contestId
int64 0
1.01k
| index
stringclasses 57
values | name
stringlengths 2
58
| type
stringclasses 2
values | rating
int64 0
3.5k
| tags
listlengths 0
11
| title
stringclasses 522
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
425k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 14
values | testset
stringclasses 12
values | passedTestCount
int64 0
1k
| timeConsumedMillis
int64 0
15k
| memoryConsumedBytes
int64 0
805M
| code
stringlengths 3
65.5k
| prompt
stringlengths 262
8.2k
| response
stringlengths 17
65.5k
| score
float64 -1
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
492
|
A
|
Vanya and Cubes
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vanya got *n* cubes. He decided to build a pyramid from them. Vanya wants to build the pyramid as follows: the top level of the pyramid must consist of 1 cube, the second level must consist of 1<=+<=2<==<=3 cubes, the third level must have 1<=+<=2<=+<=3<==<=6 cubes, and so on. Thus, the *i*-th level of the pyramid must have 1<=+<=2<=+<=...<=+<=(*i*<=-<=1)<=+<=*i* cubes.
Vanya wants to know what is the maximum height of the pyramid that he can make using the given cubes.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=104) — the number of cubes given to Vanya.
|
Print the maximum possible height of the pyramid in the single line.
|
[
"1\n",
"25\n"
] |
[
"1\n",
"4\n"
] |
Illustration to the second sample:
| 500
|
[
{
"input": "1",
"output": "1"
},
{
"input": "25",
"output": "4"
},
{
"input": "2",
"output": "1"
},
{
"input": "4115",
"output": "28"
},
{
"input": "9894",
"output": "38"
},
{
"input": "7969",
"output": "35"
},
{
"input": "6560",
"output": "33"
},
{
"input": "4",
"output": "2"
},
{
"input": "3",
"output": "1"
},
{
"input": "5",
"output": "2"
},
{
"input": "19",
"output": "3"
},
{
"input": "20",
"output": "4"
},
{
"input": "9880",
"output": "38"
},
{
"input": "9879",
"output": "37"
},
{
"input": "7770",
"output": "35"
},
{
"input": "7769",
"output": "34"
},
{
"input": "2925",
"output": "25"
},
{
"input": "220",
"output": "10"
},
{
"input": "219",
"output": "9"
},
{
"input": "3046",
"output": "25"
},
{
"input": "7590",
"output": "34"
},
{
"input": "1014",
"output": "17"
},
{
"input": "7142",
"output": "34"
},
{
"input": "9999",
"output": "38"
},
{
"input": "10000",
"output": "38"
}
] | 1,693,678,676
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 31
| 0
|
def main():
n = int(input())
i = 1
c = 1
while True:
i = i + (i+1)
if i <= n:
c += 1
else:
break
print(c)
if __name__ == "__main__":
main()
|
Title: Vanya and Cubes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya got *n* cubes. He decided to build a pyramid from them. Vanya wants to build the pyramid as follows: the top level of the pyramid must consist of 1 cube, the second level must consist of 1<=+<=2<==<=3 cubes, the third level must have 1<=+<=2<=+<=3<==<=6 cubes, and so on. Thus, the *i*-th level of the pyramid must have 1<=+<=2<=+<=...<=+<=(*i*<=-<=1)<=+<=*i* cubes.
Vanya wants to know what is the maximum height of the pyramid that he can make using the given cubes.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=104) — the number of cubes given to Vanya.
Output Specification:
Print the maximum possible height of the pyramid in the single line.
Demo Input:
['1\n', '25\n']
Demo Output:
['1\n', '4\n']
Note:
Illustration to the second sample:
|
```python
def main():
n = int(input())
i = 1
c = 1
while True:
i = i + (i+1)
if i <= n:
c += 1
else:
break
print(c)
if __name__ == "__main__":
main()
```
| 0
|
|
199
|
A
|
Hexadecimal's theorem
|
PROGRAMMING
| 900
|
[
"brute force",
"constructive algorithms",
"implementation",
"number theory"
] | null | null |
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
|
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
|
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
|
[
"3\n",
"13\n"
] |
[
"1 1 1\n",
"2 3 8\n"
] |
none
| 500
|
[
{
"input": "3",
"output": "1 1 1"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "0",
"output": "0 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "1",
"output": "1 0 0"
},
{
"input": "2",
"output": "1 1 0"
},
{
"input": "3",
"output": "1 1 1"
},
{
"input": "5",
"output": "1 1 3"
},
{
"input": "8",
"output": "1 2 5"
},
{
"input": "13",
"output": "2 3 8"
},
{
"input": "21",
"output": "3 5 13"
},
{
"input": "34",
"output": "5 8 21"
},
{
"input": "55",
"output": "8 13 34"
},
{
"input": "89",
"output": "13 21 55"
},
{
"input": "144",
"output": "21 34 89"
},
{
"input": "233",
"output": "34 55 144"
},
{
"input": "377",
"output": "55 89 233"
},
{
"input": "610",
"output": "89 144 377"
},
{
"input": "987",
"output": "144 233 610"
},
{
"input": "1597",
"output": "233 377 987"
},
{
"input": "2584",
"output": "377 610 1597"
},
{
"input": "4181",
"output": "610 987 2584"
},
{
"input": "6765",
"output": "987 1597 4181"
},
{
"input": "10946",
"output": "1597 2584 6765"
},
{
"input": "17711",
"output": "2584 4181 10946"
},
{
"input": "28657",
"output": "4181 6765 17711"
},
{
"input": "46368",
"output": "6765 10946 28657"
},
{
"input": "75025",
"output": "10946 17711 46368"
},
{
"input": "121393",
"output": "17711 28657 75025"
},
{
"input": "196418",
"output": "28657 46368 121393"
},
{
"input": "317811",
"output": "46368 75025 196418"
},
{
"input": "514229",
"output": "75025 121393 317811"
},
{
"input": "832040",
"output": "121393 196418 514229"
},
{
"input": "1346269",
"output": "196418 317811 832040"
},
{
"input": "2178309",
"output": "317811 514229 1346269"
},
{
"input": "3524578",
"output": "514229 832040 2178309"
},
{
"input": "5702887",
"output": "832040 1346269 3524578"
},
{
"input": "9227465",
"output": "1346269 2178309 5702887"
},
{
"input": "14930352",
"output": "2178309 3524578 9227465"
},
{
"input": "24157817",
"output": "3524578 5702887 14930352"
},
{
"input": "39088169",
"output": "5702887 9227465 24157817"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "165580141",
"output": "24157817 39088169 102334155"
},
{
"input": "267914296",
"output": "39088169 63245986 165580141"
},
{
"input": "433494437",
"output": "63245986 102334155 267914296"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "701408733",
"output": "102334155 165580141 433494437"
},
{
"input": "102334155",
"output": "14930352 24157817 63245986"
},
{
"input": "63245986",
"output": "9227465 14930352 39088169"
}
] | 1,621,605,243
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 54
| 156
| 0
|
n = int(input())
fib = [0, 0, 0, 1]
while fib[len(fib) - 1] + fib[len(fib) - 3] + fib[len(fib) - 4] < n:
fib.append(fib[-1] + fib[-2])
if n == 0:
print(0, 0, 0)
elif n == 2:
print(0, 1, 1)
else:
if fib[len(fib) - 1] + fib[len(fib) - 3] + fib[len(fib) - 4] != n:
print("I'm too stupid to solve this problem")
else:
print(fib[len(fib) - 4], fib[len(fib) - 3], fib[len(fib) - 1])
|
Title: Hexadecimal's theorem
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.
Let's remember how Fibonacci numbers can be calculated. *F*0<==<=0, *F*1<==<=1, and all the next numbers are *F**i*<==<=*F**i*<=-<=2<=+<=*F**i*<=-<=1.
So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number *n* by three not necessary different Fibonacci numbers or say that it is impossible.
Input Specification:
The input contains of a single integer *n* (0<=≤<=*n*<=<<=109) — the number that should be represented by the rules described above. It is guaranteed that *n* is a Fibonacci number.
Output Specification:
Output three required numbers: *a*, *b* and *c*. If there is no answer for the test you have to print "I'm too stupid to solve this problem" without the quotes.
If there are multiple answers, print any of them.
Demo Input:
['3\n', '13\n']
Demo Output:
['1 1 1\n', '2 3 8\n']
Note:
none
|
```python
n = int(input())
fib = [0, 0, 0, 1]
while fib[len(fib) - 1] + fib[len(fib) - 3] + fib[len(fib) - 4] < n:
fib.append(fib[-1] + fib[-2])
if n == 0:
print(0, 0, 0)
elif n == 2:
print(0, 1, 1)
else:
if fib[len(fib) - 1] + fib[len(fib) - 3] + fib[len(fib) - 4] != n:
print("I'm too stupid to solve this problem")
else:
print(fib[len(fib) - 4], fib[len(fib) - 3], fib[len(fib) - 1])
```
| 3
|
|
400
|
B
|
Inna and New Matrix of Candies
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation",
"schedules"
] | null | null |
Inna likes sweets and a game called the "Candy Matrix". Today, she came up with the new game "Candy Matrix 2: Reload".
The field for the new game is a rectangle table of size *n*<=×<=*m*. Each line of the table contains one cell with a dwarf figurine, one cell with a candy, the other cells of the line are empty. The game lasts for several moves. During each move the player should choose all lines of the matrix where dwarf is not on the cell with candy and shout "Let's go!". After that, all the dwarves from the chosen lines start to simultaneously move to the right. During each second, each dwarf goes to the adjacent cell that is located to the right of its current cell. The movement continues until one of the following events occurs:
- some dwarf in one of the chosen lines is located in the rightmost cell of his row; - some dwarf in the chosen lines is located in the cell with the candy.
The point of the game is to transport all the dwarves to the candy cells.
Inna is fabulous, as she came up with such an interesting game. But what about you? Your task is to play this game optimally well. Specifically, you should say by the given game field what minimum number of moves the player needs to reach the goal of the game.
|
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 2<=≤<=*m*<=≤<=1000).
Next *n* lines each contain *m* characters — the game field for the "Candy Martix 2: Reload". Character "*" represents an empty cell of the field, character "G" represents a dwarf and character "S" represents a candy. The matrix doesn't contain other characters. It is guaranteed that each line contains exactly one character "G" and one character "S".
|
In a single line print a single integer — either the minimum number of moves needed to achieve the aim of the game, or -1, if the aim cannot be achieved on the given game field.
|
[
"3 4\n*G*S\nG**S\n*G*S\n",
"1 3\nS*G\n"
] |
[
"2\n",
"-1\n"
] |
none
| 1,000
|
[
{
"input": "3 4\n*G*S\nG**S\n*G*S",
"output": "2"
},
{
"input": "1 3\nS*G",
"output": "-1"
},
{
"input": "10 10\nG********S\n*G*******S\n**G******S\n***G*****S\n****G****S\n*****G***S\n******G**S\n*******G*S\n********GS\nG********S",
"output": "9"
},
{
"input": "5 10\nG***S*****\nG****S****\n***GS*****\nG*S*******\nG***S*****",
"output": "4"
},
{
"input": "4 8\nG*S*****\n****G*S*\nG*****S*\n**G***S*",
"output": "3"
},
{
"input": "4 10\n***G****S*\n*****GS***\nG****S****\nG*******S*",
"output": "3"
},
{
"input": "1 2\nSG",
"output": "-1"
},
{
"input": "1 2\nGS",
"output": "1"
},
{
"input": "1 4\nSG**",
"output": "-1"
}
] | 1,580,457,873
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 109
| 307,200
|
n,m=map(int,input().split())
dp=[]
for i in range(n):
x=input()
dp.append(x)
d={}
for i in range(n):
for j in range(m):
if dp[i][j]=='G':
p=j
if dp[i][j]=='S':
q=j
if p<q:
d[i+1]=q-p-1
else:
d[-(i+1)]=m-p-1
#print(d)
cout=-1
y=min(d.items(),key=lambda x:x[1])
#print(y)
for i in d:
if d[i]==y[1] and i>0:
cout+=1
if cout>=0:
print(cout+1)
else:
print(cout)
|
Title: Inna and New Matrix of Candies
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Inna likes sweets and a game called the "Candy Matrix". Today, she came up with the new game "Candy Matrix 2: Reload".
The field for the new game is a rectangle table of size *n*<=×<=*m*. Each line of the table contains one cell with a dwarf figurine, one cell with a candy, the other cells of the line are empty. The game lasts for several moves. During each move the player should choose all lines of the matrix where dwarf is not on the cell with candy and shout "Let's go!". After that, all the dwarves from the chosen lines start to simultaneously move to the right. During each second, each dwarf goes to the adjacent cell that is located to the right of its current cell. The movement continues until one of the following events occurs:
- some dwarf in one of the chosen lines is located in the rightmost cell of his row; - some dwarf in the chosen lines is located in the cell with the candy.
The point of the game is to transport all the dwarves to the candy cells.
Inna is fabulous, as she came up with such an interesting game. But what about you? Your task is to play this game optimally well. Specifically, you should say by the given game field what minimum number of moves the player needs to reach the goal of the game.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000; 2<=≤<=*m*<=≤<=1000).
Next *n* lines each contain *m* characters — the game field for the "Candy Martix 2: Reload". Character "*" represents an empty cell of the field, character "G" represents a dwarf and character "S" represents a candy. The matrix doesn't contain other characters. It is guaranteed that each line contains exactly one character "G" and one character "S".
Output Specification:
In a single line print a single integer — either the minimum number of moves needed to achieve the aim of the game, or -1, if the aim cannot be achieved on the given game field.
Demo Input:
['3 4\n*G*S\nG**S\n*G*S\n', '1 3\nS*G\n']
Demo Output:
['2\n', '-1\n']
Note:
none
|
```python
n,m=map(int,input().split())
dp=[]
for i in range(n):
x=input()
dp.append(x)
d={}
for i in range(n):
for j in range(m):
if dp[i][j]=='G':
p=j
if dp[i][j]=='S':
q=j
if p<q:
d[i+1]=q-p-1
else:
d[-(i+1)]=m-p-1
#print(d)
cout=-1
y=min(d.items(),key=lambda x:x[1])
#print(y)
for i in d:
if d[i]==y[1] and i>0:
cout+=1
if cout>=0:
print(cout+1)
else:
print(cout)
```
| 0
|
|
787
|
A
|
The Monster
|
PROGRAMMING
| 1,200
|
[
"brute force",
"math",
"number theory"
] | null | null |
A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times *b*,<=*b*<=+<=*a*,<=*b*<=+<=2*a*,<=*b*<=+<=3*a*,<=... and Morty screams at times *d*,<=*d*<=+<=*c*,<=*d*<=+<=2*c*,<=*d*<=+<=3*c*,<=....
The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time.
|
The first line of input contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100).
The second line contains two integers *c* and *d* (1<=≤<=*c*,<=*d*<=≤<=100).
|
Print the first time Rick and Morty will scream at the same time, or <=-<=1 if they will never scream at the same time.
|
[
"20 2\n9 19\n",
"2 1\n16 12\n"
] |
[
"82\n",
"-1\n"
] |
In the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82.
In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time.
| 500
|
[
{
"input": "20 2\n9 19",
"output": "82"
},
{
"input": "2 1\n16 12",
"output": "-1"
},
{
"input": "39 52\n88 78",
"output": "1222"
},
{
"input": "59 96\n34 48",
"output": "1748"
},
{
"input": "87 37\n91 29",
"output": "211"
},
{
"input": "11 81\n49 7",
"output": "301"
},
{
"input": "39 21\n95 89",
"output": "3414"
},
{
"input": "59 70\n48 54",
"output": "1014"
},
{
"input": "87 22\n98 32",
"output": "718"
},
{
"input": "15 63\n51 13",
"output": "-1"
},
{
"input": "39 7\n97 91",
"output": "1255"
},
{
"input": "18 18\n71 71",
"output": "1278"
},
{
"input": "46 71\n16 49",
"output": "209"
},
{
"input": "70 11\n74 27",
"output": "2321"
},
{
"input": "94 55\n20 96",
"output": "-1"
},
{
"input": "18 4\n77 78",
"output": "1156"
},
{
"input": "46 44\n23 55",
"output": "-1"
},
{
"input": "74 88\n77 37",
"output": "1346"
},
{
"input": "94 37\n34 7",
"output": "789"
},
{
"input": "22 81\n80 88",
"output": "-1"
},
{
"input": "46 30\n34 62",
"output": "674"
},
{
"input": "40 4\n81 40",
"output": "364"
},
{
"input": "69 48\n39 9",
"output": "48"
},
{
"input": "89 93\n84 87",
"output": "5967"
},
{
"input": "17 45\n42 65",
"output": "317"
},
{
"input": "41 85\n95 46",
"output": "331"
},
{
"input": "69 30\n41 16",
"output": "1410"
},
{
"input": "93 74\n99 93",
"output": "-1"
},
{
"input": "17 19\n44 75",
"output": "427"
},
{
"input": "45 63\n98 53",
"output": "3483"
},
{
"input": "69 11\n48 34",
"output": "-1"
},
{
"input": "55 94\n3 96",
"output": "204"
},
{
"input": "100 100\n100 100",
"output": "100"
},
{
"input": "1 1\n1 1",
"output": "1"
},
{
"input": "1 1\n1 100",
"output": "100"
},
{
"input": "1 100\n100 1",
"output": "101"
},
{
"input": "98 1\n99 100",
"output": "9703"
},
{
"input": "98 1\n99 2",
"output": "9605"
},
{
"input": "97 2\n99 100",
"output": "4852"
},
{
"input": "3 3\n3 1",
"output": "-1"
},
{
"input": "3 2\n7 2",
"output": "2"
},
{
"input": "2 3\n2 5",
"output": "5"
},
{
"input": "2 3\n2 3",
"output": "3"
},
{
"input": "100 3\n100 5",
"output": "-1"
},
{
"input": "6 10\n12 14",
"output": "-1"
},
{
"input": "4 2\n4 4",
"output": "-1"
},
{
"input": "2 3\n2 2",
"output": "-1"
},
{
"input": "2 3\n4 99",
"output": "99"
},
{
"input": "1 5\n1 5",
"output": "5"
},
{
"input": "1 100\n3 1",
"output": "100"
},
{
"input": "2 2\n2 1",
"output": "-1"
},
{
"input": "2 10\n6 20",
"output": "20"
},
{
"input": "2 2\n2 10",
"output": "10"
},
{
"input": "3 7\n3 6",
"output": "-1"
},
{
"input": "1 100\n1 100",
"output": "100"
},
{
"input": "7 25\n39 85",
"output": "319"
},
{
"input": "84 82\n38 6",
"output": "82"
},
{
"input": "7 7\n7 14",
"output": "14"
}
] | 1,490,292,115
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 22
| 920
| 4,608,000
|
from sys import stdin, stdout
a, b = map(int, stdin.readline().split())
c, d = map(int, stdin.readline().split())
for y in range(10 ** 6):
if (d + c * y - b) / a == int((d + c * y - b) / a) > 0 and (d + y * c == b + a * int((d + c * y - b) / a)):
stdout.write(str(d + c * y))
break
else:
stdout.write('-1')
|
Title: The Monster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times *b*,<=*b*<=+<=*a*,<=*b*<=+<=2*a*,<=*b*<=+<=3*a*,<=... and Morty screams at times *d*,<=*d*<=+<=*c*,<=*d*<=+<=2*c*,<=*d*<=+<=3*c*,<=....
The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time.
Input Specification:
The first line of input contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100).
The second line contains two integers *c* and *d* (1<=≤<=*c*,<=*d*<=≤<=100).
Output Specification:
Print the first time Rick and Morty will scream at the same time, or <=-<=1 if they will never scream at the same time.
Demo Input:
['20 2\n9 19\n', '2 1\n16 12\n']
Demo Output:
['82\n', '-1\n']
Note:
In the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82.
In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time.
|
```python
from sys import stdin, stdout
a, b = map(int, stdin.readline().split())
c, d = map(int, stdin.readline().split())
for y in range(10 ** 6):
if (d + c * y - b) / a == int((d + c * y - b) / a) > 0 and (d + y * c == b + a * int((d + c * y - b) / a)):
stdout.write(str(d + c * y))
break
else:
stdout.write('-1')
```
| 0
|
|
764
|
B
|
Timofey and cubes
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"implementation"
] | null | null |
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents.
In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1.
After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
|
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order.
It can be shown that the answer is unique.
|
[
"7\n4 3 7 6 9 1 2\n",
"8\n6 1 4 2 5 6 9 2\n"
] |
[
"2 3 9 6 7 1 4",
"2 1 6 2 5 4 9 6"
] |
Consider the first sample.
1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
| 1,000
|
[
{
"input": "7\n4 3 7 6 9 1 2",
"output": "2 3 9 6 7 1 4"
},
{
"input": "8\n6 1 4 2 5 6 9 2",
"output": "2 1 6 2 5 4 9 6"
},
{
"input": "1\n1424",
"output": "1424"
},
{
"input": "9\n-7 9 -4 9 -6 11 15 2 -10",
"output": "-10 9 15 9 -6 11 -4 2 -7"
},
{
"input": "2\n21968 5686",
"output": "5686 21968"
},
{
"input": "5\n241218936 -825949895 -84926813 491336344 -872198236",
"output": "-872198236 -825949895 -84926813 491336344 241218936"
},
{
"input": "42\n-557774624 828320986 -345782722 -62979938 -681259411 -945983652 -139095040 832293378 -82572118 432027535 88438103 568183540 961782904 73543295 615958219 -5050584 322982437 -146046730 759453379 129267920 -819827396 -348156048 805080102 390723009 -771277251 -79011872 -592313207 528489973 656201270 -127795621 17284747 145139617 -565641608 83452176 -223074608 545811186 -657981923 -204657836 154779765 -476867246 180386291 202782486",
"output": "202782486 828320986 -476867246 -62979938 -204657836 -945983652 545811186 832293378 83452176 432027535 145139617 568183540 -127795621 73543295 528489973 -5050584 -79011872 -146046730 390723009 129267920 -348156048 -819827396 805080102 759453379 -771277251 322982437 -592313207 615958219 656201270 961782904 17284747 88438103 -565641608 -82572118 -223074608 -139095040 -657981923 -681259411 154779765 -345782722 180386291 -557774624"
},
{
"input": "2\n1 2",
"output": "2 1"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "6 2 4 3 5 1"
},
{
"input": "4\n0 1 2 3",
"output": "3 1 2 0"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10 2 8 4 6 5 7 3 9 1"
},
{
"input": "2\n4 5",
"output": "5 4"
},
{
"input": "2\n1 5",
"output": "5 1"
},
{
"input": "2\n2 5",
"output": "5 2"
},
{
"input": "2\n3 4",
"output": "4 3"
},
{
"input": "2\n10 0",
"output": "0 10"
},
{
"input": "66\n8229 5299 5562 1259 2258 1126 5026 8796 3497 7111 6680 1180 1426 4821 3322 3502 400 2951 4187 417 5234 1266 7525 7648 417 9297 174 670 1790 4121 9737 938 4616 3402 2009 2461 474 3728 327 3353 9773 6818 8781 874 2209 1260 1647 6126 9287 9638 5049 1256 4459 863 1835 4822 6809 348 5053 7784 6927 2140 9173 7817 5095 4184",
"output": "4184 5299 7817 1259 2140 1126 7784 8796 348 7111 4822 1180 863 4821 1256 3502 9638 2951 6126 417 1260 1266 874 7648 6818 9297 3353 670 3728 4121 2461 938 3402 4616 2009 9737 474 1790 327 174 9773 417 8781 7525 2209 5234 1647 4187 9287 400 5049 3322 4459 1426 1835 6680 6809 3497 5053 5026 6927 2258 9173 5562 5095 8229"
}
] | 1,487,075,919
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 31
| 4,505,600
|
n = int(input())
arr = input().split()
for i in range(0,n):
arr[i] = int(arr[i])
start = int ((n+1) / 2)
tmp = 0
for i in reversed(range(1, start)):
tmp = arr[i - 1]
arr[i - 1] = arr[n - i]
arr[n - i] = tmp
print(arr)
|
Title: Timofey and cubes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Young Timofey has a birthday today! He got kit of *n* cubes as a birthday present from his parents. Every cube has a number *a**i*, which is written on it. Timofey put all the cubes in a row and went to unpack other presents.
In this time, Timofey's elder brother, Dima reordered the cubes using the following rule. Suppose the cubes are numbered from 1 to *n* in their order. Dima performs several steps, on step *i* he reverses the segment of cubes from *i*-th to (*n*<=-<=*i*<=+<=1)-th. He does this while *i*<=≤<=*n*<=-<=*i*<=+<=1.
After performing the operations Dima went away, being very proud of himself. When Timofey returned to his cubes, he understood that their order was changed. Help Timofey as fast as you can and save the holiday — restore the initial order of the cubes using information of their current location.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=2·105) — the number of cubes.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109), where *a**i* is the number written on the *i*-th cube after Dima has changed their order.
Output Specification:
Print *n* integers, separated by spaces — the numbers written on the cubes in their initial order.
It can be shown that the answer is unique.
Demo Input:
['7\n4 3 7 6 9 1 2\n', '8\n6 1 4 2 5 6 9 2\n']
Demo Output:
['2 3 9 6 7 1 4', '2 1 6 2 5 4 9 6']
Note:
Consider the first sample.
1. At the begining row was [2, 3, 9, 6, 7, 1, 4]. 1. After first operation row was [4, 1, 7, 6, 9, 3, 2]. 1. After second operation row was [4, 3, 9, 6, 7, 1, 2]. 1. After third operation row was [4, 3, 7, 6, 9, 1, 2]. 1. At fourth operation we reverse just middle element, so nothing has changed. The final row is [4, 3, 7, 6, 9, 1, 2]. So the answer for this case is row [2, 3, 9, 6, 7, 1, 4].
|
```python
n = int(input())
arr = input().split()
for i in range(0,n):
arr[i] = int(arr[i])
start = int ((n+1) / 2)
tmp = 0
for i in reversed(range(1, start)):
tmp = arr[i - 1]
arr[i - 1] = arr[n - i]
arr[n - i] = tmp
print(arr)
```
| 0
|
|
451
|
A
|
Game With Sticks
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
After winning gold and silver in IOI 2014, Akshat and Malvika want to have some fun. Now they are playing a game on a grid made of *n* horizontal and *m* vertical sticks.
An intersection point is any point on the grid which is formed by the intersection of one horizontal stick and one vertical stick.
In the grid shown below, *n*<==<=3 and *m*<==<=3. There are *n*<=+<=*m*<==<=6 sticks in total (horizontal sticks are shown in red and vertical sticks are shown in green). There are *n*·*m*<==<=9 intersection points, numbered from 1 to 9.
The rules of the game are very simple. The players move in turns. Akshat won gold, so he makes the first move. During his/her move, a player must choose any remaining intersection point and remove from the grid all sticks which pass through this point. A player will lose the game if he/she cannot make a move (i.e. there are no intersection points remaining on the grid at his/her move).
Assume that both players play optimally. Who will win the game?
|
The first line of input contains two space-separated integers, *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
|
Print a single line containing "Akshat" or "Malvika" (without the quotes), depending on the winner of the game.
|
[
"2 2\n",
"2 3\n",
"3 3\n"
] |
[
"Malvika\n",
"Malvika\n",
"Akshat\n"
] |
Explanation of the first sample:
The grid has four intersection points, numbered from 1 to 4.
If Akshat chooses intersection point 1, then he will remove two sticks (1 - 2 and 1 - 3). The resulting grid will look like this.
Now there is only one remaining intersection point (i.e. 4). Malvika must choose it and remove both remaining sticks. After her move the grid will be empty.
In the empty grid, Akshat cannot make any move, hence he will lose.
Since all 4 intersection points of the grid are equivalent, Akshat will lose no matter which one he picks.
| 500
|
[
{
"input": "2 2",
"output": "Malvika"
},
{
"input": "2 3",
"output": "Malvika"
},
{
"input": "3 3",
"output": "Akshat"
},
{
"input": "20 68",
"output": "Malvika"
},
{
"input": "1 1",
"output": "Akshat"
},
{
"input": "1 2",
"output": "Akshat"
},
{
"input": "1 3",
"output": "Akshat"
},
{
"input": "2 1",
"output": "Akshat"
},
{
"input": "2 2",
"output": "Malvika"
},
{
"input": "3 1",
"output": "Akshat"
},
{
"input": "3 2",
"output": "Malvika"
},
{
"input": "68 42",
"output": "Malvika"
},
{
"input": "1 35",
"output": "Akshat"
},
{
"input": "25 70",
"output": "Akshat"
},
{
"input": "59 79",
"output": "Akshat"
},
{
"input": "65 63",
"output": "Akshat"
},
{
"input": "46 6",
"output": "Malvika"
},
{
"input": "28 82",
"output": "Malvika"
},
{
"input": "98 98",
"output": "Malvika"
},
{
"input": "98 99",
"output": "Malvika"
},
{
"input": "98 100",
"output": "Malvika"
},
{
"input": "99 98",
"output": "Malvika"
},
{
"input": "99 99",
"output": "Akshat"
},
{
"input": "99 100",
"output": "Akshat"
},
{
"input": "100 98",
"output": "Malvika"
},
{
"input": "100 99",
"output": "Akshat"
},
{
"input": "100 100",
"output": "Malvika"
},
{
"input": "3 4",
"output": "Akshat"
}
] | 1,696,929,377
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 46
| 0
|
rows, columns = input().split()
rows, columns = int(rows), int(columns)
no_of_steps = 0
while rows >= 1 and columns >= 1:
rows -= 1; columns -= 1
no_of_steps += 1
if no_of_steps % 2 == 0:
print("Malvika")
else:
print("Akshat")
|
Title: Game With Sticks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After winning gold and silver in IOI 2014, Akshat and Malvika want to have some fun. Now they are playing a game on a grid made of *n* horizontal and *m* vertical sticks.
An intersection point is any point on the grid which is formed by the intersection of one horizontal stick and one vertical stick.
In the grid shown below, *n*<==<=3 and *m*<==<=3. There are *n*<=+<=*m*<==<=6 sticks in total (horizontal sticks are shown in red and vertical sticks are shown in green). There are *n*·*m*<==<=9 intersection points, numbered from 1 to 9.
The rules of the game are very simple. The players move in turns. Akshat won gold, so he makes the first move. During his/her move, a player must choose any remaining intersection point and remove from the grid all sticks which pass through this point. A player will lose the game if he/she cannot make a move (i.e. there are no intersection points remaining on the grid at his/her move).
Assume that both players play optimally. Who will win the game?
Input Specification:
The first line of input contains two space-separated integers, *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Output Specification:
Print a single line containing "Akshat" or "Malvika" (without the quotes), depending on the winner of the game.
Demo Input:
['2 2\n', '2 3\n', '3 3\n']
Demo Output:
['Malvika\n', 'Malvika\n', 'Akshat\n']
Note:
Explanation of the first sample:
The grid has four intersection points, numbered from 1 to 4.
If Akshat chooses intersection point 1, then he will remove two sticks (1 - 2 and 1 - 3). The resulting grid will look like this.
Now there is only one remaining intersection point (i.e. 4). Malvika must choose it and remove both remaining sticks. After her move the grid will be empty.
In the empty grid, Akshat cannot make any move, hence he will lose.
Since all 4 intersection points of the grid are equivalent, Akshat will lose no matter which one he picks.
|
```python
rows, columns = input().split()
rows, columns = int(rows), int(columns)
no_of_steps = 0
while rows >= 1 and columns >= 1:
rows -= 1; columns -= 1
no_of_steps += 1
if no_of_steps % 2 == 0:
print("Malvika")
else:
print("Akshat")
```
| 3
|
|
479
|
A
|
Expression
|
PROGRAMMING
| 1,000
|
[
"brute force",
"math"
] | null | null |
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets:
- 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9
Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2.
It's easy to see that the maximum value that you can obtain is 9.
Your task is: given *a*, *b* and *c* print the maximum value that you can get.
|
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
|
Print the maximum value of the expression that you can obtain.
|
[
"1\n2\n3\n",
"2\n10\n3\n"
] |
[
"9\n",
"60\n"
] |
none
| 500
|
[
{
"input": "1\n2\n3",
"output": "9"
},
{
"input": "2\n10\n3",
"output": "60"
},
{
"input": "1\n1\n1",
"output": "3"
},
{
"input": "1\n2\n1",
"output": "4"
},
{
"input": "10\n10\n10",
"output": "1000"
},
{
"input": "5\n1\n3",
"output": "20"
},
{
"input": "3\n1\n5",
"output": "20"
},
{
"input": "6\n7\n1",
"output": "48"
},
{
"input": "1\n8\n3",
"output": "27"
},
{
"input": "9\n7\n2",
"output": "126"
},
{
"input": "1\n1\n10",
"output": "20"
},
{
"input": "9\n1\n1",
"output": "18"
},
{
"input": "10\n5\n6",
"output": "300"
},
{
"input": "8\n9\n7",
"output": "504"
},
{
"input": "4\n2\n10",
"output": "80"
},
{
"input": "2\n8\n3",
"output": "48"
},
{
"input": "3\n5\n7",
"output": "105"
},
{
"input": "1\n10\n1",
"output": "12"
},
{
"input": "2\n2\n2",
"output": "8"
},
{
"input": "5\n6\n1",
"output": "35"
},
{
"input": "10\n1\n1",
"output": "20"
},
{
"input": "1\n6\n1",
"output": "8"
},
{
"input": "1\n9\n1",
"output": "11"
},
{
"input": "2\n1\n2",
"output": "6"
},
{
"input": "2\n6\n1",
"output": "14"
},
{
"input": "9\n2\n1",
"output": "27"
},
{
"input": "1\n9\n2",
"output": "20"
},
{
"input": "1\n3\n1",
"output": "5"
},
{
"input": "2\n1\n1",
"output": "4"
}
] | 1,687,357,431
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 46
| 0
|
a=int(input())
b=int(input())
c=int(input())
if a==1 and c==1:
print(b+2)
elif a==b==1 or b==c==1:
print(2*max(a,c))
elif b==1:
print((min(a,c)+1)*max(a,c))
elif a==1 or c==1:
print((b+min(a,c))*max(a,c))
else:
print(a*b*c)
|
Title: Expression
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets:
- 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9
Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2.
It's easy to see that the maximum value that you can obtain is 9.
Your task is: given *a*, *b* and *c* print the maximum value that you can get.
Input Specification:
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
Output Specification:
Print the maximum value of the expression that you can obtain.
Demo Input:
['1\n2\n3\n', '2\n10\n3\n']
Demo Output:
['9\n', '60\n']
Note:
none
|
```python
a=int(input())
b=int(input())
c=int(input())
if a==1 and c==1:
print(b+2)
elif a==b==1 or b==c==1:
print(2*max(a,c))
elif b==1:
print((min(a,c)+1)*max(a,c))
elif a==1 or c==1:
print((b+min(a,c))*max(a,c))
else:
print(a*b*c)
```
| 3
|
|
962
|
A
|
Equator
|
PROGRAMMING
| 1,300
|
[
"implementation"
] | null | null |
Polycarp has created his own training plan to prepare for the programming contests. He will train for $n$ days, all days are numbered from $1$ to $n$, beginning from the first.
On the $i$-th day Polycarp will necessarily solve $a_i$ problems. One evening Polycarp plans to celebrate the equator. He will celebrate it on the first evening of such a day that from the beginning of the training and to this day inclusive he will solve half or more of all the problems.
Determine the index of day when Polycarp will celebrate the equator.
|
The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of days to prepare for the programming contests.
The second line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10\,000$), where $a_i$ equals to the number of problems, which Polycarp will solve on the $i$-th day.
|
Print the index of the day when Polycarp will celebrate the equator.
|
[
"4\n1 3 2 1\n",
"6\n2 2 2 2 2 2\n"
] |
[
"2\n",
"3\n"
] |
In the first example Polycarp will celebrate the equator on the evening of the second day, because up to this day (inclusive) he will solve $4$ out of $7$ scheduled problems on four days of the training.
In the second example Polycarp will celebrate the equator on the evening of the third day, because up to this day (inclusive) he will solve $6$ out of $12$ scheduled problems on six days of the training.
| 0
|
[
{
"input": "4\n1 3 2 1",
"output": "2"
},
{
"input": "6\n2 2 2 2 2 2",
"output": "3"
},
{
"input": "1\n10000",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "1"
},
{
"input": "2\n1 3",
"output": "2"
},
{
"input": "4\n2 1 1 3",
"output": "3"
},
{
"input": "3\n1 1 3",
"output": "3"
},
{
"input": "3\n1 1 1",
"output": "2"
},
{
"input": "2\n1 2",
"output": "2"
},
{
"input": "3\n2 1 2",
"output": "2"
},
{
"input": "5\n1 2 4 3 5",
"output": "4"
},
{
"input": "5\n2 2 2 4 3",
"output": "4"
},
{
"input": "4\n1 2 3 1",
"output": "3"
},
{
"input": "6\n7 3 10 7 3 11",
"output": "4"
},
{
"input": "2\n3 4",
"output": "2"
},
{
"input": "5\n1 1 1 1 1",
"output": "3"
},
{
"input": "4\n1 3 2 3",
"output": "3"
},
{
"input": "2\n2 3",
"output": "2"
},
{
"input": "3\n32 10 23",
"output": "2"
},
{
"input": "7\n1 1 1 1 1 1 1",
"output": "4"
},
{
"input": "3\n1 2 4",
"output": "3"
},
{
"input": "6\n3 3 3 2 4 4",
"output": "4"
},
{
"input": "9\n1 1 1 1 1 1 1 1 1",
"output": "5"
},
{
"input": "5\n1 3 3 1 1",
"output": "3"
},
{
"input": "4\n1 1 1 2",
"output": "3"
},
{
"input": "4\n1 2 1 3",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "2"
},
{
"input": "4\n2 3 3 3",
"output": "3"
},
{
"input": "4\n3 2 3 3",
"output": "3"
},
{
"input": "4\n2 1 1 1",
"output": "2"
},
{
"input": "3\n2 1 4",
"output": "3"
},
{
"input": "2\n6 7",
"output": "2"
},
{
"input": "4\n3 3 4 3",
"output": "3"
},
{
"input": "4\n1 1 2 5",
"output": "4"
},
{
"input": "4\n1 8 7 3",
"output": "3"
},
{
"input": "6\n2 2 2 2 2 3",
"output": "4"
},
{
"input": "3\n2 2 5",
"output": "3"
},
{
"input": "4\n1 1 2 1",
"output": "3"
},
{
"input": "5\n1 1 2 2 3",
"output": "4"
},
{
"input": "5\n9 5 3 4 8",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "2"
},
{
"input": "4\n1 2 2 2",
"output": "3"
},
{
"input": "3\n1 3 5",
"output": "3"
},
{
"input": "4\n1 1 3 6",
"output": "4"
},
{
"input": "6\n1 2 1 1 1 1",
"output": "3"
},
{
"input": "3\n3 1 3",
"output": "2"
},
{
"input": "5\n3 4 5 1 2",
"output": "3"
},
{
"input": "11\n1 1 1 1 1 1 1 1 1 1 1",
"output": "6"
},
{
"input": "5\n3 1 2 5 2",
"output": "4"
},
{
"input": "4\n1 1 1 4",
"output": "4"
},
{
"input": "4\n2 6 1 10",
"output": "4"
},
{
"input": "4\n2 2 3 2",
"output": "3"
},
{
"input": "4\n4 2 2 1",
"output": "2"
},
{
"input": "6\n1 1 1 1 1 4",
"output": "5"
},
{
"input": "3\n3 2 2",
"output": "2"
},
{
"input": "6\n1 3 5 1 7 4",
"output": "5"
},
{
"input": "5\n1 2 4 8 16",
"output": "5"
},
{
"input": "5\n1 2 4 4 4",
"output": "4"
},
{
"input": "6\n4 2 1 2 3 1",
"output": "3"
},
{
"input": "4\n3 2 1 5",
"output": "3"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "3\n2 4 7",
"output": "3"
},
{
"input": "5\n1 1 1 1 3",
"output": "4"
},
{
"input": "3\n3 1 5",
"output": "3"
},
{
"input": "4\n1 2 3 7",
"output": "4"
},
{
"input": "3\n1 4 6",
"output": "3"
},
{
"input": "4\n2 1 2 2",
"output": "3"
},
{
"input": "2\n4 5",
"output": "2"
},
{
"input": "5\n1 2 1 2 1",
"output": "3"
},
{
"input": "3\n2 3 6",
"output": "3"
},
{
"input": "6\n1 1 4 1 1 5",
"output": "4"
},
{
"input": "5\n2 2 2 2 1",
"output": "3"
},
{
"input": "2\n5 6",
"output": "2"
},
{
"input": "4\n2 2 1 4",
"output": "3"
},
{
"input": "5\n2 2 3 4 4",
"output": "4"
},
{
"input": "4\n3 1 1 2",
"output": "2"
},
{
"input": "5\n3 4 1 4 5",
"output": "4"
},
{
"input": "4\n1 3 1 6",
"output": "4"
},
{
"input": "5\n1 1 1 2 2",
"output": "4"
},
{
"input": "4\n1 4 2 4",
"output": "3"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 8",
"output": "9"
},
{
"input": "4\n1 4 5 1",
"output": "3"
},
{
"input": "5\n1 1 1 1 5",
"output": "5"
},
{
"input": "4\n1 3 4 1",
"output": "3"
},
{
"input": "4\n2 2 2 3",
"output": "3"
},
{
"input": "4\n2 3 2 4",
"output": "3"
},
{
"input": "5\n2 2 1 2 2",
"output": "3"
},
{
"input": "3\n4 3 2",
"output": "2"
},
{
"input": "3\n6 5 2",
"output": "2"
},
{
"input": "69\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "35"
},
{
"input": "6\n1 1 1 1 1 2",
"output": "4"
},
{
"input": "5\n1 2 5 4 5",
"output": "4"
},
{
"input": "2\n9 10",
"output": "2"
},
{
"input": "3\n1 1 5",
"output": "3"
},
{
"input": "4\n3 4 3 5",
"output": "3"
},
{
"input": "4\n1 4 3 3",
"output": "3"
},
{
"input": "4\n7 1 3 4",
"output": "2"
},
{
"input": "3\n100 100 1",
"output": "2"
},
{
"input": "4\n5 2 2 2",
"output": "2"
}
] | 1,523,485,678
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 93
| 7,475,200
|
#Equator .. 962A
from random import choice
n = int(input())
a = input().split()
A = list(map(int,a))
avg = sum(A)//len(A)
if n < 100000:
c = 0
else:
c = n//2 - 500
if avg == choice(A):
print(n//2)
else:
while c < len(A):
if sum(A[0:c]) < sum(A)/2:
c+=1
else:
break
print(c)
|
Title: Equator
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has created his own training plan to prepare for the programming contests. He will train for $n$ days, all days are numbered from $1$ to $n$, beginning from the first.
On the $i$-th day Polycarp will necessarily solve $a_i$ problems. One evening Polycarp plans to celebrate the equator. He will celebrate it on the first evening of such a day that from the beginning of the training and to this day inclusive he will solve half or more of all the problems.
Determine the index of day when Polycarp will celebrate the equator.
Input Specification:
The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of days to prepare for the programming contests.
The second line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10\,000$), where $a_i$ equals to the number of problems, which Polycarp will solve on the $i$-th day.
Output Specification:
Print the index of the day when Polycarp will celebrate the equator.
Demo Input:
['4\n1 3 2 1\n', '6\n2 2 2 2 2 2\n']
Demo Output:
['2\n', '3\n']
Note:
In the first example Polycarp will celebrate the equator on the evening of the second day, because up to this day (inclusive) he will solve $4$ out of $7$ scheduled problems on four days of the training.
In the second example Polycarp will celebrate the equator on the evening of the third day, because up to this day (inclusive) he will solve $6$ out of $12$ scheduled problems on six days of the training.
|
```python
#Equator .. 962A
from random import choice
n = int(input())
a = input().split()
A = list(map(int,a))
avg = sum(A)//len(A)
if n < 100000:
c = 0
else:
c = n//2 - 500
if avg == choice(A):
print(n//2)
else:
while c < len(A):
if sum(A[0:c]) < sum(A)/2:
c+=1
else:
break
print(c)
```
| 0
|
|
780
|
A
|
Andryusha and Socks
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Andryusha is an orderly boy and likes to keep things in their place.
Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe.
Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
|
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs.
The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*.
It is guaranteed that Andryusha took exactly two socks of each pair.
|
Print single integer — the maximum number of socks that were on the table at the same time.
|
[
"1\n1 1\n",
"3\n2 1 1 3 2 3\n"
] |
[
"1\n",
"2\n"
] |
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time.
In the second example Andryusha behaved as follows:
- Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
| 500
|
[
{
"input": "1\n1 1",
"output": "1"
},
{
"input": "3\n2 1 1 3 2 3",
"output": "2"
},
{
"input": "5\n5 1 3 2 4 3 1 2 4 5",
"output": "5"
},
{
"input": "10\n4 2 6 3 4 8 7 1 1 5 2 10 6 8 3 5 10 9 9 7",
"output": "6"
},
{
"input": "50\n30 47 31 38 37 50 36 43 9 23 2 2 15 31 14 49 9 16 6 44 27 14 5 6 3 47 25 26 1 35 3 15 24 19 8 46 49 41 4 26 40 28 42 11 34 35 46 18 7 28 18 40 19 42 4 41 38 48 50 12 29 39 33 17 25 22 22 21 36 45 27 30 20 7 13 29 39 44 21 8 37 45 34 1 20 10 11 17 33 12 43 13 10 16 48 24 32 5 23 32",
"output": "25"
},
{
"input": "50\n1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50",
"output": "1"
},
{
"input": "50\n50 50 49 49 48 48 47 47 46 46 45 45 44 44 43 43 42 42 41 41 40 40 39 39 38 38 37 37 36 36 35 35 34 34 33 33 32 32 31 31 30 30 29 29 28 28 27 27 26 26 25 25 24 24 23 23 22 22 21 21 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1",
"output": "1"
},
{
"input": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50",
"output": "50"
},
{
"input": "50\n50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "50"
},
{
"input": "10\n2 9 4 1 6 7 10 3 1 5 8 6 2 3 10 7 4 8 5 9",
"output": "9"
}
] | 1,579,158,857
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 56
| 280
| 18,022,400
|
n = int(input())
l = list(map(int, input().split()))
a = set()
c = 0
res = []
for i in range(2 * n):
a.add(l[i])
if c < len(a):
c+=1
else:
a.discard(l[i])
res.append(c)
c = len(a)
print(max(res))
|
Title: Andryusha and Socks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Andryusha is an orderly boy and likes to keep things in their place.
Today he faced a problem to put his socks in the wardrobe. He has *n* distinct pairs of socks which are initially in a bag. The pairs are numbered from 1 to *n*. Andryusha wants to put paired socks together and put them in the wardrobe. He takes the socks one by one from the bag, and for each sock he looks whether the pair of this sock has been already took out of the bag, or not. If not (that means the pair of this sock is still in the bag), he puts the current socks on the table in front of him. Otherwise, he puts both socks from the pair to the wardrobe.
Andryusha remembers the order in which he took the socks from the bag. Can you tell him what is the maximum number of socks that were on the table at the same time?
Input Specification:
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=105) — the number of sock pairs.
The second line contains 2*n* integers *x*1,<=*x*2,<=...,<=*x*2*n* (1<=≤<=*x**i*<=≤<=*n*), which describe the order in which Andryusha took the socks from the bag. More precisely, *x**i* means that the *i*-th sock Andryusha took out was from pair *x**i*.
It is guaranteed that Andryusha took exactly two socks of each pair.
Output Specification:
Print single integer — the maximum number of socks that were on the table at the same time.
Demo Input:
['1\n1 1\n', '3\n2 1 1 3 2 3\n']
Demo Output:
['1\n', '2\n']
Note:
In the first example Andryusha took a sock from the first pair and put it on the table. Then he took the next sock which is from the first pair as well, so he immediately puts both socks to the wardrobe. Thus, at most one sock was on the table at the same time.
In the second example Andryusha behaved as follows:
- Initially the table was empty, he took out a sock from pair 2 and put it on the table. - Sock (2) was on the table. Andryusha took out a sock from pair 1 and put it on the table. - Socks (1, 2) were on the table. Andryusha took out a sock from pair 1, and put this pair into the wardrobe. - Sock (2) was on the table. Andryusha took out a sock from pair 3 and put it on the table. - Socks (2, 3) were on the table. Andryusha took out a sock from pair 2, and put this pair into the wardrobe. - Sock (3) was on the table. Andryusha took out a sock from pair 3 and put this pair into the wardrobe.
|
```python
n = int(input())
l = list(map(int, input().split()))
a = set()
c = 0
res = []
for i in range(2 * n):
a.add(l[i])
if c < len(a):
c+=1
else:
a.discard(l[i])
res.append(c)
c = len(a)
print(max(res))
```
| 3
|
|
755
|
A
|
PolandBall and Hypothesis
|
PROGRAMMING
| 800
|
[
"brute force",
"graphs",
"math",
"number theory"
] | null | null |
PolandBall is a young, clever Ball. He is interested in prime numbers. He has stated a following hypothesis: "There exists such a positive integer *n* that for each positive integer *m* number *n*·*m*<=+<=1 is a prime number".
Unfortunately, PolandBall is not experienced yet and doesn't know that his hypothesis is incorrect. Could you prove it wrong? Write a program that finds a counterexample for any *n*.
|
The only number in the input is *n* (1<=≤<=*n*<=≤<=1000) — number from the PolandBall's hypothesis.
|
Output such *m* that *n*·*m*<=+<=1 is not a prime number. Your answer will be considered correct if you output any suitable *m* such that 1<=≤<=*m*<=≤<=103. It is guaranteed the the answer exists.
|
[
"3\n",
"4\n"
] |
[
"1",
"2"
] |
A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.
For the first sample testcase, 3·1 + 1 = 4. We can output 1.
In the second sample testcase, 4·1 + 1 = 5. We cannot output 1 because 5 is prime. However, *m* = 2 is okay since 4·2 + 1 = 9, which is not a prime number.
| 500
|
[
{
"input": "3",
"output": "1"
},
{
"input": "4",
"output": "2"
},
{
"input": "10",
"output": "2"
},
{
"input": "153",
"output": "1"
},
{
"input": "1000",
"output": "1"
},
{
"input": "1",
"output": "3"
},
{
"input": "2",
"output": "4"
},
{
"input": "5",
"output": "1"
},
{
"input": "6",
"output": "4"
},
{
"input": "7",
"output": "1"
},
{
"input": "8",
"output": "1"
},
{
"input": "9",
"output": "1"
},
{
"input": "11",
"output": "1"
},
{
"input": "998",
"output": "1"
},
{
"input": "996",
"output": "3"
},
{
"input": "36",
"output": "4"
},
{
"input": "210",
"output": "4"
},
{
"input": "270",
"output": "4"
},
{
"input": "306",
"output": "4"
},
{
"input": "330",
"output": "5"
},
{
"input": "336",
"output": "4"
},
{
"input": "600",
"output": "4"
},
{
"input": "726",
"output": "4"
},
{
"input": "988",
"output": "1"
},
{
"input": "12",
"output": "2"
},
{
"input": "987",
"output": "1"
},
{
"input": "13",
"output": "1"
},
{
"input": "986",
"output": "1"
},
{
"input": "14",
"output": "1"
},
{
"input": "985",
"output": "1"
},
{
"input": "15",
"output": "1"
},
{
"input": "984",
"output": "1"
},
{
"input": "16",
"output": "2"
},
{
"input": "983",
"output": "1"
},
{
"input": "17",
"output": "1"
},
{
"input": "982",
"output": "2"
},
{
"input": "18",
"output": "3"
},
{
"input": "981",
"output": "1"
},
{
"input": "19",
"output": "1"
},
{
"input": "980",
"output": "1"
},
{
"input": "20",
"output": "1"
},
{
"input": "979",
"output": "1"
},
{
"input": "21",
"output": "1"
},
{
"input": "978",
"output": "1"
},
{
"input": "22",
"output": "2"
},
{
"input": "977",
"output": "1"
},
{
"input": "23",
"output": "1"
},
{
"input": "976",
"output": "2"
},
{
"input": "24",
"output": "1"
},
{
"input": "975",
"output": "1"
},
{
"input": "25",
"output": "1"
},
{
"input": "2",
"output": "4"
},
{
"input": "6",
"output": "4"
},
{
"input": "996",
"output": "3"
},
{
"input": "8",
"output": "1"
},
{
"input": "998",
"output": "1"
},
{
"input": "330",
"output": "5"
},
{
"input": "18",
"output": "3"
},
{
"input": "12",
"output": "2"
},
{
"input": "24",
"output": "1"
},
{
"input": "999",
"output": "1"
},
{
"input": "726",
"output": "4"
},
{
"input": "876",
"output": "3"
}
] | 1,627,905,953
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 5
| 93
| 20,172,800
|
n = int(input())
ans = 1
if n % 2 == 0:
ans = 2
print(ans)
|
Title: PolandBall and Hypothesis
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
PolandBall is a young, clever Ball. He is interested in prime numbers. He has stated a following hypothesis: "There exists such a positive integer *n* that for each positive integer *m* number *n*·*m*<=+<=1 is a prime number".
Unfortunately, PolandBall is not experienced yet and doesn't know that his hypothesis is incorrect. Could you prove it wrong? Write a program that finds a counterexample for any *n*.
Input Specification:
The only number in the input is *n* (1<=≤<=*n*<=≤<=1000) — number from the PolandBall's hypothesis.
Output Specification:
Output such *m* that *n*·*m*<=+<=1 is not a prime number. Your answer will be considered correct if you output any suitable *m* such that 1<=≤<=*m*<=≤<=103. It is guaranteed the the answer exists.
Demo Input:
['3\n', '4\n']
Demo Output:
['1', '2']
Note:
A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.
For the first sample testcase, 3·1 + 1 = 4. We can output 1.
In the second sample testcase, 4·1 + 1 = 5. We cannot output 1 because 5 is prime. However, *m* = 2 is okay since 4·2 + 1 = 9, which is not a prime number.
|
```python
n = int(input())
ans = 1
if n % 2 == 0:
ans = 2
print(ans)
```
| 0
|
|
675
|
A
|
Infinite Sequence
|
PROGRAMMING
| 1,100
|
[
"math"
] | null | null |
Vasya likes everything infinite. Now he is studying the properties of a sequence *s*, such that its first element is equal to *a* (*s*1<==<=*a*), and the difference between any two neighbouring elements is equal to *c* (*s**i*<=-<=*s**i*<=-<=1<==<=*c*). In particular, Vasya wonders if his favourite integer *b* appears in this sequence, that is, there exists a positive integer *i*, such that *s**i*<==<=*b*. Of course, you are the person he asks for a help.
|
The first line of the input contain three integers *a*, *b* and *c* (<=-<=109<=≤<=*a*,<=*b*,<=*c*<=≤<=109) — the first element of the sequence, Vasya's favorite number and the difference between any two neighbouring elements of the sequence, respectively.
|
If *b* appears in the sequence *s* print "YES" (without quotes), otherwise print "NO" (without quotes).
|
[
"1 7 3\n",
"10 10 0\n",
"1 -4 5\n",
"0 60 50\n"
] |
[
"YES\n",
"YES\n",
"NO\n",
"NO\n"
] |
In the first sample, the sequence starts from integers 1, 4, 7, so 7 is its element.
In the second sample, the favorite integer of Vasya is equal to the first element of the sequence.
In the third sample all elements of the sequence are greater than Vasya's favorite integer.
In the fourth sample, the sequence starts from 0, 50, 100, and all the following elements are greater than Vasya's favorite integer.
| 500
|
[
{
"input": "1 7 3",
"output": "YES"
},
{
"input": "10 10 0",
"output": "YES"
},
{
"input": "1 -4 5",
"output": "NO"
},
{
"input": "0 60 50",
"output": "NO"
},
{
"input": "1 -4 -5",
"output": "YES"
},
{
"input": "0 1 0",
"output": "NO"
},
{
"input": "10 10 42",
"output": "YES"
},
{
"input": "-1000000000 1000000000 -1",
"output": "NO"
},
{
"input": "10 16 4",
"output": "NO"
},
{
"input": "-1000000000 1000000000 5",
"output": "YES"
},
{
"input": "1000000000 -1000000000 5",
"output": "NO"
},
{
"input": "1000000000 -1000000000 0",
"output": "NO"
},
{
"input": "1000000000 1000000000 0",
"output": "YES"
},
{
"input": "115078364 -899474523 -1",
"output": "YES"
},
{
"input": "-245436499 416383245 992",
"output": "YES"
},
{
"input": "-719636354 536952440 2",
"output": "YES"
},
{
"input": "-198350539 963391024 68337739",
"output": "YES"
},
{
"input": "-652811055 875986516 1091",
"output": "YES"
},
{
"input": "119057893 -516914539 -39748277",
"output": "YES"
},
{
"input": "989140430 731276607 -36837689",
"output": "YES"
},
{
"input": "677168390 494583489 -985071853",
"output": "NO"
},
{
"input": "58090193 777423708 395693923",
"output": "NO"
},
{
"input": "479823846 -403424770 -653472589",
"output": "NO"
},
{
"input": "-52536829 -132023273 -736287999",
"output": "NO"
},
{
"input": "-198893776 740026818 -547885271",
"output": "NO"
},
{
"input": "-2 -2 -2",
"output": "YES"
},
{
"input": "-2 -2 -1",
"output": "YES"
},
{
"input": "-2 -2 0",
"output": "YES"
},
{
"input": "-2 -2 1",
"output": "YES"
},
{
"input": "-2 -2 2",
"output": "YES"
},
{
"input": "-2 -1 -2",
"output": "NO"
},
{
"input": "-2 -1 -1",
"output": "NO"
},
{
"input": "-2 -1 0",
"output": "NO"
},
{
"input": "-2 -1 1",
"output": "YES"
},
{
"input": "-2 -1 2",
"output": "NO"
},
{
"input": "-2 0 -2",
"output": "NO"
},
{
"input": "-2 0 -1",
"output": "NO"
},
{
"input": "-2 0 0",
"output": "NO"
},
{
"input": "-2 0 1",
"output": "YES"
},
{
"input": "-2 0 2",
"output": "YES"
},
{
"input": "-2 1 -2",
"output": "NO"
},
{
"input": "-2 1 -1",
"output": "NO"
},
{
"input": "-2 1 0",
"output": "NO"
},
{
"input": "-2 1 1",
"output": "YES"
},
{
"input": "-2 1 2",
"output": "NO"
},
{
"input": "-2 2 -2",
"output": "NO"
},
{
"input": "-2 2 -1",
"output": "NO"
},
{
"input": "-2 2 0",
"output": "NO"
},
{
"input": "-2 2 1",
"output": "YES"
},
{
"input": "-2 2 2",
"output": "YES"
},
{
"input": "-1 -2 -2",
"output": "NO"
},
{
"input": "-1 -2 -1",
"output": "YES"
},
{
"input": "-1 -2 0",
"output": "NO"
},
{
"input": "-1 -2 1",
"output": "NO"
},
{
"input": "-1 -2 2",
"output": "NO"
},
{
"input": "-1 -1 -2",
"output": "YES"
},
{
"input": "-1 -1 -1",
"output": "YES"
},
{
"input": "-1 -1 0",
"output": "YES"
},
{
"input": "-1 -1 1",
"output": "YES"
},
{
"input": "-1 -1 2",
"output": "YES"
},
{
"input": "-1 0 -2",
"output": "NO"
},
{
"input": "-1 0 -1",
"output": "NO"
},
{
"input": "-1 0 0",
"output": "NO"
},
{
"input": "-1 0 1",
"output": "YES"
},
{
"input": "-1 0 2",
"output": "NO"
},
{
"input": "-1 1 -2",
"output": "NO"
},
{
"input": "-1 1 -1",
"output": "NO"
},
{
"input": "-1 1 0",
"output": "NO"
},
{
"input": "-1 1 1",
"output": "YES"
},
{
"input": "-1 1 2",
"output": "YES"
},
{
"input": "-1 2 -2",
"output": "NO"
},
{
"input": "-1 2 -1",
"output": "NO"
},
{
"input": "-1 2 0",
"output": "NO"
},
{
"input": "-1 2 1",
"output": "YES"
},
{
"input": "-1 2 2",
"output": "NO"
},
{
"input": "0 -2 -2",
"output": "YES"
},
{
"input": "0 -2 -1",
"output": "YES"
},
{
"input": "0 -2 0",
"output": "NO"
},
{
"input": "0 -2 1",
"output": "NO"
},
{
"input": "0 -2 2",
"output": "NO"
},
{
"input": "0 -1 -2",
"output": "NO"
},
{
"input": "0 -1 -1",
"output": "YES"
},
{
"input": "0 -1 0",
"output": "NO"
},
{
"input": "0 -1 1",
"output": "NO"
},
{
"input": "0 -1 2",
"output": "NO"
},
{
"input": "0 0 -2",
"output": "YES"
},
{
"input": "0 0 -1",
"output": "YES"
},
{
"input": "0 0 0",
"output": "YES"
},
{
"input": "0 0 1",
"output": "YES"
},
{
"input": "0 0 2",
"output": "YES"
},
{
"input": "0 1 -2",
"output": "NO"
},
{
"input": "0 1 -1",
"output": "NO"
},
{
"input": "0 1 0",
"output": "NO"
},
{
"input": "0 1 1",
"output": "YES"
},
{
"input": "0 1 2",
"output": "NO"
},
{
"input": "0 2 -2",
"output": "NO"
},
{
"input": "0 2 -1",
"output": "NO"
},
{
"input": "0 2 0",
"output": "NO"
},
{
"input": "0 2 1",
"output": "YES"
},
{
"input": "0 2 2",
"output": "YES"
},
{
"input": "1 -2 -2",
"output": "NO"
},
{
"input": "1 -2 -1",
"output": "YES"
},
{
"input": "1 -2 0",
"output": "NO"
},
{
"input": "1 -2 1",
"output": "NO"
},
{
"input": "1 -2 2",
"output": "NO"
},
{
"input": "1 -1 -2",
"output": "YES"
},
{
"input": "1 -1 -1",
"output": "YES"
},
{
"input": "1 -1 0",
"output": "NO"
},
{
"input": "1 -1 1",
"output": "NO"
},
{
"input": "1 -1 2",
"output": "NO"
},
{
"input": "1 0 -2",
"output": "NO"
},
{
"input": "1 0 -1",
"output": "YES"
},
{
"input": "1 0 0",
"output": "NO"
},
{
"input": "1 0 1",
"output": "NO"
},
{
"input": "1 0 2",
"output": "NO"
},
{
"input": "1 1 -2",
"output": "YES"
},
{
"input": "1 1 -1",
"output": "YES"
},
{
"input": "1 1 0",
"output": "YES"
},
{
"input": "1 1 1",
"output": "YES"
},
{
"input": "1 1 2",
"output": "YES"
},
{
"input": "1 2 -2",
"output": "NO"
},
{
"input": "1 2 -1",
"output": "NO"
},
{
"input": "1 2 0",
"output": "NO"
},
{
"input": "1 2 1",
"output": "YES"
},
{
"input": "1 2 2",
"output": "NO"
},
{
"input": "2 -2 -2",
"output": "YES"
},
{
"input": "2 -2 -1",
"output": "YES"
},
{
"input": "2 -2 0",
"output": "NO"
},
{
"input": "2 -2 1",
"output": "NO"
},
{
"input": "2 -2 2",
"output": "NO"
},
{
"input": "2 -1 -2",
"output": "NO"
},
{
"input": "2 -1 -1",
"output": "YES"
},
{
"input": "2 -1 0",
"output": "NO"
},
{
"input": "2 -1 1",
"output": "NO"
},
{
"input": "2 -1 2",
"output": "NO"
},
{
"input": "2 0 -2",
"output": "YES"
},
{
"input": "2 0 -1",
"output": "YES"
},
{
"input": "2 0 0",
"output": "NO"
},
{
"input": "2 0 1",
"output": "NO"
},
{
"input": "2 0 2",
"output": "NO"
},
{
"input": "2 1 -2",
"output": "NO"
},
{
"input": "2 1 -1",
"output": "YES"
},
{
"input": "2 1 0",
"output": "NO"
},
{
"input": "2 1 1",
"output": "NO"
},
{
"input": "2 1 2",
"output": "NO"
},
{
"input": "2 2 -2",
"output": "YES"
},
{
"input": "2 2 -1",
"output": "YES"
},
{
"input": "2 2 0",
"output": "YES"
},
{
"input": "2 2 1",
"output": "YES"
},
{
"input": "2 2 2",
"output": "YES"
},
{
"input": "-1000000000 1000000000 1",
"output": "YES"
},
{
"input": "-1000000000 1000000000 2",
"output": "YES"
},
{
"input": "1000000000 -1000000000 -1",
"output": "YES"
},
{
"input": "5 2 3",
"output": "NO"
},
{
"input": "2 1 -1",
"output": "YES"
},
{
"input": "3 2 1",
"output": "NO"
},
{
"input": "0 -5 -3",
"output": "NO"
},
{
"input": "2 5 5",
"output": "NO"
},
{
"input": "0 10 1",
"output": "YES"
},
{
"input": "15 5 -5",
"output": "YES"
},
{
"input": "2 1 1",
"output": "NO"
},
{
"input": "20 10 0",
"output": "NO"
},
{
"input": "20 15 5",
"output": "NO"
},
{
"input": "1 6 1",
"output": "YES"
},
{
"input": "1000000000 0 -1000000000",
"output": "YES"
},
{
"input": "1 1 -5",
"output": "YES"
},
{
"input": "4 6 1",
"output": "YES"
},
{
"input": "-5 -10 -5",
"output": "YES"
},
{
"input": "2 0 0",
"output": "NO"
},
{
"input": "10 9 -1",
"output": "YES"
},
{
"input": "-2 -1 -1",
"output": "NO"
},
{
"input": "1 13 3",
"output": "YES"
},
{
"input": "2 3 0",
"output": "NO"
},
{
"input": "1 1 -1",
"output": "YES"
},
{
"input": "5 -10 -5",
"output": "YES"
},
{
"input": "5 3 1",
"output": "NO"
},
{
"input": "1 1000000000 1",
"output": "YES"
},
{
"input": "-1000000000 1000000000 1000000000",
"output": "YES"
}
] | 1,523,601,744
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 9
| 1,000
| 7,065,600
|
a , b ,c=(map(int ,input().split()))
def inte():
global a
global b
global c
while(True):
if(a==0 and c==0):
break
a=a+c
if(a>=b):
break
if(a==b):
print('YES')
else:
print('NO')
if(a==b):
print('YES')
elif(a<0 and b<0 and c<0):
a=-a
b=-b
c=-c
inte()
elif(a<0 and c<0 and b>0):
print('NO')
else:
inte()
|
Title: Infinite Sequence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya likes everything infinite. Now he is studying the properties of a sequence *s*, such that its first element is equal to *a* (*s*1<==<=*a*), and the difference between any two neighbouring elements is equal to *c* (*s**i*<=-<=*s**i*<=-<=1<==<=*c*). In particular, Vasya wonders if his favourite integer *b* appears in this sequence, that is, there exists a positive integer *i*, such that *s**i*<==<=*b*. Of course, you are the person he asks for a help.
Input Specification:
The first line of the input contain three integers *a*, *b* and *c* (<=-<=109<=≤<=*a*,<=*b*,<=*c*<=≤<=109) — the first element of the sequence, Vasya's favorite number and the difference between any two neighbouring elements of the sequence, respectively.
Output Specification:
If *b* appears in the sequence *s* print "YES" (without quotes), otherwise print "NO" (without quotes).
Demo Input:
['1 7 3\n', '10 10 0\n', '1 -4 5\n', '0 60 50\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n', 'NO\n']
Note:
In the first sample, the sequence starts from integers 1, 4, 7, so 7 is its element.
In the second sample, the favorite integer of Vasya is equal to the first element of the sequence.
In the third sample all elements of the sequence are greater than Vasya's favorite integer.
In the fourth sample, the sequence starts from 0, 50, 100, and all the following elements are greater than Vasya's favorite integer.
|
```python
a , b ,c=(map(int ,input().split()))
def inte():
global a
global b
global c
while(True):
if(a==0 and c==0):
break
a=a+c
if(a>=b):
break
if(a==b):
print('YES')
else:
print('NO')
if(a==b):
print('YES')
elif(a<0 and b<0 and c<0):
a=-a
b=-b
c=-c
inte()
elif(a<0 and c<0 and b>0):
print('NO')
else:
inte()
```
| 0
|
|
514
|
A
|
Chewbaсca and Number
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation"
] | null | null |
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
|
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
|
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
|
[
"27\n",
"4545\n"
] |
[
"22\n",
"4444\n"
] |
none
| 500
|
[
{
"input": "27",
"output": "22"
},
{
"input": "4545",
"output": "4444"
},
{
"input": "1",
"output": "1"
},
{
"input": "9",
"output": "9"
},
{
"input": "8772",
"output": "1222"
},
{
"input": "81",
"output": "11"
},
{
"input": "71723447",
"output": "21223442"
},
{
"input": "91730629",
"output": "91230320"
},
{
"input": "420062703497",
"output": "420032203402"
},
{
"input": "332711047202",
"output": "332211042202"
},
{
"input": "3395184971407775",
"output": "3304114021402224"
},
{
"input": "8464062628894325",
"output": "1434032321104324"
},
{
"input": "164324828731963982",
"output": "134324121231033012"
},
{
"input": "384979173822804784",
"output": "314020123122104214"
},
{
"input": "41312150450968417",
"output": "41312140440031412"
},
{
"input": "2156",
"output": "2143"
},
{
"input": "1932",
"output": "1032"
},
{
"input": "5902",
"output": "4002"
},
{
"input": "5728",
"output": "4221"
},
{
"input": "8537",
"output": "1432"
},
{
"input": "55403857",
"output": "44403142"
},
{
"input": "270739",
"output": "220230"
},
{
"input": "28746918",
"output": "21243011"
},
{
"input": "10279211",
"output": "10220211"
},
{
"input": "40289679",
"output": "40210320"
},
{
"input": "545203238506",
"output": "444203231403"
},
{
"input": "461117063340",
"output": "431112033340"
},
{
"input": "658492686568",
"output": "341402313431"
},
{
"input": "857373361868",
"output": "142323331131"
},
{
"input": "429325660016",
"output": "420324330013"
},
{
"input": "9894448650287940",
"output": "9104441340212040"
},
{
"input": "6354510839296263",
"output": "3344410130203233"
},
{
"input": "6873575462224593",
"output": "3123424432224403"
},
{
"input": "4237951492601449",
"output": "4232041402301440"
},
{
"input": "2680352384836991",
"output": "2310342314133001"
},
{
"input": "606187734191890310",
"output": "303112234101100310"
},
{
"input": "351499943576823355",
"output": "341400043423123344"
},
{
"input": "180593481782177068",
"output": "110403411212122031"
},
{
"input": "999999999999999999",
"output": "900000000000000000"
},
{
"input": "1000000000000000000",
"output": "1000000000000000000"
},
{
"input": "9999",
"output": "9000"
},
{
"input": "99",
"output": "90"
},
{
"input": "9991",
"output": "9001"
}
] | 1,667,058,761
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 15
| 0
|
num = [int(n) for n in list(input())]
if(num[0]>4):
temp = 9-num[i]
num[i]= str(tem)
for i in range(1,len(num)):
temp = 9-num[i]
if(num[i]>temp):
num[i]= temp
num[i]= str(num[i])
print(''.join(num))
|
Title: Chewbaсca and Number
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Luke Skywalker gave Chewbacca an integer number *x*. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit *t* means replacing it with digit 9<=-<=*t*.
Help Chewbacca to transform the initial number *x* to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
Input Specification:
The first line contains a single integer *x* (1<=≤<=*x*<=≤<=1018) — the number that Luke Skywalker gave to Chewbacca.
Output Specification:
Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.
Demo Input:
['27\n', '4545\n']
Demo Output:
['22\n', '4444\n']
Note:
none
|
```python
num = [int(n) for n in list(input())]
if(num[0]>4):
temp = 9-num[i]
num[i]= str(tem)
for i in range(1,len(num)):
temp = 9-num[i]
if(num[i]>temp):
num[i]= temp
num[i]= str(num[i])
print(''.join(num))
```
| -1
|
|
461
|
A
|
Appleman and Toastman
|
PROGRAMMING
| 1,200
|
[
"greedy",
"sortings"
] | null | null |
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
|
Print a single integer — the largest possible score.
|
[
"3\n3 1 5\n",
"1\n10\n"
] |
[
"26\n",
"10\n"
] |
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
| 500
|
[
{
"input": "3\n3 1 5",
"output": "26"
},
{
"input": "1\n10",
"output": "10"
},
{
"input": "10\n8 10 2 5 6 2 4 7 2 1",
"output": "376"
},
{
"input": "10\n171308 397870 724672 431255 228496 892002 542924 718337 888642 161821",
"output": "40204082"
},
{
"input": "10\n1 2 2 2 4 5 6 7 8 10",
"output": "376"
},
{
"input": "10\n161821 171308 228496 397870 431255 542924 718337 724672 888642 892002",
"output": "40204082"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "1\n1000000",
"output": "1000000"
},
{
"input": "10\n10 8 7 6 5 4 2 2 2 1",
"output": "376"
},
{
"input": "10\n892002 888642 724672 718337 542924 431255 397870 228496 171308 161821",
"output": "40204082"
},
{
"input": "10\n5 2 6 10 10 10 10 2 2 5",
"output": "485"
},
{
"input": "10\n431255 724672 228496 397870 397870 397870 397870 724672 888642 431255",
"output": "36742665"
},
{
"input": "10\n2 2 2 5 5 6 10 10 10 10",
"output": "485"
},
{
"input": "10\n228496 397870 397870 397870 397870 431255 431255 724672 724672 888642",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 6 5 5 2 2 2",
"output": "485"
},
{
"input": "10\n888642 724672 724672 431255 431255 397870 397870 397870 397870 228496",
"output": "36742665"
},
{
"input": "10\n10 10 10 10 10 10 10 10 10 10",
"output": "640"
},
{
"input": "10\n1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000",
"output": "64000000"
},
{
"input": "1\n397870",
"output": "397870"
},
{
"input": "2\n1 2",
"output": "6"
},
{
"input": "2\n2 3",
"output": "10"
},
{
"input": "2\n1 1",
"output": "4"
}
] | 1,409,096,554
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
>>> def a () :
h=3
sums=0
c,b=0,0
h=input()
num=list(h)
minum=int(num[0])
lenth=len(num)
while c<len(num):
if num[c]==' ':
del(num[c])
c=c+1
c=0
while num!=[]:
while c<len(num):
v=int(num[c])
if len(num)!=1:
sums=sums+v
minum=int(num[0])
if v <= minum :
minum= v
b=c
c=c+1
sums=minum+sums
del(num[b])
c=0
return sums
|
Title: Appleman and Toastman
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Appleman and Toastman play a game. Initially Appleman gives one group of *n* numbers to the Toastman, then they start to complete the following tasks:
- Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman. - Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.
After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=3·105). The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=106) — the initial group that is given to Toastman.
Output Specification:
Print a single integer — the largest possible score.
Demo Input:
['3\n3 1 5\n', '1\n10\n']
Demo Output:
['26\n', '10\n']
Note:
Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.
|
```python
>>> def a () :
h=3
sums=0
c,b=0,0
h=input()
num=list(h)
minum=int(num[0])
lenth=len(num)
while c<len(num):
if num[c]==' ':
del(num[c])
c=c+1
c=0
while num!=[]:
while c<len(num):
v=int(num[c])
if len(num)!=1:
sums=sums+v
minum=int(num[0])
if v <= minum :
minum= v
b=c
c=c+1
sums=minum+sums
del(num[b])
c=0
return sums
```
| -1
|
|
923
|
B
|
Producing Snow
|
PROGRAMMING
| 1,600
|
[
"binary search",
"data structures"
] | null | null |
Alice likes snow a lot! Unfortunately, this year's winter is already over, and she can't expect to have any more of it. Bob has thus bought her a gift — a large snow maker. He plans to make some amount of snow every day. On day *i* he will make a pile of snow of volume *V**i* and put it in her garden.
Each day, every pile will shrink a little due to melting. More precisely, when the temperature on a given day is *T**i*, each pile will reduce its volume by *T**i*. If this would reduce the volume of a pile to or below zero, it disappears forever. All snow piles are independent of each other.
Note that the pile made on day *i* already loses part of its volume on the same day. In an extreme case, this may mean that there are no piles left at the end of a particular day.
You are given the initial pile sizes and the temperature on each day. Determine the total volume of snow melted on each day.
|
The first line contains a single integer *N* (1<=≤<=*N*<=≤<=105) — the number of days.
The second line contains *N* integers *V*1,<=*V*2,<=...,<=*V**N* (0<=≤<=*V**i*<=≤<=109), where *V**i* is the initial size of a snow pile made on the day *i*.
The third line contains *N* integers *T*1,<=*T*2,<=...,<=*T**N* (0<=≤<=*T**i*<=≤<=109), where *T**i* is the temperature on the day *i*.
|
Output a single line with *N* integers, where the *i*-th integer represents the total volume of snow melted on day *i*.
|
[
"3\n10 10 5\n5 7 2\n",
"5\n30 25 20 15 10\n9 10 12 4 13\n"
] |
[
"5 12 4\n",
"9 20 35 11 25\n"
] |
In the first sample, Bob first makes a snow pile of volume 10, which melts to the size of 5 on the same day. On the second day, he makes another pile of size 10. Since it is a bit warmer than the day before, the first pile disappears completely while the second pile shrinks to 3. At the end of the second day, he has only a single pile of size 3. On the third day he makes a smaller pile than usual, but as the temperature dropped too, both piles survive till the end of the day.
| 1,000
|
[
{
"input": "3\n10 10 5\n5 7 2",
"output": "5 12 4"
},
{
"input": "5\n30 25 20 15 10\n9 10 12 4 13",
"output": "9 20 35 11 25"
},
{
"input": "4\n0 0 0 0\n1 2 3 4",
"output": "0 0 0 0"
},
{
"input": "10\n11 39 16 34 25 3 12 11 31 16\n10 0 4 9 8 9 7 8 9 2",
"output": "10 0 9 27 27 30 28 17 12 4"
},
{
"input": "10\n20 35 4 0 6 29 4 9 17 10\n0 9 4 7 5 1 4 3 9 4",
"output": "0 18 12 14 10 3 12 9 26 12"
},
{
"input": "1\n4\n5",
"output": "4"
},
{
"input": "1\n5\n4",
"output": "4"
},
{
"input": "1\n5\n5",
"output": "5"
},
{
"input": "2\n9 3\n8 2",
"output": "8 3"
},
{
"input": "2\n9 3\n4 4",
"output": "4 7"
},
{
"input": "2\n9 3\n10 2",
"output": "9 2"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1"
}
] | 1,520,702,393
| 6,292
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
PRETESTS
| 3
| 1,000
| 17,920,000
|
from heapq import *
def read_line_of_numbers():
return map(int, input().split())
class Node:
def __init__(self, val, i):
self.val = val
self.i = i
def __lt__(self, other):
if self.val == other.val:
return self.i > other.i
else:
return self.i < other.i
def norm(self, arr):
return arr[-1] - arr[self.i] < self.val
def __repr__(self):
return '{} [{}]'.format(self.val, self.i)
def main():
n = int(input())
v = read_line_of_numbers()
t = read_line_of_numbers()
arr = []
total = 0
totarr = [0]
for i in range(n):
heappush(arr, Node(next(v), i))
nt = next(t)
s = 0
total += nt
totarr.append(total)
if len(arr) > 0:
prev = nsmallest(1, arr)[0]
sm = []
while len(arr) > 0 and nsmallest(1, arr)[0].val == prev.val:
prev = nsmallest(1, arr)[0]
sm.append(heappop(arr))
for i in sm:
if not i.norm(totarr):
s += i.val - totarr[-2] + totarr[i.i]
else:
heappush(arr, i)
while len(arr) > 0 and not nsmallest(1, arr)[0].norm(totarr):
d = heappop(arr)
s += d.val - totarr[-2] + totarr[d.i]
s += len(arr)*nt
print(s, end=' ')
if __name__ == '__main__':
main()
|
Title: Producing Snow
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alice likes snow a lot! Unfortunately, this year's winter is already over, and she can't expect to have any more of it. Bob has thus bought her a gift — a large snow maker. He plans to make some amount of snow every day. On day *i* he will make a pile of snow of volume *V**i* and put it in her garden.
Each day, every pile will shrink a little due to melting. More precisely, when the temperature on a given day is *T**i*, each pile will reduce its volume by *T**i*. If this would reduce the volume of a pile to or below zero, it disappears forever. All snow piles are independent of each other.
Note that the pile made on day *i* already loses part of its volume on the same day. In an extreme case, this may mean that there are no piles left at the end of a particular day.
You are given the initial pile sizes and the temperature on each day. Determine the total volume of snow melted on each day.
Input Specification:
The first line contains a single integer *N* (1<=≤<=*N*<=≤<=105) — the number of days.
The second line contains *N* integers *V*1,<=*V*2,<=...,<=*V**N* (0<=≤<=*V**i*<=≤<=109), where *V**i* is the initial size of a snow pile made on the day *i*.
The third line contains *N* integers *T*1,<=*T*2,<=...,<=*T**N* (0<=≤<=*T**i*<=≤<=109), where *T**i* is the temperature on the day *i*.
Output Specification:
Output a single line with *N* integers, where the *i*-th integer represents the total volume of snow melted on day *i*.
Demo Input:
['3\n10 10 5\n5 7 2\n', '5\n30 25 20 15 10\n9 10 12 4 13\n']
Demo Output:
['5 12 4\n', '9 20 35 11 25\n']
Note:
In the first sample, Bob first makes a snow pile of volume 10, which melts to the size of 5 on the same day. On the second day, he makes another pile of size 10. Since it is a bit warmer than the day before, the first pile disappears completely while the second pile shrinks to 3. At the end of the second day, he has only a single pile of size 3. On the third day he makes a smaller pile than usual, but as the temperature dropped too, both piles survive till the end of the day.
|
```python
from heapq import *
def read_line_of_numbers():
return map(int, input().split())
class Node:
def __init__(self, val, i):
self.val = val
self.i = i
def __lt__(self, other):
if self.val == other.val:
return self.i > other.i
else:
return self.i < other.i
def norm(self, arr):
return arr[-1] - arr[self.i] < self.val
def __repr__(self):
return '{} [{}]'.format(self.val, self.i)
def main():
n = int(input())
v = read_line_of_numbers()
t = read_line_of_numbers()
arr = []
total = 0
totarr = [0]
for i in range(n):
heappush(arr, Node(next(v), i))
nt = next(t)
s = 0
total += nt
totarr.append(total)
if len(arr) > 0:
prev = nsmallest(1, arr)[0]
sm = []
while len(arr) > 0 and nsmallest(1, arr)[0].val == prev.val:
prev = nsmallest(1, arr)[0]
sm.append(heappop(arr))
for i in sm:
if not i.norm(totarr):
s += i.val - totarr[-2] + totarr[i.i]
else:
heappush(arr, i)
while len(arr) > 0 and not nsmallest(1, arr)[0].norm(totarr):
d = heappop(arr)
s += d.val - totarr[-2] + totarr[d.i]
s += len(arr)*nt
print(s, end=' ')
if __name__ == '__main__':
main()
```
| 0
|
|
712
|
C
|
Memory and De-Evolution
|
PROGRAMMING
| 1,600
|
[
"greedy",
"math"
] | null | null |
Memory is now interested in the de-evolution of objects, specifically triangles. He starts with an equilateral triangle of side length *x*, and he wishes to perform operations to obtain an equilateral triangle of side length *y*.
In a single second, he can modify the length of a single side of the current triangle such that it remains a non-degenerate triangle (triangle of positive area). At any moment of time, the length of each side should be integer.
What is the minimum number of seconds required for Memory to obtain the equilateral triangle of side length *y*?
|
The first and only line contains two integers *x* and *y* (3<=≤<=*y*<=<<=*x*<=≤<=100<=000) — the starting and ending equilateral triangle side lengths respectively.
|
Print a single integer — the minimum number of seconds required for Memory to obtain the equilateral triangle of side length *y* if he starts with the equilateral triangle of side length *x*.
|
[
"6 3\n",
"8 5\n",
"22 4\n"
] |
[
"4\n",
"3\n",
"6\n"
] |
In the first sample test, Memory starts with an equilateral triangle of side length 6 and wants one of side length 3. Denote a triangle with sides *a*, *b*, and *c* as (*a*, *b*, *c*). Then, Memory can do <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/18af21f738bad490df83097a90e1f2879a4b21c6.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, Memory can do <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bcfd51d1b2d764a1cf5fbc255cc02e6f5aaed3b1.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test, Memory can do: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0969b7d413854c1e7528991d926bef1f7ffba008.png" style="max-width: 100.0%;max-height: 100.0%;"/>
<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/63e9e66b882c03e4c73e93ad92204dc255329309.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 1,500
|
[
{
"input": "6 3",
"output": "4"
},
{
"input": "8 5",
"output": "3"
},
{
"input": "22 4",
"output": "6"
},
{
"input": "4 3",
"output": "3"
},
{
"input": "57 27",
"output": "4"
},
{
"input": "61 3",
"output": "9"
},
{
"input": "5 4",
"output": "3"
},
{
"input": "10 6",
"output": "3"
},
{
"input": "20 10",
"output": "4"
},
{
"input": "30 5",
"output": "6"
},
{
"input": "25 24",
"output": "3"
},
{
"input": "25 3",
"output": "7"
},
{
"input": "12 7",
"output": "3"
},
{
"input": "18 6",
"output": "5"
},
{
"input": "100000 3",
"output": "25"
},
{
"input": "100000 9999",
"output": "7"
},
{
"input": "9999 3",
"output": "20"
},
{
"input": "5323 32",
"output": "13"
},
{
"input": "6666 66",
"output": "12"
},
{
"input": "38578 32201",
"output": "3"
},
{
"input": "49449 5291",
"output": "7"
},
{
"input": "65310 32879",
"output": "3"
},
{
"input": "41183 4453",
"output": "7"
},
{
"input": "49127 9714",
"output": "6"
},
{
"input": "19684 12784",
"output": "3"
},
{
"input": "15332 5489",
"output": "4"
},
{
"input": "33904 32701",
"output": "3"
},
{
"input": "9258 2966",
"output": "5"
},
{
"input": "21648 11231",
"output": "3"
},
{
"input": "90952 47239",
"output": "3"
},
{
"input": "49298 23199",
"output": "4"
},
{
"input": "33643 24915",
"output": "3"
},
{
"input": "40651 5137",
"output": "6"
},
{
"input": "52991 15644",
"output": "5"
},
{
"input": "97075 62157",
"output": "3"
},
{
"input": "82767 53725",
"output": "3"
},
{
"input": "58915 26212",
"output": "4"
},
{
"input": "86516 16353",
"output": "6"
},
{
"input": "14746 7504",
"output": "3"
},
{
"input": "20404 7529",
"output": "4"
},
{
"input": "52614 8572",
"output": "6"
},
{
"input": "50561 50123",
"output": "3"
},
{
"input": "37509 7908",
"output": "5"
},
{
"input": "36575 23933",
"output": "3"
},
{
"input": "75842 8002",
"output": "7"
},
{
"input": "47357 2692",
"output": "8"
},
{
"input": "23214 4255",
"output": "6"
},
{
"input": "9474 46",
"output": "13"
},
{
"input": "79874 76143",
"output": "3"
},
{
"input": "63784 31333",
"output": "4"
},
{
"input": "70689 29493",
"output": "4"
},
{
"input": "43575 4086",
"output": "7"
},
{
"input": "87099 7410",
"output": "7"
},
{
"input": "75749 55910",
"output": "3"
},
{
"input": "87827 20996",
"output": "5"
},
{
"input": "31162 4580",
"output": "6"
},
{
"input": "63175 33696",
"output": "3"
},
{
"input": "15108 10033",
"output": "3"
},
{
"input": "82991 29195",
"output": "4"
},
{
"input": "48258 12837",
"output": "5"
},
{
"input": "59859 33779",
"output": "3"
},
{
"input": "93698 23890",
"output": "5"
},
{
"input": "42724 379",
"output": "12"
},
{
"input": "70434 39286",
"output": "3"
},
{
"input": "69826 18300",
"output": "5"
},
{
"input": "57825 17636",
"output": "5"
},
{
"input": "64898 2076",
"output": "9"
},
{
"input": "76375 67152",
"output": "3"
},
{
"input": "30698 3778",
"output": "7"
},
{
"input": "100 3",
"output": "10"
},
{
"input": "41 3",
"output": "8"
},
{
"input": "28 4",
"output": "7"
},
{
"input": "2487 19",
"output": "12"
},
{
"input": "100000 25000",
"output": "5"
},
{
"input": "10000 3",
"output": "20"
},
{
"input": "16 3",
"output": "6"
}
] | 1,473,528,600
| 2,700
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
PRETESTS
| 0
| 2,000
| 0
|
ds = [i for i in range(1,1001)]
t = 1
while True:
tt = t*t
if(tt>1000):
break
ds.remove(tt)
t += 1
import math
def check(x,d):
y = int(math.sqrt(((x**2-1)/d)))-1
for i in range(3):
if(y+i>0):
if(x**2-d*((y+i)**2)==1):
return 1
return 0
lis = []
maxx = 0
maxd = 0
for d in ds:
x = 1
while True:
if(x%100000==0):
print(' ',x)
if(check(x,d)):
break
x += 1
if(x==20000000):
lis.append(d)
break
if(maxx<x)and(x!=20000000):
maxx = x
maxd = d
print(d,x)
print('z z z z z z z z',maxd)
print(lis)
input()
|
Title: Memory and De-Evolution
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Memory is now interested in the de-evolution of objects, specifically triangles. He starts with an equilateral triangle of side length *x*, and he wishes to perform operations to obtain an equilateral triangle of side length *y*.
In a single second, he can modify the length of a single side of the current triangle such that it remains a non-degenerate triangle (triangle of positive area). At any moment of time, the length of each side should be integer.
What is the minimum number of seconds required for Memory to obtain the equilateral triangle of side length *y*?
Input Specification:
The first and only line contains two integers *x* and *y* (3<=≤<=*y*<=<<=*x*<=≤<=100<=000) — the starting and ending equilateral triangle side lengths respectively.
Output Specification:
Print a single integer — the minimum number of seconds required for Memory to obtain the equilateral triangle of side length *y* if he starts with the equilateral triangle of side length *x*.
Demo Input:
['6 3\n', '8 5\n', '22 4\n']
Demo Output:
['4\n', '3\n', '6\n']
Note:
In the first sample test, Memory starts with an equilateral triangle of side length 6 and wants one of side length 3. Denote a triangle with sides *a*, *b*, and *c* as (*a*, *b*, *c*). Then, Memory can do <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/18af21f738bad490df83097a90e1f2879a4b21c6.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample test, Memory can do <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bcfd51d1b2d764a1cf5fbc255cc02e6f5aaed3b1.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample test, Memory can do: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0969b7d413854c1e7528991d926bef1f7ffba008.png" style="max-width: 100.0%;max-height: 100.0%;"/>
<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/63e9e66b882c03e4c73e93ad92204dc255329309.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
ds = [i for i in range(1,1001)]
t = 1
while True:
tt = t*t
if(tt>1000):
break
ds.remove(tt)
t += 1
import math
def check(x,d):
y = int(math.sqrt(((x**2-1)/d)))-1
for i in range(3):
if(y+i>0):
if(x**2-d*((y+i)**2)==1):
return 1
return 0
lis = []
maxx = 0
maxd = 0
for d in ds:
x = 1
while True:
if(x%100000==0):
print(' ',x)
if(check(x,d)):
break
x += 1
if(x==20000000):
lis.append(d)
break
if(maxx<x)and(x!=20000000):
maxx = x
maxd = d
print(d,x)
print('z z z z z z z z',maxd)
print(lis)
input()
```
| 0
|
|
133
|
A
|
HQ9+
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
HQ9+ is a joke programming language which has only four one-character instructions:
- "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator.
Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored.
You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
|
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
|
Output "YES", if executing the program will produce any output, and "NO" otherwise.
|
[
"Hi!\n",
"Codeforces\n"
] |
[
"YES\n",
"NO\n"
] |
In the first case the program contains only one instruction — "H", which prints "Hello, World!".
In the second case none of the program characters are language instructions.
| 500
|
[
{
"input": "Hi!",
"output": "YES"
},
{
"input": "Codeforces",
"output": "NO"
},
{
"input": "a+b=c",
"output": "NO"
},
{
"input": "hq-lowercase",
"output": "NO"
},
{
"input": "Q",
"output": "YES"
},
{
"input": "9",
"output": "YES"
},
{
"input": "H",
"output": "YES"
},
{
"input": "+",
"output": "NO"
},
{
"input": "~",
"output": "NO"
},
{
"input": "dEHsbM'gS[\\brZ_dpjXw8f?L[4E\"s4Zc9*(,j:>p$}m7HD[_9nOWQ\\uvq2mHWR",
"output": "YES"
},
{
"input": "tt6l=RHOfStm.;Qd$-}zDes*E,.F7qn5-b%HC",
"output": "YES"
},
{
"input": "@F%K2=%RyL/",
"output": "NO"
},
{
"input": "juq)k(FT.^G=G\\zcqnO\"uJIE1_]KFH9S=1c\"mJ;F9F)%>&.WOdp09+k`Yc6}\"6xw,Aos:M\\_^^:xBb[CcsHm?J",
"output": "YES"
},
{
"input": "6G_\"Fq#<AWyHG=Rci1t%#Jc#x<Fpg'N@t%F=``YO7\\Zd;6PkMe<#91YgzTC)",
"output": "YES"
},
{
"input": "Fvg_~wC>SO4lF}*c`Q;mII9E{4.QodbqN]C",
"output": "YES"
},
{
"input": "p-UXsbd&f",
"output": "NO"
},
{
"input": "<]D7NMA)yZe=`?RbP5lsa.l_Mg^V:\"-0x+$3c,q&L%18Ku<HcA\\s!^OQblk^x{35S'>yz8cKgVHWZ]kV0>_",
"output": "YES"
},
{
"input": "f.20)8b+.R}Gy!DbHU3v(.(=Q^`z[_BaQ}eO=C1IK;b2GkD\\{\\Bf\"!#qh]",
"output": "YES"
},
{
"input": "}do5RU<(w<q[\"-NR)IAH_HyiD{",
"output": "YES"
},
{
"input": "Iy^.,Aw*,5+f;l@Q;jLK'G5H-r1Pfmx?ei~`CjMmUe{K:lS9cu4ay8rqRh-W?Gqv!e-j*U)!Mzn{E8B6%~aSZ~iQ_QwlC9_cX(o8",
"output": "YES"
},
{
"input": "sKLje,:q>-D,;NvQ3,qN3-N&tPx0nL/,>Ca|z\"k2S{NF7btLa3_TyXG4XZ:`(t&\"'^M|@qObZxv",
"output": "YES"
},
{
"input": "%z:c@1ZsQ@\\6U/NQ+M9R>,$bwG`U1+C\\18^:S},;kw!&4r|z`",
"output": "YES"
},
{
"input": "OKBB5z7ud81[Tn@P\"nDUd,>@",
"output": "NO"
},
{
"input": "y{0;neX]w0IenPvPx0iXp+X|IzLZZaRzBJ>q~LhMhD$x-^GDwl;,a'<bAqH8QrFwbK@oi?I'W.bZ]MlIQ/x(0YzbTH^l.)]0Bv",
"output": "YES"
},
{
"input": "EL|xIP5_+Caon1hPpQ0[8+r@LX4;b?gMy>;/WH)pf@Ur*TiXu*e}b-*%acUA~A?>MDz#!\\Uh",
"output": "YES"
},
{
"input": "UbkW=UVb>;z6)p@Phr;^Dn.|5O{_i||:Rv|KJ_ay~V(S&Jp",
"output": "NO"
},
{
"input": "!3YPv@2JQ44@)R2O_4`GO",
"output": "YES"
},
{
"input": "Kba/Q,SL~FMd)3hOWU'Jum{9\"$Ld4:GW}D]%tr@G{hpG:PV5-c'VIZ~m/6|3I?_4*1luKnOp`%p|0H{[|Y1A~4-ZdX,Rw2[\\",
"output": "YES"
},
{
"input": "NRN*=v>;oU7[acMIJn*n^bWm!cm3#E7Efr>{g-8bl\"DN4~_=f?[T;~Fq#&)aXq%</GcTJD^e$@Extm[e\"C)q_L",
"output": "NO"
},
{
"input": "y#<fv{_=$MP!{D%I\\1OqjaqKh[pqE$KvYL<9@*V'j8uH0/gQdA'G;&y4Cv6&",
"output": "YES"
},
{
"input": "+SE_Pg<?7Fh,z&uITQut2a-mk8X8La`c2A}",
"output": "YES"
},
{
"input": "Uh3>ER](J",
"output": "NO"
},
{
"input": "!:!{~=9*\\P;Z6F?HC5GadFz)>k*=u|+\"Cm]ICTmB!`L{&oS/z6b~#Snbp/^\\Q>XWU-vY+/dP.7S=-#&whS@,",
"output": "YES"
},
{
"input": "KimtYBZp+ISeO(uH;UldoE6eAcp|9u?SzGZd6j-e}[}u#e[Cx8.qgY]$2!",
"output": "YES"
},
{
"input": "[:[SN-{r>[l+OggH3v3g{EPC*@YBATT@",
"output": "YES"
},
{
"input": "'jdL(vX",
"output": "NO"
},
{
"input": "Q;R+aay]cL?Zh*uG\"YcmO*@Dts*Gjp}D~M7Z96+<4?9I3aH~0qNdO(RmyRy=ci,s8qD_kwj;QHFzD|5,5",
"output": "YES"
},
{
"input": "{Q@#<LU_v^qdh%gGxz*pu)Y\"]k-l-N30WAxvp2IE3:jD0Wi4H/xWPH&s",
"output": "YES"
},
{
"input": "~@Gb(S&N$mBuBUMAky-z^{5VwLNTzYg|ZUZncL@ahS?K*As<$iNUARM3r43J'jJB)$ujfPAq\"G<S9flGyakZg!2Z.-NJ|2{F>]",
"output": "YES"
},
{
"input": "Jp5Aa>aP6fZ!\\6%A}<S}j{O4`C6y$8|i3IW,WHy&\"ioE&7zP\"'xHAY;:x%@SnS]Mr{R|})gU",
"output": "YES"
},
{
"input": "ZA#:U)$RI^sE\\vuAt]x\"2zipI!}YEu2<j$:H0_9/~eB?#->",
"output": "YES"
},
{
"input": "&ppw0._:\\p-PuWM@l}%%=",
"output": "NO"
},
{
"input": "P(^pix\"=oiEZu8?@d@J(I`Xp5TN^T3\\Z7P5\"ZrvZ{2Fwz3g-8`U!)(1$a<g+9Q|COhDoH;HwFY02Pa|ZGp$/WZBR=>6Jg!yr",
"output": "YES"
},
{
"input": "`WfODc\\?#ax~1xu@[ao+o_rN|L7%v,p,nDv>3+6cy.]q3)+A6b!q*Hc+#.t4f~vhUa~$^q",
"output": "YES"
},
{
"input": ",)TH9N}'6t2+0Yg?S#6/{_.,!)9d}h'wG|sY&'Ul4D0l0",
"output": "YES"
},
{
"input": "VXB&r9Z)IlKOJ:??KDA",
"output": "YES"
},
{
"input": "\")1cL>{o\\dcYJzu?CefyN^bGRviOH&P7rJS3PT4:0V3F)%\\}L=AJouYsj_>j2|7^1NWu*%NbOP>ngv-ls<;b-4Sd3Na0R",
"output": "YES"
},
{
"input": "2Y}\\A)>row{~c[g>:'.|ZC8%UTQ/jcdhK%6O)QRC.kd@%y}LJYk=V{G5pQK/yKJ%{G3C",
"output": "YES"
},
{
"input": "O.&=qt(`z(",
"output": "NO"
},
{
"input": "_^r6fyIc/~~;>l%9?aVEi7-{=,[<aMiB'-scSg$$|\"jAzY0N>QkHHGBZj2c\"=fhRlWd5;5K|GgU?7h]!;wl@",
"output": "YES"
},
{
"input": "+/`sAd&eB29E=Nu87${.u6GY@$^a$,}s^!p!F}B-z8<<wORb<S7;HM1a,gp",
"output": "YES"
},
{
"input": "U_ilyOGMT+QiW/M8/D(1=6a7)_FA,h4`8",
"output": "YES"
},
{
"input": "!0WKT:$O",
"output": "NO"
},
{
"input": "1EE*I%EQz6$~pPu7|(r7nyPQt4uGU@]~H'4uII?b1_Wn)K?ZRHrr0z&Kr;}aO3<mN=3:{}QgPxI|Ncm4#)",
"output": "YES"
},
{
"input": "[u3\"$+!:/.<Dp1M7tH}:zxjt],^kv}qP;y12\"`^'/u*h%AFmPJ>e1#Yly",
"output": "YES"
},
{
"input": "'F!_]tB<A&UO+p?7liE>(x&RFgG2~\\(",
"output": "NO"
},
{
"input": "Qv)X8",
"output": "YES"
},
{
"input": "aGv7,J@&g1(}E3g6[LuDZwZl2<v7IwQA%\"R(?ouBD>_=y\"3Kf%^>vON<a^T\\G^ootgE@whWmZo=[ex|F",
"output": "YES"
},
{
"input": "e{}2vQ+/r@p0}cLKNe4MCk",
"output": "YES"
},
{
"input": "mzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnkH",
"output": "YES"
},
{
"input": "Qzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky",
"output": "YES"
},
{
"input": "mzbmweyydiadtlcouegmdbyfwurpwb9uvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky",
"output": "YES"
},
{
"input": "1H1",
"output": "YES"
},
{
"input": "+Q",
"output": "YES"
},
{
"input": "1ab",
"output": "NO"
},
{
"input": "!",
"output": "NO"
},
{
"input": "0+",
"output": "NO"
},
{
"input": "+H",
"output": "YES"
},
{
"input": "cH",
"output": "YES"
},
{
"input": "+8",
"output": "NO"
},
{
"input": "8+",
"output": "NO"
},
{
"input": "++++++++++++++++++++++++++",
"output": "NO"
},
{
"input": "(+)",
"output": "NO"
},
{
"input": "H+",
"output": "YES"
},
{
"input": "a!",
"output": "NO"
},
{
"input": "++++++++++++++",
"output": "NO"
},
{
"input": "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++",
"output": "NO"
},
{
"input": "8",
"output": "NO"
},
{
"input": "3",
"output": "NO"
},
{
"input": "HQ9",
"output": "YES"
},
{
"input": "+++H",
"output": "YES"
},
{
"input": "++++++++++",
"output": "NO"
},
{
"input": "HHHHHHH",
"output": "YES"
},
{
"input": "abacabaH",
"output": "YES"
},
{
"input": "+G",
"output": "NO"
}
] | 1,690,279,641
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 60
| 0
|
a=int(input())
while(a!=0):
s=str(input())
val=0
for i in range(len(s)):
if(s[i]=="H" or s[i]=="+" or s[i]=="9" or s[i]=="Q"):
val=1
if(val==1):
print("YES")
else:
print("NO")
a=a-1;
|
Title: HQ9+
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
HQ9+ is a joke programming language which has only four one-character instructions:
- "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator.
Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored.
You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
Input Specification:
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
Output Specification:
Output "YES", if executing the program will produce any output, and "NO" otherwise.
Demo Input:
['Hi!\n', 'Codeforces\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first case the program contains only one instruction — "H", which prints "Hello, World!".
In the second case none of the program characters are language instructions.
|
```python
a=int(input())
while(a!=0):
s=str(input())
val=0
for i in range(len(s)):
if(s[i]=="H" or s[i]=="+" or s[i]=="9" or s[i]=="Q"):
val=1
if(val==1):
print("YES")
else:
print("NO")
a=a-1;
```
| -1
|
|
3
|
C
|
Tic-tac-toe
|
PROGRAMMING
| 1,800
|
[
"brute force",
"games",
"implementation"
] |
C. Tic-tac-toe
|
1
|
64
|
Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3<=×<=3 grid (one player always draws crosses, the other — noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced.
You are given a 3<=×<=3 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below:
- illegal — if the given board layout can't appear during a valid game; - the first player won — if in the given board layout the first player has just won; - the second player won — if in the given board layout the second player has just won; - draw — if the given board layout has just let to a draw.
|
The input consists of three lines, each of the lines contains characters ".", "X" or "0" (a period, a capital letter X, or a digit zero).
|
Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw.
|
[
"X0X\n.0.\n.X.\n"
] |
[
"second\n"
] |
none
| 0
|
[
{
"input": "X0X\n.0.\n.X.",
"output": "second"
},
{
"input": "0.X\nXX.\n000",
"output": "illegal"
},
{
"input": "XXX\n.0.\n000",
"output": "illegal"
},
{
"input": "XXX\n...\n000",
"output": "illegal"
},
{
"input": "X.X\nX..\n00.",
"output": "second"
},
{
"input": "X.X\nX.0\n0.0",
"output": "first"
},
{
"input": "XXX\nX00\nX00",
"output": "the first player won"
},
{
"input": "000\nX.X\nX.X",
"output": "illegal"
},
{
"input": "XXX\n0.0\n0..",
"output": "illegal"
},
{
"input": "X0X\n0X0\nX0X",
"output": "the first player won"
},
{
"input": "XX.\nX0X\nX..",
"output": "illegal"
},
{
"input": "X0X\n0X0\nX..",
"output": "the first player won"
},
{
"input": "XX0\n0..\n000",
"output": "illegal"
},
{
"input": "XXX\n0..\n.0.",
"output": "the first player won"
},
{
"input": "XXX\nX..\n.00",
"output": "illegal"
},
{
"input": "X00\n0.0\nXX0",
"output": "illegal"
},
{
"input": "0.0\n0XX\n..0",
"output": "illegal"
},
{
"input": ".00\nX.X\n0..",
"output": "illegal"
},
{
"input": "..0\n.00\n.0X",
"output": "illegal"
},
{
"input": "..0\n0..\n00X",
"output": "illegal"
},
{
"input": "..0\n.XX\nX..",
"output": "illegal"
},
{
"input": "0.X\n0X0\n.00",
"output": "illegal"
},
{
"input": "..X\n0X0\n0X.",
"output": "first"
},
{
"input": "0X0\nX..\nX.0",
"output": "first"
},
{
"input": ".0.\nX.X\n0..",
"output": "first"
},
{
"input": "0X0\n00X\n.00",
"output": "illegal"
},
{
"input": ".0.\n.X0\nX..",
"output": "first"
},
{
"input": "00X\n0.X\n00X",
"output": "illegal"
},
{
"input": "00X\n0XX\n0X.",
"output": "the second player won"
},
{
"input": "X00\n..0\nX.X",
"output": "first"
},
{
"input": "X00\nX00\n.X0",
"output": "illegal"
},
{
"input": "X0X\n.X0\n0..",
"output": "first"
},
{
"input": "..0\nXXX\n000",
"output": "illegal"
},
{
"input": "XXX\n...\n.0.",
"output": "illegal"
},
{
"input": "0..\n000\nX0X",
"output": "illegal"
},
{
"input": ".00\n0X.\n0.0",
"output": "illegal"
},
{
"input": "X..\nX00\n0.0",
"output": "illegal"
},
{
"input": ".X0\nXX0\nX.X",
"output": "illegal"
},
{
"input": "X.X\n0.0\nX..",
"output": "second"
},
{
"input": "00X\n.00\n..0",
"output": "illegal"
},
{
"input": "..0\n0.X\n00.",
"output": "illegal"
},
{
"input": "0.X\nX0X\n.X0",
"output": "illegal"
},
{
"input": "0X.\n.X.\n0X0",
"output": "illegal"
},
{
"input": "00.\nX0.\n..X",
"output": "illegal"
},
{
"input": "..X\n.00\nXX.",
"output": "second"
},
{
"input": ".00\n.0.\n.X.",
"output": "illegal"
},
{
"input": "XX0\nX.0\nXX0",
"output": "illegal"
},
{
"input": "00.\n00.\nX.X",
"output": "illegal"
},
{
"input": "X00\nX.0\nX.0",
"output": "illegal"
},
{
"input": "0X.\n0XX\n000",
"output": "illegal"
},
{
"input": "00.\n00.\n.X.",
"output": "illegal"
},
{
"input": "X0X\n00.\n0.X",
"output": "illegal"
},
{
"input": "XX0\nXXX\n0X0",
"output": "illegal"
},
{
"input": "XX0\n..X\nXX0",
"output": "illegal"
},
{
"input": "0X.\n..X\nX..",
"output": "illegal"
},
{
"input": "...\nX0.\nXX0",
"output": "second"
},
{
"input": "..X\n.0.\n0..",
"output": "illegal"
},
{
"input": "00X\nXX.\n00X",
"output": "first"
},
{
"input": "..0\nXX0\n..X",
"output": "second"
},
{
"input": ".0.\n.00\nX00",
"output": "illegal"
},
{
"input": "X00\n.XX\n00.",
"output": "illegal"
},
{
"input": ".00\n0.X\n000",
"output": "illegal"
},
{
"input": "X0.\n..0\nX.0",
"output": "illegal"
},
{
"input": "X0X\n.XX\n00.",
"output": "second"
},
{
"input": "0X.\n00.\n.X.",
"output": "illegal"
},
{
"input": ".0.\n...\n0.0",
"output": "illegal"
},
{
"input": "..X\nX00\n0.0",
"output": "illegal"
},
{
"input": "0XX\n...\nX0.",
"output": "second"
},
{
"input": "X.X\n0X.\n.0X",
"output": "illegal"
},
{
"input": "XX0\nX.X\n00.",
"output": "second"
},
{
"input": ".0X\n.00\n00.",
"output": "illegal"
},
{
"input": ".XX\nXXX\n0..",
"output": "illegal"
},
{
"input": "XX0\n.X0\n.0.",
"output": "first"
},
{
"input": "X00\n0.X\nX..",
"output": "first"
},
{
"input": "X..\n.X0\nX0.",
"output": "second"
},
{
"input": ".0X\nX..\nXXX",
"output": "illegal"
},
{
"input": "X0X\nXXX\nX.X",
"output": "illegal"
},
{
"input": ".00\nX0.\n00X",
"output": "illegal"
},
{
"input": "0XX\n.X0\n0.0",
"output": "illegal"
},
{
"input": "00X\nXXX\n..0",
"output": "the first player won"
},
{
"input": "X0X\n...\n.X.",
"output": "illegal"
},
{
"input": ".X0\n...\n0X.",
"output": "first"
},
{
"input": "X..\n0X0\nX.0",
"output": "first"
},
{
"input": "..0\n.00\nX.0",
"output": "illegal"
},
{
"input": ".XX\n.0.\nX0X",
"output": "illegal"
},
{
"input": "00.\n0XX\n..0",
"output": "illegal"
},
{
"input": ".0.\n00.\n00.",
"output": "illegal"
},
{
"input": "00.\n000\nX.X",
"output": "illegal"
},
{
"input": "0X0\n.X0\n.X.",
"output": "illegal"
},
{
"input": "00X\n0..\n0..",
"output": "illegal"
},
{
"input": ".X.\n.X0\nX.0",
"output": "second"
},
{
"input": ".0.\n0X0\nX0X",
"output": "illegal"
},
{
"input": "...\nX.0\n0..",
"output": "illegal"
},
{
"input": "..0\nXX.\n00X",
"output": "first"
},
{
"input": "0.X\n.0X\nX00",
"output": "illegal"
},
{
"input": "..X\n0X.\n.0.",
"output": "first"
},
{
"input": "..X\nX.0\n.0X",
"output": "second"
},
{
"input": "X0.\n.0X\nX0X",
"output": "illegal"
},
{
"input": "...\n.0.\n.X0",
"output": "illegal"
},
{
"input": ".X0\nXX0\n0..",
"output": "first"
},
{
"input": "0X.\n...\nX..",
"output": "second"
},
{
"input": ".0.\n0.0\n0.X",
"output": "illegal"
},
{
"input": "XX.\n.X0\n.0X",
"output": "illegal"
},
{
"input": ".0.\nX0X\nX00",
"output": "illegal"
},
{
"input": "0X.\n.X0\nX..",
"output": "second"
},
{
"input": "..0\n0X.\n000",
"output": "illegal"
},
{
"input": "0.0\nX.X\nXX.",
"output": "illegal"
},
{
"input": ".X.\n.XX\nX0.",
"output": "illegal"
},
{
"input": "X.X\n.XX\n0X.",
"output": "illegal"
},
{
"input": "X.0\n0XX\n..0",
"output": "first"
},
{
"input": "X.0\n0XX\n.X0",
"output": "second"
},
{
"input": "X00\n0XX\n.X0",
"output": "first"
},
{
"input": "X00\n0XX\nXX0",
"output": "draw"
},
{
"input": "X00\n0XX\n0X0",
"output": "illegal"
},
{
"input": "XXX\nXXX\nXXX",
"output": "illegal"
},
{
"input": "000\n000\n000",
"output": "illegal"
},
{
"input": "XX0\n00X\nXX0",
"output": "draw"
},
{
"input": "X00\n00X\nXX0",
"output": "illegal"
},
{
"input": "X.0\n00.\nXXX",
"output": "the first player won"
},
{
"input": "X..\nX0.\nX0.",
"output": "the first player won"
},
{
"input": ".XX\n000\nXX0",
"output": "the second player won"
},
{
"input": "X0.\nX.X\nX00",
"output": "the first player won"
},
{
"input": "00X\nX00\nXXX",
"output": "the first player won"
},
{
"input": "XXX\n.00\nX0.",
"output": "the first player won"
},
{
"input": "XX0\n000\nXX.",
"output": "the second player won"
},
{
"input": ".X0\n0.0\nXXX",
"output": "the first player won"
},
{
"input": "0XX\nX00\n0XX",
"output": "draw"
},
{
"input": "0XX\nX0X\n00X",
"output": "the first player won"
},
{
"input": "XX0\n0XX\n0X0",
"output": "the first player won"
},
{
"input": "0X0\nX0X\nX0X",
"output": "draw"
},
{
"input": "X0X\n0XX\n00X",
"output": "the first player won"
},
{
"input": "0XX\nX0.\nX00",
"output": "the second player won"
},
{
"input": "X.0\n0X0\nXX0",
"output": "the second player won"
},
{
"input": "X0X\nX0X\n0X0",
"output": "draw"
},
{
"input": "X.0\n00X\n0XX",
"output": "the second player won"
},
{
"input": "00X\nX0X\n.X0",
"output": "the second player won"
},
{
"input": "X0X\n.00\nX0X",
"output": "the second player won"
},
{
"input": "0XX\nX00\nX0X",
"output": "draw"
},
{
"input": "000\nX0X\n.XX",
"output": "the second player won"
},
{
"input": "0.0\n0.X\nXXX",
"output": "the first player won"
},
{
"input": "X.0\nX0.\n0X.",
"output": "the second player won"
},
{
"input": "X0X\n0X0\n..X",
"output": "the first player won"
},
{
"input": "0X0\nXX0\n.X.",
"output": "the first player won"
},
{
"input": "X0.\n.X.\n0.X",
"output": "the first player won"
},
{
"input": "0XX\nX00\n.X0",
"output": "the second player won"
},
{
"input": "0.0\nXXX\n0.X",
"output": "the first player won"
},
{
"input": ".0X\n.X.\nX.0",
"output": "the first player won"
},
{
"input": "XXX\nX.0\n0.0",
"output": "the first player won"
},
{
"input": "XX0\nX..\nX00",
"output": "the first player won"
},
{
"input": "XXX\n00X\n00X",
"output": "the first player won"
},
{
"input": "X00\n00X\nXXX",
"output": "the first player won"
},
{
"input": "0X0\nX0X\n0X.",
"output": "the second player won"
},
{
"input": "XX0\nX00\n0X.",
"output": "the second player won"
},
{
"input": "..X\n0X0\nX..",
"output": "the first player won"
},
{
"input": "X0.\n00.\nXXX",
"output": "the first player won"
},
{
"input": "0.X\nX00\nXX0",
"output": "the second player won"
},
{
"input": "X0.\n0X.\n..X",
"output": "the first player won"
},
{
"input": "00X\nX0.\nXX0",
"output": "the second player won"
},
{
"input": "XX.\n000\n0XX",
"output": "the second player won"
},
{
"input": "..X\n0.X\n.0X",
"output": "the first player won"
},
{
"input": "X00\n.0X\n0XX",
"output": "the second player won"
},
{
"input": "00X\n0X.\nXX.",
"output": "the first player won"
},
{
"input": "X00\nXX.\n0.X",
"output": "the first player won"
},
{
"input": "XXX\n00X\n0X0",
"output": "the first player won"
},
{
"input": "X00\nXX0\n0XX",
"output": "the first player won"
},
{
"input": "0X0\nX00\nXXX",
"output": "the first player won"
},
{
"input": "XX0\nX00\n.X0",
"output": "the second player won"
}
] | 1,641,916,873
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 62
| 0
|
win_positions = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[1, 4, 7],
[2, 5, 8],
[3, 6, 9],
[1, 5, 9],
[3, 5, 7],
]
def check_winner(__board):
for i in win_positions:
count = 0
temp = ""
for j in i:
if temp != "":
if (
__board[(j - 1) // 3][(j - 1) % 3] != temp
and __board[(j - 1) // 3][(j - 1) % 3] != "."
):
count = 0
break
elif __board[(j - 1) // 3][(j - 1) % 3] != ".":
count += 1
else:
temp = __board[(j - 1) // 3][(j - 1) % 3]
count += 1
if count == 3:
return temp
return ""
board = [[], [], []]
for i in range(3):
for j in input():
board[i].append(j)
x = sum([i.count("X") for i in board])
o = sum([i.count("0") for i in board])
if abs(x - o) > 1:
print("illegal")
elif x > o:
print("second")
elif x < o:
print("first")
else:
winner = check_winner(board)
if winner == "X":
print("first")
elif winner == "0":
print("second")
else:
print("draw")
|
Title: Tic-tac-toe
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3<=×<=3 grid (one player always draws crosses, the other — noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced.
You are given a 3<=×<=3 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below:
- illegal — if the given board layout can't appear during a valid game; - the first player won — if in the given board layout the first player has just won; - the second player won — if in the given board layout the second player has just won; - draw — if the given board layout has just let to a draw.
Input Specification:
The input consists of three lines, each of the lines contains characters ".", "X" or "0" (a period, a capital letter X, or a digit zero).
Output Specification:
Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw.
Demo Input:
['X0X\n.0.\n.X.\n']
Demo Output:
['second\n']
Note:
none
|
```python
win_positions = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[1, 4, 7],
[2, 5, 8],
[3, 6, 9],
[1, 5, 9],
[3, 5, 7],
]
def check_winner(__board):
for i in win_positions:
count = 0
temp = ""
for j in i:
if temp != "":
if (
__board[(j - 1) // 3][(j - 1) % 3] != temp
and __board[(j - 1) // 3][(j - 1) % 3] != "."
):
count = 0
break
elif __board[(j - 1) // 3][(j - 1) % 3] != ".":
count += 1
else:
temp = __board[(j - 1) // 3][(j - 1) % 3]
count += 1
if count == 3:
return temp
return ""
board = [[], [], []]
for i in range(3):
for j in input():
board[i].append(j)
x = sum([i.count("X") for i in board])
o = sum([i.count("0") for i in board])
if abs(x - o) > 1:
print("illegal")
elif x > o:
print("second")
elif x < o:
print("first")
else:
winner = check_winner(board)
if winner == "X":
print("first")
elif winner == "0":
print("second")
else:
print("draw")
```
| 0
|
677
|
A
|
Vanya and Fence
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
|
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
|
Print a single integer — the minimum possible valid width of the road.
|
[
"3 7\n4 5 14\n",
"6 1\n1 1 1 1 1 1\n",
"6 5\n7 6 8 9 10 5\n"
] |
[
"4\n",
"6\n",
"11\n"
] |
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
| 500
|
[
{
"input": "3 7\n4 5 14",
"output": "4"
},
{
"input": "6 1\n1 1 1 1 1 1",
"output": "6"
},
{
"input": "6 5\n7 6 8 9 10 5",
"output": "11"
},
{
"input": "10 420\n214 614 297 675 82 740 174 23 255 15",
"output": "13"
},
{
"input": "10 561\n657 23 1096 487 785 66 481 554 1000 821",
"output": "15"
},
{
"input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396",
"output": "144"
},
{
"input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366",
"output": "145"
},
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "1 1\n2",
"output": "2"
},
{
"input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19",
"output": "63"
},
{
"input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386",
"output": "31"
},
{
"input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518",
"output": "75"
},
{
"input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397",
"output": "41"
},
{
"input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118",
"output": "116"
}
] | 1,694,018,470
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 15
| 0
|
a,b = input().split()
a = int(a)
b = int(b)
l = 0
for i in range(a):
n = input()
if(n>=b):
l+=2
else:
l+=1
print(l)
|
Title: Vanya and Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*.
Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
Input Specification:
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Output Specification:
Print a single integer — the minimum possible valid width of the road.
Demo Input:
['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n']
Demo Output:
['4\n', '6\n', '11\n']
Note:
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4.
In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough.
In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
|
```python
a,b = input().split()
a = int(a)
b = int(b)
l = 0
for i in range(a):
n = input()
if(n>=b):
l+=2
else:
l+=1
print(l)
```
| -1
|
|
340
|
B
|
Maximal Area Quadrilateral
|
PROGRAMMING
| 2,100
|
[
"brute force",
"geometry"
] | null | null |
Iahub has drawn a set of *n* points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.
|
The first line contains integer *n* (4<=≤<=*n*<=≤<=300). Each of the next *n* lines contains two integers: *x**i*, *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the cartesian coordinates of *i*th special point. It is guaranteed that no three points are on the same line. It is guaranteed that no two points coincide.
|
Output a single real number — the maximal area of a special quadrilateral. The answer will be considered correct if its absolute or relative error does't exceed 10<=-<=9.
|
[
"5\n0 0\n0 4\n4 0\n4 4\n2 3\n"
] |
[
"16.000000"
] |
In the test example we can choose first 4 points to be the vertices of the quadrilateral. They form a square by side 4, so the area is 4·4 = 16.
| 3,000
|
[
{
"input": "5\n0 0\n0 4\n4 0\n4 4\n2 3",
"output": "16.000000"
},
{
"input": "10\n-6 -4\n-7 5\n-7 -7\n5 -7\n4 -9\n-6 7\n2 9\n-4 -6\n2 10\n-10 -4",
"output": "166.000000"
},
{
"input": "4\n-3 3\n0 3\n-2 -1\n2 2",
"output": "11.000000"
},
{
"input": "5\n-4 -3\n-3 -2\n3 3\n-1 2\n3 -3",
"output": "29.500000"
},
{
"input": "6\n-4 -3\n-1 3\n0 0\n2 2\n2 1\n-3 1",
"output": "15.000000"
},
{
"input": "7\n-2 -1\n4 3\n2 2\n-4 0\n-2 4\n0 0\n1 -3",
"output": "32.500000"
},
{
"input": "4\n-874 606\n-996 -207\n897 847\n775 191",
"output": "1261820.500000"
},
{
"input": "10\n156 -415\n879 198\n-250 -676\n-594 -433\n-207 368\n296 -641\n-387 -795\n143 -304\n-468 390\n-873 226",
"output": "1129219.500000"
},
{
"input": "50\n-768 -243\n-741 -984\n-370 213\n-808 571\n-726 442\n234 452\n-105 -990\n-876 -278\n987 473\n-968 -531\n-274 -842\n259 -655\n-59 -555\n976 -396\n878 -85\n551 213\n675 599\n-990 -507\n1 48\n-147 919\n-218 798\n-191 928\n916 263\n-975 169\n567 -967\n394 16\n-224 915\n280 -613\n804 -877\n988 -576\n-256 -708\n757 546\n777 99\n-579 -608\n-102 1\n-309 636\n-24 -718\n644 -84\n111 -822\n-722 544\n78 595\n-194 716\n-409 -845\n-291 441\n388 379\n-950 277\n-718 359\n881 198\n198 670\n828 -820",
"output": "2425414.000000"
},
{
"input": "4\n0 0\n0 5\n5 0\n1 1",
"output": "10.000000"
}
] | 1,379,601,917
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 62
| 0
|
file = open('input.txt');
def square(p1, p2, p3):
return ((p2[0] - p1[0]) * (p3[1] - p1[0]) - (p2[1] - p1[0]) * (p3[0] - p1[0]))
count_points = int(file.readline())
points = []
for x in range(count_points):
points.append([int(x) for x in input().split()])
file.close()
max_square = -1
for p1 in points:
for p2 in points:
first_square = -100
sec_square = 100
for p0 in points:
if square(p0, p1, p2) > 0:
if square(p0, p1, p2) > first_square:
first_square = square(p0, p1, p2)
else:
if square(p0, p1, p2) < sec_square:
sec_square = square(p0, p1, p2)
if (first_square + sec_square > max_square):
max_square = first_square + sec_square
print(max_square)
|
Title: Maximal Area Quadrilateral
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Iahub has drawn a set of *n* points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.
Input Specification:
The first line contains integer *n* (4<=≤<=*n*<=≤<=300). Each of the next *n* lines contains two integers: *x**i*, *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the cartesian coordinates of *i*th special point. It is guaranteed that no three points are on the same line. It is guaranteed that no two points coincide.
Output Specification:
Output a single real number — the maximal area of a special quadrilateral. The answer will be considered correct if its absolute or relative error does't exceed 10<=-<=9.
Demo Input:
['5\n0 0\n0 4\n4 0\n4 4\n2 3\n']
Demo Output:
['16.000000']
Note:
In the test example we can choose first 4 points to be the vertices of the quadrilateral. They form a square by side 4, so the area is 4·4 = 16.
|
```python
file = open('input.txt');
def square(p1, p2, p3):
return ((p2[0] - p1[0]) * (p3[1] - p1[0]) - (p2[1] - p1[0]) * (p3[0] - p1[0]))
count_points = int(file.readline())
points = []
for x in range(count_points):
points.append([int(x) for x in input().split()])
file.close()
max_square = -1
for p1 in points:
for p2 in points:
first_square = -100
sec_square = 100
for p0 in points:
if square(p0, p1, p2) > 0:
if square(p0, p1, p2) > first_square:
first_square = square(p0, p1, p2)
else:
if square(p0, p1, p2) < sec_square:
sec_square = square(p0, p1, p2)
if (first_square + sec_square > max_square):
max_square = first_square + sec_square
print(max_square)
```
| -1
|
|
570
|
A
|
Elections
|
PROGRAMMING
| 1,100
|
[
"implementation"
] | null | null |
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
|
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
|
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
|
[
"3 3\n1 2 3\n2 3 1\n1 2 1\n",
"3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n"
] |
[
"2",
"1"
] |
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
| 500
|
[
{
"input": "3 3\n1 2 3\n2 3 1\n1 2 1",
"output": "2"
},
{
"input": "3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7",
"output": "1"
},
{
"input": "1 3\n5\n3\n2",
"output": "1"
},
{
"input": "3 1\n1 2 3",
"output": "3"
},
{
"input": "3 1\n100 100 100",
"output": "1"
},
{
"input": "2 2\n1 2\n2 1",
"output": "1"
},
{
"input": "2 2\n2 1\n2 1",
"output": "1"
},
{
"input": "2 2\n1 2\n1 2",
"output": "2"
},
{
"input": "3 3\n0 0 0\n1 1 1\n2 2 2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "1"
},
{
"input": "5 5\n1 2 3 4 5\n2 3 4 5 6\n3 4 5 6 7\n4 5 6 7 8\n5 6 7 8 9",
"output": "5"
},
{
"input": "4 4\n1 3 1 3\n3 1 3 1\n2 0 0 2\n0 1 1 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 3\n3 1 2 1\n1 0 0 2\n0 1 10 0",
"output": "1"
},
{
"input": "4 4\n1 4 1 300\n3 1 2 1\n5 0 0 2\n0 1 10 100",
"output": "1"
},
{
"input": "5 5\n15 45 15 300 10\n53 15 25 51 10\n5 50 50 2 10\n1000 1 10 100 10\n10 10 10 10 10",
"output": "1"
},
{
"input": "1 100\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1",
"output": "1"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
},
{
"input": "1 100\n859\n441\n272\n47\n355\n345\n612\n569\n545\n599\n410\n31\n720\n303\n58\n537\n561\n730\n288\n275\n446\n955\n195\n282\n153\n455\n996\n121\n267\n702\n769\n560\n353\n89\n990\n282\n801\n335\n573\n258\n722\n768\n324\n41\n249\n125\n557\n303\n664\n945\n156\n884\n985\n816\n433\n65\n976\n963\n85\n647\n46\n877\n665\n523\n714\n182\n377\n549\n994\n385\n184\n724\n447\n99\n766\n353\n494\n747\n324\n436\n915\n472\n879\n582\n928\n84\n627\n156\n972\n651\n159\n372\n70\n903\n590\n480\n184\n540\n270\n892",
"output": "1"
},
{
"input": "100 1\n439 158 619 538 187 153 973 781 610 475 94 947 449 531 220 51 788 118 189 501 54 434 465 902 280 635 688 214 737 327 682 690 683 519 261 923 254 388 529 659 662 276 376 735 976 664 521 285 42 147 187 259 407 977 879 465 522 17 550 701 114 921 577 265 668 812 232 267 135 371 586 201 608 373 771 358 101 412 195 582 199 758 507 882 16 484 11 712 916 699 783 618 405 124 904 257 606 610 230 718",
"output": "54"
},
{
"input": "1 99\n511\n642\n251\n30\n494\n128\n189\n324\n884\n656\n120\n616\n959\n328\n411\n933\n895\n350\n1\n838\n996\n761\n619\n131\n824\n751\n707\n688\n915\n115\n244\n476\n293\n986\n29\n787\n607\n259\n756\n864\n394\n465\n303\n387\n521\n582\n485\n355\n299\n997\n683\n472\n424\n948\n339\n383\n285\n957\n591\n203\n866\n79\n835\n980\n344\n493\n361\n159\n160\n947\n46\n362\n63\n553\n793\n754\n429\n494\n523\n227\n805\n313\n409\n243\n927\n350\n479\n971\n825\n460\n544\n235\n660\n327\n216\n729\n147\n671\n738",
"output": "1"
},
{
"input": "99 1\n50 287 266 159 551 198 689 418 809 43 691 367 160 664 86 805 461 55 127 950 576 351 721 493 972 560 934 885 492 92 321 759 767 989 883 7 127 413 404 604 80 645 666 874 371 718 893 158 722 198 563 293 134 255 742 913 252 378 859 721 502 251 839 284 133 209 962 514 773 124 205 903 785 859 911 93 861 786 747 213 690 69 942 697 211 203 284 961 351 137 962 952 408 249 238 850 944 40 346",
"output": "34"
},
{
"input": "100 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "100"
},
{
"input": "1 1\n0",
"output": "1"
},
{
"input": "2 1\n0 0",
"output": "1"
},
{
"input": "2 2\n0 0\n0 0",
"output": "1"
},
{
"input": "2 2\n1 2\n0 0",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 3\n0 0\n0 0\n0 1",
"output": "1"
},
{
"input": "3 2\n1 1 3\n0 0 0",
"output": "1"
},
{
"input": "3 4\n1 10 3\n0 0 0\n0 0 0\n0 0 0",
"output": "1"
},
{
"input": "2 4\n2 1\n1 2\n0 0\n1 2",
"output": "1"
},
{
"input": "2 2\n0 1\n0 1",
"output": "2"
},
{
"input": "2 3\n1 2\n0 0\n2 1",
"output": "1"
},
{
"input": "2 2\n0 0\n4 5",
"output": "1"
},
{
"input": "3 2\n10 15 20\n0 0 0",
"output": "1"
},
{
"input": "3 4\n0 0 0\n0 0 0\n0 0 0\n1 2 3",
"output": "1"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 0 1",
"output": "1"
},
{
"input": "3 3\n0 0 0\n1 2 3\n1 3 2",
"output": "1"
},
{
"input": "3 1\n0 0 0",
"output": "1"
},
{
"input": "3 3\n0 0 1\n0 0 0\n0 0 0",
"output": "1"
}
] | 1,611,205,999
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 62
| 109
| 1,638,400
|
n,m=map(int,input().split())
z=[0]*n
for x in range(m):
k=list(map(int,input().split()))
c=-1
for y in range(n):
if k[y]>c:
c=k[y]
ind=y
z[ind]+=1
q=max(z)
for x in range(n):
if z[x]==q:
print(x+1)
break
|
Title: Elections
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The country of Byalechinsk is running elections involving *n* candidates. The country consists of *m* cities. We know how many people in each city voted for each candidate.
The electoral system in the country is pretty unusual. At the first stage of elections the votes are counted for each city: it is assumed that in each city won the candidate who got the highest number of votes in this city, and if several candidates got the maximum number of votes, then the winner is the one with a smaller index.
At the second stage of elections the winner is determined by the same principle over the cities: the winner of the elections is the candidate who won in the maximum number of cities, and among those who got the maximum number of cities the winner is the one with a smaller index.
Determine who will win the elections.
Input Specification:
The first line of the input contains two integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of candidates and of cities, respectively.
Each of the next *m* lines contains *n* non-negative integers, the *j*-th number in the *i*-th line *a**ij* (1<=≤<=*j*<=≤<=*n*, 1<=≤<=*i*<=≤<=*m*, 0<=≤<=*a**ij*<=≤<=109) denotes the number of votes for candidate *j* in city *i*.
It is guaranteed that the total number of people in all the cities does not exceed 109.
Output Specification:
Print a single number — the index of the candidate who won the elections. The candidates are indexed starting from one.
Demo Input:
['3 3\n1 2 3\n2 3 1\n1 2 1\n', '3 4\n10 10 3\n5 1 6\n2 2 2\n1 5 7\n']
Demo Output:
['2', '1']
Note:
Note to the first sample test. At the first stage city 1 chosen candidate 3, city 2 chosen candidate 2, city 3 chosen candidate 2. The winner is candidate 2, he gained 2 votes.
Note to the second sample test. At the first stage in city 1 candidates 1 and 2 got the same maximum number of votes, but candidate 1 has a smaller index, so the city chose candidate 1. City 2 chosen candidate 3. City 3 chosen candidate 1, due to the fact that everyone has the same number of votes, and 1 has the smallest index. City 4 chosen the candidate 3. On the second stage the same number of cities chose candidates 1 and 3. The winner is candidate 1, the one with the smaller index.
|
```python
n,m=map(int,input().split())
z=[0]*n
for x in range(m):
k=list(map(int,input().split()))
c=-1
for y in range(n):
if k[y]>c:
c=k[y]
ind=y
z[ind]+=1
q=max(z)
for x in range(n):
if z[x]==q:
print(x+1)
break
```
| 3
|
|
741
|
A
|
Arpa's loud Owf and Mehrdad's evil plan
|
PROGRAMMING
| 1,600
|
[
"dfs and similar",
"math"
] | null | null |
As you have noticed, there are lovely girls in Arpa’s land.
People in Arpa's land are numbered from 1 to *n*. Everyone has exactly one crush, *i*-th person's crush is person with the number *crush**i*.
Someday Arpa shouted Owf loudly from the top of the palace and a funny game started in Arpa's land. The rules are as follows.
The game consists of rounds. Assume person *x* wants to start a round, he calls *crush**x* and says: "Oww...wwf" (the letter w is repeated *t* times) and cuts off the phone immediately. If *t*<=><=1 then *crush**x* calls *crush**crush**x* and says: "Oww...wwf" (the letter w is repeated *t*<=-<=1 times) and cuts off the phone immediately. The round continues until some person receives an "Owf" (*t*<==<=1). This person is called the Joon-Joon of the round. There can't be two rounds at the same time.
Mehrdad has an evil plan to make the game more funny, he wants to find smallest *t* (*t*<=≥<=1) such that for each person *x*, if *x* starts some round and *y* becomes the Joon-Joon of the round, then by starting from *y*, *x* would become the Joon-Joon of the round. Find such *t* for Mehrdad if it's possible.
Some strange fact in Arpa's land is that someone can be himself's crush (i.e. *crush**i*<==<=*i*).
|
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of people in Arpa's land.
The second line contains *n* integers, *i*-th of them is *crush**i* (1<=≤<=*crush**i*<=≤<=*n*) — the number of *i*-th person's crush.
|
If there is no *t* satisfying the condition, print -1. Otherwise print such smallest *t*.
|
[
"4\n2 3 1 4\n",
"4\n4 4 4 4\n",
"4\n2 1 4 3\n"
] |
[
"3\n",
"-1\n",
"1\n"
] |
In the first sample suppose *t* = 3.
If the first person starts some round:
The first person calls the second person and says "Owwwf", then the second person calls the third person and says "Owwf", then the third person calls the first person and says "Owf", so the first person becomes Joon-Joon of the round. So the condition is satisfied if *x* is 1.
The process is similar for the second and the third person.
If the fourth person starts some round:
The fourth person calls himself and says "Owwwf", then he calls himself again and says "Owwf", then he calls himself for another time and says "Owf", so the fourth person becomes Joon-Joon of the round. So the condition is satisfied when *x* is 4.
In the last example if the first person starts a round, then the second person becomes the Joon-Joon, and vice versa.
| 500
|
[
{
"input": "4\n2 3 1 4",
"output": "3"
},
{
"input": "4\n4 4 4 4",
"output": "-1"
},
{
"input": "4\n2 1 4 3",
"output": "1"
},
{
"input": "5\n2 4 3 1 2",
"output": "-1"
},
{
"input": "5\n2 2 4 4 5",
"output": "-1"
},
{
"input": "5\n2 4 5 4 2",
"output": "-1"
},
{
"input": "10\n8 10 4 3 2 1 9 6 5 7",
"output": "15"
},
{
"input": "10\n10 1 4 8 5 2 3 7 9 6",
"output": "2"
},
{
"input": "10\n6 4 3 9 5 2 1 10 8 7",
"output": "4"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "1"
},
{
"input": "100\n95 27 13 62 100 21 48 84 27 41 34 89 21 96 56 10 6 27 9 85 7 85 16 12 80 78 20 79 63 1 74 46 56 59 62 88 59 5 42 13 81 58 49 1 62 51 2 75 92 94 14 32 31 39 34 93 72 18 59 44 11 75 27 36 44 72 63 55 41 63 87 59 54 81 68 39 95 96 99 50 94 5 3 84 59 95 71 44 35 51 73 54 49 98 44 11 52 74 95 48",
"output": "-1"
},
{
"input": "100\n70 49 88 43 66 72 6 6 48 46 59 22 56 86 14 53 50 84 79 76 89 65 10 14 27 43 92 95 98 6 86 6 95 65 91 8 58 33 31 67 75 65 94 75 12 25 37 56 17 79 74 5 94 65 99 75 16 52 19 17 41 39 44 46 51 50 82 90 25 32 83 36 74 49 61 37 8 52 35 28 58 82 76 12 7 66 23 85 53 19 45 8 46 21 62 38 42 48 100 61",
"output": "-1"
},
{
"input": "100\n27 55 94 11 56 59 83 81 79 89 48 89 7 75 70 20 70 76 14 81 61 55 98 76 35 20 79 100 77 12 97 57 16 80 45 75 2 21 44 81 93 75 69 3 87 25 27 25 85 91 96 86 35 85 99 61 70 37 11 27 63 89 62 47 61 10 91 13 90 18 72 47 47 98 93 27 71 37 51 31 80 63 42 88 6 76 11 12 13 7 90 99 100 27 22 66 41 49 12 11",
"output": "-1"
},
{
"input": "100\n98 39 44 79 31 99 96 72 97 54 83 15 81 65 59 75 3 51 83 40 28 54 41 93 56 94 93 58 20 53 21 7 81 17 71 31 31 88 34 22 55 67 57 92 34 88 87 23 36 33 41 33 17 10 71 28 79 6 3 60 67 99 68 8 39 29 49 17 82 43 100 86 64 47 55 66 58 57 50 49 8 11 15 91 42 44 72 28 18 32 81 22 20 78 55 51 37 94 34 4",
"output": "-1"
},
{
"input": "100\n53 12 13 98 57 83 52 61 69 54 13 92 91 27 16 91 86 75 93 29 16 59 14 2 37 74 34 30 98 17 3 72 83 93 21 72 52 89 57 58 60 29 94 16 45 20 76 64 78 67 76 68 41 47 50 36 9 75 79 11 10 88 71 22 36 60 44 19 79 43 49 24 6 57 8 42 51 58 60 2 84 48 79 55 74 41 89 10 45 70 76 29 53 9 82 93 24 40 94 56",
"output": "-1"
},
{
"input": "100\n33 44 16 91 71 86 84 45 12 97 18 1 42 67 89 45 62 56 72 70 59 62 96 13 24 19 81 61 99 65 12 26 59 61 6 19 71 49 52 17 56 6 8 98 75 83 39 75 45 8 98 35 25 3 51 89 82 50 82 30 74 63 77 60 23 36 55 49 74 73 66 62 100 44 26 72 24 84 100 54 87 65 87 61 54 29 38 99 91 63 47 44 28 11 14 29 51 55 28 95",
"output": "-1"
},
{
"input": "100\n17 14 81 16 30 51 62 47 3 42 71 63 45 67 91 20 35 45 15 94 83 89 7 32 49 68 73 14 94 45 64 64 15 56 46 32 92 92 10 32 58 86 15 17 41 59 95 69 71 74 92 90 82 64 59 93 74 58 84 21 61 51 47 1 93 91 47 61 13 53 97 65 80 78 41 1 89 4 21 27 45 28 21 96 29 96 49 75 41 46 6 33 50 31 30 3 21 8 34 7",
"output": "-1"
},
{
"input": "100\n42 40 91 4 21 49 59 37 1 62 23 2 32 88 48 39 35 50 67 11 20 19 63 98 63 20 63 95 25 82 34 55 6 93 65 40 62 84 84 47 79 22 5 51 5 16 63 43 57 81 76 44 19 61 68 80 47 30 32 72 72 26 76 12 37 2 70 14 86 77 48 26 89 87 25 8 74 18 13 8 1 45 37 10 96 100 80 48 59 73 8 67 18 66 10 26 3 65 22 8",
"output": "-1"
},
{
"input": "100\n49 94 43 50 70 25 37 19 66 89 98 83 57 98 100 61 89 56 75 61 2 14 28 14 60 84 82 89 100 25 57 80 51 37 74 40 90 68 24 56 17 86 87 83 52 65 7 18 5 2 53 79 83 56 55 35 29 79 46 97 25 10 47 1 61 74 4 71 34 85 39 17 7 84 22 80 38 60 89 83 80 81 87 11 41 15 57 53 45 75 58 51 85 12 93 8 90 3 1 59",
"output": "-1"
},
{
"input": "100\n84 94 72 32 61 90 61 2 76 42 35 82 90 29 51 27 65 99 38 41 44 73 100 58 56 64 54 31 14 58 57 64 90 49 73 80 74 19 31 86 73 44 39 43 28 95 23 5 85 5 74 81 34 44 86 30 50 57 94 56 53 42 53 87 92 78 53 49 78 60 37 63 41 19 15 68 25 77 87 48 23 100 54 27 68 84 43 92 76 55 2 94 100 20 92 18 76 83 100 99",
"output": "-1"
},
{
"input": "100\n82 62 73 22 56 69 88 72 76 99 13 30 64 21 89 37 5 7 16 38 42 96 41 6 34 18 35 8 31 92 63 87 58 75 9 53 80 46 33 100 68 36 24 3 77 45 2 51 78 54 67 48 15 1 79 57 71 97 17 52 4 98 85 14 47 83 84 49 27 91 19 29 25 44 11 43 60 86 61 94 32 10 59 93 65 20 50 55 66 95 90 70 39 26 12 74 40 81 23 28",
"output": "1260"
},
{
"input": "100\n23 12 62 61 32 22 34 91 49 44 59 26 7 89 98 100 60 21 30 9 68 97 33 71 67 83 45 38 5 8 2 65 16 69 18 82 72 27 78 73 35 48 29 36 66 54 95 37 10 19 20 77 1 17 87 70 42 4 50 53 63 94 93 56 24 88 55 6 11 58 39 75 90 40 57 79 47 31 41 51 52 85 14 13 99 64 25 46 15 92 28 86 43 76 84 96 3 74 81 80",
"output": "6864"
},
{
"input": "100\n88 41 92 79 21 91 44 2 27 96 9 64 73 87 45 13 39 43 16 42 99 54 95 5 75 1 48 4 15 47 34 71 76 62 17 70 81 80 53 90 67 3 38 58 32 25 29 63 6 50 51 14 37 97 24 52 65 40 31 98 100 77 8 33 61 11 49 84 89 78 56 20 94 35 86 46 85 36 82 93 7 59 10 60 69 57 12 74 28 22 30 66 18 68 72 19 26 83 23 55",
"output": "360"
},
{
"input": "100\n37 60 72 43 66 70 13 6 27 41 36 52 44 92 89 88 64 90 77 32 78 58 35 31 97 50 95 82 7 65 99 22 16 28 85 46 26 38 15 79 34 96 23 39 42 75 51 83 33 57 3 53 4 48 18 8 98 24 55 84 20 30 14 25 40 29 91 69 68 17 54 94 74 49 73 11 62 81 59 86 61 45 19 80 76 67 21 2 71 87 10 1 63 9 100 93 47 56 5 12",
"output": "1098"
},
{
"input": "100\n79 95 49 70 84 28 89 18 5 3 57 30 27 19 41 46 12 88 2 75 58 44 31 16 8 83 87 68 90 29 67 13 34 17 1 72 80 15 20 4 22 37 92 7 98 96 69 76 45 91 82 60 93 78 86 39 21 94 77 26 14 59 24 56 35 71 52 38 48 100 32 74 9 54 47 63 23 55 51 81 53 33 6 36 62 11 42 73 43 99 50 97 61 85 66 65 25 10 64 40",
"output": "13090"
},
{
"input": "100\n74 71 86 6 75 16 62 25 95 45 29 36 97 5 8 78 26 69 56 57 60 15 55 87 14 23 68 11 31 47 3 24 7 54 49 80 33 76 30 65 4 53 93 20 37 84 35 1 66 40 46 17 12 73 42 96 38 2 32 72 58 51 90 22 99 89 88 21 85 28 63 10 92 18 61 98 27 19 81 48 34 94 50 83 59 77 9 44 79 43 39 100 82 52 70 41 67 13 64 91",
"output": "4020"
},
{
"input": "100\n58 65 42 100 48 22 62 16 20 2 19 8 60 28 41 90 39 31 74 99 34 75 38 82 79 29 24 84 6 95 49 43 94 81 51 44 77 72 1 55 47 69 15 33 66 9 53 89 97 67 4 71 57 18 36 88 83 91 5 61 40 70 10 23 26 30 59 25 68 86 85 12 96 46 87 14 32 11 93 27 54 37 78 92 52 21 80 13 50 17 56 35 73 98 63 3 7 45 64 76",
"output": "1098"
},
{
"input": "100\n60 68 76 27 73 9 6 10 1 46 3 34 75 11 33 89 59 16 21 50 82 86 28 95 71 31 58 69 20 42 91 79 18 100 8 36 92 25 61 22 45 39 23 66 32 65 80 51 67 84 35 43 98 2 97 4 13 81 24 19 70 7 90 37 62 48 41 94 40 56 93 44 47 83 15 17 74 88 64 30 77 5 26 29 57 12 63 14 38 87 99 52 78 49 96 54 55 53 85 72",
"output": "132"
},
{
"input": "100\n72 39 12 50 13 55 4 94 22 61 33 14 29 93 28 53 59 97 2 24 6 98 52 21 62 84 44 41 78 82 71 89 88 63 57 42 67 16 30 1 27 66 35 26 36 90 95 65 7 48 47 11 34 76 69 3 100 60 32 45 40 87 18 81 51 56 73 85 25 31 8 77 37 58 91 20 83 92 38 17 9 64 43 5 10 99 46 23 75 74 80 68 15 19 70 86 79 54 49 96",
"output": "4620"
},
{
"input": "100\n91 50 1 37 65 78 73 10 68 84 54 41 80 59 2 96 53 5 19 58 82 3 88 34 100 76 28 8 44 38 17 15 63 94 21 72 57 31 33 40 49 56 6 52 95 66 71 20 12 16 35 75 70 39 4 60 45 9 89 18 87 92 85 46 23 79 22 24 36 81 25 43 11 86 67 27 32 69 77 26 42 98 97 93 51 61 48 47 62 90 74 64 83 30 14 55 13 29 99 7",
"output": "3498"
},
{
"input": "100\n40 86 93 77 68 5 32 77 1 79 68 33 29 36 38 3 69 46 72 7 27 27 30 40 21 18 69 69 32 10 82 97 1 34 87 81 92 67 47 3 52 89 25 41 88 79 5 46 41 82 87 1 77 41 54 16 6 92 18 10 37 45 71 25 16 66 39 94 60 13 48 64 28 91 80 36 4 53 50 28 30 45 92 79 93 71 96 66 65 73 57 71 48 78 76 53 96 76 81 89",
"output": "-1"
},
{
"input": "100\n2 35 14 84 13 36 35 50 61 6 85 13 65 12 30 52 25 84 46 28 84 78 45 7 64 47 3 4 89 99 83 92 38 75 25 44 47 55 44 80 20 26 88 37 64 57 81 8 7 28 34 94 9 37 39 54 53 59 3 26 19 40 59 38 54 43 61 67 43 67 6 25 63 54 9 77 73 54 17 40 14 76 51 74 44 56 18 40 31 38 37 11 87 77 92 79 96 22 59 33",
"output": "-1"
},
{
"input": "100\n68 45 33 49 40 52 43 60 71 83 43 47 6 34 5 94 99 74 65 78 31 52 51 72 8 12 70 87 39 68 2 82 90 71 82 44 43 34 50 26 59 62 90 9 52 52 81 5 72 27 71 95 32 6 23 27 26 63 66 3 35 58 62 87 45 16 64 82 62 40 22 15 88 21 50 58 15 49 45 99 78 8 81 55 90 91 32 86 29 30 50 74 96 43 43 6 46 88 59 12",
"output": "-1"
},
{
"input": "100\n83 4 84 100 21 83 47 79 11 78 40 33 97 68 5 46 93 23 54 93 61 67 88 8 91 11 46 10 48 39 95 29 81 36 71 88 45 64 90 43 52 49 59 57 45 83 74 89 22 67 46 2 63 84 20 30 51 26 70 84 35 70 21 86 88 79 7 83 13 56 74 54 83 96 31 57 91 69 60 43 12 34 31 23 70 48 96 58 20 36 87 17 39 100 31 69 21 54 49 42",
"output": "-1"
},
{
"input": "100\n35 12 51 32 59 98 65 84 34 83 75 72 35 31 17 55 35 84 6 46 23 74 81 98 61 9 39 40 6 15 44 79 98 3 45 41 64 56 4 27 62 27 68 80 99 21 32 26 60 82 5 1 98 75 49 26 60 25 57 18 69 88 51 64 74 97 81 78 62 32 68 77 48 71 70 64 17 1 77 25 95 68 33 80 11 55 18 42 24 73 51 55 82 72 53 20 99 15 34 54",
"output": "-1"
},
{
"input": "100\n82 56 26 86 95 27 37 7 8 41 47 87 3 45 27 34 61 95 92 44 85 100 7 36 23 7 43 4 34 48 88 58 26 59 89 46 47 13 6 13 40 16 6 32 76 54 77 3 5 22 96 22 52 30 16 99 90 34 27 14 86 16 7 72 49 82 9 21 32 59 51 90 93 38 54 52 23 13 89 51 18 96 92 71 3 96 31 74 66 20 52 88 55 95 88 90 56 19 62 68",
"output": "-1"
},
{
"input": "100\n58 40 98 67 44 23 88 8 63 52 95 42 28 93 6 24 21 12 94 41 95 65 38 77 17 41 94 99 84 8 5 10 90 48 18 7 72 16 91 82 100 30 73 41 15 70 13 23 39 56 15 74 42 69 10 86 21 91 81 15 86 72 56 19 15 48 28 38 81 96 7 8 90 44 13 99 99 9 70 26 95 95 77 83 78 97 2 74 2 76 97 27 65 68 29 20 97 91 58 28",
"output": "-1"
},
{
"input": "100\n99 7 60 94 9 96 38 44 77 12 75 88 47 42 88 95 59 4 12 96 36 16 71 6 26 19 88 63 25 53 90 18 95 82 63 74 6 60 84 88 80 95 66 50 21 8 61 74 61 38 31 19 28 76 94 48 23 80 83 58 62 6 64 7 72 100 94 90 12 63 44 92 32 12 6 66 49 80 71 1 20 87 96 12 56 23 10 77 98 54 100 77 87 31 74 19 42 88 52 17",
"output": "-1"
},
{
"input": "100\n36 66 56 95 69 49 32 50 93 81 18 6 1 4 78 49 2 1 87 54 78 70 22 26 95 22 30 54 93 65 74 79 48 3 74 21 88 81 98 89 15 80 18 47 27 52 93 97 57 38 38 70 55 26 21 79 43 30 63 25 98 8 18 9 94 36 86 43 24 96 78 43 54 67 32 84 14 75 37 68 18 30 50 37 78 1 98 19 37 84 9 43 4 95 14 38 73 4 78 39",
"output": "-1"
},
{
"input": "100\n37 3 68 45 91 57 90 83 55 17 42 26 23 46 51 43 78 83 12 42 28 17 56 80 71 41 32 82 41 64 56 27 32 40 98 6 60 98 66 82 65 27 69 28 78 57 93 81 3 64 55 85 48 18 73 40 48 50 60 9 63 54 55 7 23 93 22 34 75 18 100 16 44 31 37 85 27 87 69 37 73 89 47 10 34 30 11 80 21 30 24 71 14 28 99 45 68 66 82 81",
"output": "-1"
},
{
"input": "100\n98 62 49 47 84 1 77 88 76 85 21 50 2 92 72 66 100 99 78 58 33 83 27 89 71 97 64 94 4 13 17 8 32 20 79 44 12 56 7 9 43 6 26 57 18 23 39 69 30 55 16 96 35 91 11 68 67 31 38 90 40 48 25 41 54 82 15 22 37 51 81 65 60 34 24 14 5 87 74 19 46 3 80 45 61 86 10 28 52 73 29 42 70 53 93 95 63 75 59 36",
"output": "42"
},
{
"input": "100\n57 60 40 66 86 52 88 4 54 31 71 19 37 16 73 95 98 77 92 59 35 90 24 96 10 45 51 43 91 63 1 80 14 82 21 29 2 74 99 8 79 76 56 44 93 17 12 33 87 46 72 83 36 49 69 22 3 38 15 13 34 20 42 48 25 28 18 9 50 32 67 84 62 97 68 5 27 65 30 6 81 26 39 41 55 11 70 23 7 53 64 85 100 58 78 75 94 47 89 61",
"output": "353430"
},
{
"input": "100\n60 2 18 55 53 58 44 32 26 70 90 4 41 40 25 69 13 73 22 5 16 23 21 86 48 6 99 78 68 49 63 29 35 76 14 19 97 12 9 51 100 31 81 43 52 91 47 95 96 38 62 10 36 46 87 28 20 93 54 27 94 7 11 37 33 61 24 34 72 3 74 82 77 67 8 88 80 59 92 84 56 57 83 65 50 98 75 17 39 71 42 66 15 45 79 64 1 30 89 85",
"output": "1235"
},
{
"input": "100\n9 13 6 72 98 70 5 100 26 75 25 87 35 10 95 31 41 80 91 38 61 64 29 71 52 63 24 74 14 56 92 85 12 73 59 23 3 39 30 42 68 47 16 18 8 93 96 67 48 89 53 77 49 62 44 33 83 57 81 55 28 76 34 36 88 37 17 11 40 90 46 84 94 60 4 51 69 21 50 82 97 1 54 2 65 32 15 22 79 27 99 78 20 43 7 86 45 19 66 58",
"output": "2376"
},
{
"input": "100\n84 39 28 52 82 49 47 4 88 15 29 38 92 37 5 16 83 7 11 58 45 71 23 31 89 34 69 100 90 53 66 50 24 27 14 19 98 1 94 81 77 87 70 54 85 26 42 51 99 48 10 57 95 72 3 33 43 41 22 97 62 9 40 32 44 91 76 59 2 65 20 61 60 64 78 86 55 75 80 96 93 73 13 68 74 25 35 30 17 8 46 36 67 79 12 21 56 63 6 18",
"output": "330"
},
{
"input": "100\n95 66 71 30 14 70 78 75 20 85 10 90 53 9 56 88 38 89 77 4 34 81 33 41 65 99 27 44 61 21 31 83 50 19 58 40 15 47 76 7 5 74 37 1 86 67 43 96 63 92 97 25 59 42 73 60 57 80 62 6 12 51 16 45 36 82 93 54 46 35 94 3 11 98 87 22 69 100 23 48 2 49 28 55 72 8 91 13 68 39 24 64 17 52 18 26 32 29 84 79",
"output": "1071"
},
{
"input": "100\n73 21 39 30 78 79 15 46 18 60 2 1 45 35 74 26 43 49 96 59 89 61 34 50 42 84 16 41 92 31 100 64 25 27 44 98 86 47 29 71 97 11 95 62 48 66 20 53 22 83 76 32 77 63 54 99 87 36 9 70 17 52 72 38 81 19 23 65 82 37 24 10 91 93 56 12 88 58 51 33 4 28 8 3 40 7 67 69 68 6 80 13 5 55 14 85 94 75 90 57",
"output": "7315"
},
{
"input": "100\n44 43 76 48 53 13 9 60 20 18 82 31 28 26 58 3 85 93 69 73 100 42 2 12 30 50 84 7 64 66 47 56 89 88 83 37 63 68 27 52 49 91 62 45 67 65 90 75 81 72 87 5 38 33 6 57 35 97 77 22 51 23 80 99 11 8 15 71 16 4 92 1 46 70 54 96 34 19 86 40 39 25 36 78 29 10 95 59 55 61 98 14 79 17 32 24 21 74 41 94",
"output": "290"
},
{
"input": "100\n31 77 71 33 94 74 19 20 46 21 14 22 6 93 68 54 55 2 34 25 44 90 91 95 61 51 82 64 99 76 7 11 52 86 50 70 92 66 87 97 45 49 39 79 26 32 75 29 83 47 18 62 28 27 88 60 67 81 4 24 3 80 16 85 35 42 9 65 23 15 36 8 12 13 10 57 73 69 48 78 43 1 58 63 38 84 40 56 98 30 17 72 96 41 53 5 37 89 100 59",
"output": "708"
},
{
"input": "100\n49 44 94 57 25 2 97 64 83 14 38 31 88 17 32 33 75 81 15 54 56 30 55 66 60 86 20 5 80 28 67 91 89 71 48 3 23 35 58 7 96 51 13 100 39 37 46 85 99 45 63 16 92 9 41 18 24 84 1 29 72 77 27 70 62 43 69 78 36 53 90 82 74 11 34 19 76 21 8 52 61 98 68 6 40 26 50 93 12 42 87 79 47 4 59 10 73 95 22 65",
"output": "1440"
},
{
"input": "100\n81 59 48 7 57 38 19 4 31 33 74 66 9 67 95 91 17 26 23 44 88 35 76 5 2 11 32 41 13 21 80 73 75 22 72 87 65 3 52 61 25 86 43 55 99 62 53 34 85 63 60 71 10 27 29 47 24 42 15 40 16 96 6 45 54 93 8 70 92 12 83 77 64 90 56 28 20 97 36 46 1 49 14 100 68 50 51 98 79 89 78 37 39 82 58 69 30 94 84 18",
"output": "87"
},
{
"input": "100\n62 50 16 53 19 18 63 26 47 85 59 39 54 92 95 35 71 69 29 94 98 68 37 75 61 25 88 73 36 89 46 67 96 12 58 41 64 45 34 32 28 74 15 43 66 97 70 90 42 13 56 93 52 21 60 20 17 79 49 5 72 83 23 51 2 77 65 55 11 76 91 81 100 44 30 8 4 10 7 99 31 87 82 86 14 9 40 78 22 48 80 38 57 33 24 6 1 3 27 84",
"output": "777"
},
{
"input": "100\n33 66 80 63 41 88 39 48 86 68 76 81 59 99 93 100 43 37 11 64 91 22 7 57 87 58 72 60 35 79 18 94 70 25 69 31 3 27 53 30 29 54 83 36 56 55 84 34 51 73 90 95 92 85 47 44 97 5 10 12 65 61 40 98 17 23 1 82 16 50 74 28 24 4 2 52 67 46 78 13 89 77 6 15 8 62 45 32 21 75 19 14 71 49 26 38 20 42 96 9",
"output": "175"
},
{
"input": "100\n66 48 77 30 76 54 64 37 20 40 27 21 89 90 23 55 53 22 81 97 28 63 45 14 38 44 59 6 34 78 10 69 75 79 72 42 99 68 29 83 62 33 26 17 46 35 80 74 50 1 85 16 4 56 43 57 88 5 19 51 73 9 94 47 8 18 91 52 86 98 12 32 3 60 100 36 96 49 24 13 67 25 65 93 95 87 61 92 71 82 31 41 84 70 39 58 7 2 15 11",
"output": "5187"
},
{
"input": "100\n2 61 67 86 93 56 83 59 68 43 15 20 49 17 46 60 19 21 24 84 8 81 55 31 73 99 72 41 91 47 85 50 4 90 23 66 95 5 11 79 58 77 26 80 40 52 92 74 100 6 82 57 65 14 96 27 32 3 88 16 97 35 30 51 29 38 13 87 76 63 98 18 25 37 48 62 75 36 94 69 78 39 33 44 42 54 9 53 12 70 22 34 89 7 10 64 45 28 1 71",
"output": "9765"
},
{
"input": "100\n84 90 51 80 67 7 43 77 9 72 97 59 44 40 47 14 65 42 35 8 85 56 53 32 58 48 62 29 96 92 18 5 60 98 27 69 25 33 83 30 82 46 87 76 70 73 55 21 31 99 50 13 16 34 81 89 22 10 61 78 4 36 41 19 68 64 17 74 28 11 94 52 6 24 1 12 3 66 38 26 45 54 75 79 95 20 2 71 100 91 23 49 63 86 88 37 93 39 15 57",
"output": "660"
},
{
"input": "100\n58 66 46 88 94 95 9 81 61 78 65 19 40 17 20 86 89 62 100 14 73 34 39 35 43 90 69 49 55 74 72 85 63 41 83 36 70 98 11 84 24 26 99 30 68 51 54 31 47 33 10 75 7 77 16 28 1 53 67 91 44 64 45 60 8 27 4 42 6 79 76 22 97 92 29 80 82 96 3 2 71 37 5 52 93 13 87 23 56 50 25 38 18 21 12 57 32 59 15 48",
"output": "324"
},
{
"input": "100\n9 94 1 12 46 51 77 59 15 34 45 49 8 80 4 35 91 20 52 27 78 36 73 95 58 61 11 79 42 41 5 7 60 40 70 72 74 17 30 19 3 68 37 67 13 29 54 25 26 63 10 71 32 83 99 88 65 97 39 2 33 43 82 75 62 98 44 66 89 81 76 85 92 87 56 31 14 53 16 96 24 23 64 38 48 55 28 86 69 21 100 84 47 6 57 22 90 93 18 50",
"output": "12870"
},
{
"input": "100\n40 97 71 53 25 31 50 62 68 39 17 32 88 81 73 58 36 98 64 6 65 33 91 8 74 51 27 28 89 15 90 84 79 44 41 54 49 3 5 10 99 34 82 48 59 13 69 18 66 67 60 63 4 96 26 95 45 76 57 22 14 72 93 83 11 70 56 35 61 16 19 21 1 52 38 43 85 92 100 37 42 23 2 55 87 75 29 80 30 77 12 78 46 47 20 24 7 86 9 94",
"output": "825"
},
{
"input": "100\n85 59 62 27 61 12 80 15 1 100 33 84 79 28 69 11 18 92 2 99 56 81 64 50 3 32 17 7 63 21 53 89 54 46 90 72 86 26 51 23 8 19 44 48 5 25 42 14 29 35 55 82 6 83 88 74 67 66 98 4 70 38 43 37 91 40 78 96 9 75 45 95 93 30 68 47 65 34 58 39 73 16 49 60 76 10 94 87 41 71 13 57 97 20 24 31 22 77 52 36",
"output": "1650"
},
{
"input": "100\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16 28 29 30 31 32 33 34 35 36 37 38 39 27 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 40 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 57 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 76 99 100",
"output": "111546435"
},
{
"input": "26\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16",
"output": "1155"
},
{
"input": "100\n2 1 4 5 3 7 8 9 10 6 12 13 14 15 16 17 11 19 20 21 22 23 24 25 26 27 28 18 30 31 32 33 34 35 36 37 38 39 40 41 29 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 42 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 59 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 78",
"output": "111546435"
},
{
"input": "6\n2 3 4 1 6 5",
"output": "2"
},
{
"input": "39\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16 28 29 30 31 32 33 34 35 36 37 38 39 27",
"output": "15015"
},
{
"input": "15\n2 3 4 5 1 7 8 9 10 6 12 13 14 15 11",
"output": "5"
},
{
"input": "98\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16 28 29 30 31 32 33 34 35 36 37 38 39 27 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 40 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 57 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 76",
"output": "111546435"
},
{
"input": "100\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 20 38 39 40 41 42 43 44 45 46 47 48 49 37 51 52 53 54 55 56 57 58 59 60 50 62 63 64 65 66 67 61 69 70 71 72 68 74 75 76 77 78 79 80 81 73 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 82 98 99 100",
"output": "116396280"
},
{
"input": "4\n2 3 4 2",
"output": "-1"
},
{
"input": "93\n2 3 4 5 1 7 8 9 10 11 12 6 14 15 16 17 18 19 20 21 22 23 13 25 26 27 28 29 30 31 32 33 34 35 36 24 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 37 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 54 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 73",
"output": "4849845"
},
{
"input": "15\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9",
"output": "105"
},
{
"input": "41\n2 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 20 21 22 23 24 12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 25",
"output": "2431"
},
{
"input": "100\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16 28 29 30 31 32 33 34 35 36 37 38 39 27 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 40 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 57 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 76 100 99",
"output": "111546435"
},
{
"input": "24\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 16",
"output": "315"
},
{
"input": "90\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16 28 29 30 31 32 33 34 35 36 37 38 39 27 41 42 43 44 45 46 47 48 49 50 51 52 53 54 40 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 55 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 72",
"output": "4849845"
},
{
"input": "99\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 16 26 27 28 29 30 31 32 33 34 35 25 37 38 39 40 41 42 43 44 45 46 47 48 36 50 51 52 53 54 55 56 57 58 59 60 61 62 63 49 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 64 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 81",
"output": "14549535"
},
{
"input": "75\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16 28 29 30 31 32 33 34 35 36 37 38 39 27 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 40 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 57",
"output": "4849845"
},
{
"input": "9\n2 3 4 5 6 7 8 9 1",
"output": "9"
},
{
"input": "26\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 26 16 17 18 19 20 21 22 23 24 25",
"output": "1155"
},
{
"input": "99\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 51",
"output": "1225"
},
{
"input": "96\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 25 26 16 28 29 30 31 32 33 34 35 36 37 38 39 27 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 40 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 57 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 76",
"output": "4849845"
},
{
"input": "100\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 18 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 37 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 57 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 78",
"output": "1560090"
},
{
"input": "48\n2 3 1 5 6 7 8 4 10 11 12 13 14 15 9 17 18 19 20 21 22 23 24 16 26 27 28 29 30 31 32 33 34 35 25 37 38 39 40 41 42 43 44 45 46 47 48 36",
"output": "45045"
},
{
"input": "100\n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1",
"output": "50"
},
{
"input": "12\n2 3 4 5 1 7 8 9 10 11 12 6",
"output": "35"
},
{
"input": "12\n2 3 4 1 6 7 8 9 10 11 12 5",
"output": "4"
},
{
"input": "100\n2 1 5 3 4 10 6 7 8 9 17 11 12 13 14 15 16 28 18 19 20 21 22 23 24 25 26 27 41 29 30 31 32 33 34 35 36 37 38 39 40 58 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 77 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 100 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "111546435"
},
{
"input": "100\n2 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 12 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 29 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 48 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 71 100",
"output": "2369851"
}
] | 1,620,740,118
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 1
| 1,000
| 21,401,600
|
from math import gcd
def lcm(a,b):
return a*b//gcd(a,b)
n=int(input())
c=[0]+list(map(int,input().split()))
g=[[] for i in range(n+1)]
use=set()
for i in range(1,n+1):
g[c[i]].append(i)
use.add(c[i])
if len(use)!=n:
print(-1)
s=[]
for i in range(1,n+1):
p=c[i]
l=1
while p!=i:
p=c[p]
l+=1
if l%2==0:
s.append(l//2)
else:
s.append(l)
x=s[0]
for i in range(1,len(s)):
x=lcm(x,s[i])
print(x)
|
Title: Arpa's loud Owf and Mehrdad's evil plan
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
As you have noticed, there are lovely girls in Arpa’s land.
People in Arpa's land are numbered from 1 to *n*. Everyone has exactly one crush, *i*-th person's crush is person with the number *crush**i*.
Someday Arpa shouted Owf loudly from the top of the palace and a funny game started in Arpa's land. The rules are as follows.
The game consists of rounds. Assume person *x* wants to start a round, he calls *crush**x* and says: "Oww...wwf" (the letter w is repeated *t* times) and cuts off the phone immediately. If *t*<=><=1 then *crush**x* calls *crush**crush**x* and says: "Oww...wwf" (the letter w is repeated *t*<=-<=1 times) and cuts off the phone immediately. The round continues until some person receives an "Owf" (*t*<==<=1). This person is called the Joon-Joon of the round. There can't be two rounds at the same time.
Mehrdad has an evil plan to make the game more funny, he wants to find smallest *t* (*t*<=≥<=1) such that for each person *x*, if *x* starts some round and *y* becomes the Joon-Joon of the round, then by starting from *y*, *x* would become the Joon-Joon of the round. Find such *t* for Mehrdad if it's possible.
Some strange fact in Arpa's land is that someone can be himself's crush (i.e. *crush**i*<==<=*i*).
Input Specification:
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of people in Arpa's land.
The second line contains *n* integers, *i*-th of them is *crush**i* (1<=≤<=*crush**i*<=≤<=*n*) — the number of *i*-th person's crush.
Output Specification:
If there is no *t* satisfying the condition, print -1. Otherwise print such smallest *t*.
Demo Input:
['4\n2 3 1 4\n', '4\n4 4 4 4\n', '4\n2 1 4 3\n']
Demo Output:
['3\n', '-1\n', '1\n']
Note:
In the first sample suppose *t* = 3.
If the first person starts some round:
The first person calls the second person and says "Owwwf", then the second person calls the third person and says "Owwf", then the third person calls the first person and says "Owf", so the first person becomes Joon-Joon of the round. So the condition is satisfied if *x* is 1.
The process is similar for the second and the third person.
If the fourth person starts some round:
The fourth person calls himself and says "Owwwf", then he calls himself again and says "Owwf", then he calls himself for another time and says "Owf", so the fourth person becomes Joon-Joon of the round. So the condition is satisfied when *x* is 4.
In the last example if the first person starts a round, then the second person becomes the Joon-Joon, and vice versa.
|
```python
from math import gcd
def lcm(a,b):
return a*b//gcd(a,b)
n=int(input())
c=[0]+list(map(int,input().split()))
g=[[] for i in range(n+1)]
use=set()
for i in range(1,n+1):
g[c[i]].append(i)
use.add(c[i])
if len(use)!=n:
print(-1)
s=[]
for i in range(1,n+1):
p=c[i]
l=1
while p!=i:
p=c[p]
l+=1
if l%2==0:
s.append(l//2)
else:
s.append(l)
x=s[0]
for i in range(1,len(s)):
x=lcm(x,s[i])
print(x)
```
| 0
|
|
459
|
A
|
Pashmak and Garden
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
Pashmak has fallen in love with an attractive girl called Parmida since one year ago...
Today, Pashmak set up a meeting with his partner in a romantic garden. Unfortunately, Pashmak has forgotten where the garden is. But he remembers that the garden looks like a square with sides parallel to the coordinate axes. He also remembers that there is exactly one tree on each vertex of the square. Now, Pashmak knows the position of only two of the trees. Help him to find the position of two remaining ones.
|
The first line contains four space-separated *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=100<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=100) integers, where *x*1 and *y*1 are coordinates of the first tree and *x*2 and *y*2 are coordinates of the second tree. It's guaranteed that the given points are distinct.
|
If there is no solution to the problem, print -1. Otherwise print four space-separated integers *x*3,<=*y*3,<=*x*4,<=*y*4 that correspond to the coordinates of the two other trees. If there are several solutions you can output any of them.
Note that *x*3,<=*y*3,<=*x*4,<=*y*4 must be in the range (<=-<=1000<=≤<=*x*3,<=*y*3,<=*x*4,<=*y*4<=≤<=1000).
|
[
"0 0 0 1\n",
"0 0 1 1\n",
"0 0 1 2\n"
] |
[
"1 0 1 1\n",
"0 1 1 0\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 1",
"output": "1 0 1 1"
},
{
"input": "0 0 1 1",
"output": "0 1 1 0"
},
{
"input": "0 0 1 2",
"output": "-1"
},
{
"input": "-100 -100 100 100",
"output": "-100 100 100 -100"
},
{
"input": "-100 -100 99 100",
"output": "-1"
},
{
"input": "0 -100 0 100",
"output": "200 -100 200 100"
},
{
"input": "27 -74 27 74",
"output": "175 -74 175 74"
},
{
"input": "0 1 2 3",
"output": "0 3 2 1"
},
{
"input": "-100 100 100 -100",
"output": "-100 -100 100 100"
},
{
"input": "-100 -100 -100 100",
"output": "100 -100 100 100"
},
{
"input": "100 100 100 -100",
"output": "300 100 300 -100"
},
{
"input": "100 -100 -100 -100",
"output": "100 100 -100 100"
},
{
"input": "-100 100 100 100",
"output": "-100 300 100 300"
},
{
"input": "0 1 0 0",
"output": "1 1 1 0"
},
{
"input": "1 1 0 0",
"output": "1 0 0 1"
},
{
"input": "0 0 1 0",
"output": "0 1 1 1"
},
{
"input": "1 0 0 1",
"output": "1 1 0 0"
},
{
"input": "1 0 1 1",
"output": "2 0 2 1"
},
{
"input": "1 1 0 1",
"output": "1 2 0 2"
},
{
"input": "15 -9 80 -9",
"output": "15 56 80 56"
},
{
"input": "51 -36 18 83",
"output": "-1"
},
{
"input": "69 -22 60 16",
"output": "-1"
},
{
"input": "-68 -78 -45 -55",
"output": "-68 -55 -45 -78"
},
{
"input": "68 -92 8 -32",
"output": "68 -32 8 -92"
},
{
"input": "95 -83 -39 -6",
"output": "-1"
},
{
"input": "54 94 53 -65",
"output": "-1"
},
{
"input": "-92 15 84 15",
"output": "-92 191 84 191"
},
{
"input": "67 77 -11 -1",
"output": "67 -1 -11 77"
},
{
"input": "91 -40 30 21",
"output": "91 21 30 -40"
},
{
"input": "66 -64 -25 -64",
"output": "66 27 -25 27"
},
{
"input": "-42 84 -67 59",
"output": "-42 59 -67 84"
},
{
"input": "73 47 -5 -77",
"output": "-1"
},
{
"input": "6 85 -54 -84",
"output": "-1"
},
{
"input": "-58 -55 40 43",
"output": "-58 43 40 -55"
},
{
"input": "56 22 48 70",
"output": "-1"
},
{
"input": "-17 -32 76 -32",
"output": "-17 61 76 61"
},
{
"input": "0 2 2 0",
"output": "0 0 2 2"
},
{
"input": "0 0 -1 1",
"output": "0 1 -1 0"
},
{
"input": "0 2 1 1",
"output": "0 1 1 2"
},
{
"input": "0 0 1 -1",
"output": "0 -1 1 0"
},
{
"input": "-1 2 -2 3",
"output": "-1 3 -2 2"
},
{
"input": "0 1 1 0",
"output": "0 0 1 1"
},
{
"input": "1 2 2 1",
"output": "1 1 2 2"
},
{
"input": "4 1 2 1",
"output": "4 3 2 3"
},
{
"input": "70 0 0 10",
"output": "-1"
},
{
"input": "2 3 4 1",
"output": "2 1 4 3"
},
{
"input": "1 3 3 1",
"output": "1 1 3 3"
},
{
"input": "-3 3 0 0",
"output": "-3 0 0 3"
},
{
"input": "2 8 7 3",
"output": "2 3 7 8"
},
{
"input": "1 2 2 3",
"output": "1 3 2 2"
},
{
"input": "0 3 3 0",
"output": "0 0 3 3"
},
{
"input": "0 0 -3 3",
"output": "0 3 -3 0"
},
{
"input": "0 2 1 2",
"output": "0 3 1 3"
},
{
"input": "1 1 2 0",
"output": "1 0 2 1"
},
{
"input": "0 0 5 0",
"output": "0 5 5 5"
},
{
"input": "3 4 7 8",
"output": "3 8 7 4"
},
{
"input": "0 5 5 0",
"output": "0 0 5 5"
},
{
"input": "5 6 8 3",
"output": "5 3 8 6"
},
{
"input": "2 2 1 1",
"output": "2 1 1 2"
},
{
"input": "0 1 3 1",
"output": "0 4 3 4"
},
{
"input": "2 4 5 4",
"output": "2 7 5 7"
},
{
"input": "0 5 1 5",
"output": "0 6 1 6"
},
{
"input": "4 0 0 4",
"output": "4 4 0 0"
},
{
"input": "0 1 1 8",
"output": "-1"
},
{
"input": "2 3 3 4",
"output": "2 4 3 3"
},
{
"input": "1 0 2 1",
"output": "1 1 2 0"
},
{
"input": "0 0 2 14",
"output": "-1"
},
{
"input": "0 0 4 3",
"output": "-1"
},
{
"input": "3 5 5 3",
"output": "3 3 5 5"
},
{
"input": "-1 1 1 -1",
"output": "-1 -1 1 1"
},
{
"input": "0 0 2 0",
"output": "0 2 2 2"
},
{
"input": "0 0 1 7",
"output": "-1"
},
{
"input": "1 2 3 2",
"output": "1 4 3 4"
},
{
"input": "1 12 3 10",
"output": "1 10 3 12"
}
] | 1,679,386,669
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 74
| 62
| 0
|
x1, y1, x2, y2 = map(int, input().split())
if x1 == x2:
x3 = x4 = x1 + abs(y1-y2)
y3 = y1
y4 = y2
print(x3,y3,x4,y4)
elif y1 == y2:
y3 = y4 = y1 + abs(x1-x2)
x3 = x1
x4 = x2
print(x3,y3,x4,y4)
elif abs(x1-x2) == abs(y1-y2):
print(x1,y2,x2,y1)
else: print(-1)
|
Title: Pashmak and Garden
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pashmak has fallen in love with an attractive girl called Parmida since one year ago...
Today, Pashmak set up a meeting with his partner in a romantic garden. Unfortunately, Pashmak has forgotten where the garden is. But he remembers that the garden looks like a square with sides parallel to the coordinate axes. He also remembers that there is exactly one tree on each vertex of the square. Now, Pashmak knows the position of only two of the trees. Help him to find the position of two remaining ones.
Input Specification:
The first line contains four space-separated *x*1,<=*y*1,<=*x*2,<=*y*2 (<=-<=100<=≤<=*x*1,<=*y*1,<=*x*2,<=*y*2<=≤<=100) integers, where *x*1 and *y*1 are coordinates of the first tree and *x*2 and *y*2 are coordinates of the second tree. It's guaranteed that the given points are distinct.
Output Specification:
If there is no solution to the problem, print -1. Otherwise print four space-separated integers *x*3,<=*y*3,<=*x*4,<=*y*4 that correspond to the coordinates of the two other trees. If there are several solutions you can output any of them.
Note that *x*3,<=*y*3,<=*x*4,<=*y*4 must be in the range (<=-<=1000<=≤<=*x*3,<=*y*3,<=*x*4,<=*y*4<=≤<=1000).
Demo Input:
['0 0 0 1\n', '0 0 1 1\n', '0 0 1 2\n']
Demo Output:
['1 0 1 1\n', '0 1 1 0\n', '-1\n']
Note:
none
|
```python
x1, y1, x2, y2 = map(int, input().split())
if x1 == x2:
x3 = x4 = x1 + abs(y1-y2)
y3 = y1
y4 = y2
print(x3,y3,x4,y4)
elif y1 == y2:
y3 = y4 = y1 + abs(x1-x2)
x3 = x1
x4 = x2
print(x3,y3,x4,y4)
elif abs(x1-x2) == abs(y1-y2):
print(x1,y2,x2,y1)
else: print(-1)
```
| 3
|
|
919
|
A
|
Supermarket
|
PROGRAMMING
| 800
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
We often go to supermarkets to buy some fruits or vegetables, and on the tag there prints the price for a kilo. But in some supermarkets, when asked how much the items are, the clerk will say that $a$ yuan for $b$ kilos (You don't need to care about what "yuan" is), the same as $a/b$ yuan for a kilo.
Now imagine you'd like to buy $m$ kilos of apples. You've asked $n$ supermarkets and got the prices. Find the minimum cost for those apples.
You can assume that there are enough apples in all supermarkets.
|
The first line contains two positive integers $n$ and $m$ ($1 \leq n \leq 5\,000$, $1 \leq m \leq 100$), denoting that there are $n$ supermarkets and you want to buy $m$ kilos of apples.
The following $n$ lines describe the information of the supermarkets. Each line contains two positive integers $a, b$ ($1 \leq a, b \leq 100$), denoting that in this supermarket, you are supposed to pay $a$ yuan for $b$ kilos of apples.
|
The only line, denoting the minimum cost for $m$ kilos of apples. Please make sure that the absolute or relative error between your answer and the correct answer won't exceed $10^{-6}$.
Formally, let your answer be $x$, and the jury's answer be $y$. Your answer is considered correct if $\frac{|x - y|}{\max{(1, |y|)}} \le 10^{-6}$.
|
[
"3 5\n1 2\n3 4\n1 3\n",
"2 1\n99 100\n98 99\n"
] |
[
"1.66666667\n",
"0.98989899\n"
] |
In the first sample, you are supposed to buy $5$ kilos of apples in supermarket $3$. The cost is $5/3$ yuan.
In the second sample, you are supposed to buy $1$ kilo of apples in supermarket $2$. The cost is $98/99$ yuan.
| 500
|
[
{
"input": "3 5\n1 2\n3 4\n1 3",
"output": "1.66666667"
},
{
"input": "2 1\n99 100\n98 99",
"output": "0.98989899"
},
{
"input": "50 37\n78 49\n96 4\n86 62\n28 4\n19 2\n79 43\n79 92\n95 35\n33 60\n54 84\n90 25\n2 25\n53 21\n86 52\n72 25\n6 78\n41 46\n3 68\n42 89\n33 35\n57 43\n99 45\n1 82\n38 62\n11 50\n55 84\n1 97\n12 67\n51 96\n51 7\n1 100\n79 61\n66 54\n97 93\n52 75\n80 54\n98 73\n29 28\n73 96\n24 73\n3 25\n1 29\n43 50\n97 95\n54 64\n38 97\n68 16\n22 68\n25 91\n77 13",
"output": "0.37000000"
},
{
"input": "5 1\n5 100\n55 6\n53 27\n57 53\n62 24",
"output": "0.05000000"
},
{
"input": "10 7\n83 93\n90 2\n63 51\n51 97\n7 97\n25 78\n17 68\n30 10\n46 14\n22 28",
"output": "0.50515464"
},
{
"input": "1 100\n100 1",
"output": "10000.00000000"
},
{
"input": "1 1\n59 1",
"output": "59.00000000"
},
{
"input": "1 100\n1 100",
"output": "1.00000000"
},
{
"input": "1 100\n1 99",
"output": "1.01010101"
},
{
"input": "1 1\n100 1",
"output": "100.00000000"
},
{
"input": "15 100\n1 2\n3 4\n10 11\n12 13\n20 21\n28 29\n34 35\n42 43\n59 60\n61 62\n74 75\n89 90\n96 97\n98 99\n99 100",
"output": "50.00000000"
},
{
"input": "15 100\n3 2\n5 4\n12 11\n14 13\n22 21\n30 29\n36 35\n44 43\n61 60\n63 62\n76 75\n91 90\n98 97\n99 98\n100 99",
"output": "101.01010101"
},
{
"input": "1 1\n100 10",
"output": "10.00000000"
},
{
"input": "1 1\n100 3",
"output": "33.33333333"
},
{
"input": "1 100\n100 3",
"output": "3333.33333333"
},
{
"input": "1 100\n100 1",
"output": "10000.00000000"
},
{
"input": "7 8\n9 8\n5 1\n3 1\n6 2\n7 3\n2 1\n3 1",
"output": "9.00000000"
},
{
"input": "5 8\n9 8\n3 1\n2 1\n4 2\n13 5",
"output": "9.00000000"
},
{
"input": "2 1\n1 2\n2 10",
"output": "0.20000000"
},
{
"input": "2 1\n99 100\n95 95",
"output": "0.99000000"
},
{
"input": "1 5\n10 1",
"output": "50.00000000"
},
{
"input": "5 10\n9 1\n10 1\n11 1\n12 1\n13 1",
"output": "90.00000000"
},
{
"input": "1 100\n3 1",
"output": "300.00000000"
}
] | 1,656,551,142
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 43
| 61
| 0
|
(n, m) = map(int, input().split(' '))
comparison_price = []
for i in range(n):
(a, b) = map(int, input().split(' '))
average = a / b
comparison_price.append(average)
print(min(comparison_price) * m)
|
Title: Supermarket
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We often go to supermarkets to buy some fruits or vegetables, and on the tag there prints the price for a kilo. But in some supermarkets, when asked how much the items are, the clerk will say that $a$ yuan for $b$ kilos (You don't need to care about what "yuan" is), the same as $a/b$ yuan for a kilo.
Now imagine you'd like to buy $m$ kilos of apples. You've asked $n$ supermarkets and got the prices. Find the minimum cost for those apples.
You can assume that there are enough apples in all supermarkets.
Input Specification:
The first line contains two positive integers $n$ and $m$ ($1 \leq n \leq 5\,000$, $1 \leq m \leq 100$), denoting that there are $n$ supermarkets and you want to buy $m$ kilos of apples.
The following $n$ lines describe the information of the supermarkets. Each line contains two positive integers $a, b$ ($1 \leq a, b \leq 100$), denoting that in this supermarket, you are supposed to pay $a$ yuan for $b$ kilos of apples.
Output Specification:
The only line, denoting the minimum cost for $m$ kilos of apples. Please make sure that the absolute or relative error between your answer and the correct answer won't exceed $10^{-6}$.
Formally, let your answer be $x$, and the jury's answer be $y$. Your answer is considered correct if $\frac{|x - y|}{\max{(1, |y|)}} \le 10^{-6}$.
Demo Input:
['3 5\n1 2\n3 4\n1 3\n', '2 1\n99 100\n98 99\n']
Demo Output:
['1.66666667\n', '0.98989899\n']
Note:
In the first sample, you are supposed to buy $5$ kilos of apples in supermarket $3$. The cost is $5/3$ yuan.
In the second sample, you are supposed to buy $1$ kilo of apples in supermarket $2$. The cost is $98/99$ yuan.
|
```python
(n, m) = map(int, input().split(' '))
comparison_price = []
for i in range(n):
(a, b) = map(int, input().split(' '))
average = a / b
comparison_price.append(average)
print(min(comparison_price) * m)
```
| 3
|
|
615
|
A
|
Bulbs
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
|
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
|
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
|
[
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n"
] |
[
"YES\n",
"NO\n"
] |
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
| 500
|
[
{
"input": "3 4\n2 1 4\n3 1 3 1\n1 2",
"output": "YES"
},
{
"input": "3 3\n1 1\n1 2\n1 1",
"output": "NO"
},
{
"input": "3 4\n1 1\n1 2\n1 3",
"output": "NO"
},
{
"input": "1 5\n5 1 2 3 4 5",
"output": "YES"
},
{
"input": "1 5\n5 4 4 1 2 3",
"output": "NO"
},
{
"input": "1 5\n5 1 1 1 1 5",
"output": "NO"
},
{
"input": "2 5\n4 3 1 4 2\n4 2 3 4 5",
"output": "YES"
},
{
"input": "5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1",
"output": "YES"
},
{
"input": "100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6",
"output": "YES"
},
{
"input": "5 2\n1 1\n1 1\n1 1\n1 1\n1 1",
"output": "NO"
},
{
"input": "1 4\n3 1 2 3",
"output": "NO"
},
{
"input": "1 4\n3 2 3 4",
"output": "NO"
},
{
"input": "2 4\n3 2 3 4\n1 1",
"output": "YES"
},
{
"input": "2 4\n3 1 2 3\n1 4",
"output": "YES"
},
{
"input": "5 1\n0\n0\n0\n0\n0",
"output": "NO"
},
{
"input": "1 1\n0",
"output": "NO"
},
{
"input": "1 10\n10 1 2 3 4 5 6 7 8 9 10",
"output": "YES"
},
{
"input": "1 1\n1 1",
"output": "YES"
},
{
"input": "1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99",
"output": "NO"
},
{
"input": "1 3\n3 1 2 1",
"output": "NO"
},
{
"input": "1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "YES"
}
] | 1,676,818,810
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 30
| 0
|
a,b=map(int,input().split())
x=[]
cal=[]
for i in range(a):
c=list(map(int,input().split()))
for i in range(len(c)):
if c[i] not in x:
x.append(c[i])
x.sort()
for i in range(1,b+1):
cal.append(i)
if x==cal:
print("YES")
else:
print("NO")
|
Title: Bulbs
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya wants to turn on Christmas lights consisting of *m* bulbs. Initially, all bulbs are turned off. There are *n* buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input Specification:
The first line of the input contains integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of buttons and the number of bulbs respectively.
Each of the next *n* lines contains *x**i* (0<=≤<=*x**i*<=≤<=*m*) — the number of bulbs that are turned on by the *i*-th button, and then *x**i* numbers *y**ij* (1<=≤<=*y**ij*<=≤<=*m*) — the numbers of these bulbs.
Output Specification:
If it's possible to turn on all *m* bulbs print "YES", otherwise print "NO".
Demo Input:
['3 4\n2 1 4\n3 1 3 1\n1 2\n', '3 3\n1 1\n1 2\n1 1\n']
Demo Output:
['YES\n', 'NO\n']
Note:
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp.
|
```python
a,b=map(int,input().split())
x=[]
cal=[]
for i in range(a):
c=list(map(int,input().split()))
for i in range(len(c)):
if c[i] not in x:
x.append(c[i])
x.sort()
for i in range(1,b+1):
cal.append(i)
if x==cal:
print("YES")
else:
print("NO")
```
| 0
|
|
814
|
A
|
An abandoned sentiment from past
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"greedy",
"implementation",
"sortings"
] | null | null |
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.
To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.
Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total.
If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing.
|
The first line of input contains two space-separated positive integers *n* (2<=≤<=*n*<=≤<=100) and *k* (1<=≤<=*k*<=≤<=*n*) — the lengths of sequence *a* and *b* respectively.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=200) — Hitagi's broken sequence with exactly *k* zero elements.
The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b**i*<=≤<=200) — the elements to fill into Hitagi's sequence.
Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total.
|
Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise.
|
[
"4 2\n11 0 0 14\n5 4\n",
"6 1\n2 3 0 8 9 10\n5\n",
"4 1\n8 94 0 4\n89\n",
"7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n"
] |
[
"Yes\n",
"No\n",
"Yes\n",
"Yes\n"
] |
In the first sample:
- Sequence *a* is 11, 0, 0, 14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11, 5, 4, 14 and 11, 4, 5, 14, both of which fulfill the requirements. Thus the answer is "Yes".
In the second sample, the only possible resulting sequence is 2, 3, 5, 8, 9, 10, which is an increasing sequence and therefore invalid.
| 500
|
[
{
"input": "4 2\n11 0 0 14\n5 4",
"output": "Yes"
},
{
"input": "6 1\n2 3 0 8 9 10\n5",
"output": "No"
},
{
"input": "4 1\n8 94 0 4\n89",
"output": "Yes"
},
{
"input": "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7",
"output": "Yes"
},
{
"input": "40 1\n23 26 27 28 31 35 38 40 43 50 52 53 56 57 59 61 65 73 75 76 79 0 82 84 85 86 88 93 99 101 103 104 105 106 110 111 112 117 119 120\n80",
"output": "No"
},
{
"input": "100 1\n99 95 22 110 47 20 37 34 23 0 16 69 64 49 111 42 112 96 13 40 18 77 44 46 74 55 15 54 56 75 78 100 82 101 31 83 53 80 52 63 30 57 104 36 67 65 103 51 48 26 68 59 35 92 85 38 107 98 73 90 62 43 32 89 19 106 17 88 41 72 113 86 66 102 81 27 29 50 71 79 109 91 70 39 61 76 93 84 108 97 24 25 45 105 94 60 33 87 14 21\n58",
"output": "Yes"
},
{
"input": "4 1\n2 1 0 4\n3",
"output": "Yes"
},
{
"input": "2 1\n199 0\n200",
"output": "No"
},
{
"input": "3 2\n115 0 0\n145 191",
"output": "Yes"
},
{
"input": "5 1\n196 197 198 0 200\n199",
"output": "No"
},
{
"input": "5 1\n92 0 97 99 100\n93",
"output": "No"
},
{
"input": "3 1\n3 87 0\n81",
"output": "Yes"
},
{
"input": "3 1\n0 92 192\n118",
"output": "Yes"
},
{
"input": "10 1\n1 3 0 7 35 46 66 72 83 90\n22",
"output": "Yes"
},
{
"input": "100 1\n14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 0 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113\n67",
"output": "No"
},
{
"input": "100 5\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 53 54 0 56 57 58 59 60 61 62 63 0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 0 99 100\n98 64 55 52 29",
"output": "Yes"
},
{
"input": "100 5\n175 30 124 0 12 111 6 0 119 108 0 38 127 3 151 114 95 54 4 128 91 11 168 120 80 107 18 21 149 169 0 141 195 20 78 157 33 118 17 69 105 130 197 57 74 110 138 84 71 172 132 93 191 44 152 156 24 101 146 26 2 36 143 122 104 42 103 97 39 116 115 0 155 87 53 85 7 43 65 196 136 154 16 79 45 129 67 150 35 73 55 76 37 147 112 82 162 58 40 75\n121 199 62 193 27",
"output": "Yes"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 0 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n11",
"output": "Yes"
},
{
"input": "100 1\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n1",
"output": "No"
},
{
"input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0\n100",
"output": "No"
},
{
"input": "100 1\n9 79 7 98 10 50 28 99 43 74 89 20 32 66 23 45 87 78 81 41 86 71 75 85 5 39 14 53 42 48 40 52 3 51 11 34 35 76 77 61 47 19 55 91 62 56 8 72 88 4 33 0 97 92 31 83 18 49 54 21 17 16 63 44 84 22 2 96 70 36 68 60 80 82 13 73 26 94 27 58 1 30 100 38 12 15 93 90 57 59 67 6 64 46 25 29 37 95 69 24\n65",
"output": "Yes"
},
{
"input": "100 2\n0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n48 1",
"output": "Yes"
},
{
"input": "100 1\n2 7 11 17 20 22 23 24 25 27 29 30 31 33 34 35 36 38 39 40 42 44 46 47 50 52 53 58 59 60 61 62 63 66 0 67 71 72 75 79 80 81 86 91 93 94 99 100 101 102 103 104 105 108 109 110 111 113 114 118 119 120 122 123 127 129 130 131 132 133 134 135 136 138 139 140 141 142 147 154 155 156 160 168 170 171 172 176 179 180 181 182 185 186 187 188 189 190 194 198\n69",
"output": "Yes"
},
{
"input": "100 1\n3 5 7 9 11 12 13 18 20 21 22 23 24 27 28 29 31 34 36 38 39 43 46 48 49 50 52 53 55 59 60 61 62 63 66 68 70 72 73 74 75 77 78 79 80 81 83 85 86 88 89 91 92 94 97 98 102 109 110 115 116 117 118 120 122 126 127 128 0 133 134 136 137 141 142 144 145 147 151 152 157 159 160 163 164 171 172 175 176 178 179 180 181 184 186 188 190 192 193 200\n129",
"output": "No"
},
{
"input": "5 2\n0 2 7 0 10\n1 8",
"output": "Yes"
},
{
"input": "3 1\n5 4 0\n1",
"output": "Yes"
},
{
"input": "3 1\n1 0 3\n4",
"output": "Yes"
},
{
"input": "2 1\n0 2\n1",
"output": "No"
},
{
"input": "2 1\n0 5\n7",
"output": "Yes"
},
{
"input": "5 1\n10 11 0 12 13\n1",
"output": "Yes"
},
{
"input": "5 1\n0 2 3 4 5\n6",
"output": "Yes"
},
{
"input": "6 2\n1 0 3 4 0 6\n2 5",
"output": "Yes"
},
{
"input": "7 2\n1 2 3 0 0 6 7\n4 5",
"output": "Yes"
},
{
"input": "4 1\n1 2 3 0\n4",
"output": "No"
},
{
"input": "2 2\n0 0\n1 2",
"output": "Yes"
},
{
"input": "3 2\n1 0 0\n2 3",
"output": "Yes"
},
{
"input": "4 2\n1 0 4 0\n5 2",
"output": "Yes"
},
{
"input": "2 1\n0 1\n2",
"output": "Yes"
},
{
"input": "5 2\n1 0 4 0 6\n2 5",
"output": "Yes"
},
{
"input": "5 1\n2 3 0 4 5\n1",
"output": "Yes"
},
{
"input": "3 1\n0 2 3\n5",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 4 5 0\n6",
"output": "No"
},
{
"input": "5 1\n1 2 0 4 5\n6",
"output": "Yes"
},
{
"input": "3 1\n5 0 2\n7",
"output": "Yes"
},
{
"input": "4 1\n4 5 0 8\n3",
"output": "Yes"
},
{
"input": "5 1\n10 11 12 0 14\n13",
"output": "No"
},
{
"input": "4 1\n1 2 0 4\n5",
"output": "Yes"
},
{
"input": "3 1\n0 11 14\n12",
"output": "Yes"
},
{
"input": "4 1\n1 3 0 4\n2",
"output": "Yes"
},
{
"input": "2 1\n0 5\n1",
"output": "No"
},
{
"input": "5 1\n1 2 0 4 7\n5",
"output": "Yes"
},
{
"input": "3 1\n2 3 0\n1",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 0 5 4\n6",
"output": "Yes"
},
{
"input": "4 2\n11 0 0 14\n13 12",
"output": "Yes"
},
{
"input": "2 1\n1 0\n2",
"output": "No"
},
{
"input": "3 1\n1 2 0\n3",
"output": "No"
},
{
"input": "4 1\n1 0 3 2\n4",
"output": "Yes"
},
{
"input": "3 1\n0 1 2\n5",
"output": "Yes"
},
{
"input": "3 1\n0 1 2\n3",
"output": "Yes"
},
{
"input": "4 1\n0 2 3 4\n5",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 0 4 5\n6",
"output": "Yes"
},
{
"input": "3 1\n1 2 0\n5",
"output": "No"
},
{
"input": "4 2\n1 0 0 4\n3 2",
"output": "Yes"
},
{
"input": "5 1\n2 3 0 5 7\n6",
"output": "Yes"
},
{
"input": "3 1\n2 3 0\n4",
"output": "No"
},
{
"input": "3 1\n1 0 11\n5",
"output": "No"
},
{
"input": "4 1\n7 9 5 0\n8",
"output": "Yes"
},
{
"input": "6 2\n1 2 3 0 5 0\n6 4",
"output": "Yes"
},
{
"input": "3 2\n0 1 0\n3 2",
"output": "Yes"
},
{
"input": "4 1\n6 9 5 0\n8",
"output": "Yes"
},
{
"input": "2 1\n0 3\n6",
"output": "Yes"
},
{
"input": "5 2\n1 2 0 0 5\n4 3",
"output": "Yes"
},
{
"input": "4 2\n2 0 0 8\n3 4",
"output": "Yes"
},
{
"input": "2 1\n0 2\n3",
"output": "Yes"
},
{
"input": "3 1\n0 4 5\n6",
"output": "Yes"
},
{
"input": "6 1\n1 2 3 4 0 5\n6",
"output": "Yes"
},
{
"input": "2 1\n2 0\n3",
"output": "No"
},
{
"input": "4 2\n11 0 0 200\n100 199",
"output": "Yes"
},
{
"input": "2 1\n5 0\n4",
"output": "Yes"
},
{
"input": "3 1\n1 0 5\n10",
"output": "Yes"
},
{
"input": "6 2\n1 2 0 0 5 6\n3 4",
"output": "Yes"
},
{
"input": "5 2\n1 0 3 0 5\n2 4",
"output": "Yes"
},
{
"input": "4 1\n1 4 0 8\n3",
"output": "Yes"
},
{
"input": "4 1\n5 9 4 0\n8",
"output": "Yes"
},
{
"input": "4 2\n1 0 0 7\n3 2",
"output": "Yes"
},
{
"input": "3 3\n0 0 0\n1 4 3",
"output": "Yes"
},
{
"input": "5 5\n0 0 0 0 0\n5 4 3 2 1",
"output": "Yes"
},
{
"input": "4 1\n3 9 4 0\n8",
"output": "Yes"
},
{
"input": "4 2\n1 0 0 4\n2 3",
"output": "Yes"
},
{
"input": "6 1\n2 4 0 8 9 10\n3",
"output": "Yes"
},
{
"input": "4 1\n0 3 5 6\n9",
"output": "Yes"
},
{
"input": "4 2\n1 2 0 0\n3 4",
"output": "Yes"
},
{
"input": "5 1\n2 3 4 5 0\n1",
"output": "Yes"
},
{
"input": "3 1\n2 0 4\n5",
"output": "Yes"
}
] | 1,522,598,529
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 12
| 78
| 7,065,600
|
n,k = map(int,input().split())
a = list(map(int,input().split()))
b = list(map(int,input().split()))
c = 1
j = 0
for i in range(n-1):
if a[i] > a[i+1] and a[i+1] != 0:
c = 0
if a[i]==0:
j = i
if k == 1 and c == 1 and b[0] > a[j-1] :
print("No")
else:
print("Yes")
|
Title: An abandoned sentiment from past
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.
To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.
Hitagi's sequence *a* has a length of *n*. Lost elements in it are denoted by zeros. Kaiki provides another sequence *b*, whose length *k* equals the number of lost elements in *a* (i.e. the number of zeros). Hitagi is to replace each zero in *a* with an element from *b* so that each element in *b* should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in *a* and *b* more than once in total.
If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in *a* with an integer from *b* so that each integer from *b* is used exactly once, and the resulting sequence is not increasing.
Input Specification:
The first line of input contains two space-separated positive integers *n* (2<=≤<=*n*<=≤<=100) and *k* (1<=≤<=*k*<=≤<=*n*) — the lengths of sequence *a* and *b* respectively.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=200) — Hitagi's broken sequence with exactly *k* zero elements.
The third line contains *k* space-separated integers *b*1,<=*b*2,<=...,<=*b**k* (1<=≤<=*b**i*<=≤<=200) — the elements to fill into Hitagi's sequence.
Input guarantees that apart from 0, no integer occurs in *a* and *b* more than once in total.
Output Specification:
Output "Yes" if it's possible to replace zeros in *a* with elements in *b* and make the resulting sequence not increasing, and "No" otherwise.
Demo Input:
['4 2\n11 0 0 14\n5 4\n', '6 1\n2 3 0 8 9 10\n5\n', '4 1\n8 94 0 4\n89\n', '7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7\n']
Demo Output:
['Yes\n', 'No\n', 'Yes\n', 'Yes\n']
Note:
In the first sample:
- Sequence *a* is 11, 0, 0, 14. - Two of the elements are lost, and the candidates in *b* are 5 and 4. - There are two possible resulting sequences: 11, 5, 4, 14 and 11, 4, 5, 14, both of which fulfill the requirements. Thus the answer is "Yes".
In the second sample, the only possible resulting sequence is 2, 3, 5, 8, 9, 10, which is an increasing sequence and therefore invalid.
|
```python
n,k = map(int,input().split())
a = list(map(int,input().split()))
b = list(map(int,input().split()))
c = 1
j = 0
for i in range(n-1):
if a[i] > a[i+1] and a[i+1] != 0:
c = 0
if a[i]==0:
j = i
if k == 1 and c == 1 and b[0] > a[j-1] :
print("No")
else:
print("Yes")
```
| 0
|
|
689
|
C
|
Mike and Chocolate Thieves
|
PROGRAMMING
| 1,700
|
[
"binary search",
"combinatorics",
"math"
] | null | null |
Bad news came to Mike's village, some thieves stole a bunch of chocolates from the local factory! Horrible!
Aside from loving sweet things, thieves from this area are known to be very greedy. So after a thief takes his number of chocolates for himself, the next thief will take exactly *k* times more than the previous one. The value of *k* (*k*<=><=1) is a secret integer known only to them. It is also known that each thief's bag can carry at most *n* chocolates (if they intend to take more, the deal is cancelled) and that there were exactly four thieves involved.
Sadly, only the thieves know the value of *n*, but rumours say that the numbers of ways they could have taken the chocolates (for a fixed *n*, but not fixed *k*) is *m*. Two ways are considered different if one of the thieves (they should be numbered in the order they take chocolates) took different number of chocolates in them.
Mike want to track the thieves down, so he wants to know what their bags are and value of *n* will help him in that. Please find the smallest possible value of *n* or tell him that the rumors are false and there is no such *n*.
|
The single line of input contains the integer *m* (1<=≤<=*m*<=≤<=1015) — the number of ways the thieves might steal the chocolates, as rumours say.
|
Print the only integer *n* — the maximum amount of chocolates that thieves' bags can carry. If there are more than one *n* satisfying the rumors, print the smallest one.
If there is no such *n* for a false-rumoured *m*, print <=-<=1.
|
[
"1\n",
"8\n",
"10\n"
] |
[
"8\n",
"54\n",
"-1\n"
] |
In the first sample case the smallest *n* that leads to exactly one way of stealing chocolates is *n* = 8, whereas the amounts of stealed chocolates are (1, 2, 4, 8) (the number of chocolates stolen by each of the thieves).
In the second sample case the smallest *n* that leads to exactly 8 ways is *n* = 54 with the possibilities: (1, 2, 4, 8), (1, 3, 9, 27), (2, 4, 8, 16), (2, 6, 18, 54), (3, 6, 12, 24), (4, 8, 16, 32), (5, 10, 20, 40), (6, 12, 24, 48).
There is no *n* leading to exactly 10 ways of stealing chocolates in the third sample case.
| 1,500
|
[
{
"input": "1",
"output": "8"
},
{
"input": "8",
"output": "54"
},
{
"input": "10",
"output": "-1"
},
{
"input": "27",
"output": "152"
},
{
"input": "28206",
"output": "139840"
},
{
"input": "32",
"output": "184"
},
{
"input": "115",
"output": "608"
},
{
"input": "81258",
"output": "402496"
},
{
"input": "116003",
"output": "574506"
},
{
"input": "149344197",
"output": "739123875"
},
{
"input": "57857854",
"output": "286347520"
},
{
"input": "999999999999999",
"output": "-1"
},
{
"input": "181023403153",
"output": "895903132760"
},
{
"input": "196071196742",
"output": "970376182648"
},
{
"input": "49729446417673",
"output": "246116048009288"
},
{
"input": "14821870173923",
"output": "73354931125416"
},
{
"input": "29031595887308",
"output": "143680297402952"
},
{
"input": "195980601490039",
"output": "969927770453672"
},
{
"input": "181076658641313",
"output": "896166653569800"
},
{
"input": "166173583620704",
"output": "822409831653228"
},
{
"input": "151269640772354",
"output": "748648714769352"
},
{
"input": "136366565751970",
"output": "674891892852776"
},
{
"input": "121463490731834",
"output": "601135070936200"
},
{
"input": "106559547884220",
"output": "527373954052328"
},
{
"input": "91656472864718",
"output": "453617132135750"
},
{
"input": "184061307002930",
"output": "910937979445720"
},
{
"input": "57857853",
"output": "-1"
},
{
"input": "1000000000000000",
"output": "4949100894494448"
},
{
"input": "375402146575334",
"output": "-1"
},
{
"input": "550368702711851",
"output": "-1"
},
{
"input": "645093839227897",
"output": "-1"
},
{
"input": "431",
"output": "-1"
},
{
"input": "99999",
"output": "-1"
},
{
"input": "2",
"output": "16"
},
{
"input": "3",
"output": "24"
},
{
"input": "4",
"output": "27"
},
{
"input": "5",
"output": "32"
},
{
"input": "6",
"output": "40"
},
{
"input": "7",
"output": "48"
},
{
"input": "13",
"output": "80"
},
{
"input": "999999999999998",
"output": "-1"
},
{
"input": "999999999999997",
"output": "4949100894494440"
},
{
"input": "999999999999996",
"output": "4949100894494432"
},
{
"input": "999999999999995",
"output": "4949100894494424"
},
{
"input": "999999999999993",
"output": "4949100894494416"
},
{
"input": "999999999999991",
"output": "4949100894494400"
},
{
"input": "999999999999992",
"output": "4949100894494408"
},
{
"input": "999999999999994",
"output": "4949100894494421"
},
{
"input": "4235246",
"output": "-1"
},
{
"input": "34",
"output": "-1"
},
{
"input": "998749999999991",
"output": "4942914518376840"
},
{
"input": "999999874999991",
"output": "4949100275856792"
},
{
"input": "987654129875642",
"output": "4887999937625136"
},
{
"input": "237648237648000",
"output": "1176145105832192"
}
] | 1,667,537,907
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 0
| 2,000
| 0
|
def f(n):
ret=0
for k in range(2,n+1):
if k*k*k<=n+1:
ret+=(n//(k*k*k))
return ret
m=int(input())
lo=0
hi=10**18
ans=-1
while(lo<=hi):
mid=lo+(hi-lo)//2
ret=f(mid)
if ret==m:
ans=mid
if ret>=m:
hi=mid-1
else:
lo=mid+1
print(ans)
|
Title: Mike and Chocolate Thieves
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bad news came to Mike's village, some thieves stole a bunch of chocolates from the local factory! Horrible!
Aside from loving sweet things, thieves from this area are known to be very greedy. So after a thief takes his number of chocolates for himself, the next thief will take exactly *k* times more than the previous one. The value of *k* (*k*<=><=1) is a secret integer known only to them. It is also known that each thief's bag can carry at most *n* chocolates (if they intend to take more, the deal is cancelled) and that there were exactly four thieves involved.
Sadly, only the thieves know the value of *n*, but rumours say that the numbers of ways they could have taken the chocolates (for a fixed *n*, but not fixed *k*) is *m*. Two ways are considered different if one of the thieves (they should be numbered in the order they take chocolates) took different number of chocolates in them.
Mike want to track the thieves down, so he wants to know what their bags are and value of *n* will help him in that. Please find the smallest possible value of *n* or tell him that the rumors are false and there is no such *n*.
Input Specification:
The single line of input contains the integer *m* (1<=≤<=*m*<=≤<=1015) — the number of ways the thieves might steal the chocolates, as rumours say.
Output Specification:
Print the only integer *n* — the maximum amount of chocolates that thieves' bags can carry. If there are more than one *n* satisfying the rumors, print the smallest one.
If there is no such *n* for a false-rumoured *m*, print <=-<=1.
Demo Input:
['1\n', '8\n', '10\n']
Demo Output:
['8\n', '54\n', '-1\n']
Note:
In the first sample case the smallest *n* that leads to exactly one way of stealing chocolates is *n* = 8, whereas the amounts of stealed chocolates are (1, 2, 4, 8) (the number of chocolates stolen by each of the thieves).
In the second sample case the smallest *n* that leads to exactly 8 ways is *n* = 54 with the possibilities: (1, 2, 4, 8), (1, 3, 9, 27), (2, 4, 8, 16), (2, 6, 18, 54), (3, 6, 12, 24), (4, 8, 16, 32), (5, 10, 20, 40), (6, 12, 24, 48).
There is no *n* leading to exactly 10 ways of stealing chocolates in the third sample case.
|
```python
def f(n):
ret=0
for k in range(2,n+1):
if k*k*k<=n+1:
ret+=(n//(k*k*k))
return ret
m=int(input())
lo=0
hi=10**18
ans=-1
while(lo<=hi):
mid=lo+(hi-lo)//2
ret=f(mid)
if ret==m:
ans=mid
if ret>=m:
hi=mid-1
else:
lo=mid+1
print(ans)
```
| 0
|
|
401
|
C
|
Team
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"greedy",
"implementation"
] | null | null |
Now it's time of Olympiads. Vanya and Egor decided to make his own team to take part in a programming Olympiad. They've been best friends ever since primary school and hopefully, that can somehow help them in teamwork.
For each team Olympiad, Vanya takes his play cards with numbers. He takes only the cards containing numbers 1 and 0. The boys are very superstitious. They think that they can do well at the Olympiad if they begin with laying all the cards in a row so that:
- there wouldn't be a pair of any side-adjacent cards with zeroes in a row; - there wouldn't be a group of three consecutive cards containing numbers one.
Today Vanya brought *n* cards with zeroes and *m* cards with numbers one. The number of cards was so much that the friends do not know how to put all those cards in the described way. Help them find the required arrangement of the cards or else tell the guys that it is impossible to arrange cards in such a way.
|
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=106) — the number of cards containing number 0; *m* (1<=≤<=*m*<=≤<=106) — the number of cards containing number 1.
|
In a single line print the required sequence of zeroes and ones without any spaces. If such sequence is impossible to obtain, print -1.
|
[
"1 2\n",
"4 8\n",
"4 10\n",
"1 5\n"
] |
[
"101\n",
"110110110101\n",
"11011011011011\n",
"-1\n"
] |
none
| 1,500
|
[
{
"input": "1 2",
"output": "101"
},
{
"input": "4 8",
"output": "110110110101"
},
{
"input": "4 10",
"output": "11011011011011"
},
{
"input": "1 5",
"output": "-1"
},
{
"input": "3 4",
"output": "1010101"
},
{
"input": "3 10",
"output": "-1"
},
{
"input": "74 99",
"output": "11011011011011011011011011011011011011011011011011011011011011011011011010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101"
},
{
"input": "19 30",
"output": "1101101101101101101101101101101010101010101010101"
},
{
"input": "33 77",
"output": "-1"
},
{
"input": "3830 6966",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "1000000 1000000",
"output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..."
},
{
"input": "1027 2030",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "4610 4609",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "3342 3339",
"output": "-1"
},
{
"input": "7757 7755",
"output": "-1"
},
{
"input": "10 8",
"output": "-1"
},
{
"input": "4247 8495",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "7101 14204",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "9801 19605",
"output": "-1"
},
{
"input": "4025 6858",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "7129 13245",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "8826 12432",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "6322 9256",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "8097 14682",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "6196 6197",
"output": "1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..."
},
{
"input": "1709 2902",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "455 512",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101..."
},
{
"input": "1781 1272",
"output": "-1"
},
{
"input": "3383 5670",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "954 1788",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "9481 15554",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "9079 100096",
"output": "-1"
},
{
"input": "481533 676709",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "423472 564888",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "227774 373297",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "42346 51898",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "739107 1000000",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "455043 798612",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "801460 801459",
"output": "0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010..."
},
{
"input": "303498 503791",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "518822 597833",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "32342 64687",
"output": "-1"
},
{
"input": "873192 873189",
"output": "-1"
},
{
"input": "384870 450227",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "201106 208474",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "775338 980888",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "263338 393171",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "241043 330384",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "307203 614408",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "379310 417986",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "661101 785111",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "284634 319008",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "500000 1000000",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "499999 1000000",
"output": "1101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101..."
},
{
"input": "3 1",
"output": "-1"
},
{
"input": "14124 242112",
"output": "-1"
},
{
"input": "2 1",
"output": "010"
},
{
"input": "2 3",
"output": "10101"
},
{
"input": "1 4",
"output": "11011"
},
{
"input": "2 6",
"output": "11011011"
},
{
"input": "2 5",
"output": "1101101"
},
{
"input": "2 4",
"output": "110101"
},
{
"input": "2 3",
"output": "10101"
},
{
"input": "2 2",
"output": "1010"
},
{
"input": "2 1",
"output": "010"
},
{
"input": "1 1",
"output": "10"
},
{
"input": "1 3",
"output": "1101"
},
{
"input": "3 2",
"output": "01010"
},
{
"input": "5 4",
"output": "010101010"
},
{
"input": "4 3",
"output": "0101010"
},
{
"input": "11 10",
"output": "010101010101010101010"
},
{
"input": "8 7",
"output": "010101010101010"
},
{
"input": "4 2",
"output": "-1"
},
{
"input": "6 5",
"output": "01010101010"
},
{
"input": "3 7",
"output": "1101101101"
},
{
"input": "5 1",
"output": "-1"
},
{
"input": "10 1",
"output": "-1"
},
{
"input": "4 9",
"output": "1101101101101"
},
{
"input": "6 4",
"output": "-1"
},
{
"input": "12 10",
"output": "-1"
},
{
"input": "4 100",
"output": "-1"
}
] | 1,639,403,065
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 31
| 0
|
n,m=map(int,input().split())
if m>2*n+2 or m<2 or n>m:
print(-1)
else:
if m<=2*n:
print('110'*(m-n)+'10'*(2*n-m))
else:
print('110'*(m-n-1)+'11')
|
Title: Team
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Now it's time of Olympiads. Vanya and Egor decided to make his own team to take part in a programming Olympiad. They've been best friends ever since primary school and hopefully, that can somehow help them in teamwork.
For each team Olympiad, Vanya takes his play cards with numbers. He takes only the cards containing numbers 1 and 0. The boys are very superstitious. They think that they can do well at the Olympiad if they begin with laying all the cards in a row so that:
- there wouldn't be a pair of any side-adjacent cards with zeroes in a row; - there wouldn't be a group of three consecutive cards containing numbers one.
Today Vanya brought *n* cards with zeroes and *m* cards with numbers one. The number of cards was so much that the friends do not know how to put all those cards in the described way. Help them find the required arrangement of the cards or else tell the guys that it is impossible to arrange cards in such a way.
Input Specification:
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=106) — the number of cards containing number 0; *m* (1<=≤<=*m*<=≤<=106) — the number of cards containing number 1.
Output Specification:
In a single line print the required sequence of zeroes and ones without any spaces. If such sequence is impossible to obtain, print -1.
Demo Input:
['1 2\n', '4 8\n', '4 10\n', '1 5\n']
Demo Output:
['101\n', '110110110101\n', '11011011011011\n', '-1\n']
Note:
none
|
```python
n,m=map(int,input().split())
if m>2*n+2 or m<2 or n>m:
print(-1)
else:
if m<=2*n:
print('110'*(m-n)+'10'*(2*n-m))
else:
print('110'*(m-n-1)+'11')
```
| 0
|
|
631
|
B
|
Print Check
|
PROGRAMMING
| 1,200
|
[
"constructive algorithms",
"implementation"
] | null | null |
Kris works in a large company "Blake Technologies". As a best engineer of the company he was assigned a task to develop a printer that will be able to print horizontal and vertical strips. First prototype is already built and Kris wants to tests it. He wants you to implement the program that checks the result of the printing.
Printer works with a rectangular sheet of paper of size *n*<=×<=*m*. Consider the list as a table consisting of *n* rows and *m* columns. Rows are numbered from top to bottom with integers from 1 to *n*, while columns are numbered from left to right with integers from 1 to *m*. Initially, all cells are painted in color 0.
Your program has to support two operations:
1. Paint all cells in row *r**i* in color *a**i*; 1. Paint all cells in column *c**i* in color *a**i*.
If during some operation *i* there is a cell that have already been painted, the color of this cell also changes to *a**i*.
Your program has to print the resulting table after *k* operation.
|
The first line of the input contains three integers *n*, *m* and *k* (1<=<=≤<=<=*n*,<=<=*m*<=<=≤<=5000, *n*·*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=100<=000) — the dimensions of the sheet and the number of operations, respectively.
Each of the next *k* lines contains the description of exactly one query:
- 1 *r**i* *a**i* (1<=≤<=*r**i*<=≤<=*n*, 1<=≤<=*a**i*<=≤<=109), means that row *r**i* is painted in color *a**i*; - 2 *c**i* *a**i* (1<=≤<=*c**i*<=≤<=*m*, 1<=≤<=*a**i*<=≤<=109), means that column *c**i* is painted in color *a**i*.
|
Print *n* lines containing *m* integers each — the resulting table after all operations are applied.
|
[
"3 3 3\n1 1 3\n2 2 1\n1 2 2\n",
"5 3 5\n1 1 1\n1 3 1\n1 5 1\n2 1 1\n2 3 1\n"
] |
[
"3 1 3 \n2 2 2 \n0 1 0 \n",
"1 1 1 \n1 0 1 \n1 1 1 \n1 0 1 \n1 1 1 \n"
] |
The figure below shows all three operations for the first sample step by step. The cells that were painted on the corresponding step are marked gray.
| 1,000
|
[
{
"input": "3 3 3\n1 1 3\n2 2 1\n1 2 2",
"output": "3 1 3 \n2 2 2 \n0 1 0 "
},
{
"input": "5 3 5\n1 1 1\n1 3 1\n1 5 1\n2 1 1\n2 3 1",
"output": "1 1 1 \n1 0 1 \n1 1 1 \n1 0 1 \n1 1 1 "
},
{
"input": "5 5 4\n1 2 1\n1 4 1\n2 2 1\n2 4 1",
"output": "0 1 0 1 0 \n1 1 1 1 1 \n0 1 0 1 0 \n1 1 1 1 1 \n0 1 0 1 0 "
},
{
"input": "4 6 8\n1 2 1\n2 2 2\n2 5 2\n1 1 1\n1 4 1\n1 3 2\n2 1 1\n2 6 1",
"output": "1 1 1 1 1 1 \n1 2 1 1 2 1 \n1 2 2 2 2 1 \n1 1 1 1 1 1 "
},
{
"input": "2 2 3\n1 1 1\n1 2 1\n2 1 2",
"output": "2 1 \n2 1 "
},
{
"input": "1 2 4\n1 1 1\n2 1 2\n2 2 3\n1 1 4",
"output": "4 4 "
},
{
"input": "2 1 5\n1 1 7\n1 2 77\n2 1 777\n1 1 77\n1 2 7",
"output": "77 \n7 "
},
{
"input": "2 1 1\n1 2 1000000000",
"output": "0 \n1000000000 "
},
{
"input": "1 2 1\n2 2 1000000000",
"output": "0 1000000000 "
},
{
"input": "160 600 1\n1 132 589472344",
"output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "600 160 1\n1 124 542622711",
"output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "10 1 1\n2 1 1000000000",
"output": "1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 \n1000000000 "
},
{
"input": "1 10 1\n1 1 1000000000",
"output": "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 "
},
{
"input": "5000 20 15\n2 13 447246914\n2 10 89345638\n2 6 393683717\n2 1 62225152\n2 12 990340161\n2 4 227462932\n1 4011 327145900\n1 1915 981331082\n1 802 437883065\n2 11 205232924\n2 15 303578182\n1 2667 835309719\n2 3 550440583\n1 3852 766318960\n2 5 204700467",
"output": "62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 204700467 393683717 0 0 0 89345638 205232924 990340161 447246914 0 303578182 0 0 0 0 0 \n62225152 0 550440583 227462932 ..."
},
{
"input": "20 5000 15\n1 14 94104058\n1 3 170575572\n1 12 613859505\n2 4797 363375206\n1 10 554079405\n2 4481 223609505\n2 4974 385117513\n1 7 363246561\n2 2503 128936152\n1 2 152944073\n1 14 25797327\n1 20 258831369\n1 10 453164078\n2 2159 753235825\n2 1823 827844660",
"output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "1 1 1\n1 1 1",
"output": "1 "
},
{
"input": "1 1 1\n1 1 1000000000",
"output": "1000000000 "
},
{
"input": "1 1 2\n1 1 123\n1 1 321",
"output": "321 "
},
{
"input": "1 1 2\n1 1 321\n1 1 123",
"output": "123 "
}
] | 1,513,883,683
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 56
| 857
| 6,246,400
|
# speedtest
n, m, k = map(int, input().split())
row = [0]*n
col = [0]*m
for i in range(k):
t, rc, a = map(int, input().split())
rc -= 1
if t == 1:
row[rc] = (i, a)
else:
col[rc] = (i, a)
for i in range(n):
for j in range(m):
if type(row[i]) == tuple and type(col[j]) != tuple:
upd = row[i]
elif type(row[i]) != tuple and type(col[j]) == tuple:
upd = col[j]
else:
upd = max(row[i], col[j])
if upd is 0:
print(0, end=" ")
else:
print(upd[1], end=" ")
print()
|
Title: Print Check
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kris works in a large company "Blake Technologies". As a best engineer of the company he was assigned a task to develop a printer that will be able to print horizontal and vertical strips. First prototype is already built and Kris wants to tests it. He wants you to implement the program that checks the result of the printing.
Printer works with a rectangular sheet of paper of size *n*<=×<=*m*. Consider the list as a table consisting of *n* rows and *m* columns. Rows are numbered from top to bottom with integers from 1 to *n*, while columns are numbered from left to right with integers from 1 to *m*. Initially, all cells are painted in color 0.
Your program has to support two operations:
1. Paint all cells in row *r**i* in color *a**i*; 1. Paint all cells in column *c**i* in color *a**i*.
If during some operation *i* there is a cell that have already been painted, the color of this cell also changes to *a**i*.
Your program has to print the resulting table after *k* operation.
Input Specification:
The first line of the input contains three integers *n*, *m* and *k* (1<=<=≤<=<=*n*,<=<=*m*<=<=≤<=5000, *n*·*m*<=≤<=100<=000, 1<=≤<=*k*<=≤<=100<=000) — the dimensions of the sheet and the number of operations, respectively.
Each of the next *k* lines contains the description of exactly one query:
- 1 *r**i* *a**i* (1<=≤<=*r**i*<=≤<=*n*, 1<=≤<=*a**i*<=≤<=109), means that row *r**i* is painted in color *a**i*; - 2 *c**i* *a**i* (1<=≤<=*c**i*<=≤<=*m*, 1<=≤<=*a**i*<=≤<=109), means that column *c**i* is painted in color *a**i*.
Output Specification:
Print *n* lines containing *m* integers each — the resulting table after all operations are applied.
Demo Input:
['3 3 3\n1 1 3\n2 2 1\n1 2 2\n', '5 3 5\n1 1 1\n1 3 1\n1 5 1\n2 1 1\n2 3 1\n']
Demo Output:
['3 1 3 \n2 2 2 \n0 1 0 \n', '1 1 1 \n1 0 1 \n1 1 1 \n1 0 1 \n1 1 1 \n']
Note:
The figure below shows all three operations for the first sample step by step. The cells that were painted on the corresponding step are marked gray.
|
```python
# speedtest
n, m, k = map(int, input().split())
row = [0]*n
col = [0]*m
for i in range(k):
t, rc, a = map(int, input().split())
rc -= 1
if t == 1:
row[rc] = (i, a)
else:
col[rc] = (i, a)
for i in range(n):
for j in range(m):
if type(row[i]) == tuple and type(col[j]) != tuple:
upd = row[i]
elif type(row[i]) != tuple and type(col[j]) == tuple:
upd = col[j]
else:
upd = max(row[i], col[j])
if upd is 0:
print(0, end=" ")
else:
print(upd[1], end=" ")
print()
```
| 3
|
|
50
|
E
|
Square Equation Roots
|
PROGRAMMING
| 2,300
|
[
"math"
] |
E. Square Equation Roots
|
5
|
256
|
A schoolboy Petya studies square equations. The equations that are included in the school curriculum, usually look simple:
Petya noticed that some equations have two real roots, some of them have only one root and some equations don't have real roots at all. Moreover it turned out that several different square equations can have a common root.
Petya is interested in how many different real roots have all the equations of the type described above for all the possible pairs of numbers *b* and *c* such that 1<=≤<=*b*<=≤<=*n*, 1<=≤<=*c*<=≤<=*m*. Help Petya find that number.
|
The single line contains two integers *n* and *m*. (1<=≤<=*n*,<=*m*<=≤<=5000000).
|
Print a single number which is the number of real roots of the described set of equations.
|
[
"3 3\n",
"1 2\n"
] |
[
"12\n",
"1\n"
] |
In the second test from the statement the following equations are analysed:
*b* = 1, *c* = 1: *x*<sup class="upper-index">2</sup> + 2*x* + 1 = 0; The root is *x* = - 1
*b* = 1, *c* = 2: *x*<sup class="upper-index">2</sup> + 2*x* + 2 = 0; No roots
Overall there's one root
In the second test the following equations are analysed:
*b* = 1, *c* = 1: *x*<sup class="upper-index">2</sup> + 2*x* + 1 = 0; The root is *x* = - 1
*b* = 1, *c* = 2: *x*<sup class="upper-index">2</sup> + 2*x* + 2 = 0; No roots
*b* = 1, *c* = 3: *x*<sup class="upper-index">2</sup> + 2*x* + 3 = 0; No roots
*b* = 2, *c* = 1: *x*<sup class="upper-index">2</sup> + 4*x* + 1 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d9d9178e998a736dbbe847a1ce187d086a88bbf9.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 2, *c* = 2: *x*<sup class="upper-index">2</sup> + 4*x* + 2 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5333195e873a6fc26a7646deed470a771d731f15.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 2, *c* = 3: *x*<sup class="upper-index">2</sup> + 4*x* + 3 = 0; The roots are *x*<sub class="lower-index">1</sub> = - 3, *x*<sub class="lower-index">2</sub> = - 1
*b* = 3, *c* = 1: *x*<sup class="upper-index">2</sup> + 6*x* + 1 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/2f6d171c4838713ef8224fd6ebc2744bea54f33e.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 3, *c* = 2: *x*<sup class="upper-index">2</sup> + 6*x* + 2 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0448361df88c70bcd0ae858432e1c1eca7248165.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 3, *c* = 3: *x*<sup class="upper-index">2</sup> + 6*x* + 3 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/6d4b99328193cd25b1099bc7885851919959a826.png" style="max-width: 100.0%;max-height: 100.0%;"/> Overall there are 13 roots and as the root - 1 is repeated twice, that means there are 12 different roots.
| 2,500
|
[] | 1,611,069,404
| 2,147,483,647
|
PyPy 3
|
MEMORY_LIMIT_EXCEEDED
|
TESTS
| 22
| 4,086
| 268,390,400
|
from math import sqrt
if __name__ == "__main__":
n, m = map(int,input().strip().split())
b = 1
s = set()
while b <= n:
first_part = -b
second_part = b ** 2 - 1
count = 0
while second_part >= 0 and count < m:
s.add(first_part + sqrt(second_part))
s.add(first_part - sqrt(second_part))
second_part -= 1
count += 1
b += 1
print(len(s))
|
Title: Square Equation Roots
Time Limit: 5 seconds
Memory Limit: 256 megabytes
Problem Description:
A schoolboy Petya studies square equations. The equations that are included in the school curriculum, usually look simple:
Petya noticed that some equations have two real roots, some of them have only one root and some equations don't have real roots at all. Moreover it turned out that several different square equations can have a common root.
Petya is interested in how many different real roots have all the equations of the type described above for all the possible pairs of numbers *b* and *c* such that 1<=≤<=*b*<=≤<=*n*, 1<=≤<=*c*<=≤<=*m*. Help Petya find that number.
Input Specification:
The single line contains two integers *n* and *m*. (1<=≤<=*n*,<=*m*<=≤<=5000000).
Output Specification:
Print a single number which is the number of real roots of the described set of equations.
Demo Input:
['3 3\n', '1 2\n']
Demo Output:
['12\n', '1\n']
Note:
In the second test from the statement the following equations are analysed:
*b* = 1, *c* = 1: *x*<sup class="upper-index">2</sup> + 2*x* + 1 = 0; The root is *x* = - 1
*b* = 1, *c* = 2: *x*<sup class="upper-index">2</sup> + 2*x* + 2 = 0; No roots
Overall there's one root
In the second test the following equations are analysed:
*b* = 1, *c* = 1: *x*<sup class="upper-index">2</sup> + 2*x* + 1 = 0; The root is *x* = - 1
*b* = 1, *c* = 2: *x*<sup class="upper-index">2</sup> + 2*x* + 2 = 0; No roots
*b* = 1, *c* = 3: *x*<sup class="upper-index">2</sup> + 2*x* + 3 = 0; No roots
*b* = 2, *c* = 1: *x*<sup class="upper-index">2</sup> + 4*x* + 1 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d9d9178e998a736dbbe847a1ce187d086a88bbf9.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 2, *c* = 2: *x*<sup class="upper-index">2</sup> + 4*x* + 2 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5333195e873a6fc26a7646deed470a771d731f15.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 2, *c* = 3: *x*<sup class="upper-index">2</sup> + 4*x* + 3 = 0; The roots are *x*<sub class="lower-index">1</sub> = - 3, *x*<sub class="lower-index">2</sub> = - 1
*b* = 3, *c* = 1: *x*<sup class="upper-index">2</sup> + 6*x* + 1 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/2f6d171c4838713ef8224fd6ebc2744bea54f33e.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 3, *c* = 2: *x*<sup class="upper-index">2</sup> + 6*x* + 2 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/0448361df88c70bcd0ae858432e1c1eca7248165.png" style="max-width: 100.0%;max-height: 100.0%;"/>
*b* = 3, *c* = 3: *x*<sup class="upper-index">2</sup> + 6*x* + 3 = 0; The roots are <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/6d4b99328193cd25b1099bc7885851919959a826.png" style="max-width: 100.0%;max-height: 100.0%;"/> Overall there are 13 roots and as the root - 1 is repeated twice, that means there are 12 different roots.
|
```python
from math import sqrt
if __name__ == "__main__":
n, m = map(int,input().strip().split())
b = 1
s = set()
while b <= n:
first_part = -b
second_part = b ** 2 - 1
count = 0
while second_part >= 0 and count < m:
s.add(first_part + sqrt(second_part))
s.add(first_part - sqrt(second_part))
second_part -= 1
count += 1
b += 1
print(len(s))
```
| 0
|
980
|
A
|
Links and Pearls
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
A necklace can be described as a string of links ('-') and pearls ('o'), with the last link or pearl connected to the first one.
You can remove a link or a pearl and insert it between two other existing links or pearls (or between a link and a pearl) on the necklace. This process can be repeated as many times as you like, but you can't throw away any parts.
Can you make the number of links between every two adjacent pearls equal? Two pearls are considered to be adjacent if there is no other pearl between them.
Note that the final necklace should remain as one circular part of the same length as the initial necklace.
|
The only line of input contains a string $s$ ($3 \leq |s| \leq 100$), representing the necklace, where a dash '-' represents a link and the lowercase English letter 'o' represents a pearl.
|
Print "YES" if the links and pearls can be rejoined such that the number of links between adjacent pearls is equal. Otherwise print "NO".
You can print each letter in any case (upper or lower).
|
[
"-o-o--",
"-o---\n",
"-o---o-\n",
"ooo\n"
] |
[
"YES",
"YES",
"NO",
"YES\n"
] |
none
| 500
|
[
{
"input": "-o-o--",
"output": "YES"
},
{
"input": "-o---",
"output": "YES"
},
{
"input": "-o---o-",
"output": "NO"
},
{
"input": "ooo",
"output": "YES"
},
{
"input": "---",
"output": "YES"
},
{
"input": "--o-o-----o----o--oo-o-----ooo-oo---o--",
"output": "YES"
},
{
"input": "-o--o-oo---o-o-o--o-o----oo------oo-----o----o-o-o--oo-o--o---o--o----------o---o-o-oo---o--o-oo-o--",
"output": "NO"
},
{
"input": "-ooo--",
"output": "YES"
},
{
"input": "---o--",
"output": "YES"
},
{
"input": "oo-ooo",
"output": "NO"
},
{
"input": "------o-o--o-----o--",
"output": "YES"
},
{
"input": "--o---o----------o----o----------o--o-o-----o-oo---oo--oo---o-------------oo-----o-------------o---o",
"output": "YES"
},
{
"input": "----------------------------------------------------------------------------------------------------",
"output": "YES"
},
{
"input": "-oo-oo------",
"output": "YES"
},
{
"input": "---------------------------------o----------------------------oo------------------------------------",
"output": "NO"
},
{
"input": "oo--o--o--------oo----------------o-----------o----o-----o----------o---o---o-----o---------ooo---",
"output": "NO"
},
{
"input": "--o---oooo--o-o--o-----o----ooooo--o-oo--o------oooo--------------ooo-o-o----",
"output": "NO"
},
{
"input": "-----------------------------o--o-o-------",
"output": "YES"
},
{
"input": "o-oo-o--oo----o-o----------o---o--o----o----o---oo-ooo-o--o-",
"output": "YES"
},
{
"input": "oooooooooo-ooo-oooooo-ooooooooooooooo--o-o-oooooooooooooo-oooooooooooooo",
"output": "NO"
},
{
"input": "-----------------o-o--oo------o--------o---o--o----------------oooo-------------ooo-----ooo-----o",
"output": "NO"
},
{
"input": "ooo-ooooooo-oo-ooooooooo-oooooooooooooo-oooo-o-oooooooooo--oooooooooooo-oooooooooo-ooooooo",
"output": "NO"
},
{
"input": "oo-o-ooooo---oo---o-oo---o--o-ooo-o---o-oo---oo---oooo---o---o-oo-oo-o-ooo----ooo--oo--o--oo-o-oo",
"output": "NO"
},
{
"input": "-----o-----oo-o-o-o-o----o---------oo---ooo-------------o----o---o-o",
"output": "YES"
},
{
"input": "oo--o-o-o----o-oooo-ooooo---o-oo--o-o--ooo--o--oooo--oo----o----o-o-oooo---o-oooo--ooo-o-o----oo---",
"output": "NO"
},
{
"input": "------oo----o----o-oo-o--------o-----oo-----------------------o------------o-o----oo---------",
"output": "NO"
},
{
"input": "-o--o--------o--o------o---o-o----------o-------o-o-o-------oo----oo------o------oo--o--",
"output": "NO"
},
{
"input": "------------------o----------------------------------o-o-------------",
"output": "YES"
},
{
"input": "-------------o----ooo-----o-o-------------ooo-----------ooo------o----oo---",
"output": "YES"
},
{
"input": "-------o--------------------o--o---------------o---o--o-----",
"output": "YES"
},
{
"input": "------------------------o------------o-----o----------------",
"output": "YES"
},
{
"input": "------oo----------o------o-----o---------o------------o----o--o",
"output": "YES"
},
{
"input": "------------o------------------o-----------------------o-----------o",
"output": "YES"
},
{
"input": "o---o---------------",
"output": "YES"
},
{
"input": "----------------------o---o----o---o-----------o-o-----o",
"output": "YES"
},
{
"input": "----------------------------------------------------------------------o-o---------------------",
"output": "YES"
},
{
"input": "----o---o-------------------------",
"output": "YES"
},
{
"input": "o----------------------oo----",
"output": "NO"
},
{
"input": "-o-o--o-o--o-----o-----o-o--o-o---oooo-o",
"output": "NO"
},
{
"input": "-o-ooo-o--o----o--o-o-oo-----------o-o-",
"output": "YES"
},
{
"input": "o-------o-------o-------------",
"output": "YES"
},
{
"input": "oo----------------------o--------------o--------------o-----",
"output": "YES"
},
{
"input": "-----------------------------------o---------------------o--------------------------",
"output": "YES"
},
{
"input": "--o--o----o-o---o--o----o-o--oo-----o-oo--o---o---ooo-o--",
"output": "YES"
},
{
"input": "---------------o-o----",
"output": "YES"
},
{
"input": "o------ooo--o-o-oo--o------o----ooo-----o-----o-----o-ooo-o---o----oo",
"output": "YES"
},
{
"input": "----o----o",
"output": "YES"
},
{
"input": "o--o--o--o--o--o--o--o--o--o--o--o--",
"output": "YES"
},
{
"input": "o---o---o---o---o----o----o----o---o---o---o",
"output": "YES"
},
{
"input": "o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-",
"output": "YES"
},
{
"input": "-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o",
"output": "YES"
},
{
"input": "o----------o----------o----------o----------o----------o----------o----------o----------o----------o",
"output": "YES"
},
{
"input": "o---------o---------o---------o---------o---------o---------o---------o---------o",
"output": "YES"
},
{
"input": "--------o--------o--------o--------o--------o--------o--------o--------o--------",
"output": "YES"
},
{
"input": "o---o----",
"output": "NO"
},
{
"input": "---o----o",
"output": "NO"
},
{
"input": "-o-",
"output": "YES"
},
{
"input": "------oooo",
"output": "NO"
},
{
"input": "oo--",
"output": "YES"
},
{
"input": "---o",
"output": "YES"
},
{
"input": "ooo-",
"output": "NO"
},
{
"input": "oooooooo----------",
"output": "NO"
},
{
"input": "oooo--",
"output": "NO"
},
{
"input": "o-ooooo",
"output": "NO"
},
{
"input": "-oo",
"output": "NO"
},
{
"input": "ooooo-",
"output": "NO"
},
{
"input": "ooo---------",
"output": "YES"
},
{
"input": "oo-",
"output": "NO"
},
{
"input": "---ooo",
"output": "YES"
}
] | 1,637,161,122
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 7
| 31
| 0
|
#!/usr/bin/env python
# coding=utf-8
'''
Author: Deean
Date: 2021-11-17 22:55:41
LastEditTime: 2021-11-17 22:57:36
Description: Links and Pearls
FilePath: CF980A.py
'''
def func():
s = input().strip()
if s.count("o") == 0 or s.count("-") == 0:
print("YES")
elif s.count("-") % 2 == 0:
print("YES")
else:
print("NO")
if __name__ == '__main__':
func()
|
Title: Links and Pearls
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A necklace can be described as a string of links ('-') and pearls ('o'), with the last link or pearl connected to the first one.
You can remove a link or a pearl and insert it between two other existing links or pearls (or between a link and a pearl) on the necklace. This process can be repeated as many times as you like, but you can't throw away any parts.
Can you make the number of links between every two adjacent pearls equal? Two pearls are considered to be adjacent if there is no other pearl between them.
Note that the final necklace should remain as one circular part of the same length as the initial necklace.
Input Specification:
The only line of input contains a string $s$ ($3 \leq |s| \leq 100$), representing the necklace, where a dash '-' represents a link and the lowercase English letter 'o' represents a pearl.
Output Specification:
Print "YES" if the links and pearls can be rejoined such that the number of links between adjacent pearls is equal. Otherwise print "NO".
You can print each letter in any case (upper or lower).
Demo Input:
['-o-o--', '-o---\n', '-o---o-\n', 'ooo\n']
Demo Output:
['YES', 'YES', 'NO', 'YES\n']
Note:
none
|
```python
#!/usr/bin/env python
# coding=utf-8
'''
Author: Deean
Date: 2021-11-17 22:55:41
LastEditTime: 2021-11-17 22:57:36
Description: Links and Pearls
FilePath: CF980A.py
'''
def func():
s = input().strip()
if s.count("o") == 0 or s.count("-") == 0:
print("YES")
elif s.count("-") % 2 == 0:
print("YES")
else:
print("NO")
if __name__ == '__main__':
func()
```
| 0
|
|
845
|
A
|
Chess Tourney
|
PROGRAMMING
| 1,100
|
[
"implementation",
"sortings"
] | null | null |
Berland annual chess tournament is coming!
Organizers have gathered 2·*n* chess players who should be divided into two teams with *n* people each. The first team is sponsored by BerOil and the second team is sponsored by BerMobile. Obviously, organizers should guarantee the win for the team of BerOil.
Thus, organizers should divide all 2·*n* players into two teams with *n* people each in such a way that the first team always wins.
Every chess player has its rating *r**i*. It is known that chess player with the greater rating always wins the player with the lower rating. If their ratings are equal then any of the players can win.
After teams assignment there will come a drawing to form *n* pairs of opponents: in each pair there is a player from the first team and a player from the second team. Every chess player should be in exactly one pair. Every pair plays once. The drawing is totally random.
Is it possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing?
|
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100).
The second line contains 2·*n* integers *a*1,<=*a*2,<=... *a*2*n* (1<=≤<=*a**i*<=≤<=1000).
|
If it's possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing, then print "YES". Otherwise print "NO".
|
[
"2\n1 3 2 4\n",
"1\n3 3\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 0
|
[
{
"input": "2\n1 3 2 4",
"output": "YES"
},
{
"input": "1\n3 3",
"output": "NO"
},
{
"input": "5\n1 1 1 1 2 2 3 3 3 3",
"output": "NO"
},
{
"input": "5\n1 1 1 1 1 2 2 2 2 2",
"output": "YES"
},
{
"input": "10\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "NO"
},
{
"input": "1\n2 3",
"output": "YES"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "35\n919 240 231 858 456 891 959 965 758 30 431 73 505 694 874 543 975 445 16 147 904 690 940 278 562 127 724 314 30 233 389 442 353 652 581 383 340 445 487 283 85 845 578 946 228 557 906 572 919 388 686 181 958 955 736 438 991 170 632 593 475 264 178 344 159 414 739 590 348 884",
"output": "YES"
},
{
"input": "5\n1 2 3 4 10 10 6 7 8 9",
"output": "YES"
},
{
"input": "2\n1 1 1 2",
"output": "NO"
},
{
"input": "2\n10 4 4 4",
"output": "NO"
},
{
"input": "2\n2 3 3 3",
"output": "NO"
},
{
"input": "4\n1 2 3 4 5 4 6 7",
"output": "NO"
},
{
"input": "4\n2 5 4 5 8 3 1 5",
"output": "YES"
},
{
"input": "4\n8 2 2 4 1 4 10 9",
"output": "NO"
},
{
"input": "2\n3 8 10 2",
"output": "YES"
},
{
"input": "3\n1 3 4 4 5 6",
"output": "NO"
},
{
"input": "2\n3 3 3 4",
"output": "NO"
},
{
"input": "2\n1 1 2 2",
"output": "YES"
},
{
"input": "2\n1 1 3 3",
"output": "YES"
},
{
"input": "2\n1 2 3 2",
"output": "NO"
},
{
"input": "10\n1 2 7 3 9 4 1 5 10 3 6 1 10 7 8 5 7 6 1 4",
"output": "NO"
},
{
"input": "3\n1 2 3 3 4 5",
"output": "NO"
},
{
"input": "2\n2 2 1 1",
"output": "YES"
},
{
"input": "7\n1 2 3 4 5 6 7 7 8 9 10 11 12 19",
"output": "NO"
},
{
"input": "5\n1 2 3 4 5 3 3 5 6 7",
"output": "YES"
},
{
"input": "4\n1 1 2 2 3 3 3 3",
"output": "YES"
},
{
"input": "51\n576 377 63 938 667 992 959 997 476 94 652 272 108 410 543 456 942 800 917 163 931 584 357 890 895 318 544 179 268 130 649 916 581 350 573 223 495 26 377 695 114 587 380 424 744 434 332 249 318 522 908 815 313 384 981 773 585 747 376 812 538 525 997 896 859 599 437 163 878 14 224 733 369 741 473 178 153 678 12 894 630 921 505 635 128 404 64 499 208 325 343 996 970 39 380 80 12 756 580 57 934 224",
"output": "YES"
},
{
"input": "3\n3 3 3 2 3 2",
"output": "NO"
},
{
"input": "2\n5 3 3 6",
"output": "YES"
},
{
"input": "2\n1 2 2 3",
"output": "NO"
},
{
"input": "2\n1 3 2 2",
"output": "NO"
},
{
"input": "2\n1 3 3 4",
"output": "NO"
},
{
"input": "2\n1 2 2 2",
"output": "NO"
},
{
"input": "3\n1 2 7 19 19 7",
"output": "NO"
},
{
"input": "3\n1 2 3 3 5 6",
"output": "NO"
},
{
"input": "2\n1 2 2 4",
"output": "NO"
},
{
"input": "2\n6 6 5 5",
"output": "YES"
},
{
"input": "2\n3 1 3 1",
"output": "YES"
},
{
"input": "3\n1 2 3 3 1 1",
"output": "YES"
},
{
"input": "3\n3 2 1 3 4 5",
"output": "NO"
},
{
"input": "3\n4 5 6 4 2 1",
"output": "NO"
},
{
"input": "3\n1 1 2 3 2 4",
"output": "NO"
},
{
"input": "3\n100 99 1 1 1 1",
"output": "NO"
},
{
"input": "3\n1 2 3 6 5 3",
"output": "NO"
},
{
"input": "2\n2 2 1 2",
"output": "NO"
},
{
"input": "4\n1 2 3 4 5 6 7 4",
"output": "NO"
},
{
"input": "3\n1 2 3 1 1 1",
"output": "NO"
},
{
"input": "3\n6 5 3 3 1 3",
"output": "NO"
},
{
"input": "2\n1 2 1 2",
"output": "YES"
},
{
"input": "3\n1 2 5 6 8 6",
"output": "YES"
},
{
"input": "5\n1 2 3 4 5 3 3 3 3 3",
"output": "NO"
},
{
"input": "2\n1 2 4 2",
"output": "NO"
},
{
"input": "3\n7 7 4 5 319 19",
"output": "NO"
},
{
"input": "3\n1 2 4 4 3 5",
"output": "YES"
},
{
"input": "3\n3 2 3 4 5 2",
"output": "NO"
},
{
"input": "5\n1 2 3 4 4 5 3 6 7 8",
"output": "NO"
},
{
"input": "3\n3 3 4 4 5 1",
"output": "YES"
},
{
"input": "2\n3 4 3 3",
"output": "NO"
},
{
"input": "2\n2 5 4 4",
"output": "NO"
},
{
"input": "5\n1 2 3 3 4 5 6 7 8 4",
"output": "NO"
},
{
"input": "3\n1 2 3 3 5 5",
"output": "NO"
},
{
"input": "2\n3 4 4 4",
"output": "NO"
},
{
"input": "2\n1 4 5 4",
"output": "NO"
},
{
"input": "2\n1 2 3 3",
"output": "YES"
},
{
"input": "2\n1 1 2 1",
"output": "NO"
},
{
"input": "4\n1 1 1 1 2 2 2 2",
"output": "YES"
},
{
"input": "4\n1 2 3 5 6 7 8 5",
"output": "NO"
},
{
"input": "2\n4 3 3 1",
"output": "NO"
},
{
"input": "3\n3 1 2 4 3 5",
"output": "NO"
},
{
"input": "3\n1 2 3 3 4 6",
"output": "NO"
},
{
"input": "4\n2 2 2 4 5 5 5 5",
"output": "YES"
},
{
"input": "2\n1 3 4 3",
"output": "NO"
},
{
"input": "2\n3 3 2 3",
"output": "NO"
},
{
"input": "2\n1 2 1 1",
"output": "NO"
},
{
"input": "3\n1 3 4 4 2 5",
"output": "YES"
},
{
"input": "4\n4 7 1 2 3 5 6 4",
"output": "NO"
},
{
"input": "2\n3 2 2 2",
"output": "NO"
},
{
"input": "1\n2 1",
"output": "YES"
},
{
"input": "2\n3 3 1 2",
"output": "YES"
},
{
"input": "1\n8 6",
"output": "YES"
},
{
"input": "7\n6 7 6 7 3 1 9 4 6 10 8 2 5 7",
"output": "NO"
},
{
"input": "2\n3 9 2 1",
"output": "YES"
},
{
"input": "2\n3 3 3 3",
"output": "NO"
}
] | 1,503,330,032
| 2,132
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 30
| 0
|
answer = True
Drawings= []
numTeamPlayers = int(input())
for number in range(0 , numTeamPlayers * 2):
Drawings.append(int(input()))
for item in range(0, numTeamPlayers):
if item != 0:
item = item +1
if Drawings[item] >= Drawings[item + 1]:
answer = False and answer
else:
answer = True and answer
if answer == True:
print("Yes")
else:
print("No")
|
Title: Chess Tourney
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Berland annual chess tournament is coming!
Organizers have gathered 2·*n* chess players who should be divided into two teams with *n* people each. The first team is sponsored by BerOil and the second team is sponsored by BerMobile. Obviously, organizers should guarantee the win for the team of BerOil.
Thus, organizers should divide all 2·*n* players into two teams with *n* people each in such a way that the first team always wins.
Every chess player has its rating *r**i*. It is known that chess player with the greater rating always wins the player with the lower rating. If their ratings are equal then any of the players can win.
After teams assignment there will come a drawing to form *n* pairs of opponents: in each pair there is a player from the first team and a player from the second team. Every chess player should be in exactly one pair. Every pair plays once. The drawing is totally random.
Is it possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing?
Input Specification:
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100).
The second line contains 2·*n* integers *a*1,<=*a*2,<=... *a*2*n* (1<=≤<=*a**i*<=≤<=1000).
Output Specification:
If it's possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing, then print "YES". Otherwise print "NO".
Demo Input:
['2\n1 3 2 4\n', '1\n3 3\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
answer = True
Drawings= []
numTeamPlayers = int(input())
for number in range(0 , numTeamPlayers * 2):
Drawings.append(int(input()))
for item in range(0, numTeamPlayers):
if item != 0:
item = item +1
if Drawings[item] >= Drawings[item + 1]:
answer = False and answer
else:
answer = True and answer
if answer == True:
print("Yes")
else:
print("No")
```
| -1
|
|
712
|
A
|
Memory and Crow
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure:
- The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3....
Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
|
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row.
The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number.
|
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
|
[
"5\n6 -4 8 -2 3\n",
"5\n3 -2 -1 5 6\n"
] |
[
"2 4 6 1 3 \n",
"1 -3 4 11 6 \n"
] |
In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and - 4 = 4 - 6 + 1 - 3.
In the second sample test, the sequence 1, - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
| 500
|
[
{
"input": "5\n6 -4 8 -2 3",
"output": "2 4 6 1 3 "
},
{
"input": "5\n3 -2 -1 5 6",
"output": "1 -3 4 11 6 "
},
{
"input": "10\n13 -2 532 -63 -23 -63 -64 -23 12 10",
"output": "11 530 469 -86 -86 -127 -87 -11 22 10 "
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0",
"output": "0 0 0 0 0 0 0 0 0 0 "
},
{
"input": "10\n1 -1 1 -1 1 -1 1 -1 1 -1",
"output": "0 0 0 0 0 0 0 0 0 -1 "
},
{
"input": "10\n-1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000 -1000000000 1000000000",
"output": "0 0 0 0 0 0 0 0 0 1000000000 "
},
{
"input": "10\n124 532 -642 6482 -124 952 -235 7594 34 -12",
"output": "656 -110 5840 6358 828 717 7359 7628 22 -12 "
},
{
"input": "10\n1294 35852 32749 537295 12048 53729 29357 58320 64739 1240",
"output": "37146 68601 570044 549343 65777 83086 87677 123059 65979 1240 "
}
] | 1,583,728,001
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 4
| 2,000
| 10,752,000
|
x=int(input());a=list(map(int,input().split()));n=[a[-1]]
for i in range(1,x):
p=0
n.append(a[-(i)-1])
while 1==1:
p+=1
n[-1]=n[-1]+n[i-p]
if p==i:break
p+=1
n[-1]=n[-1]-n[i-p]
if p==i:break
print(*n[::-1])
|
Title: Memory and Crow
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* integers *b*1,<=*b*2,<=...,<=*b**n* written in a row. For all *i* from 1 to *n*, values *a**i* are defined by the crows performing the following procedure:
- The crow sets *a**i* initially 0. - The crow then adds *b**i* to *a**i*, subtracts *b**i*<=+<=1, adds the *b**i*<=+<=2 number, and so on until the *n*'th number. Thus, *a**i*<==<=*b**i*<=-<=*b**i*<=+<=1<=+<=*b**i*<=+<=2<=-<=*b**i*<=+<=3....
Memory gives you the values *a*1,<=*a*2,<=...,<=*a**n*, and he now wants you to find the initial numbers *b*1,<=*b*2,<=...,<=*b**n* written in the row? Can you do it?
Input Specification:
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of integers written in the row.
The next line contains *n*, the *i*'th of which is *a**i* (<=-<=109<=≤<=*a**i*<=≤<=109) — the value of the *i*'th number.
Output Specification:
Print *n* integers corresponding to the sequence *b*1,<=*b*2,<=...,<=*b**n*. It's guaranteed that the answer is unique and fits in 32-bit integer type.
Demo Input:
['5\n6 -4 8 -2 3\n', '5\n3 -2 -1 5 6\n']
Demo Output:
['2 4 6 1 3 \n', '1 -3 4 11 6 \n']
Note:
In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and - 4 = 4 - 6 + 1 - 3.
In the second sample test, the sequence 1, - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.
|
```python
x=int(input());a=list(map(int,input().split()));n=[a[-1]]
for i in range(1,x):
p=0
n.append(a[-(i)-1])
while 1==1:
p+=1
n[-1]=n[-1]+n[i-p]
if p==i:break
p+=1
n[-1]=n[-1]-n[i-p]
if p==i:break
print(*n[::-1])
```
| 0
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,693,416,087
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
import math
# Read input values
n, m, a = map(int, input().split())
# Calculate the number of flagstones needed for each dimension
num_flagstones_n = math.ceil(n / a)
num_flagstones_m = math.ceil(m / a)
# Calculate the total number of flagstones needed
total_flagstones = num_flagstones_n * num_flagstones_m
# Print the result
print(total_flagstones)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
import math
# Read input values
n, m, a = map(int, input().split())
# Calculate the number of flagstones needed for each dimension
num_flagstones_n = math.ceil(n / a)
num_flagstones_m = math.ceil(m / a)
# Calculate the total number of flagstones needed
total_flagstones = num_flagstones_n * num_flagstones_m
# Print the result
print(total_flagstones)
```
| 3.977
|
131
|
A
|
cAPS lOCK
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
wHAT DO WE NEED cAPS LOCK FOR?
Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage.
Let's consider that a word has been typed with the Caps lock key accidentally switched on, if:
- either it only contains uppercase letters; - or all letters except for the first one are uppercase.
In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed.
Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged.
|
The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive.
|
Print the result of the given word's processing.
|
[
"cAPS\n",
"Lock\n"
] |
[
"Caps",
"Lock\n"
] |
none
| 500
|
[
{
"input": "cAPS",
"output": "Caps"
},
{
"input": "Lock",
"output": "Lock"
},
{
"input": "cAPSlOCK",
"output": "cAPSlOCK"
},
{
"input": "CAPs",
"output": "CAPs"
},
{
"input": "LoCK",
"output": "LoCK"
},
{
"input": "OOPS",
"output": "oops"
},
{
"input": "oops",
"output": "oops"
},
{
"input": "a",
"output": "A"
},
{
"input": "A",
"output": "a"
},
{
"input": "aA",
"output": "Aa"
},
{
"input": "Zz",
"output": "Zz"
},
{
"input": "Az",
"output": "Az"
},
{
"input": "zA",
"output": "Za"
},
{
"input": "AAA",
"output": "aaa"
},
{
"input": "AAa",
"output": "AAa"
},
{
"input": "AaR",
"output": "AaR"
},
{
"input": "Tdr",
"output": "Tdr"
},
{
"input": "aTF",
"output": "Atf"
},
{
"input": "fYd",
"output": "fYd"
},
{
"input": "dsA",
"output": "dsA"
},
{
"input": "fru",
"output": "fru"
},
{
"input": "hYBKF",
"output": "Hybkf"
},
{
"input": "XweAR",
"output": "XweAR"
},
{
"input": "mogqx",
"output": "mogqx"
},
{
"input": "eOhEi",
"output": "eOhEi"
},
{
"input": "nkdku",
"output": "nkdku"
},
{
"input": "zcnko",
"output": "zcnko"
},
{
"input": "lcccd",
"output": "lcccd"
},
{
"input": "vwmvg",
"output": "vwmvg"
},
{
"input": "lvchf",
"output": "lvchf"
},
{
"input": "IUNVZCCHEWENCHQQXQYPUJCRDZLUXCLJHXPHBXEUUGNXOOOPBMOBRIBHHMIRILYJGYYGFMTMFSVURGYHUWDRLQVIBRLPEVAMJQYO",
"output": "iunvzcchewenchqqxqypujcrdzluxcljhxphbxeuugnxooopbmobribhhmirilyjgyygfmtmfsvurgyhuwdrlqvibrlpevamjqyo"
},
{
"input": "OBHSZCAMDXEJWOZLKXQKIVXUUQJKJLMMFNBPXAEFXGVNSKQLJGXHUXHGCOTESIVKSFMVVXFVMTEKACRIWALAGGMCGFEXQKNYMRTG",
"output": "obhszcamdxejwozlkxqkivxuuqjkjlmmfnbpxaefxgvnskqljgxhuxhgcotesivksfmvvxfvmtekacriwalaggmcgfexqknymrtg"
},
{
"input": "IKJYZIKROIYUUCTHSVSKZTETNNOCMAUBLFJCEVANCADASMZRCNLBZPQRXESHEEMOMEPCHROSRTNBIDXYMEPJSIXSZQEBTEKKUHFS",
"output": "ikjyzikroiyuucthsvskztetnnocmaublfjcevancadasmzrcnlbzpqrxesheemomepchrosrtnbidxymepjsixszqebtekkuhfs"
},
{
"input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE",
"output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype"
},
{
"input": "uCKJZRGZJCPPLEEYJTUNKOQSWGBMTBQEVPYFPIPEKRVYQNTDPANOIXKMPINNFUSZWCURGBDPYTEKBEKCPMVZPMWAOSHJYMGKOMBQ",
"output": "Uckjzrgzjcppleeyjtunkoqswgbmtbqevpyfpipekrvyqntdpanoixkmpinnfuszwcurgbdpytekbekcpmvzpmwaoshjymgkombq"
},
{
"input": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR",
"output": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR"
},
{
"input": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE",
"output": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE"
},
{
"input": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ",
"output": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ"
},
{
"input": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm",
"output": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm"
},
{
"input": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm",
"output": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm"
},
{
"input": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg",
"output": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg"
},
{
"input": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc",
"output": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc"
},
{
"input": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv",
"output": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv"
},
{
"input": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect",
"output": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect"
},
{
"input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE",
"output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype"
},
{
"input": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu",
"output": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu"
},
{
"input": "aBACABa",
"output": "aBACABa"
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAaa",
"output": "AAAAAAAAAAAAAAAAAAAAAAAAaa"
},
{
"input": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
},
{
"input": "dDDDDDDDDDDDDD",
"output": "Dddddddddddddd"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "z",
"output": "Z"
},
{
"input": "AZ",
"output": "az"
},
{
"input": "Z",
"output": "z"
},
{
"input": "aAAAA",
"output": "Aaaaa"
},
{
"input": "F",
"output": "f"
}
] | 1,689,167,808
| 2,147,483,647
|
Python 3
|
COMPILATION_ERROR
|
TESTS
| 0
| 0
| 0
|
x=input()
i=1
count=0
while(i<len(x)):
if(x[0].islower() and x[i].isupper()):
count+=1
i++
if(x[0].isupper()):
print(x.captialize())
if(count==len(x)-2):
print(x.capitalize())
else:
print(x)
|
Title: cAPS lOCK
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
wHAT DO WE NEED cAPS LOCK FOR?
Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage.
Let's consider that a word has been typed with the Caps lock key accidentally switched on, if:
- either it only contains uppercase letters; - or all letters except for the first one are uppercase.
In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed.
Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged.
Input Specification:
The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive.
Output Specification:
Print the result of the given word's processing.
Demo Input:
['cAPS\n', 'Lock\n']
Demo Output:
['Caps', 'Lock\n']
Note:
none
|
```python
x=input()
i=1
count=0
while(i<len(x)):
if(x[0].islower() and x[i].isupper()):
count+=1
i++
if(x[0].isupper()):
print(x.captialize())
if(count==len(x)-2):
print(x.capitalize())
else:
print(x)
```
| -1
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,653,163,020
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 46
| 0
|
n, m, a = input().split()
if int(n)//int(a) == 0: div_na = 1
else: div_na = int(n)//int(a)
if int(m)//int(a) == 0: div_ma = 1
else: div_ma=int(m)//int(a)
if int(n)%int(a) > 0:
mod_na = 1
else: mod_na = 0
if int(m)%int(a) > 0:
mod_ma = 1
else: mod_ma = 0
if mod_na == 0 and mod_ma == 0: k = 0
else: k = 1
if int(n)//int(a) == 0 and int(m)//int(a) == 0: k = 0
s = div_na * div_ma + int(n)//int(a)*mod_na + mod_ma*int(m)//int(a) + k
print(s)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
n, m, a = input().split()
if int(n)//int(a) == 0: div_na = 1
else: div_na = int(n)//int(a)
if int(m)//int(a) == 0: div_ma = 1
else: div_ma=int(m)//int(a)
if int(n)%int(a) > 0:
mod_na = 1
else: mod_na = 0
if int(m)%int(a) > 0:
mod_ma = 1
else: mod_ma = 0
if mod_na == 0 and mod_ma == 0: k = 0
else: k = 1
if int(n)//int(a) == 0 and int(m)//int(a) == 0: k = 0
s = div_na * div_ma + int(n)//int(a)*mod_na + mod_ma*int(m)//int(a) + k
print(s)
```
| 0
|
873
|
D
|
Merge Sort
|
PROGRAMMING
| 1,800
|
[
"constructive algorithms",
"divide and conquer"
] | null | null |
Merge sort is a well-known sorting algorithm. The main function that sorts the elements of array *a* with indices from [*l*,<=*r*) can be implemented as follows:
1. If the segment [*l*,<=*r*) is already sorted in non-descending order (that is, for any *i* such that *l*<=≤<=*i*<=<<=*r*<=-<=1 *a*[*i*]<=≤<=*a*[*i*<=+<=1]), then end the function call; 1. Let ; 1. Call *mergesort*(*a*,<=*l*,<=*mid*); 1. Call *mergesort*(*a*,<=*mid*,<=*r*); 1. Merge segments [*l*,<=*mid*) and [*mid*,<=*r*), making the segment [*l*,<=*r*) sorted in non-descending order. The merge algorithm doesn't call any other functions.
The array in this problem is 0-indexed, so to sort the whole array, you need to call *mergesort*(*a*,<=0,<=*n*).
The number of calls of function *mergesort* is very important, so Ivan has decided to calculate it while sorting the array. For example, if *a*<==<={1,<=2,<=3,<=4}, then there will be 1 call of *mergesort* — *mergesort*(0,<=4), which will check that the array is sorted and then end. If *a*<==<={2,<=1,<=3}, then the number of calls is 3: first of all, you call *mergesort*(0,<=3), which then sets *mid*<==<=1 and calls *mergesort*(0,<=1) and *mergesort*(1,<=3), which do not perform any recursive calls because segments (0,<=1) and (1,<=3) are sorted.
Ivan has implemented the program that counts the number of *mergesort* calls, but now he needs to test it. To do this, he needs to find an array *a* such that *a* is a permutation of size *n* (that is, the number of elements in *a* is *n*, and every integer number from [1,<=*n*] can be found in this array), and the number of *mergesort* calls when sorting the array is exactly *k*.
Help Ivan to find an array he wants!
|
The first line contains two numbers *n* and *k* (1<=≤<=*n*<=≤<=100000, 1<=≤<=*k*<=≤<=200000) — the size of a desired permutation and the number of *mergesort* calls required to sort it.
|
If a permutation of size *n* such that there will be exactly *k* calls of *mergesort* while sorting it doesn't exist, output <=-<=1. Otherwise output *n* integer numbers *a*[0],<=*a*[1],<=...,<=*a*[*n*<=-<=1] — the elements of a permutation that would meet the required conditions. If there are multiple answers, print any of them.
|
[
"3 3\n",
"4 1\n",
"5 6\n"
] |
[
"2 1 3 ",
"1 2 3 4 ",
"-1\n"
] |
none
| 0
|
[
{
"input": "3 3",
"output": "2 1 3 "
},
{
"input": "4 1",
"output": "1 2 3 4 "
},
{
"input": "5 6",
"output": "-1"
},
{
"input": "100 100",
"output": "-1"
},
{
"input": "10000 10001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "10000 20001",
"output": "-1"
},
{
"input": "10000 30001",
"output": "-1"
},
{
"input": "20000 10001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "20000 20001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "20000 30001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "30000 10001",
"output": "2 4 1 6 3 8 5 9 11 7 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 31 33 29 35 32 37 34 38 40 36 42 39 44 41 45 47 43 49 46 51 48 53 50 55 52 57 54 59 56 60 62 58 64 61 66 63 67 69 65 71 68 73 70 74 76 72 78 75 80 77 82 79 84 81 86 83 88 85 89 91 87 93 90 95 92 97 94 99 96 101 98 103 100 104 106 102 108 105 110 107 112 109 114 111 116 113 118 115 119 121 117 123 120 125 122 126 128 124 130 127 132 129 133 135 131 137 134 139 136 141 138 143 140 145 142 147 144 148 150 146 152 149 154 151 155 157..."
},
{
"input": "30000 20001",
"output": "2 4 1 6 3 8 5 9 11 7 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 31 33 29 35 32 37 34 38 40 36 42 39 44 41 45 47 43 49 46 51 48 53 50 55 52 57 54 59 56 60 62 58 64 61 66 63 67 69 65 71 68 73 70 74 76 72 78 75 80 77 82 79 84 81 86 83 88 85 89 91 87 93 90 95 92 97 94 99 96 101 98 103 100 104 106 102 108 105 110 107 112 109 114 111 116 113 118 115 119 121 117 123 120 125 122 126 128 124 130 127 132 129 133 135 131 137 134 139 136 141 138 143 140 145 142 147 144 148 150 146 152 149 154 151 155 157..."
},
{
"input": "30000 30001",
"output": "2 4 1 6 3 8 5 9 11 7 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 31 33 29 35 32 37 34 38 40 36 42 39 44 41 45 47 43 49 46 51 48 53 50 55 52 57 54 59 56 60 62 58 64 61 66 63 67 69 65 71 68 73 70 74 76 72 78 75 80 77 82 79 84 81 86 83 88 85 89 91 87 93 90 95 92 97 94 99 96 101 98 103 100 104 106 102 108 105 110 107 112 109 114 111 116 113 118 115 119 121 117 123 120 125 122 126 128 124 130 127 132 129 133 135 131 137 134 139 136 141 138 143 140 145 142 147 144 148 150 146 152 149 154 151 155 157..."
},
{
"input": "40000 10001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "40000 20001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "40000 30001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "50000 10001",
"output": "2 4 1 5 7 3 8 10 6 11 13 9 14 16 12 17 19 15 20 22 18 23 25 21 26 28 24 29 31 27 32 34 30 35 37 33 38 40 36 41 43 39 44 46 42 47 49 45 50 52 48 53 55 51 56 58 54 59 61 57 62 64 60 65 67 63 68 70 66 71 73 69 74 76 72 77 79 75 80 82 78 83 85 81 86 88 84 89 91 87 92 94 90 96 93 98 95 99 101 97 102 104 100 105 107 103 108 110 106 111 113 109 114 116 112 117 119 115 120 122 118 123 125 121 126 128 124 129 131 127 132 134 130 135 137 133 138 140 136 141 143 139 145 142 147 144 148 150 146 151 153 149 154 156 152..."
},
{
"input": "50000 20001",
"output": "2 4 1 5 7 3 8 10 6 11 13 9 14 16 12 17 19 15 20 22 18 23 25 21 26 28 24 29 31 27 32 34 30 35 37 33 38 40 36 41 43 39 44 46 42 47 49 45 50 52 48 53 55 51 56 58 54 59 61 57 62 64 60 65 67 63 68 70 66 71 73 69 74 76 72 77 79 75 80 82 78 83 85 81 86 88 84 89 91 87 92 94 90 96 93 98 95 99 101 97 102 104 100 105 107 103 108 110 106 111 113 109 114 116 112 117 119 115 120 122 118 123 125 121 126 128 124 129 131 127 132 134 130 135 137 133 138 140 136 141 143 139 145 142 147 144 148 150 146 151 153 149 154 156 152..."
},
{
"input": "50000 30001",
"output": "2 4 1 5 7 3 8 10 6 11 13 9 14 16 12 17 19 15 20 22 18 23 25 21 26 28 24 29 31 27 32 34 30 35 37 33 38 40 36 41 43 39 44 46 42 47 49 45 50 52 48 53 55 51 56 58 54 59 61 57 62 64 60 65 67 63 68 70 66 71 73 69 74 76 72 77 79 75 80 82 78 83 85 81 86 88 84 89 91 87 92 94 90 96 93 98 95 99 101 97 102 104 100 105 107 103 108 110 106 111 113 109 114 116 112 117 119 115 120 122 118 123 125 121 126 128 124 129 131 127 132 134 130 135 137 133 138 140 136 141 143 139 145 142 147 144 148 150 146 151 153 149 154 156 152..."
},
{
"input": "60000 10001",
"output": "2 4 1 6 3 8 5 9 11 7 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 31 33 29 35 32 37 34 38 40 36 42 39 44 41 45 47 43 49 46 51 48 53 50 55 52 57 54 59 56 60 62 58 64 61 66 63 67 69 65 71 68 73 70 74 76 72 78 75 80 77 82 79 84 81 86 83 88 85 89 91 87 93 90 95 92 97 94 99 96 101 98 103 100 104 106 102 108 105 110 107 112 109 114 111 116 113 118 115 119 121 117 123 120 125 122 126 128 124 130 127 132 129 133 135 131 137 134 139 136 141 138 143 140 145 142 147 144 148 150 146 152 149 154 151 155 157..."
},
{
"input": "60000 20001",
"output": "2 4 1 6 3 8 5 9 11 7 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 31 33 29 35 32 37 34 38 40 36 42 39 44 41 45 47 43 49 46 51 48 53 50 55 52 57 54 59 56 60 62 58 64 61 66 63 67 69 65 71 68 73 70 74 76 72 78 75 80 77 82 79 84 81 86 83 88 85 89 91 87 93 90 95 92 97 94 99 96 101 98 103 100 104 106 102 108 105 110 107 112 109 114 111 116 113 118 115 119 121 117 123 120 125 122 126 128 124 130 127 132 129 133 135 131 137 134 139 136 141 138 143 140 145 142 147 144 148 150 146 152 149 154 151 155 157..."
},
{
"input": "60000 30001",
"output": "2 4 1 6 3 8 5 9 11 7 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 31 33 29 35 32 37 34 38 40 36 42 39 44 41 45 47 43 49 46 51 48 53 50 55 52 57 54 59 56 60 62 58 64 61 66 63 67 69 65 71 68 73 70 74 76 72 78 75 80 77 82 79 84 81 86 83 88 85 89 91 87 93 90 95 92 97 94 99 96 101 98 103 100 104 106 102 108 105 110 107 112 109 114 111 116 113 118 115 119 121 117 123 120 125 122 126 128 124 130 127 132 129 133 135 131 137 134 139 136 141 138 143 140 145 142 147 144 148 150 146 152 149 154 151 155 157..."
},
{
"input": "70000 10001",
"output": "3 1 5 2 7 4 9 6 11 8 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 32 29 33 35 31 37 34 39 36 41 38 43 40 45 42 47 44 49 46 50 52 48 54 51 56 53 58 55 60 57 62 59 64 61 66 63 67 69 65 71 68 73 70 75 72 77 74 79 76 81 78 83 80 84 86 82 88 85 90 87 92 89 94 91 96 93 98 95 100 97 101 103 99 105 102 107 104 109 106 111 108 113 110 115 112 117 114 118 120 116 122 119 124 121 126 123 128 125 130 127 132 129 134 131 135 137 133 139 136 141 138 143 140 145 142 147 144 149 146 151 148 152 154 150 156 153..."
},
{
"input": "70000 20001",
"output": "3 1 5 2 7 4 9 6 11 8 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 32 29 33 35 31 37 34 39 36 41 38 43 40 45 42 47 44 49 46 50 52 48 54 51 56 53 58 55 60 57 62 59 64 61 66 63 67 69 65 71 68 73 70 75 72 77 74 79 76 81 78 83 80 84 86 82 88 85 90 87 92 89 94 91 96 93 98 95 100 97 101 103 99 105 102 107 104 109 106 111 108 113 110 115 112 117 114 118 120 116 122 119 124 121 126 123 128 125 130 127 132 129 134 131 135 137 133 139 136 141 138 143 140 145 142 147 144 149 146 151 148 152 154 150 156 153..."
},
{
"input": "70000 30001",
"output": "3 1 5 2 7 4 9 6 11 8 13 10 15 12 16 18 14 20 17 22 19 24 21 26 23 28 25 30 27 32 29 33 35 31 37 34 39 36 41 38 43 40 45 42 47 44 49 46 50 52 48 54 51 56 53 58 55 60 57 62 59 64 61 66 63 67 69 65 71 68 73 70 75 72 77 74 79 76 81 78 83 80 84 86 82 88 85 90 87 92 89 94 91 96 93 98 95 100 97 101 103 99 105 102 107 104 109 106 111 108 113 110 115 112 117 114 118 120 116 122 119 124 121 126 123 128 125 130 127 132 129 134 131 135 137 133 139 136 141 138 143 140 145 142 147 144 149 146 151 148 152 154 150 156 153..."
},
{
"input": "80000 10001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "80000 20001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "80000 30001",
"output": "3 1 5 2 7 4 8 10 6 12 9 13 15 11 17 14 18 20 16 22 19 23 25 21 27 24 28 30 26 32 29 33 35 31 37 34 38 40 36 42 39 44 41 46 43 47 49 45 51 48 52 54 50 56 53 57 59 55 61 58 62 64 60 66 63 67 69 65 71 68 72 74 70 76 73 77 79 75 81 78 83 80 85 82 86 88 84 90 87 91 93 89 95 92 96 98 94 100 97 101 103 99 105 102 106 108 104 110 107 111 113 109 115 112 116 118 114 120 117 122 119 124 121 125 127 123 129 126 130 132 128 134 131 135 137 133 139 136 140 142 138 144 141 145 147 143 149 146 150 152 148 154 151 155 157..."
},
{
"input": "90000 10001",
"output": "3 1 4 6 2 8 5 9 11 7 13 10 14 16 12 17 19 15 20 22 18 24 21 25 27 23 28 30 26 31 33 29 35 32 36 38 34 39 41 37 42 44 40 46 43 47 49 45 50 52 48 53 55 51 57 54 58 60 56 61 63 59 64 66 62 68 65 69 71 67 72 74 70 75 77 73 79 76 80 82 78 83 85 81 86 88 84 90 87 91 93 89 94 96 92 97 99 95 101 98 102 104 100 105 107 103 108 110 106 112 109 113 115 111 116 118 114 119 121 117 123 120 124 126 122 127 129 125 130 132 128 134 131 135 137 133 138 140 136 141 143 139 145 142 146 148 144 149 151 147 152 154 150 156 153..."
},
{
"input": "90000 20001",
"output": "3 1 4 6 2 8 5 9 11 7 13 10 14 16 12 17 19 15 20 22 18 24 21 25 27 23 28 30 26 31 33 29 35 32 36 38 34 39 41 37 42 44 40 46 43 47 49 45 50 52 48 53 55 51 57 54 58 60 56 61 63 59 64 66 62 68 65 69 71 67 72 74 70 75 77 73 79 76 80 82 78 83 85 81 86 88 84 90 87 91 93 89 94 96 92 97 99 95 101 98 102 104 100 105 107 103 108 110 106 112 109 113 115 111 116 118 114 119 121 117 123 120 124 126 122 127 129 125 130 132 128 134 131 135 137 133 138 140 136 141 143 139 145 142 146 148 144 149 151 147 152 154 150 156 153..."
},
{
"input": "90000 30001",
"output": "3 1 4 6 2 8 5 9 11 7 13 10 14 16 12 17 19 15 20 22 18 24 21 25 27 23 28 30 26 31 33 29 35 32 36 38 34 39 41 37 42 44 40 46 43 47 49 45 50 52 48 53 55 51 57 54 58 60 56 61 63 59 64 66 62 68 65 69 71 67 72 74 70 75 77 73 79 76 80 82 78 83 85 81 86 88 84 90 87 91 93 89 94 96 92 97 99 95 101 98 102 104 100 105 107 103 108 110 106 112 109 113 115 111 116 118 114 119 121 117 123 120 124 126 122 127 129 125 130 132 128 134 131 135 137 133 138 140 136 141 143 139 145 142 146 148 144 149 151 147 152 154 150 156 153..."
},
{
"input": "100000 10001",
"output": "2 4 1 5 7 3 8 10 6 11 13 9 14 16 12 17 19 15 20 22 18 23 25 21 26 28 24 29 31 27 32 34 30 35 37 33 38 40 36 41 43 39 44 46 42 47 49 45 50 52 48 53 55 51 56 58 54 59 61 57 62 64 60 65 67 63 68 70 66 71 73 69 74 76 72 77 79 75 80 82 78 83 85 81 86 88 84 89 91 87 92 94 90 96 93 98 95 99 101 97 102 104 100 105 107 103 108 110 106 111 113 109 114 116 112 117 119 115 120 122 118 123 125 121 126 128 124 129 131 127 132 134 130 135 137 133 138 140 136 141 143 139 145 142 147 144 148 150 146 151 153 149 154 156 152..."
},
{
"input": "100000 20001",
"output": "2 4 1 5 7 3 8 10 6 11 13 9 14 16 12 17 19 15 20 22 18 23 25 21 26 28 24 29 31 27 32 34 30 35 37 33 38 40 36 41 43 39 44 46 42 47 49 45 50 52 48 53 55 51 56 58 54 59 61 57 62 64 60 65 67 63 68 70 66 71 73 69 74 76 72 77 79 75 80 82 78 83 85 81 86 88 84 89 91 87 92 94 90 96 93 98 95 99 101 97 102 104 100 105 107 103 108 110 106 111 113 109 114 116 112 117 119 115 120 122 118 123 125 121 126 128 124 129 131 127 132 134 130 135 137 133 138 140 136 141 143 139 145 142 147 144 148 150 146 151 153 149 154 156 152..."
},
{
"input": "100000 30001",
"output": "2 4 1 5 7 3 8 10 6 11 13 9 14 16 12 17 19 15 20 22 18 23 25 21 26 28 24 29 31 27 32 34 30 35 37 33 38 40 36 41 43 39 44 46 42 47 49 45 50 52 48 53 55 51 56 58 54 59 61 57 62 64 60 65 67 63 68 70 66 71 73 69 74 76 72 77 79 75 80 82 78 83 85 81 86 88 84 89 91 87 92 94 90 96 93 98 95 99 101 97 102 104 100 105 107 103 108 110 106 111 113 109 114 116 112 117 119 115 120 122 118 123 125 121 126 128 124 129 131 127 132 134 130 135 137 133 138 140 136 141 143 139 145 142 147 144 148 150 146 151 153 149 154 156 152..."
},
{
"input": "100000 199999",
"output": "2 4 1 5 7 3 8 10 6 11 13 9 14 16 12 17 19 15 20 22 18 23 25 21 26 28 24 29 31 27 32 34 30 35 37 33 38 40 36 41 43 39 44 46 42 47 49 45 50 52 48 53 55 51 56 58 54 59 61 57 62 64 60 65 67 63 68 70 66 71 73 69 74 76 72 77 79 75 80 82 78 83 85 81 86 88 84 89 91 87 92 94 90 96 93 98 95 99 101 97 102 104 100 105 107 103 108 110 106 111 113 109 114 116 112 117 119 115 120 122 118 123 125 121 126 128 124 129 131 127 132 134 130 135 137 133 138 140 136 141 143 139 145 142 147 144 148 150 146 151 153 149 154 156 152..."
},
{
"input": "10 17",
"output": "3 1 4 6 2 8 5 9 7 10 "
}
] | 1,646,610,144
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 36
| 202
| 9,420,800
|
def swap(m,n):
temp= arr[m]
arr[m]=arr[n]
arr[n]=temp
def solve(arr,l,r,k):
global count
if count>=k or r-l<2:
return
else:
m=int((l+r)/2)
swap(m,m-1)
count+=2
solve(arr,l,m,k)
solve(arr,m,r,k)
n,k=input().split()
n=int(n)
k=int(k)
arr=[]
global count
count=1
for i in range(1,n+1):
arr.append(i)
solve(arr,0,n,k)
if count!=k:
print(-1)
else:
for i in arr:
print(i,end=" ")
|
Title: Merge Sort
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Merge sort is a well-known sorting algorithm. The main function that sorts the elements of array *a* with indices from [*l*,<=*r*) can be implemented as follows:
1. If the segment [*l*,<=*r*) is already sorted in non-descending order (that is, for any *i* such that *l*<=≤<=*i*<=<<=*r*<=-<=1 *a*[*i*]<=≤<=*a*[*i*<=+<=1]), then end the function call; 1. Let ; 1. Call *mergesort*(*a*,<=*l*,<=*mid*); 1. Call *mergesort*(*a*,<=*mid*,<=*r*); 1. Merge segments [*l*,<=*mid*) and [*mid*,<=*r*), making the segment [*l*,<=*r*) sorted in non-descending order. The merge algorithm doesn't call any other functions.
The array in this problem is 0-indexed, so to sort the whole array, you need to call *mergesort*(*a*,<=0,<=*n*).
The number of calls of function *mergesort* is very important, so Ivan has decided to calculate it while sorting the array. For example, if *a*<==<={1,<=2,<=3,<=4}, then there will be 1 call of *mergesort* — *mergesort*(0,<=4), which will check that the array is sorted and then end. If *a*<==<={2,<=1,<=3}, then the number of calls is 3: first of all, you call *mergesort*(0,<=3), which then sets *mid*<==<=1 and calls *mergesort*(0,<=1) and *mergesort*(1,<=3), which do not perform any recursive calls because segments (0,<=1) and (1,<=3) are sorted.
Ivan has implemented the program that counts the number of *mergesort* calls, but now he needs to test it. To do this, he needs to find an array *a* such that *a* is a permutation of size *n* (that is, the number of elements in *a* is *n*, and every integer number from [1,<=*n*] can be found in this array), and the number of *mergesort* calls when sorting the array is exactly *k*.
Help Ivan to find an array he wants!
Input Specification:
The first line contains two numbers *n* and *k* (1<=≤<=*n*<=≤<=100000, 1<=≤<=*k*<=≤<=200000) — the size of a desired permutation and the number of *mergesort* calls required to sort it.
Output Specification:
If a permutation of size *n* such that there will be exactly *k* calls of *mergesort* while sorting it doesn't exist, output <=-<=1. Otherwise output *n* integer numbers *a*[0],<=*a*[1],<=...,<=*a*[*n*<=-<=1] — the elements of a permutation that would meet the required conditions. If there are multiple answers, print any of them.
Demo Input:
['3 3\n', '4 1\n', '5 6\n']
Demo Output:
['2 1 3 ', '1 2 3 4 ', '-1\n']
Note:
none
|
```python
def swap(m,n):
temp= arr[m]
arr[m]=arr[n]
arr[n]=temp
def solve(arr,l,r,k):
global count
if count>=k or r-l<2:
return
else:
m=int((l+r)/2)
swap(m,m-1)
count+=2
solve(arr,l,m,k)
solve(arr,m,r,k)
n,k=input().split()
n=int(n)
k=int(k)
arr=[]
global count
count=1
for i in range(1,n+1):
arr.append(i)
solve(arr,0,n,k)
if count!=k:
print(-1)
else:
for i in arr:
print(i,end=" ")
```
| 3
|
|
114
|
A
|
Cifera
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million.
Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.
Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.
|
The first input line contains integer number *k*, the second line contains integer number *l* (2<=≤<=*k*,<=*l*<=≤<=231<=-<=1).
|
You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number — the importance of number *l*.
|
[
"5\n25\n",
"3\n8\n"
] |
[
"YES\n1\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "5\n25",
"output": "YES\n1"
},
{
"input": "3\n8",
"output": "NO"
},
{
"input": "123\n123",
"output": "YES\n0"
},
{
"input": "99\n970300",
"output": "NO"
},
{
"input": "1000\n6666666",
"output": "NO"
},
{
"input": "59\n3571",
"output": "NO"
},
{
"input": "256\n16777217",
"output": "NO"
},
{
"input": "4638\n21511044",
"output": "YES\n1"
},
{
"input": "24\n191102976",
"output": "YES\n5"
},
{
"input": "52010\n557556453",
"output": "NO"
},
{
"input": "61703211\n1750753082",
"output": "NO"
},
{
"input": "137\n2571353",
"output": "YES\n2"
},
{
"input": "8758\n1746157336",
"output": "NO"
},
{
"input": "2\n64",
"output": "YES\n5"
},
{
"input": "96\n884736",
"output": "YES\n2"
},
{
"input": "1094841453\n1656354409",
"output": "NO"
},
{
"input": "1154413\n1229512809",
"output": "NO"
},
{
"input": "2442144\n505226241",
"output": "NO"
},
{
"input": "11548057\n1033418098",
"output": "NO"
},
{
"input": "581\n196122941",
"output": "YES\n2"
},
{
"input": "146\n1913781536",
"output": "NO"
},
{
"input": "945916\n1403881488",
"output": "NO"
},
{
"input": "68269\n365689065",
"output": "NO"
},
{
"input": "30\n900",
"output": "YES\n1"
},
{
"input": "6\n1296",
"output": "YES\n3"
},
{
"input": "1470193122\n1420950405",
"output": "NO"
},
{
"input": "90750\n1793111557",
"output": "NO"
},
{
"input": "1950054\n1664545956",
"output": "NO"
},
{
"input": "6767692\n123762320",
"output": "NO"
},
{
"input": "1437134\n1622348229",
"output": "NO"
},
{
"input": "444103\n1806462642",
"output": "NO"
},
{
"input": "2592\n6718464",
"output": "YES\n1"
},
{
"input": "50141\n366636234",
"output": "NO"
},
{
"input": "835\n582182875",
"output": "YES\n2"
},
{
"input": "156604\n902492689",
"output": "NO"
},
{
"input": "27385965\n1742270058",
"output": "NO"
},
{
"input": "3\n9",
"output": "YES\n1"
},
{
"input": "35\n1838265625",
"output": "YES\n5"
},
{
"input": "8\n4096",
"output": "YES\n3"
},
{
"input": "85955\n945811082",
"output": "NO"
},
{
"input": "54958832\n956670209",
"output": "NO"
},
{
"input": "1475381\n1348159738",
"output": "NO"
},
{
"input": "7313241\n413670642",
"output": "NO"
},
{
"input": "582470\n2116368165",
"output": "NO"
},
{
"input": "26859739\n595086170",
"output": "NO"
},
{
"input": "249766393\n1582130",
"output": "NO"
},
{
"input": "11734\n137686756",
"output": "YES\n1"
},
{
"input": "925093\n1098566745",
"output": "NO"
},
{
"input": "40\n1600",
"output": "YES\n1"
},
{
"input": "2147483647\n2147483647",
"output": "YES\n0"
},
{
"input": "2147483646\n2147483647",
"output": "NO"
},
{
"input": "2147483647\n2147483646",
"output": "NO"
},
{
"input": "2\n2147483647",
"output": "NO"
},
{
"input": "2\n1073741825",
"output": "NO"
},
{
"input": "2\n1073741824",
"output": "YES\n29"
},
{
"input": "10000\n10",
"output": "NO"
},
{
"input": "10\n10000",
"output": "YES\n3"
},
{
"input": "10\n2000000000",
"output": "NO"
},
{
"input": "10\n1000000000",
"output": "YES\n8"
},
{
"input": "5\n1808548329",
"output": "NO"
},
{
"input": "2\n2147483646",
"output": "NO"
},
{
"input": "25\n125",
"output": "NO"
},
{
"input": "6\n18",
"output": "NO"
},
{
"input": "5\n30",
"output": "NO"
}
] | 1,626,633,433
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 60
| 218
| 20,172,800
|
k = int(input())
l = int(input())
c=0
if(l%k!=0):
print('NO')
else:
while(l>1):
l = l//k
#print(l)
c+=1
if(l==1):
print('YES')
print(c-1)
else:
print("NO")
|
Title: Cifera
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word "tma" (which now means "too much to be counted") used to stand for a thousand and "tma tmyschaya" (which literally means "the tma of tmas") used to stand for a million.
Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number *k*. Moreover, petricium la petricium stands for number *k*2, petricium la petricium la petricium stands for *k*3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.
Petya's invention brought on a challenge that needed to be solved quickly: does some number *l* belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.
Input Specification:
The first input line contains integer number *k*, the second line contains integer number *l* (2<=≤<=*k*,<=*l*<=≤<=231<=-<=1).
Output Specification:
You should print in the first line of the output "YES", if the number belongs to the set petriciumus cifera and otherwise print "NO". If the number belongs to the set, then print on the seconds line the only number — the importance of number *l*.
Demo Input:
['5\n25\n', '3\n8\n']
Demo Output:
['YES\n1\n', 'NO\n']
Note:
none
|
```python
k = int(input())
l = int(input())
c=0
if(l%k!=0):
print('NO')
else:
while(l>1):
l = l//k
#print(l)
c+=1
if(l==1):
print('YES')
print(c-1)
else:
print("NO")
```
| 0
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,650,503,524
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
m,n=map(int,input().split())
max_num=(m*n)//2
print(max_num)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
m,n=map(int,input().split())
max_num=(m*n)//2
print(max_num)
```
| 3.977
|
792
|
A
|
New Bus Route
|
PROGRAMMING
| 1,100
|
[
"implementation",
"sortings"
] | null | null |
There are *n* cities situated along the main road of Berland. Cities are represented by their coordinates — integer numbers *a*1,<=*a*2,<=...,<=*a**n*. All coordinates are pairwise distinct.
It is possible to get from one city to another only by bus. But all buses and roads are very old, so the Minister of Transport decided to build a new bus route. The Minister doesn't want to spend large amounts of money — he wants to choose two cities in such a way that the distance between them is minimal possible. The distance between two cities is equal to the absolute value of the difference between their coordinates.
It is possible that there are multiple pairs of cities with minimal possible distance, so the Minister wants to know the quantity of such pairs.
Your task is to write a program that will calculate the minimal possible distance between two pairs of cities and the quantity of pairs which have this distance.
|
The first line contains one integer number *n* (2<=≤<=*n*<=≤<=2·105).
The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109). All numbers *a**i* are pairwise distinct.
|
Print two integer numbers — the minimal distance and the quantity of pairs with this distance.
|
[
"4\n6 -3 0 4\n",
"3\n-2 0 2\n"
] |
[
"2 1\n",
"2 2\n"
] |
In the first example the distance between the first city and the fourth city is |4 - 6| = 2, and it is the only pair with this distance.
| 0
|
[
{
"input": "4\n6 -3 0 4",
"output": "2 1"
},
{
"input": "3\n-2 0 2",
"output": "2 2"
},
{
"input": "2\n1 2",
"output": "1 1"
},
{
"input": "2\n1000000000 -1000000000",
"output": "2000000000 1"
},
{
"input": "5\n-979619606 -979619602 -979619604 -979619605 -979619603",
"output": "1 4"
},
{
"input": "5\n-799147771 -799147773 -799147764 -799147774 -799147770",
"output": "1 2"
},
{
"input": "20\n553280626 553280623 553280627 553280624 553280625 553280618 553280620 553280629 553280637 553280631 553280628 553280636 553280635 553280632 553280634 553280622 553280633 553280621 553280630 553280619",
"output": "1 19"
},
{
"input": "20\n105619866 106083760 106090730 105809555 106115212 105155938 105979518 106075627 106145216 105637844 105925719 105498536 105927000 106155938 106134226 106125969 106130588 105464813 106145509 106114971",
"output": "241 1"
},
{
"input": "10\n570685866 570685854 570685858 570685850 570685856 570685864 570685860 570685852 570685862 570685868",
"output": "2 9"
},
{
"input": "2\n1 1000000000",
"output": "999999999 1"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "1 5"
},
{
"input": "3\n7 10 12",
"output": "2 1"
},
{
"input": "5\n-7 -5 -4 -3 -1",
"output": "1 2"
},
{
"input": "4\n-6 -4 -2 1",
"output": "2 2"
},
{
"input": "4\n3 5 7 8",
"output": "1 1"
},
{
"input": "9\n-9 -8 -7 -6 -5 -4 -3 -2 -1",
"output": "1 8"
},
{
"input": "2\n15 13",
"output": "2 1"
},
{
"input": "2\n14 13",
"output": "1 1"
},
{
"input": "2\n12 13",
"output": "1 1"
},
{
"input": "2\n-1000000000 13265920",
"output": "1013265920 1"
},
{
"input": "2\n8 10",
"output": "2 1"
}
] | 1,491,191,132
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 8
| 1,000
| 38,809,600
|
n = int(input())
nNumbers = input()
nIntegers = nNumbers.split(" ")
differences = []
for i in range(len(nIntegers)):
x = i + 1
while(x < len(nIntegers)):
res = int(nIntegers[i]) - int(nIntegers[x])
differences.append(abs(res))
x = x + 1
differences.sort()
min = differences[0]
count = 0
for i in range(len(differences)):
if (differences[i] > min):
break;
else:
count = count + 1
print(str(min) + " " + str(count))
|
Title: New Bus Route
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* cities situated along the main road of Berland. Cities are represented by their coordinates — integer numbers *a*1,<=*a*2,<=...,<=*a**n*. All coordinates are pairwise distinct.
It is possible to get from one city to another only by bus. But all buses and roads are very old, so the Minister of Transport decided to build a new bus route. The Minister doesn't want to spend large amounts of money — he wants to choose two cities in such a way that the distance between them is minimal possible. The distance between two cities is equal to the absolute value of the difference between their coordinates.
It is possible that there are multiple pairs of cities with minimal possible distance, so the Minister wants to know the quantity of such pairs.
Your task is to write a program that will calculate the minimal possible distance between two pairs of cities and the quantity of pairs which have this distance.
Input Specification:
The first line contains one integer number *n* (2<=≤<=*n*<=≤<=2·105).
The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≤<=*a**i*<=≤<=109). All numbers *a**i* are pairwise distinct.
Output Specification:
Print two integer numbers — the minimal distance and the quantity of pairs with this distance.
Demo Input:
['4\n6 -3 0 4\n', '3\n-2 0 2\n']
Demo Output:
['2 1\n', '2 2\n']
Note:
In the first example the distance between the first city and the fourth city is |4 - 6| = 2, and it is the only pair with this distance.
|
```python
n = int(input())
nNumbers = input()
nIntegers = nNumbers.split(" ")
differences = []
for i in range(len(nIntegers)):
x = i + 1
while(x < len(nIntegers)):
res = int(nIntegers[i]) - int(nIntegers[x])
differences.append(abs(res))
x = x + 1
differences.sort()
min = differences[0]
count = 0
for i in range(len(differences)):
if (differences[i] > min):
break;
else:
count = count + 1
print(str(min) + " " + str(count))
```
| 0
|
|
190
|
C
|
STL
|
PROGRAMMING
| 1,500
|
[
"dfs and similar"
] | null | null |
Vasya used to be an accountant before the war began and he is one of the few who knows how to operate a computer, so he was assigned as the programmer.
We all know that programs often store sets of integers. For example, if we have a problem about a weighted directed graph, its edge can be represented by three integers: the number of the starting vertex, the number of the final vertex and the edge's weight. So, as Vasya was trying to represent characteristics of a recently invented robot in his program, he faced the following problem.
Vasya is not a programmer, so he asked his friend Gena, what the convenient way to store *n* integers is. Gena used to code in language X-- and so he can use only the types that occur in this language. Let's define, what a "type" is in language X--:
- First, a type is a string "int". - Second, a type is a string that starts with "pair", then followed by angle brackets listing exactly two comma-separated other types of language X--. This record contains no spaces. - No other strings can be regarded as types.
More formally: type := int | pair<type,type>. For example, Gena uses the following type for graph edges: pair<int,pair<int,int>>.
Gena was pleased to help Vasya, he dictated to Vasya a type of language X--, that stores *n* integers. Unfortunately, Gena was in a hurry, so he omitted the punctuation. Now Gena has already left and Vasya can't find the correct punctuation, resulting in a type of language X--, however hard he tries.
Help Vasya and add the punctuation marks so as to receive the valid type of language X--. Otherwise say that the task is impossible to perform.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), showing how many numbers the type dictated by Gena contains.
The second line contains space-separated words, said by Gena. Each of them is either "pair" or "int" (without the quotes).
It is guaranteed that the total number of words does not exceed 105 and that among all the words that Gena said, there are exactly *n* words "int".
|
If it is possible to add the punctuation marks so as to get a correct type of language X-- as a result, print a single line that represents the resulting type. Otherwise, print "Error occurred" (without the quotes). Inside the record of a type should not be any extra spaces and other characters.
It is guaranteed that if such type exists, then it is unique.
Note that you should print the type dictated by Gena (if such type exists) and not any type that can contain *n* values.
|
[
"3\npair pair int int int\n",
"1\npair int\n"
] |
[
"pair<pair<int,int>,int>",
"Error occurred"
] |
none
| 1,500
|
[
{
"input": "3\npair pair int int int",
"output": "pair<pair<int,int>,int>"
},
{
"input": "1\npair int",
"output": "Error occurred"
},
{
"input": "4\npair pair int int pair int int",
"output": "pair<pair<int,int>,pair<int,int>>"
},
{
"input": "4\npair pair pair int int int int",
"output": "pair<pair<pair<int,int>,int>,int>"
},
{
"input": "5\npair pair int pair int pair int int int",
"output": "pair<pair<int,pair<int,pair<int,int>>>,int>"
},
{
"input": "2\nint int",
"output": "Error occurred"
},
{
"input": "1\nint",
"output": "int"
},
{
"input": "2\npair int int",
"output": "pair<int,int>"
},
{
"input": "3\npair pair int int int",
"output": "pair<pair<int,int>,int>"
},
{
"input": "5\npair pair pair pair int int int int int",
"output": "pair<pair<pair<pair<int,int>,int>,int>,int>"
},
{
"input": "6\npair pair pair pair pair int int int int int int",
"output": "pair<pair<pair<pair<pair<int,int>,int>,int>,int>,int>"
},
{
"input": "10\npair pair pair pair pair pair pair pair pair int int int int int int int int int int",
"output": "pair<pair<pair<pair<pair<pair<pair<pair<pair<int,int>,int>,int>,int>,int>,int>,int>,int>,int>"
},
{
"input": "40\npair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair pair int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int int",
"output": "pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<pair<int,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>,int>"
},
{
"input": "9\npair pair pair int int pair pair pair int int pair int pair int int int pair int",
"output": "Error occurred"
},
{
"input": "9\npair int int int pair pair int int int int int pair pair pair pair pair pair int",
"output": "Error occurred"
},
{
"input": "9\npair pair int int int int pair int pair int pair pair pair pair int pair int int",
"output": "Error occurred"
},
{
"input": "10\npair pair pair int pair int pair int int pair int int pair int int pair int pair int",
"output": "Error occurred"
},
{
"input": "10\npair int pair int pair int pair int pair int pair int pair int pair int pair int int",
"output": "pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,int>>>>>>>>>"
},
{
"input": "1\nint",
"output": "int"
},
{
"input": "2\npair int int",
"output": "pair<int,int>"
},
{
"input": "3\npair int pair int int",
"output": "pair<int,pair<int,int>>"
},
{
"input": "10\npair pair int pair int int pair int pair int pair int pair pair int int pair int int",
"output": "pair<pair<int,pair<int,int>>,pair<int,pair<int,pair<int,pair<pair<int,int>,pair<int,int>>>>>>"
},
{
"input": "10\npair pair pair int pair int pair pair pair pair pair int int int int int int int int",
"output": "pair<pair<pair<int,pair<int,pair<pair<pair<pair<pair<int,int>,int>,int>,int>,int>>>,int>,int>"
},
{
"input": "55\npair pair int int pair int pair int pair pair pair int int pair int int pair int pair int pair int pair int pair int pair int pair int pair int pair int pair int pair int pair int pair pair pair pair int int pair pair pair pair pair pair int pair pair int pair pair pair int int int int int pair pair pair pair pair int int pair int pair int int int int pair int pair int pair int pair int int pair int pair int pair int pair pair int pair pair int pair int int int int int int int int int",
"output": "pair<pair<int,int>,pair<int,pair<int,pair<pair<pair<int,int>,pair<int,int>>,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<int,pair<pair<pair<pair<int,int>,pair<pair<pair<pair<pair<pair<int,pair<pair<int,pair<pair<pair<int,int>,int>,int>>,int>>,pair<pair<pair<pair<pair<int,int>,pair<int,pair<int,int>>>,int>,int>,pair<int,pair<int,pair<int,pair<int,int>>>>>>,pair<int,pair<int,pair<int,pair<pair<int,pair<pair<int,pair<int,int>>,int>>,int>>>>>,int>,int>..."
},
{
"input": "56\npair pair pair int int pair pair pair pair pair int pair int int pair pair int pair pair pair int pair int int pair int pair int pair pair pair pair int pair pair int int pair int int pair int int int int int pair pair pair pair pair pair pair pair pair int pair pair int pair pair pair pair int int int pair pair pair pair pair pair pair pair int int int int pair pair pair int int pair pair int int pair pair int int int int int int int int int int int int int int int int int int int int int int",
"output": "pair<pair<pair<int,int>,pair<pair<pair<pair<pair<int,pair<int,int>>,pair<pair<int,pair<pair<pair<int,pair<int,int>>,pair<int,pair<int,pair<pair<pair<pair<int,pair<pair<int,int>,pair<int,int>>>,pair<int,int>>,int>,int>>>>,int>>,pair<pair<pair<pair<pair<pair<pair<pair<pair<int,pair<pair<int,pair<pair<pair<pair<int,int>,int>,pair<pair<pair<pair<pair<pair<pair<pair<int,int>,int>,int>,pair<pair<pair<int,int>,pair<pair<int,int>,pair<pair<int,int>,int>>>,int>>,int>,int>,int>,int>>,int>>,int>>,int>,int>,int>,int>,..."
},
{
"input": "10\npair int int int pair pair pair int int pair int pair int int int pair pair pair int",
"output": "Error occurred"
},
{
"input": "3\npair int int int",
"output": "Error occurred"
},
{
"input": "4\npair int int int int",
"output": "Error occurred"
},
{
"input": "4\npair int pair int int int",
"output": "Error occurred"
},
{
"input": "3\npair pair int int int",
"output": "pair<pair<int,int>,int>"
},
{
"input": "4\npair pair int int int int",
"output": "Error occurred"
},
{
"input": "1\npair int pair",
"output": "Error occurred"
},
{
"input": "2\nint pair int",
"output": "Error occurred"
},
{
"input": "1\nint pair pair",
"output": "Error occurred"
}
] | 1,591,090,463
| 2,147,483,647
|
PyPy 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 7
| 2,000
| 14,540,800
|
n = input()
arr = input().split()
res, s = '', []
for i in arr:
res += i
while i == 'int' and s and s[-1]:
res += '>'
if s: s.pop()
if s: s.pop()
s.append(i == 'int')
res += ',' if i == 'int' else '<'
if res.count('<') == res.count('>'):
print(res[: -1])
else:
print("Error occurred")
|
Title: STL
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya used to be an accountant before the war began and he is one of the few who knows how to operate a computer, so he was assigned as the programmer.
We all know that programs often store sets of integers. For example, if we have a problem about a weighted directed graph, its edge can be represented by three integers: the number of the starting vertex, the number of the final vertex and the edge's weight. So, as Vasya was trying to represent characteristics of a recently invented robot in his program, he faced the following problem.
Vasya is not a programmer, so he asked his friend Gena, what the convenient way to store *n* integers is. Gena used to code in language X-- and so he can use only the types that occur in this language. Let's define, what a "type" is in language X--:
- First, a type is a string "int". - Second, a type is a string that starts with "pair", then followed by angle brackets listing exactly two comma-separated other types of language X--. This record contains no spaces. - No other strings can be regarded as types.
More formally: type := int | pair<type,type>. For example, Gena uses the following type for graph edges: pair<int,pair<int,int>>.
Gena was pleased to help Vasya, he dictated to Vasya a type of language X--, that stores *n* integers. Unfortunately, Gena was in a hurry, so he omitted the punctuation. Now Gena has already left and Vasya can't find the correct punctuation, resulting in a type of language X--, however hard he tries.
Help Vasya and add the punctuation marks so as to receive the valid type of language X--. Otherwise say that the task is impossible to perform.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), showing how many numbers the type dictated by Gena contains.
The second line contains space-separated words, said by Gena. Each of them is either "pair" or "int" (without the quotes).
It is guaranteed that the total number of words does not exceed 105 and that among all the words that Gena said, there are exactly *n* words "int".
Output Specification:
If it is possible to add the punctuation marks so as to get a correct type of language X-- as a result, print a single line that represents the resulting type. Otherwise, print "Error occurred" (without the quotes). Inside the record of a type should not be any extra spaces and other characters.
It is guaranteed that if such type exists, then it is unique.
Note that you should print the type dictated by Gena (if such type exists) and not any type that can contain *n* values.
Demo Input:
['3\npair pair int int int\n', '1\npair int\n']
Demo Output:
['pair<pair<int,int>,int>', 'Error occurred']
Note:
none
|
```python
n = input()
arr = input().split()
res, s = '', []
for i in arr:
res += i
while i == 'int' and s and s[-1]:
res += '>'
if s: s.pop()
if s: s.pop()
s.append(i == 'int')
res += ',' if i == 'int' else '<'
if res.count('<') == res.count('>'):
print(res[: -1])
else:
print("Error occurred")
```
| 0
|
|
268
|
A
|
Games
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.
There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.
You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
|
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
|
In a single line print the number of games where the host team is going to play in the guest uniform.
|
[
"3\n1 2\n2 4\n3 4\n",
"4\n100 42\n42 100\n5 42\n100 5\n",
"2\n1 2\n1 2\n"
] |
[
"1\n",
"5\n",
"0\n"
] |
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.
In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
| 500
|
[
{
"input": "3\n1 2\n2 4\n3 4",
"output": "1"
},
{
"input": "4\n100 42\n42 100\n5 42\n100 5",
"output": "5"
},
{
"input": "2\n1 2\n1 2",
"output": "0"
},
{
"input": "7\n4 7\n52 55\n16 4\n55 4\n20 99\n3 4\n7 52",
"output": "6"
},
{
"input": "10\n68 42\n1 35\n25 70\n59 79\n65 63\n46 6\n28 82\n92 62\n43 96\n37 28",
"output": "1"
},
{
"input": "30\n10 39\n89 1\n78 58\n75 99\n36 13\n77 50\n6 97\n79 28\n27 52\n56 5\n93 96\n40 21\n33 74\n26 37\n53 59\n98 56\n61 65\n42 57\n9 7\n25 63\n74 34\n96 84\n95 47\n12 23\n34 21\n71 6\n27 13\n15 47\n64 14\n12 77",
"output": "6"
},
{
"input": "30\n46 100\n87 53\n34 84\n44 66\n23 20\n50 34\n90 66\n17 39\n13 22\n94 33\n92 46\n63 78\n26 48\n44 61\n3 19\n41 84\n62 31\n65 89\n23 28\n58 57\n19 85\n26 60\n75 66\n69 67\n76 15\n64 15\n36 72\n90 89\n42 69\n45 35",
"output": "4"
},
{
"input": "2\n46 6\n6 46",
"output": "2"
},
{
"input": "29\n8 18\n33 75\n69 22\n97 95\n1 97\n78 10\n88 18\n13 3\n19 64\n98 12\n79 92\n41 72\n69 15\n98 31\n57 74\n15 56\n36 37\n15 66\n63 100\n16 42\n47 56\n6 4\n73 15\n30 24\n27 71\n12 19\n88 69\n85 6\n50 11",
"output": "10"
},
{
"input": "23\n43 78\n31 28\n58 80\n66 63\n20 4\n51 95\n40 20\n50 14\n5 34\n36 39\n77 42\n64 97\n62 89\n16 56\n8 34\n58 16\n37 35\n37 66\n8 54\n50 36\n24 8\n68 48\n85 33",
"output": "6"
},
{
"input": "13\n76 58\n32 85\n99 79\n23 58\n96 59\n72 35\n53 43\n96 55\n41 78\n75 10\n28 11\n72 7\n52 73",
"output": "0"
},
{
"input": "18\n6 90\n70 79\n26 52\n67 81\n29 95\n41 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 2",
"output": "1"
},
{
"input": "18\n6 90\n100 79\n26 100\n67 100\n29 100\n100 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 100",
"output": "8"
},
{
"input": "30\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1",
"output": "450"
},
{
"input": "30\n100 99\n58 59\n56 57\n54 55\n52 53\n50 51\n48 49\n46 47\n44 45\n42 43\n40 41\n38 39\n36 37\n34 35\n32 33\n30 31\n28 29\n26 27\n24 25\n22 23\n20 21\n18 19\n16 17\n14 15\n12 13\n10 11\n8 9\n6 7\n4 5\n2 3",
"output": "0"
},
{
"input": "15\n9 3\n2 6\n7 6\n5 10\n9 5\n8 1\n10 5\n2 8\n4 5\n9 8\n5 3\n3 8\n9 8\n4 10\n8 5",
"output": "20"
},
{
"input": "15\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2",
"output": "108"
},
{
"input": "25\n2 1\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n2 1\n1 2",
"output": "312"
},
{
"input": "25\n91 57\n2 73\n54 57\n2 57\n23 57\n2 6\n57 54\n57 23\n91 54\n91 23\n57 23\n91 57\n54 2\n6 91\n57 54\n2 57\n57 91\n73 91\n57 23\n91 57\n2 73\n91 2\n23 6\n2 73\n23 6",
"output": "96"
},
{
"input": "28\n31 66\n31 91\n91 31\n97 66\n31 66\n31 66\n66 91\n91 31\n97 31\n91 97\n97 31\n66 31\n66 97\n91 31\n31 66\n31 66\n66 31\n31 97\n66 97\n97 31\n31 91\n66 91\n91 66\n31 66\n91 66\n66 31\n66 31\n91 97",
"output": "210"
},
{
"input": "29\n78 27\n50 68\n24 26\n68 43\n38 78\n26 38\n78 28\n28 26\n27 24\n23 38\n24 26\n24 43\n61 50\n38 78\n27 23\n61 26\n27 28\n43 23\n28 78\n43 27\n43 78\n27 61\n28 38\n61 78\n50 26\n43 27\n26 78\n28 50\n43 78",
"output": "73"
},
{
"input": "29\n80 27\n69 80\n27 80\n69 80\n80 27\n80 27\n80 27\n80 69\n27 69\n80 69\n80 27\n27 69\n69 27\n80 69\n27 69\n69 80\n27 69\n80 69\n80 27\n69 27\n27 69\n27 80\n80 27\n69 80\n27 69\n80 69\n69 80\n69 80\n27 80",
"output": "277"
},
{
"input": "30\n19 71\n7 89\n89 71\n21 7\n19 21\n7 89\n19 71\n89 8\n89 21\n19 8\n21 7\n8 89\n19 89\n7 21\n19 8\n19 7\n7 19\n8 21\n71 21\n71 89\n7 19\n7 19\n21 7\n21 19\n21 19\n71 8\n21 8\n71 19\n19 71\n8 21",
"output": "154"
},
{
"input": "30\n44 17\n44 17\n44 17\n17 44\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n44 17\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n17 44\n44 17\n44 17\n44 17\n17 44\n17 44\n44 17\n17 44\n44 17\n44 17\n44 17",
"output": "418"
},
{
"input": "22\n78 92\n15 92\n92 78\n78 80\n92 16\n24 80\n92 16\n16 92\n78 16\n24 78\n80 78\n92 80\n16 80\n80 78\n15 78\n92 16\n24 15\n24 80\n80 16\n16 80\n92 80\n24 80",
"output": "74"
},
{
"input": "24\n9 83\n90 31\n83 3\n83 3\n21 31\n83 3\n32 31\n12 21\n31 21\n90 32\n32 21\n12 9\n12 31\n9 83\n83 12\n32 3\n32 83\n90 31\n9 32\n31 21\n83 90\n32 21\n21 3\n32 9",
"output": "59"
},
{
"input": "30\n67 21\n85 39\n85 87\n21 39\n66 85\n10 95\n10 21\n87 85\n82 21\n67 21\n95 10\n21 39\n82 21\n21 66\n66 39\n95 30\n67 85\n66 82\n85 82\n21 66\n10 39\n67 10\n21 85\n10 82\n85 95\n10 85\n21 39\n85 39\n39 10\n95 67",
"output": "100"
},
{
"input": "4\n8 7\n8 7\n7 8\n7 8",
"output": "8"
},
{
"input": "6\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1",
"output": "10"
},
{
"input": "12\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1",
"output": "72"
},
{
"input": "4\n1 2\n1 2\n2 1\n2 1",
"output": "8"
}
] | 1,699,106,890
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 62
| 0
|
n = int(input())
home_colors = []
count = 0
for _ in range(n):
h, a = input().split()
home_colors.append([h,a])
for i in range(len(home_colors)):
for j in range(len(home_colors)):
if home_colors[i][0] == home_colors[j][1]:
count += 1
print(count)
print(home_colors)
|
Title: Games
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.
There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.
You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
Input Specification:
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
Output Specification:
In a single line print the number of games where the host team is going to play in the guest uniform.
Demo Input:
['3\n1 2\n2 4\n3 4\n', '4\n100 42\n42 100\n5 42\n100 5\n', '2\n1 2\n1 2\n']
Demo Output:
['1\n', '5\n', '0\n']
Note:
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.
In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
|
```python
n = int(input())
home_colors = []
count = 0
for _ in range(n):
h, a = input().split()
home_colors.append([h,a])
for i in range(len(home_colors)):
for j in range(len(home_colors)):
if home_colors[i][0] == home_colors[j][1]:
count += 1
print(count)
print(home_colors)
```
| 0
|
|
478
|
B
|
Random Teams
|
PROGRAMMING
| 1,300
|
[
"combinatorics",
"constructive algorithms",
"greedy",
"math"
] | null | null |
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
|
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
|
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
|
[
"5 1\n",
"3 2\n",
"6 3\n"
] |
[
"10 10\n",
"1 1\n",
"3 6\n"
] |
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
| 1,000
|
[
{
"input": "5 1",
"output": "10 10"
},
{
"input": "3 2",
"output": "1 1"
},
{
"input": "6 3",
"output": "3 6"
},
{
"input": "5 3",
"output": "2 3"
},
{
"input": "10 2",
"output": "20 36"
},
{
"input": "10 6",
"output": "4 10"
},
{
"input": "1000000000 1",
"output": "499999999500000000 499999999500000000"
},
{
"input": "5000000 12",
"output": "1041664166668 12499942500066"
},
{
"input": "1833 195",
"output": "7722 1342341"
},
{
"input": "1000000000 1000000000",
"output": "0 0"
},
{
"input": "1000000000 1000000",
"output": "499500000000 499000500499500000"
},
{
"input": "1000000000 32170",
"output": "15541930838100 499967831017438365"
},
{
"input": "1000000 1000",
"output": "499500000 499000999500"
},
{
"input": "1234 1123",
"output": "111 6216"
},
{
"input": "599222887 298488",
"output": "601178656545 179355218158217800"
},
{
"input": "999999999 500000000",
"output": "499999999 124999999750000000"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 384842119",
"output": "845473643 189209609585784021"
},
{
"input": "1000000000 2",
"output": "249999999500000000 499999998500000001"
},
{
"input": "1000000000 999999999",
"output": "1 1"
},
{
"input": "38447 383",
"output": "1910550 724453080"
},
{
"input": "100000000 99999799",
"output": "201 20301"
},
{
"input": "1 1",
"output": "0 0"
},
{
"input": "2 1",
"output": "1 1"
},
{
"input": "2 2",
"output": "0 0"
},
{
"input": "10 10",
"output": "0 0"
}
] | 1,686,055,197
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 26
| 62
| 0
|
n,m = map(int,input().split())
n_copy = n - (m-1)
maxi = (n_copy * (n_copy-1)) // 2
a = n//m
mini = a * (n % m) + (m*a**2-m*a)//2
print(mini,maxi)
|
Title: Random Teams
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
*n* participants of the competition were split into *m* teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.
Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
Input Specification:
The only line of input contains two integers *n* and *m*, separated by a single space (1<=≤<=*m*<=≤<=*n*<=≤<=109) — the number of participants and the number of teams respectively.
Output Specification:
The only line of the output should contain two integers *k**min* and *k**max* — the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.
Demo Input:
['5 1\n', '3 2\n', '6 3\n']
Demo Output:
['10 10\n', '1 1\n', '3 6\n']
Note:
In the first sample all the participants get into one team, so there will be exactly ten pairs of friends.
In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.
In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people.
|
```python
n,m = map(int,input().split())
n_copy = n - (m-1)
maxi = (n_copy * (n_copy-1)) // 2
a = n//m
mini = a * (n % m) + (m*a**2-m*a)//2
print(mini,maxi)
```
| 3
|
|
550
|
A
|
Two Substrings
|
PROGRAMMING
| 1,500
|
[
"brute force",
"dp",
"greedy",
"implementation",
"strings"
] | null | null |
You are given string *s*. Your task is to determine if the given string *s* contains two non-overlapping substrings "AB" and "BA" (the substrings can go in any order).
|
The only line of input contains a string *s* of length between 1 and 105 consisting of uppercase Latin letters.
|
Print "YES" (without the quotes), if string *s* contains two non-overlapping substrings "AB" and "BA", and "NO" otherwise.
|
[
"ABA\n",
"BACFAB\n",
"AXBYBXA\n"
] |
[
"NO\n",
"YES\n",
"NO\n"
] |
In the first sample test, despite the fact that there are substrings "AB" and "BA", their occurrences overlap, so the answer is "NO".
In the second sample test there are the following occurrences of the substrings: BACFAB.
In the third sample test there is no substring "AB" nor substring "BA".
| 1,000
|
[
{
"input": "ABA",
"output": "NO"
},
{
"input": "BACFAB",
"output": "YES"
},
{
"input": "AXBYBXA",
"output": "NO"
},
{
"input": "ABABAB",
"output": "YES"
},
{
"input": "BBBBBBBBBB",
"output": "NO"
},
{
"input": "ABBA",
"output": "YES"
},
{
"input": "ABAXXXAB",
"output": "YES"
},
{
"input": "TESTABAXXABTEST",
"output": "YES"
},
{
"input": "A",
"output": "NO"
},
{
"input": "B",
"output": "NO"
},
{
"input": "X",
"output": "NO"
},
{
"input": "BA",
"output": "NO"
},
{
"input": "AB",
"output": "NO"
},
{
"input": "AA",
"output": "NO"
},
{
"input": "BB",
"output": "NO"
},
{
"input": "BAB",
"output": "NO"
},
{
"input": "AAB",
"output": "NO"
},
{
"input": "BAA",
"output": "NO"
},
{
"input": "ABB",
"output": "NO"
},
{
"input": "BBA",
"output": "NO"
},
{
"input": "AAA",
"output": "NO"
},
{
"input": "BBB",
"output": "NO"
},
{
"input": "AXBXBXA",
"output": "NO"
},
{
"input": "SKDSKDJABSDBADKFJDK",
"output": "YES"
},
{
"input": "ABAXXBBXXAA",
"output": "NO"
},
{
"input": "ABAB",
"output": "NO"
},
{
"input": "BABA",
"output": "NO"
},
{
"input": "AAAB",
"output": "NO"
},
{
"input": "AAAA",
"output": "NO"
},
{
"input": "AABA",
"output": "NO"
},
{
"input": "ABAA",
"output": "NO"
},
{
"input": "BAAA",
"output": "NO"
},
{
"input": "AABB",
"output": "NO"
},
{
"input": "BAAB",
"output": "YES"
},
{
"input": "BBAA",
"output": "NO"
},
{
"input": "BBBA",
"output": "NO"
},
{
"input": "BBAB",
"output": "NO"
},
{
"input": "BABB",
"output": "NO"
},
{
"input": "ABBB",
"output": "NO"
},
{
"input": "BBBB",
"output": "NO"
},
{
"input": "BABAB",
"output": "YES"
},
{
"input": "ABABA",
"output": "YES"
},
{
"input": "AAABAAACBBBC",
"output": "NO"
},
{
"input": "AABBBACBBBBBBAACBCCACBBAABBBBBCAACABAACABCACCBCBCCCBCBCABCBBCCBCBBAACBACAABACBBCACCBCCACCABBCBABBAAC",
"output": "YES"
},
{
"input": "CBBABDDBBADAC",
"output": "YES"
},
{
"input": "ABYFAB",
"output": "NO"
},
{
"input": "BABXXAB",
"output": "YES"
},
{
"input": "ABAXAB",
"output": "YES"
},
{
"input": "ABABXAB",
"output": "YES"
},
{
"input": "ABXABXABXABXABXBAXBAXBAXBA",
"output": "YES"
},
{
"input": "QQQQQQQQQABABQQQQQQQQ",
"output": "NO"
}
] | 1,672,273,148
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 46
| 0
|
a=input ()
if "AB" in a and "BA" in a and a.count("A")==a.count("B"):
print ("YES")
else:
print ("NO")
|
Title: Two Substrings
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given string *s*. Your task is to determine if the given string *s* contains two non-overlapping substrings "AB" and "BA" (the substrings can go in any order).
Input Specification:
The only line of input contains a string *s* of length between 1 and 105 consisting of uppercase Latin letters.
Output Specification:
Print "YES" (without the quotes), if string *s* contains two non-overlapping substrings "AB" and "BA", and "NO" otherwise.
Demo Input:
['ABA\n', 'BACFAB\n', 'AXBYBXA\n']
Demo Output:
['NO\n', 'YES\n', 'NO\n']
Note:
In the first sample test, despite the fact that there are substrings "AB" and "BA", their occurrences overlap, so the answer is "NO".
In the second sample test there are the following occurrences of the substrings: BACFAB.
In the third sample test there is no substring "AB" nor substring "BA".
|
```python
a=input ()
if "AB" in a and "BA" in a and a.count("A")==a.count("B"):
print ("YES")
else:
print ("NO")
```
| 0
|
|
1,003
|
A
|
Polycarp's Pockets
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
|
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
|
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
|
[
"6\n1 2 4 3 3 2\n",
"1\n100\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "6\n1 2 4 3 3 2",
"output": "2"
},
{
"input": "1\n100",
"output": "1"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71",
"output": "51"
},
{
"input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29",
"output": "1"
},
{
"input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24",
"output": "2"
},
{
"input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6",
"output": "10"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "99"
},
{
"input": "7\n1 2 3 3 3 1 2",
"output": "3"
},
{
"input": "5\n1 2 3 4 5",
"output": "1"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "1"
},
{
"input": "8\n1 2 3 4 5 6 7 8",
"output": "1"
},
{
"input": "9\n1 2 3 4 5 6 7 8 9",
"output": "1"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "1"
},
{
"input": "3\n2 1 1",
"output": "2"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 1 1",
"output": "3"
},
{
"input": "12\n1 2 1 1 1 1 1 1 1 1 1 1",
"output": "11"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "13"
},
{
"input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "14"
},
{
"input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "15"
},
{
"input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "16"
},
{
"input": "3\n1 1 1",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "10\n1 1 1 1 2 2 1 1 9 10",
"output": "6"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "56"
},
{
"input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92",
"output": "6"
},
{
"input": "10\n1 2 2 3 3 3 4 4 4 4",
"output": "4"
},
{
"input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21",
"output": "3"
},
{
"input": "5\n5 5 5 5 1",
"output": "4"
},
{
"input": "6\n2 3 2 5 2 6",
"output": "3"
},
{
"input": "3\n58 59 58",
"output": "2"
},
{
"input": "9\n1 2 3 4 5 6 7 8 8",
"output": "2"
},
{
"input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "97"
},
{
"input": "3\n95 95 4",
"output": "2"
},
{
"input": "3\n2 2 5",
"output": "2"
}
] | 1,635,424,447
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 62
| 4,505,600
|
n=int(input())
a=[int(x) for x in input().split()]
a.sort()
a.append(0)
res,count=1,1
for i in range(1,len(a)):
if a[i]==a[i-1]:
count+=1
else:
if count>res:
res=count
count=1
print(res)
|
Title: Polycarp's Pockets
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.
For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$.
Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
Input Specification:
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Output Specification:
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
Demo Input:
['6\n1 2 4 3 3 2\n', '1\n100\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
n=int(input())
a=[int(x) for x in input().split()]
a.sort()
a.append(0)
res,count=1,1
for i in range(1,len(a)):
if a[i]==a[i-1]:
count+=1
else:
if count>res:
res=count
count=1
print(res)
```
| 3
|
|
119
|
A
|
Epic Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
|
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
|
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
|
[
"3 5 9\n",
"1 1 100\n"
] |
[
"0",
"1"
] |
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
| 500
|
[
{
"input": "3 5 9",
"output": "0"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "23 12 16",
"output": "1"
},
{
"input": "95 26 29",
"output": "1"
},
{
"input": "73 32 99",
"output": "1"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "41 12 65",
"output": "1"
},
{
"input": "13 61 100",
"output": "1"
},
{
"input": "100 100 10",
"output": "0"
},
{
"input": "12 24 26",
"output": "1"
},
{
"input": "73 21 96",
"output": "1"
},
{
"input": "17 22 81",
"output": "1"
},
{
"input": "14 88 97",
"output": "1"
},
{
"input": "42 81 17",
"output": "0"
},
{
"input": "34 36 19",
"output": "1"
},
{
"input": "21 87 12",
"output": "1"
},
{
"input": "97 92 98",
"output": "1"
},
{
"input": "49 25 62",
"output": "1"
},
{
"input": "29 17 44",
"output": "1"
},
{
"input": "10 1 10",
"output": "0"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "100 100 1",
"output": "0"
},
{
"input": "11 99 55",
"output": "0"
},
{
"input": "8 13 21",
"output": "0"
},
{
"input": "34 55 89",
"output": "0"
},
{
"input": "21 34 55",
"output": "1"
},
{
"input": "13 21 34",
"output": "1"
},
{
"input": "34 21 55",
"output": "0"
},
{
"input": "10 20 84",
"output": "1"
},
{
"input": "4 2 5",
"output": "0"
},
{
"input": "3 2 3",
"output": "0"
},
{
"input": "31 23 1",
"output": "0"
},
{
"input": "100 100 100",
"output": "0"
},
{
"input": "100 1 100",
"output": "0"
},
{
"input": "1 100 100",
"output": "1"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "17 23 100",
"output": "1"
},
{
"input": "99 98 100",
"output": "1"
},
{
"input": "1 1 2",
"output": "1"
},
{
"input": "2 1 1",
"output": "0"
},
{
"input": "1 2 1",
"output": "0"
},
{
"input": "2 1 2",
"output": "0"
},
{
"input": "10 10 3",
"output": "1"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "9 5 1",
"output": "0"
}
] | 1,638,093,853
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 92
| 0
|
from math import gcd
*a, n = map(int, input().split())
counter = 0
while n >= 0:
n -= gcd(a[counter % 2], n)
counter = 1 - counter
print(counter)
|
Title: Epic Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number *a* and Antisimon receives number *b*. They also have a heap of *n* stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take).
Your task is to determine by the given *a*, *b* and *n* who wins the game.
Input Specification:
The only string contains space-separated integers *a*, *b* and *n* (1<=≤<=*a*,<=*b*,<=*n*<=≤<=100) — the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.
Output Specification:
If Simon wins, print "0" (without the quotes), otherwise print "1" (without the quotes).
Demo Input:
['3 5 9\n', '1 1 100\n']
Demo Output:
['0', '1']
Note:
The greatest common divisor of two non-negative integers *a* and *b* is such maximum positive integer *k*, that *a* is divisible by *k* without remainder and similarly, *b* is divisible by *k* without remainder. Let *gcd*(*a*, *b*) represent the operation of calculating the greatest common divisor of numbers *a* and *b*. Specifically, *gcd*(*x*, 0) = *gcd*(0, *x*) = *x*.
In the first sample the game will go like that:
- Simon should take *gcd*(3, 9) = 3 stones from the heap. After his move the heap has 6 stones left.- Antisimon should take *gcd*(5, 6) = 1 stone from the heap. After his move the heap has 5 stones left.- Simon should take *gcd*(3, 5) = 1 stone from the heap. After his move the heap has 4 stones left.- Antisimon should take *gcd*(5, 4) = 1 stone from the heap. After his move the heap has 3 stones left.- Simon should take *gcd*(3, 3) = 3 stones from the heap. After his move the heap has 0 stones left.- Antisimon should take *gcd*(5, 0) = 5 stones from the heap. As 0 < 5, it is impossible and Antisimon loses.
In the second sample each player during each move takes one stone from the heap. As *n* is even, Antisimon takes the last stone and Simon can't make a move after that.
|
```python
from math import gcd
*a, n = map(int, input().split())
counter = 0
while n >= 0:
n -= gcd(a[counter % 2], n)
counter = 1 - counter
print(counter)
```
| 3
|
|
842
|
B
|
Gleb And Pizza
|
PROGRAMMING
| 1,100
|
[
"geometry"
] | null | null |
Gleb ordered pizza home. When the courier delivered the pizza, he was very upset, because several pieces of sausage lay on the crust, and he does not really like the crust.
The pizza is a circle of radius *r* and center at the origin. Pizza consists of the main part — circle of radius *r*<=-<=*d* with center at the origin, and crust around the main part of the width *d*. Pieces of sausage are also circles. The radius of the *i* -th piece of the sausage is *r**i*, and the center is given as a pair (*x**i*, *y**i*).
Gleb asks you to help determine the number of pieces of sausage caught on the crust. A piece of sausage got on the crust, if it completely lies on the crust.
|
First string contains two integer numbers *r* and *d* (0<=≤<=*d*<=<<=*r*<=≤<=500) — the radius of pizza and the width of crust.
Next line contains one integer number *n* — the number of pieces of sausage (1<=≤<=*n*<=≤<=105).
Each of next *n* lines contains three integer numbers *x**i*, *y**i* and *r**i* (<=-<=500<=≤<=*x**i*,<=*y**i*<=≤<=500, 0<=≤<=*r**i*<=≤<=500), where *x**i* and *y**i* are coordinates of the center of *i*-th peace of sausage, *r**i* — radius of *i*-th peace of sausage.
|
Output the number of pieces of sausage that lay on the crust.
|
[
"8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1\n",
"10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2\n"
] |
[
"2\n",
"0\n"
] |
Below is a picture explaining the first example. Circles of green color denote pieces of sausage lying on the crust.
| 1,000
|
[
{
"input": "8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1",
"output": "2"
},
{
"input": "10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2",
"output": "0"
},
{
"input": "1 0\n1\n1 1 0",
"output": "0"
},
{
"input": "3 0\n5\n3 0 0\n0 3 0\n-3 0 0\n0 -3 0\n3 0 1",
"output": "4"
},
{
"input": "9 0\n5\n8 1 0\n8 2 0\n8 3 0\n-8 3 0\n-8 2 0",
"output": "0"
},
{
"input": "10 2\n11\n1 1 0\n2 2 3\n3 3 0\n4 4 0\n5 5 0\n6 6 0\n7 7 4\n8 8 7\n9 9 3\n10 10 100\n9 0 1",
"output": "2"
},
{
"input": "5 3\n1\n500 500 10",
"output": "0"
}
] | 1,504,020,078
| 978
|
Python 3
|
WRONG_ANSWER
|
PRETESTS
| 0
| 46
| 0
|
from math import sqrt
r,d = map(int, input().split())
n = int(input())
ans = 0
for i in range(n):
x,y,c = map(int, input().split())
print(sqrt(x**2 + y**2) - c, sqrt(x**2 + y**2) + c)
if min(sqrt(x**2 + y**2) - c, 0) >= (r-d) and sqrt(x**2 + y**2) + c <= r:
ans += 1
print(ans)
|
Title: Gleb And Pizza
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Gleb ordered pizza home. When the courier delivered the pizza, he was very upset, because several pieces of sausage lay on the crust, and he does not really like the crust.
The pizza is a circle of radius *r* and center at the origin. Pizza consists of the main part — circle of radius *r*<=-<=*d* with center at the origin, and crust around the main part of the width *d*. Pieces of sausage are also circles. The radius of the *i* -th piece of the sausage is *r**i*, and the center is given as a pair (*x**i*, *y**i*).
Gleb asks you to help determine the number of pieces of sausage caught on the crust. A piece of sausage got on the crust, if it completely lies on the crust.
Input Specification:
First string contains two integer numbers *r* and *d* (0<=≤<=*d*<=<<=*r*<=≤<=500) — the radius of pizza and the width of crust.
Next line contains one integer number *n* — the number of pieces of sausage (1<=≤<=*n*<=≤<=105).
Each of next *n* lines contains three integer numbers *x**i*, *y**i* and *r**i* (<=-<=500<=≤<=*x**i*,<=*y**i*<=≤<=500, 0<=≤<=*r**i*<=≤<=500), where *x**i* and *y**i* are coordinates of the center of *i*-th peace of sausage, *r**i* — radius of *i*-th peace of sausage.
Output Specification:
Output the number of pieces of sausage that lay on the crust.
Demo Input:
['8 4\n7\n7 8 1\n-7 3 2\n0 2 1\n0 -2 2\n-3 -3 1\n0 6 2\n5 3 1\n', '10 8\n4\n0 0 9\n0 0 10\n1 0 1\n1 0 2\n']
Demo Output:
['2\n', '0\n']
Note:
Below is a picture explaining the first example. Circles of green color denote pieces of sausage lying on the crust.
|
```python
from math import sqrt
r,d = map(int, input().split())
n = int(input())
ans = 0
for i in range(n):
x,y,c = map(int, input().split())
print(sqrt(x**2 + y**2) - c, sqrt(x**2 + y**2) + c)
if min(sqrt(x**2 + y**2) - c, 0) >= (r-d) and sqrt(x**2 + y**2) + c <= r:
ans += 1
print(ans)
```
| 0
|
|
298
|
A
|
Snow Footprints
|
PROGRAMMING
| 1,300
|
[
"greedy",
"implementation"
] | null | null |
There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one.
At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road.
You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints.
|
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000).
The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint).
It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists.
|
Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them.
|
[
"9\n..RRLL...\n",
"11\n.RRRLLLLL..\n"
] |
[
"3 4\n",
"7 5\n"
] |
The first test sample is the one in the picture.
| 500
|
[
{
"input": "11\n.RRRLLLLL..",
"output": "7 5"
},
{
"input": "4\n.RL.",
"output": "3 2"
},
{
"input": "3\n.L.",
"output": "2 1"
},
{
"input": "3\n.R.",
"output": "2 3"
}
] | 1,605,270,041
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 218
| 307,200
|
n = int(input())
myStr = input()
tempListL = 0
tempListR = 0
if myStr.find("R") == -1 :
forRevarse = range(len(myStr) , 0 , -1)
for i in forRevarse :
if myStr[i - 1] == "L" :
tempListL = i
break
else:
continue
print(tempListL , myStr.index("L") )
elif myStr.find("L") == -1 :
forRevarse = range(len(myStr), 0, -1)
for i in forRevarse:
if myStr[i - 1] == "R":
tempListR = i
break
else :
continue
print(myStr.find("R") + 1 , tempListR + 1)
else :
print(myStr.index("R") + 1 , myStr.index("L"))
|
Title: Snow Footprints
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a straight snowy road, divided into *n* blocks. The blocks are numbered from 1 to *n* from left to right. If one moves from the *i*-th block to the (*i*<=+<=1)-th block, he will leave a right footprint on the *i*-th block. Similarly, if one moves from the *i*-th block to the (*i*<=-<=1)-th block, he will leave a left footprint on the *i*-th block. If there already is a footprint on the *i*-th block, the new footprint will cover the old one.
At the beginning, there were no footprints. Then polar bear Alice starts from the *s*-th block, makes a sequence of moves and ends in the *t*-th block. It is known that Alice never moves outside of the road.
You are given the description of Alice's footprints. Your task is to find a pair of possible values of *s*,<=*t* by looking at the footprints.
Input Specification:
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=1000).
The second line contains the description of the road — the string that consists of *n* characters. Each character will be either "." (a block without footprint), or "L" (a block with a left footprint), "R" (a block with a right footprint).
It's guaranteed that the given string contains at least one character not equal to ".". Also, the first and the last character will always be ".". It's guaranteed that a solution exists.
Output Specification:
Print two space-separated integers — the values of *s* and *t*. If there are several possible solutions you can print any of them.
Demo Input:
['9\n..RRLL...\n', '11\n.RRRLLLLL..\n']
Demo Output:
['3 4\n', '7 5\n']
Note:
The first test sample is the one in the picture.
|
```python
n = int(input())
myStr = input()
tempListL = 0
tempListR = 0
if myStr.find("R") == -1 :
forRevarse = range(len(myStr) , 0 , -1)
for i in forRevarse :
if myStr[i - 1] == "L" :
tempListL = i
break
else:
continue
print(tempListL , myStr.index("L") )
elif myStr.find("L") == -1 :
forRevarse = range(len(myStr), 0, -1)
for i in forRevarse:
if myStr[i - 1] == "R":
tempListR = i
break
else :
continue
print(myStr.find("R") + 1 , tempListR + 1)
else :
print(myStr.index("R") + 1 , myStr.index("L"))
```
| 3
|
|
129
|
B
|
Students and Shoelaces
|
PROGRAMMING
| 1,200
|
[
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null |
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club.
|
The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
|
Print the single number — the number of groups of students that will be kicked out from the club.
|
[
"3 3\n1 2\n2 3\n3 1\n",
"6 3\n1 2\n2 3\n3 4\n",
"6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n"
] |
[
"0\n",
"2\n",
"1\n"
] |
In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
| 1,000
|
[
{
"input": "3 3\n1 2\n2 3\n3 1",
"output": "0"
},
{
"input": "6 3\n1 2\n2 3\n3 4",
"output": "2"
},
{
"input": "6 5\n1 4\n2 4\n3 4\n5 4\n6 4",
"output": "1"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1",
"output": "0"
},
{
"input": "5 4\n1 4\n4 3\n4 5\n5 2",
"output": "2"
},
{
"input": "11 10\n1 2\n1 3\n3 4\n1 5\n5 6\n6 7\n1 8\n8 9\n9 10\n10 11",
"output": "4"
},
{
"input": "7 7\n1 2\n2 3\n3 1\n1 4\n4 5\n4 6\n4 7",
"output": "2"
},
{
"input": "12 49\n6 3\n12 9\n10 11\n3 5\n10 2\n6 9\n8 5\n6 12\n7 3\n3 12\n3 2\n5 6\n7 5\n9 2\n11 1\n7 6\n5 4\n8 7\n12 5\n5 11\n8 9\n10 3\n6 2\n10 4\n9 10\n9 11\n11 3\n5 9\n11 6\n10 8\n7 9\n10 7\n4 6\n3 8\n4 11\n12 2\n4 9\n2 11\n7 11\n1 5\n7 2\n8 1\n4 12\n9 1\n4 2\n8 2\n11 12\n3 1\n1 6",
"output": "0"
},
{
"input": "10 29\n4 5\n1 7\n4 2\n3 8\n7 6\n8 10\n10 6\n4 1\n10 1\n6 2\n7 4\n7 10\n2 7\n9 8\n5 10\n2 5\n8 5\n4 9\n2 8\n5 7\n4 8\n7 3\n6 5\n1 3\n1 9\n10 4\n10 9\n10 2\n2 3",
"output": "0"
},
{
"input": "9 33\n5 7\n5 9\n9 6\n9 1\n7 4\n3 5\n7 8\n8 6\n3 6\n8 2\n3 8\n1 6\n1 8\n1 4\n4 2\n1 2\n2 5\n3 4\n8 5\n2 6\n3 1\n1 5\n1 7\n3 2\n5 4\n9 4\n3 9\n7 3\n6 4\n9 8\n7 9\n8 4\n6 5",
"output": "0"
},
{
"input": "7 8\n5 7\n2 7\n1 6\n1 3\n3 7\n6 3\n6 4\n2 6",
"output": "1"
},
{
"input": "6 15\n3 1\n4 5\n1 4\n6 2\n3 5\n6 3\n1 6\n1 5\n2 3\n2 5\n6 4\n5 6\n4 2\n1 2\n3 4",
"output": "0"
},
{
"input": "7 11\n5 3\n6 5\n6 4\n1 6\n7 1\n2 6\n7 5\n2 5\n3 1\n3 4\n2 4",
"output": "0"
},
{
"input": "95 0",
"output": "0"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "62 30\n29 51\n29 55\n4 12\n53 25\n36 28\n32 11\n29 11\n47 9\n21 8\n25 4\n51 19\n26 56\n22 21\n37 9\n9 33\n7 25\n16 7\n40 49\n15 21\n49 58\n34 30\n20 46\n62 48\n53 57\n33 6\n60 37\n41 34\n62 36\n36 43\n11 39",
"output": "2"
},
{
"input": "56 25\n12 40\n31 27\n18 40\n1 43\n9 10\n25 47\n27 29\n26 28\n19 38\n19 40\n22 14\n21 51\n29 31\n55 29\n51 33\n20 17\n24 15\n3 48\n31 56\n15 29\n49 42\n50 4\n22 42\n25 17\n18 51",
"output": "3"
},
{
"input": "51 29\n36 30\n37 45\n4 24\n40 18\n47 35\n15 1\n30 38\n15 18\n32 40\n34 42\n2 47\n35 21\n25 28\n13 1\n13 28\n36 1\n46 47\n22 17\n41 45\n43 45\n40 15\n29 35\n47 15\n30 21\n9 14\n18 38\n18 50\n42 10\n31 41",
"output": "3"
},
{
"input": "72 45\n5 15\n8 18\n40 25\n71 66\n67 22\n6 44\n16 25\n8 23\n19 70\n26 34\n48 15\n24 2\n54 68\n44 43\n17 37\n49 19\n71 49\n34 38\n59 1\n65 70\n11 54\n5 11\n15 31\n29 50\n48 16\n70 57\n25 59\n2 59\n56 12\n66 62\n24 16\n46 27\n45 67\n68 43\n31 11\n31 30\n8 44\n64 33\n38 44\n54 10\n13 9\n7 51\n25 4\n40 70\n26 65",
"output": "5"
},
{
"input": "56 22\n17 27\n48 49\n29 8\n47 20\n32 7\n44 5\n14 39\n5 13\n40 2\n50 42\n38 9\n18 37\n16 44\n21 32\n21 39\n37 54\n19 46\n30 47\n17 13\n30 31\n49 16\n56 7",
"output": "4"
},
{
"input": "81 46\n53 58\n31 14\n18 54\n43 61\n57 65\n6 38\n49 5\n6 40\n6 10\n17 72\n27 48\n58 39\n21 75\n21 43\n78 20\n34 4\n15 35\n74 48\n76 15\n49 38\n46 51\n78 9\n80 5\n26 42\n64 31\n46 72\n1 29\n20 17\n32 45\n53 43\n24 5\n52 59\n3 80\n78 19\n61 17\n80 12\n17 8\n63 2\n8 4\n44 10\n53 72\n18 60\n68 15\n17 58\n79 71\n73 35",
"output": "4"
},
{
"input": "82 46\n64 43\n32 24\n57 30\n24 46\n70 12\n23 41\n63 39\n46 70\n4 61\n19 12\n39 79\n14 28\n37 3\n12 27\n15 20\n35 39\n25 64\n59 16\n68 63\n37 14\n76 7\n67 29\n9 5\n14 55\n46 26\n71 79\n47 42\n5 55\n18 45\n28 40\n44 78\n74 9\n60 53\n44 19\n52 81\n65 52\n40 13\n40 19\n43 1\n24 23\n68 9\n16 20\n70 14\n41 40\n29 10\n45 65",
"output": "8"
},
{
"input": "69 38\n63 35\n52 17\n43 69\n2 57\n12 5\n26 36\n13 10\n16 68\n5 18\n5 41\n10 4\n60 9\n39 22\n39 28\n53 57\n13 52\n66 38\n49 61\n12 19\n27 46\n67 7\n25 8\n23 58\n52 34\n29 2\n2 42\n8 53\n57 43\n68 11\n48 28\n56 19\n46 33\n63 21\n57 16\n68 59\n67 34\n28 43\n56 36",
"output": "4"
},
{
"input": "75 31\n32 50\n52 8\n21 9\n68 35\n12 72\n47 26\n38 58\n40 55\n31 70\n53 75\n44 1\n65 22\n33 22\n33 29\n14 39\n1 63\n16 52\n70 15\n12 27\n63 31\n47 9\n71 31\n43 17\n43 49\n8 26\n11 39\n9 22\n30 45\n65 47\n32 9\n60 70",
"output": "4"
},
{
"input": "77 41\n48 45\n50 36\n6 69\n70 3\n22 21\n72 6\n54 3\n49 31\n2 23\n14 59\n68 58\n4 54\n60 12\n63 60\n44 24\n28 24\n40 8\n5 1\n13 24\n29 15\n19 76\n70 50\n65 71\n23 33\n58 16\n50 42\n71 28\n58 54\n24 73\n6 17\n29 13\n60 4\n42 4\n21 60\n77 39\n57 9\n51 19\n61 6\n49 36\n24 32\n41 66",
"output": "3"
},
{
"input": "72 39\n9 44\n15 12\n2 53\n34 18\n41 70\n54 72\n39 19\n26 7\n4 54\n53 59\n46 49\n70 6\n9 10\n64 51\n31 60\n61 53\n59 71\n9 60\n67 16\n4 16\n34 3\n2 61\n16 23\n34 6\n10 18\n13 38\n66 40\n59 9\n40 14\n38 24\n31 48\n7 69\n20 39\n49 52\n32 67\n61 35\n62 45\n37 54\n5 27",
"output": "8"
},
{
"input": "96 70\n30 37\n47 56\n19 79\n15 28\n2 43\n43 54\n59 75\n42 22\n38 18\n18 14\n47 41\n60 29\n35 11\n90 4\n14 41\n11 71\n41 24\n68 28\n45 92\n14 15\n34 63\n77 32\n67 38\n36 8\n37 4\n58 95\n68 84\n69 81\n35 23\n56 63\n78 91\n35 44\n66 63\n80 19\n87 88\n28 14\n62 35\n24 23\n83 37\n54 89\n14 40\n9 35\n94 9\n56 46\n92 70\n16 58\n96 31\n53 23\n56 5\n36 42\n89 77\n29 51\n26 13\n46 70\n25 56\n95 96\n3 51\n76 8\n36 82\n44 85\n54 56\n89 67\n32 5\n82 78\n33 65\n43 28\n35 1\n94 13\n26 24\n10 51",
"output": "4"
},
{
"input": "76 49\n15 59\n23 26\n57 48\n49 51\n42 76\n36 40\n37 40\n29 15\n28 71\n47 70\n27 39\n76 21\n55 16\n21 18\n19 1\n25 31\n51 71\n54 42\n28 9\n61 69\n33 9\n18 19\n58 51\n51 45\n29 34\n9 67\n26 8\n70 37\n11 62\n24 22\n59 76\n67 17\n59 11\n54 1\n12 57\n23 3\n46 47\n37 20\n65 9\n51 12\n31 19\n56 13\n58 22\n26 59\n39 76\n27 11\n48 64\n59 35\n44 75",
"output": "5"
},
{
"input": "52 26\n29 41\n16 26\n18 48\n31 17\n37 42\n26 1\n11 7\n29 6\n23 17\n12 47\n34 23\n41 16\n15 35\n25 21\n45 7\n52 2\n37 10\n28 19\n1 27\n30 47\n42 35\n50 30\n30 34\n19 30\n42 25\n47 31",
"output": "3"
},
{
"input": "86 48\n59 34\n21 33\n45 20\n62 23\n4 68\n2 65\n63 26\n64 20\n51 34\n64 21\n68 78\n61 80\n81 3\n38 39\n47 48\n24 34\n44 71\n72 78\n50 2\n13 51\n82 78\n11 74\n14 48\n2 75\n49 55\n63 85\n20 85\n4 53\n51 15\n11 67\n1 15\n2 64\n10 81\n6 7\n68 18\n84 28\n77 69\n10 36\n15 14\n32 86\n16 79\n26 13\n38 55\n47 43\n47 39\n45 37\n58 81\n42 35",
"output": "8"
},
{
"input": "58 29\n27 24\n40 52\n51 28\n44 50\n7 28\n14 53\n10 16\n16 45\n8 56\n35 26\n39 6\n6 14\n45 22\n35 13\n20 17\n42 6\n37 21\n4 11\n26 56\n54 55\n3 57\n40 3\n55 27\n4 51\n35 29\n50 16\n47 7\n48 20\n1 37",
"output": "3"
},
{
"input": "51 23\n46 47\n31 27\n1 20\n49 16\n2 10\n29 47\n13 27\n34 26\n31 2\n28 20\n17 40\n39 4\n29 26\n28 44\n3 39\n50 12\n19 1\n30 21\n41 23\n2 29\n16 3\n49 28\n49 41",
"output": "4"
},
{
"input": "75 43\n46 34\n33 12\n51 39\n47 74\n68 64\n40 46\n20 51\n47 19\n4 5\n57 59\n12 26\n68 65\n38 42\n73 37\n5 74\n36 61\n8 18\n58 33\n34 73\n42 43\n10 49\n70 50\n49 18\n24 53\n71 73\n44 24\n49 56\n24 29\n44 67\n70 46\n57 25\n73 63\n3 51\n30 71\n41 44\n17 69\n17 18\n19 68\n42 7\n11 51\n1 5\n72 23\n65 53",
"output": "5"
}
] | 1,598,329,168
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 70
| 404
| 3,584,000
|
def answer(n,m,dp):
count=0
for k in range(n):
flag=1
l=[]
for i in range(1,n+1):
index=-1
count1=0
for j in range(1,n+1):
if dp[i][j]==1:
if index==-1:
index=j
count1+=1
if count1==1:
flag=0
dp[i][index]=0
l.append([index,i])
if flag:
break
for ele in l:
dp[ele[0]][ele[1]]=0
count+=1
return count
n,m=map(int,input().split())
dp=[[0 for i in range(0,n+1)] for j in range(0,n+1)]
for i in range(m):
u,v=map(int,input().split())
dp[u][v]=1
dp[v][u]=1
print(answer(n,m,dp))
|
Title: Students and Shoelaces
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club.
Input Specification:
The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
Output Specification:
Print the single number — the number of groups of students that will be kicked out from the club.
Demo Input:
['3 3\n1 2\n2 3\n3 1\n', '6 3\n1 2\n2 3\n3 4\n', '6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n']
Demo Output:
['0\n', '2\n', '1\n']
Note:
In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
|
```python
def answer(n,m,dp):
count=0
for k in range(n):
flag=1
l=[]
for i in range(1,n+1):
index=-1
count1=0
for j in range(1,n+1):
if dp[i][j]==1:
if index==-1:
index=j
count1+=1
if count1==1:
flag=0
dp[i][index]=0
l.append([index,i])
if flag:
break
for ele in l:
dp[ele[0]][ele[1]]=0
count+=1
return count
n,m=map(int,input().split())
dp=[[0 for i in range(0,n+1)] for j in range(0,n+1)]
for i in range(m):
u,v=map(int,input().split())
dp[u][v]=1
dp[v][u]=1
print(answer(n,m,dp))
```
| 3
|
|
281
|
A
|
Word Capitalization
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
|
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
|
Output the given word after capitalization.
|
[
"ApPLe\n",
"konjac\n"
] |
[
"ApPLe\n",
"Konjac\n"
] |
none
| 500
|
[
{
"input": "ApPLe",
"output": "ApPLe"
},
{
"input": "konjac",
"output": "Konjac"
},
{
"input": "a",
"output": "A"
},
{
"input": "A",
"output": "A"
},
{
"input": "z",
"output": "Z"
},
{
"input": "ABACABA",
"output": "ABACABA"
},
{
"input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX",
"output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX"
},
{
"input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO",
"output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO"
},
{
"input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD",
"output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD"
},
{
"input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW",
"output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW"
},
{
"input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL",
"output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL"
},
{
"input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC",
"output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC"
},
{
"input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN",
"output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN"
},
{
"input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE",
"output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE"
},
{
"input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP",
"output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP"
},
{
"input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG",
"output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG"
},
{
"input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV",
"output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV"
},
{
"input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI",
"output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI"
},
{
"input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX",
"output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX"
},
{
"input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ",
"output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ"
},
{
"input": "P",
"output": "P"
},
{
"input": "Xyzzy",
"output": "Xyzzy"
},
{
"input": "Zzz",
"output": "Zzz"
},
{
"input": "Zp",
"output": "Zp"
}
] | 1,696,678,771
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 25
| 124
| 0
|
def i():
return(int(input()))
def l():
return(list(map(int,input().split())))
def s():
return(input())
def m():
return(map(int,input().split()))
a = s()
b = a[0].upper()
print(b + a[1:])
|
Title: Word Capitalization
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
Input Specification:
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output Specification:
Output the given word after capitalization.
Demo Input:
['ApPLe\n', 'konjac\n']
Demo Output:
['ApPLe\n', 'Konjac\n']
Note:
none
|
```python
def i():
return(int(input()))
def l():
return(list(map(int,input().split())))
def s():
return(input())
def m():
return(map(int,input().split()))
a = s()
b = a[0].upper()
print(b + a[1:])
```
| 3
|
|
820
|
A
|
Mister B and Book Reading
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Mister B once received a gift: it was a book about aliens, which he started read immediately. This book had *c* pages.
At first day Mister B read *v*0 pages, but after that he started to speed up. Every day, starting from the second, he read *a* pages more than on the previous day (at first day he read *v*0 pages, at second — *v*0<=+<=*a* pages, at third — *v*0<=+<=2*a* pages, and so on). But Mister B is just a human, so he physically wasn't able to read more than *v*1 pages per day.
Also, to refresh his memory, every day, starting from the second, Mister B had to reread last *l* pages he read on the previous day. Mister B finished the book when he read the last page for the first time.
Help Mister B to calculate how many days he needed to finish the book.
|
First and only line contains five space-separated integers: *c*, *v*0, *v*1, *a* and *l* (1<=≤<=*c*<=≤<=1000, 0<=≤<=*l*<=<<=*v*0<=≤<=*v*1<=≤<=1000, 0<=≤<=*a*<=≤<=1000) — the length of the book in pages, the initial reading speed, the maximum reading speed, the acceleration in reading speed and the number of pages for rereading.
|
Print one integer — the number of days Mister B needed to finish the book.
|
[
"5 5 10 5 4\n",
"12 4 12 4 1\n",
"15 1 100 0 0\n"
] |
[
"1\n",
"3\n",
"15\n"
] |
In the first sample test the book contains 5 pages, so Mister B read it right at the first day.
In the second sample test at first day Mister B read pages number 1 - 4, at second day — 4 - 11, at third day — 11 - 12 and finished the book.
In third sample test every day Mister B read 1 page of the book, so he finished in 15 days.
| 500
|
[
{
"input": "5 5 10 5 4",
"output": "1"
},
{
"input": "12 4 12 4 1",
"output": "3"
},
{
"input": "15 1 100 0 0",
"output": "15"
},
{
"input": "1 1 1 0 0",
"output": "1"
},
{
"input": "1000 999 1000 1000 998",
"output": "2"
},
{
"input": "1000 2 2 5 1",
"output": "999"
},
{
"input": "1000 1 1 1000 0",
"output": "1000"
},
{
"input": "737 41 74 12 11",
"output": "13"
},
{
"input": "1000 1000 1000 0 999",
"output": "1"
},
{
"input": "765 12 105 5 7",
"output": "17"
},
{
"input": "15 2 2 1000 0",
"output": "8"
},
{
"input": "1000 1 1000 1000 0",
"output": "2"
},
{
"input": "20 3 7 1 2",
"output": "6"
},
{
"input": "1000 500 500 1000 499",
"output": "501"
},
{
"input": "1 1000 1000 1000 0",
"output": "1"
},
{
"input": "1000 2 1000 56 0",
"output": "7"
},
{
"input": "1000 2 1000 802 0",
"output": "3"
},
{
"input": "16 1 8 2 0",
"output": "4"
},
{
"input": "20 6 10 2 2",
"output": "3"
},
{
"input": "8 2 12 4 1",
"output": "3"
},
{
"input": "8 6 13 2 5",
"output": "2"
},
{
"input": "70 4 20 87 0",
"output": "5"
},
{
"input": "97 8 13 234 5",
"output": "13"
},
{
"input": "16 4 23 8 3",
"output": "3"
},
{
"input": "65 7 22 7 4",
"output": "5"
},
{
"input": "93 10 18 11 7",
"output": "9"
},
{
"input": "86 13 19 15 9",
"output": "9"
},
{
"input": "333 17 50 10 16",
"output": "12"
},
{
"input": "881 16 55 10 12",
"output": "23"
},
{
"input": "528 11 84 3 9",
"output": "19"
},
{
"input": "896 2 184 8 1",
"output": "16"
},
{
"input": "236 10 930 9 8",
"output": "8"
},
{
"input": "784 1 550 14 0",
"output": "12"
},
{
"input": "506 1 10 4 0",
"output": "53"
},
{
"input": "460 1 3 2 0",
"output": "154"
},
{
"input": "701 1 3 1 0",
"output": "235"
},
{
"input": "100 49 50 1000 2",
"output": "3"
},
{
"input": "100 1 100 100 0",
"output": "2"
},
{
"input": "12 1 4 2 0",
"output": "4"
},
{
"input": "22 10 12 0 0",
"output": "3"
},
{
"input": "20 10 15 1 4",
"output": "3"
},
{
"input": "1000 5 10 1 4",
"output": "169"
},
{
"input": "1000 1 1000 1 0",
"output": "45"
},
{
"input": "4 1 2 2 0",
"output": "3"
},
{
"input": "1 5 5 1 1",
"output": "1"
},
{
"input": "19 10 11 0 2",
"output": "3"
},
{
"input": "1 2 3 0 0",
"output": "1"
},
{
"input": "10 1 4 10 0",
"output": "4"
},
{
"input": "20 3 100 1 1",
"output": "5"
},
{
"input": "1000 5 9 5 0",
"output": "112"
},
{
"input": "1 11 12 0 10",
"output": "1"
},
{
"input": "1 1 1 1 0",
"output": "1"
},
{
"input": "1000 1 20 1 0",
"output": "60"
},
{
"input": "9 1 4 2 0",
"output": "4"
},
{
"input": "129 2 3 4 0",
"output": "44"
},
{
"input": "4 2 2 0 1",
"output": "3"
},
{
"input": "1000 1 10 100 0",
"output": "101"
},
{
"input": "100 1 100 1 0",
"output": "14"
},
{
"input": "8 3 4 2 0",
"output": "3"
},
{
"input": "20 1 6 4 0",
"output": "5"
},
{
"input": "8 2 4 2 0",
"output": "3"
},
{
"input": "11 5 6 7 2",
"output": "3"
},
{
"input": "100 120 130 120 0",
"output": "1"
},
{
"input": "7 1 4 1 0",
"output": "4"
},
{
"input": "5 3 10 0 2",
"output": "3"
},
{
"input": "5 2 2 0 0",
"output": "3"
},
{
"input": "1000 10 1000 10 0",
"output": "14"
},
{
"input": "25 3 50 4 2",
"output": "4"
},
{
"input": "9 10 10 10 9",
"output": "1"
},
{
"input": "17 10 12 6 5",
"output": "2"
},
{
"input": "15 5 10 3 0",
"output": "3"
},
{
"input": "8 3 5 1 0",
"output": "3"
},
{
"input": "19 1 12 5 0",
"output": "4"
},
{
"input": "1000 10 1000 1 0",
"output": "37"
},
{
"input": "100 1 2 1000 0",
"output": "51"
},
{
"input": "20 10 11 1000 9",
"output": "6"
},
{
"input": "16 2 100 1 1",
"output": "5"
},
{
"input": "18 10 13 2 5",
"output": "3"
},
{
"input": "12 3 5 3 1",
"output": "4"
},
{
"input": "17 3 11 2 0",
"output": "4"
},
{
"input": "4 2 100 1 1",
"output": "2"
},
{
"input": "7 4 5 2 3",
"output": "3"
},
{
"input": "100 1 2 2 0",
"output": "51"
},
{
"input": "50 4 5 5 0",
"output": "11"
},
{
"input": "1 2 2 0 1",
"output": "1"
},
{
"input": "1000 2 3 10 1",
"output": "500"
},
{
"input": "500 10 500 1000 0",
"output": "2"
},
{
"input": "1000 4 12 1 0",
"output": "87"
},
{
"input": "18 10 13 1 5",
"output": "3"
},
{
"input": "7 3 6 2 2",
"output": "3"
},
{
"input": "15 5 100 1 2",
"output": "4"
},
{
"input": "100 1 10 1 0",
"output": "15"
},
{
"input": "8 2 7 5 1",
"output": "2"
},
{
"input": "11 2 4 1 1",
"output": "5"
},
{
"input": "1000 500 900 100 300",
"output": "3"
},
{
"input": "7 1 2 5 0",
"output": "4"
},
{
"input": "7 3 5 3 2",
"output": "3"
},
{
"input": "7 3 10 2 1",
"output": "2"
},
{
"input": "1000 501 510 1 499",
"output": "50"
},
{
"input": "1000 1 1000 2 0",
"output": "32"
},
{
"input": "1 5 5 0 0",
"output": "1"
},
{
"input": "18 10 15 1 5",
"output": "3"
},
{
"input": "100 4 1000 1 2",
"output": "13"
},
{
"input": "20 2 40 1 1",
"output": "6"
},
{
"input": "1 11 1000 100 1",
"output": "1"
},
{
"input": "6 4 4 1 2",
"output": "2"
},
{
"input": "8 3 5 3 1",
"output": "3"
},
{
"input": "10 5 7 1 2",
"output": "3"
},
{
"input": "400 100 198 1 99",
"output": "25"
},
{
"input": "3 1 2 5 0",
"output": "2"
}
] | 1,498,574,970
| 870
|
Python 3
|
OK
|
TESTS
| 110
| 77
| 5,529,600
|
def br(c, v0, v1, a, l):
d = 1
read = v0
while read < c:
d += 1
read -= l
v0 = min(v1, v0 + a)
read += v0
return d
p0, p1, p2, p3, p4 = list(map(int, input().strip().split()))
print(br(p0, p1, p2, p3, p4))
|
Title: Mister B and Book Reading
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mister B once received a gift: it was a book about aliens, which he started read immediately. This book had *c* pages.
At first day Mister B read *v*0 pages, but after that he started to speed up. Every day, starting from the second, he read *a* pages more than on the previous day (at first day he read *v*0 pages, at second — *v*0<=+<=*a* pages, at third — *v*0<=+<=2*a* pages, and so on). But Mister B is just a human, so he physically wasn't able to read more than *v*1 pages per day.
Also, to refresh his memory, every day, starting from the second, Mister B had to reread last *l* pages he read on the previous day. Mister B finished the book when he read the last page for the first time.
Help Mister B to calculate how many days he needed to finish the book.
Input Specification:
First and only line contains five space-separated integers: *c*, *v*0, *v*1, *a* and *l* (1<=≤<=*c*<=≤<=1000, 0<=≤<=*l*<=<<=*v*0<=≤<=*v*1<=≤<=1000, 0<=≤<=*a*<=≤<=1000) — the length of the book in pages, the initial reading speed, the maximum reading speed, the acceleration in reading speed and the number of pages for rereading.
Output Specification:
Print one integer — the number of days Mister B needed to finish the book.
Demo Input:
['5 5 10 5 4\n', '12 4 12 4 1\n', '15 1 100 0 0\n']
Demo Output:
['1\n', '3\n', '15\n']
Note:
In the first sample test the book contains 5 pages, so Mister B read it right at the first day.
In the second sample test at first day Mister B read pages number 1 - 4, at second day — 4 - 11, at third day — 11 - 12 and finished the book.
In third sample test every day Mister B read 1 page of the book, so he finished in 15 days.
|
```python
def br(c, v0, v1, a, l):
d = 1
read = v0
while read < c:
d += 1
read -= l
v0 = min(v1, v0 + a)
read += v0
return d
p0, p1, p2, p3, p4 = list(map(int, input().strip().split()))
print(br(p0, p1, p2, p3, p4))
```
| 3
|
|
71
|
A
|
Way Too Long Words
|
PROGRAMMING
| 800
|
[
"strings"
] |
A. Way Too Long Words
|
1
|
256
|
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
|
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
|
[
"4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n"
] |
[
"word\nl10n\ni18n\np43s\n"
] |
none
| 500
|
[
{
"input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis",
"output": "word\nl10n\ni18n\np43s"
},
{
"input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm",
"output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m"
},
{
"input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd",
"output": "n20n\nj27b\nk15d"
},
{
"input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt",
"output": "t41t"
},
{
"input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings",
"output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz",
"output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz"
},
{
"input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij",
"output": "a98j"
},
{
"input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco",
"output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco"
},
{
"input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt",
"output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t"
},
{
"input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr",
"output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr"
}
] | 1,672,394,843
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 46
| 0
|
def solve():
n = int(input())
for _ in range(n):
s = input().strip()
if len(s) <= 10:
print(s)
else:
print('{}{}{}'.format(s[0], len(s) - 2,s[-1]))
solve()
|
Title: Way Too Long Words
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome.
Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation.
This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes.
Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n".
You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Output Specification:
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
Demo Input:
['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n']
Demo Output:
['word\nl10n\ni18n\np43s\n']
Note:
none
|
```python
def solve():
n = int(input())
for _ in range(n):
s = input().strip()
if len(s) <= 10:
print(s)
else:
print('{}{}{}'.format(s[0], len(s) - 2,s[-1]))
solve()
```
| 3.977
|
58
|
A
|
Chat room
|
PROGRAMMING
| 1,000
|
[
"greedy",
"strings"
] |
A. Chat room
|
1
|
256
|
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
|
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
|
If Vasya managed to say hello, print "YES", otherwise print "NO".
|
[
"ahhellllloou\n",
"hlelo\n"
] |
[
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "ahhellllloou",
"output": "YES"
},
{
"input": "hlelo",
"output": "NO"
},
{
"input": "helhcludoo",
"output": "YES"
},
{
"input": "hehwelloho",
"output": "YES"
},
{
"input": "pnnepelqomhhheollvlo",
"output": "YES"
},
{
"input": "tymbzjyqhymedasloqbq",
"output": "NO"
},
{
"input": "yehluhlkwo",
"output": "NO"
},
{
"input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello",
"output": "YES"
},
{
"input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq",
"output": "YES"
},
{
"input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi",
"output": "YES"
},
{
"input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo",
"output": "YES"
},
{
"input": "lqllcolohwflhfhlnaow",
"output": "NO"
},
{
"input": "heheeellollvoo",
"output": "YES"
},
{
"input": "hellooo",
"output": "YES"
},
{
"input": "o",
"output": "NO"
},
{
"input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv",
"output": "YES"
},
{
"input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk",
"output": "YES"
},
{
"input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry",
"output": "NO"
},
{
"input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq",
"output": "NO"
},
{
"input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi",
"output": "YES"
},
{
"input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm",
"output": "YES"
},
{
"input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac",
"output": "NO"
},
{
"input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok",
"output": "YES"
},
{
"input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz",
"output": "YES"
},
{
"input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb",
"output": "YES"
},
{
"input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla",
"output": "YES"
},
{
"input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz",
"output": "YES"
},
{
"input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti",
"output": "YES"
},
{
"input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli",
"output": "YES"
},
{
"input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo",
"output": "YES"
},
{
"input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk",
"output": "NO"
},
{
"input": "loee",
"output": "NO"
},
{
"input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo",
"output": "NO"
},
{
"input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi",
"output": "YES"
},
{
"input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv",
"output": "NO"
},
{
"input": "hello",
"output": "YES"
},
{
"input": "oohell",
"output": "NO"
},
{
"input": "hell",
"output": "NO"
},
{
"input": "eloellohoelo",
"output": "NO"
},
{
"input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo",
"output": "YES"
}
] | 1,590,166,167
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 34
| 109
| 0
|
s = input()
a = 0
g = 'hello'
for i in range(len(s)):
if g[a] == s[i]:
if a < 4:
a = a + 1
if a == 4:
print('YES')
else:
print('NO')
|
Title: Chat room
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
Input Specification:
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
Output Specification:
If Vasya managed to say hello, print "YES", otherwise print "NO".
Demo Input:
['ahhellllloou\n', 'hlelo\n']
Demo Output:
['YES\n', 'NO\n']
Note:
none
|
```python
s = input()
a = 0
g = 'hello'
for i in range(len(s)):
if g[a] == s[i]:
if a < 4:
a = a + 1
if a == 4:
print('YES')
else:
print('NO')
```
| 0
|
37
|
A
|
Towers
|
PROGRAMMING
| 1,000
|
[
"sortings"
] |
A. Towers
|
2
|
256
|
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
|
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
|
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
|
[
"3\n1 2 3\n",
"4\n6 5 6 7\n"
] |
[
"1 3\n",
"2 3\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 3",
"output": "1 3"
},
{
"input": "4\n6 5 6 7",
"output": "2 3"
},
{
"input": "4\n3 2 1 1",
"output": "2 3"
},
{
"input": "4\n1 2 3 3",
"output": "2 3"
},
{
"input": "3\n20 22 36",
"output": "1 3"
},
{
"input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162",
"output": "2 23"
},
{
"input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193",
"output": "2 43"
},
{
"input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111",
"output": "2 57"
},
{
"input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642",
"output": "2 80"
},
{
"input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188",
"output": "2 92"
},
{
"input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233",
"output": "3 101"
},
{
"input": "5\n5 5 5 5 5",
"output": "5 1"
},
{
"input": "3\n1000 1000 1000",
"output": "3 1"
},
{
"input": "1\n1000",
"output": "1 1"
},
{
"input": "1\n1",
"output": "1 1"
},
{
"input": "5\n1 1000 1000 1000 1000",
"output": "4 2"
},
{
"input": "5\n1000 1000 1000 8 7",
"output": "3 3"
}
] | 1,611,764,465
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 60
| 0
|
n = int(input())
y = list(map(int, input().split()))
tower = n
high = 1
max = 0
y.sort() #[5,6,6,7]
for i in range(len(y) - 1):
if y[i] == y[i+1]:
high += 1
tower -= 1
max = high
else:
high = 1
print(max, tower)
|
Title: Towers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
Input Specification:
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
Output Specification:
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
Demo Input:
['3\n1 2 3\n', '4\n6 5 6 7\n']
Demo Output:
['1 3\n', '2 3\n']
Note:
none
|
```python
n = int(input())
y = list(map(int, input().split()))
tower = n
high = 1
max = 0
y.sort() #[5,6,6,7]
for i in range(len(y) - 1):
if y[i] == y[i+1]:
high += 1
tower -= 1
max = high
else:
high = 1
print(max, tower)
```
| 0
|
799
|
A
|
Carrot Cakes
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
In some game by Playrix it takes *t* minutes for an oven to bake *k* carrot cakes, all cakes are ready at the same moment *t* minutes after they started baking. Arkady needs at least *n* cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take *d* minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven.
Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get *n* cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable.
|
The only line contains four integers *n*, *t*, *k*, *d* (1<=≤<=*n*,<=*t*,<=*k*,<=*d*<=≤<=1<=000) — the number of cakes needed, the time needed for one oven to bake *k* cakes, the number of cakes baked at the same time, the time needed to build the second oven.
|
If it is reasonable to build the second oven, print "YES". Otherwise print "NO".
|
[
"8 6 4 5\n",
"8 6 4 6\n",
"10 3 11 4\n",
"4 2 1 4\n"
] |
[
"YES\n",
"NO\n",
"NO\n",
"YES\n"
] |
In the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven.
In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven.
In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven.
| 500
|
[
{
"input": "8 6 4 5",
"output": "YES"
},
{
"input": "8 6 4 6",
"output": "NO"
},
{
"input": "10 3 11 4",
"output": "NO"
},
{
"input": "4 2 1 4",
"output": "YES"
},
{
"input": "28 17 16 26",
"output": "NO"
},
{
"input": "60 69 9 438",
"output": "NO"
},
{
"input": "599 97 54 992",
"output": "YES"
},
{
"input": "11 22 18 17",
"output": "NO"
},
{
"input": "1 13 22 11",
"output": "NO"
},
{
"input": "1 1 1 1",
"output": "NO"
},
{
"input": "3 1 1 1",
"output": "YES"
},
{
"input": "1000 1000 1000 1000",
"output": "NO"
},
{
"input": "1000 1000 1 1",
"output": "YES"
},
{
"input": "1000 1000 1 400",
"output": "YES"
},
{
"input": "1000 1000 1 1000",
"output": "YES"
},
{
"input": "1000 1000 1 999",
"output": "YES"
},
{
"input": "53 11 3 166",
"output": "YES"
},
{
"input": "313 2 3 385",
"output": "NO"
},
{
"input": "214 9 9 412",
"output": "NO"
},
{
"input": "349 9 5 268",
"output": "YES"
},
{
"input": "611 16 8 153",
"output": "YES"
},
{
"input": "877 13 3 191",
"output": "YES"
},
{
"input": "340 9 9 10",
"output": "YES"
},
{
"input": "31 8 2 205",
"output": "NO"
},
{
"input": "519 3 2 148",
"output": "YES"
},
{
"input": "882 2 21 219",
"output": "NO"
},
{
"input": "982 13 5 198",
"output": "YES"
},
{
"input": "428 13 6 272",
"output": "YES"
},
{
"input": "436 16 14 26",
"output": "YES"
},
{
"input": "628 10 9 386",
"output": "YES"
},
{
"input": "77 33 18 31",
"output": "YES"
},
{
"input": "527 36 4 8",
"output": "YES"
},
{
"input": "128 18 2 169",
"output": "YES"
},
{
"input": "904 4 2 288",
"output": "YES"
},
{
"input": "986 4 3 25",
"output": "YES"
},
{
"input": "134 8 22 162",
"output": "NO"
},
{
"input": "942 42 3 69",
"output": "YES"
},
{
"input": "894 4 9 4",
"output": "YES"
},
{
"input": "953 8 10 312",
"output": "YES"
},
{
"input": "43 8 1 121",
"output": "YES"
},
{
"input": "12 13 19 273",
"output": "NO"
},
{
"input": "204 45 10 871",
"output": "YES"
},
{
"input": "342 69 50 425",
"output": "NO"
},
{
"input": "982 93 99 875",
"output": "NO"
},
{
"input": "283 21 39 132",
"output": "YES"
},
{
"input": "1000 45 83 686",
"output": "NO"
},
{
"input": "246 69 36 432",
"output": "NO"
},
{
"input": "607 93 76 689",
"output": "NO"
},
{
"input": "503 21 24 435",
"output": "NO"
},
{
"input": "1000 45 65 989",
"output": "NO"
},
{
"input": "30 21 2 250",
"output": "YES"
},
{
"input": "1000 49 50 995",
"output": "NO"
},
{
"input": "383 69 95 253",
"output": "YES"
},
{
"input": "393 98 35 999",
"output": "YES"
},
{
"input": "1000 22 79 552",
"output": "NO"
},
{
"input": "268 294 268 154",
"output": "NO"
},
{
"input": "963 465 706 146",
"output": "YES"
},
{
"input": "304 635 304 257",
"output": "NO"
},
{
"input": "4 2 1 6",
"output": "NO"
},
{
"input": "1 51 10 50",
"output": "NO"
},
{
"input": "5 5 4 4",
"output": "YES"
},
{
"input": "3 2 1 1",
"output": "YES"
},
{
"input": "3 4 3 3",
"output": "NO"
},
{
"input": "7 3 4 1",
"output": "YES"
},
{
"input": "101 10 1 1000",
"output": "NO"
},
{
"input": "5 1 1 1",
"output": "YES"
},
{
"input": "5 10 5 5",
"output": "NO"
},
{
"input": "19 1 7 1",
"output": "YES"
},
{
"input": "763 572 745 262",
"output": "YES"
},
{
"input": "1 2 1 1",
"output": "NO"
},
{
"input": "5 1 1 3",
"output": "YES"
},
{
"input": "170 725 479 359",
"output": "NO"
},
{
"input": "6 2 1 7",
"output": "YES"
},
{
"input": "6 2 5 1",
"output": "YES"
},
{
"input": "1 2 2 1",
"output": "NO"
},
{
"input": "24 2 8 3",
"output": "YES"
},
{
"input": "7 3 3 3",
"output": "YES"
},
{
"input": "5 2 2 2",
"output": "YES"
},
{
"input": "3 2 1 2",
"output": "YES"
},
{
"input": "1000 2 200 8",
"output": "NO"
},
{
"input": "3 100 2 100",
"output": "NO"
},
{
"input": "2 999 1 1000",
"output": "NO"
},
{
"input": "2 1 1 1",
"output": "NO"
},
{
"input": "2 3 5 1",
"output": "NO"
},
{
"input": "100 1 5 1",
"output": "YES"
},
{
"input": "7 2 3 3",
"output": "YES"
},
{
"input": "4 1 1 3",
"output": "NO"
},
{
"input": "3 2 2 1",
"output": "YES"
},
{
"input": "1 1 1 2",
"output": "NO"
},
{
"input": "91 8 7 13",
"output": "YES"
},
{
"input": "3 1 2 1",
"output": "NO"
},
{
"input": "5 3 2 3",
"output": "YES"
},
{
"input": "9 6 6 3",
"output": "YES"
}
] | 1,694,610,537
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 6
| 31
| 0
|
u = list(map(int,input().split()))
x = (u[1]+u[3]) / u[1]
if x* u[2] < u[0]:
print("YES")
else :
print("NO")
|
Title: Carrot Cakes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In some game by Playrix it takes *t* minutes for an oven to bake *k* carrot cakes, all cakes are ready at the same moment *t* minutes after they started baking. Arkady needs at least *n* cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take *d* minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven.
Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get *n* cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable.
Input Specification:
The only line contains four integers *n*, *t*, *k*, *d* (1<=≤<=*n*,<=*t*,<=*k*,<=*d*<=≤<=1<=000) — the number of cakes needed, the time needed for one oven to bake *k* cakes, the number of cakes baked at the same time, the time needed to build the second oven.
Output Specification:
If it is reasonable to build the second oven, print "YES". Otherwise print "NO".
Demo Input:
['8 6 4 5\n', '8 6 4 6\n', '10 3 11 4\n', '4 2 1 4\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n', 'YES\n']
Note:
In the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven.
In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven.
In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven.
|
```python
u = list(map(int,input().split()))
x = (u[1]+u[3]) / u[1]
if x* u[2] < u[0]:
print("YES")
else :
print("NO")
```
| 0
|
|
349
|
B
|
Color the Fence
|
PROGRAMMING
| 1,700
|
[
"data structures",
"dp",
"greedy",
"implementation"
] | null | null |
Igor has fallen in love with Tanya. Now Igor wants to show his feelings and write a number on the fence opposite to Tanya's house. Igor thinks that the larger the number is, the more chance to win Tanya's heart he has.
Unfortunately, Igor could only get *v* liters of paint. He did the math and concluded that digit *d* requires *a**d* liters of paint. Besides, Igor heard that Tanya doesn't like zeroes. That's why Igor won't use them in his number.
Help Igor find the maximum number he can write on the fence.
|
The first line contains a positive integer *v* (0<=≤<=*v*<=≤<=106). The second line contains nine positive integers *a*1,<=*a*2,<=...,<=*a*9 (1<=≤<=*a**i*<=≤<=105).
|
Print the maximum number Igor can write on the fence. If he has too little paint for any digit (so, he cannot write anything), print -1.
|
[
"5\n5 4 3 2 1 2 3 4 5\n",
"2\n9 11 1 12 5 8 9 10 6\n",
"0\n1 1 1 1 1 1 1 1 1\n"
] |
[
"55555\n",
"33\n",
"-1\n"
] |
none
| 1,000
|
[
{
"input": "5\n5 4 3 2 1 2 3 4 5",
"output": "55555"
},
{
"input": "2\n9 11 1 12 5 8 9 10 6",
"output": "33"
},
{
"input": "0\n1 1 1 1 1 1 1 1 1",
"output": "-1"
},
{
"input": "50\n5 3 10 2 2 4 3 6 5",
"output": "5555555555555555555555555"
},
{
"input": "22\n405 343 489 474 385 23 100 94 276",
"output": "-1"
},
{
"input": "62800\n867 936 2 888 474 530 287 822 220",
"output": "3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333..."
},
{
"input": "27\n836 637 966 929 82 678 213 465 688",
"output": "-1"
},
{
"input": "1000000\n100000 100000 100000 100000 100000 100000 100000 100000 100000",
"output": "9999999999"
},
{
"input": "898207\n99745 99746 99748 99752 99760 99776 99808 99872 100000",
"output": "987654321"
},
{
"input": "80910\n64537 83748 97081 82722 12334 3056 9491 59130 28478",
"output": "66666666666666666666666666"
},
{
"input": "120081\n11268 36403 73200 12674 83919 74218 74172 91581 68432",
"output": "4444411111"
},
{
"input": "839851\n29926 55862 57907 51153 56350 86145 1909 22622 89861",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777"
},
{
"input": "751233\n69761 51826 91095 73642 98995 93262 377 38818 97480",
"output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "306978\n95955 99204 81786 41258 96065 46946 64532 36297 70808",
"output": "88888888"
},
{
"input": "366313\n18486 12701 92334 95391 61480 14118 20465 69784 13592",
"output": "9999999999922222222222222222"
},
{
"input": "320671\n95788 46450 97582 95928 47742 15508 10466 10301 38822",
"output": "8888888888888888888888888888888"
},
{
"input": "913928\n80373 47589 53204 68236 44060 97485 82241 44149 59825",
"output": "99888888888888855555"
},
{
"input": "630384\n19652 11530 20316 3161 87360 64207 74067 77894 81452",
"output": "4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "95\n22076 12056 63350 12443 43123 585 52908 18372 96799",
"output": "-1"
},
{
"input": "271380\n19135 80309 23783 48534 98990 37278 85258 67602 40288",
"output": "11111111111111"
},
{
"input": "80085\n56973 29725 30219 17439 53162 6051 41388 35555 39392",
"output": "6666666666666"
},
{
"input": "201332\n20008 22829 30296 1967 32154 67760 11437 90972 79865",
"output": "444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444"
},
{
"input": "3402\n64151 98148 81468 82342 48823 93464 5989 58868 77138",
"output": "-1"
},
{
"input": "432544\n95724 98294 23292 24174 57778 95072 81898 50019 86824",
"output": "444444444444444333"
},
{
"input": "1000000\n1 1 1 1 1 1 1 1 1",
"output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999..."
},
{
"input": "1000000\n2 2 2 2 2 2 2 2 2",
"output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999..."
},
{
"input": "1000000\n2 3 2 2 3 2 2 3 2",
"output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999..."
},
{
"input": "999999\n2 3 2 2 3 2 2 3 3",
"output": "9777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..."
},
{
"input": "153\n85 91 28 53 29 30 92 36 89",
"output": "86653"
},
{
"input": "26531\n64 93 48 49 86 57 93 60 96",
"output": "8864433333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333..."
},
{
"input": "17186\n50 90 76 51 91 54 71 90 73",
"output": "9666411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111"
},
{
"input": "11213\n51 82 49 50 99 52 69 96 85",
"output": "964433333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"
},
{
"input": "20075\n57 42 99 45 56 80 76 71 63",
"output": "954422222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222"
},
{
"input": "21069\n31 19 49 30 28 43 21 25 28",
"output": "9872222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222..."
},
{
"input": "4822\n35 36 21 13 34 36 14 16 20",
"output": "9877444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444"
}
] | 1,654,207,251
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 35
| 528
| 44,851,200
|
import math
import bisect
def main():
v = int(input())
aux = list(map(int, input().split()))
liters = [(aux[i], i+1) for i in range(0, 9)]
liters = sorted(liters, key = lambda x : (x[0], -x[1]))
if v < liters[0][0]:
print(-1)
else:
num_rep = v//liters[0][0]
liters_used = num_rep * liters[0][0]
answer = [liters[0][1] for _ in range(0, num_rep)]
for i in range(0, len(answer)):
for j in range(9, 0, -1):
if liters_used - liters[0][0] + aux[j - 1] <= v:
liters_used = liters_used - liters[0][0] + aux[j - 1]
answer[i] = j
break
answer = list(map(str, answer))
answer = "".join(answer)
print(answer)
main()
|
Title: Color the Fence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Igor has fallen in love with Tanya. Now Igor wants to show his feelings and write a number on the fence opposite to Tanya's house. Igor thinks that the larger the number is, the more chance to win Tanya's heart he has.
Unfortunately, Igor could only get *v* liters of paint. He did the math and concluded that digit *d* requires *a**d* liters of paint. Besides, Igor heard that Tanya doesn't like zeroes. That's why Igor won't use them in his number.
Help Igor find the maximum number he can write on the fence.
Input Specification:
The first line contains a positive integer *v* (0<=≤<=*v*<=≤<=106). The second line contains nine positive integers *a*1,<=*a*2,<=...,<=*a*9 (1<=≤<=*a**i*<=≤<=105).
Output Specification:
Print the maximum number Igor can write on the fence. If he has too little paint for any digit (so, he cannot write anything), print -1.
Demo Input:
['5\n5 4 3 2 1 2 3 4 5\n', '2\n9 11 1 12 5 8 9 10 6\n', '0\n1 1 1 1 1 1 1 1 1\n']
Demo Output:
['55555\n', '33\n', '-1\n']
Note:
none
|
```python
import math
import bisect
def main():
v = int(input())
aux = list(map(int, input().split()))
liters = [(aux[i], i+1) for i in range(0, 9)]
liters = sorted(liters, key = lambda x : (x[0], -x[1]))
if v < liters[0][0]:
print(-1)
else:
num_rep = v//liters[0][0]
liters_used = num_rep * liters[0][0]
answer = [liters[0][1] for _ in range(0, num_rep)]
for i in range(0, len(answer)):
for j in range(9, 0, -1):
if liters_used - liters[0][0] + aux[j - 1] <= v:
liters_used = liters_used - liters[0][0] + aux[j - 1]
answer[i] = j
break
answer = list(map(str, answer))
answer = "".join(answer)
print(answer)
main()
```
| 3
|
|
337
|
A
|
Puzzles
|
PROGRAMMING
| 900
|
[
"greedy"
] | null | null |
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
|
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
|
Print a single integer — the least possible difference the teacher can obtain.
|
[
"4 6\n10 12 10 7 5 22\n"
] |
[
"5\n"
] |
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
| 500
|
[
{
"input": "4 6\n10 12 10 7 5 22",
"output": "5"
},
{
"input": "2 2\n4 4",
"output": "0"
},
{
"input": "2 10\n4 5 6 7 8 9 10 11 12 12",
"output": "0"
},
{
"input": "4 5\n818 136 713 59 946",
"output": "759"
},
{
"input": "3 20\n446 852 783 313 549 965 40 88 86 617 479 118 768 34 47 826 366 957 463 903",
"output": "13"
},
{
"input": "2 25\n782 633 152 416 432 825 115 97 386 357 836 310 530 413 354 373 847 882 913 682 729 582 671 674 94",
"output": "3"
},
{
"input": "4 25\n226 790 628 528 114 64 239 279 619 39 894 763 763 847 525 93 882 697 999 643 650 244 159 884 190",
"output": "31"
},
{
"input": "2 50\n971 889 628 39 253 157 925 694 129 516 660 272 738 319 611 816 142 717 514 392 41 105 132 676 958 118 306 768 600 685 103 857 704 346 857 309 23 718 618 161 176 379 846 834 640 468 952 878 164 997",
"output": "0"
},
{
"input": "25 50\n582 146 750 905 313 509 402 21 488 512 32 898 282 64 579 869 37 996 377 929 975 697 666 837 311 205 116 992 533 298 648 268 54 479 792 595 152 69 267 417 184 433 894 603 988 712 24 414 301 176",
"output": "412"
},
{
"input": "49 50\n58 820 826 960 271 294 473 102 925 318 729 672 244 914 796 646 868 6 893 882 726 203 528 498 271 195 355 459 721 680 547 147 631 116 169 804 145 996 133 559 110 257 771 476 576 251 607 314 427 886",
"output": "938"
},
{
"input": "50 50\n374 573 323 744 190 806 485 247 628 336 491 606 702 321 991 678 337 579 86 240 993 208 668 686 855 205 363 177 719 249 896 919 782 434 59 647 787 996 286 216 636 212 546 903 958 559 544 126 608 993",
"output": "937"
},
{
"input": "6 50\n6 8 7 8 5 4 4 5 7 8 6 5 7 4 7 7 7 8 6 4 6 6 8 8 7 7 8 7 5 8 5 4 4 7 8 4 4 6 6 6 8 7 4 7 6 6 5 8 4 7",
"output": "0"
},
{
"input": "37 50\n14 5 11 17 8 20 19 16 20 11 17 20 16 9 14 14 13 18 11 20 8 8 8 5 19 17 6 18 10 20 9 7 12 6 14 17 4 4 10 13 7 4 11 6 20 19 12 12 15 19",
"output": "12"
},
{
"input": "40 50\n4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "0"
},
{
"input": "40 50\n17 20 43 26 41 37 14 8 30 35 30 24 43 8 42 9 41 50 41 35 27 32 35 43 28 36 31 16 5 7 23 16 14 29 8 39 12 16 36 18 49 39 33 37 38 6 6 27 23 17",
"output": "31"
},
{
"input": "2 2\n1000 4",
"output": "996"
},
{
"input": "2 3\n4 502 1000",
"output": "498"
},
{
"input": "3 3\n4 1000 4",
"output": "996"
}
] | 1,673,005,106
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 92
| 0
|
n,m =map(int,input().split())
l=list(map(int, input().split()))
l=sorted(l)
min=min(l)
ans=l[n-1]-min
print(ans)
# 10 12 10 7 5 22
|
Title: Puzzles
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her *n* students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).
The shop assistant told the teacher that there are *m* puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of *f*1 pieces, the second one consists of *f*2 pieces and so on.
Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let *A* be the number of pieces in the largest puzzle that the teacher buys and *B* be the number of pieces in the smallest such puzzle. She wants to choose such *n* puzzles that *A*<=-<=*B* is minimum possible. Help the teacher and find the least possible value of *A*<=-<=*B*.
Input Specification:
The first line contains space-separated integers *n* and *m* (2<=≤<=*n*<=≤<=*m*<=≤<=50). The second line contains *m* space-separated integers *f*1,<=*f*2,<=...,<=*f**m* (4<=≤<=*f**i*<=≤<=1000) — the quantities of pieces in the puzzles sold in the shop.
Output Specification:
Print a single integer — the least possible difference the teacher can obtain.
Demo Input:
['4 6\n10 12 10 7 5 22\n']
Demo Output:
['5\n']
Note:
Sample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5.
|
```python
n,m =map(int,input().split())
l=list(map(int, input().split()))
l=sorted(l)
min=min(l)
ans=l[n-1]-min
print(ans)
# 10 12 10 7 5 22
```
| 0
|
|
158
|
A
|
Next Round
|
PROGRAMMING
| 800
|
[
"*special",
"implementation"
] | null | null |
"Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules.
A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round.
|
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1).
|
Output the number of participants who advance to the next round.
|
[
"8 5\n10 9 8 7 7 7 5 5\n",
"4 2\n0 0 0 0\n"
] |
[
"6\n",
"0\n"
] |
In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers.
In the second example nobody got a positive score.
| 500
|
[
{
"input": "8 5\n10 9 8 7 7 7 5 5",
"output": "6"
},
{
"input": "4 2\n0 0 0 0",
"output": "0"
},
{
"input": "5 1\n1 1 1 1 1",
"output": "5"
},
{
"input": "5 5\n1 1 1 1 1",
"output": "5"
},
{
"input": "1 1\n10",
"output": "1"
},
{
"input": "17 14\n16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0",
"output": "14"
},
{
"input": "5 5\n3 2 1 0 0",
"output": "3"
},
{
"input": "8 6\n10 9 8 7 7 7 5 5",
"output": "6"
},
{
"input": "8 7\n10 9 8 7 7 7 5 5",
"output": "8"
},
{
"input": "8 4\n10 9 8 7 7 7 5 5",
"output": "6"
},
{
"input": "8 3\n10 9 8 7 7 7 5 5",
"output": "3"
},
{
"input": "8 1\n10 9 8 7 7 7 5 5",
"output": "1"
},
{
"input": "8 2\n10 9 8 7 7 7 5 5",
"output": "2"
},
{
"input": "1 1\n100",
"output": "1"
},
{
"input": "1 1\n0",
"output": "0"
},
{
"input": "50 25\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "50"
},
{
"input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "25"
},
{
"input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "26"
},
{
"input": "50 25\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "50"
},
{
"input": "11 5\n100 99 98 97 96 95 94 93 92 91 90",
"output": "5"
},
{
"input": "10 4\n100 81 70 69 64 43 34 29 15 3",
"output": "4"
},
{
"input": "11 6\n87 71 62 52 46 46 43 35 32 25 12",
"output": "6"
},
{
"input": "17 12\n99 88 86 82 75 75 74 65 58 52 45 30 21 16 7 2 2",
"output": "12"
},
{
"input": "20 3\n98 98 96 89 87 82 82 80 76 74 74 68 61 60 43 32 30 22 4 2",
"output": "3"
},
{
"input": "36 12\n90 87 86 85 83 80 79 78 76 70 69 69 61 61 59 58 56 48 45 44 42 41 33 31 27 25 23 21 20 19 15 14 12 7 5 5",
"output": "12"
},
{
"input": "49 8\n99 98 98 96 92 92 90 89 89 86 86 85 83 80 79 76 74 69 67 67 58 56 55 51 49 47 47 46 45 41 41 40 39 34 34 33 25 23 18 15 13 13 11 9 5 4 3 3 1",
"output": "9"
},
{
"input": "49 29\n100 98 98 96 96 96 95 87 85 84 81 76 74 70 63 63 63 62 57 57 56 54 53 52 50 47 45 41 41 39 38 31 30 28 27 26 23 22 20 15 15 11 7 6 6 4 2 1 0",
"output": "29"
},
{
"input": "49 34\n99 98 96 96 93 92 90 89 88 86 85 85 82 76 73 69 66 64 63 63 60 59 57 57 56 55 54 54 51 48 47 44 42 42 40 39 38 36 33 26 24 23 19 17 17 14 12 7 4",
"output": "34"
},
{
"input": "50 44\n100 100 99 97 95 91 91 84 83 83 79 71 70 69 69 62 61 60 59 59 58 58 58 55 55 54 52 48 47 45 44 44 38 36 32 31 28 28 25 25 24 24 24 22 17 15 14 13 12 4",
"output": "44"
},
{
"input": "50 13\n99 95 94 94 88 87 81 79 78 76 74 72 72 69 68 67 67 67 66 63 62 61 58 57 55 55 54 51 50 50 48 48 42 41 38 35 34 32 31 30 26 24 13 13 12 6 5 4 3 3",
"output": "13"
},
{
"input": "50 30\n100 98 96 94 91 89 88 81 81 81 81 81 76 73 72 71 70 69 66 64 61 59 59 56 52 50 49 48 43 39 36 35 34 34 31 29 27 26 24 22 16 16 15 14 14 14 9 7 4 3",
"output": "30"
},
{
"input": "2 1\n10 10",
"output": "2"
},
{
"input": "2 2\n10 10",
"output": "2"
},
{
"input": "2 2\n10 0",
"output": "1"
},
{
"input": "2 2\n10 1",
"output": "2"
},
{
"input": "2 1\n10 0",
"output": "1"
},
{
"input": "2 1\n10 2",
"output": "1"
},
{
"input": "50 13\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "50 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "50 50\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "10 1\n5 5 5 3 3 3 0 0 0 0",
"output": "3"
},
{
"input": "10 2\n5 5 5 3 3 3 0 0 0 0",
"output": "3"
},
{
"input": "10 3\n5 5 5 3 3 3 0 0 0 0",
"output": "3"
},
{
"input": "10 4\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 5\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 6\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 7\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 8\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 9\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
},
{
"input": "10 10\n5 5 5 3 3 3 0 0 0 0",
"output": "6"
}
] | 1,698,925,217
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 62
| 0
|
n=int(input())
k=int(input())
scores=[]
c=0
for i in range(n):
item=int(input())
scores.append(item)
for i in range(n):
if scores[i]>=scores[k-1]:
c=c+1
print('t')
print(c)
|
Title: Next Round
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"Contestant who earns a score equal to or greater than the *k*-th place finisher's score will advance to the next round, as long as the contestant earns a positive score..." — an excerpt from contest rules.
A total of *n* participants took part in the contest (*n*<=≥<=*k*), and you already know their scores. Calculate how many participants will advance to the next round.
Input Specification:
The first line of the input contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50) separated by a single space.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100), where *a**i* is the score earned by the participant who got the *i*-th place. The given sequence is non-increasing (that is, for all *i* from 1 to *n*<=-<=1 the following condition is fulfilled: *a**i*<=≥<=*a**i*<=+<=1).
Output Specification:
Output the number of participants who advance to the next round.
Demo Input:
['8 5\n10 9 8 7 7 7 5 5\n', '4 2\n0 0 0 0\n']
Demo Output:
['6\n', '0\n']
Note:
In the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers.
In the second example nobody got a positive score.
|
```python
n=int(input())
k=int(input())
scores=[]
c=0
for i in range(n):
item=int(input())
scores.append(item)
for i in range(n):
if scores[i]>=scores[k-1]:
c=c+1
print('t')
print(c)
```
| -1
|
|
9
|
C
|
Hexadecimal's Numbers
|
PROGRAMMING
| 1,200
|
[
"brute force",
"implementation",
"math"
] |
C. Hexadecimal's Numbers
|
1
|
64
|
One beautiful July morning a terrible thing happened in Mainframe: a mean virus Megabyte somehow got access to the memory of his not less mean sister Hexadecimal. He loaded there a huge amount of *n* different natural numbers from 1 to *n* to obtain total control over her energy.
But his plan failed. The reason for this was very simple: Hexadecimal didn't perceive any information, apart from numbers written in binary format. This means that if a number in a decimal representation contained characters apart from 0 and 1, it was not stored in the memory. Now Megabyte wants to know, how many numbers were loaded successfully.
|
Input data contains the only number *n* (1<=≤<=*n*<=≤<=109).
|
Output the only number — answer to the problem.
|
[
"10\n"
] |
[
"2"
] |
For *n* = 10 the answer includes numbers 1 and 10.
| 0
|
[
{
"input": "10",
"output": "2"
},
{
"input": "20",
"output": "3"
},
{
"input": "72",
"output": "3"
},
{
"input": "99",
"output": "3"
},
{
"input": "100",
"output": "4"
},
{
"input": "101",
"output": "5"
},
{
"input": "102",
"output": "5"
},
{
"input": "111",
"output": "7"
},
{
"input": "112",
"output": "7"
},
{
"input": "745",
"output": "7"
},
{
"input": "23536",
"output": "31"
},
{
"input": "1",
"output": "1"
},
{
"input": "1010011",
"output": "83"
},
{
"input": "312410141",
"output": "511"
},
{
"input": "1000000000",
"output": "512"
},
{
"input": "999999999",
"output": "511"
},
{
"input": "111111111",
"output": "511"
},
{
"input": "101010101",
"output": "341"
},
{
"input": "121212121",
"output": "511"
},
{
"input": "106341103",
"output": "383"
},
{
"input": "901556123",
"output": "511"
},
{
"input": "832513432",
"output": "511"
},
{
"input": "3",
"output": "1"
},
{
"input": "732875234",
"output": "511"
},
{
"input": "7",
"output": "1"
},
{
"input": "9",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "11",
"output": "3"
},
{
"input": "12",
"output": "3"
},
{
"input": "13",
"output": "3"
},
{
"input": "101020101",
"output": "351"
},
{
"input": "111100100",
"output": "484"
},
{
"input": "110110101",
"output": "437"
},
{
"input": "100111001",
"output": "313"
},
{
"input": "100100",
"output": "36"
},
{
"input": "110100102",
"output": "421"
}
] | 1,637,691,329
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 62
| 0
|
import sys
import math
from sys import stdin, stdout
from itertools import permutations
# TAKE INPUT
def get_ints_in_variables():
return map(int, sys.stdin.readline().strip().split())
def get_int(): return int(input())
def get_ints_in_list(): return list(
map(int, sys.stdin.readline().strip().split()))
def get_list_of_list(n): return [list(
map(int, sys.stdin.readline().strip().split())) for _ in range(n)]
def get_string(): return sys.stdin.readline().strip()
def main():
# Write Your Code Here
num = input()
n = len(num)
if n == 1:
print(1)
return
else:
count = 0
newStr = ""
for i in range(1, n+1):
newStr += "1"
tempStr = ""
tempStr+= newStr
for j in range(i+1, n+1):
tempStr+="0"
# tempStr.sort()
tempStr = ''.join(sorted(tempStr))
# if int(tempStr <= n):
# count += 1
permutation = [''.join(p) for p in permutations(tempStr)]
# print(permutation)
start = 0
end = len(permutation)
while start < end:
if int(permutation[start]) <= int(num):
count += 1
start += 1
print(count)
# calling main Function
if __name__ == "__main__":
main()
|
Title: Hexadecimal's Numbers
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
One beautiful July morning a terrible thing happened in Mainframe: a mean virus Megabyte somehow got access to the memory of his not less mean sister Hexadecimal. He loaded there a huge amount of *n* different natural numbers from 1 to *n* to obtain total control over her energy.
But his plan failed. The reason for this was very simple: Hexadecimal didn't perceive any information, apart from numbers written in binary format. This means that if a number in a decimal representation contained characters apart from 0 and 1, it was not stored in the memory. Now Megabyte wants to know, how many numbers were loaded successfully.
Input Specification:
Input data contains the only number *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Output the only number — answer to the problem.
Demo Input:
['10\n']
Demo Output:
['2']
Note:
For *n* = 10 the answer includes numbers 1 and 10.
|
```python
import sys
import math
from sys import stdin, stdout
from itertools import permutations
# TAKE INPUT
def get_ints_in_variables():
return map(int, sys.stdin.readline().strip().split())
def get_int(): return int(input())
def get_ints_in_list(): return list(
map(int, sys.stdin.readline().strip().split()))
def get_list_of_list(n): return [list(
map(int, sys.stdin.readline().strip().split())) for _ in range(n)]
def get_string(): return sys.stdin.readline().strip()
def main():
# Write Your Code Here
num = input()
n = len(num)
if n == 1:
print(1)
return
else:
count = 0
newStr = ""
for i in range(1, n+1):
newStr += "1"
tempStr = ""
tempStr+= newStr
for j in range(i+1, n+1):
tempStr+="0"
# tempStr.sort()
tempStr = ''.join(sorted(tempStr))
# if int(tempStr <= n):
# count += 1
permutation = [''.join(p) for p in permutations(tempStr)]
# print(permutation)
start = 0
end = len(permutation)
while start < end:
if int(permutation[start]) <= int(num):
count += 1
start += 1
print(count)
# calling main Function
if __name__ == "__main__":
main()
```
| 0
|
644
|
B
|
Processing Queries
|
PROGRAMMING
| 1,700
|
[
"*special",
"constructive algorithms",
"data structures",
"two pointers"
] | null | null |
In this problem you have to simulate the workflow of one-thread server. There are *n* queries to process, the *i*-th will be received at moment *t**i* and needs to be processed for *d**i* units of time. All *t**i* are guaranteed to be distinct.
When a query appears server may react in three possible ways:
1. If server is free and query queue is empty, then server immediately starts to process this query. 1. If server is busy and there are less than *b* queries in the queue, then new query is added to the end of the queue. 1. If server is busy and there are already *b* queries pending in the queue, then new query is just rejected and will never be processed.
As soon as server finished to process some query, it picks new one from the queue (if it's not empty, of course). If a new query comes at some moment *x*, and the server finishes to process another query at exactly the same moment, we consider that first query is picked from the queue and only then new query appears.
For each query find the moment when the server will finish to process it or print -1 if this query will be rejected.
|
The first line of the input contains two integers *n* and *b* (1<=≤<=*n*,<=*b*<=≤<=200<=000) — the number of queries and the maximum possible size of the query queue.
Then follow *n* lines with queries descriptions (in chronological order). Each description consists of two integers *t**i* and *d**i* (1<=≤<=*t**i*,<=*d**i*<=≤<=109), where *t**i* is the moment of time when the *i*-th query appears and *d**i* is the time server needs to process it. It is guaranteed that *t**i*<=-<=1<=<<=*t**i* for all *i*<=><=1.
|
Print the sequence of *n* integers *e*1,<=*e*2,<=...,<=*e**n*, where *e**i* is the moment the server will finish to process the *i*-th query (queries are numbered in the order they appear in the input) or <=-<=1 if the corresponding query will be rejected.
|
[
"5 1\n2 9\n4 8\n10 9\n15 2\n19 1\n",
"4 1\n2 8\n4 8\n10 9\n15 2\n"
] |
[
"11 19 -1 21 22 \n",
"10 18 27 -1 \n"
] |
Consider the first sample.
1. The server will start to process first query at the moment 2 and will finish to process it at the moment 11. 1. At the moment 4 second query appears and proceeds to the queue. 1. At the moment 10 third query appears. However, the server is still busy with query 1, *b* = 1 and there is already query 2 pending in the queue, so third query is just rejected. 1. At the moment 11 server will finish to process first query and will take the second query from the queue. 1. At the moment 15 fourth query appears. As the server is currently busy it proceeds to the queue. 1. At the moment 19 two events occur simultaneously: server finishes to proceed the second query and the fifth query appears. As was said in the statement above, first server will finish to process the second query, then it will pick the fourth query from the queue and only then will the fifth query appear. As the queue is empty fifth query is proceed there. 1. Server finishes to process query number 4 at the moment 21. Query number 5 is picked from the queue. 1. Server finishes to process query number 5 at the moment 22.
| 1,000
|
[
{
"input": "5 1\n2 9\n4 8\n10 9\n15 2\n19 1",
"output": "11 19 -1 21 22 "
},
{
"input": "4 1\n2 8\n4 8\n10 9\n15 2",
"output": "10 18 27 -1 "
},
{
"input": "1 1\n1000000000 1000000000",
"output": "2000000000 "
},
{
"input": "4 3\n999999996 1000000000\n999999997 1000000000\n999999998 1000000000\n999999999 1000000000",
"output": "1999999996 2999999996 3999999996 4999999996 "
},
{
"input": "5 1\n2 1\n3 6\n4 5\n6 4\n7 2",
"output": "3 9 14 -1 -1 "
},
{
"input": "10 2\n4 14\n5 2\n6 6\n7 11\n8 6\n9 5\n10 13\n11 8\n13 2\n20 2",
"output": "18 20 26 -1 -1 -1 -1 -1 -1 28 "
},
{
"input": "6 4\n2 4\n4 2\n5 2\n6 2\n7 2\n9 2",
"output": "6 8 10 12 14 16 "
},
{
"input": "8 3\n1 2\n3 1\n4 3\n5 3\n6 1\n7 2\n8 8\n9 7",
"output": "3 4 7 10 11 13 21 -1 "
},
{
"input": "10 3\n1 14\n3 2\n5 4\n6 9\n9 1\n12 22\n15 11\n18 8\n28 2\n29 4",
"output": "15 17 21 30 -1 -1 41 49 51 -1 "
},
{
"input": "5 2\n2 7\n3 3\n7 4\n9 1\n10 2",
"output": "9 12 16 17 -1 "
},
{
"input": "4 1\n2 1\n6 5\n9 2\n10 3",
"output": "3 11 13 -1 "
},
{
"input": "4 1\n1 2\n2 1\n3 1\n4 3",
"output": "3 4 5 8 "
},
{
"input": "6 3\n1 2\n2 3\n100 200\n200 300\n10000 20000\n20000 30000",
"output": "3 6 300 600 30000 60000 "
}
] | 1,564,603,763
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 11
| 2,682
| 30,412,800
|
#Processing Queries
import queue
class Query:
def __init__(self, t, d):
self.t = t
self.d = d
n, b = map(int, input().split())
a = []
for i in range(n):
t, d = map(int, input().split())
a.append(Query(t, d))
q = queue.Queue()
rejected_q = queue.Queue()
i = 0
while q.qsize() < b:
q.put(a[i])
i += 1
cur_time = a[0].t
while (not q.empty()) or (not rejected_q.empty()):
if not q.empty():
q_time = q.queue[0].t
else:
q_time = 10**9 + 5
if not rejected_q.empty():
rejected_time = rejected_q.queue[0].t
else:
rejected_time = 10**9 + 5
if q_time < rejected_time:
print(cur_time + q.queue[0].d, end=' ')
else:
print(-1, end=' ')
rejected_q.get()
continue
if not q.empty():
cur_time += q.queue[0].d
q.get()
if i < n:
q.put(a[i])
i += 1
while i < n:
if a[i].t < cur_time:
rejected_q.put(a[i])
i += 1
else:
break
|
Title: Processing Queries
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In this problem you have to simulate the workflow of one-thread server. There are *n* queries to process, the *i*-th will be received at moment *t**i* and needs to be processed for *d**i* units of time. All *t**i* are guaranteed to be distinct.
When a query appears server may react in three possible ways:
1. If server is free and query queue is empty, then server immediately starts to process this query. 1. If server is busy and there are less than *b* queries in the queue, then new query is added to the end of the queue. 1. If server is busy and there are already *b* queries pending in the queue, then new query is just rejected and will never be processed.
As soon as server finished to process some query, it picks new one from the queue (if it's not empty, of course). If a new query comes at some moment *x*, and the server finishes to process another query at exactly the same moment, we consider that first query is picked from the queue and only then new query appears.
For each query find the moment when the server will finish to process it or print -1 if this query will be rejected.
Input Specification:
The first line of the input contains two integers *n* and *b* (1<=≤<=*n*,<=*b*<=≤<=200<=000) — the number of queries and the maximum possible size of the query queue.
Then follow *n* lines with queries descriptions (in chronological order). Each description consists of two integers *t**i* and *d**i* (1<=≤<=*t**i*,<=*d**i*<=≤<=109), where *t**i* is the moment of time when the *i*-th query appears and *d**i* is the time server needs to process it. It is guaranteed that *t**i*<=-<=1<=<<=*t**i* for all *i*<=><=1.
Output Specification:
Print the sequence of *n* integers *e*1,<=*e*2,<=...,<=*e**n*, where *e**i* is the moment the server will finish to process the *i*-th query (queries are numbered in the order they appear in the input) or <=-<=1 if the corresponding query will be rejected.
Demo Input:
['5 1\n2 9\n4 8\n10 9\n15 2\n19 1\n', '4 1\n2 8\n4 8\n10 9\n15 2\n']
Demo Output:
['11 19 -1 21 22 \n', '10 18 27 -1 \n']
Note:
Consider the first sample.
1. The server will start to process first query at the moment 2 and will finish to process it at the moment 11. 1. At the moment 4 second query appears and proceeds to the queue. 1. At the moment 10 third query appears. However, the server is still busy with query 1, *b* = 1 and there is already query 2 pending in the queue, so third query is just rejected. 1. At the moment 11 server will finish to process first query and will take the second query from the queue. 1. At the moment 15 fourth query appears. As the server is currently busy it proceeds to the queue. 1. At the moment 19 two events occur simultaneously: server finishes to proceed the second query and the fifth query appears. As was said in the statement above, first server will finish to process the second query, then it will pick the fourth query from the queue and only then will the fifth query appear. As the queue is empty fifth query is proceed there. 1. Server finishes to process query number 4 at the moment 21. Query number 5 is picked from the queue. 1. Server finishes to process query number 5 at the moment 22.
|
```python
#Processing Queries
import queue
class Query:
def __init__(self, t, d):
self.t = t
self.d = d
n, b = map(int, input().split())
a = []
for i in range(n):
t, d = map(int, input().split())
a.append(Query(t, d))
q = queue.Queue()
rejected_q = queue.Queue()
i = 0
while q.qsize() < b:
q.put(a[i])
i += 1
cur_time = a[0].t
while (not q.empty()) or (not rejected_q.empty()):
if not q.empty():
q_time = q.queue[0].t
else:
q_time = 10**9 + 5
if not rejected_q.empty():
rejected_time = rejected_q.queue[0].t
else:
rejected_time = 10**9 + 5
if q_time < rejected_time:
print(cur_time + q.queue[0].d, end=' ')
else:
print(-1, end=' ')
rejected_q.get()
continue
if not q.empty():
cur_time += q.queue[0].d
q.get()
if i < n:
q.put(a[i])
i += 1
while i < n:
if a[i].t < cur_time:
rejected_q.put(a[i])
i += 1
else:
break
```
| 0
|
|
863
|
B
|
Kayaking
|
PROGRAMMING
| 1,500
|
[
"brute force",
"greedy",
"sortings"
] | null | null |
Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers.
Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash.
Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks.
Help the party to determine minimum possible total instability!
|
The first line contains one number *n* (2<=≤<=*n*<=≤<=50).
The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000).
|
Print minimum possible total instability.
|
[
"2\n1 2 3 4\n",
"4\n1 3 4 6 3 4 100 200\n"
] |
[
"1\n",
"5\n"
] |
none
| 0
|
[
{
"input": "2\n1 2 3 4",
"output": "1"
},
{
"input": "4\n1 3 4 6 3 4 100 200",
"output": "5"
},
{
"input": "3\n305 139 205 406 530 206",
"output": "102"
},
{
"input": "3\n610 750 778 6 361 407",
"output": "74"
},
{
"input": "5\n97 166 126 164 154 98 221 7 51 47",
"output": "35"
},
{
"input": "50\n1 1 2 2 1 3 2 2 1 1 1 1 2 3 3 1 2 1 3 3 2 1 2 3 1 1 2 1 3 1 3 1 3 3 3 1 1 1 3 3 2 2 2 2 3 2 2 2 2 3 1 3 3 3 3 1 3 3 1 3 3 3 3 2 3 1 3 3 1 1 1 3 1 2 2 2 1 1 1 3 1 2 3 2 1 3 3 2 2 1 3 1 3 1 2 2 1 2 3 2",
"output": "0"
},
{
"input": "50\n5 5 5 5 4 2 2 3 2 2 4 1 5 5 1 2 4 2 4 2 5 2 2 2 2 3 2 4 2 5 5 4 3 1 2 3 3 5 4 2 2 5 2 4 5 5 4 4 1 5 5 3 2 2 5 1 3 3 2 4 4 5 1 2 3 4 4 1 3 3 3 5 1 2 4 4 4 4 2 5 2 5 3 2 4 5 5 2 1 1 2 4 5 3 2 1 2 4 4 4",
"output": "1"
},
{
"input": "50\n499 780 837 984 481 526 944 482 862 136 265 605 5 631 974 967 574 293 969 467 573 845 102 224 17 873 648 120 694 996 244 313 404 129 899 583 541 314 525 496 443 857 297 78 575 2 430 137 387 319 382 651 594 411 845 746 18 232 6 289 889 81 174 175 805 1000 799 950 475 713 951 685 729 925 262 447 139 217 788 514 658 572 784 185 112 636 10 251 621 218 210 89 597 553 430 532 264 11 160 476",
"output": "368"
},
{
"input": "50\n873 838 288 87 889 364 720 410 565 651 577 356 740 99 549 592 994 385 777 435 486 118 887 440 749 533 356 790 413 681 267 496 475 317 88 660 374 186 61 437 729 860 880 538 277 301 667 180 60 393 955 540 896 241 362 146 74 680 734 767 851 337 751 860 542 735 444 793 340 259 495 903 743 961 964 966 87 275 22 776 368 701 835 732 810 735 267 988 352 647 924 183 1 924 217 944 322 252 758 597",
"output": "393"
},
{
"input": "50\n297 787 34 268 439 629 600 398 425 833 721 908 830 636 64 509 420 647 499 675 427 599 396 119 798 742 577 355 22 847 389 574 766 453 196 772 808 261 106 844 726 975 173 992 874 89 775 616 678 52 69 591 181 573 258 381 665 301 589 379 362 146 790 842 765 100 229 916 938 97 340 793 758 177 736 396 247 562 571 92 923 861 165 748 345 703 431 930 101 761 862 595 505 393 126 846 431 103 596 21",
"output": "387"
},
{
"input": "50\n721 631 587 746 692 406 583 90 388 16 161 948 921 70 387 426 39 398 517 724 879 377 906 502 359 950 798 408 846 718 911 845 57 886 9 668 537 632 344 762 19 193 658 447 870 173 98 156 592 519 183 539 274 393 962 615 551 626 148 183 769 763 829 120 796 761 14 744 537 231 696 284 581 688 611 826 703 145 224 600 965 613 791 275 984 375 402 281 851 580 992 8 816 454 35 532 347 250 242 637",
"output": "376"
},
{
"input": "50\n849 475 37 120 754 183 758 374 543 198 896 691 11 607 198 343 761 660 239 669 628 259 223 182 216 158 20 565 454 884 137 923 156 22 310 77 267 707 582 169 120 308 439 309 59 152 206 696 210 177 296 887 559 22 154 553 142 247 491 692 473 572 461 206 532 319 503 164 328 365 541 366 300 392 486 257 863 432 877 404 520 69 418 99 519 239 374 927 601 103 226 316 423 219 240 26 455 101 184 61",
"output": "351"
},
{
"input": "3\n1 2 10 11 100 100",
"output": "1"
},
{
"input": "17\n814 744 145 886 751 1000 272 914 270 529 467 164 410 369 123 424 991 12 702 582 561 858 746 950 598 393 606 498 648 686 455 873 728 858",
"output": "318"
},
{
"input": "45\n476 103 187 696 463 457 588 632 763 77 391 721 95 124 378 812 980 193 694 898 859 572 721 274 605 264 929 615 257 918 42 493 1 3 697 349 990 800 82 535 382 816 943 735 11 272 562 323 653 370 766 332 666 130 704 604 645 717 267 255 37 470 925 941 376 611 332 758 504 40 477 263 708 434 38 596 650 990 714 662 572 467 949 799 648 581 545 828 508 636",
"output": "355"
},
{
"input": "2\n55 5 25 51",
"output": "4"
},
{
"input": "25\n89 50 640 463 858 301 522 241 923 378 892 822 550 17 42 66 706 779 657 840 273 222 444 459 94 925 437 159 182 727 92 851 742 215 653 891 782 533 29 128 133 883 317 475 165 994 802 434 744 973",
"output": "348"
},
{
"input": "4\n35 48 71 44 78 79 57 48",
"output": "10"
},
{
"input": "3\n58 89 73 15 5 47",
"output": "21"
},
{
"input": "2\n1 20 99 100",
"output": "1"
}
] | 1,672,445,852
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 30
| 0
|
import sys
o = sys.stdin.readlines()
arr2 = [line.rstrip('\n') for line in o]
arr = [x for y in arr2 for x in y.split()]
for element in range(len(arr)):
arr[element] = int(arr[element])
arr.pop(0)
arr.sort()
difference = 0
maxdifference = 0
for i in range(0,len(arr)-1):
difference = arr[i+1] - arr[i]
if difference >= maxdifference:
maxdifference = i
arr.pop(maxdifference)
arr.pop(maxdifference)
difference = 0
finaldiff = 0
for i in range(0,len(arr)-1):
difference = arr[i+1] - arr[i]
finaldiff += difference
print(finaldiff)
|
Title: Kayaking
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers.
Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2·*n* people in the group (including Vadim), and they have exactly *n*<=-<=1 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. *i*-th person's weight is *w**i*, and weight is an important matter in kayaking — if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash.
Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks.
Help the party to determine minimum possible total instability!
Input Specification:
The first line contains one number *n* (2<=≤<=*n*<=≤<=50).
The second line contains 2·*n* integer numbers *w*1, *w*2, ..., *w*2*n*, where *w**i* is weight of person *i* (1<=≤<=*w**i*<=≤<=1000).
Output Specification:
Print minimum possible total instability.
Demo Input:
['2\n1 2 3 4\n', '4\n1 3 4 6 3 4 100 200\n']
Demo Output:
['1\n', '5\n']
Note:
none
|
```python
import sys
o = sys.stdin.readlines()
arr2 = [line.rstrip('\n') for line in o]
arr = [x for y in arr2 for x in y.split()]
for element in range(len(arr)):
arr[element] = int(arr[element])
arr.pop(0)
arr.sort()
difference = 0
maxdifference = 0
for i in range(0,len(arr)-1):
difference = arr[i+1] - arr[i]
if difference >= maxdifference:
maxdifference = i
arr.pop(maxdifference)
arr.pop(maxdifference)
difference = 0
finaldiff = 0
for i in range(0,len(arr)-1):
difference = arr[i+1] - arr[i]
finaldiff += difference
print(finaldiff)
```
| 0
|
|
793
|
A
|
Oleg and shares
|
PROGRAMMING
| 900
|
[
"implementation",
"math"
] | null | null |
Oleg the bank client checks share prices every day. There are *n* share prices he is interested in. Today he observed that each second exactly one of these prices decreases by *k* rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all *n* prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?
|
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of share prices, and the amount of rubles some price decreases each second.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the initial prices.
|
Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.
|
[
"3 3\n12 9 15\n",
"2 2\n10 9\n",
"4 1\n1 1000000000 1000000000 1000000000\n"
] |
[
"3",
"-1",
"2999999997"
] |
Consider the first example.
Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.
There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.
In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.
In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.
| 500
|
[
{
"input": "3 3\n12 9 15",
"output": "3"
},
{
"input": "2 2\n10 9",
"output": "-1"
},
{
"input": "4 1\n1 1000000000 1000000000 1000000000",
"output": "2999999997"
},
{
"input": "1 11\n123",
"output": "0"
},
{
"input": "20 6\n38 86 86 50 98 62 32 2 14 62 98 50 2 50 32 38 62 62 8 14",
"output": "151"
},
{
"input": "20 5\n59 54 19 88 55 100 54 3 6 13 99 38 36 71 59 6 64 85 45 54",
"output": "-1"
},
{
"input": "100 10\n340 70 440 330 130 120 340 210 440 110 410 120 180 40 50 230 70 110 310 360 480 70 230 120 230 310 470 60 210 60 210 480 290 250 450 440 150 40 500 230 280 250 30 50 310 50 230 360 420 260 330 80 50 160 70 470 140 180 380 190 250 30 220 410 80 310 280 50 20 430 440 180 310 190 190 330 90 190 320 390 170 460 230 30 80 500 470 370 80 500 400 120 220 150 70 120 70 320 260 260",
"output": "2157"
},
{
"input": "100 18\n489 42 300 366 473 105 220 448 70 488 201 396 168 281 67 235 324 291 313 387 407 223 39 144 224 233 72 318 229 377 62 171 448 119 354 282 147 447 260 384 172 199 67 326 311 431 337 142 281 202 404 468 38 120 90 437 33 420 249 372 367 253 255 411 309 333 103 176 162 120 203 41 352 478 216 498 224 31 261 493 277 99 375 370 394 229 71 488 246 194 233 13 66 111 366 456 277 360 116 354",
"output": "-1"
},
{
"input": "4 2\n1 2 3 4",
"output": "-1"
},
{
"input": "3 4\n3 5 5",
"output": "-1"
},
{
"input": "3 2\n88888884 88888886 88888888",
"output": "3"
},
{
"input": "2 1\n1000000000 1000000000",
"output": "0"
},
{
"input": "4 2\n1000000000 100000000 100000000 100000000",
"output": "450000000"
},
{
"input": "2 2\n1000000000 1000000000",
"output": "0"
},
{
"input": "3 3\n3 2 1",
"output": "-1"
},
{
"input": "3 4\n3 5 3",
"output": "-1"
},
{
"input": "3 2\n1 2 2",
"output": "-1"
},
{
"input": "4 2\n2 3 3 2",
"output": "-1"
},
{
"input": "3 2\n1 2 4",
"output": "-1"
},
{
"input": "3 2\n3 4 4",
"output": "-1"
},
{
"input": "3 3\n4 7 10",
"output": "3"
},
{
"input": "4 3\n2 2 5 1",
"output": "-1"
},
{
"input": "3 3\n1 3 5",
"output": "-1"
},
{
"input": "2 5\n5 9",
"output": "-1"
},
{
"input": "2 3\n5 7",
"output": "-1"
},
{
"input": "3 137\n1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "5 1000000000\n1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "3 5\n1 2 5",
"output": "-1"
},
{
"input": "3 3\n1000000000 1000000000 999999997",
"output": "2"
},
{
"input": "2 4\n5 6",
"output": "-1"
},
{
"input": "4 1\n1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "2 3\n5 8",
"output": "1"
},
{
"input": "2 6\n8 16",
"output": "-1"
},
{
"input": "5 3\n15 14 9 12 18",
"output": "-1"
},
{
"input": "3 3\n1 2 3",
"output": "-1"
},
{
"input": "3 3\n3 4 5",
"output": "-1"
},
{
"input": "2 5\n8 17",
"output": "-1"
},
{
"input": "2 1\n1 2",
"output": "1"
},
{
"input": "1 1\n1000000000",
"output": "0"
},
{
"input": "3 3\n5 3 4",
"output": "-1"
},
{
"input": "3 6\n10 14 12",
"output": "-1"
},
{
"input": "2 2\n3 5",
"output": "1"
},
{
"input": "3 5\n1 3 4",
"output": "-1"
},
{
"input": "4 3\n1 6 6 6",
"output": "-1"
},
{
"input": "2 3\n1 8",
"output": "-1"
},
{
"input": "3 5\n6 11 17",
"output": "-1"
},
{
"input": "2 2\n1 4",
"output": "-1"
},
{
"input": "2 4\n6 8",
"output": "-1"
},
{
"input": "2 1\n2 3",
"output": "1"
},
{
"input": "4 4\n1 5 8 14",
"output": "-1"
},
{
"input": "3 3\n1 5 3",
"output": "-1"
},
{
"input": "4 3\n1 2 2 5",
"output": "-1"
},
{
"input": "3 2\n1 4 6",
"output": "-1"
},
{
"input": "2 3\n6 9",
"output": "1"
},
{
"input": "3 3\n2 3 4",
"output": "-1"
},
{
"input": "3 2\n9 10 10",
"output": "-1"
},
{
"input": "2 2\n9 12",
"output": "-1"
},
{
"input": "2 2\n100000003 100000005",
"output": "1"
},
{
"input": "2 3\n2 4",
"output": "-1"
},
{
"input": "3 2\n2 3 5",
"output": "-1"
},
{
"input": "3 3\n1 3 4",
"output": "-1"
},
{
"input": "10 2\n2 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "4499999991"
},
{
"input": "3 5\n2 4 5",
"output": "-1"
},
{
"input": "2 3\n7 10",
"output": "1"
},
{
"input": "3 10\n10 13 17",
"output": "-1"
},
{
"input": "2 3\n1 6",
"output": "-1"
},
{
"input": "1 7\n1000000000",
"output": "0"
},
{
"input": "2 4\n3 7",
"output": "1"
},
{
"input": "2 3\n2 5",
"output": "1"
},
{
"input": "20 1\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "0"
},
{
"input": "3 3\n7 8 8",
"output": "-1"
},
{
"input": "4 10\n1 11 100 11",
"output": "-1"
}
] | 1,691,345,915
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 93
| 14,028,800
|
# بسم الله (accepted)
# problem : i have to reduce 'n' stock prices by 'k' minimum no_of_times to make them equal , if they can't be equal , then print -1
n ,k = map(int , input().split(' '))
initial_prices = input().split(' ')
initial_prices = [int(price) for price in initial_prices]
count = 0
lowest_share_price = min(initial_prices)
initial_prices.remove(min(initial_prices))
for price in initial_prices :
if price >= lowest_share_price and (price - lowest_share_price) % k == 0 :
count += int(price - lowest_share_price)/k
else :
print(-1)
count = 0
break
if count != 0 :
print(int(count))
|
Title: Oleg and shares
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Oleg the bank client checks share prices every day. There are *n* share prices he is interested in. Today he observed that each second exactly one of these prices decreases by *k* rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all *n* prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105,<=1<=≤<=*k*<=≤<=109) — the number of share prices, and the amount of rubles some price decreases each second.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the initial prices.
Output Specification:
Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.
Demo Input:
['3 3\n12 9 15\n', '2 2\n10 9\n', '4 1\n1 1000000000 1000000000 1000000000\n']
Demo Output:
['3', '-1', '2999999997']
Note:
Consider the first example.
Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.
There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.
In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.
In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.
|
```python
# بسم الله (accepted)
# problem : i have to reduce 'n' stock prices by 'k' minimum no_of_times to make them equal , if they can't be equal , then print -1
n ,k = map(int , input().split(' '))
initial_prices = input().split(' ')
initial_prices = [int(price) for price in initial_prices]
count = 0
lowest_share_price = min(initial_prices)
initial_prices.remove(min(initial_prices))
for price in initial_prices :
if price >= lowest_share_price and (price - lowest_share_price) % k == 0 :
count += int(price - lowest_share_price)/k
else :
print(-1)
count = 0
break
if count != 0 :
print(int(count))
```
| 0
|
|
1
|
A
|
Theatre Square
|
PROGRAMMING
| 1,000
|
[
"math"
] |
A. Theatre Square
|
1
|
256
|
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
|
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
|
Write the needed number of flagstones.
|
[
"6 6 4\n"
] |
[
"4\n"
] |
none
| 0
|
[
{
"input": "6 6 4",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 1 1",
"output": "2"
},
{
"input": "1 2 1",
"output": "2"
},
{
"input": "2 2 1",
"output": "4"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "1 1 3",
"output": "1"
},
{
"input": "2 3 4",
"output": "1"
},
{
"input": "1000000000 1000000000 1",
"output": "1000000000000000000"
},
{
"input": "12 13 4",
"output": "12"
},
{
"input": "222 332 5",
"output": "3015"
},
{
"input": "1000 1000 10",
"output": "10000"
},
{
"input": "1001 1000 10",
"output": "10100"
},
{
"input": "100 10001 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "1000000000 1000000000 999999999",
"output": "4"
},
{
"input": "1000000000 1000000000 192",
"output": "27126743055556"
},
{
"input": "1000000000 987654321 1",
"output": "987654321000000000"
},
{
"input": "456784567 1000000000 51",
"output": "175618850864484"
},
{
"input": "39916800 134217728 40320",
"output": "3295710"
}
] | 1,695,131,388
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 30
| 0
|
t = int(input())
for i in range(t):
a, b = map(int, input().split())
print((min(max(2 * b,a),max(2 * a,b)))** 2)
|
Title: Theatre Square
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*.
What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
Input Specification:
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Output Specification:
Write the needed number of flagstones.
Demo Input:
['6 6 4\n']
Demo Output:
['4\n']
Note:
none
|
```python
t = int(input())
for i in range(t):
a, b = map(int, input().split())
print((min(max(2 * b,a),max(2 * a,b)))** 2)
```
| -1
|
690
|
A1
|
Collective Mindsets (easy)
|
PROGRAMMING
| 1,100
|
[] | null | null |
Tonight is brain dinner night and all zombies will gather together to scarf down some delicious brains. The artful Heidi plans to crash the party, incognito, disguised as one of them. Her objective is to get away with at least one brain, so she can analyze the zombies' mindset back home and gain a strategic advantage.
They will be *N* guests tonight: *N*<=-<=1 real zombies and a fake one, our Heidi. The living-dead love hierarchies as much as they love brains: each one has a unique rank in the range 1 to *N*<=-<=1, and Heidi, who still appears slightly different from the others, is attributed the highest rank, *N*. Tonight there will be a chest with brains on display and every attendee sees how many there are. These will then be split among the attendees according to the following procedure:
The zombie of the highest rank makes a suggestion on who gets how many brains (every brain is an indivisible entity). A vote follows. If at least half of the attendees accept the offer, the brains are shared in the suggested way and the feast begins. But if majority is not reached, then the highest-ranked zombie is killed, and the next zombie in hierarchy has to make a suggestion. If he is killed too, then the third highest-ranked makes one, etc. (It's enough to have exactly half of the votes – in case of a tie, the vote of the highest-ranked alive zombie counts twice, and he will of course vote in favor of his own suggestion in order to stay alive.)
You should know that zombies are very greedy and sly, and they know this too – basically all zombie brains are alike. Consequently, a zombie will never accept an offer which is suboptimal for him. That is, if an offer is not strictly better than a potential later offer, he will vote against it. And make no mistake: while zombies may normally seem rather dull, tonight their intellects are perfect. Each zombie's priorities for tonight are, in descending order:
1. survive the event (they experienced death already once and know it is no fun), 1. get as many brains as possible.
Heidi goes first and must make an offer which at least half of the attendees will accept, and which allocates at least one brain for Heidi herself.
What is the smallest number of brains that have to be in the chest for this to be possible?
|
The only line of input contains one integer: *N*, the number of attendees (1<=≤<=*N*<=≤<=109).
|
Output one integer: the smallest number of brains in the chest which allows Heidi to take one brain home.
|
[
"1\n",
"4\n"
] |
[
"1\n",
"2\n"
] | 0
|
[
{
"input": "1",
"output": "1"
},
{
"input": "4",
"output": "2"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "2"
},
{
"input": "5",
"output": "3"
},
{
"input": "6",
"output": "3"
},
{
"input": "7",
"output": "4"
},
{
"input": "8",
"output": "4"
},
{
"input": "9",
"output": "5"
},
{
"input": "10",
"output": "5"
},
{
"input": "11",
"output": "6"
},
{
"input": "12",
"output": "6"
},
{
"input": "13",
"output": "7"
},
{
"input": "14",
"output": "7"
},
{
"input": "15",
"output": "8"
},
{
"input": "16",
"output": "8"
},
{
"input": "17",
"output": "9"
},
{
"input": "18",
"output": "9"
},
{
"input": "19",
"output": "10"
},
{
"input": "20",
"output": "10"
},
{
"input": "100",
"output": "50"
},
{
"input": "9999",
"output": "5000"
},
{
"input": "21736",
"output": "10868"
},
{
"input": "873467",
"output": "436734"
},
{
"input": "4124980",
"output": "2062490"
},
{
"input": "536870910",
"output": "268435455"
},
{
"input": "536870912",
"output": "268435456"
},
{
"input": "876543210",
"output": "438271605"
},
{
"input": "987654321",
"output": "493827161"
},
{
"input": "1000000000",
"output": "500000000"
}
] | 1,489,426,488
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 46
| 4,608,000
|
import sys
data = sys.stdin.readlines()
print("Counted", len(data), "lines.")
print(data)
|
Title: Collective Mindsets (easy)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Tonight is brain dinner night and all zombies will gather together to scarf down some delicious brains. The artful Heidi plans to crash the party, incognito, disguised as one of them. Her objective is to get away with at least one brain, so she can analyze the zombies' mindset back home and gain a strategic advantage.
They will be *N* guests tonight: *N*<=-<=1 real zombies and a fake one, our Heidi. The living-dead love hierarchies as much as they love brains: each one has a unique rank in the range 1 to *N*<=-<=1, and Heidi, who still appears slightly different from the others, is attributed the highest rank, *N*. Tonight there will be a chest with brains on display and every attendee sees how many there are. These will then be split among the attendees according to the following procedure:
The zombie of the highest rank makes a suggestion on who gets how many brains (every brain is an indivisible entity). A vote follows. If at least half of the attendees accept the offer, the brains are shared in the suggested way and the feast begins. But if majority is not reached, then the highest-ranked zombie is killed, and the next zombie in hierarchy has to make a suggestion. If he is killed too, then the third highest-ranked makes one, etc. (It's enough to have exactly half of the votes – in case of a tie, the vote of the highest-ranked alive zombie counts twice, and he will of course vote in favor of his own suggestion in order to stay alive.)
You should know that zombies are very greedy and sly, and they know this too – basically all zombie brains are alike. Consequently, a zombie will never accept an offer which is suboptimal for him. That is, if an offer is not strictly better than a potential later offer, he will vote against it. And make no mistake: while zombies may normally seem rather dull, tonight their intellects are perfect. Each zombie's priorities for tonight are, in descending order:
1. survive the event (they experienced death already once and know it is no fun), 1. get as many brains as possible.
Heidi goes first and must make an offer which at least half of the attendees will accept, and which allocates at least one brain for Heidi herself.
What is the smallest number of brains that have to be in the chest for this to be possible?
Input Specification:
The only line of input contains one integer: *N*, the number of attendees (1<=≤<=*N*<=≤<=109).
Output Specification:
Output one integer: the smallest number of brains in the chest which allows Heidi to take one brain home.
Demo Input:
['1\n', '4\n']
Demo Output:
['1\n', '2\n']
|
```python
import sys
data = sys.stdin.readlines()
print("Counted", len(data), "lines.")
print(data)
```
| 0
|
||
439
|
A
|
Devu, the Singer and Churu, the Joker
|
PROGRAMMING
| 900
|
[
"greedy",
"implementation"
] | null | null |
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited.
Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly.
The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.
People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.
You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions:
- The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible.
If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
|
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
|
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
|
[
"3 30\n2 2 1\n",
"3 20\n2 1 1\n"
] |
[
"5\n",
"-1\n"
] |
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way:
- First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes.
Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes.
Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
| 500
|
[
{
"input": "3 30\n2 2 1",
"output": "5"
},
{
"input": "3 20\n2 1 1",
"output": "-1"
},
{
"input": "50 10000\n5 4 10 9 9 6 7 7 7 3 3 7 7 4 7 4 10 10 1 7 10 3 1 4 5 7 2 10 10 10 2 3 4 7 6 1 8 4 7 3 8 8 4 10 1 1 9 2 6 1",
"output": "1943"
},
{
"input": "50 10000\n4 7 15 9 11 12 20 9 14 14 10 13 6 13 14 17 6 8 20 12 10 15 13 17 5 12 13 11 7 5 5 2 3 15 13 7 14 14 19 2 13 14 5 15 3 19 15 16 4 1",
"output": "1891"
},
{
"input": "100 9000\n5 2 3 1 1 3 4 9 9 6 7 10 10 10 2 10 6 8 8 6 7 9 9 5 6 2 1 10 10 9 4 5 9 2 4 3 8 5 6 1 1 5 3 6 2 6 6 6 5 8 3 6 7 3 1 10 9 1 8 3 10 9 5 6 3 4 1 1 10 10 2 3 4 8 10 10 5 1 5 3 6 8 10 6 10 2 1 8 10 1 7 6 9 10 5 2 3 5 3 2",
"output": "1688"
},
{
"input": "100 8007\n5 19 14 18 9 6 15 8 1 14 11 20 3 17 7 12 2 6 3 17 7 20 1 14 20 17 2 10 13 7 18 18 9 10 16 8 1 11 11 9 13 18 9 20 12 12 7 15 12 17 11 5 11 15 9 2 15 1 18 3 18 16 15 4 10 5 18 13 13 12 3 8 17 2 12 2 13 3 1 13 2 4 9 10 18 10 14 4 4 17 12 19 2 9 6 5 5 20 18 12",
"output": "1391"
},
{
"input": "39 2412\n1 1 1 1 1 1 26 1 1 1 99 1 1 1 1 1 1 1 1 1 1 88 7 1 1 1 1 76 1 1 1 93 40 1 13 1 68 1 32",
"output": "368"
},
{
"input": "39 2617\n47 1 1 1 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 1 99 63 1 1 1 1 1 1 1 1 64 1 1",
"output": "435"
},
{
"input": "39 3681\n83 77 1 94 85 47 1 98 29 16 1 1 1 71 96 85 31 97 96 93 40 50 98 1 60 51 1 96 100 72 1 1 1 89 1 93 1 92 100",
"output": "326"
},
{
"input": "45 894\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99 3 1 1",
"output": "139"
},
{
"input": "45 4534\n1 99 65 99 4 46 54 80 51 30 96 1 28 30 44 70 78 1 1 100 1 62 1 1 1 85 1 1 1 61 1 46 75 1 61 77 97 26 67 1 1 63 81 85 86",
"output": "514"
},
{
"input": "72 3538\n52 1 8 1 1 1 7 1 1 1 1 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40 1 1 38 1 1 1 1 1 1 1 1 1 1 1 35 1 93 79 1 1 1 1 1 1 1 1 1 51 1 1 1 1 1 1 1 1 1 1 1 1 96 1",
"output": "586"
},
{
"input": "81 2200\n1 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1",
"output": "384"
},
{
"input": "81 2577\n85 91 1 1 2 1 1 100 1 80 1 1 17 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 37 1 66 24 1 1 96 49 1 66 1 44 1 1 1 1 98 1 1 1 1 35 1 37 3 35 1 1 87 64 1 24 1 58 1 1 42 83 5 1 1 1 1 1 95 1 94 1 50 1 1",
"output": "174"
},
{
"input": "81 4131\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "807"
},
{
"input": "81 6315\n1 1 67 100 1 99 36 1 92 5 1 96 42 12 1 57 91 1 1 66 41 30 74 95 1 37 1 39 91 69 1 52 77 47 65 1 1 93 96 74 90 35 85 76 71 92 92 1 1 67 92 74 1 1 86 76 35 1 56 16 27 57 37 95 1 40 20 100 51 1 80 60 45 79 95 1 46 1 25 100 96",
"output": "490"
},
{
"input": "96 1688\n1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 71 1 1 1 30 1 1 1",
"output": "284"
},
{
"input": "96 8889\n1 1 18 1 1 1 1 1 1 1 1 1 99 1 1 1 1 88 1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96 1 1 1 1 21 1 1 1 1 1 1 1 73 1 1 1 1 1 10 1 1 1 1 1 1 1 46 43 1 1 1 1 1 98 1 1 1 1 1 1 6 1 1 1 1 1 74 1 25 1 55 1 1 1 13 1 1 54 1 1 1",
"output": "1589"
},
{
"input": "10 100\n1 1 1 1 1 1 1 1 1 1",
"output": "18"
},
{
"input": "100 10000\n54 46 72 94 79 83 91 54 73 3 24 55 54 31 28 20 19 6 25 19 47 23 1 70 15 87 51 39 54 77 55 5 60 3 15 99 56 88 22 78 79 21 38 27 28 86 7 88 12 59 55 70 25 1 70 49 1 45 69 72 50 17 4 56 8 100 90 34 35 20 61 76 88 79 4 74 65 68 75 26 40 72 59 94 10 67 96 85 29 90 47 24 44 1 66 93 55 36 1 99",
"output": "1017"
},
{
"input": "100 6000\n41 31 23 17 24 78 26 96 93 48 46 2 49 33 35 9 73 100 34 48 83 36 33 69 43 24 3 74 8 81 27 33 94 38 77 9 76 90 62 90 21 67 22 22 12 2 17 27 61 18 72 85 59 65 71 38 90 75 74 66 60 47 58 50 90 95 75 10 5 100 97 29 83 88 65 26 93 90 22 98 36 55 70 38 50 92 88 72 99 96 25 14 74 16 25 92 67 94 77 96",
"output": "-1"
},
{
"input": "1 1\n1",
"output": "0"
},
{
"input": "1 6\n1",
"output": "1"
},
{
"input": "1 5\n1",
"output": "0"
},
{
"input": "1 3\n4",
"output": "-1"
},
{
"input": "3 24\n2 1 2",
"output": "-1"
}
] | 1,654,592,877
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 20
| 62
| 0
|
l=list(map(int,input().split()))
n=l[0]
d=l[1]
t=l=list(map(int,input().split()))
gap=(n-1)*10
if(gap>=d):
print(-1)
else:
print((d-sum(t))//5)
|
Title: Devu, the Singer and Churu, the Joker
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to "All World Classical Singing Festival". Other than Devu, comedian Churu was also invited.
Devu has provided organizers a list of the songs and required time for singing them. He will sing *n* songs, *i**th* song will take *t**i* minutes exactly.
The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.
People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.
You as one of the organizers should make an optimal sсhedule for the event. For some reasons you must follow the conditions:
- The duration of the event must be no more than *d* minutes; - Devu must complete all his songs; - With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible.
If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.
Input Specification:
The first line contains two space separated integers *n*, *d* (1<=≤<=*n*<=≤<=100; 1<=≤<=*d*<=≤<=10000). The second line contains *n* space-separated integers: *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=100).
Output Specification:
If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.
Demo Input:
['3 30\n2 2 1\n', '3 20\n2 1 1\n']
Demo Output:
['5\n', '-1\n']
Note:
Consider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way:
- First Churu cracks a joke in 5 minutes. - Then Devu performs the first song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now Devu performs second song for 2 minutes. - Then Churu cracks 2 jokes in 10 minutes. - Now finally Devu will perform his last song in 1 minutes.
Total time spent is 5 + 2 + 10 + 2 + 10 + 1 = 30 minutes.
Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1.
|
```python
l=list(map(int,input().split()))
n=l[0]
d=l[1]
t=l=list(map(int,input().split()))
gap=(n-1)*10
if(gap>=d):
print(-1)
else:
print((d-sum(t))//5)
```
| 0
|
|
703
|
A
|
Mishka and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
|
The first line of the input contains single integer *n* *n* (1<=≤<=*n*<=≤<=100) — the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=≤<=*m**i*,<=<=*c**i*<=≤<=6) — values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
|
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
|
[
"3\n3 5\n2 1\n4 2\n",
"2\n6 1\n1 6\n",
"3\n1 5\n3 3\n2 2\n"
] |
[
"Mishka",
"Friendship is magic!^^",
"Chris"
] |
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
| 500
|
[
{
"input": "3\n3 5\n2 1\n4 2",
"output": "Mishka"
},
{
"input": "2\n6 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "3\n1 5\n3 3\n2 2",
"output": "Chris"
},
{
"input": "6\n4 1\n4 2\n5 3\n5 1\n5 3\n4 1",
"output": "Mishka"
},
{
"input": "8\n2 4\n1 4\n1 5\n2 6\n2 5\n2 5\n2 4\n2 5",
"output": "Chris"
},
{
"input": "8\n4 1\n2 6\n4 2\n2 5\n5 2\n3 5\n5 2\n1 5",
"output": "Friendship is magic!^^"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "9\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 4\n6 6\n3 2\n1 5\n5 2\n1 5\n1 5\n3 1\n6 5\n4 3\n1 1\n5 1\n3 3\n2 4\n1 5\n3 4\n5 1\n5 5\n2 5\n2 1\n4 3\n6 5\n1 1\n2 1\n1 3\n1 1\n6 4\n4 6\n6 4\n2 1\n2 5\n6 2\n3 4\n5 5\n1 4\n4 6\n3 4\n1 6\n5 1\n4 3\n3 4\n2 2\n1 2\n2 3\n1 3\n4 4\n5 5\n4 5\n4 4\n3 1\n4 5\n2 3\n2 6\n6 5\n6 1\n6 6\n2 3\n6 4\n3 3\n2 5\n4 4\n3 1\n2 4\n6 1\n3 2\n1 3\n5 4\n6 6\n2 5\n5 1\n1 1\n2 5\n6 5\n3 6\n5 6\n4 3\n3 4\n3 4\n6 5\n5 2\n4 2\n1 1\n3 1\n2 6\n1 6\n1 2\n6 1\n3 4\n1 6\n3 1\n5 3\n1 3\n5 6\n2 1\n6 4\n3 1\n1 6\n6 3\n3 3\n4 3",
"output": "Chris"
},
{
"input": "100\n4 1\n3 4\n4 6\n4 5\n6 5\n5 3\n6 2\n6 3\n5 2\n4 5\n1 5\n5 4\n1 4\n4 5\n4 6\n1 6\n4 4\n5 1\n6 4\n6 4\n4 6\n2 3\n6 2\n4 6\n1 4\n2 3\n4 3\n1 3\n6 2\n3 1\n3 4\n2 6\n4 5\n5 4\n2 2\n2 5\n4 1\n2 2\n3 3\n1 4\n5 6\n6 4\n4 2\n6 1\n5 5\n4 1\n2 1\n6 4\n4 4\n4 3\n5 3\n4 5\n5 3\n3 5\n6 3\n1 1\n3 4\n6 3\n6 1\n5 1\n2 4\n4 3\n2 2\n5 5\n1 5\n5 3\n4 6\n1 4\n6 3\n4 3\n2 4\n3 2\n2 4\n3 4\n6 2\n5 6\n1 2\n1 5\n5 5\n2 6\n5 1\n1 6\n5 3\n3 5\n2 6\n4 6\n6 2\n3 1\n5 5\n6 1\n3 6\n4 4\n1 1\n4 6\n5 3\n4 2\n5 1\n3 3\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n6 3\n4 5\n4 3\n5 4\n5 1\n6 3\n4 2\n4 6\n3 1\n2 4\n2 2\n4 6\n5 3\n5 5\n4 2\n6 2\n2 3\n4 4\n6 4\n3 5\n2 4\n2 2\n5 2\n3 5\n2 4\n4 4\n3 5\n6 5\n1 3\n1 6\n2 2\n2 4\n3 2\n5 4\n1 6\n3 4\n4 1\n1 5\n1 4\n5 3\n2 2\n4 5\n6 3\n4 4\n1 1\n4 1\n2 4\n4 1\n4 5\n5 3\n1 1\n1 6\n5 6\n6 6\n4 2\n4 3\n3 4\n3 6\n3 4\n6 5\n3 4\n5 4\n5 1\n5 3\n5 1\n1 2\n2 6\n3 4\n6 5\n4 3\n1 1\n5 5\n5 1\n3 3\n5 2\n1 3\n6 6\n5 6\n1 4\n4 4\n1 4\n3 6\n6 5\n3 3\n3 6\n1 5\n1 2\n3 6\n3 6\n4 1\n5 2\n1 2\n5 2\n3 3\n4 4\n4 2\n6 2\n5 4\n6 1\n6 3",
"output": "Mishka"
},
{
"input": "8\n4 1\n6 2\n4 1\n5 3\n4 1\n5 3\n6 2\n5 3",
"output": "Mishka"
},
{
"input": "5\n3 6\n3 5\n3 5\n1 6\n3 5",
"output": "Chris"
},
{
"input": "4\n4 1\n2 4\n5 3\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "6\n6 3\n5 1\n6 3\n4 3\n4 3\n5 2",
"output": "Mishka"
},
{
"input": "7\n3 4\n1 4\n2 5\n1 6\n1 6\n1 5\n3 4",
"output": "Chris"
},
{
"input": "6\n6 2\n2 5\n5 2\n3 6\n4 3\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "8\n6 1\n5 3\n4 3\n4 1\n5 1\n4 2\n4 2\n4 1",
"output": "Mishka"
},
{
"input": "9\n2 5\n2 5\n1 4\n2 6\n2 4\n2 5\n2 6\n1 5\n2 5",
"output": "Chris"
},
{
"input": "4\n6 2\n2 4\n4 2\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "9\n5 2\n4 1\n4 1\n5 1\n6 2\n6 1\n5 3\n6 1\n6 2",
"output": "Mishka"
},
{
"input": "8\n2 4\n3 6\n1 6\n1 6\n2 4\n3 4\n3 6\n3 4",
"output": "Chris"
},
{
"input": "6\n5 3\n3 6\n6 2\n1 6\n5 1\n3 5",
"output": "Friendship is magic!^^"
},
{
"input": "6\n5 2\n5 1\n6 1\n5 2\n4 2\n5 1",
"output": "Mishka"
},
{
"input": "5\n1 4\n2 5\n3 4\n2 6\n3 4",
"output": "Chris"
},
{
"input": "4\n6 2\n3 4\n5 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "93\n4 3\n4 1\n4 2\n5 2\n5 3\n6 3\n4 3\n6 2\n6 3\n5 1\n4 2\n4 2\n5 1\n6 2\n6 3\n6 1\n4 1\n6 2\n5 3\n4 3\n4 1\n4 2\n5 2\n6 3\n5 2\n5 2\n6 3\n5 1\n6 2\n5 2\n4 1\n5 2\n5 1\n4 1\n6 1\n5 2\n4 3\n5 3\n5 3\n5 1\n4 3\n4 3\n4 2\n4 1\n6 2\n6 1\n4 1\n5 2\n5 2\n6 2\n5 3\n5 1\n6 2\n5 1\n6 3\n5 2\n6 2\n6 2\n4 2\n5 2\n6 1\n6 3\n6 3\n5 1\n5 1\n4 1\n5 1\n4 3\n5 3\n6 3\n4 1\n4 3\n6 1\n6 1\n4 2\n6 2\n4 2\n5 2\n4 1\n5 2\n4 1\n5 1\n5 2\n5 1\n4 1\n6 3\n6 2\n4 3\n4 1\n5 2\n4 3\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "11\n1 6\n1 6\n2 4\n2 5\n3 4\n1 5\n1 6\n1 5\n1 6\n2 6\n3 4",
"output": "Chris"
},
{
"input": "70\n6 1\n3 6\n4 3\n2 5\n5 2\n1 4\n6 2\n1 6\n4 3\n1 4\n5 3\n2 4\n5 3\n1 6\n5 1\n3 5\n4 2\n2 4\n5 1\n3 5\n6 2\n1 5\n4 2\n2 5\n5 3\n1 5\n4 2\n1 4\n5 2\n2 6\n4 3\n1 5\n6 2\n3 4\n4 2\n3 5\n6 3\n3 4\n5 1\n1 4\n4 2\n1 4\n6 3\n2 6\n5 2\n1 6\n6 1\n2 6\n5 3\n1 5\n5 1\n1 6\n4 1\n1 5\n4 2\n2 4\n5 1\n2 5\n6 3\n1 4\n6 3\n3 6\n5 1\n1 4\n5 3\n3 5\n4 2\n3 4\n6 2\n1 4",
"output": "Friendship is magic!^^"
},
{
"input": "59\n4 1\n5 3\n6 1\n4 2\n5 1\n4 3\n6 1\n5 1\n4 3\n4 3\n5 2\n5 3\n4 1\n6 2\n5 1\n6 3\n6 3\n5 2\n5 2\n6 1\n4 1\n6 1\n4 3\n5 3\n5 3\n4 3\n4 2\n4 2\n6 3\n6 3\n6 1\n4 3\n5 1\n6 2\n6 1\n4 1\n6 1\n5 3\n4 2\n5 1\n6 2\n6 2\n4 3\n5 3\n4 3\n6 3\n5 2\n5 2\n4 3\n5 1\n5 3\n6 1\n6 3\n6 3\n4 3\n5 2\n5 2\n5 2\n4 3",
"output": "Mishka"
},
{
"input": "42\n1 5\n1 6\n1 6\n1 4\n2 5\n3 6\n1 6\n3 4\n2 5\n2 5\n2 4\n1 4\n3 4\n2 4\n2 6\n1 5\n3 6\n2 6\n2 6\n3 5\n1 4\n1 5\n2 6\n3 6\n1 4\n3 4\n2 4\n1 6\n3 4\n2 4\n2 6\n1 6\n1 4\n1 6\n1 6\n2 4\n1 5\n1 6\n2 5\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "78\n4 3\n3 5\n4 3\n1 5\n5 1\n1 5\n4 3\n1 4\n6 3\n1 5\n4 1\n2 4\n4 3\n2 4\n5 1\n3 6\n4 2\n3 6\n6 3\n3 4\n4 3\n3 6\n5 3\n1 5\n4 1\n2 6\n4 2\n2 4\n4 1\n3 5\n5 2\n3 6\n4 3\n2 4\n6 3\n1 6\n4 3\n3 5\n6 3\n2 6\n4 1\n2 4\n6 2\n1 6\n4 2\n1 4\n4 3\n1 4\n4 3\n2 4\n6 2\n3 5\n6 1\n3 6\n5 3\n1 6\n6 1\n2 6\n4 2\n1 5\n6 2\n2 6\n6 3\n2 4\n4 2\n3 5\n6 1\n2 5\n5 3\n2 6\n5 1\n3 6\n4 3\n3 6\n6 3\n2 5\n6 1\n2 6",
"output": "Friendship is magic!^^"
},
{
"input": "76\n4 1\n5 2\n4 3\n5 2\n5 3\n5 2\n6 1\n4 2\n6 2\n5 3\n4 2\n6 2\n4 1\n4 2\n5 1\n5 1\n6 2\n5 2\n5 3\n6 3\n5 2\n4 3\n6 3\n6 1\n4 3\n6 2\n6 1\n4 1\n6 1\n5 3\n4 1\n5 3\n4 2\n5 2\n4 3\n6 1\n6 2\n5 2\n6 1\n5 3\n4 3\n5 1\n5 3\n4 3\n5 1\n5 1\n4 1\n4 1\n4 1\n4 3\n5 3\n6 3\n6 3\n5 2\n6 2\n6 3\n5 1\n6 3\n5 3\n6 1\n5 3\n4 1\n5 3\n6 1\n4 2\n6 2\n4 3\n4 1\n6 2\n4 3\n5 3\n5 2\n5 3\n5 1\n6 3\n5 2",
"output": "Mishka"
},
{
"input": "84\n3 6\n3 4\n2 5\n2 4\n1 6\n3 4\n1 5\n1 6\n3 5\n1 6\n2 4\n2 6\n2 6\n2 4\n3 5\n1 5\n3 6\n3 6\n3 4\n3 4\n2 6\n1 6\n1 6\n3 5\n3 4\n1 6\n3 4\n3 5\n2 4\n2 5\n2 5\n3 5\n1 6\n3 4\n2 6\n2 6\n3 4\n3 4\n2 5\n2 5\n2 4\n3 4\n2 5\n3 4\n3 4\n2 6\n2 6\n1 6\n2 4\n1 5\n3 4\n2 5\n2 5\n3 4\n2 4\n2 6\n2 6\n1 4\n3 5\n3 5\n2 4\n2 5\n3 4\n1 5\n1 5\n2 6\n1 5\n3 5\n2 4\n2 5\n3 4\n2 6\n1 6\n2 5\n3 5\n3 5\n3 4\n2 5\n2 6\n3 4\n1 6\n2 5\n2 6\n1 4",
"output": "Chris"
},
{
"input": "44\n6 1\n1 6\n5 2\n1 4\n6 2\n2 5\n5 3\n3 6\n5 2\n1 6\n4 1\n2 4\n6 1\n3 4\n6 3\n3 6\n4 3\n2 4\n6 1\n3 4\n6 1\n1 6\n4 1\n3 5\n6 1\n3 6\n4 1\n1 4\n4 2\n2 6\n6 1\n2 4\n6 2\n1 4\n6 2\n2 4\n5 2\n3 6\n6 3\n2 6\n5 3\n3 4\n5 3\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "42\n5 3\n5 1\n5 2\n4 1\n6 3\n6 1\n6 2\n4 1\n4 3\n4 1\n5 1\n5 3\n5 1\n4 1\n4 2\n6 1\n6 3\n5 1\n4 1\n4 1\n6 3\n4 3\n6 3\n5 2\n6 1\n4 1\n5 3\n4 3\n5 2\n6 3\n6 1\n5 1\n4 2\n4 3\n5 2\n5 3\n6 3\n5 2\n5 1\n5 3\n6 2\n6 1",
"output": "Mishka"
},
{
"input": "50\n3 6\n2 6\n1 4\n1 4\n1 4\n2 5\n3 4\n3 5\n2 6\n1 6\n3 5\n1 5\n2 6\n2 4\n2 4\n3 5\n1 6\n1 5\n1 5\n1 4\n3 5\n1 6\n3 5\n1 4\n1 5\n1 4\n3 6\n1 6\n1 4\n1 4\n1 4\n1 5\n3 6\n1 6\n1 6\n2 4\n1 5\n2 6\n2 5\n3 5\n3 6\n3 4\n2 4\n2 6\n3 4\n2 5\n3 6\n3 5\n2 4\n2 4",
"output": "Chris"
},
{
"input": "86\n6 3\n2 4\n6 3\n3 5\n6 3\n1 5\n5 2\n2 4\n4 3\n2 6\n4 1\n2 6\n5 2\n1 4\n5 1\n2 4\n4 1\n1 4\n6 2\n3 5\n4 2\n2 4\n6 2\n1 5\n5 3\n2 5\n5 1\n1 6\n6 1\n1 4\n4 3\n3 4\n5 2\n2 4\n5 3\n2 5\n4 3\n3 4\n4 1\n1 5\n6 3\n3 4\n4 3\n3 4\n4 1\n3 4\n5 1\n1 6\n4 2\n1 6\n5 1\n2 4\n5 1\n3 6\n4 1\n1 5\n5 2\n1 4\n4 3\n2 5\n5 1\n1 5\n6 2\n2 6\n4 2\n2 4\n4 1\n2 5\n5 3\n3 4\n5 1\n3 4\n6 3\n3 4\n4 3\n2 6\n6 2\n2 5\n5 2\n3 5\n4 2\n3 6\n6 2\n3 4\n4 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "84\n6 1\n6 3\n6 3\n4 1\n4 3\n4 2\n6 3\n5 3\n6 1\n6 3\n4 3\n5 2\n5 3\n5 1\n6 2\n6 2\n6 1\n4 1\n6 3\n5 2\n4 1\n5 3\n6 3\n4 2\n6 2\n6 3\n4 3\n4 1\n4 3\n5 1\n5 1\n5 1\n4 1\n6 1\n4 3\n6 2\n5 1\n5 1\n6 2\n5 2\n4 1\n6 1\n6 1\n6 3\n6 2\n4 3\n6 3\n6 2\n5 2\n5 1\n4 3\n6 2\n4 1\n6 2\n6 1\n5 2\n5 1\n6 2\n6 1\n5 3\n5 2\n6 1\n6 3\n5 2\n6 1\n6 3\n4 3\n5 1\n6 3\n6 1\n5 3\n4 3\n5 2\n5 1\n6 2\n5 3\n6 1\n5 1\n4 1\n5 1\n5 1\n5 2\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "92\n1 5\n2 4\n3 5\n1 6\n2 5\n1 6\n3 6\n1 6\n2 4\n3 4\n3 4\n3 6\n1 5\n2 5\n1 5\n1 5\n2 6\n2 4\n3 6\n1 4\n1 6\n2 6\n3 4\n2 6\n2 6\n1 4\n3 5\n2 5\n2 6\n1 5\n1 4\n1 5\n3 6\n3 5\n2 5\n1 5\n3 5\n3 6\n2 6\n2 6\n1 5\n3 4\n2 4\n3 6\n2 5\n1 5\n2 4\n1 4\n2 6\n2 6\n2 6\n1 5\n3 6\n3 6\n2 5\n1 4\n2 4\n3 4\n1 5\n2 5\n2 4\n2 5\n3 5\n3 4\n3 6\n2 6\n3 5\n1 4\n3 4\n1 6\n3 6\n2 6\n1 4\n3 6\n3 6\n2 5\n2 6\n1 6\n2 6\n3 5\n2 5\n3 6\n2 5\n2 6\n1 5\n2 4\n1 4\n2 4\n1 5\n2 5\n2 5\n2 6",
"output": "Chris"
},
{
"input": "20\n5 1\n1 4\n4 3\n1 5\n4 2\n3 6\n6 2\n1 6\n4 1\n1 4\n5 2\n3 4\n5 1\n1 6\n5 1\n2 6\n6 3\n2 5\n6 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "100\n4 3\n4 3\n4 2\n4 3\n4 1\n4 3\n5 2\n5 2\n6 2\n4 2\n5 1\n4 2\n5 2\n6 1\n4 1\n6 3\n5 3\n5 1\n5 1\n5 1\n5 3\n6 1\n6 1\n4 1\n5 2\n5 2\n6 1\n6 3\n4 2\n4 1\n5 3\n4 1\n5 3\n5 1\n6 3\n6 3\n6 1\n5 2\n5 3\n5 3\n6 1\n4 1\n6 2\n6 1\n6 2\n6 3\n4 3\n4 3\n6 3\n4 2\n4 2\n5 3\n5 2\n5 2\n4 3\n5 3\n5 2\n4 2\n5 1\n4 2\n5 1\n5 3\n6 3\n5 3\n5 3\n4 2\n4 1\n4 2\n4 3\n6 3\n4 3\n6 2\n6 1\n5 3\n5 2\n4 1\n6 1\n5 2\n6 2\n4 2\n6 3\n4 3\n5 1\n6 3\n5 2\n4 3\n5 3\n5 3\n4 3\n6 3\n4 3\n4 1\n5 1\n6 2\n6 3\n5 3\n6 1\n6 3\n5 3\n6 1",
"output": "Mishka"
},
{
"input": "100\n1 5\n1 4\n1 5\n2 4\n2 6\n3 6\n3 5\n1 5\n2 5\n3 6\n3 5\n1 6\n1 4\n1 5\n1 6\n2 6\n1 5\n3 5\n3 4\n2 6\n2 6\n2 5\n3 4\n1 6\n1 4\n2 4\n1 5\n1 6\n3 5\n1 6\n2 6\n3 5\n1 6\n3 4\n3 5\n1 6\n3 6\n2 4\n2 4\n3 5\n2 6\n1 5\n3 5\n3 6\n2 4\n2 4\n2 6\n3 4\n3 4\n1 5\n1 4\n2 5\n3 4\n1 4\n2 6\n2 5\n2 4\n2 4\n2 5\n1 5\n1 6\n1 5\n1 5\n1 5\n1 6\n3 4\n2 4\n3 5\n3 5\n1 6\n3 5\n1 5\n1 6\n3 6\n3 4\n1 5\n3 5\n3 6\n1 4\n3 6\n1 5\n3 5\n3 6\n3 5\n1 4\n3 4\n2 4\n2 4\n2 5\n3 6\n3 5\n1 5\n2 4\n1 4\n3 4\n1 5\n3 4\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "100\n4 3\n3 4\n5 1\n2 5\n5 3\n1 5\n6 3\n2 4\n5 2\n2 6\n5 2\n1 5\n6 3\n1 5\n6 3\n3 4\n5 2\n1 5\n6 1\n1 5\n4 2\n3 5\n6 3\n2 6\n6 3\n1 4\n6 2\n3 4\n4 1\n3 6\n5 1\n2 4\n5 1\n3 4\n6 2\n3 5\n4 1\n2 6\n4 3\n2 6\n5 2\n3 6\n6 2\n3 5\n4 3\n1 5\n5 3\n3 6\n4 2\n3 4\n6 1\n3 4\n5 2\n2 6\n5 2\n2 4\n6 2\n3 6\n4 3\n2 4\n4 3\n2 6\n4 2\n3 4\n6 3\n2 4\n6 3\n3 5\n5 2\n1 5\n6 3\n3 6\n4 3\n1 4\n5 2\n1 6\n4 1\n2 5\n4 1\n2 4\n4 2\n2 5\n6 1\n2 4\n6 3\n1 5\n4 3\n2 6\n6 3\n2 6\n5 3\n1 5\n4 1\n1 5\n6 2\n2 5\n5 1\n3 6\n4 3\n3 4",
"output": "Friendship is magic!^^"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "99\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "84\n6 2\n1 5\n6 2\n2 3\n5 5\n1 2\n3 4\n3 4\n6 5\n6 4\n2 5\n4 1\n1 2\n1 1\n1 4\n2 5\n5 6\n6 3\n2 4\n5 5\n2 6\n3 4\n5 1\n3 3\n5 5\n4 6\n4 6\n2 4\n4 1\n5 2\n2 2\n3 6\n3 3\n4 6\n1 1\n2 4\n6 5\n5 2\n6 5\n5 5\n2 5\n6 4\n1 1\n6 2\n3 6\n6 5\n4 4\n1 5\n5 6\n4 4\n3 5\n6 1\n3 4\n1 5\n4 6\n4 6\n4 1\n3 6\n6 2\n1 1\n4 5\n5 4\n5 3\n3 4\n6 4\n1 1\n5 2\n6 5\n6 1\n2 2\n2 4\n3 3\n4 6\n1 3\n6 6\n5 2\n1 6\n6 2\n6 6\n4 1\n3 6\n6 4\n2 3\n3 4",
"output": "Chris"
},
{
"input": "70\n3 4\n2 3\n2 3\n6 5\n6 6\n4 3\n2 3\n3 1\n3 5\n5 6\n1 6\n2 5\n5 3\n2 5\n4 6\n5 1\n6 1\n3 1\n3 3\n5 3\n2 1\n3 3\n6 4\n6 3\n4 3\n4 5\n3 5\n5 5\n5 2\n1 6\n3 4\n5 2\n2 4\n1 6\n4 3\n4 3\n6 2\n1 3\n1 5\n6 1\n3 1\n1 1\n1 3\n2 2\n3 2\n6 4\n1 1\n4 4\n3 1\n4 5\n4 2\n6 3\n4 4\n3 2\n1 2\n2 6\n3 3\n1 5\n1 1\n6 5\n2 2\n3 1\n5 4\n5 2\n6 4\n6 3\n6 6\n6 3\n3 3\n5 4",
"output": "Mishka"
},
{
"input": "56\n6 4\n3 4\n6 1\n3 3\n1 4\n2 3\n1 5\n2 5\n1 5\n5 5\n2 3\n1 1\n3 2\n3 5\n4 6\n4 4\n5 2\n4 3\n3 1\n3 6\n2 3\n3 4\n5 6\n5 2\n5 6\n1 5\n1 5\n4 1\n6 3\n2 2\n2 1\n5 5\n2 1\n4 1\n5 4\n2 5\n4 1\n6 2\n3 4\n4 2\n6 4\n5 4\n4 2\n4 3\n6 2\n6 2\n3 1\n1 4\n3 6\n5 1\n5 5\n3 6\n6 4\n2 3\n6 5\n3 3",
"output": "Mishka"
},
{
"input": "94\n2 4\n6 4\n1 6\n1 4\n5 1\n3 3\n4 3\n6 1\n6 5\n3 2\n2 3\n5 1\n5 3\n1 2\n4 3\n3 2\n2 3\n4 6\n1 3\n6 3\n1 1\n3 2\n4 3\n1 5\n4 6\n3 2\n6 3\n1 6\n1 1\n1 2\n3 5\n1 3\n3 5\n4 4\n4 2\n1 4\n4 5\n1 3\n1 2\n1 1\n5 4\n5 5\n6 1\n2 1\n2 6\n6 6\n4 2\n3 6\n1 6\n6 6\n1 5\n3 2\n1 2\n4 4\n6 4\n4 1\n1 5\n3 3\n1 3\n3 4\n4 4\n1 1\n2 5\n4 5\n3 1\n3 1\n3 6\n3 2\n1 4\n1 6\n6 3\n2 4\n1 1\n2 2\n2 2\n2 1\n5 4\n1 2\n6 6\n2 2\n3 3\n6 3\n6 3\n1 6\n2 3\n2 4\n2 3\n6 6\n2 6\n6 3\n3 5\n1 4\n1 1\n3 5",
"output": "Chris"
},
{
"input": "81\n4 2\n1 2\n2 3\n4 5\n6 2\n1 6\n3 6\n3 4\n4 6\n4 4\n3 5\n4 6\n3 6\n3 5\n3 1\n1 3\n5 3\n3 4\n1 1\n4 1\n1 2\n6 1\n1 3\n6 5\n4 5\n4 2\n4 5\n6 2\n1 2\n2 6\n5 2\n1 5\n2 4\n4 3\n5 4\n1 2\n5 3\n2 6\n6 4\n1 1\n1 3\n3 1\n3 1\n6 5\n5 5\n6 1\n6 6\n5 2\n1 3\n1 4\n2 3\n5 5\n3 1\n3 1\n4 4\n1 6\n6 4\n2 2\n4 6\n4 4\n2 6\n2 4\n2 4\n4 1\n1 6\n1 4\n1 3\n6 5\n5 1\n1 3\n5 1\n1 4\n3 5\n2 6\n1 3\n5 6\n3 5\n4 4\n5 5\n5 6\n4 3",
"output": "Chris"
},
{
"input": "67\n6 5\n3 6\n1 6\n5 3\n5 4\n5 1\n1 6\n1 1\n3 2\n4 4\n3 1\n4 1\n1 5\n5 3\n3 3\n6 4\n2 4\n2 2\n4 3\n1 4\n1 4\n6 1\n1 2\n2 2\n5 1\n6 2\n3 5\n5 5\n2 2\n6 5\n6 2\n4 4\n3 1\n4 2\n6 6\n6 4\n5 1\n2 2\n4 5\n5 5\n4 6\n1 5\n6 3\n4 4\n1 5\n6 4\n3 6\n3 4\n1 6\n2 4\n2 1\n2 5\n6 5\n6 4\n4 1\n3 2\n1 2\n5 1\n5 6\n1 5\n3 5\n3 1\n5 3\n3 2\n5 1\n4 6\n6 6",
"output": "Mishka"
},
{
"input": "55\n6 6\n6 5\n2 2\n2 2\n6 4\n5 5\n6 5\n5 3\n1 3\n2 2\n5 6\n3 3\n3 3\n6 5\n3 5\n5 5\n1 2\n1 1\n4 6\n1 2\n5 5\n6 2\n6 3\n1 2\n5 1\n1 3\n3 3\n4 4\n2 5\n1 1\n5 3\n4 3\n2 2\n4 5\n5 6\n4 5\n6 3\n1 6\n6 4\n3 6\n1 6\n5 2\n6 3\n2 3\n5 5\n4 3\n3 1\n4 2\n1 1\n2 5\n5 3\n2 2\n6 3\n4 5\n2 2",
"output": "Mishka"
},
{
"input": "92\n2 3\n1 3\n2 6\n5 1\n5 5\n3 2\n5 6\n2 5\n3 1\n3 6\n4 5\n2 5\n1 2\n2 3\n6 5\n3 6\n4 4\n6 2\n4 5\n4 4\n5 1\n6 1\n3 4\n3 5\n6 6\n3 2\n6 4\n2 2\n3 5\n6 4\n6 3\n6 6\n3 4\n3 3\n6 1\n5 4\n6 2\n2 6\n5 6\n1 4\n4 6\n6 3\n3 1\n4 1\n6 6\n3 5\n6 3\n6 1\n1 6\n3 2\n6 6\n4 3\n3 4\n1 3\n3 5\n5 3\n6 5\n4 3\n5 5\n4 1\n1 5\n6 4\n2 3\n2 3\n1 5\n1 2\n5 2\n4 3\n3 6\n5 5\n5 4\n1 4\n3 3\n1 6\n5 6\n5 4\n5 3\n1 1\n6 2\n5 5\n2 5\n4 3\n6 6\n5 1\n1 1\n4 6\n4 6\n3 1\n6 4\n2 4\n2 2\n2 1",
"output": "Chris"
},
{
"input": "79\n5 3\n4 6\n3 6\n2 1\n5 2\n2 3\n4 4\n6 2\n2 5\n1 6\n6 6\n2 6\n3 3\n4 5\n6 2\n2 1\n1 5\n5 1\n2 1\n2 6\n5 3\n6 2\n2 6\n2 3\n1 5\n4 4\n6 3\n5 2\n3 2\n1 3\n1 3\n6 3\n2 6\n3 6\n5 3\n4 5\n6 1\n3 5\n3 5\n6 5\n1 5\n4 2\n6 2\n2 3\n4 6\n3 6\n2 5\n4 4\n1 1\n4 6\n2 6\n6 4\n3 2\n4 1\n1 2\n6 4\n5 6\n1 4\n2 2\n5 4\n3 2\n1 2\n2 4\n2 5\n2 1\n3 6\n3 3\n1 1\n2 2\n4 4\n4 5\n3 3\n5 3\n6 2\n4 5\n6 5\n2 5\n5 6\n2 2",
"output": "Chris"
},
{
"input": "65\n1 1\n5 1\n2 2\n5 4\n4 5\n2 5\n3 2\n5 6\n6 3\n1 1\n6 1\n1 5\n1 1\n5 2\n6 4\n1 6\n1 1\n4 3\n2 3\n5 6\n4 4\n6 2\n1 3\n4 3\n1 3\n6 3\n3 5\n4 2\n4 1\n6 1\n3 2\n2 6\n3 2\n3 5\n6 3\n4 3\n1 5\n2 6\n1 3\n4 1\n4 1\n2 5\n2 5\n6 2\n5 3\n3 1\n3 3\n5 1\n2 4\n5 3\n3 3\n1 1\n6 3\n3 3\n5 1\n1 6\n4 5\n6 6\n5 5\n2 5\n4 1\n2 2\n1 4\n1 6\n6 5",
"output": "Mishka"
},
{
"input": "1\n1 1",
"output": "Friendship is magic!^^"
}
] | 1,689,298,525
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 46
| 0
|
#https://codeforces.com/problemset/problem/703/A
def get_answer(difference):
if(difference<0):
return "Chris"
elif(difference == 0):
return "Friendship is magic!^^"
else:
return "Mishka"
rounds = int(input())
result = 0
while rounds>0:
m, c = (int(x) for x in input().split(" "))
if(m > c):
result += 1
elif(c > m):
result -= 1
rounds -= 1
print(get_answer(result))
|
Title: Mishka and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
Input Specification:
The first line of the input contains single integer *n* *n* (1<=≤<=*n*<=≤<=100) — the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=≤<=*m**i*,<=<=*c**i*<=≤<=6) — values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
Output Specification:
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
Demo Input:
['3\n3 5\n2 1\n4 2\n', '2\n6 1\n1 6\n', '3\n1 5\n3 3\n2 2\n']
Demo Output:
['Mishka', 'Friendship is magic!^^', 'Chris']
Note:
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
|
```python
#https://codeforces.com/problemset/problem/703/A
def get_answer(difference):
if(difference<0):
return "Chris"
elif(difference == 0):
return "Friendship is magic!^^"
else:
return "Mishka"
rounds = int(input())
result = 0
while rounds>0:
m, c = (int(x) for x in input().split(" "))
if(m > c):
result += 1
elif(c > m):
result -= 1
rounds -= 1
print(get_answer(result))
```
| 3
|
|
858
|
B
|
Which floor?
|
PROGRAMMING
| 1,500
|
[
"brute force",
"implementation"
] | null | null |
In a building where Polycarp lives there are equal number of flats on each floor. Unfortunately, Polycarp don't remember how many flats are on each floor, but he remembers that the flats are numbered from 1 from lower to upper floors. That is, the first several flats are on the first floor, the next several flats are on the second and so on. Polycarp don't remember the total number of flats in the building, so you can consider the building to be infinitely high (i.e. there are infinitely many floors). Note that the floors are numbered from 1.
Polycarp remembers on which floors several flats are located. It is guaranteed that this information is not self-contradictory. It means that there exists a building with equal number of flats on each floor so that the flats from Polycarp's memory have the floors Polycarp remembers.
Given this information, is it possible to restore the exact floor for flat *n*?
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=100), where *n* is the number of the flat you need to restore floor for, and *m* is the number of flats in Polycarp's memory.
*m* lines follow, describing the Polycarp's memory: each of these lines contains a pair of integers *k**i*,<=*f**i* (1<=≤<=*k**i*<=≤<=100, 1<=≤<=*f**i*<=≤<=100), which means that the flat *k**i* is on the *f**i*-th floor. All values *k**i* are distinct.
It is guaranteed that the given information is not self-contradictory.
|
Print the number of the floor in which the *n*-th flat is located, if it is possible to determine it in a unique way. Print -1 if it is not possible to uniquely restore this floor.
|
[
"10 3\n6 2\n2 1\n7 3\n",
"8 4\n3 1\n6 2\n5 2\n2 1\n"
] |
[
"4\n",
"-1\n"
] |
In the first example the 6-th flat is on the 2-nd floor, while the 7-th flat is on the 3-rd, so, the 6-th flat is the last on its floor and there are 3 flats on each floor. Thus, the 10-th flat is on the 4-th floor.
In the second example there can be 3 or 4 flats on each floor, so we can't restore the floor for the 8-th flat.
| 750
|
[
{
"input": "10 3\n6 2\n2 1\n7 3",
"output": "4"
},
{
"input": "8 4\n3 1\n6 2\n5 2\n2 1",
"output": "-1"
},
{
"input": "8 3\n7 2\n6 2\n1 1",
"output": "2"
},
{
"input": "4 2\n8 3\n3 1",
"output": "2"
},
{
"input": "11 4\n16 4\n11 3\n10 3\n15 4",
"output": "3"
},
{
"input": "16 6\n3 1\n16 4\n10 3\n9 3\n19 5\n8 2",
"output": "4"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "1 1\n1 1",
"output": "1"
},
{
"input": "1 1\n1 1",
"output": "1"
},
{
"input": "1 2\n1 1\n2 2",
"output": "1"
},
{
"input": "2 2\n2 1\n1 1",
"output": "1"
},
{
"input": "2 0",
"output": "-1"
},
{
"input": "2 1\n3 3",
"output": "2"
},
{
"input": "3 2\n1 1\n3 3",
"output": "3"
},
{
"input": "3 3\n1 1\n3 3\n2 2",
"output": "3"
},
{
"input": "3 0",
"output": "-1"
},
{
"input": "1 1\n2 1",
"output": "1"
},
{
"input": "2 2\n2 1\n1 1",
"output": "1"
},
{
"input": "2 3\n3 2\n1 1\n2 1",
"output": "1"
},
{
"input": "3 0",
"output": "-1"
},
{
"input": "3 1\n1 1",
"output": "-1"
},
{
"input": "2 2\n1 1\n3 1",
"output": "1"
},
{
"input": "1 3\n1 1\n2 1\n3 1",
"output": "1"
},
{
"input": "81 0",
"output": "-1"
},
{
"input": "22 1\n73 73",
"output": "22"
},
{
"input": "63 2\n10 10\n64 64",
"output": "63"
},
{
"input": "88 3\n37 37\n15 15\n12 12",
"output": "88"
},
{
"input": "29 4\n66 66\n47 47\n62 62\n2 2",
"output": "29"
},
{
"input": "9 40\n72 72\n47 47\n63 63\n66 66\n21 21\n94 94\n28 28\n45 45\n93 93\n25 25\n100 100\n43 43\n49 49\n9 9\n74 74\n26 26\n42 42\n50 50\n2 2\n92 92\n76 76\n3 3\n78 78\n44 44\n69 69\n36 36\n65 65\n81 81\n13 13\n46 46\n24 24\n96 96\n73 73\n82 82\n68 68\n64 64\n41 41\n31 31\n29 29\n10 10",
"output": "9"
},
{
"input": "50 70\n3 3\n80 80\n23 23\n11 11\n87 87\n7 7\n63 63\n61 61\n67 67\n53 53\n9 9\n43 43\n55 55\n27 27\n5 5\n1 1\n99 99\n65 65\n37 37\n60 60\n32 32\n38 38\n81 81\n2 2\n34 34\n17 17\n82 82\n26 26\n71 71\n4 4\n16 16\n19 19\n39 39\n51 51\n6 6\n49 49\n64 64\n83 83\n10 10\n56 56\n30 30\n76 76\n90 90\n42 42\n47 47\n91 91\n21 21\n52 52\n40 40\n77 77\n35 35\n88 88\n75 75\n95 95\n28 28\n15 15\n69 69\n22 22\n48 48\n66 66\n31 31\n98 98\n73 73\n25 25\n97 97\n18 18\n13 13\n54 54\n72 72\n29 29",
"output": "50"
},
{
"input": "6 0",
"output": "-1"
},
{
"input": "32 1\n9 5",
"output": "16"
},
{
"input": "73 2\n17 9\n21 11",
"output": "37"
},
{
"input": "6 3\n48 24\n51 26\n62 31",
"output": "3"
},
{
"input": "43 4\n82 41\n52 26\n88 44\n41 21",
"output": "22"
},
{
"input": "28 40\n85 43\n19 10\n71 36\n39 20\n57 29\n6 3\n15 8\n11 6\n99 50\n77 39\n79 40\n31 16\n35 18\n24 12\n54 27\n93 47\n90 45\n72 36\n63 32\n22 11\n83 42\n5 3\n12 6\n56 28\n94 47\n25 13\n41 21\n29 15\n36 18\n23 12\n1 1\n84 42\n55 28\n58 29\n9 5\n68 34\n86 43\n3 2\n48 24\n98 49",
"output": "14"
},
{
"input": "81 70\n55 28\n85 43\n58 29\n20 10\n4 2\n47 24\n42 21\n28 14\n26 13\n38 19\n9 5\n83 42\n7 4\n72 36\n18 9\n61 31\n41 21\n64 32\n90 45\n46 23\n67 34\n2 1\n6 3\n27 14\n87 44\n39 20\n11 6\n21 11\n35 18\n48 24\n44 22\n3 2\n71 36\n62 31\n34 17\n16 8\n99 50\n57 29\n13 7\n79 40\n100 50\n53 27\n89 45\n36 18\n43 22\n92 46\n98 49\n75 38\n40 20\n97 49\n37 19\n68 34\n30 15\n96 48\n17 9\n12 6\n45 23\n65 33\n76 38\n84 42\n23 12\n91 46\n52 26\n8 4\n32 16\n77 39\n88 44\n86 43\n70 35\n51 26",
"output": "41"
},
{
"input": "34 0",
"output": "-1"
},
{
"input": "63 1\n94 24",
"output": "16"
},
{
"input": "4 2\n38 10\n48 12",
"output": "1"
},
{
"input": "37 3\n66 17\n89 23\n60 15",
"output": "10"
},
{
"input": "71 4\n15 4\n13 4\n4 1\n70 18",
"output": "18"
},
{
"input": "77 40\n49 13\n66 17\n73 19\n15 4\n36 9\n1 1\n41 11\n91 23\n51 13\n46 12\n39 10\n42 11\n56 14\n61 16\n70 18\n92 23\n65 17\n54 14\n97 25\n8 2\n87 22\n33 9\n28 7\n38 10\n50 13\n26 7\n7 2\n31 8\n84 21\n47 12\n27 7\n53 14\n19 5\n93 24\n29 8\n3 1\n77 20\n62 16\n9 3\n44 11",
"output": "20"
},
{
"input": "18 70\n51 13\n55 14\n12 3\n43 11\n42 11\n95 24\n96 24\n29 8\n65 17\n71 18\n18 5\n62 16\n31 8\n100 25\n4 1\n77 20\n56 14\n24 6\n93 24\n97 25\n79 20\n40 10\n49 13\n86 22\n21 6\n46 12\n6 2\n14 4\n23 6\n20 5\n52 13\n88 22\n39 10\n70 18\n94 24\n13 4\n37 10\n41 11\n91 23\n85 22\n83 21\n89 23\n33 9\n64 16\n67 17\n57 15\n47 12\n36 9\n72 18\n81 21\n76 19\n35 9\n80 20\n34 9\n5 2\n22 6\n84 21\n63 16\n74 19\n90 23\n68 17\n98 25\n87 22\n2 1\n92 23\n50 13\n38 10\n28 7\n8 2\n60 15",
"output": "5"
},
{
"input": "89 0",
"output": "-1"
},
{
"input": "30 1\n3 1",
"output": "-1"
},
{
"input": "63 2\n48 6\n17 3",
"output": "8"
},
{
"input": "96 3\n45 6\n25 4\n35 5",
"output": "12"
},
{
"input": "37 4\n2 1\n29 4\n27 4\n47 6",
"output": "5"
},
{
"input": "64 40\n40 5\n92 12\n23 3\n75 10\n71 9\n2 1\n54 7\n18 3\n9 2\n74 10\n87 11\n11 2\n90 12\n30 4\n48 6\n12 2\n91 12\n60 8\n35 5\n13 2\n53 7\n46 6\n38 5\n59 8\n97 13\n32 4\n6 1\n36 5\n43 6\n83 11\n81 11\n99 13\n69 9\n10 2\n21 3\n78 10\n31 4\n27 4\n57 8\n1 1",
"output": "8"
},
{
"input": "17 70\n63 8\n26 4\n68 9\n30 4\n61 8\n84 11\n39 5\n53 7\n4 1\n81 11\n50 7\n91 12\n59 8\n90 12\n20 3\n21 3\n83 11\n94 12\n37 5\n8 1\n49 7\n34 5\n19 3\n44 6\n74 10\n2 1\n73 10\n88 11\n43 6\n36 5\n57 8\n64 8\n76 10\n40 5\n71 9\n95 12\n15 2\n41 6\n89 12\n42 6\n96 12\n1 1\n52 7\n38 5\n45 6\n78 10\n82 11\n16 2\n48 6\n51 7\n56 7\n28 4\n87 11\n93 12\n46 6\n29 4\n97 13\n54 7\n35 5\n3 1\n79 10\n99 13\n13 2\n55 7\n100 13\n11 2\n75 10\n24 3\n33 5\n22 3",
"output": "3"
},
{
"input": "9 0",
"output": "-1"
},
{
"input": "50 1\n31 2",
"output": "-1"
},
{
"input": "79 2\n11 1\n22 2",
"output": "-1"
},
{
"input": "16 3\n100 7\n94 6\n3 1",
"output": "1"
},
{
"input": "58 4\n73 5\n52 4\n69 5\n3 1",
"output": "4"
},
{
"input": "25 40\n70 5\n28 2\n60 4\n54 4\n33 3\n21 2\n51 4\n20 2\n44 3\n79 5\n65 5\n1 1\n52 4\n23 2\n38 3\n92 6\n63 4\n3 1\n91 6\n5 1\n64 4\n34 3\n25 2\n97 7\n89 6\n61 4\n71 5\n88 6\n29 2\n56 4\n45 3\n6 1\n53 4\n57 4\n90 6\n76 5\n8 1\n46 3\n73 5\n87 6",
"output": "2"
},
{
"input": "78 70\n89 6\n52 4\n87 6\n99 7\n3 1\n25 2\n46 3\n78 5\n35 3\n68 5\n85 6\n23 2\n60 4\n88 6\n17 2\n8 1\n15 1\n67 5\n95 6\n59 4\n94 6\n31 2\n4 1\n16 1\n10 1\n97 7\n42 3\n2 1\n24 2\n34 3\n37 3\n70 5\n18 2\n41 3\n48 3\n58 4\n20 2\n38 3\n72 5\n50 4\n49 4\n40 3\n61 4\n6 1\n45 3\n28 2\n13 1\n27 2\n96 6\n56 4\n91 6\n77 5\n12 1\n11 1\n53 4\n76 5\n74 5\n82 6\n55 4\n80 5\n14 1\n44 3\n7 1\n83 6\n79 5\n92 6\n66 5\n36 3\n73 5\n100 7",
"output": "5"
},
{
"input": "95 0",
"output": "-1"
},
{
"input": "33 1\n30 1",
"output": "-1"
},
{
"input": "62 2\n14 1\n15 1",
"output": "-1"
},
{
"input": "3 3\n6 1\n25 1\n38 2",
"output": "1"
},
{
"input": "44 4\n72 3\n80 3\n15 1\n36 2",
"output": "2"
},
{
"input": "34 40\n25 1\n28 1\n78 3\n5 1\n13 1\n75 3\n15 1\n67 3\n57 2\n23 1\n26 1\n61 2\n22 1\n48 2\n85 3\n24 1\n82 3\n83 3\n53 2\n38 2\n19 1\n33 2\n69 3\n17 1\n79 3\n54 2\n77 3\n97 4\n20 1\n35 2\n14 1\n18 1\n71 3\n21 1\n36 2\n56 2\n44 2\n63 2\n72 3\n32 1",
"output": "2"
},
{
"input": "83 70\n79 3\n49 2\n2 1\n44 2\n38 2\n77 3\n86 3\n31 1\n83 3\n82 3\n35 2\n7 1\n78 3\n23 1\n39 2\n58 2\n1 1\n87 3\n72 3\n20 1\n48 2\n14 1\n13 1\n6 1\n70 3\n55 2\n52 2\n25 1\n11 1\n61 2\n76 3\n95 3\n32 1\n66 3\n29 1\n9 1\n5 1\n3 1\n88 3\n59 2\n96 3\n10 1\n63 2\n40 2\n42 2\n34 2\n43 2\n19 1\n89 3\n94 3\n24 1\n98 4\n12 1\n30 1\n69 3\n17 1\n50 2\n8 1\n93 3\n16 1\n97 4\n54 2\n71 3\n18 1\n33 2\n80 3\n15 1\n99 4\n75 3\n4 1",
"output": "3"
},
{
"input": "2 0",
"output": "-1"
},
{
"input": "36 1\n96 1",
"output": "1"
},
{
"input": "73 2\n34 1\n4 1",
"output": "-1"
},
{
"input": "6 3\n37 1\n22 1\n70 1",
"output": "1"
},
{
"input": "47 4\n66 1\n57 1\n85 1\n47 1",
"output": "1"
},
{
"input": "9 40\n73 1\n21 1\n37 1\n87 1\n33 1\n69 1\n49 1\n19 1\n35 1\n93 1\n71 1\n43 1\n79 1\n85 1\n29 1\n72 1\n76 1\n47 1\n17 1\n67 1\n95 1\n41 1\n54 1\n88 1\n42 1\n80 1\n98 1\n96 1\n10 1\n24 1\n78 1\n18 1\n3 1\n91 1\n2 1\n15 1\n5 1\n60 1\n36 1\n46 1",
"output": "1"
},
{
"input": "63 70\n82 1\n53 1\n57 1\n46 1\n97 1\n19 1\n36 1\n90 1\n23 1\n88 1\n68 1\n45 1\n2 1\n70 1\n86 1\n8 1\n83 1\n40 1\n99 1\n42 1\n32 1\n52 1\n81 1\n50 1\n77 1\n37 1\n54 1\n75 1\n4 1\n49 1\n73 1\n22 1\n21 1\n98 1\n18 1\n51 1\n14 1\n76 1\n92 1\n80 1\n78 1\n33 1\n79 1\n89 1\n67 1\n9 1\n44 1\n60 1\n64 1\n55 1\n29 1\n100 1\n16 1\n87 1\n10 1\n12 1\n25 1\n85 1\n30 1\n63 1\n39 1\n38 1\n31 1\n5 1\n26 1\n91 1\n43 1\n72 1\n48 1\n94 1",
"output": "1"
},
{
"input": "2 0",
"output": "-1"
}
] | 1,539,705,684
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 109
| 0
|
n,m = map(int,input().split())
a = []
b = []
N = -1
for i in range(m):
a.append(0)
b.append(0)
for i in range(m):
a[i], b[i] = map(int,input().split())
for i in range(m):
for j in range(m):
if abs(a[i]-a[j]) == 1 and b[i] < b[j]: N = a[i]//b[i]
if N == -1: print(N)
else:
if n%N ==0: print(n/N)
else: print((n//N)+1)
|
Title: Which floor?
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In a building where Polycarp lives there are equal number of flats on each floor. Unfortunately, Polycarp don't remember how many flats are on each floor, but he remembers that the flats are numbered from 1 from lower to upper floors. That is, the first several flats are on the first floor, the next several flats are on the second and so on. Polycarp don't remember the total number of flats in the building, so you can consider the building to be infinitely high (i.e. there are infinitely many floors). Note that the floors are numbered from 1.
Polycarp remembers on which floors several flats are located. It is guaranteed that this information is not self-contradictory. It means that there exists a building with equal number of flats on each floor so that the flats from Polycarp's memory have the floors Polycarp remembers.
Given this information, is it possible to restore the exact floor for flat *n*?
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=100), where *n* is the number of the flat you need to restore floor for, and *m* is the number of flats in Polycarp's memory.
*m* lines follow, describing the Polycarp's memory: each of these lines contains a pair of integers *k**i*,<=*f**i* (1<=≤<=*k**i*<=≤<=100, 1<=≤<=*f**i*<=≤<=100), which means that the flat *k**i* is on the *f**i*-th floor. All values *k**i* are distinct.
It is guaranteed that the given information is not self-contradictory.
Output Specification:
Print the number of the floor in which the *n*-th flat is located, if it is possible to determine it in a unique way. Print -1 if it is not possible to uniquely restore this floor.
Demo Input:
['10 3\n6 2\n2 1\n7 3\n', '8 4\n3 1\n6 2\n5 2\n2 1\n']
Demo Output:
['4\n', '-1\n']
Note:
In the first example the 6-th flat is on the 2-nd floor, while the 7-th flat is on the 3-rd, so, the 6-th flat is the last on its floor and there are 3 flats on each floor. Thus, the 10-th flat is on the 4-th floor.
In the second example there can be 3 or 4 flats on each floor, so we can't restore the floor for the 8-th flat.
|
```python
n,m = map(int,input().split())
a = []
b = []
N = -1
for i in range(m):
a.append(0)
b.append(0)
for i in range(m):
a[i], b[i] = map(int,input().split())
for i in range(m):
for j in range(m):
if abs(a[i]-a[j]) == 1 and b[i] < b[j]: N = a[i]//b[i]
if N == -1: print(N)
else:
if n%N ==0: print(n/N)
else: print((n//N)+1)
```
| 0
|
|
669
|
A
|
Little Artem and Presents
|
PROGRAMMING
| 800
|
[
"math"
] | null | null |
Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that.
How many times can Artem give presents to Masha?
|
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday.
|
Print the maximum possible number of times Artem can give presents to Masha.
|
[
"1\n",
"2\n",
"3\n",
"4\n"
] |
[
"1\n",
"1\n",
"2\n",
"3\n"
] |
In the first sample, Artem can only give 1 stone to Masha.
In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times.
In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone.
In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
| 500
|
[
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "3"
},
{
"input": "100",
"output": "67"
},
{
"input": "101",
"output": "67"
},
{
"input": "102",
"output": "68"
},
{
"input": "1000000000",
"output": "666666667"
},
{
"input": "5",
"output": "3"
},
{
"input": "6",
"output": "4"
},
{
"input": "999999999",
"output": "666666666"
},
{
"input": "999999998",
"output": "666666665"
},
{
"input": "999999997",
"output": "666666665"
},
{
"input": "999999996",
"output": "666666664"
},
{
"input": "999999995",
"output": "666666663"
},
{
"input": "999999994",
"output": "666666663"
},
{
"input": "999999993",
"output": "666666662"
},
{
"input": "999999992",
"output": "666666661"
},
{
"input": "999999991",
"output": "666666661"
},
{
"input": "1000",
"output": "667"
},
{
"input": "10000",
"output": "6667"
},
{
"input": "100000",
"output": "66667"
},
{
"input": "1000000",
"output": "666667"
},
{
"input": "10000000",
"output": "6666667"
},
{
"input": "100000000",
"output": "66666667"
},
{
"input": "7",
"output": "5"
}
] | 1,684,783,044
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 46
| 0
|
n=int(input())
if (n-1)%3==0:
k=(n-1)//3
print(2*k+1)
if (n-2)%3==0:
k=(n-2)//3
print(2*k+1)
if n%3==0:
print(2*(n//3))
|
Title: Little Artem and Presents
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that.
How many times can Artem give presents to Masha?
Input Specification:
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday.
Output Specification:
Print the maximum possible number of times Artem can give presents to Masha.
Demo Input:
['1\n', '2\n', '3\n', '4\n']
Demo Output:
['1\n', '1\n', '2\n', '3\n']
Note:
In the first sample, Artem can only give 1 stone to Masha.
In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times.
In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone.
In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
|
```python
n=int(input())
if (n-1)%3==0:
k=(n-1)//3
print(2*k+1)
if (n-2)%3==0:
k=(n-2)//3
print(2*k+1)
if n%3==0:
print(2*(n//3))
```
| 3
|
|
579
|
A
|
Raising Bacteria
|
PROGRAMMING
| 1,000
|
[
"bitmasks"
] | null | null |
You are a lover of bacteria. You want to raise some bacteria in a box.
Initially, the box is empty. Each morning, you can put any number of bacteria into the box. And each night, every bacterium in the box will split into two bacteria. You hope to see exactly *x* bacteria in the box at some moment.
What is the minimum number of bacteria you need to put into the box across those days?
|
The only line containing one integer *x* (1<=≤<=*x*<=≤<=109).
|
The only line containing one integer: the answer.
|
[
"5\n",
"8\n"
] |
[
"2\n",
"1\n"
] |
For the first sample, we can add one bacterium in the box in the first day morning and at the third morning there will be 4 bacteria in the box. Now we put one more resulting 5 in the box. We added 2 bacteria in the process so the answer is 2.
For the second sample, we can put one in the first morning and in the 4-th morning there will be 8 in the box. So the answer is 1.
| 250
|
[
{
"input": "5",
"output": "2"
},
{
"input": "8",
"output": "1"
},
{
"input": "536870911",
"output": "29"
},
{
"input": "1",
"output": "1"
},
{
"input": "343000816",
"output": "14"
},
{
"input": "559980448",
"output": "12"
},
{
"input": "697681824",
"output": "14"
},
{
"input": "41313494",
"output": "14"
},
{
"input": "673935585",
"output": "13"
},
{
"input": "117422204",
"output": "19"
},
{
"input": "954746654",
"output": "15"
},
{
"input": "536838144",
"output": "14"
},
{
"input": "1000000000",
"output": "13"
},
{
"input": "2",
"output": "1"
},
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "1"
},
{
"input": "6",
"output": "2"
},
{
"input": "7",
"output": "3"
},
{
"input": "9",
"output": "2"
},
{
"input": "10",
"output": "2"
},
{
"input": "999999999",
"output": "21"
},
{
"input": "999999998",
"output": "20"
},
{
"input": "999999997",
"output": "20"
},
{
"input": "999999996",
"output": "19"
},
{
"input": "999999995",
"output": "20"
},
{
"input": "999999994",
"output": "19"
},
{
"input": "999999993",
"output": "19"
},
{
"input": "999999992",
"output": "18"
},
{
"input": "999999991",
"output": "20"
},
{
"input": "999999990",
"output": "19"
},
{
"input": "536870910",
"output": "28"
},
{
"input": "536870912",
"output": "1"
},
{
"input": "536870913",
"output": "2"
},
{
"input": "536870914",
"output": "2"
},
{
"input": "22",
"output": "3"
},
{
"input": "14",
"output": "3"
}
] | 1,692,384,967
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 36
| 46
| 0
|
def biggest_power_of_2_less_or_equal_to(x):
'''
Retorna a maior potência de 2 menor ou igual a x.
'''
if (x == 0):
return 0
p2 = 1
while (p2 < x):
p2 = p2 * 2
if (p2 > x):
p2 = p2 / 2
return p2
def main():
x = int(input())
answer = 0
while (x > 0):
x = x - biggest_power_of_2_less_or_equal_to(x)
answer += 1
print(answer)
main()
|
Title: Raising Bacteria
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are a lover of bacteria. You want to raise some bacteria in a box.
Initially, the box is empty. Each morning, you can put any number of bacteria into the box. And each night, every bacterium in the box will split into two bacteria. You hope to see exactly *x* bacteria in the box at some moment.
What is the minimum number of bacteria you need to put into the box across those days?
Input Specification:
The only line containing one integer *x* (1<=≤<=*x*<=≤<=109).
Output Specification:
The only line containing one integer: the answer.
Demo Input:
['5\n', '8\n']
Demo Output:
['2\n', '1\n']
Note:
For the first sample, we can add one bacterium in the box in the first day morning and at the third morning there will be 4 bacteria in the box. Now we put one more resulting 5 in the box. We added 2 bacteria in the process so the answer is 2.
For the second sample, we can put one in the first morning and in the 4-th morning there will be 8 in the box. So the answer is 1.
|
```python
def biggest_power_of_2_less_or_equal_to(x):
'''
Retorna a maior potência de 2 menor ou igual a x.
'''
if (x == 0):
return 0
p2 = 1
while (p2 < x):
p2 = p2 * 2
if (p2 > x):
p2 = p2 / 2
return p2
def main():
x = int(input())
answer = 0
while (x > 0):
x = x - biggest_power_of_2_less_or_equal_to(x)
answer += 1
print(answer)
main()
```
| 3
|
|
817
|
C
|
Really Big Numbers
|
PROGRAMMING
| 1,600
|
[
"binary search",
"brute force",
"dp",
"math"
] | null | null |
Ivan likes to learn different things about numbers, but he is especially interested in really big numbers. Ivan thinks that a positive integer number *x* is really big if the difference between *x* and the sum of its digits (in decimal representation) is not less than *s*. To prove that these numbers may have different special properties, he wants to know how rare (or not rare) they are — in fact, he needs to calculate the quantity of really big numbers that are not greater than *n*.
Ivan tried to do the calculations himself, but soon realized that it's too difficult for him. So he asked you to help him in calculations.
|
The first (and the only) line contains two integers *n* and *s* (1<=≤<=*n*,<=*s*<=≤<=1018).
|
Print one integer — the quantity of really big numbers that are not greater than *n*.
|
[
"12 1\n",
"25 20\n",
"10 9\n"
] |
[
"3\n",
"0\n",
"1\n"
] |
In the first example numbers 10, 11 and 12 are really big.
In the second example there are no really big numbers that are not greater than 25 (in fact, the first really big number is 30: 30 - 3 ≥ 20).
In the third example 10 is the only really big number (10 - 1 ≥ 9).
| 0
|
[
{
"input": "12 1",
"output": "3"
},
{
"input": "25 20",
"output": "0"
},
{
"input": "10 9",
"output": "1"
},
{
"input": "300 1000",
"output": "0"
},
{
"input": "500 1000",
"output": "0"
},
{
"input": "1000 2000",
"output": "0"
},
{
"input": "10000 1000",
"output": "8991"
},
{
"input": "1000000000000000000 1000000000000000000",
"output": "0"
},
{
"input": "1000000000000000000 100000000000000000",
"output": "899999999999999991"
},
{
"input": "1000000000000000000 10000000000000000",
"output": "989999999999999991"
},
{
"input": "1000000000000000000 1000000000000000",
"output": "998999999999999991"
},
{
"input": "1000000000000000000 100000000000000",
"output": "999899999999999991"
},
{
"input": "1000000000000000000 200000000000000000",
"output": "799999999999999991"
},
{
"input": "10 5",
"output": "1"
},
{
"input": "20 5",
"output": "11"
},
{
"input": "20 9",
"output": "11"
},
{
"input": "100 9",
"output": "91"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "130 118",
"output": "1"
},
{
"input": "190 181",
"output": "0"
},
{
"input": "1999 1971",
"output": "10"
},
{
"input": "100 99",
"output": "1"
},
{
"input": "6909094398 719694282",
"output": "6189400069"
},
{
"input": "260 258",
"output": "0"
},
{
"input": "35 19",
"output": "6"
},
{
"input": "100 87",
"output": "1"
},
{
"input": "91 89",
"output": "0"
},
{
"input": "109 89",
"output": "10"
},
{
"input": "109 91",
"output": "10"
},
{
"input": "20331 11580",
"output": "8732"
},
{
"input": "405487470 255750281",
"output": "149737161"
},
{
"input": "17382 12863",
"output": "4493"
},
{
"input": "19725 14457",
"output": "5246"
},
{
"input": "24848 15384",
"output": "9449"
},
{
"input": "25727 15982",
"output": "9728"
},
{
"input": "109 90",
"output": "10"
},
{
"input": "1000000000000000000 999999999999999999",
"output": "1"
},
{
"input": "1000000000000000000 999999999999999998",
"output": "1"
},
{
"input": "1009 980",
"output": "10"
},
{
"input": "999999999999999999 999999999999999838",
"output": "0"
},
{
"input": "1000000000000000000 99999999999999800",
"output": "900000000000000061"
},
{
"input": "8785369357 3377262261",
"output": "5408107058"
},
{
"input": "110 109",
"output": "0"
},
{
"input": "999 777",
"output": "200"
},
{
"input": "327170000015578 77230000029054",
"output": "249939999986479"
},
{
"input": "12515000022229 1791000022317",
"output": "10723999999880"
},
{
"input": "9999999999999 9999999999882",
"output": "10"
},
{
"input": "213 196",
"output": "14"
},
{
"input": "92 82",
"output": "0"
},
{
"input": "148 136",
"output": "0"
},
{
"input": "8 9",
"output": "0"
},
{
"input": "309 299",
"output": "0"
},
{
"input": "9999 9963",
"output": "10"
},
{
"input": "82 81",
"output": "0"
},
{
"input": "9999999 9999936",
"output": "10"
},
{
"input": "171 155",
"output": "2"
},
{
"input": "999 972",
"output": "10"
},
{
"input": "999999999999 999999999891",
"output": "10"
},
{
"input": "9 9",
"output": "0"
},
{
"input": "6900 6885",
"output": "1"
},
{
"input": "96 57",
"output": "27"
},
{
"input": "5 4",
"output": "0"
},
{
"input": "17386 5814",
"output": "11557"
},
{
"input": "493679757404593 316259583979965",
"output": "177420173424564"
},
{
"input": "18474 9478",
"output": "8975"
},
{
"input": "270091571496186 250931112649966",
"output": "19160458846177"
},
{
"input": "565751690089037 381448507916936",
"output": "184303182172038"
},
{
"input": "19 10",
"output": "0"
}
] | 1,497,614,829
| 2,147,483,647
|
Python 3
|
TIME_LIMIT_EXCEEDED
|
TESTS
| 7
| 1,000
| 0
|
n,s = map(int,input().split())
def is_big(m):
r = [int(k) for k in list(str(m))]
return m-sum(r) >= s
def calcul():
r = list(str(n))
k = len(r)
res = 0
c = int(r[0])
for t in range(c):
z = int("".join([str(t)] + ["0" for _ in range(k-1)]))
z1 = int("".join([str(t+1)] + ["0" for _ in range(k-1)]))
while z < z1 and not is_big(z):
z += 1
res += (z1-z)
z = int("".join([r[0]] + ["0" for _ in range(k-1)]))
while z < n+1 and not is_big(z):
z += 1
res += (n-z+1)
print(res)
calcul()
|
Title: Really Big Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Ivan likes to learn different things about numbers, but he is especially interested in really big numbers. Ivan thinks that a positive integer number *x* is really big if the difference between *x* and the sum of its digits (in decimal representation) is not less than *s*. To prove that these numbers may have different special properties, he wants to know how rare (or not rare) they are — in fact, he needs to calculate the quantity of really big numbers that are not greater than *n*.
Ivan tried to do the calculations himself, but soon realized that it's too difficult for him. So he asked you to help him in calculations.
Input Specification:
The first (and the only) line contains two integers *n* and *s* (1<=≤<=*n*,<=*s*<=≤<=1018).
Output Specification:
Print one integer — the quantity of really big numbers that are not greater than *n*.
Demo Input:
['12 1\n', '25 20\n', '10 9\n']
Demo Output:
['3\n', '0\n', '1\n']
Note:
In the first example numbers 10, 11 and 12 are really big.
In the second example there are no really big numbers that are not greater than 25 (in fact, the first really big number is 30: 30 - 3 ≥ 20).
In the third example 10 is the only really big number (10 - 1 ≥ 9).
|
```python
n,s = map(int,input().split())
def is_big(m):
r = [int(k) for k in list(str(m))]
return m-sum(r) >= s
def calcul():
r = list(str(n))
k = len(r)
res = 0
c = int(r[0])
for t in range(c):
z = int("".join([str(t)] + ["0" for _ in range(k-1)]))
z1 = int("".join([str(t+1)] + ["0" for _ in range(k-1)]))
while z < z1 and not is_big(z):
z += 1
res += (z1-z)
z = int("".join([r[0]] + ["0" for _ in range(k-1)]))
while z < n+1 and not is_big(z):
z += 1
res += (n-z+1)
print(res)
calcul()
```
| 0
|
|
65
|
A
|
Harry Potter and Three Spells
|
PROGRAMMING
| 1,800
|
[
"implementation",
"math"
] |
A. Harry Potter and Three Spells
|
2
|
256
|
A long time ago (probably even in the first book), Nicholas Flamel, a great alchemist and the creator of the Philosopher's Stone, taught Harry Potter three useful spells. The first one allows you to convert *a* grams of sand into *b* grams of lead, the second one allows you to convert *c* grams of lead into *d* grams of gold and third one allows you to convert *e* grams of gold into *f* grams of sand. When Harry told his friends about these spells, Ron Weasley was amazed. After all, if they succeed in turning sand into lead, lead into gold, and then turning part of the gold into sand again and so on, then it will be possible to start with a small amount of sand and get huge amounts of gold! Even an infinite amount of gold! Hermione Granger, by contrast, was skeptical about that idea. She argues that according to the law of conservation of matter getting an infinite amount of matter, even using magic, is impossible. On the contrary, the amount of matter may even decrease during transformation, being converted to magical energy. Though Hermione's theory seems convincing, Ron won't believe her. As far as Ron is concerned, Hermione made up her law of conservation of matter to stop Harry and Ron wasting their time with this nonsense, and to make them go and do homework instead. That's why Ron has already collected a certain amount of sand for the experiments. A quarrel between the friends seems unavoidable...
Help Harry to determine which one of his friends is right, and avoid the quarrel after all. To do this you have to figure out whether it is possible to get the amount of gold greater than any preassigned number from some finite amount of sand.
|
The first line contains 6 integers *a*, *b*, *c*, *d*, *e*, *f* (0<=≤<=*a*,<=*b*,<=*c*,<=*d*,<=*e*,<=*f*<=≤<=1000).
|
Print "Ron", if it is possible to get an infinitely large amount of gold having a certain finite amount of sand (and not having any gold and lead at all), i.e., Ron is right. Otherwise, print "Hermione".
|
[
"100 200 250 150 200 250\n",
"100 50 50 200 200 100\n",
"100 10 200 20 300 30\n",
"0 0 0 0 0 0\n",
"1 1 0 1 1 1\n",
"1 0 1 2 1 2\n",
"100 1 100 1 0 1\n"
] |
[
"Ron\n",
"Hermione\n",
"Hermione\n",
"Hermione\n",
"Ron\n",
"Hermione\n",
"Ron\n"
] |
Consider the first sample. Let's start with the 500 grams of sand. Apply the first spell 5 times and turn the sand into 1000 grams of lead. Then apply the second spell 4 times to get 600 grams of gold. Let’s take 400 grams from the resulting amount of gold turn them back into sand. We get 500 grams of sand and 200 grams of gold. If we apply the same operations to 500 grams of sand again, we can get extra 200 grams of gold every time. Thus, you can get 200, 400, 600 etc. grams of gold, i.e., starting with a finite amount of sand (500 grams), you can get the amount of gold which is greater than any preassigned number.
In the forth sample it is impossible to get sand, or lead, or gold, applying the spells.
In the fifth sample an infinitely large amount of gold can be obtained by using only the second spell, which allows you to receive 1 gram of gold out of nothing. Note that if such a second spell is available, then the first and the third one do not affect the answer at all.
The seventh sample is more interesting. We can also start with a zero amount of sand there. With the aid of the third spell you can get sand out of nothing. We get 10000 grams of sand in this manner. Let's get 100 grams of lead using the first spell 100 times. Then make 1 gram of gold from them. We managed to receive 1 gram of gold, starting with a zero amount of sand! Clearly, in this manner you can get an infinitely large amount of gold.
| 500
|
[
{
"input": "100 200 250 150 200 250",
"output": "Ron"
},
{
"input": "100 50 50 200 200 100",
"output": "Hermione"
},
{
"input": "100 10 200 20 300 30",
"output": "Hermione"
},
{
"input": "0 0 0 0 0 0",
"output": "Hermione"
},
{
"input": "1 1 0 1 1 1",
"output": "Ron"
},
{
"input": "1 0 1 2 1 2",
"output": "Hermione"
},
{
"input": "100 1 100 1 0 1",
"output": "Ron"
},
{
"input": "1 1 2 2 1 1",
"output": "Hermione"
},
{
"input": "4 4 1 3 1 4",
"output": "Ron"
},
{
"input": "3 3 2 1 4 4",
"output": "Hermione"
},
{
"input": "5 1 2 9 1 10",
"output": "Ron"
},
{
"input": "63 65 21 41 95 23",
"output": "Hermione"
},
{
"input": "913 0 0 0 0 0",
"output": "Hermione"
},
{
"input": "0 333 0 0 0 0",
"output": "Hermione"
},
{
"input": "842 538 0 0 0 0",
"output": "Hermione"
},
{
"input": "0 0 536 0 0 0",
"output": "Hermione"
},
{
"input": "324 0 495 0 0 0",
"output": "Hermione"
},
{
"input": "0 407 227 0 0 0",
"output": "Hermione"
},
{
"input": "635 63 924 0 0 0",
"output": "Hermione"
},
{
"input": "0 0 0 493 0 0",
"output": "Ron"
},
{
"input": "414 0 0 564 0 0",
"output": "Ron"
},
{
"input": "0 143 0 895 0 0",
"output": "Ron"
},
{
"input": "276 264 0 875 0 0",
"output": "Ron"
},
{
"input": "0 0 532 186 0 0",
"output": "Hermione"
},
{
"input": "510 0 692 825 0 0",
"output": "Hermione"
},
{
"input": "0 777 910 46 0 0",
"output": "Ron"
},
{
"input": "754 329 959 618 0 0",
"output": "Hermione"
},
{
"input": "0 0 0 0 416 0",
"output": "Hermione"
},
{
"input": "320 0 0 0 526 0",
"output": "Hermione"
},
{
"input": "0 149 0 0 6 0",
"output": "Hermione"
},
{
"input": "996 13 0 0 111 0",
"output": "Hermione"
},
{
"input": "0 0 531 0 688 0",
"output": "Hermione"
},
{
"input": "544 0 837 0 498 0",
"output": "Hermione"
},
{
"input": "0 54 680 0 988 0",
"output": "Hermione"
},
{
"input": "684 986 930 0 555 0",
"output": "Hermione"
},
{
"input": "0 0 0 511 534 0",
"output": "Ron"
},
{
"input": "594 0 0 819 304 0",
"output": "Ron"
},
{
"input": "0 55 0 977 230 0",
"output": "Ron"
},
{
"input": "189 291 0 845 97 0",
"output": "Ron"
},
{
"input": "0 0 77 302 95 0",
"output": "Hermione"
},
{
"input": "247 0 272 232 96 0",
"output": "Hermione"
},
{
"input": "0 883 219 748 77 0",
"output": "Ron"
},
{
"input": "865 643 599 98 322 0",
"output": "Hermione"
},
{
"input": "0 0 0 0 0 699",
"output": "Hermione"
},
{
"input": "907 0 0 0 0 99",
"output": "Hermione"
},
{
"input": "0 891 0 0 0 529",
"output": "Hermione"
},
{
"input": "640 125 0 0 0 849",
"output": "Hermione"
},
{
"input": "0 0 698 0 0 702",
"output": "Hermione"
},
{
"input": "58 0 483 0 0 470",
"output": "Hermione"
},
{
"input": "0 945 924 0 0 355",
"output": "Hermione"
},
{
"input": "998 185 209 0 0 554",
"output": "Hermione"
},
{
"input": "0 0 0 914 0 428",
"output": "Ron"
},
{
"input": "412 0 0 287 0 575",
"output": "Ron"
},
{
"input": "0 850 0 509 0 76",
"output": "Ron"
},
{
"input": "877 318 0 478 0 782",
"output": "Ron"
},
{
"input": "0 0 823 740 0 806",
"output": "Hermione"
},
{
"input": "126 0 620 51 0 835",
"output": "Hermione"
},
{
"input": "0 17 946 633 0 792",
"output": "Ron"
},
{
"input": "296 546 493 22 0 893",
"output": "Ron"
},
{
"input": "0 0 0 0 766 813",
"output": "Hermione"
},
{
"input": "319 0 0 0 891 271",
"output": "Hermione"
},
{
"input": "0 252 0 0 261 576",
"output": "Hermione"
},
{
"input": "876 440 0 0 65 362",
"output": "Hermione"
},
{
"input": "0 0 580 0 245 808",
"output": "Hermione"
},
{
"input": "835 0 116 0 9 552",
"output": "Hermione"
},
{
"input": "0 106 748 0 773 840",
"output": "Hermione"
},
{
"input": "935 388 453 0 797 235",
"output": "Hermione"
},
{
"input": "0 0 0 893 293 289",
"output": "Ron"
},
{
"input": "938 0 0 682 55 725",
"output": "Ron"
},
{
"input": "0 710 0 532 389 511",
"output": "Ron"
},
{
"input": "617 861 0 247 920 902",
"output": "Ron"
},
{
"input": "0 0 732 202 68 389",
"output": "Hermione"
},
{
"input": "279 0 254 964 449 143",
"output": "Hermione"
},
{
"input": "0 746 400 968 853 85",
"output": "Ron"
},
{
"input": "565 846 658 828 767 734",
"output": "Ron"
},
{
"input": "6 6 1 6 1 6",
"output": "Ron"
},
{
"input": "3 6 1 6 3 3",
"output": "Ron"
},
{
"input": "6 3 1 3 2 3",
"output": "Ron"
},
{
"input": "3 6 2 2 6 3",
"output": "Hermione"
},
{
"input": "3 2 2 1 3 3",
"output": "Hermione"
},
{
"input": "1 1 1 6 1 1",
"output": "Ron"
},
{
"input": "1 3 1 3 3 2",
"output": "Ron"
},
{
"input": "6 2 6 6 2 3",
"output": "Hermione"
},
{
"input": "2 6 2 1 2 1",
"output": "Hermione"
},
{
"input": "2 3 2 1 6 6",
"output": "Hermione"
},
{
"input": "2 1 2 1 6 2",
"output": "Hermione"
},
{
"input": "6 1 3 1 3 3",
"output": "Hermione"
},
{
"input": "1 2 2 3 2 2",
"output": "Ron"
},
{
"input": "3 3 2 6 3 6",
"output": "Ron"
},
{
"input": "2 1 6 1 2 6",
"output": "Hermione"
},
{
"input": "2 3 1 3 1 6",
"output": "Ron"
},
{
"input": "6 6 2 3 1 3",
"output": "Ron"
},
{
"input": "6 2 6 2 3 1",
"output": "Hermione"
},
{
"input": "1 6 6 2 3 2",
"output": "Ron"
},
{
"input": "6 3 6 2 6 6",
"output": "Hermione"
},
{
"input": "1 3 1 6 6 1",
"output": "Ron"
},
{
"input": "1 1 1 1 6 6",
"output": "Hermione"
},
{
"input": "2 6 2 2 2 3",
"output": "Ron"
},
{
"input": "1 6 1 6 6 3",
"output": "Ron"
},
{
"input": "6 6 3 1 3 3",
"output": "Hermione"
},
{
"input": "2 6 6 1 2 6",
"output": "Ron"
},
{
"input": "3 2 6 6 1 6",
"output": "Ron"
},
{
"input": "1 2 3 2 2 3",
"output": "Ron"
},
{
"input": "2 6 1 1 1 6",
"output": "Ron"
},
{
"input": "1 6 3 6 6 3",
"output": "Ron"
},
{
"input": "3 3 3 2 6 2",
"output": "Hermione"
},
{
"input": "6 2 3 6 2 2",
"output": "Hermione"
},
{
"input": "2 1 2 3 3 2",
"output": "Hermione"
},
{
"input": "6 2 1 1 3 6",
"output": "Hermione"
},
{
"input": "6 6 6 6 3 2",
"output": "Hermione"
},
{
"input": "6 1 1 6 2 3",
"output": "Ron"
},
{
"input": "6 1 3 6 1 2",
"output": "Hermione"
},
{
"input": "2 1 2 6 6 1",
"output": "Hermione"
},
{
"input": "1 2 2 3 2 1",
"output": "Ron"
},
{
"input": "2 2 6 6 6 6",
"output": "Hermione"
},
{
"input": "31 75 12 62 94 137",
"output": "Ron"
},
{
"input": "236 9 184 68 345 332",
"output": "Hermione"
},
{
"input": "362 142 107 565 329 608",
"output": "Ron"
},
{
"input": "731 859 197 474 370 465",
"output": "Ron"
},
{
"input": "452 577 639 31 60 673",
"output": "Hermione"
},
{
"input": "821 294 730 941 101 530",
"output": "Ron"
},
{
"input": "542 11 820 850 791 738",
"output": "Hermione"
},
{
"input": "911 728 910 407 833 594",
"output": "Hermione"
},
{
"input": "632 446 352 317 522 451",
"output": "Hermione"
}
] | 1,594,267,452
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 248
| 6,656,000
|
a,b,c,d,e,f=map(int,input().split())
if a==0 or c==0 or e==0:
print("Hermione")
exit()
k1=b/a
k2=d/c
k3=f/e
if k1*k2*k3 > 1:
print("Ron")
else:
print("Hermione")
|
Title: Harry Potter and Three Spells
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
A long time ago (probably even in the first book), Nicholas Flamel, a great alchemist and the creator of the Philosopher's Stone, taught Harry Potter three useful spells. The first one allows you to convert *a* grams of sand into *b* grams of lead, the second one allows you to convert *c* grams of lead into *d* grams of gold and third one allows you to convert *e* grams of gold into *f* grams of sand. When Harry told his friends about these spells, Ron Weasley was amazed. After all, if they succeed in turning sand into lead, lead into gold, and then turning part of the gold into sand again and so on, then it will be possible to start with a small amount of sand and get huge amounts of gold! Even an infinite amount of gold! Hermione Granger, by contrast, was skeptical about that idea. She argues that according to the law of conservation of matter getting an infinite amount of matter, even using magic, is impossible. On the contrary, the amount of matter may even decrease during transformation, being converted to magical energy. Though Hermione's theory seems convincing, Ron won't believe her. As far as Ron is concerned, Hermione made up her law of conservation of matter to stop Harry and Ron wasting their time with this nonsense, and to make them go and do homework instead. That's why Ron has already collected a certain amount of sand for the experiments. A quarrel between the friends seems unavoidable...
Help Harry to determine which one of his friends is right, and avoid the quarrel after all. To do this you have to figure out whether it is possible to get the amount of gold greater than any preassigned number from some finite amount of sand.
Input Specification:
The first line contains 6 integers *a*, *b*, *c*, *d*, *e*, *f* (0<=≤<=*a*,<=*b*,<=*c*,<=*d*,<=*e*,<=*f*<=≤<=1000).
Output Specification:
Print "Ron", if it is possible to get an infinitely large amount of gold having a certain finite amount of sand (and not having any gold and lead at all), i.e., Ron is right. Otherwise, print "Hermione".
Demo Input:
['100 200 250 150 200 250\n', '100 50 50 200 200 100\n', '100 10 200 20 300 30\n', '0 0 0 0 0 0\n', '1 1 0 1 1 1\n', '1 0 1 2 1 2\n', '100 1 100 1 0 1\n']
Demo Output:
['Ron\n', 'Hermione\n', 'Hermione\n', 'Hermione\n', 'Ron\n', 'Hermione\n', 'Ron\n']
Note:
Consider the first sample. Let's start with the 500 grams of sand. Apply the first spell 5 times and turn the sand into 1000 grams of lead. Then apply the second spell 4 times to get 600 grams of gold. Let’s take 400 grams from the resulting amount of gold turn them back into sand. We get 500 grams of sand and 200 grams of gold. If we apply the same operations to 500 grams of sand again, we can get extra 200 grams of gold every time. Thus, you can get 200, 400, 600 etc. grams of gold, i.e., starting with a finite amount of sand (500 grams), you can get the amount of gold which is greater than any preassigned number.
In the forth sample it is impossible to get sand, or lead, or gold, applying the spells.
In the fifth sample an infinitely large amount of gold can be obtained by using only the second spell, which allows you to receive 1 gram of gold out of nothing. Note that if such a second spell is available, then the first and the third one do not affect the answer at all.
The seventh sample is more interesting. We can also start with a zero amount of sand there. With the aid of the third spell you can get sand out of nothing. We get 10000 grams of sand in this manner. Let's get 100 grams of lead using the first spell 100 times. Then make 1 gram of gold from them. We managed to receive 1 gram of gold, starting with a zero amount of sand! Clearly, in this manner you can get an infinitely large amount of gold.
|
```python
a,b,c,d,e,f=map(int,input().split())
if a==0 or c==0 or e==0:
print("Hermione")
exit()
k1=b/a
k2=d/c
k3=f/e
if k1*k2*k3 > 1:
print("Ron")
else:
print("Hermione")
```
| 0
|
26
|
B
|
Regular Bracket Sequence
|
PROGRAMMING
| 1,400
|
[
"greedy"
] |
B. Regular Bracket Sequence
|
5
|
256
|
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters «+» and «1» into this sequence. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
|
Input consists of a single line with non-empty string of «(» and «)» characters. Its length does not exceed 106.
|
Output the maximum possible length of a regular bracket sequence.
|
[
"(()))(\n",
"((()())\n"
] |
[
"4\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "(()))(",
"output": "4"
},
{
"input": "((()())",
"output": "6"
},
{
"input": "(",
"output": "0"
},
{
"input": ")",
"output": "0"
},
{
"input": ")(()(",
"output": "2"
},
{
"input": "))))))(",
"output": "0"
},
{
"input": "()()(()(((",
"output": "6"
},
{
"input": "()))(()((((()(())",
"output": "10"
},
{
"input": "())))((()())())))))())",
"output": "14"
},
{
"input": ")))((((())(()((()((((()()())((",
"output": "16"
},
{
"input": "))()()((()()))())()(((((((())((((((((())()()((())(",
"output": "32"
},
{
"input": "))())))))))())))))()()))()()))))())))))()))))))))))))(()))())(()))))(()))))())))((((()()))))()))()))",
"output": "48"
}
] | 1,680,416,920
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 38
| 716
| 10,240,000
|
L=[]
S=input()
C=0
for i in range(len(S)):
if S[i] == "(":
L.append("(")
elif S[i] == ")":
if not L:
continue
else:
L.pop()
C+=1
print(C*2)
|
Title: Regular Bracket Sequence
Time Limit: 5 seconds
Memory Limit: 256 megabytes
Problem Description:
A bracket sequence is called regular if it is possible to obtain correct arithmetic expression by inserting characters «+» and «1» into this sequence. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
One day Johnny got bracket sequence. He decided to remove some of the brackets from it in order to obtain a regular bracket sequence. What is the maximum length of a regular bracket sequence which can be obtained?
Input Specification:
Input consists of a single line with non-empty string of «(» and «)» characters. Its length does not exceed 106.
Output Specification:
Output the maximum possible length of a regular bracket sequence.
Demo Input:
['(()))(\n', '((()())\n']
Demo Output:
['4\n', '6\n']
Note:
none
|
```python
L=[]
S=input()
C=0
for i in range(len(S)):
if S[i] == "(":
L.append("(")
elif S[i] == ")":
if not L:
continue
else:
L.pop()
C+=1
print(C*2)
```
| 3.909327
|
558
|
A
|
Lala Land and Apple Trees
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation",
"sortings"
] | null | null |
Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere.
Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing.
What is the maximum number of apples he can collect?
|
The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land.
The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it.
It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0.
|
Output the maximum number of apples Amr can collect.
|
[
"2\n-1 5\n1 5\n",
"3\n-2 2\n1 4\n-1 3\n",
"3\n1 9\n3 5\n7 10\n"
] |
[
"10",
"9",
"9"
] |
In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples.
In the second sample test the optimal solution is to go left to *x* = - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* = - 2.
In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
| 500
|
[
{
"input": "2\n-1 5\n1 5",
"output": "10"
},
{
"input": "3\n-2 2\n1 4\n-1 3",
"output": "9"
},
{
"input": "3\n1 9\n3 5\n7 10",
"output": "9"
},
{
"input": "1\n1 1",
"output": "1"
},
{
"input": "4\n10000 100000\n-1000 100000\n-2 100000\n-1 100000",
"output": "300000"
},
{
"input": "1\n-1 1",
"output": "1"
},
{
"input": "27\n-30721 24576\n-6620 92252\n88986 24715\n-94356 10509\n-6543 29234\n-68554 69530\n39176 96911\n67266 99669\n95905 51002\n-94093 92134\n65382 23947\n-6525 79426\n-448 67531\n-70083 26921\n-86333 50029\n48924 8036\n-27228 5349\n6022 10691\n-13840 56735\n50398 58794\n-63258 45557\n-27792 77057\n98295 1203\n-51294 18757\n35037 61941\n-30112 13076\n82334 20463",
"output": "1036452"
},
{
"input": "18\n-18697 44186\n56333 51938\n-75688 49735\n77762 14039\n-43996 81060\n69700 49107\n74532 45568\n-94476 203\n-92347 90745\n58921 44650\n57563 63561\n44630 8486\n35750 5999\n3249 34202\n75358 68110\n-33245 60458\n-88148 2342\n87856 85532",
"output": "632240"
},
{
"input": "28\n49728 91049\n-42863 4175\n-89214 22191\n77977 16965\n-42960 87627\n-84329 97494\n89270 75906\n-13695 28908\n-72279 13607\n-97327 87062\n-58682 32094\n39108 99936\n29304 93784\n-63886 48237\n-77359 57648\n-87013 79017\n-41086 35033\n-60613 83555\n-48955 56816\n-20568 26802\n52113 25160\n-88885 45294\n22601 42971\n62693 65662\n-15985 5357\n86671 8522\n-59921 11271\n-79304 25044",
"output": "891593"
},
{
"input": "25\n5704 67795\n6766 31836\n-41715 89987\n76854 9848\n11648 90020\n-79763 10107\n96971 92636\n-64205 71937\n87997 38273\n-9782 57187\n22186 6905\n-41130 40258\n-28403 66579\n19578 43375\n35735 52929\n-52417 89388\n-89430 1939\n9401 43491\n-11228 10112\n-86859 16024\n-51486 33467\n-80578 65080\n-52820 98445\n-89165 7657\n-97106 79422",
"output": "1109655"
},
{
"input": "16\n-41732 47681\n44295 28942\n-75194 99827\n69982 18020\n-75378 22026\n80032 22908\n-34879 41113\n36257 48574\n-35882 84333\n29646 71151\n-86214 80886\n72724 39364\n-42529 60880\n29150 29921\n-8471 80781\n79387 70834",
"output": "847241"
},
{
"input": "3\n-94146 4473\n28707 99079\n-4153 8857",
"output": "112409"
},
{
"input": "3\n-3 3\n-2 2\n-1 1",
"output": "1"
},
{
"input": "2\n100000 3\n-100000 9",
"output": "12"
},
{
"input": "2\n-100000 100000\n100000 99999",
"output": "199999"
}
] | 1,437,151,008
| 4,008
|
Python 3
|
OK
|
TESTS
| 43
| 61
| 0
|
n = int(input())
_coords = []
_apples = []
for i in range(n):
tree = [int(i) for i in input().split()]
_coords += [tree[0]]
_apples += [tree[1]]
coords_min = - 100001
coords_max = 100001
def get_next_left_index(coords):
next_left = coords_min
next_left_index = -1
for ind, x in enumerate(coords):
if (x > next_left) and (x < 0):
next_left = x
next_left_index = ind
return next_left_index
def get_next_right_index(coords):
next_right = coords_max
next_right_index = -1
for ind, x in enumerate(coords):
if (x < next_right) and (x > 0):
next_right = x
next_right_index = ind
return next_right_index
def go(direction, coords, apples):
in_bucket = 0
next_index = 0
if direction == 0:
next_index = get_next_left_index(coords)
elif direction == 1:
next_index = get_next_right_index(coords)
if next_index == -1:
return in_bucket
else:
in_bucket += apples[next_index]
del apples[next_index]
del coords[next_index]
direction = (direction + 1) % 2
return in_bucket + go(direction, coords, apples)
res = max(go(0, _coords.copy(), _apples.copy()), go(1, _coords.copy(), _apples.copy()))
print(res)
|
Title: Lala Land and Apple Trees
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere.
Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing.
What is the maximum number of apples he can collect?
Input Specification:
The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land.
The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it.
It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0.
Output Specification:
Output the maximum number of apples Amr can collect.
Demo Input:
['2\n-1 5\n1 5\n', '3\n-2 2\n1 4\n-1 3\n', '3\n1 9\n3 5\n7 10\n']
Demo Output:
['10', '9', '9']
Note:
In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples.
In the second sample test the optimal solution is to go left to *x* = - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* = - 2.
In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
|
```python
n = int(input())
_coords = []
_apples = []
for i in range(n):
tree = [int(i) for i in input().split()]
_coords += [tree[0]]
_apples += [tree[1]]
coords_min = - 100001
coords_max = 100001
def get_next_left_index(coords):
next_left = coords_min
next_left_index = -1
for ind, x in enumerate(coords):
if (x > next_left) and (x < 0):
next_left = x
next_left_index = ind
return next_left_index
def get_next_right_index(coords):
next_right = coords_max
next_right_index = -1
for ind, x in enumerate(coords):
if (x < next_right) and (x > 0):
next_right = x
next_right_index = ind
return next_right_index
def go(direction, coords, apples):
in_bucket = 0
next_index = 0
if direction == 0:
next_index = get_next_left_index(coords)
elif direction == 1:
next_index = get_next_right_index(coords)
if next_index == -1:
return in_bucket
else:
in_bucket += apples[next_index]
del apples[next_index]
del coords[next_index]
direction = (direction + 1) % 2
return in_bucket + go(direction, coords, apples)
res = max(go(0, _coords.copy(), _apples.copy()), go(1, _coords.copy(), _apples.copy()))
print(res)
```
| 3
|
|
659
|
A
|
Round House
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] | null | null |
Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent.
Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance.
Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.
|
The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.
|
Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk.
|
[
"6 2 -5\n",
"5 1 3\n",
"3 2 7\n"
] |
[
"3\n",
"4\n",
"3\n"
] |
The first example is illustrated by the picture in the statements.
| 500
|
[
{
"input": "6 2 -5",
"output": "3"
},
{
"input": "5 1 3",
"output": "4"
},
{
"input": "3 2 7",
"output": "3"
},
{
"input": "1 1 0",
"output": "1"
},
{
"input": "1 1 -1",
"output": "1"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "100 1 -1",
"output": "100"
},
{
"input": "100 54 100",
"output": "54"
},
{
"input": "100 37 -100",
"output": "37"
},
{
"input": "99 41 0",
"output": "41"
},
{
"input": "97 37 -92",
"output": "42"
},
{
"input": "99 38 59",
"output": "97"
},
{
"input": "35 34 1",
"output": "35"
},
{
"input": "48 1 -1",
"output": "48"
},
{
"input": "87 65 -76",
"output": "76"
},
{
"input": "76 26 29",
"output": "55"
},
{
"input": "100 65 0",
"output": "65"
},
{
"input": "2 1 100",
"output": "1"
},
{
"input": "3 2 -100",
"output": "1"
},
{
"input": "1 1 100",
"output": "1"
},
{
"input": "1 1 -100",
"output": "1"
},
{
"input": "3 1 -100",
"output": "3"
},
{
"input": "4 3 -100",
"output": "3"
},
{
"input": "3 2 -12",
"output": "2"
},
{
"input": "2 2 -100",
"output": "2"
},
{
"input": "3 2 -90",
"output": "2"
},
{
"input": "6 2 -10",
"output": "4"
},
{
"input": "3 3 -100",
"output": "2"
},
{
"input": "5 2 4",
"output": "1"
},
{
"input": "6 4 5",
"output": "3"
},
{
"input": "3 2 -6",
"output": "2"
},
{
"input": "5 1 -99",
"output": "2"
},
{
"input": "6 2 5",
"output": "1"
},
{
"input": "10 1 -100",
"output": "1"
},
{
"input": "2 2 1",
"output": "1"
},
{
"input": "3 3 1",
"output": "1"
},
{
"input": "6 4 4",
"output": "2"
},
{
"input": "17 17 2",
"output": "2"
},
{
"input": "6 6 1",
"output": "1"
},
{
"input": "5 3 -2",
"output": "1"
},
{
"input": "6 2 -100",
"output": "4"
},
{
"input": "5 3 -100",
"output": "3"
},
{
"input": "5 4 3",
"output": "2"
},
{
"input": "3 2 2",
"output": "1"
},
{
"input": "5 5 2",
"output": "2"
},
{
"input": "3 2 5",
"output": "1"
},
{
"input": "5 5 -1",
"output": "4"
},
{
"input": "5 3 3",
"output": "1"
},
{
"input": "4 2 3",
"output": "1"
},
{
"input": "88 76 74",
"output": "62"
}
] | 1,540,877,902
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 18
| 109
| 0
|
str = input().split()
n = int(str[0])
a = int(str[1])
b = int(str[2])
output = 0
if b<0:
print(n+(a+b))
else:
print(a + (b%n))
|
Title: Round House
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent.
Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance.
Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.
Input Specification:
The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.
Output Specification:
Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk.
Demo Input:
['6 2 -5\n', '5 1 3\n', '3 2 7\n']
Demo Output:
['3\n', '4\n', '3\n']
Note:
The first example is illustrated by the picture in the statements.
|
```python
str = input().split()
n = int(str[0])
a = int(str[1])
b = int(str[2])
output = 0
if b<0:
print(n+(a+b))
else:
print(a + (b%n))
```
| 0
|
|
911
|
B
|
Two Cakes
|
PROGRAMMING
| 1,200
|
[
"binary search",
"brute force",
"implementation"
] | null | null |
It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces.
Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met:
1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes.
To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake.
Help Ivan to calculate this number *x*!
|
The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.
|
Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake.
|
[
"5 2 3\n",
"4 7 10\n"
] |
[
"1\n",
"3\n"
] |
In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.
In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
| 0
|
[
{
"input": "5 2 3",
"output": "1"
},
{
"input": "4 7 10",
"output": "3"
},
{
"input": "100 100 100",
"output": "2"
},
{
"input": "10 100 3",
"output": "3"
},
{
"input": "2 9 29",
"output": "9"
},
{
"input": "4 6 10",
"output": "3"
},
{
"input": "3 70 58",
"output": "35"
},
{
"input": "5 7 10",
"output": "3"
},
{
"input": "5 30 22",
"output": "10"
},
{
"input": "5 5 6",
"output": "2"
},
{
"input": "2 4 3",
"output": "3"
},
{
"input": "10 10 31",
"output": "3"
},
{
"input": "2 1 1",
"output": "1"
},
{
"input": "10 98 99",
"output": "19"
},
{
"input": "4 10 16",
"output": "5"
},
{
"input": "11 4 8",
"output": "1"
},
{
"input": "5 10 14",
"output": "4"
},
{
"input": "6 7 35",
"output": "7"
},
{
"input": "5 6 7",
"output": "2"
},
{
"input": "4 15 3",
"output": "3"
},
{
"input": "7 48 77",
"output": "16"
},
{
"input": "4 4 10",
"output": "3"
},
{
"input": "4 7 20",
"output": "6"
},
{
"input": "5 2 8",
"output": "2"
},
{
"input": "3 2 3",
"output": "1"
},
{
"input": "14 95 1",
"output": "1"
},
{
"input": "99 82 53",
"output": "1"
},
{
"input": "10 71 27",
"output": "9"
},
{
"input": "5 7 8",
"output": "2"
},
{
"input": "11 77 77",
"output": "12"
},
{
"input": "10 5 28",
"output": "3"
},
{
"input": "7 3 12",
"output": "2"
},
{
"input": "10 15 17",
"output": "3"
},
{
"input": "7 7 7",
"output": "1"
},
{
"input": "4 11 18",
"output": "6"
},
{
"input": "3 3 4",
"output": "2"
},
{
"input": "9 2 10",
"output": "1"
},
{
"input": "100 90 20",
"output": "1"
},
{
"input": "3 2 2",
"output": "1"
},
{
"input": "12 45 60",
"output": "8"
},
{
"input": "3 94 79",
"output": "47"
},
{
"input": "41 67 34",
"output": "2"
},
{
"input": "9 3 23",
"output": "2"
},
{
"input": "10 20 57",
"output": "7"
},
{
"input": "55 27 30",
"output": "1"
},
{
"input": "100 100 10",
"output": "1"
},
{
"input": "20 8 70",
"output": "3"
},
{
"input": "3 3 3",
"output": "1"
},
{
"input": "4 9 15",
"output": "5"
},
{
"input": "3 1 3",
"output": "1"
},
{
"input": "2 94 94",
"output": "94"
},
{
"input": "5 3 11",
"output": "2"
},
{
"input": "4 3 2",
"output": "1"
},
{
"input": "12 12 100",
"output": "9"
},
{
"input": "6 75 91",
"output": "25"
},
{
"input": "3 4 3",
"output": "2"
},
{
"input": "3 2 5",
"output": "2"
},
{
"input": "6 5 15",
"output": "3"
},
{
"input": "4 3 6",
"output": "2"
},
{
"input": "3 9 9",
"output": "4"
},
{
"input": "26 93 76",
"output": "6"
},
{
"input": "41 34 67",
"output": "2"
},
{
"input": "6 12 6",
"output": "3"
},
{
"input": "5 20 8",
"output": "5"
},
{
"input": "2 1 3",
"output": "1"
},
{
"input": "35 66 99",
"output": "4"
},
{
"input": "30 7 91",
"output": "3"
},
{
"input": "5 22 30",
"output": "10"
},
{
"input": "8 19 71",
"output": "10"
},
{
"input": "3 5 6",
"output": "3"
},
{
"input": "5 3 8",
"output": "2"
},
{
"input": "2 4 2",
"output": "2"
},
{
"input": "4 3 7",
"output": "2"
},
{
"input": "5 20 10",
"output": "5"
},
{
"input": "5 100 50",
"output": "25"
},
{
"input": "6 3 10",
"output": "2"
},
{
"input": "2 90 95",
"output": "90"
},
{
"input": "4 8 6",
"output": "3"
},
{
"input": "6 10 3",
"output": "2"
},
{
"input": "3 3 5",
"output": "2"
},
{
"input": "5 33 33",
"output": "11"
},
{
"input": "5 5 8",
"output": "2"
},
{
"input": "19 24 34",
"output": "3"
},
{
"input": "5 5 12",
"output": "3"
},
{
"input": "8 7 10",
"output": "2"
},
{
"input": "5 56 35",
"output": "17"
},
{
"input": "4 3 5",
"output": "1"
},
{
"input": "18 100 50",
"output": "8"
},
{
"input": "5 6 8",
"output": "2"
},
{
"input": "5 98 100",
"output": "33"
},
{
"input": "6 5 8",
"output": "2"
},
{
"input": "3 40 80",
"output": "40"
},
{
"input": "4 8 11",
"output": "4"
},
{
"input": "66 100 99",
"output": "3"
},
{
"input": "17 100 79",
"output": "10"
},
{
"input": "3 2 10",
"output": "2"
},
{
"input": "99 100 99",
"output": "2"
},
{
"input": "21 100 5",
"output": "5"
},
{
"input": "3 10 2",
"output": "2"
},
{
"input": "4 100 63",
"output": "33"
},
{
"input": "2 2 10",
"output": "2"
},
{
"input": "5 94 79",
"output": "31"
},
{
"input": "4 12 5",
"output": "4"
},
{
"input": "5 5 40",
"output": "5"
},
{
"input": "99 99 99",
"output": "1"
},
{
"input": "8 97 44",
"output": "16"
},
{
"input": "11 4 10",
"output": "1"
},
{
"input": "6 3 3",
"output": "1"
},
{
"input": "7 3 4",
"output": "1"
},
{
"input": "8 4 4",
"output": "1"
},
{
"input": "9 4 5",
"output": "1"
},
{
"input": "12 6 6",
"output": "1"
},
{
"input": "4 48 89",
"output": "29"
},
{
"input": "8 3 6",
"output": "1"
},
{
"input": "4 6 3",
"output": "2"
},
{
"input": "5 5 1",
"output": "1"
},
{
"input": "11 6 5",
"output": "1"
},
{
"input": "4 5 4",
"output": "2"
},
{
"input": "6 6 4",
"output": "1"
},
{
"input": "2 1 2",
"output": "1"
},
{
"input": "4 1 3",
"output": "1"
},
{
"input": "3 3 1",
"output": "1"
},
{
"input": "9 4 6",
"output": "1"
},
{
"input": "6 5 6",
"output": "1"
},
{
"input": "2 2 3",
"output": "2"
},
{
"input": "4 5 1",
"output": "1"
},
{
"input": "13 6 7",
"output": "1"
},
{
"input": "14 7 7",
"output": "1"
},
{
"input": "12 97 13",
"output": "8"
},
{
"input": "4 2 9",
"output": "2"
},
{
"input": "10 20 59",
"output": "7"
},
{
"input": "12 34 56",
"output": "7"
},
{
"input": "4 5 9",
"output": "3"
},
{
"input": "2 2 2",
"output": "2"
},
{
"input": "4 66 41",
"output": "22"
}
] | 1,516,388,196
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 6
| 61
| 5,632,000
|
N,a,b=map(int,(input().split(" ")))
if(N==(a+b)):
print("1")
elif(a>=(b*N) or (b>=N*a)):
if(a>b):
print(b)
else:
print(a)
else:
if(a>b):
a1=a
b1=b
else:
b1=a
a1=b
i=2
while(i<b+1):
w=int(b1//i)
w1=int(a1//i)
if(w+w1>=(N+N)):
i=i+1
else:
result=i
break
print(result)
|
Title: Two Cakes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces.
Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met:
1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes.
To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake.
Help Ivan to calculate this number *x*!
Input Specification:
The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.
Output Specification:
Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake.
Demo Input:
['5 2 3\n', '4 7 10\n']
Demo Output:
['1\n', '3\n']
Note:
In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.
In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
|
```python
N,a,b=map(int,(input().split(" ")))
if(N==(a+b)):
print("1")
elif(a>=(b*N) or (b>=N*a)):
if(a>b):
print(b)
else:
print(a)
else:
if(a>b):
a1=a
b1=b
else:
b1=a
a1=b
i=2
while(i<b+1):
w=int(b1//i)
w1=int(a1//i)
if(w+w1>=(N+N)):
i=i+1
else:
result=i
break
print(result)
```
| -1
|
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
An atom of element X can exist in *n* distinct states with energies *E*1<=<<=*E*2<=<<=...<=<<=*E**n*. Arkady wants to build a laser on this element, using a three-level scheme. Here is a simplified description of the scheme.
Three distinct states *i*, *j* and *k* are selected, where *i*<=<<=*j*<=<<=*k*. After that the following process happens:
1. initially the atom is in the state *i*,1. we spend *E**k*<=-<=*E**i* energy to put the atom in the state *k*,1. the atom emits a photon with useful energy *E**k*<=-<=*E**j* and changes its state to the state *j*,1. the atom spontaneously changes its state to the state *i*, losing energy *E**j*<=-<=*E**i*,1. the process repeats from step 1.
Let's define the energy conversion efficiency as , i. e. the ration between the useful energy of the photon and spent energy.
Due to some limitations, Arkady can only choose such three states that *E**k*<=-<=*E**i*<=≤<=*U*.
Help Arkady to find such the maximum possible energy conversion efficiency within the above constraints.
|
The first line contains two integers *n* and *U* (3<=≤<=*n*<=≤<=105, 1<=≤<=*U*<=≤<=109) — the number of states and the maximum possible difference between *E**k* and *E**i*.
The second line contains a sequence of integers *E*1,<=*E*2,<=...,<=*E**n* (1<=≤<=*E*1<=<<=*E*2...<=<<=*E**n*<=≤<=109). It is guaranteed that all *E**i* are given in increasing order.
|
If it is not possible to choose three states that satisfy all constraints, print -1.
Otherwise, print one real number η — the maximum possible energy conversion efficiency. Your answer is considered correct its absolute or relative error does not exceed 10<=-<=9.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
|
[
"4 4\n1 3 5 7\n",
"10 8\n10 13 15 16 17 19 20 22 24 25\n",
"3 1\n2 5 10\n"
] |
[
"0.5\n",
"0.875\n",
"-1\n"
] |
In the first example choose states 1, 2 and 3, so that the energy conversion efficiency becomes equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/147ae7a830722917b0aa37d064df8eb74cfefb97.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second example choose states 4, 5 and 9, so that the energy conversion efficiency becomes equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f68f268de4eb2242167e6ec64e6b8aa60a5703ae.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
| 0
|
[
{
"input": "4 4\n1 3 5 7",
"output": "0.5"
},
{
"input": "10 8\n10 13 15 16 17 19 20 22 24 25",
"output": "0.875"
},
{
"input": "3 1\n2 5 10",
"output": "-1"
},
{
"input": "5 3\n4 6 8 9 10",
"output": "0.5"
},
{
"input": "10 128\n110 121 140 158 174 188 251 271 272 277",
"output": "0.86554621848739499157"
},
{
"input": "20 17\n104 107 121 131 138 140 143 144 178 192 193 198 201 206 238 242 245 248 255 265",
"output": "0.92857142857142860315"
},
{
"input": "30 23\n102 104 105 107 108 109 110 111 116 118 119 122 127 139 140 142 145 157 166 171 173 174 175 181 187 190 191 193 195 196",
"output": "0.95652173913043481157"
},
{
"input": "50 64\n257 258 350 375 1014 1017 1051 1097 1169 1177 1223 1836 1942 1983 2111 2131 2341 2418 2593 2902 2948 3157 3243 3523 3566 4079 4499 4754 5060 5624 6279 6976 7011 7071 7278 7366 7408 7466 7526 7837 7934 8532 8577 8680 9221 9271 9327 9411 9590 9794",
"output": "0.91891891891891896993"
},
{
"input": "5 2\n4 6 8 9 10",
"output": "0.5"
},
{
"input": "10 2\n110 121 140 158 174 188 251 271 272 277",
"output": "-1"
},
{
"input": "30 5\n102 104 105 107 108 109 110 111 116 118 119 122 127 139 140 142 145 157 166 171 173 174 175 181 187 190 191 193 195 196",
"output": "0.80000000000000004441"
},
{
"input": "10 6\n110 121 140 158 174 188 251 271 272 277",
"output": "0.83333333333333337034"
},
{
"input": "20 4\n104 107 121 131 138 140 143 144 178 192 193 198 201 206 238 242 245 248 255 265",
"output": "0.25"
},
{
"input": "3 1000000000\n1 2 1000000000",
"output": "0.99999999900000002828"
},
{
"input": "3 1\n1 2 3",
"output": "-1"
},
{
"input": "5 1000000000\n1 2 3 999999999 1000000000",
"output": "0.99999999900000002828"
},
{
"input": "10 199\n1 3 190 191 193 195 196 197 199 200",
"output": "0.98994974874371854945"
},
{
"input": "10 300\n80 100 103 140 146 159 392 393 396 398",
"output": "0.98993288590604022747"
},
{
"input": "10 92\n44 119 252 281 303 323 351 363 377 392",
"output": "0.77528089887640450062"
},
{
"input": "4 2\n1 3 5 7",
"output": "-1"
},
{
"input": "8 2\n1 3 7 9 15 17 23 25",
"output": "-1"
},
{
"input": "3 5\n1 2 10",
"output": "-1"
},
{
"input": "4 7\n1 5 8 9",
"output": "0.42857142857142854764"
}
] | 1,545,684,488
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 4
| 93
| 0
|
n,U=map(int,input().split())
Ar=list(map(int,input().split()))
m1=[]
m2=[]
for i in range(n-1):
p=Ar[i+1]-Ar[i]
m1.append(p)
m2.append(i)
p=[]
p.append(sorted(m1)[0])
M=[]
for x,y in sorted(list(zip(m1,m2))):
if x in p:
p.append(x)
M.append(y)
else:
break
# print(p,M)
z=[]
for m in M:
for k in range(n-1,m+1,-1):
# print(Ar[k],Ar[m])
if Ar[k]-Ar[m]<=U:
f=k
# print(f)
break
try:
z.append((Ar[f]-Ar[m+1])/(Ar[f]-Ar[m]))
except:
print(-1)
exit()
print(max(z))
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
An atom of element X can exist in *n* distinct states with energies *E*1<=<<=*E*2<=<<=...<=<<=*E**n*. Arkady wants to build a laser on this element, using a three-level scheme. Here is a simplified description of the scheme.
Three distinct states *i*, *j* and *k* are selected, where *i*<=<<=*j*<=<<=*k*. After that the following process happens:
1. initially the atom is in the state *i*,1. we spend *E**k*<=-<=*E**i* energy to put the atom in the state *k*,1. the atom emits a photon with useful energy *E**k*<=-<=*E**j* and changes its state to the state *j*,1. the atom spontaneously changes its state to the state *i*, losing energy *E**j*<=-<=*E**i*,1. the process repeats from step 1.
Let's define the energy conversion efficiency as , i. e. the ration between the useful energy of the photon and spent energy.
Due to some limitations, Arkady can only choose such three states that *E**k*<=-<=*E**i*<=≤<=*U*.
Help Arkady to find such the maximum possible energy conversion efficiency within the above constraints.
Input Specification:
The first line contains two integers *n* and *U* (3<=≤<=*n*<=≤<=105, 1<=≤<=*U*<=≤<=109) — the number of states and the maximum possible difference between *E**k* and *E**i*.
The second line contains a sequence of integers *E*1,<=*E*2,<=...,<=*E**n* (1<=≤<=*E*1<=<<=*E*2...<=<<=*E**n*<=≤<=109). It is guaranteed that all *E**i* are given in increasing order.
Output Specification:
If it is not possible to choose three states that satisfy all constraints, print -1.
Otherwise, print one real number η — the maximum possible energy conversion efficiency. Your answer is considered correct its absolute or relative error does not exceed 10<=-<=9.
Formally, let your answer be *a*, and the jury's answer be *b*. Your answer is considered correct if .
Demo Input:
['4 4\n1 3 5 7\n', '10 8\n10 13 15 16 17 19 20 22 24 25\n', '3 1\n2 5 10\n']
Demo Output:
['0.5\n', '0.875\n', '-1\n']
Note:
In the first example choose states 1, 2 and 3, so that the energy conversion efficiency becomes equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/147ae7a830722917b0aa37d064df8eb74cfefb97.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second example choose states 4, 5 and 9, so that the energy conversion efficiency becomes equal to <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f68f268de4eb2242167e6ec64e6b8aa60a5703ae.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
|
```python
n,U=map(int,input().split())
Ar=list(map(int,input().split()))
m1=[]
m2=[]
for i in range(n-1):
p=Ar[i+1]-Ar[i]
m1.append(p)
m2.append(i)
p=[]
p.append(sorted(m1)[0])
M=[]
for x,y in sorted(list(zip(m1,m2))):
if x in p:
p.append(x)
M.append(y)
else:
break
# print(p,M)
z=[]
for m in M:
for k in range(n-1,m+1,-1):
# print(Ar[k],Ar[m])
if Ar[k]-Ar[m]<=U:
f=k
# print(f)
break
try:
z.append((Ar[f]-Ar[m+1])/(Ar[f]-Ar[m]))
except:
print(-1)
exit()
print(max(z))
```
| 0
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,565,089,304
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 218
| 0
|
n = int(input())
num = list(map(int,input().split()))
for i in range(len(num)) :
if num[i]%2 == 0 :
num[i] = 0
else :
num[i] = 1
if num.count(1) == 1:
print(num.index(1) + 1)
if num.count(0) == 1:
print(num.index(0) + 1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n = int(input())
num = list(map(int,input().split()))
for i in range(len(num)) :
if num[i]%2 == 0 :
num[i] = 0
else :
num[i] = 1
if num.count(1) == 1:
print(num.index(1) + 1)
if num.count(0) == 1:
print(num.index(0) + 1)
```
| 3.9455
|
894
|
A
|
QAQ
|
PROGRAMMING
| 800
|
[
"brute force",
"dp"
] | null | null |
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
|
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
|
Print a single integer — the number of subsequences "QAQ" in the string.
|
[
"QAQAQYSYIOIWIN\n",
"QAQQQZZYNOIWIN\n"
] |
[
"4\n",
"3\n"
] |
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
| 500
|
[
{
"input": "QAQAQYSYIOIWIN",
"output": "4"
},
{
"input": "QAQQQZZYNOIWIN",
"output": "3"
},
{
"input": "QA",
"output": "0"
},
{
"input": "IAQVAQZLQBQVQFTQQQADAQJA",
"output": "24"
},
{
"input": "QQAAQASGAYAAAAKAKAQIQEAQAIAAIAQQQQQ",
"output": "378"
},
{
"input": "AMVFNFJIAVNQJWIVONQOAOOQSNQSONOASONAONQINAONAOIQONANOIQOANOQINAONOQINAONOXJCOIAQOAOQAQAQAQAQWWWAQQAQ",
"output": "1077"
},
{
"input": "AAQQAXBQQBQQXBNQRJAQKQNAQNQVDQASAGGANQQQQTJFFQQQTQQA",
"output": "568"
},
{
"input": "KAZXAVLPJQBQVQQQQQAPAQQGQTQVZQAAAOYA",
"output": "70"
},
{
"input": "W",
"output": "0"
},
{
"input": "DBA",
"output": "0"
},
{
"input": "RQAWNACASAAKAGAAAAQ",
"output": "10"
},
{
"input": "QJAWZAAOAAGIAAAAAOQATASQAEAAAAQFQQHPA",
"output": "111"
},
{
"input": "QQKWQAQAAAAAAAAGAAVAQUEQQUMQMAQQQNQLAMAAAUAEAAEMAAA",
"output": "411"
},
{
"input": "QQUMQAYAUAAGWAAAQSDAVAAQAAAASKQJJQQQQMAWAYYAAAAAAEAJAXWQQ",
"output": "625"
},
{
"input": "QORZOYAQ",
"output": "1"
},
{
"input": "QCQAQAGAWAQQQAQAVQAQQQQAQAQQQAQAAATQAAVAAAQQQQAAAUUQAQQNQQWQQWAQAAQQKQYAQAAQQQAAQRAQQQWBQQQQAPBAQGQA",
"output": "13174"
},
{
"input": "QQAQQAKQFAQLQAAWAMQAZQAJQAAQQOACQQAAAYANAQAQQAQAAQQAOBQQJQAQAQAQQQAAAAABQQQAVNZAQQQQAMQQAFAAEAQAQHQT",
"output": "10420"
},
{
"input": "AQEGQHQQKQAQQPQKAQQQAAAAQQQAQEQAAQAAQAQFSLAAQQAQOQQAVQAAAPQQAWAQAQAFQAXAQQQQTRLOQAQQJQNQXQQQQSQVDQQQ",
"output": "12488"
},
{
"input": "QNQKQQQLASQBAVQQQQAAQQOQRJQQAQQQEQZUOANAADAAQQJAQAQARAAAQQQEQBHTQAAQAAAAQQMKQQQIAOJJQQAQAAADADQUQQQA",
"output": "9114"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "35937"
},
{
"input": "AMQQAAQAAQAAAAAAQQQBOAAANAAKQJCYQAE",
"output": "254"
},
{
"input": "AYQBAEQGAQEOAKGIXLQJAIAKQAAAQPUAJAKAATFWQQAOQQQUFQYAQQMQHOKAAJXGFCARAQSATHAUQQAATQJJQDQRAANQQAE",
"output": "2174"
},
{
"input": "AAQXAAQAYQAAAAGAQHVQYAGIVACADFAAQAAAAQZAAQMAKZAADQAQDAAQDAAAMQQOXYAQQQAKQBAAQQKAXQBJZDDLAAHQQ",
"output": "2962"
},
{
"input": "AYQQYAVAMNIAUAAKBBQVACWKTQSAQZAAQAAASZJAWBCAALAARHACQAKQQAQAARPAQAAQAQAAZQUSHQAMFVFZQQQQSAQQXAA",
"output": "2482"
},
{
"input": "LQMAQQARQAQBJQQQAGAAZQQXALQQAARQAQQQQAAQQAQQQAQQCAQQAQQAYQQQRAAZATQALYQQAAHHAAQHAAAAAAAAQQMAAQNAKQ",
"output": "7768"
},
{
"input": "MAQQWAQOYQMAAAQAQPQZAOAAQAUAQNAAQAAAITQSAQAKAQKAQQWSQAAQQAGUCDQMQWKQUXKWQQAAQQAAQQZQDQQQAABXQUUXQOA",
"output": "5422"
},
{
"input": "QTAAQDAQXAQQJQQQGAAAQQQQSBQZKAQQAQQQQEAQNUQBZCQLYQZQEQQAAQHQVAORKQVAQYQNASZQAARZAAGAAAAOQDCQ",
"output": "3024"
},
{
"input": "QQWAQQGQQUZQQQLZAAQYQXQVAQFQUAQZUQZZQUKBHSHTQYLQAOQXAQQGAQQTQOAQARQADAJRAAQPQAQQUQAUAMAUVQAAAQQAWQ",
"output": "4527"
},
{
"input": "QQAAQQAQVAQZQQQQAOEAQZPQIBQZACQQAFQQLAAQDATZQANHKYQQAQTAAFQRQAIQAJPWQAQTEIRXAEQQAYWAAAUKQQAQAQQQSQQH",
"output": "6416"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAAAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQ",
"output": "13136"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "14270"
},
{
"input": "AQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQQAA",
"output": "14231"
},
{
"input": "QQQQQAQAAQQAQAQAAAAAAAAAQAQAAAAAQAQAQQQAQQQAAAQQQAAAAAAAQAAAAQQQQQQQAQQQQAQAAAQAAAAAQAQAAAAAQAQAA",
"output": "15296"
},
{
"input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "0"
},
{
"input": "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ",
"output": "0"
},
{
"input": "QAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA",
"output": "20825"
},
{
"input": "AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQ",
"output": "20825"
},
{
"input": "Q",
"output": "0"
},
{
"input": "A",
"output": "0"
},
{
"input": "FFF",
"output": "0"
},
{
"input": "AAAAAA",
"output": "0"
}
] | 1,590,476,074
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 43
| 155
| 1,331,200
|
class Main:
def __init__(self):
self.s = input()
def main(self):
pref_sum_As = [0]*self.s.__len__()
self.fill_cumulative_freq('A', pref_sum_As)
subsequence_QAQ_count = 0
for i in range(self.s.__len__()-2):
if self.s[i] == 'Q':
for j in range(i+2, self.s.__len__()):
if self.s[j] == 'Q': subsequence_QAQ_count += (pref_sum_As[j] - pref_sum_As[i])
print(subsequence_QAQ_count)
def fill_cumulative_freq(self, c, pref_sum):
if self.s[0] == c: pref_sum[0] = 1
for i in range(self.s.__len__()-1):
pref_sum[i+1] = pref_sum[i]
if self.s[i+1] == c: pref_sum[i+1] += 1
if __name__ == "__main__":
Main().main()
|
Title: QAQ
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"QAQ" is a word to denote an expression of crying. Imagine "Q" as eyes with tears and "A" as a mouth.
Now Diamond has given Bort a string consisting of only uppercase English letters of length *n*. There is a great number of "QAQ" in the string (Diamond is so cute!).
Bort wants to know how many subsequences "QAQ" are in the string Diamond has given. Note that the letters "QAQ" don't have to be consecutive, but the order of letters should be exact.
Input Specification:
The only line contains a string of length *n* (1<=≤<=*n*<=≤<=100). It's guaranteed that the string only contains uppercase English letters.
Output Specification:
Print a single integer — the number of subsequences "QAQ" in the string.
Demo Input:
['QAQAQYSYIOIWIN\n', 'QAQQQZZYNOIWIN\n']
Demo Output:
['4\n', '3\n']
Note:
In the first example there are 4 subsequences "QAQ": "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN", "QAQAQYSYIOIWIN".
|
```python
class Main:
def __init__(self):
self.s = input()
def main(self):
pref_sum_As = [0]*self.s.__len__()
self.fill_cumulative_freq('A', pref_sum_As)
subsequence_QAQ_count = 0
for i in range(self.s.__len__()-2):
if self.s[i] == 'Q':
for j in range(i+2, self.s.__len__()):
if self.s[j] == 'Q': subsequence_QAQ_count += (pref_sum_As[j] - pref_sum_As[i])
print(subsequence_QAQ_count)
def fill_cumulative_freq(self, c, pref_sum):
if self.s[0] == c: pref_sum[0] = 1
for i in range(self.s.__len__()-1):
pref_sum[i+1] = pref_sum[i]
if self.s[i+1] == c: pref_sum[i+1] += 1
if __name__ == "__main__":
Main().main()
```
| 3
|
|
161
|
A
|
Dress'em in Vests!
|
PROGRAMMING
| 1,300
|
[
"binary search",
"brute force",
"greedy",
"two pointers"
] | null | null |
The Two-dimensional kingdom is going through hard times... This morning the Three-Dimensional kingdom declared war on the Two-dimensional one. This (possibly armed) conflict will determine the ultimate owner of the straight line.
The Two-dimensional kingdom has a regular army of *n* people. Each soldier registered himself and indicated the desired size of the bulletproof vest: the *i*-th soldier indicated size *a**i*. The soldiers are known to be unpretentious, so the command staff assumes that the soldiers are comfortable in any vests with sizes from *a**i*<=-<=*x* to *a**i*<=+<=*y*, inclusive (numbers *x*,<=*y*<=≥<=0 are specified).
The Two-dimensional kingdom has *m* vests at its disposal, the *j*-th vest's size equals *b**j*. Help mobilize the Two-dimensional kingdom's army: equip with vests as many soldiers as possible. Each vest can be used only once. The *i*-th soldier can put on the *j*-th vest, if *a**i*<=-<=*x*<=≤<=*b**j*<=≤<=*a**i*<=+<=*y*.
|
The first input line contains four integers *n*, *m*, *x* and *y* (1<=≤<=*n*,<=*m*<=≤<=105, 0<=≤<=*x*,<=*y*<=≤<=109) — the number of soldiers, the number of vests and two numbers that specify the soldiers' unpretentiousness, correspondingly.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) in non-decreasing order, separated by single spaces — the desired sizes of vests.
The third line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=109) in non-decreasing order, separated by single spaces — the sizes of the available vests.
|
In the first line print a single integer *k* — the maximum number of soldiers equipped with bulletproof vests.
In the next *k* lines print *k* pairs, one pair per line, as "*u**i* *v**i*" (without the quotes). Pair (*u**i*, *v**i*) means that soldier number *u**i* must wear vest number *v**i*. Soldiers and vests are numbered starting from one in the order in which they are specified in the input. All numbers of soldiers in the pairs should be pairwise different, all numbers of vests in the pairs also should be pairwise different. You can print the pairs in any order.
If there are multiple optimal answers, you are allowed to print any of them.
|
[
"5 3 0 0\n1 2 3 3 4\n1 3 5\n",
"3 3 2 2\n1 5 9\n3 5 7\n"
] |
[
"2\n1 1\n3 2\n",
"3\n1 1\n2 2\n3 3\n"
] |
In the first sample you need the vests' sizes to match perfectly: the first soldier gets the first vest (size 1), the third soldier gets the second vest (size 3). This sample allows another answer, which gives the second vest to the fourth soldier instead of the third one.
In the second sample the vest size can differ from the desired size by at most 2 sizes, so all soldiers can be equipped.
| 1,000
|
[
{
"input": "5 3 0 0\n1 2 3 3 4\n1 3 5",
"output": "2\n1 1\n3 2"
},
{
"input": "3 3 2 2\n1 5 9\n3 5 7",
"output": "3\n1 1\n2 2\n3 3"
},
{
"input": "1 1 0 0\n1\n1",
"output": "1\n1 1"
},
{
"input": "1 1 0 0\n1\n2",
"output": "0"
},
{
"input": "2 3 1 4\n1 5\n1 2 2",
"output": "1\n1 1"
},
{
"input": "20 30 1 4\n1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5\n1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5",
"output": "20\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22"
},
{
"input": "33 23 17 2\n1 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 6 6 7 7 7 8 8 8 8 8 9 9 10 10\n1 1 3 3 4 4 4 5 5 6 6 6 7 8 8 8 8 8 8 9 9 10 10",
"output": "23\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n12 10\n13 11\n14 12\n17 13\n20 14\n21 15\n22 16\n23 17\n24 18\n25 19\n26 20\n27 21\n28 22\n29 23"
},
{
"input": "2 2 1 4\n1 4\n3 6",
"output": "2\n1 1\n2 2"
},
{
"input": "20 20 1 4\n1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 5 5\n3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 6 6 7 7",
"output": "20\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20"
},
{
"input": "33 23 17 2\n1 1 1 2 3 3 3 3 3 4 4 4 4 5 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 8 10 10\n10 10 10 11 12 12 12 12 12 13 13 13 13 14 15 15 15 15 15 15 16 16 16",
"output": "5\n26 1\n27 2\n28 3\n32 4\n33 5"
},
{
"input": "1 1 1 2\n783266931\n783266932",
"output": "1\n1 1"
},
{
"input": "2 3 1 4\n1 1\n3 3 4",
"output": "2\n1 1\n2 2"
},
{
"input": "20 30 1 4\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4",
"output": "20\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20"
},
{
"input": "33 23 17 2\n1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5\n10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13",
"output": "0"
},
{
"input": "10 1 1 1\n1 1 1 5 5 7 7 8 8 8\n3",
"output": "0"
},
{
"input": "10 1 2 1\n1 2 5 8 9 9 9 10 10 10\n7",
"output": "1\n4 1"
},
{
"input": "1 1 2 1\n7\n8",
"output": "1\n1 1"
},
{
"input": "1 1 0 2\n9\n7",
"output": "0"
},
{
"input": "2 2 0 2\n2 8\n3 5",
"output": "1\n1 1"
},
{
"input": "2 2 1 0\n5 5\n6 7",
"output": "0"
},
{
"input": "2 2 3 0\n8 9\n1 5",
"output": "1\n1 2"
}
] | 1,613,751,481
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 5
| 92
| 307,200
|
n , m, x, y= map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))
C = []
for i in range(n):
C.append([0,0])
l = 0
r = 0
j = 0
k = 0
while r != m and l != n:
if (B[r] >= A[l]-x) and (B[r] <= A[l]+y):
C[j][0] = l + 1
C[j][1] = r + 1
j += 1
l += 1
k +=1
r +=1
else:
l += 1
print(k)
for i in range(k):
print(C[i][0], C[i][1])
|
Title: Dress'em in Vests!
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Two-dimensional kingdom is going through hard times... This morning the Three-Dimensional kingdom declared war on the Two-dimensional one. This (possibly armed) conflict will determine the ultimate owner of the straight line.
The Two-dimensional kingdom has a regular army of *n* people. Each soldier registered himself and indicated the desired size of the bulletproof vest: the *i*-th soldier indicated size *a**i*. The soldiers are known to be unpretentious, so the command staff assumes that the soldiers are comfortable in any vests with sizes from *a**i*<=-<=*x* to *a**i*<=+<=*y*, inclusive (numbers *x*,<=*y*<=≥<=0 are specified).
The Two-dimensional kingdom has *m* vests at its disposal, the *j*-th vest's size equals *b**j*. Help mobilize the Two-dimensional kingdom's army: equip with vests as many soldiers as possible. Each vest can be used only once. The *i*-th soldier can put on the *j*-th vest, if *a**i*<=-<=*x*<=≤<=*b**j*<=≤<=*a**i*<=+<=*y*.
Input Specification:
The first input line contains four integers *n*, *m*, *x* and *y* (1<=≤<=*n*,<=*m*<=≤<=105, 0<=≤<=*x*,<=*y*<=≤<=109) — the number of soldiers, the number of vests and two numbers that specify the soldiers' unpretentiousness, correspondingly.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) in non-decreasing order, separated by single spaces — the desired sizes of vests.
The third line contains *m* integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**j*<=≤<=109) in non-decreasing order, separated by single spaces — the sizes of the available vests.
Output Specification:
In the first line print a single integer *k* — the maximum number of soldiers equipped with bulletproof vests.
In the next *k* lines print *k* pairs, one pair per line, as "*u**i* *v**i*" (without the quotes). Pair (*u**i*, *v**i*) means that soldier number *u**i* must wear vest number *v**i*. Soldiers and vests are numbered starting from one in the order in which they are specified in the input. All numbers of soldiers in the pairs should be pairwise different, all numbers of vests in the pairs also should be pairwise different. You can print the pairs in any order.
If there are multiple optimal answers, you are allowed to print any of them.
Demo Input:
['5 3 0 0\n1 2 3 3 4\n1 3 5\n', '3 3 2 2\n1 5 9\n3 5 7\n']
Demo Output:
['2\n1 1\n3 2\n', '3\n1 1\n2 2\n3 3\n']
Note:
In the first sample you need the vests' sizes to match perfectly: the first soldier gets the first vest (size 1), the third soldier gets the second vest (size 3). This sample allows another answer, which gives the second vest to the fourth soldier instead of the third one.
In the second sample the vest size can differ from the desired size by at most 2 sizes, so all soldiers can be equipped.
|
```python
n , m, x, y= map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))
C = []
for i in range(n):
C.append([0,0])
l = 0
r = 0
j = 0
k = 0
while r != m and l != n:
if (B[r] >= A[l]-x) and (B[r] <= A[l]+y):
C[j][0] = l + 1
C[j][1] = r + 1
j += 1
l += 1
k +=1
r +=1
else:
l += 1
print(k)
for i in range(k):
print(C[i][0], C[i][1])
```
| 0
|
|
922
|
B
|
Magic Forest
|
PROGRAMMING
| 1,300
|
[
"brute force"
] | null | null |
Imp is in a magic forest, where xorangles grow (wut?)
A xorangle of order *n* is such a non-degenerate triangle, that lengths of its sides are integers not exceeding *n*, and the xor-sum of the lengths is equal to zero. Imp has to count the number of distinct xorangles of order *n* to get out of the forest.
Formally, for a given integer *n* you have to find the number of such triples (*a*,<=*b*,<=*c*), that:
- 1<=≤<=*a*<=≤<=*b*<=≤<=*c*<=≤<=*n*; - , where denotes the [bitwise xor](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) of integers *x* and *y*. - (*a*,<=*b*,<=*c*) form a non-degenerate (with strictly positive area) triangle.
|
The only line contains a single integer *n* (1<=≤<=*n*<=≤<=2500).
|
Print the number of xorangles of order *n*.
|
[
"6\n",
"10\n"
] |
[
"1\n",
"2\n"
] |
The only xorangle in the first sample is (3, 5, 6).
| 1,000
|
[
{
"input": "6",
"output": "1"
},
{
"input": "10",
"output": "2"
},
{
"input": "3",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "5",
"output": "0"
},
{
"input": "2500",
"output": "700393"
},
{
"input": "952",
"output": "118547"
},
{
"input": "88",
"output": "536"
},
{
"input": "1216",
"output": "160822"
},
{
"input": "2140",
"output": "614785"
},
{
"input": "564",
"output": "35087"
},
{
"input": "1488",
"output": "239580"
},
{
"input": "116",
"output": "1332"
},
{
"input": "1040",
"output": "145820"
},
{
"input": "1965",
"output": "545494"
},
{
"input": "593",
"output": "36605"
},
{
"input": "779",
"output": "63500"
},
{
"input": "1703",
"output": "352045"
},
{
"input": "331",
"output": "9877"
},
{
"input": "1051",
"output": "145985"
},
{
"input": "2179",
"output": "618074"
},
{
"input": "603",
"output": "37312"
},
{
"input": "1731",
"output": "369691"
},
{
"input": "2451",
"output": "681980"
},
{
"input": "1079",
"output": "146833"
},
{
"input": "2207",
"output": "621708"
},
{
"input": "2394",
"output": "663240"
},
{
"input": "818",
"output": "73972"
},
{
"input": "1946",
"output": "529383"
},
{
"input": "166",
"output": "2200"
},
{
"input": "1294",
"output": "175915"
},
{
"input": "2218",
"output": "623386"
},
{
"input": "846",
"output": "82106"
},
{
"input": "1566",
"output": "273341"
},
{
"input": "194",
"output": "3240"
},
{
"input": "1322",
"output": "183405"
},
{
"input": "1508",
"output": "247634"
},
{
"input": "2433",
"output": "675245"
},
{
"input": "857",
"output": "85529"
},
{
"input": "1781",
"output": "402718"
},
{
"input": "1",
"output": "0"
},
{
"input": "2",
"output": "0"
},
{
"input": "2444",
"output": "679373"
},
{
"input": "2498",
"output": "699536"
}
] | 1,619,692,668
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 4
| 78
| 0
|
n = int(input())
print(n//5)
|
Title: Magic Forest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Imp is in a magic forest, where xorangles grow (wut?)
A xorangle of order *n* is such a non-degenerate triangle, that lengths of its sides are integers not exceeding *n*, and the xor-sum of the lengths is equal to zero. Imp has to count the number of distinct xorangles of order *n* to get out of the forest.
Formally, for a given integer *n* you have to find the number of such triples (*a*,<=*b*,<=*c*), that:
- 1<=≤<=*a*<=≤<=*b*<=≤<=*c*<=≤<=*n*; - , where denotes the [bitwise xor](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) of integers *x* and *y*. - (*a*,<=*b*,<=*c*) form a non-degenerate (with strictly positive area) triangle.
Input Specification:
The only line contains a single integer *n* (1<=≤<=*n*<=≤<=2500).
Output Specification:
Print the number of xorangles of order *n*.
Demo Input:
['6\n', '10\n']
Demo Output:
['1\n', '2\n']
Note:
The only xorangle in the first sample is (3, 5, 6).
|
```python
n = int(input())
print(n//5)
```
| 0
|
|
6
|
B
|
President's Office
|
PROGRAMMING
| 1,100
|
[
"implementation"
] |
B. President's Office
|
2
|
64
|
President of Berland has a very vast office-room, where, apart from him, work his subordinates. Each subordinate, as well as President himself, has his own desk of a unique colour. Each desk is rectangular, and its sides are parallel to the office walls. One day President decided to establish an assembly, of which all his deputies will be members. Unfortunately, he does not remember the exact amount of his deputies, but he remembers that the desk of each his deputy is adjacent to his own desk, that is to say, the two desks (President's and each deputy's) have a common side of a positive length.
The office-room plan can be viewed as a matrix with *n* rows and *m* columns. Each cell of this matrix is either empty, or contains a part of a desk. An uppercase Latin letter stands for each desk colour. The «period» character («.») stands for an empty cell.
|
The first line contains two separated by a space integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the length and the width of the office-room, and *c* character — the President's desk colour. The following *n* lines contain *m* characters each — the office-room description. It is guaranteed that the colour of each desk is unique, and each desk represents a continuous subrectangle of the given matrix. All colours are marked by uppercase Latin letters.
|
Print the only number — the amount of President's deputies.
|
[
"3 4 R\nG.B.\n.RR.\nTTT.\n",
"3 3 Z\n...\n.H.\n..Z\n"
] |
[
"2\n",
"0\n"
] |
none
| 0
|
[
{
"input": "3 4 R\nG.B.\n.RR.\nTTT.",
"output": "2"
},
{
"input": "3 3 Z\n...\n.H.\n..Z",
"output": "0"
},
{
"input": "1 1 C\nC",
"output": "0"
},
{
"input": "2 2 W\nKW\nKW",
"output": "1"
},
{
"input": "1 10 H\n....DDHHHH",
"output": "1"
},
{
"input": "3 2 W\nOO\nWW\nWW",
"output": "1"
},
{
"input": "3 3 U\nUOO\nUVV\nUVV",
"output": "2"
},
{
"input": "4 5 Z\n...ZZ\nUU.ZZ\nUUTT.\n..TT.",
"output": "1"
},
{
"input": "4 4 X\nT..R\nTJJJ\nDJJJ\nXJJJ",
"output": "2"
},
{
"input": "5 5 O\nCQGAV\nIHTUD\nRFPZO\nMYSKX\nJEWBN",
"output": "3"
},
{
"input": "5 4 O\n.O.J\nWOBJ\nWOBJ\nDDBJ\nDD.J",
"output": "3"
},
{
"input": "7 7 Q\n....RRR\nUUUURRR\nUUUUSS.\n....SSB\nPPP.OIB\n.MMTTIB\nQQQTTIB",
"output": "2"
},
{
"input": "8 10 B\n..BBBBEEEE\n..BBBBEEEE\n..BBBBEEEE\n..BBBBEEEE\nJJJJYYYY..\nJJJJYYYY..\nJJJJYYYY..\nJJJJYYYY..",
"output": "3"
},
{
"input": "7 13 G\n....GGGGGGXXX\nSSSSGGGGGGXXX\nSSSSJJFFFFFFF\nRRR.JJFFFFFFF\nRRRYYYYYYYAAA\nRRRYYYYYYYAAA\nRRR.......AAA",
"output": "4"
},
{
"input": "10 10 T\nCCEEEKKKHJ\nCCRRRRRRHJ\nCC..XFFOOO\nZZZZZFFOOO\n..PTTFFOOO\nAAATTFFOOO\nAAATTYYYYY\nAAATTYYYYY\nAAAMMYYYYY\nAAA..YYYYY",
"output": "6"
},
{
"input": "15 12 M\n............\n.....L..QQQQ\nNNN..L..QQQQ\nNNN..LJJJJJ.\nNNNEEEEEEEE.\nNNNEEEEEEEE.\nNNNMMMMM.AAA\nNNNMMMMM.AAA\n.RRMMMMM.AAA\n.RRMMMMMYAAA\n.RRMMMMMYAAA\n.RRMMMMMYAAA\nZRRMMMMMYAAA\nZRRMMMMM.AAA\nZRRMMMMM.AAA",
"output": "4"
}
] | 1,677,354,478
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 8
| 61
| 0
|
l = input().split()
n,m,c = int(l[0]),int(l[1]),l[2]
l = []
row,column=[],[]
letters = [c]
count = 0
for i in range(n):
s = input()
if c in s:
row.append(i)
for j in range(m):
if s[j]==c:
column.append(j)
l.append(s)
for i in range(n):
for j in column:
if l[i][j].isalpha() and l[i][j] not in letters:
count+=1
letters.append(l[i][j])
for i in row:
for j in column:
if m==1:
break
if j==0:
if l[i][j+1].isalpha() and l[i][j+1] not in letters:
count += 1
letters.append(l[i][j+1])
elif j==m-1:
if l[i][j-1].isalpha() and l[i][j-1] not in letters:
count += 1
letters.append(l[i][j-1])
else:
if l[i][j+1].isalpha() and l[i][j+1] not in letters:
count += 1
letters.append(l[i][j+1])
if l[i][j-1].isalpha() and l[i][j-1] not in letters:
count += 1
letters.append(l[i][j-1])
print(count)
|
Title: President's Office
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
President of Berland has a very vast office-room, where, apart from him, work his subordinates. Each subordinate, as well as President himself, has his own desk of a unique colour. Each desk is rectangular, and its sides are parallel to the office walls. One day President decided to establish an assembly, of which all his deputies will be members. Unfortunately, he does not remember the exact amount of his deputies, but he remembers that the desk of each his deputy is adjacent to his own desk, that is to say, the two desks (President's and each deputy's) have a common side of a positive length.
The office-room plan can be viewed as a matrix with *n* rows and *m* columns. Each cell of this matrix is either empty, or contains a part of a desk. An uppercase Latin letter stands for each desk colour. The «period» character («.») stands for an empty cell.
Input Specification:
The first line contains two separated by a space integer numbers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the length and the width of the office-room, and *c* character — the President's desk colour. The following *n* lines contain *m* characters each — the office-room description. It is guaranteed that the colour of each desk is unique, and each desk represents a continuous subrectangle of the given matrix. All colours are marked by uppercase Latin letters.
Output Specification:
Print the only number — the amount of President's deputies.
Demo Input:
['3 4 R\nG.B.\n.RR.\nTTT.\n', '3 3 Z\n...\n.H.\n..Z\n']
Demo Output:
['2\n', '0\n']
Note:
none
|
```python
l = input().split()
n,m,c = int(l[0]),int(l[1]),l[2]
l = []
row,column=[],[]
letters = [c]
count = 0
for i in range(n):
s = input()
if c in s:
row.append(i)
for j in range(m):
if s[j]==c:
column.append(j)
l.append(s)
for i in range(n):
for j in column:
if l[i][j].isalpha() and l[i][j] not in letters:
count+=1
letters.append(l[i][j])
for i in row:
for j in column:
if m==1:
break
if j==0:
if l[i][j+1].isalpha() and l[i][j+1] not in letters:
count += 1
letters.append(l[i][j+1])
elif j==m-1:
if l[i][j-1].isalpha() and l[i][j-1] not in letters:
count += 1
letters.append(l[i][j-1])
else:
if l[i][j+1].isalpha() and l[i][j+1] not in letters:
count += 1
letters.append(l[i][j+1])
if l[i][j-1].isalpha() and l[i][j-1] not in letters:
count += 1
letters.append(l[i][j-1])
print(count)
```
| 0
|
253
|
E
|
Printer
|
PROGRAMMING
| 2,200
|
[
"binary search",
"data structures",
"implementation",
"sortings"
] | null | null |
Let's consider a network printer that functions like that. It starts working at time 0. In each second it can print one page of a text. At some moments of time the printer receives printing tasks. We know that a printer received *n* tasks. Let's number the tasks by consecutive integers from 1 to *n*. Then the task number *i* is characterised by three integers: *t**i* is the time when the task came, *s**i* is the task's volume (in pages) and *p**i* is the task's priority. The priorities of all tasks are distinct.
When the printer receives a task, the task goes to the queue and remains there until all pages from this task are printed. The printer chooses a page to print each time when it either stops printing some page or when it is free and receives a new task. Among all tasks that are in the queue at this moment, the printer chooses the task with the highest priority and next second prints an unprinted page from this task. You can assume that a task goes to the queue immediately, that's why if a task has just arrived by time *t*, the printer can already choose it for printing.
You are given full information about all tasks except for one: you don't know this task's priority. However, we know the time when the last page from this task was finished printing. Given this information, find the unknown priority value and determine the moments of time when the printer finished printing each task.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50000). Next *n* lines describe the tasks. The *i*-th of these lines contains three integers *t**i*, *s**i* and *p**i*, separated by single spaces (0<=≤<=*t**i*<=≤<=109,<=1<=≤<=*s**i*,<=*p**i*<=≤<=109). Exactly one task (let's assume that his number is *x*) has number -1 written instead of the priority. All priorities are different. The last line contains integer *T* — the time when the printer finished printing the last page of task *x* (1<=≤<=*T*<=≤<=1015). Numbers *t**i* are not necessarily distinct. The tasks in the input are written in the arbitrary order.
|
In the first line print integer *p**x* — the priority of the task number *x* (1<=≤<=*p**x*<=≤<=109, remember that all priorities should be distinct). Then print *n* integers, the *i*-th of them represents the moment of time when the last page of the task number *i* finished printing.
It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.
|
[
"3\n4 3 -1\n0 2 2\n1 3 3\n7\n",
"3\n3 1 2\n2 3 3\n3 1 -1\n4\n"
] |
[
"4\n7 8 4\n",
"4\n7 6 4\n"
] |
Let's consider the first test case. Let's assume that the unknown priority equals 4, then the printer's actions for each second are as follows:
- the beginning of the 1-st second (time 0). The queue has task 2. The printer prints the first page of this task; - the beginning of the 2-nd second (time 1). The queue has tasks 2 and 3. The printer prints the first page of task 3; - the beginning of the 3-rd second (time 2). The queue has tasks 2 and 3. The printer prints the second page of task 3; - the beginning of the 4-th second (time 3). The queue has tasks 2 and 3. The printer prints the third (last) page of task 3. Thus, by the end of the 4-th second this task will have been printed; - the beginning of the 5-th second (time 4). The queue has tasks 2 and 1. The printer prints the first page of task 1; - the beginning of the 6-th second (time 5). The queue has tasks 2 and 1. The printer prints the second page of task 1; - the beginning of the 7-th second (time 6). The queue has tasks 2 and 1. The printer prints the third (last) page of task 1. Thus, by the end of the 7-th second this task will have been printed; - the beginning of the 8-th second (time 7). The queue has task 2. The printer prints the second (last) page of task 2. Thus, by the end of the 8-th second this task will have been printed.
In the end, task number 1 will have been printed by the end of the 7-th second, as was required. And tasks 2 and 3 are printed by the end of the of the 8-th and the 4-th second correspondingly.
| 2,500
|
[] | 1,691,770,369
| 2,147,483,647
|
PyPy 3-64
|
WRONG_ANSWER
|
TESTS
| 0
| 92
| 0
|
print("_RANDOM_GUESS_1691770369.3821852")# 1691770369.382202
|
Title: Printer
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's consider a network printer that functions like that. It starts working at time 0. In each second it can print one page of a text. At some moments of time the printer receives printing tasks. We know that a printer received *n* tasks. Let's number the tasks by consecutive integers from 1 to *n*. Then the task number *i* is characterised by three integers: *t**i* is the time when the task came, *s**i* is the task's volume (in pages) and *p**i* is the task's priority. The priorities of all tasks are distinct.
When the printer receives a task, the task goes to the queue and remains there until all pages from this task are printed. The printer chooses a page to print each time when it either stops printing some page or when it is free and receives a new task. Among all tasks that are in the queue at this moment, the printer chooses the task with the highest priority and next second prints an unprinted page from this task. You can assume that a task goes to the queue immediately, that's why if a task has just arrived by time *t*, the printer can already choose it for printing.
You are given full information about all tasks except for one: you don't know this task's priority. However, we know the time when the last page from this task was finished printing. Given this information, find the unknown priority value and determine the moments of time when the printer finished printing each task.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50000). Next *n* lines describe the tasks. The *i*-th of these lines contains three integers *t**i*, *s**i* and *p**i*, separated by single spaces (0<=≤<=*t**i*<=≤<=109,<=1<=≤<=*s**i*,<=*p**i*<=≤<=109). Exactly one task (let's assume that his number is *x*) has number -1 written instead of the priority. All priorities are different. The last line contains integer *T* — the time when the printer finished printing the last page of task *x* (1<=≤<=*T*<=≤<=1015). Numbers *t**i* are not necessarily distinct. The tasks in the input are written in the arbitrary order.
Output Specification:
In the first line print integer *p**x* — the priority of the task number *x* (1<=≤<=*p**x*<=≤<=109, remember that all priorities should be distinct). Then print *n* integers, the *i*-th of them represents the moment of time when the last page of the task number *i* finished printing.
It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.
Demo Input:
['3\n4 3 -1\n0 2 2\n1 3 3\n7\n', '3\n3 1 2\n2 3 3\n3 1 -1\n4\n']
Demo Output:
['4\n7 8 4\n', '4\n7 6 4\n']
Note:
Let's consider the first test case. Let's assume that the unknown priority equals 4, then the printer's actions for each second are as follows:
- the beginning of the 1-st second (time 0). The queue has task 2. The printer prints the first page of this task; - the beginning of the 2-nd second (time 1). The queue has tasks 2 and 3. The printer prints the first page of task 3; - the beginning of the 3-rd second (time 2). The queue has tasks 2 and 3. The printer prints the second page of task 3; - the beginning of the 4-th second (time 3). The queue has tasks 2 and 3. The printer prints the third (last) page of task 3. Thus, by the end of the 4-th second this task will have been printed; - the beginning of the 5-th second (time 4). The queue has tasks 2 and 1. The printer prints the first page of task 1; - the beginning of the 6-th second (time 5). The queue has tasks 2 and 1. The printer prints the second page of task 1; - the beginning of the 7-th second (time 6). The queue has tasks 2 and 1. The printer prints the third (last) page of task 1. Thus, by the end of the 7-th second this task will have been printed; - the beginning of the 8-th second (time 7). The queue has task 2. The printer prints the second (last) page of task 2. Thus, by the end of the 8-th second this task will have been printed.
In the end, task number 1 will have been printed by the end of the 7-th second, as was required. And tasks 2 and 3 are printed by the end of the of the 8-th and the 4-th second correspondingly.
|
```python
print("_RANDOM_GUESS_1691770369.3821852")# 1691770369.382202
```
| 0
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,641,251,729
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 0
| 60
| 0
|
numCount = int(input())
nums = [int(num) for num in input()]
first_2_same = False
evenness = False
sum_of_first_2 = nums[0] + nums[1]
sum_of_first_3 = sum_of_first_2 + nums[2]
if (sum_of_first_2 % 2 == 0):
if (nums[0] % 2 == 0):
evenness = True
else:
if (sum_of_first_3 % 2 == 1):
evenness = True
if evenness:
offsett = 1
else:
offsett = 0
for index in range(numCount):
if (nums[index] % 2 == offsett):
print(index + 1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
numCount = int(input())
nums = [int(num) for num in input()]
first_2_same = False
evenness = False
sum_of_first_2 = nums[0] + nums[1]
sum_of_first_3 = sum_of_first_2 + nums[2]
if (sum_of_first_2 % 2 == 0):
if (nums[0] % 2 == 0):
evenness = True
else:
if (sum_of_first_3 % 2 == 1):
evenness = True
if evenness:
offsett = 1
else:
offsett = 0
for index in range(numCount):
if (nums[index] % 2 == offsett):
print(index + 1)
```
| -1
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,665,167,232
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
import math
M, N = map(int, input().split())
print(math.floor(N*M*0.5))
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
import math
M, N = map(int, input().split())
print(math.floor(N*M*0.5))
```
| 3.977
|
839
|
C
|
Journey
|
PROGRAMMING
| 1,500
|
[
"dfs and similar",
"dp",
"graphs",
"probabilities",
"trees"
] | null | null |
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities.
Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road.
It is guaranteed that one can reach any city from any other by the roads.
|
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
|
[
"4\n1 2\n1 3\n2 4\n",
"5\n1 2\n1 3\n3 4\n2 5\n"
] |
[
"1.500000000000000\n",
"2.000000000000000\n"
] |
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
| 1,500
|
[
{
"input": "4\n1 2\n1 3\n2 4",
"output": "1.500000000000000"
},
{
"input": "5\n1 2\n1 3\n3 4\n2 5",
"output": "2.000000000000000"
},
{
"input": "70\n1 25\n57 1\n18 1\n65 1\n38 1\n1 41\n1 5\n1 69\n1 3\n31 1\n1 8\n1 9\n53 1\n70 1\n45 1\n1 24\n1 42\n1 30\n1 12\n1 37\n64 1\n1 28\n1 58\n1 22\n11 1\n1 4\n1 27\n1 16\n1 21\n54 1\n1 51\n1 43\n29 1\n56 1\n1 39\n32 1\n1 15\n1 17\n1 19\n1 40\n36 1\n48 1\n63 1\n1 7\n1 47\n1 13\n1 46\n60 1\n1 6\n23 1\n20 1\n1 52\n2 1\n26 1\n1 59\n1 66\n10 1\n1 62\n1 68\n1 55\n50 1\n33 1\n44 1\n1 34\n1 35\n1 61\n14 1\n67 1\n49 1",
"output": "1.000000000000000"
},
{
"input": "10\n8 6\n9 10\n8 7\n1 4\n1 8\n9 5\n9 8\n2 5\n3 1",
"output": "1.500000000000000"
},
{
"input": "1",
"output": "0.000000000000000"
}
] | 1,627,590,368
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 2
| 61
| 7,065,600
|
from sys import stdin , stdout
input = stdin.buffer.readline
import collections
n = int(input())
tree = collections.defaultdict(list)
for _ in range(n - 1) :
u , v = map(int , input().split())
u -= 1
v -= 1
tree[u].append(v)
tree[v].append(u)
queue = collections.deque()
queue.append([0 , -1 , 1 / len(tree[0])])
res = d = 0
while queue :
q = len(queue)
for _ in range(q) :
u , p , t = queue.popleft()
isleaf = True
for v in tree[u] :
if v != p :
isleaf = False
queue.append([v , u , t / (len(tree[u]) - 1)])
if isleaf :
res += d*t
d += 1
print(res)
|
Title: Journey
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* cities and *n*<=-<=1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link [https://en.wikipedia.org/wiki/Expected_value](https://en.wikipedia.org/wiki/Expected_value).
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100000) — number of cities.
Then *n*<=-<=1 lines follow. The *i*-th line of these lines contains two integers *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*, *u**i*<=≠<=*v**i*) — the cities connected by the *i*-th road.
It is guaranteed that one can reach any city from any other by the roads.
Output Specification:
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
Demo Input:
['4\n1 2\n1 3\n2 4\n', '5\n1 2\n1 3\n3 4\n2 5\n']
Demo Output:
['1.500000000000000\n', '2.000000000000000\n']
Note:
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
|
```python
from sys import stdin , stdout
input = stdin.buffer.readline
import collections
n = int(input())
tree = collections.defaultdict(list)
for _ in range(n - 1) :
u , v = map(int , input().split())
u -= 1
v -= 1
tree[u].append(v)
tree[v].append(u)
queue = collections.deque()
queue.append([0 , -1 , 1 / len(tree[0])])
res = d = 0
while queue :
q = len(queue)
for _ in range(q) :
u , p , t = queue.popleft()
isleaf = True
for v in tree[u] :
if v != p :
isleaf = False
queue.append([v , u , t / (len(tree[u]) - 1)])
if isleaf :
res += d*t
d += 1
print(res)
```
| 0
|
|
352
|
A
|
Jeff and Digits
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation",
"math"
] | null | null |
Jeff's got *n* cards, each card contains either digit 0, or digit 5. Jeff can choose several cards and put them in a line so that he gets some number. What is the largest possible number divisible by 90 Jeff can make from the cards he's got?
Jeff must make the number without leading zero. At that, we assume that number 0 doesn't contain any leading zeroes. Jeff doesn't have to use all the cards.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=103). The next line contains *n* integers *a*1, *a*2, ..., *a**n* (*a**i*<==<=0 or *a**i*<==<=5). Number *a**i* represents the digit that is written on the *i*-th card.
|
In a single line print the answer to the problem — the maximum number, divisible by 90. If you can't make any divisible by 90 number from the cards, print -1.
|
[
"4\n5 0 5 0\n",
"11\n5 5 5 5 5 5 5 5 0 5 5\n"
] |
[
"0\n",
"5555555550\n"
] |
In the first test you can make only one number that is a multiple of 90 — 0.
In the second test you can make number 5555555550, it is a multiple of 90.
| 500
|
[
{
"input": "4\n5 0 5 0",
"output": "0"
},
{
"input": "11\n5 5 5 5 5 5 5 5 0 5 5",
"output": "5555555550"
},
{
"input": "7\n5 5 5 5 5 5 5",
"output": "-1"
},
{
"input": "1\n5",
"output": "-1"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "11\n5 0 5 5 5 0 0 5 5 5 5",
"output": "0"
},
{
"input": "23\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0",
"output": "55555555555555555500000"
},
{
"input": "9\n5 5 5 5 5 5 5 5 5",
"output": "-1"
},
{
"input": "24\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0",
"output": "55555555555555555500000"
},
{
"input": "10\n0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "10\n5 5 5 5 5 0 0 5 0 5",
"output": "0"
},
{
"input": "3\n5 5 0",
"output": "0"
},
{
"input": "5\n5 5 0 5 5",
"output": "0"
},
{
"input": "14\n0 5 5 0 0 0 0 0 0 5 5 5 5 5",
"output": "0"
},
{
"input": "3\n5 5 5",
"output": "-1"
},
{
"input": "3\n0 5 5",
"output": "0"
},
{
"input": "13\n0 0 5 0 5 0 5 5 0 0 0 0 0",
"output": "0"
},
{
"input": "9\n5 5 0 5 5 5 5 5 5",
"output": "0"
},
{
"input": "8\n0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "101\n5 0 0 0 0 0 0 0 5 0 0 0 0 5 0 0 5 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0 5 0 0 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 5 0 0",
"output": "5555555550000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "214\n5 0 5 0 5 0 0 0 5 5 0 5 0 5 5 0 5 0 0 0 0 5 5 0 0 5 5 0 0 0 0 5 5 5 5 0 5 0 0 0 0 0 0 5 0 0 0 5 0 0 5 0 0 5 5 0 0 5 5 0 0 0 0 0 5 0 5 0 5 5 0 5 0 0 5 5 5 0 5 0 5 0 5 5 0 5 0 0 0 5 5 0 5 0 5 5 5 5 5 0 0 0 0 0 0 5 0 5 5 0 5 0 5 0 5 5 0 0 0 0 5 0 5 0 5 0 0 5 0 0 5 5 5 5 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 5 0 0 0 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 0 0 0 5 0 0 5 5 5 5 5 5 0 5 0 0 5 5 5 5 0 5 5 0 0 0 5 5 5 5 0 0 0 0 5 0 0 5 0 0 5 5 0 0",
"output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555550000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "80\n0 0 0 0 5 0 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 5 5 0 5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 5 0 0 0 0 5 0 5 5 0 0 0",
"output": "555555555000000000000000000000000000000000000000000000000000000000000000000"
},
{
"input": "2\n0 0",
"output": "0"
},
{
"input": "3\n5 0 0",
"output": "0"
},
{
"input": "4\n5 5 5 5",
"output": "-1"
},
{
"input": "2\n0 5",
"output": "0"
},
{
"input": "14\n5 5 5 5 5 5 5 5 5 5 5 5 5 0",
"output": "5555555550"
},
{
"input": "18\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5",
"output": "-1"
},
{
"input": "10\n5 5 5 5 5 5 5 5 5 0",
"output": "5555555550"
},
{
"input": "10\n5 5 5 5 5 5 5 5 5 5",
"output": "-1"
},
{
"input": "20\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5",
"output": "-1"
}
] | 1,698,171,760
| 2,147,483,647
|
Python 3
|
RUNTIME_ERROR
|
TESTS
| 2
| 62
| 0
|
n = int(input())
data = list(map(int, input().split()))
ans = ((data.count(5)//9)*9) * "5" + data.count(0) * "0"
print(int(ans))
|
Title: Jeff and Digits
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Jeff's got *n* cards, each card contains either digit 0, or digit 5. Jeff can choose several cards and put them in a line so that he gets some number. What is the largest possible number divisible by 90 Jeff can make from the cards he's got?
Jeff must make the number without leading zero. At that, we assume that number 0 doesn't contain any leading zeroes. Jeff doesn't have to use all the cards.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=103). The next line contains *n* integers *a*1, *a*2, ..., *a**n* (*a**i*<==<=0 or *a**i*<==<=5). Number *a**i* represents the digit that is written on the *i*-th card.
Output Specification:
In a single line print the answer to the problem — the maximum number, divisible by 90. If you can't make any divisible by 90 number from the cards, print -1.
Demo Input:
['4\n5 0 5 0\n', '11\n5 5 5 5 5 5 5 5 0 5 5\n']
Demo Output:
['0\n', '5555555550\n']
Note:
In the first test you can make only one number that is a multiple of 90 — 0.
In the second test you can make number 5555555550, it is a multiple of 90.
|
```python
n = int(input())
data = list(map(int, input().split()))
ans = ((data.count(5)//9)*9) * "5" + data.count(0) * "0"
print(int(ans))
```
| -1
|
|
431
|
A
|
Black Square
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
|
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
|
Print a single integer — the total number of calories that Jury wastes.
|
[
"1 2 3 4\n123214\n",
"1 5 3 2\n11221\n"
] |
[
"13\n",
"13\n"
] |
none
| 500
|
[
{
"input": "1 2 3 4\n123214",
"output": "13"
},
{
"input": "1 5 3 2\n11221",
"output": "13"
},
{
"input": "5 5 5 1\n3422",
"output": "16"
},
{
"input": "4 3 2 1\n2",
"output": "3"
},
{
"input": "5651 6882 6954 4733\n2442313421",
"output": "60055"
},
{
"input": "0 0 0 0\n4132",
"output": "0"
},
{
"input": "3163 5778 83 7640\n11141442444",
"output": "64270"
},
{
"input": "1809 1302 7164 6122\n3144121413113111223311232232114144321414421243443243422322144324121433444342231344234443332241322442",
"output": "420780"
},
{
"input": "0 0 0 0\n1",
"output": "0"
},
{
"input": "1 2 3 4\n4",
"output": "4"
},
{
"input": "2343 7653 1242 5432\n1",
"output": "2343"
},
{
"input": "2343 7653 1242 5432\n2",
"output": "7653"
},
{
"input": "2343 7653 1242 5432\n3",
"output": "1242"
},
{
"input": "2343 7653 1242 5432\n4",
"output": "5432"
},
{
"input": "1 2 3 4\n123412",
"output": "13"
},
{
"input": "50 50 50 50\n11111111111111111111111111111111111111111111111111111",
"output": "2650"
},
{
"input": "1 2 3 4\n11111111111111111111111111111111111111111111111111",
"output": "50"
},
{
"input": "1 2 3 4\n23123231321231231231231231221232123121312321",
"output": "87"
},
{
"input": "1 2 3 4\n1111111111111222222222233333333333444444444444444",
"output": "126"
},
{
"input": "2 3 1 4\n121321232412342112312313213123123412131231231232",
"output": "105"
}
] | 1,667,289,118
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 49
| 109
| 204,800
|
a1, a2, a3, a4 = input().split()
s = input()
sum = 0
for i in range(len(s)):
if s[i] == "1":
sum = sum + int(a1)
if s[i] == "2":
sum = sum + int(a2)
if s[i] == "3":
sum = sum + int(a3)
if s[i] == "4":
sum = sum + int(a4)
print(sum)
|
Title: Black Square
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Quite recently, a very smart student named Jury decided that lectures are boring, so he downloaded a game called "Black Square" on his super cool touchscreen phone.
In this game, the phone's screen is divided into four vertical strips. Each second, a black square appears on some of the strips. According to the rules of the game, Jury must use this second to touch the corresponding strip to make the square go away. As Jury is both smart and lazy, he counted that he wastes exactly *a**i* calories on touching the *i*-th strip.
You've got a string *s*, describing the process of the game and numbers *a*1,<=*a*2,<=*a*3,<=*a*4. Calculate how many calories Jury needs to destroy all the squares?
Input Specification:
The first line contains four space-separated integers *a*1, *a*2, *a*3, *a*4 (0<=≤<=*a*1,<=*a*2,<=*a*3,<=*a*4<=≤<=104).
The second line contains string *s* (1<=≤<=|*s*|<=≤<=105), where the *і*-th character of the string equals "1", if on the *i*-th second of the game the square appears on the first strip, "2", if it appears on the second strip, "3", if it appears on the third strip, "4", if it appears on the fourth strip.
Output Specification:
Print a single integer — the total number of calories that Jury wastes.
Demo Input:
['1 2 3 4\n123214\n', '1 5 3 2\n11221\n']
Demo Output:
['13\n', '13\n']
Note:
none
|
```python
a1, a2, a3, a4 = input().split()
s = input()
sum = 0
for i in range(len(s)):
if s[i] == "1":
sum = sum + int(a1)
if s[i] == "2":
sum = sum + int(a2)
if s[i] == "3":
sum = sum + int(a3)
if s[i] == "4":
sum = sum + int(a4)
print(sum)
```
| 3
|
|
268
|
A
|
Games
|
PROGRAMMING
| 800
|
[
"brute force"
] | null | null |
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.
There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.
You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
|
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
|
In a single line print the number of games where the host team is going to play in the guest uniform.
|
[
"3\n1 2\n2 4\n3 4\n",
"4\n100 42\n42 100\n5 42\n100 5\n",
"2\n1 2\n1 2\n"
] |
[
"1\n",
"5\n",
"0\n"
] |
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.
In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
| 500
|
[
{
"input": "3\n1 2\n2 4\n3 4",
"output": "1"
},
{
"input": "4\n100 42\n42 100\n5 42\n100 5",
"output": "5"
},
{
"input": "2\n1 2\n1 2",
"output": "0"
},
{
"input": "7\n4 7\n52 55\n16 4\n55 4\n20 99\n3 4\n7 52",
"output": "6"
},
{
"input": "10\n68 42\n1 35\n25 70\n59 79\n65 63\n46 6\n28 82\n92 62\n43 96\n37 28",
"output": "1"
},
{
"input": "30\n10 39\n89 1\n78 58\n75 99\n36 13\n77 50\n6 97\n79 28\n27 52\n56 5\n93 96\n40 21\n33 74\n26 37\n53 59\n98 56\n61 65\n42 57\n9 7\n25 63\n74 34\n96 84\n95 47\n12 23\n34 21\n71 6\n27 13\n15 47\n64 14\n12 77",
"output": "6"
},
{
"input": "30\n46 100\n87 53\n34 84\n44 66\n23 20\n50 34\n90 66\n17 39\n13 22\n94 33\n92 46\n63 78\n26 48\n44 61\n3 19\n41 84\n62 31\n65 89\n23 28\n58 57\n19 85\n26 60\n75 66\n69 67\n76 15\n64 15\n36 72\n90 89\n42 69\n45 35",
"output": "4"
},
{
"input": "2\n46 6\n6 46",
"output": "2"
},
{
"input": "29\n8 18\n33 75\n69 22\n97 95\n1 97\n78 10\n88 18\n13 3\n19 64\n98 12\n79 92\n41 72\n69 15\n98 31\n57 74\n15 56\n36 37\n15 66\n63 100\n16 42\n47 56\n6 4\n73 15\n30 24\n27 71\n12 19\n88 69\n85 6\n50 11",
"output": "10"
},
{
"input": "23\n43 78\n31 28\n58 80\n66 63\n20 4\n51 95\n40 20\n50 14\n5 34\n36 39\n77 42\n64 97\n62 89\n16 56\n8 34\n58 16\n37 35\n37 66\n8 54\n50 36\n24 8\n68 48\n85 33",
"output": "6"
},
{
"input": "13\n76 58\n32 85\n99 79\n23 58\n96 59\n72 35\n53 43\n96 55\n41 78\n75 10\n28 11\n72 7\n52 73",
"output": "0"
},
{
"input": "18\n6 90\n70 79\n26 52\n67 81\n29 95\n41 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 2",
"output": "1"
},
{
"input": "18\n6 90\n100 79\n26 100\n67 100\n29 100\n100 32\n94 88\n18 58\n59 65\n51 56\n64 68\n34 2\n6 98\n95 82\n34 2\n40 98\n83 78\n29 100",
"output": "8"
},
{
"input": "30\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1",
"output": "450"
},
{
"input": "30\n100 99\n58 59\n56 57\n54 55\n52 53\n50 51\n48 49\n46 47\n44 45\n42 43\n40 41\n38 39\n36 37\n34 35\n32 33\n30 31\n28 29\n26 27\n24 25\n22 23\n20 21\n18 19\n16 17\n14 15\n12 13\n10 11\n8 9\n6 7\n4 5\n2 3",
"output": "0"
},
{
"input": "15\n9 3\n2 6\n7 6\n5 10\n9 5\n8 1\n10 5\n2 8\n4 5\n9 8\n5 3\n3 8\n9 8\n4 10\n8 5",
"output": "20"
},
{
"input": "15\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2",
"output": "108"
},
{
"input": "25\n2 1\n1 2\n1 2\n1 2\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n1 2\n2 1\n1 2\n2 1\n2 1\n2 1\n2 1\n1 2",
"output": "312"
},
{
"input": "25\n91 57\n2 73\n54 57\n2 57\n23 57\n2 6\n57 54\n57 23\n91 54\n91 23\n57 23\n91 57\n54 2\n6 91\n57 54\n2 57\n57 91\n73 91\n57 23\n91 57\n2 73\n91 2\n23 6\n2 73\n23 6",
"output": "96"
},
{
"input": "28\n31 66\n31 91\n91 31\n97 66\n31 66\n31 66\n66 91\n91 31\n97 31\n91 97\n97 31\n66 31\n66 97\n91 31\n31 66\n31 66\n66 31\n31 97\n66 97\n97 31\n31 91\n66 91\n91 66\n31 66\n91 66\n66 31\n66 31\n91 97",
"output": "210"
},
{
"input": "29\n78 27\n50 68\n24 26\n68 43\n38 78\n26 38\n78 28\n28 26\n27 24\n23 38\n24 26\n24 43\n61 50\n38 78\n27 23\n61 26\n27 28\n43 23\n28 78\n43 27\n43 78\n27 61\n28 38\n61 78\n50 26\n43 27\n26 78\n28 50\n43 78",
"output": "73"
},
{
"input": "29\n80 27\n69 80\n27 80\n69 80\n80 27\n80 27\n80 27\n80 69\n27 69\n80 69\n80 27\n27 69\n69 27\n80 69\n27 69\n69 80\n27 69\n80 69\n80 27\n69 27\n27 69\n27 80\n80 27\n69 80\n27 69\n80 69\n69 80\n69 80\n27 80",
"output": "277"
},
{
"input": "30\n19 71\n7 89\n89 71\n21 7\n19 21\n7 89\n19 71\n89 8\n89 21\n19 8\n21 7\n8 89\n19 89\n7 21\n19 8\n19 7\n7 19\n8 21\n71 21\n71 89\n7 19\n7 19\n21 7\n21 19\n21 19\n71 8\n21 8\n71 19\n19 71\n8 21",
"output": "154"
},
{
"input": "30\n44 17\n44 17\n44 17\n17 44\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n44 17\n44 17\n44 17\n17 44\n17 44\n17 44\n44 17\n44 17\n17 44\n44 17\n44 17\n44 17\n17 44\n17 44\n44 17\n17 44\n44 17\n44 17\n44 17",
"output": "418"
},
{
"input": "22\n78 92\n15 92\n92 78\n78 80\n92 16\n24 80\n92 16\n16 92\n78 16\n24 78\n80 78\n92 80\n16 80\n80 78\n15 78\n92 16\n24 15\n24 80\n80 16\n16 80\n92 80\n24 80",
"output": "74"
},
{
"input": "24\n9 83\n90 31\n83 3\n83 3\n21 31\n83 3\n32 31\n12 21\n31 21\n90 32\n32 21\n12 9\n12 31\n9 83\n83 12\n32 3\n32 83\n90 31\n9 32\n31 21\n83 90\n32 21\n21 3\n32 9",
"output": "59"
},
{
"input": "30\n67 21\n85 39\n85 87\n21 39\n66 85\n10 95\n10 21\n87 85\n82 21\n67 21\n95 10\n21 39\n82 21\n21 66\n66 39\n95 30\n67 85\n66 82\n85 82\n21 66\n10 39\n67 10\n21 85\n10 82\n85 95\n10 85\n21 39\n85 39\n39 10\n95 67",
"output": "100"
},
{
"input": "4\n8 7\n8 7\n7 8\n7 8",
"output": "8"
},
{
"input": "6\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1",
"output": "10"
},
{
"input": "12\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1",
"output": "72"
},
{
"input": "4\n1 2\n1 2\n2 1\n2 1",
"output": "8"
}
] | 1,673,155,740
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 31
| 92
| 0
|
n=int(input())
count=0
h_a_list = []
for i in range(n):
h,a=map(int,input().split())
h_a_list.append([h,a])
for i in range(n):
for j in range(n):
if h_a_list[i][0]==h_a_list[j][1]:
count+=1
print(count)
|
Title: Games
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.
There are *n* teams taking part in the national championship. The championship consists of *n*·(*n*<=-<=1) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.
You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.
Input Specification:
The first line contains an integer *n* (2<=≤<=*n*<=≤<=30). Each of the following *n* lines contains a pair of distinct space-separated integers *h**i*, *a**i* (1<=≤<=*h**i*,<=*a**i*<=≤<=100) — the colors of the *i*-th team's home and guest uniforms, respectively.
Output Specification:
In a single line print the number of games where the host team is going to play in the guest uniform.
Demo Input:
['3\n1 2\n2 4\n3 4\n', '4\n100 42\n42 100\n5 42\n100 5\n', '2\n1 2\n1 2\n']
Demo Output:
['1\n', '5\n', '0\n']
Note:
In the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.
In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first).
|
```python
n=int(input())
count=0
h_a_list = []
for i in range(n):
h,a=map(int,input().split())
h_a_list.append([h,a])
for i in range(n):
for j in range(n):
if h_a_list[i][0]==h_a_list[j][1]:
count+=1
print(count)
```
| 3
|
|
4
|
A
|
Watermelon
|
PROGRAMMING
| 800
|
[
"brute force",
"math"
] |
A. Watermelon
|
1
|
64
|
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem.
Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
|
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
|
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
|
[
"8\n"
] |
[
"YES\n"
] |
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
| 0
|
[
{
"input": "8",
"output": "YES"
},
{
"input": "5",
"output": "NO"
},
{
"input": "4",
"output": "YES"
},
{
"input": "3",
"output": "NO"
},
{
"input": "2",
"output": "NO"
},
{
"input": "1",
"output": "NO"
},
{
"input": "7",
"output": "NO"
},
{
"input": "6",
"output": "YES"
},
{
"input": "10",
"output": "YES"
},
{
"input": "9",
"output": "NO"
},
{
"input": "53",
"output": "NO"
},
{
"input": "77",
"output": "NO"
},
{
"input": "32",
"output": "YES"
},
{
"input": "44",
"output": "YES"
},
{
"input": "98",
"output": "YES"
},
{
"input": "99",
"output": "NO"
},
{
"input": "90",
"output": "YES"
},
{
"input": "67",
"output": "NO"
},
{
"input": "100",
"output": "YES"
},
{
"input": "88",
"output": "YES"
}
] | 1,693,591,344
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 20
| 92
| 0
|
w=int(input())
peso_dividido= w % 2
if peso_dividido == 0 and w!= 2:
print("YES")
else: print("NO")
|
Title: Watermelon
Time Limit: 1 seconds
Memory Limit: 64 megabytes
Problem Description:
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem.
Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
Input Specification:
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Output Specification:
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
Demo Input:
['8\n']
Demo Output:
['YES\n']
Note:
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
|
```python
w=int(input())
peso_dividido= w % 2
if peso_dividido == 0 and w!= 2:
print("YES")
else: print("NO")
```
| 3.954
|
919
|
A
|
Supermarket
|
PROGRAMMING
| 800
|
[
"brute force",
"greedy",
"implementation"
] | null | null |
We often go to supermarkets to buy some fruits or vegetables, and on the tag there prints the price for a kilo. But in some supermarkets, when asked how much the items are, the clerk will say that $a$ yuan for $b$ kilos (You don't need to care about what "yuan" is), the same as $a/b$ yuan for a kilo.
Now imagine you'd like to buy $m$ kilos of apples. You've asked $n$ supermarkets and got the prices. Find the minimum cost for those apples.
You can assume that there are enough apples in all supermarkets.
|
The first line contains two positive integers $n$ and $m$ ($1 \leq n \leq 5\,000$, $1 \leq m \leq 100$), denoting that there are $n$ supermarkets and you want to buy $m$ kilos of apples.
The following $n$ lines describe the information of the supermarkets. Each line contains two positive integers $a, b$ ($1 \leq a, b \leq 100$), denoting that in this supermarket, you are supposed to pay $a$ yuan for $b$ kilos of apples.
|
The only line, denoting the minimum cost for $m$ kilos of apples. Please make sure that the absolute or relative error between your answer and the correct answer won't exceed $10^{-6}$.
Formally, let your answer be $x$, and the jury's answer be $y$. Your answer is considered correct if $\frac{|x - y|}{\max{(1, |y|)}} \le 10^{-6}$.
|
[
"3 5\n1 2\n3 4\n1 3\n",
"2 1\n99 100\n98 99\n"
] |
[
"1.66666667\n",
"0.98989899\n"
] |
In the first sample, you are supposed to buy $5$ kilos of apples in supermarket $3$. The cost is $5/3$ yuan.
In the second sample, you are supposed to buy $1$ kilo of apples in supermarket $2$. The cost is $98/99$ yuan.
| 500
|
[
{
"input": "3 5\n1 2\n3 4\n1 3",
"output": "1.66666667"
},
{
"input": "2 1\n99 100\n98 99",
"output": "0.98989899"
},
{
"input": "50 37\n78 49\n96 4\n86 62\n28 4\n19 2\n79 43\n79 92\n95 35\n33 60\n54 84\n90 25\n2 25\n53 21\n86 52\n72 25\n6 78\n41 46\n3 68\n42 89\n33 35\n57 43\n99 45\n1 82\n38 62\n11 50\n55 84\n1 97\n12 67\n51 96\n51 7\n1 100\n79 61\n66 54\n97 93\n52 75\n80 54\n98 73\n29 28\n73 96\n24 73\n3 25\n1 29\n43 50\n97 95\n54 64\n38 97\n68 16\n22 68\n25 91\n77 13",
"output": "0.37000000"
},
{
"input": "5 1\n5 100\n55 6\n53 27\n57 53\n62 24",
"output": "0.05000000"
},
{
"input": "10 7\n83 93\n90 2\n63 51\n51 97\n7 97\n25 78\n17 68\n30 10\n46 14\n22 28",
"output": "0.50515464"
},
{
"input": "1 100\n100 1",
"output": "10000.00000000"
},
{
"input": "1 1\n59 1",
"output": "59.00000000"
},
{
"input": "1 100\n1 100",
"output": "1.00000000"
},
{
"input": "1 100\n1 99",
"output": "1.01010101"
},
{
"input": "1 1\n100 1",
"output": "100.00000000"
},
{
"input": "15 100\n1 2\n3 4\n10 11\n12 13\n20 21\n28 29\n34 35\n42 43\n59 60\n61 62\n74 75\n89 90\n96 97\n98 99\n99 100",
"output": "50.00000000"
},
{
"input": "15 100\n3 2\n5 4\n12 11\n14 13\n22 21\n30 29\n36 35\n44 43\n61 60\n63 62\n76 75\n91 90\n98 97\n99 98\n100 99",
"output": "101.01010101"
},
{
"input": "1 1\n100 10",
"output": "10.00000000"
},
{
"input": "1 1\n100 3",
"output": "33.33333333"
},
{
"input": "1 100\n100 3",
"output": "3333.33333333"
},
{
"input": "1 100\n100 1",
"output": "10000.00000000"
},
{
"input": "7 8\n9 8\n5 1\n3 1\n6 2\n7 3\n2 1\n3 1",
"output": "9.00000000"
},
{
"input": "5 8\n9 8\n3 1\n2 1\n4 2\n13 5",
"output": "9.00000000"
},
{
"input": "2 1\n1 2\n2 10",
"output": "0.20000000"
},
{
"input": "2 1\n99 100\n95 95",
"output": "0.99000000"
},
{
"input": "1 5\n10 1",
"output": "50.00000000"
},
{
"input": "5 10\n9 1\n10 1\n11 1\n12 1\n13 1",
"output": "90.00000000"
},
{
"input": "1 100\n3 1",
"output": "300.00000000"
}
] | 1,628,411,644
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 43
| 171
| 23,756,800
|
n,m = map(int,input().split())
ls = []
for i in range(n):
a,b = map(int,input().split())
cost = (m * a) / b
ls.append(cost)
print(min(ls))
|
Title: Supermarket
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
We often go to supermarkets to buy some fruits or vegetables, and on the tag there prints the price for a kilo. But in some supermarkets, when asked how much the items are, the clerk will say that $a$ yuan for $b$ kilos (You don't need to care about what "yuan" is), the same as $a/b$ yuan for a kilo.
Now imagine you'd like to buy $m$ kilos of apples. You've asked $n$ supermarkets and got the prices. Find the minimum cost for those apples.
You can assume that there are enough apples in all supermarkets.
Input Specification:
The first line contains two positive integers $n$ and $m$ ($1 \leq n \leq 5\,000$, $1 \leq m \leq 100$), denoting that there are $n$ supermarkets and you want to buy $m$ kilos of apples.
The following $n$ lines describe the information of the supermarkets. Each line contains two positive integers $a, b$ ($1 \leq a, b \leq 100$), denoting that in this supermarket, you are supposed to pay $a$ yuan for $b$ kilos of apples.
Output Specification:
The only line, denoting the minimum cost for $m$ kilos of apples. Please make sure that the absolute or relative error between your answer and the correct answer won't exceed $10^{-6}$.
Formally, let your answer be $x$, and the jury's answer be $y$. Your answer is considered correct if $\frac{|x - y|}{\max{(1, |y|)}} \le 10^{-6}$.
Demo Input:
['3 5\n1 2\n3 4\n1 3\n', '2 1\n99 100\n98 99\n']
Demo Output:
['1.66666667\n', '0.98989899\n']
Note:
In the first sample, you are supposed to buy $5$ kilos of apples in supermarket $3$. The cost is $5/3$ yuan.
In the second sample, you are supposed to buy $1$ kilo of apples in supermarket $2$. The cost is $98/99$ yuan.
|
```python
n,m = map(int,input().split())
ls = []
for i in range(n):
a,b = map(int,input().split())
cost = (m * a) / b
ls.append(cost)
print(min(ls))
```
| 3
|
|
984
|
A
|
Game
|
PROGRAMMING
| 800
|
[
"sortings"
] | null | null |
Two players play a game.
Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns.
The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it.
You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves.
|
The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$).
|
Print one number that will be left on the board.
|
[
"3\n2 1 3\n",
"3\n2 2 2\n"
] |
[
"2",
"2"
] |
In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board.
In the second sample, $2$ is left on the board regardless of the actions of the players.
| 500
|
[
{
"input": "3\n2 1 3",
"output": "2"
},
{
"input": "3\n2 2 2",
"output": "2"
},
{
"input": "9\n44 53 51 80 5 27 74 79 94",
"output": "53"
},
{
"input": "10\n38 82 23 37 96 4 81 60 67 86",
"output": "60"
},
{
"input": "10\n58 26 77 15 53 81 68 48 22 65",
"output": "53"
},
{
"input": "1\n124",
"output": "124"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "3\n1 1 1000",
"output": "1"
},
{
"input": "2\n322 322",
"output": "322"
},
{
"input": "3\n9 92 12",
"output": "12"
},
{
"input": "3\n1 2 2",
"output": "2"
}
] | 1,602,697,441
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 109
| 307,200
|
t = int(input())
a = list(map(int,input().split(" ")))
a.sort()
if len(a) % 2 == 1:
print(a[t//2])
else:
print(a[t//2 - 1])
|
Title: Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players play a game.
Initially there are $n$ integers $a_1, a_2, \ldots, a_n$ written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. $n - 1$ turns are made. The first player makes the first move, then players alternate turns.
The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it.
You want to know what number will be left on the board after $n - 1$ turns if both players make optimal moves.
Input Specification:
The first line contains one integer $n$ ($1 \le n \le 1000$) — the number of numbers on the board.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^6$).
Output Specification:
Print one number that will be left on the board.
Demo Input:
['3\n2 1 3\n', '3\n2 2 2\n']
Demo Output:
['2', '2']
Note:
In the first sample, the first player erases $3$ and the second erases $1$. $2$ is left on the board.
In the second sample, $2$ is left on the board regardless of the actions of the players.
|
```python
t = int(input())
a = list(map(int,input().split(" ")))
a.sort()
if len(a) % 2 == 1:
print(a[t//2])
else:
print(a[t//2 - 1])
```
| 3
|
|
129
|
B
|
Students and Shoelaces
|
PROGRAMMING
| 1,200
|
[
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null |
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club.
|
The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
|
Print the single number — the number of groups of students that will be kicked out from the club.
|
[
"3 3\n1 2\n2 3\n3 1\n",
"6 3\n1 2\n2 3\n3 4\n",
"6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n"
] |
[
"0\n",
"2\n",
"1\n"
] |
In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
| 1,000
|
[
{
"input": "3 3\n1 2\n2 3\n3 1",
"output": "0"
},
{
"input": "6 3\n1 2\n2 3\n3 4",
"output": "2"
},
{
"input": "6 5\n1 4\n2 4\n3 4\n5 4\n6 4",
"output": "1"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1",
"output": "0"
},
{
"input": "5 4\n1 4\n4 3\n4 5\n5 2",
"output": "2"
},
{
"input": "11 10\n1 2\n1 3\n3 4\n1 5\n5 6\n6 7\n1 8\n8 9\n9 10\n10 11",
"output": "4"
},
{
"input": "7 7\n1 2\n2 3\n3 1\n1 4\n4 5\n4 6\n4 7",
"output": "2"
},
{
"input": "12 49\n6 3\n12 9\n10 11\n3 5\n10 2\n6 9\n8 5\n6 12\n7 3\n3 12\n3 2\n5 6\n7 5\n9 2\n11 1\n7 6\n5 4\n8 7\n12 5\n5 11\n8 9\n10 3\n6 2\n10 4\n9 10\n9 11\n11 3\n5 9\n11 6\n10 8\n7 9\n10 7\n4 6\n3 8\n4 11\n12 2\n4 9\n2 11\n7 11\n1 5\n7 2\n8 1\n4 12\n9 1\n4 2\n8 2\n11 12\n3 1\n1 6",
"output": "0"
},
{
"input": "10 29\n4 5\n1 7\n4 2\n3 8\n7 6\n8 10\n10 6\n4 1\n10 1\n6 2\n7 4\n7 10\n2 7\n9 8\n5 10\n2 5\n8 5\n4 9\n2 8\n5 7\n4 8\n7 3\n6 5\n1 3\n1 9\n10 4\n10 9\n10 2\n2 3",
"output": "0"
},
{
"input": "9 33\n5 7\n5 9\n9 6\n9 1\n7 4\n3 5\n7 8\n8 6\n3 6\n8 2\n3 8\n1 6\n1 8\n1 4\n4 2\n1 2\n2 5\n3 4\n8 5\n2 6\n3 1\n1 5\n1 7\n3 2\n5 4\n9 4\n3 9\n7 3\n6 4\n9 8\n7 9\n8 4\n6 5",
"output": "0"
},
{
"input": "7 8\n5 7\n2 7\n1 6\n1 3\n3 7\n6 3\n6 4\n2 6",
"output": "1"
},
{
"input": "6 15\n3 1\n4 5\n1 4\n6 2\n3 5\n6 3\n1 6\n1 5\n2 3\n2 5\n6 4\n5 6\n4 2\n1 2\n3 4",
"output": "0"
},
{
"input": "7 11\n5 3\n6 5\n6 4\n1 6\n7 1\n2 6\n7 5\n2 5\n3 1\n3 4\n2 4",
"output": "0"
},
{
"input": "95 0",
"output": "0"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "62 30\n29 51\n29 55\n4 12\n53 25\n36 28\n32 11\n29 11\n47 9\n21 8\n25 4\n51 19\n26 56\n22 21\n37 9\n9 33\n7 25\n16 7\n40 49\n15 21\n49 58\n34 30\n20 46\n62 48\n53 57\n33 6\n60 37\n41 34\n62 36\n36 43\n11 39",
"output": "2"
},
{
"input": "56 25\n12 40\n31 27\n18 40\n1 43\n9 10\n25 47\n27 29\n26 28\n19 38\n19 40\n22 14\n21 51\n29 31\n55 29\n51 33\n20 17\n24 15\n3 48\n31 56\n15 29\n49 42\n50 4\n22 42\n25 17\n18 51",
"output": "3"
},
{
"input": "51 29\n36 30\n37 45\n4 24\n40 18\n47 35\n15 1\n30 38\n15 18\n32 40\n34 42\n2 47\n35 21\n25 28\n13 1\n13 28\n36 1\n46 47\n22 17\n41 45\n43 45\n40 15\n29 35\n47 15\n30 21\n9 14\n18 38\n18 50\n42 10\n31 41",
"output": "3"
},
{
"input": "72 45\n5 15\n8 18\n40 25\n71 66\n67 22\n6 44\n16 25\n8 23\n19 70\n26 34\n48 15\n24 2\n54 68\n44 43\n17 37\n49 19\n71 49\n34 38\n59 1\n65 70\n11 54\n5 11\n15 31\n29 50\n48 16\n70 57\n25 59\n2 59\n56 12\n66 62\n24 16\n46 27\n45 67\n68 43\n31 11\n31 30\n8 44\n64 33\n38 44\n54 10\n13 9\n7 51\n25 4\n40 70\n26 65",
"output": "5"
},
{
"input": "56 22\n17 27\n48 49\n29 8\n47 20\n32 7\n44 5\n14 39\n5 13\n40 2\n50 42\n38 9\n18 37\n16 44\n21 32\n21 39\n37 54\n19 46\n30 47\n17 13\n30 31\n49 16\n56 7",
"output": "4"
},
{
"input": "81 46\n53 58\n31 14\n18 54\n43 61\n57 65\n6 38\n49 5\n6 40\n6 10\n17 72\n27 48\n58 39\n21 75\n21 43\n78 20\n34 4\n15 35\n74 48\n76 15\n49 38\n46 51\n78 9\n80 5\n26 42\n64 31\n46 72\n1 29\n20 17\n32 45\n53 43\n24 5\n52 59\n3 80\n78 19\n61 17\n80 12\n17 8\n63 2\n8 4\n44 10\n53 72\n18 60\n68 15\n17 58\n79 71\n73 35",
"output": "4"
},
{
"input": "82 46\n64 43\n32 24\n57 30\n24 46\n70 12\n23 41\n63 39\n46 70\n4 61\n19 12\n39 79\n14 28\n37 3\n12 27\n15 20\n35 39\n25 64\n59 16\n68 63\n37 14\n76 7\n67 29\n9 5\n14 55\n46 26\n71 79\n47 42\n5 55\n18 45\n28 40\n44 78\n74 9\n60 53\n44 19\n52 81\n65 52\n40 13\n40 19\n43 1\n24 23\n68 9\n16 20\n70 14\n41 40\n29 10\n45 65",
"output": "8"
},
{
"input": "69 38\n63 35\n52 17\n43 69\n2 57\n12 5\n26 36\n13 10\n16 68\n5 18\n5 41\n10 4\n60 9\n39 22\n39 28\n53 57\n13 52\n66 38\n49 61\n12 19\n27 46\n67 7\n25 8\n23 58\n52 34\n29 2\n2 42\n8 53\n57 43\n68 11\n48 28\n56 19\n46 33\n63 21\n57 16\n68 59\n67 34\n28 43\n56 36",
"output": "4"
},
{
"input": "75 31\n32 50\n52 8\n21 9\n68 35\n12 72\n47 26\n38 58\n40 55\n31 70\n53 75\n44 1\n65 22\n33 22\n33 29\n14 39\n1 63\n16 52\n70 15\n12 27\n63 31\n47 9\n71 31\n43 17\n43 49\n8 26\n11 39\n9 22\n30 45\n65 47\n32 9\n60 70",
"output": "4"
},
{
"input": "77 41\n48 45\n50 36\n6 69\n70 3\n22 21\n72 6\n54 3\n49 31\n2 23\n14 59\n68 58\n4 54\n60 12\n63 60\n44 24\n28 24\n40 8\n5 1\n13 24\n29 15\n19 76\n70 50\n65 71\n23 33\n58 16\n50 42\n71 28\n58 54\n24 73\n6 17\n29 13\n60 4\n42 4\n21 60\n77 39\n57 9\n51 19\n61 6\n49 36\n24 32\n41 66",
"output": "3"
},
{
"input": "72 39\n9 44\n15 12\n2 53\n34 18\n41 70\n54 72\n39 19\n26 7\n4 54\n53 59\n46 49\n70 6\n9 10\n64 51\n31 60\n61 53\n59 71\n9 60\n67 16\n4 16\n34 3\n2 61\n16 23\n34 6\n10 18\n13 38\n66 40\n59 9\n40 14\n38 24\n31 48\n7 69\n20 39\n49 52\n32 67\n61 35\n62 45\n37 54\n5 27",
"output": "8"
},
{
"input": "96 70\n30 37\n47 56\n19 79\n15 28\n2 43\n43 54\n59 75\n42 22\n38 18\n18 14\n47 41\n60 29\n35 11\n90 4\n14 41\n11 71\n41 24\n68 28\n45 92\n14 15\n34 63\n77 32\n67 38\n36 8\n37 4\n58 95\n68 84\n69 81\n35 23\n56 63\n78 91\n35 44\n66 63\n80 19\n87 88\n28 14\n62 35\n24 23\n83 37\n54 89\n14 40\n9 35\n94 9\n56 46\n92 70\n16 58\n96 31\n53 23\n56 5\n36 42\n89 77\n29 51\n26 13\n46 70\n25 56\n95 96\n3 51\n76 8\n36 82\n44 85\n54 56\n89 67\n32 5\n82 78\n33 65\n43 28\n35 1\n94 13\n26 24\n10 51",
"output": "4"
},
{
"input": "76 49\n15 59\n23 26\n57 48\n49 51\n42 76\n36 40\n37 40\n29 15\n28 71\n47 70\n27 39\n76 21\n55 16\n21 18\n19 1\n25 31\n51 71\n54 42\n28 9\n61 69\n33 9\n18 19\n58 51\n51 45\n29 34\n9 67\n26 8\n70 37\n11 62\n24 22\n59 76\n67 17\n59 11\n54 1\n12 57\n23 3\n46 47\n37 20\n65 9\n51 12\n31 19\n56 13\n58 22\n26 59\n39 76\n27 11\n48 64\n59 35\n44 75",
"output": "5"
},
{
"input": "52 26\n29 41\n16 26\n18 48\n31 17\n37 42\n26 1\n11 7\n29 6\n23 17\n12 47\n34 23\n41 16\n15 35\n25 21\n45 7\n52 2\n37 10\n28 19\n1 27\n30 47\n42 35\n50 30\n30 34\n19 30\n42 25\n47 31",
"output": "3"
},
{
"input": "86 48\n59 34\n21 33\n45 20\n62 23\n4 68\n2 65\n63 26\n64 20\n51 34\n64 21\n68 78\n61 80\n81 3\n38 39\n47 48\n24 34\n44 71\n72 78\n50 2\n13 51\n82 78\n11 74\n14 48\n2 75\n49 55\n63 85\n20 85\n4 53\n51 15\n11 67\n1 15\n2 64\n10 81\n6 7\n68 18\n84 28\n77 69\n10 36\n15 14\n32 86\n16 79\n26 13\n38 55\n47 43\n47 39\n45 37\n58 81\n42 35",
"output": "8"
},
{
"input": "58 29\n27 24\n40 52\n51 28\n44 50\n7 28\n14 53\n10 16\n16 45\n8 56\n35 26\n39 6\n6 14\n45 22\n35 13\n20 17\n42 6\n37 21\n4 11\n26 56\n54 55\n3 57\n40 3\n55 27\n4 51\n35 29\n50 16\n47 7\n48 20\n1 37",
"output": "3"
},
{
"input": "51 23\n46 47\n31 27\n1 20\n49 16\n2 10\n29 47\n13 27\n34 26\n31 2\n28 20\n17 40\n39 4\n29 26\n28 44\n3 39\n50 12\n19 1\n30 21\n41 23\n2 29\n16 3\n49 28\n49 41",
"output": "4"
},
{
"input": "75 43\n46 34\n33 12\n51 39\n47 74\n68 64\n40 46\n20 51\n47 19\n4 5\n57 59\n12 26\n68 65\n38 42\n73 37\n5 74\n36 61\n8 18\n58 33\n34 73\n42 43\n10 49\n70 50\n49 18\n24 53\n71 73\n44 24\n49 56\n24 29\n44 67\n70 46\n57 25\n73 63\n3 51\n30 71\n41 44\n17 69\n17 18\n19 68\n42 7\n11 51\n1 5\n72 23\n65 53",
"output": "5"
}
] | 1,646,875,029
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 49
| 92
| 512,000
|
n, m = map(int, input().strip().split())
adj = {i + 1: set() for i in range(n)}
for _ in range(m):
x, y = map(int, input().strip().split())
adj[x].add(y)
adj[y].add(x)
look = set()
for k, v in adj.items():
if len(v) == 1:
look.add(k)
i = 0
while len(look) > 0:
increment = False
next_look = set()
for node in look:
if len(adj[node]) != 1:
continue
increment = True
(adjacent,) = adj[node]
if adjacent not in look:
next_look.add(adjacent)
adj[adjacent].remove(node)
i += increment
look = next_look
print(i)
|
Title: Students and Shoelaces
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club.
Input Specification:
The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself.
Output Specification:
Print the single number — the number of groups of students that will be kicked out from the club.
Demo Input:
['3 3\n1 2\n2 3\n3 1\n', '6 3\n1 2\n2 3\n3 4\n', '6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n']
Demo Output:
['0\n', '2\n', '1\n']
Note:
In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one.
|
```python
n, m = map(int, input().strip().split())
adj = {i + 1: set() for i in range(n)}
for _ in range(m):
x, y = map(int, input().strip().split())
adj[x].add(y)
adj[y].add(x)
look = set()
for k, v in adj.items():
if len(v) == 1:
look.add(k)
i = 0
while len(look) > 0:
increment = False
next_look = set()
for node in look:
if len(adj[node]) != 1:
continue
increment = True
(adjacent,) = adj[node]
if adjacent not in look:
next_look.add(adjacent)
adj[adjacent].remove(node)
i += increment
look = next_look
print(i)
```
| 0
|
|
656
|
A
|
Da Vinci Powers
|
PROGRAMMING
| 1,900
|
[
"*special"
] | null | null |
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35).
Output a single integer.
|
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35).
|
Output a single integer.
|
[
"3\n",
"10\n"
] |
[
"8\n",
"1024\n"
] |
none
| 0
|
[
{
"input": "3",
"output": "8"
},
{
"input": "10",
"output": "1024"
},
{
"input": "35",
"output": "33940307968"
},
{
"input": "0",
"output": "1"
},
{
"input": "1",
"output": "2"
},
{
"input": "2",
"output": "4"
},
{
"input": "4",
"output": "16"
},
{
"input": "5",
"output": "32"
},
{
"input": "6",
"output": "64"
},
{
"input": "7",
"output": "128"
},
{
"input": "8",
"output": "256"
},
{
"input": "9",
"output": "512"
},
{
"input": "11",
"output": "2048"
},
{
"input": "12",
"output": "4096"
},
{
"input": "13",
"output": "8092"
},
{
"input": "14",
"output": "16184"
},
{
"input": "15",
"output": "32368"
},
{
"input": "16",
"output": "64736"
},
{
"input": "17",
"output": "129472"
},
{
"input": "18",
"output": "258944"
},
{
"input": "19",
"output": "517888"
},
{
"input": "20",
"output": "1035776"
},
{
"input": "21",
"output": "2071552"
},
{
"input": "22",
"output": "4143104"
},
{
"input": "23",
"output": "8286208"
},
{
"input": "24",
"output": "16572416"
},
{
"input": "25",
"output": "33144832"
},
{
"input": "26",
"output": "66289664"
},
{
"input": "27",
"output": "132579328"
},
{
"input": "28",
"output": "265158656"
},
{
"input": "29",
"output": "530317312"
},
{
"input": "30",
"output": "1060634624"
},
{
"input": "31",
"output": "2121269248"
},
{
"input": "32",
"output": "4242538496"
},
{
"input": "33",
"output": "8485076992"
},
{
"input": "34",
"output": "16970153984"
}
] | 1,589,046,199
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 36
| 140
| 20,172,800
|
i = int(input())
if i <= 12:
print(pow(2 , i))
else:
a = pow(2 , (i - 13)) * 100
print(pow(2 , i) - a)
|
Title: Da Vinci Powers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35).
Output a single integer.
Input Specification:
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35).
Output Specification:
Output a single integer.
Demo Input:
['3\n', '10\n']
Demo Output:
['8\n', '1024\n']
Note:
none
|
```python
i = int(input())
if i <= 12:
print(pow(2 , i))
else:
a = pow(2 , (i - 13)) * 100
print(pow(2 , i) - a)
```
| 3
|
|
768
|
B
|
Code For 1
|
PROGRAMMING
| 1,600
|
[
"constructive algorithms",
"dfs and similar",
"divide and conquer"
] | null | null |
Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility.
Initially Sam has a list with a single element *n*. Then he has to perform certain operations on this list. In each operation Sam must remove any element *x*, such that *x*<=><=1, from the list and insert at the same position , , sequentially. He must continue with these operations until all the elements in the list are either 0 or 1.
Now the masters want the total number of 1s in the range *l* to *r* (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test?
|
The first line contains three integers *n*, *l*, *r* (0<=≤<=*n*<=<<=250, 0<=≤<=*r*<=-<=*l*<=≤<=105, *r*<=≥<=1, *l*<=≥<=1) – initial element and the range *l* to *r*.
It is guaranteed that *r* is not greater than the length of the final list.
|
Output the total number of 1s in the range *l* to *r* in the final sequence.
|
[
"7 2 5\n",
"10 3 10\n"
] |
[
"4\n",
"5\n"
] |
Consider first example:
<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/288fbb682a6fa1934a47b763d6851f9d32a06150.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Elements on positions from 2-nd to 5-th in list is [1, 1, 1, 1]. The number of ones is 4.
For the second example:
<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/52e9bc51ef858cacc27fc274c7ba9419d5c1ded9.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Elements on positions from 3-rd to 10-th in list is [1, 1, 1, 0, 1, 0, 1, 0]. The number of ones is 5.
| 1,000
|
[
{
"input": "7 2 5",
"output": "4"
},
{
"input": "10 3 10",
"output": "5"
},
{
"input": "56 18 40",
"output": "20"
},
{
"input": "203 40 124",
"output": "67"
},
{
"input": "903316762502 354723010040 354723105411",
"output": "78355"
},
{
"input": "33534354842198 32529564319236 32529564342569",
"output": "22239"
},
{
"input": "62518534961045 50734311240112 50734311287877",
"output": "42439"
},
{
"input": "95173251245550 106288351347530 106288351372022",
"output": "16565"
},
{
"input": "542 321 956",
"output": "336"
},
{
"input": "3621 237 2637",
"output": "2124"
},
{
"input": "9056 336 896",
"output": "311"
},
{
"input": "36007 368 24490",
"output": "13253"
},
{
"input": "244269 149154 244246",
"output": "88609"
},
{
"input": "880234 669493 757150",
"output": "73585"
},
{
"input": "3740160 1031384 1104236",
"output": "64965"
},
{
"input": "11586121 15337246 15397874",
"output": "41868"
},
{
"input": "38658997 35923164 35985664",
"output": "36004"
},
{
"input": "192308932 207804787 207866400",
"output": "44142"
},
{
"input": "950099012 175922161 176000556",
"output": "69369"
},
{
"input": "2787326787 3799676481 3799680514",
"output": "2618"
},
{
"input": "14417262581 8527979363 8528075536",
"output": "80707"
},
{
"input": "39889373539 7747197212 7747278363",
"output": "47105"
},
{
"input": "251772781087 70597428577 70597479816",
"output": "46933"
},
{
"input": "0 1 1",
"output": "0"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "3 2 3",
"output": "2"
},
{
"input": "14 7 12",
"output": "5"
},
{
"input": "1125899906842623 1 100001",
"output": "100001"
},
{
"input": "1125899906842623 1125899906742623 1125899906842623",
"output": "100001"
},
{
"input": "1000 1 1023",
"output": "1000"
},
{
"input": "281474976710656 17179869184 17179869186",
"output": "1"
},
{
"input": "2 2 2",
"output": "0"
},
{
"input": "3 2 2",
"output": "1"
}
] | 1,653,996,829
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 33
| 77
| 3,174,400
|
import sys
from collections import *
from functools import lru_cache
sys.setrecursionlimit(2000)
input = sys.stdin.readline
def main():
# @lru_cache(None)
def dp(x):
if x <= 1:
return 0
return (x%2 == 0) + 2 * dp(x//2)
def recurse(num,s,e):
if e < l or s > r:
return 0
if s >= l and e <= r:
return num
mid = (s+e-1)//2
return recurse(num//2, s,mid) + recurse(num//2, mid+2, e) + recurse(num%2, mid+1, mid+1)
n,l,r = [int(i) for i in input().strip().split()]
s, e = 1, n + dp(n)
print(recurse(n, s, e))
main()
|
Title: Code For 1
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility.
Initially Sam has a list with a single element *n*. Then he has to perform certain operations on this list. In each operation Sam must remove any element *x*, such that *x*<=><=1, from the list and insert at the same position , , sequentially. He must continue with these operations until all the elements in the list are either 0 or 1.
Now the masters want the total number of 1s in the range *l* to *r* (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test?
Input Specification:
The first line contains three integers *n*, *l*, *r* (0<=≤<=*n*<=<<=250, 0<=≤<=*r*<=-<=*l*<=≤<=105, *r*<=≥<=1, *l*<=≥<=1) – initial element and the range *l* to *r*.
It is guaranteed that *r* is not greater than the length of the final list.
Output Specification:
Output the total number of 1s in the range *l* to *r* in the final sequence.
Demo Input:
['7 2 5\n', '10 3 10\n']
Demo Output:
['4\n', '5\n']
Note:
Consider first example:
<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/288fbb682a6fa1934a47b763d6851f9d32a06150.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Elements on positions from 2-nd to 5-th in list is [1, 1, 1, 1]. The number of ones is 4.
For the second example:
<img align="middle" class="tex-formula" src="https://espresso.codeforces.com/52e9bc51ef858cacc27fc274c7ba9419d5c1ded9.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Elements on positions from 3-rd to 10-th in list is [1, 1, 1, 0, 1, 0, 1, 0]. The number of ones is 5.
|
```python
import sys
from collections import *
from functools import lru_cache
sys.setrecursionlimit(2000)
input = sys.stdin.readline
def main():
# @lru_cache(None)
def dp(x):
if x <= 1:
return 0
return (x%2 == 0) + 2 * dp(x//2)
def recurse(num,s,e):
if e < l or s > r:
return 0
if s >= l and e <= r:
return num
mid = (s+e-1)//2
return recurse(num//2, s,mid) + recurse(num//2, mid+2, e) + recurse(num%2, mid+1, mid+1)
n,l,r = [int(i) for i in input().strip().split()]
s, e = 1, n + dp(n)
print(recurse(n, s, e))
main()
```
| 3
|
|
682
|
A
|
Alyona and Numbers
|
PROGRAMMING
| 1,100
|
[
"constructive algorithms",
"math",
"number theory"
] | null | null |
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5.
Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0.
As usual, Alyona has some troubles and asks you to help.
|
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
|
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
|
[
"6 12\n",
"11 14\n",
"1 5\n",
"3 8\n",
"5 7\n",
"21 21\n"
] |
[
"14\n",
"31\n",
"1\n",
"5\n",
"7\n",
"88\n"
] |
Following pairs are suitable in the first sample case:
- for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9.
Only the pair (1, 4) is suitable in the third sample case.
| 500
|
[
{
"input": "6 12",
"output": "14"
},
{
"input": "11 14",
"output": "31"
},
{
"input": "1 5",
"output": "1"
},
{
"input": "3 8",
"output": "5"
},
{
"input": "5 7",
"output": "7"
},
{
"input": "21 21",
"output": "88"
},
{
"input": "10 15",
"output": "30"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 1000000",
"output": "200000"
},
{
"input": "1000000 1",
"output": "200000"
},
{
"input": "1000000 1000000",
"output": "200000000000"
},
{
"input": "944 844",
"output": "159348"
},
{
"input": "368 984",
"output": "72423"
},
{
"input": "792 828",
"output": "131155"
},
{
"input": "920 969",
"output": "178296"
},
{
"input": "640 325",
"output": "41600"
},
{
"input": "768 170",
"output": "26112"
},
{
"input": "896 310",
"output": "55552"
},
{
"input": "320 154",
"output": "9856"
},
{
"input": "744 999",
"output": "148652"
},
{
"input": "630 843",
"output": "106218"
},
{
"input": "54 688",
"output": "7431"
},
{
"input": "478 828",
"output": "79157"
},
{
"input": "902 184",
"output": "33194"
},
{
"input": "31 29",
"output": "180"
},
{
"input": "751 169",
"output": "25384"
},
{
"input": "879 14",
"output": "2462"
},
{
"input": "7 858",
"output": "1201"
},
{
"input": "431 702",
"output": "60512"
},
{
"input": "855 355",
"output": "60705"
},
{
"input": "553 29",
"output": "3208"
},
{
"input": "721767 525996",
"output": "75929310986"
},
{
"input": "805191 74841",
"output": "12052259926"
},
{
"input": "888615 590981",
"output": "105030916263"
},
{
"input": "4743 139826",
"output": "132638943"
},
{
"input": "88167 721374",
"output": "12720276292"
},
{
"input": "171591 13322",
"output": "457187060"
},
{
"input": "287719 562167",
"output": "32349225415"
},
{
"input": "371143 78307",
"output": "5812618980"
},
{
"input": "487271 627151",
"output": "61118498984"
},
{
"input": "261436 930642",
"output": "48660664382"
},
{
"input": "377564 446782",
"output": "33737759810"
},
{
"input": "460988 28330",
"output": "2611958008"
},
{
"input": "544412 352983",
"output": "38433636199"
},
{
"input": "660540 869123",
"output": "114818101284"
},
{
"input": "743964 417967",
"output": "62190480238"
},
{
"input": "827388 966812",
"output": "159985729411"
},
{
"input": "910812 515656",
"output": "93933134534"
},
{
"input": "26940 64501",
"output": "347531388"
},
{
"input": "110364 356449",
"output": "7867827488"
},
{
"input": "636358 355531",
"output": "45248999219"
},
{
"input": "752486 871672",
"output": "131184195318"
},
{
"input": "803206 420516",
"output": "67552194859"
},
{
"input": "919334 969361",
"output": "178233305115"
},
{
"input": "35462 261309",
"output": "1853307952"
},
{
"input": "118887 842857",
"output": "20040948031"
},
{
"input": "202311 358998",
"output": "14525848875"
},
{
"input": "285735 907842",
"output": "51880446774"
},
{
"input": "401863 456686",
"output": "36705041203"
},
{
"input": "452583 972827",
"output": "88056992428"
},
{
"input": "235473 715013",
"output": "33673251230"
},
{
"input": "318897 263858",
"output": "16828704925"
},
{
"input": "402321 812702",
"output": "65393416268"
},
{
"input": "518449 361546",
"output": "37488632431"
},
{
"input": "634577 910391",
"output": "115542637921"
},
{
"input": "685297 235043",
"output": "32214852554"
},
{
"input": "801425 751183",
"output": "120403367155"
},
{
"input": "884849 300028",
"output": "53095895155"
},
{
"input": "977 848872",
"output": "165869588"
},
{
"input": "51697 397716",
"output": "4112144810"
},
{
"input": "834588 107199",
"output": "17893399803"
},
{
"input": "918012 688747",
"output": "126455602192"
},
{
"input": "1436 237592",
"output": "68236422"
},
{
"input": "117564 753732",
"output": "17722349770"
},
{
"input": "200988 302576",
"output": "12162829017"
},
{
"input": "284412 818717",
"output": "46570587880"
},
{
"input": "400540 176073",
"output": "14104855884"
},
{
"input": "483964 724917",
"output": "70166746198"
},
{
"input": "567388 241058",
"output": "27354683301"
},
{
"input": "650812 789902",
"output": "102815540084"
},
{
"input": "400999 756281",
"output": "60653584944"
},
{
"input": "100 101",
"output": "2020"
},
{
"input": "100 102",
"output": "2040"
},
{
"input": "103 100",
"output": "2060"
},
{
"input": "100 104",
"output": "2080"
},
{
"input": "3 4",
"output": "3"
},
{
"input": "11 23",
"output": "50"
},
{
"input": "8 14",
"output": "23"
},
{
"input": "23423 34234",
"output": "160372597"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "999999 999999",
"output": "199999600001"
},
{
"input": "82 99",
"output": "1624"
},
{
"input": "21 18",
"output": "75"
},
{
"input": "234 234",
"output": "10952"
},
{
"input": "4 4",
"output": "4"
},
{
"input": "6 13",
"output": "15"
},
{
"input": "3 9",
"output": "6"
},
{
"input": "99999 99999",
"output": "1999960001"
},
{
"input": "34 33",
"output": "225"
},
{
"input": "2 2",
"output": "0"
},
{
"input": "333 1",
"output": "66"
},
{
"input": "3 3",
"output": "2"
},
{
"input": "8 2",
"output": "3"
},
{
"input": "2179 2218",
"output": "966605"
},
{
"input": "1000000 999999",
"output": "199999800000"
},
{
"input": "873828 774207",
"output": "135304750879"
},
{
"input": "13 19",
"output": "50"
},
{
"input": "1648 576469",
"output": "190004183"
},
{
"input": "11 13",
"output": "28"
},
{
"input": "5 8",
"output": "8"
},
{
"input": "650074 943659",
"output": "122689636154"
},
{
"input": "1 3",
"output": "0"
},
{
"input": "54 43",
"output": "465"
},
{
"input": "14 9",
"output": "26"
},
{
"input": "2 3",
"output": "1"
},
{
"input": "543 534",
"output": "57993"
},
{
"input": "321 123",
"output": "7896"
},
{
"input": "21 3",
"output": "12"
},
{
"input": "2 1",
"output": "0"
},
{
"input": "4 3",
"output": "3"
},
{
"input": "47474 74747",
"output": "709707816"
},
{
"input": "4 9",
"output": "8"
},
{
"input": "7 4",
"output": "6"
},
{
"input": "9 4",
"output": "8"
},
{
"input": "12414 4214",
"output": "10462520"
},
{
"input": "2 9",
"output": "4"
},
{
"input": "253 821",
"output": "41542"
},
{
"input": "2 4",
"output": "2"
}
] | 1,587,499,428
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 128
| 187
| 1,433,600
|
from sys import stdin,stdout
from math import gcd, ceil, sqrt
ii1 = lambda: int(stdin.readline().strip())
is1 = lambda: stdin.readline().strip()
iia = lambda: list(map(int, stdin.readline().strip().split()))
isa = lambda: stdin.readline().strip().split()
mod = 1000000007
n, m = iia()
d = {}
for i in range(1,n+1):
d.setdefault(i % 5, [0])[0] += 1
res = 0
for i in range(1, m + 1):
cur = 5 - (i % 5) if i % 5 != 0 else 0
res += d.get(cur, [0])[0]
print(res)
|
Title: Alyona and Numbers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5.
Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0.
As usual, Alyona has some troubles and asks you to help.
Input Specification:
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
Output Specification:
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
Demo Input:
['6 12\n', '11 14\n', '1 5\n', '3 8\n', '5 7\n', '21 21\n']
Demo Output:
['14\n', '31\n', '1\n', '5\n', '7\n', '88\n']
Note:
Following pairs are suitable in the first sample case:
- for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9.
Only the pair (1, 4) is suitable in the third sample case.
|
```python
from sys import stdin,stdout
from math import gcd, ceil, sqrt
ii1 = lambda: int(stdin.readline().strip())
is1 = lambda: stdin.readline().strip()
iia = lambda: list(map(int, stdin.readline().strip().split()))
isa = lambda: stdin.readline().strip().split()
mod = 1000000007
n, m = iia()
d = {}
for i in range(1,n+1):
d.setdefault(i % 5, [0])[0] += 1
res = 0
for i in range(1, m + 1):
cur = 5 - (i % 5) if i % 5 != 0 else 0
res += d.get(cur, [0])[0]
print(res)
```
| 3
|
|
219
|
A
|
k-String
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string.
You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string.
|
The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*.
|
Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them.
If the solution doesn't exist, print "-1" (without quotes).
|
[
"2\naazz\n",
"3\nabcabcabz\n"
] |
[
"azaz\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "2\naazz",
"output": "azaz"
},
{
"input": "3\nabcabcabz",
"output": "-1"
},
{
"input": "1\na",
"output": "a"
},
{
"input": "2\nabba",
"output": "abab"
},
{
"input": "2\naaab",
"output": "-1"
},
{
"input": "7\nabacaba",
"output": "-1"
},
{
"input": "5\naaaaa",
"output": "aaaaa"
},
{
"input": "3\naabaaaaabb",
"output": "-1"
},
{
"input": "2\naaab",
"output": "-1"
},
{
"input": "2\nbabac",
"output": "-1"
},
{
"input": "3\nbbbccc",
"output": "bcbcbc"
},
{
"input": "2\naa",
"output": "aa"
},
{
"input": "250\ncececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece",
"output": "cececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececece"
},
{
"input": "15\nabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaaabaabbbcababaaa",
"output": "aaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbcaaaaaaaabbbbbbc"
},
{
"input": "1\naaa",
"output": "aaa"
},
{
"input": "1\naabaab",
"output": "aaaabb"
},
{
"input": "2\naabbbbccccccdddddddd",
"output": "abbcccddddabbcccdddd"
},
{
"input": "3\naaaaaaaaacccdddddd",
"output": "aaacddaaacddaaacdd"
},
{
"input": "3\naaaaaaaaacccbbbbbb",
"output": "aaabbcaaabbcaaabbc"
},
{
"input": "2\naazzzz",
"output": "azzazz"
},
{
"input": "2\naaaa",
"output": "aaaa"
},
{
"input": "2\naaaazz",
"output": "aazaaz"
},
{
"input": "2\naaaabb",
"output": "aabaab"
},
{
"input": "2\naabbbb",
"output": "abbabb"
},
{
"input": "2\naaaazzzz",
"output": "aazzaazz"
},
{
"input": "2\naaazz",
"output": "-1"
},
{
"input": "2\nbbbbaa",
"output": "abbabb"
},
{
"input": "2\naaaaaabbbb",
"output": "aaabbaaabb"
},
{
"input": "2\naaaaaazz",
"output": "aaazaaaz"
},
{
"input": "2\naaaabbbb",
"output": "aabbaabb"
},
{
"input": "2\naabaab",
"output": "aabaab"
},
{
"input": "1\naaaaa",
"output": "aaaaa"
},
{
"input": "2\nbbaaaa",
"output": "aabaab"
},
{
"input": "2\nacaccc",
"output": "accacc"
}
] | 1,626,264,034
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 1
| 122
| 7,065,600
|
from collections import Counter
n = int(input())
s = Counter(input())
p = True
for i in s:
if s[i]%n:
p = False
else:
s[i] = s[i]//n
ans = ''.join(i*e for i,e in s.items())
print(ans*n)
|
Title: k-String
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A string is called a *k*-string if it can be represented as *k* concatenated copies of some string. For example, the string "aabaabaabaab" is at the same time a 1-string, a 2-string and a 4-string, but it is not a 3-string, a 5-string, or a 6-string and so on. Obviously any string is a 1-string.
You are given a string *s*, consisting of lowercase English letters and a positive integer *k*. Your task is to reorder the letters in the string *s* in such a way that the resulting string is a *k*-string.
Input Specification:
The first input line contains integer *k* (1<=≤<=*k*<=≤<=1000). The second line contains *s*, all characters in *s* are lowercase English letters. The string length *s* satisfies the inequality 1<=≤<=|*s*|<=≤<=1000, where |*s*| is the length of string *s*.
Output Specification:
Rearrange the letters in string *s* in such a way that the result is a *k*-string. Print the result on a single output line. If there are multiple solutions, print any of them.
If the solution doesn't exist, print "-1" (without quotes).
Demo Input:
['2\naazz\n', '3\nabcabcabz\n']
Demo Output:
['azaz\n', '-1\n']
Note:
none
|
```python
from collections import Counter
n = int(input())
s = Counter(input())
p = True
for i in s:
if s[i]%n:
p = False
else:
s[i] = s[i]//n
ans = ''.join(i*e for i,e in s.items())
print(ans*n)
```
| 0
|
|
900
|
B
|
Position in Fraction
|
PROGRAMMING
| 1,300
|
[
"math",
"number theory"
] | null | null |
You have a fraction . You need to find the first occurrence of digit *c* into decimal notation of the fraction after decimal point.
|
The first contains three single positive integers *a*, *b*, *c* (1<=≤<=*a*<=<<=*b*<=≤<=105, 0<=≤<=*c*<=≤<=9).
|
Print position of the first occurrence of digit *c* into the fraction. Positions are numbered from 1 after decimal point. It there is no such position, print -1.
|
[
"1 2 0\n",
"2 3 7\n"
] |
[
"2",
"-1"
] |
The fraction in the first example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/896357459a466614a0542f34c9cfb0cef1afc9ed.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The first zero stands on second position.
The fraction in the second example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/130ba579a8276fc53a1917606eee9db58817f28d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. There is no digit 7 in decimal notation of the fraction.
| 1,000
|
[
{
"input": "1 2 0",
"output": "2"
},
{
"input": "2 3 7",
"output": "-1"
},
{
"input": "1 100000 1",
"output": "5"
},
{
"input": "1 7 7",
"output": "6"
},
{
"input": "99999 100000 8",
"output": "-1"
},
{
"input": "44102 73848 2",
"output": "132"
},
{
"input": "7 31 3",
"output": "15"
},
{
"input": "8880 81608 9",
"output": "161"
},
{
"input": "4942 62768 5",
"output": "122"
},
{
"input": "69168 84860 4",
"output": "107"
},
{
"input": "971 1883 3",
"output": "130"
},
{
"input": "1636 3269 6",
"output": "150"
},
{
"input": "6873 7769 3",
"output": "163"
},
{
"input": "13805 15538 3",
"output": "164"
},
{
"input": "10958 21926 3",
"output": "117"
},
{
"input": "8 51 0",
"output": "10"
},
{
"input": "1 10 1",
"output": "1"
},
{
"input": "1 9 0",
"output": "-1"
},
{
"input": "53 101 6",
"output": "-1"
},
{
"input": "1 10001 9",
"output": "5"
},
{
"input": "25102 31579 2",
"output": "174"
},
{
"input": "38790 39359 0",
"output": "212"
},
{
"input": "47117 78718 0",
"output": "213"
},
{
"input": "1 57 0",
"output": "1"
},
{
"input": "1 3 0",
"output": "-1"
},
{
"input": "1 100 0",
"output": "1"
},
{
"input": "2 3 0",
"output": "-1"
},
{
"input": "99971 99989 0",
"output": "9"
},
{
"input": "567 1580 0",
"output": "6"
},
{
"input": "45 97 0",
"output": "39"
},
{
"input": "35 111 4",
"output": "-1"
},
{
"input": "1 2 5",
"output": "1"
},
{
"input": "1 7 0",
"output": "-1"
}
] | 1,513,099,754
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 3
| 46
| 5,529,600
|
import math
a = list(map(int, input().split()))
d = a[0]/a[1]
d = d*(10)
d = str(d)
for i in range(0, len(d)):
if d[i]==a[2]:
break
if str(a[2]) not in d:
print("-1")
else:
print(i)
|
Title: Position in Fraction
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have a fraction . You need to find the first occurrence of digit *c* into decimal notation of the fraction after decimal point.
Input Specification:
The first contains three single positive integers *a*, *b*, *c* (1<=≤<=*a*<=<<=*b*<=≤<=105, 0<=≤<=*c*<=≤<=9).
Output Specification:
Print position of the first occurrence of digit *c* into the fraction. Positions are numbered from 1 after decimal point. It there is no such position, print -1.
Demo Input:
['1 2 0\n', '2 3 7\n']
Demo Output:
['2', '-1']
Note:
The fraction in the first example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/896357459a466614a0542f34c9cfb0cef1afc9ed.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The first zero stands on second position.
The fraction in the second example has the following decimal notation: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/130ba579a8276fc53a1917606eee9db58817f28d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. There is no digit 7 in decimal notation of the fraction.
|
```python
import math
a = list(map(int, input().split()))
d = a[0]/a[1]
d = d*(10)
d = str(d)
for i in range(0, len(d)):
if d[i]==a[2]:
break
if str(a[2]) not in d:
print("-1")
else:
print(i)
```
| 0
|
|
53
|
A
|
Autocomplete
|
PROGRAMMING
| 1,100
|
[
"implementation"
] |
A. Autocomplete
|
2
|
256
|
Autocomplete is a program function that enables inputting the text (in editors, command line shells, browsers etc.) completing the text by its inputted part. Vasya is busy working on a new browser called 'BERowser'. He happens to be working on the autocomplete function in the address line at this very moment. A list consisting of *n* last visited by the user pages and the inputted part *s* are known. Your task is to complete *s* to make it an address of one of the pages from the list. You have to find the lexicographically smallest address having a prefix *s*.
|
The first line contains the *s* line which is the inputted part. The second line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of visited pages. Then follow *n* lines which are the visited pages, one on each line. All the lines have lengths of from 1 to 100 symbols inclusively and consist of lowercase Latin letters only.
|
If *s* is not the beginning of any of *n* addresses of the visited pages, print *s*. Otherwise, print the lexicographically minimal address of one of the visited pages starting from *s*.
The lexicographical order is the order of words in a dictionary. The lexicographical comparison of lines is realized by the '<' operator in the modern programming languages.
|
[
"next\n2\nnextpermutation\nnextelement\n",
"find\n4\nfind\nfindfirstof\nfindit\nfand\n",
"find\n4\nfondfind\nfondfirstof\nfondit\nfand\n"
] |
[
"nextelement\n",
"find\n",
"find\n"
] |
none
| 500
|
[
{
"input": "next\n2\nnextpermutation\nnextelement",
"output": "nextelement"
},
{
"input": "find\n4\nfind\nfindfirstof\nfindit\nfand",
"output": "find"
},
{
"input": "find\n4\nfondfind\nfondfirstof\nfondit\nfand",
"output": "find"
},
{
"input": "kudljmxcse\n4\nkudljmxcse\nszjebdoad\nchz\na",
"output": "kudljmxcse"
},
{
"input": "ntqwpa\n5\nvvepyowvn\nntqwpakay\nhh\nygiafasda\nntqwpadm",
"output": "ntqwpadm"
},
{
"input": "aflb\n6\nsaej\nujxsiijg\npp\nhgoprw\ncp\nnt",
"output": "aflb"
},
{
"input": "dzwzyj\n7\nwvixktp\ndzwzyjuhn\ndzwzyjqrbd\ndzwzyji\ndzwzyjyfys\ndzwzyjrcb\nxptb",
"output": "dzwzyji"
},
{
"input": "wmblbphwdjjskzmlsyiznluiudelhlvcpyrooajvbwudnnstdhesauyxjugdwhrrwg\n1\nwjhsbxrrhadgtnybsugdtprncwerwezxuaxnqfpnosbispmnymnaqssdkjeynrnn",
"output": "wmblbphwdjjskzmlsyiznluiudelhlvcpyrooajvbwudnnstdhesauyxjugdwhrrwg"
},
{
"input": "hzkqvwliymwjbejfpnydrbwskhyrtrlsdinfrgwmnbdpwytcnjeoowxrfgfuaffzayjylvzu\n1\nhzkqvwliymwjbejfpnydrbwskhyrtrlsdinfrgwmnbdpwytcnjeoowxrfgfuaffzayjylvzubwjlvhhsfurqb",
"output": "hzkqvwliymwjbejfpnydrbwskhyrtrlsdinfrgwmnbdpwytcnjeoowxrfgfuaffzayjylvzubwjlvhhsfurqb"
},
{
"input": "msjnqudojxtzvpc\n2\nvlxclsvqbucmbrkwwtoxek\nmsjnqudojxtzvpcldwjyystsxrtexfhllzhnkidmhmyxpld",
"output": "msjnqudojxtzvpcldwjyystsxrtexfhllzhnkidmhmyxpld"
}
] | 1,604,086,951
| 2,147,483,647
|
PyPy 3
|
WRONG_ANSWER
|
TESTS
| 15
| 280
| 0
|
s = input()
res = float('inf')
flag = 0
for j in range(int(input())):
k = input()
if((k.find(s)!=-1) and (k.find(s)==0)):
l = len(k)
if(l<=res):
res = l
s1 = k
flag = 1
if((k==s) or (k.find(s)==-1 and flag == 0) ):
s1=s
print(s1)
|
Title: Autocomplete
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Autocomplete is a program function that enables inputting the text (in editors, command line shells, browsers etc.) completing the text by its inputted part. Vasya is busy working on a new browser called 'BERowser'. He happens to be working on the autocomplete function in the address line at this very moment. A list consisting of *n* last visited by the user pages and the inputted part *s* are known. Your task is to complete *s* to make it an address of one of the pages from the list. You have to find the lexicographically smallest address having a prefix *s*.
Input Specification:
The first line contains the *s* line which is the inputted part. The second line contains an integer *n* (1<=≤<=*n*<=≤<=100) which is the number of visited pages. Then follow *n* lines which are the visited pages, one on each line. All the lines have lengths of from 1 to 100 symbols inclusively and consist of lowercase Latin letters only.
Output Specification:
If *s* is not the beginning of any of *n* addresses of the visited pages, print *s*. Otherwise, print the lexicographically minimal address of one of the visited pages starting from *s*.
The lexicographical order is the order of words in a dictionary. The lexicographical comparison of lines is realized by the '<' operator in the modern programming languages.
Demo Input:
['next\n2\nnextpermutation\nnextelement\n', 'find\n4\nfind\nfindfirstof\nfindit\nfand\n', 'find\n4\nfondfind\nfondfirstof\nfondit\nfand\n']
Demo Output:
['nextelement\n', 'find\n', 'find\n']
Note:
none
|
```python
s = input()
res = float('inf')
flag = 0
for j in range(int(input())):
k = input()
if((k.find(s)!=-1) and (k.find(s)==0)):
l = len(k)
if(l<=res):
res = l
s1 = k
flag = 1
if((k==s) or (k.find(s)==-1 and flag == 0) ):
s1=s
print(s1)
```
| 0
|
478
|
C
|
Table Decorations
|
PROGRAMMING
| 1,800
|
[
"greedy"
] | null | null |
You have *r* red, *g* green and *b* blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number *t* of tables can be decorated if we know number of balloons of each color?
Your task is to write a program that for given values *r*, *g* and *b* will find the maximum number *t* of tables, that can be decorated in the required manner.
|
The single line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=2·109) — the number of red, green and blue baloons respectively. The numbers are separated by exactly one space.
|
Print a single integer *t* — the maximum number of tables that can be decorated in the required manner.
|
[
"5 4 3\n",
"1 1 1\n",
"2 3 3\n"
] |
[
"4\n",
"1\n",
"2\n"
] |
In the first sample you can decorate the tables with the following balloon sets: "rgg", "gbb", "brr", "rrg", where "r", "g" and "b" represent the red, green and blue balls, respectively.
| 1,500
|
[
{
"input": "5 4 3",
"output": "4"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "2 3 3",
"output": "2"
},
{
"input": "0 1 0",
"output": "0"
},
{
"input": "0 3 3",
"output": "2"
},
{
"input": "4 0 4",
"output": "2"
},
{
"input": "1000000000 1000000000 1000000000",
"output": "1000000000"
},
{
"input": "100 99 56",
"output": "85"
},
{
"input": "1000 1000 1002",
"output": "1000"
},
{
"input": "0 1 1000000000",
"output": "1"
},
{
"input": "500000000 1000000000 500000000",
"output": "666666666"
},
{
"input": "1000000000 2000000000 1000000000",
"output": "1333333333"
},
{
"input": "2000000000 2000000000 2000000000",
"output": "2000000000"
},
{
"input": "0 0 0",
"output": "0"
},
{
"input": "1 2000000000 1000000000",
"output": "1000000000"
},
{
"input": "1585222789 1889821127 2000000000",
"output": "1825014638"
},
{
"input": "10000 7500 7500",
"output": "8333"
},
{
"input": "150000 75000 75000",
"output": "100000"
},
{
"input": "999288131 55884921 109298382",
"output": "165183303"
},
{
"input": "100500 100500 3",
"output": "67001"
},
{
"input": "1463615122 1988383731 837331500",
"output": "1429776784"
},
{
"input": "1938 8999 1882",
"output": "3820"
},
{
"input": "45 33 76",
"output": "51"
},
{
"input": "100000 1 2",
"output": "3"
},
{
"input": "198488 50 18",
"output": "68"
},
{
"input": "82728372 939848 100139442",
"output": "61269220"
},
{
"input": "99 5747 5298",
"output": "3714"
},
{
"input": "3 5 2",
"output": "3"
},
{
"input": "7511 7512 7513",
"output": "7512"
},
{
"input": "1234567890 123456789 987654321",
"output": "781893000"
},
{
"input": "500000000 2000000000 500000000",
"output": "1000000000"
},
{
"input": "500000002 2000000000 500000001",
"output": "1000000001"
},
{
"input": "520000000 1000000033 501000000",
"output": "673666677"
},
{
"input": "10000 1000 100000",
"output": "11000"
},
{
"input": "2000000000 500000000 499999999",
"output": "999999999"
},
{
"input": "1999999999 500000000 500000000",
"output": "999999999"
},
{
"input": "1 1 9",
"output": "2"
},
{
"input": "3 0 0",
"output": "0"
},
{
"input": "6 1 1",
"output": "2"
},
{
"input": "2000000000 1999999999 1999999999",
"output": "1999999999"
},
{
"input": "3 4 9",
"output": "5"
},
{
"input": "3 3 6",
"output": "4"
}
] | 1,658,778,881
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 42
| 62
| 0
|
import bisect
import sys
import math
def get_ints(): return map(int, sys.stdin.readline().strip().split())
def get_list(): return list(map(int, sys.stdin.readline().strip().split()))
def get_string(): return sys.stdin.readline().strip()
def get_int(): return int(sys.stdin.readline().strip())
def get_list_strings(): return list(map(str, sys.stdin.readline().strip().split()))
# Output for list
# sys.stdout.write(" ".join(map(str, final)) + "\n")
# Output for int or str
# sys.stdout.write(str(best) + "\n")
def solve():
r, g, b = get_ints()
arr = [r, g, b]
arr.sort()
ans = arr[0]
arr[-1] -= ans
a = arr[1]
b = arr[2]
a, b = min(a, b), max(a, b)
diff = b - a
if diff >= arr[0]:
b -= arr[0]
else:
b -= diff
arr[0] -= diff
req = arr[0]
if req % 2 == 0:
a -= req // 2
b -= req // 2
else:
a -= (req//2 + 1)
b -= req//2
l = 0
r = min(a, b)
best = 0
while l <= r:
m = (l+r)//2
a1 = a
b1 = b
a1 -= m
b1 -= m
if a1+b1 >= m:
best = m
l = m + 1
else:
r = m - 1
best += ans
print(best)
solve()
|
Title: Table Decorations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You have *r* red, *g* green and *b* blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number *t* of tables can be decorated if we know number of balloons of each color?
Your task is to write a program that for given values *r*, *g* and *b* will find the maximum number *t* of tables, that can be decorated in the required manner.
Input Specification:
The single line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=2·109) — the number of red, green and blue baloons respectively. The numbers are separated by exactly one space.
Output Specification:
Print a single integer *t* — the maximum number of tables that can be decorated in the required manner.
Demo Input:
['5 4 3\n', '1 1 1\n', '2 3 3\n']
Demo Output:
['4\n', '1\n', '2\n']
Note:
In the first sample you can decorate the tables with the following balloon sets: "rgg", "gbb", "brr", "rrg", where "r", "g" and "b" represent the red, green and blue balls, respectively.
|
```python
import bisect
import sys
import math
def get_ints(): return map(int, sys.stdin.readline().strip().split())
def get_list(): return list(map(int, sys.stdin.readline().strip().split()))
def get_string(): return sys.stdin.readline().strip()
def get_int(): return int(sys.stdin.readline().strip())
def get_list_strings(): return list(map(str, sys.stdin.readline().strip().split()))
# Output for list
# sys.stdout.write(" ".join(map(str, final)) + "\n")
# Output for int or str
# sys.stdout.write(str(best) + "\n")
def solve():
r, g, b = get_ints()
arr = [r, g, b]
arr.sort()
ans = arr[0]
arr[-1] -= ans
a = arr[1]
b = arr[2]
a, b = min(a, b), max(a, b)
diff = b - a
if diff >= arr[0]:
b -= arr[0]
else:
b -= diff
arr[0] -= diff
req = arr[0]
if req % 2 == 0:
a -= req // 2
b -= req // 2
else:
a -= (req//2 + 1)
b -= req//2
l = 0
r = min(a, b)
best = 0
while l <= r:
m = (l+r)//2
a1 = a
b1 = b
a1 -= m
b1 -= m
if a1+b1 >= m:
best = m
l = m + 1
else:
r = m - 1
best += ans
print(best)
solve()
```
| 3
|
|
37
|
A
|
Towers
|
PROGRAMMING
| 1,000
|
[
"sortings"
] |
A. Towers
|
2
|
256
|
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
|
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
|
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
|
[
"3\n1 2 3\n",
"4\n6 5 6 7\n"
] |
[
"1 3\n",
"2 3\n"
] |
none
| 500
|
[
{
"input": "3\n1 2 3",
"output": "1 3"
},
{
"input": "4\n6 5 6 7",
"output": "2 3"
},
{
"input": "4\n3 2 1 1",
"output": "2 3"
},
{
"input": "4\n1 2 3 3",
"output": "2 3"
},
{
"input": "3\n20 22 36",
"output": "1 3"
},
{
"input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162",
"output": "2 23"
},
{
"input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193",
"output": "2 43"
},
{
"input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111",
"output": "2 57"
},
{
"input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642",
"output": "2 80"
},
{
"input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188",
"output": "2 92"
},
{
"input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233",
"output": "3 101"
},
{
"input": "5\n5 5 5 5 5",
"output": "5 1"
},
{
"input": "3\n1000 1000 1000",
"output": "3 1"
},
{
"input": "1\n1000",
"output": "1 1"
},
{
"input": "1\n1",
"output": "1 1"
},
{
"input": "5\n1 1000 1000 1000 1000",
"output": "4 2"
},
{
"input": "5\n1000 1000 1000 8 7",
"output": "3 3"
}
] | 1,612,984,640
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 61
| 154
| 307,200
|
n = input()
a = list(map(int, input().split()))
brus = []
count = []
for i in range(len(a)):
# if a[i] not in brus:
brus.append(a.count(a[i]))
for i in a:
if i not in count:
count.append(i)
# print(brus, count, sep='\n')
print(max(brus), len(count))
|
Title: Towers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same.
Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
Input Specification:
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
Output Specification:
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
Demo Input:
['3\n1 2 3\n', '4\n6 5 6 7\n']
Demo Output:
['1 3\n', '2 3\n']
Note:
none
|
```python
n = input()
a = list(map(int, input().split()))
brus = []
count = []
for i in range(len(a)):
# if a[i] not in brus:
brus.append(a.count(a[i]))
for i in a:
if i not in count:
count.append(i)
# print(brus, count, sep='\n')
print(max(brus), len(count))
```
| 3.960928
|
0
|
none
|
none
|
none
| 0
|
[
"none"
] | null | null |
There are *n* phone numbers in Polycarp's contacts on his phone. Each number is a 9-digit integer, starting with a digit different from 0. All the numbers are distinct.
There is the latest version of Berdroid OS installed on Polycarp's phone. If some number is entered, is shows up all the numbers in the contacts for which there is a substring equal to the entered sequence of digits. For example, is there are three phone numbers in Polycarp's contacts: 123456789, 100000000 and 100123456, then:
- if he enters 00 two numbers will show up: 100000000 and 100123456, - if he enters 123 two numbers will show up 123456789 and 100123456, - if he enters 01 there will be only one number 100123456.
For each of the phone numbers in Polycarp's contacts, find the minimum in length sequence of digits such that if Polycarp enters this sequence, Berdroid shows this only phone number.
|
The first line contains single integer *n* (1<=≤<=*n*<=≤<=70000) — the total number of phone contacts in Polycarp's contacts.
The phone numbers follow, one in each line. Each number is a positive 9-digit integer starting with a digit from 1 to 9. All the numbers are distinct.
|
Print exactly *n* lines: the *i*-th of them should contain the shortest non-empty sequence of digits, such that if Polycarp enters it, the Berdroid OS shows up only the *i*-th number from the contacts. If there are several such sequences, print any of them.
|
[
"3\n123456789\n100000000\n100123456\n",
"4\n123456789\n193456789\n134567819\n934567891\n"
] |
[
"9\n000\n01\n",
"2\n193\n81\n91\n"
] |
none
| 0
|
[
{
"input": "3\n123456789\n100000000\n100123456",
"output": "9\n000\n01"
},
{
"input": "4\n123456789\n193456789\n134567819\n934567891",
"output": "2\n193\n81\n91"
},
{
"input": "1\n167038488",
"output": "4"
},
{
"input": "5\n115830748\n403459907\n556271610\n430358099\n413961410",
"output": "15\n40\n2\n35\n14"
},
{
"input": "5\n139127034\n452751056\n193432721\n894001929\n426470953",
"output": "39\n05\n32\n8\n53"
},
{
"input": "5\n343216531\n914073407\n420246472\n855857272\n801664978",
"output": "32\n07\n46\n27\n78"
},
{
"input": "5\n567323818\n353474649\n468171032\n989223926\n685081078",
"output": "67\n35\n03\n26\n78"
},
{
"input": "5\n774610315\n325796798\n989859836\n707706423\n310546337",
"output": "61\n32\n89\n23\n37"
},
{
"input": "10\n181033039\n210698534\n971006898\n391227170\n323096464\n560766866\n377374442\n654389922\n544146403\n779261493",
"output": "18\n53\n97\n27\n09\n07\n42\n99\n41\n93"
},
{
"input": "10\n197120216\n680990683\n319631438\n442393410\n888300189\n170777450\n164487872\n487350759\n651751346\n652859411",
"output": "12\n09\n43\n42\n01\n74\n72\n73\n46\n11"
},
{
"input": "10\n302417715\n621211824\n474451896\n961495400\n633841010\n839982537\n797812119\n510708100\n770758643\n228046084",
"output": "15\n62\n47\n14\n33\n98\n97\n100\n43\n60"
},
{
"input": "10\n506504092\n561611075\n265260859\n557114891\n838578824\n985006846\n456984731\n856424964\n658005674\n666280709",
"output": "40\n75\n60\n55\n78\n68\n31\n96\n74\n66"
},
{
"input": "10\n510613599\n931933224\n693094490\n508960931\n313762868\n396027639\n164098962\n749880019\n709024305\n498545812",
"output": "61\n22\n44\n08\n68\n39\n64\n88\n43\n12"
},
{
"input": "3\n638631659\n929648227\n848163730",
"output": "5\n2\n0"
},
{
"input": "4\n898855826\n343430636\n210120107\n467957087",
"output": "98\n3\n1\n57"
},
{
"input": "5\n202080398\n357502772\n269676952\n711559315\n111366203",
"output": "8\n57\n26\n93\n62"
},
{
"input": "9\n111111111\n111111110\n111111100\n111111000\n111110000\n111100000\n111000000\n110000000\n100000000",
"output": "111111111\n111111110\n111111100\n111111000\n111110000\n111100000\n111000000\n110000000\n00000000"
}
] | 1,644,480,834
| 2,147,483,647
|
Python 3
|
WRONG_ANSWER
|
TESTS
| 0
| 15
| 0
|
n = int(input())
mapp = {}
for i in range(n):
str = input()
mapp[str] = i
for a in range(9):
for l in range(9):
if l+a>9:
break
sub = str[a:l]
if sub in mapp and mapp[sub]!=i:
mapp[sub] = -1
elif sub not in mapp:
mapp[sub] = i
ans = ['1111111111']*n
for item in mapp:
if mapp[item]>=0:
if len(ans[mapp[item]]) > len(item):
ans[mapp[item]] = item
for i in range(n):
print(ans[i])
|
Title: none
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* phone numbers in Polycarp's contacts on his phone. Each number is a 9-digit integer, starting with a digit different from 0. All the numbers are distinct.
There is the latest version of Berdroid OS installed on Polycarp's phone. If some number is entered, is shows up all the numbers in the contacts for which there is a substring equal to the entered sequence of digits. For example, is there are three phone numbers in Polycarp's contacts: 123456789, 100000000 and 100123456, then:
- if he enters 00 two numbers will show up: 100000000 and 100123456, - if he enters 123 two numbers will show up 123456789 and 100123456, - if he enters 01 there will be only one number 100123456.
For each of the phone numbers in Polycarp's contacts, find the minimum in length sequence of digits such that if Polycarp enters this sequence, Berdroid shows this only phone number.
Input Specification:
The first line contains single integer *n* (1<=≤<=*n*<=≤<=70000) — the total number of phone contacts in Polycarp's contacts.
The phone numbers follow, one in each line. Each number is a positive 9-digit integer starting with a digit from 1 to 9. All the numbers are distinct.
Output Specification:
Print exactly *n* lines: the *i*-th of them should contain the shortest non-empty sequence of digits, such that if Polycarp enters it, the Berdroid OS shows up only the *i*-th number from the contacts. If there are several such sequences, print any of them.
Demo Input:
['3\n123456789\n100000000\n100123456\n', '4\n123456789\n193456789\n134567819\n934567891\n']
Demo Output:
['9\n000\n01\n', '2\n193\n81\n91\n']
Note:
none
|
```python
n = int(input())
mapp = {}
for i in range(n):
str = input()
mapp[str] = i
for a in range(9):
for l in range(9):
if l+a>9:
break
sub = str[a:l]
if sub in mapp and mapp[sub]!=i:
mapp[sub] = -1
elif sub not in mapp:
mapp[sub] = i
ans = ['1111111111']*n
for item in mapp:
if mapp[item]>=0:
if len(ans[mapp[item]]) > len(item):
ans[mapp[item]] = item
for i in range(n):
print(ans[i])
```
| 0
|
Subsets and Splits
Successful Python Submissions
Retrieves all records from the train dataset where the verdict is 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Retrieves records of users with a rating of 1600 or higher and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a rating above 2000 and a verdict of 'OK', providing basic filtering but limited analytical value.
SQL Console for MatrixStudio/Codeforces-Python-Submissions
Counts the number of entries with a 'OK' verdict, providing a basic overview of a specific category within the dataset.