other planet, Natasha will not be able to return home. Fuel is needed to take-off from each planet and to land to each planet. It is known that $1$ ton of fuel can lift off $a_i$ tons of rocket from the $i$-th planet or to land $b_i$ tons of rocket onto the $i$-th planet.
For example, if the weight of rocket is $9$ tons, weight of fuel is $3$ tons and take-off coefficient is $8$ ($a_i = 8$), then $1.5$ tons of fuel will be burnt (since $1.5 \cdot 8 = 9 + 3$). The new weight of fuel after take-off will be $1.5$ tons.
Please note, that it is allowed to burn non-integral amount of fuel during take-off or landing, and the amount of initial fuel can be non-integral as well.
Help Natasha to calculate the minimum mass of fuel to load into the rocket. Note, that the rocket must spend fuel to carry both useful cargo and the fuel itself. However, it doesn't need to carry the fuel which has already been burnt. Assume, that the rocket takes off and lands instantly.
|
The first line contains a single integer $n$ ($2 \le n \le 1000$) — number of planets.
The second line contains the only integer $m$ ($1 \le m \le 1000$) — weight of the payload.
The third line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 1000$), where $a_i$ is the number of tons, which can be lifted off by one ton of fuel.
The fourth line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 1000$), where $b_i$ is the number of tons, which can be landed by one ton of fuel.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
|
If Natasha can fly to Mars through $(n - 2)$ planets and return to Earth, print the minimum mass of fuel (in tons) that Natasha should take. Otherwise, print a single number $-1$.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
The answer will be considered correct if its absolute or relative error doesn't exceed $10^{-6}$. Formally, let your answer be $p$, and the jury's answer be $q$. Your answer is considered correct if $\frac{|p - q|}{\max{(1, |q|)}} \le 10^{-6}$.
|
[
"2\n12\n11 8\n7 5\n",
"3\n1\n1 4 1\n2 5 3\n",
"6\n2\n4 6 3 3 5 6\n2 6 3 6 5 3\n"
] |
[
"10.0000000000\n",
"-1\n",
"85.4800000000\n"
] |
Let's consider the first example.
Initially, the mass of a rocket with fuel is $22$ tons.
- At take-off from Earth one ton of fuel can lift off $11$ tons of cargo, so to lift off $22$ tons you need to burn $2$ tons of fuel. Remaining weight of the rocket with fuel is $20$ tons.- During landing on Mars, one ton of fuel can land $5$ tons of cargo, so for landing $20$ tons you will need to burn $4$ tons of fuel. There will be $16$ tons of the rocket with fuel remaining.- While taking off from Mars, one ton of fuel can raise $8$ tons of cargo, so to lift off $16$ tons you will need to burn $2$ tons of fuel. There will be $14$ tons of rocket with fuel after that.- During landing on Earth, one ton of fuel can land $7$ tons of cargo, so for landing $14$ tons you will need to burn $2$ tons of fuel. Remaining weight is $12$ tons, that is, a rocket without any fuel.
In the second case, the rocket will not be able even to take off from Earth.
| 500
|
[
{
"input": "2\n12\n11 8\n7 5",
"output": "10.0000000000"
},
{
"input": "3\n1\n1 4 1\n2 5 3",
"output": "-1"
},
{
"input": "6\n2\n4 6 3 3 5 6\n2 6 3 6 5 3",
"output": "85.4800000000"
},
{
"input": "3\n3\n1 2 1\n2 2 2",
"output": "-1"
},
{
"input": "4\n4\n2 3 2 2\n2 3 4 3",
"output": "284.0000000000"
},
{
"input": "5\n2\n1 2 2 1 2\n4 5 1 4 1",
"output": "-1"
},
{
"input": "7\n7\n3 2 6 2 2 2 5\n4 7 5 6 2 2 2",
"output": "4697.0000000000"
},
{
"input": "2\n1000\n12 34\n56 78",
"output": "159.2650775220"
},
{
"input": "8\n4\n1 1 4 1 3 1 8 1\n1 1 1 1 1 3 1 2",
"output": "-1"
},
{
"input": "9\n2\n8 7 1 1 3 7 1 2 4\n4 1 1 8 7 7 1 1 5",
"output": "-1"
},
{
"input": "10\n10\n9 8 8 7 2 10 2 9 2 4\n3 10 6 2 6 6 5 9 4 5",
"output": "3075.7142857143"
},
{
"input": "20\n12\n3 9 12 13 16 18 9 9 19 7 2 5 17 14 7 7 15 16 5 7\n16 9 13 5 14 10 4 3 16 16 12 20 17 11 4 5 5 14 6 15",
"output": "4670.8944493007"
},
{
"input": "30\n5\n25 1 28 1 27 25 24 1 28 1 12 1 29 16 1 1 1 1 27 1 24 1 1 1 1 1 1 1 30 3\n1 22 1 1 24 2 13 1 16 21 1 27 14 16 1 1 7 1 1 18 1 23 10 1 15 16 16 15 10 1",
"output": "-1"
},
{
"input": "40\n13\n1 1 1 23 21 1 1 1 1 1 40 32 1 21 1 8 1 1 36 15 33 1 30 1 1 37 22 1 4 39 7 1 9 37 1 1 1 28 1 1\n1 34 17 1 38 20 8 14 1 18 29 3 21 21 18 14 1 11 1 1 23 1 25 1 14 1 7 31 9 20 25 1 1 1 1 8 26 12 1 1",
"output": "-1"
},
{
"input": "50\n19\n17 7 13 42 19 25 10 25 2 36 17 40 30 48 34 43 34 20 5 15 8 7 43 35 21 40 40 19 30 11 49 7 24 23 43 30 38 49 10 8 30 11 28 50 48 25 25 20 48 24\n49 35 10 22 24 50 50 7 6 13 16 35 12 43 50 44 35 33 38 49 26 18 23 37 7 38 23 20 28 48 41 16 6 32 32 34 11 39 38 9 38 23 16 31 37 47 33 20 46 30",
"output": "7832.1821424977"
},
{
"input": "60\n21\n11 35 1 28 39 13 19 56 13 13 21 25 1 1 23 1 52 26 53 1 1 1 30 39 1 7 1 1 3 1 1 10 1 1 37 1 1 25 1 1 1 53 1 3 48 1 6 5 4 15 1 14 25 53 25 38 27 1 1 1\n1 1 1 35 40 58 10 22 1 56 1 59 1 6 33 1 1 1 1 18 14 1 1 40 25 47 1 34 1 1 53 1 1 25 1 45 1 1 25 34 3 1 1 1 53 27 11 58 1 1 1 10 12 1 1 1 31 52 1 1",
"output": "-1"
},
{
"input": "70\n69\n70 66 57 58 24 60 39 2 48 61 65 22 10 26 68 62 48 25 12 14 45 57 6 30 48 15 46 33 42 28 69 42 64 25 24 8 62 12 68 53 55 20 32 70 3 5 41 49 16 26 2 34 34 20 39 65 18 47 62 31 39 28 61 67 7 14 31 31 53 54\n40 33 24 20 68 20 22 39 53 56 48 38 59 45 47 46 7 69 11 58 61 40 35 38 62 66 18 36 44 48 67 24 14 27 67 63 68 30 50 6 58 7 6 35 20 58 6 12 12 23 14 2 63 27 29 22 49 16 55 40 70 27 27 70 42 38 66 55 69 47",
"output": "217989.4794743629"
},
{
"input": "80\n21\n65 4 26 25 1 1 1 1 1 1 60 1 29 43 48 6 48 13 29 1 1 62 1 1 1 1 1 1 1 26 9 1 22 1 35 13 66 36 1 1 1 38 55 21 70 1 58 70 1 1 38 1 1 20 1 1 51 1 1 28 1 23 11 1 39 47 1 52 41 1 63 1 1 52 1 45 11 10 80 1\n1 1 25 30 1 1 55 54 1 48 10 37 22 1 74 1 78 13 1 65 32 1 1 1 1 69 5 59 1 1 65 1 40 1 31 1 1 75 54 1 60 1 1 1 1 1 1 1 11 29 36 1 72 71 52 1 1 1 37 1 1 75 43 9 53 1 62 1 29 1 40 27 59 74 41 53 19 30 1 73",
"output": "-1"
},
{
"input": "90\n35\n1 68 16 30 24 1 1 1 35 1 1 67 1 1 1 1 33 16 37 77 83 1 77 26 1 1 68 67 70 62 1 47 1 1 1 84 1 65 1 32 83 1 1 1 28 1 71 76 84 1 1 5 1 74 10 1 1 1 38 87 13 1 7 66 81 49 1 9 1 11 1 25 1 1 1 1 7 1 1 36 61 47 51 1 1 69 40 1 37 1\n40 1 21 1 19 51 37 52 64 1 86 1 5 24 1 1 1 19 36 1 1 77 24 4 1 18 89 1 1 1 1 1 29 22 1 80 32 36 6 1 63 1 30 1 1 1 86 79 73 52 9 1 1 11 7 1 25 20 1 20 1 49 1 37 1 41 1 1 1 1 54 55 1 10 1 1 1 1 1 1 66 1 68 1 1 1 1 53 1 1",
"output": "-1"
},
{
"input": "2\n1\n1 1\n1 1",
"output": "-1"
},
{
"input": "2\n1\n1 1\n2 2",
"output": "-1"
},
{
"input": "2\n1\n2 2\n1 1",
"output": "-1"
},
{
"input": "2\n1\n2 2\n2 2",
"output": "15.0000000000"
},
{
"input": "2\n2\n1 1\n1 1",
"output": "-1"
},
{
"input": "2\n2\n1 1\n2 2",
"output": "-1"
},
{
"input": "2\n2\n2 2\n1 1",
"output": "-1"
},
{
"input": "2\n2\n2 2\n2 2",
"output": "30.0000000000"
},
{
"input": "40\n55\n1 382 1 1 1 629 111 689 396 614 1 1 995 148 7 820 913 1 1 169 157 1 702 1 159 1 1 226 1 253 1 319 1 130 1 1 1 466 1 756\n1 23 555 1 412 1 1 373 316 234 888 1 112 818 33 443 313 1 235 1 1 610 110 535 1 445 1 386 1 1 758 1 292 1 862 1 244 428 530 1",
"output": "-1"
},
{
"input": "49\n1\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "695580114.6380882263"
},
{
"input": "2\n12\n11 8\n1 1",
"output": "-1"
},
{
"input": "3\n3\n7 11 17\n19 31 33",
"output": "1.6012429470"
}
] | 1,587,705,620
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 93
| 307,200
|
def primero_a_ultimo(a):
u=[]
for i in range(0,len(a)-1):
u.append(a[i+1])
u.append(a[0])
return u
def Combustible(n,a,b,m):
b=primero_a_ultimo(b)
comb=0
for i in range(1,n+1):
if b[n-i]-1==0 or a[n-i]-1==0:
return -1
comb=comb+m/(b[n-i]-1)
m=m+m/(b[n-i]-1)
comb=comb+m/(a[n-i]-1)
m=m+m/(a[n-i]-1)
return comb
n=input()
n=int(n)
m=input()
m=int(m)
a_=input()
a=[]
for i in range(0,int((len(a_)+1)/2)):
a.append(float(a_[2*i]))
b_=input()
b=[]
for i in range(0,int((len(b_)+1)/2)):
b.append(float((b_[2*i])))
print(Combustible(n,a,b,m))
|
Title: Fly
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Natasha is going to fly on a rocket to Mars and return to Earth. Also, on the way to Mars, she will land on $n - 2$ intermediate planets. Formally: we number all the planets from $1$ to $n$. $1$ is Earth, $n$ is Mars. Natasha will make exactly $n$ flights: $1 \to 2 \to \ldots n \to 1$.
Flight from $x$ to $y$ consists of two phases: take-off from planet $x$ and landing to planet $y$. This way, the overall itinerary of the trip will be: the $1$-st planet $\to$ take-off from the $1$-st planet $\to$ landing to the $2$-nd planet $\to$ $2$-nd planet $\to$ take-off from the $2$-nd planet $\to$ $\ldots$ $\to$ landing to the $n$-th planet $\to$ the $n$-th planet $\to$ take-off from the $n$-th planet $\to$ landing to the $1$-st planet $\to$ the $1$-st planet.
The mass of the rocket together with all the useful cargo (but without fuel) is $m$ tons. However, Natasha does not know how much fuel to load into the rocket. Unfortunately, fuel can only be loaded on Earth, so if the rocket runs out of fuel on some other planet, Natasha will not be able to return home. Fuel is needed to take-off from each planet and to land to each planet. It is known that $1$ ton of fuel can lift off $a_i$ tons of rocket from the $i$-th planet or to land $b_i$ tons of rocket onto the $i$-th planet.
For example, if the weight of rocket is $9$ tons, weight of fuel is $3$ tons and take-off coefficient is $8$ ($a_i = 8$), then $1.5$ tons of fuel will be burnt (since $1.5 \cdot 8 = 9 + 3$). The new weight of fuel after take-off will be $1.5$ tons.
Please note, that it is allowed to burn non-integral amount of fuel during take-off or landing, and the amount of initial fuel can be non-integral as well.
Help Natasha to calculate the minimum mass of fuel to load into the rocket. Note, that the rocket must spend fuel to carry both useful cargo and the fuel itself. However, it doesn't need to carry the fuel which has already been burnt. Assume, that the rocket takes off and lands instantly.
Input Specification:
The first line contains a single integer $n$ ($2 \le n \le 1000$) — number of planets.
The second line contains the only integer $m$ ($1 \le m \le 1000$) — weight of the payload.
The third line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 1000$), where $a_i$ is the number of tons, which can be lifted off by one ton of fuel.
The fourth line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 1000$), where $b_i$ is the number of tons, which can be landed by one ton of fuel.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
Output Specification:
If Natasha can fly to Mars through $(n - 2)$ planets and return to Earth, print the minimum mass of fuel (in tons) that Natasha should take. Otherwise, print a single number $-1$.
It is guaranteed, that if Natasha can make a flight, then it takes no more than $10^9$ tons of fuel.
The answer will be considered correct if its absolute or relative error doesn't exceed $10^{-6}$. Formally, let your answer be $p$, and the jury's answer be $q$. Your answer is considered correct if $\frac{|p - q|}{\max{(1, |q|)}} \le 10^{-6}$.
Demo Input:
['2\n12\n11 8\n7 5\n', '3\n1\n1 4 1\n2 5 3\n', '6\n2\n4 6 3 3 5 6\n2 6 3 6 5 3\n']
Demo Output:
['10.0000000000\n', '-1\n', '85.4800000000\n']
Note:
Let's consider the first example.
Initially, the mass of a rocket with fuel is $22$ tons.
- At take-off from Earth one ton of fuel can lift off $11$ tons of cargo, so to lift off $22$ tons you need to burn $2$ tons of fuel. Remaining weight of the rocket with fuel is $20$ tons.- During landing on Mars, one ton of fuel can land $5$ tons of cargo, so for landing $20$ tons you will need to burn $4$ tons of fuel. There will be $16$ tons of the rocket with fuel remaining.- While taking off from Mars, one ton of fuel can raise $8$ tons of cargo, so to lift off $16$ tons you will need to burn $2$ tons of fuel. There will be $14$ tons of rocket with fuel after that.- During landing on Earth, one ton of fuel can land $7$ tons of cargo, so for landing $14$ tons you will need to burn $2$ tons of fuel. Remaining weight is $12$ tons, that is, a rocket without any fuel.
In the second case, the rocket will not be able even to take off from Earth.
|
```python
def primero_a_ultimo(a):
u=[]
for i in range(0,len(a)-1):
u.append(a[i+1])
u.append(a[0])
return u
def Combustible(n,a,b,m):
b=primero_a_ultimo(b)
comb=0
for i in range(1,n+1):
if b[n-i]-1==0 or a[n-i]-1==0:
return -1
comb=comb+m/(b[n-i]-1)
m=m+m/(b[n-i]-1)
comb=comb+m/(a[n-i]-1)
m=m+m/(a[n-i]-1)
return comb
n=input()
n=int(n)
m=input()
m=int(m)
a_=input()
a=[]
for i in range(0,int((len(a_)+1)/2)):
a.append(float(a_[2*i]))
b_=input()
b=[]
for i in range(0,int((len(b_)+1)/2)):
b.append(float((b_[2*i])))
print(Combustible(n,a,b,m))
```
| -1
|
|
519
|
B
|
A and B and Compilation Errors
|
PROGRAMMING
| 1,100
|
[
"data structures",
"implementation",
"sortings"
] | null | null |
A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
|
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time.
The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
|
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
|
[
"5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n",
"6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n"
] |
[
"8\n123\n",
"1\n3\n"
] |
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
| 1,000
|
[
{
"input": "5\n1 5 8 123 7\n123 7 5 1\n5 1 7",
"output": "8\n123"
},
{
"input": "6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5",
"output": "1\n3"
},
{
"input": "3\n1 2 3\n3 2\n2",
"output": "1\n3"
},
{
"input": "10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428",
"output": "25720377\n661369649"
},
{
"input": "3\n796067435 964699482 819602309\n964699482 796067435\n964699482",
"output": "819602309\n796067435"
},
{
"input": "3\n374054998 726316780 902899520\n902899520 726316780\n726316780",
"output": "374054998\n902899520"
},
{
"input": "3\n168638990 939116221 323703261\n168638990 323703261\n168638990",
"output": "939116221\n323703261"
},
{
"input": "3\n77 77 77\n77 77\n77",
"output": "77\n77"
},
{
"input": "3\n84 30 9\n9 84\n9",
"output": "30\n84"
},
{
"input": "6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3",
"output": "5\n5"
},
{
"input": "4\n1 5 7 8\n1 5 7\n1 5",
"output": "8\n7"
}
] | 1,628,871,089
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 233
| 22,016,000
|
n = int(input())
ar1 = list(map(int,input().split()))
ar2 = list(map(int,input().split()))
ar3 = list(map(int,input().split()))
o1 = sum(ar1)
o2 = sum(ar2)
o3 = sum(ar3)
print(o1 - o2)
print(o2 - o3)
|
Title: A and B and Compilation Errors
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
Input Specification:
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time.
The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Output Specification:
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
Demo Input:
['5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n', '6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n']
Demo Output:
['8\n123\n', '1\n3\n']
Note:
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
|
```python
n = int(input())
ar1 = list(map(int,input().split()))
ar2 = list(map(int,input().split()))
ar3 = list(map(int,input().split()))
o1 = sum(ar1)
o2 = sum(ar2)
o3 = sum(ar3)
print(o1 - o2)
print(o2 - o3)
```
| 3
|
|
35
|
C
|
Fire Again
|
PROGRAMMING
| 1,500
|
[
"brute force",
"dfs and similar",
"shortest paths"
] |
C. Fire Again
|
2
|
64
|
After a terrifying forest fire in Berland a forest rebirth program was carried out. Due to it *N* rows with *M* trees each were planted and the rows were so neat that one could map it on a system of coordinates so that the *j*-th tree in the *i*-th row would have the coordinates of (*i*,<=*j*). However a terrible thing happened and the young forest caught fire. Now we must find the coordinates of the tree that will catch fire last to plan evacuation.
The burning began in *K* points simultaneously, which means that initially *K* trees started to burn. Every minute the fire gets from the burning trees to the ones that aren’t burning and that the distance from them to the nearest burning tree equals to 1.
Find the tree that will be the last to start burning. If there are several such trees, output any.
|
The first input line contains two integers *N*,<=*M* (1<=≤<=*N*,<=*M*<=≤<=2000) — the size of the forest. The trees were planted in all points of the (*x*,<=*y*) (1<=≤<=*x*<=≤<=*N*,<=1<=≤<=*y*<=≤<=*M*) type, *x* and *y* are integers.
The second line contains an integer *K* (1<=≤<=*K*<=≤<=10) — amount of trees, burning in the beginning.
The third line contains *K* pairs of integers: *x*1,<=*y*1,<=*x*2,<=*y*2,<=...,<=*x**k*,<=*y**k* (1<=≤<=*x**i*<=≤<=*N*,<=1<=≤<=*y**i*<=≤<=*M*) — coordinates of the points from which the fire started. It is guaranteed that no two points coincide.
|
Output a line with two space-separated integers *x* and *y* — coordinates of the tree that will be the last one to start burning. If there are several such trees, output any.
|
[
"3 3\n1\n2 2\n",
"3 3\n1\n1 1\n",
"3 3\n2\n1 1 3 3\n"
] |
[
"1 1\n",
"3 3\n",
"2 2"
] |
none
| 1,500
|
[
{
"input": "3 3\n1\n2 2",
"output": "1 1"
},
{
"input": "3 3\n1\n1 1",
"output": "3 3"
},
{
"input": "3 3\n2\n1 1 3 3",
"output": "1 3"
},
{
"input": "1 1\n1\n1 1",
"output": "1 1"
},
{
"input": "2 2\n1\n2 2",
"output": "1 1"
},
{
"input": "2 2\n2\n1 1 2 1",
"output": "1 2"
},
{
"input": "2 2\n3\n1 2 2 1 1 1",
"output": "2 2"
},
{
"input": "2 2\n4\n2 1 2 2 1 1 1 2",
"output": "1 1"
},
{
"input": "10 10\n1\n5 5",
"output": "10 10"
},
{
"input": "10 10\n2\n7 8 1 9",
"output": "3 1"
},
{
"input": "10 10\n3\n3 9 6 3 3 5",
"output": "10 7"
},
{
"input": "10 10\n4\n5 3 4 7 7 5 8 5",
"output": "10 10"
},
{
"input": "10 10\n5\n2 7 10 6 5 3 9 5 2 9",
"output": "1 1"
},
{
"input": "10 10\n6\n5 1 4 6 3 9 9 9 5 7 7 2",
"output": "1 3"
},
{
"input": "10 10\n7\n5 8 4 6 4 1 6 2 1 10 3 2 7 10",
"output": "10 5"
},
{
"input": "10 10\n8\n9 4 9 10 5 8 6 5 1 3 2 5 10 6 2 1",
"output": "1 10"
},
{
"input": "10 10\n9\n10 1 10 4 8 4 6 6 1 9 10 10 7 7 6 5 7 10",
"output": "1 1"
},
{
"input": "10 10\n10\n7 2 1 9 5 8 6 10 9 4 10 8 6 8 8 7 4 1 9 5",
"output": "1 3"
},
{
"input": "100 100\n1\n44 3",
"output": "100 100"
},
{
"input": "100 100\n2\n79 84 76 63",
"output": "1 1"
},
{
"input": "100 100\n3\n89 93 99 32 32 82",
"output": "1 1"
},
{
"input": "100 100\n4\n72 12 1 66 57 67 25 67",
"output": "100 100"
},
{
"input": "100 100\n5\n22 41 82 16 6 3 20 6 69 78",
"output": "1 100"
},
{
"input": "100 100\n6\n92 32 90 80 32 40 24 19 36 37 39 13",
"output": "1 100"
},
{
"input": "100 100\n7\n30 32 29 63 86 78 88 2 86 50 41 60 54 28",
"output": "1 100"
},
{
"input": "100 100\n8\n40 43 96 8 17 63 61 59 16 69 4 95 30 62 12 91",
"output": "100 100"
},
{
"input": "100 100\n9\n18 16 41 71 25 1 43 38 78 92 77 70 99 8 33 54 76 78",
"output": "1 100"
},
{
"input": "100 100\n10\n58 98 33 62 75 13 94 86 81 42 14 53 12 66 7 14 3 63 87 37",
"output": "40 1"
},
{
"input": "2000 2000\n1\n407 594",
"output": "2000 2000"
},
{
"input": "2000 2000\n2\n1884 43 1235 1111",
"output": "1 2000"
},
{
"input": "2000 2000\n3\n1740 1797 1279 1552 329 756",
"output": "2000 1"
},
{
"input": "2000 2000\n4\n1844 1342 171 1810 1558 1141 1917 1999",
"output": "530 1"
},
{
"input": "2000 2000\n5\n1846 327 1911 1534 134 1615 1664 682 1982 1112",
"output": "346 1"
},
{
"input": "2000 2000\n6\n1744 1102 852 723 409 179 89 1085 997 1433 1082 1680",
"output": "2000 1"
},
{
"input": "2000 2000\n7\n1890 22 288 1729 383 831 1192 1206 721 1376 969 492 510 1699",
"output": "2000 2000"
},
{
"input": "2000 2000\n8\n286 381 572 1849 1703 1574 622 1047 1507 941 871 663 1930 120 1084 1830",
"output": "1 1423"
},
{
"input": "2000 2000\n9\n226 531 56 138 722 405 1082 608 1355 1426 83 544 275 1268 683 412 1880 1049",
"output": "1701 1"
},
{
"input": "2000 2000\n10\n763 851 1182 571 1758 389 247 1907 730 881 531 1970 1430 667 169 765 1729 120 129 967",
"output": "2000 1793"
},
{
"input": "2000 2000\n10\n655 95 1640 1656 1344 79 666 1677 968 1180 522 1394 1850 1568 336 130 412 920 29 1664",
"output": "2000 570"
},
{
"input": "10 1\n10\n4 1 6 1 10 1 9 1 1 1 7 1 5 1 2 1 8 1 3 1",
"output": "1 1"
},
{
"input": "1 10\n10\n1 10 1 4 1 3 1 7 1 6 1 1 1 8 1 2 1 9 1 5",
"output": "1 1"
},
{
"input": "1 100\n10\n1 68 1 18 1 43 1 12 1 64 1 34 1 23 1 70 1 46 1 33",
"output": "1 100"
},
{
"input": "100 1\n10\n62 1 63 1 57 1 76 1 35 1 69 1 73 1 95 1 96 1 21 1",
"output": "1 1"
},
{
"input": "1 2000\n10\n1 1730 1 1374 1 831 1 1076 1 580 1 914 1 123 1 668 1 1288 1 160",
"output": "1 2000"
},
{
"input": "2000 1\n10\n1058 1 1779 1 1995 1 1398 1 96 1 1599 1 1496 1 1659 1 385 1 1485 1",
"output": "721 1"
},
{
"input": "5 5\n1\n1 1",
"output": "5 5"
},
{
"input": "2 5\n10\n1 1 1 2 1 3 1 4 1 5 2 1 2 2 2 3 2 4 2 5",
"output": "1 1"
},
{
"input": "1 10\n9\n1 1 1 2 1 3 1 4 1 6 1 7 1 8 1 9 1 10",
"output": "1 5"
},
{
"input": "3 3\n5\n1 1 1 3 2 2 3 1 3 3",
"output": "1 2"
},
{
"input": "999 999\n4\n1 499 499 1 499 999 999 499",
"output": "500 500"
}
] | 1,638,068,035
| 2,147,483,647
|
PyPy 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 216
| 2,048,000
|
n,m=map(int,input().split())
i=int(input())
l=list(map(int,input().split()))
t=[]
for x in range(i):t.append([l[x*2],l[x*2+1]])
ans=0;pans=[]
for x in range(1,n+1):
for y in range(1,m+1):
tt=100000000
for ax in t:
tt=min(tt,abs(x-ax[0])+abs(y-ax[1]))
if tt>ans:
ans=tt
pans=[x,y]
print(*pans)
|
Title: Fire Again
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
After a terrifying forest fire in Berland a forest rebirth program was carried out. Due to it *N* rows with *M* trees each were planted and the rows were so neat that one could map it on a system of coordinates so that the *j*-th tree in the *i*-th row would have the coordinates of (*i*,<=*j*). However a terrible thing happened and the young forest caught fire. Now we must find the coordinates of the tree that will catch fire last to plan evacuation.
The burning began in *K* points simultaneously, which means that initially *K* trees started to burn. Every minute the fire gets from the burning trees to the ones that aren’t burning and that the distance from them to the nearest burning tree equals to 1.
Find the tree that will be the last to start burning. If there are several such trees, output any.
Input Specification:
The first input line contains two integers *N*,<=*M* (1<=≤<=*N*,<=*M*<=≤<=2000) — the size of the forest. The trees were planted in all points of the (*x*,<=*y*) (1<=≤<=*x*<=≤<=*N*,<=1<=≤<=*y*<=≤<=*M*) type, *x* and *y* are integers.
The second line contains an integer *K* (1<=≤<=*K*<=≤<=10) — amount of trees, burning in the beginning.
The third line contains *K* pairs of integers: *x*1,<=*y*1,<=*x*2,<=*y*2,<=...,<=*x**k*,<=*y**k* (1<=≤<=*x**i*<=≤<=*N*,<=1<=≤<=*y**i*<=≤<=*M*) — coordinates of the points from which the fire started. It is guaranteed that no two points coincide.
Output Specification:
Output a line with two space-separated integers *x* and *y* — coordinates of the tree that will be the last one to start burning. If there are several such trees, output any.
Demo Input:
['3 3\n1\n2 2\n', '3 3\n1\n1 1\n', '3 3\n2\n1 1 3 3\n']
Demo Output:
['1 1\n', '3 3\n', '2 2']
Note:
none
|
```python
n,m=map(int,input().split())
i=int(input())
l=list(map(int,input().split()))
t=[]
for x in range(i):t.append([l[x*2],l[x*2+1]])
ans=0;pans=[]
for x in range(1,n+1):
for y in range(1,m+1):
tt=100000000
for ax in t:
tt=min(tt,abs(x-ax[0])+abs(y-ax[1]))
if tt>ans:
ans=tt
pans=[x,y]
print(*pans)
```
| -1
|
769
|
D
|
k-Interesting Pairs Of Integers
|
PROGRAMMING
| 1,700
|
[
"*special",
"bitmasks",
"brute force",
"meet-in-the-middle"
] | null | null |
Vasya has the sequence consisting of *n* integers. Vasya consider the pair of integers *x* and *y* k-interesting, if their binary representation differs from each other exactly in *k* bits. For example, if *k*<==<=2, the pair of integers *x*<==<=5 and *y*<==<=3 is k-interesting, because their binary representation *x*=101 and *y*=011 differs exactly in two bits.
Vasya wants to know how many pairs of indexes (*i*, *j*) are in his sequence so that *i*<=<<=*j* and the pair of integers *a**i* and *a**j* is k-interesting. Your task is to help Vasya and determine this number.
|
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=14) — the number of integers in Vasya's sequence and the number of bits in which integers in k-interesting pair should differ.
The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=104), which Vasya has.
|
Print the number of pairs (*i*, *j*) so that *i*<=<<=*j* and the pair of integers *a**i* and *a**j* is k-interesting.
|
[
"4 1\n0 3 2 1\n",
"6 0\n200 100 100 100 200 200\n"
] |
[
"4\n",
"6\n"
] |
In the first test there are 4 k-interesting pairs:
- (1, 3), - (1, 4), - (2, 3), - (2, 4).
In the second test *k* = 0. Consequently, integers in any k-interesting pair should be equal to themselves. Thus, for the second test there are 6 k-interesting pairs:
- (1, 5), - (1, 6), - (2, 3), - (2, 4), - (3, 4), - (5, 6).
| 2,000
|
[
{
"input": "4 1\n0 3 2 1",
"output": "4"
},
{
"input": "6 0\n200 100 100 100 200 200",
"output": "6"
},
{
"input": "2 0\n1 1",
"output": "1"
},
{
"input": "2 0\n0 0",
"output": "1"
},
{
"input": "2 0\n10000 10000",
"output": "1"
},
{
"input": "2 0\n0 10000",
"output": "0"
},
{
"input": "2 1\n0 1",
"output": "1"
},
{
"input": "2 1\n0 2",
"output": "1"
},
{
"input": "3 1\n0 1 2",
"output": "2"
},
{
"input": "3 2\n0 3 3",
"output": "2"
},
{
"input": "3 2\n3 3 3",
"output": "0"
},
{
"input": "10 0\n1 1 1 1 1 1 1 1 1 1",
"output": "45"
},
{
"input": "100 14\n8192 8192 8192 8192 8191 8192 8192 8192 8192 8192 8191 8191 8191 8192 8191 8191 8191 8192 8192 8192 8192 8192 8191 8191 8191 8192 8191 8192 8192 8192 8192 8192 8192 8191 8191 8192 8192 8191 8191 8192 8192 8192 8191 8191 8192 8191 8191 8191 8191 8191 8191 8192 8191 8191 8192 8191 8191 8192 8192 8191 8192 8192 8192 8192 8192 8192 8192 8191 8192 8192 8192 8191 8191 8192 8192 8192 8191 8192 8192 8192 8192 8192 8191 8192 8192 8191 8192 8192 8192 8192 8191 8192 8191 8191 8192 8191 8192 8192 8191 8191",
"output": "2400"
}
] | 1,488,634,337
| 5,537
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 9
| 62
| 4,608,000
|
n, k = (int(i) for i in input().split())
lst = [int(i) for i in input().split()]
lst = [bin(i).lstrip('0b') for i in lst]
lst = [i[::-1] for i in lst]
if '' in lst:
for i in range(n):
if lst[i] == '':
lst[i] = '0'
dif, capacity = 0, 0
for i in range(n):
for j in range(i + 1, n):
dif = abs(len(lst[i]) - len(lst[j]))
for l in range(min(len(lst[i]), len(lst[j]))):
if lst[i][l] != lst[j][l]:
dif += 1
if dif <= k:
capacity += 1
print(capacity)
|
Title: k-Interesting Pairs Of Integers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has the sequence consisting of *n* integers. Vasya consider the pair of integers *x* and *y* k-interesting, if their binary representation differs from each other exactly in *k* bits. For example, if *k*<==<=2, the pair of integers *x*<==<=5 and *y*<==<=3 is k-interesting, because their binary representation *x*=101 and *y*=011 differs exactly in two bits.
Vasya wants to know how many pairs of indexes (*i*, *j*) are in his sequence so that *i*<=<<=*j* and the pair of integers *a**i* and *a**j* is k-interesting. Your task is to help Vasya and determine this number.
Input Specification:
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=105, 0<=≤<=*k*<=≤<=14) — the number of integers in Vasya's sequence and the number of bits in which integers in k-interesting pair should differ.
The second line contains the sequence *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=104), which Vasya has.
Output Specification:
Print the number of pairs (*i*, *j*) so that *i*<=<<=*j* and the pair of integers *a**i* and *a**j* is k-interesting.
Demo Input:
['4 1\n0 3 2 1\n', '6 0\n200 100 100 100 200 200\n']
Demo Output:
['4\n', '6\n']
Note:
In the first test there are 4 k-interesting pairs:
- (1, 3), - (1, 4), - (2, 3), - (2, 4).
In the second test *k* = 0. Consequently, integers in any k-interesting pair should be equal to themselves. Thus, for the second test there are 6 k-interesting pairs:
- (1, 5), - (1, 6), - (2, 3), - (2, 4), - (3, 4), - (5, 6).
|
```python
n, k = (int(i) for i in input().split())
lst = [int(i) for i in input().split()]
lst = [bin(i).lstrip('0b') for i in lst]
lst = [i[::-1] for i in lst]
if '' in lst:
for i in range(n):
if lst[i] == '':
lst[i] = '0'
dif, capacity = 0, 0
for i in range(n):
for j in range(i + 1, n):
dif = abs(len(lst[i]) - len(lst[j]))
for l in range(min(len(lst[i]), len(lst[j]))):
if lst[i][l] != lst[j][l]:
dif += 1
if dif <= k:
capacity += 1
print(capacity)
```
| 0
|
|
56
|
A
|
Bar
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Bar
|
2
|
256
|
According to Berland laws it is only allowed to sell alcohol to people not younger than 18 years. Vasya's job is to monitor the law's enforcement. Tonight he entered a bar and saw *n* people sitting there. For every one of them Vasya happened to determine either the age or the drink the person is having. Vasya can check any person, i.e. learn his age and the drink he is having at the same time. What minimal number of people should Vasya check additionally to make sure that there are no clients under 18 having alcohol drinks?
The list of all alcohol drinks in Berland is: ABSINTH, BEER, BRANDY, CHAMPAGNE, GIN, RUM, SAKE, TEQUILA, VODKA, WHISKEY, WINE
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of the bar's clients. Then follow *n* lines, each describing one visitor. A line either contains his age (an integer from 0 to 1000) or his drink (a string of capital Latin letters from 1 to 100 in length). It is guaranteed that the input data does not contain spaces and other unnecessary separators.
Only the drinks from the list given above should be considered alcohol.
|
Print a single number which is the number of people Vasya should check to guarantee the law enforcement.
|
[
"5\n18\nVODKA\nCOKE\n19\n17\n"
] |
[
"2\n"
] |
In the sample test the second and fifth clients should be checked.
| 500
|
[
{
"input": "5\n18\nVODKA\nCOKE\n19\n17",
"output": "2"
},
{
"input": "2\n2\nGIN",
"output": "2"
},
{
"input": "3\nWHISKEY\n3\nGIN",
"output": "3"
},
{
"input": "4\n813\nIORBQITQXMPTFAEMEQDQIKFGKGOTNKTOSZCBRPXJLUKVLVHJYNRUJXK\nRUM\nRHVRWGODYWWTYZFLFYKCVUFFRTQDINKNWPKFHZBFWBHWINWJW",
"output": "1"
},
{
"input": "4\nSAKE\nSAKE\n13\n2",
"output": "4"
},
{
"input": "2\n0\n17",
"output": "2"
},
{
"input": "1\n0",
"output": "1"
}
] | 1,618,045,235
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 28
| 218
| 0
|
n=int(input())
res=0
alcohol =['ABSINTH', 'BEER','BRANDY', 'CHAMPAGNE', 'GIN', 'RUM', 'SAKE', 'TEQUILA','VODKA', 'WHISKEY', 'WINE']
for i in range(n):
a=input()
try:
a=int(a)
if(a<18):
res+=1;
except:
for j in alcohol:
if(a==j):
res+=1
print(res)
|
Title: Bar
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
According to Berland laws it is only allowed to sell alcohol to people not younger than 18 years. Vasya's job is to monitor the law's enforcement. Tonight he entered a bar and saw *n* people sitting there. For every one of them Vasya happened to determine either the age or the drink the person is having. Vasya can check any person, i.e. learn his age and the drink he is having at the same time. What minimal number of people should Vasya check additionally to make sure that there are no clients under 18 having alcohol drinks?
The list of all alcohol drinks in Berland is: ABSINTH, BEER, BRANDY, CHAMPAGNE, GIN, RUM, SAKE, TEQUILA, VODKA, WHISKEY, WINE
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of the bar's clients. Then follow *n* lines, each describing one visitor. A line either contains his age (an integer from 0 to 1000) or his drink (a string of capital Latin letters from 1 to 100 in length). It is guaranteed that the input data does not contain spaces and other unnecessary separators.
Only the drinks from the list given above should be considered alcohol.
Output Specification:
Print a single number which is the number of people Vasya should check to guarantee the law enforcement.
Demo Input:
['5\n18\nVODKA\nCOKE\n19\n17\n']
Demo Output:
['2\n']
Note:
In the sample test the second and fifth clients should be checked.
|
```python
n=int(input())
res=0
alcohol =['ABSINTH', 'BEER','BRANDY', 'CHAMPAGNE', 'GIN', 'RUM', 'SAKE', 'TEQUILA','VODKA', 'WHISKEY', 'WINE']
for i in range(n):
a=input()
try:
a=int(a)
if(a<18):
res+=1;
except:
for j in alcohol:
if(a==j):
res+=1
print(res)
```
| 3.9455
|
34
|
B
|
Sale
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] |
B. Sale
|
2
|
256
|
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
|
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
|
[
"5 3\n-6 0 35 -2 4\n",
"4 2\n7 0 0 -7\n"
] |
[
"8\n",
"7\n"
] |
none
| 1,000
|
[
{
"input": "5 3\n-6 0 35 -2 4",
"output": "8"
},
{
"input": "4 2\n7 0 0 -7",
"output": "7"
},
{
"input": "6 6\n756 -611 251 -66 572 -818",
"output": "1495"
},
{
"input": "5 5\n976 437 937 788 518",
"output": "0"
},
{
"input": "5 3\n-2 -2 -2 -2 -2",
"output": "6"
},
{
"input": "5 1\n998 997 985 937 998",
"output": "0"
},
{
"input": "2 2\n-742 -187",
"output": "929"
},
{
"input": "3 3\n522 597 384",
"output": "0"
},
{
"input": "4 2\n-215 -620 192 647",
"output": "835"
},
{
"input": "10 6\n557 605 685 231 910 633 130 838 -564 -85",
"output": "649"
},
{
"input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59",
"output": "10"
},
{
"input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000",
"output": "0"
},
{
"input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886",
"output": "19441"
},
{
"input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999",
"output": "0"
},
{
"input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993",
"output": "16984"
},
{
"input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981",
"output": "21743"
},
{
"input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654",
"output": "81283"
},
{
"input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782",
"output": "0"
},
{
"input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823",
"output": "0"
},
{
"input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992",
"output": "75068"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 1\n555",
"output": "0"
},
{
"input": "1 1\n-1",
"output": "1"
},
{
"input": "1 1\n-24",
"output": "24"
}
] | 1,598,982,415
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 25
| 280
| 0
|
n, m = map(int, input().split())
arr = sorted(list(map(int, input().split())))
print(abs(sum(arr[i] for i in range(m) if arr[i] <= 0)))
|
Title: Sale
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output Specification:
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
Demo Input:
['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n']
Demo Output:
['8\n', '7\n']
Note:
none
|
```python
n, m = map(int, input().split())
arr = sorted(list(map(int, input().split())))
print(abs(sum(arr[i] for i in range(m) if arr[i] <= 0)))
```
| 3.93
|
237
|
C
|
Primes on Interval
|
PROGRAMMING
| 1,600
|
[
"binary search",
"number theory",
"two pointers"
] | null | null |
You've decided to carry out a survey in the theory of prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors.
Consider positive integers *a*, *a*<=+<=1, ..., *b* (*a*<=≤<=*b*). You want to find the minimum integer *l* (1<=≤<=*l*<=≤<=*b*<=-<=*a*<=+<=1) such that for any integer *x* (*a*<=≤<=*x*<=≤<=*b*<=-<=*l*<=+<=1) among *l* integers *x*, *x*<=+<=1, ..., *x*<=+<=*l*<=-<=1 there are at least *k* prime numbers.
Find and print the required minimum *l*. If no value *l* meets the described limitations, print -1.
|
A single line contains three space-separated integers *a*,<=*b*,<=*k* (1<=≤<=*a*,<=*b*,<=*k*<=≤<=106; *a*<=≤<=*b*).
|
In a single line print a single integer — the required minimum *l*. If there's no solution, print -1.
|
[
"2 4 2\n",
"6 13 1\n",
"1 4 3\n"
] |
[
"3\n",
"4\n",
"-1\n"
] |
none
| 1,500
|
[
{
"input": "2 4 2",
"output": "3"
},
{
"input": "6 13 1",
"output": "4"
},
{
"input": "1 4 3",
"output": "-1"
},
{
"input": "5 8 2",
"output": "4"
},
{
"input": "8 10 3",
"output": "-1"
},
{
"input": "1 5 2",
"output": "3"
},
{
"input": "6 8 3",
"output": "-1"
},
{
"input": "21 29 2",
"output": "9"
},
{
"input": "17 27 3",
"output": "11"
},
{
"input": "1 1000000 10000",
"output": "137970"
},
{
"input": "690059 708971 10000",
"output": "-1"
},
{
"input": "12357 534133 2",
"output": "138"
},
{
"input": "838069 936843 3",
"output": "142"
},
{
"input": "339554 696485 4",
"output": "168"
},
{
"input": "225912 522197 5",
"output": "190"
},
{
"input": "404430 864261 6",
"output": "236"
},
{
"input": "689973 807140 7",
"output": "236"
},
{
"input": "177146 548389 8",
"output": "240"
},
{
"input": "579857 857749 9",
"output": "300"
},
{
"input": "35648 527231 10",
"output": "280"
},
{
"input": "2 1000000 10000",
"output": "137970"
},
{
"input": "1 999999 9999",
"output": "137958"
},
{
"input": "5 5 10",
"output": "-1"
},
{
"input": "11 11 6",
"output": "-1"
},
{
"input": "4 4 95",
"output": "-1"
},
{
"input": "1 1000000 1000000",
"output": "-1"
},
{
"input": "1 1000000 78498",
"output": "999999"
},
{
"input": "1 1000000 78499",
"output": "-1"
},
{
"input": "3459 94738 1",
"output": "72"
},
{
"input": "1 1000000 1",
"output": "114"
},
{
"input": "1 1000000 78498",
"output": "999999"
},
{
"input": "1 1000000 78497",
"output": "999998"
},
{
"input": "1 1000000 78490",
"output": "999978"
},
{
"input": "1000 10000 13",
"output": "168"
},
{
"input": "100000 1000000 7821",
"output": "108426"
},
{
"input": "20 1000000 40000",
"output": "539580"
},
{
"input": "1000 900000 50000",
"output": "659334"
},
{
"input": "10000 1000000 60000",
"output": "793662"
},
{
"input": "9999 99999 8000",
"output": "86572"
},
{
"input": "50 150 20",
"output": "100"
},
{
"input": "999953 999953 1",
"output": "1"
},
{
"input": "999953 999953 2",
"output": "-1"
},
{
"input": "999931 999953 2",
"output": "23"
},
{
"input": "999906 999984 4",
"output": "52"
},
{
"input": "999940 999983 3",
"output": "26"
},
{
"input": "1 1 1",
"output": "-1"
},
{
"input": "1 1 1000000",
"output": "-1"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "1 3 1",
"output": "2"
},
{
"input": "1 3 2",
"output": "3"
},
{
"input": "1 4 2",
"output": "3"
},
{
"input": "1 5 2",
"output": "3"
},
{
"input": "1 5 3",
"output": "5"
},
{
"input": "2 5 2",
"output": "3"
},
{
"input": "3 5 1",
"output": "2"
}
] | 1,685,410,672
| 2,147,483,647
|
PyPy 3-64
|
RUNTIME_ERROR
|
TESTS
| 3
| 62
| 2,764,800
|
import collections
import sys
from cmath import inf
input = lambda: sys.stdin.readline().strip()
print = lambda d: sys.stdout.write(str(d) + "\n")
read = lambda: list(map(int, input().split()))
a, b, k = map(int, input().split())
N = b
ans = []
vis = [False] * (N + 1)
for i in range(2, N + 1):
if not vis[i]:
ans.append(i)
for j in ans:
if j * i > N:
break
vis[i * j] = True
if j % i == 0:
break
ans = set(ans)
p = [False] * (b - a + 1)
for i in range(a, b + 1):
if i in ans:
p[i - a] = True
def check(x):
start = end = 0
cnt = 0
while start <= b:
if p[start - a]:
cnt += 1
if start >= x - 1:
if cnt < k:
return False
if p[end - a]:
cnt -= 1
end += 1
start += 1
return True
l = 0
r = b - a + 1
while l < r:
mid = (l + r) >> 1
if check(mid):
r = mid
else:
l = mid + 1
if check(l):
print(l)
else:
print(-1)
|
Title: Primes on Interval
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've decided to carry out a survey in the theory of prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors.
Consider positive integers *a*, *a*<=+<=1, ..., *b* (*a*<=≤<=*b*). You want to find the minimum integer *l* (1<=≤<=*l*<=≤<=*b*<=-<=*a*<=+<=1) such that for any integer *x* (*a*<=≤<=*x*<=≤<=*b*<=-<=*l*<=+<=1) among *l* integers *x*, *x*<=+<=1, ..., *x*<=+<=*l*<=-<=1 there are at least *k* prime numbers.
Find and print the required minimum *l*. If no value *l* meets the described limitations, print -1.
Input Specification:
A single line contains three space-separated integers *a*,<=*b*,<=*k* (1<=≤<=*a*,<=*b*,<=*k*<=≤<=106; *a*<=≤<=*b*).
Output Specification:
In a single line print a single integer — the required minimum *l*. If there's no solution, print -1.
Demo Input:
['2 4 2\n', '6 13 1\n', '1 4 3\n']
Demo Output:
['3\n', '4\n', '-1\n']
Note:
none
|
```python
import collections
import sys
from cmath import inf
input = lambda: sys.stdin.readline().strip()
print = lambda d: sys.stdout.write(str(d) + "\n")
read = lambda: list(map(int, input().split()))
a, b, k = map(int, input().split())
N = b
ans = []
vis = [False] * (N + 1)
for i in range(2, N + 1):
if not vis[i]:
ans.append(i)
for j in ans:
if j * i > N:
break
vis[i * j] = True
if j % i == 0:
break
ans = set(ans)
p = [False] * (b - a + 1)
for i in range(a, b + 1):
if i in ans:
p[i - a] = True
def check(x):
start = end = 0
cnt = 0
while start <= b:
if p[start - a]:
cnt += 1
if start >= x - 1:
if cnt < k:
return False
if p[end - a]:
cnt -= 1
end += 1
start += 1
return True
l = 0
r = b - a + 1
while l < r:
mid = (l + r) >> 1
if check(mid):
r = mid
else:
l = mid + 1
if check(l):
print(l)
else:
print(-1)
```
| -1
|
|
839
|
C
|
Journey
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"dp",
"graphs",
"probabilities",
"trees"
] | null | null |
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities.
Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road.
It is guaranteed that one can reach any city from any other by the roads.
|
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
|
[
"4\n1 2\n1 3\n2 4\n",
"5\n1 2\n1 3\n3 4\n2 5\n"
] |
[
"1.500000000000000\n",
"2.000000000000000\n"
] |
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
| 1,500
|
[
{
"input": "4\n1 2\n1 3\n2 4",
"output": "1.500000000000000"
},
{
"input": "5\n1 2\n1 3\n3 4\n2 5",
"output": "2.000000000000000"
},
{
"input": "70\n1 25\n57 1\n18 1\n65 1\n38 1\n1 41\n1 5\n1 69\n1 3\n31 1\n1 8\n1 9\n53 1\n70 1\n45 1\n1 24\n1 42\n1 30\n1 12\n1 37\n64 1\n1 28\n1 58\n1 22\n11 1\n1 4\n1 27\n1 16\n1 21\n54 1\n1 51\n1 43\n29 1\n56 1\n1 39\n32 1\n1 15\n1 17\n1 19\n1 40\n36 1\n48 1\n63 1\n1 7\n1 47\n1 13\n1 46\n60 1\n1 6\n23 1\n20 1\n1 52\n2 1\n26 1\n1 59\n1 66\n10 1\n1 62\n1 68\n1 55\n50 1\n33 1\n44 1\n1 34\n1 35\n1 61\n14 1\n67 1\n49 1",
"output": "1.000000000000000"
},
{
"input": "10\n8 6\n9 10\n8 7\n1 4\n1 8\n9 5\n9 8\n2 5\n3 1",
"output": "1.500000000000000"
},
{
"input": "1",
"output": "0.000000000000000"
}
] | 1,587,241,187
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 4
| 233
| 4,096,000
|
from math import gcd
from collections import defaultdict as dd,deque as dq
n=int(input())
d=dd(list)
vis=[0]*(n+1)
for i in range(n-1):
u,v=map(int,input().split())
d[u].append(v)
d[v].append(u)
q=dq([(1,0,1)])
nu=[]
dn=[]
if(n==1):
print(0)
exit()
while q:
a,b,c=q.pop()
vis[a]=1
#print(a,b,c)
if(len(d[a])==1):
if(n==2 and a==1):
fuck=1
else:
nu.append(b)
dn.append(c)
for j in d[a]:
if(vis[j]==0):
if(a==1):
q.appendleft((j,b+1,c*len(d[a])))
else:
q.append((j,b+1,c*(len(d[a])-1)))
g=0
for i in dn:
g=gcd(g,i)
#print(nu,dn)
su=0
for i in range(len(nu)):
su+=(nu[i]*(g//dn[i]))
print(su/g)
|
Title: Journey
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities.
Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road.
It is guaranteed that one can reach any city from any other by the roads.
Output Specification:
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
Demo Input:
['4\n1 2\n1 3\n2 4\n', '5\n1 2\n1 3\n3 4\n2 5\n']
Demo Output:
['1.500000000000000\n', '2.000000000000000\n']
Note:
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
|
```python
from math import gcd
from collections import defaultdict as dd,deque as dq
n=int(input())
d=dd(list)
vis=[0]*(n+1)
for i in range(n-1):
u,v=map(int,input().split())
d[u].append(v)
d[v].append(u)
q=dq([(1,0,1)])
nu=[]
dn=[]
if(n==1):
print(0)
exit()
while q:
a,b,c=q.pop()
vis[a]=1
#print(a,b,c)
if(len(d[a])==1):
if(n==2 and a==1):
fuck=1
else:
nu.append(b)
dn.append(c)
for j in d[a]:
if(vis[j]==0):
if(a==1):
q.appendleft((j,b+1,c*len(d[a])))
else:
q.append((j,b+1,c*(len(d[a])-1)))
g=0
for i in dn:
g=gcd(g,i)
#print(nu,dn)
su=0
for i in range(len(nu)):
su+=(nu[i]*(g//dn[i]))
print(su/g)
```
| 0
|
|
96
|
A
|
Football
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] |
A. Football
|
2
|
256
|
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
|
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
|
Print "YES" if the situation is dangerous. Otherwise, print "NO".
|
[
"001001\n",
"1000000001\n"
] |
[
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "001001",
"output": "NO"
},
{
"input": "1000000001",
"output": "YES"
},
{
"input": "00100110111111101",
"output": "YES"
},
{
"input": "11110111111111111",
"output": "YES"
},
{
"input": "01",
"output": "NO"
},
{
"input": "10100101",
"output": "NO"
},
{
"input": "1010010100000000010",
"output": "YES"
},
{
"input": "101010101",
"output": "NO"
},
{
"input": "000000000100000000000110101100000",
"output": "YES"
},
{
"input": "100001000000110101100000",
"output": "NO"
},
{
"input": "100001000011010110000",
"output": "NO"
},
{
"input": "010",
"output": "NO"
},
{
"input": "10101011111111111111111111111100",
"output": "YES"
},
{
"input": "1001101100",
"output": "NO"
},
{
"input": "1001101010",
"output": "NO"
},
{
"input": "1111100111",
"output": "NO"
},
{
"input": "00110110001110001111",
"output": "NO"
},
{
"input": "11110001001111110001",
"output": "NO"
},
{
"input": "10001111001011111101",
"output": "NO"
},
{
"input": "10000010100000001000110001010100001001001010011",
"output": "YES"
},
{
"input": "01111011111010111100101100001011001010111110000010",
"output": "NO"
},
{
"input": "00100000100100101110011001011011101110110110010100",
"output": "NO"
},
{
"input": "10110100110001001011110101110010100010000000000100101010111110111110100011",
"output": "YES"
},
{
"input": "00011101010101111001011011001101101011111101000010100000111000011100101011",
"output": "NO"
},
{
"input": "01110000110100110101110100111000101101011101011110110100100111100001110111",
"output": "NO"
},
{
"input": "11110110011000100111100111101101011111110100010101011011111101110110110111",
"output": "YES"
},
{
"input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100",
"output": "NO"
},
{
"input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010",
"output": "NO"
},
{
"input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110",
"output": "NO"
},
{
"input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000",
"output": "NO"
},
{
"input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110",
"output": "YES"
},
{
"input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000",
"output": "NO"
},
{
"input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101",
"output": "YES"
},
{
"input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101",
"output": "YES"
},
{
"input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000",
"output": "NO"
},
{
"input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000",
"output": "YES"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"output": "YES"
},
{
"input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111",
"output": "YES"
},
{
"input": "10100101000",
"output": "NO"
},
{
"input": "11110111011101",
"output": "NO"
},
{
"input": "10000000",
"output": "YES"
},
{
"input": "00000001",
"output": "YES"
},
{
"input": "01111111",
"output": "YES"
},
{
"input": "11111110",
"output": "YES"
}
] | 1,673,861,763
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 62
| 0
|
a = input()
c = 0
for i in range(len(a) - 1):
if a[i + 1] == a[i]:
c += 1
else:
c = 0
if c == 7:
break
if c == 7:
print('YES')
else:
print('NO')
|
Title: Football
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
Input Specification:
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Output Specification:
Print "YES" if the situation is dangerous. Otherwise, print "NO".
Demo Input:
['001001\n', '1000000001\n']
Demo Output:
['NO\n', 'YES\n']
Note:
none
|
```python
a = input()
c = 0
for i in range(len(a) - 1):
if a[i + 1] == a[i]:
c += 1
else:
c = 0
if c == 7:
break
if c == 7:
print('YES')
else:
print('NO')
```
| 0
|
500
|
A
|
New Year Transportation
|
PROGRAMMING
| 1,000
|
[
"dfs and similar",
"graphs",
"implementation"
] | null | null |
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells.
So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals.
Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system.
|
The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to.
The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World.
|
If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO".
|
[
"8 4\n1 2 1 2 1 2 1\n",
"8 5\n1 2 1 2 1 1 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4.
In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
| 500
|
[
{
"input": "8 4\n1 2 1 2 1 2 1",
"output": "YES"
},
{
"input": "8 5\n1 2 1 2 1 1 1",
"output": "NO"
},
{
"input": "20 19\n13 16 7 6 12 1 5 7 8 6 5 7 5 5 3 3 2 2 1",
"output": "YES"
},
{
"input": "50 49\n11 7 1 41 26 36 19 16 38 14 36 35 37 27 20 27 3 6 21 2 27 11 18 17 19 16 22 8 8 9 1 7 5 12 5 6 13 6 11 2 6 3 1 5 1 1 2 2 1",
"output": "YES"
},
{
"input": "120 104\n41 15 95 85 34 11 25 42 65 39 77 80 74 17 66 73 21 14 36 63 63 79 45 24 65 7 63 80 51 21 2 19 78 28 71 2 15 23 17 68 62 18 54 39 43 70 3 46 34 23 41 65 32 10 13 18 10 3 16 48 54 18 57 28 3 24 44 50 15 2 20 22 45 44 3 29 2 27 11 2 12 25 25 31 1 2 32 4 11 30 13 16 26 21 1 13 21 8 15 5 18 13 5 15 3 8 13 6 5 1 9 7 1 2 4 1 1 2 1",
"output": "NO"
},
{
"input": "10 3\n8 3 5 4 2 3 2 2 1",
"output": "NO"
},
{
"input": "10 9\n8 3 5 4 2 3 2 2 1",
"output": "YES"
},
{
"input": "3 2\n1 1",
"output": "YES"
},
{
"input": "3 2\n2 1",
"output": "NO"
},
{
"input": "4 2\n2 1 1",
"output": "NO"
},
{
"input": "4 4\n2 2 1",
"output": "YES"
},
{
"input": "8 8\n1 2 1 2 1 2 1",
"output": "YES"
},
{
"input": "3 3\n1 1",
"output": "YES"
},
{
"input": "8 8\n1 2 1 2 1 1 1",
"output": "YES"
},
{
"input": "3 3\n2 1",
"output": "YES"
},
{
"input": "4 4\n1 1 1",
"output": "YES"
},
{
"input": "8 8\n1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "5 5\n1 1 1 1",
"output": "YES"
}
] | 1,669,367,294
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 46
| 1,433,600
|
n,m = map(int,input().split())
lst = list(map(int,input().split()))
cnt = 0
for i in range(0,n-1):
if(cnt==m):
print("YES")
exit()
cnt += (lst[i])
print("NO")
|
Title: New Year Transportation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells.
So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals.
Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system.
Input Specification:
The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to.
The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World.
Output Specification:
If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO".
Demo Input:
['8 4\n1 2 1 2 1 2 1\n', '8 5\n1 2 1 2 1 1 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4.
In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
|
```python
n,m = map(int,input().split())
lst = list(map(int,input().split()))
cnt = 0
for i in range(0,n-1):
if(cnt==m):
print("YES")
exit()
cnt += (lst[i])
print("NO")
```
| 0
|
|
75
|
A
|
Life Without Zeros
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Life Without Zeros
|
2
|
256
|
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
|
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
|
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
|
[
"101\n102\n",
"105\n106\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "101\n102",
"output": "YES"
},
{
"input": "105\n106",
"output": "NO"
},
{
"input": "544\n397",
"output": "YES"
},
{
"input": "822\n280",
"output": "NO"
},
{
"input": "101\n413",
"output": "NO"
},
{
"input": "309\n139",
"output": "NO"
},
{
"input": "693\n970",
"output": "NO"
},
{
"input": "981\n1",
"output": "YES"
},
{
"input": "352\n276",
"output": "YES"
},
{
"input": "164\n691",
"output": "YES"
},
{
"input": "110036\n43",
"output": "YES"
},
{
"input": "100\n1000",
"output": "NO"
},
{
"input": "1000000000\n1000000000",
"output": "YES"
},
{
"input": "999999999\n999999999",
"output": "YES"
},
{
"input": "6\n4",
"output": "NO"
},
{
"input": "123456\n876543",
"output": "YES"
},
{
"input": "1234567\n9876543",
"output": "NO"
},
{
"input": "1111111\n1119111",
"output": "NO"
},
{
"input": "10502405\n40403403",
"output": "YES"
},
{
"input": "1\n1",
"output": "YES"
},
{
"input": "5\n4",
"output": "YES"
},
{
"input": "1\n6",
"output": "YES"
},
{
"input": "40\n17",
"output": "NO"
},
{
"input": "35\n81",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "2081\n7450",
"output": "NO"
},
{
"input": "84355694\n373629503",
"output": "NO"
},
{
"input": "885992048\n510468672",
"output": "NO"
},
{
"input": "540144752\n647307841",
"output": "NO"
},
{
"input": "341781108\n784147010",
"output": "NO"
},
{
"input": "960440938\n572334653",
"output": "NO"
},
{
"input": "657414510\n768771903",
"output": "NO"
},
{
"input": "501871728\n725074574",
"output": "NO"
},
{
"input": "968\n851",
"output": "YES"
},
{
"input": "943\n939",
"output": "YES"
},
{
"input": "347\n908",
"output": "NO"
},
{
"input": "611\n41",
"output": "YES"
},
{
"input": "737\n289",
"output": "NO"
},
{
"input": "168\n571",
"output": "YES"
},
{
"input": "868\n463",
"output": "YES"
},
{
"input": "815732007\n913882008",
"output": "NO"
},
{
"input": "459039901\n453033850",
"output": "NO"
},
{
"input": "975305404\n484601256",
"output": "NO"
}
] | 1,623,398,253
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 124
| 0
|
a = int(input())
b = int(input())
aa = []
bb = []
cc = []
for i in str(a):
if i != '0':
aa.append(i)
for i in str(b):
if i != '0':
bb.append(i)
for i in str(a + b):
if i != '0':
cc.append(i)
a = int(''.join(map(str, aa)))
b = int(''.join(map(str, bb)))
c = int(''.join(map(str, cc)))
if a + b == c:
print('YES')
else:
print('NO')
|
Title: Life Without Zeros
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Can you imagine our life if we removed all zeros from it? For sure we will have many problems.
In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?
For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation.
But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
Input Specification:
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
Output Specification:
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
Demo Input:
['101\n102\n', '105\n106\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
a = int(input())
b = int(input())
aa = []
bb = []
cc = []
for i in str(a):
if i != '0':
aa.append(i)
for i in str(b):
if i != '0':
bb.append(i)
for i in str(a + b):
if i != '0':
cc.append(i)
a = int(''.join(map(str, aa)))
b = int(''.join(map(str, bb)))
c = int(''.join(map(str, cc)))
if a + b == c:
print('YES')
else:
print('NO')
```
| 3.969
|
691
|
E
|
Xor-sequences
|
PROGRAMMING
| 1,900
|
[
"matrices"
] | null | null |
You are given *n* integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n*.
A sequence of integers *x*1,<=<=*x*2,<=<=...,<=<=*x**k* is called a "xor-sequence" if for every 1<=<=≤<=<=*i*<=<=≤<=<=*k*<=-<=1 the number of ones in the binary representation of the number *x**i* *x**i*<=<=+<=<=1's is a multiple of 3 and for all 1<=≤<=*i*<=≤<=*k*. The symbol is used for the binary exclusive or operation.
How many "xor-sequences" of length *k* exist? Output the answer modulo 109<=+<=7.
Note if *a*<==<=[1,<=1] and *k*<==<=1 then the answer is 2, because you should consider the ones from *a* as different.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1018) — the number of given integers and the length of the "xor-sequences".
The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1018).
|
Print the only integer *c* — the number of "xor-sequences" of length *k* modulo 109<=+<=7.
|
[
"5 2\n15 1 2 4 8\n",
"5 1\n15 1 2 4 8\n"
] |
[
"13\n",
"5\n"
] |
none
| 0
|
[
{
"input": "5 2\n15 1 2 4 8",
"output": "13"
},
{
"input": "5 1\n15 1 2 4 8",
"output": "5"
},
{
"input": "10 1\n44 65 23 44 100 19 19 23 19 40",
"output": "10"
},
{
"input": "10 2\n93 93 85 48 44 98 93 100 98 98",
"output": "52"
},
{
"input": "10 100\n22 0 41 63 22 41 17 22 15 42",
"output": "205668186"
},
{
"input": "10 1000000000\n454240622 216977025 454240622 509843007 509843007 26552516 488949284 708817573 453191950 447767457",
"output": "108319885"
},
{
"input": "100 576460752303423487\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "959277620"
},
{
"input": "100 576460752303423488\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "927761335"
}
] | 1,666,075,549
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 3
| 46
| 1,433,600
|
mod=10**9+7
def matmul(A,B,mod):
res = [[0]*len(B[0]) for _ in [None]*len(A)]
for i, resi in enumerate(res):
for k, aik in enumerate(A[i]):
for j,bkj in enumerate(B[k]):
resi[j] += aik*bkj
resi[j] %= mod
return res
def matpow(A,p,mod):
if p%2:
return matmul(A, matpow(A,p-1,mod),mod)
elif p > 0:
b = matpow(A,p//2,mod)
return matmul(b,b,mod)
else:
return [[int(i==j) for j in range(len(A))] for i in range(len(A))]
n,k=map(int,input().split())
a=list(map(int,input().split()))
mat=[[0]*n for i in range(n)]
for i in range(n):
for j in range(n):
if (a[i]^a[j])%3==0:
mat[i][j]=1
matp=matpow(mat,k-1,mod)
ansmat=matmul(matp,[[1] for i in range(n)],mod)
ans=0
for i in range(n):
ans+=ansmat[i][0]
print(ans%mod)
|
Title: Xor-sequences
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given *n* integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n*.
A sequence of integers *x*1,<=<=*x*2,<=<=...,<=<=*x**k* is called a "xor-sequence" if for every 1<=<=≤<=<=*i*<=<=≤<=<=*k*<=-<=1 the number of ones in the binary representation of the number *x**i* *x**i*<=<=+<=<=1's is a multiple of 3 and for all 1<=≤<=*i*<=≤<=*k*. The symbol is used for the binary exclusive or operation.
How many "xor-sequences" of length *k* exist? Output the answer modulo 109<=+<=7.
Note if *a*<==<=[1,<=1] and *k*<==<=1 then the answer is 2, because you should consider the ones from *a* as different.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1018) — the number of given integers and the length of the "xor-sequences".
The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1018).
Output Specification:
Print the only integer *c* — the number of "xor-sequences" of length *k* modulo 109<=+<=7.
Demo Input:
['5 2\n15 1 2 4 8\n', '5 1\n15 1 2 4 8\n']
Demo Output:
['13\n', '5\n']
Note:
none
|
```python
mod=10**9+7
def matmul(A,B,mod):
res = [[0]*len(B[0]) for _ in [None]*len(A)]
for i, resi in enumerate(res):
for k, aik in enumerate(A[i]):
for j,bkj in enumerate(B[k]):
resi[j] += aik*bkj
resi[j] %= mod
return res
def matpow(A,p,mod):
if p%2:
return matmul(A, matpow(A,p-1,mod),mod)
elif p > 0:
b = matpow(A,p//2,mod)
return matmul(b,b,mod)
else:
return [[int(i==j) for j in range(len(A))] for i in range(len(A))]
n,k=map(int,input().split())
a=list(map(int,input().split()))
mat=[[0]*n for i in range(n)]
for i in range(n):
for j in range(n):
if (a[i]^a[j])%3==0:
mat[i][j]=1
matp=matpow(mat,k-1,mod)
ansmat=matmul(matp,[[1] for i in range(n)],mod)
ans=0
for i in range(n):
ans+=ansmat[i][0]
print(ans%mod)
```
| 0
|
|
520
|
A
|
Pangram
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices.
You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string.
The second line contains the string. The string consists only of uppercase and lowercase Latin letters.
|
Output "YES", if the string is a pangram and "NO" otherwise.
|
[
"12\ntoosmallword\n",
"35\nTheQuickBrownFoxJumpsOverTheLazyDog\n"
] |
[
"NO\n",
"YES\n"
] |
none
| 500
|
[
{
"input": "12\ntoosmallword",
"output": "NO"
},
{
"input": "35\nTheQuickBrownFoxJumpsOverTheLazyDog",
"output": "YES"
},
{
"input": "1\na",
"output": "NO"
},
{
"input": "26\nqwertyuiopasdfghjklzxcvbnm",
"output": "YES"
},
{
"input": "26\nABCDEFGHIJKLMNOPQRSTUVWXYZ",
"output": "YES"
},
{
"input": "48\nthereisasyetinsufficientdataforameaningfulanswer",
"output": "NO"
},
{
"input": "30\nToBeOrNotToBeThatIsTheQuestion",
"output": "NO"
},
{
"input": "30\njackdawslovemybigsphinxofquarz",
"output": "NO"
},
{
"input": "31\nTHEFIVEBOXINGWIZARDSJUMPQUICKLY",
"output": "YES"
},
{
"input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "NO"
},
{
"input": "26\nMGJYIZDKsbhpVeNFlquRTcWoAx",
"output": "YES"
},
{
"input": "26\nfWMOhAPsbIVtyUEZrGNQXDklCJ",
"output": "YES"
},
{
"input": "26\nngPMVFSThiRCwLEuyOAbKxQzDJ",
"output": "YES"
},
{
"input": "25\nnxYTzLFwzNolAumjgcAboyxAj",
"output": "NO"
},
{
"input": "26\npRWdodGdxUESvcScPGbUoooZsC",
"output": "NO"
},
{
"input": "66\nBovdMlDzTaqKllZILFVfxbLGsRnzmtVVTmqiIDTYrossLEPlmsPrkUYtWEsGHVOnFj",
"output": "NO"
},
{
"input": "100\nmKtsiDRJypUieHIkvJaMFkwaKxcCIbBszZQLIyPpCDCjhNpAnYFngLjRpnKWpKWtGnwoSteeZXuFHWQxxxOpFlNeYTwKocsXuCoa",
"output": "YES"
},
{
"input": "26\nEoqxUbsLjPytUHMiFnvcGWZdRK",
"output": "NO"
},
{
"input": "26\nvCUFRKElZOnjmXGylWQaHDiPst",
"output": "NO"
},
{
"input": "26\nWtrPuaHdXLKJMsnvQfgOiJZBEY",
"output": "NO"
},
{
"input": "26\npGiFluRteQwkaVoPszJyNBChxM",
"output": "NO"
},
{
"input": "26\ncTUpqjPmANrdbzSFhlWIoKxgVY",
"output": "NO"
},
{
"input": "26\nLndjgvAEuICHKxPwqYztosrmBN",
"output": "NO"
},
{
"input": "26\nMdaXJrCipnOZLykfqHWEStevbU",
"output": "NO"
},
{
"input": "26\nEjDWsVxfKTqGXRnUMOLYcIzPba",
"output": "NO"
},
{
"input": "26\nxKwzRMpunYaqsdfaBgJcVElTHo",
"output": "NO"
},
{
"input": "26\nnRYUQsTwCPLZkgshfEXvBdoiMa",
"output": "NO"
},
{
"input": "26\nHNCQPfJutyAlDGsvRxZWMEbIdO",
"output": "NO"
},
{
"input": "26\nDaHJIpvKznQcmUyWsTGObXRFDe",
"output": "NO"
},
{
"input": "26\nkqvAnFAiRhzlJbtyuWedXSPcOG",
"output": "NO"
},
{
"input": "26\nhlrvgdwsIOyjcmUZXtAKEqoBpF",
"output": "NO"
},
{
"input": "26\njLfXXiMhBTcAwQVReGnpKzdsYu",
"output": "NO"
},
{
"input": "26\nlNMcVuwItjxRBGAekjhyDsQOzf",
"output": "NO"
},
{
"input": "26\nRkSwbNoYldUGtAZvpFMcxhIJFE",
"output": "NO"
},
{
"input": "26\nDqspXZJTuONYieKgaHLMBwfVSC",
"output": "NO"
},
{
"input": "26\necOyUkqNljFHRVXtIpWabGMLDz",
"output": "NO"
},
{
"input": "26\nEKAvqZhBnPmVCDRlgWJfOusxYI",
"output": "NO"
},
{
"input": "26\naLbgqeYchKdMrsZxIPFvTOWNjA",
"output": "NO"
},
{
"input": "26\nxfpBLsndiqtacOCHGmeWUjRkYz",
"output": "NO"
},
{
"input": "26\nXsbRKtqleZPNIVCdfUhyagAomJ",
"output": "NO"
},
{
"input": "26\nAmVtbrwquEthZcjKPLiyDgSoNF",
"output": "NO"
},
{
"input": "26\nOhvXDcwqAUmSEPRZGnjFLiKtNB",
"output": "NO"
},
{
"input": "26\nEKWJqCFLRmstxVBdYuinpbhaOg",
"output": "NO"
},
{
"input": "26\nmnbvcxxlkjhgfdsapoiuytrewq",
"output": "NO"
},
{
"input": "26\naAbcdefghijklmnopqrstuvwxy",
"output": "NO"
},
{
"input": "30\nABCDEFGHTYRIOPLabcdefghtyriopl",
"output": "NO"
},
{
"input": "25\nabcdefghijklmnopqrstuvwxy",
"output": "NO"
},
{
"input": "26\nabcdefhijklmnopqrstVxyzABC",
"output": "NO"
},
{
"input": "25\nqwertyuiopasdfghjklxcvbnm",
"output": "NO"
},
{
"input": "34\nTheQuickBrownFoxJumpsOverTheLayDog",
"output": "NO"
},
{
"input": "26\nabcdefghigklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "26\nabcdefghijklmnopqrstuvwxyA",
"output": "NO"
},
{
"input": "50\nqazwsxedcrfvtgbyhnujmikolQWERTYUIOASDFGHJKLZXCVBNM",
"output": "NO"
},
{
"input": "35\nTheQuickBrownFoxJumpsOverTheLasyDog",
"output": "NO"
},
{
"input": "25\nbcdefghijklmnopqrstuvwxyz",
"output": "NO"
},
{
"input": "38\nAbCdEfGhIjKlMnOpQrStVwXyZzzzzzzaaaaaaa",
"output": "NO"
},
{
"input": "26\nabcdefghiklmnopqrstvxyzABC",
"output": "NO"
},
{
"input": "26\nabcdefghijklmnopqrstuvwxzZ",
"output": "NO"
},
{
"input": "50\nabcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXY",
"output": "NO"
}
] | 1,699,564,476
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 30
| 0
|
input_str = set(input().lower())
if len(input_str) >= 23:
print("YES")
else:
print("NO")
|
Title: Pangram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices.
You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string.
The second line contains the string. The string consists only of uppercase and lowercase Latin letters.
Output Specification:
Output "YES", if the string is a pangram and "NO" otherwise.
Demo Input:
['12\ntoosmallword\n', '35\nTheQuickBrownFoxJumpsOverTheLazyDog\n']
Demo Output:
['NO\n', 'YES\n']
Note:
none
|
```python
input_str = set(input().lower())
if len(input_str) >= 23:
print("YES")
else:
print("NO")
```
| 0
|
|
762
|
B
|
USB vs. PS/2
|
PROGRAMMING
| 1,400
|
[
"greedy",
"implementation",
"sortings",
"two pointers"
] | null | null |
Due to the increase in the number of students of Berland State University it was decided to equip a new computer room. You were given the task of buying mouses, and you have to spend as little as possible. After all, the country is in crisis!
The computers bought for the room were different. Some of them had only USB ports, some — only PS/2 ports, and some had both options.
You have found a price list of a certain computer shop. In it, for *m* mouses it is specified the cost and the type of the port that is required to plug the mouse in (USB or PS/2). Each mouse from the list can be bought at most once.
You want to buy some set of mouses from the given price list in such a way so that you maximize the number of computers equipped with mouses (it is not guaranteed that you will be able to equip all of the computers), and in case of equality of this value you want to minimize the total cost of mouses you will buy.
|
The first line contains three integers *a*, *b* and *c* (0<=≤<=*a*,<=*b*,<=*c*<=≤<=105) — the number of computers that only have USB ports, the number of computers, that only have PS/2 ports, and the number of computers, that have both options, respectively.
The next line contains one integer *m* (0<=≤<=*m*<=≤<=3·105) — the number of mouses in the price list.
The next *m* lines each describe another mouse. The *i*-th line contains first integer *val**i* (1<=≤<=*val**i*<=≤<=109) — the cost of the *i*-th mouse, then the type of port (USB or PS/2) that is required to plug the mouse in.
|
Output two integers separated by space — the number of equipped computers and the total cost of the mouses you will buy.
|
[
"2 1 1\n4\n5 USB\n6 PS/2\n3 PS/2\n7 PS/2\n"
] |
[
"3 14\n"
] |
In the first example you can buy the first three mouses. This way you will equip one of the computers that has only a USB port with a USB mouse, and the two PS/2 mouses you will plug into the computer with PS/2 port and the computer with both ports.
| 0
|
[
{
"input": "2 1 1\n4\n5 USB\n6 PS/2\n3 PS/2\n7 PS/2",
"output": "3 14"
},
{
"input": "1 4 4\n12\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n916758386 PS/2\n474310330 USB\n350512489 USB\n281054887 USB\n875326145 USB",
"output": "8 2345344274"
},
{
"input": "3 0 3\n0",
"output": "0 0"
},
{
"input": "1 2 4\n12\n257866589 PS/2\n246883568 USB\n104396128 USB\n993389754 PS/2\n896419206 USB\n405836977 USB\n50415634 PS/2\n152940828 PS/2\n847270779 PS/2\n850467106 USB\n922287488 USB\n622484596 PS/2",
"output": "7 1840824320"
},
{
"input": "0 4 2\n12\n170189291 USB\n670118538 USB\n690872205 PS/2\n582606841 PS/2\n397508479 USB\n578814041 USB\n96734643 USB\n168371453 USB\n528445088 PS/2\n506017602 PS/2\n512143072 USB\n188740735 USB",
"output": "6 2573047832"
},
{
"input": "5 100 100\n29\n741703337 USB\n285817204 PS/2\n837154300 USB\n250820430 USB\n809146898 PS/2\n10478072 USB\n2833804 PS/2\n669657009 USB\n427708130 PS/2\n204319444 PS/2\n209882040 USB\n56937335 USB\n107442187 USB\n46188465 USB\n902978472 USB\n792812238 PS/2\n513787720 PS/2\n486353330 PS/2\n168930159 PS/2\n183624803 USB\n67302934 USB\n264291554 USB\n467936329 USB\n82111533 USB\n849018301 USB\n645374374 PS/2\n967926381 PS/2\n286289663 PS/2\n36760263 USB",
"output": "29 11375586709"
},
{
"input": "71 15 60\n24\n892757877 USB\n613048358 USB\n108150254 USB\n425313488 USB\n949441992 USB\n859461207 PS/2\n81440099 PS/2\n348819522 USB\n606267503 USB\n443620287 PS/2\n610038583 USB\n374259313 PS/2\n947207567 PS/2\n424889764 PS/2\n58345333 USB\n735796912 PS/2\n523115052 USB\n983709864 USB\n426463338 USB\n305759345 PS/2\n689127461 PS/2\n878781173 PS/2\n445036480 USB\n643765304 USB",
"output": "24 13374616076"
},
{
"input": "37 80 100\n31\n901706521 USB\n555265160 PS/2\n547038505 PS/2\n644436873 PS/2\n105558073 USB\n915082057 PS/2\n913113815 USB\n953413471 PS/2\n252912707 PS/2\n830344497 USB\n781593007 USB\n610659875 PS/2\n177755858 PS/2\n496444729 PS/2\n617569418 USB\n304908147 PS/2\n188649950 PS/2\n705737216 USB\n473915286 USB\n622994426 PS/2\n783873493 USB\n789927108 USB\n258311181 PS/2\n720083354 PS/2\n676406125 PS/2\n634885851 PS/2\n126814339 USB\n704693540 USB\n789707618 PS/2\n938873907 USB\n576166502 USB",
"output": "31 18598842609"
},
{
"input": "6 100 10\n11\n931138340 USB\n421397130 USB\n899599243 PS/2\n891033726 PS/2\n375251114 PS/2\n991976657 USB\n743116261 PS/2\n163085281 PS/2\n111524953 PS/2\n148832199 PS/2\n480084927 PS/2",
"output": "11 6157039831"
},
{
"input": "1 1 124\n1\n2 USB",
"output": "1 2"
},
{
"input": "1 1 1\n3\n3 USB\n3 PS/2\n3 PS/2",
"output": "3 9"
},
{
"input": "3 3 3\n6\n3 USB\n3 USB\n3 USB\n3 USB\n3 USB\n3 USB",
"output": "6 18"
},
{
"input": "1 1 1\n0",
"output": "0 0"
},
{
"input": "1 1 1\n4\n9 USB\n1 PS/2\n5 USB\n6 PS/2",
"output": "3 12"
},
{
"input": "1 1 1\n1\n6 PS/2",
"output": "1 6"
},
{
"input": "1 3 1\n5\n1 PS/2\n8 USB\n8 PS/2\n8 PS/2\n1 PS/2",
"output": "5 26"
},
{
"input": "3 2 1\n6\n1 USB\n4 PS/2\n4 PS/2\n7 USB\n8 PS/2\n1 USB",
"output": "6 25"
},
{
"input": "1 1 1\n3\n10 USB\n6 USB\n6 USB",
"output": "2 12"
},
{
"input": "1 1 1\n3\n4 USB\n3 PS/2\n3 USB",
"output": "3 10"
},
{
"input": "1 1 1\n2\n6 PS/2\n5 USB",
"output": "2 11"
},
{
"input": "1 1 2\n5\n4 USB\n7 PS/2\n10 PS/2\n7 PS/2\n3 USB",
"output": "4 21"
},
{
"input": "1 4 4\n8\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n474310330 USB",
"output": "7 1621841331"
},
{
"input": "1 4 4\n9\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n916758386 PS/2\n474310330 USB",
"output": "8 2538599717"
},
{
"input": "1 4 4\n10\n36949214 USB\n683538043 USB\n595594834 PS/2\n24951774 PS/2\n131512123 USB\n327575645 USB\n30947411 USB\n916758386 PS/2\n474310330 USB\n350512489 USB",
"output": "8 2414801876"
},
{
"input": "48810 78876 100000\n0",
"output": "0 0"
},
{
"input": "1 0 0\n1\n862644246 PS/2",
"output": "0 0"
},
{
"input": "2 6 0\n3\n380521935 USB\n261865233 USB\n744434239 USB",
"output": "2 642387168"
},
{
"input": "0 0 0\n1\n1 USB",
"output": "0 0"
},
{
"input": "0 0 0\n1\n2 USB",
"output": "0 0"
},
{
"input": "1 1 1\n1\n5 USB",
"output": "1 5"
},
{
"input": "1 1 1\n2\n2 USB\n5 USB",
"output": "2 7"
},
{
"input": "1 1 1\n2\n3 PS/2\n6 PS/2",
"output": "2 9"
},
{
"input": "2 1 1\n4\n5 USB\n5 PS/2\n3 PS/2\n7 PS/2",
"output": "3 13"
}
] | 1,662,932,785
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 16
| 2,000
| 11,059,200
|
u, p, b = map(int, input().split())
m = int(input())
u_arr, p_arr = list(), list()
for _ in range(m):
c, t = input().split()
if t[0] == 'U':
u_arr.append(int(c))
else:
p_arr.append(int(c))
u_arr.sort()
p_arr.sort()
s = 0
i = min(u, len(u_arr)) # off by 1?
j = min(p, len(p_arr))
s += sum(u_arr[:i])
s += sum(p_arr[:j])
while i < len(u_arr) and j < len(p_arr) and b > 0:
if u_arr[i] < p_arr[j]:
s += u_arr[i]
b -= 1
i += 1
else:
s += p_arr[j]
b -= 1
j += 1
if i == len(u_arr):
delta = min(len(p_arr) - j, b)
s += sum(p_arr[j:j+delta])
j += delta
elif j == len(p_arr):
delta = min(len(u_arr) - i, b)
s += sum(u_arr[i:i+delta])
i += delta
equipped_cnt = i + j
print(equipped_cnt, s)
|
Title: USB vs. PS/2
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Due to the increase in the number of students of Berland State University it was decided to equip a new computer room. You were given the task of buying mouses, and you have to spend as little as possible. After all, the country is in crisis!
The computers bought for the room were different. Some of them had only USB ports, some — only PS/2 ports, and some had both options.
You have found a price list of a certain computer shop. In it, for *m* mouses it is specified the cost and the type of the port that is required to plug the mouse in (USB or PS/2). Each mouse from the list can be bought at most once.
You want to buy some set of mouses from the given price list in such a way so that you maximize the number of computers equipped with mouses (it is not guaranteed that you will be able to equip all of the computers), and in case of equality of this value you want to minimize the total cost of mouses you will buy.
Input Specification:
The first line contains three integers *a*, *b* and *c* (0<=≤<=*a*,<=*b*,<=*c*<=≤<=105) — the number of computers that only have USB ports, the number of computers, that only have PS/2 ports, and the number of computers, that have both options, respectively.
The next line contains one integer *m* (0<=≤<=*m*<=≤<=3·105) — the number of mouses in the price list.
The next *m* lines each describe another mouse. The *i*-th line contains first integer *val**i* (1<=≤<=*val**i*<=≤<=109) — the cost of the *i*-th mouse, then the type of port (USB or PS/2) that is required to plug the mouse in.
Output Specification:
Output two integers separated by space — the number of equipped computers and the total cost of the mouses you will buy.
Demo Input:
['2 1 1\n4\n5 USB\n6 PS/2\n3 PS/2\n7 PS/2\n']
Demo Output:
['3 14\n']
Note:
In the first example you can buy the first three mouses. This way you will equip one of the computers that has only a USB port with a USB mouse, and the two PS/2 mouses you will plug into the computer with PS/2 port and the computer with both ports.
|
```python
u, p, b = map(int, input().split())
m = int(input())
u_arr, p_arr = list(), list()
for _ in range(m):
c, t = input().split()
if t[0] == 'U':
u_arr.append(int(c))
else:
p_arr.append(int(c))
u_arr.sort()
p_arr.sort()
s = 0
i = min(u, len(u_arr)) # off by 1?
j = min(p, len(p_arr))
s += sum(u_arr[:i])
s += sum(p_arr[:j])
while i < len(u_arr) and j < len(p_arr) and b > 0:
if u_arr[i] < p_arr[j]:
s += u_arr[i]
b -= 1
i += 1
else:
s += p_arr[j]
b -= 1
j += 1
if i == len(u_arr):
delta = min(len(p_arr) - j, b)
s += sum(p_arr[j:j+delta])
j += delta
elif j == len(p_arr):
delta = min(len(u_arr) - i, b)
s += sum(u_arr[i:i+delta])
i += delta
equipped_cnt = i + j
print(equipped_cnt, s)
```
| 0
|
|
703
|
A
|
Mishka and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
|
The first line of the input contains single integer *n* *n* (1<=≤<=*n*<=≤<=100) — the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=≤<=*m**i*,<=<=*c**i*<=≤<=6) — values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
|
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
|
[
"3\n3 5\n2 1\n4 2\n",
"2\n6 1\n1 6\n",
"3\n1 5\n3 3\n2 2\n"
] |
[
"Mishka",
"Friendship is magic!^^",
"Chris"
] |
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
| 500
|
[
{
"input": "3\n3 5\n2 1\n4 2",
"output": "Mishka"
},
{
"input": "2\n6 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "3\n1 5\n3 3\n2 2",
"output": "Chris"
},
{
"input": "6\n4 1\n4 2\n5 3\n5 1\n5 3\n4 1",
"output": "Mishka"
},
{
"input": "8\n2 4\n1 4\n1 5\n2 6\n2 5\n2 5\n2 4\n2 5",
"output": "Chris"
},
{
"input": "8\n4 1\n2 6\n4 2\n2 5\n5 2\n3 5\n5 2\n1 5",
"output": "Friendship is magic!^^"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "9\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 4\n6 6\n3 2\n1 5\n5 2\n1 5\n1 5\n3 1\n6 5\n4 3\n1 1\n5 1\n3 3\n2 4\n1 5\n3 4\n5 1\n5 5\n2 5\n2 1\n4 3\n6 5\n1 1\n2 1\n1 3\n1 1\n6 4\n4 6\n6 4\n2 1\n2 5\n6 2\n3 4\n5 5\n1 4\n4 6\n3 4\n1 6\n5 1\n4 3\n3 4\n2 2\n1 2\n2 3\n1 3\n4 4\n5 5\n4 5\n4 4\n3 1\n4 5\n2 3\n2 6\n6 5\n6 1\n6 6\n2 3\n6 4\n3 3\n2 5\n4 4\n3 1\n2 4\n6 1\n3 2\n1 3\n5 4\n6 6\n2 5\n5 1\n1 1\n2 5\n6 5\n3 6\n5 6\n4 3\n3 4\n3 4\n6 5\n5 2\n4 2\n1 1\n3 1\n2 6\n1 6\n1 2\n6 1\n3 4\n1 6\n3 1\n5 3\n1 3\n5 6\n2 1\n6 4\n3 1\n1 6\n6 3\n3 3\n4 3",
"output": "Chris"
},
{
"input": "100\n4 1\n3 4\n4 6\n4 5\n6 5\n5 3\n6 2\n6 3\n5 2\n4 5\n1 5\n5 4\n1 4\n4 5\n4 6\n1 6\n4 4\n5 1\n6 4\n6 4\n4 6\n2 3\n6 2\n4 6\n1 4\n2 3\n4 3\n1 3\n6 2\n3 1\n3 4\n2 6\n4 5\n5 4\n2 2\n2 5\n4 1\n2 2\n3 3\n1 4\n5 6\n6 4\n4 2\n6 1\n5 5\n4 1\n2 1\n6 4\n4 4\n4 3\n5 3\n4 5\n5 3\n3 5\n6 3\n1 1\n3 4\n6 3\n6 1\n5 1\n2 4\n4 3\n2 2\n5 5\n1 5\n5 3\n4 6\n1 4\n6 3\n4 3\n2 4\n3 2\n2 4\n3 4\n6 2\n5 6\n1 2\n1 5\n5 5\n2 6\n5 1\n1 6\n5 3\n3 5\n2 6\n4 6\n6 2\n3 1\n5 5\n6 1\n3 6\n4 4\n1 1\n4 6\n5 3\n4 2\n5 1\n3 3\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n6 3\n4 5\n4 3\n5 4\n5 1\n6 3\n4 2\n4 6\n3 1\n2 4\n2 2\n4 6\n5 3\n5 5\n4 2\n6 2\n2 3\n4 4\n6 4\n3 5\n2 4\n2 2\n5 2\n3 5\n2 4\n4 4\n3 5\n6 5\n1 3\n1 6\n2 2\n2 4\n3 2\n5 4\n1 6\n3 4\n4 1\n1 5\n1 4\n5 3\n2 2\n4 5\n6 3\n4 4\n1 1\n4 1\n2 4\n4 1\n4 5\n5 3\n1 1\n1 6\n5 6\n6 6\n4 2\n4 3\n3 4\n3 6\n3 4\n6 5\n3 4\n5 4\n5 1\n5 3\n5 1\n1 2\n2 6\n3 4\n6 5\n4 3\n1 1\n5 5\n5 1\n3 3\n5 2\n1 3\n6 6\n5 6\n1 4\n4 4\n1 4\n3 6\n6 5\n3 3\n3 6\n1 5\n1 2\n3 6\n3 6\n4 1\n5 2\n1 2\n5 2\n3 3\n4 4\n4 2\n6 2\n5 4\n6 1\n6 3",
"output": "Mishka"
},
{
"input": "8\n4 1\n6 2\n4 1\n5 3\n4 1\n5 3\n6 2\n5 3",
"output": "Mishka"
},
{
"input": "5\n3 6\n3 5\n3 5\n1 6\n3 5",
"output": "Chris"
},
{
"input": "4\n4 1\n2 4\n5 3\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "6\n6 3\n5 1\n6 3\n4 3\n4 3\n5 2",
"output": "Mishka"
},
{
"input": "7\n3 4\n1 4\n2 5\n1 6\n1 6\n1 5\n3 4",
"output": "Chris"
},
{
"input": "6\n6 2\n2 5\n5 2\n3 6\n4 3\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "8\n6 1\n5 3\n4 3\n4 1\n5 1\n4 2\n4 2\n4 1",
"output": "Mishka"
},
{
"input": "9\n2 5\n2 5\n1 4\n2 6\n2 4\n2 5\n2 6\n1 5\n2 5",
"output": "Chris"
},
{
"input": "4\n6 2\n2 4\n4 2\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "9\n5 2\n4 1\n4 1\n5 1\n6 2\n6 1\n5 3\n6 1\n6 2",
"output": "Mishka"
},
{
"input": "8\n2 4\n3 6\n1 6\n1 6\n2 4\n3 4\n3 6\n3 4",
"output": "Chris"
},
{
"input": "6\n5 3\n3 6\n6 2\n1 6\n5 1\n3 5",
"output": "Friendship is magic!^^"
},
{
"input": "6\n5 2\n5 1\n6 1\n5 2\n4 2\n5 1",
"output": "Mishka"
},
{
"input": "5\n1 4\n2 5\n3 4\n2 6\n3 4",
"output": "Chris"
},
{
"input": "4\n6 2\n3 4\n5 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "93\n4 3\n4 1\n4 2\n5 2\n5 3\n6 3\n4 3\n6 2\n6 3\n5 1\n4 2\n4 2\n5 1\n6 2\n6 3\n6 1\n4 1\n6 2\n5 3\n4 3\n4 1\n4 2\n5 2\n6 3\n5 2\n5 2\n6 3\n5 1\n6 2\n5 2\n4 1\n5 2\n5 1\n4 1\n6 1\n5 2\n4 3\n5 3\n5 3\n5 1\n4 3\n4 3\n4 2\n4 1\n6 2\n6 1\n4 1\n5 2\n5 2\n6 2\n5 3\n5 1\n6 2\n5 1\n6 3\n5 2\n6 2\n6 2\n4 2\n5 2\n6 1\n6 3\n6 3\n5 1\n5 1\n4 1\n5 1\n4 3\n5 3\n6 3\n4 1\n4 3\n6 1\n6 1\n4 2\n6 2\n4 2\n5 2\n4 1\n5 2\n4 1\n5 1\n5 2\n5 1\n4 1\n6 3\n6 2\n4 3\n4 1\n5 2\n4 3\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "11\n1 6\n1 6\n2 4\n2 5\n3 4\n1 5\n1 6\n1 5\n1 6\n2 6\n3 4",
"output": "Chris"
},
{
"input": "70\n6 1\n3 6\n4 3\n2 5\n5 2\n1 4\n6 2\n1 6\n4 3\n1 4\n5 3\n2 4\n5 3\n1 6\n5 1\n3 5\n4 2\n2 4\n5 1\n3 5\n6 2\n1 5\n4 2\n2 5\n5 3\n1 5\n4 2\n1 4\n5 2\n2 6\n4 3\n1 5\n6 2\n3 4\n4 2\n3 5\n6 3\n3 4\n5 1\n1 4\n4 2\n1 4\n6 3\n2 6\n5 2\n1 6\n6 1\n2 6\n5 3\n1 5\n5 1\n1 6\n4 1\n1 5\n4 2\n2 4\n5 1\n2 5\n6 3\n1 4\n6 3\n3 6\n5 1\n1 4\n5 3\n3 5\n4 2\n3 4\n6 2\n1 4",
"output": "Friendship is magic!^^"
},
{
"input": "59\n4 1\n5 3\n6 1\n4 2\n5 1\n4 3\n6 1\n5 1\n4 3\n4 3\n5 2\n5 3\n4 1\n6 2\n5 1\n6 3\n6 3\n5 2\n5 2\n6 1\n4 1\n6 1\n4 3\n5 3\n5 3\n4 3\n4 2\n4 2\n6 3\n6 3\n6 1\n4 3\n5 1\n6 2\n6 1\n4 1\n6 1\n5 3\n4 2\n5 1\n6 2\n6 2\n4 3\n5 3\n4 3\n6 3\n5 2\n5 2\n4 3\n5 1\n5 3\n6 1\n6 3\n6 3\n4 3\n5 2\n5 2\n5 2\n4 3",
"output": "Mishka"
},
{
"input": "42\n1 5\n1 6\n1 6\n1 4\n2 5\n3 6\n1 6\n3 4\n2 5\n2 5\n2 4\n1 4\n3 4\n2 4\n2 6\n1 5\n3 6\n2 6\n2 6\n3 5\n1 4\n1 5\n2 6\n3 6\n1 4\n3 4\n2 4\n1 6\n3 4\n2 4\n2 6\n1 6\n1 4\n1 6\n1 6\n2 4\n1 5\n1 6\n2 5\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "78\n4 3\n3 5\n4 3\n1 5\n5 1\n1 5\n4 3\n1 4\n6 3\n1 5\n4 1\n2 4\n4 3\n2 4\n5 1\n3 6\n4 2\n3 6\n6 3\n3 4\n4 3\n3 6\n5 3\n1 5\n4 1\n2 6\n4 2\n2 4\n4 1\n3 5\n5 2\n3 6\n4 3\n2 4\n6 3\n1 6\n4 3\n3 5\n6 3\n2 6\n4 1\n2 4\n6 2\n1 6\n4 2\n1 4\n4 3\n1 4\n4 3\n2 4\n6 2\n3 5\n6 1\n3 6\n5 3\n1 6\n6 1\n2 6\n4 2\n1 5\n6 2\n2 6\n6 3\n2 4\n4 2\n3 5\n6 1\n2 5\n5 3\n2 6\n5 1\n3 6\n4 3\n3 6\n6 3\n2 5\n6 1\n2 6",
"output": "Friendship is magic!^^"
},
{
"input": "76\n4 1\n5 2\n4 3\n5 2\n5 3\n5 2\n6 1\n4 2\n6 2\n5 3\n4 2\n6 2\n4 1\n4 2\n5 1\n5 1\n6 2\n5 2\n5 3\n6 3\n5 2\n4 3\n6 3\n6 1\n4 3\n6 2\n6 1\n4 1\n6 1\n5 3\n4 1\n5 3\n4 2\n5 2\n4 3\n6 1\n6 2\n5 2\n6 1\n5 3\n4 3\n5 1\n5 3\n4 3\n5 1\n5 1\n4 1\n4 1\n4 1\n4 3\n5 3\n6 3\n6 3\n5 2\n6 2\n6 3\n5 1\n6 3\n5 3\n6 1\n5 3\n4 1\n5 3\n6 1\n4 2\n6 2\n4 3\n4 1\n6 2\n4 3\n5 3\n5 2\n5 3\n5 1\n6 3\n5 2",
"output": "Mishka"
},
{
"input": "84\n3 6\n3 4\n2 5\n2 4\n1 6\n3 4\n1 5\n1 6\n3 5\n1 6\n2 4\n2 6\n2 6\n2 4\n3 5\n1 5\n3 6\n3 6\n3 4\n3 4\n2 6\n1 6\n1 6\n3 5\n3 4\n1 6\n3 4\n3 5\n2 4\n2 5\n2 5\n3 5\n1 6\n3 4\n2 6\n2 6\n3 4\n3 4\n2 5\n2 5\n2 4\n3 4\n2 5\n3 4\n3 4\n2 6\n2 6\n1 6\n2 4\n1 5\n3 4\n2 5\n2 5\n3 4\n2 4\n2 6\n2 6\n1 4\n3 5\n3 5\n2 4\n2 5\n3 4\n1 5\n1 5\n2 6\n1 5\n3 5\n2 4\n2 5\n3 4\n2 6\n1 6\n2 5\n3 5\n3 5\n3 4\n2 5\n2 6\n3 4\n1 6\n2 5\n2 6\n1 4",
"output": "Chris"
},
{
"input": "44\n6 1\n1 6\n5 2\n1 4\n6 2\n2 5\n5 3\n3 6\n5 2\n1 6\n4 1\n2 4\n6 1\n3 4\n6 3\n3 6\n4 3\n2 4\n6 1\n3 4\n6 1\n1 6\n4 1\n3 5\n6 1\n3 6\n4 1\n1 4\n4 2\n2 6\n6 1\n2 4\n6 2\n1 4\n6 2\n2 4\n5 2\n3 6\n6 3\n2 6\n5 3\n3 4\n5 3\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "42\n5 3\n5 1\n5 2\n4 1\n6 3\n6 1\n6 2\n4 1\n4 3\n4 1\n5 1\n5 3\n5 1\n4 1\n4 2\n6 1\n6 3\n5 1\n4 1\n4 1\n6 3\n4 3\n6 3\n5 2\n6 1\n4 1\n5 3\n4 3\n5 2\n6 3\n6 1\n5 1\n4 2\n4 3\n5 2\n5 3\n6 3\n5 2\n5 1\n5 3\n6 2\n6 1",
"output": "Mishka"
},
{
"input": "50\n3 6\n2 6\n1 4\n1 4\n1 4\n2 5\n3 4\n3 5\n2 6\n1 6\n3 5\n1 5\n2 6\n2 4\n2 4\n3 5\n1 6\n1 5\n1 5\n1 4\n3 5\n1 6\n3 5\n1 4\n1 5\n1 4\n3 6\n1 6\n1 4\n1 4\n1 4\n1 5\n3 6\n1 6\n1 6\n2 4\n1 5\n2 6\n2 5\n3 5\n3 6\n3 4\n2 4\n2 6\n3 4\n2 5\n3 6\n3 5\n2 4\n2 4",
"output": "Chris"
},
{
"input": "86\n6 3\n2 4\n6 3\n3 5\n6 3\n1 5\n5 2\n2 4\n4 3\n2 6\n4 1\n2 6\n5 2\n1 4\n5 1\n2 4\n4 1\n1 4\n6 2\n3 5\n4 2\n2 4\n6 2\n1 5\n5 3\n2 5\n5 1\n1 6\n6 1\n1 4\n4 3\n3 4\n5 2\n2 4\n5 3\n2 5\n4 3\n3 4\n4 1\n1 5\n6 3\n3 4\n4 3\n3 4\n4 1\n3 4\n5 1\n1 6\n4 2\n1 6\n5 1\n2 4\n5 1\n3 6\n4 1\n1 5\n5 2\n1 4\n4 3\n2 5\n5 1\n1 5\n6 2\n2 6\n4 2\n2 4\n4 1\n2 5\n5 3\n3 4\n5 1\n3 4\n6 3\n3 4\n4 3\n2 6\n6 2\n2 5\n5 2\n3 5\n4 2\n3 6\n6 2\n3 4\n4 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "84\n6 1\n6 3\n6 3\n4 1\n4 3\n4 2\n6 3\n5 3\n6 1\n6 3\n4 3\n5 2\n5 3\n5 1\n6 2\n6 2\n6 1\n4 1\n6 3\n5 2\n4 1\n5 3\n6 3\n4 2\n6 2\n6 3\n4 3\n4 1\n4 3\n5 1\n5 1\n5 1\n4 1\n6 1\n4 3\n6 2\n5 1\n5 1\n6 2\n5 2\n4 1\n6 1\n6 1\n6 3\n6 2\n4 3\n6 3\n6 2\n5 2\n5 1\n4 3\n6 2\n4 1\n6 2\n6 1\n5 2\n5 1\n6 2\n6 1\n5 3\n5 2\n6 1\n6 3\n5 2\n6 1\n6 3\n4 3\n5 1\n6 3\n6 1\n5 3\n4 3\n5 2\n5 1\n6 2\n5 3\n6 1\n5 1\n4 1\n5 1\n5 1\n5 2\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "92\n1 5\n2 4\n3 5\n1 6\n2 5\n1 6\n3 6\n1 6\n2 4\n3 4\n3 4\n3 6\n1 5\n2 5\n1 5\n1 5\n2 6\n2 4\n3 6\n1 4\n1 6\n2 6\n3 4\n2 6\n2 6\n1 4\n3 5\n2 5\n2 6\n1 5\n1 4\n1 5\n3 6\n3 5\n2 5\n1 5\n3 5\n3 6\n2 6\n2 6\n1 5\n3 4\n2 4\n3 6\n2 5\n1 5\n2 4\n1 4\n2 6\n2 6\n2 6\n1 5\n3 6\n3 6\n2 5\n1 4\n2 4\n3 4\n1 5\n2 5\n2 4\n2 5\n3 5\n3 4\n3 6\n2 6\n3 5\n1 4\n3 4\n1 6\n3 6\n2 6\n1 4\n3 6\n3 6\n2 5\n2 6\n1 6\n2 6\n3 5\n2 5\n3 6\n2 5\n2 6\n1 5\n2 4\n1 4\n2 4\n1 5\n2 5\n2 5\n2 6",
"output": "Chris"
},
{
"input": "20\n5 1\n1 4\n4 3\n1 5\n4 2\n3 6\n6 2\n1 6\n4 1\n1 4\n5 2\n3 4\n5 1\n1 6\n5 1\n2 6\n6 3\n2 5\n6 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "100\n4 3\n4 3\n4 2\n4 3\n4 1\n4 3\n5 2\n5 2\n6 2\n4 2\n5 1\n4 2\n5 2\n6 1\n4 1\n6 3\n5 3\n5 1\n5 1\n5 1\n5 3\n6 1\n6 1\n4 1\n5 2\n5 2\n6 1\n6 3\n4 2\n4 1\n5 3\n4 1\n5 3\n5 1\n6 3\n6 3\n6 1\n5 2\n5 3\n5 3\n6 1\n4 1\n6 2\n6 1\n6 2\n6 3\n4 3\n4 3\n6 3\n4 2\n4 2\n5 3\n5 2\n5 2\n4 3\n5 3\n5 2\n4 2\n5 1\n4 2\n5 1\n5 3\n6 3\n5 3\n5 3\n4 2\n4 1\n4 2\n4 3\n6 3\n4 3\n6 2\n6 1\n5 3\n5 2\n4 1\n6 1\n5 2\n6 2\n4 2\n6 3\n4 3\n5 1\n6 3\n5 2\n4 3\n5 3\n5 3\n4 3\n6 3\n4 3\n4 1\n5 1\n6 2\n6 3\n5 3\n6 1\n6 3\n5 3\n6 1",
"output": "Mishka"
},
{
"input": "100\n1 5\n1 4\n1 5\n2 4\n2 6\n3 6\n3 5\n1 5\n2 5\n3 6\n3 5\n1 6\n1 4\n1 5\n1 6\n2 6\n1 5\n3 5\n3 4\n2 6\n2 6\n2 5\n3 4\n1 6\n1 4\n2 4\n1 5\n1 6\n3 5\n1 6\n2 6\n3 5\n1 6\n3 4\n3 5\n1 6\n3 6\n2 4\n2 4\n3 5\n2 6\n1 5\n3 5\n3 6\n2 4\n2 4\n2 6\n3 4\n3 4\n1 5\n1 4\n2 5\n3 4\n1 4\n2 6\n2 5\n2 4\n2 4\n2 5\n1 5\n1 6\n1 5\n1 5\n1 5\n1 6\n3 4\n2 4\n3 5\n3 5\n1 6\n3 5\n1 5\n1 6\n3 6\n3 4\n1 5\n3 5\n3 6\n1 4\n3 6\n1 5\n3 5\n3 6\n3 5\n1 4\n3 4\n2 4\n2 4\n2 5\n3 6\n3 5\n1 5\n2 4\n1 4\n3 4\n1 5\n3 4\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "100\n4 3\n3 4\n5 1\n2 5\n5 3\n1 5\n6 3\n2 4\n5 2\n2 6\n5 2\n1 5\n6 3\n1 5\n6 3\n3 4\n5 2\n1 5\n6 1\n1 5\n4 2\n3 5\n6 3\n2 6\n6 3\n1 4\n6 2\n3 4\n4 1\n3 6\n5 1\n2 4\n5 1\n3 4\n6 2\n3 5\n4 1\n2 6\n4 3\n2 6\n5 2\n3 6\n6 2\n3 5\n4 3\n1 5\n5 3\n3 6\n4 2\n3 4\n6 1\n3 4\n5 2\n2 6\n5 2\n2 4\n6 2\n3 6\n4 3\n2 4\n4 3\n2 6\n4 2\n3 4\n6 3\n2 4\n6 3\n3 5\n5 2\n1 5\n6 3\n3 6\n4 3\n1 4\n5 2\n1 6\n4 1\n2 5\n4 1\n2 4\n4 2\n2 5\n6 1\n2 4\n6 3\n1 5\n4 3\n2 6\n6 3\n2 6\n5 3\n1 5\n4 1\n1 5\n6 2\n2 5\n5 1\n3 6\n4 3\n3 4",
"output": "Friendship is magic!^^"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "99\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "84\n6 2\n1 5\n6 2\n2 3\n5 5\n1 2\n3 4\n3 4\n6 5\n6 4\n2 5\n4 1\n1 2\n1 1\n1 4\n2 5\n5 6\n6 3\n2 4\n5 5\n2 6\n3 4\n5 1\n3 3\n5 5\n4 6\n4 6\n2 4\n4 1\n5 2\n2 2\n3 6\n3 3\n4 6\n1 1\n2 4\n6 5\n5 2\n6 5\n5 5\n2 5\n6 4\n1 1\n6 2\n3 6\n6 5\n4 4\n1 5\n5 6\n4 4\n3 5\n6 1\n3 4\n1 5\n4 6\n4 6\n4 1\n3 6\n6 2\n1 1\n4 5\n5 4\n5 3\n3 4\n6 4\n1 1\n5 2\n6 5\n6 1\n2 2\n2 4\n3 3\n4 6\n1 3\n6 6\n5 2\n1 6\n6 2\n6 6\n4 1\n3 6\n6 4\n2 3\n3 4",
"output": "Chris"
},
{
"input": "70\n3 4\n2 3\n2 3\n6 5\n6 6\n4 3\n2 3\n3 1\n3 5\n5 6\n1 6\n2 5\n5 3\n2 5\n4 6\n5 1\n6 1\n3 1\n3 3\n5 3\n2 1\n3 3\n6 4\n6 3\n4 3\n4 5\n3 5\n5 5\n5 2\n1 6\n3 4\n5 2\n2 4\n1 6\n4 3\n4 3\n6 2\n1 3\n1 5\n6 1\n3 1\n1 1\n1 3\n2 2\n3 2\n6 4\n1 1\n4 4\n3 1\n4 5\n4 2\n6 3\n4 4\n3 2\n1 2\n2 6\n3 3\n1 5\n1 1\n6 5\n2 2\n3 1\n5 4\n5 2\n6 4\n6 3\n6 6\n6 3\n3 3\n5 4",
"output": "Mishka"
},
{
"input": "56\n6 4\n3 4\n6 1\n3 3\n1 4\n2 3\n1 5\n2 5\n1 5\n5 5\n2 3\n1 1\n3 2\n3 5\n4 6\n4 4\n5 2\n4 3\n3 1\n3 6\n2 3\n3 4\n5 6\n5 2\n5 6\n1 5\n1 5\n4 1\n6 3\n2 2\n2 1\n5 5\n2 1\n4 1\n5 4\n2 5\n4 1\n6 2\n3 4\n4 2\n6 4\n5 4\n4 2\n4 3\n6 2\n6 2\n3 1\n1 4\n3 6\n5 1\n5 5\n3 6\n6 4\n2 3\n6 5\n3 3",
"output": "Mishka"
},
{
"input": "94\n2 4\n6 4\n1 6\n1 4\n5 1\n3 3\n4 3\n6 1\n6 5\n3 2\n2 3\n5 1\n5 3\n1 2\n4 3\n3 2\n2 3\n4 6\n1 3\n6 3\n1 1\n3 2\n4 3\n1 5\n4 6\n3 2\n6 3\n1 6\n1 1\n1 2\n3 5\n1 3\n3 5\n4 4\n4 2\n1 4\n4 5\n1 3\n1 2\n1 1\n5 4\n5 5\n6 1\n2 1\n2 6\n6 6\n4 2\n3 6\n1 6\n6 6\n1 5\n3 2\n1 2\n4 4\n6 4\n4 1\n1 5\n3 3\n1 3\n3 4\n4 4\n1 1\n2 5\n4 5\n3 1\n3 1\n3 6\n3 2\n1 4\n1 6\n6 3\n2 4\n1 1\n2 2\n2 2\n2 1\n5 4\n1 2\n6 6\n2 2\n3 3\n6 3\n6 3\n1 6\n2 3\n2 4\n2 3\n6 6\n2 6\n6 3\n3 5\n1 4\n1 1\n3 5",
"output": "Chris"
},
{
"input": "81\n4 2\n1 2\n2 3\n4 5\n6 2\n1 6\n3 6\n3 4\n4 6\n4 4\n3 5\n4 6\n3 6\n3 5\n3 1\n1 3\n5 3\n3 4\n1 1\n4 1\n1 2\n6 1\n1 3\n6 5\n4 5\n4 2\n4 5\n6 2\n1 2\n2 6\n5 2\n1 5\n2 4\n4 3\n5 4\n1 2\n5 3\n2 6\n6 4\n1 1\n1 3\n3 1\n3 1\n6 5\n5 5\n6 1\n6 6\n5 2\n1 3\n1 4\n2 3\n5 5\n3 1\n3 1\n4 4\n1 6\n6 4\n2 2\n4 6\n4 4\n2 6\n2 4\n2 4\n4 1\n1 6\n1 4\n1 3\n6 5\n5 1\n1 3\n5 1\n1 4\n3 5\n2 6\n1 3\n5 6\n3 5\n4 4\n5 5\n5 6\n4 3",
"output": "Chris"
},
{
"input": "67\n6 5\n3 6\n1 6\n5 3\n5 4\n5 1\n1 6\n1 1\n3 2\n4 4\n3 1\n4 1\n1 5\n5 3\n3 3\n6 4\n2 4\n2 2\n4 3\n1 4\n1 4\n6 1\n1 2\n2 2\n5 1\n6 2\n3 5\n5 5\n2 2\n6 5\n6 2\n4 4\n3 1\n4 2\n6 6\n6 4\n5 1\n2 2\n4 5\n5 5\n4 6\n1 5\n6 3\n4 4\n1 5\n6 4\n3 6\n3 4\n1 6\n2 4\n2 1\n2 5\n6 5\n6 4\n4 1\n3 2\n1 2\n5 1\n5 6\n1 5\n3 5\n3 1\n5 3\n3 2\n5 1\n4 6\n6 6",
"output": "Mishka"
},
{
"input": "55\n6 6\n6 5\n2 2\n2 2\n6 4\n5 5\n6 5\n5 3\n1 3\n2 2\n5 6\n3 3\n3 3\n6 5\n3 5\n5 5\n1 2\n1 1\n4 6\n1 2\n5 5\n6 2\n6 3\n1 2\n5 1\n1 3\n3 3\n4 4\n2 5\n1 1\n5 3\n4 3\n2 2\n4 5\n5 6\n4 5\n6 3\n1 6\n6 4\n3 6\n1 6\n5 2\n6 3\n2 3\n5 5\n4 3\n3 1\n4 2\n1 1\n2 5\n5 3\n2 2\n6 3\n4 5\n2 2",
"output": "Mishka"
},
{
"input": "92\n2 3\n1 3\n2 6\n5 1\n5 5\n3 2\n5 6\n2 5\n3 1\n3 6\n4 5\n2 5\n1 2\n2 3\n6 5\n3 6\n4 4\n6 2\n4 5\n4 4\n5 1\n6 1\n3 4\n3 5\n6 6\n3 2\n6 4\n2 2\n3 5\n6 4\n6 3\n6 6\n3 4\n3 3\n6 1\n5 4\n6 2\n2 6\n5 6\n1 4\n4 6\n6 3\n3 1\n4 1\n6 6\n3 5\n6 3\n6 1\n1 6\n3 2\n6 6\n4 3\n3 4\n1 3\n3 5\n5 3\n6 5\n4 3\n5 5\n4 1\n1 5\n6 4\n2 3\n2 3\n1 5\n1 2\n5 2\n4 3\n3 6\n5 5\n5 4\n1 4\n3 3\n1 6\n5 6\n5 4\n5 3\n1 1\n6 2\n5 5\n2 5\n4 3\n6 6\n5 1\n1 1\n4 6\n4 6\n3 1\n6 4\n2 4\n2 2\n2 1",
"output": "Chris"
},
{
"input": "79\n5 3\n4 6\n3 6\n2 1\n5 2\n2 3\n4 4\n6 2\n2 5\n1 6\n6 6\n2 6\n3 3\n4 5\n6 2\n2 1\n1 5\n5 1\n2 1\n2 6\n5 3\n6 2\n2 6\n2 3\n1 5\n4 4\n6 3\n5 2\n3 2\n1 3\n1 3\n6 3\n2 6\n3 6\n5 3\n4 5\n6 1\n3 5\n3 5\n6 5\n1 5\n4 2\n6 2\n2 3\n4 6\n3 6\n2 5\n4 4\n1 1\n4 6\n2 6\n6 4\n3 2\n4 1\n1 2\n6 4\n5 6\n1 4\n2 2\n5 4\n3 2\n1 2\n2 4\n2 5\n2 1\n3 6\n3 3\n1 1\n2 2\n4 4\n4 5\n3 3\n5 3\n6 2\n4 5\n6 5\n2 5\n5 6\n2 2",
"output": "Chris"
},
{
"input": "65\n1 1\n5 1\n2 2\n5 4\n4 5\n2 5\n3 2\n5 6\n6 3\n1 1\n6 1\n1 5\n1 1\n5 2\n6 4\n1 6\n1 1\n4 3\n2 3\n5 6\n4 4\n6 2\n1 3\n4 3\n1 3\n6 3\n3 5\n4 2\n4 1\n6 1\n3 2\n2 6\n3 2\n3 5\n6 3\n4 3\n1 5\n2 6\n1 3\n4 1\n4 1\n2 5\n2 5\n6 2\n5 3\n3 1\n3 3\n5 1\n2 4\n5 3\n3 3\n1 1\n6 3\n3 3\n5 1\n1 6\n4 5\n6 6\n5 5\n2 5\n4 1\n2 2\n1 4\n1 6\n6 5",
"output": "Mishka"
},
{
"input": "1\n1 1",
"output": "Friendship is magic!^^"
}
] | 1,688,540,514
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 46
| 0
|
t=int(input())
s1,s2=0,0
for i in range(t):
mc=list(map(int,input().split()))
if(mc[0]>mc[1]):
s1+=1
elif(mc[0]<mc[1]):
s2+=1
if(s1>s2):
print("Mishka")
elif(s1<s2):
print("Chris")
else:
print("Friendship is magic!^^")
|
Title: Mishka and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
Input Specification:
The first line of the input contains single integer *n* *n* (1<=≤<=*n*<=≤<=100) — the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=≤<=*m**i*,<=<=*c**i*<=≤<=6) — values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
Output Specification:
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
Demo Input:
['3\n3 5\n2 1\n4 2\n', '2\n6 1\n1 6\n', '3\n1 5\n3 3\n2 2\n']
Demo Output:
['Mishka', 'Friendship is magic!^^', 'Chris']
Note:
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
|
```python
t=int(input())
s1,s2=0,0
for i in range(t):
mc=list(map(int,input().split()))
if(mc[0]>mc[1]):
s1+=1
elif(mc[0]<mc[1]):
s2+=1
if(s1>s2):
print("Mishka")
elif(s1<s2):
print("Chris")
else:
print("Friendship is magic!^^")
```
| 3
|
|
34
|
B
|
Sale
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] |
B. Sale
|
2
|
256
|
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
|
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
|
[
"5 3\n-6 0 35 -2 4\n",
"4 2\n7 0 0 -7\n"
] |
[
"8\n",
"7\n"
] |
none
| 1,000
|
[
{
"input": "5 3\n-6 0 35 -2 4",
"output": "8"
},
{
"input": "4 2\n7 0 0 -7",
"output": "7"
},
{
"input": "6 6\n756 -611 251 -66 572 -818",
"output": "1495"
},
{
"input": "5 5\n976 437 937 788 518",
"output": "0"
},
{
"input": "5 3\n-2 -2 -2 -2 -2",
"output": "6"
},
{
"input": "5 1\n998 997 985 937 998",
"output": "0"
},
{
"input": "2 2\n-742 -187",
"output": "929"
},
{
"input": "3 3\n522 597 384",
"output": "0"
},
{
"input": "4 2\n-215 -620 192 647",
"output": "835"
},
{
"input": "10 6\n557 605 685 231 910 633 130 838 -564 -85",
"output": "649"
},
{
"input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59",
"output": "10"
},
{
"input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000",
"output": "0"
},
{
"input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886",
"output": "19441"
},
{
"input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999",
"output": "0"
},
{
"input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993",
"output": "16984"
},
{
"input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981",
"output": "21743"
},
{
"input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654",
"output": "81283"
},
{
"input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782",
"output": "0"
},
{
"input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823",
"output": "0"
},
{
"input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992",
"output": "75068"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 1\n555",
"output": "0"
},
{
"input": "1 1\n-1",
"output": "1"
},
{
"input": "1 1\n-24",
"output": "24"
}
] | 1,609,062,630
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 216
| 0
|
n,m=map(int,input().split())
a=list(map(int,input().split()))
sum=0
a=sorted(a)
print(a)
for i in range(m):
if a[i]<0:
sum+=a[i]
|
Title: Sale
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output Specification:
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
Demo Input:
['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n']
Demo Output:
['8\n', '7\n']
Note:
none
|
```python
n,m=map(int,input().split())
a=list(map(int,input().split()))
sum=0
a=sorted(a)
print(a)
for i in range(m):
if a[i]<0:
sum+=a[i]
```
| 0
|
455
|
A
|
Boredom
|
PROGRAMMING
| 1,500
|
[
"dp"
] | null | null |
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
|
Print a single integer — the maximum number of points that Alex can earn.
|
[
"2\n1 2\n",
"3\n1 2 3\n",
"9\n1 2 1 3 2 2 2 2 3\n"
] |
[
"2\n",
"4\n",
"10\n"
] |
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
| 500
|
[
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n1 2 3",
"output": "4"
},
{
"input": "9\n1 2 1 3 2 2 2 2 3",
"output": "10"
},
{
"input": "5\n3 3 4 5 4",
"output": "11"
},
{
"input": "5\n5 3 5 3 4",
"output": "16"
},
{
"input": "5\n4 2 3 2 5",
"output": "9"
},
{
"input": "10\n10 5 8 9 5 6 8 7 2 8",
"output": "46"
},
{
"input": "10\n1 1 1 1 1 1 2 3 4 4",
"output": "14"
},
{
"input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4",
"output": "296"
},
{
"input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2",
"output": "313"
},
{
"input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9",
"output": "298"
},
{
"input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5",
"output": "312"
},
{
"input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2",
"output": "287"
},
{
"input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8",
"output": "380"
},
{
"input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8",
"output": "380"
},
{
"input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2",
"output": "265"
},
{
"input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9",
"output": "328"
},
{
"input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9",
"output": "324"
},
{
"input": "10\n7 4 5 3 9 1 10 3 4 5",
"output": "34"
},
{
"input": "10\n8 9 6 5 6 4 10 9 1 4",
"output": "39"
},
{
"input": "10\n1 7 1 4 9 10 8 2 9 9",
"output": "40"
},
{
"input": "1\n100000",
"output": "100000"
}
] | 1,698,814,027
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 3
| 46
| 0
|
n = int(input())
a = list(map(int, input().split()))
counter = {}
for i in set(a):
counter[i] = a.count(i)
def f(n):
if n == 1:
return counter[1]
elif n == 0:
return 0
return max(f(n - 1), f(n - 2) + counter.get(n, 0) * n)
print(f(n))
|
Title: Boredom
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
Output Specification:
Print a single integer — the maximum number of points that Alex can earn.
Demo Input:
['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n']
Demo Output:
['2\n', '4\n', '10\n']
Note:
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
|
```python
n = int(input())
a = list(map(int, input().split()))
counter = {}
for i in set(a):
counter[i] = a.count(i)
def f(n):
if n == 1:
return counter[1]
elif n == 0:
return 0
return max(f(n - 1), f(n - 2) + counter.get(n, 0) * n)
print(f(n))
```
| -1
|
|
608
|
A
|
Saitama Destroys Hotel
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] | null | null |
Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0.
The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0.
|
The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively.
The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*.
|
Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0.
|
[
"3 7\n2 1\n3 8\n5 2\n",
"5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n"
] |
[
"11\n",
"79\n"
] |
In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done:
1. Move to floor 5: takes 2 seconds.
2. Pick up passenger 3.
3. Move to floor 3: takes 2 seconds.
4. Wait for passenger 2 to arrive: takes 4 seconds.
5. Pick up passenger 2.
6. Go to floor 2: takes 1 second.
7. Pick up passenger 1.
8. Go to floor 0: takes 2 seconds.
This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
| 500
|
[
{
"input": "3 7\n2 1\n3 8\n5 2",
"output": "11"
},
{
"input": "5 10\n2 77\n3 33\n8 21\n9 12\n10 64",
"output": "79"
},
{
"input": "1 1000\n1000 1000",
"output": "2000"
},
{
"input": "1 1\n1 1",
"output": "2"
},
{
"input": "1 1000\n1 1",
"output": "1000"
},
{
"input": "1 1000\n1 1000",
"output": "1001"
},
{
"input": "100 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "2"
},
{
"input": "2 7\n6 3\n1 5",
"output": "9"
},
{
"input": "2 100\n99 2\n1 10",
"output": "101"
},
{
"input": "5 5\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "6"
},
{
"input": "3 7\n1 6\n5 5\n6 1",
"output": "10"
},
{
"input": "2 100\n4 100\n7 99",
"output": "106"
},
{
"input": "2 10\n9 3\n1 4",
"output": "12"
},
{
"input": "2 5\n4 4\n5 4",
"output": "9"
},
{
"input": "2 10\n9 10\n6 11",
"output": "19"
},
{
"input": "2 100\n99 9\n1 10",
"output": "108"
},
{
"input": "2 7\n3 5\n7 4",
"output": "11"
},
{
"input": "4 4\n4 6\n4 8\n1 7\n2 9",
"output": "12"
},
{
"input": "2 1000\n1 2\n1000 1",
"output": "1001"
},
{
"input": "2 20\n1 1\n2 2",
"output": "20"
},
{
"input": "2 20\n10 10\n19 9",
"output": "28"
}
] | 1,455,708,680
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 77
| 0
|
n,s = map(int,input().split())
r = s
for i in range(n):
f,t = map(int,input().split())
r = max(r,t+f)
print(r)
|
Title: Saitama Destroys Hotel
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Saitama accidentally destroyed a hotel again. To repay the hotel company, Genos has volunteered to operate an elevator in one of its other hotels. The elevator is special — it starts on the top floor, can only move down, and has infinite capacity. Floors are numbered from 0 to *s* and elevator initially starts on floor *s* at time 0.
The elevator takes exactly 1 second to move down exactly 1 floor and negligible time to pick up passengers. Genos is given a list detailing when and on which floor passengers arrive. Please determine how long in seconds it will take Genos to bring all passengers to floor 0.
Input Specification:
The first line of input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=100, 1<=≤<=*s*<=≤<=1000) — the number of passengers and the number of the top floor respectively.
The next *n* lines each contain two space-separated integers *f**i* and *t**i* (1<=≤<=*f**i*<=≤<=*s*, 1<=≤<=*t**i*<=≤<=1000) — the floor and the time of arrival in seconds for the passenger number *i*.
Output Specification:
Print a single integer — the minimum amount of time in seconds needed to bring all the passengers to floor 0.
Demo Input:
['3 7\n2 1\n3 8\n5 2\n', '5 10\n2 77\n3 33\n8 21\n9 12\n10 64\n']
Demo Output:
['11\n', '79\n']
Note:
In the first sample, it takes at least 11 seconds to bring all passengers to floor 0. Here is how this could be done:
1. Move to floor 5: takes 2 seconds.
2. Pick up passenger 3.
3. Move to floor 3: takes 2 seconds.
4. Wait for passenger 2 to arrive: takes 4 seconds.
5. Pick up passenger 2.
6. Go to floor 2: takes 1 second.
7. Pick up passenger 1.
8. Go to floor 0: takes 2 seconds.
This gives a total of 2 + 2 + 4 + 1 + 2 = 11 seconds.
|
```python
n,s = map(int,input().split())
r = s
for i in range(n):
f,t = map(int,input().split())
r = max(r,t+f)
print(r)
```
| 3
|
|
877
|
D
|
Olya and Energy Drinks
|
PROGRAMMING
| 2,100
|
[
"data structures",
"dfs and similar",
"graphs",
"shortest paths"
] | null | null |
Olya loves energy drinks. She loves them so much that her room is full of empty cans from energy drinks.
Formally, her room can be represented as a field of *n*<=×<=*m* cells, each cell of which is empty or littered with cans.
Olya drank a lot of energy drink, so now she can run *k* meters per second. Each second she chooses one of the four directions (up, down, left or right) and runs from 1 to *k* meters in this direction. Of course, she can only run through empty cells.
Now Olya needs to get from cell (*x*1,<=*y*1) to cell (*x*2,<=*y*2). How many seconds will it take her if she moves optimally?
It's guaranteed that cells (*x*1,<=*y*1) and (*x*2,<=*y*2) are empty. These cells can coincide.
|
The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the sizes of the room and Olya's speed.
Then *n* lines follow containing *m* characters each, the *i*-th of them contains on *j*-th position "#", if the cell (*i*,<=*j*) is littered with cans, and "." otherwise.
The last line contains four integers *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*) — the coordinates of the first and the last cells.
|
Print a single integer — the minimum time it will take Olya to get from (*x*1,<=*y*1) to (*x*2,<=*y*2).
If it's impossible to get from (*x*1,<=*y*1) to (*x*2,<=*y*2), print -1.
|
[
"3 4 4\n....\n###.\n....\n1 1 3 1\n",
"3 4 1\n....\n###.\n....\n1 1 3 1\n",
"2 2 1\n.#\n#.\n1 1 2 2\n"
] |
[
"3",
"8",
"-1"
] |
In the first sample Olya should run 3 meters to the right in the first second, 2 meters down in the second second and 3 meters to the left in the third second.
In second sample Olya should run to the right for 3 seconds, then down for 2 seconds and then to the left for 3 seconds.
Olya does not recommend drinking energy drinks and generally believes that this is bad.
| 2,000
|
[
{
"input": "3 4 4\n....\n###.\n....\n1 1 3 1",
"output": "3"
},
{
"input": "3 4 1\n....\n###.\n....\n1 1 3 1",
"output": "8"
},
{
"input": "2 2 1\n.#\n#.\n1 1 2 2",
"output": "-1"
},
{
"input": "10 10 1\n##########\n#.........\n#.#######.\n#.#.....#.\n#.#.###.#.\n#.#.#.#.#.\n#.#.#.#.#.\n#.#.#...#.\n#.#.#####.\n#.#.......\n6 6 10 2",
"output": "48"
},
{
"input": "10 10 3\n##########\n##########\n##########\n##########\n##########\n##########\n##########\n#########.\n#########.\n####..###.\n10 6 10 5",
"output": "1"
},
{
"input": "10 10 3\n...##..#..\n#.#..#...#\n..#.##.#..\n##..#..#.#\n..#...##..\n.#.#.#....\n#......#..\n.#.####.##\n......#...\n.#.##...##\n4 6 8 1",
"output": "7"
},
{
"input": "10 10 1000\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n7 6 1 3",
"output": "2"
},
{
"input": "10 10 1000\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n.....#....\n3 9 5 1",
"output": "2"
},
{
"input": "10 10 10\n...#......\n##.#.#####\n...#...###\n.#####.###\n...#...###\n##.#.#####\n...#...###\n.#####.###\n.......###\n##########\n1 1 1 10",
"output": "17"
},
{
"input": "2 5 5\n#####\n##.##\n2 3 2 3",
"output": "0"
},
{
"input": "4 4 4\n...#\n.#.#\n....\n##..\n1 1 3 4",
"output": "2"
},
{
"input": "6 6 100\n....##\n.##.##\n.##.##\n......\n###.##\n###.##\n1 1 4 6",
"output": "2"
}
] | 1,589,018,650
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 30
| 717
| 98,918,400
|
# https://codeforces.com/problemset/problem/877/D
n, m, k = map(int, input().split())
a = [input() for _ in range(n)]
x1, y1, x2, y2 = map(lambda x: int(x)-1, input().split())
dx = [-1, 1, 0, 0]
dy = [0, 0, 1, -1]
used = [[0]*m for _ in range(n)]
D = [[-1]*m for _ in range(n)]
def is_ok(x, y, x_, y_):
if x+x_ >= 0 and x+x_<n and y+y_>=0 and y+y_<m and a[x+x_][y+y_]=='.' and used[x+x_][y+y_] == 0:
return True
return False
def go(x0, y0, x_, y_, d, S):
cur=0
while True:
if cur==k:
break
if is_ok(x0, y0, x_, y_):
used[x0+x_][y0+y_] = 1
D[x0+x_][y0+y_] = d
S.append([x0+x_, y0+y_, d])
x0 += x_
y0 += y_
cur += 1
else:
break
S = [[x1, y1, 0]]
D[x1][y1] = 0
used[x1][y1] = 1
i = 0
while i < len(S):
x0, y0, d = S[i]
for x_, y_ in zip(dx, dy):
go(x0, y0, x_, y_, d+1, S)
i+=1
print(D[x2][y2])
|
Title: Olya and Energy Drinks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Olya loves energy drinks. She loves them so much that her room is full of empty cans from energy drinks.
Formally, her room can be represented as a field of *n*<=×<=*m* cells, each cell of which is empty or littered with cans.
Olya drank a lot of energy drink, so now she can run *k* meters per second. Each second she chooses one of the four directions (up, down, left or right) and runs from 1 to *k* meters in this direction. Of course, she can only run through empty cells.
Now Olya needs to get from cell (*x*1,<=*y*1) to cell (*x*2,<=*y*2). How many seconds will it take her if she moves optimally?
It's guaranteed that cells (*x*1,<=*y*1) and (*x*2,<=*y*2) are empty. These cells can coincide.
Input Specification:
The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the sizes of the room and Olya's speed.
Then *n* lines follow containing *m* characters each, the *i*-th of them contains on *j*-th position "#", if the cell (*i*,<=*j*) is littered with cans, and "." otherwise.
The last line contains four integers *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*) — the coordinates of the first and the last cells.
Output Specification:
Print a single integer — the minimum time it will take Olya to get from (*x*1,<=*y*1) to (*x*2,<=*y*2).
If it's impossible to get from (*x*1,<=*y*1) to (*x*2,<=*y*2), print -1.
Demo Input:
['3 4 4\n....\n###.\n....\n1 1 3 1\n', '3 4 1\n....\n###.\n....\n1 1 3 1\n', '2 2 1\n.#\n#.\n1 1 2 2\n']
Demo Output:
['3', '8', '-1']
Note:
In the first sample Olya should run 3 meters to the right in the first second, 2 meters down in the second second and 3 meters to the left in the third second.
In second sample Olya should run to the right for 3 seconds, then down for 2 seconds and then to the left for 3 seconds.
Olya does not recommend drinking energy drinks and generally believes that this is bad.
|
```python
# https://codeforces.com/problemset/problem/877/D
n, m, k = map(int, input().split())
a = [input() for _ in range(n)]
x1, y1, x2, y2 = map(lambda x: int(x)-1, input().split())
dx = [-1, 1, 0, 0]
dy = [0, 0, 1, -1]
used = [[0]*m for _ in range(n)]
D = [[-1]*m for _ in range(n)]
def is_ok(x, y, x_, y_):
if x+x_ >= 0 and x+x_<n and y+y_>=0 and y+y_<m and a[x+x_][y+y_]=='.' and used[x+x_][y+y_] == 0:
return True
return False
def go(x0, y0, x_, y_, d, S):
cur=0
while True:
if cur==k:
break
if is_ok(x0, y0, x_, y_):
used[x0+x_][y0+y_] = 1
D[x0+x_][y0+y_] = d
S.append([x0+x_, y0+y_, d])
x0 += x_
y0 += y_
cur += 1
else:
break
S = [[x1, y1, 0]]
D[x1][y1] = 0
used[x1][y1] = 1
i = 0
while i < len(S):
x0, y0, d = S[i]
for x_, y_ in zip(dx, dy):
go(x0, y0, x_, y_, d+1, S)
i+=1
print(D[x2][y2])
```
| 0
|
|
436
|
B
|
Om Nom and Spiders
|
PROGRAMMING
| 1,400
|
[
"implementation",
"math"
] | null | null |
Om Nom really likes candies and doesn't like spiders as they frequently steal candies. One day Om Nom fancied a walk in a park. Unfortunately, the park has some spiders and Om Nom doesn't want to see them at all.
The park can be represented as a rectangular *n*<=×<=*m* field. The park has *k* spiders, each spider at time 0 is at some cell of the field. The spiders move all the time, and each spider always moves in one of the four directions (left, right, down, up). In a unit of time, a spider crawls from his cell to the side-adjacent cell in the corresponding direction. If there is no cell in the given direction, then the spider leaves the park. The spiders do not interfere with each other as they move. Specifically, one cell can have multiple spiders at the same time.
Om Nom isn't yet sure where to start his walk from but he definitely wants:
- to start walking at time 0 at an upper row cell of the field (it is guaranteed that the cells in this row do not contain any spiders); - to walk by moving down the field towards the lowest row (the walk ends when Om Nom leaves the boundaries of the park).
We know that Om Nom moves by jumping. One jump takes one time unit and transports the little monster from his cell to either a side-adjacent cell on the lower row or outside the park boundaries.
Each time Om Nom lands in a cell he sees all the spiders that have come to that cell at this moment of time. Om Nom wants to choose the optimal cell to start the walk from. That's why he wonders: for each possible starting cell, how many spiders will he see during the walk if he starts from this cell? Help him and calculate the required value for each possible starting cell.
|
The first line contains three integers *n*,<=*m*,<=*k* (2<=≤<=*n*,<=*m*<=≤<=2000; 0<=≤<=*k*<=≤<=*m*(*n*<=-<=1)).
Each of the next *n* lines contains *m* characters — the description of the park. The characters in the *i*-th line describe the *i*-th row of the park field. If the character in the line equals ".", that means that the corresponding cell of the field is empty; otherwise, the character in the line will equal one of the four characters: "L" (meaning that this cell has a spider at time 0, moving left), "R" (a spider moving right), "U" (a spider moving up), "D" (a spider moving down).
It is guaranteed that the first row doesn't contain any spiders. It is guaranteed that the description of the field contains no extra characters. It is guaranteed that at time 0 the field contains exactly *k* spiders.
|
Print *m* integers: the *j*-th integer must show the number of spiders Om Nom will see if he starts his walk from the *j*-th cell of the first row. The cells in any row of the field are numbered from left to right.
|
[
"3 3 4\n...\nR.L\nR.U\n",
"2 2 2\n..\nRL\n",
"2 2 2\n..\nLR\n",
"3 4 8\n....\nRRLL\nUUUU\n",
"2 2 2\n..\nUU\n"
] |
[
"0 2 2 ",
"1 1 ",
"0 0 ",
"1 3 3 1 ",
"0 0 "
] |
Consider the first sample. The notes below show how the spider arrangement changes on the field over time:
Character "*" represents a cell that contains two spiders at the same time.
- If Om Nom starts from the first cell of the first row, he won't see any spiders. - If he starts from the second cell, he will see two spiders at time 1. - If he starts from the third cell, he will see two spiders: one at time 1, the other one at time 2.
| 1,000
|
[
{
"input": "3 3 4\n...\nR.L\nR.U",
"output": "0 2 2 "
},
{
"input": "2 2 2\n..\nRL",
"output": "1 1 "
},
{
"input": "2 2 2\n..\nLR",
"output": "0 0 "
},
{
"input": "3 4 8\n....\nRRLL\nUUUU",
"output": "1 3 3 1 "
},
{
"input": "2 2 2\n..\nUU",
"output": "0 0 "
},
{
"input": "2 2 0\n..\n..",
"output": "0 0 "
},
{
"input": "5 5 10\n.....\nRU.D.\n..DLL\n.D...\nRL..L",
"output": "1 2 1 0 1 "
},
{
"input": "5 6 20\n......\n.UURD.\nLUD.RR\nU.LDDD\nDDLDDU",
"output": "0 1 0 0 1 1 "
},
{
"input": "4 5 15\n.....\nDRRLR\nULDLD\nDLRRL",
"output": "1 2 2 1 0 "
},
{
"input": "3 7 14\n.......\nLDUDLLD\nDLRDDLD",
"output": "0 0 0 2 2 0 0 "
},
{
"input": "5 7 19\n.......\nRDLLLRL\nUUR..U.\n.D.DLLL\n..R..UU",
"output": "1 4 2 2 1 3 3 "
},
{
"input": "8 9 28\n.........\n.R.LDR.D.\n....UULU.\nR.D..DL.L\n.R..DLUDU\nR........\n.URU...UU\n.....D.L.",
"output": "1 2 2 3 2 4 2 2 3 "
},
{
"input": "2 100 59\n....................................................................................................\n.DR.D..DLLR.LDRR..L.LDRRRDLD.LDRR.LLR.R...DRLD.RRLL.L.D..R.LD.DL....LR.LR.DRLD.....L.D..RD...D.LL.R.",
"output": "0 0 0 1 0 0 0 1 1 0 0 2 0 0 0 1 1 1 0 1 0 0 0 1 1 2 0 0 1 0 0 0 1 2 1 0 0 1 0 1 0 0 0 1 1 0 0 0 2 2 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1 0 0 2 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 "
},
{
"input": "100 2 45\n..\n.D\nU.\n..\nU.\n..\n..\n..\nU.\n..\n..\nD.\nU.\n..\n..\n.D\nDU\n..\nUD\n..\n..\n..\n..\n..\n..\nD.\nU.\n..\n..\nD.\nU.\n..\n..\n..\nU.\n..\n..\n.D\n..\n..\n.D\n..\n..\n.D\n.U\nD.\n..\n.D\n..\n..\nUD\n..\nU.\n..\nU.\n..\nUD\n..\nU.\n..\nU.\n..\n..\n..\nU.\n..\n..\nD.\n..\n..\nU.\n..\nU.\n..\nUU\n..\nU.\n..\nU.\n..\n..\n..\n..\n..\n..\n..\n..\n..\n.D\n..\n..\nD.\nU.\n.D\n..\n..\nU.\n.D\nU.\n..",
"output": "23 3 "
}
] | 1,683,461,327
| 2,147,483,647
|
Python 3
|
MEMORY_LIMIT_EXCEEDED
|
TESTS
| 10
| 1,793
| 268,390,400
|
"""
https://codeforces.com/problemset/problem/436/B
"""
n, m, k = [int(x) for x in input().split()]
park = []
for _ in range(n):
park.append(input())
deplacement = {"L": (0, -1), "R": (0, 1), "U": (-1, 0), "D": (1, 0)}
spiders = []
for row in range(n):
for case in range(m):
if (a := park[row][case]) != ".":
spiders.append((row, case, a))
def move(a, move):
x, y = a
dx, dy = deplacement[move]
return (x + dx, y + dy)
spiders_vus = [0 for _ in range(m)]
for i in range(m):
om = (0, i)
spid = spiders
for j in range(n):
spidnew = []
for x, y, a in spid:
x, y = move((x, y), a)
if 0 <= x < n and 0 <= y < m:
spidnew.append((x, y, a))
om = move(om, "D")
for x, y, a in spidnew:
if (x, y) == om:
spiders_vus[i] += 1
spid = spidnew
print(*spiders_vus)
|
Title: Om Nom and Spiders
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Om Nom really likes candies and doesn't like spiders as they frequently steal candies. One day Om Nom fancied a walk in a park. Unfortunately, the park has some spiders and Om Nom doesn't want to see them at all.
The park can be represented as a rectangular *n*<=×<=*m* field. The park has *k* spiders, each spider at time 0 is at some cell of the field. The spiders move all the time, and each spider always moves in one of the four directions (left, right, down, up). In a unit of time, a spider crawls from his cell to the side-adjacent cell in the corresponding direction. If there is no cell in the given direction, then the spider leaves the park. The spiders do not interfere with each other as they move. Specifically, one cell can have multiple spiders at the same time.
Om Nom isn't yet sure where to start his walk from but he definitely wants:
- to start walking at time 0 at an upper row cell of the field (it is guaranteed that the cells in this row do not contain any spiders); - to walk by moving down the field towards the lowest row (the walk ends when Om Nom leaves the boundaries of the park).
We know that Om Nom moves by jumping. One jump takes one time unit and transports the little monster from his cell to either a side-adjacent cell on the lower row or outside the park boundaries.
Each time Om Nom lands in a cell he sees all the spiders that have come to that cell at this moment of time. Om Nom wants to choose the optimal cell to start the walk from. That's why he wonders: for each possible starting cell, how many spiders will he see during the walk if he starts from this cell? Help him and calculate the required value for each possible starting cell.
Input Specification:
The first line contains three integers *n*,<=*m*,<=*k* (2<=≤<=*n*,<=*m*<=≤<=2000; 0<=≤<=*k*<=≤<=*m*(*n*<=-<=1)).
Each of the next *n* lines contains *m* characters — the description of the park. The characters in the *i*-th line describe the *i*-th row of the park field. If the character in the line equals ".", that means that the corresponding cell of the field is empty; otherwise, the character in the line will equal one of the four characters: "L" (meaning that this cell has a spider at time 0, moving left), "R" (a spider moving right), "U" (a spider moving up), "D" (a spider moving down).
It is guaranteed that the first row doesn't contain any spiders. It is guaranteed that the description of the field contains no extra characters. It is guaranteed that at time 0 the field contains exactly *k* spiders.
Output Specification:
Print *m* integers: the *j*-th integer must show the number of spiders Om Nom will see if he starts his walk from the *j*-th cell of the first row. The cells in any row of the field are numbered from left to right.
Demo Input:
['3 3 4\n...\nR.L\nR.U\n', '2 2 2\n..\nRL\n', '2 2 2\n..\nLR\n', '3 4 8\n....\nRRLL\nUUUU\n', '2 2 2\n..\nUU\n']
Demo Output:
['0 2 2 ', '1 1 ', '0 0 ', '1 3 3 1 ', '0 0 ']
Note:
Consider the first sample. The notes below show how the spider arrangement changes on the field over time:
Character "*" represents a cell that contains two spiders at the same time.
- If Om Nom starts from the first cell of the first row, he won't see any spiders. - If he starts from the second cell, he will see two spiders at time 1. - If he starts from the third cell, he will see two spiders: one at time 1, the other one at time 2.
|
```python
"""
https://codeforces.com/problemset/problem/436/B
"""
n, m, k = [int(x) for x in input().split()]
park = []
for _ in range(n):
park.append(input())
deplacement = {"L": (0, -1), "R": (0, 1), "U": (-1, 0), "D": (1, 0)}
spiders = []
for row in range(n):
for case in range(m):
if (a := park[row][case]) != ".":
spiders.append((row, case, a))
def move(a, move):
x, y = a
dx, dy = deplacement[move]
return (x + dx, y + dy)
spiders_vus = [0 for _ in range(m)]
for i in range(m):
om = (0, i)
spid = spiders
for j in range(n):
spidnew = []
for x, y, a in spid:
x, y = move((x, y), a)
if 0 <= x < n and 0 <= y < m:
spidnew.append((x, y, a))
om = move(om, "D")
for x, y, a in spidnew:
if (x, y) == om:
spiders_vus[i] += 1
spid = spidnew
print(*spiders_vus)
```
| 0
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,564,220,259
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 2
| 124
| 0
|
st=input()
li=['h','e','l','l','o']
a=[i for i in st]
for i in a:
if i in li:
li.remove(i)
a.remove(i)
if len(li)==0 and len(a)!=0:
print("YES")
else:
print("NO")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
st=input()
li=['h','e','l','l','o']
a=[i for i in st]
for i in a:
if i in li:
li.remove(i)
a.remove(i)
if len(li)==0 and len(a)!=0:
print("YES")
else:
print("NO")
```
| 0
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,689,392,084
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 46
| 0
|
for i, j in zip(input(), input()):
print("0" if i == j else "1", end="")
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
for i, j in zip(input(), input()):
print("0" if i == j else "1", end="")
```
| 3.9885
|
460
|
A
|
Vasya and Socks
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation",
"math"
] | null | null |
Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks?
|
The single line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 2<=≤<=*m*<=≤<=100), separated by a space.
|
Print a single integer — the answer to the problem.
|
[
"2 2\n",
"9 3\n"
] |
[
"3\n",
"13\n"
] |
In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two.
In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
| 500
|
[
{
"input": "2 2",
"output": "3"
},
{
"input": "9 3",
"output": "13"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "1 99",
"output": "1"
},
{
"input": "4 4",
"output": "5"
},
{
"input": "10 2",
"output": "19"
},
{
"input": "10 9",
"output": "11"
},
{
"input": "100 100",
"output": "101"
},
{
"input": "2 27",
"output": "2"
},
{
"input": "99 100",
"output": "99"
},
{
"input": "99 2",
"output": "197"
},
{
"input": "100 3",
"output": "149"
},
{
"input": "98 3",
"output": "146"
},
{
"input": "4 4",
"output": "5"
},
{
"input": "100 2",
"output": "199"
},
{
"input": "62 4",
"output": "82"
},
{
"input": "99 10",
"output": "109"
},
{
"input": "100 5",
"output": "124"
},
{
"input": "80 80",
"output": "81"
},
{
"input": "95 16",
"output": "101"
},
{
"input": "75 16",
"output": "79"
},
{
"input": "99 74",
"output": "100"
},
{
"input": "20 21",
"output": "20"
},
{
"input": "52 96",
"output": "52"
},
{
"input": "24 5",
"output": "29"
}
] | 1,666,191,638
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 6
| 31
| 0
|
def helper(n,m):
ans=0
while n!=0:
ans+=n
n=n//m
print(ans)
n,m=list(map(int,input().split()))
helper(n,m)
|
Title: Vasya and Socks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has *n* pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every *m*-th day (at days with numbers *m*,<=2*m*,<=3*m*,<=...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks?
Input Specification:
The single line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100; 2<=≤<=*m*<=≤<=100), separated by a space.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['2 2\n', '9 3\n']
Demo Output:
['3\n', '13\n']
Note:
In the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two.
In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day.
|
```python
def helper(n,m):
ans=0
while n!=0:
ans+=n
n=n//m
print(ans)
n,m=list(map(int,input().split()))
helper(n,m)
```
| 0
|
|
900
|
A
|
Find Extra One
|
PROGRAMMING
| 800
|
[
"geometry",
"implementation"
] | null | null |
You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis.
|
The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105).
The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide.
|
Print "Yes" if there is such a point, "No" — otherwise.
You can print every letter in any case (upper or lower).
|
[
"3\n1 1\n-1 -1\n2 -1\n",
"4\n1 1\n2 2\n-1 1\n-2 2\n",
"3\n1 2\n2 1\n4 60\n"
] |
[
"Yes",
"No",
"Yes"
] |
In the first example the second point can be removed.
In the second example there is no suitable for the condition point.
In the third example any point can be removed.
| 500
|
[
{
"input": "3\n1 1\n-1 -1\n2 -1",
"output": "Yes"
},
{
"input": "4\n1 1\n2 2\n-1 1\n-2 2",
"output": "No"
},
{
"input": "3\n1 2\n2 1\n4 60",
"output": "Yes"
},
{
"input": "10\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n-1 -1",
"output": "Yes"
},
{
"input": "2\n1000000000 -1000000000\n1000000000 1000000000",
"output": "Yes"
},
{
"input": "23\n-1 1\n-1 2\n-2 4\n-7 -8\n-3 3\n-9 -14\n-5 3\n-6 2\n-7 11\n-4 4\n-8 5\n1 1\n-1 -1\n-1 -2\n-2 -4\n-7 8\n-3 -3\n-9 14\n-5 -3\n-6 -2\n-7 -11\n-4 -4\n-8 -5",
"output": "Yes"
},
{
"input": "4\n-1000000000 -1000000000\n1000000000 1000000000\n-1000000000 1000000000\n1000000000 -1000000000",
"output": "No"
},
{
"input": "2\n-1000000000 1000000000\n-1000000000 -1000000000",
"output": "Yes"
},
{
"input": "5\n-1 -1\n-2 2\n2 2\n2 -2\n3 2",
"output": "No"
},
{
"input": "2\n1 0\n-1 0",
"output": "Yes"
},
{
"input": "4\n-1 1\n-1 2\n-1 3\n-1 4",
"output": "Yes"
},
{
"input": "2\n-1 0\n1 0",
"output": "Yes"
},
{
"input": "2\n1 2\n-1 2",
"output": "Yes"
},
{
"input": "2\n8 0\n7 0",
"output": "Yes"
},
{
"input": "6\n-1 0\n-2 0\n-1 -1\n-1 5\n1 0\n1 1",
"output": "No"
},
{
"input": "4\n1 0\n2 0\n-1 0\n-2 0",
"output": "No"
},
{
"input": "4\n-2 0\n-1 0\n1 0\n2 0",
"output": "No"
},
{
"input": "2\n1 1\n-1 1",
"output": "Yes"
},
{
"input": "4\n-1 0\n-2 0\n1 0\n2 0",
"output": "No"
},
{
"input": "2\n4 3\n-4 -2",
"output": "Yes"
},
{
"input": "4\n1 0\n2 0\n-1 1\n-1 2",
"output": "No"
},
{
"input": "5\n1 1\n2 1\n3 1\n-1 1\n-2 1",
"output": "No"
},
{
"input": "2\n1 1\n-1 -1",
"output": "Yes"
},
{
"input": "4\n1 2\n1 0\n1 -2\n-1 2",
"output": "Yes"
},
{
"input": "5\n-2 3\n-3 3\n4 2\n3 2\n1 2",
"output": "No"
},
{
"input": "3\n2 0\n3 0\n4 0",
"output": "Yes"
},
{
"input": "5\n-3 1\n-2 1\n-1 1\n1 1\n2 1",
"output": "No"
},
{
"input": "4\n-3 0\n1 0\n2 0\n3 0",
"output": "Yes"
},
{
"input": "2\n1 0\n-1 1",
"output": "Yes"
},
{
"input": "3\n-1 0\n1 0\n2 0",
"output": "Yes"
},
{
"input": "5\n1 0\n3 0\n-1 0\n-6 0\n-4 1",
"output": "No"
},
{
"input": "5\n-1 2\n-2 2\n-3 1\n1 2\n2 3",
"output": "No"
},
{
"input": "3\n1 0\n-1 0\n-2 0",
"output": "Yes"
},
{
"input": "4\n1 0\n2 0\n3 1\n4 1",
"output": "Yes"
},
{
"input": "4\n1 0\n1 2\n1 3\n-1 5",
"output": "Yes"
},
{
"input": "4\n2 2\n2 5\n-2 3\n-2 0",
"output": "No"
},
{
"input": "4\n1 1\n-1 1\n-1 0\n-1 -1",
"output": "Yes"
},
{
"input": "4\n2 0\n3 0\n-3 -3\n-3 -4",
"output": "No"
},
{
"input": "4\n-1 0\n-2 0\n-3 0\n-4 0",
"output": "Yes"
},
{
"input": "2\n-1 1\n1 1",
"output": "Yes"
},
{
"input": "5\n1 1\n2 2\n3 3\n-4 -4\n-5 -5",
"output": "No"
},
{
"input": "5\n2 0\n3 0\n4 0\n5 0\n6 0",
"output": "Yes"
},
{
"input": "2\n-1 2\n1 2",
"output": "Yes"
},
{
"input": "4\n1 1\n2 1\n-3 0\n-4 0",
"output": "No"
},
{
"input": "4\n-1 0\n-2 0\n3 0\n4 0",
"output": "No"
},
{
"input": "3\n3 0\n2 0\n1 0",
"output": "Yes"
},
{
"input": "4\n-2 0\n-3 0\n1 -1\n3 1",
"output": "No"
},
{
"input": "3\n-1 -1\n1 1\n2 2",
"output": "Yes"
},
{
"input": "4\n-2 0\n-1 0\n2 0\n1 0",
"output": "No"
},
{
"input": "2\n-3 5\n3 5",
"output": "Yes"
},
{
"input": "2\n-1 5\n1 5",
"output": "Yes"
},
{
"input": "4\n2 0\n3 0\n-2 0\n-3 0",
"output": "No"
},
{
"input": "3\n-1 1\n1 1\n1 -1",
"output": "Yes"
},
{
"input": "2\n1 0\n2 0",
"output": "Yes"
},
{
"input": "4\n-1 1\n-2 1\n2 -1\n3 -1",
"output": "No"
},
{
"input": "5\n1 0\n2 0\n3 0\n-1 0\n-2 0",
"output": "No"
},
{
"input": "4\n-3 0\n-4 0\n-5 0\n-6 0",
"output": "Yes"
},
{
"input": "6\n-3 0\n-2 0\n-1 0\n1 0\n2 0\n3 0",
"output": "No"
},
{
"input": "4\n5 0\n5 1\n6 0\n6 1",
"output": "Yes"
}
] | 1,567,708,592
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 71
| 982
| 9,523,200
|
n = int(input())
up = 0
down = 0
for _ in range(n):
x, y = map(int, input().split())
if x > 0:
up += 1
else:
down += 1
if up <= 1 or down <= 1:
print("Yes")
else:
print("No")
|
Title: Find Extra One
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have *n* distinct points on a plane, none of them lie on *OY* axis. Check that there is a point after removal of which the remaining points are located on one side of the *OY* axis.
Input Specification:
The first line contains a single positive integer *n* (2<=≤<=*n*<=≤<=105).
The following *n* lines contain coordinates of the points. The *i*-th of these lines contains two single integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109, *x**i*<=≠<=0). No two points coincide.
Output Specification:
Print "Yes" if there is such a point, "No" — otherwise.
You can print every letter in any case (upper or lower).
Demo Input:
['3\n1 1\n-1 -1\n2 -1\n', '4\n1 1\n2 2\n-1 1\n-2 2\n', '3\n1 2\n2 1\n4 60\n']
Demo Output:
['Yes', 'No', 'Yes']
Note:
In the first example the second point can be removed.
In the second example there is no suitable for the condition point.
In the third example any point can be removed.
|
```python
n = int(input())
up = 0
down = 0
for _ in range(n):
x, y = map(int, input().split())
if x > 0:
up += 1
else:
down += 1
if up <= 1 or down <= 1:
print("Yes")
else:
print("No")
```
| 3
|
|
724
|
B
|
Batch Sort
|
PROGRAMMING
| 1,500
|
[
"brute force",
"greedy",
"implementation",
"math"
] | null | null |
You are given a table consisting of *n* rows and *m* columns.
Numbers in each row form a permutation of integers from 1 to *m*.
You are allowed to pick two elements in one row and swap them, but no more than once for each row. Also, no more than once you are allowed to pick two columns and swap them. Thus, you are allowed to perform from 0 to *n*<=+<=1 actions in total. Operations can be performed in any order.
You have to check whether it's possible to obtain the identity permutation 1,<=2,<=...,<=*m* in each row. In other words, check if one can perform some of the operation following the given rules and make each row sorted in increasing order.
|
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=20) — the number of rows and the number of columns in the given table.
Each of next *n* lines contains *m* integers — elements of the table. It's guaranteed that numbers in each line form a permutation of integers from 1 to *m*.
|
If there is a way to obtain the identity permutation in each row by following the given rules, print "YES" (without quotes) in the only line of the output. Otherwise, print "NO" (without quotes).
|
[
"2 4\n1 3 2 4\n1 3 4 2\n",
"4 4\n1 2 3 4\n2 3 4 1\n3 4 1 2\n4 1 2 3\n",
"3 6\n2 1 3 4 5 6\n1 2 4 3 5 6\n1 2 3 4 6 5\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
In the first sample, one can act in the following way:
1. Swap second and third columns. Now the table is <center class="tex-equation">1 2 3 4</center> <center class="tex-equation">1 4 3 2</center> 1. In the second row, swap the second and the fourth elements. Now the table is <center class="tex-equation">1 2 3 4</center> <center class="tex-equation">1 2 3 4</center>
| 1,000
|
[
{
"input": "2 4\n1 3 2 4\n1 3 4 2",
"output": "YES"
},
{
"input": "4 4\n1 2 3 4\n2 3 4 1\n3 4 1 2\n4 1 2 3",
"output": "NO"
},
{
"input": "3 6\n2 1 3 4 5 6\n1 2 4 3 5 6\n1 2 3 4 6 5",
"output": "YES"
},
{
"input": "3 10\n1 2 3 4 5 6 7 10 9 8\n5 2 3 4 1 6 7 8 9 10\n1 2 3 4 5 6 7 8 9 10",
"output": "YES"
},
{
"input": "5 12\n1 2 3 4 5 6 7 10 9 8 11 12\n1 2 3 4 5 6 7 10 9 8 11 12\n1 2 3 8 5 6 7 10 9 4 11 12\n1 5 3 4 2 6 7 10 9 8 11 12\n1 2 3 4 5 6 7 10 9 8 11 12",
"output": "YES"
},
{
"input": "4 10\n3 2 8 10 5 6 7 1 9 4\n1 2 9 4 5 3 7 8 10 6\n7 5 3 4 8 6 1 2 9 10\n4 2 3 9 8 6 7 5 1 10",
"output": "NO"
},
{
"input": "5 10\n9 2 3 4 5 6 7 8 1 10\n9 5 3 4 2 6 7 8 1 10\n9 5 3 4 2 6 7 8 1 10\n9 5 3 4 2 6 7 8 1 10\n9 5 3 4 2 10 7 8 1 6",
"output": "NO"
},
{
"input": "1 10\n9 10 4 2 3 5 7 1 8 6",
"output": "NO"
},
{
"input": "5 10\n6 4 7 3 5 8 1 9 10 2\n1 5 10 6 3 4 9 7 2 8\n3 2 1 7 8 6 5 4 10 9\n7 9 1 6 8 2 4 5 3 10\n3 4 6 9 8 7 1 2 10 5",
"output": "NO"
},
{
"input": "20 2\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2\n1 2\n2 1\n2 1\n1 2\n2 1",
"output": "YES"
},
{
"input": "20 3\n3 2 1\n2 3 1\n2 3 1\n2 1 3\n1 3 2\n2 1 3\n1 2 3\n3 2 1\n3 1 2\n1 3 2\n3 1 2\n2 1 3\n2 3 1\n2 3 1\n3 1 2\n1 3 2\n3 1 2\n1 3 2\n3 1 2\n3 1 2",
"output": "NO"
},
{
"input": "1 1\n1",
"output": "YES"
},
{
"input": "1 10\n1 2 3 4 5 6 7 10 9 8",
"output": "YES"
},
{
"input": "1 10\n6 9 3 4 5 1 8 7 2 10",
"output": "NO"
},
{
"input": "5 20\n1 2 3 4 5 6 7 8 9 10 11 12 19 14 15 16 17 18 13 20\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20\n1 2 3 4 5 6 7 19 9 10 11 12 13 14 15 16 17 18 8 20\n1 2 3 4 5 6 7 20 9 10 11 12 13 14 15 16 17 18 19 8\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20",
"output": "YES"
},
{
"input": "5 20\n1 2 3 4 5 6 7 8 12 10 11 9 13 14 15 16 17 18 19 20\n1 11 3 4 5 6 7 8 9 10 2 12 13 14 15 16 17 18 19 20\n1 2 3 4 5 6 8 7 9 10 11 12 13 14 15 16 17 18 19 20\n1 12 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20\n1 2 3 4 5 6 7 8 9 10 19 12 13 14 15 16 17 18 11 20",
"output": "YES"
},
{
"input": "5 20\n1 2 3 4 12 18 7 8 9 10 11 5 13 14 15 16 17 6 19 20\n6 2 3 4 5 1 7 8 9 10 11 12 13 20 15 16 17 18 19 14\n4 2 3 1 5 11 7 8 9 10 6 12 13 14 15 16 17 18 19 20\n1 2 3 4 5 6 19 8 9 10 11 12 13 14 15 20 17 18 7 16\n1 2 9 4 5 6 7 8 18 10 11 12 13 14 15 16 17 3 19 20",
"output": "NO"
},
{
"input": "1 10\n4 2 3 8 5 6 7 1 9 10",
"output": "YES"
},
{
"input": "1 10\n3 2 1 4 5 6 7 8 10 9",
"output": "YES"
},
{
"input": "5 20\n1 2 3 4 5 6 7 8 9 10 19 12 18 14 15 16 17 13 11 20\n1 2 11 4 5 6 7 8 9 10 19 12 13 14 15 16 17 18 3 20\n13 2 3 4 5 6 7 8 9 10 19 12 1 14 15 16 17 18 11 20\n1 2 3 4 5 6 7 8 9 10 19 12 13 14 15 16 17 18 11 20\n1 2 3 4 5 6 7 8 9 10 19 12 13 14 15 16 17 18 11 20",
"output": "YES"
},
{
"input": "5 20\n1 2 3 4 5 6 16 8 9 10 11 12 13 14 15 7 17 18 19 20\n1 2 3 14 5 6 16 8 9 10 11 12 13 4 15 7 17 18 19 20\n1 2 3 4 5 6 16 8 18 10 11 12 13 14 15 7 17 9 19 20\n1 2 3 4 5 6 16 8 9 15 11 12 13 14 10 7 17 18 19 20\n1 2 18 4 5 6 16 8 9 10 11 12 13 14 15 7 17 3 19 20",
"output": "YES"
},
{
"input": "5 20\n1 2 18 4 5 6 7 8 9 10 11 12 13 14 15 16 19 3 17 20\n8 2 3 9 5 6 7 1 4 10 11 12 13 14 15 16 17 18 19 20\n7 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 20 19 18\n1 2 3 12 5 6 7 8 9 17 11 4 13 14 15 16 10 18 19 20\n1 11 3 4 9 6 7 8 5 10 2 12 13 14 15 16 17 18 19 20",
"output": "NO"
},
{
"input": "1 10\n10 2 3 4 5 9 7 8 6 1",
"output": "YES"
},
{
"input": "1 10\n1 9 2 4 6 5 8 3 7 10",
"output": "NO"
},
{
"input": "5 20\n1 3 2 19 5 6 7 8 9 17 11 12 13 14 15 16 10 18 4 20\n1 3 2 4 5 6 7 8 9 17 11 12 13 14 15 16 10 18 19 20\n1 3 2 4 20 6 7 8 9 17 11 12 13 14 15 16 10 18 19 5\n1 3 2 4 5 6 7 8 9 17 11 12 13 14 15 16 10 18 19 20\n1 3 2 4 5 6 7 8 9 17 11 12 13 14 15 16 10 18 19 20",
"output": "NO"
},
{
"input": "5 20\n1 6 17 4 5 2 7 14 9 10 11 12 13 8 15 16 3 18 19 20\n5 6 17 4 1 2 7 8 9 10 11 12 13 14 15 16 3 18 19 20\n1 6 17 4 5 2 7 8 9 10 11 12 13 14 15 18 3 16 19 20\n1 6 17 4 5 2 7 8 9 10 11 12 13 14 15 16 3 18 20 19\n1 6 17 8 5 2 7 4 9 10 11 12 13 14 15 16 3 18 19 20",
"output": "NO"
},
{
"input": "5 20\n10 2 9 4 5 6 7 8 15 1 11 16 13 14 3 12 17 18 19 20\n10 2 3 4 5 6 7 1 9 8 11 16 13 14 15 12 17 18 19 20\n9 2 3 4 5 6 7 8 10 1 11 16 13 14 15 12 20 18 19 17\n10 2 3 4 7 6 5 8 9 1 11 16 18 14 15 12 17 13 19 20\n10 2 3 4 5 6 7 8 9 20 11 16 14 13 15 12 17 18 19 1",
"output": "NO"
},
{
"input": "1 4\n2 3 4 1",
"output": "NO"
},
{
"input": "3 3\n1 2 3\n2 1 3\n3 2 1",
"output": "YES"
},
{
"input": "15 6\n2 1 4 3 6 5\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6",
"output": "NO"
},
{
"input": "2 4\n4 3 2 1\n4 3 1 2",
"output": "NO"
},
{
"input": "2 4\n1 2 3 4\n2 1 4 3",
"output": "YES"
},
{
"input": "10 6\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1\n6 5 4 3 2 1",
"output": "NO"
},
{
"input": "4 4\n2 1 4 3\n2 1 4 3\n2 1 4 3\n2 1 4 3",
"output": "YES"
},
{
"input": "4 8\n1 2 3 4 6 5 8 7\n1 2 3 4 6 5 8 7\n1 2 3 4 6 5 8 7\n1 2 3 4 6 5 8 7",
"output": "YES"
},
{
"input": "4 6\n1 2 3 5 6 4\n3 2 1 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6",
"output": "NO"
},
{
"input": "3 3\n1 2 3\n3 1 2\n1 3 2",
"output": "YES"
},
{
"input": "2 5\n5 2 1 4 3\n2 1 5 4 3",
"output": "YES"
},
{
"input": "20 8\n4 3 2 1 5 6 7 8\n1 2 3 4 8 7 6 5\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8",
"output": "NO"
},
{
"input": "6 8\n8 7 6 5 4 3 2 1\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8\n1 2 3 4 5 6 7 8",
"output": "NO"
},
{
"input": "6 12\n1 2 3 4 5 6 7 8 9 10 11 12\n1 2 3 4 5 6 7 8 10 9 12 11\n1 2 3 4 5 6 7 8 10 9 12 11\n1 2 3 4 5 6 7 8 10 9 12 11\n1 2 3 4 5 6 7 8 10 9 12 11\n1 2 3 4 5 6 7 8 10 9 12 11",
"output": "YES"
},
{
"input": "6 12\n1 2 3 4 5 6 7 8 9 10 11 12\n1 2 3 4 5 6 7 8 9 10 11 12\n1 2 3 4 5 6 7 8 9 10 11 12\n1 2 3 4 5 6 7 8 9 10 11 12\n1 2 3 4 5 6 7 8 9 10 11 12\n1 2 3 4 5 6 7 8 10 11 12 9",
"output": "NO"
},
{
"input": "2 4\n2 3 1 4\n3 2 1 4",
"output": "YES"
},
{
"input": "2 4\n4 3 2 1\n1 2 3 4",
"output": "YES"
},
{
"input": "2 4\n1 2 3 4\n4 3 2 1",
"output": "YES"
},
{
"input": "2 6\n2 3 1 4 5 6\n1 2 3 5 6 4",
"output": "NO"
},
{
"input": "3 3\n2 3 1\n2 3 1\n1 2 3",
"output": "YES"
},
{
"input": "2 6\n6 5 4 3 2 1\n6 5 4 3 2 1",
"output": "NO"
},
{
"input": "5 4\n2 1 4 3\n2 1 4 3\n2 1 4 3\n2 1 4 3\n2 1 4 3",
"output": "YES"
},
{
"input": "5 4\n3 1 4 2\n3 1 4 2\n3 1 4 2\n3 1 4 2\n3 1 4 2",
"output": "NO"
},
{
"input": "6 8\n3 8 1 4 5 6 7 2\n1 8 3 6 5 4 7 2\n1 8 3 5 4 6 7 2\n1 8 3 7 5 6 4 2\n1 8 3 7 5 6 4 2\n1 8 3 7 5 6 4 2",
"output": "YES"
},
{
"input": "2 5\n5 2 4 3 1\n2 1 5 4 3",
"output": "NO"
},
{
"input": "4 4\n2 3 1 4\n1 2 3 4\n2 3 1 4\n2 1 3 4",
"output": "YES"
},
{
"input": "2 4\n1 2 4 3\n2 1 4 3",
"output": "YES"
},
{
"input": "3 5\n1 2 4 3 5\n2 1 4 3 5\n1 2 3 4 5",
"output": "YES"
},
{
"input": "3 10\n2 1 3 4 5 6 8 7 10 9\n1 2 3 4 5 6 8 7 10 9\n1 2 3 4 6 5 8 7 10 9",
"output": "NO"
},
{
"input": "3 4\n3 1 2 4\n3 2 4 1\n3 1 2 4",
"output": "YES"
},
{
"input": "2 5\n1 4 2 3 5\n1 2 4 5 3",
"output": "YES"
},
{
"input": "2 5\n2 1 5 3 4\n2 1 5 3 4",
"output": "NO"
},
{
"input": "3 6\n2 3 1 4 5 6\n2 1 4 3 5 6\n1 2 3 4 5 6",
"output": "YES"
},
{
"input": "6 6\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5",
"output": "NO"
},
{
"input": "1 1\n1",
"output": "YES"
},
{
"input": "2 4\n2 1 4 3\n2 1 4 3",
"output": "YES"
},
{
"input": "6 6\n6 5 4 3 2 1\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6",
"output": "NO"
},
{
"input": "4 6\n6 5 4 3 2 1\n1 2 3 4 5 6\n1 2 3 4 5 6\n1 2 3 4 5 6",
"output": "NO"
},
{
"input": "2 4\n2 3 1 4\n1 2 3 4",
"output": "YES"
},
{
"input": "3 5\n1 2 3 4 5\n1 3 4 2 5\n1 4 2 3 5",
"output": "YES"
},
{
"input": "4 3\n1 2 3\n1 2 3\n1 2 3\n3 1 2",
"output": "YES"
},
{
"input": "2 3\n3 1 2\n1 2 3",
"output": "YES"
},
{
"input": "2 5\n2 1 5 4 3\n2 1 5 4 3",
"output": "YES"
},
{
"input": "7 4\n1 2 3 4\n4 3 2 1\n4 3 2 1\n4 3 2 1\n4 3 2 1\n4 3 2 1\n4 3 2 1",
"output": "YES"
},
{
"input": "3 3\n1 2 3\n1 3 2\n3 1 2",
"output": "YES"
},
{
"input": "10 6\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5\n2 1 4 3 6 5",
"output": "NO"
}
] | 1,475,931,560
| 2,660
|
Python 3
|
RUNTIME_ERROR
|
PRETESTS
| 4
| 62
| 4,915,200
|
n,m = map(int,input().split())
inp = list(set([input() for _ in range(n) ]))
mat = [[] for _ in range(m) ]
for row in inp:
r = row.split()
for idx,val in enumerate(r):
mat[idx].append(int(val))
def valid(row):
count = 0
for idx,col in enumerate(mat):
if (idx + 1) != col[row]:
count += 1
if count > 2:
return False
return count <= 2
def try_swap(col1,col2):
temp = mat[col1]
mat[col1] = mat[col2]
mat[col2] = temp
for row in range(n):
if not valid(row):
temp = mat[col2]
mat[col2] = mat[col1]
mat[col1] = temp
return False
temp = mat[col2]
mat[col2] = mat[col1]
mat[col1] = temp
return True
for col in range(m):
for col2 in range(col + 1,m):
if try_swap(col,col2):
print('YES')
import sys
sys.exit(0)
if try_swap(0,0):
print('YES')
else:
print('NO')
|
Title: Batch Sort
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given a table consisting of *n* rows and *m* columns.
Numbers in each row form a permutation of integers from 1 to *m*.
You are allowed to pick two elements in one row and swap them, but no more than once for each row. Also, no more than once you are allowed to pick two columns and swap them. Thus, you are allowed to perform from 0 to *n*<=+<=1 actions in total. Operations can be performed in any order.
You have to check whether it's possible to obtain the identity permutation 1,<=2,<=...,<=*m* in each row. In other words, check if one can perform some of the operation following the given rules and make each row sorted in increasing order.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=20) — the number of rows and the number of columns in the given table.
Each of next *n* lines contains *m* integers — elements of the table. It's guaranteed that numbers in each line form a permutation of integers from 1 to *m*.
Output Specification:
If there is a way to obtain the identity permutation in each row by following the given rules, print "YES" (without quotes) in the only line of the output. Otherwise, print "NO" (without quotes).
Demo Input:
['2 4\n1 3 2 4\n1 3 4 2\n', '4 4\n1 2 3 4\n2 3 4 1\n3 4 1 2\n4 1 2 3\n', '3 6\n2 1 3 4 5 6\n1 2 4 3 5 6\n1 2 3 4 6 5\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
In the first sample, one can act in the following way:
1. Swap second and third columns. Now the table is <center class="tex-equation">1 2 3 4</center> <center class="tex-equation">1 4 3 2</center> 1. In the second row, swap the second and the fourth elements. Now the table is <center class="tex-equation">1 2 3 4</center> <center class="tex-equation">1 2 3 4</center>
|
```python
n,m = map(int,input().split())
inp = list(set([input() for _ in range(n) ]))
mat = [[] for _ in range(m) ]
for row in inp:
r = row.split()
for idx,val in enumerate(r):
mat[idx].append(int(val))
def valid(row):
count = 0
for idx,col in enumerate(mat):
if (idx + 1) != col[row]:
count += 1
if count > 2:
return False
return count <= 2
def try_swap(col1,col2):
temp = mat[col1]
mat[col1] = mat[col2]
mat[col2] = temp
for row in range(n):
if not valid(row):
temp = mat[col2]
mat[col2] = mat[col1]
mat[col1] = temp
return False
temp = mat[col2]
mat[col2] = mat[col1]
mat[col1] = temp
return True
for col in range(m):
for col2 in range(col + 1,m):
if try_swap(col,col2):
print('YES')
import sys
sys.exit(0)
if try_swap(0,0):
print('YES')
else:
print('NO')
```
| -1
|
|
224
|
A
|
Parallelepiped
|
PROGRAMMING
| 1,100
|
[
"brute force",
"geometry",
"math"
] | null | null |
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
|
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
|
Print a single number — the sum of all edges of the parallelepiped.
|
[
"1 1 1\n",
"4 6 6\n"
] |
[
"12\n",
"28\n"
] |
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
| 500
|
[
{
"input": "1 1 1",
"output": "12"
},
{
"input": "4 6 6",
"output": "28"
},
{
"input": "20 10 50",
"output": "68"
},
{
"input": "9 4 36",
"output": "56"
},
{
"input": "324 9 36",
"output": "184"
},
{
"input": "1333 93 129",
"output": "308"
},
{
"input": "1022 584 112",
"output": "380"
},
{
"input": "66 174 319",
"output": "184"
},
{
"input": "912 276 1748",
"output": "444"
},
{
"input": "65 156 60",
"output": "120"
},
{
"input": "1 10000 10000",
"output": "40008"
},
{
"input": "1485 55 27",
"output": "332"
},
{
"input": "152 108 4104",
"output": "528"
},
{
"input": "1656 6900 1350",
"output": "740"
},
{
"input": "12 14 42",
"output": "60"
},
{
"input": "615 18 1230",
"output": "856"
},
{
"input": "680 60 408",
"output": "336"
},
{
"input": "644 966 6",
"output": "1308"
},
{
"input": "1 432 432",
"output": "1736"
},
{
"input": "2239 2239 1",
"output": "8964"
},
{
"input": "4106 8212 2",
"output": "16436"
},
{
"input": "10000 10000 10000",
"output": "1200"
},
{
"input": "3623 3623 1",
"output": "14500"
},
{
"input": "9801 9801 9801",
"output": "1188"
},
{
"input": "10000 1 10000",
"output": "40008"
},
{
"input": "9 9 9",
"output": "36"
},
{
"input": "9801 9702 9702",
"output": "1184"
}
] | 1,595,501,568
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 27
| 310
| 20,172,800
|
import sys
def input(): return sys.stdin.readline().strip()
def iinput(): return int(input())
def rinput(): return map(int, sys.stdin.readline().strip().split())
def get_list(): return list(map(int, sys.stdin.readline().strip().split()))
a=list(map(int,input().split()))
c1=a[2]*a[1]/a[0]
c=c1**0.5
b=a[1]/c
a=a[0]/b
s=int((a+b+c)*4)
print(s)
|
Title: Parallelepiped
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
Input Specification:
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=><=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
Output Specification:
Print a single number — the sum of all edges of the parallelepiped.
Demo Input:
['1 1 1\n', '4 6 6\n']
Demo Output:
['12\n', '28\n']
Note:
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
|
```python
import sys
def input(): return sys.stdin.readline().strip()
def iinput(): return int(input())
def rinput(): return map(int, sys.stdin.readline().strip().split())
def get_list(): return list(map(int, sys.stdin.readline().strip().split()))
a=list(map(int,input().split()))
c1=a[2]*a[1]/a[0]
c=c1**0.5
b=a[1]/c
a=a[0]/b
s=int((a+b+c)*4)
print(s)
```
| 3
|
|
337
|
A
|
Puzzles
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
|
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
|
Print a single integer — the least possible difference the teacher can obtain.
|
[
"4 6\n10 12 10 7 5 22\n"
] |
[
"5\n"
] |
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
| 500
|
[
{
"input": "4 6\n10 12 10 7 5 22",
"output": "5"
},
{
"input": "2 2\n4 4",
"output": "0"
},
{
"input": "2 10\n4 5 6 7 8 9 10 11 12 12",
"output": "0"
},
{
"input": "4 5\n818 136 713 59 946",
"output": "759"
},
{
"input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903",
"output": "13"
},
{
"input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94",
"output": "3"
},
{
"input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190",
"output": "31"
},
{
"input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997",
"output": "0"
},
{
"input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176",
"output": "412"
},
{
"input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886",
"output": "938"
},
{
"input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993",
"output": "937"
},
{
"input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7",
"output": "0"
},
{
"input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19",
"output": "12"
},
{
"input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "0"
},
{
"input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17",
"output": "31"
},
{
"input": "2 2\n1000 4",
"output": "996"
},
{
"input": "2 3\n4 502 1000",
"output": "498"
},
{
"input": "3 3\n4 1000 4",
"output": "996"
}
] | 1,695,554,770
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 18
| 92
| 0
|
n, m = map(int,input().split())
A = input().split()
for i in range(m):
A[i] = int(A[i])
A.sort()
B = []
for i in range(m-n+1):
B.append(A[i+n-1]-A[i])
print(min(B))
|
Title: Puzzles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
Input Specification:
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Output Specification:
Print a single integer — the least possible difference the teacher can obtain.
Demo Input:
['4 6\n10 12 10 7 5 22\n']
Demo Output:
['5\n']
Note:
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
|
```python
n, m = map(int,input().split())
A = input().split()
for i in range(m):
A[i] = int(A[i])
A.sort()
B = []
for i in range(m-n+1):
B.append(A[i+n-1]-A[i])
print(min(B))
```
| 3
|
|
8
|
A
|
Train and Peter
|
PROGRAMMING
| 1,200
|
[
"strings"
] |
A. Train and Peter
|
1
|
64
|
Peter likes to travel by train. He likes it so much that on the train he falls asleep.
Once in summer Peter was going by train from city A to city B, and as usual, was sleeping. Then he woke up, started to look through the window and noticed that every railway station has a flag of a particular colour.
The boy started to memorize the order of the flags' colours that he had seen. But soon he fell asleep again. Unfortunately, he didn't sleep long, he woke up and went on memorizing the colours. Then he fell asleep again, and that time he slept till the end of the journey.
At the station he told his parents about what he was doing, and wrote two sequences of the colours that he had seen before and after his sleep, respectively.
Peter's parents know that their son likes to fantasize. They give you the list of the flags' colours at the stations that the train passes sequentially on the way from A to B, and ask you to find out if Peter could see those sequences on the way from A to B, or from B to A. Remember, please, that Peter had two periods of wakefulness.
Peter's parents put lowercase Latin letters for colours. The same letter stands for the same colour, different letters — for different colours.
|
The input data contains three lines. The first line contains a non-empty string, whose length does not exceed 105, the string consists of lowercase Latin letters — the flags' colours at the stations on the way from A to B. On the way from B to A the train passes the same stations, but in reverse order.
The second line contains the sequence, written by Peter during the first period of wakefulness. The third line contains the sequence, written during the second period of wakefulness. Both sequences are non-empty, consist of lowercase Latin letters, and the length of each does not exceed 100 letters. Each of the sequences is written in chronological order.
|
Output one of the four words without inverted commas:
- «forward» — if Peter could see such sequences only on the way from A to B; - «backward» — if Peter could see such sequences on the way from B to A; - «both» — if Peter could see such sequences both on the way from A to B, and on the way from B to A; - «fantasy» — if Peter could not see such sequences.
|
[
"atob\na\nb\n",
"aaacaaa\naca\naa\n"
] |
[
"forward\n",
"both\n"
] |
It is assumed that the train moves all the time, so one flag cannot be seen twice. There are no flags at stations A and B.
| 0
|
[
{
"input": "atob\na\nb",
"output": "forward"
},
{
"input": "aaacaaa\naca\naa",
"output": "both"
},
{
"input": "aaa\naa\naa",
"output": "fantasy"
},
{
"input": "astalavista\nastla\nlavista",
"output": "fantasy"
},
{
"input": "abacabadabacaba\nabacaba\nabacaba",
"output": "both"
},
{
"input": "a\na\na",
"output": "fantasy"
},
{
"input": "ab\nb\na",
"output": "backward"
},
{
"input": "aaa\naaaa\naaaa",
"output": "fantasy"
},
{
"input": "bbabbbbababbaabaabaa\nabb\nbaab",
"output": "forward"
},
{
"input": "bbbbbbbbbbbbbbbbbbbbbbbbb\nbbbb\nbbbbb",
"output": "both"
},
{
"input": "babaabababaaaababaabababaabababababababbababbbabbaabababaababbaabbababaababaaabababaabbaababaaababaa\nabaabababaa\nabaabbaa",
"output": "forward"
},
{
"input": "bbbbbbbbbbbbbbbbbbbbbbbbb\nbbbb\nbbbbb",
"output": "both"
},
{
"input": "aababaaababaabbaabababaaababaabababbaabbabaabababaabbabbbababbababababababaabababaababaaaabababaabab\nabaabababaa\nabaabbaa",
"output": "backward"
},
{
"input": "aaaa\naaa\naa",
"output": "fantasy"
},
{
"input": "zzzz\nzz\nzzz",
"output": "fantasy"
},
{
"input": "zzzz\nzzzz\nzzzz",
"output": "fantasy"
},
{
"input": "zzzz\nzz\nzz",
"output": "both"
},
{
"input": "aabaa\naab\nbaa",
"output": "fantasy"
},
{
"input": "aabaab\naba\nab",
"output": "forward"
},
{
"input": "aab\nb\naa",
"output": "backward"
},
{
"input": "abacaba\naca\nba",
"output": "both"
}
] | 1,630,172,739
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 154
| 7,475,200
|
#!/usr/bin/python3
import sys, re
ps = [l.strip('\n') for l in sys.stdin]
print(ps)
fs = f'{ps[1]}.*{ps[2]}'
bs = f'{ps[2]}.*{ps[1]}'
if re.search(fs, ps[0]) is not None and re.search(bs, ps[0]) is not None:
print("both")
elif re.search(fs, ps[0]) is not None:
print("forward")
elif re.search(bs, ps[0]) is not None:
print("backward")
else:
print("fantasy")
|
Title: Train and Peter
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Peter likes to travel by train. He likes it so much that on the train he falls asleep.
Once in summer Peter was going by train from city A to city B, and as usual, was sleeping. Then he woke up, started to look through the window and noticed that every railway station has a flag of a particular colour.
The boy started to memorize the order of the flags' colours that he had seen. But soon he fell asleep again. Unfortunately, he didn't sleep long, he woke up and went on memorizing the colours. Then he fell asleep again, and that time he slept till the end of the journey.
At the station he told his parents about what he was doing, and wrote two sequences of the colours that he had seen before and after his sleep, respectively.
Peter's parents know that their son likes to fantasize. They give you the list of the flags' colours at the stations that the train passes sequentially on the way from A to B, and ask you to find out if Peter could see those sequences on the way from A to B, or from B to A. Remember, please, that Peter had two periods of wakefulness.
Peter's parents put lowercase Latin letters for colours. The same letter stands for the same colour, different letters — for different colours.
Input Specification:
The input data contains three lines. The first line contains a non-empty string, whose length does not exceed 105, the string consists of lowercase Latin letters — the flags' colours at the stations on the way from A to B. On the way from B to A the train passes the same stations, but in reverse order.
The second line contains the sequence, written by Peter during the first period of wakefulness. The third line contains the sequence, written during the second period of wakefulness. Both sequences are non-empty, consist of lowercase Latin letters, and the length of each does not exceed 100 letters. Each of the sequences is written in chronological order.
Output Specification:
Output one of the four words without inverted commas:
- «forward» — if Peter could see such sequences only on the way from A to B; - «backward» — if Peter could see such sequences on the way from B to A; - «both» — if Peter could see such sequences both on the way from A to B, and on the way from B to A; - «fantasy» — if Peter could not see such sequences.
Demo Input:
['atob\na\nb\n', 'aaacaaa\naca\naa\n']
Demo Output:
['forward\n', 'both\n']
Note:
It is assumed that the train moves all the time, so one flag cannot be seen twice. There are no flags at stations A and B.
|
```python
#!/usr/bin/python3
import sys, re
ps = [l.strip('\n') for l in sys.stdin]
print(ps)
fs = f'{ps[1]}.*{ps[2]}'
bs = f'{ps[2]}.*{ps[1]}'
if re.search(fs, ps[0]) is not None and re.search(bs, ps[0]) is not None:
print("both")
elif re.search(fs, ps[0]) is not None:
print("forward")
elif re.search(bs, ps[0]) is not None:
print("backward")
else:
print("fantasy")
```
| 0
|
291
|
C
|
Network Mask
|
PROGRAMMING
| 1,600
|
[
"*special",
"bitmasks",
"brute force",
"implementation"
] | null | null |
The problem uses a simplified TCP/IP address model, please make sure you've read the statement attentively.
Polycarpus has found a job, he is a system administrator. One day he came across *n* IP addresses. Each IP address is a 32 bit number, represented as a group of four 8-bit numbers (without leading zeroes), separated by dots. For example, the record 0.255.1.123 shows a correct IP address and records 0.256.1.123 and 0.255.1.01 do not. In this problem an arbitrary group of four 8-bit numbers is a correct IP address.
Having worked as an administrator for some time, Polycarpus learned that if you know the IP address, you can use the subnet mask to get the address of the network that has this IP addess.
The subnet mask is an IP address that has the following property: if we write this IP address as a 32 bit string, that it is representable as "11...11000..000". In other words, the subnet mask first has one or more one bits, and then one or more zero bits (overall there are 32 bits). For example, the IP address 2.0.0.0 is not a correct subnet mask as its 32-bit record looks as 00000010000000000000000000000000.
To get the network address of the IP address, you need to perform the operation of the bitwise "and" of the IP address and the subnet mask. For example, if the subnet mask is 255.192.0.0, and the IP address is 192.168.1.2, then the network address equals 192.128.0.0. In the bitwise "and" the result has a bit that equals 1 if and only if both operands have corresponding bits equal to one.
Now Polycarpus wants to find all networks to which his IP addresses belong. Unfortunately, Polycarpus lost subnet mask. Fortunately, Polycarpus remembers that his IP addresses belonged to exactly *k* distinct networks. Help Polycarpus find the subnet mask, such that his IP addresses will belong to exactly *k* distinct networks. If there are several such subnet masks, find the one whose bit record contains the least number of ones. If such subnet mask do not exist, say so.
|
The first line contains two integers, *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105) — the number of IP addresses and networks. The next *n* lines contain the IP addresses. It is guaranteed that all IP addresses are distinct.
|
In a single line print the IP address of the subnet mask in the format that is described in the statement, if the required subnet mask exists. Otherwise, print -1.
|
[
"5 3\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n",
"5 2\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n",
"2 1\n255.0.0.1\n0.0.0.2\n"
] |
[
"255.255.254.0",
"255.255.0.0",
"-1\n"
] |
none
| 1,500
|
[
{
"input": "5 3\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3",
"output": "255.255.254.0"
},
{
"input": "5 2\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3",
"output": "255.255.0.0"
},
{
"input": "2 1\n255.0.0.1\n0.0.0.2",
"output": "-1"
},
{
"input": "10 2\n57.11.146.42\n200.130.164.235\n52.119.155.71\n113.10.216.20\n28.23.6.128\n190.112.90.85\n7.37.210.55\n20.190.120.226\n170.124.158.110\n122.157.34.141",
"output": "128.0.0.0"
},
{
"input": "11 4\n30.181.69.132\n170.239.176.11\n229.116.128.161\n9.82.24.38\n53.73.223.74\n168.10.125.208\n4.122.30.206\n139.239.173.235\n101.113.26.160\n216.250.148.119\n142.182.207.78",
"output": "192.0.0.0"
},
{
"input": "12 5\n211.200.83.75\n9.64.213.241\n143.23.121.155\n212.121.142.193\n24.184.86.27\n176.131.70.228\n64.47.67.24\n255.241.229.181\n246.34.183.253\n65.121.116.178\n76.84.75.89\n22.239.28.119",
"output": "-1"
},
{
"input": "13 6\n137.219.97.18\n104.145.250.214\n57.185.114.149\n158.161.4.92\n252.39.206.236\n184.252.14.247\n124.228.103.97\n114.244.29.127\n135.210.84.91\n169.248.84.237\n9.241.200.99\n90.154.249.89\n15.98.23.33",
"output": "-1"
},
{
"input": "14 7\n62.238.111.217\n200.225.31.188\n228.91.108.143\n105.200.123.248\n223.149.69.190\n192.117.215.11\n184.153.140.170\n230.246.85.73\n24.131.241.184\n18.119.52.40\n199.143.68.109\n158.69.214.60\n174.25.117.109\n1.204.187.57",
"output": "224.0.0.0"
},
{
"input": "15 8\n244.1.125.160\n39.50.68.162\n142.253.101.137\n52.239.241.147\n194.4.189.143\n200.238.160.30\n245.78.177.243\n89.249.140.19\n169.51.142.22\n123.246.20.99\n133.44.192.119\n226.240.179.30\n76.209.211.184\n98.15.6.117\n227.219.117.153",
"output": "-1"
},
{
"input": "5 5\n223.122.75.125\n79.30.187.249\n231.244.158.56\n166.205.237.209\n82.85.12.212",
"output": "240.0.0.0"
},
{
"input": "2 1\n0.0.0.0\n0.0.0.1",
"output": "128.0.0.0"
},
{
"input": "2 2\n0.0.0.0\n1.0.0.1",
"output": "255.0.0.0"
},
{
"input": "1 1\n0.0.0.0",
"output": "128.0.0.0"
},
{
"input": "2 2\n255.255.255.255\n255.255.255.254",
"output": "-1"
},
{
"input": "2 2\n0.0.0.0\n0.0.0.1",
"output": "-1"
}
] | 1,370,258,658
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 10
| 4,000
| 6,758,400
|
import math
import re
from fractions import Fraction
from collections import Counter
class Task:
ips = []
k = 0
answer = ''
def __init__(self):
n, self.k = [int(x) for x in input().split()]
self.ips = ['' for _ in range(n)]
for i in range(len(self.ips)):
self.ips[i] = input()
def solve(self):
ips, k = self.ips, self.k
for numberOfUnitsInMask in range(1, 32 + 1):
mask = '1' * numberOfUnitsInMask + '0' * (32 - numberOfUnitsInMask)
netAddresses = set()
for currentIp in ips:
ipBits = ''
for part in currentIp.split('.'):
part = bin(int(part))[2:]
part = '0' * (8 - len(part)) + part
ipBits += part
possibleAdress = ''
for i in range(len(mask)):
possibleAdress += str(int(mask[i]) * int(ipBits[i]))
netAddresses.add(possibleAdress)
if len(netAddresses) == k:
self.answer = '.'.join([str(int(mask[i : i + 8], 2)) for i in \
range(0, len(mask), 8)])
return
self.answer = '-1'
def printAnswer(self):
print(self.answer)
#for line in self.answer:
# print(line)
task = Task()
task.solve()
task.printAnswer()
|
Title: Network Mask
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The problem uses a simplified TCP/IP address model, please make sure you've read the statement attentively.
Polycarpus has found a job, he is a system administrator. One day he came across *n* IP addresses. Each IP address is a 32 bit number, represented as a group of four 8-bit numbers (without leading zeroes), separated by dots. For example, the record 0.255.1.123 shows a correct IP address and records 0.256.1.123 and 0.255.1.01 do not. In this problem an arbitrary group of four 8-bit numbers is a correct IP address.
Having worked as an administrator for some time, Polycarpus learned that if you know the IP address, you can use the subnet mask to get the address of the network that has this IP addess.
The subnet mask is an IP address that has the following property: if we write this IP address as a 32 bit string, that it is representable as "11...11000..000". In other words, the subnet mask first has one or more one bits, and then one or more zero bits (overall there are 32 bits). For example, the IP address 2.0.0.0 is not a correct subnet mask as its 32-bit record looks as 00000010000000000000000000000000.
To get the network address of the IP address, you need to perform the operation of the bitwise "and" of the IP address and the subnet mask. For example, if the subnet mask is 255.192.0.0, and the IP address is 192.168.1.2, then the network address equals 192.128.0.0. In the bitwise "and" the result has a bit that equals 1 if and only if both operands have corresponding bits equal to one.
Now Polycarpus wants to find all networks to which his IP addresses belong. Unfortunately, Polycarpus lost subnet mask. Fortunately, Polycarpus remembers that his IP addresses belonged to exactly *k* distinct networks. Help Polycarpus find the subnet mask, such that his IP addresses will belong to exactly *k* distinct networks. If there are several such subnet masks, find the one whose bit record contains the least number of ones. If such subnet mask do not exist, say so.
Input Specification:
The first line contains two integers, *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105) — the number of IP addresses and networks. The next *n* lines contain the IP addresses. It is guaranteed that all IP addresses are distinct.
Output Specification:
In a single line print the IP address of the subnet mask in the format that is described in the statement, if the required subnet mask exists. Otherwise, print -1.
Demo Input:
['5 3\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n', '5 2\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n', '2 1\n255.0.0.1\n0.0.0.2\n']
Demo Output:
['255.255.254.0', '255.255.0.0', '-1\n']
Note:
none
|
```python
import math
import re
from fractions import Fraction
from collections import Counter
class Task:
ips = []
k = 0
answer = ''
def __init__(self):
n, self.k = [int(x) for x in input().split()]
self.ips = ['' for _ in range(n)]
for i in range(len(self.ips)):
self.ips[i] = input()
def solve(self):
ips, k = self.ips, self.k
for numberOfUnitsInMask in range(1, 32 + 1):
mask = '1' * numberOfUnitsInMask + '0' * (32 - numberOfUnitsInMask)
netAddresses = set()
for currentIp in ips:
ipBits = ''
for part in currentIp.split('.'):
part = bin(int(part))[2:]
part = '0' * (8 - len(part)) + part
ipBits += part
possibleAdress = ''
for i in range(len(mask)):
possibleAdress += str(int(mask[i]) * int(ipBits[i]))
netAddresses.add(possibleAdress)
if len(netAddresses) == k:
self.answer = '.'.join([str(int(mask[i : i + 8], 2)) for i in \
range(0, len(mask), 8)])
return
self.answer = '-1'
def printAnswer(self):
print(self.answer)
#for line in self.answer:
# print(line)
task = Task()
task.solve()
task.printAnswer()
```
| 0
|
|
727
|
A
|
Transformation: from A to B
|
PROGRAMMING
| 1,000
|
[
"brute force",
"dfs and similar",
"math"
] | null | null |
Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations:
- multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1).
You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible.
Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*.
|
The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=<<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have.
|
If there is no way to get *b* from *a*, print "NO" (without quotes).
Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where:
- *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=<<=*i*<=≤<=*k*).
If there are multiple answers, print any of them.
|
[
"2 162\n",
"4 42\n",
"100 40021\n"
] |
[
"YES\n5\n2 4 8 81 162 \n",
"NO\n",
"YES\n5\n100 200 2001 4002 40021 \n"
] |
none
| 1,000
|
[
{
"input": "2 162",
"output": "YES\n5\n2 4 8 81 162 "
},
{
"input": "4 42",
"output": "NO"
},
{
"input": "100 40021",
"output": "YES\n5\n100 200 2001 4002 40021 "
},
{
"input": "1 111111111",
"output": "YES\n9\n1 11 111 1111 11111 111111 1111111 11111111 111111111 "
},
{
"input": "1 1000000000",
"output": "NO"
},
{
"input": "999999999 1000000000",
"output": "NO"
},
{
"input": "1 2",
"output": "YES\n2\n1 2 "
},
{
"input": "1 536870912",
"output": "YES\n30\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 "
},
{
"input": "11111 11111111",
"output": "YES\n4\n11111 111111 1111111 11111111 "
},
{
"input": "59139 946224",
"output": "YES\n5\n59139 118278 236556 473112 946224 "
},
{
"input": "9859 19718",
"output": "YES\n2\n9859 19718 "
},
{
"input": "25987 51974222",
"output": "YES\n5\n25987 259871 2598711 25987111 51974222 "
},
{
"input": "9411 188222222",
"output": "YES\n6\n9411 94111 941111 9411111 94111111 188222222 "
},
{
"input": "25539 510782222",
"output": "YES\n6\n25539 255391 2553911 25539111 255391111 510782222 "
},
{
"input": "76259 610072",
"output": "YES\n4\n76259 152518 305036 610072 "
},
{
"input": "92387 184774",
"output": "YES\n2\n92387 184774 "
},
{
"input": "8515 85151111",
"output": "YES\n5\n8515 85151 851511 8515111 85151111 "
},
{
"input": "91939 9193911",
"output": "YES\n3\n91939 919391 9193911 "
},
{
"input": "30518 610361",
"output": "YES\n3\n30518 61036 610361 "
},
{
"input": "46646 373168844",
"output": "YES\n7\n46646 466461 932922 9329221 93292211 186584422 373168844 "
},
{
"input": "30070 300701",
"output": "YES\n2\n30070 300701 "
},
{
"input": "13494 1079528",
"output": "YES\n5\n13494 134941 269882 539764 1079528 "
},
{
"input": "96918 775344422",
"output": "YES\n7\n96918 193836 1938361 3876722 38767221 387672211 775344422 "
},
{
"input": "13046 260921",
"output": "YES\n3\n13046 26092 260921 "
},
{
"input": "29174 5834811",
"output": "YES\n4\n29174 58348 583481 5834811 "
},
{
"input": "79894 319576421",
"output": "YES\n6\n79894 798941 1597882 15978821 31957642 319576421 "
},
{
"input": "96022 1920442",
"output": "YES\n3\n96022 960221 1920442 "
},
{
"input": "79446 6355681",
"output": "YES\n5\n79446 158892 317784 635568 6355681 "
},
{
"input": "5440 27853056",
"output": "YES\n11\n5440 10880 108801 217602 435204 870408 1740816 3481632 6963264 13926528 27853056 "
},
{
"input": "250000000 705032705",
"output": "NO"
},
{
"input": "17 35",
"output": "NO"
},
{
"input": "1 3",
"output": "NO"
},
{
"input": "2 11",
"output": "NO"
}
] | 1,695,324,085
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
from collections import deque
a, b = map(int, input().split())
pre = {}
fila = deque([a])
while fila:
v = fila.popleft()
aux = 2 * v
aux2 = 10 * v + 1
if aux not in pre and aux <= b:
fila.append(aux)
pre[aux] = v
if aux2 not in pre and aux2 <= b:
fila.append(aux2)
pre[aux2] = v
print(pre)
seq = [b]
if b not in pre:
print("NO")
else:
print("YES")
x = b
while x != a:
x = pre[x]
seq.append(x)
print(len(seq))
for i in seq[::-1]:
print(i)
|
Title: Transformation: from A to B
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations:
- multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1).
You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible.
Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*.
Input Specification:
The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=<<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have.
Output Specification:
If there is no way to get *b* from *a*, print "NO" (without quotes).
Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where:
- *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=<<=*i*<=≤<=*k*).
If there are multiple answers, print any of them.
Demo Input:
['2 162\n', '4 42\n', '100 40021\n']
Demo Output:
['YES\n5\n2 4 8 81 162 \n', 'NO\n', 'YES\n5\n100 200 2001 4002 40021 \n']
Note:
none
|
```python
from collections import deque
a, b = map(int, input().split())
pre = {}
fila = deque([a])
while fila:
v = fila.popleft()
aux = 2 * v
aux2 = 10 * v + 1
if aux not in pre and aux <= b:
fila.append(aux)
pre[aux] = v
if aux2 not in pre and aux2 <= b:
fila.append(aux2)
pre[aux2] = v
print(pre)
seq = [b]
if b not in pre:
print("NO")
else:
print("YES")
x = b
while x != a:
x = pre[x]
seq.append(x)
print(len(seq))
for i in seq[::-1]:
print(i)
```
| 0
|
|
614
|
A
|
Link/Cut Tree
|
PROGRAMMING
| 1,500
|
[
"brute force",
"implementation"
] | null | null |
Programmer Rostislav got seriously interested in the Link/Cut Tree data structure, which is based on Splay trees. Specifically, he is now studying the *expose* procedure.
Unfortunately, Rostislav is unable to understand the definition of this procedure, so he decided to ask programmer Serezha to help him. Serezha agreed to help if Rostislav solves a simple task (and if he doesn't, then why would he need Splay trees anyway?)
Given integers *l*, *r* and *k*, you need to print all powers of number *k* within range from *l* to *r* inclusive. However, Rostislav doesn't want to spent time doing this, as he got interested in playing a network game called Agar with Gleb. Help him!
|
The first line of the input contains three space-separated integers *l*, *r* and *k* (1<=≤<=*l*<=≤<=*r*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
|
Print all powers of number *k*, that lie within range from *l* to *r* in the increasing order. If there are no such numbers, print "-1" (without the quotes).
|
[
"1 10 2\n",
"2 4 5\n"
] |
[
"1 2 4 8 ",
"-1"
] |
Note to the first sample: numbers 2<sup class="upper-index">0</sup> = 1, 2<sup class="upper-index">1</sup> = 2, 2<sup class="upper-index">2</sup> = 4, 2<sup class="upper-index">3</sup> = 8 lie within the specified range. The number 2<sup class="upper-index">4</sup> = 16 is greater then 10, thus it shouldn't be printed.
| 500
|
[
{
"input": "1 10 2",
"output": "1 2 4 8 "
},
{
"input": "2 4 5",
"output": "-1"
},
{
"input": "18102 43332383920 28554",
"output": "28554 815330916 "
},
{
"input": "19562 31702689720 17701",
"output": "313325401 "
},
{
"input": "11729 55221128400 313",
"output": "97969 30664297 9597924961 "
},
{
"input": "5482 100347128000 342",
"output": "116964 40001688 13680577296 "
},
{
"input": "3680 37745933600 10",
"output": "10000 100000 1000000 10000000 100000000 1000000000 10000000000 "
},
{
"input": "17098 191120104800 43",
"output": "79507 3418801 147008443 6321363049 "
},
{
"input": "10462 418807699200 2",
"output": "16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 "
},
{
"input": "30061 641846400000 3",
"output": "59049 177147 531441 1594323 4782969 14348907 43046721 129140163 387420489 1162261467 3486784401 10460353203 31381059609 94143178827 282429536481 "
},
{
"input": "1 1000000000000000000 2",
"output": "1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1099511627776 2199023255552 4398046511104 8796093022208 17592186044416 35184372088832 70368744177664 140737488355328 281474976710656 562949953421312 1125899906842624 2251799813685248 4503599627370496 900719925474099..."
},
{
"input": "32 2498039712000 4",
"output": "64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 4294967296 17179869184 68719476736 274877906944 1099511627776 "
},
{
"input": "1 2576683920000 2",
"output": "1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1099511627776 2199023255552 "
},
{
"input": "5 25 5",
"output": "5 25 "
},
{
"input": "1 90 90",
"output": "1 90 "
},
{
"input": "95 2200128528000 68",
"output": "4624 314432 21381376 1453933568 98867482624 "
},
{
"input": "64 426314644000 53",
"output": "2809 148877 7890481 418195493 22164361129 "
},
{
"input": "198765 198765 198765",
"output": "198765 "
},
{
"input": "42 2845016496000 12",
"output": "144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 "
},
{
"input": "6 6 3",
"output": "-1"
},
{
"input": "1 10 11",
"output": "1 "
},
{
"input": "2 10 11",
"output": "-1"
},
{
"input": "87 160 41",
"output": "-1"
},
{
"input": "237171123124584251 923523399718980912 7150",
"output": "-1"
},
{
"input": "101021572000739548 453766043506276015 8898",
"output": "-1"
},
{
"input": "366070689449360724 928290634811046396 8230",
"output": "-1"
},
{
"input": "438133886369772308 942612870269666780 7193",
"output": "-1"
},
{
"input": "10 10 10",
"output": "10 "
},
{
"input": "16 16 256",
"output": "-1"
},
{
"input": "1 1000000000000000000 1000000000",
"output": "1 1000000000 1000000000000000000 "
},
{
"input": "1000000000000000000 1000000000000000000 1000000000",
"output": "1000000000000000000 "
},
{
"input": "1000000000 1000000000000000000 1000000000",
"output": "1000000000 1000000000000000000 "
},
{
"input": "1 1 4",
"output": "1 "
},
{
"input": "1 999999999999999999 1000000000",
"output": "1 1000000000 "
},
{
"input": "1 1000000000000000000 999999990",
"output": "1 999999990 999999980000000100 "
},
{
"input": "1 1000000000000000000 999999984",
"output": "1 999999984 999999968000000256 "
},
{
"input": "1 1000000000000000000 324325",
"output": "1 324325 105186705625 34114678301828125 "
},
{
"input": "1 1000000000000000000 999999523",
"output": "1 999999523 999999046000227529 "
},
{
"input": "1 243 3",
"output": "1 3 9 27 81 243 "
},
{
"input": "62769392426654367 567152589733560993 688813",
"output": "326816522793383797 "
},
{
"input": "1 1000000000000000000 690852001",
"output": "1 690852001 477276487285704001 "
},
{
"input": "1 1000000000000000000 918745157",
"output": "1 918745157 844092663510954649 "
},
{
"input": "1 1000000000000000000 131299843",
"output": "1 131299843 17239648771824649 "
},
{
"input": "2861381721051425 2861381721051425 1234",
"output": "-1"
}
] | 1,453,482,267
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 46
| 0
|
from math import log
input_str = input()
l, r, k = int(input_str.split()[0]), int(input_str.split()[1]), int(input_str.split()[2])
ans = ''
if abs(log(l, k)-log(r, k))<1:
ans = '-1'
else:
temp = k**round(log(l, k))
temp_deg = round(log(l, k))
for deg in range(round(log(l, k)), round(log(r, k))+1):
ans = ans+str(temp*k**(deg-temp_deg))+' '
print (ans)
|
Title: Link/Cut Tree
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Programmer Rostislav got seriously interested in the Link/Cut Tree data structure, which is based on Splay trees. Specifically, he is now studying the *expose* procedure.
Unfortunately, Rostislav is unable to understand the definition of this procedure, so he decided to ask programmer Serezha to help him. Serezha agreed to help if Rostislav solves a simple task (and if he doesn't, then why would he need Splay trees anyway?)
Given integers *l*, *r* and *k*, you need to print all powers of number *k* within range from *l* to *r* inclusive. However, Rostislav doesn't want to spent time doing this, as he got interested in playing a network game called Agar with Gleb. Help him!
Input Specification:
The first line of the input contains three space-separated integers *l*, *r* and *k* (1<=≤<=*l*<=≤<=*r*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
Output Specification:
Print all powers of number *k*, that lie within range from *l* to *r* in the increasing order. If there are no such numbers, print "-1" (without the quotes).
Demo Input:
['1 10 2\n', '2 4 5\n']
Demo Output:
['1 2 4 8 ', '-1']
Note:
Note to the first sample: numbers 2<sup class="upper-index">0</sup> = 1, 2<sup class="upper-index">1</sup> = 2, 2<sup class="upper-index">2</sup> = 4, 2<sup class="upper-index">3</sup> = 8 lie within the specified range. The number 2<sup class="upper-index">4</sup> = 16 is greater then 10, thus it shouldn't be printed.
|
```python
from math import log
input_str = input()
l, r, k = int(input_str.split()[0]), int(input_str.split()[1]), int(input_str.split()[2])
ans = ''
if abs(log(l, k)-log(r, k))<1:
ans = '-1'
else:
temp = k**round(log(l, k))
temp_deg = round(log(l, k))
for deg in range(round(log(l, k)), round(log(r, k))+1):
ans = ans+str(temp*k**(deg-temp_deg))+' '
print (ans)
```
| 0
|
|
456
|
A
|
Laptops
|
PROGRAMMING
| 1,100
|
[
"sortings"
] | null | null |
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
|
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
|
[
"2\n1 2\n2 1\n"
] |
[
"Happy Alex\n"
] |
none
| 500
|
[
{
"input": "2\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "2\n1 1\n2 2",
"output": "Poor Alex"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n3 3\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "1\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n2 3\n1 1\n3 2",
"output": "Happy Alex"
},
{
"input": "4\n4 1\n3 2\n2 3\n1 4",
"output": "Happy Alex"
},
{
"input": "2\n2 1\n1 2",
"output": "Happy Alex"
},
{
"input": "3\n3 2\n1 1\n2 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 1\n3 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
}
] | 1,695,734,332
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 46
| 327
| 17,715,200
|
n=int(input())
a=[[int(x) for x in input().split()] for i in range(n)]
flag=False
a.sort(reverse=True)
for i in range(1,n):
if a[i][1]>a[0][1]:
flag=True
break
else:
a[0][1]=a[i][1]
if flag:
print("Happy Alex")
else:
print("Poor Alex")
|
Title: Laptops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
Output Specification:
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
Demo Input:
['2\n1 2\n2 1\n']
Demo Output:
['Happy Alex\n']
Note:
none
|
```python
n=int(input())
a=[[int(x) for x in input().split()] for i in range(n)]
flag=False
a.sort(reverse=True)
for i in range(1,n):
if a[i][1]>a[0][1]:
flag=True
break
else:
a[0][1]=a[i][1]
if flag:
print("Happy Alex")
else:
print("Poor Alex")
```
| 3
|
|
955
|
B
|
Not simply beatiful strings
|
PROGRAMMING
| 1,400
|
[
"implementation"
] | null | null |
Let's call a string adorable if its letters can be realigned in such a way that they form two consequent groups of equal symbols (note that different groups must contain different symbols). For example, ababa is adorable (you can transform it to aaabb, where the first three letters form a group of *a*-s and others — a group of *b*-s), but cccc is not since in each possible consequent partition letters in these two groups coincide.
You're given a string *s*. Check whether it can be split into two non-empty subsequences such that the strings formed by these subsequences are adorable. Here a subsequence is an arbitrary set of indexes of the string.
|
The only line contains *s* (1<=≤<=|*s*|<=≤<=105) consisting of lowercase latin letters.
|
Print «Yes» if the string can be split according to the criteria above or «No» otherwise.
Each letter can be printed in arbitrary case.
|
[
"ababa\n",
"zzcxx\n",
"yeee\n"
] |
[
"Yes\n",
"Yes\n",
"No\n"
] |
In sample case two zzcxx can be split into subsequences zc and zxx each of which is adorable.
There's no suitable partition in sample case three.
| 1,000
|
[
{
"input": "ababa",
"output": "Yes"
},
{
"input": "zzcxx",
"output": "Yes"
},
{
"input": "yeee",
"output": "No"
},
{
"input": "a",
"output": "No"
},
{
"input": "bbab",
"output": "No"
},
{
"input": "abcd",
"output": "Yes"
},
{
"input": "abc",
"output": "No"
},
{
"input": "abcdaaaa",
"output": "Yes"
},
{
"input": "aaaaaaaaaaaaaaa",
"output": "No"
},
{
"input": "adb",
"output": "No"
},
{
"input": "dcccbad",
"output": "Yes"
},
{
"input": "bcbccccccca",
"output": "Yes"
},
{
"input": "abcdefgh",
"output": "No"
},
{
"input": "aabcdef",
"output": "No"
},
{
"input": "aabc",
"output": "Yes"
},
{
"input": "ssab",
"output": "Yes"
},
{
"input": "ccdd",
"output": "Yes"
},
{
"input": "abcc",
"output": "Yes"
},
{
"input": "ab",
"output": "No"
},
{
"input": "abcde",
"output": "No"
},
{
"input": "aa",
"output": "No"
},
{
"input": "aaabbb",
"output": "Yes"
},
{
"input": "bbbba",
"output": "No"
},
{
"input": "abbbc",
"output": "Yes"
},
{
"input": "baabaa",
"output": "Yes"
},
{
"input": "abacabadde",
"output": "No"
},
{
"input": "aabbcc",
"output": "Yes"
},
{
"input": "abbc",
"output": "Yes"
},
{
"input": "aaaaaaabbbbbbcder",
"output": "No"
},
{
"input": "aabb",
"output": "Yes"
},
{
"input": "aabbccddee",
"output": "No"
},
{
"input": "abca",
"output": "Yes"
},
{
"input": "aaabbbccc",
"output": "Yes"
}
] | 1,521,848,757
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 56
| 109
| 7,270,400
|
s = {}
i = input()
for ch in i:
if ch in s:
s[ch] += 1
else:
s[ch] = 1
# s = set(input())
if len(s) > 4:
print('No')
elif len(s) == 4:
print('Yes')
elif len(s) == 3:
print('Yes' if len(i) > 3 else 'No')
elif len(s) == 2:
if all((x >= 2 for x in s.values())):
print('Yes')
else:
print('No')
elif len(s) == 1:
print('No')
|
Title: Not simply beatiful strings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's call a string adorable if its letters can be realigned in such a way that they form two consequent groups of equal symbols (note that different groups must contain different symbols). For example, ababa is adorable (you can transform it to aaabb, where the first three letters form a group of *a*-s and others — a group of *b*-s), but cccc is not since in each possible consequent partition letters in these two groups coincide.
You're given a string *s*. Check whether it can be split into two non-empty subsequences such that the strings formed by these subsequences are adorable. Here a subsequence is an arbitrary set of indexes of the string.
Input Specification:
The only line contains *s* (1<=≤<=|*s*|<=≤<=105) consisting of lowercase latin letters.
Output Specification:
Print «Yes» if the string can be split according to the criteria above or «No» otherwise.
Each letter can be printed in arbitrary case.
Demo Input:
['ababa\n', 'zzcxx\n', 'yeee\n']
Demo Output:
['Yes\n', 'Yes\n', 'No\n']
Note:
In sample case two zzcxx can be split into subsequences zc and zxx each of which is adorable.
There's no suitable partition in sample case three.
|
```python
s = {}
i = input()
for ch in i:
if ch in s:
s[ch] += 1
else:
s[ch] = 1
# s = set(input())
if len(s) > 4:
print('No')
elif len(s) == 4:
print('Yes')
elif len(s) == 3:
print('Yes' if len(i) > 3 else 'No')
elif len(s) == 2:
if all((x >= 2 for x in s.values())):
print('Yes')
else:
print('No')
elif len(s) == 1:
print('No')
```
| 3
|
|
6
|
A
|
Triangle
|
PROGRAMMING
| 900
|
[
"brute force",
"geometry"
] |
A. Triangle
|
2
|
64
|
Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same.
The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him.
|
The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks.
|
Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length.
|
[
"4 2 1 3\n",
"7 2 2 4\n",
"3 5 9 1\n"
] |
[
"TRIANGLE\n",
"SEGMENT\n",
"IMPOSSIBLE\n"
] |
none
| 0
|
[
{
"input": "4 2 1 3",
"output": "TRIANGLE"
},
{
"input": "7 2 2 4",
"output": "SEGMENT"
},
{
"input": "3 5 9 1",
"output": "IMPOSSIBLE"
},
{
"input": "3 1 5 1",
"output": "IMPOSSIBLE"
},
{
"input": "10 10 10 10",
"output": "TRIANGLE"
},
{
"input": "11 5 6 11",
"output": "TRIANGLE"
},
{
"input": "1 1 1 1",
"output": "TRIANGLE"
},
{
"input": "10 20 30 40",
"output": "TRIANGLE"
},
{
"input": "45 25 5 15",
"output": "IMPOSSIBLE"
},
{
"input": "20 5 8 13",
"output": "TRIANGLE"
},
{
"input": "10 30 7 20",
"output": "SEGMENT"
},
{
"input": "3 2 3 2",
"output": "TRIANGLE"
},
{
"input": "70 10 100 30",
"output": "SEGMENT"
},
{
"input": "4 8 16 2",
"output": "IMPOSSIBLE"
},
{
"input": "3 3 3 10",
"output": "TRIANGLE"
},
{
"input": "1 5 5 5",
"output": "TRIANGLE"
},
{
"input": "13 25 12 1",
"output": "SEGMENT"
},
{
"input": "10 100 7 3",
"output": "SEGMENT"
},
{
"input": "50 1 50 100",
"output": "TRIANGLE"
},
{
"input": "50 1 100 49",
"output": "SEGMENT"
},
{
"input": "49 51 100 1",
"output": "SEGMENT"
},
{
"input": "5 11 2 25",
"output": "IMPOSSIBLE"
},
{
"input": "91 50 9 40",
"output": "IMPOSSIBLE"
},
{
"input": "27 53 7 97",
"output": "IMPOSSIBLE"
},
{
"input": "51 90 24 8",
"output": "IMPOSSIBLE"
},
{
"input": "3 5 1 1",
"output": "IMPOSSIBLE"
},
{
"input": "13 49 69 15",
"output": "IMPOSSIBLE"
},
{
"input": "16 99 9 35",
"output": "IMPOSSIBLE"
},
{
"input": "27 6 18 53",
"output": "IMPOSSIBLE"
},
{
"input": "57 88 17 8",
"output": "IMPOSSIBLE"
},
{
"input": "95 20 21 43",
"output": "IMPOSSIBLE"
},
{
"input": "6 19 32 61",
"output": "IMPOSSIBLE"
},
{
"input": "100 21 30 65",
"output": "IMPOSSIBLE"
},
{
"input": "85 16 61 9",
"output": "IMPOSSIBLE"
},
{
"input": "5 6 19 82",
"output": "IMPOSSIBLE"
},
{
"input": "1 5 1 3",
"output": "IMPOSSIBLE"
},
{
"input": "65 10 36 17",
"output": "IMPOSSIBLE"
},
{
"input": "81 64 9 7",
"output": "IMPOSSIBLE"
},
{
"input": "11 30 79 43",
"output": "IMPOSSIBLE"
},
{
"input": "1 1 5 3",
"output": "IMPOSSIBLE"
},
{
"input": "21 94 61 31",
"output": "IMPOSSIBLE"
},
{
"input": "49 24 9 74",
"output": "IMPOSSIBLE"
},
{
"input": "11 19 5 77",
"output": "IMPOSSIBLE"
},
{
"input": "52 10 19 71",
"output": "SEGMENT"
},
{
"input": "2 3 7 10",
"output": "SEGMENT"
},
{
"input": "1 2 6 3",
"output": "SEGMENT"
},
{
"input": "2 6 1 8",
"output": "SEGMENT"
},
{
"input": "1 2 4 1",
"output": "SEGMENT"
},
{
"input": "4 10 6 2",
"output": "SEGMENT"
},
{
"input": "2 10 7 3",
"output": "SEGMENT"
},
{
"input": "5 2 3 9",
"output": "SEGMENT"
},
{
"input": "6 1 4 10",
"output": "SEGMENT"
},
{
"input": "10 6 4 1",
"output": "SEGMENT"
},
{
"input": "3 2 9 1",
"output": "SEGMENT"
},
{
"input": "22 80 29 7",
"output": "SEGMENT"
},
{
"input": "2 6 3 9",
"output": "SEGMENT"
},
{
"input": "3 1 2 1",
"output": "SEGMENT"
},
{
"input": "3 4 7 1",
"output": "SEGMENT"
},
{
"input": "8 4 3 1",
"output": "SEGMENT"
},
{
"input": "2 8 3 5",
"output": "SEGMENT"
},
{
"input": "4 1 2 1",
"output": "SEGMENT"
},
{
"input": "8 1 3 2",
"output": "SEGMENT"
},
{
"input": "6 2 1 8",
"output": "SEGMENT"
},
{
"input": "3 3 3 6",
"output": "TRIANGLE"
},
{
"input": "3 6 3 3",
"output": "TRIANGLE"
},
{
"input": "4 10 4 4",
"output": "TRIANGLE"
},
{
"input": "1 1 2 1",
"output": "TRIANGLE"
},
{
"input": "3 3 3 6",
"output": "TRIANGLE"
},
{
"input": "5 4 5 5",
"output": "TRIANGLE"
},
{
"input": "8 7 8 8",
"output": "TRIANGLE"
},
{
"input": "3 3 3 1",
"output": "TRIANGLE"
},
{
"input": "1 1 6 6",
"output": "TRIANGLE"
},
{
"input": "1 9 1 9",
"output": "TRIANGLE"
},
{
"input": "7 2 2 7",
"output": "TRIANGLE"
},
{
"input": "7 2 3 2",
"output": "TRIANGLE"
},
{
"input": "4 4 10 10",
"output": "TRIANGLE"
},
{
"input": "7 7 10 7",
"output": "TRIANGLE"
},
{
"input": "4 4 4 5",
"output": "TRIANGLE"
},
{
"input": "1 10 9 2",
"output": "TRIANGLE"
},
{
"input": "1 8 2 7",
"output": "TRIANGLE"
},
{
"input": "4 3 2 8",
"output": "TRIANGLE"
},
{
"input": "5 9 5 3",
"output": "TRIANGLE"
},
{
"input": "4 10 3 5",
"output": "TRIANGLE"
}
] | 1,628,819,443
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 83
| 154
| 6,963,200
|
i = input().split(" ")
a = int(i[0])
b = int(i[1])
c = int(i[2])
d = int(i[3])
l = []
l.append(a)
l.append(b)
l.append(c)
l.append(d)
l.sort()
a = l[0]
b = l[1]
c = l[2]
d = l[3]
if a+b > c or b+c > d:
print("TRIANGLE")
elif a+b == c or b+c == d:
print("SEGMENT")
else:
print("IMPOSSIBLE")
|
Title: Triangle
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same.
The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him.
Input Specification:
The first line of the input contains four space-separated positive integer numbers not exceeding 100 — lengthes of the sticks.
Output Specification:
Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length.
Demo Input:
['4 2 1 3\n', '7 2 2 4\n', '3 5 9 1\n']
Demo Output:
['TRIANGLE\n', 'SEGMENT\n', 'IMPOSSIBLE\n']
Note:
none
|
```python
i = input().split(" ")
a = int(i[0])
b = int(i[1])
c = int(i[2])
d = int(i[3])
l = []
l.append(a)
l.append(b)
l.append(c)
l.append(d)
l.sort()
a = l[0]
b = l[1]
c = l[2]
d = l[3]
if a+b > c or b+c > d:
print("TRIANGLE")
elif a+b == c or b+c == d:
print("SEGMENT")
else:
print("IMPOSSIBLE")
```
| 3.90962
|
659
|
A
|
Round House
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] | null | null |
Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent.
Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance.
Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.
|
The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.
|
Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk.
|
[
"6 2 -5\n",
"5 1 3\n",
"3 2 7\n"
] |
[
"3\n",
"4\n",
"3\n"
] |
The first example is illustrated by the picture in the statements.
| 500
|
[
{
"input": "6 2 -5",
"output": "3"
},
{
"input": "5 1 3",
"output": "4"
},
{
"input": "3 2 7",
"output": "3"
},
{
"input": "1 1 0",
"output": "1"
},
{
"input": "1 1 -1",
"output": "1"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "100 1 -1",
"output": "100"
},
{
"input": "100 54 100",
"output": "54"
},
{
"input": "100 37 -100",
"output": "37"
},
{
"input": "99 41 0",
"output": "41"
},
{
"input": "97 37 -92",
"output": "42"
},
{
"input": "99 38 59",
"output": "97"
},
{
"input": "35 34 1",
"output": "35"
},
{
"input": "48 1 -1",
"output": "48"
},
{
"input": "87 65 -76",
"output": "76"
},
{
"input": "76 26 29",
"output": "55"
},
{
"input": "100 65 0",
"output": "65"
},
{
"input": "2 1 100",
"output": "1"
},
{
"input": "3 2 -100",
"output": "1"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "1 1 -100",
"output": "1"
},
{
"input": "3 1 -100",
"output": "3"
},
{
"input": "4 3 -100",
"output": "3"
},
{
"input": "3 2 -12",
"output": "2"
},
{
"input": "2 2 -100",
"output": "2"
},
{
"input": "3 2 -90",
"output": "2"
},
{
"input": "6 2 -10",
"output": "4"
},
{
"input": "3 3 -100",
"output": "2"
},
{
"input": "5 2 4",
"output": "1"
},
{
"input": "6 4 5",
"output": "3"
},
{
"input": "3 2 -6",
"output": "2"
},
{
"input": "5 1 -99",
"output": "2"
},
{
"input": "6 2 5",
"output": "1"
},
{
"input": "10 1 -100",
"output": "1"
},
{
"input": "2 2 1",
"output": "1"
},
{
"input": "3 3 1",
"output": "1"
},
{
"input": "6 4 4",
"output": "2"
},
{
"input": "17 17 2",
"output": "2"
},
{
"input": "6 6 1",
"output": "1"
},
{
"input": "5 3 -2",
"output": "1"
},
{
"input": "6 2 -100",
"output": "4"
},
{
"input": "5 3 -100",
"output": "3"
},
{
"input": "5 4 3",
"output": "2"
},
{
"input": "3 2 2",
"output": "1"
},
{
"input": "5 5 2",
"output": "2"
},
{
"input": "3 2 5",
"output": "1"
},
{
"input": "5 5 -1",
"output": "4"
},
{
"input": "5 3 3",
"output": "1"
},
{
"input": "4 2 3",
"output": "1"
},
{
"input": "88 76 74",
"output": "62"
}
] | 1,556,444,150
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 124
| 0
|
n,a,b = list(map(int,input().split()))
ans = (n+a+b)%n;
if ans == 0:
print(n)
else:
print(ans)
|
Title: Round House
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent.
Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance.
Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.
Input Specification:
The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.
Output Specification:
Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk.
Demo Input:
['6 2 -5\n', '5 1 3\n', '3 2 7\n']
Demo Output:
['3\n', '4\n', '3\n']
Note:
The first example is illustrated by the picture in the statements.
|
```python
n,a,b = list(map(int,input().split()))
ans = (n+a+b)%n;
if ans == 0:
print(n)
else:
print(ans)
```
| 3
|
|
913
|
A
|
Modular Exponentiation
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
The following problem is well-known: given integers *n* and *m*, calculate
where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*.
You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108).
The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
|
Output a single integer — the value of .
|
[
"4\n42\n",
"1\n58\n",
"98765432\n23456789\n"
] |
[
"10\n",
"0\n",
"23456789\n"
] |
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10.
In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
| 500
|
[
{
"input": "4\n42",
"output": "10"
},
{
"input": "1\n58",
"output": "0"
},
{
"input": "98765432\n23456789",
"output": "23456789"
},
{
"input": "8\n88127381",
"output": "149"
},
{
"input": "32\n92831989",
"output": "92831989"
},
{
"input": "92831989\n25",
"output": "25"
},
{
"input": "100000000\n100000000",
"output": "100000000"
},
{
"input": "7\n1234",
"output": "82"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n100000000",
"output": "0"
},
{
"input": "100000000\n1",
"output": "1"
},
{
"input": "1\n2",
"output": "0"
},
{
"input": "2\n1",
"output": "1"
},
{
"input": "2\n2",
"output": "2"
},
{
"input": "2\n3",
"output": "3"
},
{
"input": "2\n4",
"output": "0"
},
{
"input": "2\n5",
"output": "1"
},
{
"input": "25\n33554432",
"output": "0"
},
{
"input": "26\n33554432",
"output": "33554432"
},
{
"input": "25\n67108864",
"output": "0"
},
{
"input": "26\n67108864",
"output": "0"
},
{
"input": "25\n92831989",
"output": "25723125"
},
{
"input": "26\n92831989",
"output": "25723125"
},
{
"input": "27\n92831989",
"output": "92831989"
},
{
"input": "29\n92831989",
"output": "92831989"
},
{
"input": "30\n92831989",
"output": "92831989"
},
{
"input": "31\n92831989",
"output": "92831989"
},
{
"input": "99812399\n93172892",
"output": "93172892"
},
{
"input": "67108864\n12345678",
"output": "12345678"
},
{
"input": "3\n98391849",
"output": "1"
},
{
"input": "13\n1231232",
"output": "2432"
},
{
"input": "18\n9842194",
"output": "142866"
},
{
"input": "24\n71237177",
"output": "4128313"
},
{
"input": "11\n65535",
"output": "2047"
},
{
"input": "11\n65536",
"output": "0"
},
{
"input": "12\n123",
"output": "123"
},
{
"input": "123456\n12",
"output": "12"
},
{
"input": "88\n888",
"output": "888"
},
{
"input": "888\n88",
"output": "88"
},
{
"input": "8888\n8888",
"output": "8888"
},
{
"input": "64\n128",
"output": "128"
},
{
"input": "128\n64",
"output": "64"
},
{
"input": "60\n9999999",
"output": "9999999"
},
{
"input": "200\n100000",
"output": "100000"
},
{
"input": "3\n8",
"output": "0"
},
{
"input": "10000000\n25024886",
"output": "25024886"
},
{
"input": "100\n100000",
"output": "100000"
},
{
"input": "99999999\n100000000",
"output": "100000000"
},
{
"input": "70\n12345678",
"output": "12345678"
}
] | 1,629,487,059
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 2
| 1,000
| 53,043,200
|
#mod division of m by pow(2,n)
n = int(input())
m = int(input())
print(m%2**n)
|
Title: Modular Exponentiation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The following problem is well-known: given integers *n* and *m*, calculate
where 2*n*<==<=2·2·...·2 (*n* factors), and denotes the remainder of division of *x* by *y*.
You are asked to solve the "reverse" problem. Given integers *n* and *m*, calculate
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=108).
The second line contains a single integer *m* (1<=≤<=*m*<=≤<=108).
Output Specification:
Output a single integer — the value of .
Demo Input:
['4\n42\n', '1\n58\n', '98765432\n23456789\n']
Demo Output:
['10\n', '0\n', '23456789\n']
Note:
In the first example, the remainder of division of 42 by 2<sup class="upper-index">4</sup> = 16 is equal to 10.
In the second example, 58 is divisible by 2<sup class="upper-index">1</sup> = 2 without remainder, and the answer is 0.
|
```python
#mod division of m by pow(2,n)
n = int(input())
m = int(input())
print(m%2**n)
```
| 0
|
|
610
|
A
|
Pasha and Stick
|
PROGRAMMING
| 1,000
|
[
"combinatorics",
"math"
] | null | null |
Pasha has a wooden stick of some positive integer length *n*. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be *n*.
Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square.
Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer *x*, such that the number of parts of length *x* in the first way differ from the number of parts of length *x* in the second way.
|
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=2·109) — the length of Pasha's stick.
|
The output should contain a single integer — the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square.
|
[
"6\n",
"20\n"
] |
[
"1\n",
"4\n"
] |
There is only one way to divide the stick in the first sample {1, 1, 2, 2}.
Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work.
| 500
|
[
{
"input": "6",
"output": "1"
},
{
"input": "20",
"output": "4"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "3",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "2000000000",
"output": "499999999"
},
{
"input": "1924704072",
"output": "481176017"
},
{
"input": "73740586",
"output": "18435146"
},
{
"input": "1925088820",
"output": "481272204"
},
{
"input": "593070992",
"output": "148267747"
},
{
"input": "1925473570",
"output": "481368392"
},
{
"input": "629490186",
"output": "157372546"
},
{
"input": "1980649112",
"output": "495162277"
},
{
"input": "36661322",
"output": "9165330"
},
{
"input": "1943590793",
"output": "0"
},
{
"input": "71207034",
"output": "17801758"
},
{
"input": "1757577394",
"output": "439394348"
},
{
"input": "168305294",
"output": "42076323"
},
{
"input": "1934896224",
"output": "483724055"
},
{
"input": "297149088",
"output": "74287271"
},
{
"input": "1898001634",
"output": "474500408"
},
{
"input": "176409698",
"output": "44102424"
},
{
"input": "1873025522",
"output": "468256380"
},
{
"input": "5714762",
"output": "1428690"
},
{
"input": "1829551192",
"output": "457387797"
},
{
"input": "16269438",
"output": "4067359"
},
{
"input": "1663283390",
"output": "415820847"
},
{
"input": "42549941",
"output": "0"
},
{
"input": "1967345604",
"output": "491836400"
},
{
"input": "854000",
"output": "213499"
},
{
"input": "1995886626",
"output": "498971656"
},
{
"input": "10330019",
"output": "0"
},
{
"input": "1996193634",
"output": "499048408"
},
{
"input": "9605180",
"output": "2401294"
},
{
"input": "1996459740",
"output": "499114934"
},
{
"input": "32691948",
"output": "8172986"
},
{
"input": "1975903308",
"output": "493975826"
},
{
"input": "1976637136",
"output": "494159283"
},
{
"input": "29803038",
"output": "7450759"
},
{
"input": "1977979692",
"output": "494494922"
},
{
"input": "1978595336",
"output": "494648833"
},
{
"input": "27379344",
"output": "6844835"
},
{
"input": "1979729912",
"output": "494932477"
},
{
"input": "1980253780",
"output": "495063444"
},
{
"input": "1980751584",
"output": "495187895"
},
{
"input": "53224878",
"output": "13306219"
},
{
"input": "5",
"output": "0"
},
{
"input": "7",
"output": "0"
},
{
"input": "8",
"output": "1"
},
{
"input": "9",
"output": "0"
},
{
"input": "10",
"output": "2"
},
{
"input": "11",
"output": "0"
},
{
"input": "12",
"output": "2"
},
{
"input": "13",
"output": "0"
},
{
"input": "14",
"output": "3"
},
{
"input": "15",
"output": "0"
},
{
"input": "16",
"output": "3"
},
{
"input": "17",
"output": "0"
},
{
"input": "18",
"output": "4"
},
{
"input": "19",
"output": "0"
},
{
"input": "21",
"output": "0"
},
{
"input": "22",
"output": "5"
},
{
"input": "23",
"output": "0"
},
{
"input": "24",
"output": "5"
},
{
"input": "25",
"output": "0"
},
{
"input": "26",
"output": "6"
},
{
"input": "27",
"output": "0"
},
{
"input": "28",
"output": "6"
},
{
"input": "29",
"output": "0"
},
{
"input": "30",
"output": "7"
},
{
"input": "111",
"output": "0"
},
{
"input": "55",
"output": "0"
},
{
"input": "105",
"output": "0"
},
{
"input": "199",
"output": "0"
},
{
"input": "151",
"output": "0"
}
] | 1,636,726,907
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 17,715,200
|
n = int(input())
print(0) if (n & 1) == 0 else (print((n >> 2) - 1) if n % 4 == 0 else print(n >> 2))
|
Title: Pasha and Stick
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pasha has a wooden stick of some positive integer length *n*. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be *n*.
Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square.
Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer *x*, such that the number of parts of length *x* in the first way differ from the number of parts of length *x* in the second way.
Input Specification:
The first line of the input contains a positive integer *n* (1<=≤<=*n*<=≤<=2·109) — the length of Pasha's stick.
Output Specification:
The output should contain a single integer — the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square.
Demo Input:
['6\n', '20\n']
Demo Output:
['1\n', '4\n']
Note:
There is only one way to divide the stick in the first sample {1, 1, 2, 2}.
Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work.
|
```python
n = int(input())
print(0) if (n & 1) == 0 else (print((n >> 2) - 1) if n % 4 == 0 else print(n >> 2))
```
| 0
|
|
222
|
C
|
Reducing Fractions
|
PROGRAMMING
| 1,800
|
[
"implementation",
"math",
"number theory",
"sortings"
] | null | null |
To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractions are represented as two sets of integers. The product of numbers from the first set gives the fraction numerator, the product of numbers from the second set gives the fraction denominator. However, it turned out that the programs that work with fractions in this representations aren't complete, they lack supporting the operation of reducing fractions. Implement this operation and the Empire won't forget you.
|
The first input line contains two space-separated integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=105) that show how many numbers the first set (the numerator) and the second set (the denominator) contain, correspondingly.
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=107) — the numbers that are multiplied to produce the numerator.
The third line contains *m* space-separated integers: *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=107) — the numbers that are multiplied to produce the denominator.
|
Print the answer to the problem in the form, similar to the form of the input data. The number of values in the sets you print *n**out*,<=*m**out* must satisfy the inequality 1<=≤<=*n**out*,<=*m**out*<=≤<=105, and the actual values in the sets *a**out*,<=*i* and *b**out*,<=*i* must satisfy the inequality 1<=≤<=*a**out*,<=*i*,<=*b**out*,<=*i*<=≤<=107.
Separate the values in the lines by spaces. The printed fraction must be reduced, that is, there mustn't be such integer *x* (*x*<=><=1), that the numerator and the denominator of the printed fraction are divisible by *x*. If there are several matching answers, print any of them.
|
[
"3 2\n100 5 2\n50 10\n",
"4 3\n2 5 10 20\n100 1 3\n"
] |
[
"2 3\n2 1\n1 1 1\n",
"1 1\n20\n3\n"
] |
In the first test sample the numerator equals 1000, the denominator equals 500. If we reduce fraction 1000/500 by the greatest common divisor of the numerator and the denominator (by 500), we obtain fraction 2/1.
In the second test sample the numerator equals 2000, the denominator equals 300. If we reduce fraction 2000/300 by the greatest common divisor of the numerator and the denominator (by 100), we obtain fraction 20/3.
| 1,500
|
[
{
"input": "3 2\n100 5 2\n50 10",
"output": "2 3\n2 1\n1 1 1"
},
{
"input": "4 3\n2 5 10 20\n100 1 3",
"output": "1 1\n20\n3"
},
{
"input": "2 3\n50 10\n100 5 2",
"output": "2 3\n1 1 \n2 1 1 "
},
{
"input": "1 1\n1\n1",
"output": "1 1\n1 \n1 "
},
{
"input": "3 2\n100 5 2\n10 100",
"output": "3 2\n1 1 1 \n1 1 "
},
{
"input": "5 3\n16 24 36 54 81\n4 6 9",
"output": "5 3\n16 24 9 27 3 \n1 1 1 "
},
{
"input": "10 10\n2 5 11 17 23 31 41 47 59 67\n3 7 13 19 29 37 43 53 61 71",
"output": "10 10\n2 5 11 17 23 31 41 47 59 67 \n3 7 13 19 29 37 43 53 61 71 "
},
{
"input": "5 5\n2 9 8 3 5\n5 7 8 1 1",
"output": "5 5\n2 9 1 3 1 \n1 7 1 1 1 "
},
{
"input": "10 11\n7 43 39 13 25 23 33 40 5 2\n42 22 39 1 23 37 12 48 46 2 2",
"output": "10 11\n1 43 13 1 25 1 1 5 5 1 \n6 2 3 1 23 37 4 8 1 1 1 "
},
{
"input": "1 5\n99\n3 55 18 1 19",
"output": "1 5\n1 \n3 5 2 1 19 "
}
] | 1,609,408,020
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 0
| 2,000
| 86,528,000
|
###### ### ####### ####### ## # ##### ### #####
# # # # # # # # # # # # # ###
# # # # # # # # # # # # # ###
###### ######### # # # # # # ######### #
###### ######### # # # # # # ######### #
# # # # # # # # # # #### # # #
# # # # # # # ## # # # # #
###### # # ####### ####### # # ##### # # # #
from __future__ import print_function # for PyPy2
import io
import os
from collections import Counter, OrderedDict
from itertools import permutations as perm
from fractions import Fraction
from collections import deque
from sys import stdin
from bisect import *
from heapq import *
from math import *
g = lambda : stdin.readline().strip()
gl = lambda : g().split()
gil = lambda : [int(var) for var in gl()]
gfl = lambda : [float(var) for var in gl()]
gcl = lambda : list(g())
gbs = lambda : [int(var) for var in g()]
mod = int(1e9)+7
inf = float("inf")
# range = xrange
print(g())
a, b = gil(), gil()
A, B = 1, 1
po = {}
for v in a:
A*=v
for v in b:
B*=v
n = int(1e7)+1
p = [(i if i&1 else 2) for i in range(n+1)]
n_ = int(ceil(sqrt(n)))
for i in range(3, n, 2):
if A==1 or B==1:break
if p[i]:
if i<= n_:
for j in range(i+i, n+1, i):
p[j] = min(i, p[j])
while A%i == 0 and B%i == 0:
po[i] = po.get(i, 0)+1
A//=i
B//=i
while not(A&1 or B&1):
A//=2
B//=2
po[2] = po.get(2, 0) + 1
bo = po.copy()
for i in range(len(a)):
v = a[i]
while v > 1:
if po.get(p[v], 0):
po[p[v]] -= 1
a[i] //= p[v]
v //= p[v]
a[i] = str(a[i])
for i in range(len(b)):
v = b[i]
while v > 1:
if bo.get(p[v], 0):
bo[p[v]] -= 1
b[i] //= p[v]
v //= p[v]
b[i] = str(b[i])
print("".join(a))
print("".join(b))
|
Title: Reducing Fractions
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractions are represented as two sets of integers. The product of numbers from the first set gives the fraction numerator, the product of numbers from the second set gives the fraction denominator. However, it turned out that the programs that work with fractions in this representations aren't complete, they lack supporting the operation of reducing fractions. Implement this operation and the Empire won't forget you.
Input Specification:
The first input line contains two space-separated integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=105) that show how many numbers the first set (the numerator) and the second set (the denominator) contain, correspondingly.
The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=107) — the numbers that are multiplied to produce the numerator.
The third line contains *m* space-separated integers: *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=107) — the numbers that are multiplied to produce the denominator.
Output Specification:
Print the answer to the problem in the form, similar to the form of the input data. The number of values in the sets you print *n**out*,<=*m**out* must satisfy the inequality 1<=≤<=*n**out*,<=*m**out*<=≤<=105, and the actual values in the sets *a**out*,<=*i* and *b**out*,<=*i* must satisfy the inequality 1<=≤<=*a**out*,<=*i*,<=*b**out*,<=*i*<=≤<=107.
Separate the values in the lines by spaces. The printed fraction must be reduced, that is, there mustn't be such integer *x* (*x*<=><=1), that the numerator and the denominator of the printed fraction are divisible by *x*. If there are several matching answers, print any of them.
Demo Input:
['3 2\n100 5 2\n50 10\n', '4 3\n2 5 10 20\n100 1 3\n']
Demo Output:
['2 3\n2 1\n1 1 1\n', '1 1\n20\n3\n']
Note:
In the first test sample the numerator equals 1000, the denominator equals 500. If we reduce fraction 1000/500 by the greatest common divisor of the numerator and the denominator (by 500), we obtain fraction 2/1.
In the second test sample the numerator equals 2000, the denominator equals 300. If we reduce fraction 2000/300 by the greatest common divisor of the numerator and the denominator (by 100), we obtain fraction 20/3.
|
```python
###### ### ####### ####### ## # ##### ### #####
# # # # # # # # # # # # # ###
# # # # # # # # # # # # # ###
###### ######### # # # # # # ######### #
###### ######### # # # # # # ######### #
# # # # # # # # # # #### # # #
# # # # # # # ## # # # # #
###### # # ####### ####### # # ##### # # # #
from __future__ import print_function # for PyPy2
import io
import os
from collections import Counter, OrderedDict
from itertools import permutations as perm
from fractions import Fraction
from collections import deque
from sys import stdin
from bisect import *
from heapq import *
from math import *
g = lambda : stdin.readline().strip()
gl = lambda : g().split()
gil = lambda : [int(var) for var in gl()]
gfl = lambda : [float(var) for var in gl()]
gcl = lambda : list(g())
gbs = lambda : [int(var) for var in g()]
mod = int(1e9)+7
inf = float("inf")
# range = xrange
print(g())
a, b = gil(), gil()
A, B = 1, 1
po = {}
for v in a:
A*=v
for v in b:
B*=v
n = int(1e7)+1
p = [(i if i&1 else 2) for i in range(n+1)]
n_ = int(ceil(sqrt(n)))
for i in range(3, n, 2):
if A==1 or B==1:break
if p[i]:
if i<= n_:
for j in range(i+i, n+1, i):
p[j] = min(i, p[j])
while A%i == 0 and B%i == 0:
po[i] = po.get(i, 0)+1
A//=i
B//=i
while not(A&1 or B&1):
A//=2
B//=2
po[2] = po.get(2, 0) + 1
bo = po.copy()
for i in range(len(a)):
v = a[i]
while v > 1:
if po.get(p[v], 0):
po[p[v]] -= 1
a[i] //= p[v]
v //= p[v]
a[i] = str(a[i])
for i in range(len(b)):
v = b[i]
while v > 1:
if bo.get(p[v], 0):
bo[p[v]] -= 1
b[i] //= p[v]
v //= p[v]
b[i] = str(b[i])
print("".join(a))
print("".join(b))
```
| 0
|
|
269
|
B
|
Greenhouse Effect
|
PROGRAMMING
| 1,700
|
[
"dp"
] | null | null |
Emuskald is an avid horticulturist and owns the world's longest greenhouse — it is effectively infinite in length.
Over the years Emuskald has cultivated *n* plants in his greenhouse, of *m* different plant species numbered from 1 to *m*. His greenhouse is very narrow and can be viewed as an infinite line, with each plant occupying a single point on that line.
Emuskald has discovered that each species thrives at a different temperature, so he wants to arrange *m*<=-<=1 borders that would divide the greenhouse into *m* sections numbered from 1 to *m* from left to right with each section housing a single species. He is free to place the borders, but in the end all of the *i*-th species plants must reside in *i*-th section from the left.
Of course, it is not always possible to place the borders in such way, so Emuskald needs to replant some of his plants. He can remove each plant from its position and place it anywhere in the greenhouse (at any real coordinate) with no plant already in it. Since replanting is a lot of stress for the plants, help Emuskald find the minimum number of plants he has to replant to be able to place the borders.
|
The first line of input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=5000, *n*<=≥<=*m*), the number of plants and the number of different species. Each of the following *n* lines contain two space-separated numbers: one integer number *s**i* (1<=≤<=*s**i*<=≤<=*m*), and one real number *x**i* (0<=≤<=*x**i*<=≤<=109), the species and position of the *i*-th plant. Each *x**i* will contain no more than 6 digits after the decimal point.
It is guaranteed that all *x**i* are different; there is at least one plant of each species; the plants are given in order "from left to the right", that is in the ascending order of their *x**i* coordinates (*x**i*<=<<=*x**i*<=+<=1,<=1<=≤<=*i*<=<<=*n*).
|
Output a single integer — the minimum number of plants to be replanted.
|
[
"3 2\n2 1\n1 2.0\n1 3.100\n",
"3 3\n1 5.0\n2 5.5\n3 6.0\n",
"6 3\n1 14.284235\n2 17.921382\n1 20.328172\n3 20.842331\n1 25.790145\n1 27.204125\n"
] |
[
"1\n",
"0\n",
"2\n"
] |
In the first test case, Emuskald can replant the first plant to the right of the last plant, so the answer is 1.
In the second test case, the species are already in the correct order, so no replanting is needed.
| 1,000
|
[
{
"input": "3 2\n2 1\n1 2.0\n1 3.100",
"output": "1"
},
{
"input": "3 3\n1 5.0\n2 5.5\n3 6.0",
"output": "0"
},
{
"input": "6 3\n1 14.284235\n2 17.921382\n1 20.328172\n3 20.842331\n1 25.790145\n1 27.204125",
"output": "2"
},
{
"input": "1 1\n1 0",
"output": "0"
},
{
"input": "8 2\n1 0.000000\n1 1.000000\n1 2.000000\n2 2.000001\n1 999999997.000000\n2 999999998.000000\n2 999999999.999999\n2 1000000000.000000",
"output": "1"
},
{
"input": "15 5\n4 6.039627\n2 7.255149\n2 14.469785\n2 15.108572\n4 22.570081\n5 26.642253\n5 32.129202\n5 44.288220\n5 53.231909\n5 60.548042\n4 62.386581\n2 77.828816\n1 87.998512\n3 96.163559\n2 99.412872",
"output": "6"
},
{
"input": "10 7\n4 70882.412953\n1 100461.912159\n3 100813.254090\n7 121632.112636\n2 424085.529781\n6 510966.713362\n6 543441.105338\n7 680094.776949\n1 721404.212606\n5 838754.272757",
"output": "5"
},
{
"input": "5 5\n5 0\n4 1\n3 2\n2 3\n1 4",
"output": "4"
},
{
"input": "12 5\n2 0\n2 1\n3 2\n3 3\n3 4\n1 5\n5 6\n3 7\n3 8\n3 9\n4 999999999\n4 1000000000",
"output": "2"
},
{
"input": "3 3\n2 0\n1 1\n3 2",
"output": "1"
},
{
"input": "3 3\n3 0\n1 1\n2 2",
"output": "1"
},
{
"input": "4 2\n1 10\n2 20\n1 30\n2 40",
"output": "1"
},
{
"input": "20 10\n1 0.000000\n2 0.000001\n3 0.000002\n4 0.000003\n5 0.000004\n6 0.000005\n7 0.000006\n8 0.000007\n9 0.000008\n10 0.000009\n1 999999999.999990\n2 999999999.999991\n3 999999999.999992\n4 999999999.999993\n5 999999999.999994\n6 999999999.999995\n7 999999999.999996\n8 999999999.999997\n9 999999999.999998\n10 999999999.999999",
"output": "9"
},
{
"input": "12 4\n3 0\n3 1\n3 2\n3 3\n3 4\n1 5\n1 6\n2 7\n4 8\n4 9\n2 10\n3 11",
"output": "5"
},
{
"input": "16 2\n1 0\n1 1\n2 2\n2 3\n2 4\n2 5\n1 6\n1 7\n2 8\n2 9\n1 10\n1 11\n2 12\n2 13\n2 14\n2 15",
"output": "4"
},
{
"input": "10 10\n1 100\n2 101\n3 102\n5 103\n9 1000\n8 10000\n6 100000\n7 1000000\n4 10000000\n10 100000000",
"output": "3"
},
{
"input": "10 6\n5 50837.108162\n3 111993.624183\n1 207268.919250\n6 567963.419694\n1 621364.247371\n2 630118.065585\n1 642135.221942\n6 642673.884754\n5 647004.198361\n4 735196.102629",
"output": "6"
},
{
"input": "20 2\n1 39277.770446\n1 131242.472574\n2 131745.437889\n1 261920.593789\n2 323611.256365\n1 341693.666730\n2 378611.498102\n2 568433.562368\n1 667757.789581\n1 674662.040626\n2 690065.099817\n2 724737.429934\n1 774858.513301\n2 783681.914774\n1 808327.402925\n2 867697.070403\n1 880911.396984\n1 929807.064277\n2 942269.265950\n1 999503.792481",
"output": "9"
},
{
"input": "20 15\n6 8719.787178\n10 13066.663722\n15 58623.690996\n9 184321.819759\n3 227999.294560\n2 279836.330518\n9 282806.308675\n8 311056.507765\n1 312315.562927\n5 459200.373445\n14 563454.265947\n7 647364.984868\n13 679761.613732\n4 684192.647497\n1 733119.607626\n7 748637.778398\n12 828048.945890\n11 893690.736585\n8 965323.895167\n5 967641.708962",
"output": "15"
},
{
"input": "15 3\n1 0\n2 1\n3 2\n1 3\n2 4\n3 5\n1 6\n2 7\n3 8\n1 9\n2 10\n3 11\n1 12\n2 13\n3 14",
"output": "8"
},
{
"input": "10 2\n2 0\n2 1\n2 2\n2 3\n2 4\n1 5\n1 6\n1 7\n1 8\n1 9",
"output": "5"
},
{
"input": "11 3\n2 0\n2 1\n2 2\n2 3\n2 4\n3 5\n1 6\n1 7\n1 8\n1 9\n1 10",
"output": "5"
}
] | 1,617,430,193
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 9
| 466
| 3,788,800
|
# Dynamic programming Python implementation
# of LIS problem
# lis returns length of the longest
# increasing subsequence in arr of size n
def lis(l, arr):
# Declare the list (array) for LIS and
# initialize LIS values for all indexes
ls = [1] * l
# Compute optimized LIS values in bottom up manner
for i in range(1, l):
for j in range(0, i):
if arr[i] >= arr[j] and ls[i] < ls[j] + 1:
ls[i] = ls[j] + 1
# print(ls)
return l - max(ls)
# end of lis function
n, m = map(int, input().split())
lst = []
for i in range(n):
a, b = map(str, input().split())
lst.append(a)
print(lis(n, lst))
|
Title: Greenhouse Effect
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Emuskald is an avid horticulturist and owns the world's longest greenhouse — it is effectively infinite in length.
Over the years Emuskald has cultivated *n* plants in his greenhouse, of *m* different plant species numbered from 1 to *m*. His greenhouse is very narrow and can be viewed as an infinite line, with each plant occupying a single point on that line.
Emuskald has discovered that each species thrives at a different temperature, so he wants to arrange *m*<=-<=1 borders that would divide the greenhouse into *m* sections numbered from 1 to *m* from left to right with each section housing a single species. He is free to place the borders, but in the end all of the *i*-th species plants must reside in *i*-th section from the left.
Of course, it is not always possible to place the borders in such way, so Emuskald needs to replant some of his plants. He can remove each plant from its position and place it anywhere in the greenhouse (at any real coordinate) with no plant already in it. Since replanting is a lot of stress for the plants, help Emuskald find the minimum number of plants he has to replant to be able to place the borders.
Input Specification:
The first line of input contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=5000, *n*<=≥<=*m*), the number of plants and the number of different species. Each of the following *n* lines contain two space-separated numbers: one integer number *s**i* (1<=≤<=*s**i*<=≤<=*m*), and one real number *x**i* (0<=≤<=*x**i*<=≤<=109), the species and position of the *i*-th plant. Each *x**i* will contain no more than 6 digits after the decimal point.
It is guaranteed that all *x**i* are different; there is at least one plant of each species; the plants are given in order "from left to the right", that is in the ascending order of their *x**i* coordinates (*x**i*<=<<=*x**i*<=+<=1,<=1<=≤<=*i*<=<<=*n*).
Output Specification:
Output a single integer — the minimum number of plants to be replanted.
Demo Input:
['3 2\n2 1\n1 2.0\n1 3.100\n', '3 3\n1 5.0\n2 5.5\n3 6.0\n', '6 3\n1 14.284235\n2 17.921382\n1 20.328172\n3 20.842331\n1 25.790145\n1 27.204125\n']
Demo Output:
['1\n', '0\n', '2\n']
Note:
In the first test case, Emuskald can replant the first plant to the right of the last plant, so the answer is 1.
In the second test case, the species are already in the correct order, so no replanting is needed.
|
```python
# Dynamic programming Python implementation
# of LIS problem
# lis returns length of the longest
# increasing subsequence in arr of size n
def lis(l, arr):
# Declare the list (array) for LIS and
# initialize LIS values for all indexes
ls = [1] * l
# Compute optimized LIS values in bottom up manner
for i in range(1, l):
for j in range(0, i):
if arr[i] >= arr[j] and ls[i] < ls[j] + 1:
ls[i] = ls[j] + 1
# print(ls)
return l - max(ls)
# end of lis function
n, m = map(int, input().split())
lst = []
for i in range(n):
a, b = map(str, input().split())
lst.append(a)
print(lis(n, lst))
```
| 0
|
|
66
|
B
|
Petya and Countryside
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] |
B. Petya and Countryside
|
2
|
256
|
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
|
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
|
[
"1\n2\n",
"5\n1 2 1 2 1\n",
"8\n1 2 1 1 1 3 3 4\n"
] |
[
"1\n",
"3\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "1\n2",
"output": "1"
},
{
"input": "5\n1 2 1 2 1",
"output": "3"
},
{
"input": "8\n1 2 1 1 1 3 3 4",
"output": "6"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10"
},
{
"input": "10\n10 9 8 7 6 5 4 3 2 1",
"output": "10"
},
{
"input": "2\n100 100",
"output": "2"
},
{
"input": "3\n100 100 100",
"output": "3"
},
{
"input": "11\n1 2 3 4 5 6 5 4 3 2 1",
"output": "11"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 100 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 82 83 84 85 86 87 88 89 90 91 92 93 94 100 5 4 3 2 1",
"output": "81"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1 86 87 88 89 90 91 92 93 100 6 5 4 3 2 1",
"output": "85"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 100 8 7 6 1 4 3 2 1",
"output": "96"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 100 10 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 100 11 10 9 8 7 6 5 4 3 2 1",
"output": "55"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 100 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "59"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 100 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "86"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 100 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "83"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 100 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 1 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "74"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 100 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "52"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 100 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1",
"output": "98"
},
{
"input": "10\n1 4 4 4 4 4 1 2 4 3",
"output": "7"
}
] | 1,605,907,425
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 8
| 186
| 307,200
|
ln = input().split()[0]
input = input().split()
def bruteMax(lst):
max = 0
maxI = 0
for i in range(len(input)):
if getScore(lst, i) > max:
#print("--------------------")
max = getScore(lst, i)
maxI = i
#print(maxI)
print(max)
def getScore(lst, ind):
score = 1
pointerL = ind -1
lastL = lst[ind]
pointerR = ind+1
lastR = lst[ind]
while pointerL >= 0 or pointerR <= len(lst):
#print(score)
#print(pointerL)
#print(pointerR)
flag = False
try:
if lst[pointerL] <= lastL and pointerL >= 0:
#print("L",lst[pointerL])
score += 1
lastL = lst[pointerL]
pointerL -=1
flag = True
if lst[pointerR] <= lastR and pointerR <= len(lst):
#print(lst[pointerR])
lastR = lst[pointerR]
score += 1
pointerR += 1
flag = True
except IndexError:
pass
if not flag:
break
return score
bruteMax(input)
|
Title: Petya and Countryside
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
Output Specification:
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
Demo Input:
['1\n2\n', '5\n1 2 1 2 1\n', '8\n1 2 1 1 1 3 3 4\n']
Demo Output:
['1\n', '3\n', '6\n']
Note:
none
|
```python
ln = input().split()[0]
input = input().split()
def bruteMax(lst):
max = 0
maxI = 0
for i in range(len(input)):
if getScore(lst, i) > max:
#print("--------------------")
max = getScore(lst, i)
maxI = i
#print(maxI)
print(max)
def getScore(lst, ind):
score = 1
pointerL = ind -1
lastL = lst[ind]
pointerR = ind+1
lastR = lst[ind]
while pointerL >= 0 or pointerR <= len(lst):
#print(score)
#print(pointerL)
#print(pointerR)
flag = False
try:
if lst[pointerL] <= lastL and pointerL >= 0:
#print("L",lst[pointerL])
score += 1
lastL = lst[pointerL]
pointerL -=1
flag = True
if lst[pointerR] <= lastR and pointerR <= len(lst):
#print(lst[pointerR])
lastR = lst[pointerR]
score += 1
pointerR += 1
flag = True
except IndexError:
pass
if not flag:
break
return score
bruteMax(input)
```
| 0
|
379
|
A
|
New Year Candles
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
|
The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000).
|
Print a single integer — the number of hours Vasily can light up the room for.
|
[
"4 2\n",
"6 3\n"
] |
[
"7\n",
"8\n"
] |
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
| 500
|
[
{
"input": "4 2",
"output": "7"
},
{
"input": "6 3",
"output": "8"
},
{
"input": "1000 1000",
"output": "1001"
},
{
"input": "123 5",
"output": "153"
},
{
"input": "1000 2",
"output": "1999"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "2 2",
"output": "3"
},
{
"input": "3 2",
"output": "5"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "999 2",
"output": "1997"
},
{
"input": "1000 3",
"output": "1499"
},
{
"input": "1000 4",
"output": "1333"
},
{
"input": "1 1000",
"output": "1"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "80 970",
"output": "80"
},
{
"input": "10 4",
"output": "13"
},
{
"input": "4 3",
"output": "5"
},
{
"input": "91 5",
"output": "113"
},
{
"input": "777 17",
"output": "825"
},
{
"input": "100 4",
"output": "133"
},
{
"input": "5 3",
"output": "7"
},
{
"input": "6 4",
"output": "7"
},
{
"input": "26 8",
"output": "29"
},
{
"input": "9 4",
"output": "11"
},
{
"input": "20 3",
"output": "29"
},
{
"input": "17 3",
"output": "25"
}
] | 1,643,349,441
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 31
| 0
|
a, b = input().split()
a = int(a)
b = int(b)
n = 0
while True:
n += a
a = a // b
if a == 0:
break
print(n)
|
Title: New Year Candles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has *a* candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make *b* went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
Input Specification:
The single line contains two integers, *a* and *b* (1<=≤<=*a*<=≤<=1000; 2<=≤<=*b*<=≤<=1000).
Output Specification:
Print a single integer — the number of hours Vasily can light up the room for.
Demo Input:
['4 2\n', '6 3\n']
Demo Output:
['7\n', '8\n']
Note:
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours.
|
```python
a, b = input().split()
a = int(a)
b = int(b)
n = 0
while True:
n += a
a = a // b
if a == 0:
break
print(n)
```
| 0
|
|
384
|
A
|
Coder
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1).
Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000).
|
On the first line print an integer, the maximum number of Coders that can be placed on the chessboard.
On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'.
If there are multiple correct answers, you can print any.
|
[
"2\n"
] |
[
"2\nC.\n.C\n"
] |
none
| 500
|
[
{
"input": "2",
"output": "2\nC.\n.C"
},
{
"input": "3",
"output": "5\nC.C\n.C.\nC.C"
},
{
"input": "4",
"output": "8\nC.C.\n.C.C\nC.C.\n.C.C"
},
{
"input": "10",
"output": "50\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C"
},
{
"input": "15",
"output": "113\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C"
},
{
"input": "100",
"output": "5000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..."
},
{
"input": "101",
"output": "5101\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..."
},
{
"input": "500",
"output": "125000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n...."
},
{
"input": "501",
"output": "125501\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n..."
},
{
"input": "755",
"output": "285013\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..."
},
{
"input": "888",
"output": "394272\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..."
},
{
"input": "998",
"output": "498002\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..."
},
{
"input": "999",
"output": "499001\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..."
},
{
"input": "1000",
"output": "500000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..."
},
{
"input": "1",
"output": "1\nC"
}
] | 1,689,369,576
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 30
| 0
|
print("_RANDOM_GUESS_1689369575.8707561")# 1689369575.870771
|
Title: Coder
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1).
Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000).
Output Specification:
On the first line print an integer, the maximum number of Coders that can be placed on the chessboard.
On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'.
If there are multiple correct answers, you can print any.
Demo Input:
['2\n']
Demo Output:
['2\nC.\n.C\n']
Note:
none
|
```python
print("_RANDOM_GUESS_1689369575.8707561")# 1689369575.870771
```
| 0
|
|
378
|
A
|
Playing with Dice
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
|
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
|
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
|
[
"2 5\n",
"2 4\n"
] |
[
"3 0 3\n",
"2 1 3\n"
] |
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
| 500
|
[
{
"input": "2 5",
"output": "3 0 3"
},
{
"input": "2 4",
"output": "2 1 3"
},
{
"input": "5 3",
"output": "2 1 3"
},
{
"input": "1 6",
"output": "3 0 3"
},
{
"input": "5 1",
"output": "3 1 2"
},
{
"input": "6 3",
"output": "2 0 4"
},
{
"input": "2 3",
"output": "2 0 4"
},
{
"input": "5 6",
"output": "5 0 1"
},
{
"input": "4 4",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
},
{
"input": "6 4",
"output": "1 1 4"
},
{
"input": "1 4",
"output": "2 0 4"
},
{
"input": "5 5",
"output": "0 6 0"
},
{
"input": "4 5",
"output": "4 0 2"
},
{
"input": "4 3",
"output": "3 0 3"
},
{
"input": "1 5",
"output": "2 1 3"
},
{
"input": "6 5",
"output": "1 0 5"
},
{
"input": "2 2",
"output": "0 6 0"
},
{
"input": "1 3",
"output": "1 1 4"
},
{
"input": "3 6",
"output": "4 0 2"
},
{
"input": "3 1",
"output": "4 1 1"
},
{
"input": "3 2",
"output": "4 0 2"
},
{
"input": "3 5",
"output": "3 1 2"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "6 2",
"output": "2 1 3"
},
{
"input": "4 1",
"output": "4 0 2"
},
{
"input": "5 2",
"output": "3 0 3"
},
{
"input": "4 2",
"output": "3 1 2"
},
{
"input": "2 1",
"output": "5 0 1"
},
{
"input": "6 1",
"output": "3 0 3"
},
{
"input": "4 6",
"output": "4 1 1"
},
{
"input": "2 6",
"output": "3 1 2"
},
{
"input": "3 4",
"output": "3 0 3"
},
{
"input": "1 2",
"output": "1 0 5"
},
{
"input": "6 6",
"output": "0 6 0"
},
{
"input": "5 4",
"output": "2 0 4"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
}
] | 1,573,044,969
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 38
| 140
| 0
|
from sys import stdin
raw_input = stdin.readline().split()
a = int(raw_input[0])
b = int(raw_input[1])
listA = [abs(a - i) for i in range(1, 7)]
listB = [abs(b - i) for i in range(1, 7)]
result = [0] * 3
for i in range(0, 6):
if listA[i] < listB[i]:
result[0] += 1
elif listA[i] == listB[i]:
result[1] += 1
else:
result[2] += 1
print(result[0], result[1], result[2])
|
Title: Playing with Dice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
Input Specification:
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Output Specification:
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
Demo Input:
['2 5\n', '2 4\n']
Demo Output:
['3 0 3\n', '2 1 3\n']
Note:
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
|
```python
from sys import stdin
raw_input = stdin.readline().split()
a = int(raw_input[0])
b = int(raw_input[1])
listA = [abs(a - i) for i in range(1, 7)]
listB = [abs(b - i) for i in range(1, 7)]
result = [0] * 3
for i in range(0, 6):
if listA[i] < listB[i]:
result[0] += 1
elif listA[i] == listB[i]:
result[1] += 1
else:
result[2] += 1
print(result[0], result[1], result[2])
```
| 3
|
|
1,011
|
A
|
Stages
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages.
There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'.
For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons.
Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once.
|
The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket.
The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once.
|
Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all.
|
[
"5 3\nxyabd\n",
"7 4\nproblem\n",
"2 2\nab\n",
"12 1\nabaabbaaabbb\n"
] |
[
"29",
"34",
"-1",
"1"
] |
In the first example, the following rockets satisfy the condition:
- "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$).
Rocket "adx" has the minimal weight, so the answer is $29$.
In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$.
In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
| 500
|
[
{
"input": "5 3\nxyabd",
"output": "29"
},
{
"input": "7 4\nproblem",
"output": "34"
},
{
"input": "2 2\nab",
"output": "-1"
},
{
"input": "12 1\nabaabbaaabbb",
"output": "1"
},
{
"input": "50 13\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "169"
},
{
"input": "50 14\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "1 1\na",
"output": "1"
},
{
"input": "50 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "1"
},
{
"input": "50 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "-1"
},
{
"input": "13 13\nuwgmkyqeiaocs",
"output": "169"
},
{
"input": "13 13\nhzdxpbfvrltnj",
"output": "182"
},
{
"input": "1 1\nn",
"output": "14"
},
{
"input": "10 8\nsmzeblyjqw",
"output": "113"
},
{
"input": "20 20\ntzmvhskkyugkuuxpvtbh",
"output": "-1"
},
{
"input": "30 15\nwjzolzzkfulwgioksfxmcxmnnjtoav",
"output": "-1"
},
{
"input": "40 30\nxumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv",
"output": "-1"
},
{
"input": "50 31\nahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz",
"output": "-1"
},
{
"input": "10 7\niuiukrxcml",
"output": "99"
},
{
"input": "38 2\nvjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa",
"output": "5"
},
{
"input": "12 6\nfwseyrarkwcd",
"output": "61"
},
{
"input": "2 2\nac",
"output": "4"
},
{
"input": "1 1\nc",
"output": "3"
},
{
"input": "2 2\nad",
"output": "5"
},
{
"input": "2 1\nac",
"output": "1"
},
{
"input": "4 3\nadjz",
"output": "15"
},
{
"input": "3 3\naoz",
"output": "42"
},
{
"input": "3 1\nzzz",
"output": "26"
},
{
"input": "2 1\nxz",
"output": "24"
},
{
"input": "5 1\naaddd",
"output": "1"
}
] | 1,532,773,943
| 1,043
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 23
| 124
| 0
|
def wt(s):
return ord(s) - ord('a') + 1
if __name__ == '__main__':
n, k = [int(__) for __ in input().strip().split()]
inp = sorted(list(input().strip()))
ans = wt(inp[0])
last = ans
k -= 1
for i in range(1, n):
if wt(inp[i]) - last > 1:
k -= 1
ans += wt(inp[i])
last = wt(inp[i])
if k <= 0:
break
print(ans if k <= 0 else -1)
|
Title: Stages
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages.
There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'.
For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons.
Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once.
Input Specification:
The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket.
The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once.
Output Specification:
Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all.
Demo Input:
['5 3\nxyabd\n', '7 4\nproblem\n', '2 2\nab\n', '12 1\nabaabbaaabbb\n']
Demo Output:
['29', '34', '-1', '1']
Note:
In the first example, the following rockets satisfy the condition:
- "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$).
Rocket "adx" has the minimal weight, so the answer is $29$.
In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$.
In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
|
```python
def wt(s):
return ord(s) - ord('a') + 1
if __name__ == '__main__':
n, k = [int(__) for __ in input().strip().split()]
inp = sorted(list(input().strip()))
ans = wt(inp[0])
last = ans
k -= 1
for i in range(1, n):
if wt(inp[i]) - last > 1:
k -= 1
ans += wt(inp[i])
last = wt(inp[i])
if k <= 0:
break
print(ans if k <= 0 else -1)
```
| 0
|
|
510
|
A
|
Fox And Snake
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
|
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50).
*n* is an odd number.
|
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
|
[
"3 3\n",
"3 4\n",
"5 3\n",
"9 9\n"
] |
[
"###\n..#\n###\n",
"####\n...#\n####\n",
"###\n..#\n###\n#..\n###\n",
"#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n"
] |
none
| 500
|
[
{
"input": "3 3",
"output": "###\n..#\n###"
},
{
"input": "3 4",
"output": "####\n...#\n####"
},
{
"input": "5 3",
"output": "###\n..#\n###\n#..\n###"
},
{
"input": "9 9",
"output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########"
},
{
"input": "3 5",
"output": "#####\n....#\n#####"
},
{
"input": "3 6",
"output": "######\n.....#\n######"
},
{
"input": "7 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "7 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####"
},
{
"input": "49 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 27",
"output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................."
},
{
"input": "11 15",
"output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############"
},
{
"input": "11 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "19 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "23 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "49 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "33 43",
"output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................."
},
{
"input": "33 44",
"output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......."
},
{
"input": "45 45",
"output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..."
},
{
"input": "45 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "45 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###"
},
{
"input": "45 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####"
},
{
"input": "5 4",
"output": "####\n...#\n####\n#...\n####"
},
{
"input": "5 5",
"output": "#####\n....#\n#####\n#....\n#####"
},
{
"input": "5 6",
"output": "######\n.....#\n######\n#.....\n######"
},
{
"input": "7 5",
"output": "#####\n....#\n#####\n#....\n#####\n....#\n#####"
},
{
"input": "7 6",
"output": "######\n.....#\n######\n#.....\n######\n.....#\n######"
},
{
"input": "7 7",
"output": "#######\n......#\n#######\n#......\n#######\n......#\n#######"
}
] | 1,688,823,953
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
n,m=map(int,raw_input().split())
a='#'*m
b='.'*(m-1)+'#'
c='#'+'.'*(m-1)
for i in range(n):
if i%2==0:
print a
else:
if i%4==1:
print b
else:
print c
|
Title: Fox And Snake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
Input Specification:
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50).
*n* is an odd number.
Output Specification:
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
Demo Input:
['3 3\n', '3 4\n', '5 3\n', '9 9\n']
Demo Output:
['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n']
Note:
none
|
```python
n,m=map(int,raw_input().split())
a='#'*m
b='.'*(m-1)+'#'
c='#'+'.'*(m-1)
for i in range(n):
if i%2==0:
print a
else:
if i%4==1:
print b
else:
print c
```
| -1
|
|
110
|
A
|
Nearly Lucky Number
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Nearly Lucky Number
|
2
|
256
|
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
|
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018).
Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
|
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
|
[
"40047\n",
"7747774\n",
"1000000000000000000\n"
] |
[
"NO\n",
"YES\n",
"NO\n"
] |
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO".
In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES".
In the third sample there are no lucky digits, so the answer is "NO".
| 500
|
[
{
"input": "40047",
"output": "NO"
},
{
"input": "7747774",
"output": "YES"
},
{
"input": "1000000000000000000",
"output": "NO"
},
{
"input": "7",
"output": "NO"
},
{
"input": "4",
"output": "NO"
},
{
"input": "474404774",
"output": "NO"
},
{
"input": "4744000695826",
"output": "YES"
},
{
"input": "10000000004744744",
"output": "YES"
},
{
"input": "446486416781684178",
"output": "YES"
},
{
"input": "999999999",
"output": "NO"
},
{
"input": "7777",
"output": "YES"
},
{
"input": "87414417444",
"output": "NO"
},
{
"input": "111222333444555667",
"output": "YES"
},
{
"input": "1",
"output": "NO"
},
{
"input": "4700",
"output": "NO"
},
{
"input": "3794555488744477",
"output": "NO"
},
{
"input": "444444444444444444",
"output": "NO"
},
{
"input": "474447447774444774",
"output": "NO"
},
{
"input": "777777777777777",
"output": "NO"
},
{
"input": "34777745021000000",
"output": "NO"
},
{
"input": "963",
"output": "NO"
},
{
"input": "855474448854788540",
"output": "NO"
},
{
"input": "999999999999994744",
"output": "YES"
},
{
"input": "400000000474",
"output": "YES"
},
{
"input": "123456789123456789",
"output": "YES"
},
{
"input": "740577777584945874",
"output": "NO"
},
{
"input": "7777777",
"output": "YES"
},
{
"input": "4444000111222333",
"output": "YES"
},
{
"input": "9847745885202111",
"output": "YES"
},
{
"input": "123456000000",
"output": "NO"
},
{
"input": "4744447444444",
"output": "NO"
},
{
"input": "7477",
"output": "YES"
},
{
"input": "4747477",
"output": "YES"
},
{
"input": "777777777444444444",
"output": "NO"
}
] | 1,695,630,106
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
number = input()
lucky_number = number.count('4') + number.count('7')
if lucky_number == 4 or lucky_number == 7:
print("YES")
else:
print("NO")
|
Title: Nearly Lucky Number
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number *n* is a nearly lucky number.
Input Specification:
The only line contains an integer *n* (1<=≤<=*n*<=≤<=1018).
Please do not use the %lld specificator to read or write 64-bit numbers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.
Output Specification:
Print on the single line "YES" if *n* is a nearly lucky number. Otherwise, print "NO" (without the quotes).
Demo Input:
['40047\n', '7747774\n', '1000000000000000000\n']
Demo Output:
['NO\n', 'YES\n', 'NO\n']
Note:
In the first sample there are 3 lucky digits (first one and last two), so the answer is "NO".
In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is "YES".
In the third sample there are no lucky digits, so the answer is "NO".
|
```python
number = input()
lucky_number = number.count('4') + number.count('7')
if lucky_number == 4 or lucky_number == 7:
print("YES")
else:
print("NO")
```
| 3.977
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,664,162,396
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
a ,b=input().split()
a=int(a)
b=int(b)
max=max(a,b)
min=min(a,b)
mix,same=0,0
if a==b:
mix=a
same=0
else:
mix=min
same=(max-min)//2
print(mix ,same)
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
a ,b=input().split()
a=int(a)
b=int(b)
max=max(a,b)
min=min(a,b)
mix,same=0,0
if a==b:
mix=a
same=0
else:
mix=min
same=(max-min)//2
print(mix ,same)
```
| 3
|
|
614
|
A
|
Link/Cut Tree
|
PROGRAMMING
| 1,500
|
[
"brute force",
"implementation"
] | null | null |
Programmer Rostislav got seriously interested in the Link/Cut Tree data structure, which is based on Splay trees. Specifically, he is now studying the *expose* procedure.
Unfortunately, Rostislav is unable to understand the definition of this procedure, so he decided to ask programmer Serezha to help him. Serezha agreed to help if Rostislav solves a simple task (and if he doesn't, then why would he need Splay trees anyway?)
Given integers *l*, *r* and *k*, you need to print all powers of number *k* within range from *l* to *r* inclusive. However, Rostislav doesn't want to spent time doing this, as he got interested in playing a network game called Agar with Gleb. Help him!
|
The first line of the input contains three space-separated integers *l*, *r* and *k* (1<=≤<=*l*<=≤<=*r*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
|
Print all powers of number *k*, that lie within range from *l* to *r* in the increasing order. If there are no such numbers, print "-1" (without the quotes).
|
[
"1 10 2\n",
"2 4 5\n"
] |
[
"1 2 4 8 ",
"-1"
] |
Note to the first sample: numbers 2<sup class="upper-index">0</sup> = 1, 2<sup class="upper-index">1</sup> = 2, 2<sup class="upper-index">2</sup> = 4, 2<sup class="upper-index">3</sup> = 8 lie within the specified range. The number 2<sup class="upper-index">4</sup> = 16 is greater then 10, thus it shouldn't be printed.
| 500
|
[
{
"input": "1 10 2",
"output": "1 2 4 8 "
},
{
"input": "2 4 5",
"output": "-1"
},
{
"input": "18102 43332383920 28554",
"output": "28554 815330916 "
},
{
"input": "19562 31702689720 17701",
"output": "313325401 "
},
{
"input": "11729 55221128400 313",
"output": "97969 30664297 9597924961 "
},
{
"input": "5482 100347128000 342",
"output": "116964 40001688 13680577296 "
},
{
"input": "3680 37745933600 10",
"output": "10000 100000 1000000 10000000 100000000 1000000000 10000000000 "
},
{
"input": "17098 191120104800 43",
"output": "79507 3418801 147008443 6321363049 "
},
{
"input": "10462 418807699200 2",
"output": "16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 "
},
{
"input": "30061 641846400000 3",
"output": "59049 177147 531441 1594323 4782969 14348907 43046721 129140163 387420489 1162261467 3486784401 10460353203 31381059609 94143178827 282429536481 "
},
{
"input": "1 1000000000000000000 2",
"output": "1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1099511627776 2199023255552 4398046511104 8796093022208 17592186044416 35184372088832 70368744177664 140737488355328 281474976710656 562949953421312 1125899906842624 2251799813685248 4503599627370496 900719925474099..."
},
{
"input": "32 2498039712000 4",
"output": "64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 4294967296 17179869184 68719476736 274877906944 1099511627776 "
},
{
"input": "1 2576683920000 2",
"output": "1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1099511627776 2199023255552 "
},
{
"input": "5 25 5",
"output": "5 25 "
},
{
"input": "1 90 90",
"output": "1 90 "
},
{
"input": "95 2200128528000 68",
"output": "4624 314432 21381376 1453933568 98867482624 "
},
{
"input": "64 426314644000 53",
"output": "2809 148877 7890481 418195493 22164361129 "
},
{
"input": "198765 198765 198765",
"output": "198765 "
},
{
"input": "42 2845016496000 12",
"output": "144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 "
},
{
"input": "6 6 3",
"output": "-1"
},
{
"input": "1 10 11",
"output": "1 "
},
{
"input": "2 10 11",
"output": "-1"
},
{
"input": "87 160 41",
"output": "-1"
},
{
"input": "237171123124584251 923523399718980912 7150",
"output": "-1"
},
{
"input": "101021572000739548 453766043506276015 8898",
"output": "-1"
},
{
"input": "366070689449360724 928290634811046396 8230",
"output": "-1"
},
{
"input": "438133886369772308 942612870269666780 7193",
"output": "-1"
},
{
"input": "10 10 10",
"output": "10 "
},
{
"input": "16 16 256",
"output": "-1"
},
{
"input": "1 1000000000000000000 1000000000",
"output": "1 1000000000 1000000000000000000 "
},
{
"input": "1000000000000000000 1000000000000000000 1000000000",
"output": "1000000000000000000 "
},
{
"input": "1000000000 1000000000000000000 1000000000",
"output": "1000000000 1000000000000000000 "
},
{
"input": "1 1 4",
"output": "1 "
},
{
"input": "1 999999999999999999 1000000000",
"output": "1 1000000000 "
},
{
"input": "1 1000000000000000000 999999990",
"output": "1 999999990 999999980000000100 "
},
{
"input": "1 1000000000000000000 999999984",
"output": "1 999999984 999999968000000256 "
},
{
"input": "1 1000000000000000000 324325",
"output": "1 324325 105186705625 34114678301828125 "
},
{
"input": "1 1000000000000000000 999999523",
"output": "1 999999523 999999046000227529 "
},
{
"input": "1 243 3",
"output": "1 3 9 27 81 243 "
},
{
"input": "62769392426654367 567152589733560993 688813",
"output": "326816522793383797 "
},
{
"input": "1 1000000000000000000 690852001",
"output": "1 690852001 477276487285704001 "
},
{
"input": "1 1000000000000000000 918745157",
"output": "1 918745157 844092663510954649 "
},
{
"input": "1 1000000000000000000 131299843",
"output": "1 131299843 17239648771824649 "
},
{
"input": "2861381721051425 2861381721051425 1234",
"output": "-1"
}
] | 1,500,363,998
| 338
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 46
| 4,608,000
|
l,r,k = [int(i) for i in input().split()]
i = 0
while True :
t = k ** i
if t <=r and t >=l:
print(t,end=" ")
else:
break
i+=1
|
Title: Link/Cut Tree
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Programmer Rostislav got seriously interested in the Link/Cut Tree data structure, which is based on Splay trees. Specifically, he is now studying the *expose* procedure.
Unfortunately, Rostislav is unable to understand the definition of this procedure, so he decided to ask programmer Serezha to help him. Serezha agreed to help if Rostislav solves a simple task (and if he doesn't, then why would he need Splay trees anyway?)
Given integers *l*, *r* and *k*, you need to print all powers of number *k* within range from *l* to *r* inclusive. However, Rostislav doesn't want to spent time doing this, as he got interested in playing a network game called Agar with Gleb. Help him!
Input Specification:
The first line of the input contains three space-separated integers *l*, *r* and *k* (1<=≤<=*l*<=≤<=*r*<=≤<=1018, 2<=≤<=*k*<=≤<=109).
Output Specification:
Print all powers of number *k*, that lie within range from *l* to *r* in the increasing order. If there are no such numbers, print "-1" (without the quotes).
Demo Input:
['1 10 2\n', '2 4 5\n']
Demo Output:
['1 2 4 8 ', '-1']
Note:
Note to the first sample: numbers 2<sup class="upper-index">0</sup> = 1, 2<sup class="upper-index">1</sup> = 2, 2<sup class="upper-index">2</sup> = 4, 2<sup class="upper-index">3</sup> = 8 lie within the specified range. The number 2<sup class="upper-index">4</sup> = 16 is greater then 10, thus it shouldn't be printed.
|
```python
l,r,k = [int(i) for i in input().split()]
i = 0
while True :
t = k ** i
if t <=r and t >=l:
print(t,end=" ")
else:
break
i+=1
```
| 0
|
|
32
|
B
|
Borze
|
PROGRAMMING
| 800
|
[
"expression parsing",
"implementation"
] |
B. Borze
|
2
|
256
|
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
|
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
|
Output the decoded ternary number. It can have leading zeroes.
|
[
".-.--\n",
"--.\n",
"-..-.--\n"
] |
[
"012",
"20",
"1012"
] |
none
| 1,000
|
[
{
"input": ".-.--",
"output": "012"
},
{
"input": "--.",
"output": "20"
},
{
"input": "-..-.--",
"output": "1012"
},
{
"input": "---..",
"output": "210"
},
{
"input": "..--.---..",
"output": "0020210"
},
{
"input": "-.....----.",
"output": "10000220"
},
{
"input": ".",
"output": "0"
},
{
"input": "-.",
"output": "1"
},
{
"input": "--",
"output": "2"
},
{
"input": "..",
"output": "00"
},
{
"input": "--.",
"output": "20"
},
{
"input": ".--.",
"output": "020"
},
{
"input": ".-.-..",
"output": "0110"
},
{
"input": "----.-.",
"output": "2201"
},
{
"input": "-..--.-.",
"output": "10201"
},
{
"input": "..--..--.",
"output": "0020020"
},
{
"input": "-.-.---.--..-..-.-.-..-..-.--.",
"output": "112120010111010120"
},
{
"input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.",
"output": "21112220010101011012011011221011"
},
{
"input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------",
"output": "11020111110111222212021020002022111100201121222020012022110010222"
},
{
"input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..",
"output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110"
},
{
"input": ".-..-.-.---.-----.--.---...-.--.-.-....-..",
"output": "01011212212021001201100010"
},
{
"input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..",
"output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210"
},
{
"input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.",
"output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220"
},
{
"input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----",
"output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122"
},
{
"input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..",
"output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110"
},
{
"input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.",
"output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020"
},
{
"input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..",
"output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200"
},
{
"input": "-.---...----...--.--...-.--.----",
"output": "121002200020200012022"
},
{
"input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.",
"output": "202020212012111010201021100001021221200011222112012201012220"
}
] | 1,593,183,018
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 218
| 6,758,400
|
s=input()
n=len(s)
i=0
while(i<n):
if(s[i]=='.'):
print(0,end='')
else:
if(s[i+1]=='-'):
print(2,end='')
else:
print(1,end='')
i+=1
i+=1
|
Title: Borze
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
Input Specification:
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output Specification:
Output the decoded ternary number. It can have leading zeroes.
Demo Input:
['.-.--\n', '--.\n', '-..-.--\n']
Demo Output:
['012', '20', '1012']
Note:
none
|
```python
s=input()
n=len(s)
i=0
while(i<n):
if(s[i]=='.'):
print(0,end='')
else:
if(s[i+1]=='-'):
print(2,end='')
else:
print(1,end='')
i+=1
i+=1
```
| 3.932911
|
877
|
B
|
Nikita and string
|
PROGRAMMING
| 1,500
|
[
"brute force",
"dp"
] | null | null |
One day Nikita found the string containing letters "a" and "b" only.
Nikita thinks that string is beautiful if it can be cut into 3 strings (possibly empty) without changing the order of the letters, where the 1-st and the 3-rd one contain only letters "a" and the 2-nd contains only letters "b".
Nikita wants to make the string beautiful by removing some (possibly none) of its characters, but without changing their order. What is the maximum length of the string he can get?
|
The first line contains a non-empty string of length not greater than 5<=000 containing only lowercase English letters "a" and "b".
|
Print a single integer — the maximum possible size of beautiful string Nikita can get.
|
[
"abba\n",
"bab\n"
] |
[
"4",
"2"
] |
It the first sample the string is already beautiful.
In the second sample he needs to delete one of "b" to make it beautiful.
| 1,000
|
[
{
"input": "abba",
"output": "4"
},
{
"input": "bab",
"output": "2"
},
{
"input": "bbabbbaabbbb",
"output": "9"
},
{
"input": "bbabbbbbaaba",
"output": "10"
},
{
"input": "bbabbbababaa",
"output": "9"
},
{
"input": "aabbaababbab",
"output": "8"
},
{
"input": "a",
"output": "1"
},
{
"input": "b",
"output": "1"
},
{
"input": "ab",
"output": "2"
},
{
"input": "ba",
"output": "2"
},
{
"input": "bb",
"output": "2"
},
{
"input": "aa",
"output": "2"
},
{
"input": "babbbaab",
"output": "6"
},
{
"input": "abaaaa",
"output": "6"
},
{
"input": "aaa",
"output": "3"
}
] | 1,616,401,591
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 46
| 124
| 1,638,400
|
s=input()
a,ab,aba=0,0,0
for i in s:
if i=='a':
a+=1
aba=max(ab,aba)+1
else:
ab=max(a,ab)+1
print(max(aba,ab,a))
|
Title: Nikita and string
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Nikita found the string containing letters "a" and "b" only.
Nikita thinks that string is beautiful if it can be cut into 3 strings (possibly empty) without changing the order of the letters, where the 1-st and the 3-rd one contain only letters "a" and the 2-nd contains only letters "b".
Nikita wants to make the string beautiful by removing some (possibly none) of its characters, but without changing their order. What is the maximum length of the string he can get?
Input Specification:
The first line contains a non-empty string of length not greater than 5<=000 containing only lowercase English letters "a" and "b".
Output Specification:
Print a single integer — the maximum possible size of beautiful string Nikita can get.
Demo Input:
['abba\n', 'bab\n']
Demo Output:
['4', '2']
Note:
It the first sample the string is already beautiful.
In the second sample he needs to delete one of "b" to make it beautiful.
|
```python
s=input()
a,ab,aba=0,0,0
for i in s:
if i=='a':
a+=1
aba=max(ab,aba)+1
else:
ab=max(a,ab)+1
print(max(aba,ab,a))
```
| 3
|
|
368
|
B
|
Sereja and Suffixes
|
PROGRAMMING
| 1,100
|
[
"data structures",
"dp"
] | null | null |
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.?
Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements.
Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
|
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
|
[
"10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"
] |
[
"6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n"
] |
none
| 1,000
|
[
{
"input": "10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10",
"output": "6\n6\n6\n6\n6\n5\n4\n3\n2\n1"
},
{
"input": "8 3\n8 6 4 3 4 2 4 8\n6\n4\n2",
"output": "3\n4\n5"
},
{
"input": "7 10\n1 3 8 6 2 2 7\n4\n2\n6\n3\n4\n4\n6\n2\n7\n4",
"output": "3\n5\n2\n4\n3\n3\n2\n5\n1\n3"
},
{
"input": "10 2\n2 6 5 7 2 2 3 2 4 8\n1\n2",
"output": "7\n7"
},
{
"input": "7 1\n68346 10956 76708 23018 84063 34833 80407\n1",
"output": "7"
},
{
"input": "2 2\n8 4\n1\n1",
"output": "2\n2"
},
{
"input": "1 5\n5\n1\n1\n1\n1\n1",
"output": "1\n1\n1\n1\n1"
},
{
"input": "4 7\n3 1 4 2\n4\n1\n2\n3\n2\n4\n4",
"output": "1\n4\n3\n2\n3\n1\n1"
},
{
"input": "4 3\n9 1 7 1\n1\n4\n2",
"output": "3\n1\n2"
},
{
"input": "8 3\n9280 6676 2720 6172 8329 10413 3975 1394\n5\n6\n7",
"output": "4\n3\n2"
},
{
"input": "1 1\n1\n1",
"output": "1"
}
] | 1,667,991,796
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 420
| 12,083,200
|
A=dict()
n,m=map(int,input().split());Answer=[0]*(n+1);B=[]
lis=list(map(int,input().split()));liss=set(lis);l=len(liss)
for x in lis:
A[x]=0
for i in range(n):
A[lis[i]]+=1
Answer[0]=l
for j in range(1,n+1):
Answer[j]=Answer[j-1]
A[lis[j-1]]-=1
if A[lis[j-1]]==0:
Answer[j]-=1
for k in range(m):
B.append(int(input())-1)
for x in B:
print(Answer[x])
|
Title: Sereja and Suffixes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja has an array *a*, consisting of *n* integers *a*1, *a*2, ..., *a**n*. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out *m* integers *l*1,<=*l*2,<=...,<=*l**m* (1<=≤<=*l**i*<=≤<=*n*). For each number *l**i* he wants to know how many distinct numbers are staying on the positions *l**i*, *l**i*<=+<=1, ..., *n*. Formally, he want to find the number of distinct numbers among *a**l**i*,<=*a**l**i*<=+<=1,<=...,<=*a**n*.?
Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each *l**i*.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105) — the array elements.
Next *m* lines contain integers *l*1,<=*l*2,<=...,<=*l**m*. The *i*-th line contains integer *l**i* (1<=≤<=*l**i*<=≤<=*n*).
Output Specification:
Print *m* lines — on the *i*-th line print the answer to the number *l**i*.
Demo Input:
['10 10\n1 2 3 4 1 2 3 4 100000 99999\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n']
Demo Output:
['6\n6\n6\n6\n6\n5\n4\n3\n2\n1\n']
Note:
none
|
```python
A=dict()
n,m=map(int,input().split());Answer=[0]*(n+1);B=[]
lis=list(map(int,input().split()));liss=set(lis);l=len(liss)
for x in lis:
A[x]=0
for i in range(n):
A[lis[i]]+=1
Answer[0]=l
for j in range(1,n+1):
Answer[j]=Answer[j-1]
A[lis[j-1]]-=1
if A[lis[j-1]]==0:
Answer[j]-=1
for k in range(m):
B.append(int(input())-1)
for x in B:
print(Answer[x])
```
| 3
|
|
282
|
A
|
Bit++
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The classic programming language of Bitland is Bit++. This language is so peculiar and complicated.
The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations:
- Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1.
A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains.
A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains.
You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed).
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme.
Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order.
|
Print a single integer — the final value of *x*.
|
[
"1\n++X\n",
"2\nX++\n--X\n"
] |
[
"1\n",
"0\n"
] |
none
| 500
|
[
{
"input": "1\n++X",
"output": "1"
},
{
"input": "2\nX++\n--X",
"output": "0"
},
{
"input": "3\n++X\n++X\n++X",
"output": "3"
},
{
"input": "2\n--X\n--X",
"output": "-2"
},
{
"input": "5\n++X\n--X\n++X\n--X\n--X",
"output": "-1"
},
{
"input": "28\nX--\n++X\nX++\nX++\nX++\n--X\n--X\nX++\nX--\n++X\nX++\n--X\nX--\nX++\nX--\n++X\n++X\nX++\nX++\nX++\nX++\n--X\n++X\n--X\n--X\n--X\n--X\nX++",
"output": "4"
},
{
"input": "94\nX++\nX++\n++X\n++X\nX--\n--X\nX++\n--X\nX++\n++X\nX++\n++X\n--X\n--X\n++X\nX++\n--X\nX--\nX--\n--X\nX--\nX--\n--X\n++X\n--X\nX--\nX--\nX++\n++X\n--X\nX--\n++X\n--X\n--X\nX--\nX--\nX++\nX++\nX--\nX++\nX--\nX--\nX--\n--X\nX--\nX--\nX--\nX++\n++X\nX--\n++X\nX++\n--X\n--X\n--X\n--X\n++X\nX--\n--X\n--X\n++X\nX--\nX--\nX++\n++X\nX++\n++X\n--X\n--X\nX--\n++X\nX--\nX--\n++X\n++X\n++X\n++X\nX++\n++X\n--X\nX++\n--X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\nX--\nX--\n--X\n++X\nX++",
"output": "-10"
},
{
"input": "56\n--X\nX--\n--X\n--X\nX--\nX--\n--X\nX++\n++X\n--X\nX++\nX--\n--X\n++X\n--X\nX--\nX--\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n--X\nX++\n++X\nX++\n--X\n++X\nX++\nX++\n--X\nX++\nX--\n--X\nX--\n--X\nX++\n++X\n--X\n++X\nX++\nX--\n--X\n--X\n++X\nX--\nX--\n--X\nX--\n--X\nX++\n--X\n++X\n--X",
"output": "-14"
},
{
"input": "59\nX--\n--X\nX++\n++X\nX--\n--X\n--X\n++X\n++X\n++X\n++X\nX++\n++X\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX++\n--X\n++X\nX++\n--X\n--X\nX++\nX++\n--X\nX++\nX++\nX++\nX--\nX--\n--X\nX++\nX--\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\nX--\n++X\n--X\nX++\nX++\nX--\nX++\n++X\nX--\nX++\nX--\nX--\n++X",
"output": "3"
},
{
"input": "87\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\nX--\n++X\n--X\n--X\nX++\n--X\nX--\nX++\n++X\n--X\n++X\n++X\n--X\n++X\n--X\nX--\n++X\n++X\nX--\nX++\nX++\n--X\n--X\n++X\nX--\n--X\n++X\n--X\nX++\n--X\n--X\nX--\n++X\n++X\n--X\nX--\nX--\nX--\nX--\nX--\nX++\n--X\n++X\n--X\nX++\n++X\nX++\n++X\n--X\nX++\n++X\nX--\n--X\nX++\n++X\nX++\nX++\n--X\n--X\n++X\n--X\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX--\n--X\n++X\n++X",
"output": "-5"
},
{
"input": "101\nX++\nX++\nX++\n++X\n--X\nX--\nX++\nX--\nX--\n--X\n--X\n++X\nX++\n++X\n++X\nX--\n--X\n++X\nX++\nX--\n++X\n--X\n--X\n--X\n++X\n--X\n++X\nX++\nX++\n++X\n--X\nX++\nX--\nX++\n++X\n++X\nX--\nX--\nX--\nX++\nX++\nX--\nX--\nX++\n++X\n++X\n++X\n--X\n--X\n++X\nX--\nX--\n--X\n++X\nX--\n++X\nX++\n++X\nX--\nX--\n--X\n++X\n--X\n++X\n++X\n--X\nX++\n++X\nX--\n++X\nX--\n++X\nX++\nX--\n++X\nX++\n--X\nX++\nX++\n++X\n--X\n++X\n--X\nX++\n--X\nX--\n--X\n++X\n++X\n++X\n--X\nX--\nX--\nX--\nX--\n--X\n--X\n--X\n++X\n--X\n--X",
"output": "1"
},
{
"input": "63\n--X\nX--\n++X\n--X\n++X\nX++\n--X\n--X\nX++\n--X\n--X\nX++\nX--\nX--\n--X\n++X\nX--\nX--\nX++\n++X\nX++\nX++\n--X\n--X\n++X\nX--\nX--\nX--\n++X\nX++\nX--\n--X\nX--\n++X\n++X\nX++\n++X\nX++\nX++\n--X\nX--\n++X\nX--\n--X\nX--\nX--\nX--\n++X\n++X\n++X\n++X\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n++X\nX--\n++X\n++X\nX--",
"output": "1"
},
{
"input": "45\n--X\n++X\nX--\n++X\n++X\nX++\n--X\n--X\n--X\n--X\n--X\n--X\n--X\nX++\n++X\nX--\n++X\n++X\nX--\nX++\nX--\n--X\nX--\n++X\n++X\n--X\n--X\nX--\nX--\n--X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\nX--\n++X\n++X\nX++\nX++\n++X\n++X\nX++",
"output": "-3"
},
{
"input": "21\n++X\nX++\n--X\nX--\nX++\n++X\n--X\nX--\nX++\nX--\nX--\nX--\nX++\n++X\nX++\n++X\n--X\nX--\n--X\nX++\n++X",
"output": "1"
},
{
"input": "100\n--X\n++X\nX++\n++X\nX--\n++X\nX--\nX++\n--X\nX++\nX--\nX--\nX--\n++X\nX--\nX++\nX++\n++X\nX++\nX++\nX++\nX++\n++X\nX++\n++X\nX--\n--X\n++X\nX--\n--X\n++X\n++X\nX--\nX++\nX++\nX++\n++X\n--X\n++X\nX++\nX--\n++X\n++X\n--X\n++X\nX--\nX--\nX--\nX++\nX--\nX--\nX++\nX++\n--X\nX++\nX++\n--X\nX--\n--X\n++X\n--X\n++X\n++X\nX--\n--X\n++X\n++X\n--X\n--X\n++X\nX++\nX--\nX++\nX--\nX++\nX++\n--X\nX--\nX--\n++X\nX--\n--X\n--X\nX++\n--X\n--X\nX--\nX--\n++X\n++X\nX--\n++X\nX++\n--X\n++X\n++X\nX++\n--X\n--X\nX++",
"output": "8"
},
{
"input": "17\nX++\nX++\n++X\n--X\n--X\n++X\n++X\n--X\nX--\nX++\nX--\n--X\n--X\nX--\n++X\nX--\nX++",
"output": "-1"
},
{
"input": "77\n++X\nX++\n--X\nX--\n--X\n--X\nX--\nX++\nX--\nX++\nX--\n++X\n--X\n--X\n--X\n--X\n++X\nX--\nX++\nX--\n--X\nX--\n--X\nX--\n++X\n--X\n++X\n++X\nX++\nX++\nX--\n--X\nX--\nX--\nX++\n--X\n--X\n++X\nX--\nX--\n++X\nX++\nX--\n++X\n--X\nX++\nX--\n++X\n++X\n++X\nX--\nX--\nX--\n--X\n++X\n++X\n++X\nX++\n--X\n--X\n++X\n--X\nX--\nX++\n++X\nX++\n++X\nX--\nX++\nX++\n--X\nX++\nX++\nX++\n--X\nX++\nX--",
"output": "-5"
},
{
"input": "21\nX--\n++X\n--X\nX--\n++X\nX--\n++X\nX--\n--X\n++X\nX++\n++X\nX++\n++X\nX--\n--X\nX++\nX++\nX--\n++X\nX--",
"output": "1"
},
{
"input": "1\nX--",
"output": "-1"
}
] | 1,696,961,543
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 31
| 0
|
n = int(input(""))
count = 0
for i in range(n):
s = input("")
if s[1] == "+":
count = count + 1
if s[1] == "-":
count = count - 1
print(count)
|
Title: Bit++
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The classic programming language of Bitland is Bit++. This language is so peculiar and complicated.
The language is that peculiar as it has exactly one variable, called *x*. Also, there are two operations:
- Operation ++ increases the value of variable *x* by 1. - Operation -- decreases the value of variable *x* by 1.
A statement in language Bit++ is a sequence, consisting of exactly one operation and one variable *x*. The statement is written without spaces, that is, it can only contain characters "+", "-", "X". Executing a statement means applying the operation it contains.
A programme in Bit++ is a sequence of statements, each of them needs to be executed. Executing a programme means executing all the statements it contains.
You're given a programme in language Bit++. The initial value of *x* is 0. Execute the programme and find its final value (the value of the variable when this programme is executed).
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=150) — the number of statements in the programme.
Next *n* lines contain a statement each. Each statement contains exactly one operation (++ or --) and exactly one variable *x* (denoted as letter «X»). Thus, there are no empty statements. The operation and the variable can be written in any order.
Output Specification:
Print a single integer — the final value of *x*.
Demo Input:
['1\n++X\n', '2\nX++\n--X\n']
Demo Output:
['1\n', '0\n']
Note:
none
|
```python
n = int(input(""))
count = 0
for i in range(n):
s = input("")
if s[1] == "+":
count = count + 1
if s[1] == "-":
count = count - 1
print(count)
```
| 3
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,695,563,947
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 46
| 0
|
#23n2300011853 zhuangchuyue ccme
targ="hello"
k=0
flag=1
s=input()
for i in range(len(s)):
if(s[i]==targ[k]):
k+=1
if(k==5):
print("YES")
flag=0
break
if(flag):
print("NO")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
#23n2300011853 zhuangchuyue ccme
targ="hello"
k=0
flag=1
s=input()
for i in range(len(s)):
if(s[i]==targ[k]):
k+=1
if(k==5):
print("YES")
flag=0
break
if(flag):
print("NO")
```
| 3.977
|
805
|
B
|
3-palindrome
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms"
] | null | null |
In the beginning of the new year Keivan decided to reverse his name. He doesn't like palindromes, so he changed Naviek to Navick.
He is too selfish, so for a given *n* he wants to obtain a string of *n* characters, each of which is either 'a', 'b' or 'c', with no palindromes of length 3 appearing in the string as a substring. For example, the strings "abc" and "abca" suit him, while the string "aba" doesn't. He also want the number of letters 'c' in his string to be as little as possible.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the length of the string.
|
Print the string that satisfies all the constraints.
If there are multiple answers, print any of them.
|
[
"2\n",
"3\n"
] |
[
"aa\n",
"bba\n"
] |
A palindrome is a sequence of characters which reads the same backward and forward.
| 1,000
|
[
{
"input": "2",
"output": "aa"
},
{
"input": "3",
"output": "aab"
},
{
"input": "38",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaa"
},
{
"input": "47",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab"
},
{
"input": "59",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab"
},
{
"input": "67",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab"
},
{
"input": "77",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "89",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "98",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaa"
},
{
"input": "109",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "117",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabba"
},
{
"input": "1",
"output": "a"
},
{
"input": "200000",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "100000",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "143670",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "104217",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "17879",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "131809",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "140873",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "77859",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "153022",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "179227",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "182801",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "5188",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "86539",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "12802",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "120289",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "132866",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "133377",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "31775",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "160397",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "161415",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "163623",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "22942",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "134767",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "52257",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "64905",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "183758",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "60131",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "146883",
"output": "aabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaabbaab..."
},
{
"input": "6",
"output": "aabbaa"
},
{
"input": "4",
"output": "aabb"
}
] | 1,642,841,464
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 46
| 0
|
n=int(input())
s=""
for i in range(1,n+1):
if(i%5==1 or i%5==2):
s+='a'
elif(i%5==3 or i%5==4):
s+='b'
else:
s+='c'
print(s)
|
Title: 3-palindrome
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In the beginning of the new year Keivan decided to reverse his name. He doesn't like palindromes, so he changed Naviek to Navick.
He is too selfish, so for a given *n* he wants to obtain a string of *n* characters, each of which is either 'a', 'b' or 'c', with no palindromes of length 3 appearing in the string as a substring. For example, the strings "abc" and "abca" suit him, while the string "aba" doesn't. He also want the number of letters 'c' in his string to be as little as possible.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the length of the string.
Output Specification:
Print the string that satisfies all the constraints.
If there are multiple answers, print any of them.
Demo Input:
['2\n', '3\n']
Demo Output:
['aa\n', 'bba\n']
Note:
A palindrome is a sequence of characters which reads the same backward and forward.
|
```python
n=int(input())
s=""
for i in range(1,n+1):
if(i%5==1 or i%5==2):
s+='a'
elif(i%5==3 or i%5==4):
s+='b'
else:
s+='c'
print(s)
```
| 0
|
|
296
|
A
|
Yaroslav and Permutations
|
PROGRAMMING
| 1,100
|
[
"greedy",
"math"
] | null | null |
Yaroslav has an array that consists of *n* integers. In one second Yaroslav can swap two neighboring array elements. Now Yaroslav is wondering if he can obtain an array where any two neighboring elements would be distinct in a finite time.
Help Yaroslav.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000) — the array elements.
|
In the single line print "YES" (without the quotes) if Yaroslav can obtain the array he needs, and "NO" (without the quotes) otherwise.
|
[
"1\n1\n",
"3\n1 1 2\n",
"4\n7 7 7 7\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
In the first sample the initial array fits well.
In the second sample Yaroslav can get array: 1, 2, 1. He can swap the last and the second last elements to obtain it.
In the third sample Yarosav can't get the array he needs.
| 500
|
[
{
"input": "1\n1",
"output": "YES"
},
{
"input": "3\n1 1 2",
"output": "YES"
},
{
"input": "4\n7 7 7 7",
"output": "NO"
},
{
"input": "4\n479 170 465 146",
"output": "YES"
},
{
"input": "5\n996 437 605 996 293",
"output": "YES"
},
{
"input": "6\n727 539 896 668 36 896",
"output": "YES"
},
{
"input": "7\n674 712 674 674 674 674 674",
"output": "NO"
},
{
"input": "8\n742 742 742 742 742 289 742 742",
"output": "NO"
},
{
"input": "9\n730 351 806 806 806 630 85 757 967",
"output": "YES"
},
{
"input": "10\n324 539 83 440 834 640 440 440 440 440",
"output": "YES"
},
{
"input": "7\n925 830 925 98 987 162 356",
"output": "YES"
},
{
"input": "68\n575 32 53 351 151 942 725 967 431 108 192 8 338 458 288 754 384 946 910 210 759 222 589 423 947 507 31 414 169 901 592 763 656 411 360 625 538 549 484 596 42 603 351 292 837 375 21 597 22 349 200 669 485 282 735 54 1000 419 939 901 789 128 468 729 894 649 484 808",
"output": "YES"
},
{
"input": "22\n618 814 515 310 617 936 452 601 250 520 557 799 304 225 9 845 610 990 703 196 486 94",
"output": "YES"
},
{
"input": "44\n459 581 449 449 449 449 449 449 449 623 449 449 449 449 449 449 449 449 889 449 203 273 329 449 449 449 449 449 449 845 882 323 22 449 449 893 449 449 449 449 449 870 449 402",
"output": "NO"
},
{
"input": "90\n424 3 586 183 286 89 427 618 758 833 933 170 155 722 190 977 330 369 693 426 556 435 550 442 513 146 61 719 754 140 424 280 997 688 530 550 438 867 950 194 196 298 417 287 106 489 283 456 735 115 702 317 672 787 264 314 356 186 54 913 809 833 946 314 757 322 559 647 983 482 145 197 223 130 162 536 451 174 467 45 660 293 440 254 25 155 511 746 650 187",
"output": "YES"
},
{
"input": "14\n959 203 478 315 788 788 373 834 488 519 774 764 193 103",
"output": "YES"
},
{
"input": "81\n544 528 528 528 528 4 506 528 32 528 528 528 528 528 528 528 528 975 528 528 528 528 528 528 528 528 528 528 528 528 528 20 528 528 528 528 528 528 528 528 852 528 528 120 528 528 61 11 528 528 528 228 528 165 883 528 488 475 628 528 528 528 528 528 528 597 528 528 528 528 528 528 528 528 528 528 528 412 528 521 925",
"output": "NO"
},
{
"input": "89\n354 356 352 355 355 355 352 354 354 352 355 356 355 352 354 356 354 355 355 354 353 352 352 355 355 356 352 352 353 356 352 353 354 352 355 352 353 353 353 354 353 354 354 353 356 353 353 354 354 354 354 353 352 353 355 356 356 352 356 354 353 352 355 354 356 356 356 354 354 356 354 355 354 355 353 352 354 355 352 355 355 354 356 353 353 352 356 352 353",
"output": "YES"
},
{
"input": "71\n284 284 285 285 285 284 285 284 284 285 284 285 284 284 285 284 285 285 285 285 284 284 285 285 284 284 284 285 284 285 284 285 285 284 284 284 285 284 284 285 285 285 284 284 285 284 285 285 284 285 285 284 285 284 284 284 285 285 284 285 284 285 285 285 285 284 284 285 285 284 285",
"output": "NO"
},
{
"input": "28\n602 216 214 825 814 760 814 28 76 814 814 288 814 814 222 707 11 490 814 543 914 705 814 751 976 814 814 99",
"output": "YES"
},
{
"input": "48\n546 547 914 263 986 945 914 914 509 871 324 914 153 571 914 914 914 528 970 566 544 914 914 914 410 914 914 589 609 222 914 889 691 844 621 68 914 36 914 39 630 749 914 258 945 914 727 26",
"output": "YES"
},
{
"input": "56\n516 76 516 197 516 427 174 516 706 813 94 37 516 815 516 516 937 483 16 516 842 516 638 691 516 635 516 516 453 263 516 516 635 257 125 214 29 81 516 51 362 516 677 516 903 516 949 654 221 924 516 879 516 516 972 516",
"output": "YES"
},
{
"input": "46\n314 723 314 314 314 235 314 314 314 314 270 314 59 972 314 216 816 40 314 314 314 314 314 314 314 381 314 314 314 314 314 314 314 789 314 957 114 942 314 314 29 314 314 72 314 314",
"output": "NO"
},
{
"input": "72\n169 169 169 599 694 81 250 529 865 406 817 169 667 169 965 169 169 663 65 169 903 169 942 763 169 807 169 603 169 169 13 169 169 810 169 291 169 169 169 169 169 169 169 713 169 440 169 169 169 169 169 480 169 169 867 169 169 169 169 169 169 169 169 393 169 169 459 169 99 169 601 800",
"output": "NO"
},
{
"input": "100\n317 316 317 316 317 316 317 316 317 316 316 317 317 316 317 316 316 316 317 316 317 317 316 317 316 316 316 316 316 316 317 316 317 317 317 317 317 317 316 316 316 317 316 317 316 317 316 317 317 316 317 316 317 317 316 317 316 317 316 317 316 316 316 317 317 317 317 317 316 317 317 316 316 316 316 317 317 316 317 316 316 316 316 316 316 317 316 316 317 317 317 317 317 317 317 317 317 316 316 317",
"output": "NO"
},
{
"input": "100\n510 510 510 162 969 32 510 511 510 510 911 183 496 875 903 461 510 510 123 578 510 510 510 510 510 755 510 673 510 510 763 510 510 909 510 435 487 959 807 510 368 788 557 448 284 332 510 949 510 510 777 112 857 926 487 510 510 510 678 510 510 197 829 427 698 704 409 509 510 238 314 851 510 651 510 455 682 510 714 635 973 510 443 878 510 510 510 591 510 24 596 510 43 183 510 510 671 652 214 784",
"output": "YES"
},
{
"input": "100\n476 477 474 476 476 475 473 476 474 475 473 477 476 476 474 476 474 475 476 477 473 473 473 474 474 476 473 473 476 476 475 476 473 474 473 473 477 475 475 475 476 475 477 477 477 476 475 475 475 473 476 477 475 476 477 473 474 477 473 475 476 476 474 477 476 474 473 477 473 475 477 473 476 474 477 473 475 477 473 476 476 475 476 475 474 473 477 473 475 473 477 473 473 474 475 473 477 476 477 474",
"output": "YES"
},
{
"input": "100\n498 498 498 498 498 499 498 499 499 499 498 498 498 498 499 498 499 499 498 499 498 498 498 499 499 499 498 498 499 499 498 498 498 499 498 499 498 498 498 499 498 499 498 498 498 498 499 498 498 499 498 498 499 498 499 499 498 499 499 499 498 498 498 498 499 498 499 498 499 499 499 499 498 498 499 499 498 499 499 498 498 499 499 498 498 499 499 499 498 498 499 498 498 498 499 499 499 498 498 499",
"output": "NO"
},
{
"input": "100\n858 53 816 816 816 816 816 816 816 181 816 816 816 816 579 879 816 948 171 816 816 150 866 816 816 816 897 816 816 816 816 816 816 706 816 539 816 816 816 816 816 816 423 487 816 615 254 816 816 816 816 83 816 816 816 816 816 816 816 816 816 816 816 136 775 999 816 816 816 644 816 816 816 816 927 816 802 816 856 816 816 816 816 816 816 816 816 816 816 700 816 816 816 816 982 477 816 891 806 816",
"output": "NO"
},
{
"input": "100\n167 169 169 167 169 169 167 167 167 167 168 166 170 170 169 170 170 170 169 168 166 167 170 169 167 169 168 169 166 170 166 167 170 166 166 167 169 166 166 169 166 167 168 168 170 167 168 166 168 170 167 168 167 169 169 166 168 167 170 168 167 169 168 169 166 168 168 169 169 166 170 168 167 169 170 168 167 169 168 167 168 168 166 169 170 170 166 166 167 170 167 168 167 167 169 169 166 166 169 167",
"output": "YES"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "99\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "100\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "99\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "2\n1 1",
"output": "NO"
},
{
"input": "1\n1000",
"output": "YES"
},
{
"input": "12\n2 2 4 4 4 4 6 6 6 6 6 6",
"output": "YES"
}
] | 1,580,636,946
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 8
| 216
| 307,200
|
n = int(input())
li = list(map(int, input().split()))
if n == 1:
print('YES')
exit()
for i in range(1, n):
if li[i-1] == li[i]:
try:
li[i], li[i+1] = li[i+1], li[i]
except:
continue
for i in range(1, n):
if li[i-1] == li[i]:
print('NO')
exit()
print('YES')
|
Title: Yaroslav and Permutations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Yaroslav has an array that consists of *n* integers. In one second Yaroslav can swap two neighboring array elements. Now Yaroslav is wondering if he can obtain an array where any two neighboring elements would be distinct in a finite time.
Help Yaroslav.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000) — the array elements.
Output Specification:
In the single line print "YES" (without the quotes) if Yaroslav can obtain the array he needs, and "NO" (without the quotes) otherwise.
Demo Input:
['1\n1\n', '3\n1 1 2\n', '4\n7 7 7 7\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
In the first sample the initial array fits well.
In the second sample Yaroslav can get array: 1, 2, 1. He can swap the last and the second last elements to obtain it.
In the third sample Yarosav can't get the array he needs.
|
```python
n = int(input())
li = list(map(int, input().split()))
if n == 1:
print('YES')
exit()
for i in range(1, n):
if li[i-1] == li[i]:
try:
li[i], li[i+1] = li[i+1], li[i]
except:
continue
for i in range(1, n):
if li[i-1] == li[i]:
print('NO')
exit()
print('YES')
```
| 0
|
|
793
|
A
|
Oleg and shares
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Oleg the bank client checks share prices every day. There are *n* share prices he is interested in. Today he observed that each second exactly one of these prices decreases by *k* rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all *n* prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of share prices, and the amount of rubles some price decreases each second.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the initial prices.
|
Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.
|
[
"3 3\n12 9 15\n",
"2 2\n10 9\n",
"4 1\n1 1000000000 1000000000 1000000000\n"
] |
[
"3",
"-1",
"2999999997"
] |
Consider the first example.
Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.
There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.
In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.
In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.
| 500
|
[
{
"input": "3 3\n12 9 15",
"output": "3"
},
{
"input": "2 2\n10 9",
"output": "-1"
},
{
"input": "4 1\n1 1000000000 1000000000 1000000000",
"output": "2999999997"
},
{
"input": "1 11\n123",
"output": "0"
},
{
"input": "20 6\n38 86 86 50 98 62 32 2 14 62 98 50 2 50 32 38 62 62 8 14",
"output": "151"
},
{
"input": "20 5\n59 54 19 88 55 100 54 3 6 13 99 38 36 71 59 6 64 85 45 54",
"output": "-1"
},
{
"input": "100 10\n340 70 440 330 130 120 340 210 440 110 410 120 180 40 50 230 70 110 310 360 480 70 230 120 230 310 470 60 210 60 210 480 290 250 450 440 150 40 500 230 280 250 30 50 310 50 230 360 420 260 330 80 50 160 70 470 140 180 380 190 250 30 220 410 80 310 280 50 20 430 440 180 310 190 190 330 90 190 320 390 170 460 230 30 80 500 470 370 80 500 400 120 220 150 70 120 70 320 260 260",
"output": "2157"
},
{
"input": "100 18\n489 42 300 366 473 105 220 448 70 488 201 396 168 281 67 235 324 291 313 387 407 223 39 144 224 233 72 318 229 377 62 171 448 119 354 282 147 447 260 384 172 199 67 326 311 431 337 142 281 202 404 468 38 120 90 437 33 420 249 372 367 253 255 411 309 333 103 176 162 120 203 41 352 478 216 498 224 31 261 493 277 99 375 370 394 229 71 488 246 194 233 13 66 111 366 456 277 360 116 354",
"output": "-1"
},
{
"input": "4 2\n1 2 3 4",
"output": "-1"
},
{
"input": "3 4\n3 5 5",
"output": "-1"
},
{
"input": "3 2\n88888884 88888886 88888888",
"output": "3"
},
{
"input": "2 1\n1000000000 1000000000",
"output": "0"
},
{
"input": "4 2\n1000000000 100000000 100000000 100000000",
"output": "450000000"
},
{
"input": "2 2\n1000000000 1000000000",
"output": "0"
},
{
"input": "3 3\n3 2 1",
"output": "-1"
},
{
"input": "3 4\n3 5 3",
"output": "-1"
},
{
"input": "3 2\n1 2 2",
"output": "-1"
},
{
"input": "4 2\n2 3 3 2",
"output": "-1"
},
{
"input": "3 2\n1 2 4",
"output": "-1"
},
{
"input": "3 2\n3 4 4",
"output": "-1"
},
{
"input": "3 3\n4 7 10",
"output": "3"
},
{
"input": "4 3\n2 2 5 1",
"output": "-1"
},
{
"input": "3 3\n1 3 5",
"output": "-1"
},
{
"input": "2 5\n5 9",
"output": "-1"
},
{
"input": "2 3\n5 7",
"output": "-1"
},
{
"input": "3 137\n1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "5 1000000000\n1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "3 5\n1 2 5",
"output": "-1"
},
{
"input": "3 3\n1000000000 1000000000 999999997",
"output": "2"
},
{
"input": "2 4\n5 6",
"output": "-1"
},
{
"input": "4 1\n1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "2 3\n5 8",
"output": "1"
},
{
"input": "2 6\n8 16",
"output": "-1"
},
{
"input": "5 3\n15 14 9 12 18",
"output": "-1"
},
{
"input": "3 3\n1 2 3",
"output": "-1"
},
{
"input": "3 3\n3 4 5",
"output": "-1"
},
{
"input": "2 5\n8 17",
"output": "-1"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "0"
},
{
"input": "3 3\n5 3 4",
"output": "-1"
},
{
"input": "3 6\n10 14 12",
"output": "-1"
},
{
"input": "2 2\n3 5",
"output": "1"
},
{
"input": "3 5\n1 3 4",
"output": "-1"
},
{
"input": "4 3\n1 6 6 6",
"output": "-1"
},
{
"input": "2 3\n1 8",
"output": "-1"
},
{
"input": "3 5\n6 11 17",
"output": "-1"
},
{
"input": "2 2\n1 4",
"output": "-1"
},
{
"input": "2 4\n6 8",
"output": "-1"
},
{
"input": "2 1\n2 3",
"output": "1"
},
{
"input": "4 4\n1 5 8 14",
"output": "-1"
},
{
"input": "3 3\n1 5 3",
"output": "-1"
},
{
"input": "4 3\n1 2 2 5",
"output": "-1"
},
{
"input": "3 2\n1 4 6",
"output": "-1"
},
{
"input": "2 3\n6 9",
"output": "1"
},
{
"input": "3 3\n2 3 4",
"output": "-1"
},
{
"input": "3 2\n9 10 10",
"output": "-1"
},
{
"input": "2 2\n9 12",
"output": "-1"
},
{
"input": "2 2\n100000003 100000005",
"output": "1"
},
{
"input": "2 3\n2 4",
"output": "-1"
},
{
"input": "3 2\n2 3 5",
"output": "-1"
},
{
"input": "3 3\n1 3 4",
"output": "-1"
},
{
"input": "10 2\n2 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "4499999991"
},
{
"input": "3 5\n2 4 5",
"output": "-1"
},
{
"input": "2 3\n7 10",
"output": "1"
},
{
"input": "3 10\n10 13 17",
"output": "-1"
},
{
"input": "2 3\n1 6",
"output": "-1"
},
{
"input": "1 7\n1000000000",
"output": "0"
},
{
"input": "2 4\n3 7",
"output": "1"
},
{
"input": "2 3\n2 5",
"output": "1"
},
{
"input": "20 1\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "3 3\n7 8 8",
"output": "-1"
},
{
"input": "4 10\n1 11 100 11",
"output": "-1"
}
] | 1,586,972,852
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 77
| 204,800
|
n,k=map(int,input().split())
a=list(map(int,input().split()))
x=min(a)
flag=0
for i in range(len(a)):
if((a[i]-x)%k!=0):
flag=1
break
if(flag==0):
for i in range(len(a)):
a[i]=(a[i]-x)/k
print(sum(a))
elif(flag==1):
print(-1)
|
Title: Oleg and shares
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Oleg the bank client checks share prices every day. There are *n* share prices he is interested in. Today he observed that each second exactly one of these prices decreases by *k* rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all *n* prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of share prices, and the amount of rubles some price decreases each second.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the initial prices.
Output Specification:
Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.
Demo Input:
['3 3\n12 9 15\n', '2 2\n10 9\n', '4 1\n1 1000000000 1000000000 1000000000\n']
Demo Output:
['3', '-1', '2999999997']
Note:
Consider the first example.
Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.
There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.
In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.
In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.
|
```python
n,k=map(int,input().split())
a=list(map(int,input().split()))
x=min(a)
flag=0
for i in range(len(a)):
if((a[i]-x)%k!=0):
flag=1
break
if(flag==0):
for i in range(len(a)):
a[i]=(a[i]-x)/k
print(sum(a))
elif(flag==1):
print(-1)
```
| 0
|
|
707
|
A
|
Brain's Photos
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
|
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
|
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
|
[
"2 2\nC M\nY Y\n",
"3 2\nW W\nW W\nB B\n",
"1 1\nW\n"
] |
[
"#Color",
"#Black&White",
"#Black&White"
] |
none
| 500
|
[
{
"input": "2 2\nC M\nY Y",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G Y",
"output": "#Color"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B",
"output": "#Color"
},
{
"input": "1 6\nC M Y W G B",
"output": "#Color"
},
{
"input": "1 3\nW G B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G C",
"output": "#Color"
},
{
"input": "2 3\nW W W\nB G M",
"output": "#Color"
},
{
"input": "3 3\nC B W\nB Y M\nB B W",
"output": "#Color"
},
{
"input": "1 3\nW C W",
"output": "#Color"
},
{
"input": "3 3\nB W B\nB C W\nB W W",
"output": "#Color"
},
{
"input": "1 2\nW Y",
"output": "#Color"
},
{
"input": "1 1\nG",
"output": "#Black&White"
},
{
"input": "1 3\nB G W",
"output": "#Black&White"
},
{
"input": "2 2\nW W\nB C",
"output": "#Color"
},
{
"input": "1 1\nM",
"output": "#Color"
},
{
"input": "1 2\nW C",
"output": "#Color"
},
{
"input": "2 3\nW W M\nW W M",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB C",
"output": "#Color"
},
{
"input": "2 3\nW W C\nW W W",
"output": "#Color"
},
{
"input": "1 3\nG G G",
"output": "#Black&White"
},
{
"input": "1 1\nC",
"output": "#Color"
},
{
"input": "1 2\nC W",
"output": "#Color"
},
{
"input": "1 3\nW W C",
"output": "#Color"
},
{
"input": "2 2\nW B\nB G",
"output": "#Black&White"
},
{
"input": "2 2\nB B\nY Y",
"output": "#Color"
},
{
"input": "2 2\nG G\nC C",
"output": "#Color"
},
{
"input": "1 2\nB C",
"output": "#Color"
},
{
"input": "1 4\nG G G C",
"output": "#Color"
},
{
"input": "1 1\nB",
"output": "#Black&White"
},
{
"input": "2 1\nY\nB",
"output": "#Color"
}
] | 1,658,911,060
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 46
| 0
|
n, m = map(int, input().split())
flag = False
for _ in range(n):
colors = set(input().split())
for color in colors:
if 'W' != color and 'B' != color and 'G' != color:
flag = True
break
if flag:
break
if flag:
print('#Color')
else:
print('#Black&White')
|
Title: Brain's Photos
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Output Specification:
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
Demo Input:
['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n']
Demo Output:
['#Color', '#Black&White', '#Black&White']
Note:
none
|
```python
n, m = map(int, input().split())
flag = False
for _ in range(n):
colors = set(input().split())
for color in colors:
if 'W' != color and 'B' != color and 'G' != color:
flag = True
break
if flag:
break
if flag:
print('#Color')
else:
print('#Black&White')
```
| 3
|
|
832
|
A
|
Sasha and Sticks
|
PROGRAMMING
| 800
|
[
"games",
"math"
] | null | null |
It's one more school day now. Sasha doesn't like classes and is always bored at them. So, each day he invents some game and plays in it alone or with friends.
Today he invented one simple game to play with Lena, with whom he shares a desk. The rules are simple. Sasha draws *n* sticks in a row. After that the players take turns crossing out exactly *k* sticks from left or right in each turn. Sasha moves first, because he is the inventor of the game. If there are less than *k* sticks on the paper before some turn, the game ends. Sasha wins if he makes strictly more moves than Lena. Sasha wants to know the result of the game before playing, you are to help him.
|
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1018, *k*<=≤<=*n*) — the number of sticks drawn by Sasha and the number *k* — the number of sticks to be crossed out on each turn.
|
If Sasha wins, print "YES" (without quotes), otherwise print "NO" (without quotes).
You can print each letter in arbitrary case (upper of lower).
|
[
"1 1\n",
"10 4\n"
] |
[
"YES\n",
"NO\n"
] |
In the first example Sasha crosses out 1 stick, and then there are no sticks. So Lena can't make a move, and Sasha wins.
In the second example Sasha crosses out 4 sticks, then Lena crosses out 4 sticks, and after that there are only 2 sticks left. Sasha can't make a move. The players make equal number of moves, so Sasha doesn't win.
| 500
|
[
{
"input": "1 1",
"output": "YES"
},
{
"input": "10 4",
"output": "NO"
},
{
"input": "251656215122324104 164397544865601257",
"output": "YES"
},
{
"input": "963577813436662285 206326039287271924",
"output": "NO"
},
{
"input": "1000000000000000000 1",
"output": "NO"
},
{
"input": "253308697183523656 25332878317796706",
"output": "YES"
},
{
"input": "669038685745448997 501718093668307460",
"output": "YES"
},
{
"input": "116453141993601660 87060381463547965",
"output": "YES"
},
{
"input": "766959657 370931668",
"output": "NO"
},
{
"input": "255787422422806632 146884995820359999",
"output": "YES"
},
{
"input": "502007866464507926 71266379084204128",
"output": "YES"
},
{
"input": "257439908778973480 64157133126869976",
"output": "NO"
},
{
"input": "232709385 91708542",
"output": "NO"
},
{
"input": "252482458300407528 89907711721009125",
"output": "NO"
},
{
"input": "6 2",
"output": "YES"
},
{
"input": "6 3",
"output": "NO"
},
{
"input": "6 4",
"output": "YES"
},
{
"input": "6 5",
"output": "YES"
},
{
"input": "6 6",
"output": "YES"
},
{
"input": "258266151957056904 30153168463725364",
"output": "NO"
},
{
"input": "83504367885565783 52285355047292458",
"output": "YES"
},
{
"input": "545668929424440387 508692735816921376",
"output": "YES"
},
{
"input": "547321411485639939 36665750286082900",
"output": "NO"
},
{
"input": "548973893546839491 183137237979822911",
"output": "NO"
},
{
"input": "544068082 193116851",
"output": "NO"
},
{
"input": "871412474 749817171",
"output": "YES"
},
{
"input": "999999999 1247",
"output": "NO"
},
{
"input": "851941088 712987048",
"output": "YES"
},
{
"input": "559922900 418944886",
"output": "YES"
},
{
"input": "293908937 37520518",
"output": "YES"
},
{
"input": "650075786 130049650",
"output": "NO"
},
{
"input": "1000000000 1000000000",
"output": "YES"
},
{
"input": "548147654663723363 107422751713800746",
"output": "YES"
},
{
"input": "828159210 131819483",
"output": "NO"
},
{
"input": "6242634 4110365",
"output": "YES"
},
{
"input": "458601973 245084155",
"output": "YES"
},
{
"input": "349593257 18089089",
"output": "YES"
},
{
"input": "814768821 312514745",
"output": "NO"
},
{
"input": "697884949 626323363",
"output": "YES"
},
{
"input": "667011589 54866795",
"output": "NO"
},
{
"input": "1000000000000000000 2",
"output": "NO"
},
{
"input": "1000000000000000000 3",
"output": "YES"
},
{
"input": "1000000000000000000 4",
"output": "NO"
},
{
"input": "999999999999999 1",
"output": "YES"
},
{
"input": "17 4",
"output": "NO"
},
{
"input": "2 2",
"output": "YES"
},
{
"input": "1000000000000000 2",
"output": "NO"
},
{
"input": "12 4",
"output": "YES"
},
{
"input": "6 1",
"output": "NO"
},
{
"input": "2 1",
"output": "NO"
},
{
"input": "10000000005 1",
"output": "YES"
},
{
"input": "10000000000000009 2",
"output": "NO"
},
{
"input": "12457895452123 1",
"output": "YES"
},
{
"input": "999999999999999999 9",
"output": "YES"
},
{
"input": "1000000000000 3",
"output": "YES"
},
{
"input": "13099714659575475 6549849616514894",
"output": "NO"
},
{
"input": "100000000000000001 1",
"output": "YES"
},
{
"input": "825175814723458 324",
"output": "YES"
},
{
"input": "20 4",
"output": "YES"
},
{
"input": "100000176877 4",
"output": "YES"
},
{
"input": "100000 3",
"output": "YES"
},
{
"input": "946744073709551614 10",
"output": "YES"
}
] | 1,664,687,945
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
n, k = map(int,input().split())
print(('YES', 'NO')[(n//k)%2])
|
Title: Sasha and Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's one more school day now. Sasha doesn't like classes and is always bored at them. So, each day he invents some game and plays in it alone or with friends.
Today he invented one simple game to play with Lena, with whom he shares a desk. The rules are simple. Sasha draws *n* sticks in a row. After that the players take turns crossing out exactly *k* sticks from left or right in each turn. Sasha moves first, because he is the inventor of the game. If there are less than *k* sticks on the paper before some turn, the game ends. Sasha wins if he makes strictly more moves than Lena. Sasha wants to know the result of the game before playing, you are to help him.
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1018, *k*<=≤<=*n*) — the number of sticks drawn by Sasha and the number *k* — the number of sticks to be crossed out on each turn.
Output Specification:
If Sasha wins, print "YES" (without quotes), otherwise print "NO" (without quotes).
You can print each letter in arbitrary case (upper of lower).
Demo Input:
['1 1\n', '10 4\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first example Sasha crosses out 1 stick, and then there are no sticks. So Lena can't make a move, and Sasha wins.
In the second example Sasha crosses out 4 sticks, then Lena crosses out 4 sticks, and after that there are only 2 sticks left. Sasha can't make a move. The players make equal number of moves, so Sasha doesn't win.
|
```python
n, k = map(int,input().split())
print(('YES', 'NO')[(n//k)%2])
```
| 0
|
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,652,304,473
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 30
| 0
|
st = input()
l = list(st)
a = "helo"
a1 = ""
d = ""
for i in range(len(l)):
if l[i] in a :
a1 += l[i]
for i in a1 :
if i not in d :
d += i
if d == a :
print("YES")
else:
print("NO")
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
st = input()
l = list(st)
a = "helo"
a1 = ""
d = ""
for i in range(len(l)):
if l[i] in a :
a1 += l[i]
for i in a1 :
if i not in d :
d += i
if d == a :
print("YES")
else:
print("NO")
```
| 0
|
710
|
C
|
Magic Odd Square
|
PROGRAMMING
| 1,500
|
[
"constructive algorithms",
"math"
] | null | null |
Find an *n*<=×<=*n* matrix with different numbers from 1 to *n*2, so the sum in each row, column and both main diagonals are odd.
|
The only line contains odd integer *n* (1<=≤<=*n*<=≤<=49).
|
Print *n* lines with *n* integers. All the integers should be different and from 1 to *n*2. The sum in each row, column and both main diagonals should be odd.
|
[
"1\n",
"3\n"
] |
[
"1\n",
"2 1 4\n3 5 7\n6 9 8\n"
] |
none
| 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "3",
"output": "2 1 4\n3 5 7\n6 9 8"
},
{
"input": "5",
"output": "2 4 1 6 8\n10 3 5 7 12\n9 11 13 15 17\n14 19 21 23 16\n18 20 25 22 24"
},
{
"input": "7",
"output": "2 4 6 1 8 10 12\n14 16 3 5 7 18 20\n22 9 11 13 15 17 24\n19 21 23 25 27 29 31\n26 33 35 37 39 41 28\n30 32 43 45 47 34 36\n38 40 42 49 44 46 48"
},
{
"input": "9",
"output": "2 4 6 8 1 10 12 14 16\n18 20 22 3 5 7 24 26 28\n30 32 9 11 13 15 17 34 36\n38 19 21 23 25 27 29 31 40\n33 35 37 39 41 43 45 47 49\n42 51 53 55 57 59 61 63 44\n46 48 65 67 69 71 73 50 52\n54 56 58 75 77 79 60 62 64\n66 68 70 72 81 74 76 78 80"
},
{
"input": "11",
"output": "2 4 6 8 10 1 12 14 16 18 20\n22 24 26 28 3 5 7 30 32 34 36\n38 40 42 9 11 13 15 17 44 46 48\n50 52 19 21 23 25 27 29 31 54 56\n58 33 35 37 39 41 43 45 47 49 60\n51 53 55 57 59 61 63 65 67 69 71\n62 73 75 77 79 81 83 85 87 89 64\n66 68 91 93 95 97 99 101 103 70 72\n74 76 78 105 107 109 111 113 80 82 84\n86 88 90 92 115 117 119 94 96 98 100\n102 104 106 108 110 121 112 114 116 118 120"
},
{
"input": "13",
"output": "2 4 6 8 10 12 1 14 16 18 20 22 24\n26 28 30 32 34 3 5 7 36 38 40 42 44\n46 48 50 52 9 11 13 15 17 54 56 58 60\n62 64 66 19 21 23 25 27 29 31 68 70 72\n74 76 33 35 37 39 41 43 45 47 49 78 80\n82 51 53 55 57 59 61 63 65 67 69 71 84\n73 75 77 79 81 83 85 87 89 91 93 95 97\n86 99 101 103 105 107 109 111 113 115 117 119 88\n90 92 121 123 125 127 129 131 133 135 137 94 96\n98 100 102 139 141 143 145 147 149 151 104 106 108\n110 112 114 116 153 155 157 159 161 118 120 122 124\n126 128 130 132 134 163 165 167 136 ..."
},
{
"input": "15",
"output": "2 4 6 8 10 12 14 1 16 18 20 22 24 26 28\n30 32 34 36 38 40 3 5 7 42 44 46 48 50 52\n54 56 58 60 62 9 11 13 15 17 64 66 68 70 72\n74 76 78 80 19 21 23 25 27 29 31 82 84 86 88\n90 92 94 33 35 37 39 41 43 45 47 49 96 98 100\n102 104 51 53 55 57 59 61 63 65 67 69 71 106 108\n110 73 75 77 79 81 83 85 87 89 91 93 95 97 112\n99 101 103 105 107 109 111 113 115 117 119 121 123 125 127\n114 129 131 133 135 137 139 141 143 145 147 149 151 153 116\n118 120 155 157 159 161 163 165 167 169 171 173 175 122 124\n126 128 1..."
},
{
"input": "17",
"output": "2 4 6 8 10 12 14 16 1 18 20 22 24 26 28 30 32\n34 36 38 40 42 44 46 3 5 7 48 50 52 54 56 58 60\n62 64 66 68 70 72 9 11 13 15 17 74 76 78 80 82 84\n86 88 90 92 94 19 21 23 25 27 29 31 96 98 100 102 104\n106 108 110 112 33 35 37 39 41 43 45 47 49 114 116 118 120\n122 124 126 51 53 55 57 59 61 63 65 67 69 71 128 130 132\n134 136 73 75 77 79 81 83 85 87 89 91 93 95 97 138 140\n142 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 144\n129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161..."
},
{
"input": "19",
"output": "2 4 6 8 10 12 14 16 18 1 20 22 24 26 28 30 32 34 36\n38 40 42 44 46 48 50 52 3 5 7 54 56 58 60 62 64 66 68\n70 72 74 76 78 80 82 9 11 13 15 17 84 86 88 90 92 94 96\n98 100 102 104 106 108 19 21 23 25 27 29 31 110 112 114 116 118 120\n122 124 126 128 130 33 35 37 39 41 43 45 47 49 132 134 136 138 140\n142 144 146 148 51 53 55 57 59 61 63 65 67 69 71 150 152 154 156\n158 160 162 73 75 77 79 81 83 85 87 89 91 93 95 97 164 166 168\n170 172 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 174 176\n178..."
},
{
"input": "21",
"output": "2 4 6 8 10 12 14 16 18 20 1 22 24 26 28 30 32 34 36 38 40\n42 44 46 48 50 52 54 56 58 3 5 7 60 62 64 66 68 70 72 74 76\n78 80 82 84 86 88 90 92 9 11 13 15 17 94 96 98 100 102 104 106 108\n110 112 114 116 118 120 122 19 21 23 25 27 29 31 124 126 128 130 132 134 136\n138 140 142 144 146 148 33 35 37 39 41 43 45 47 49 150 152 154 156 158 160\n162 164 166 168 170 51 53 55 57 59 61 63 65 67 69 71 172 174 176 178 180\n182 184 186 188 73 75 77 79 81 83 85 87 89 91 93 95 97 190 192 194 196\n198 200 202 99 101 103 ..."
},
{
"input": "23",
"output": "2 4 6 8 10 12 14 16 18 20 22 1 24 26 28 30 32 34 36 38 40 42 44\n46 48 50 52 54 56 58 60 62 64 3 5 7 66 68 70 72 74 76 78 80 82 84\n86 88 90 92 94 96 98 100 102 9 11 13 15 17 104 106 108 110 112 114 116 118 120\n122 124 126 128 130 132 134 136 19 21 23 25 27 29 31 138 140 142 144 146 148 150 152\n154 156 158 160 162 164 166 33 35 37 39 41 43 45 47 49 168 170 172 174 176 178 180\n182 184 186 188 190 192 51 53 55 57 59 61 63 65 67 69 71 194 196 198 200 202 204\n206 208 210 212 214 73 75 77 79 81 83 85 87 89 ..."
},
{
"input": "25",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 1 26 28 30 32 34 36 38 40 42 44 46 48\n50 52 54 56 58 60 62 64 66 68 70 3 5 7 72 74 76 78 80 82 84 86 88 90 92\n94 96 98 100 102 104 106 108 110 112 9 11 13 15 17 114 116 118 120 122 124 126 128 130 132\n134 136 138 140 142 144 146 148 150 19 21 23 25 27 29 31 152 154 156 158 160 162 164 166 168\n170 172 174 176 178 180 182 184 33 35 37 39 41 43 45 47 49 186 188 190 192 194 196 198 200\n202 204 206 208 210 212 214 51 53 55 57 59 61 63 65 67 69 71 216 218 220 222 224 226 228\n..."
},
{
"input": "27",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 1 28 30 32 34 36 38 40 42 44 46 48 50 52\n54 56 58 60 62 64 66 68 70 72 74 76 3 5 7 78 80 82 84 86 88 90 92 94 96 98 100\n102 104 106 108 110 112 114 116 118 120 122 9 11 13 15 17 124 126 128 130 132 134 136 138 140 142 144\n146 148 150 152 154 156 158 160 162 164 19 21 23 25 27 29 31 166 168 170 172 174 176 178 180 182 184\n186 188 190 192 194 196 198 200 202 33 35 37 39 41 43 45 47 49 204 206 208 210 212 214 216 218 220\n222 224 226 228 230 232 234 236 51 53 55 57 59 61..."
},
{
"input": "29",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 1 30 32 34 36 38 40 42 44 46 48 50 52 54 56\n58 60 62 64 66 68 70 72 74 76 78 80 82 3 5 7 84 86 88 90 92 94 96 98 100 102 104 106 108\n110 112 114 116 118 120 122 124 126 128 130 132 9 11 13 15 17 134 136 138 140 142 144 146 148 150 152 154 156\n158 160 162 164 166 168 170 172 174 176 178 19 21 23 25 27 29 31 180 182 184 186 188 190 192 194 196 198 200\n202 204 206 208 210 212 214 216 218 220 33 35 37 39 41 43 45 47 49 222 224 226 228 230 232 234 236 238 240\n242 244 2..."
},
{
"input": "31",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60\n62 64 66 68 70 72 74 76 78 80 82 84 86 88 3 5 7 90 92 94 96 98 100 102 104 106 108 110 112 114 116\n118 120 122 124 126 128 130 132 134 136 138 140 142 9 11 13 15 17 144 146 148 150 152 154 156 158 160 162 164 166 168\n170 172 174 176 178 180 182 184 186 188 190 192 19 21 23 25 27 29 31 194 196 198 200 202 204 206 208 210 212 214 216\n218 220 222 224 226 228 230 232 234 236 238 33 35 37 39 41 43 45 47 49 240 242 244 24..."
},
{
"input": "33",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 1 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64\n66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 3 5 7 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124\n126 128 130 132 134 136 138 140 142 144 146 148 150 152 9 11 13 15 17 154 156 158 160 162 164 166 168 170 172 174 176 178 180\n182 184 186 188 190 192 194 196 198 200 202 204 206 19 21 23 25 27 29 31 208 210 212 214 216 218 220 222 224 226 228 230 232\n234 236 238 240 242 244 246 248 250 252 254 256 33 35..."
},
{
"input": "35",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 1 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68\n70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 3 5 7 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132\n134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 9 11 13 15 17 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192\n194 196 198 200 202 204 206 208 210 212 214 216 218 220 19 21 23 25 27 29 31 222 224 226 228 230 232 234 236 238 240 242 244 246 248\n250 252 254 256 258 2..."
},
{
"input": "37",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 1 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72\n74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 3 5 7 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140\n142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 9 11 13 15 17 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204\n206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 19 21 23 25 27 29 31 236 238 240 242 244 246 248 250 252 254 256 258 26..."
},
{
"input": "39",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 1 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76\n78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 3 5 7 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148\n150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 9 11 13 15 17 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216\n218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 19 21 23 25 27 29 31 250 252 254 256 258 26..."
},
{
"input": "41",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 1 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80\n82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 3 5 7 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156\n158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 9 11 13 15 17 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228\n230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 19 21 23 25 27 ..."
},
{
"input": "43",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 1 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84\n86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 3 5 7 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164\n166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 9 11 13 15 17 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240\n242 244 246 248 250 252 254 256 258 260 262 264 266 268 270..."
},
{
"input": "45",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 1 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88\n90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 3 5 7 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172\n174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 9 11 13 15 17 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252\n254 256 258 260 262 264 266 268 270..."
},
{
"input": "47",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 1 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92\n94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 3 5 7 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180\n182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 9 11 13 15 17 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264\n266 268 270..."
},
{
"input": "49",
"output": "2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 1 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96\n98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 3 5 7 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188\n190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 9 11 13 15 17 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 ..."
}
] | 1,471,953,147
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 46
| 4,608,000
|
n = int(input())
pp = 1
pn = 0
if n == 1:
print(1)
else:
for i in range (n):
if i % 2 == 0:
for j in range (n // 2):
print(pp * 2, end = ' ')
pp += 1
print(pn * 2 + 1, end = ' ')
pn += 1
j += 2
for j in range (n // 2 + 1, n):
print(pp * 2, end = ' ')
pp += 1
else:
for j in range (n):
print(pn * 2 + 1, end = ' ')
pn += 1
print()
|
Title: Magic Odd Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Find an *n*<=×<=*n* matrix with different numbers from 1 to *n*2, so the sum in each row, column and both main diagonals are odd.
Input Specification:
The only line contains odd integer *n* (1<=≤<=*n*<=≤<=49).
Output Specification:
Print *n* lines with *n* integers. All the integers should be different and from 1 to *n*2. The sum in each row, column and both main diagonals should be odd.
Demo Input:
['1\n', '3\n']
Demo Output:
['1\n', '2 1 4\n3 5 7\n6 9 8\n']
Note:
none
|
```python
n = int(input())
pp = 1
pn = 0
if n == 1:
print(1)
else:
for i in range (n):
if i % 2 == 0:
for j in range (n // 2):
print(pp * 2, end = ' ')
pp += 1
print(pn * 2 + 1, end = ' ')
pn += 1
j += 2
for j in range (n // 2 + 1, n):
print(pp * 2, end = ' ')
pp += 1
else:
for j in range (n):
print(pn * 2 + 1, end = ' ')
pn += 1
print()
```
| 0
|
|
926
|
B
|
Add Points
|
PROGRAMMING
| 1,800
|
[] | null | null |
There are *n* points on a straight line, and the *i*-th point among them is located at *x**i*. All these coordinates are distinct.
Determine the number *m* — the smallest number of points you should add on the line to make the distances between all neighboring points equal.
|
The first line contains a single integer *n* (3<=≤<=*n*<=≤<=100<=000) — the number of points.
The second line contains a sequence of integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109) — the coordinates of the points. All these coordinates are distinct. The points can be given in an arbitrary order.
|
Print a single integer *m* — the smallest number of points you should add on the line to make the distances between all neighboring points equal.
|
[
"3\n-5 10 5\n",
"6\n100 200 400 300 600 500\n",
"4\n10 9 0 -1\n"
] |
[
"1\n",
"0\n",
"8\n"
] |
In the first example you can add one point with coordinate 0.
In the second example the distances between all neighboring points are already equal, so you shouldn't add anything.
| 0
|
[
{
"input": "3\n-5 10 5",
"output": "1"
},
{
"input": "6\n100 200 400 300 600 500",
"output": "0"
},
{
"input": "4\n10 9 0 -1",
"output": "8"
},
{
"input": "3\n1 4 7",
"output": "0"
},
{
"input": "3\n1 4 6",
"output": "3"
},
{
"input": "3\n1 2 6",
"output": "3"
},
{
"input": "3\n1 3 6",
"output": "3"
},
{
"input": "4\n1 2 3 4",
"output": "0"
},
{
"input": "3\n-1000000000 -999999999 1000000000",
"output": "1999999998"
},
{
"input": "3\n-1000000000 999999999 1000000000",
"output": "1999999998"
},
{
"input": "3\n-1000000000 -999999998 1000000000",
"output": "999999998"
},
{
"input": "3\n-1000000000 999999998 1000000000",
"output": "999999998"
},
{
"input": "3\n422800963 4663162 694989823",
"output": "230108885"
},
{
"input": "5\n-268968800 -435386086 -484420288 579138544 945328473",
"output": "204249819"
},
{
"input": "10\n711183437 845779129 -106125616 -481773790 66231250 -183390793 -711197523 -196001897 -440633306 -873649505",
"output": "156311685"
},
{
"input": "3\n300000002 -799999998 -599999998",
"output": "9"
},
{
"input": "5\n-166282087 234698547 -853072571 644571043 444292437",
"output": "3533"
},
{
"input": "7\n996073710 -246878649 34663194 35526441 634003254 -704646201 -905166147",
"output": "15411"
},
{
"input": "3\n-1000000000 1 1000000000",
"output": "1999999998"
},
{
"input": "5\n-1000000000 1000000000 1 2 -30000",
"output": "1999999996"
},
{
"input": "3\n422800963 0 1000000000",
"output": "999999998"
},
{
"input": "3\n1000000000 500000001 -500000001",
"output": "1499999999"
}
] | 1,521,304,079
| 3,179
|
Python 3
|
OK
|
TESTS
| 134
| 311
| 15,667,200
|
def nod(a, b):
while a!=0 and b!=0:
if a > b:
a = a % b
else:
b = b % a
return (a+b)
n = int(input())
a = list(map(int, input().split()))
a.sort()
d = nod(a[1] - a[0], a[2] - a[1])
for i in range(2, n - 1):
d = nod(a[i + 1] - a[i], d)
count = 0
for i in range(n - 1):
count += ((a[i + 1] - a[i]) // d - 1)
print(count)
|
Title: Add Points
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* points on a straight line, and the *i*-th point among them is located at *x**i*. All these coordinates are distinct.
Determine the number *m* — the smallest number of points you should add on the line to make the distances between all neighboring points equal.
Input Specification:
The first line contains a single integer *n* (3<=≤<=*n*<=≤<=100<=000) — the number of points.
The second line contains a sequence of integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109) — the coordinates of the points. All these coordinates are distinct. The points can be given in an arbitrary order.
Output Specification:
Print a single integer *m* — the smallest number of points you should add on the line to make the distances between all neighboring points equal.
Demo Input:
['3\n-5 10 5\n', '6\n100 200 400 300 600 500\n', '4\n10 9 0 -1\n']
Demo Output:
['1\n', '0\n', '8\n']
Note:
In the first example you can add one point with coordinate 0.
In the second example the distances between all neighboring points are already equal, so you shouldn't add anything.
|
```python
def nod(a, b):
while a!=0 and b!=0:
if a > b:
a = a % b
else:
b = b % a
return (a+b)
n = int(input())
a = list(map(int, input().split()))
a.sort()
d = nod(a[1] - a[0], a[2] - a[1])
for i in range(2, n - 1):
d = nod(a[i + 1] - a[i], d)
count = 0
for i in range(n - 1):
count += ((a[i + 1] - a[i]) // d - 1)
print(count)
```
| 3
|
|
405
|
A
|
Gravity Flip
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity.
There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange.
Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch!
|
The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column.
|
Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch.
|
[
"4\n3 2 1 2\n",
"3\n2 3 8\n"
] |
[
"1 2 2 3 \n",
"2 3 8 \n"
] |
The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column.
In the second example case the gravity switch does not change the heights of the columns.
| 500
|
[
{
"input": "4\n3 2 1 2",
"output": "1 2 2 3 "
},
{
"input": "3\n2 3 8",
"output": "2 3 8 "
},
{
"input": "5\n2 1 2 1 2",
"output": "1 1 2 2 2 "
},
{
"input": "1\n1",
"output": "1 "
},
{
"input": "2\n4 3",
"output": "3 4 "
},
{
"input": "6\n100 40 60 20 1 80",
"output": "1 20 40 60 80 100 "
},
{
"input": "10\n10 8 6 7 5 3 4 2 9 1",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "100\n82 51 81 14 37 17 78 92 64 15 8 86 89 8 87 77 66 10 15 12 100 25 92 47 21 78 20 63 13 49 41 36 41 79 16 87 87 69 3 76 80 60 100 49 70 59 72 8 38 71 45 97 71 14 76 54 81 4 59 46 39 29 92 3 49 22 53 99 59 52 74 31 92 43 42 23 44 9 82 47 7 40 12 9 3 55 37 85 46 22 84 52 98 41 21 77 63 17 62 91",
"output": "3 3 3 4 7 8 8 8 9 9 10 12 12 13 14 14 15 15 16 17 17 20 21 21 22 22 23 25 29 31 36 37 37 38 39 40 41 41 41 42 43 44 45 46 46 47 47 49 49 49 51 52 52 53 54 55 59 59 59 60 62 63 63 64 66 69 70 71 71 72 74 76 76 77 77 78 78 79 80 81 81 82 82 84 85 86 87 87 87 89 91 92 92 92 92 97 98 99 100 100 "
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 "
},
{
"input": "10\n1 9 7 6 2 4 7 8 1 3",
"output": "1 1 2 3 4 6 7 7 8 9 "
},
{
"input": "20\n53 32 64 20 41 97 50 20 66 68 22 60 74 61 97 54 80 30 72 59",
"output": "20 20 22 30 32 41 50 53 54 59 60 61 64 66 68 72 74 80 97 97 "
},
{
"input": "30\n7 17 4 18 16 12 14 10 1 13 2 16 13 17 8 16 13 14 9 17 17 5 13 5 1 7 6 20 18 12",
"output": "1 1 2 4 5 5 6 7 7 8 9 10 12 12 13 13 13 13 14 14 16 16 16 17 17 17 17 18 18 20 "
},
{
"input": "40\n22 58 68 58 48 53 52 1 16 78 75 17 63 15 36 32 78 75 49 14 42 46 66 54 49 82 40 43 46 55 12 73 5 45 61 60 1 11 31 84",
"output": "1 1 5 11 12 14 15 16 17 22 31 32 36 40 42 43 45 46 46 48 49 49 52 53 54 55 58 58 60 61 63 66 68 73 75 75 78 78 82 84 "
},
{
"input": "70\n1 3 3 1 3 3 1 1 1 3 3 2 3 3 1 1 1 2 3 1 3 2 3 3 3 2 2 3 1 3 3 2 1 1 2 1 2 1 2 2 1 1 1 3 3 2 3 2 3 2 3 3 2 2 2 3 2 3 3 3 1 1 3 3 1 1 1 1 3 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "90\n17 75 51 30 100 5 50 95 51 73 66 5 7 76 43 49 23 55 3 24 95 79 10 11 44 93 17 99 53 66 82 66 63 76 19 4 51 71 75 43 27 5 24 19 48 7 91 15 55 21 7 6 27 10 2 91 64 58 18 21 16 71 90 88 21 20 6 6 95 85 11 7 40 65 52 49 92 98 46 88 17 48 85 96 77 46 100 34 67 52",
"output": "2 3 4 5 5 5 6 6 6 7 7 7 7 10 10 11 11 15 16 17 17 17 18 19 19 20 21 21 21 23 24 24 27 27 30 34 40 43 43 44 46 46 48 48 49 49 50 51 51 51 52 52 53 55 55 58 63 64 65 66 66 66 67 71 71 73 75 75 76 76 77 79 82 85 85 88 88 90 91 91 92 93 95 95 95 96 98 99 100 100 "
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 "
},
{
"input": "100\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 "
},
{
"input": "100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6",
"output": "1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 "
},
{
"input": "100\n12 10 5 11 13 12 14 13 7 15 15 12 13 19 12 18 14 10 10 3 1 10 16 11 19 8 10 15 5 10 12 16 11 13 11 15 14 12 16 8 11 8 15 2 18 2 14 13 15 20 8 8 4 12 14 7 10 3 9 1 7 19 6 7 2 14 8 20 7 17 18 20 3 18 18 9 6 10 4 1 4 19 9 13 3 3 12 11 11 20 8 2 13 6 7 12 1 4 17 3",
"output": "1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17 18 18 18 18 18 19 19 19 19 20 20 20 20 "
},
{
"input": "100\n5 13 1 40 30 10 23 32 33 12 6 4 15 29 31 17 23 5 36 31 32 38 24 11 34 39 19 21 6 19 31 35 1 15 6 29 22 15 17 15 1 17 2 34 20 8 27 2 29 26 13 9 22 27 27 3 20 40 4 40 33 29 36 30 35 16 19 28 26 11 36 24 29 5 40 10 38 34 33 23 34 39 31 7 10 31 22 6 36 24 14 31 34 23 2 4 26 16 2 32",
"output": "1 1 1 2 2 2 2 3 4 4 4 5 5 5 6 6 6 6 7 8 9 10 10 10 11 11 12 13 13 14 15 15 15 15 16 16 17 17 17 19 19 19 20 20 21 22 22 22 23 23 23 23 24 24 24 26 26 26 27 27 27 28 29 29 29 29 29 30 30 31 31 31 31 31 31 32 32 32 33 33 33 34 34 34 34 34 35 35 36 36 36 36 38 38 39 39 40 40 40 40 "
},
{
"input": "100\n72 44 34 74 9 60 26 37 55 77 74 69 28 66 54 55 8 36 57 31 31 48 32 66 40 70 77 43 64 28 37 10 21 58 51 32 60 28 51 52 28 35 7 33 1 68 38 70 57 71 8 20 42 57 59 4 58 10 17 47 22 48 16 3 76 67 32 37 64 47 33 41 75 69 2 76 39 9 27 75 20 21 52 25 71 21 11 29 38 10 3 1 45 55 63 36 27 7 59 41",
"output": "1 1 2 3 3 4 7 7 8 8 9 9 10 10 10 11 16 17 20 20 21 21 21 22 25 26 27 27 28 28 28 28 29 31 31 32 32 32 33 33 34 35 36 36 37 37 37 38 38 39 40 41 41 42 43 44 45 47 47 48 48 51 51 52 52 54 55 55 55 57 57 57 58 58 59 59 60 60 63 64 64 66 66 67 68 69 69 70 70 71 71 72 74 74 75 75 76 76 77 77 "
},
{
"input": "100\n75 18 61 10 56 53 42 57 79 80 31 2 50 45 54 99 84 52 71 21 86 3 19 98 14 37 40 62 63 68 5 10 87 8 81 85 52 52 57 94 2 7 56 96 19 76 1 13 81 6 80 47 22 59 99 32 9 5 36 88 98 91 70 70 12 93 12 22 85 1 97 48 94 16 84 84 51 34 62 7 68 51 30 2 37 82 4 7 27 1 80 9 61 16 59 55 12 96 94 82",
"output": "1 1 1 2 2 2 3 4 5 5 6 7 7 7 8 9 9 10 10 12 12 12 13 14 16 16 18 19 19 21 22 22 27 30 31 32 34 36 37 37 40 42 45 47 48 50 51 51 52 52 52 53 54 55 56 56 57 57 59 59 61 61 62 62 63 68 68 70 70 71 75 76 79 80 80 80 81 81 82 82 84 84 84 85 85 86 87 88 91 93 94 94 94 96 96 97 98 98 99 99 "
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 "
},
{
"input": "100\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50",
"output": "50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 "
},
{
"input": "49\n1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97",
"output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 "
},
{
"input": "30\n1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88",
"output": "1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 "
},
{
"input": "100\n100 51 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 51 100 "
},
{
"input": "10\n100 90 80 70 60 50 40 30 20 10",
"output": "10 20 30 40 50 60 70 80 90 100 "
},
{
"input": "1\n10",
"output": "10 "
}
] | 1,687,448,935
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 15
| 0
|
a=int(input())
x=list(map(int,input().split()))
y=x.sort()
print(y)
|
Title: Gravity Flip
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity.
There are *n* columns of toy cubes in the box arranged in a line. The *i*-th column contains *a**i* cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange.
Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the *n* columns after the gravity switch!
Input Specification:
The first line of input contains an integer *n* (1<=≤<=*n*<=≤<=100), the number of the columns in the box. The next line contains *n* space-separated integer numbers. The *i*-th number *a**i* (1<=≤<=*a**i*<=≤<=100) denotes the number of cubes in the *i*-th column.
Output Specification:
Output *n* integer numbers separated by spaces, where the *i*-th number is the amount of cubes in the *i*-th column after the gravity switch.
Demo Input:
['4\n3 2 1 2\n', '3\n2 3 8\n']
Demo Output:
['1 2 2 3 \n', '2 3 8 \n']
Note:
The first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column.
In the second example case the gravity switch does not change the heights of the columns.
|
```python
a=int(input())
x=list(map(int,input().split()))
y=x.sort()
print(y)
```
| 0
|
|
334
|
A
|
Candy Bags
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies.
Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
|
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
|
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order.
It is guaranteed that the solution exists at the given limits.
|
[
"2\n"
] |
[
"1 4\n2 3\n"
] |
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
| 500
|
[
{
"input": "2",
"output": "1 4\n2 3"
},
{
"input": "4",
"output": "1 16 2 15\n3 14 4 13\n5 12 6 11\n7 10 8 9"
},
{
"input": "6",
"output": "1 36 2 35 3 34\n4 33 5 32 6 31\n7 30 8 29 9 28\n10 27 11 26 12 25\n13 24 14 23 15 22\n16 21 17 20 18 19"
},
{
"input": "8",
"output": "1 64 2 63 3 62 4 61\n5 60 6 59 7 58 8 57\n9 56 10 55 11 54 12 53\n13 52 14 51 15 50 16 49\n17 48 18 47 19 46 20 45\n21 44 22 43 23 42 24 41\n25 40 26 39 27 38 28 37\n29 36 30 35 31 34 32 33"
},
{
"input": "10",
"output": "1 100 2 99 3 98 4 97 5 96\n6 95 7 94 8 93 9 92 10 91\n11 90 12 89 13 88 14 87 15 86\n16 85 17 84 18 83 19 82 20 81\n21 80 22 79 23 78 24 77 25 76\n26 75 27 74 28 73 29 72 30 71\n31 70 32 69 33 68 34 67 35 66\n36 65 37 64 38 63 39 62 40 61\n41 60 42 59 43 58 44 57 45 56\n46 55 47 54 48 53 49 52 50 51"
},
{
"input": "100",
"output": "1 10000 2 9999 3 9998 4 9997 5 9996 6 9995 7 9994 8 9993 9 9992 10 9991 11 9990 12 9989 13 9988 14 9987 15 9986 16 9985 17 9984 18 9983 19 9982 20 9981 21 9980 22 9979 23 9978 24 9977 25 9976 26 9975 27 9974 28 9973 29 9972 30 9971 31 9970 32 9969 33 9968 34 9967 35 9966 36 9965 37 9964 38 9963 39 9962 40 9961 41 9960 42 9959 43 9958 44 9957 45 9956 46 9955 47 9954 48 9953 49 9952 50 9951\n51 9950 52 9949 53 9948 54 9947 55 9946 56 9945 57 9944 58 9943 59 9942 60 9941 61 9940 62 9939 63 9938 64 9937 65 993..."
},
{
"input": "62",
"output": "1 3844 2 3843 3 3842 4 3841 5 3840 6 3839 7 3838 8 3837 9 3836 10 3835 11 3834 12 3833 13 3832 14 3831 15 3830 16 3829 17 3828 18 3827 19 3826 20 3825 21 3824 22 3823 23 3822 24 3821 25 3820 26 3819 27 3818 28 3817 29 3816 30 3815 31 3814\n32 3813 33 3812 34 3811 35 3810 36 3809 37 3808 38 3807 39 3806 40 3805 41 3804 42 3803 43 3802 44 3801 45 3800 46 3799 47 3798 48 3797 49 3796 50 3795 51 3794 52 3793 53 3792 54 3791 55 3790 56 3789 57 3788 58 3787 59 3786 60 3785 61 3784 62 3783\n63 3782 64 3781 65 378..."
},
{
"input": "66",
"output": "1 4356 2 4355 3 4354 4 4353 5 4352 6 4351 7 4350 8 4349 9 4348 10 4347 11 4346 12 4345 13 4344 14 4343 15 4342 16 4341 17 4340 18 4339 19 4338 20 4337 21 4336 22 4335 23 4334 24 4333 25 4332 26 4331 27 4330 28 4329 29 4328 30 4327 31 4326 32 4325 33 4324\n34 4323 35 4322 36 4321 37 4320 38 4319 39 4318 40 4317 41 4316 42 4315 43 4314 44 4313 45 4312 46 4311 47 4310 48 4309 49 4308 50 4307 51 4306 52 4305 53 4304 54 4303 55 4302 56 4301 57 4300 58 4299 59 4298 60 4297 61 4296 62 4295 63 4294 64 4293 65 4292..."
},
{
"input": "18",
"output": "1 324 2 323 3 322 4 321 5 320 6 319 7 318 8 317 9 316\n10 315 11 314 12 313 13 312 14 311 15 310 16 309 17 308 18 307\n19 306 20 305 21 304 22 303 23 302 24 301 25 300 26 299 27 298\n28 297 29 296 30 295 31 294 32 293 33 292 34 291 35 290 36 289\n37 288 38 287 39 286 40 285 41 284 42 283 43 282 44 281 45 280\n46 279 47 278 48 277 49 276 50 275 51 274 52 273 53 272 54 271\n55 270 56 269 57 268 58 267 59 266 60 265 61 264 62 263 63 262\n64 261 65 260 66 259 67 258 68 257 69 256 70 255 71 254 72 253\n73 252 7..."
},
{
"input": "68",
"output": "1 4624 2 4623 3 4622 4 4621 5 4620 6 4619 7 4618 8 4617 9 4616 10 4615 11 4614 12 4613 13 4612 14 4611 15 4610 16 4609 17 4608 18 4607 19 4606 20 4605 21 4604 22 4603 23 4602 24 4601 25 4600 26 4599 27 4598 28 4597 29 4596 30 4595 31 4594 32 4593 33 4592 34 4591\n35 4590 36 4589 37 4588 38 4587 39 4586 40 4585 41 4584 42 4583 43 4582 44 4581 45 4580 46 4579 47 4578 48 4577 49 4576 50 4575 51 4574 52 4573 53 4572 54 4571 55 4570 56 4569 57 4568 58 4567 59 4566 60 4565 61 4564 62 4563 63 4562 64 4561 65 4560..."
},
{
"input": "86",
"output": "1 7396 2 7395 3 7394 4 7393 5 7392 6 7391 7 7390 8 7389 9 7388 10 7387 11 7386 12 7385 13 7384 14 7383 15 7382 16 7381 17 7380 18 7379 19 7378 20 7377 21 7376 22 7375 23 7374 24 7373 25 7372 26 7371 27 7370 28 7369 29 7368 30 7367 31 7366 32 7365 33 7364 34 7363 35 7362 36 7361 37 7360 38 7359 39 7358 40 7357 41 7356 42 7355 43 7354\n44 7353 45 7352 46 7351 47 7350 48 7349 49 7348 50 7347 51 7346 52 7345 53 7344 54 7343 55 7342 56 7341 57 7340 58 7339 59 7338 60 7337 61 7336 62 7335 63 7334 64 7333 65 7332..."
},
{
"input": "96",
"output": "1 9216 2 9215 3 9214 4 9213 5 9212 6 9211 7 9210 8 9209 9 9208 10 9207 11 9206 12 9205 13 9204 14 9203 15 9202 16 9201 17 9200 18 9199 19 9198 20 9197 21 9196 22 9195 23 9194 24 9193 25 9192 26 9191 27 9190 28 9189 29 9188 30 9187 31 9186 32 9185 33 9184 34 9183 35 9182 36 9181 37 9180 38 9179 39 9178 40 9177 41 9176 42 9175 43 9174 44 9173 45 9172 46 9171 47 9170 48 9169\n49 9168 50 9167 51 9166 52 9165 53 9164 54 9163 55 9162 56 9161 57 9160 58 9159 59 9158 60 9157 61 9156 62 9155 63 9154 64 9153 65 9152..."
},
{
"input": "12",
"output": "1 144 2 143 3 142 4 141 5 140 6 139\n7 138 8 137 9 136 10 135 11 134 12 133\n13 132 14 131 15 130 16 129 17 128 18 127\n19 126 20 125 21 124 22 123 23 122 24 121\n25 120 26 119 27 118 28 117 29 116 30 115\n31 114 32 113 33 112 34 111 35 110 36 109\n37 108 38 107 39 106 40 105 41 104 42 103\n43 102 44 101 45 100 46 99 47 98 48 97\n49 96 50 95 51 94 52 93 53 92 54 91\n55 90 56 89 57 88 58 87 59 86 60 85\n61 84 62 83 63 82 64 81 65 80 66 79\n67 78 68 77 69 76 70 75 71 74 72 73"
},
{
"input": "88",
"output": "1 7744 2 7743 3 7742 4 7741 5 7740 6 7739 7 7738 8 7737 9 7736 10 7735 11 7734 12 7733 13 7732 14 7731 15 7730 16 7729 17 7728 18 7727 19 7726 20 7725 21 7724 22 7723 23 7722 24 7721 25 7720 26 7719 27 7718 28 7717 29 7716 30 7715 31 7714 32 7713 33 7712 34 7711 35 7710 36 7709 37 7708 38 7707 39 7706 40 7705 41 7704 42 7703 43 7702 44 7701\n45 7700 46 7699 47 7698 48 7697 49 7696 50 7695 51 7694 52 7693 53 7692 54 7691 55 7690 56 7689 57 7688 58 7687 59 7686 60 7685 61 7684 62 7683 63 7682 64 7681 65 7680..."
},
{
"input": "28",
"output": "1 784 2 783 3 782 4 781 5 780 6 779 7 778 8 777 9 776 10 775 11 774 12 773 13 772 14 771\n15 770 16 769 17 768 18 767 19 766 20 765 21 764 22 763 23 762 24 761 25 760 26 759 27 758 28 757\n29 756 30 755 31 754 32 753 33 752 34 751 35 750 36 749 37 748 38 747 39 746 40 745 41 744 42 743\n43 742 44 741 45 740 46 739 47 738 48 737 49 736 50 735 51 734 52 733 53 732 54 731 55 730 56 729\n57 728 58 727 59 726 60 725 61 724 62 723 63 722 64 721 65 720 66 719 67 718 68 717 69 716 70 715\n71 714 72 713 73 712 74 7..."
},
{
"input": "80",
"output": "1 6400 2 6399 3 6398 4 6397 5 6396 6 6395 7 6394 8 6393 9 6392 10 6391 11 6390 12 6389 13 6388 14 6387 15 6386 16 6385 17 6384 18 6383 19 6382 20 6381 21 6380 22 6379 23 6378 24 6377 25 6376 26 6375 27 6374 28 6373 29 6372 30 6371 31 6370 32 6369 33 6368 34 6367 35 6366 36 6365 37 6364 38 6363 39 6362 40 6361\n41 6360 42 6359 43 6358 44 6357 45 6356 46 6355 47 6354 48 6353 49 6352 50 6351 51 6350 52 6349 53 6348 54 6347 55 6346 56 6345 57 6344 58 6343 59 6342 60 6341 61 6340 62 6339 63 6338 64 6337 65 6336..."
},
{
"input": "48",
"output": "1 2304 2 2303 3 2302 4 2301 5 2300 6 2299 7 2298 8 2297 9 2296 10 2295 11 2294 12 2293 13 2292 14 2291 15 2290 16 2289 17 2288 18 2287 19 2286 20 2285 21 2284 22 2283 23 2282 24 2281\n25 2280 26 2279 27 2278 28 2277 29 2276 30 2275 31 2274 32 2273 33 2272 34 2271 35 2270 36 2269 37 2268 38 2267 39 2266 40 2265 41 2264 42 2263 43 2262 44 2261 45 2260 46 2259 47 2258 48 2257\n49 2256 50 2255 51 2254 52 2253 53 2252 54 2251 55 2250 56 2249 57 2248 58 2247 59 2246 60 2245 61 2244 62 2243 63 2242 64 2241 65 224..."
},
{
"input": "54",
"output": "1 2916 2 2915 3 2914 4 2913 5 2912 6 2911 7 2910 8 2909 9 2908 10 2907 11 2906 12 2905 13 2904 14 2903 15 2902 16 2901 17 2900 18 2899 19 2898 20 2897 21 2896 22 2895 23 2894 24 2893 25 2892 26 2891 27 2890\n28 2889 29 2888 30 2887 31 2886 32 2885 33 2884 34 2883 35 2882 36 2881 37 2880 38 2879 39 2878 40 2877 41 2876 42 2875 43 2874 44 2873 45 2872 46 2871 47 2870 48 2869 49 2868 50 2867 51 2866 52 2865 53 2864 54 2863\n55 2862 56 2861 57 2860 58 2859 59 2858 60 2857 61 2856 62 2855 63 2854 64 2853 65 285..."
},
{
"input": "58",
"output": "1 3364 2 3363 3 3362 4 3361 5 3360 6 3359 7 3358 8 3357 9 3356 10 3355 11 3354 12 3353 13 3352 14 3351 15 3350 16 3349 17 3348 18 3347 19 3346 20 3345 21 3344 22 3343 23 3342 24 3341 25 3340 26 3339 27 3338 28 3337 29 3336\n30 3335 31 3334 32 3333 33 3332 34 3331 35 3330 36 3329 37 3328 38 3327 39 3326 40 3325 41 3324 42 3323 43 3322 44 3321 45 3320 46 3319 47 3318 48 3317 49 3316 50 3315 51 3314 52 3313 53 3312 54 3311 55 3310 56 3309 57 3308 58 3307\n59 3306 60 3305 61 3304 62 3303 63 3302 64 3301 65 330..."
},
{
"input": "64",
"output": "1 4096 2 4095 3 4094 4 4093 5 4092 6 4091 7 4090 8 4089 9 4088 10 4087 11 4086 12 4085 13 4084 14 4083 15 4082 16 4081 17 4080 18 4079 19 4078 20 4077 21 4076 22 4075 23 4074 24 4073 25 4072 26 4071 27 4070 28 4069 29 4068 30 4067 31 4066 32 4065\n33 4064 34 4063 35 4062 36 4061 37 4060 38 4059 39 4058 40 4057 41 4056 42 4055 43 4054 44 4053 45 4052 46 4051 47 4050 48 4049 49 4048 50 4047 51 4046 52 4045 53 4044 54 4043 55 4042 56 4041 57 4040 58 4039 59 4038 60 4037 61 4036 62 4035 63 4034 64 4033\n65 403..."
},
{
"input": "44",
"output": "1 1936 2 1935 3 1934 4 1933 5 1932 6 1931 7 1930 8 1929 9 1928 10 1927 11 1926 12 1925 13 1924 14 1923 15 1922 16 1921 17 1920 18 1919 19 1918 20 1917 21 1916 22 1915\n23 1914 24 1913 25 1912 26 1911 27 1910 28 1909 29 1908 30 1907 31 1906 32 1905 33 1904 34 1903 35 1902 36 1901 37 1900 38 1899 39 1898 40 1897 41 1896 42 1895 43 1894 44 1893\n45 1892 46 1891 47 1890 48 1889 49 1888 50 1887 51 1886 52 1885 53 1884 54 1883 55 1882 56 1881 57 1880 58 1879 59 1878 60 1877 61 1876 62 1875 63 1874 64 1873 65 187..."
}
] | 1,524,842,752
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 216
| 7,270,400
|
n = int(input())
x=1
for i in range(n):
for j in range(n//2):
print(x, n*n-x+1,end=' ')
x+=1
print()
|
Title: Candy Bags
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gerald has *n* younger brothers and their number happens to be even. One day he bought *n*2 candy bags. One bag has one candy, one bag has two candies, one bag has three candies and so on. In fact, for each integer *k* from 1 to *n*2 he has exactly one bag with *k* candies.
Help him give *n* bags of candies to each brother so that all brothers got the same number of candies.
Input Specification:
The single line contains a single integer *n* (*n* is even, 2<=≤<=*n*<=≤<=100) — the number of Gerald's brothers.
Output Specification:
Let's assume that Gerald indexes his brothers with numbers from 1 to *n*. You need to print *n* lines, on the *i*-th line print *n* integers — the numbers of candies in the bags for the *i*-th brother. Naturally, all these numbers should be distinct and be within limits from 1 to *n*2. You can print the numbers in the lines in any order.
It is guaranteed that the solution exists at the given limits.
Demo Input:
['2\n']
Demo Output:
['1 4\n2 3\n']
Note:
The sample shows Gerald's actions if he has two brothers. In this case, his bags contain 1, 2, 3 and 4 candies. He can give the bags with 1 and 4 candies to one brother and the bags with 2 and 3 to the other brother.
|
```python
n = int(input())
x=1
for i in range(n):
for j in range(n//2):
print(x, n*n-x+1,end=' ')
x+=1
print()
```
| 3
|
|
799
|
A
|
Carrot Cakes
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
In some game by Playrix it takes *t* minutes for an oven to bake *k* carrot cakes, all cakes are ready at the same moment *t* minutes after they started baking. Arkady needs at least *n* cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take *d* minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven.
Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get *n* cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable.
|
The only line contains four integers *n*, *t*, *k*, *d* (1<=≤<=*n*,<=*t*,<=*k*,<=*d*<=≤<=1<=000) — the number of cakes needed, the time needed for one oven to bake *k* cakes, the number of cakes baked at the same time, the time needed to build the second oven.
|
If it is reasonable to build the second oven, print "YES". Otherwise print "NO".
|
[
"8 6 4 5\n",
"8 6 4 6\n",
"10 3 11 4\n",
"4 2 1 4\n"
] |
[
"YES\n",
"NO\n",
"NO\n",
"YES\n"
] |
In the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven.
In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven.
In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven.
| 500
|
[
{
"input": "8 6 4 5",
"output": "YES"
},
{
"input": "8 6 4 6",
"output": "NO"
},
{
"input": "10 3 11 4",
"output": "NO"
},
{
"input": "4 2 1 4",
"output": "YES"
},
{
"input": "28 17 16 26",
"output": "NO"
},
{
"input": "60 69 9 438",
"output": "NO"
},
{
"input": "599 97 54 992",
"output": "YES"
},
{
"input": "11 22 18 17",
"output": "NO"
},
{
"input": "1 13 22 11",
"output": "NO"
},
{
"input": "1 1 1 1",
"output": "NO"
},
{
"input": "3 1 1 1",
"output": "YES"
},
{
"input": "1000 1000 1000 1000",
"output": "NO"
},
{
"input": "1000 1000 1 1",
"output": "YES"
},
{
"input": "1000 1000 1 400",
"output": "YES"
},
{
"input": "1000 1000 1 1000",
"output": "YES"
},
{
"input": "1000 1000 1 999",
"output": "YES"
},
{
"input": "53 11 3 166",
"output": "YES"
},
{
"input": "313 2 3 385",
"output": "NO"
},
{
"input": "214 9 9 412",
"output": "NO"
},
{
"input": "349 9 5 268",
"output": "YES"
},
{
"input": "611 16 8 153",
"output": "YES"
},
{
"input": "877 13 3 191",
"output": "YES"
},
{
"input": "340 9 9 10",
"output": "YES"
},
{
"input": "31 8 2 205",
"output": "NO"
},
{
"input": "519 3 2 148",
"output": "YES"
},
{
"input": "882 2 21 219",
"output": "NO"
},
{
"input": "982 13 5 198",
"output": "YES"
},
{
"input": "428 13 6 272",
"output": "YES"
},
{
"input": "436 16 14 26",
"output": "YES"
},
{
"input": "628 10 9 386",
"output": "YES"
},
{
"input": "77 33 18 31",
"output": "YES"
},
{
"input": "527 36 4 8",
"output": "YES"
},
{
"input": "128 18 2 169",
"output": "YES"
},
{
"input": "904 4 2 288",
"output": "YES"
},
{
"input": "986 4 3 25",
"output": "YES"
},
{
"input": "134 8 22 162",
"output": "NO"
},
{
"input": "942 42 3 69",
"output": "YES"
},
{
"input": "894 4 9 4",
"output": "YES"
},
{
"input": "953 8 10 312",
"output": "YES"
},
{
"input": "43 8 1 121",
"output": "YES"
},
{
"input": "12 13 19 273",
"output": "NO"
},
{
"input": "204 45 10 871",
"output": "YES"
},
{
"input": "342 69 50 425",
"output": "NO"
},
{
"input": "982 93 99 875",
"output": "NO"
},
{
"input": "283 21 39 132",
"output": "YES"
},
{
"input": "1000 45 83 686",
"output": "NO"
},
{
"input": "246 69 36 432",
"output": "NO"
},
{
"input": "607 93 76 689",
"output": "NO"
},
{
"input": "503 21 24 435",
"output": "NO"
},
{
"input": "1000 45 65 989",
"output": "NO"
},
{
"input": "30 21 2 250",
"output": "YES"
},
{
"input": "1000 49 50 995",
"output": "NO"
},
{
"input": "383 69 95 253",
"output": "YES"
},
{
"input": "393 98 35 999",
"output": "YES"
},
{
"input": "1000 22 79 552",
"output": "NO"
},
{
"input": "268 294 268 154",
"output": "NO"
},
{
"input": "963 465 706 146",
"output": "YES"
},
{
"input": "304 635 304 257",
"output": "NO"
},
{
"input": "4 2 1 6",
"output": "NO"
},
{
"input": "1 51 10 50",
"output": "NO"
},
{
"input": "5 5 4 4",
"output": "YES"
},
{
"input": "3 2 1 1",
"output": "YES"
},
{
"input": "3 4 3 3",
"output": "NO"
},
{
"input": "7 3 4 1",
"output": "YES"
},
{
"input": "101 10 1 1000",
"output": "NO"
},
{
"input": "5 1 1 1",
"output": "YES"
},
{
"input": "5 10 5 5",
"output": "NO"
},
{
"input": "19 1 7 1",
"output": "YES"
},
{
"input": "763 572 745 262",
"output": "YES"
},
{
"input": "1 2 1 1",
"output": "NO"
},
{
"input": "5 1 1 3",
"output": "YES"
},
{
"input": "170 725 479 359",
"output": "NO"
},
{
"input": "6 2 1 7",
"output": "YES"
},
{
"input": "6 2 5 1",
"output": "YES"
},
{
"input": "1 2 2 1",
"output": "NO"
},
{
"input": "24 2 8 3",
"output": "YES"
},
{
"input": "7 3 3 3",
"output": "YES"
},
{
"input": "5 2 2 2",
"output": "YES"
},
{
"input": "3 2 1 2",
"output": "YES"
},
{
"input": "1000 2 200 8",
"output": "NO"
},
{
"input": "3 100 2 100",
"output": "NO"
},
{
"input": "2 999 1 1000",
"output": "NO"
},
{
"input": "2 1 1 1",
"output": "NO"
},
{
"input": "2 3 5 1",
"output": "NO"
},
{
"input": "100 1 5 1",
"output": "YES"
},
{
"input": "7 2 3 3",
"output": "YES"
},
{
"input": "4 1 1 3",
"output": "NO"
},
{
"input": "3 2 2 1",
"output": "YES"
},
{
"input": "1 1 1 2",
"output": "NO"
},
{
"input": "91 8 7 13",
"output": "YES"
},
{
"input": "3 1 2 1",
"output": "NO"
},
{
"input": "5 3 2 3",
"output": "YES"
},
{
"input": "9 6 6 3",
"output": "YES"
}
] | 1,684,848,729
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 6
| 46
| 0
|
import math
l = list(map(int, input().split()))
two = max(l[1], math.ceil(l[1]/(l[2]*2) * math.ceil(l[0] - int( l[3] / l[1] * l[2] ) ))) + l[3]
one = math.ceil(l[1]/ l[2] * l[0] )
if one <= two:
print('NO')
else:
print('YES')
|
Title: Carrot Cakes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In some game by Playrix it takes *t* minutes for an oven to bake *k* carrot cakes, all cakes are ready at the same moment *t* minutes after they started baking. Arkady needs at least *n* cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take *d* minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven.
Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get *n* cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable.
Input Specification:
The only line contains four integers *n*, *t*, *k*, *d* (1<=≤<=*n*,<=*t*,<=*k*,<=*d*<=≤<=1<=000) — the number of cakes needed, the time needed for one oven to bake *k* cakes, the number of cakes baked at the same time, the time needed to build the second oven.
Output Specification:
If it is reasonable to build the second oven, print "YES". Otherwise print "NO".
Demo Input:
['8 6 4 5\n', '8 6 4 6\n', '10 3 11 4\n', '4 2 1 4\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n', 'YES\n']
Note:
In the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven.
In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven.
In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven.
|
```python
import math
l = list(map(int, input().split()))
two = max(l[1], math.ceil(l[1]/(l[2]*2) * math.ceil(l[0] - int( l[3] / l[1] * l[2] ) ))) + l[3]
one = math.ceil(l[1]/ l[2] * l[0] )
if one <= two:
print('NO')
else:
print('YES')
```
| 0
|
|
378
|
A
|
Playing with Dice
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
|
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
|
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
|
[
"2 5\n",
"2 4\n"
] |
[
"3 0 3\n",
"2 1 3\n"
] |
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
| 500
|
[
{
"input": "2 5",
"output": "3 0 3"
},
{
"input": "2 4",
"output": "2 1 3"
},
{
"input": "5 3",
"output": "2 1 3"
},
{
"input": "1 6",
"output": "3 0 3"
},
{
"input": "5 1",
"output": "3 1 2"
},
{
"input": "6 3",
"output": "2 0 4"
},
{
"input": "2 3",
"output": "2 0 4"
},
{
"input": "5 6",
"output": "5 0 1"
},
{
"input": "4 4",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
},
{
"input": "6 4",
"output": "1 1 4"
},
{
"input": "1 4",
"output": "2 0 4"
},
{
"input": "5 5",
"output": "0 6 0"
},
{
"input": "4 5",
"output": "4 0 2"
},
{
"input": "4 3",
"output": "3 0 3"
},
{
"input": "1 5",
"output": "2 1 3"
},
{
"input": "6 5",
"output": "1 0 5"
},
{
"input": "2 2",
"output": "0 6 0"
},
{
"input": "1 3",
"output": "1 1 4"
},
{
"input": "3 6",
"output": "4 0 2"
},
{
"input": "3 1",
"output": "4 1 1"
},
{
"input": "3 2",
"output": "4 0 2"
},
{
"input": "3 5",
"output": "3 1 2"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "6 2",
"output": "2 1 3"
},
{
"input": "4 1",
"output": "4 0 2"
},
{
"input": "5 2",
"output": "3 0 3"
},
{
"input": "4 2",
"output": "3 1 2"
},
{
"input": "2 1",
"output": "5 0 1"
},
{
"input": "6 1",
"output": "3 0 3"
},
{
"input": "4 6",
"output": "4 1 1"
},
{
"input": "2 6",
"output": "3 1 2"
},
{
"input": "3 4",
"output": "3 0 3"
},
{
"input": "1 2",
"output": "1 0 5"
},
{
"input": "6 6",
"output": "0 6 0"
},
{
"input": "5 4",
"output": "2 0 4"
},
{
"input": "3 3",
"output": "0 6 0"
},
{
"input": "1 1",
"output": "0 6 0"
}
] | 1,620,063,900
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 38
| 93
| 0
|
a,b=map(int,input().split())
l=[(i+1) for i in range(6)]
u=[]
v=[]
for i in range(len(l)):
u.append(abs(l[i]-a))
v.append(abs(l[i]-b))
r1=0
r2=0
r3=0
for i in range(len(u)):
if(u[i]>v[i]):
r1=r1+1
elif(u[i]<v[i]):
r2=r2+1
else:
r3=r3+1
print(r2,r3,r1)
|
Title: Playing with Dice
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.
The first player wrote number *a*, the second player wrote number *b*. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?
Input Specification:
The single line contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=6) — the numbers written on the paper by the first and second player, correspondingly.
Output Specification:
Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.
Demo Input:
['2 5\n', '2 4\n']
Demo Output:
['3 0 3\n', '2 1 3\n']
Note:
The dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.
You can assume that number *a* is closer to number *x* than number *b*, if |*a* - *x*| < |*b* - *x*|.
|
```python
a,b=map(int,input().split())
l=[(i+1) for i in range(6)]
u=[]
v=[]
for i in range(len(l)):
u.append(abs(l[i]-a))
v.append(abs(l[i]-b))
r1=0
r2=0
r3=0
for i in range(len(u)):
if(u[i]>v[i]):
r1=r1+1
elif(u[i]<v[i]):
r2=r2+1
else:
r3=r3+1
print(r2,r3,r1)
```
| 3
|
|
887
|
C
|
Solution for Cube
|
PROGRAMMING
| 1,500
|
[
"brute force",
"implementation"
] | null | null |
During the breaks between competitions, top-model Izabella tries to develop herself and not to be bored. For example, now she tries to solve Rubik's cube 2x2x2.
It's too hard to learn to solve Rubik's cube instantly, so she learns to understand if it's possible to solve the cube in some state using 90-degrees rotation of one face of the cube in any direction.
To check her answers she wants to use a program which will for some state of cube tell if it's possible to solve it using one rotation, described above.
Cube is called solved if for each face of cube all squares on it has the same color.
https://en.wikipedia.org/wiki/Rubik's_Cube
|
In first line given a sequence of 24 integers *a**i* (1<=≤<=*a**i*<=≤<=6), where *a**i* denotes color of *i*-th square. There are exactly 4 occurrences of all colors in this sequence.
|
Print «YES» (without quotes) if it's possible to solve cube using one rotation and «NO» (without quotes) otherwise.
|
[
"2 5 4 6 1 3 6 2 5 5 1 2 3 5 3 1 1 2 4 6 6 4 3 4\n",
"5 3 5 3 2 5 2 5 6 2 6 2 4 4 4 4 1 1 1 1 6 3 6 3\n"
] |
[
"NO",
"YES"
] |
In first test case cube looks like this:
In second test case cube looks like this:
It's possible to solve cube by rotating face with squares with numbers 13, 14, 15, 16.
| 1,500
|
[
{
"input": "2 5 4 6 1 3 6 2 5 5 1 2 3 5 3 1 1 2 4 6 6 4 3 4",
"output": "NO"
},
{
"input": "5 3 5 3 2 5 2 5 6 2 6 2 4 4 4 4 1 1 1 1 6 3 6 3",
"output": "YES"
},
{
"input": "2 6 3 3 5 5 2 6 1 1 6 4 4 4 2 4 6 5 3 1 2 5 3 1",
"output": "NO"
},
{
"input": "3 4 2 3 5 5 6 6 4 5 4 6 5 1 1 1 6 2 1 3 3 2 4 2",
"output": "NO"
},
{
"input": "5 5 2 5 3 3 2 6 6 4 2 4 6 1 4 3 1 6 2 1 3 4 5 1",
"output": "NO"
},
{
"input": "6 6 1 2 6 1 1 3 5 4 3 4 3 5 5 2 4 4 6 2 1 5 3 2",
"output": "NO"
},
{
"input": "2 2 1 1 5 5 5 5 3 3 4 4 1 4 1 4 2 3 2 3 6 6 6 6",
"output": "YES"
},
{
"input": "1 1 1 1 5 5 3 3 4 4 4 4 3 3 2 2 6 6 5 5 2 2 6 6",
"output": "YES"
},
{
"input": "1 1 1 1 3 3 3 3 5 5 5 5 2 2 2 2 4 4 4 4 6 6 6 6",
"output": "NO"
},
{
"input": "5 4 5 4 4 6 4 6 6 3 6 3 1 1 1 1 2 2 2 2 5 3 5 3",
"output": "YES"
},
{
"input": "3 3 5 5 2 2 2 2 6 6 4 4 6 3 6 3 4 5 4 5 1 1 1 1",
"output": "YES"
},
{
"input": "6 6 6 6 2 2 5 5 1 1 1 1 4 4 2 2 5 5 3 3 3 3 4 4",
"output": "YES"
},
{
"input": "4 6 4 6 6 1 6 1 1 3 1 3 2 2 2 2 5 5 5 5 4 3 4 3",
"output": "YES"
},
{
"input": "6 6 2 2 3 3 3 3 4 4 5 5 4 6 4 6 5 2 5 2 1 1 1 1",
"output": "YES"
},
{
"input": "3 3 3 3 4 4 5 5 1 1 1 1 2 2 4 4 5 5 6 6 6 6 2 2",
"output": "YES"
},
{
"input": "2 5 2 5 4 2 4 2 1 4 1 4 6 6 6 6 3 3 3 3 1 5 1 5",
"output": "YES"
},
{
"input": "4 4 3 3 5 5 5 5 1 1 6 6 3 6 3 6 4 1 4 1 2 2 2 2",
"output": "YES"
},
{
"input": "5 5 5 5 6 6 2 2 3 3 3 3 2 2 1 1 4 4 6 6 1 1 4 4",
"output": "YES"
},
{
"input": "1 4 3 4 2 6 5 2 1 5 1 6 3 4 3 6 5 5 1 3 2 6 4 2",
"output": "NO"
},
{
"input": "4 4 2 5 3 2 4 2 5 3 6 4 6 5 1 3 1 5 6 3 1 1 6 2",
"output": "NO"
},
{
"input": "4 5 3 4 5 5 6 3 2 5 1 6 2 1 6 3 1 4 2 3 2 6 1 4",
"output": "NO"
},
{
"input": "3 3 2 3 6 4 4 4 1 2 1 3 2 5 6 6 1 2 6 5 4 5 1 5",
"output": "NO"
},
{
"input": "5 6 1 1 4 5 6 5 4 6 2 1 4 2 6 5 3 2 3 2 3 1 3 4",
"output": "NO"
},
{
"input": "4 4 4 5 2 3 4 1 3 3 1 5 6 5 6 6 1 3 6 2 5 2 1 2",
"output": "NO"
},
{
"input": "3 2 5 6 1 4 3 4 6 5 4 3 2 3 2 2 1 4 1 1 6 5 6 5",
"output": "NO"
},
{
"input": "5 4 6 2 5 6 4 1 6 3 3 1 3 2 4 1 1 6 2 3 5 2 4 5",
"output": "NO"
},
{
"input": "6 6 3 1 5 6 5 3 2 5 3 1 2 4 1 6 4 5 2 2 4 1 3 4",
"output": "NO"
},
{
"input": "6 5 4 1 6 5 2 3 3 5 3 6 4 2 6 5 4 2 1 1 4 1 3 2",
"output": "NO"
},
{
"input": "1 3 5 6 4 4 4 3 5 2 2 2 3 1 5 6 3 4 6 5 1 2 1 6",
"output": "NO"
},
{
"input": "3 6 5 4 4 6 1 4 3 2 5 2 1 2 6 2 5 4 1 3 1 6 5 3",
"output": "NO"
},
{
"input": "5 2 6 1 5 3 5 3 1 1 3 6 6 2 4 2 5 4 4 2 1 3 4 6",
"output": "NO"
},
{
"input": "2 5 6 2 3 6 5 6 2 3 1 3 6 4 5 4 1 1 1 5 3 4 4 2",
"output": "NO"
},
{
"input": "4 5 4 4 3 3 1 2 3 1 1 5 2 2 5 6 6 4 3 2 6 5 1 6",
"output": "NO"
},
{
"input": "5 2 5 2 3 5 3 5 4 3 4 3 6 6 6 6 1 1 1 1 4 2 4 2",
"output": "YES"
},
{
"input": "2 4 2 4 4 5 4 5 5 1 5 1 3 3 3 3 6 6 6 6 2 1 2 1",
"output": "YES"
},
{
"input": "3 5 3 5 5 1 5 1 1 4 1 4 6 6 6 6 2 2 2 2 3 4 3 4",
"output": "YES"
},
{
"input": "2 1 2 1 4 2 4 2 6 4 6 4 5 5 5 5 3 3 3 3 6 1 6 1",
"output": "YES"
},
{
"input": "4 4 2 2 1 1 1 1 5 5 6 6 2 6 2 6 4 5 4 5 3 3 3 3",
"output": "YES"
},
{
"input": "1 1 2 2 4 4 4 4 5 5 6 6 5 1 5 1 6 2 6 2 3 3 3 3",
"output": "YES"
},
{
"input": "2 2 6 6 4 4 4 4 1 1 5 5 1 2 1 2 5 6 5 6 3 3 3 3",
"output": "YES"
},
{
"input": "2 2 3 3 6 6 6 6 4 4 1 1 3 1 3 1 2 4 2 4 5 5 5 5",
"output": "YES"
},
{
"input": "6 6 6 6 4 4 3 3 5 5 5 5 3 3 1 1 2 2 4 4 1 1 2 2",
"output": "YES"
},
{
"input": "2 2 2 2 4 4 5 5 3 3 3 3 6 6 4 4 5 5 1 1 1 1 6 6",
"output": "YES"
},
{
"input": "1 1 1 1 5 5 6 6 3 3 3 3 4 4 5 5 6 6 2 2 2 2 4 4",
"output": "YES"
},
{
"input": "4 4 4 4 2 2 3 3 1 1 1 1 3 3 6 6 5 5 2 2 6 6 5 5",
"output": "YES"
},
{
"input": "1 1 1 1 2 2 3 3 6 6 6 6 5 5 4 4 3 3 2 2 4 4 5 5",
"output": "NO"
},
{
"input": "1 1 2 2 3 3 1 1 2 2 3 3 4 4 4 4 5 5 5 5 6 6 6 6",
"output": "NO"
},
{
"input": "5 5 5 5 1 1 2 2 6 6 6 6 4 4 3 3 3 3 4 4 2 2 1 1",
"output": "NO"
}
] | 1,644,703,503
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 48
| 78
| 512,000
|
def check(a):
if all([a[i:i + 4].count(a[i]) == 4 for i in range(0, 24, 4)]):
exit(print('YES'))
a = [int(x) for x in input().split()]
rot = [[1, 3, 5, 7, 9, 11, 24, 22], [2, 4, 6, 8, 10, 12, 23, 21], [13, 14, 5, 6, 17, 18, 21, 22],
[15, 16, 7, 8, 19, 20, 23, 24], [1, 2, 18, 20, 12, 11, 15, 13], [3, 4, 17, 19, 10, 9, 16, 14]]
for x in rot:
tem = a.copy()
for i in range(8):
tem[x[i] - 1] = a[x[(i + 2) % 8] - 1]
check(tem)
tem = a.copy()
for i in range(8):
tem[x[i] - 1] = a[x[(i - 2) % 8] - 1]
check(tem)
print('NO')
|
Title: Solution for Cube
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
During the breaks between competitions, top-model Izabella tries to develop herself and not to be bored. For example, now she tries to solve Rubik's cube 2x2x2.
It's too hard to learn to solve Rubik's cube instantly, so she learns to understand if it's possible to solve the cube in some state using 90-degrees rotation of one face of the cube in any direction.
To check her answers she wants to use a program which will for some state of cube tell if it's possible to solve it using one rotation, described above.
Cube is called solved if for each face of cube all squares on it has the same color.
https://en.wikipedia.org/wiki/Rubik's_Cube
Input Specification:
In first line given a sequence of 24 integers *a**i* (1<=≤<=*a**i*<=≤<=6), where *a**i* denotes color of *i*-th square. There are exactly 4 occurrences of all colors in this sequence.
Output Specification:
Print «YES» (without quotes) if it's possible to solve cube using one rotation and «NO» (without quotes) otherwise.
Demo Input:
['2 5 4 6 1 3 6 2 5 5 1 2 3 5 3 1 1 2 4 6 6 4 3 4\n', '5 3 5 3 2 5 2 5 6 2 6 2 4 4 4 4 1 1 1 1 6 3 6 3\n']
Demo Output:
['NO', 'YES']
Note:
In first test case cube looks like this:
In second test case cube looks like this:
It's possible to solve cube by rotating face with squares with numbers 13, 14, 15, 16.
|
```python
def check(a):
if all([a[i:i + 4].count(a[i]) == 4 for i in range(0, 24, 4)]):
exit(print('YES'))
a = [int(x) for x in input().split()]
rot = [[1, 3, 5, 7, 9, 11, 24, 22], [2, 4, 6, 8, 10, 12, 23, 21], [13, 14, 5, 6, 17, 18, 21, 22],
[15, 16, 7, 8, 19, 20, 23, 24], [1, 2, 18, 20, 12, 11, 15, 13], [3, 4, 17, 19, 10, 9, 16, 14]]
for x in rot:
tem = a.copy()
for i in range(8):
tem[x[i] - 1] = a[x[(i + 2) % 8] - 1]
check(tem)
tem = a.copy()
for i in range(8):
tem[x[i] - 1] = a[x[(i - 2) % 8] - 1]
check(tem)
print('NO')
```
| 3
|
|
567
|
A
|
Lineland Mail
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point.
Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in).
Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city.
For each city calculate two values *min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
|
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
|
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
|
[
"4\n-5 -2 2 7\n",
"2\n-1 1\n"
] |
[
"3 12\n3 9\n4 7\n5 12\n",
"2 2\n2 2\n"
] |
none
| 500
|
[
{
"input": "4\n-5 -2 2 7",
"output": "3 12\n3 9\n4 7\n5 12"
},
{
"input": "2\n-1 1",
"output": "2 2\n2 2"
},
{
"input": "3\n-1 0 1",
"output": "1 2\n1 1\n1 2"
},
{
"input": "4\n-1 0 1 3",
"output": "1 4\n1 3\n1 2\n2 4"
},
{
"input": "3\n-1000000000 0 1000000000",
"output": "1000000000 2000000000\n1000000000 1000000000\n1000000000 2000000000"
},
{
"input": "2\n-1000000000 1000000000",
"output": "2000000000 2000000000\n2000000000 2000000000"
},
{
"input": "10\n1 10 12 15 59 68 130 912 1239 9123",
"output": "9 9122\n2 9113\n2 9111\n3 9108\n9 9064\n9 9055\n62 8993\n327 8211\n327 7884\n7884 9122"
},
{
"input": "5\n-2 -1 0 1 2",
"output": "1 4\n1 3\n1 2\n1 3\n1 4"
},
{
"input": "5\n-2 -1 0 1 3",
"output": "1 5\n1 4\n1 3\n1 3\n2 5"
},
{
"input": "3\n-10000 1 10000",
"output": "10001 20000\n9999 10001\n9999 20000"
},
{
"input": "5\n-1000000000 -999999999 -999999998 -999999997 -999999996",
"output": "1 4\n1 3\n1 2\n1 3\n1 4"
},
{
"input": "10\n-857422304 -529223472 82412729 145077145 188538640 265299215 527377039 588634631 592896147 702473706",
"output": "328198832 1559896010\n328198832 1231697178\n62664416 939835033\n43461495 1002499449\n43461495 1045960944\n76760575 1122721519\n61257592 1384799343\n4261516 1446056935\n4261516 1450318451\n109577559 1559896010"
},
{
"input": "10\n-876779400 -829849659 -781819137 -570920213 18428128 25280705 121178189 219147240 528386329 923854124",
"output": "46929741 1800633524\n46929741 1753703783\n48030522 1705673261\n210898924 1494774337\n6852577 905425996\n6852577 902060105\n95897484 997957589\n97969051 1095926640\n309239089 1405165729\n395467795 1800633524"
},
{
"input": "30\n-15 1 21 25 30 40 59 60 77 81 97 100 103 123 139 141 157 158 173 183 200 215 226 231 244 256 267 279 289 292",
"output": "16 307\n16 291\n4 271\n4 267\n5 262\n10 252\n1 233\n1 232\n4 215\n4 211\n3 195\n3 192\n3 189\n16 169\n2 154\n2 156\n1 172\n1 173\n10 188\n10 198\n15 215\n11 230\n5 241\n5 246\n12 259\n11 271\n11 282\n10 294\n3 304\n3 307"
},
{
"input": "10\n-1000000000 -999999999 -999999997 -999999996 -999999995 -999999994 -999999992 -999999990 -999999988 -999999986",
"output": "1 14\n1 13\n1 11\n1 10\n1 9\n1 8\n2 8\n2 10\n2 12\n2 14"
},
{
"input": "50\n-50000 -49459 -48875 -48456 -48411 -48096 -47901 -47500 -47150 -46808 -46687 -46679 -46337 -45747 -45604 -45194 -44752 -44242 -44231 -44122 -43636 -43274 -42916 -42881 -42386 -42095 -41830 -41618 -41145 -40897 -40534 -40007 -39761 -39389 -39104 -38909 -38630 -38561 -38364 -38255 -38214 -38084 -37959 -37607 -37202 -36890 -36681 -36136 -36123 -35886",
"output": "541 14114\n541 13573\n419 12989\n45 12570\n45 12525\n195 12210\n195 12015\n350 11614\n342 11264\n121 10922\n8 10801\n8 10793\n342 10451\n143 9861\n143 9718\n410 9308\n442 8866\n11 8356\n11 8345\n109 8236\n362 7750\n358 7388\n35 7084\n35 7119\n291 7614\n265 7905\n212 8170\n212 8382\n248 8855\n248 9103\n363 9466\n246 9993\n246 10239\n285 10611\n195 10896\n195 11091\n69 11370\n69 11439\n109 11636\n41 11745\n41 11786\n125 11916\n125 12041\n352 12393\n312 12798\n209 13110\n209 13319\n13 13864\n13 13877\n237 141..."
},
{
"input": "3\n-1000000000 999999999 1000000000",
"output": "1999999999 2000000000\n1 1999999999\n1 2000000000"
}
] | 1,650,245,959
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 499
| 10,854,400
|
n = int(input())
Xs = list(map(int, input().split()))
# will contains (min, max)
out = []
for i in range(n):
current_city = Xs[i]
max_ = max(abs(current_city-Xs[0]), abs(current_city-Xs[-1]))
if i == 0:
min_ = abs(current_city-Xs[1])
elif i == n-1:
min_ = abs(current_city-Xs[-2])
else:
min_ = min(abs(current_city-Xs[i-1]), abs(current_city-Xs[i+1]) )
out.append((min_, max_))
for o in out:
print(*o)
|
Title: Lineland Mail
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
All cities of Lineland are located on the *Ox* coordinate axis. Thus, each city is associated with its position *x**i* — a coordinate on the *Ox* axis. No two cities are located at a single point.
Lineland residents love to send letters to each other. A person may send a letter only if the recipient lives in another city (because if they live in the same city, then it is easier to drop in).
Strange but true, the cost of sending the letter is exactly equal to the distance between the sender's city and the recipient's city.
For each city calculate two values *min**i* and *max**i*, where *min**i* is the minimum cost of sending a letter from the *i*-th city to some other city, and *max**i* is the the maximum cost of sending a letter from the *i*-th city to some other city
Input Specification:
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=105) — the number of cities in Lineland. The second line contains the sequence of *n* distinct integers *x*1,<=*x*2,<=...,<=*x**n* (<=-<=109<=≤<=*x**i*<=≤<=109), where *x**i* is the *x*-coordinate of the *i*-th city. All the *x**i*'s are distinct and follow in ascending order.
Output Specification:
Print *n* lines, the *i*-th line must contain two integers *min**i*,<=*max**i*, separated by a space, where *min**i* is the minimum cost of sending a letter from the *i*-th city, and *max**i* is the maximum cost of sending a letter from the *i*-th city.
Demo Input:
['4\n-5 -2 2 7\n', '2\n-1 1\n']
Demo Output:
['3 12\n3 9\n4 7\n5 12\n', '2 2\n2 2\n']
Note:
none
|
```python
n = int(input())
Xs = list(map(int, input().split()))
# will contains (min, max)
out = []
for i in range(n):
current_city = Xs[i]
max_ = max(abs(current_city-Xs[0]), abs(current_city-Xs[-1]))
if i == 0:
min_ = abs(current_city-Xs[1])
elif i == n-1:
min_ = abs(current_city-Xs[-2])
else:
min_ = min(abs(current_city-Xs[i-1]), abs(current_city-Xs[i+1]) )
out.append((min_, max_))
for o in out:
print(*o)
```
| 3
|
|
69
|
A
|
Young Physicist
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] |
A. Young Physicist
|
2
|
256
|
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
|
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
|
[
"3\n4 1 7\n-2 4 -1\n1 -5 -3\n",
"3\n3 -1 7\n-5 2 -4\n2 -1 -3\n"
] |
[
"NO",
"YES"
] |
none
| 500
|
[
{
"input": "3\n4 1 7\n-2 4 -1\n1 -5 -3",
"output": "NO"
},
{
"input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3",
"output": "YES"
},
{
"input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41",
"output": "NO"
},
{
"input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33",
"output": "NO"
},
{
"input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7",
"output": "NO"
},
{
"input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38",
"output": "NO"
},
{
"input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6",
"output": "YES"
},
{
"input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0",
"output": "YES"
},
{
"input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0",
"output": "YES"
},
{
"input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0",
"output": "YES"
},
{
"input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0",
"output": "YES"
},
{
"input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0",
"output": "YES"
},
{
"input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87",
"output": "YES"
},
{
"input": "3\n1 2 3\n3 2 1\n0 0 0",
"output": "NO"
},
{
"input": "2\n5 -23 12\n0 0 0",
"output": "NO"
},
{
"input": "1\n0 0 0",
"output": "YES"
},
{
"input": "1\n1 -2 0",
"output": "NO"
},
{
"input": "2\n-23 77 -86\n23 -77 86",
"output": "YES"
},
{
"input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82",
"output": "YES"
},
{
"input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0",
"output": "YES"
},
{
"input": "3\n96 49 -12\n2 -66 28\n-98 17 -16",
"output": "YES"
},
{
"input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0",
"output": "YES"
},
{
"input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53",
"output": "YES"
},
{
"input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1",
"output": "YES"
},
{
"input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0",
"output": "YES"
},
{
"input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0",
"output": "YES"
},
{
"input": "3\n0 2 -2\n1 -1 3\n-3 0 0",
"output": "NO"
}
] | 1,638,084,315
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 80
| 124
| 0
|
n=int(input())
b=0;c=0;d=0
for i in range(0,n):
a=[int(x)for x in input().split()]
b+=a[0]
c+=a[1]
d+=a[2]
if b+c+d ==0:
print("YES")
else:print("NO")
|
Title: Young Physicist
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Output Specification:
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
Demo Input:
['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n']
Demo Output:
['NO', 'YES']
Note:
none
|
```python
n=int(input())
b=0;c=0;d=0
for i in range(0,n):
a=[int(x)for x in input().split()]
b+=a[0]
c+=a[1]
d+=a[2]
if b+c+d ==0:
print("YES")
else:print("NO")
```
| 0
|
990
|
B
|
Micro-World
|
PROGRAMMING
| 1,200
|
[
"greedy",
"sortings"
] | null | null |
You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, unfortunately, you don't have any microscope nearby, so you can't watch them.
You know that you have $n$ bacteria in the Petri dish and size of the $i$-th bacteria is $a_i$. Also you know intergalactic positive integer constant $K$.
The $i$-th bacteria can swallow the $j$-th bacteria if and only if $a_i > a_j$ and $a_i \le a_j + K$. The $j$-th bacteria disappear, but the $i$-th bacteria doesn't change its size. The bacteria can perform multiple swallows. On each swallow operation any bacteria $i$ can swallow any bacteria $j$ if $a_i > a_j$ and $a_i \le a_j + K$. The swallow operations go one after another.
For example, the sequence of bacteria sizes $a=[101, 53, 42, 102, 101, 55, 54]$ and $K=1$. The one of possible sequences of swallows is: $[101, 53, 42, 102, \underline{101}, 55, 54]$ $\to$ $[101, \underline{53}, 42, 102, 55, 54]$ $\to$ $[\underline{101}, 42, 102, 55, 54]$ $\to$ $[42, 102, 55, \underline{54}]$ $\to$ $[42, 102, 55]$. In total there are $3$ bacteria remained in the Petri dish.
Since you don't have a microscope, you can only guess, what the minimal possible number of bacteria can remain in your Petri dish when you finally will find any microscope.
|
The first line contains two space separated positive integers $n$ and $K$ ($1 \le n \le 2 \cdot 10^5$, $1 \le K \le 10^6$) — number of bacteria and intergalactic constant $K$.
The second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^6$) — sizes of bacteria you have.
|
Print the only integer — minimal possible number of bacteria can remain.
|
[
"7 1\n101 53 42 102 101 55 54\n",
"6 5\n20 15 10 15 20 25\n",
"7 1000000\n1 1 1 1 1 1 1\n"
] |
[
"3\n",
"1\n",
"7\n"
] |
The first example is clarified in the problem statement.
In the second example an optimal possible sequence of swallows is: $[20, 15, 10, 15, \underline{20}, 25]$ $\to$ $[20, 15, 10, \underline{15}, 25]$ $\to$ $[20, 15, \underline{10}, 25]$ $\to$ $[20, \underline{15}, 25]$ $\to$ $[\underline{20}, 25]$ $\to$ $[25]$.
In the third example no bacteria can swallow any other bacteria.
| 0
|
[
{
"input": "7 1\n101 53 42 102 101 55 54",
"output": "3"
},
{
"input": "6 5\n20 15 10 15 20 25",
"output": "1"
},
{
"input": "7 1000000\n1 1 1 1 1 1 1",
"output": "7"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 4\n8",
"output": "1"
},
{
"input": "10 1\n1 2 3 5 6 8 10 11 9 4",
"output": "2"
},
{
"input": "9 2\n1 6 1 5 5 8 6 8 7",
"output": "4"
},
{
"input": "15 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "2 1000000\n1 1000000",
"output": "1"
},
{
"input": "7 2\n1 5 5 8 9 8 8",
"output": "4"
},
{
"input": "10 1\n2 6 3 4 2 4 4 3 2 1",
"output": "4"
},
{
"input": "4 1\n2 2 1 1",
"output": "2"
},
{
"input": "10 1\n6 3 1 3 6 4 1 3 6 4",
"output": "7"
},
{
"input": "2 1\n1 1",
"output": "2"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "8 2\n3 13 9 8 3 13 9 14",
"output": "5"
},
{
"input": "8 1000000\n1 1 5 1000000 1000000 2 2 2",
"output": "2"
},
{
"input": "2 1\n999152 999153",
"output": "1"
}
] | 1,562,612,730
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 0
| 108
| 0
|
n,k = input().split()
n = int(n)
k = int(k)
a = list(map(int,input().split()))
a.sort()
i = 0
j = len(a)-1
while(True):
if(i == len(a)-1):
break
elif(j == i):
i = i+1
j = len(a)-1
elif(a[j] <= a[i]+k):
a.remove(a[i])
print(a)
j = len(a)-1
else:
j = j-1
print(len(a))
|
Title: Micro-World
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, unfortunately, you don't have any microscope nearby, so you can't watch them.
You know that you have $n$ bacteria in the Petri dish and size of the $i$-th bacteria is $a_i$. Also you know intergalactic positive integer constant $K$.
The $i$-th bacteria can swallow the $j$-th bacteria if and only if $a_i > a_j$ and $a_i \le a_j + K$. The $j$-th bacteria disappear, but the $i$-th bacteria doesn't change its size. The bacteria can perform multiple swallows. On each swallow operation any bacteria $i$ can swallow any bacteria $j$ if $a_i > a_j$ and $a_i \le a_j + K$. The swallow operations go one after another.
For example, the sequence of bacteria sizes $a=[101, 53, 42, 102, 101, 55, 54]$ and $K=1$. The one of possible sequences of swallows is: $[101, 53, 42, 102, \underline{101}, 55, 54]$ $\to$ $[101, \underline{53}, 42, 102, 55, 54]$ $\to$ $[\underline{101}, 42, 102, 55, 54]$ $\to$ $[42, 102, 55, \underline{54}]$ $\to$ $[42, 102, 55]$. In total there are $3$ bacteria remained in the Petri dish.
Since you don't have a microscope, you can only guess, what the minimal possible number of bacteria can remain in your Petri dish when you finally will find any microscope.
Input Specification:
The first line contains two space separated positive integers $n$ and $K$ ($1 \le n \le 2 \cdot 10^5$, $1 \le K \le 10^6$) — number of bacteria and intergalactic constant $K$.
The second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^6$) — sizes of bacteria you have.
Output Specification:
Print the only integer — minimal possible number of bacteria can remain.
Demo Input:
['7 1\n101 53 42 102 101 55 54\n', '6 5\n20 15 10 15 20 25\n', '7 1000000\n1 1 1 1 1 1 1\n']
Demo Output:
['3\n', '1\n', '7\n']
Note:
The first example is clarified in the problem statement.
In the second example an optimal possible sequence of swallows is: $[20, 15, 10, 15, \underline{20}, 25]$ $\to$ $[20, 15, 10, \underline{15}, 25]$ $\to$ $[20, 15, \underline{10}, 25]$ $\to$ $[20, \underline{15}, 25]$ $\to$ $[\underline{20}, 25]$ $\to$ $[25]$.
In the third example no bacteria can swallow any other bacteria.
|
```python
n,k = input().split()
n = int(n)
k = int(k)
a = list(map(int,input().split()))
a.sort()
i = 0
j = len(a)-1
while(True):
if(i == len(a)-1):
break
elif(j == i):
i = i+1
j = len(a)-1
elif(a[j] <= a[i]+k):
a.remove(a[i])
print(a)
j = len(a)-1
else:
j = j-1
print(len(a))
```
| 0
|
|
27
|
A
|
Next Test
|
PROGRAMMING
| 1,200
|
[
"implementation",
"sortings"
] |
A. Next Test
|
2
|
256
|
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test.
You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
|
Output the required default value for the next test index.
|
[
"3\n1 7 2\n"
] |
[
"3\n"
] |
none
| 500
|
[
{
"input": "1\n1",
"output": "2"
},
{
"input": "2\n2 1",
"output": "3"
},
{
"input": "3\n3 4 1",
"output": "2"
},
{
"input": "4\n6 4 3 5",
"output": "1"
},
{
"input": "5\n3 2 1 7 4",
"output": "5"
},
{
"input": "6\n4 1 2 5 3 7",
"output": "6"
},
{
"input": "7\n3 2 1 6 5 7 4",
"output": "8"
},
{
"input": "8\n2 8 3 7 6 9 1 5",
"output": "4"
},
{
"input": "9\n10 5 9 3 8 7 1 2 4",
"output": "6"
},
{
"input": "10\n7 2 3 8 9 6 5 4 1 10",
"output": "11"
},
{
"input": "1\n1",
"output": "2"
},
{
"input": "2\n1 2",
"output": "3"
},
{
"input": "3\n2 4 1",
"output": "3"
},
{
"input": "4\n4 2 3 1",
"output": "5"
},
{
"input": "5\n3 1 4 2 5",
"output": "6"
},
{
"input": "6\n1 3 6 7 2 4",
"output": "5"
},
{
"input": "7\n1 5 4 7 2 3 6",
"output": "8"
},
{
"input": "8\n12 1 6 5 2 8 3 4",
"output": "7"
},
{
"input": "9\n3 2 7 5 6 4 1 9 10",
"output": "8"
},
{
"input": "10\n1 7 13 6 5 10 3 8 2 4",
"output": "9"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n3",
"output": "1"
},
{
"input": "1\n3000",
"output": "1"
},
{
"input": "2\n2 3",
"output": "1"
},
{
"input": "2\n3000 1",
"output": "2"
}
] | 1,628,021,454
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 92
| 6,758,400
|
n = int(input().strip())
a = [int(i) for i in input().strip().split()]
a.sort()
last=1
for i in range(n):
if a[i] - last > 1:
print(last + 1)
exit(0)
last = a[i]
print(last + 1)
|
Title: Next Test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
«Polygon» is a system which allows to create programming tasks in a simple and professional way. When you add a test to the problem, the corresponding form asks you for the test index. As in most cases it is clear which index the next test will have, the system suggests the default value of the index. It is calculated as the smallest positive integer which is not used as an index for some previously added test.
You are to implement this feature. Create a program which determines the default index of the next test, given the indexes of the previously added tests.
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=3000) — the amount of previously added tests. The second line contains *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=3000) — indexes of these tests.
Output Specification:
Output the required default value for the next test index.
Demo Input:
['3\n1 7 2\n']
Demo Output:
['3\n']
Note:
none
|
```python
n = int(input().strip())
a = [int(i) for i in input().strip().split()]
a.sort()
last=1
for i in range(n):
if a[i] - last > 1:
print(last + 1)
exit(0)
last = a[i]
print(last + 1)
```
| 0
|
230
|
B
|
T-primes
|
PROGRAMMING
| 1,300
|
[
"binary search",
"implementation",
"math",
"number theory"
] | null | null |
We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer *t* Т-prime, if *t* has exactly three distinct positive divisors.
You are given an array of *n* positive integers. For each of them determine whether it is Т-prime or not.
|
The first line contains a single positive integer, *n* (1<=≤<=*n*<=≤<=105), showing how many numbers are in the array. The next line contains *n* space-separated integers *x**i* (1<=≤<=*x**i*<=≤<=1012).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cin, cout streams or the %I64d specifier.
|
Print *n* lines: the *i*-th line should contain "YES" (without the quotes), if number *x**i* is Т-prime, and "NO" (without the quotes), if it isn't.
|
[
"3\n4 5 6\n"
] |
[
"YES\nNO\nNO\n"
] |
The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".
| 500
|
[
{
"input": "3\n4 5 6",
"output": "YES\nNO\nNO"
},
{
"input": "2\n48 49",
"output": "NO\nYES"
},
{
"input": "10\n10 9 8 7 6 5 4 3 2 1",
"output": "NO\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO"
},
{
"input": "1\n36",
"output": "NO"
},
{
"input": "1\n999966000289",
"output": "YES"
},
{
"input": "1\n999993399999",
"output": "NO"
},
{
"input": "9\n111 121 131 111 121 131 111 121 131",
"output": "NO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO"
},
{
"input": "1\n1",
"output": "NO"
},
{
"input": "1\n10",
"output": "NO"
},
{
"input": "1\n976197352729",
"output": "NO"
},
{
"input": "1\n1000000000000",
"output": "NO"
},
{
"input": "1\n9",
"output": "YES"
},
{
"input": "6\n549755813888 847288609443 762939453125 678223072849 285311670611 137858491849",
"output": "NO\nNO\nNO\nNO\nNO\nNO"
},
{
"input": "3\n223092870 6469693230 200560490130",
"output": "NO\nNO\nNO"
},
{
"input": "2\n81 25",
"output": "NO\nYES"
},
{
"input": "1\n16",
"output": "NO"
},
{
"input": "22\n1 2 3 4 5 6 7 8 9 10 12752041 64 121 144 27550356289 124 24657 23756 135153365 25235235235 42351351 81",
"output": "NO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nNO"
},
{
"input": "1\n225",
"output": "NO"
},
{
"input": "1\n1521",
"output": "NO"
},
{
"input": "1\n81",
"output": "NO"
}
] | 1,697,254,213
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 122
| 8,704,000
|
#author 沈天健 2300011417
import sys
readline=sys.stdin.readline
write=sys.stdout.write
n=int(readline())
lis=[*map(int,readline().split())]
prime=[]
is_prime=[True]*1100000
def oula_shai():
is_prime[0]=False
is_prime[1]=False
for i in range(2,1000001):
if is_prime[i]:
prime.append(i)
for pri in prime:
is_prime[pri*i]=False
if i%pri==0:
break
for x in lis:
if int(x**0.5)==x**0.5:
if is_prime[int(x**0.5)]:
write("YES\n")
continue
write("NO\n")
|
Title: T-primes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We know that prime numbers are positive integers that have exactly two distinct positive divisors. Similarly, we'll call a positive integer *t* Т-prime, if *t* has exactly three distinct positive divisors.
You are given an array of *n* positive integers. For each of them determine whether it is Т-prime or not.
Input Specification:
The first line contains a single positive integer, *n* (1<=≤<=*n*<=≤<=105), showing how many numbers are in the array. The next line contains *n* space-separated integers *x**i* (1<=≤<=*x**i*<=≤<=1012).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is advised to use the cin, cout streams or the %I64d specifier.
Output Specification:
Print *n* lines: the *i*-th line should contain "YES" (without the quotes), if number *x**i* is Т-prime, and "NO" (without the quotes), if it isn't.
Demo Input:
['3\n4 5 6\n']
Demo Output:
['YES\nNO\nNO\n']
Note:
The given test has three numbers. The first number 4 has exactly three divisors — 1, 2 and 4, thus the answer for this number is "YES". The second number 5 has two divisors (1 and 5), and the third number 6 has four divisors (1, 2, 3, 6), hence the answer for them is "NO".
|
```python
#author 沈天健 2300011417
import sys
readline=sys.stdin.readline
write=sys.stdout.write
n=int(readline())
lis=[*map(int,readline().split())]
prime=[]
is_prime=[True]*1100000
def oula_shai():
is_prime[0]=False
is_prime[1]=False
for i in range(2,1000001):
if is_prime[i]:
prime.append(i)
for pri in prime:
is_prime[pri*i]=False
if i%pri==0:
break
for x in lis:
if int(x**0.5)==x**0.5:
if is_prime[int(x**0.5)]:
write("YES\n")
continue
write("NO\n")
```
| 0
|
|
570
|
A
|
Elections
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
|
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
|
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
|
[
"3 3\n1 2 3\n2 3 1\n1 2 1\n",
"3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n"
] |
[
"2",
"1"
] |
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
| 500
|
[
{
"input": "3 3\n1 2 3\n2 3 1\n1 2 1",
"output": "2"
},
{
"input": "3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7",
"output": "1"
},
{
"input": "1 3\n5\n3\n2",
"output": "1"
},
{
"input": "3 1\n1 2 3",
"output": "3"
},
{
"input": "3 1\n100 100 100",
"output": "1"
},
{
"input": "2 2\n1 2\n2 1",
"output": "1"
},
{
"input": "2 2\n2 1\n2 1",
"output": "1"
},
{
"input": "2 2\n1 2\n1 2",
"output": "2"
},
{
"input": "3 3\n0 0 0\n1 1 1\n2 2 2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "1"
},
{
"input": "5 5\n1 2 3 4 5\n2 3 4 5 6\n3 4 5 6 7\n4 5 6 7 8\n5 6 7 8 9",
"output": "5"
},
{
"input": "4 4\n1 3 1 3\n3 1 3 1\n2 0 0 2\n0 1 1 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 3\n3 1 2 1\n1 0 0 2\n0 1 10 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 300\n3 1 2 1\n5 0 0 2\n0 1 10 100",
"output": "1"
},
{
"input": "5 5\n15 45 15 300 10\n53 15 25 51 10\n5 50 50 2 10\n1000 1 10 100 10\n10 10 10 10 10",
"output": "1"
},
{
"input": "1 100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "1"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "1 100\n859\n441\n272\n47\n355\n345\n612\n569\n545\n599\n410\n31\n720\n303\n58\n537\n561\n730\n288\n275\n446\n955\n195\n282\n153\n455\n996\n121\n267\n702\n769\n560\n353\n89\n990\n282\n801\n335\n573\n258\n722\n768\n324\n41\n249\n125\n557\n303\n664\n945\n156\n884\n985\n816\n433\n65\n976\n963\n85\n647\n46\n877\n665\n523\n714\n182\n377\n549\n994\n385\n184\n724\n447\n99\n766\n353\n494\n747\n324\n436\n915\n472\n879\n582\n928\n84\n627\n156\n972\n651\n159\n372\n70\n903\n590\n480\n184\n540\n270\n892",
"output": "1"
},
{
"input": "100 1\n439 158 619 538 187 153 973 781 610 475 94 947 449 531 220 51 788 118 189 501 54 434 465 902 280 635 688 214 737 327 682 690 683 519 261 923 254 388 529 659 662 276 376 735 976 664 521 285 42 147 187 259 407 977 879 465 522 17 550 701 114 921 577 265 668 812 232 267 135 371 586 201 608 373 771 358 101 412 195 582 199 758 507 882 16 484 11 712 916 699 783 618 405 124 904 257 606 610 230 718",
"output": "54"
},
{
"input": "1 99\n511\n642\n251\n30\n494\n128\n189\n324\n884\n656\n120\n616\n959\n328\n411\n933\n895\n350\n1\n838\n996\n761\n619\n131\n824\n751\n707\n688\n915\n115\n244\n476\n293\n986\n29\n787\n607\n259\n756\n864\n394\n465\n303\n387\n521\n582\n485\n355\n299\n997\n683\n472\n424\n948\n339\n383\n285\n957\n591\n203\n866\n79\n835\n980\n344\n493\n361\n159\n160\n947\n46\n362\n63\n553\n793\n754\n429\n494\n523\n227\n805\n313\n409\n243\n927\n350\n479\n971\n825\n460\n544\n235\n660\n327\n216\n729\n147\n671\n738",
"output": "1"
},
{
"input": "99 1\n50 287 266 159 551 198 689 418 809 43 691 367 160 664 86 805 461 55 127 950 576 351 721 493 972 560 934 885 492 92 321 759 767 989 883 7 127 413 404 604 80 645 666 874 371 718 893 158 722 198 563 293 134 255 742 913 252 378 859 721 502 251 839 284 133 209 962 514 773 124 205 903 785 859 911 93 861 786 747 213 690 69 942 697 211 203 284 961 351 137 962 952 408 249 238 850 944 40 346",
"output": "34"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "100"
},
{
"input": "1 1\n0",
"output": "1"
},
{
"input": "2 1\n0 0",
"output": "1"
},
{
"input": "2 2\n0 0\n0 0",
"output": "1"
},
{
"input": "2 2\n1 2\n0 0",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 3\n0 0\n0 0\n0 1",
"output": "1"
},
{
"input": "3 2\n1 1 3\n0 0 0",
"output": "1"
},
{
"input": "3 4\n1 10 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 4\n2 1\n1 2\n0 0\n1 2",
"output": "1"
},
{
"input": "2 2\n0 1\n0 1",
"output": "2"
},
{
"input": "2 3\n1 2\n0 0\n2 1",
"output": "1"
},
{
"input": "2 2\n0 0\n4 5",
"output": "1"
},
{
"input": "3 2\n10 15 20\n0 0 0",
"output": "1"
},
{
"input": "3 4\n0 0 0\n0 0 0\n0 0 0\n1 2 3",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 1",
"output": "1"
},
{
"input": "3 3\n0 0 0\n1 2 3\n1 3 2",
"output": "1"
},
{
"input": "3 1\n0 0 0",
"output": "1"
},
{
"input": "3 3\n0 0 1\n0 0 0\n0 0 0",
"output": "1"
}
] | 1,653,206,512
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 62
| 77
| 2,662,400
|
n, m = map(int, input().split())
c = [0]*n
for i in range(m):
l = list(map(int, input().split()))
c[(l.index(max(l)))] += 1
print(c.index(max(c)) + 1)
|
Title: Elections
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
Input Specification:
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
Output Specification:
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
Demo Input:
['3 3\n1 2 3\n2 3 1\n1 2 1\n', '3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n']
Demo Output:
['2', '1']
Note:
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
|
```python
n, m = map(int, input().split())
c = [0]*n
for i in range(m):
l = list(map(int, input().split()))
c[(l.index(max(l)))] += 1
print(c.index(max(c)) + 1)
```
| 3
|
|
610
|
B
|
Vika and Squares
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"implementation"
] | null | null |
Vika has *n* jars with paints of distinct colors. All the jars are numbered from 1 to *n* and the *i*-th jar contains *a**i* liters of paint of color *i*.
Vika also has an infinitely long rectangular piece of paper of width 1, consisting of squares of size 1<=×<=1. Squares are numbered 1, 2, 3 and so on. Vika decided that she will start painting squares one by one from left to right, starting from the square number 1 and some arbitrary color. If the square was painted in color *x*, then the next square will be painted in color *x*<=+<=1. In case of *x*<==<=*n*, next square is painted in color 1. If there is no more paint of the color Vika wants to use now, then she stops.
Square is always painted in only one color, and it takes exactly 1 liter of paint. Your task is to calculate the maximum number of squares that might be painted, if Vika chooses right color to paint the first square.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of jars with colors Vika has.
The second line of the input contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is equal to the number of liters of paint in the *i*-th jar, i.e. the number of liters of color *i* that Vika has.
|
The only line of the output should contain a single integer — the maximum number of squares that Vika can paint if she follows the rules described above.
|
[
"5\n2 4 2 3 3\n",
"3\n5 5 5\n",
"6\n10 10 10 1 10 10\n"
] |
[
"12\n",
"15\n",
"11\n"
] |
In the first sample the best strategy is to start painting using color 4. Then the squares will be painted in the following colors (from left to right): 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5.
In the second sample Vika can start to paint using any color.
In the third sample Vika should start painting using color number 5.
| 1,000
|
[
{
"input": "5\n2 4 2 3 3",
"output": "12"
},
{
"input": "3\n5 5 5",
"output": "15"
},
{
"input": "6\n10 10 10 1 10 10",
"output": "11"
},
{
"input": "1\n167959139",
"output": "167959139"
},
{
"input": "10\n896619242 805194919 844752453 848347723 816995848 856813612 805194919 833406689 816255448 805194919",
"output": "8051949194"
},
{
"input": "2\n2 3",
"output": "5"
},
{
"input": "2\n10 10",
"output": "20"
},
{
"input": "2\n1111 1110",
"output": "2221"
},
{
"input": "3\n100 101 100",
"output": "301"
},
{
"input": "3\n100 100 101",
"output": "301"
},
{
"input": "3\n101 100 100",
"output": "301"
},
{
"input": "4\n2 3 2 2",
"output": "9"
},
{
"input": "4\n1 1 1 1",
"output": "4"
},
{
"input": "4\n100 100 100 101",
"output": "401"
},
{
"input": "4\n101 100 100 101",
"output": "402"
},
{
"input": "4\n100 101 101 100",
"output": "402"
},
{
"input": "4\n200 201 200 201",
"output": "801"
},
{
"input": "4\n201 200 201 200",
"output": "801"
},
{
"input": "4\n300 302 302 300",
"output": "1202"
},
{
"input": "8\n5 4 3 2 1 1 1 1",
"output": "12"
},
{
"input": "8\n2 2 1 2 2 1 2 2",
"output": "12"
},
{
"input": "10\n2 1 2 1 2 2 2 2 2 1",
"output": "15"
},
{
"input": "13\n2 2 2 1 1 1 1 1 1 1 2 2 2",
"output": "19"
}
] | 1,474,274,695
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200010;
int n, a[MAXN], b[MAXN];
long long m, r;
int main() {
ios::sync_with_stdio(0);
cin >> n >> a[0];
m = a[0];
for (int i = 1; i < n; ++i) {
cin >> a[i];
if (m > a[i]) {
m = a[i];
}
}
if (a[0] > m) {
b[0] = 1;
}
for (int i = 1; i < n; ++i) {
if (a[i] > m) {
b[i] = b[i - 1] + 1;
if (b[i] > b[r]) {
r = i;
}
}
}
if (r + 1 == b[r]) {
b[r] += b[n - 1];
}
cout << m * n + b[r];
}
|
Title: Vika and Squares
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vika has *n* jars with paints of distinct colors. All the jars are numbered from 1 to *n* and the *i*-th jar contains *a**i* liters of paint of color *i*.
Vika also has an infinitely long rectangular piece of paper of width 1, consisting of squares of size 1<=×<=1. Squares are numbered 1, 2, 3 and so on. Vika decided that she will start painting squares one by one from left to right, starting from the square number 1 and some arbitrary color. If the square was painted in color *x*, then the next square will be painted in color *x*<=+<=1. In case of *x*<==<=*n*, next square is painted in color 1. If there is no more paint of the color Vika wants to use now, then she stops.
Square is always painted in only one color, and it takes exactly 1 liter of paint. Your task is to calculate the maximum number of squares that might be painted, if Vika chooses right color to paint the first square.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of jars with colors Vika has.
The second line of the input contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is equal to the number of liters of paint in the *i*-th jar, i.e. the number of liters of color *i* that Vika has.
Output Specification:
The only line of the output should contain a single integer — the maximum number of squares that Vika can paint if she follows the rules described above.
Demo Input:
['5\n2 4 2 3 3\n', '3\n5 5 5\n', '6\n10 10 10 1 10 10\n']
Demo Output:
['12\n', '15\n', '11\n']
Note:
In the first sample the best strategy is to start painting using color 4. Then the squares will be painted in the following colors (from left to right): 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5.
In the second sample Vika can start to paint using any color.
In the third sample Vika should start painting using color number 5.
|
```python
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200010;
int n, a[MAXN], b[MAXN];
long long m, r;
int main() {
ios::sync_with_stdio(0);
cin >> n >> a[0];
m = a[0];
for (int i = 1; i < n; ++i) {
cin >> a[i];
if (m > a[i]) {
m = a[i];
}
}
if (a[0] > m) {
b[0] = 1;
}
for (int i = 1; i < n; ++i) {
if (a[i] > m) {
b[i] = b[i - 1] + 1;
if (b[i] > b[r]) {
r = i;
}
}
}
if (r + 1 == b[r]) {
b[r] += b[n - 1];
}
cout << m * n + b[r];
}
```
| -1
|
|
1,004
|
B
|
Sonya and Exhibition
|
PROGRAMMING
| 1,300
|
[
"constructive algorithms",
"greedy",
"implementation",
"math"
] | null | null |
Sonya decided to organize an exhibition of flowers. Since the girl likes only roses and lilies, she decided that only these two kinds of flowers should be in this exhibition.
There are $n$ flowers in a row in the exhibition. Sonya can put either a rose or a lily in the $i$-th position. Thus each of $n$ positions should contain exactly one flower: a rose or a lily.
She knows that exactly $m$ people will visit this exhibition. The $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive. The girl knows that each segment has its own beauty that is equal to the product of the number of roses and the number of lilies.
Sonya wants her exhibition to be liked by a lot of people. That is why she wants to put the flowers in such way that the sum of beauties of all segments would be maximum possible.
|
The first line contains two integers $n$ and $m$ ($1\leq n, m\leq 10^3$) — the number of flowers and visitors respectively.
Each of the next $m$ lines contains two integers $l_i$ and $r_i$ ($1\leq l_i\leq r_i\leq n$), meaning that $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive.
|
Print the string of $n$ characters. The $i$-th symbol should be «0» if you want to put a rose in the $i$-th position, otherwise «1» if you want to put a lily.
If there are multiple answers, print any.
|
[
"5 3\n1 3\n2 4\n2 5\n",
"6 3\n5 6\n1 4\n4 6\n"
] |
[
"01100",
"110010"
] |
In the first example, Sonya can put roses in the first, fourth, and fifth positions, and lilies in the second and third positions;
- in the segment $[1\ldots3]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots4]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots5]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$.
The total beauty is equal to $2+2+4=8$.
In the second example, Sonya can put roses in the third, fourth, and sixth positions, and lilies in the first, second, and fifth positions;
- in the segment $[5\ldots6]$, there are one rose and one lily, so the beauty is equal to $1\cdot 1=1$; - in the segment $[1\ldots4]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$; - in the segment $[4\ldots6]$, there are two roses and one lily, so the beauty is equal to $2\cdot 1=2$.
The total beauty is equal to $1+4+2=7$.
| 1,000
|
[
{
"input": "5 3\n1 3\n2 4\n2 5",
"output": "01010"
},
{
"input": "6 3\n5 6\n1 4\n4 6",
"output": "010101"
},
{
"input": "10 4\n3 3\n1 6\n9 9\n10 10",
"output": "0101010101"
},
{
"input": "1 1\n1 1",
"output": "0"
},
{
"input": "1000 10\n3 998\n2 1000\n1 999\n2 1000\n3 998\n2 1000\n3 998\n1 1000\n2 1000\n3 999",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 20\n50 109\n317 370\n710 770\n440 488\n711 757\n236 278\n314 355\n131 190\n115 162\n784 834\n16 56\n677 730\n802 844\n632 689\n23 74\n647 702\n930 986\n926 983\n769 822\n508 558",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 10\n138 238\n160 260\n716 816\n504 604\n98 198\n26 126\n114 214\n217 317\n121 221\n489 589",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 5\n167 296\n613 753\n650 769\n298 439\n71 209",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "1000 5\n349 415\n714 773\n125 179\n1 80\n148 242",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "914 10\n587 646\n770 843\n825 875\n439 485\n465 521\n330 387\n405 480\n477 521\n336 376\n715 771",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "571 10\n13 94\n450 510\n230 293\n302 375\n304 354\n421 504\n24 87\n122 181\n221 296\n257 307",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "6 2\n1 6\n1 4",
"output": "010101"
},
{
"input": "2 1\n1 2",
"output": "01"
}
] | 1,530,811,111
| 2,611
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 0
| 77
| 0
|
def go():
n, m = [int(i) for i in input().split(' ')]
v = []
for i in range(m):
v.append([int(i) - 1 for i in input().split(' ')])
v = sorted(v, key=lambda x: x[1] - x[0], reverse=True)
a = ['.'] * n
for i in v:
ones = 0
zeros = 0
for j in range(i[0], i[1] + 1):
if a[j] == '1':
ones += 1
elif a[j] == '0':
zeros += 1
if zeros > ones:
first = '1'
second = '0'
else:
first = '0'
second = '1'
for j in range(i[0], i[0] + (i[1] - i[0]) // 2 + 1):
if a[j] == '.':
a[j] = first
for j in range(i[0] + (i[1] - i[0]) // 2 + 1, i[1] + 1):
if a[j] == '.':
a[j] = second
# print(output[i[0]:i[0] + (i[1] - i[0]) // 2 + 1], output[i[0] + (i[1] - i[0]) // 2 + 1: i[1] + 1])
return a
print(go())
|
Title: Sonya and Exhibition
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sonya decided to organize an exhibition of flowers. Since the girl likes only roses and lilies, she decided that only these two kinds of flowers should be in this exhibition.
There are $n$ flowers in a row in the exhibition. Sonya can put either a rose or a lily in the $i$-th position. Thus each of $n$ positions should contain exactly one flower: a rose or a lily.
She knows that exactly $m$ people will visit this exhibition. The $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive. The girl knows that each segment has its own beauty that is equal to the product of the number of roses and the number of lilies.
Sonya wants her exhibition to be liked by a lot of people. That is why she wants to put the flowers in such way that the sum of beauties of all segments would be maximum possible.
Input Specification:
The first line contains two integers $n$ and $m$ ($1\leq n, m\leq 10^3$) — the number of flowers and visitors respectively.
Each of the next $m$ lines contains two integers $l_i$ and $r_i$ ($1\leq l_i\leq r_i\leq n$), meaning that $i$-th visitor will visit all flowers from $l_i$ to $r_i$ inclusive.
Output Specification:
Print the string of $n$ characters. The $i$-th symbol should be «0» if you want to put a rose in the $i$-th position, otherwise «1» if you want to put a lily.
If there are multiple answers, print any.
Demo Input:
['5 3\n1 3\n2 4\n2 5\n', '6 3\n5 6\n1 4\n4 6\n']
Demo Output:
['01100', '110010']
Note:
In the first example, Sonya can put roses in the first, fourth, and fifth positions, and lilies in the second and third positions;
- in the segment $[1\ldots3]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots4]$, there are one rose and two lilies, so the beauty is equal to $1\cdot 2=2$; - in the segment $[2\ldots5]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$.
The total beauty is equal to $2+2+4=8$.
In the second example, Sonya can put roses in the third, fourth, and sixth positions, and lilies in the first, second, and fifth positions;
- in the segment $[5\ldots6]$, there are one rose and one lily, so the beauty is equal to $1\cdot 1=1$; - in the segment $[1\ldots4]$, there are two roses and two lilies, so the beauty is equal to $2\cdot 2=4$; - in the segment $[4\ldots6]$, there are two roses and one lily, so the beauty is equal to $2\cdot 1=2$.
The total beauty is equal to $1+4+2=7$.
|
```python
def go():
n, m = [int(i) for i in input().split(' ')]
v = []
for i in range(m):
v.append([int(i) - 1 for i in input().split(' ')])
v = sorted(v, key=lambda x: x[1] - x[0], reverse=True)
a = ['.'] * n
for i in v:
ones = 0
zeros = 0
for j in range(i[0], i[1] + 1):
if a[j] == '1':
ones += 1
elif a[j] == '0':
zeros += 1
if zeros > ones:
first = '1'
second = '0'
else:
first = '0'
second = '1'
for j in range(i[0], i[0] + (i[1] - i[0]) // 2 + 1):
if a[j] == '.':
a[j] = first
for j in range(i[0] + (i[1] - i[0]) // 2 + 1, i[1] + 1):
if a[j] == '.':
a[j] = second
# print(output[i[0]:i[0] + (i[1] - i[0]) // 2 + 1], output[i[0] + (i[1] - i[0]) // 2 + 1: i[1] + 1])
return a
print(go())
```
| 0
|
|
267
|
A
|
Subtractions
|
PROGRAMMING
| 900
|
[
"math",
"number theory"
] | null | null |
You've got two numbers. As long as they are both larger than zero, they go through the same operation: subtract the lesser number from the larger one. If they equal substract one number from the another. For example, one operation transforms pair (4,17) to pair (4,13), it transforms (5,5) to (0,5).
You've got some number of pairs (*a**i*,<=*b**i*). How many operations will be performed for each of them?
|
The first line contains the number of pairs *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000). Then follow *n* lines, each line contains a pair of positive integers *a**i*,<=*b**i* (1<=<=≤<=<=*a**i*,<=<=*b**i*<=<=≤<=<=109).
|
Print the sought number of operations for each pair on a single line.
|
[
"2\n4 17\n7 987654321\n"
] |
[
"8\n141093479\n"
] |
none
| 500
|
[
{
"input": "2\n4 17\n7 987654321",
"output": "8\n141093479"
},
{
"input": "10\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321",
"output": "141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479"
},
{
"input": "1\n536870912 32",
"output": "16777216"
},
{
"input": "20\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999",
"output": "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000"
},
{
"input": "3\n1000000000 1\n1000000000 1\n1 100000000",
"output": "1000000000\n1000000000\n100000000"
}
] | 1,647,258,190
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 35
| 93
| 3,788,800
|
import sys
def file_io():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
def RL():
return [int(x) for x in sys.stdin.readline().split()]
def RI():
return int(sys.stdin.readline())
def RS():
return sys.stdin.readline().strip()
def print(*s, end='\n'):
sys.stdout.write(f'{" ".join(str(x) for x in s)}{end}')
# file_io()
def solve():
a, b = RL()
res = 0
while min(a, b) > 0:
if a > b:
a, b = b, a
k = b // a
b -= k*a
res += k
print(res)
t = RI()
# t = 1
while t > 0:
solve()
t -= 1
|
Title: Subtractions
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got two numbers. As long as they are both larger than zero, they go through the same operation: subtract the lesser number from the larger one. If they equal substract one number from the another. For example, one operation transforms pair (4,17) to pair (4,13), it transforms (5,5) to (0,5).
You've got some number of pairs (*a**i*,<=*b**i*). How many operations will be performed for each of them?
Input Specification:
The first line contains the number of pairs *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000). Then follow *n* lines, each line contains a pair of positive integers *a**i*,<=*b**i* (1<=<=≤<=<=*a**i*,<=<=*b**i*<=<=≤<=<=109).
Output Specification:
Print the sought number of operations for each pair on a single line.
Demo Input:
['2\n4 17\n7 987654321\n']
Demo Output:
['8\n141093479\n']
Note:
none
|
```python
import sys
def file_io():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
def RL():
return [int(x) for x in sys.stdin.readline().split()]
def RI():
return int(sys.stdin.readline())
def RS():
return sys.stdin.readline().strip()
def print(*s, end='\n'):
sys.stdout.write(f'{" ".join(str(x) for x in s)}{end}')
# file_io()
def solve():
a, b = RL()
res = 0
while min(a, b) > 0:
if a > b:
a, b = b, a
k = b // a
b -= k*a
res += k
print(res)
t = RI()
# t = 1
while t > 0:
solve()
t -= 1
```
| 3
|
|
977
|
A
|
Wrong Subtraction
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm:
- if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit).
You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions.
It is guaranteed that the result will be positive integer number.
|
The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly.
|
Print one integer number — the result of the decreasing $n$ by one $k$ times.
It is guaranteed that the result will be positive integer number.
|
[
"512 4\n",
"1000000000 9\n"
] |
[
"50\n",
"1\n"
] |
The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
| 0
|
[
{
"input": "512 4",
"output": "50"
},
{
"input": "1000000000 9",
"output": "1"
},
{
"input": "131203 11",
"output": "12"
},
{
"input": "999999999 50",
"output": "9999"
},
{
"input": "999999999 49",
"output": "99990"
},
{
"input": "131203 9",
"output": "130"
},
{
"input": "900000000 16",
"output": "1"
},
{
"input": "909090909 50",
"output": "3"
},
{
"input": "1001 2",
"output": "100"
},
{
"input": "5 2",
"output": "3"
},
{
"input": "2 1",
"output": "1"
}
] | 1,696,888,583
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 11
| 31
| 0
|
input = input()
input = [int(input.split(' ')[0]), int(input.split(' ')[1])]
numb = input[0]
for i in range(input[1]):
zero = numb % 10
if zero == 0:
numb = numb/10
else:
numb = numb-1
print(int(numb))
|
Title: Wrong Subtraction
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm:
- if the last digit of the number is non-zero, she decreases the number by one; - if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit).
You are given an integer number $n$. Tanya will subtract one from it $k$ times. Your task is to print the result after all $k$ subtractions.
It is guaranteed that the result will be positive integer number.
Input Specification:
The first line of the input contains two integer numbers $n$ and $k$ ($2 \le n \le 10^9$, $1 \le k \le 50$) — the number from which Tanya will subtract and the number of subtractions correspondingly.
Output Specification:
Print one integer number — the result of the decreasing $n$ by one $k$ times.
It is guaranteed that the result will be positive integer number.
Demo Input:
['512 4\n', '1000000000 9\n']
Demo Output:
['50\n', '1\n']
Note:
The first example corresponds to the following sequence: $512 \rightarrow 511 \rightarrow 510 \rightarrow 51 \rightarrow 50$.
|
```python
input = input()
input = [int(input.split(' ')[0]), int(input.split(' ')[1])]
numb = input[0]
for i in range(input[1]):
zero = numb % 10
if zero == 0:
numb = numb/10
else:
numb = numb-1
print(int(numb))
```
| 3
|
|
644
|
A
|
Parliament of Berland
|
PROGRAMMING
| 1,000
|
[
"*special",
"constructive algorithms"
] | null | null |
There are *n* parliamentarians in Berland. They are numbered with integers from 1 to *n*. It happened that all parliamentarians with odd indices are Democrats and all parliamentarians with even indices are Republicans.
New parliament assembly hall is a rectangle consisting of *a*<=×<=*b* chairs — *a* rows of *b* chairs each. Two chairs are considered neighbouring if they share as side. For example, chair number 5 in row number 2 is neighbouring to chairs number 4 and 6 in this row and chairs with number 5 in rows 1 and 3. Thus, chairs have four neighbours in general, except for the chairs on the border of the hall
We know that if two parliamentarians from one political party (that is two Democrats or two Republicans) seat nearby they spent all time discussing internal party issues.
Write the program that given the number of parliamentarians and the sizes of the hall determine if there is a way to find a seat for any parliamentarian, such that no two members of the same party share neighbouring seats.
|
The first line of the input contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=10<=000, 1<=≤<=*a*,<=*b*<=≤<=100) — the number of parliamentarians, the number of rows in the assembly hall and the number of seats in each row, respectively.
|
If there is no way to assigns seats to parliamentarians in a proper way print -1.
Otherwise print the solution in *a* lines, each containing *b* integers. The *j*-th integer of the *i*-th line should be equal to the index of parliamentarian occupying this seat, or 0 if this seat should remain empty. If there are multiple possible solution, you may print any of them.
|
[
"3 2 2\n",
"8 4 3\n",
"10 2 2\n"
] |
[
"0 3\n1 2\n",
"7 8 3\n0 1 4\n6 0 5\n0 2 0\n",
"-1\n"
] |
In the first sample there are many other possible solutions. For example,
and
The following assignment
is incorrect, because parliamentarians 1 and 3 are both from Democrats party but will occupy neighbouring seats.
| 500
|
[
{
"input": "3 2 2",
"output": "1 2 \n0 3 "
},
{
"input": "8 4 3",
"output": "1 2 3 \n4 5 6 \n7 8 0 \n0 0 0 "
},
{
"input": "10 2 2",
"output": "-1"
},
{
"input": "1 1 1",
"output": "1 "
},
{
"input": "8 3 3",
"output": "1 2 3 \n4 5 6 \n7 8 0 "
},
{
"input": "1 1 100",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
},
{
"input": "1 100 1",
"output": "1 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 "
},
{
"input": "12 4 3",
"output": "1 2 3 \n4 5 6 \n7 8 9 \n10 11 12 "
},
{
"input": "64 8 9",
"output": "1 2 3 4 5 6 7 8 9 \n10 11 12 13 14 15 16 17 18 \n19 20 21 22 23 24 25 26 27 \n28 29 30 31 32 33 34 35 36 \n37 38 39 40 41 42 43 44 45 \n46 47 48 49 50 51 52 53 54 \n55 56 57 58 59 60 61 62 63 \n64 0 0 0 0 0 0 0 0 "
},
{
"input": "13 2 6",
"output": "-1"
},
{
"input": "41 6 7",
"output": "1 2 3 4 5 6 7 \n8 9 10 11 12 13 14 \n15 16 17 18 19 20 21 \n22 23 24 25 26 27 28 \n29 30 31 32 33 34 35 \n36 37 38 39 40 41 0 "
},
{
"input": "9999 100 100",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "10000 100 100",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "2099 70 30",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 \n32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 \n61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 \n92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 \n121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 \n152 151 1..."
},
{
"input": "2098 30 70",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 \n72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 \n141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "10000 1 1",
"output": "-1"
},
{
"input": "1583 49 36",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 \n38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 \n73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 \n110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 \n145 146 147 148 149 150 151 152 153..."
},
{
"input": "4825 77 88",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 \n90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "26 1 33",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 0 0 0 0 0 0 "
},
{
"input": "274 25 77",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 \n78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 \n..."
},
{
"input": "694 49 22",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \n24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 \n45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 \n68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 \n89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 \n112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 \n133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152..."
},
{
"input": "3585 77 62",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 \n64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 \n125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3 1 6",
"output": "1 2 3 0 0 0 "
},
{
"input": "352 25 59",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 \n60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 \n119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "150 53 3",
"output": "1 2 3 \n4 5 6 \n7 8 9 \n10 11 12 \n13 14 15 \n16 17 18 \n19 20 21 \n22 23 24 \n25 26 27 \n28 29 30 \n31 32 33 \n34 35 36 \n37 38 39 \n40 41 42 \n43 44 45 \n46 47 48 \n49 50 51 \n52 53 54 \n55 56 57 \n58 59 60 \n61 62 63 \n64 65 66 \n67 68 69 \n70 71 72 \n73 74 75 \n76 77 78 \n79 80 81 \n82 83 84 \n85 86 87 \n88 89 90 \n91 92 93 \n94 95 96 \n97 98 99 \n100 101 102 \n103 104 105 \n106 107 108 \n109 110 111 \n112 113 114 \n115 116 117 \n118 119 120 \n121 122 123 \n124 125 126 \n127 128 129 \n130 131 132 \n133..."
},
{
"input": "4227 91 80",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 \n82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "378 19 25",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 \n26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 \n51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 \n76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 \n126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 \n151 152..."
},
{
"input": "2357 43 65",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 \n66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 \n131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "232 71 9",
"output": "1 2 3 4 5 6 7 8 9 \n10 11 12 13 14 15 16 17 18 \n19 20 21 22 23 24 25 26 27 \n28 29 30 31 32 33 34 35 36 \n37 38 39 40 41 42 43 44 45 \n46 47 48 49 50 51 52 53 54 \n55 56 57 58 59 60 61 62 63 \n64 65 66 67 68 69 70 71 72 \n73 74 75 76 77 78 79 80 81 \n82 83 84 85 86 87 88 89 90 \n91 92 93 94 95 96 97 98 99 \n100 101 102 103 104 105 106 107 108 \n109 110 111 112 113 114 115 116 117 \n118 119 120 121 122 123 124 125 126 \n127 128 129 130 131 132 133 134 135 \n136 137 138 139 140 141 142 143 144 \n145 146 147..."
},
{
"input": "2362 91 62",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 \n64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 \n125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4601 59 78",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 \n80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "4439 74 60",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 \n62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 \n121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3733 89 42",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 \n44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 \n85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 1..."
},
{
"input": "335 12 28",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 \n30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 \n57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 \n86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n142 141 144 143 146 145 148 147 150 149 152 151 1..."
},
{
"input": "440 26 17",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 \n18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 \n35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 \n52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 \n69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 \n86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 \n103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 \n120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 \n137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..."
},
{
"input": "109 37 3",
"output": "1 2 3 \n4 5 6 \n7 8 9 \n10 11 12 \n13 14 15 \n16 17 18 \n19 20 21 \n22 23 24 \n25 26 27 \n28 29 30 \n31 32 33 \n34 35 36 \n37 38 39 \n40 41 42 \n43 44 45 \n46 47 48 \n49 50 51 \n52 53 54 \n55 56 57 \n58 59 60 \n61 62 63 \n64 65 66 \n67 68 69 \n70 71 72 \n73 74 75 \n76 77 78 \n79 80 81 \n82 83 84 \n85 86 87 \n88 89 90 \n91 92 93 \n94 95 96 \n97 98 99 \n100 101 102 \n103 104 105 \n106 107 108 \n109 0 0 "
},
{
"input": "4416 52 85",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 \n86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "5025 75 67",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 \n68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 \n135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4983 89 56",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 \n58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "950 17 56",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 \n58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "1637 40 41",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 \n42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 \n83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 \n124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "1142 52 22",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \n24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 \n45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 \n68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 \n89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 \n112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 \n133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152..."
},
{
"input": "907 70 13",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 \n14 15 16 17 18 19 20 21 22 23 24 25 26 \n27 28 29 30 31 32 33 34 35 36 37 38 39 \n40 41 42 43 44 45 46 47 48 49 50 51 52 \n53 54 55 56 57 58 59 60 61 62 63 64 65 \n66 67 68 69 70 71 72 73 74 75 76 77 78 \n79 80 81 82 83 84 85 86 87 88 89 90 91 \n92 93 94 95 96 97 98 99 100 101 102 103 104 \n105 106 107 108 109 110 111 112 113 114 115 116 117 \n118 119 120 121 122 123 124 125 126 127 128 129 130 \n131 132 133 134 135 136 137 138 139 140 141 142 143 \n144 145 146 147 148 149 1..."
},
{
"input": "7279 80 91",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 \n92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "1653 87 19",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \n20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 \n39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 \n58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 \n77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 \n96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 \n115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 \n134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 1..."
},
{
"input": "15 2 8",
"output": "1 2 3 4 5 6 7 8 \n10 9 12 11 14 13 0 15 "
},
{
"input": "1459 17 86",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 \n88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "3035 40 76",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 \n78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 \n153 154..."
},
{
"input": "3095 50 62",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 \n64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 \n125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3055 65 47",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 \n48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 \n95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 \n142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "2638 80 33",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 \n34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 \n67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 \n133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153..."
},
{
"input": "29 3 11",
"output": "1 2 3 4 5 6 7 8 9 10 11 \n12 13 14 15 16 17 18 19 20 21 22 \n23 24 25 26 27 28 29 0 0 0 0 "
},
{
"input": "16 18 1",
"output": "1 \n2 \n3 \n4 \n5 \n6 \n7 \n8 \n9 \n10 \n11 \n12 \n13 \n14 \n15 \n16 \n0 \n0 "
},
{
"input": "2240 27 83",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 \n84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "1264 55 23",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 \n24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 \n47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 \n70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 \n93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 \n116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 \n139 140 141 142 143 144 145 146 147 148 149 150 151 152..."
},
{
"input": "5400 75 72",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 \n74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 \n145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "46 3 16",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \n18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 \n33 34 35 36 37 38 39 40 41 42 43 44 45 46 0 0 "
},
{
"input": "1512 27 56",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 \n58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4206 86 12",
"output": "-1"
},
{
"input": "2358 14 56",
"output": "-1"
},
{
"input": "5420 35 96",
"output": "-1"
},
{
"input": "7758 63 41",
"output": "-1"
},
{
"input": "9806 87 93",
"output": "-1"
},
{
"input": "99 1 97",
"output": "-1"
},
{
"input": "1053 25 42",
"output": "-1"
},
{
"input": "4217 49 86",
"output": "-1"
},
{
"input": "2312 77 30",
"output": "-1"
},
{
"input": "74 1 71",
"output": "-1"
},
{
"input": "1 99 100",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "1 57 99",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "4785 55 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "4611 53 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "9801 99 99",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "8096 92 88",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 \n90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "5916 68 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "8928 93 96",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 \n98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "7743 89 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "3128 46 68",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 \n70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 \n137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3800 40 95",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 \n96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "5368 61 88",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 \n90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "2583 41 63",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 \n64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4056 52 78",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 \n80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "3822 42 91",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 \n92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "5358 57 94",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 \n96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "2961 47 63",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 \n64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
}
] | 1,627,281,110
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 85
| 93
| 7,270,400
|
n, a, b = map(int, input().split())
if n > a * b:
print(-1)
else:
c = [[0 for j in range(b)] for i in range(a)]
p = 1
i = 0
j = 0
while p <= n:
if i % 2 == 0:
for j in range(b):
if p > n:
break
c[i][j] = p
p += 1
else:
for j in reversed(range(b)):
if p > n:
break
c[i][j] = p
p += 1
i += 1
for i in range(a):
print(*c[i])
|
Title: Parliament of Berland
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* parliamentarians in Berland. They are numbered with integers from 1 to *n*. It happened that all parliamentarians with odd indices are Democrats and all parliamentarians with even indices are Republicans.
New parliament assembly hall is a rectangle consisting of *a*<=×<=*b* chairs — *a* rows of *b* chairs each. Two chairs are considered neighbouring if they share as side. For example, chair number 5 in row number 2 is neighbouring to chairs number 4 and 6 in this row and chairs with number 5 in rows 1 and 3. Thus, chairs have four neighbours in general, except for the chairs on the border of the hall
We know that if two parliamentarians from one political party (that is two Democrats or two Republicans) seat nearby they spent all time discussing internal party issues.
Write the program that given the number of parliamentarians and the sizes of the hall determine if there is a way to find a seat for any parliamentarian, such that no two members of the same party share neighbouring seats.
Input Specification:
The first line of the input contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=10<=000, 1<=≤<=*a*,<=*b*<=≤<=100) — the number of parliamentarians, the number of rows in the assembly hall and the number of seats in each row, respectively.
Output Specification:
If there is no way to assigns seats to parliamentarians in a proper way print -1.
Otherwise print the solution in *a* lines, each containing *b* integers. The *j*-th integer of the *i*-th line should be equal to the index of parliamentarian occupying this seat, or 0 if this seat should remain empty. If there are multiple possible solution, you may print any of them.
Demo Input:
['3 2 2\n', '8 4 3\n', '10 2 2\n']
Demo Output:
['0 3\n1 2\n', '7 8 3\n0 1 4\n6 0 5\n0 2 0\n', '-1\n']
Note:
In the first sample there are many other possible solutions. For example,
and
The following assignment
is incorrect, because parliamentarians 1 and 3 are both from Democrats party but will occupy neighbouring seats.
|
```python
n, a, b = map(int, input().split())
if n > a * b:
print(-1)
else:
c = [[0 for j in range(b)] for i in range(a)]
p = 1
i = 0
j = 0
while p <= n:
if i % 2 == 0:
for j in range(b):
if p > n:
break
c[i][j] = p
p += 1
else:
for j in reversed(range(b)):
if p > n:
break
c[i][j] = p
p += 1
i += 1
for i in range(a):
print(*c[i])
```
| 3
|
|
742
|
A
|
Arpa’s hard exam and Mehrdad’s naive cheat
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math",
"number theory"
] | null | null |
There exists an island called Arpa’s land, some beautiful girls live there, as ugly ones do.
Mehrdad wants to become minister of Arpa’s land. Arpa has prepared an exam. Exam has only one question, given *n*, print the last digit of 1378*n*.
Mehrdad has become quite confused and wants you to help him. Please help, although it's a naive cheat.
|
The single line of input contains one integer *n* (0<=<=≤<=<=*n*<=<=≤<=<=109).
|
Print single integer — the last digit of 1378*n*.
|
[
"1\n",
"2\n"
] |
[
"8",
"4"
] |
In the first example, last digit of 1378<sup class="upper-index">1</sup> = 1378 is 8.
In the second example, last digit of 1378<sup class="upper-index">2</sup> = 1378·1378 = 1898884 is 4.
| 500
|
[
{
"input": "1",
"output": "8"
},
{
"input": "2",
"output": "4"
},
{
"input": "1000",
"output": "6"
},
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "6"
},
{
"input": "1000000000",
"output": "6"
},
{
"input": "5",
"output": "8"
},
{
"input": "6",
"output": "4"
},
{
"input": "999999999",
"output": "2"
},
{
"input": "1378",
"output": "4"
},
{
"input": "13781378",
"output": "4"
},
{
"input": "51202278",
"output": "4"
},
{
"input": "999999998",
"output": "4"
},
{
"input": "999999997",
"output": "8"
},
{
"input": "12193721",
"output": "8"
},
{
"input": "0",
"output": "1"
},
{
"input": "989898989",
"output": "8"
},
{
"input": "7",
"output": "2"
},
{
"input": "8",
"output": "6"
},
{
"input": "9",
"output": "8"
},
{
"input": "10",
"output": "4"
},
{
"input": "11",
"output": "2"
},
{
"input": "12",
"output": "6"
},
{
"input": "13",
"output": "8"
},
{
"input": "14",
"output": "4"
},
{
"input": "15",
"output": "2"
},
{
"input": "16",
"output": "6"
},
{
"input": "999999996",
"output": "6"
},
{
"input": "999999995",
"output": "2"
},
{
"input": "999999994",
"output": "4"
}
] | 1,655,724,954
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 15
| 46
| 0
|
n = int(input())
##for i in range(22):
## print(i,(1378**i)%10)
## if(i%10==0):print()
## power sequances from modular
powers = [8,4,2,6]
print(powers[(n-1)%4])
|
Title: Arpa’s hard exam and Mehrdad’s naive cheat
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There exists an island called Arpa’s land, some beautiful girls live there, as ugly ones do.
Mehrdad wants to become minister of Arpa’s land. Arpa has prepared an exam. Exam has only one question, given *n*, print the last digit of 1378*n*.
Mehrdad has become quite confused and wants you to help him. Please help, although it's a naive cheat.
Input Specification:
The single line of input contains one integer *n* (0<=<=≤<=<=*n*<=<=≤<=<=109).
Output Specification:
Print single integer — the last digit of 1378*n*.
Demo Input:
['1\n', '2\n']
Demo Output:
['8', '4']
Note:
In the first example, last digit of 1378<sup class="upper-index">1</sup> = 1378 is 8.
In the second example, last digit of 1378<sup class="upper-index">2</sup> = 1378·1378 = 1898884 is 4.
|
```python
n = int(input())
##for i in range(22):
## print(i,(1378**i)%10)
## if(i%10==0):print()
## power sequances from modular
powers = [8,4,2,6]
print(powers[(n-1)%4])
```
| 0
|
|
540
|
A
|
Combination Lock
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
|
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
|
[
"5\n82195\n64723\n"
] |
[
"13\n"
] |
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 500
|
[
{
"input": "5\n82195\n64723",
"output": "13"
},
{
"input": "12\n102021090898\n010212908089",
"output": "16"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "10\n0728592530\n1362615763",
"output": "27"
},
{
"input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746",
"output": "245"
},
{
"input": "1\n8\n1",
"output": "3"
},
{
"input": "2\n83\n57",
"output": "7"
},
{
"input": "3\n607\n684",
"output": "5"
},
{
"input": "4\n0809\n0636",
"output": "8"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762280548\n9519431339078678836940020",
"output": "72"
},
{
"input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024",
"output": "305"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8037856825987124762285484\n9519431339078678836940202",
"output": "74"
},
{
"input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831",
"output": "357"
},
{
"input": "5\n84284\n08941",
"output": "16"
},
{
"input": "25\n8378525987476228048406972\n9194339078883694020217816",
"output": "55"
},
{
"input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599",
"output": "274"
},
{
"input": "1\n0\n0",
"output": "0"
},
{
"input": "1\n7\n7",
"output": "0"
},
{
"input": "1\n0\n5",
"output": "5"
},
{
"input": "1\n2\n7",
"output": "5"
},
{
"input": "1\n7\n9",
"output": "2"
},
{
"input": "1\n9\n7",
"output": "2"
},
{
"input": "1\n2\n9",
"output": "3"
},
{
"input": "1\n9\n2",
"output": "3"
},
{
"input": "25\n3164978461316464614169874\n9413979197249127496597357",
"output": "66"
},
{
"input": "4\n9999\n9999",
"output": "0"
},
{
"input": "2\n11\n11",
"output": "0"
}
] | 1,628,211,717
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 77
| 6,758,400
|
n,a,b,num = int(input()),input().strip(),input().strip(),0
for i in range(n):
q = abs(int(a[i]) - int(b[i]))
num += 10 - q if q > 5 else q
print(num)
|
Title: Combination Lock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock.
The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock.
The second line contains a string of *n* digits — the original state of the disks.
The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Output Specification:
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
Demo Input:
['5\n82195\n64723\n']
Demo Output:
['13\n']
Note:
In the sample he needs 13 moves:
- 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
n,a,b,num = int(input()),input().strip(),input().strip(),0
for i in range(n):
q = abs(int(a[i]) - int(b[i]))
num += 10 - q if q > 5 else q
print(num)
```
| 3
|
|
35
|
A
|
Shell Game
|
PROGRAMMING
| 1,000
|
[
"implementation"
] |
A. Shell Game
|
2
|
64
|
Today the «Z» city residents enjoy a shell game competition. The residents are gathered on the main square to watch the breath-taking performance. The performer puts 3 non-transparent cups upside down in a row. Then he openly puts a small ball under one of the cups and starts to shuffle the cups around very quickly so that on the whole he makes exactly 3 shuffles. After that the spectators have exactly one attempt to guess in which cup they think the ball is and if the answer is correct they get a prize. Maybe you can try to find the ball too?
|
The first input line contains an integer from 1 to 3 — index of the cup which covers the ball before the shuffles. The following three lines describe the shuffles. Each description of a shuffle contains two distinct integers from 1 to 3 — indexes of the cups which the performer shuffled this time. The cups are numbered from left to right and are renumbered after each shuffle from left to right again. In other words, the cup on the left always has index 1, the one in the middle — index 2 and the one on the right — index 3.
|
In the first line output an integer from 1 to 3 — index of the cup which will have the ball after all the shuffles.
|
[
"1\n1 2\n2 1\n2 1\n",
"1\n2 1\n3 1\n1 3\n"
] |
[
"2\n",
"2\n"
] |
none
| 500
|
[
{
"input": "1\n1 2\n2 1\n2 1",
"output": "2"
},
{
"input": "1\n2 1\n3 1\n1 3",
"output": "2"
},
{
"input": "3\n3 1\n2 1\n1 2",
"output": "1"
},
{
"input": "1\n1 3\n1 2\n2 3",
"output": "2"
},
{
"input": "3\n3 2\n3 1\n3 1",
"output": "2"
},
{
"input": "1\n2 1\n1 3\n1 3",
"output": "2"
},
{
"input": "3\n3 1\n2 3\n3 2",
"output": "1"
},
{
"input": "2\n1 3\n1 2\n2 1",
"output": "2"
},
{
"input": "1\n1 3\n3 2\n1 2",
"output": "1"
},
{
"input": "1\n1 3\n1 3\n2 3",
"output": "1"
},
{
"input": "2\n1 2\n2 3\n2 1",
"output": "2"
},
{
"input": "3\n1 3\n3 2\n2 1",
"output": "2"
},
{
"input": "1\n1 2\n2 1\n2 3",
"output": "1"
},
{
"input": "1\n2 3\n1 3\n1 2",
"output": "3"
},
{
"input": "2\n3 1\n3 2\n2 3",
"output": "2"
},
{
"input": "2\n1 3\n3 1\n3 1",
"output": "2"
},
{
"input": "1\n3 2\n1 3\n3 1",
"output": "1"
},
{
"input": "3\n1 3\n1 2\n1 3",
"output": "2"
},
{
"input": "1\n3 2\n3 1\n1 2",
"output": "3"
},
{
"input": "2\n2 3\n1 3\n1 3",
"output": "3"
}
] | 1,560,509,435
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 218
| 0
|
with open('input.txt', 'r') as fr:
result = int(fr.readline())
for i in range(3):
a,b = [int(x) for x in fr.readline().split()]
if a == result:
result = b
elif b == result:
result = a
with open('output.txt', 'w') as fw:
fw.write(str(result))
|
Title: Shell Game
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
Today the «Z» city residents enjoy a shell game competition. The residents are gathered on the main square to watch the breath-taking performance. The performer puts 3 non-transparent cups upside down in a row. Then he openly puts a small ball under one of the cups and starts to shuffle the cups around very quickly so that on the whole he makes exactly 3 shuffles. After that the spectators have exactly one attempt to guess in which cup they think the ball is and if the answer is correct they get a prize. Maybe you can try to find the ball too?
Input Specification:
The first input line contains an integer from 1 to 3 — index of the cup which covers the ball before the shuffles. The following three lines describe the shuffles. Each description of a shuffle contains two distinct integers from 1 to 3 — indexes of the cups which the performer shuffled this time. The cups are numbered from left to right and are renumbered after each shuffle from left to right again. In other words, the cup on the left always has index 1, the one in the middle — index 2 and the one on the right — index 3.
Output Specification:
In the first line output an integer from 1 to 3 — index of the cup which will have the ball after all the shuffles.
Demo Input:
['1\n1 2\n2 1\n2 1\n', '1\n2 1\n3 1\n1 3\n']
Demo Output:
['2\n', '2\n']
Note:
none
|
```python
with open('input.txt', 'r') as fr:
result = int(fr.readline())
for i in range(3):
a,b = [int(x) for x in fr.readline().split()]
if a == result:
result = b
elif b == result:
result = a
with open('output.txt', 'w') as fw:
fw.write(str(result))
```
| 3.9455
|
148
|
A
|
Insomnia cure
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"implementation",
"math"
] | null | null |
«One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine.
However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic.
How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons?
|
Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105).
|
Output the number of damaged dragons.
|
[
"1\n2\n3\n4\n12\n",
"2\n3\n4\n5\n24\n"
] |
[
"12\n",
"17\n"
] |
In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough.
In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
| 1,000
|
[
{
"input": "1\n2\n3\n4\n12",
"output": "12"
},
{
"input": "2\n3\n4\n5\n24",
"output": "17"
},
{
"input": "1\n1\n1\n1\n100000",
"output": "100000"
},
{
"input": "10\n9\n8\n7\n6",
"output": "0"
},
{
"input": "8\n4\n4\n3\n65437",
"output": "32718"
},
{
"input": "8\n4\n1\n10\n59392",
"output": "59392"
},
{
"input": "4\n1\n8\n7\n44835",
"output": "44835"
},
{
"input": "6\n1\n7\n2\n62982",
"output": "62982"
},
{
"input": "2\n7\n4\n9\n56937",
"output": "35246"
},
{
"input": "2\n9\n8\n1\n75083",
"output": "75083"
},
{
"input": "8\n7\n7\n6\n69038",
"output": "24656"
},
{
"input": "4\n4\n2\n3\n54481",
"output": "36320"
},
{
"input": "6\n4\n9\n8\n72628",
"output": "28244"
},
{
"input": "9\n7\n8\n10\n42357",
"output": "16540"
},
{
"input": "5\n6\n4\n3\n60504",
"output": "36302"
},
{
"input": "7\n2\n3\n8\n21754",
"output": "15539"
},
{
"input": "1\n2\n10\n4\n39901",
"output": "39901"
},
{
"input": "3\n4\n7\n1\n58048",
"output": "58048"
},
{
"input": "9\n10\n4\n6\n52003",
"output": "21956"
},
{
"input": "5\n10\n9\n3\n70149",
"output": "32736"
},
{
"input": "5\n5\n5\n10\n55592",
"output": "11118"
},
{
"input": "1\n5\n2\n6\n49547",
"output": "49547"
},
{
"input": "3\n7\n7\n7\n84046",
"output": "36019"
},
{
"input": "10\n2\n1\n8\n63537",
"output": "63537"
},
{
"input": "7\n2\n10\n5\n81684",
"output": "53678"
},
{
"input": "7\n1\n6\n8\n99831",
"output": "99831"
},
{
"input": "3\n9\n3\n3\n61082",
"output": "20360"
},
{
"input": "5\n5\n8\n9\n79228",
"output": "29931"
},
{
"input": "1\n5\n5\n6\n89535",
"output": "89535"
},
{
"input": "5\n5\n2\n1\n7682",
"output": "7682"
},
{
"input": "7\n4\n8\n8\n25829",
"output": "9224"
},
{
"input": "3\n4\n3\n3\n87079",
"output": "43539"
},
{
"input": "5\n8\n4\n9\n5226",
"output": "2438"
},
{
"input": "4\n9\n6\n6\n1070",
"output": "415"
},
{
"input": "10\n10\n10\n10\n100000",
"output": "10000"
},
{
"input": "1\n1\n1\n1\n1",
"output": "1"
},
{
"input": "10\n10\n10\n10\n1",
"output": "0"
},
{
"input": "10\n10\n1\n10\n10",
"output": "10"
},
{
"input": "10\n10\n1\n10\n100",
"output": "100"
},
{
"input": "2\n2\n2\n2\n1",
"output": "0"
}
] | 1,699,798,021
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 2
| 92
| 0
|
punch = int(input())
balcony = int(input())
trampled = int(input())
web = int(input())
targets = int(input())
amount_punch = []
amount_balcony = []
amount_trampled = []
amount_web = []
if punch % balcony != 0 or punch % trampled != 0 or punch % web != 0:
amount_punch = [i*punch for i in range(1, targets+1) if i*punch <= targets]
if balcony % punch != 0 or balcony % trampled != 0 or balcony % web != 0:
amount_balcony = [i*balcony for i in range(1, targets+1) if i*balcony <= targets]
if trampled % punch != 0 or trampled % balcony != 0 or trampled % web != 0:
amount_trampled = [i*trampled for i in range(1, targets+1) if i*trampled <= targets]
if web % punch != 0 or web % balcony != 0 or web % trampled != 0:
amount_web = [i*web for i in range(1, targets+1) if i*web <= targets]
actual = set(amount_punch+amount_balcony+amount_trampled+amount_web)
print(len(actual))
|
Title: Insomnia cure
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
«One dragon. Two dragon. Three dragon», — the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine.
However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every *k*-th dragon got punched in the face with a frying pan. Every *l*-th dragon got his tail shut into the balcony door. Every *m*-th dragon got his paws trampled with sharp heels. Finally, she threatened every *n*-th dragon to call her mom, and he withdrew in panic.
How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of *d* dragons?
Input Specification:
Input data contains integer numbers *k*,<=*l*,<=*m*,<=*n* and *d*, each number in a separate line (1<=≤<=*k*,<=*l*,<=*m*,<=*n*<=≤<=10, 1<=≤<=*d*<=≤<=105).
Output Specification:
Output the number of damaged dragons.
Demo Input:
['1\n2\n3\n4\n12\n', '2\n3\n4\n5\n24\n']
Demo Output:
['12\n', '17\n']
Note:
In the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough.
In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed.
|
```python
punch = int(input())
balcony = int(input())
trampled = int(input())
web = int(input())
targets = int(input())
amount_punch = []
amount_balcony = []
amount_trampled = []
amount_web = []
if punch % balcony != 0 or punch % trampled != 0 or punch % web != 0:
amount_punch = [i*punch for i in range(1, targets+1) if i*punch <= targets]
if balcony % punch != 0 or balcony % trampled != 0 or balcony % web != 0:
amount_balcony = [i*balcony for i in range(1, targets+1) if i*balcony <= targets]
if trampled % punch != 0 or trampled % balcony != 0 or trampled % web != 0:
amount_trampled = [i*trampled for i in range(1, targets+1) if i*trampled <= targets]
if web % punch != 0 or web % balcony != 0 or web % trampled != 0:
amount_web = [i*web for i in range(1, targets+1) if i*web <= targets]
actual = set(amount_punch+amount_balcony+amount_trampled+amount_web)
print(len(actual))
```
| 0
|
|
793
|
A
|
Oleg and shares
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Oleg the bank client checks share prices every day. There are *n* share prices he is interested in. Today he observed that each second exactly one of these prices decreases by *k* rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all *n* prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of share prices, and the amount of rubles some price decreases each second.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the initial prices.
|
Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.
|
[
"3 3\n12 9 15\n",
"2 2\n10 9\n",
"4 1\n1 1000000000 1000000000 1000000000\n"
] |
[
"3",
"-1",
"2999999997"
] |
Consider the first example.
Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.
There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.
In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.
In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.
| 500
|
[
{
"input": "3 3\n12 9 15",
"output": "3"
},
{
"input": "2 2\n10 9",
"output": "-1"
},
{
"input": "4 1\n1 1000000000 1000000000 1000000000",
"output": "2999999997"
},
{
"input": "1 11\n123",
"output": "0"
},
{
"input": "20 6\n38 86 86 50 98 62 32 2 14 62 98 50 2 50 32 38 62 62 8 14",
"output": "151"
},
{
"input": "20 5\n59 54 19 88 55 100 54 3 6 13 99 38 36 71 59 6 64 85 45 54",
"output": "-1"
},
{
"input": "100 10\n340 70 440 330 130 120 340 210 440 110 410 120 180 40 50 230 70 110 310 360 480 70 230 120 230 310 470 60 210 60 210 480 290 250 450 440 150 40 500 230 280 250 30 50 310 50 230 360 420 260 330 80 50 160 70 470 140 180 380 190 250 30 220 410 80 310 280 50 20 430 440 180 310 190 190 330 90 190 320 390 170 460 230 30 80 500 470 370 80 500 400 120 220 150 70 120 70 320 260 260",
"output": "2157"
},
{
"input": "100 18\n489 42 300 366 473 105 220 448 70 488 201 396 168 281 67 235 324 291 313 387 407 223 39 144 224 233 72 318 229 377 62 171 448 119 354 282 147 447 260 384 172 199 67 326 311 431 337 142 281 202 404 468 38 120 90 437 33 420 249 372 367 253 255 411 309 333 103 176 162 120 203 41 352 478 216 498 224 31 261 493 277 99 375 370 394 229 71 488 246 194 233 13 66 111 366 456 277 360 116 354",
"output": "-1"
},
{
"input": "4 2\n1 2 3 4",
"output": "-1"
},
{
"input": "3 4\n3 5 5",
"output": "-1"
},
{
"input": "3 2\n88888884 88888886 88888888",
"output": "3"
},
{
"input": "2 1\n1000000000 1000000000",
"output": "0"
},
{
"input": "4 2\n1000000000 100000000 100000000 100000000",
"output": "450000000"
},
{
"input": "2 2\n1000000000 1000000000",
"output": "0"
},
{
"input": "3 3\n3 2 1",
"output": "-1"
},
{
"input": "3 4\n3 5 3",
"output": "-1"
},
{
"input": "3 2\n1 2 2",
"output": "-1"
},
{
"input": "4 2\n2 3 3 2",
"output": "-1"
},
{
"input": "3 2\n1 2 4",
"output": "-1"
},
{
"input": "3 2\n3 4 4",
"output": "-1"
},
{
"input": "3 3\n4 7 10",
"output": "3"
},
{
"input": "4 3\n2 2 5 1",
"output": "-1"
},
{
"input": "3 3\n1 3 5",
"output": "-1"
},
{
"input": "2 5\n5 9",
"output": "-1"
},
{
"input": "2 3\n5 7",
"output": "-1"
},
{
"input": "3 137\n1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "5 1000000000\n1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "3 5\n1 2 5",
"output": "-1"
},
{
"input": "3 3\n1000000000 1000000000 999999997",
"output": "2"
},
{
"input": "2 4\n5 6",
"output": "-1"
},
{
"input": "4 1\n1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "2 3\n5 8",
"output": "1"
},
{
"input": "2 6\n8 16",
"output": "-1"
},
{
"input": "5 3\n15 14 9 12 18",
"output": "-1"
},
{
"input": "3 3\n1 2 3",
"output": "-1"
},
{
"input": "3 3\n3 4 5",
"output": "-1"
},
{
"input": "2 5\n8 17",
"output": "-1"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "0"
},
{
"input": "3 3\n5 3 4",
"output": "-1"
},
{
"input": "3 6\n10 14 12",
"output": "-1"
},
{
"input": "2 2\n3 5",
"output": "1"
},
{
"input": "3 5\n1 3 4",
"output": "-1"
},
{
"input": "4 3\n1 6 6 6",
"output": "-1"
},
{
"input": "2 3\n1 8",
"output": "-1"
},
{
"input": "3 5\n6 11 17",
"output": "-1"
},
{
"input": "2 2\n1 4",
"output": "-1"
},
{
"input": "2 4\n6 8",
"output": "-1"
},
{
"input": "2 1\n2 3",
"output": "1"
},
{
"input": "4 4\n1 5 8 14",
"output": "-1"
},
{
"input": "3 3\n1 5 3",
"output": "-1"
},
{
"input": "4 3\n1 2 2 5",
"output": "-1"
},
{
"input": "3 2\n1 4 6",
"output": "-1"
},
{
"input": "2 3\n6 9",
"output": "1"
},
{
"input": "3 3\n2 3 4",
"output": "-1"
},
{
"input": "3 2\n9 10 10",
"output": "-1"
},
{
"input": "2 2\n9 12",
"output": "-1"
},
{
"input": "2 2\n100000003 100000005",
"output": "1"
},
{
"input": "2 3\n2 4",
"output": "-1"
},
{
"input": "3 2\n2 3 5",
"output": "-1"
},
{
"input": "3 3\n1 3 4",
"output": "-1"
},
{
"input": "10 2\n2 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "4499999991"
},
{
"input": "3 5\n2 4 5",
"output": "-1"
},
{
"input": "2 3\n7 10",
"output": "1"
},
{
"input": "3 10\n10 13 17",
"output": "-1"
},
{
"input": "2 3\n1 6",
"output": "-1"
},
{
"input": "1 7\n1000000000",
"output": "0"
},
{
"input": "2 4\n3 7",
"output": "1"
},
{
"input": "2 3\n2 5",
"output": "1"
},
{
"input": "20 1\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "3 3\n7 8 8",
"output": "-1"
},
{
"input": "4 10\n1 11 100 11",
"output": "-1"
}
] | 1,493,045,431
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 88
| 170
| 14,336,000
|
n, k = map(int, input().split())
a = [int(elem) for elem in input().split()]
mi = min(a)
cou = 0
b = []
st = 0
for i in a:
if st != 0:
continue
if i != mi:
if (i - mi) % k == 0:
cou += (i - mi) // k
else:
st = 1
cou = -1
print(cou)
|
Title: Oleg and shares
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Oleg the bank client checks share prices every day. There are *n* share prices he is interested in. Today he observed that each second exactly one of these prices decreases by *k* rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all *n* prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of share prices, and the amount of rubles some price decreases each second.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the initial prices.
Output Specification:
Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.
Demo Input:
['3 3\n12 9 15\n', '2 2\n10 9\n', '4 1\n1 1000000000 1000000000 1000000000\n']
Demo Output:
['3', '-1', '2999999997']
Note:
Consider the first example.
Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.
There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.
In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.
In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.
|
```python
n, k = map(int, input().split())
a = [int(elem) for elem in input().split()]
mi = min(a)
cou = 0
b = []
st = 0
for i in a:
if st != 0:
continue
if i != mi:
if (i - mi) % k == 0:
cou += (i - mi) // k
else:
st = 1
cou = -1
print(cou)
```
| 3
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
Little Elephant loves Furik and Rubik, who he met in a small city Kremenchug.
The Little Elephant has two strings of equal length *a* and *b*, consisting only of uppercase English letters. The Little Elephant selects a pair of substrings of equal length — the first one from string *a*, the second one from string *b*. The choice is equiprobable among all possible pairs. Let's denote the substring of *a* as *x*, and the substring of *b* — as *y*. The Little Elephant gives string *x* to Furik and string *y* — to Rubik.
Let's assume that *f*(*x*,<=*y*) is the number of such positions of *i* (1<=≤<=*i*<=≤<=|*x*|), that *x**i*<==<=*y**i* (where |*x*| is the length of lines *x* and *y*, and *x**i*, *y**i* are the *i*-th characters of strings *x* and *y*, correspondingly). Help Furik and Rubik find the expected value of *f*(*x*,<=*y*).
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — the length of strings *a* and *b*. The second line contains string *a*, the third line contains string *b*. The strings consist of uppercase English letters only. The length of both strings equals *n*.
|
On a single line print a real number — the answer to the problem. The answer will be considered correct if its relative or absolute error does not exceed 10<=-<=6.
|
[
"2\nAB\nBA\n",
"3\nAAB\nCAA\n"
] |
[
"0.400000000\n",
"0.642857143\n"
] |
Let's assume that we are given string *a* = *a*<sub class="lower-index">1</sub>*a*<sub class="lower-index">2</sub>... *a*<sub class="lower-index">|*a*|</sub>, then let's denote the string's length as |*a*|, and its *i*-th character — as *a*<sub class="lower-index">*i*</sub>.
A substring *a*[*l*... *r*] (1 ≤ *l* ≤ *r* ≤ |*a*|) of string *a* is string *a*<sub class="lower-index">*l*</sub>*a*<sub class="lower-index">*l* + 1</sub>... *a*<sub class="lower-index">*r*</sub>.
String *a* is a substring of string *b*, if there exists such pair of integers *l* and *r* (1 ≤ *l* ≤ *r* ≤ |*b*|), that *b*[*l*... *r*] = *a*.
Let's consider the first test sample. The first sample has 5 possible substring pairs: ("A", "B"), ("A", "A"), ("B", "B"), ("B", "A"), ("AB", "BA"). For the second and third pair value *f*(*x*, *y*) equals 1, for the rest it equals 0. The probability of choosing each pair equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that's why the answer is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 0 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 1 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 1 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 0 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 0 = <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/94b9256e0a6483c8977cf1cc752a60316429e3d1.png" style="max-width: 100.0%;max-height: 100.0%;"/> = 0.4.
| 0
|
[
{
"input": "2\nAB\nBA",
"output": "0.400000000"
},
{
"input": "3\nAAB\nCAA",
"output": "0.642857143"
},
{
"input": "7\nAAAAAAA\nBBBBBBB",
"output": "0.000000000"
},
{
"input": "4\nAAAA\nAAAB",
"output": "1.333333333"
},
{
"input": "10\nSATYFFJYBA\nBGFOBFBVAV",
"output": "0.329870130"
},
{
"input": "1\nA\nA",
"output": "1.000000000"
},
{
"input": "1\nA\nZ",
"output": "0.000000000"
},
{
"input": "14\nBABBABABABABAA\nBABABAABAAABAB",
"output": "2.065024631"
},
{
"input": "10\nQUDLGGRJEG\nMIZIEZRCJU",
"output": "0.145454545"
},
{
"input": "47\nGMQXICWAZQNJFYHHAFWXZOLNEZGUIPEKMWPWXLXUBDFONZF\nXSGRAAAFYJBCJYECMTWRTZNKVWMSVYJOFDNZFEFYLWGUGYX",
"output": "0.476567749"
},
{
"input": "25\nYWORWQKEMDATWPMKFZJWMKOWL\nPOQZKBGWTPZYPLSHCRKLBPMDW",
"output": "0.307149321"
},
{
"input": "22\nUGZZIPTKHGBOQDDTDGAHQH\nKVWQHSEFVUVUSLRTMWSGZQ",
"output": "0.125428195"
},
{
"input": "74\nYIHNLSUPBCQMOVFQGZRXVQRGQHXLZXVXMHQEOOENWGAZHZXCPTGLVIIZAYOPDIPKVBWZKKXORC\nOCEAPWMUHWVAGRGWGJCEPDQENOMUOHKXWQHTCJLVLGRRLZXBXEKLUDDGTTMTIMHUMZGPSLRVYH",
"output": "0.819858516"
},
{
"input": "99\nJJXMQAXSBLUZFSMEDKNRICWXAQFRAHIMDANLUGSNFBGRZRBHVDRTZEUYKDTNAODQJVFOGQBAMGFOFBSNZEQRLALVPBAHDCNBBUY\nPYPLLECGNRFMDNUIAGPEBVOZRUWIWBSGZOQVNJCAUBXRNLKABJJAMHXKMQOLKJKMHCDJFRIZUMMOSMQUCRUZAEXNMWHCOJRZIXX",
"output": "1.000852749"
},
{
"input": "100\nNSTGTRSMJLIDBREUSGYQOMBMECCEHNNRJDPMTKKIHIECODCEKZVVIBYZIHNOXGMUXWEZQSLVPJADKFAOVYVZPRRPTPSCXLAACZPQ\nSRZIMRLLUKNTSGJMAUCMMDCCRRQSPMQCMGSEFECMQFONXBODWCIJBEWXNQQHYVGKHELDIPJZZDSDYEDZZOOHUNTEEDDVAMIODOGY",
"output": "1.119453229"
},
{
"input": "58\nMTMWEDBBHGQTSZBGRSIILBAEAERRLNQSVRCAWUTBQIBWJHOJUYNFFBGKMB\nXSYEOUBVEMINIUCWKYGAFDMFFMDEAZFZTQGZGMECZYQLBNUXHMJWIEYRWB",
"output": "0.520493339"
},
{
"input": "17\nKEILXLMPJGZNOGKJD\nBLAFXHTHYHMSHMZOZ",
"output": "0.147899160"
},
{
"input": "147\nRJZCSVHLQANGDWUFVZEDLQBSCXBQVAHUKLQAULNYGEUADUECVWMQUTNQPEFRFYZHWQCOUDSFZMPYVXQMIYOGWCFVAJDBUHDXOPZCAZULLYLSJZITCSUQNCLNKUCVATCSJNHUWSBTUSZSMKNYRKS\nCZHMNCRNBKTJPDSEAZQRDEHZGWNLIHPPSMTANDLITUDTOGTLQGLXFJNXWTAPJRSYSBYJPKKBIQBSRQIGQTHDXZQFWHDVROCVFMMLNLEVSJJXQDUTTWGDLZHKJTPDIZASVXOAPNSETRODEHJWTTV",
"output": "1.381732684"
},
{
"input": "67\nNUAYJNTNCQIDKDKHCPJNKKTFHLTFIZKXZBOHXQLOFJAKKAXWPLSZBGTOOGBPFYTTFPM\nVUEPNNIBGKNAMKASOTQZOZADBYHOKTYFBMOZAFUBMKPEBJZBOKKZQZZSKSCHTMIPGYR",
"output": "0.917705590"
},
{
"input": "100\nXYXYYXXYYXYYYXXXXXXXXYXXXXXYYYYYYYXYXXXYXXXXYXXXYYYXYXYXYYXYXXXYXXYXXYYYYXYXYXXYXYYYYYYYYXXYYXXXYYXX\nYYXXYYYXXYYXXYXXXXXXYXXYYXXYXXXXXXXYXXXXYXYYYXYXXXYYXXYYXXYXYXXYXYYXYYYYYXYXXYYYXXYXYYXXYYYXXXXYXXXX",
"output": "13.007657751"
}
] | 1,690,500,540
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 0
|
print("_RANDOM_GUESS_1690500540.639277")# 1690500540.639297
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Elephant loves Furik and Rubik, who he met in a small city Kremenchug.
The Little Elephant has two strings of equal length *a* and *b*, consisting only of uppercase English letters. The Little Elephant selects a pair of substrings of equal length — the first one from string *a*, the second one from string *b*. The choice is equiprobable among all possible pairs. Let's denote the substring of *a* as *x*, and the substring of *b* — as *y*. The Little Elephant gives string *x* to Furik and string *y* — to Rubik.
Let's assume that *f*(*x*,<=*y*) is the number of such positions of *i* (1<=≤<=*i*<=≤<=|*x*|), that *x**i*<==<=*y**i* (where |*x*| is the length of lines *x* and *y*, and *x**i*, *y**i* are the *i*-th characters of strings *x* and *y*, correspondingly). Help Furik and Rubik find the expected value of *f*(*x*,<=*y*).
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=2·105) — the length of strings *a* and *b*. The second line contains string *a*, the third line contains string *b*. The strings consist of uppercase English letters only. The length of both strings equals *n*.
Output Specification:
On a single line print a real number — the answer to the problem. The answer will be considered correct if its relative or absolute error does not exceed 10<=-<=6.
Demo Input:
['2\nAB\nBA\n', '3\nAAB\nCAA\n']
Demo Output:
['0.400000000\n', '0.642857143\n']
Note:
Let's assume that we are given string *a* = *a*<sub class="lower-index">1</sub>*a*<sub class="lower-index">2</sub>... *a*<sub class="lower-index">|*a*|</sub>, then let's denote the string's length as |*a*|, and its *i*-th character — as *a*<sub class="lower-index">*i*</sub>.
A substring *a*[*l*... *r*] (1 ≤ *l* ≤ *r* ≤ |*a*|) of string *a* is string *a*<sub class="lower-index">*l*</sub>*a*<sub class="lower-index">*l* + 1</sub>... *a*<sub class="lower-index">*r*</sub>.
String *a* is a substring of string *b*, if there exists such pair of integers *l* and *r* (1 ≤ *l* ≤ *r* ≤ |*b*|), that *b*[*l*... *r*] = *a*.
Let's consider the first test sample. The first sample has 5 possible substring pairs: ("A", "B"), ("A", "A"), ("B", "B"), ("B", "A"), ("AB", "BA"). For the second and third pair value *f*(*x*, *y*) equals 1, for the rest it equals 0. The probability of choosing each pair equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that's why the answer is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 0 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 1 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 1 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 0 + <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/215e7035e1b836a262740867b9bbd824fd3c66fe.png" style="max-width: 100.0%;max-height: 100.0%;"/> · 0 = <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/94b9256e0a6483c8977cf1cc752a60316429e3d1.png" style="max-width: 100.0%;max-height: 100.0%;"/> = 0.4.
|
```python
print("_RANDOM_GUESS_1690500540.639277")# 1690500540.639297
```
| 0
|
|
615
|
A
|
Bulbs
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
|
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
|
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
|
[
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
| 500
|
[
{
"input": "3 4\n2 1 4\n3 1 3 1\n1 2",
"output": "YES"
},
{
"input": "3 3\n1 1\n1 2\n1 1",
"output": "NO"
},
{
"input": "3 4\n1 1\n1 2\n1 3",
"output": "NO"
},
{
"input": "1 5\n5 1 2 3 4 5",
"output": "YES"
},
{
"input": "1 5\n5 4 4 1 2 3",
"output": "NO"
},
{
"input": "1 5\n5 1 1 1 1 5",
"output": "NO"
},
{
"input": "2 5\n4 3 1 4 2\n4 2 3 4 5",
"output": "YES"
},
{
"input": "5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1",
"output": "YES"
},
{
"input": "100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6",
"output": "YES"
},
{
"input": "5 2\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "NO"
},
{
"input": "1 4\n3 1 2 3",
"output": "NO"
},
{
"input": "1 4\n3 2 3 4",
"output": "NO"
},
{
"input": "2 4\n3 2 3 4\n1 1",
"output": "YES"
},
{
"input": "2 4\n3 1 2 3\n1 4",
"output": "YES"
},
{
"input": "5 1\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "1 1\n0",
"output": "NO"
},
{
"input": "1 10\n10 1 2 3 4 5 6 7 8 9 10",
"output": "YES"
},
{
"input": "1 1\n1 1",
"output": "YES"
},
{
"input": "1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "NO"
},
{
"input": "1 3\n3 1 2 1",
"output": "NO"
},
{
"input": "1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "YES"
}
] | 1,634,635,153
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 0
|
s = input()
print('YES' if s.find('1111111') + 1 or s.find('0000000') + 1 else 'NO')
|
Title: Bulbs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input Specification:
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
Output Specification:
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
Demo Input:
['3 4\n2 1 4\n3 1 3 1\n1 2\n', '3 3\n1 1\n1 2\n1 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
|
```python
s = input()
print('YES' if s.find('1111111') + 1 or s.find('0000000') + 1 else 'NO')
```
| 0
|
|
349
|
A
|
Cinema Line
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
|
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
|
[
"4\n25 25 50 50\n",
"2\n25 100\n",
"4\n50 50 25 25\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "4\n25 25 50 50",
"output": "YES"
},
{
"input": "2\n25 100",
"output": "NO"
},
{
"input": "4\n50 50 25 25",
"output": "NO"
},
{
"input": "3\n25 50 100",
"output": "NO"
},
{
"input": "10\n25 25 25 25 25 25 25 25 25 25",
"output": "YES"
},
{
"input": "10\n50 50 50 50 50 50 50 50 50 50",
"output": "NO"
},
{
"input": "10\n100 100 100 100 100 100 100 100 100 100",
"output": "NO"
},
{
"input": "7\n25 25 25 25 50 100 50",
"output": "YES"
},
{
"input": "2\n25 25",
"output": "YES"
},
{
"input": "3\n50 100 100",
"output": "NO"
},
{
"input": "3\n25 50 50",
"output": "NO"
},
{
"input": "2\n50 25",
"output": "NO"
},
{
"input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100",
"output": "NO"
},
{
"input": "5\n25 25 25 100 100",
"output": "NO"
},
{
"input": "7\n25 50 25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 25 50 50 50",
"output": "NO"
},
{
"input": "5\n25 25 50 100 50",
"output": "NO"
},
{
"input": "5\n25 25 50 50 100",
"output": "NO"
},
{
"input": "1\n50",
"output": "NO"
}
] | 1,636,207,928
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 30
| 4,198,400
|
n=int(input())
x=input()
if(x==25 or x== 50):
print("Yes")
else:
print("No")
|
Title: Cinema Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Output Specification:
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
Demo Input:
['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
n=int(input())
x=input()
if(x==25 or x== 50):
print("Yes")
else:
print("No")
```
| 0
|
|
869
|
B
|
The Eternal Immortality
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
Even if the world is full of counterfeits, I still regard it as wonderful.
Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.
The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1.
Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer.
As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
|
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
|
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
|
[
"2 4\n",
"0 10\n",
"107 109\n"
] |
[
"2\n",
"0\n",
"2\n"
] |
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2;
In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0;
In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
| 1,000
|
[
{
"input": "2 4",
"output": "2"
},
{
"input": "0 10",
"output": "0"
},
{
"input": "107 109",
"output": "2"
},
{
"input": "10 13",
"output": "6"
},
{
"input": "998244355 998244359",
"output": "4"
},
{
"input": "999999999000000000 1000000000000000000",
"output": "0"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "3 15",
"output": "0"
},
{
"input": "24 26",
"output": "0"
},
{
"input": "14 60",
"output": "0"
},
{
"input": "11 79",
"output": "0"
},
{
"input": "1230 1232",
"output": "2"
},
{
"input": "2633 2634",
"output": "4"
},
{
"input": "535 536",
"output": "6"
},
{
"input": "344319135 396746843",
"output": "0"
},
{
"input": "696667767 696667767",
"output": "1"
},
{
"input": "419530302 610096911",
"output": "0"
},
{
"input": "238965115 821731161",
"output": "0"
},
{
"input": "414626436 728903812",
"output": "0"
},
{
"input": "274410639 293308324",
"output": "0"
},
{
"input": "650636673091305697 650636673091305702",
"output": "0"
},
{
"input": "651240548333620923 651240548333620924",
"output": "4"
},
{
"input": "500000000000000000 1000000000000000000",
"output": "0"
},
{
"input": "999999999999999999 1000000000000000000",
"output": "0"
},
{
"input": "1000000000000000000 1000000000000000000",
"output": "1"
},
{
"input": "0 4",
"output": "4"
},
{
"input": "50000000062000007 50000000062000011",
"output": "0"
},
{
"input": "0 0",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "0 2",
"output": "2"
},
{
"input": "10000000000012 10000000000015",
"output": "0"
},
{
"input": "5 5",
"output": "1"
},
{
"input": "12 23",
"output": "0"
},
{
"input": "0 11",
"output": "0"
},
{
"input": "11111234567890 11111234567898",
"output": "0"
},
{
"input": "0 3",
"output": "6"
},
{
"input": "1 2",
"output": "2"
},
{
"input": "999999999999999997 999999999999999999",
"output": "2"
},
{
"input": "4 5",
"output": "5"
},
{
"input": "0 1",
"output": "1"
},
{
"input": "101 1002",
"output": "0"
},
{
"input": "0 100000000000000001",
"output": "0"
},
{
"input": "99999999999999997 99999999999999999",
"output": "2"
},
{
"input": "14 15",
"output": "5"
},
{
"input": "8 19",
"output": "0"
},
{
"input": "12 22",
"output": "0"
},
{
"input": "999999999999996 999999999999999",
"output": "4"
},
{
"input": "1 3",
"output": "6"
},
{
"input": "124 125",
"output": "5"
},
{
"input": "11 32",
"output": "0"
},
{
"input": "0 5",
"output": "0"
},
{
"input": "0 999999",
"output": "0"
},
{
"input": "151151151515 151151151526",
"output": "0"
},
{
"input": "6 107",
"output": "0"
},
{
"input": "5 16",
"output": "0"
},
{
"input": "7 16",
"output": "0"
},
{
"input": "6 19",
"output": "0"
},
{
"input": "11113111111111 13111111111111",
"output": "0"
},
{
"input": "1 1000",
"output": "0"
},
{
"input": "24 25",
"output": "5"
},
{
"input": "0 100000000000",
"output": "0"
},
{
"input": "1 22",
"output": "0"
},
{
"input": "999999999999999996 999999999999999999",
"output": "4"
}
] | 1,527,251,827
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 15
| 93
| 0
|
a,b=input().split(" ")
a,b=[int(a),int(b)]
if b==a:
Ans=1
else:
result=1
for i in range(a+1,b+1,1):
k=i%10
result=result*k
result=result%10
if result==0:
break
Ans=result
print(Ans%10)
|
Title: The Eternal Immortality
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Even if the world is full of counterfeits, I still regard it as wonderful.
Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.
The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1.
Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer.
As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
Input Specification:
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
Output Specification:
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
Demo Input:
['2 4\n', '0 10\n', '107 109\n']
Demo Output:
['2\n', '0\n', '2\n']
Note:
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2;
In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0;
In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
|
```python
a,b=input().split(" ")
a,b=[int(a),int(b)]
if b==a:
Ans=1
else:
result=1
for i in range(a+1,b+1,1):
k=i%10
result=result*k
result=result%10
if result==0:
break
Ans=result
print(Ans%10)
```
| -1
|
|
641
|
D
|
Little Artem and Random Variable
|
PROGRAMMING
| 2,400
|
[
"dp",
"implementation",
"math",
"probabilities"
] | null | null |
Little Artyom decided to study probability theory. He found a book with a lot of nice exercises and now wants you to help him with one of them.
Consider two dices. When thrown each dice shows some integer from 1 to *n* inclusive. For each dice the probability of each outcome is given (of course, their sum is 1), and different dices may have different probability distributions.
We throw both dices simultaneously and then calculate values *max*(*a*,<=*b*) and *min*(*a*,<=*b*), where *a* is equal to the outcome of the first dice, while *b* is equal to the outcome of the second dice. You don't know the probability distributions for particular values on each dice, but you know the probability distributions for *max*(*a*,<=*b*) and *min*(*a*,<=*b*). That is, for each *x* from 1 to *n* you know the probability that *max*(*a*,<=*b*) would be equal to *x* and the probability that *min*(*a*,<=*b*) would be equal to *x*. Find any valid probability distribution for values on the dices. It's guaranteed that the input data is consistent, that is, at least one solution exists.
|
First line contains the integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of different values for both dices.
Second line contains an array consisting of *n* real values with up to 8 digits after the decimal point — probability distribution for *max*(*a*,<=*b*), the *i*-th of these values equals to the probability that *max*(*a*,<=*b*)<==<=*i*. It's guaranteed that the sum of these values for one dice is 1. The third line contains the description of the distribution *min*(*a*,<=*b*) in the same format.
|
Output two descriptions of the probability distribution for *a* on the first line and for *b* on the second line.
The answer will be considered correct if each value of max(*a*,<=*b*) and min(*a*,<=*b*) probability distribution values does not differ by more than 10<=-<=6 from ones given in input. Also, probabilities should be non-negative and their sums should differ from 1 by no more than 10<=-<=6.
|
[
"2\n0.25 0.75\n0.75 0.25\n",
"3\n0.125 0.25 0.625\n0.625 0.25 0.125\n"
] |
[
"0.5 0.5 \n0.5 0.5 \n",
"0.25 0.25 0.5 \n0.5 0.25 0.25 \n"
] |
none
| 1,500
|
[
{
"input": "2\n0.25 0.75\n0.75 0.25",
"output": "0.5 0.5 \n0.5 0.5 "
},
{
"input": "3\n0.125 0.25 0.625\n0.625 0.25 0.125",
"output": "0.25 0.25 0.5 \n0.5 0.25 0.25 "
},
{
"input": "10\n0.01 0.01 0.01 0.01 0.01 0.1 0.2 0.2 0.4 0.05\n1.0 0 0 0 0 0 0 0 0 0",
"output": "0.010000000000000009 0.010000000000000009 0.010000000000000009 0.009999999999999953 0.010000000000000009 0.10000000000000003 0.2 0.1999999999999999 0.39999999999999825 0.05000000000000182 \n1.0 0.0 0.0 0.0 0.0 -1.1102230246251565E-16 1.1102230246251565E-16 0.0 1.9984014443252818E-15 -1.9984014443252818E-15 "
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 1.0\n1.0 0 0 0 0 0 0 0 0 0",
"output": "0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 "
},
{
"input": "1\n1.0\n1.0",
"output": "1.0 \n1.0 "
},
{
"input": "2\n0.00001 0.99999\n0.5 0.5",
"output": "2.000040002400616E-5 0.999979999599976 \n0.4999899995999759 0.5000100004000241 "
},
{
"input": "3\n0.1 0.1 0.8\n0.6 0.2 0.2",
"output": "0.20000000000000004 0.07639320225002103 0.7236067977499789 \n0.4999999999999999 0.22360679774997905 0.27639320225002106 "
},
{
"input": "8\n0.09597231 0.11315755 0.32077119 0.22643005 0.03791746 0.04296694 0.10284494 0.05993956\n0.52402769 0.19814245 0.20452881 0.06686995 0.00468254 0.00103306 0.00055506 0.00016044",
"output": "0.29869999999999886 0.07920000000000116 0.32760000000000133 0.0734999999999989 0.02229999999999943 0.039699999999999847 0.10169999999999968 0.057299989463288625 \n0.32130000000000125 0.23209999999999875 0.19769999999999854 0.219800000000001 0.020300000000000762 0.0043000000000001926 0.0017000000000002569 0.002800010536711417 "
}
] | 1,645,297,287
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 5
| 46
| 102,400
|
from decimal import *
n = int(input())
p_max = input().split()
p_min = input().split()
ans_a = []
ans_b = []
S_a = Decimal('0')
S_b = Decimal('0')
for i in range(n):
M_1, M_0 = Decimal(p_max[i]), Decimal(p_min[i])
a = Decimal('1')
b = -(S_a - S_b + M_0 + M_1)
c = -S_b * (M_1 + M_0) + M_1
alpha_0 = (-b + (b * b - Decimal('4.0') * a * c).sqrt()) / (Decimal('2.0') * a)
alpha_1 = (-b - (b * b - Decimal('4.0') * a * c).sqrt()) / (Decimal('2.0') * a)
x, y = Decimal(0), Decimal(0)
if 0 <= alpha_0 <= M_1 + M_0:
y = alpha_0
else:
y = alpha_1
x = M_1 + M_0 - y
S_a += x
S_b += y
ans_a.append(x)
ans_b.append(y)
for i in ans_a:
print(i, end=' ')
print()
for i in ans_b:
print(i, end=' ')
|
Title: Little Artem and Random Variable
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Artyom decided to study probability theory. He found a book with a lot of nice exercises and now wants you to help him with one of them.
Consider two dices. When thrown each dice shows some integer from 1 to *n* inclusive. For each dice the probability of each outcome is given (of course, their sum is 1), and different dices may have different probability distributions.
We throw both dices simultaneously and then calculate values *max*(*a*,<=*b*) and *min*(*a*,<=*b*), where *a* is equal to the outcome of the first dice, while *b* is equal to the outcome of the second dice. You don't know the probability distributions for particular values on each dice, but you know the probability distributions for *max*(*a*,<=*b*) and *min*(*a*,<=*b*). That is, for each *x* from 1 to *n* you know the probability that *max*(*a*,<=*b*) would be equal to *x* and the probability that *min*(*a*,<=*b*) would be equal to *x*. Find any valid probability distribution for values on the dices. It's guaranteed that the input data is consistent, that is, at least one solution exists.
Input Specification:
First line contains the integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of different values for both dices.
Second line contains an array consisting of *n* real values with up to 8 digits after the decimal point — probability distribution for *max*(*a*,<=*b*), the *i*-th of these values equals to the probability that *max*(*a*,<=*b*)<==<=*i*. It's guaranteed that the sum of these values for one dice is 1. The third line contains the description of the distribution *min*(*a*,<=*b*) in the same format.
Output Specification:
Output two descriptions of the probability distribution for *a* on the first line and for *b* on the second line.
The answer will be considered correct if each value of max(*a*,<=*b*) and min(*a*,<=*b*) probability distribution values does not differ by more than 10<=-<=6 from ones given in input. Also, probabilities should be non-negative and their sums should differ from 1 by no more than 10<=-<=6.
Demo Input:
['2\n0.25 0.75\n0.75 0.25\n', '3\n0.125 0.25 0.625\n0.625 0.25 0.125\n']
Demo Output:
['0.5 0.5 \n0.5 0.5 \n', '0.25 0.25 0.5 \n0.5 0.25 0.25 \n']
Note:
none
|
```python
from decimal import *
n = int(input())
p_max = input().split()
p_min = input().split()
ans_a = []
ans_b = []
S_a = Decimal('0')
S_b = Decimal('0')
for i in range(n):
M_1, M_0 = Decimal(p_max[i]), Decimal(p_min[i])
a = Decimal('1')
b = -(S_a - S_b + M_0 + M_1)
c = -S_b * (M_1 + M_0) + M_1
alpha_0 = (-b + (b * b - Decimal('4.0') * a * c).sqrt()) / (Decimal('2.0') * a)
alpha_1 = (-b - (b * b - Decimal('4.0') * a * c).sqrt()) / (Decimal('2.0') * a)
x, y = Decimal(0), Decimal(0)
if 0 <= alpha_0 <= M_1 + M_0:
y = alpha_0
else:
y = alpha_1
x = M_1 + M_0 - y
S_a += x
S_b += y
ans_a.append(x)
ans_b.append(y)
for i in ans_a:
print(i, end=' ')
print()
for i in ans_b:
print(i, end=' ')
```
| -1
|
|
673
|
A
|
Bear and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.
Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.
You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game.
|
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=... *t**n*<=≤<=90), given in the increasing order.
|
Print the number of minutes Limak will watch the game.
|
[
"3\n7 20 88\n",
"9\n16 20 30 40 50 60 70 80 90\n",
"9\n15 20 30 40 50 60 70 80 90\n"
] |
[
"35\n",
"15\n",
"90\n"
] |
In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.
In the second sample, the first 15 minutes are boring.
In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
| 500
|
[
{
"input": "3\n7 20 88",
"output": "35"
},
{
"input": "9\n16 20 30 40 50 60 70 80 90",
"output": "15"
},
{
"input": "9\n15 20 30 40 50 60 70 80 90",
"output": "90"
},
{
"input": "30\n6 11 12 15 22 24 30 31 32 33 34 35 40 42 44 45 47 50 53 54 57 58 63 67 75 77 79 81 83 88",
"output": "90"
},
{
"input": "60\n1 2 4 5 6 7 11 14 16 18 20 21 22 23 24 25 26 33 34 35 36 37 38 39 41 42 43 44 46 47 48 49 52 55 56 57 58 59 60 61 63 64 65 67 68 70 71 72 73 74 75 77 78 80 82 83 84 85 86 88",
"output": "90"
},
{
"input": "90\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90",
"output": "90"
},
{
"input": "1\n1",
"output": "16"
},
{
"input": "5\n15 30 45 60 75",
"output": "90"
},
{
"input": "6\n14 29 43 59 70 74",
"output": "58"
},
{
"input": "1\n15",
"output": "30"
},
{
"input": "1\n16",
"output": "15"
},
{
"input": "14\n14 22 27 31 35 44 46 61 62 69 74 79 88 89",
"output": "90"
},
{
"input": "76\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90",
"output": "90"
},
{
"input": "1\n90",
"output": "15"
},
{
"input": "6\n13 17 32 47 60 66",
"output": "81"
},
{
"input": "84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84",
"output": "90"
},
{
"input": "9\n6 20 27 28 40 53 59 70 85",
"output": "90"
},
{
"input": "12\n14 22 27 31 35 44 62 69 74 79 88 89",
"output": "59"
},
{
"input": "5\n15 30 45 60 74",
"output": "89"
},
{
"input": "72\n3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89",
"output": "54"
},
{
"input": "8\n1 16 30 31 32 33 34 50",
"output": "49"
},
{
"input": "12\n1 3 6 10 15 21 28 36 45 55 66 78",
"output": "90"
},
{
"input": "25\n1 2 3 4 5 6 7 8 9 10 11 23 36 50 65 81 82 83 84 85 86 87 88 89 90",
"output": "80"
},
{
"input": "8\n5 17 20 35 42 53 67 76",
"output": "90"
},
{
"input": "9\n15 28 39 48 55 60 63 64 74",
"output": "89"
},
{
"input": "10\n15 28 39 48 55 60 63 64 74 82",
"output": "90"
},
{
"input": "2\n1 18",
"output": "16"
},
{
"input": "9\n10 20 30 40 50 60 70 80 84",
"output": "90"
},
{
"input": "2\n16 50",
"output": "15"
},
{
"input": "6\n15 30 45 60 75 84",
"output": "90"
},
{
"input": "8\n15 20 30 40 50 60 73 83",
"output": "90"
},
{
"input": "8\n10 20 30 40 50 60 70 80",
"output": "90"
},
{
"input": "3\n1 20 90",
"output": "16"
},
{
"input": "6\n15 30 45 60 74 89",
"output": "90"
}
] | 1,698,484,971
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int, input().split()))
if a[0] > 15:
print(15)
exit()
for i in range(n - 1):
if a[i] + 15 < a[i + 1]:
print(a[i] + 15)
exit()
print(min(a[-1] + 15, 90))
|
Title: Bear and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.
Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.
You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game.
Input Specification:
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=... *t**n*<=≤<=90), given in the increasing order.
Output Specification:
Print the number of minutes Limak will watch the game.
Demo Input:
['3\n7 20 88\n', '9\n16 20 30 40 50 60 70 80 90\n', '9\n15 20 30 40 50 60 70 80 90\n']
Demo Output:
['35\n', '15\n', '90\n']
Note:
In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.
In the second sample, the first 15 minutes are boring.
In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
|
```python
import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int, input().split()))
if a[0] > 15:
print(15)
exit()
for i in range(n - 1):
if a[i] + 15 < a[i + 1]:
print(a[i] + 15)
exit()
print(min(a[-1] + 15, 90))
```
| 3
|
|
483
|
A
|
Counterexample
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation",
"math",
"number theory"
] | null | null |
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
|
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
|
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
|
[
"2 4\n",
"10 11\n",
"900000000000000009 900000000000000029\n"
] |
[
"2 3 4\n",
"-1\n",
"900000000000000009 900000000000000010 900000000000000021\n"
] |
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
| 500
|
[
{
"input": "2 4",
"output": "2 3 4"
},
{
"input": "10 11",
"output": "-1"
},
{
"input": "900000000000000009 900000000000000029",
"output": "900000000000000009 900000000000000010 900000000000000021"
},
{
"input": "640097987171091791 640097987171091835",
"output": "640097987171091792 640097987171091793 640097987171091794"
},
{
"input": "19534350415104721 19534350415104725",
"output": "19534350415104722 19534350415104723 19534350415104724"
},
{
"input": "933700505788726243 933700505788726280",
"output": "933700505788726244 933700505788726245 933700505788726246"
},
{
"input": "1 3",
"output": "-1"
},
{
"input": "1 4",
"output": "2 3 4"
},
{
"input": "1 1",
"output": "-1"
},
{
"input": "266540997167959130 266540997167959164",
"output": "266540997167959130 266540997167959131 266540997167959132"
},
{
"input": "267367244641009850 267367244641009899",
"output": "267367244641009850 267367244641009851 267367244641009852"
},
{
"input": "268193483524125978 268193483524125993",
"output": "268193483524125978 268193483524125979 268193483524125980"
},
{
"input": "269019726702209402 269019726702209432",
"output": "269019726702209402 269019726702209403 269019726702209404"
},
{
"input": "269845965585325530 269845965585325576",
"output": "269845965585325530 269845965585325531 269845965585325532"
},
{
"input": "270672213058376250 270672213058376260",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492378",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608523",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691962",
"output": "273150934002691930 273150934002691931 273150934002691932"
},
{
"input": "996517375802030516 996517375802030524",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146694",
"output": "997343614685146644 997343614685146645 997343614685146646"
},
{
"input": "998169857863230068 998169857863230083",
"output": "998169857863230068 998169857863230069 998169857863230070"
},
{
"input": "998996101041313492 998996101041313522",
"output": "998996101041313492 998996101041313493 998996101041313494"
},
{
"input": "999822344219396916 999822344219396961",
"output": "999822344219396916 999822344219396917 999822344219396918"
},
{
"input": "648583102513043 648583102513053",
"output": "648583102513044 648583102513045 648583102513046"
},
{
"input": "266540997167959130 266540997167959131",
"output": "-1"
},
{
"input": "267367244641009850 267367244641009850",
"output": "-1"
},
{
"input": "268193483524125978 268193483524125979",
"output": "-1"
},
{
"input": "269019726702209402 269019726702209402",
"output": "-1"
},
{
"input": "269845965585325530 269845965585325530",
"output": "-1"
},
{
"input": "270672213058376250 270672213058376254",
"output": "270672213058376250 270672213058376251 270672213058376252"
},
{
"input": "271498451941492378 271498451941492379",
"output": "-1"
},
{
"input": "272324690824608506 272324690824608508",
"output": "272324690824608506 272324690824608507 272324690824608508"
},
{
"input": "273150934002691930 273150934002691931",
"output": "-1"
},
{
"input": "996517375802030516 996517375802030518",
"output": "996517375802030516 996517375802030517 996517375802030518"
},
{
"input": "997343614685146644 997343614685146644",
"output": "-1"
},
{
"input": "2147483647 2147483649",
"output": "-1"
},
{
"input": "3 5",
"output": "-1"
},
{
"input": "1 7",
"output": "2 3 4"
},
{
"input": "9 12",
"output": "9 11 12"
},
{
"input": "4 4",
"output": "-1"
},
{
"input": "11 13",
"output": "-1"
},
{
"input": "2 2",
"output": "-1"
}
] | 1,610,023,042
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 124
| 0
|
l,r = [int(x) for x in input().split()]
if l==r or l+1==r:
print(-1)
elif l%2==0:
print(l,l+1,l+2)
elif l%2!=0 and r-l+1>3:
print(l+1,l+2,l+3)
else:
print(-1)
|
Title: Counterexample
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one.
Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime.
You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*.
More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=<<=*b*<=<<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
Input Specification:
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Output Specification:
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.
If the counterexample does not exist, print the single number -1.
Demo Input:
['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n']
Demo Output:
['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n']
Note:
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.
In the second sample you cannot form a group of three distinct integers, so the answer is -1.
In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
|
```python
l,r = [int(x) for x in input().split()]
if l==r or l+1==r:
print(-1)
elif l%2==0:
print(l,l+1,l+2)
elif l%2!=0 and r-l+1>3:
print(l+1,l+2,l+3)
else:
print(-1)
```
| 3
|
|
139
|
A
|
Petr and Book
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages.
Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week.
Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.
|
The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book.
The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.
|
Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.
|
[
"100\n15 20 20 15 10 30 45\n",
"2\n1 0 0 0 0 0 0\n"
] |
[
"6\n",
"1\n"
] |
Note to the first sample:
By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else).
Note to the second sample:
On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
| 500
|
[
{
"input": "100\n15 20 20 15 10 30 45",
"output": "6"
},
{
"input": "2\n1 0 0 0 0 0 0",
"output": "1"
},
{
"input": "100\n100 200 100 200 300 400 500",
"output": "1"
},
{
"input": "3\n1 1 1 1 1 1 1",
"output": "3"
},
{
"input": "1\n1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "20\n5 3 7 2 1 6 4",
"output": "6"
},
{
"input": "10\n5 1 1 1 1 1 5",
"output": "6"
},
{
"input": "50\n10 1 10 1 10 1 10",
"output": "1"
},
{
"input": "77\n11 11 11 11 11 11 10",
"output": "1"
},
{
"input": "1\n1000 1000 1000 1000 1000 1000 1000",
"output": "1"
},
{
"input": "1000\n100 100 100 100 100 100 100",
"output": "3"
},
{
"input": "999\n10 20 10 20 30 20 10",
"output": "3"
},
{
"input": "433\n109 58 77 10 39 125 15",
"output": "7"
},
{
"input": "1\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "5\n1 0 1 0 1 0 1",
"output": "1"
},
{
"input": "997\n1 1 0 0 1 0 1",
"output": "1"
},
{
"input": "1000\n1 1 1 1 1 1 1",
"output": "6"
},
{
"input": "1000\n1000 1000 1000 1000 1000 1000 1000",
"output": "1"
},
{
"input": "1000\n1 0 0 0 0 0 0",
"output": "1"
},
{
"input": "1000\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "1000\n1 0 0 1 0 0 1",
"output": "1"
},
{
"input": "509\n105 23 98 0 7 0 155",
"output": "2"
},
{
"input": "7\n1 1 1 1 1 1 1",
"output": "7"
},
{
"input": "2\n1 1 0 0 0 0 0",
"output": "2"
},
{
"input": "1\n0 0 0 0 0 1 0",
"output": "6"
},
{
"input": "10\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "5\n0 0 0 0 0 6 0",
"output": "6"
},
{
"input": "3\n0 1 0 0 0 0 0",
"output": "2"
},
{
"input": "10\n0 0 0 0 0 0 10",
"output": "7"
},
{
"input": "28\n1 2 3 4 5 6 7",
"output": "7"
},
{
"input": "100\n5 5 5 5 5 5 5",
"output": "6"
},
{
"input": "4\n1 0 0 0 0 0 1",
"output": "7"
},
{
"input": "2\n0 0 0 0 0 0 1",
"output": "7"
},
{
"input": "7\n0 0 0 0 0 0 7",
"output": "7"
},
{
"input": "7\n2 1 1 1 1 1 0",
"output": "6"
},
{
"input": "2\n0 0 1 1 0 0 0",
"output": "4"
},
{
"input": "6\n1 1 1 1 1 1 0",
"output": "6"
},
{
"input": "5\n1 1 1 0 0 1 1",
"output": "7"
},
{
"input": "100\n10 20 30 10 10 10 10",
"output": "7"
},
{
"input": "1\n0 0 0 1 0 0 0",
"output": "4"
},
{
"input": "70\n10 10 10 10 10 10 10",
"output": "7"
},
{
"input": "22\n1 2 3 4 5 6 10",
"output": "7"
},
{
"input": "5\n0 0 0 1 0 0 0",
"output": "4"
},
{
"input": "2\n0 0 0 1 0 0 0",
"output": "4"
},
{
"input": "6\n1 0 0 0 0 0 2",
"output": "7"
},
{
"input": "10\n1 2 2 1 2 1 1",
"output": "7"
},
{
"input": "5\n0 0 0 0 0 0 10",
"output": "7"
},
{
"input": "4\n0 1 1 0 0 0 0",
"output": "3"
},
{
"input": "100\n0 0 0 0 0 1 0",
"output": "6"
}
] | 1,593,541,259
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 7
| 216
| 307,200
|
pages = input("")
x = list(map(int, input("").split()))
n = len(x)
i = 0
for element in x:
if x[i] < int(pages) and i != int(n-1) :
pages = int(pages) - x[i]
i += 1
elif i == int(n-1):
i = 0
for element in x:
if x[i] < int(pages):
pages = int(pages) - x[i]
i += 1
else:
print(i+1)
break
else:
print(i+1)
break
|
Title: Petr and Book
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages.
Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week.
Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.
Input Specification:
The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book.
The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.
Output Specification:
Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.
Demo Input:
['100\n15 20 20 15 10 30 45\n', '2\n1 0 0 0 0 0 0\n']
Demo Output:
['6\n', '1\n']
Note:
Note to the first sample:
By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else).
Note to the second sample:
On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
|
```python
pages = input("")
x = list(map(int, input("").split()))
n = len(x)
i = 0
for element in x:
if x[i] < int(pages) and i != int(n-1) :
pages = int(pages) - x[i]
i += 1
elif i == int(n-1):
i = 0
for element in x:
if x[i] < int(pages):
pages = int(pages) - x[i]
i += 1
else:
print(i+1)
break
else:
print(i+1)
break
```
| 0
|
|
291
|
C
|
Network Mask
|
PROGRAMMING
| 1,600
|
[
"*special",
"bitmasks",
"brute force",
"implementation"
] | null | null |
The problem uses a simplified TCP/IP address model, please make sure you've read the statement attentively.
Polycarpus has found a job, he is a system administrator. One day he came across *n* IP addresses. Each IP address is a 32 bit number, represented as a group of four 8-bit numbers (without leading zeroes), separated by dots. For example, the record 0.255.1.123 shows a correct IP address and records 0.256.1.123 and 0.255.1.01 do not. In this problem an arbitrary group of four 8-bit numbers is a correct IP address.
Having worked as an administrator for some time, Polycarpus learned that if you know the IP address, you can use the subnet mask to get the address of the network that has this IP addess.
The subnet mask is an IP address that has the following property: if we write this IP address as a 32 bit string, that it is representable as "11...11000..000". In other words, the subnet mask first has one or more one bits, and then one or more zero bits (overall there are 32 bits). For example, the IP address 2.0.0.0 is not a correct subnet mask as its 32-bit record looks as 00000010000000000000000000000000.
To get the network address of the IP address, you need to perform the operation of the bitwise "and" of the IP address and the subnet mask. For example, if the subnet mask is 255.192.0.0, and the IP address is 192.168.1.2, then the network address equals 192.128.0.0. In the bitwise "and" the result has a bit that equals 1 if and only if both operands have corresponding bits equal to one.
Now Polycarpus wants to find all networks to which his IP addresses belong. Unfortunately, Polycarpus lost subnet mask. Fortunately, Polycarpus remembers that his IP addresses belonged to exactly *k* distinct networks. Help Polycarpus find the subnet mask, such that his IP addresses will belong to exactly *k* distinct networks. If there are several such subnet masks, find the one whose bit record contains the least number of ones. If such subnet mask do not exist, say so.
|
The first line contains two integers, *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105) — the number of IP addresses and networks. The next *n* lines contain the IP addresses. It is guaranteed that all IP addresses are distinct.
|
In a single line print the IP address of the subnet mask in the format that is described in the statement, if the required subnet mask exists. Otherwise, print -1.
|
[
"5 3\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n",
"5 2\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n",
"2 1\n255.0.0.1\n0.0.0.2\n"
] |
[
"255.255.254.0",
"255.255.0.0",
"-1\n"
] |
none
| 1,500
|
[
{
"input": "5 3\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3",
"output": "255.255.254.0"
},
{
"input": "5 2\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3",
"output": "255.255.0.0"
},
{
"input": "2 1\n255.0.0.1\n0.0.0.2",
"output": "-1"
},
{
"input": "10 2\n57.11.146.42\n200.130.164.235\n52.119.155.71\n113.10.216.20\n28.23.6.128\n190.112.90.85\n7.37.210.55\n20.190.120.226\n170.124.158.110\n122.157.34.141",
"output": "128.0.0.0"
},
{
"input": "11 4\n30.181.69.132\n170.239.176.11\n229.116.128.161\n9.82.24.38\n53.73.223.74\n168.10.125.208\n4.122.30.206\n139.239.173.235\n101.113.26.160\n216.250.148.119\n142.182.207.78",
"output": "192.0.0.0"
},
{
"input": "12 5\n211.200.83.75\n9.64.213.241\n143.23.121.155\n212.121.142.193\n24.184.86.27\n176.131.70.228\n64.47.67.24\n255.241.229.181\n246.34.183.253\n65.121.116.178\n76.84.75.89\n22.239.28.119",
"output": "-1"
},
{
"input": "13 6\n137.219.97.18\n104.145.250.214\n57.185.114.149\n158.161.4.92\n252.39.206.236\n184.252.14.247\n124.228.103.97\n114.244.29.127\n135.210.84.91\n169.248.84.237\n9.241.200.99\n90.154.249.89\n15.98.23.33",
"output": "-1"
},
{
"input": "14 7\n62.238.111.217\n200.225.31.188\n228.91.108.143\n105.200.123.248\n223.149.69.190\n192.117.215.11\n184.153.140.170\n230.246.85.73\n24.131.241.184\n18.119.52.40\n199.143.68.109\n158.69.214.60\n174.25.117.109\n1.204.187.57",
"output": "224.0.0.0"
},
{
"input": "15 8\n244.1.125.160\n39.50.68.162\n142.253.101.137\n52.239.241.147\n194.4.189.143\n200.238.160.30\n245.78.177.243\n89.249.140.19\n169.51.142.22\n123.246.20.99\n133.44.192.119\n226.240.179.30\n76.209.211.184\n98.15.6.117\n227.219.117.153",
"output": "-1"
},
{
"input": "5 5\n223.122.75.125\n79.30.187.249\n231.244.158.56\n166.205.237.209\n82.85.12.212",
"output": "240.0.0.0"
},
{
"input": "2 1\n0.0.0.0\n0.0.0.1",
"output": "128.0.0.0"
},
{
"input": "2 2\n0.0.0.0\n1.0.0.1",
"output": "255.0.0.0"
},
{
"input": "1 1\n0.0.0.0",
"output": "128.0.0.0"
},
{
"input": "2 2\n255.255.255.255\n255.255.255.254",
"output": "-1"
},
{
"input": "2 2\n0.0.0.0\n0.0.0.1",
"output": "-1"
}
] | 1,691,658,731
| 2,147,483,647
|
PyPy 3-64
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 10
| 2,000
| 31,744,000
|
#Jasnah
def to_binary(decimal):
binary = ''
while decimal > 0:
remainder = decimal % 2
binary = str(remainder) + binary
decimal = decimal // 2
while len(binary) < 8:
binary = '0' + binary
return binary
n,k=map(int,input().split())
a=[]
for _ in range(n):
s=list(map(int,input().split('.')))
r = to_binary(s[0]) + to_binary(s[1]) + to_binary(s[2]) + to_binary(s[3])
a.append(r)
for i in range(1,33):
mask='1'*i+'0'*(32-i)
temp_set=set()
for j in range(n):
temp=a[j]
cnt=""
for c in range(32):
cnt+='1' if temp[c]=='1' and mask[c]=='1' else '0'
temp_set.add(cnt)
if len(temp_set)==k:
res='.'.join(str(int(mask[i:i+8], 2)) for i in range(0, 32, 8))
print(res)
break
else:
print('-1')
|
Title: Network Mask
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The problem uses a simplified TCP/IP address model, please make sure you've read the statement attentively.
Polycarpus has found a job, he is a system administrator. One day he came across *n* IP addresses. Each IP address is a 32 bit number, represented as a group of four 8-bit numbers (without leading zeroes), separated by dots. For example, the record 0.255.1.123 shows a correct IP address and records 0.256.1.123 and 0.255.1.01 do not. In this problem an arbitrary group of four 8-bit numbers is a correct IP address.
Having worked as an administrator for some time, Polycarpus learned that if you know the IP address, you can use the subnet mask to get the address of the network that has this IP addess.
The subnet mask is an IP address that has the following property: if we write this IP address as a 32 bit string, that it is representable as "11...11000..000". In other words, the subnet mask first has one or more one bits, and then one or more zero bits (overall there are 32 bits). For example, the IP address 2.0.0.0 is not a correct subnet mask as its 32-bit record looks as 00000010000000000000000000000000.
To get the network address of the IP address, you need to perform the operation of the bitwise "and" of the IP address and the subnet mask. For example, if the subnet mask is 255.192.0.0, and the IP address is 192.168.1.2, then the network address equals 192.128.0.0. In the bitwise "and" the result has a bit that equals 1 if and only if both operands have corresponding bits equal to one.
Now Polycarpus wants to find all networks to which his IP addresses belong. Unfortunately, Polycarpus lost subnet mask. Fortunately, Polycarpus remembers that his IP addresses belonged to exactly *k* distinct networks. Help Polycarpus find the subnet mask, such that his IP addresses will belong to exactly *k* distinct networks. If there are several such subnet masks, find the one whose bit record contains the least number of ones. If such subnet mask do not exist, say so.
Input Specification:
The first line contains two integers, *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105) — the number of IP addresses and networks. The next *n* lines contain the IP addresses. It is guaranteed that all IP addresses are distinct.
Output Specification:
In a single line print the IP address of the subnet mask in the format that is described in the statement, if the required subnet mask exists. Otherwise, print -1.
Demo Input:
['5 3\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n', '5 2\n0.0.0.1\n0.1.1.2\n0.0.2.1\n0.1.1.0\n0.0.2.3\n', '2 1\n255.0.0.1\n0.0.0.2\n']
Demo Output:
['255.255.254.0', '255.255.0.0', '-1\n']
Note:
none
|
```python
#Jasnah
def to_binary(decimal):
binary = ''
while decimal > 0:
remainder = decimal % 2
binary = str(remainder) + binary
decimal = decimal // 2
while len(binary) < 8:
binary = '0' + binary
return binary
n,k=map(int,input().split())
a=[]
for _ in range(n):
s=list(map(int,input().split('.')))
r = to_binary(s[0]) + to_binary(s[1]) + to_binary(s[2]) + to_binary(s[3])
a.append(r)
for i in range(1,33):
mask='1'*i+'0'*(32-i)
temp_set=set()
for j in range(n):
temp=a[j]
cnt=""
for c in range(32):
cnt+='1' if temp[c]=='1' and mask[c]=='1' else '0'
temp_set.add(cnt)
if len(temp_set)==k:
res='.'.join(str(int(mask[i:i+8], 2)) for i in range(0, 32, 8))
print(res)
break
else:
print('-1')
```
| 0
|
|
625
|
B
|
War of the Corporations
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"greedy",
"strings"
] | null | null |
A long time ago, in a galaxy far far away two giant IT-corporations Pineapple and Gogol continue their fierce competition. Crucial moment is just around the corner: Gogol is ready to release it's new tablet Lastus 3000.
This new device is equipped with specially designed artificial intelligence (AI). Employees of Pineapple did their best to postpone the release of Lastus 3000 as long as possible. Finally, they found out, that the name of the new artificial intelligence is similar to the name of the phone, that Pineapple released 200 years ago. As all rights on its name belong to Pineapple, they stand on changing the name of Gogol's artificial intelligence.
Pineapple insists, that the name of their phone occurs in the name of AI as a substring. Because the name of technology was already printed on all devices, the Gogol's director decided to replace some characters in AI name with "#". As this operation is pretty expensive, you should find the minimum number of characters to replace with "#", such that the name of AI doesn't contain the name of the phone as a substring.
Substring is a continuous subsequence of a string.
|
The first line of the input contains the name of AI designed by Gogol, its length doesn't exceed 100<=000 characters. Second line contains the name of the phone released by Pineapple 200 years ago, its length doesn't exceed 30. Both string are non-empty and consist of only small English letters.
|
Print the minimum number of characters that must be replaced with "#" in order to obtain that the name of the phone doesn't occur in the name of AI as a substring.
|
[
"intellect\ntell\n",
"google\napple\n",
"sirisiri\nsir\n"
] |
[
"1",
"0",
"2"
] |
In the first sample AI's name may be replaced with "int#llect".
In the second sample Gogol can just keep things as they are.
In the third sample one of the new possible names of AI may be "s#ris#ri".
| 750
|
[
{
"input": "intellect\ntell",
"output": "1"
},
{
"input": "google\napple",
"output": "0"
},
{
"input": "sirisiri\nsir",
"output": "2"
},
{
"input": "sirisiri\nsiri",
"output": "2"
},
{
"input": "aaaaaaa\naaaa",
"output": "1"
},
{
"input": "bbbbbb\nbb",
"output": "3"
},
{
"input": "abc\nabcabc",
"output": "0"
},
{
"input": "kek\nkekekek",
"output": "0"
},
{
"input": "aaaaa\naaa",
"output": "1"
},
{
"input": "abcdabcv\nabcd",
"output": "1"
},
{
"input": "abcabcabczabcabcabcz\ncab",
"output": "4"
},
{
"input": "aatopotopotopotaa\ntopot",
"output": "2"
},
{
"input": "abcabcabcabcabcabcabcabcabcabc\nabcabcabcabcabcabcabcabcabcabc",
"output": "1"
},
{
"input": "sosossosos\nsos",
"output": "2"
},
{
"input": "sosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosossosos\nsos",
"output": "20"
},
{
"input": "tatatx\ntatx",
"output": "1"
},
{
"input": "sxxsxxsxxd\nsxxsxxd",
"output": "1"
}
] | 1,582,065,441
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 109
| 307,200
|
s=input()
s1=input()
s1list=[]
count=0
for i in s1:
s1list.append(i)
temp=[]
for i in range(len(s1)):
temp.append(s[i])
if temp==s1list:
count+=1
for i in range(1,len(s)-len(s1)+1):
temp.pop(0)
temp.append(s[i+(len(s1)-1)])
if temp==s1list:
count+=1
print(count)
|
Title: War of the Corporations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A long time ago, in a galaxy far far away two giant IT-corporations Pineapple and Gogol continue their fierce competition. Crucial moment is just around the corner: Gogol is ready to release it's new tablet Lastus 3000.
This new device is equipped with specially designed artificial intelligence (AI). Employees of Pineapple did their best to postpone the release of Lastus 3000 as long as possible. Finally, they found out, that the name of the new artificial intelligence is similar to the name of the phone, that Pineapple released 200 years ago. As all rights on its name belong to Pineapple, they stand on changing the name of Gogol's artificial intelligence.
Pineapple insists, that the name of their phone occurs in the name of AI as a substring. Because the name of technology was already printed on all devices, the Gogol's director decided to replace some characters in AI name with "#". As this operation is pretty expensive, you should find the minimum number of characters to replace with "#", such that the name of AI doesn't contain the name of the phone as a substring.
Substring is a continuous subsequence of a string.
Input Specification:
The first line of the input contains the name of AI designed by Gogol, its length doesn't exceed 100<=000 characters. Second line contains the name of the phone released by Pineapple 200 years ago, its length doesn't exceed 30. Both string are non-empty and consist of only small English letters.
Output Specification:
Print the minimum number of characters that must be replaced with "#" in order to obtain that the name of the phone doesn't occur in the name of AI as a substring.
Demo Input:
['intellect\ntell\n', 'google\napple\n', 'sirisiri\nsir\n']
Demo Output:
['1', '0', '2']
Note:
In the first sample AI's name may be replaced with "int#llect".
In the second sample Gogol can just keep things as they are.
In the third sample one of the new possible names of AI may be "s#ris#ri".
|
```python
s=input()
s1=input()
s1list=[]
count=0
for i in s1:
s1list.append(i)
temp=[]
for i in range(len(s1)):
temp.append(s[i])
if temp==s1list:
count+=1
for i in range(1,len(s)-len(s1)+1):
temp.pop(0)
temp.append(s[i+(len(s1)-1)])
if temp==s1list:
count+=1
print(count)
```
| 0
|
|
678
|
B
|
The Same Calendar
|
PROGRAMMING
| 1,600
|
[
"implementation"
] | null | null |
The girl Taylor has a beautiful calendar for the year *y*. In the calendar all days are given with their days of week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday.
The calendar is so beautiful that she wants to know what is the next year after *y* when the calendar will be exactly the same. Help Taylor to find that year.
Note that leap years has 366 days. The year is leap if it is divisible by 400 or it is divisible by 4, but not by 100 ([https://en.wikipedia.org/wiki/Leap_year](https://en.wikipedia.org/wiki/Leap_year)).
|
The only line contains integer *y* (1000<=≤<=*y*<=<<=100'000) — the year of the calendar.
|
Print the only integer *y*' — the next year after *y* when the calendar will be the same. Note that you should find the first year after *y* with the same calendar.
|
[
"2016\n",
"2000\n",
"50501\n"
] |
[
"2044\n",
"2028\n",
"50507\n"
] |
Today is Monday, the 13th of June, 2016.
| 0
|
[
{
"input": "2016",
"output": "2044"
},
{
"input": "2000",
"output": "2028"
},
{
"input": "50501",
"output": "50507"
},
{
"input": "1000",
"output": "1006"
},
{
"input": "1900",
"output": "1906"
},
{
"input": "1899",
"output": "1905"
},
{
"input": "99999",
"output": "100010"
},
{
"input": "50000",
"output": "50028"
},
{
"input": "99900",
"output": "99906"
},
{
"input": "12345",
"output": "12351"
},
{
"input": "1004",
"output": "1032"
},
{
"input": "2100",
"output": "2106"
},
{
"input": "1313",
"output": "1319"
},
{
"input": "1872",
"output": "1912"
},
{
"input": "2098",
"output": "2110"
},
{
"input": "2072",
"output": "2112"
},
{
"input": "2002",
"output": "2013"
},
{
"input": "1179",
"output": "1190"
},
{
"input": "2096",
"output": "2108"
},
{
"input": "1096",
"output": "1108"
},
{
"input": "1796",
"output": "1808"
},
{
"input": "2014",
"output": "2025"
},
{
"input": "2006",
"output": "2017"
},
{
"input": "1874",
"output": "1885"
},
{
"input": "1884",
"output": "1924"
},
{
"input": "2342",
"output": "2353"
},
{
"input": "2010",
"output": "2021"
},
{
"input": "2097",
"output": "2109"
},
{
"input": "1072",
"output": "1112"
},
{
"input": "1191",
"output": "1202"
},
{
"input": "2896",
"output": "2908"
},
{
"input": "1797",
"output": "1809"
},
{
"input": "1002",
"output": "1013"
},
{
"input": "99988",
"output": "100016"
},
{
"input": "1788",
"output": "1828"
},
{
"input": "1994",
"output": "2005"
},
{
"input": "5094",
"output": "5100"
},
{
"input": "99996",
"output": "100024"
},
{
"input": "3998",
"output": "4009"
},
{
"input": "49376",
"output": "49416"
}
] | 1,531,656,615
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 109
| 0
|
y = int(input())
y-=1
tot = 365*y + (y//4 - y//100 + y//400)
rem = tot%7
pv = 0
if (y+1)%4 == 0 and ( (y+1)%100 != 0 or (y+1)%400 == 0):
pv = 1
y+=1
for i in range(y, 1000000):
if i%4 == 0 and (i%100 != 0 or i%400 == 0):
tot += 366
else:
tot += 365
cur = 0
if (i+1)%4 == 0 and ( (i+1)%100 != 0 or (i+1)%400 == 0):
cur = 1
if tot%7 == rem and pv == cur:
print(i+1)
break
|
Title: The Same Calendar
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The girl Taylor has a beautiful calendar for the year *y*. In the calendar all days are given with their days of week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday.
The calendar is so beautiful that she wants to know what is the next year after *y* when the calendar will be exactly the same. Help Taylor to find that year.
Note that leap years has 366 days. The year is leap if it is divisible by 400 or it is divisible by 4, but not by 100 ([https://en.wikipedia.org/wiki/Leap_year](https://en.wikipedia.org/wiki/Leap_year)).
Input Specification:
The only line contains integer *y* (1000<=≤<=*y*<=<<=100'000) — the year of the calendar.
Output Specification:
Print the only integer *y*' — the next year after *y* when the calendar will be the same. Note that you should find the first year after *y* with the same calendar.
Demo Input:
['2016\n', '2000\n', '50501\n']
Demo Output:
['2044\n', '2028\n', '50507\n']
Note:
Today is Monday, the 13th of June, 2016.
|
```python
y = int(input())
y-=1
tot = 365*y + (y//4 - y//100 + y//400)
rem = tot%7
pv = 0
if (y+1)%4 == 0 and ( (y+1)%100 != 0 or (y+1)%400 == 0):
pv = 1
y+=1
for i in range(y, 1000000):
if i%4 == 0 and (i%100 != 0 or i%400 == 0):
tot += 366
else:
tot += 365
cur = 0
if (i+1)%4 == 0 and ( (i+1)%100 != 0 or (i+1)%400 == 0):
cur = 1
if tot%7 == rem and pv == cur:
print(i+1)
break
```
| 3
|
Subsets and Splits
Successful Python Submissions
Retrieves all records from the train dataset where the verdict is 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Retrieves records of users with a rating of 1600 or higher and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a rating above 2000 and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a 'OK' verdict, providing a basic overview of a specific category within the dataset.