Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
//import com.sun.xml.internal.ws.policy.privateutil.PolicyUtils; import java.util.*; import java.io.*; import java.math.BigInteger; public class Solution { static class Pair<A, B> { A parent; B rank; Pair(A parent, B rank) { this.rank = rank; this.parent = parent; } } static class Node { int ind; int value; long ans; Node(int i) { ind=i; value=0; ans=0; } } static int m=1000000007; static ArrayList<Integer> graph[]; public static void main(String[] args) throws IOException { FastReader s1 = new FastReader(); StringBuilder sb = new StringBuilder(); int n=s1.I(); int k=s1.I(); ArrayList<Integer> com=new ArrayList<>(); ArrayList<Integer> fir=new ArrayList<>(); ArrayList<Integer> sec=new ArrayList<>(); for(int i=0;i<n;i++) { int a=s1.I(); int b=s1.I(); int c=s1.I(); if(b==1 && c==1) com.add(a); else if(b==1) { fir.add(a); } else if(c==1) sec.add(a); } if(com.size()+fir.size()<k || com.size()+sec.size()<k) { System.out.println("-1"); System.exit(0); } Collections.sort(com); Collections.sort(fir); Collections.sort(sec); int x1=0; int x2=0; int x3=0; int count1=0; int count2=0; long time=0; if(fir.size()<k || sec.size()<k) { int max=Math.max(k-fir.size(), k-sec.size()); for(int i=0;i<max;i++) { time+=com.get(i); x1++; count1++; count2++; } } while(x1<com.size() && x2<fir.size() && x3<sec.size() && (count1<k && count2<k)) { if(com.get(x1)<=fir.get(x2)+sec.get(x3)) { time+=com.get(x1); x1++; } else { time+=fir.get(x2); time+=sec.get(x3); x2++; x3++; } count1++; count2++; } if(count1<k && count2<k) { if(x1>=com.size()) { while(count1<k) { time+=fir.get(x2); x2++; count1++; } while(count2<k) { time+=sec.get(x3); x3++; count2++; } } else { while(count1<k && count2<k) { time+=com.get(x1); x1++; count1++; count2++; } } } if(count1<k) { while(count1<k) { int tim=Integer.MAX_VALUE; if(x1<com.size()) { tim=com.get(x1); } if(x2<fir.size() && tim<fir.get(x2)) { tim=fir.get(x2++); } else x1++; time+=tim; count1++; } } if(count2<k) { while(count2<k) { int tim=Integer.MAX_VALUE; if(x1<com.size()) { tim=com.get(x1); } if(x3<sec.size() && tim<sec.get(x3)) { tim=sec.get(x3++); } else x1++; time+=tim; count2++; } } System.out.println(time); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int I() { return Integer.parseInt(next()); } long L() { return Long.parseLong(next()); } double D() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long gcd(long a, long b) { if (a % b == 0) { return b; } return gcd(b, a % b); } static float power(float x, int y) { float temp; if (y == 0) { return 1; } temp = power(x, y / 2); if (y % 2 == 0) { return temp * temp; } else { if (y > 0) { return x * temp * temp; } else { return (temp * temp) / x; } } } static long pow(long x, long y) { long res = 1; x = x % m; if (x < 0) { x += m; } while (y > 0) { if ((y & 1) == 1) { res = (res * x) % m; if (res < 0) { res += m; } } y = y >> 1; x = (x * x) % m; if (x < 0) { x = x + m; } } res = res % m; if (res < 0) { res += m; } return res; } static void sieveOfEratosthenes(int n) { ArrayList<Integer> prime = new ArrayList<Integer>(); boolean Prime[] = new boolean[n + 1]; for (int i = 2; i < n; i++) { Prime[i] = true; } for (int p = 2; p * p <= n; p++) { if (Prime[p] == true) { prime.add(p); for (int i = p * p; i <= n; i += p) { Prime[i] = false; } } } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k=list(map(int,input().split())) arr1=[] arr2=[] arr3=[] x=0 y=0 for i in range(n): num1=list(map(int,input().split())) if num1[1]==1 and num1[2]==1: arr3.append(num1[0]) x+=1 y+=1 elif num1[1]==1 and num1[2]==0: arr1.append(num1[0]) x+=1 elif num1[1]==0 and num1[2]==1: arr2.append(num1[0]) y+=1 if x<k or y<k: print(-1) else: arr1.sort() arr2.sort() a=len(arr1) b=len(arr2) for i in range(min(a,b)): arr3.append(arr1[i]+arr2[i]) arr3.sort() ans=0 for i in range(k): ans+=arr3[i] print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python2
# Author : raj1307 - Raj Singh # Date : 28.06.2020 from __future__ import division, print_function import os,sys from io import BytesIO, IOBase if sys.version_info[0] < 3: from __builtin__ import xrange as range from future_builtins import ascii, filter, hex, map, oct, zip def ii(): return int(input()) def si(): return input() def mi(): return map(int,input().strip().split(" ")) def msi(): return map(str,input().strip().split(" ")) def li(): return list(mi()) def dmain(): sys.setrecursionlimit(1000000) threading.stack_size(1024000) thread = threading.Thread(target=main) thread.start() #from collections import deque, Counter, OrderedDict,defaultdict #from heapq import nsmallest, nlargest, heapify,heappop ,heappush, heapreplace #from math import log,sqrt,factorial,cos,tan,sin,radians #from bisect import bisect,bisect_left,bisect_right,insort,insort_left,insort_right #from decimal import * #import threading #from itertools import permutations #Copy 2D list m = [x[:] for x in mark] .. Avoid Using Deepcopy abc='abcdefghijklmnopqrstuvwxyz' abd={'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9, 'k': 10, 'l': 11, 'm': 12, 'n': 13, 'o': 14, 'p': 15, 'q': 16, 'r': 17, 's': 18, 't': 19, 'u': 20, 'v': 21, 'w': 22, 'x': 23, 'y': 24, 'z': 25} mod=1000000007 #mod=998244353 inf = float("inf") vow=['a','e','i','o','u'] dx,dy=[-1,1,0,0],[0,0,1,-1] def getKey(item): return item[1] def sort2(l):return sorted(l, key=getKey,reverse=True) def d2(n,m,num):return [[num for x in range(m)] for y in range(n)] def isPowerOfTwo (x): return (x and (not(x & (x - 1))) ) def decimalToBinary(n): return bin(n).replace("0b","") def ntl(n):return [int(i) for i in str(n)] def ncr(n,r): return factorial(n)//(factorial(r)*factorial(max(n-r,1))) def ceil(x,y): if x%y==0: return x//y else: return x//y+1 def powerMod(x,y,p): res = 1 x %= p while y > 0: if y&1: res = (res*x)%p y = y>>1 x = (x*x)%p return res def gcd(x, y): while y: x, y = y, x % y return x def isPrime(n) : # Check Prime Number or not if (n <= 1) : return False if (n <= 3) : return True if (n % 2 == 0 or n % 3 == 0) : return False i = 5 while(i * i <= n) : if (n % i == 0 or n % (i + 2) == 0) : return False i = i + 6 return True def read(): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') def main(): #for _ in range(ii()): n,k=mi() a=[] for i in range(n): a.append(li()) x=[] y=[] b=[] for i in range(n): if a[i][1]==1 and a[i][2]==1: b.append(a[i]) elif a[i][1]==1: x.append(a[i]) elif a[i][2]==1: y.append(a[i]) x.sort() y.sort() # print(x) # print(y) # print(b) for i in range(min(len(x),len(y))): b.append([x[i][0]+y[i][0],1,1]) b.sort() #print(b) ans=0 if len(b)<k: print(-1) return for i in range(k): ans+=b[i][0] print(ans) # region fastio # template taken from https://github.com/cheran-senthil/PyRival/blob/master/templates/template.py BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": #read() main() #dmain() # Comment Read()
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k=list(map(int,input().split())) x=[] y=[] z=[] for i in range(n): t,a,b=list(map(int,input().split())) if a==1 and b==1: z.append(t) elif a==0 and b==1: y.append(t) elif a==1 and b==0: x.append(t) x1=len(x) y1=len(y) z1=len(z) if min(x1,y1)+z1<k: print(-1) else: x.sort() y.sort() s=min(x1,y1) i=0 while i<s: z.append(x[i]+y[i]) i+=1 z.sort() print(sum(z[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
# SortedList copied from: https://github.com/grantjenks/python-sortedcontainers/blob/master/sortedcontainers/sortedlist.py # Minified with pyminifier to fit codeforce char limit from __future__ import print_function import sys import traceback from bisect import bisect_left, bisect_right, insort from itertools import chain, repeat, starmap from math import log from operator import add, eq, ne, gt, ge, lt, le, iadd from textwrap import dedent try: from collections.abc import Sequence, MutableSequence except ImportError: from collections import Sequence, MutableSequence from functools import wraps from sys import hexversion if hexversion < 0x03000000: from itertools import imap as map from itertools import izip as zip try: from thread import get_ident except ImportError: from dummy_thread import get_ident else: from functools import reduce try: from _thread import get_ident except ImportError: from _dummy_thread import get_ident def recursive_repr(fillvalue="..."): def decorating_function(user_function): repr_running = set() @wraps(user_function) def wrapper(self): key = id(self), get_ident() if key in repr_running: return fillvalue repr_running.add(key) try: result = user_function(self) finally: repr_running.discard(key) return result return wrapper return decorating_function class SortedList(MutableSequence): DEFAULT_LOAD_FACTOR = 1000 def __init__(self, iterable=None, key=None): assert key is None self._len = 0 self._load = self.DEFAULT_LOAD_FACTOR self._lists = [] self._maxes = [] self._index = [] self._offset = 0 if iterable is not None: self._update(iterable) def __new__(cls, iterable=None, key=None): if key is None: return object.__new__(cls) else: if cls is SortedList: return object.__new__(SortedKeyList) else: raise TypeError("inherit SortedKeyList for key argument") @property def key(self): return None def _reset(self, load): values = reduce(iadd, self._lists, []) self._clear() self._load = load self._update(values) def clear(self): self._len = 0 del self._lists[:] del self._maxes[:] del self._index[:] self._offset = 0 _clear = clear def add(self, value): _lists = self._lists _maxes = self._maxes if _maxes: pos = bisect_right(_maxes, value) if pos == len(_maxes): pos -= 1 _lists[pos].append(value) _maxes[pos] = value else: insort(_lists[pos], value) self._expand(pos) else: _lists.append([value]) _maxes.append(value) self._len += 1 def _expand(self, pos): _load = self._load _lists = self._lists _index = self._index if len(_lists[pos]) > (_load << 1): _maxes = self._maxes _lists_pos = _lists[pos] half = _lists_pos[_load:] del _lists_pos[_load:] _maxes[pos] = _lists_pos[-1] _lists.insert(pos + 1, half) _maxes.insert(pos + 1, half[-1]) del _index[:] else: if _index: child = self._offset + pos while child: _index[child] += 1 child = (child - 1) >> 1 _index[0] += 1 def update(self, iterable): _lists = self._lists _maxes = self._maxes values = sorted(iterable) if _maxes: if len(values) * 4 >= self._len: values.extend(chain.from_iterable(_lists)) values.sort() self._clear() else: _add = self.add for val in values: _add(val) return _load = self._load _lists.extend( values[pos : (pos + _load)] for pos in range(0, len(values), _load) ) _maxes.extend(sublist[-1] for sublist in _lists) self._len = len(values) del self._index[:] _update = update def __contains__(self, value): _maxes = self._maxes if not _maxes: return False pos = bisect_left(_maxes, value) if pos == len(_maxes): return False _lists = self._lists idx = bisect_left(_lists[pos], value) return _lists[pos][idx] == value def discard(self, value): _maxes = self._maxes if not _maxes: return pos = bisect_left(_maxes, value) if pos == len(_maxes): return _lists = self._lists idx = bisect_left(_lists[pos], value) if _lists[pos][idx] == value: self._delete(pos, idx) def remove(self, value): _maxes = self._maxes if not _maxes: raise ValueError("{0!r} not in list".format(value)) pos = bisect_left(_maxes, value) if pos == len(_maxes): raise ValueError("{0!r} not in list".format(value)) _lists = self._lists idx = bisect_left(_lists[pos], value) if _lists[pos][idx] == value: self._delete(pos, idx) else: raise ValueError("{0!r} not in list".format(value)) def _delete(self, pos, idx): _lists = self._lists _maxes = self._maxes _index = self._index _lists_pos = _lists[pos] del _lists_pos[idx] self._len -= 1 len_lists_pos = len(_lists_pos) if len_lists_pos > (self._load >> 1): _maxes[pos] = _lists_pos[-1] if _index: child = self._offset + pos while child > 0: _index[child] -= 1 child = (child - 1) >> 1 _index[0] -= 1 elif len(_lists) > 1: if not pos: pos += 1 prev = pos - 1 _lists[prev].extend(_lists[pos]) _maxes[prev] = _lists[prev][-1] del _lists[pos] del _maxes[pos] del _index[:] self._expand(prev) elif len_lists_pos: _maxes[pos] = _lists_pos[-1] else: del _lists[pos] del _maxes[pos] del _index[:] def _loc(self, pos, idx): if not pos: return idx _index = self._index if not _index: self._build_index() total = 0 pos += self._offset while pos: if not pos & 1: total += _index[pos - 1] pos = (pos - 1) >> 1 return total + idx def _pos(self, idx): if idx < 0: last_len = len(self._lists[-1]) if (-idx) <= last_len: return len(self._lists) - 1, last_len + idx idx += self._len if idx < 0: raise IndexError("list index out of range") elif idx >= self._len: raise IndexError("list index out of range") if idx < len(self._lists[0]): return 0, idx _index = self._index if not _index: self._build_index() pos = 0 child = 1 len_index = len(_index) while child < len_index: index_child = _index[child] if idx < index_child: pos = child else: idx -= index_child pos = child + 1 child = (pos << 1) + 1 return (pos - self._offset, idx) def _build_index(self): row0 = list(map(len, self._lists)) if len(row0) == 1: self._index[:] = row0 self._offset = 0 return head = iter(row0) tail = iter(head) row1 = list(starmap(add, zip(head, tail))) if len(row0) & 1: row1.append(row0[-1]) if len(row1) == 1: self._index[:] = row1 + row0 self._offset = 1 return size = 2 ** (int(log(len(row1) - 1, 2)) + 1) row1.extend(repeat(0, size - len(row1))) tree = [row0, row1] while len(tree[-1]) > 1: head = iter(tree[-1]) tail = iter(head) row = list(starmap(add, zip(head, tail))) tree.append(row) reduce(iadd, reversed(tree), self._index) self._offset = size * 2 - 1 def __delitem__(self, index): if isinstance(index, slice): start, stop, step = index.indices(self._len) if step == 1 and start < stop: if start == 0 and stop == self._len: return self._clear() elif self._len <= 8 * (stop - start): values = self._getitem(slice(None, start)) if stop < self._len: values += self._getitem(slice(stop, None)) self._clear() return self._update(values) indices = range(start, stop, step) if step > 0: indices = reversed(indices) _pos, _delete = self._pos, self._delete for index in indices: pos, idx = _pos(index) _delete(pos, idx) else: pos, idx = self._pos(index) self._delete(pos, idx) def __getitem__(self, index): _lists = self._lists if isinstance(index, slice): start, stop, step = index.indices(self._len) if step == 1 and start < stop: if start == 0 and stop == self._len: return reduce(iadd, self._lists, []) start_pos, start_idx = self._pos(start) start_list = _lists[start_pos] stop_idx = start_idx + stop - start if len(start_list) >= stop_idx: return start_list[start_idx:stop_idx] if stop == self._len: stop_pos = len(_lists) - 1 stop_idx = len(_lists[stop_pos]) else: stop_pos, stop_idx = self._pos(stop) prefix = _lists[start_pos][start_idx:] middle = _lists[(start_pos + 1) : stop_pos] result = reduce(iadd, middle, prefix) result += _lists[stop_pos][:stop_idx] return result if step == -1 and start > stop: result = self._getitem(slice(stop + 1, start + 1)) result.reverse() return result indices = range(start, stop, step) return list(self._getitem(index) for index in indices) else: if self._len: if index == 0: return _lists[0][0] elif index == -1: return _lists[-1][-1] else: raise IndexError("list index out of range") if 0 <= index < len(_lists[0]): return _lists[0][index] len_last = len(_lists[-1]) if -len_last < index < 0: return _lists[-1][len_last + index] pos, idx = self._pos(index) return _lists[pos][idx] _getitem = __getitem__ def __setitem__(self, index, value): message = "use ``del sl[index]`` and ``sl.add(value)`` instead" raise NotImplementedError(message) def __iter__(self): return chain.from_iterable(self._lists) def __reversed__(self): return chain.from_iterable(map(reversed, reversed(self._lists))) def reverse(self): raise NotImplementedError("use ``reversed(sl)`` instead") def islice(self, start=None, stop=None, reverse=False): _len = self._len if not _len: return iter(()) start, stop, _ = slice(start, stop).indices(self._len) if start >= stop: return iter(()) _pos = self._pos min_pos, min_idx = _pos(start) if stop == _len: max_pos = len(self._lists) - 1 max_idx = len(self._lists[-1]) else: max_pos, max_idx = _pos(stop) return self._islice(min_pos, min_idx, max_pos, max_idx, reverse) def _islice(self, min_pos, min_idx, max_pos, max_idx, reverse): _lists = self._lists if min_pos > max_pos: return iter(()) if min_pos == max_pos: if reverse: indices = reversed(range(min_idx, max_idx)) return map(_lists[min_pos].__getitem__, indices) indices = range(min_idx, max_idx) return map(_lists[min_pos].__getitem__, indices) next_pos = min_pos + 1 if next_pos == max_pos: if reverse: min_indices = range(min_idx, len(_lists[min_pos])) max_indices = range(max_idx) return chain( map(_lists[max_pos].__getitem__, reversed(max_indices)), map(_lists[min_pos].__getitem__, reversed(min_indices)), ) min_indices = range(min_idx, len(_lists[min_pos])) max_indices = range(max_idx) return chain( map(_lists[min_pos].__getitem__, min_indices), map(_lists[max_pos].__getitem__, max_indices), ) if reverse: min_indices = range(min_idx, len(_lists[min_pos])) sublist_indices = range(next_pos, max_pos) sublists = map(_lists.__getitem__, reversed(sublist_indices)) max_indices = range(max_idx) return chain( map(_lists[max_pos].__getitem__, reversed(max_indices)), chain.from_iterable(map(reversed, sublists)), map(_lists[min_pos].__getitem__, reversed(min_indices)), ) min_indices = range(min_idx, len(_lists[min_pos])) sublist_indices = range(next_pos, max_pos) sublists = map(_lists.__getitem__, sublist_indices) max_indices = range(max_idx) return chain( map(_lists[min_pos].__getitem__, min_indices), chain.from_iterable(sublists), map(_lists[max_pos].__getitem__, max_indices), ) def irange(self, minimum=None, maximum=None, inclusive=(True, True), reverse=False): _maxes = self._maxes if not _maxes: return iter(()) _lists = self._lists if minimum is None: min_pos = 0 min_idx = 0 else: if inclusive[0]: min_pos = bisect_left(_maxes, minimum) if min_pos == len(_maxes): return iter(()) min_idx = bisect_left(_lists[min_pos], minimum) else: min_pos = bisect_right(_maxes, minimum) if min_pos == len(_maxes): return iter(()) min_idx = bisect_right(_lists[min_pos], minimum) if maximum is None: max_pos = len(_maxes) - 1 max_idx = len(_lists[max_pos]) else: if inclusive[1]: max_pos = bisect_right(_maxes, maximum) if max_pos == len(_maxes): max_pos -= 1 max_idx = len(_lists[max_pos]) else: max_idx = bisect_right(_lists[max_pos], maximum) else: max_pos = bisect_left(_maxes, maximum) if max_pos == len(_maxes): max_pos -= 1 max_idx = len(_lists[max_pos]) else: max_idx = bisect_left(_lists[max_pos], maximum) return self._islice(min_pos, min_idx, max_pos, max_idx, reverse) def __len__(self): return self._len def bisect_left(self, value): _maxes = self._maxes if not _maxes: return 0 pos = bisect_left(_maxes, value) if pos == len(_maxes): return self._len idx = bisect_left(self._lists[pos], value) return self._loc(pos, idx) def bisect_right(self, value): _maxes = self._maxes if not _maxes: return 0 pos = bisect_right(_maxes, value) if pos == len(_maxes): return self._len idx = bisect_right(self._lists[pos], value) return self._loc(pos, idx) bisect = bisect_right _bisect_right = bisect_right def count(self, value): _maxes = self._maxes if not _maxes: return 0 pos_left = bisect_left(_maxes, value) if pos_left == len(_maxes): return 0 _lists = self._lists idx_left = bisect_left(_lists[pos_left], value) pos_right = bisect_right(_maxes, value) if pos_right == len(_maxes): return self._len - self._loc(pos_left, idx_left) idx_right = bisect_right(_lists[pos_right], value) if pos_left == pos_right: return idx_right - idx_left right = self._loc(pos_right, idx_right) left = self._loc(pos_left, idx_left) return right - left def copy(self): return self.__class__(self) __copy__ = copy def append(self, value): raise NotImplementedError("use ``sl.add(value)`` instead") def extend(self, values): raise NotImplementedError("use ``sl.update(values)`` instead") def insert(self, index, value): raise NotImplementedError("use ``sl.add(value)`` instead") def pop(self, index=-1): if not self._len: raise IndexError("pop index out of range") _lists = self._lists if index == 0: val = _lists[0][0] self._delete(0, 0) return val if index == -1: pos = len(_lists) - 1 loc = len(_lists[pos]) - 1 val = _lists[pos][loc] self._delete(pos, loc) return val if 0 <= index < len(_lists[0]): val = _lists[0][index] self._delete(0, index) return val len_last = len(_lists[-1]) if -len_last < index < 0: pos = len(_lists) - 1 loc = len_last + index val = _lists[pos][loc] self._delete(pos, loc) return val pos, idx = self._pos(index) val = _lists[pos][idx] self._delete(pos, idx) return val def index(self, value, start=None, stop=None): _len = self._len if not _len: raise ValueError("{0!r} is not in list".format(value)) if start is None: start = 0 if start < 0: start += _len if start < 0: start = 0 if stop is None: stop = _len if stop < 0: stop += _len if stop > _len: stop = _len if stop <= start: raise ValueError("{0!r} is not in list".format(value)) _maxes = self._maxes pos_left = bisect_left(_maxes, value) if pos_left == len(_maxes): raise ValueError("{0!r} is not in list".format(value)) _lists = self._lists idx_left = bisect_left(_lists[pos_left], value) if _lists[pos_left][idx_left] != value: raise ValueError("{0!r} is not in list".format(value)) stop -= 1 left = self._loc(pos_left, idx_left) if start <= left: if left <= stop: return left else: right = self._bisect_right(value) - 1 if start <= right: return start raise ValueError("{0!r} is not in list".format(value)) def __add__(self, other): values = reduce(iadd, self._lists, []) values.extend(other) return self.__class__(values) __radd__ = __add__ def __iadd__(self, other): self._update(other) return self def __mul__(self, num): values = reduce(iadd, self._lists, []) * num return self.__class__(values) __rmul__ = __mul__ def __imul__(self, num): values = reduce(iadd, self._lists, []) * num self._clear() self._update(values) return self def __make_cmp(seq_op, symbol, doc): def comparer(self, other): if not isinstance(other, Sequence): return NotImplemented self_len = self._len len_other = len(other) if self_len != len_other: if seq_op is eq: return False if seq_op is ne: return True for alpha, beta in zip(self, other): if alpha != beta: return seq_op(alpha, beta) return seq_op(self_len, len_other) seq_op_name = seq_op.__name__ comparer.__name__ = "__{0}__".format(seq_op_name) doc_str = """Return true if and only if sorted list is {0} `other`. ``sl.__{1}__(other)`` <==> ``sl {2} other`` Comparisons use lexicographical order as with sequences. Runtime complexity: `O(n)` :param other: `other` sequence :return: true if sorted list is {0} `other` """ comparer.__doc__ = dedent(doc_str.format(doc, seq_op_name, symbol)) return comparer __eq__ = __make_cmp(eq, "==", "equal to") __ne__ = __make_cmp(ne, "!=", "not equal to") __lt__ = __make_cmp(lt, "<", "less than") __gt__ = __make_cmp(gt, ">", "greater than") __le__ = __make_cmp(le, "<=", "less than or equal to") __ge__ = __make_cmp(ge, ">=", "greater than or equal to") __make_cmp = staticmethod(__make_cmp) def __reduce__(self): values = reduce(iadd, self._lists, []) return (type(self), (values,)) @recursive_repr() def __repr__(self): return "{0}({1!r})".format(type(self).__name__, list(self)) def _check(self): try: assert self._load >= 4 assert len(self._maxes) == len(self._lists) assert self._len == sum(len(sublist) for sublist in self._lists) for sublist in self._lists: for pos in range(1, len(sublist)): assert sublist[pos - 1] <= sublist[pos] for pos in range(1, len(self._lists)): assert self._lists[pos - 1][-1] <= self._lists[pos][0] for pos in range(len(self._maxes)): assert self._maxes[pos] == self._lists[pos][-1] double = self._load << 1 assert all(len(sublist) <= double for sublist in self._lists) half = self._load >> 1 for pos in range(0, len(self._lists) - 1): assert len(self._lists[pos]) >= half if self._index: assert self._len == self._index[0] assert len(self._index) == self._offset + len(self._lists) for pos in range(len(self._lists)): leaf = self._index[self._offset + pos] assert leaf == len(self._lists[pos]) for pos in range(self._offset): child = (pos << 1) + 1 if child >= len(self._index): assert self._index[pos] == 0 elif child + 1 == len(self._index): assert self._index[pos] == self._index[child] else: child_sum = self._index[child] + self._index[child + 1] assert child_sum == self._index[pos] except: traceback.print_exc(file=sys.stdout) print("len", self._len) print("load", self._load) print("offset", self._offset) print("len_index", len(self._index)) print("index", self._index) print("len_maxes", len(self._maxes)) print("maxes", self._maxes) print("len_lists", len(self._lists)) print("lists", self._lists) raise def identity(value): return value class SortedKeyList(SortedList): def __init__(self, iterable=None, key=identity): self._key = key self._len = 0 self._load = self.DEFAULT_LOAD_FACTOR self._lists = [] self._keys = [] self._maxes = [] self._index = [] self._offset = 0 if iterable is not None: self._update(iterable) def __new__(cls, iterable=None, key=identity): return object.__new__(cls) @property def key(self): return self._key def clear(self): self._len = 0 del self._lists[:] del self._keys[:] del self._maxes[:] del self._index[:] _clear = clear def add(self, value): _lists = self._lists _keys = self._keys _maxes = self._maxes key = self._key(value) if _maxes: pos = bisect_right(_maxes, key) if pos == len(_maxes): pos -= 1 _lists[pos].append(value) _keys[pos].append(key) _maxes[pos] = key else: idx = bisect_right(_keys[pos], key) _lists[pos].insert(idx, value) _keys[pos].insert(idx, key) self._expand(pos) else: _lists.append([value]) _keys.append([key]) _maxes.append(key) self._len += 1 def _expand(self, pos): _lists = self._lists _keys = self._keys _index = self._index if len(_keys[pos]) > (self._load << 1): _maxes = self._maxes _load = self._load _lists_pos = _lists[pos] _keys_pos = _keys[pos] half = _lists_pos[_load:] half_keys = _keys_pos[_load:] del _lists_pos[_load:] del _keys_pos[_load:] _maxes[pos] = _keys_pos[-1] _lists.insert(pos + 1, half) _keys.insert(pos + 1, half_keys) _maxes.insert(pos + 1, half_keys[-1]) del _index[:] else: if _index: child = self._offset + pos while child: _index[child] += 1 child = (child - 1) >> 1 _index[0] += 1 def update(self, iterable): _lists = self._lists _keys = self._keys _maxes = self._maxes values = sorted(iterable, key=self._key) if _maxes: if len(values) * 4 >= self._len: values.extend(chain.from_iterable(_lists)) values.sort(key=self._key) self._clear() else: _add = self.add for val in values: _add(val) return _load = self._load _lists.extend( values[pos : (pos + _load)] for pos in range(0, len(values), _load) ) _keys.extend(list(map(self._key, _list)) for _list in _lists) _maxes.extend(sublist[-1] for sublist in _keys) self._len = len(values) del self._index[:] _update = update def __contains__(self, value): _maxes = self._maxes if not _maxes: return False key = self._key(value) pos = bisect_left(_maxes, key) if pos == len(_maxes): return False _lists = self._lists _keys = self._keys idx = bisect_left(_keys[pos], key) len_keys = len(_keys) len_sublist = len(_keys[pos]) while True: if _keys[pos][idx] != key: return False if _lists[pos][idx] == value: return True idx += 1 if idx == len_sublist: pos += 1 if pos == len_keys: return False len_sublist = len(_keys[pos]) idx = 0 def discard(self, value): _maxes = self._maxes if not _maxes: return key = self._key(value) pos = bisect_left(_maxes, key) if pos == len(_maxes): return _lists = self._lists _keys = self._keys idx = bisect_left(_keys[pos], key) len_keys = len(_keys) len_sublist = len(_keys[pos]) while True: if _keys[pos][idx] != key: return if _lists[pos][idx] == value: self._delete(pos, idx) return idx += 1 if idx == len_sublist: pos += 1 if pos == len_keys: return len_sublist = len(_keys[pos]) idx = 0 def remove(self, value): _maxes = self._maxes if not _maxes: raise ValueError("{0!r} not in list".format(value)) key = self._key(value) pos = bisect_left(_maxes, key) if pos == len(_maxes): raise ValueError("{0!r} not in list".format(value)) _lists = self._lists _keys = self._keys idx = bisect_left(_keys[pos], key) len_keys = len(_keys) len_sublist = len(_keys[pos]) while True: if _keys[pos][idx] != key: raise ValueError("{0!r} not in list".format(value)) if _lists[pos][idx] == value: self._delete(pos, idx) return idx += 1 if idx == len_sublist: pos += 1 if pos == len_keys: raise ValueError("{0!r} not in list".format(value)) len_sublist = len(_keys[pos]) idx = 0 def _delete(self, pos, idx): _lists = self._lists _keys = self._keys _maxes = self._maxes _index = self._index keys_pos = _keys[pos] lists_pos = _lists[pos] del keys_pos[idx] del lists_pos[idx] self._len -= 1 len_keys_pos = len(keys_pos) if len_keys_pos > (self._load >> 1): _maxes[pos] = keys_pos[-1] if _index: child = self._offset + pos while child > 0: _index[child] -= 1 child = (child - 1) >> 1 _index[0] -= 1 elif len(_keys) > 1: if not pos: pos += 1 prev = pos - 1 _keys[prev].extend(_keys[pos]) _lists[prev].extend(_lists[pos]) _maxes[prev] = _keys[prev][-1] del _lists[pos] del _keys[pos] del _maxes[pos] del _index[:] self._expand(prev) elif len_keys_pos: _maxes[pos] = keys_pos[-1] else: del _lists[pos] del _keys[pos] del _maxes[pos] del _index[:] def irange(self, minimum=None, maximum=None, inclusive=(True, True), reverse=False): min_key = self._key(minimum) if minimum is not None else None max_key = self._key(maximum) if maximum is not None else None return self._irange_key( min_key=min_key, max_key=max_key, inclusive=inclusive, reverse=reverse, ) def irange_key( self, min_key=None, max_key=None, inclusive=(True, True), reverse=False ): _maxes = self._maxes if not _maxes: return iter(()) _keys = self._keys if min_key is None: min_pos = 0 min_idx = 0 else: if inclusive[0]: min_pos = bisect_left(_maxes, min_key) if min_pos == len(_maxes): return iter(()) min_idx = bisect_left(_keys[min_pos], min_key) else: min_pos = bisect_right(_maxes, min_key) if min_pos == len(_maxes): return iter(()) min_idx = bisect_right(_keys[min_pos], min_key) if max_key is None: max_pos = len(_maxes) - 1 max_idx = len(_keys[max_pos]) else: if inclusive[1]: max_pos = bisect_right(_maxes, max_key) if max_pos == len(_maxes): max_pos -= 1 max_idx = len(_keys[max_pos]) else: max_idx = bisect_right(_keys[max_pos], max_key) else: max_pos = bisect_left(_maxes, max_key) if max_pos == len(_maxes): max_pos -= 1 max_idx = len(_keys[max_pos]) else: max_idx = bisect_left(_keys[max_pos], max_key) return self._islice(min_pos, min_idx, max_pos, max_idx, reverse) _irange_key = irange_key def bisect_left(self, value): return self._bisect_key_left(self._key(value)) def bisect_right(self, value): return self._bisect_key_right(self._key(value)) bisect = bisect_right def bisect_key_left(self, key): _maxes = self._maxes if not _maxes: return 0 pos = bisect_left(_maxes, key) if pos == len(_maxes): return self._len idx = bisect_left(self._keys[pos], key) return self._loc(pos, idx) _bisect_key_left = bisect_key_left def bisect_key_right(self, key): _maxes = self._maxes if not _maxes: return 0 pos = bisect_right(_maxes, key) if pos == len(_maxes): return self._len idx = bisect_right(self._keys[pos], key) return self._loc(pos, idx) bisect_key = bisect_key_right _bisect_key_right = bisect_key_right def count(self, value): _maxes = self._maxes if not _maxes: return 0 key = self._key(value) pos = bisect_left(_maxes, key) if pos == len(_maxes): return 0 _lists = self._lists _keys = self._keys idx = bisect_left(_keys[pos], key) total = 0 len_keys = len(_keys) len_sublist = len(_keys[pos]) while True: if _keys[pos][idx] != key: return total if _lists[pos][idx] == value: total += 1 idx += 1 if idx == len_sublist: pos += 1 if pos == len_keys: return total len_sublist = len(_keys[pos]) idx = 0 def copy(self): return self.__class__(self, key=self._key) __copy__ = copy def index(self, value, start=None, stop=None): _len = self._len if not _len: raise ValueError("{0!r} is not in list".format(value)) if start is None: start = 0 if start < 0: start += _len if start < 0: start = 0 if stop is None: stop = _len if stop < 0: stop += _len if stop > _len: stop = _len if stop <= start: raise ValueError("{0!r} is not in list".format(value)) _maxes = self._maxes key = self._key(value) pos = bisect_left(_maxes, key) if pos == len(_maxes): raise ValueError("{0!r} is not in list".format(value)) stop -= 1 _lists = self._lists _keys = self._keys idx = bisect_left(_keys[pos], key) len_keys = len(_keys) len_sublist = len(_keys[pos]) while True: if _keys[pos][idx] != key: raise ValueError("{0!r} is not in list".format(value)) if _lists[pos][idx] == value: loc = self._loc(pos, idx) if start <= loc <= stop: return loc elif loc > stop: break idx += 1 if idx == len_sublist: pos += 1 if pos == len_keys: raise ValueError("{0!r} is not in list".format(value)) len_sublist = len(_keys[pos]) idx = 0 raise ValueError("{0!r} is not in list".format(value)) def __add__(self, other): values = reduce(iadd, self._lists, []) values.extend(other) return self.__class__(values, key=self._key) __radd__ = __add__ def __mul__(self, num): values = reduce(iadd, self._lists, []) * num return self.__class__(values, key=self._key) def __reduce__(self): values = reduce(iadd, self._lists, []) return (type(self), (values, self.key)) @recursive_repr() def __repr__(self): type_name = type(self).__name__ return "{0}({1!r}, key={2!r})".format(type_name, list(self), self._key) def _check(self): try: assert self._load >= 4 assert len(self._maxes) == len(self._lists) == len(self._keys) assert self._len == sum(len(sublist) for sublist in self._lists) for sublist in self._keys: for pos in range(1, len(sublist)): assert sublist[pos - 1] <= sublist[pos] for pos in range(1, len(self._keys)): assert self._keys[pos - 1][-1] <= self._keys[pos][0] for val_sublist, key_sublist in zip(self._lists, self._keys): assert len(val_sublist) == len(key_sublist) for val, key in zip(val_sublist, key_sublist): assert self._key(val) == key for pos in range(len(self._maxes)): assert self._maxes[pos] == self._keys[pos][-1] double = self._load << 1 assert all(len(sublist) <= double for sublist in self._lists) half = self._load >> 1 for pos in range(0, len(self._lists) - 1): assert len(self._lists[pos]) >= half if self._index: assert self._len == self._index[0] assert len(self._index) == self._offset + len(self._lists) for pos in range(len(self._lists)): leaf = self._index[self._offset + pos] assert leaf == len(self._lists[pos]) for pos in range(self._offset): child = (pos << 1) + 1 if child >= len(self._index): assert self._index[pos] == 0 elif child + 1 == len(self._index): assert self._index[pos] == self._index[child] else: child_sum = self._index[child] + self._index[child + 1] assert child_sum == self._index[pos] except: traceback.print_exc(file=sys.stdout) print("len", self._len) print("load", self._load) print("offset", self._offset) print("len_index", len(self._index)) print("index", self._index) print("len_maxes", len(self._maxes)) print("maxes", self._maxes) print("len_keys", len(self._keys)) print("keys", self._keys) print("len_lists", len(self._lists)) print("lists", self._lists) raise SortedListWithKey = SortedKeyList ################################ End copy and paste import io import os def solve(N, M, K, books): A = [] B = [] common = [] padding = SortedList() paddingSum = 0 extras = SortedList() for i, (t, a, b) in enumerate(books): if a and b: common.append(t) elif a: A.append(t) elif b: B.append(t) else: extras.add(t) A.sort() B.sort() common.sort() prefA = [0] for t in A: prefA.append(prefA[-1] + t) prefB = [0] for t in B: prefB.append(prefB[-1] + t) prefC = [0] for t in common: prefC.append(prefC[-1] + t) # Check allowable number of common books cMin = max(0, K - len(A), K - len(B), 2 * K - M) cMax = min(K, len(common)) if cMin > cMax: return -1 # Want to contain every book in: common[:c], B[: K - c], A[: K - c], padding, extras # Starting with c = cMin for i in range(cMin, len(common)): extras.add(common[i]) for i in range(K - cMin, len(A)): extras.add(A[i]) for i in range(K - cMin, len(B)): extras.add(B[i]) best = (float("inf"),) for c in range(cMin, cMax + 1): # Take c common books to satisfy both # Need K - c more from A and B each assert 0 <= c <= len(common) assert 0 <= K - c <= len(A) assert 0 <= K - c <= len(B) # Pad this up to make M books exactly pad = M - c - (K - c) * 2 assert pad >= 0 # Fill padding from extras while len(padding) < pad and extras: x = extras[0] extras.remove(x) padding.add(x) paddingSum += x # Overflow padding to extras while len(padding) > pad: x = padding[-1] padding.remove(x) paddingSum -= x extras.add(x) if len(padding) == pad: cost = prefC[c] + prefB[K - c] + prefA[K - c] + paddingSum best = min(best, (cost, c)) # print(cost, common[:c], B[: K - c], A[: K - c], padding, extras) assert c + (K - c) + (K - c) + len(padding) + len(extras) == N if padding and extras: assert padding[-1] <= extras[0] # assert sum(padding) == paddingSum if 0 <= K - c - 1 < len(A): x = A[K - c - 1] if padding and x <= padding[-1]: padding.add(x) paddingSum += x else: extras.add(x) if 0 <= K - c - 1 < len(B): x = B[K - c - 1] if padding and x <= padding[-1]: padding.add(x) paddingSum += x else: extras.add(x) if c < len(common): x = common[c] if x in extras: extras.remove(x) elif x in padding: padding.remove(x) paddingSum -= x if best[0] == float("inf"): return -1 needC = best[1] needA = K - needC needB = K - needC needPad = M - needC - needB - needA check = 0 ans = [] for i, (t, a, b) in sorted(enumerate(books), key=lambda ix: ix[1][0]): if a and b: if needC: needC -= 1 ans.append(str(i + 1)) check += t continue if a: if needA: needA -= 1 ans.append(str(i + 1)) check += t continue if b: if needB: needB -= 1 ans.append(str(i + 1)) check += t continue if needPad: needPad -= 1 ans.append(str(i + 1)) check += t assert len(ans) == M assert check == best[0] return str(best[0]) + "\n" + " ".join(x for x in ans) if False: import random random.seed(0) N = 2 * 10**5 for i in range(1): books = [ [random.randint(1, 20), random.randint(0, 1), random.randint(0, 1)] for i in range(N) ] solve(len(books), random.randint(1, 100), random.randint(1, 100), books) if __name__ == "__main__": input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline N, M, K = [int(x) for x in input().split()] books = [[int(x) for x in input().split()] for i in range(N)] ans = solve(N, M, K, books) print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = list(map(int, input().split())) both, ab, ba = [0], [0], [0] for i in range(n): t, a, b = list(map(int, input().split())) if a == 1 and b == 1: both.append(t) elif a == 1: ab.append(t) elif b == 1: ba.append(t) both, ab, ba = sorted(both), sorted(ab), sorted(ba) for i in range(1, len(both)): both[i] = both[i] + both[i-1] for i in range(1, len(ab)): ab[i] = ab[i] + ab[i-1] for i in range(1, len(ba)): ba[i] = ba[i] + ba[i-1] mini = None for i in range(min(k+1, len(both))): rest = k - i if len(ab)-1 < rest or len(ba)-1 < rest: pass else: cur = both[i] + ab[rest] + ba[rest] mini = min(mini, cur) if mini is not None else cur if mini is None: print("-1") else: print(mini)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
# e_part_2_att_1.py #attempted after contest import sys def input(): return sys.stdin.readline().rstrip() def input_split(): return [int(i) for i in input().split()] def add_book(): global freqs, cf, cp # cost_change = 0 while(True): if cf < freqs[cp]: cf += 1 return cp else: cp += 1 cf = 0 def remove_book(): global freqs, cf, cp # cost_change = 0 while(True): if cf > 0: cf -= 1 return (-cp) else: cp -= 1 cf = freqs[cp] def make_available(b_time): global freqs, cf, cp freqs[b_time] += 1 if b_time < cp: #had a bug here return b_time + remove_book() else: return 0 def make_unavailable(b_time): global freqs, cf, cp if b_time < cp: #had a bug here freqs[b_time] -= 1 # a book was made unavailable that was being used return (-b_time + add_book()) elif (b_time == cp and cf == freqs[cp]): freqs[b_time] -= 1 cf -= 1 return (-b_time + add_book()) else: freqs[b_time] -= 1 return 0 #no change n,m, k = input_split() times = [] alice_likes = [] bob_likes = [] for _ in range(n): t, a, b = input_split() times.append(t) alice_likes.append(a) bob_likes.append(b) # if (sum(alice_likes) < k or sum(bob_likes)< k): # ans = -1 # else: #worst case choose all, but possible times_both = [] times_alice = [] times_bob = [] times_none = [] # books_alice = [] for book in range(n): if alice_likes[book] == 1 and bob_likes[book] == 1: times_both.append((times[book], book)) elif alice_likes[book] == 1: times_alice.append((times[book], book)) elif bob_likes[book] == 1: times_bob.append((times[book], book)) else: times_none.append((times[book], book)) # pass times_both.sort() times_alice.sort() times_bob.sort() # def split_list(lis): # return ([a for (a,b) in lis],[b for (a,b) in lis]) # books_alice = [j for (i,j) in times_alice] # times_alice = started = False possibilities = [] for i in range(k+1): # print('i is {}'.format(i)) both = i indi = (k - i) #decreases by 1 in each iter, frees up two books extra = m - (both + 2*indi) # print('both {}, indi {}, extra {}, nu m_both') if both > len(times_both) or indi > min(len(times_alice), len(times_bob)) or extra < 0: continue if not started: # print('Enter') started = True #when i comment this it works on test 10, so mere else vale mei hi problem hai #initialise ans = sum([i for (i,j) in times_both[:both]]) ans += sum( [i for (i,j) in times_alice[:indi]]) ans += sum([ i for (i,j) in times_bob[:indi]]) freqs = [0 for i in range(10001)] pending = (times_both[both:] + times_bob[indi:] + times_alice[indi:] + times_none) for tim, _ in pending: freqs[tim] += 1 cp = 0 #current pointer cf = 0 #current fill extra_cost = 0 count = 0 for _ in range(extra): extra_cost += add_book() ans += extra_cost possibilities.append((ans,both)) else: # print('shouldnt enter here') # ans = 0 #manipulate state last_ans = possibilities[-1][0] ans = last_ans new_book1_time = times_alice[indi][0] new_book2_time = times_bob[indi][0] old_book_time = times_both[both-1][0] ans += old_book_time ans -= new_book1_time ans -= new_book2_time ans += make_available(new_book1_time) ans += make_available(new_book2_time) ans += make_unavailable(old_book_time) ans += add_book() possibilities.append((ans,both)) # times_both = times_both + [100000]*(n- len(times_both)) # times_alice = times_alice + [100000]*(n- len(times_alice)) # times_bob = times_bob + [100000]*(n- len(times_bob)) # ans = 0 # p1, p2, p3 = 0, 0, 0 # for i in range(k): # if (times_both[p1] <= times_alice[p2] + times_bob[p3]): # ans += times_both[p1] # p1 += 1 # else: # ans += times_alice[p2] + times_bob[p3] # p2 += 1 # p3 += 1 # times_bob if len(possibilities) == 0: print(-1) else: ans , both = min(possibilities) # picked = [False for i in range(n)] # for b in range(n): indi = k - both extra = m - (indi*2 + both) books = [] books += [j for (i,j) in times_both[:both]] books += [j for (i,j) in times_alice[:indi]] books += [j for (i,j) in times_bob[:indi]] pending = (times_both[both:] + times_bob[indi:] + times_alice[indi:] + times_none) pending.sort() books += [j for (i,j) in pending[:extra]] books = [b+1 for b in books] print(ans) print(*books, sep = ' ') #find the configuration and redo the stupid calculation #do 4 passes over all books and get the ans
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 4e5 + 10, mod = 1e9 + 7; int bitc[N], bit[N]; int n; void add(int i, int va) { for (; i < N; i += (i & -i)) { bit[i] += va; bitc[i] += (va < 0 ? -1 : 1); } } long long getprefones(int va) { int i = 0; int cur = 0; long long ret = 0; for (int j = 20; j >= 0; j--) { if (i + (1 << j) < N && bitc[i + (1 << j)] + cur <= va) { cur += bitc[i + (1 << j)]; ret += bit[i + (1 << j)]; i += (1 << j); } } if (cur < va) ret = 2e9 + 5; return ret; } int main() { int tc = 1; for (int cn = 1; cn <= tc; cn++) { int m, k; scanf("%d%d%d", &n, &m, &k); vector<vector<pair<int, int>>> v(4); vector<vector<int>> pref(4); vector<pair<int, int>> vec; for (int i = 1; i <= n; i++) { int t, a, b; scanf("%d%d%d", &t, &a, &b); int m = (a * 2) + b; v[m].push_back({t, i}); vec.push_back({t, i}); } sort(vec.begin(), vec.end()); vector<int> id(n + 1); for (int i = 0; i < n; i++) add(i + 1, vec[i].first), id[vec[i].second] = i + 1; for (int i = 0; i < 4; i++) { sort(v[i].begin(), v[i].end()); if (v[i].size()) pref[i].push_back(v[i][0].first); for (int j = 1; j < v[i].size(); j++) pref[i].push_back(pref[i][j - 1] + v[i][j].first); } for (auto x : v[3]) add(id[x.second], -x.first); long long ans = 2e9 + 10; int b = -1; for (int i = 0; i < k && i < v[1].size(); i++) add(id[v[1][i].second], -v[1][i].first); for (int i = 0; i < k && i < v[2].size(); i++) add(id[v[2][i].second], -v[2][i].first); int l = min(k, (int)v[1].size()) - 1; int r = min(k, (int)v[2].size()) - 1; if (2 * k <= m && l == k - 1 && r == k - 1) { ans = min(ans, pref[1][k - 1] + pref[2][k - 1] + getprefones(m - 2 * k)); } for (int i = 0; i < v[3].size(); i++) { long long cur = pref[3][i]; int need = k - i - 1; int h = i + 1 + 2 * max(0, need); if (h > m) continue; while (l >= need && l >= 0) { add(id[v[1][l].second], v[1][l].first); l--; } while (r >= need && r >= 0) { add(id[v[2][r].second], v[2][r].first); r--; } if ((int)v[1].size() < need || (int)v[2].size() < need) continue; if (l >= 0) cur += pref[1][l] + pref[2][r]; cur += getprefones(m - h); if (cur < ans) { ans = cur; b = i; } } if (ans > 2e9) puts("-1"); else { printf("%lld\n", ans); int need = k - b - 1; vector<bool> vis(n + 1, 0); for (int i = 0; i <= b; i++) printf("%d ", v[3][i].second), vis[v[3][i].second] = 1; for (int i = 0; i < v[3].size(); i++) vis[v[3][i].second] = 1; for (int i = 0; i < need; i++) printf("%d ", v[2][i].second), vis[v[2][i].second] = 1; for (int i = 0; i < need; i++) printf("%d ", v[1][i].second), vis[v[1][i].second] = 1; int h = b + 1; if (need > 0) h += 2 * need; for (int i = 0; i < n && h < m; i++) { if (vis[vec[i].second]) continue; printf("%d ", vec[i].second); h++; } } } return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python2
import sys range = xrange input = raw_input class segtree: def __init__(self, data): n = len(data) self.m = 1 while self.m < n: self.m *= 2 self.data = [0] * (2 * self.m) self.data[self.m: self.m + n] = data for i in reversed(range(1, self.m)): self.data[i] = self.data[2 * i] + self.data[2 * i + 1] def __setitem__(self, i, x): i += self.m self.data[i] = x i >>= 1 while i: self.data[i] = self.data[2 * i] + self.data[2 * i + 1] i >>= 1 def finder(self, k): if k == 0: return -1 assert self.data[1] >= k i = 1 while i < self.m: i *= 2 if self.data[i] < k: k -= self.data[i] i += 1 return i - self.m def getter(self, l, r): l += self.m r += self.m s = 0 while l < r: if l & 1: s += self.data[l] l += 1 if r & 1: r -= 1 s += self.data[r] l >>= 1 r >>= 1 return s inp = [int(x) for x in sys.stdin.read().split()]; ii = 0 N = inp[ii]; ii += 1 M = inp[ii]; ii += 1 k = inp[ii]; ii += 1 T = inp[ii + 0: ii + 3 * N: 3] A = inp[ii + 1: ii + 3 * N: 3] B = inp[ii + 2: ii + 3 * N: 3] order = sorted(range(N), key = T.__getitem__) T = [T[i] for i in order] A = [A[i] for i in order] B = [B[i] for i in order] TA = [] TB = [] TAB = [] for i in range(N): if A[i] and B[i]: TAB.append(i) elif A[i]: TA.append(i) elif B[i]: TB.append(i) n = len(TA) m = len(TB) nm = len(TAB) mark = [1] * N times = list(T) upper = min(k, nm) picked = k - upper if picked > n or picked > m: print -1 sys.exit() tsum = 0 for j in range(picked): i = TA[j] tsum += T[i] mark[i] = 0 times[i] = 0 i = TB[j] tsum += T[i] mark[i] = 0 times[i] = 0 for j in range(upper): i = TAB[j] tsum += T[i] mark[i] = 0 times[i] = 0 marker = segtree(mark) timer = segtree(times) time = inf = 10**9 * 2 + 100 optx = -1 for x in reversed(range(upper + 1)): books = x + 2 * (k - x) if books <= M: cand = tsum + timer.getter(0, marker.finder(M - books) + 1) if cand < time: time = cand optx = x if x: i = TAB[x - 1] tsum -= T[i] marker[i] = mark[i] = 1 timer[i] = times[i] = T[i] j = k - x if j >= n or j >= m: break i = TA[j] tsum += T[i] marker[i] = mark[i] = 0 timer[i] = times[i] = 0 i = TB[j] tsum += T[i] marker[i] = mark[i] = 0 timer[i] = times[i] = 0 if time == inf: print -1 else: print time ab = optx a = b = k - optx rest = M - ab - a - b picked = [] for i in range(N): if A[i] and B[i] and ab: ab -= 1 picked.append(i) elif not B[i] and A[i] and a: a -= 1 picked.append(i) elif not A[i] and B[i] and b: b -= 1 picked.append(i) elif rest: picked.append(i) rest -= 1 print ' '.join(str(order[x] + 1) for x in picked)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
# for _ in range(int(input())): # n,x = map(int,input().split()) # arr = list(map(int,input().split())) # # b = [] # # for i in range(n): # # t = [] # # for j in range(n): # # t.append(arr[i]+arr[j]) # # b.append(t) # f = 0 # k = n # while k>=1: # # print(k) # i = 0 # while i<k: # # print(i) # j = i # print(k,i,j) # print(arr[i:i+k+1], arr[j:j+k+1]) # s = k*(sum(arr[i:i+k+1]) + sum(arr[j:j+k+1])) # # print(s) # if s==x: # f+=1 # k-=1 # print(f) # print(1000000000//499999993 , 1000000000%499999993) # print(999999995//499999993 , 999999995%499999993) # import math # for _ in range(int(input())): n,k1 = map(int,input().split()) c = [] a = [] b = [] for i in range(n): x,y,z = map(int,input().split()) if y==z==1: c.append(x) elif y==1 and z==0: a.append(x) elif y==0 and z==1: b.append(x) a.sort() b.sort() c.sort() # print(a,b,c) ka = k1 kb = k1 i,j,k = 0,0,0 ans = 0 while ka>0 and kb>0 and i<len(a) and j<len(b) and k<len(c): if a[i]+b[j]<=c[k]: ans += a[i]+b[j] ka-=1 kb-=1 i+=1 j+=1 else: ans += c[k] ka-=1 kb-=1 k+=1 if i>=len(a) and ka>0: while k<len(c) and ka>0: ans+=c[k] k+=1 ka-=1 kb = max(0,kb-1) elif j>=len(b) and kb>0: while k<len(c) and kb>0: ans+=c[k] k+=1 ka = max(0,ka-1) kb-=1 while i<len(a) and ka>0: ans += a[i] ka-=1 i+=1 while j<len(b) and kb>0: ans+=b[j] kb-=1 j+=1 if ka==kb==0: print(ans) else: print(-1)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = list(map(int, input().split())) ar1 = [] ar2 = [] ar3 = [] for i in range(n): ar = list(map(int, input().split())) if ar[1] == 1 and ar[2] == 0: ar1.append(ar) elif ar[1] == 0 and ar[2] == 1: ar2.append(ar) elif ar[1] == ar[2] == 1: ar3.append(ar) ar1.sort() ar2.sort() ar3.sort() i, j, h = 0, 0, 0 num1, num2 = k, k ans = 0 while ((i < len(ar1) and j < len(ar2)) or h < len(ar3)) and num1 > 0 and num2 > 0: if h >= len(ar3): ans += ar1[i][0] + ar2[j][0] i += 1 j += 1 elif i >= len(ar1) or j >= len(ar2): ans += ar3[h][0] h += 1 elif ar1[i][0] + ar2[j][0] > ar3[h][0]: ans += ar3[h][0] h += 1 else: ans += ar1[i][0] + ar2[j][0] i += 1 j += 1 num1 -= 1 num2 -= 1 if num1 > 0 or num2 > 0: print(-1) else: print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool rev(long long x, long long y) { return x > y; } void input_arr(long long a[], long long n) { for (long long i = 0; i < n; i += 1) cin >> a[i]; } bool sortbysec(const pair<long long, long long> &a, const pair<long long, long long> &b) { return a.second < b.second; } bool sortinrev(const pair<long long, long long> &a, const pair<long long, long long> &b) { return (a.first > b.first); } void print_vec(vector<long long> &v) { for (auto i : v) cout << i << " "; cout << '\n'; } bool sortinrevbysec(const pair<long long, long long> &a, const pair<long long, long long> &b) { return (a.second > b.second); } void print_arr(long long a[], long long n) { for (long long i = 0; i < n; i += 1) cout << a[i] << " "; cout << '\n'; } template <typename... T> void input(T &...args) { ((cin >> args), ...); } template <typename... T> void print(T &&...args) { ((cout << args << '\n'), ...); } template <typename... T> void deb(T &&...args) { cout << "~~ "; ((cout << args << " "), ...); cout << '\n'; } void stand8th() { long long n, k; input(n, k); long long t, a, b; vector<long long> al, bo, bt; long long no = 0; for (long long i = 0; i < n; i += 1) { input(t, a, b); if (a == 1 && b == 1) { bt.push_back(t); } else if (a == 1) { al.push_back(t); } else if (b == 1) { bo.push_back(t); } else { no++; } } if ((long long)(al.size()) + (long long)(bo.size()) + 2 * (long long)(bt.size()) < 2 * k) { print(-1); return; } sort((al).begin(), (al).end()); sort((bo).begin(), (bo).end()); sort((bt).begin(), (bt).end()); for (long long i = 1; i < (long long)(al.size()); i += 1) al[i] += al[i - 1]; for (long long i = 1; i < (long long)(bo.size()); i += 1) bo[i] += bo[i - 1]; for (long long i = 1; i < (long long)(bt.size()); i += 1) bt[i] += bt[i - 1]; long long ans = INT64_MAX; for (long long i = 0; i < min((long long)(bt.size()), k); i += 1) { long long x = k - i - 1; if (x != 0 && (long long)(al.size()) >= x && (long long)(bo.size()) >= x) { ans = min(ans, bt[i] + al[x - 1] + bo[x - 1]); } else { if (x == 0) { ans = min(ans, bt[i]); } } } if ((long long)(al.size()) >= k && (long long)(bo.size()) >= k) { ans = min(ans, al[k - 1] + bo[k - 1]); } if (ans == INT64_MAX) { ans = -1; } print(ans); } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long tin = 1; while (tin--) { stand8th(); } return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k=map(int,input().split()) a=0 b=0 alike=[] blike=[] bothlike=[] for _ in range(n): t,aa,bb=map(int,input().split()) if aa==1: a+=1 if bb==1: b+=1 if aa==1 and bb==0: alike.append(t) elif aa==0 and bb==1: blike.append(t) elif aa==1 and bb==1: bothlike.append(t) if a<k or b<k: print(-1) else: alike.sort() blike.sort() la=len(alike) lb=len(blike) ans=0 if la<k and lb>=k: for i in range(la): bothlike.append(alike[i]+blike[i]) bothlike.sort() ans=sum(bothlike[:k]) elif lb<k and la>=k: for i in range(lb): bothlike.append(alike[i]+blike[i]) bothlike.sort() ans=sum(bothlike[:k]) elif la>=k and lb>=k: for i in range(k): bothlike.append(alike[i]+blike[i]) bothlike.sort() ans=sum(bothlike[:k]) else: for i in range(min(la,lb)): bothlike.append(alike[i]+blike[i]) bothlike.sort() ans=sum(bothlike[:k]) print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N = INT_MAX; long long INF1 = 1e9 + 5; long long INF2 = 1e18L + 5; map<long long, long long> my; int h[10005]; int main() { int n, k; cin >> n >> k; int chk1 = 0, chk2 = 0; int a, b, c; vector<int> v1, v2, v3; for (int i = 0; i < n; i++) { cin >> a >> b >> c; if (b == 1 && c == 1) { v1.push_back(a); } else if (b == 1 && c == 0) { v2.push_back(a); } else if (b == 0 && c == 1) { v3.push_back(a); } chk1 += b; chk2 += c; } if (chk1 < k || chk2 < k) { cout << -1; return 0; } int n1 = v1.size(), n2 = v2.size(), n3 = v3.size(); int x = min(n2, n3); sort(v2.begin(), v2.end()); sort(v3.begin(), v3.end()); for (int i = 0; i < x; i++) { v1.push_back(v2[i] + v3[i]); } sort(v1.begin(), v1.end()); long long ans = 0; for (int i = 0; i < k; i++) { ans += v1[i]; } cout << ans; return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
import heapq n, k = map(int, input().rstrip().split()) inn = [] inb = [] inc = [] for i in range(n): a,b,c = map(int, input().rstrip().split()) if(b==0 and c==0): continue elif(b==1 and c==0): inb.append(a) elif(b==0 and c==1): inc.append(a) else: inn.append(a) heapq.heapify(inb) heapq.heapify(inc) heapq.heapify(inn) ans = 0 while(k>0): if(len(inb) and len(inc) and len(inn)): if(inb[0]+inc[0]<inn[0]): k1 = heapq.heappop(inb) k2 = heapq.heappop(inc) k-=1 ans += (k1+k2) else: k1 = heapq.heappop(inn) ans += k1 k-=1 elif(len(inb) and len(inc)): k1 = heapq.heappop(inb) k2 = heapq.heappop(inc) k-=1 ans += (k1+k2) elif(len(inn)): k1 = heapq.heappop(inn) ans += k1 k-=1 else: bool=False break if(bool==True or k==0): print(ans) else: print(-1)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from collections import defaultdict n,k=map(int,input().split()) d=defaultdict(lambda: [0,0]) la=[] lb=[] lboth=[] ca,cb,cboth=0,0,0 for x in range(n): t,a,b=map(int,input().split()) if a==1 and b==1: lboth.append(t) cboth+=1 elif a==1: la.append(t) ca+=1 d[t][0]+=1 elif b==1: lb.append(t) d[t][1]+=1 cb+=1 if ca+cboth<k or cb+cboth<k: print(-1) else: la.sort() lb.sort() lboth.sort() coa,cob=0,0 ans=0 a,b,c=0,0,0 while((coa<k or cob<k)==True): if c<cboth: if a<ca and b<cb: if lboth[c]<=(la[a]+lb[b]): coa+=1 cob+=1 ans+=lboth[c] c+=1 else: coa+=1 cob+=1 ans+=la[a]+lb[b] a+=1 b+=1 else: coa+=1 cob+=1 ans+=lboth[c] c+=1 else: break while(coa<k): coa+=1 ans+=la[a] a+=1 while(cob<k): cob+=1 ans+=lb[b] b+=1 print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = map(int, input().split()) both, f, s = [], [], [] for i in range(n): t, x, y = map(int, input().split()) if x == 1 and y == 1: both.append(t) elif x == 1: f.append(t) elif y == 1: s.append(t) if min(len(f),len(s)) + len(both) < k: print(-1) else: both = sorted(both) f = sorted(f) s = sorted(s) g = [both, f, s] for l in g: for j, v in enumerate(l): if j > 0: l[j] = l[j-1] + l[j] #print(both, f, s) #swap f and s if len(f) > len(s): b = f f = s s = b mn = 5*(10**9) if len(f) == 0: mn = both[k-1] for i in range(len(f)+1): if i > k: break elif i > 0: if i == k: mn = min(f[i-1] + s[i-1], mn) elif len(both) >= k - i: mn = min(f[i-1] + s[i-1] + both[k-i-1], mn) elif i == 0: if len(both) >= k: mn = both[k-1] print(mn)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = map(int, input().split()) both, alice, bob = [], [], [] for _ in range(n): t, a, b = map(int, input().split()) if a == 1 and b == 1: both.append(t) elif a == 1 and b == 0: alice.append(t) elif a == 0 and b == 1: bob.append(t) both.sort(reverse=True) alice.sort(reverse=True) bob.sort(reverse=True) cnt = time = 0 while cnt < k and both and alice and bob: if both[-1] <= alice[-1] + bob[-1]: time += both.pop() else: time += alice.pop() + bob.pop() cnt += 1 while cnt < k and both: time += both.pop() cnt += 1 while cnt < k and alice and bob: time += alice.pop() + bob.pop() cnt += 1 if cnt >= k: print(time) else: print(-1)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k = map(int,input().split()) d = [] l = [] a = [] b = [] for _ in range(n): p,q,r = map(int,input().split()) if q == r : if q == 0: d.append(p) else: l.append(p) else: if q == 0 and r == 1: b.append(p) else: a.append(p) #print(a,b,l,d) m = min(len(a),len(b)) if m + len(l) < k: print(-1) else: # ans is there a.sort() b.sort() s = [0]*m for i in range(m): s[i] = a[i]+b[i] #print(s) r = s+l #print(r) r.sort() #print(r) #print(r[:k]) print(sum(r[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class ReadingBooksHard { static PriorityQueue<Book> pqA, pqB; static long total=0; static int aHave=0, bHave=0; static int booksUsed=0; static PriorityQueue<Book> cheapestA, cheapestB, cheapestBoth, cheapestNone, worstBoth, worstA, worstB, worstNone; public static void main(String[] args) { FastScanner fs=new FastScanner(); PrintWriter out=new PrintWriter(System.out); int n=fs.nextInt(), readTotal=fs.nextInt(), readEach=fs.nextInt(); Book[] books=new Book[n], unsorted=new Book[n]; for (int i=0; i<n; i++) unsorted[i]=books[i]=new Book(fs.nextInt(), fs.nextInt(), fs.nextInt()); Arrays.sort(books); pqA=new PriorityQueue<>(Comparator.reverseOrder()); pqB=new PriorityQueue<>(Comparator.reverseOrder()); cheapestA=new PriorityQueue<>();//untaken cheapestB=new PriorityQueue<>(); cheapestBoth=new PriorityQueue<>(); cheapestNone=new PriorityQueue<>(); worstBoth=new PriorityQueue<>(Comparator.reverseOrder()); worstA=new PriorityQueue<>(Comparator.reverseOrder()); worstB=new PriorityQueue<>(Comparator.reverseOrder()); worstNone=new PriorityQueue<>(Comparator.reverseOrder()); for (Book b:books) { if (b.a && b.b) cheapestBoth.add(b); else if (b.a) cheapestA.add(b); else if (b.b) cheapestB.add(b); else cheapestNone.add(b); if (!b.a && !b.b) continue; if (b.a && b.b) { //both if (aHave<readEach || bHave<readEach) { add(b); if (aHave>readEach && !pqA.isEmpty()) { Book toRemove=pqA.remove(); remove(toRemove); } if (bHave>readEach && !pqB.isEmpty()) { Book toRemove=pqB.remove(); remove(toRemove); } } else { if (!pqA.isEmpty() && !pqB.isEmpty()) { int bonus=pqA.peek().time+pqB.peek().time; if (bonus>b.time) { Book removed1=pqA.remove(), removed2=pqB.remove(); add(b); remove(removed1); remove(removed2); } } } } else if (b.a) { if (aHave<readEach) { add(b); } } else { if (bHave<readEach) { add(b); } } } //We might have used too many books while (booksUsed>readTotal) { //try add 11 back in Book toAdd=getCheapestBothUnused(); Book worstA=getWorstAUsed(); Book worstB=getWorstBUsed(); if (toAdd==null || worstA==null || worstB==null) { out.println(-1); out.close(); return; } remove(worstA); remove(worstB); add(toAdd); } //now we might not have enough books while (booksUsed<readTotal) { Book cheapestA=getCheapestAUnused(); Book cheapestB=getCheapestBUnused(); Book cheapestBoth=getCheapestBothUnused(); Book cheapestNone=getCheapestNoneUnused(); Book bestToAdd=minCost(cheapestA, cheapestB, cheapestBoth, cheapestNone); Book worstBoth=getWorstBothUsed(); if (worstBoth==null || cheapestA==null || cheapestB==null) { //forced to do bestToAdd if (bestToAdd==null) { out.println(-1); out.close(); return; } add(bestToAdd); } else { long costBestToAdd=bestToAdd.time; long costSwap=cheapestA.time+cheapestB.time-worstBoth.time; if (costBestToAdd<costSwap) { add(bestToAdd); } else { remove(worstBoth); add(cheapestA); add(cheapestB); } } } if (aHave<readEach || bHave<readEach) { out.println(-1); out.close(); return; } else { out.println(total); } for (int i=0; i<n; i++) { if (unsorted[i].used) out.print(i+1+" "); } out.println(); out.close(); } //TODO: make sure all PQs get updated!! static void add(Book b) { b.used=true; total+=b.time; booksUsed++; if (b.a && b.b) { aHave++; bHave++; worstBoth.add(b); } else if(b.a) { pqA.add(b); worstA.add(b); aHave++; } else if (b.b) { pqB.add(b); worstB.add(b); bHave++; } else { worstNone.add(b); } } static void remove(Book b) { b.used=false; total-=b.time; booksUsed--; if (b.a && b.b) { aHave--; bHave--; cheapestBoth.add(b); } else if(b.a) { aHave--; cheapestA.add(b); } else if (b.b) { bHave--; cheapestB.add(b); } else { cheapestNone.add(b); } } static Book minCost(Book a, Book b, Book c, Book d) { Book res=better(a, b); res=better(res, c); res=better(res, d); return res; } static Book better(Book a, Book b) { if (a==null) return b; if (b==null) return a; return a.time<=b.time?a:b; } static Book getCheapestBothUnused() { return getCheapestUnused(cheapestBoth); } static Book getCheapestNoneUnused() { return getCheapestUnused(cheapestNone); } static Book getCheapestAUnused() { return getCheapestUnused(cheapestA); } static Book getCheapestBUnused() { return getCheapestUnused(cheapestB); } static Book getWorstAUsed() { return getWorstUsed(worstA); } static Book getWorstBUsed() { return getWorstUsed(worstB); } static Book getWorstBothUsed() { return getWorstUsed(worstBoth); } static Book getCheapestUnused(PriorityQueue<Book> pq) { while (!pq.isEmpty()) { Book next=pq.peek(); if (next.used) pq.remove(); else return next; } return null; } static Book getWorstUsed(PriorityQueue<Book> pq) { while (!pq.isEmpty()) { Book next=pq.peek(); if (!next.used) pq.remove(); else return next; } return null; } static class Book implements Comparable<Book> { int time; boolean a, b; boolean used; public Book(int time, int a, int b) { this.time=time; this.a=a==1; this.b=b==1; } public int compareTo(Book o) { return Integer.compare(time, o.time); } } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.util.*; // import java.lang.*; import java.io.*; // THIS TEMPLATE MADE BY AKSH BANSAL. public class Solution { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws IOException { FastReader sc = new FastReader(); PrintWriter out = new PrintWriter(System.out); // ________________________________ // int t = sc.nextInt(); // StringBuilder output = new StringBuilder(); // while (t-- > 0) { // output.append(solver()).append("\n"); // } // out.println(output); // _______________________________ int n = sc.nextInt(); int k = sc.nextInt(); ArrayList <Integer> a=new ArrayList(); ArrayList <Integer> b=new ArrayList(); ArrayList <Integer> c=new ArrayList(); for(int i=0;i<n;i++) { int t=sc.nextInt(); int x=sc.nextInt(); int y=sc.nextInt(); if(x==1 && y==1) a.add(t); else if(x==1 && y==0) b.add(t); else if(x==0 && y==1) c.add(t); } Collections.sort(b); Collections.sort(c); int j=0; while(j<b.size() && j<c.size()) { a.add(b.get(j)+c.get(j)); j++; } Collections.sort(a); if(a.size()<k) out.println(-1); else { int sum=0; for(int i=0;i<k;i++) sum+=a.get(i); out.println(sum); } // ________________________________ out.flush(); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.*; public class Solution { // public static int gcd(int a,int b){ // if(a==1 ||b==1) // return 1; // if(b==0) // return a; // return gcd(b, a%b); // } // public static HashMap<Integer,Integer> primeFactors(int n) // { // HashMap<Integer,Integer> h=new HashMap<> (); // while (n%2==0) // { // if(h.containsKey(2)) // h.add(2,h.get(2)+1); // else // h.put(2,1); // n /= 2; // } // // n must be odd at this point. So we can // // skip one element (Note i = i +2) // for (int i = 3; i <= Math.sqrt(n); i+= 2) // { // // While i divides n, print i and divide n // while (n%i == 0) // { // if(h.containsKey(i)) // h.add(i,h.get(i)+1); // else // h.put(i,1); // n /= i; // } // } // // This condition is to handle the case whien // // n is a prime number greater than 2 // if (n > 2) { // if(h.containsKey(n)) // h.add(n,h.get(n)+1); // else // h.put(n,1); // } // return h; // } // public static boolean isPowerOfTwo (int x) // { // /* First x in the below expression is // for the case when x is 0 */ // return x!=0 && ((x&(x-1)) == 0); // } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader( new InputStreamReader(System.in)); StringBuilder out=new StringBuilder(); StringTokenizer st=new StringTokenizer(br.readLine()); int n=Integer.parseInt(st.nextToken()); int k=Integer.parseInt(st.nextToken()); int t=n; ArrayList<Integer> bo=new ArrayList<>(); ArrayList<Integer> aa=new ArrayList<>(); ArrayList<Integer> bb=new ArrayList<>(); while(t-->0){ st=new StringTokenizer(br.readLine()); int s=Integer.parseInt(st.nextToken()); int a=Integer.parseInt(st.nextToken()); int b=Integer.parseInt(st.nextToken()); if(a==1 && b==1) bo.add(s); else if(a==0 && b==1) bb.add(s); else if(b==0 && a==1) aa.add(s); } if(aa.size()+bo.size()<k || bb.size()+bo.size()<k) { out.append(-1); }else{ long ans=0; int i=0,j=0,l=0; int s1=k,s2=k; Collections.sort(bo); Collections.sort(bb); Collections.sort(aa); while(i<bo.size() ||j<aa.size()||l<bb.size()){ if(s1==0 && s2==0) break; long a1,a2,a3; if(i>=bo.size()) a1=Integer.MAX_VALUE; else a1=bo.get(i); if(j>=aa.size()) a2=Integer.MAX_VALUE; else a2=aa.get(j); if(l>=bb.size()) a3=Integer.MAX_VALUE; else a3=bb.get(l); if(a1<=a2+a3){ s1--;s2--; ans=ans+a1; i++; }else{ s1--;s2--; ans=ans+a2+a3; j++;l++; } // System.out.println(a1+"*"+a2+"*"+a3+"/"+ans); } out.append(ans); } System.out.println(out); } } // class Graph // { // private int V; // No. of vertices // // Array of lists for Adjacency List Representation // ArrayList<pair> adj[]; // // Constructor // Graph(int v) // { // V = v; // adj = new ArrayList[v]; // for (int i=0; i<v; ++i) // adj[i] = new ArrayList(); // } // //Function to add an edge into the graph // void addEdge(int v, int w,int x) // { // adj[v].add(new pair(w,x)); // adj[w].add(new pair(v,x));// Add w to v's list. // } // // A function used by DFS // } // class pair{ // int x; // int y; // public pair(int xx,int yy){ // x=xx; // y=yy; // } // } class SortT implements Comparator<String> { public int compare(String a, String b) { return a.length() - b.length(); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { int n, k; cin >> n >> k; vector<int> a, b, c; for (int i = 0; i < n; i++) { int x, y, z; cin >> x >> y >> z; if (y == 0 && z == 0) continue; else if (y == 1 && z == 0) a.push_back(x); else if (y == 0 && z == 1) b.push_back(x); else c.push_back(x); } sort(a.begin(), a.end()); sort(b.begin(), b.end()); sort(c.begin(), c.end()); int n1 = a.size(); int n2 = b.size(); int n3 = c.size(); for (int i = 1; i < n1; i++) { a[i] += a[i - 1]; } for (int i = 1; i < n2; i++) { b[i] += b[i - 1]; } for (int i = 1; i < n3; i++) { c[i] += c[i - 1]; } int ans = INT_MAX; int r = k; if (r <= n1 && r <= n2) { ans = min(ans, (r - 1 >= 0 ? a[r - 1] : 0) + (r - 1 >= 0 ? b[r - 1] : 0)); } int s = 0; for (int i = 0; i < k && i < n3; i++) { int r = k - i - 1; s = c[i]; if (r <= n1 && r <= n2) { ans = min(ans, s + (r - 1 >= 0 ? a[r - 1] : 0) + (r - 1 >= 0 ? b[r - 1] : 0)); } } if (n3 >= k) ans = min(ans, c[k - 1]); if (ans == INT_MAX) cout << "-1\n"; else cout << ans << '\n'; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int tt; tt = 1; while (tt--) solve(); return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from sys import * from math import * n,k= map(int, stdin.readline().split()) x,y,z=[],[],[] for i in range(n): t,a,b= map(int, stdin.readline().split()) if a and b : z.append(t) elif a: x.append(t) elif b: y.append(t) x.sort() y.sort() for i in range(min(len(x),len(y))): z.append(x[i]+y[i]) z.sort() if len(z)<k: print(-1) else: ans=0 for i in range(k): ans+=z[i] print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
def answer(n,k,l): l.sort(key=lambda x:x[0]) a=[] b=[] ab=[] for i in range(n): if l[i][1]==1 and l[i][2]==1: ab.append(l[i][0]) elif l[i][1]==1: a.append(l[i][0]) elif l[i][2]==1: b.append(l[i][0]) mini=min(len(a),len(b)) if mini+len(ab)<k: return -1 t=0 ai=0 bi=0 abi=0 for i in range(k): if ai<len(a) and bi<len(b) and abi<len(ab): if a[ai]+b[bi]<=ab[abi]: t+=a[ai]+b[bi] ai+=1 bi+=1 else: t+=ab[abi] abi+=1 elif (ai>=len(a) or bi>=len(b)): t+=ab[abi] abi+=1 elif abi>=len(ab): t+=a[ai]+b[bi] ai+=1 bi+=1 return t n,k=map(int,input().split()) l=[] for i in range(n): t=list(map(int,input().split())) l.append(t) print(answer(n,k,l))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.io.*; import java.util.*; public class Main{ static int N = 200010; static long[] one = new long[N]; static long[] two = new long[N]; static long[] three = new long[N]; public static void main(String[] args) throws IOException{ BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String[] arr = in.readLine().split(" "); int n = Integer.parseInt(arr[0]); int k = Integer.parseInt(arr[1]); int ix1 = 1; int ix2 = 1; int ix3 = 1; while(n -- > 0) { String[] cur = in.readLine().split(" "); int t = Integer.parseInt(cur[0]); int a = Integer.parseInt(cur[1]); int b = Integer.parseInt(cur[2]); if(a == 1 && b == 1) one[ix1 ++] = t; else if(a == 1 && b == 0) two[ix2 ++] = t; else if(a == 0 && b == 1) three[ix3 ++] = t; } Arrays.sort(one, 1, ix1); Arrays.sort(two, 1, ix2); Arrays.sort(three, 1, ix3); if(ix1 - 1 + Math.min(ix2 - 1, ix3 - 1) < k) System.out.println(-1); else if(ix1 - 1 == 0) { long s = 0; for(int i=1; i<=k; i++) s += two[i] + three[i]; System.out.println(s); }else { PriorityQueue<Long> q = new PriorityQueue<Long>(); for(int i=1; i<ix1; i++) q.add(one[i]); for(int i=1; i<Math.min(ix2, ix3); i++) q.add(two[i] + three[i]); long s = 0; for(int i=0; i<k; i++) s += q.poll(); System.out.println(s); } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python2
import sys import math from collections import defaultdict n,k = list(map(int, sys.stdin.readline().strip().split(' '))) t = [] a = [] b = [] for _ in range(n): ti,ai,bi = list(map(int, sys.stdin.readline().strip().split(' '))) t.append(ti) a.append(ai) b.append(bi) alice_only = [] alice = 0 bob = 0 bob_only = [] taken = [0 for i in range(n)] ts = sorted(enumerate(t), key=lambda x: x[1]) for i,ti in ts: if a[i] and b[i]: if alice == k and bob == k: if alice_only and bob_only: if ti < alice_only[-1][1] + bob_only[-1][1]: j, _ = alice_only.pop() taken[j] = 0 j, _ = bob_only.pop() taken[j] = 0 taken[i] = 1 continue if alice == k: if alice_only: j, _ = alice_only.pop() taken[j] = 0 else: alice += 1 if bob == k: if bob_only: j, _ = bob_only.pop() taken[j] = 0 else: bob += 1 taken[i] = 1 continue if a[i] and alice < k: alice += 1 alice_only.append((i,ti)) taken[i] = 1 if b[i] and bob < k: bob += 1 bob_only.append((i,ti)) taken[i] = 1 if alice != k or bob != k: print(-1) else: ans = 0 for i,ti in ts: if taken[i]: ans += ti print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
import sys, os from io import BytesIO, IOBase from math import floor, gcd, fabs, factorial, fmod, sqrt, inf, log from collections import defaultdict as dd, deque from heapq import merge, heapify, heappop, heappush, nsmallest from bisect import bisect_left as bl, bisect_right as br, bisect # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") stdin, stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) mod = pow(10, 9) + 7 mod2 = 998244353 def inp(): return stdin.readline().strip() def iinp(): return int(inp()) def out(var, end="\n"): stdout.write(str(var)+"\n") def outa(*var, end="\n"): stdout.write(' '.join(map(str, var)) + end) def lmp(): return list(mp()) def mp(): return map(int, inp().split()) def l1d(n, val=0): return [val for i in range(n)] def l2d(n, m, val=0): return [l1d(m, val) for j in range(n)] def ceil(a, b): return (a+b-1)//b S1 = 'abcdefghijklmnopqrstuvwxyz' S2 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def isprime(x): if x<=1: return False if x in (2, 3): return True if x%2 == 0: return False for i in range(3, int(sqrt(x))+1, 2): if x%i == 0: return False return True n, k = mp() a, b, ab = l2d(3, 0) for i in range(n): x, y, z = mp() if y==z==1: ab.append(x) elif y==1: a.append(x) elif z==1: b.append(x) if min(len(b), len(a))+len(ab)<k: print(-1) exit() a.sort(reverse=True) b.sort(reverse=True) ab.sort(reverse=True) ans = 0 i = 0 while i < k: if len(a)==0 or len(b)==0: ans += ab.pop() elif len(ab)==0: ans += a.pop() + b.pop() else: x, y, z = a[-1], b[-1], ab[-1] if x+y < z: ans += a.pop()+b.pop() else: ans += ab.pop() i+=1 print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
def next(): return [int(x) for x in input().split()] class book: def __init__(self, t, a, b): self.t = t self.a = a self.b = b if __name__ == '__main__': n, k = next() books = [] for _ in range(n): t, a, b = next() books.append(book(t, a, b)) oo = list(map(lambda x: x.t, filter(lambda x: x.a == 1 and x.b == 1, books))) zo = list(sorted(map(lambda x: x.t, filter(lambda x: x.a == 0 and x.b == 1, books)))) oz = list(sorted(map(lambda x: x.t, filter(lambda x: x.a == 1 and x.b == 0, books)))) mi = min(len(zo), len(oz)) for i in range(mi): oo.append(zo[i] + oz[i]) if len(oo) < k: print(-1) else: print(sum(sorted(oo)[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.io.*; import java.util.*; public class E1{ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws NumberFormatException, IOException { FastReader s=new FastReader(); int n=s.nextInt(); int k=s.nextInt(); int counta=0,countb=0,countab=0,ans=0,temp1,temp2,temp3; ArrayList<Integer> arrab = new ArrayList<Integer>(); ArrayList<Integer> arra = new ArrayList<Integer>(); ArrayList<Integer> arrb = new ArrayList<Integer>(); for(int i=0;i<n;i++){ temp1=s.nextInt(); temp2=s.nextInt(); temp3=s.nextInt(); if(temp2==1&&temp3==1){ arrab.add(temp1); countab++; } else if(temp2==1&&temp3==0){ arra.add(temp1); counta++; } else if(temp2==0&&temp3==1){ arrb.add(temp1); countb++; } } Collections.sort(arra);Collections.sort(arrb);Collections.sort(arrab); temp1=0;temp2=0;temp3=0; if((counta+countab)<k||(countb+countab)<k){ ans=-1; } else if(counta==0||countb==0){ for(int i=0;i<k;i++) ans+=arrab.get(i); } else{ int i=0,j=0,sum=0;temp3=0;int ext=0; while(temp1<k||temp2<k){ sum=0;ext=0; if(i<counta&&j<countb){ sum+=(arra.get(i)+arrb.get(j)); ext=1; } // if(j<countb){ // sum+=arrb.get(j); // ext=1; // } if(!arrab.isEmpty()&&temp3<countab&&(arrab.get(temp3)<=sum||ext==0)){ ans+=arrab.get(temp3); temp3++; temp1++;temp2++; } else{ if(temp1<k&&i<counta){ ans+=arra.get(i); i++; temp1++; } if(temp2<k&&j<countb){ ans+=arrb.get(j); j++; temp2++; } } } } System.out.println(ans); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from sys import stdout from collections import defaultdict import math '''t=int(input()) for _ in range(t): #n=int(input()) n,k=map(int,input().split()) l=list(map(int,input().split())) l.sort(reverse=True)''' n,k=map(int,input().split()) l=list() d=defaultdict(list) for i in range(n): a,b,c=map(int,input().split()) s=str(b)+str(c) d[s].append(a) l1=sorted(d['11']) l2=sorted(d['10']) l3=sorted(d['01']) ans=0 l4=list() m=min(len(l2),len(l3)) for i in range(m): l4.append(l2[i]+l3[i]) l=sorted(l1+l4) if len(l)<k: stdout.write(str(-1)+'\n') else: print(sum(l[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e16; class segTree { public: vector<long long> t; int n; segTree(int n) { t.resize(n * 2 + 5, 0); this->n = n; } void build() { for (int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1 | 1]; } void update(int p, long long value) { for (t[p += n] += value; p > 1; p >>= 1) t[p >> 1] = t[p] + t[p ^ 1]; } long long query(int l, int r) { long long ret = 0; r++; for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if (l & 1) ret += t[l++]; if (r & 1) ret += t[--r]; } return ret; } }; int main() { ios::sync_with_stdio(false); cin.tie(0); long long n, m, k; cin >> n >> m >> k; vector<pair<long long, long long>> a, b, c, d; for (long long i = 0; i < n; i++) { long long x, y, z; cin >> x >> y >> z; if (y == 0 && z == 0) { d.push_back({x, i}); continue; } if (y && z) a.push_back({x, i}); else if (y && !z) b.push_back({x, i}); else c.push_back({x, i}); } sort(a.begin(), a.end()); sort(b.begin(), b.end()); sort(c.begin(), c.end()); sort(d.begin(), d.end()); vector<long long> sumA(a.size() + 1, 0), sumB(b.size() + 1, 0), sumC(c.size() + 1, 0), sumD(d.size() + 1, 0); for (long long i = 0; i < a.size(); i++) { sumA[i + 1] = sumA[i] + a[i].first; } for (long long i = 0; i < b.size(); i++) { sumB[i + 1] = sumB[i] + b[i].first; } for (long long i = 0; i < c.size(); i++) { sumC[i + 1] = sumC[i] + c[i].first; } for (long long i = 0; i < d.size(); i++) { sumD[i + 1] = sumD[i] + d[i].first; } vector<unordered_set<long long>> curr(1e4 + 5); segTree *T1 = new segTree(1e4 + 5), *T2 = new segTree(1e4 + 5); for (long long i = 0; i < d.size(); i++) { T1->update(d[i].first, 1); T2->update(d[i].first, d[i].first); curr[d[i].first].insert(d[i].second); } for (long long i = 0; i < b.size(); i++) { T1->update(b[i].first, 1); T2->update(b[i].first, b[i].first); curr[b[i].first].insert(b[i].second); } for (long long i = 0; i < c.size(); i++) { T1->update(c[i].first, 1); T2->update(c[i].first, c[i].first); curr[c[i].first].insert(c[i].second); } long long ret = INF, pos = -1, pos2 = -1, pos3 = -1; long long posA = a.size(), posB = 0, posC = 0; for (long long i = k; i >= 0; i--) { if (i > a.size()) continue; if ((k - i) > min(b.size(), c.size())) continue; if (i + 2 * (k - i) > m) continue; for (long long j = i; j < posA; j++) { T1->update(a[j].first, 1); T2->update(a[j].first, a[j].first); curr[a[j].first].insert(a[j].second); } posA = i; long long need = m - i - 2 * (k - i); for (long long j = posB; j < k - i; j++) { T1->update(b[j].first, -1); T2->update(b[j].first, -b[j].first); curr[b[j].first].erase(b[j].second); } for (long long j = posB; j < k - i; j++) { T1->update(c[j].first, -1); T2->update(c[j].first, -c[j].first); curr[c[j].first].erase(c[j].second); } posB = k - i, posC = k - i; if (T1->query(0, 1e4) < need) continue; long long l = 1, r = 1e4; long long minn = 1e4; while (l <= r) { long long mid = (l + r) / 2; if (T1->query(0, mid) >= need) { minn = min(minn, mid); r = mid - 1; } else l = mid + 1; } long long tot = sumA[i] + sumB[k - i] + sumC[k - i]; long long have = T1->query(0, minn); tot += T2->query(0, minn) - (have - need) * minn; if (tot < ret) { ret = tot; pos = i; } } if (pos == -1) cout << -1 << "\n", exit(0); cout << ret << "\n"; for (long long i = 0; i < pos; i++) cout << a[i].second + 1 << " "; for (long long i = 0; i < k - pos; i++) cout << b[i].second + 1 << " " << c[i].second + 1 << " "; T1 = new segTree(1e4 + 5), T2 = new segTree(1e4 + 5); curr.assign(1e4 + 5, {}); for (long long i = 0; i < d.size(); i++) { T1->update(d[i].first, 1); T2->update(d[i].first, d[i].first); curr[d[i].first].insert(d[i].second); } for (long long i = 0; i < b.size(); i++) { T1->update(b[i].first, 1); T2->update(b[i].first, b[i].first); curr[b[i].first].insert(b[i].second); } for (long long i = 0; i < c.size(); i++) { T1->update(c[i].first, 1); T2->update(c[i].first, c[i].first); curr[c[i].first].insert(c[i].second); } posA = a.size(), posB = 0, posC = 0; for (long long i = k; i >= 0; i--) { if (i > a.size()) continue; if ((k - i) > min(b.size(), c.size())) continue; if (i + 2 * (k - i) > m) continue; for (long long j = i; j < posA; j++) { T1->update(a[j].first, 1); T2->update(a[j].first, a[j].first); curr[a[j].first].insert(a[j].second); } posA = i; long long need = m - i - 2 * (k - i); for (long long j = posB; j < k - i; j++) { T1->update(b[j].first, -1); T2->update(b[j].first, -b[j].first); curr[b[j].first].erase(b[j].second); } for (long long j = posB; j < k - i; j++) { T1->update(c[j].first, -1); T2->update(c[j].first, -c[j].first); curr[c[j].first].erase(c[j].second); } posB = k - i, posC = k - i; if (T1->query(0, 1e4) < need) continue; long long l = 1, r = 1e4; long long minn = 1e4; while (l <= r) { long long mid = (l + r) / 2; if (T1->query(0, mid) >= need) { minn = min(minn, mid); r = mid - 1; } else l = mid + 1; } if (i == pos) { for (long long j = 1; j < minn; j++) { for (auto it : curr[j]) cout << it + 1 << " ", need--; } long long ct = 0; for (auto it : curr[minn]) { if (ct == need) break; cout << it + 1 << " "; ct++; } cout << "\n"; exit(0); } } return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int M = 998244353; vector<int> both, al, bob; int k; int good(int cnt, int mi, int ma) { if (cnt > mi && (both[cnt - 1] > al[k - cnt] + bob[k - cnt])) return -1; if (cnt < ma && (both[cnt] < al[k - cnt - 1] + bob[k - cnt - 1])) return 1; return 0; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; int n; cin >> n >> k; for (int i = 0; i < n; i++) { int t, a, b; cin >> t >> a >> b; if (a && b) both.push_back(t); else if (a) al.push_back(t); else if (b) bob.push_back(t); } sort(both.begin(), both.end()); sort(al.begin(), al.end()); sort(bob.begin(), bob.end()); if ((int)min(al.size(), bob.size()) + both.size() < k) cout << -1 << "\n"; else { int mi = max(0, k - (int)min(al.size(), bob.size())), ma = min(k, (int)both.size()); int i = mi, j = ma; int res = -1; while (j - i > 1) { int mid = (i + j) >> 1; int g = good(mid, mi, ma); if (g < 0) j = mid; if (g > 0) i = mid; if (g == 0) { res = mid; break; } } if (res < 0) { if (good(j, mi, ma) == 0) res = j; else res = i; } long long sol = 0; for (i = 0; i < res; i++) sol += both[i]; for (i = 0; i < k - res; i++) sol += al[i] + bob[i]; cout << sol << "\n"; } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k=map(int,input().split()) l,l1,l2=[],[],[] for i in range(n): a,b,c=map(int,input().split()) if b==1 and c==1: l.append(a) elif b==1 and c==0: l1.append(a) elif b==0 and c==1: l2.append(a) l1.sort() l2.sort() for j in range(min(len(l1),len(l2))): l.append(l1[j]+l2[j]) l.sort() if len(l)<k: print(-1) else: print(sum(l[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from sys import stdin inp = lambda : stdin.readline().strip() n, k = [int(x) for x in inp().split()] b = [] for _ in range(n): b.append([int(x) for x in inp().split()]) both = [] alice = [] bob = [] for i in b: if i[1] == 1 and i[2] == 1: both.append(i[0]) elif i[1] == 1: alice.append(i[0]) elif i[2] == 1: bob.append(i[0]) if len(alice)+len(both) < k or len(bob) + len(both) <k: print(-1) exit() both.sort() alice.sort() bob.sort() b = 0 ind = 0 cost = 0 liked = 0 minimum = min(len(alice),len(bob)) x = max(k-minimum,0) for i in range(x): if liked == k: print(cost) exit() cost += both[i] b += 1 liked += 1 while True: if liked == k: print(cost) break if b < len(both) and ind<len(alice) and ind<len(bob) and both[b] <= alice[ind] + bob[ind]: cost += both[b] b += 1 else: cost += alice[ind] + bob[ind] ind += 1 liked += 1
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
book, k = map(int, input().split()) both, bob, alice = dict(), dict(), dict() for i in range(book): time, x, y = map(int, input().split()) if x == 1 and y == 0: alice[i] = time elif x == 0 and y == 1: bob[i] = time elif x == 1 and y == 1: both[i] = time if len(both) + len(alice) < k or len(both) + len(bob) < k: print(-1) exit() else: alice = sorted(alice.items(), key = lambda x : x[1]) bob = sorted(bob.items(), key = lambda x : x[1]) both = sorted(both.items(), key = lambda x : x[1]) count, x, y, z, time = 0, 0, 0, 0, 0 while count < k: if x < len(alice) and y < len(bob) and z < len(both): if alice[x][1] + bob[y][1] < both[z][1]: time += alice[x][1] + bob[y][1] x += 1 y += 1 count += 1 else: time += both[z][1] count += 1 z += 1 elif z >= len(both): time += alice[x][1] + bob[y][1] x += 1 y += 1 count += 1 else: time += both[z][1] count += 1 z += 1 print(time)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
import sys import functools [n,k]=[int(i) for i in sys.stdin.readline().split()] arr=[] for x in range(n): [t,a,b]=[int(j) for j in sys.stdin.readline().split()] arr.append([t,a,b]) alice=0 bob=0 for g in range(n): if(arr[g][1]==1): alice+=1 if(arr[g][2]==1): bob+=1 if(alice<k or bob<k): print(-1) else: comb_arr=[] f_arr=[] s_arr=[] for p in range(n): if(arr[p][1]==1 and arr[p][2]==1): comb_arr.append(arr[p][0]) elif(arr[p][1]==1): f_arr.append(arr[p][0]) elif(arr[p][2]==1): s_arr.append(arr[p][0]) f_arr.sort() s_arr.sort() for c in range(min(len(f_arr),len(s_arr))): comb_arr.append(f_arr[c]+s_arr[c]) comb_arr.sort() ans=sum(comb_arr[:k]) print(ans) # a_arr=[] # b_arr=[] # for a in range(n): # if(arr[a][1]==1): # a_arr.append([arr[a][0],arr[a][1],arr[a][2],a]) # if(arr[a][2]==1): # b_arr.append([arr[a][0],arr[a][1],arr[a][2],a]) # a_arr.sort() # b_arr.sort() # # alice first # ax=0 # ans1=0 # d1={} # for g in range(k): # if(a_arr[g][2]==1): # ax+=1 # d1[a_arr[g][3]]=1 # ans1+=a_arr[g][0] # c1=0 # i1=0 # while(c1<k-ax): # if(b_arr[i1][3] not in d1): # ans1+=b_arr[i1][0] # c1+=1 # i1+=1 # # bob first # bx=0 # ans2=0 # d2={} # for h in range(k): # if(b_arr[h][1]==1): # bx+=1 # d2[b_arr[h][3]]=1 # ans2+=b_arr[h][0] # c2=0 # i2=0 # while(c2<k-bx): # if(a_arr[i2][3] not in d2): # ans2+=a_arr[i2][0] # c2+=1 # i2+=1 # ans=min(ans1,ans2) # print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long Mod = 1e5 + 7; const int N = 2e6 + 5; int arr[N]; int idx[4] = {0, 0, 0, 0}; vector<int> vec[4]; int take(int x) { if (vec[x].size() <= idx[x]) return Mod; return vec[x][idx[x]++]; } int get(int x) { if (vec[x].size() <= idx[x]) return Mod; return arr[vec[x][idx[x]]]; } bool comp(int x, int y) { return arr[x] < arr[y]; } int main() { ios::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int numCases = 1; for (int caseNo = 1; caseNo <= numCases; caseNo++) { int n, k, m, sum_a = 0, sum_b = 0, sum = 0; cin >> n >> m >> k; set<int> ans; for (int i = 0; i < n; i++) { cin >> arr[i]; bool f, s; cin >> f >> s; if (f && s) vec[0].push_back(i); else if (f) vec[1].push_back(i); else if (s) vec[2].push_back(i); else vec[3].push_back(i); } sort(vec[0].begin(), vec[0].end(), comp); sort(vec[1].begin(), vec[1].end(), comp); sort(vec[2].begin(), vec[2].end(), comp); sort(vec[3].begin(), vec[3].end(), comp); while (idx[0] < min({(int)vec[0].size(), m, k})) ans.insert(take(0)); sum_a = sum_b = idx[0]; while (sum_a < k) { if (get(1) == Mod) break; ans.insert(take(1)); sum_a++; } while (sum_b < k) { if (get(2) == Mod) break; ans.insert(take(2)); sum_b++; } while (ans.size() < m) { int mn = 0; for (int i = 1; i < 4; i++) if (get(i) < get(mn)) mn = i; if (idx[0] && get(1) + get(2) < arr[vec[0][idx[0] - 1]] + get(mn)) { ans.erase(vec[0][--idx[0]]); ans.insert(take(1)); ans.insert(take(2)); continue; } ans.insert(take(mn)); } if (sum_a < k || sum_b < k || ans.size() > m) { cout << -1 << endl; continue; } for (auto u : ans) sum += arr[u]; cout << sum << '\n'; for (auto u : ans) cout << u + 1 << " "; } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = map(int,input().split()) ar11 = [] ar10 = [] ar01 = [] for i in range(n): t,a,b = map(int, input().split()) if(a==1 and b==1): ar11.append(t) elif(a==1 and b==0): ar10.append(t) elif(a==0 and b==1): ar01.append(t) # print(ar11, ar10, ar01) if(len(ar11) + min(len(ar10), len(ar01)) >= k): ar10.sort() ar01.sort() for i in range(min(len(ar10), len(ar01))): ar11.append(ar10[i] + ar01[i]) # print(ar11) ar11.sort() print(sum(ar11[:k])) else: print("-1")
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; template <typename T1, typename T2> inline void chkmin(T1 &x, const T2 &y) { if (x > y) x = y; } template <typename T1, typename T2> inline void chkmax(T1 &x, const T2 &y) { if (x < y) x = y; } int n, m, k; vector<pair<int, int>> a[4]; void read() { cin >> n >> m >> k; for (int i = 0; i < n; i++) { int t, f1, f2; cin >> t >> f1 >> f2; a[f1 * 2 + f2].push_back({t, i}); } for (int i = 0; i <= 3; i++) sort(a[i].begin(), a[i].end()); } set<pair<int, int>> L, R; int sumSet; void relax(int sz) { sz = max(sz, 0); while (L.size() > sz) { auto x = *(--L.end()); L.erase(--L.end()); sumSet -= x.first; R.insert(x); } while (L.size() < sz) { if (R.empty()) break; auto x = *(R.begin()); R.erase(R.begin()); L.insert(x); sumSet += x.first; } } void add(pair<int, int> a) { if (R.empty()) { L.insert(a); sumSet += a.first; } else if (L.empty()) { R.insert(a); } else if (*(R.begin()) < a) { R.insert(a); } else { L.insert(a); sumSet += a.first; } } int ans; vector<int> fans; void getAns() { ans = 2e9 + 228 + 1337; for (int it = 0; it < 2; it++) { L.clear(); R.clear(); sumSet = 0; int sum = 0; for (auto i : a[0]) add(i); int top1 = a[1].size() - 1; int top2 = a[2].size() - 1; for (auto i : a[1]) sum += i.first; for (auto i : a[2]) sum += i.first; for (int i = 0; i <= min(m, (int)a[3].size()); i++) { while (top1 >= 0 && top1 + 1 + i > k) { sum -= a[1][top1].first; add(a[1][top1]); top1--; } while (top2 >= 0 && top2 + 1 + i > k) { sum -= a[2][top2].first; add(a[2][top2]); top2--; } if (min(top1, top2) + 1 + i >= k) { int sz = m - i - (top1 + 1) - (top2 + 1); if (L.size() + R.size() >= sz) { relax(sz); if ((top1 + 1) + (top2 + 1) + i + (int)L.size() == m) { ans = min(ans, sum + sumSet); if (it == 1 && sum + sumSet == ans) { for (auto j : L) { fans.push_back(j.second); } for (int j = 0; j <= top1; j++) { fans.push_back(a[1][j].second); } for (int j = 0; j <= top2; j++) { fans.push_back(a[2][j].second); } for (int j = 0; j < i; j++) { fans.push_back(a[3][j].second); } return; } } } } if (i == a[3].size()) break; sum += a[3][i].first; } } cout << -1 << endl; exit(0); } void run() { getAns(); } void write() { cout << ans << endl; sort(fans.begin(), fans.end()); for (auto i : fans) { cout << i + 1 << " "; } cout << endl; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); read(); run(); write(); return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from sys import stdin from collections import defaultdict as dd from collections import deque as dq import itertools as it from math import sqrt, log, log2 from fractions import Fraction n, k = map(int, input().split()) alike, blike = 0, 0 zero_one, one_zero, one_one, zero_zero = [], [], [], [] for i in range(n): t, a, b = map(int, input().split()) alike += a blike += b if a == 0 and b == 1: zero_one.append((t, i)) elif a == 1 and b == 0: one_zero.append((t, i)) elif a== 1 and b== 1: one_one.append((t, i)) else: zero_zero.append((t, i)) if alike < k or blike < k: print(-1) exit() zero_one.sort(key = lambda x: x[0]) one_one.sort(key = lambda x: x[0]) one_zero.sort(key = lambda x: x[0]) zero_zero.sort(key = lambda x: x[0]) alike, blike = 0, 0 zo, oo, oz, zz = 0, 0, 0, 0 lzo, loo, loz, lzz = len(zero_one), len(one_one), len(one_zero), len(zero_zero) tottime = 0 books = [] while alike<k or blike<k: # if oo >= loo and zo >= lzo and oz>=loz: # break # lbo = len(books) # if lbo == m: if alike <k and blike <k: if oo>= loo and zo>=lzo and oz>=loz: print(-1) exit() elif zo >= lzo or oz >= loz: tottime += one_one[oo][0] books.append(one_one[oo][1]) oo += 1 elif oo >= loo: tottime += zero_one[zo][0] + one_zero[oz][0] books.append(zero_one[zo][1]) books.append(zero_one[oz][1]) zo += 1 oz += 1 elif zero_one[zo][0] + one_zero[oz][0] < one_one[oo][0]: tottime += zero_one[zo][0] + one_zero[oz][0] books.append(zero_one[zo][1]) books.append(zero_one[oz][1]) zo += 1 oz += 1 else: tottime += one_one[oo][0] books.append(one_one[oo][1]) oo += 1 alike += 1 blike += 1 elif alike == k and blike < k: if oo>=loo and zo>=lzo: print(-1) exit() elif oo >= loo: tottime += zero_one[zo][0] books.append(zero_one[zo][1]) zo += 1 elif zo >= lzo: tottime += one_one[oo][0] books.append(one_one[oo][1]) oo += 1 elif zero_one[zo][0] < one_one[oo][0]: tottime += zero_one[zo][0] books.append(zero_one[zo][1]) zo += 1 else: tottime += one_one[oo][0] books.append(one_one[oo][1]) oo += 1 blike += 1 elif alike <k and blike == k: if oo>=loo and oz>=loz: print(-1) exit() elif oo>=loo: tottime += one_zero[oz][0] books.append(one_zero[oz][1]) oz += 1 elif oz>= loz: tottime += one_one[oo][0] books.append(one_one[oo][1]) oo += 1 elif one_zero[oz][0] < one_one[oo][0]: tottime += one_zero[oz][0] books.append(one_zero[oz][1]) oz += 1 else: tottime += one_one[oo][0] books.append(one_one[oo][1]) oo += 1 print(tottime) # print(*books)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k=map(int,input().split()) share=[] alice=[] bob=[] for i in range(n): t,a,b=map(int,input().split()) if a and b: share.append(t) elif a: alice.append(t) elif b: bob.append(t) share.sort() cs=[0] for i in share:cs.append(cs[-1]+i) alice.sort() ca=[0] for i in alice:ca.append(ca[-1]+i) bob.sort() cb=[0] for i in bob:cb.append(cb[-1]+i) an=float("INF") for i in range(min(len(share),k)+1): if len(alice)>=k-i and len(bob)>=k-i: an=min(an,cs[i]+ca[k-i]+cb[k-i]) if an==float("INF"):print(-1) else:print(an)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0; char ch; while (!isdigit(ch = getchar())) ; x = ch - 48; while (isdigit(ch = getchar())) x = x * 10 + ch - 48; return x; } const int MAXN = 2e5 + 5; int n, m, k; vector<pair<int, int> > t[4], tmp; vector<int> ans; inline int calc(int x) { int ned = max(0, k - x), tot = 0; if (ned > min(t[1].size(), t[2].size())) return 1e9; for (int i = 0; i < x; i++) tot += t[3][i].first; for (int i = 0; i < ned; i++) tot += t[1][i].first + t[2][i].first; tmp.clear(); for (auto p : t[0]) tmp.push_back(p); for (int i = x; i < t[3].size(); i++) tmp.push_back(t[3][i]); for (int i = ned; i < t[2].size(); i++) tmp.push_back(t[2][i]); for (int i = ned; i < t[1].size(); i++) tmp.push_back(t[1][i]); sort(tmp.begin(), tmp.end()); for (int i = 0; i < m - x - 2 * ned; i++) tot += tmp[i].first; return tot; } int main() { n = read(), m = read(), k = read(); int tp1 = 0, tp2 = 0, tp3 = 0; for (int i = 1, x, a, b; i <= n; i++) x = read(), a = read(), b = read(), t[2 * a + b].push_back(make_pair(x, i)), tp1 += a, tp2 += b, tp3 += a & b; if (tp1 < k || tp2 < k || 2 * k - tp3 > m) { puts("-1"); return 0; } for (int i = 0; i <= 3; i++) sort(t[i].begin(), t[i].end()); int l = max(0, 2 * k - m), r = t[3].size(); while (l < r) { int mid1 = (2 * l + r) / 3, mid2 = (2 * r + l + 2) / 3; if (calc(mid1) < calc(mid2)) r = mid2 - 1; else l = mid1 + 1; } int ned = max(0, k - l), tot = 0; for (int i = 0; i < l; i++) tot += t[3][i].first, ans.push_back(t[3][i].second); for (int i = 0; i < ned; i++) tot += t[1][i].first + t[2][i].first, ans.push_back(t[1][i].second), ans.push_back(t[2][i].second); tmp.clear(); for (auto p : t[0]) tmp.push_back(p); for (int i = l; i < t[3].size(); i++) tmp.push_back(t[3][i]); for (int i = ned; i < t[2].size(); i++) tmp.push_back(t[2][i]); for (int i = ned; i < t[1].size(); i++) tmp.push_back(t[1][i]); sort(tmp.begin(), tmp.end()); for (int i = 0; i < m - l - 2 * ned; i++) tot += tmp[i].first, ans.push_back(tmp[i].second); printf("%d\n", tot); for (int x : ans) printf("%d ", x); return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = map(int, input().split()) a = [] b = [] both = [] for _ in range(n): x, y, z = map(int, input().split()) if y == 1 and z == 1: both.append(x) elif y == 1: a.append(x) elif z == 1: b.append(x) a.sort() b.sort() for i in range(min(len(a), len(b))): both.append(a[i]+b[i]) both.sort() if len(both) < k: print(-1) else: print(sum(both[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, k; cin >> n >> k; multiset<int> v, v0, v1; for (int i = 0; i < n; i++) { int t, a, b; cin >> t >> a >> b; if (a == 0 && b == 0) continue; if (a == 0 && b == 1) { v1.insert(t); } if (a == 1 && b == 0) v0.insert(t); if (a == 1 && b == 1) v.insert(t); } int c = 0; int ans = 0; while (c < k) { if (v0.size() == 0 && v.size() == 0) { cout << "-1"; return 0; } if (v1.size() == 0 && v.size() == 0) { cout << "-1"; return 0; } if (v1.size() == 0) { ans += *(v.begin()); v.erase(v.begin()); c++; continue; } if (v0.size() == 0) { ans += *(v.begin()); v.erase(v.begin()); c++; continue; } if (v.size() == 0) { ans += *(v1.begin()) + *(v0.begin()); v1.erase(v1.begin()); v0.erase(v0.begin()); c++; continue; } if (*(v.begin()) < *(v1.begin()) + *(v0.begin())) { ans += *(v.begin()); v.erase(v.begin()); c++; } else { ans += *(v1.begin()) + *(v0.begin()); v1.erase(v1.begin()); v0.erase(v0.begin()); c++; } } cout << ans << endl; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const double eps = 1e-8; long long ii = 1; void solve() { long long n; long long kk; cin >> n >> kk; vector<long long> alice; vector<long long> bob; vector<long long> all; long long al = 0; long long bo = 0; for (long long i = 0; i < n; i++) { long long t; long long a; long long b; cin >> t >> a >> b; if (a == 1 && b == 1) { all.push_back(t); al++; bo++; } else if (a == 1) { al++; alice.push_back(t); } else if (b == 1) { bo++; bob.push_back(t); } } if (al >= kk && bo >= kk) { sort(all.begin(), all.end()); sort(alice.begin(), alice.end()); sort(bob.begin(), bob.end()); long long j = 0; long long k = 0; long long l = 0; long long cn = 0; long long ans = 0; while (1) { if (cn == kk) break; if (j < all.size() && k < alice.size() && l < bob.size()) { if (all[j] <= alice[k] + bob[l]) ans += all[j++]; else ans += alice[k++] + bob[l++]; } else if (j < all.size()) ans += all[j++]; else ans += alice[k++] + bob[l++]; cn++; } cout << ans << '\n'; } else cout << "-1" << '\n'; } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long TestCase; TestCase = 1; while (TestCase--) solve(); return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
//package round653; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.InputMismatchException; import java.util.List; public class E1 { InputStream is; PrintWriter out; String INPUT = ""; void solve() { List<Integer> as = new ArrayList<>(); List<Integer> bs = new ArrayList<>(); List<Integer> both = new ArrayList<>(); int n = ni(), K = ni(); for(int i = 0;i < n;i++){ int t = ni(), a = ni(), b = ni(); if(a == 1 && b == 1){ both.add(t); }else if(a == 1){ as.add(t); }else if(b == 1){ bs.add(t); } } Collections.sort(both); Collections.sort(as); Collections.sort(bs); long[] cboth = new long[both.size()+1]; for(int i = 0;i < both.size();i++){ cboth[i+1] = cboth[i] + both.get(i); } long[] cas = new long[as.size()+1]; for(int i = 0;i < as.size();i++){ cas[i+1] = cas[i] + as.get(i); } long[] cbs = new long[bs.size()+1]; for(int i = 0;i < bs.size();i++){ cbs[i+1] = cbs[i] + bs.get(i); } long ans = Long.MAX_VALUE; for(int i = 0;i <= both.size();i++){ int rem = Math.max(0, K-i); if(rem <= as.size() && rem <= bs.size()){ long score = cboth[i] + cas[rem] + cbs[rem]; ans = Math.min(ans, score); } } if(ans == Long.MAX_VALUE){ out.println(-1); }else{ out.println(ans); } } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new E1().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, k; cin >> n >> k; vector<long long> a; vector<long long> b; vector<long long> m; for (long long i = 0; i < n; i = i + 1) { long long t, aa, bb; cin >> t >> aa >> bb; if (aa == 1 && bb == 0) { a.push_back(t); } if (aa == 0 && bb == 1) { b.push_back(t); } if (aa == 1 && bb == 1) { m.push_back(t); } } sort(a.begin(), a.end()); sort(b.begin(), b.end()); sort(m.begin(), m.end()); long long na = a.size(); long long nb = b.size(); long long nm = m.size(); for (long long i = 1; i < na; i = i + 1) a[i] += a[i - 1]; for (long long i = 1; i < nb; i = i + 1) b[i] += b[i - 1]; for (long long i = 1; i < nm; i = i + 1) m[i] += m[i - 1]; long long ans = 1e18; if (na >= k && nb >= k) ans = a[k - 1] + b[k - 1]; long long mi = min(nm, k); for (long long i = 0; i < mi; i = i + 1) { if (k - i - 2 >= 0 && k - i - 2 < na && k - i - 2 < nb) ans = min(ans, m[i] + a[k - i - 2] + b[k - i - 2]); } if (nm >= k) ans = min(ans, m[k - 1]); if (ans == 1e18) cout << -1 << endl; else cout << ans << endl; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
# stdin = open("testdata.txt") # def input(): # return stdin.readline().strip() def addition(lst,k): lst_alice = [] lst_bob = [] lst_both = [] addition_lst = [] lst.sort() for i in range(len(lst)): if lst[i][1] == 1 and lst[i][2] == 0: lst_alice.append(lst[i]) elif lst[i][1] == 0 and lst[i][2] == 1: lst_bob.append(lst[i]) elif lst[i][1] == 1 and lst[i][2] == 1: lst_both.append(lst[i]) n = min(len(lst_alice),len(lst_bob)) addition_lst = [ [lst_alice[i][j]+lst_bob[i][j] for j in range(3)] for i in range(n)] lst_both.extend(addition_lst) lst_both.sort() if len(lst_both) < k: return -1 ret = 0 for i in range(k): ret += lst_both[i][0] return ret n ,k = map(int,input().split()) lst = [] for _ in range(n): lst.append(list(map(int,input().split()))) print(addition(lst, k))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k = map(int, input().split()) a,b,ab = [],[],[] for _ in range(n): t,x,y = map(int, input().split()) if x==1 and y==1: ab.append(t) elif x==1 and y==0: a.append(t) elif x==0 and y==1: b.append(t) if len(ab)+min(len(a),len(b))<k: print(-1) else: cost, ind, tog = 0,0,0 a.sort() b.sort() ab.sort() for i in range(k): if tog==len(ab): cost += sum(a[ind:ind+(k-i)]) + sum(b[ind:ind+(k-i)]) break elif ind==min(len(a),len(b)): cost += sum(ab[tog:tog+(k-i)]) break else: if a[ind]+b[ind]<ab[tog]: cost += a[ind]+b[ind] ind+=1 else: cost += ab[tog] tog+=1 print(cost)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from collections import deque n,k=list(map(int,input().split())) p=[] al=0 bob=0 ali=[] c=[] bobi=[] for i in range(n): t,a,b=list(map(int,input().split())) p.append((t,a,b)) if a==1: al+=1 if b==1: bob+=1 if a==1 and b==0: ali.append(t) if a==0 and b==1: bobi.append(t) if a==1 and b==1: c.append(t) if al<k or bob<k: print(-1) exit() ali.sort() c.sort() bobi.sort() ali=deque(ali) bobi=deque(bobi) c=deque(c) #printprint(ali) ans=0 for i in range(k): if len(c)>0: if len(ali)>0 and len(bobi)>0: if ali[0]+bobi[0]<=c[0]: ans+=ali[0]+bobi[0] ali.popleft() bobi.popleft() else: ans+=c[0] c.popleft() else: ans+=c[0] c.popleft() else: ans+=ali[0] ans+=bobi[0] ali.popleft() bobi.popleft() print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
import sys input=sys.stdin.readline n,k=list(map(int,input().split())) c=[] d=[] e=[] for i in range(n): t,a,b=list(map(int,input().split())) if a==1 and b==1: c.append(t) if a==0 and b==1: d.append(t) if a==1 and b==0: e.append(t) d.sort() e.sort() x=min(len(d),len(e)) for i in range(x): c.append(d[i]+e[i]) c.sort() if len(c)<k: print(-1) else: print(sum(c[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from collections import deque n,k=map(int,input().split()) s,s1,s2=deque(),deque(),deque() while(n): t,a,b=map(int,input().split()) if(a==1 and b==1): s.append(t) if(a==1 and b==0): s1.append(t) if(a==0 and b==1): s2.append(t) n-=1 s=deque(sorted(s)) s1=deque(sorted(s1)) s2=deque(sorted(s2)) x,y,t=0,0,0 while(len(s) and len(s1) and len(s2)): if(x==k or y==k): break if(s[0]<s1[0]+s2[0]): x+=1 y+=1 t+=s[0] s.popleft() else: t+=s1[0]+s2[0] x+=1 y+=1 s1.popleft() s2.popleft() if(x!=k and y!=k and len(s1)==0): while (x!=k and y!=k and len(s)!=0): x+=1 y+=1 t+=s[0] s.popleft() if(x!=k and y!=k and len(s2)==0): while (x!=k and y!=k and len(s)!=0): x+=1 y+=1 t+=s[0] s.popleft() if(x!=k): while(len(s1) and x!=k): t+=s1[0] s1.popleft() x+=1 if(y!=k): while (len(s2) and y!=k): t+=s2[0] s2.popleft() y+=1 if(x==k and y==k): print(t) else: print("-1")
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
ve1 = [] ve2 = [] ve3 = [] s = input() n, k = map(int,s.split(' ')) num1 = 0 num2 = 0 for i in range(0,n): s = input() t, a, b = map(int, s.split(' ')) if(a & b): ve3.append(t) num1 = num1 + 1 num2 = num2 + 1 elif(a == 0 and b == 1): ve2.append(t) num2 = num2 + 1 elif(a == 1 and b == 0): ve1.append(t) num1 = num1 + 1 ve1.sort() ve2.sort() ve3.sort() if(num1 < k or num2 < k): print(-1) exit() num = 0 num1 = 0 num2 = 0 Sum = 0 while(num < k): if(num1 < len(ve1) and num1 < len(ve2) and num2 < len(ve3)): if(ve1[num1] + ve2[num1] <= ve3[num2]): Sum = Sum + ve1[num1] + ve2[num1] num1 = num1 + 1 else: Sum = Sum + ve3[num2] num2 = num2 + 1 num = num + 1 else: break if(num == k): print(Sum) exit() if(num2 < len(ve3)): while(num < k): Sum = Sum + ve3[num2] num2 = num2 + 1 num = num + 1 else: while(num < k): Sum = Sum + ve1[num1] + ve2[num1] num1 = num1 + 1 num = num + 1 print(Sum)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) throws Exception { // Your code here! Scanner sc=new Scanner(System.in); int n=sc.nextInt(),k=sc.nextInt(); ArrayList<Integer> inter=new ArrayList<>(); ArrayList<Integer> a=new ArrayList<>(); ArrayList<Integer> b=new ArrayList<>(); while(n-->0) { int t=sc.nextInt(); int p=sc.nextInt(),q=sc.nextInt(); if((p&q)==1) inter.add(t); else { if(p==1) a.add(t); else if(q==1) b.add(t); } } Collections.sort(a); Collections.sort(b); for(int i=0;i<Math.min(a.size(),b.size());i++) { inter.add(a.get(i)+b.get(i)); } Collections.sort(inter); if(inter.size()<k) System.out.println(-1); else { int ans=0; for(int i=0;i<k;i++) { ans+=inter.get(i); } System.out.println(ans); } // System.out.println("XXXXXXXX"); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k=map(int,input().split()) at=[] bt=[] both=[] f=0 for x in range(n): t,a,b=map(int,input().split()) if a==1 and b==1: both.append(t) elif a==1: at.append(t) elif b==1: bt.append(t) at.sort() bt.sort() both.sort() i=0 j=0 if len(at)+len(both)<k or len(bt)+len(both)<k: f=-1 else: for x in range(k): if i>=len(at) or i>=len(bt): i=-1 if j>=len(both): j=-1 if i==-1: f+=both[j] j+=1 elif j==-1: f+=at[i]+bt[i] i+=1 else: if at[i]+bt[i]<both[j]: f+=at[i]+bt[i] i+=1 else: f+=both[j] j+=1 print(f)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.io.*; import java.math.*; import java.util.*; public class Q5 { //Where were you during the damn contest!!!!!!!!!!! public static void main(String[] args) { FastScanner I = new FastScanner(); //Input OutPut O = new OutPut(); //Output int N = I.nextInt(); int K = I.nextInt(); int A = 0; int B = 0; //Alice and Bob ArrayList<Long> both = new ArrayList<Long>(); ArrayList<Long> Al = new ArrayList<Long>(); ArrayList<Long> Bo = new ArrayList<Long>(); long ans = -1; for (int i = 0; i < N; i++) { long T = I.nextLong(); int a = I.nextInt(); int b = I.nextInt(); if (a==1) A++; if (b==1) B++; if (a==1&&b==1) both.add(T); else if (a==1) Al.add(T); else if (b==1) Bo.add(T); } Collections.sort(both); Collections.sort(Al); //Sorting options by time Collections.sort(Bo); int a = 0; int b = 0; int bo = 0; //Pointers on array lists if (A>=K&&B>=K) { //If even possible to begin with ans++; //Convert answer to realistic time value long curA = K; long curB = K; while (curA>0&&curB>0) { boolean cheap = false; if (a<Al.size()&&b<Bo.size()) { if (bo>=both.size()||Al.get(a)+Bo.get(b)<=both.get(bo)) { ans+=Al.get(a)+Bo.get(b); a++; b++; //Shifting over pointers cheap=true; } } if (!cheap) { ans+=both.get(bo); bo++; } curA--; curB--; } } O.pln(ans); } public static long GCD(long a, long b) { if (a==0||b==0) return Math.max(a,b); return GCD(Math.min(a, b),Math.max(a, b)%Math.min(a, b)); } public static long FastExp(long base, long exp, long mod) { long ans=1; while (exp>0) { if (exp%2==1) ans*=base; exp/=2; base*=base; base%=mod; ans%=mod; } return ans; } public static long ModInv(long num,long mod) {return FastExp(num,mod-2,mod);} static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());}; } static class OutPut{ PrintWriter w = new PrintWriter(System.out); void pln(int x) {w.println(x);w.flush();} void pln(long x) {w.println(x);w.flush();} void pln(String x) {w.println(x);w.flush();} void pln(char x) {w.println(x);w.flush();} void pln(StringBuilder x) {w.println(x);w.flush();} void p(int x) {w.print(x);w.flush();} void p(long x) {w.print(x);w.flush();} void p(String x) {w.print(x);w.flush();} void p(char x) {w.print(x);w.flush();} void p(StringBuilder x) {w.print(x);w.flush();} } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
from sys import stdin, stdout input = stdin.readline print = stdout.write n, k = map(int, input().split()) alice, bob, together = [], [], [] for _ in range(n): t, a, b = map(int, input().split()) if a and b: together += t, elif a: alice += t, elif b: bob += t, sa, sb, st = len(alice), len(bob), len(together) if sa + st < k or sb + st < k: print('-1') exit() alice.sort(reverse=True) bob.sort(reverse=True) together.sort(reverse=True) time = 0 for i in range(k): if sa == 0 or sb == 0: time += together[-1] together.pop() st -= 1 elif st == 0: time += alice[-1] + bob[-1] alice.pop() bob.pop() sa -= 1 sb -= 1 else: if together[-1] <= alice[-1] + bob[-1]: time += together[-1] together.pop() st -= 1 else: time += alice[-1] + bob[-1] alice.pop() bob.pop() sa -= 1 sb -= 1 print(str(time))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = map(int, input().split()) combine = [] alice = [] bob = [] ha = 0 haa = 0 for i in range(n): a = list(map(int, input().strip().split())) if (a[1] == 1 and a[2] == 0): alice.append(a[0]) ha += 1 elif (a[1] == 0 and a[2] == 1): bob.append(a[0]) haa += 1 elif (a[1] == 1 and a[2] == 1): combine.append(a[0]) ha += 1 haa += 1 if ha < k or haa < k: print(-1) else: bob.sort() alice.sort() combine.sort() sum = [] ans = 0 mini = min(len(alice), len(bob)) for i in range(mini): sum.append(bob[i]+alice[i]) for i in combine: sum.append(i) sum.sort() for i in range(k): ans += sum[i] print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
#include <CodeforcesSolutions.h> #include <ONLINE_JUDGE <solution.cf(contestID = "1373",problemID = "B",method = "GET")>.h> """ Author : thekushalghosh Team : CodeDiggers I prefer Python language over the C++ language :p :D Visit my website : thekushalghosh.github.io """ import sys,math,cmath,time start_time = time.time() ########################################################################## ################# ---- THE ACTUAL CODE STARTS BELOW ---- ################# def solve(): n,k = invr() q = [] w = [] qw = [] for i in range(n): t,a,b = invr() if a & b > 0: qw.append(t) elif a > 0: q.append(t) elif b > 0: w.append(t) q.sort() w.sort() for i in range(min(len(q),len(w))): qw.append((q[i] + w[i])) if len(qw) < k: print(-1) else: print(sum(sorted(qw)[:k])) ################## ---- THE ACTUAL CODE ENDS ABOVE ---- ################## ########################################################################## def main(): global tt if not ONLINE_JUDGE: sys.stdin = open("input.txt","r") sys.stdout = open("output.txt","w") t = 1 for tt in range(t): solve() if not ONLINE_JUDGE: print("Time Elapsed :",time.time() - start_time,"seconds") sys.stdout.close() #---------------------- USER DEFINED INPUT FUNCTIONS ----------------------# def inp(): return(int(input())) def inlt(): return(list(map(int,input().split()))) def insr(): return(input().strip()) def invr(): return(map(int,input().split())) #------------------ USER DEFINED PROGRAMMING FUNCTIONS ------------------# def counter(a): q = dict() for i in range(len(a)): if a[i] not in q: q[a[i]] = 0 q[a[i]] = q[a[i]] + 1 return(q) def string_counter(a): q = [0] * 26 for i in range(len(a)): q[ord(a[i]) - 97] = q[ord(a[i]) - 97],1 return(q) def factors(n): q = [] for i in range(1,int(n ** 0.5) + 1): if n % i == 0: q.append(i); q.append(n // i) return(list(sorted(list(set(q))))) def prime_factors(n): q = [] while n % 2 == 0: q.append(2); n = n // 2 for i in range(3,int(n ** 0.5) + 1,2): while n % i == 0: q.append(i); n = n // i if n > 2: q.append(n) return(list(sorted(q))) #-----------------------------------------------------------------------# ONLINE_JUDGE = __debug__ if ONLINE_JUDGE: input = sys.stdin.readline main()
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
# reading_books.py from collections import defaultdict n,k = map(int,input().split()) my_dick = {} my_dick = defaultdict(lambda:list(),my_dick) for i in range(n): a,b,c = map(int,input().split()) if b+c==2: my_dick[b+c].append(a) elif b==0 and c == 1: my_dick[b+3].append(a) elif c==0 and b == 1: my_dick[c+4].append(a) # if len(my_dick[2])>=k: my_dick[2] = sorted(my_dick[2]) my_dick[3].sort() my_dick[4].sort() i = 0 while len(my_dick[3])>0 and len(my_dick[4])>0: my_dick[2].append(my_dick[3][i]+my_dick[4][i]) my_dick[3].remove(my_dick[3][i]) my_dick[4].remove(my_dick[4][i]) my_dick[2].sort() if len(my_dick[2])>=k: print(sum(my_dick[2][:k])) else: print("-1")
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
import sys input = sys.stdin.readline n,minn = map(int,input().split()) a = [] ca, cb = 0, 0 for i in range(n): t,x,y = map(int,input().split()) if x==1: ca += 1 if y==1: cb += 1 a.append((t,x,y)) if ca<minn or cb<minn: print (-1) exit() ca,cb = 0,0 alice = [] bob = [] both = [] for i in range(n): if a[i][1]==a[i][2]==1: both.append(a[i][0]) elif a[i][1]!=a[i][2]: if a[i][1]==1: alice.append(a[i][0]) else: bob.append(a[i][0]) alice.sort() bob.sort() both.sort() # print (alice) # print (bob) # print (both) i,j,k = 0,0,0 ans = 0 while ca<minn or cb<minn: if (i<len(alice) and j<len(bob) and k<len(both)) and alice[i]+bob[j]<=both[k]: ans += alice[i]+bob[j] ca += 1 cb += 1 i += 1 j += 1 elif (i<len(alice) and j<len(bob) and k<len(both)) and alice[i]+bob[j]>=both[k]: ans += both[k] ca += 1 cb += 1 k += 1 else: break if i==len(alice): while ca<minn: ans += both[k] k += 1 ca += 1 cb += 1 if j==len(bob): while cb<minn: ans += both[k] k += 1 ca += 1 cb += 1 if k==len(both): while ca<minn: ans += alice[i] i += 1 ca += 1 while cb<minn: ans += bob[j] j += 1 cb += 1 print (ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.util.*; import java.io.*; //Captain on duty! public class Main { static void compare(Main.pair a[], int n) { Arrays.sort(a, new Comparator<Main.pair>() { @Override public int compare(Main.pair p1, Main.pair p2) { return p1.f - p2.f; } }); } public static boolean checkPalindrome(String s) { // reverse the given String String reverse = new StringBuffer(s).reverse().toString(); // check whether the string is palindrome or not if (s.equals(reverse)) return true; else return false; } static class pair implements Comparable { int f; int s; pair(int fi, int se) { f = fi; s = se; } public int compareTo(Object o)//desc order { pair pr = (pair) o; if (s > pr.s) return -1; if (s == pr.s) { if (f > pr.f) return 1; else return -1; } else return 1; } public boolean equals(Object o) { pair ob = (pair) o; if (o != null) { if ((ob.f == this.f) && (ob.s == this.s)) return true; } return false; } public int hashCode() { return (this.f + " " + this.s).hashCode(); } } public static boolean palin(int l, int r, char[] c) { while (l <= r) { if (c[l] != c[r]) return false; l++; r--; } return true; } public static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static long lcm(long a, long b) { return (a*b)/gcd(a, b); } public static long hcf(long a, long b) { long t; while (b != 0) { t = b; b = a % b; a = t; } return a; } public static boolean isPrime(long n) { if (n <= 1) return false; // Check from 2 to n-1 for (int i = 2; i <= Math.sqrt(n) + 1; i++) if (n % i == 0) return false; return true; } public static String reverse(String str) { String str1 = ""; for (int i = 0; i < str.length(); i++) { str1 = str1 + str.charAt(str.length() - i - 1); } return str1; } public static double fact(long a) { if (a == 1) return 1; else return a * fact(a - 1); } static boolean isPerfectSquare(double x) { // Find floating point value of // square root of x. double sr = Math.sqrt(x); // If square root is an integer return ((sr - Math.floor(sr)) == 0); } public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } } public static void main(String[] args) { FastReader s = new FastReader(); //System.out.println("Forces Babyy!!"); int n=s.nextInt(); int k=s.nextInt(); ArrayList both=new ArrayList(); ArrayList first=new ArrayList(); ArrayList second =new ArrayList(); for(int i=0;i<n;i++) { int t=s.nextInt(); int a=s.nextInt(); int b=s.nextInt(); if(a==1 && b==1) both.add(t); else if(a==1) first.add(t); else if(b==1) second.add(t); } Collections.sort(first); Collections.sort(second); int min=Math.min(first.size(),second.size()); for(int i=0;i<min;i++) { both.add((int)first.get(i) + (int)second.get(i)); } Collections.sort(both); if(both.size()<k) System.out.println(-1); else { long ans=0; for(int i=0;i<k;i++) ans+=(int)both.get(i); System.out.println(ans); } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n,k=map(int,input().split()) a,b,c=[],[],[] for i in range(n): t,x,y=map(int,input().split()) if x==y==1:c.append(t) elif x==1:a.append(t) elif y==1:b.append(t) a.sort();b.sort() for i in range(min(len(a),len(b))): c.append(a[i]+b[i]) c.sort() if len(c)<k:print(-1) else:print(sum(c[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.util.*; import java.io.*; public class Task{ // taking inputs static BufferedReader s1; static BufferedWriter out; static String read() throws IOException{String line="";while(line.length()==0){line=s1.readLine();continue;}return line;} static int int_v (String s1){return Integer.parseInt(s1);} static long long_v(String s1){return Long.parseLong(s1);} static int[] int_arr() throws IOException{String[] a=read().split(" ");int[] b=new int[a.length];for(int i=0;i<a.length;i++){b[i]=int_v(a[i]);}return b;} static long[] long_arr() throws IOException{String[] a=read().split(" ");long[] b=new long[a.length];for(int i=0;i<a.length;i++){b[i]=long_v(a[i]);}return b;} static void assign(){s1=new BufferedReader(new InputStreamReader(System.in));out=new BufferedWriter(new OutputStreamWriter(System.out));} static void sort(int[] a){List<Integer> l=new ArrayList<>();for(int z:a){l.add(z);}Collections.sort(l);for(int i=0;i<a.length;i++){a[i]=l.get(i);}} static long gcd(long a,long b){if(b==0){return a;}return gcd(b,a%b);} static long Modpow(long a,long p,long m){long res=1;while(p>0){if((p&1)!=0){res=(res*a)%m;}p >>=1;a=(a*a)%m;}return res;} static long Modmul(long a,long b,long m){return ((a%m)*(b%m))%m;} static long ModInv(long a,long m){return Modpow(a,m-2,m);} static int mod=(int)1e9+7; //......................................@uthor_Alx.............................................. public static void main(String[] args) throws IOException{ assign(); int t=1;//int_v(read()); while(t--!=0){ int[] z=int_arr(); int n=z[0],k=z[1]; int[][] l=new int[n][3]; for(int i=0;i<n;i++){l[i]=int_arr();} List<Integer> common=new ArrayList<>(); List<Integer> a=new ArrayList<>(); List<Integer> b=new ArrayList<>(); for(int i=0;i<n;i++){ if(l[i][1]==1&&l[i][2]==1){ common.add(l[i][0]); } else if(l[i][1]==1&&l[i][2]==0){ a.add(l[i][0]); } else if(l[i][1]==0&&l[i][2]==1){ b.add(l[i][0]); } } Collections.sort(common); Collections.sort(a); Collections.sort(b); //Coolections.sort(not); int ac=0,bc=0; int ci=0,ai=0,bi=0,res=0; while(true){ if(ai>=a.size()&&ci>=common.size()&&ac<k){ break; } if(bi>=b.size()&&ci>=common.size()&&bc<k){ break; } if(bi>=b.size()&&ci>=common.size()&&ai>=a.size()){ break; } if(ac<k&&bc<k){ if(ai<a.size()&&bi<b.size()){ int xx=a.get(ai)+b.get(bi); if(ci<common.size()&& xx<common.get(ci)){ ac++;bc++; ai++;bi++; res+=xx; } else if(ci<common.size()){ ac++;bc++; res+=common.get(ci); ci++; } else{ ac++;bc++; ai++;bi++; res+=xx; } } else if(ci<common.size()){ ac++;bc++; res+=common.get(ci); ci++; } else { break; } } else if(ac>=k&&bc<k){ if(ci<common.size()&& bi<b.size()){ if(common.get(ci)>b.get(bi)){ bc++; res+=b.get(bi); bi++; } else{ bc++; res+=common.get(ci); ci++; } } else if(bi<b.size()){ bc++; res+=b.get(bi); bi++; } else{ bc++; res+=common.get(ci); ci++; } } else if(bc>=k&&ac<k){ if(ci<common.size()&& ai<a.size()){ if(common.get(ci)>a.get(ai)){ ac++; res+=a.get(ai); ai++; } else{ ac++; res+=common.get(ci); ci++; } } else if(ai<b.size()){ ac++; res+=a.get(ai); ai++; } else{ ac++; res+=common.get(ci); ci++; } } else{break;} } if(ac<k||bc<k){ out.write("-1"); } else{ out.write(res+""); } } out.flush(); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
a,k = map(int,input().split()) l1=[] l2=[] l3=[] for i in range(a): b,c,d = map(int,input().split()) if(c==1 and d==1): l3.append(b) elif(c==1): l1.append(b) elif(d==1): l2.append(b) l1 = sorted(l1) l2 = sorted(l2) l3 = sorted(l3) if((len(l1)+len(l3))<k or (len(l2)+len(l3))<k): print(-1) else: d=0 k1=0 k2=0 k3=0 for i in range(k): if(len(l3)>k3 and (len(l1)>k1 and len(l2)>k2)): if(l3[k3]<(l1[k1]+l2[k2])): d+=l3[k3] k3+=1 else: d+=l1[k1]+l2[k2] k1+=1 k2+=1 else: if(k3<len(l3)): d+=l3[k3] k3+=1 else: d+=l1[k1]+l2[k2] k1+=1 k2+=1 print(d)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
n, k = map(int, input().split()) lForE = [] lForA = [] lForB = [] cnt = 0 forE = 0 forP = 0 ans = 0 for i in range(n): temp = list(map(int, input().split())) if temp[1] and temp[2]: lForE.append(temp[0]) elif temp[1] and not temp[2]: lForA.append(temp[0]) elif not temp[1] and temp[2]: lForB.append(temp[0]) lForE.sort() lForA.sort() lForB.sort() while cnt < k and ((forP < len(lForB) and forP < len(lForA)) or forE < len(lForE)): cnt += 1 if forP < len(lForB) and forP < len(lForA) and forE < len(lForE): if lForA[forP] + lForB[forP] < lForE[forE]: ans += lForA[forP] + lForB[forP] forP += 1 else: ans += lForE[forE] forE += 1 elif forE < len(lForE): ans += lForE[forE] forE += 1 elif forP < len(lForB) and forP < len(lForA): ans += lForA[forP] + lForB[forP] forP += 1 if cnt < k: print(-1) else: print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
java
import java.util.*; import java.io.*; public class Main { public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw=new PrintWriter(System.out); // int t=Integer.parseInt(br.readLine()); // while(t-->0) // { //int n=Integer.parseInt(br.readLine()); String str[]=br.readLine().split(" "); int n=Integer.parseInt(str[0]); int k=Integer.parseInt(str[1]); //int n=Integer.parseInt(str[2]); int arr[][]=new int[n][3]; for(int i=0;i<n;i++) { str=br.readLine().split(" "); arr[i][0]=Integer.parseInt(str[0]); arr[i][1]=Integer.parseInt(str[1]); arr[i][2]=Integer.parseInt(str[2]); } int ac=0,bc=0; for(int i=0;i<n;i++) { if(arr[i][1]==1) ac++; if(arr[i][2]==1) bc++; } if(ac<k||bc<k) pw.println(-1); else { ArrayList<Integer> ab=new ArrayList<>(); ArrayList<Integer> a=new ArrayList<>(); ArrayList<Integer> b=new ArrayList<>(); for(int i=0;i<n;i++) { if(arr[i][1]==1&&arr[i][2]==1) ab.add(arr[i][0]); else if(arr[i][1]==1) a.add(arr[i][0]); else if(arr[i][2]==1) b.add(arr[i][0]); } Collections.sort(ab); Collections.sort(b); Collections.sort(a); long ans=0; if(a.size()==0||b.size()==0) { for(int j=0;j<k;j++) ans=ans+ab.get(j); } else { ac=k; bc=k; int i=0,j=0,p=0; while(i<ab.size()&&j<a.size()&&p<b.size()&&ac>0&&bc>0) { if(a.get(j)+b.get(p)<ab.get(i)) { ac--; bc--; ans=ans+a.get(j)+b.get(p); j++; p++; } else { ac--; bc--; ans=ans+ab.get(i); i++; } } if(i==ab.size()) { while(ac>0&&bc>0) { ac--; bc--; ans=ans+a.get(j)+b.get(p); j++; p++; } } else { while(ac>0&&bc>0) { ac--; bc--; ans=ans+ab.get(i); i++; } } } pw.println(ans); } // } pw.flush(); pw.close(); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
""" // Author : snape_here - Susanta Mukherjee """ from __future__ import division, print_function import os,sys from io import BytesIO, IOBase if sys.version_info[0] < 3: from __builtin__ import xrange as range from future_builtins import ascii, filter, hex, map, oct, zip def ii(): return int(input()) def fi(): return float(input()) def si(): return input() def msi(): return map(str,input().split()) def mi(): return map(int,input().split()) def li(): return list(mi()) def read(): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') def gcd(x, y): while y: x, y = y, x % y return x mod=1000000007 from math import log,log2,sqrt,factorial,cos,tan,sin,radians,ceil,floor import bisect from decimal import * abc="abcdefghijklmnopqrstuvwxyz" pi=3.141592653589793238 def main(): n,k=mi() l=[] l1=[] l2=[] for i in range(n): x,y,z=mi() if y and z: l.append(x) elif y: l1.append(x) elif z: l2.append(x) l1.sort() l2.sort() for i in range(min(len(l1),len(l2))): l.append(l1[i]+l2[i]) l.sort() if len(l)<k: print(-1) else: ans=sum(l[0:k]) print(ans) # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": #read() main()
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, k; cin >> n >> k; vector<tuple<long long, long long, long long>> v; long long x = 0, y = 0, z = 0; for (long long i = 0; i < n; i++) { long long a, b, c; cin >> a >> b >> c; v.push_back(make_tuple(a, b, c)); if (b == 1 && c == 1) { x++; } if (b == 1 && c == 0) { y++; } if (b == 0 && c == 1) { z++; } } sort(v.begin(), v.end()); long long sum = 0; long long sum1 = 0; long long sum2 = 0; long long j = 0, w = 0, q = 0; long long a[x], b[y], c[z]; for (long long i = 0; i < v.size(); i++) { if (get<1>(v[i]) == get<2>(v[i]) && get<2>(v[i]) == 1) { sum += get<0>(v[i]); a[j] = sum; j++; } if (get<1>(v[i]) == 1 && get<2>(v[i]) == 0) { sum1 += get<0>(v[i]); b[w] = sum1; w++; } if (get<1>(v[i]) == 0 && get<2>(v[i]) == 1) { sum2 += get<0>(v[i]); c[q] = sum2; q++; } } if ((w + j) < k || (j + q) < k) { cout << -1 << "\n"; } else { long long ans = 10000000000; if ((q) >= k && (w) >= k) { ans = b[k - 1] + c[k - 1]; } for (long long i = 0; i < j; i++) { if ((k - i - 2) >= 0 && (k - i - 2) < w && (k - i - 2) < q) { if ((ans) > (a[i] + b[k - i - 2] + c[k - i - 2])) { ans = a[i] + b[k - i - 2] + c[k - i - 2]; } } if ((k - i - 2) < 0) { if (j >= k) { if ((ans) > a[k - 1]) { ans = a[k - 1]; } } } } cout << ans << "\n"; } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
CORRECT
python3
z=input mod = 10**9 + 7 from collections import * from queue import * from sys import * from collections import * from math import * from heapq import * from itertools import * from bisect import * from collections import Counter as cc from math import factorial as f def lcd(xnum1,xnum2): return (xnum1*xnum2//gcd(xnum1,xnum2)) ################################################################################ """ n=int(z()) for _ in range(int(z())): x=int(z()) l=list(map(int,z().split())) n=int(z()) l=sorted(list(map(int,z().split())))[::-1] a,b=map(int,z().split()) l=set(map(int,z().split())) led=(6,2,5,5,4,5,6,3,7,6) vowel={'a':0,'e':0,'i':0,'o':0,'u':0} color-4=["G", "GB", "YGB", "YGBI", "OYGBI" ,"OYGBIV",'ROYGBIV' ] """ ###########################---START-CODING---############################################### for _ in range(1): n,k=map(int,z().split()) a=[] b=[] them=[] ta,tb,th=0,0,0 for _ in range(n): c,d,e=map(int,z().split()) if d==1 and e==1: them.append(c) th+=1 continue if d==1: a.append(c) ta+=1 continue if e==1: b.append(c) tb+=1 a=sorted(a) b=sorted(b) for i in range(min(ta,tb)): them.append(a[i]+b[i]) if len(them)<k: print(-1) else: print(sum(sorted(them)[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
import sys import math as mt input=sys.stdin.buffer.readline t=1 def Sort(sub_li): sub_li.sort(key = lambda x: x[0]) return sub_li #t=int(input()) for _ in range(t): #n=int(input()) n,k=map(int,input().split()) #l=list(map(int,input().split())) l2=[] for ___ in range(n): time,a,b=map(int,input().split()) l2.append([time,a,b]) l1=Sort(l2) #print(l1) ans=0 k1,k2=k,k res=[] rem1=[] rem2=[] tot1,tot2=0,0 for i in range(n): if l1[i][1]==1: tot1+=1 if l1[i][2]==1: tot2+=1 occ1,occ2=0,0 for i in range(n): if l1[i][1]!=l1[i][2]: if l1[i][1]==1: if k1>0: occ1+=1 res.append([l1[i][0],1,0]) k1-=1 ans+=l1[i][0] else: if k2>0: occ2+=1 res.append([l1[i][0],0,1]) k2-=1 ans+=l1[i][0] else: if l1[i][1]==l1[i][2] and l1[i][1]==1: if len(res)>=2: rem1=((tot1-occ1+(res[-1][1]+res[-2][1]))) rem2=((tot2-occ2+(res[-1][2]+res[-2][2]))) rem3=(tot1-occ1) rem4=(tot2-occ2) #print(120,res) #print(121,i,rem1,k1,rem2,k2,rem3,rem4) if (rem1<k1 or rem2<k2): occ1+=1 occ2+=1 k1=max(k1-1,0) k2=max(k2-1,0) ans+=l1[i][0] else: if ((res[-1][0]+res[-2][0])>=l1[i][0] and rem1>=k1 and rem2>=k2): #print(11,i) #occ1-=(res[-1][1]+res[-2][1]) #occ2-=(res[-1][2]+res[-2][2]) occ1+=1 occ2+=1 ans-=(res[-1][0]+res[-2][0]) k1=max(k1-1,0) k2=max(k2-1,0) occ1+=1 occ2+=1 ans+=l1[i][0] res.pop() res.pop() else: if k1>0 or k2>0: ans+=l1[i][0] k1=max(k1-1,0) k2=max(k2-1,0) if k1>0 or k2>0: print(-1) else: print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.Collections; import java.util.Scanner; public class ReadingBooksE1 { public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int k = sc.nextInt(); ArrayList<Integer> libA = new ArrayList(); ArrayList<Integer> libB = new ArrayList(); ArrayList<Integer> libAB = new ArrayList(); for (int i=0;i<n;i++){ int book = sc.nextInt(); int A = sc.nextInt(); int B = sc.nextInt(); if (A==1&&B==1){ libAB.add(book); }else if (A==1){ libA.add(book); }else if (B==1){ libB.add(book); } } Collections.sort(libA); Collections.sort(libB); Collections.sort(libAB); if (libAB.size()+Math.min(libA.size(),libB.size())<k){ System.out.println(-1); }else { int ans = 0; int a =0; int b =0; int c =0; for (int i=0;i<k;i++){ if (a<libA.size()&&b<libB.size()){ if (c<libAB.size()){ ans += libA.get(a)+libB.get(b); a++; b++; }else if (libA.get(a)+libB.get(b)<libAB.get(c)){ ans += libA.get(a)+libB.get(b); a++; b++; }else { ans += libAB.get(c); c++; } }else { ans += libAB.get(c); c++; } } System.out.println(ans); } } } /*** * * [1] == [2] == 1 * [1] == 1 * [2] == 1 * * * a1 a2 a3 a4 a5 a6 * b1 b2 b3 b4 b5 b6 * c1 c2 c3 c4 c5 c6 * * a b = size + a b * c = size + c * * * * */
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
from heapq import heapify, heappop, heappush import sys input = sys.stdin.buffer.readline def main(): n,k = map(int,input().split()) A = []; B = []; AorB = []; C = [] for __ in range(n): t,a,b = map(int,input().split()) if a == b == 1: C.append(t) elif a == 1: A.append(t) AorB.append(t) elif b == 1: B.append(t) AorB.append(t) if len(A) + len(C) < k or len(B) + len(C) < k: print(-1); exit() A.sort(); B.sort(); C.sort() PQ = [] for i in range(min(k,len(C))): PQ.append(C[i]) ans = 0 nokori = k - len(PQ) for i in range(nokori): ans += A[i] + B[i] ab_idx = nokori while C and ab_idx < len(A) and ab_idx < len(B) and C[-1] >= A[ab_idx] + B[ab_idx]: C.pop() ans += A[ab_idx] + B[ab_idx] ab_idx += 1 ans += sum(C) print(ans) if __name__ == '__main__': main()
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
rr = lambda: input() rri = lambda: int(input()) rrm = lambda: list(map(int, input().split())) INF=float('inf') def solve(N,K,B): aread = 0 atotal = 0 soloa = [] bread = 0 btotal = 0 solob = [] totaltime = 0 for time, alike, blike in B: #print(time,alike,blike) #print(soloa, solob) #print(" ") if not alike and not blike: continue if alike and not blike: if aread >= K: continue # dont add if exclusive and full else: aread+=1 soloa.append(time) atotal += time elif blike and not alike: if bread >= K: continue # dont add if exclusive and full else: bread+=1 solob.append(time) btotal += time else: # check if want to add lose = 0 if aread >= K and len(soloa) > 0: lose += soloa[-1] if bread >= K and len(solob) > 0: lose += solob[-1] #print(lose, time) # cheaper to read this book, then two separate if lose > time or aread < K or bread < K: aread += 1 bread += 1 totaltime += time if aread >= K+1 and len(soloa) > 0: atotal -= soloa.pop() aread -= 1 if bread >= K+1 and len(solob) > 0: btotal -= solob.pop() bread -= 1 #print(soloa, solob) if aread < K or bread < K: return -1 return totaltime + atotal + btotal n,k = rrm() books = [] # tuples (time, alice likes it, bob likes it) for _ in range(n): time,a,b=rrm() books.append((time,a,b)) print(solve(n,k,books))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const long long INF = LLONG_MAX / 2; const long long N = 2e5 + 1; using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long t; t = 1; while (t--) { long long n, k; std::cin >> n >> k; long long sum = 0, pp = 0, i, ta[n], a[n], b[n], a1[n], j = 0, m = 0, l = 0, b1[n], ab[n], ak = k, bk = k, j1 = 0, m1 = 0, l1 = 0; for (long long i = 0; i < n; i++) { std::cin >> ta[i] >> a[i] >> b[i]; if (a[i] == 1 && b[i] == 1) ab[j++] = ta[i]; else if (a[i] == 1) a1[m++] = ta[i]; else if (b[i] == 1) b1[l++] = ta[i]; else pp++; } if (l + j < k || m + j < k) { cout << "-1\n"; continue; } if (j != 0) sort(ab, ab + j); if (m != 0) sort(a1, a1 + m); if (l != 0) sort(b1, b1 + l); for (long long i = 0; i < ak + bk + 2; i++) { if ((j1 >= j) || (m1 < m && l1 < l && a1[m1] + b1[l1] < ab[j1])) { sum += a1[m1] + b1[l1]; ak--, bk--; m1++, l1++; } else { sum += ab[j1]; ak--, bk--; j1++; } } cout << sum << "\n"; } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
from collections import Counter n, m, k = map(int, input().split()) dat = [list(map(int, input().split())) for _ in range(n)] for i, v in enumerate(dat): v.append(i) x = [(v, i, i) for v, a, b, i in dat if a and b] y = [(v, i) for v, a, b, i in dat if a and not b] z = [(v, i) for v, a, b, i in dat if not a and b] x.extend((u + v, i, j) for (u, i), (v, j) in zip(sorted(y), sorted(z))) if len(x) < k: print(-1) else: x.sort() xk = x[:k] res = sum(v for v, _, _ in xk) sk = set() for _, i, j in xk: sk.update({i, j}) kk = len(sk) if kk > m: x1 = [v for v in x if v[1] == v[2]] k1 = sum(1 for v in xk if v[1] == v[2]) x2 = [v for v in x if v[1] != v[2]] k2 = sum(1 for v in xk if v[1] != v[2]) delta = kk - m if k2 < delta: res = -1 sk = None else: xk = x1[:k1+delta] + x2[:k2-delta] res = sum(v for v, _, _ in xk) sk = set() for _, i, j in xk: sk.update({i, j}) elif kk < m: w = sorted((v, i) for v, _, _, i in dat if i not in sk) wk = w[:m-kk] res += sum(v for v, _ in wk) sk.update(i for _, i in wk) print(res) if sk: print(*(v + 1 for v in sk))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long gcd(long long n, long long m) { long long x, y; if (n > m) { y = n; x = m; } else { y = m; x = n; } if (y % x == 0) return x; else { return gcd(x, y % x); } } int main() { long long n, k, p = 0, q = 0; cin >> n >> k; vector<long long> a, b, u; for (long long i = 0; i < n; i++) { long long n1, n2, n3; cin >> n1 >> n2 >> n3; if (n2 == 1 && n3 == 1) { u.push_back(n1); p++; q++; } else if (n2 == 1) { a.push_back(n1); p++; } else if (n3 == 1) { b.push_back(n1); q++; } } if (p < k || q < k) { cout << -1 << endl; return 0; } long long x = (long long)a.size() - 1, y = (long long)b.size() - 1, z = (long long)u.size() - 1; if (a.size() > 1) sort(a.begin(), a.end()); if (b.size() > 1) sort(b.begin(), b.end()); if (u.size() > 1) sort(u.begin(), u.end()); if (x == -1 || y == -1) { long long ans = 0; for (long long i = 0; i < k; i++) { ans += u[i]; } cout << ans << endl; return 0; } if (z == -1) { long long ans = 0; for (long long i = 0; i < k; i++) { ans += a[i]; } for (long long i = 0; i < k; i++) { ans += b[i]; } cout << ans << endl; return 0; } long long d = 0, cost = 0; x = 0, y = 0; for (long long i = 0; i <= z; i++) { if (i >= k) break; cost += u[i]; } if (z < k - 1) { long long i; for (i = 0; i < k - z - 1; i++) { cost += a[i]; } x = i; for (i = 0; i < k - z - 1; i++) { cost += b[i]; } y = i; } if (x == a.size() || y == b.size()) { cout << cost << endl; return 0; } while (a[x] + b[y] < u[z]) { cost = cost - u[z] + a[x] + b[y]; x++; y++; z--; if (x == a.size() || y == b.size() || z < 0) break; } cout << cost << endl; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.Collections; import java.util.LinkedList; import java.util.Scanner; public class ReadingBooksE { @SuppressWarnings("resource") public static void main(String [] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int k = s.nextInt(); int output = 0; ArrayList<Integer> Alice = new ArrayList<Integer>(); ArrayList<Integer> Bob = new ArrayList<Integer>(); ArrayList<Integer> intersect = new ArrayList<Integer>(); for (int i = 0 ; i< n ; i++) { int time = s.nextInt(); int alice = s.nextInt(); int bob = s.nextInt(); if(alice == 1 && bob == 1) { intersect.add(time); } else if(alice == 1 && bob == 0) { Alice.add(time); } else if(alice == 0 && bob == 1) { Bob.add(time); } } s.close(); if (Bob.size() + intersect.size() < k || Alice.size() + intersect.size() < k) { System.out.println(-1); return; } Collections.sort(intersect); Collections.sort(Alice); Collections.sort(Bob); for (int i =0 ; i<k ;i++) { if(!intersect.isEmpty() && !Alice.isEmpty() && !Bob.isEmpty()) { if (Alice.get(0)+Bob.get(0) > intersect.get(0)) output += intersect.remove(0); else { output+= Alice.remove(0); output+= Bob.remove(0); } } else if (intersect.isEmpty()) { output+= Alice.remove(0); output+= Bob.remove(0); } else if (Alice.isEmpty() && Bob.isEmpty()) output += intersect.remove(0); } if (output ==0) { System.out.println(-1); return; } System.out.println(output); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct book { long long x; int y, z; }; bool comp(book &b, book &a) { if (a.x > b.x) return true; else if (a.x == b.x) { if (b.y == 1 && b.z == 1) { if (a.y == 0 || a.z == 0) return true; else return false; } else return false; } else return false; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n, k; cin >> n >> k; vector<book> b; for (int i = 0; i < n; i++) { book tbook; cin >> tbook.x >> tbook.y >> tbook.z; b.push_back(tbook); } sort(b.begin(), b.end(), comp); int k1, k2; k1 = k2 = k; long long ans = 0LL; for (int i = 0; i < n; i++) { if (k1 <= 0 && k2 <= 0) break; if (b[i].y == 1 && b[i].z == 1) { k1--; k2--; ans += b[i].x; } else if (b[i].y == 1 && k1 > 0) { k1--; ans += b[i].x; } else if (b[i].z == 1 && k2 > 0) { k2--; ans += b[i].x; } } if (k1 <= 0 && k2 <= 0) cout << ans << "\n"; else cout << -1 << "\n"; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
n, k = map(int, input().split()) alice = [] bob = [] both = [] for i in range(n): t, a ,b = map(int, input().split()) if a==b==1: both.append(t) elif a==1: alice.append(t) elif b==1: bob.append(t) alen = len(alice) blen = len(bob) mini = min(alen, blen) result = [] bot_taken = 0 ab = [] for i in range(mini): ab .append(alice[i]+bob[i]) last_list = ab+both last_list.sort() if len(last_list)<k: print(-1) else: print(sum(last_list[:k]))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #pragma GCC target("sse4.2") int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long int n, k; cin >> n >> k; vector<long long int> v[4]; vector<long long int> pref[4]; for (long long int i = 0; i < (long long int)n; i++) { long long int t, a, b; cin >> t >> a >> b; v[2 * a + b].push_back(t); } for (long long int i = 0; i < (long long int)4; i++) { sort(v[i].begin(), v[i].end()); pref[i].push_back(0ll); for (long long int j = 0; j < (long long int)v[i].size(); j++) pref[i].push_back(pref[i].back() + v[i][j]); } long long int ans = 0x3f3f3f3f; for (long long int i = 0; i < min(k + 1, (long long int)pref[3].size()); i++) { if (k - i < pref[1].size() && k - i < pref[2].size()) { ans = min(ans, pref[3][i] + pref[1][k - i] + pref[2][k - i]); } } if (ans == 0x3f3f3f3f) cout << "-1\n"; else cout << ans << "\n"; return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int N = 1e5 + 5; void solve() { int n, fc, k; cin >> n >> fc >> k; vector<pair<int, int> > t, ta, tb, tc; int p, q, r; for (int i = 1; i <= n; i++) { cin >> p >> q >> r; if (q == 1 && r == 1) t.push_back({p, i}); else if (q == 1) ta.push_back({p, i}); else if (r == 1) tb.push_back({p, i}); else tc.push_back({p, i}); } n = t.size(); int m = min(ta.size(), tb.size()); int ma = ta.size(); int mb = tb.size(); int mc = tc.size(); if ((n + m) < k) { cout << -1 << endl; return; } set<int> s; sort(t.begin(), t.end()); sort(ta.begin(), ta.end()); sort(tb.begin(), tb.end()); int i = 0, j = 0; long long int ans = 0, cnt = 0, cnt2 = 0; while (cnt < k && i < n && j < m) { if (t[i].first <= (ta[j].first + tb[j].first)) { ans += t[i].first; s.insert(t[i].second); i++; cnt++; cnt2++; } else { if (cnt2 == fc - 1) break; ans += (ta[j].first + tb[j].first); s.insert(ta[j].second); s.insert(tb[j].second); j++; cnt++; cnt2 += 2; } } while (cnt < k && i < n) { ans += t[i].first; s.insert(t[i].second); i++; cnt++; cnt2++; } while (cnt < k && j < m && cnt2 < fc - 1) { if (cnt2 == fc - 1) break; ans += (ta[j].first + tb[j].first); s.insert(ta[j].second); s.insert(tb[j].second); j++; cnt++; cnt2 += 2; } if (cnt2 > fc) { cout << -1 << endl; return; } for (; i < n; i++) { tc.push_back(t[i]); } for (int ja = j; ja < ma; ja++) { tc.push_back(ta[ja]); } for (int jb = j; jb < mb; jb++) { tc.push_back(tb[jb]); } sort(tc.begin(), tc.end()); i = 0; while (cnt2 < fc) { s.insert(tc[i].second); ans += tc[i].first; i++; cnt2++; } cout << ans << endl; for (int ij : s) { cout << ij << " "; } cout << endl; } signed main() { int t = 1; while (t--) { solve(); } return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Collections; import java.util.StringTokenizer; public class CF1374E1 { public static void main(String[] args) { FastReader input = new FastReader(); PrintWriter pw = new PrintWriter(System.out); int n = input.nextInt(); int k = input.nextInt(); ArrayList<Long> alice = new ArrayList<>(); ArrayList<Long> bob = new ArrayList<>(); ArrayList<Long> aliceAndBob = new ArrayList<>(); for(int i = 0;i < n;i++){ long time = input.nextLong(); int ai = input.nextInt(); int bi = input.nextInt(); if(ai == 1 && bi == 1){ aliceAndBob.add(time); } else{ if(ai == 1){ alice.add(time); } else{ bob.add(time); } } } Collections.sort(aliceAndBob); Collections.sort(alice); Collections.sort(bob); boolean possible = true; int a = 0; int b = 0; int ab = 0; int done = 0; long totalTime = 0; while (done < k){ if(a >= alice.size() || b >= bob.size()){ if(ab >= aliceAndBob.size()){ possible = false; break; } else{ totalTime += aliceAndBob.get(ab); ab++; done++; } } else if(ab >= aliceAndBob.size()){ if(a >= alice.size() || b >= bob.size()){ possible = false; break; } else{ totalTime += alice.get(a) + bob.get(b); a++; b++; done++; } } else { if((alice.get(a) + bob.get(b) <= aliceAndBob.get(ab))){ totalTime += alice.get(a) + bob.get(b); a++; b++; done++; } else{ totalTime += aliceAndBob.get(ab); ab++; done++; } } } if(possible == false){ pw.println(-1); } else{ pw.println(totalTime); } pw.flush(); pw.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
import sys input=sys.stdin.buffer.readline n,k=[int(x) for x in input().split()] book=[] #(ti,ai,bi) for _ in range(n): book.append([int(x) for x in input().split()]) book.sort(key=lambda x:x[0]) #sort by ti asc. t=0 a=0 b=0 aPtr=0 #move aPtr upwards until a==k, only removing books with ai==1 and bi==0 bPtr=0 #move aPtr upwards until b==k, only removing books with bi==1 and ai==0 minT=99999999999999999999999999999 for i in range(n): ti,ai,bi=book[i] if ai==1 or bi==1: a+=ai b+=bi t+=ti while aPtr<i+1 and a>k: #remove books with ai==1 and bi==0 and increment aPtr if book[aPtr][1]==1 and book[aPtr][2]==0: a-=1 t-=book[aPtr][0] aPtr+=1 while bPtr<i+1 and b>k: #remove books with bi==1 and ai==0 and increment bPtr if book[bPtr][1]==0 and book[bPtr][2]==1: b-=1 t-=book[bPtr][0] bPtr+=1 if a>=k and b>=k: minT=min(minT,t) if minT==99999999999999999999999999999: print(-1) else: print(minT)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct s { int t; int a; int b; }; bool compare(struct s a, struct s b) { if (a.t == b.t) { return !(b.a == 1 and b.b == 1); } return a.t < b.t; } signed main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t = 1; while (t--) { int n, k; cin >> n >> k; struct s arr[n]; for (int i = 0; i < n; i++) { cin >> arr[i].t >> arr[i].a >> arr[i].b; } sort(arr, arr + n, compare); deque<int> need, dont_need_a, dont_need_b; int index = 0, a = 0, b = 0; for (int i = 0; i < n; i++) { if (arr[i].a == 0 and arr[i].b == 0) { continue; } if (arr[i].a == 1) { a++; } if (arr[i].b == 1) { b++; } if (arr[i].a == 1 and arr[i].b == 1) { need.push_back(i); } else { if (arr[i].a == 1) { dont_need_a.push_back(i); } else { dont_need_b.push_back(i); } } if (a >= k and b >= k) { index = i + 1; break; } } int x, y; if (need.size() == k) { dont_need_b.clear(); dont_need_a.clear(); } else if (!need.empty()) { x = k - (int)need.size(); if (dont_need_a.size() > x) { x = (int)dont_need_a.size() - x; while (x--) { dont_need_a.pop_back(); } } x = k - (int)need.size(); if (dont_need_b.size() > x) { x = (int)dont_need_b.size() - x; while (x--) { dont_need_a.pop_back(); } } } for (int i = index; i < n; i++) { if (dont_need_a.empty() or dont_need_b.empty()) break; if (arr[i].a == 1 and arr[i].b == 1) { x = dont_need_b.back(); y = dont_need_a.back(); if (arr[x].t + arr[y].t > arr[i].t) { need.push_back(i); dont_need_b.pop_back(); dont_need_a.pop_back(); } else { break; } } } long long int ans = 0; for (int i : need) { ans += arr[i].t; } for (int i : dont_need_a) { ans += arr[i].t; } for (int i : dont_need_b) { ans += arr[i].t; } if (a >= k and b >= k) { cout << ans << "\n"; } else { cout << "-1\n"; } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
/* Author: thewackyindian */ //:template starts here #pragma GCC optimize("O3", "unroll-loops") #pragma GCC target("avx2") #include <bits/stdc++.h> using namespace std; typedef long long int ll; typedef long double ld; #define fo(i,a,b) for(ll i=a;i<b;i++) #define foe(i,a,b) for(ll i=a;i<=b;i++) // 'e' in foen stands for equal #define rev(i,b,a) for(ll i=b;i>=a;i--)//reverse where it starts from b and goes till a -> thus a<b. #define read_arr(a,n) for(ll i=0;i<n;i++) cin>>a[i]; #define write_arr(a,n) for(auto &x:a){cout<<x<<" ";} cout<<endl; #define vec vector<ll> #define vec2 vector<vector<ll>> #define pr pair<ll,ll> #define pb push_back #define in insert #define f first #define s second #define fast_cin() ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL) #define mem(v,i) memset(v,i,sizeof(v)) #define all(x) x.begin(), x.end() #define fps(x, y) fixed << setprecision(y) << x #define endl '\n' #define TIME (chrono::steady_clock::now().time_since_epoch().count()) const long long mod = 1000000007; // const long long mod = 998244353; const long long N = 3e5+5; vec primes(ll n) { bool P[n+1] = {false}; vec p; for (ll j, i = 2; i <= n; i++) if (!P[i]) for (p.pb(i), j = i * i; j <= n; j += i) P[j] = true; return p; } ll largest_bit(ll x) { return x==0 ? -1 : 63 - __builtin_clzll(x); } ll gcd(ll a, ll b) { if(a < b) return gcd(b, a); if (!b) return a; return gcd(b, a % b); } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } ll add(ll a, ll b) { a %= mod; b %= mod; a = (a + b) % mod; return a; } ll mul(ll a, ll b) { a %= mod; b %= mod; a = (a * b) % mod; return a; } ll sub(ll a, ll b) { a %= mod; b %= mod; a = ((a - b) % mod + mod) % mod; return a; } ll exp(ll x, ll y, ll m = mod) { ll res = 1; x = x % m; while (y > 0) { if (y & 1) res = (res * x) % m; y = y >> 1; x = (x * x) % m; } return res; } ll modinv(ll x, ll m = mod) { return exp(x, m - 2, m); } //:template ends here bool comp(pair<ll,pair<ll,ll>>a,pair<ll,pair<ll,ll>>b) { if(a.f<b.f && a.s.f+a.s.s==b.s.f+b.s.s) return true; else if(a.f>b.f) return false; return a.s.f+a.s.s >=b.s.f+b.s.s; } ll n,k; struct book { ll time; ll likea; ll likeb; }book; void itswacky() { cin>>n>>k; vector<pair<ll,pair<ll,ll>>>details; ll la=0,lb=0; fo(i,0,n) { cin>>book.time>>book.likea>>book.likeb; if(book.likea!=0 || book.likeb!=0){ details.pb({book.time,{book.likea,book.likeb}}); } la+=book.likea; lb+=book.likeb; } if(la<k || lb<k){ cout<<-1<<endl; return; } la=0;lb=0; ll sum=0; sort(all(details),comp); for(auto &x:details) { if(la==k && lb==k) break; if(x.s.f==1 && x.s.s==1){ sum=sum+x.f; la++; lb++; } else if(x.s.f==0 && x.s.s==1){ sum=sum+x.f; //la++; lb++; } else if(x.s.f==1 && x.s.s==0){ sum=sum+x.f; la++; //lb++; } } if(la==k && lb==k){ cout<<sum<<endl; } } int main() { fast_cin(); ll t=1;; //cin>>t; while(t--) itswacky(); return 0; } /*if(la>=k && lb>=k) break; if(x.s.f==1 && x.s.s==1){ sum=sum+x.f; la++; lb++; } else if(x.s.f==0 && x.s.s==1){ sum=sum+x.f; //la++; lb++; } else if(x.s.f==1 && x.s.s==0){ sum=sum+x.f; la++; //lb++; }*/
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.util.*; public class Question5 { static Scanner sc = new Scanner(System.in); public static void main(String[] args) { int n = sc.nextInt(); int k = sc.nextInt(); int[][] arr = new int[n][3]; ArrayList<Integer> list[] = new ArrayList[4]; for(int i = 0;i < 4;i++)list[i] = new ArrayList<Integer>(); int sumb = 0, sumc = 0; for(int i = 0;i < n;i++) { int t = sc.nextInt(); int b = sc.nextInt(); int c = sc.nextInt(); sumb += b; sumc += c; list[2 * b + c].add(t); } if(sumb < k || sumc < k) { System.out.println(-1); return; } Collections.sort(list[1]); Collections.sort(list[2]); Collections.sort(list[3]); long ans = 0; sumb = 0; sumc = 0; ArrayList<Integer> ansList = new ArrayList<Integer>(); int ini = Math.min(k, list[3].size()); for(int i = 0;i < ini;i++) { int x = list[3].get(i); ans += x; ansList.add(x); sumb += 1; sumc += 1; } Collections.sort(ansList, Collections.reverseOrder()); int i = 0; while(sumb < k) { ansList.add(list[1].get(i)); ansList.add(list[2].get(i)); ans += list[1].get(i) + list[2].get(i); sumb++; i++; } int j = i; int l = 0; int ax = list[1].size(); int bx = list[2].size(); while(i < list[1].size() && j < list[2].size() && l < ini) { if(list[1].get(i) + list[2].get(j) < ansList.get(0)) { ans -= ansList.get(0); ansList.remove(0); ans += list[1].get(i); ans += list[1].get(j); i++; j++; l++; } else break; if(i >= ax || j >= bx || l >= ini) { break; } } System.out.println(ans); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
n,k = map(int,input().split(" ")) both = [] alice = [] bob = [] for i in range(n): t,a,b=map(int,input().split()) if (a == 1 and b == 1): both.append(t) if (a == 1 and b ==0 ): alice.append(t) if (a == 0 and b == 1): bob.append(t) alice.sort(); bob.sort() for i in range(min(len(bob),len(alice))): both.append(bob[i] + alice[i]) if (len(both) < k): print(-1) else: print(sum(sorted(both[:k])))
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main { static Scanner sc = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws Exception { int n = sc.nextInt(), k = sc.nextInt(); PriorityQueue<Integer> a, b, c; a = new PriorityQueue<>(); b = new PriorityQueue<>(); c = new PriorityQueue<>(); for (int i = 0; i < n; i++) { int ti = sc.nextInt(), ai = sc.nextInt(), bi = sc.nextInt(); if (ai == 1 && bi == 1) { c.add(ti); } else if (ai == 1) { a.add(ti); } else { b.add(ti); } } long ans = 0; boolean flag = true; while (k-- > 0) { long fst = a.isEmpty() ? Integer.MAX_VALUE : a.peek(); fst += b.isEmpty() ? Integer.MAX_VALUE : b.peek(); long snd = c.isEmpty() ? Integer.MAX_VALUE : c.peek(); if(Math.min(fst, snd) >= Integer.MAX_VALUE) { flag = false; break; } if(fst < snd) { ans += fst; a.poll(); b.poll(); }else { ans += snd; c.poll(); } } out.println(flag ? ans : -1); out.close(); } } class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public Long nextLong() throws IOException { return Long.parseLong(next()); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.util.*; import java.math.*; import java.io.*; public class A{ static FastReader scan=new FastReader(); public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); static LinkedList<Integer>edges[]; // static LinkedList<Pair>edges[]; static boolean stdin = true; static String filein = "input"; static String fileout = "output"; static int dx[] = { -1, 0, 1, 0 }; static int dy[] = { 0, 1, 0, -1 }; int dx_8[]={1,1,1,0,0,-1,-1,-1}; int dy_8[]={-1,0,1,-1,1,-1,0,1}; static char sts[]={'U','R','D','L'}; static boolean prime[]; static long LCM(long a,long b){ return (Math.abs(a*b))/gcd(a,b); } public static int upperBound(long[] array, int length, long value) { int low = 0; int high = length; while (low < high) { final int mid = low+(high-low) / 2; if ( array[mid]>value) { high = mid ; } else { low = mid+1; } } return low; } static long gcd(long a, long b) { if(a!=0&&b!=0) while((a%=b)!=0&&(b%=a)!=0); return a^b; } static int countSetBits(int n) { int count = 0; while (n > 0) { if((n&1)!=1) count++; //count += n & 1; n >>= 1; } return count; } static void sieve(long n) { prime = new boolean[(int)n+1]; for(int i=0;i<n;i++) prime[i] = true; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { for(int i = p*p; i <= n; i += p) prime[i] = false; } } } static boolean isprime(long x) { for(long i=2;i*i<=x;i++) if(x%i==0) return false; return true; } static int perm=0,FOR=0; static boolean flag=false; static int len=100000000; static ArrayList<Pair>inters=new ArrayList<Pair>(); static class comp1 implements Comparator<Pair>{ public int compare(Pair o1,Pair o2){ return Integer.compare((int)o2.x,(int)o1.x); } } public static class comp2 implements Comparator<Pair>{ public int compare(Pair o1,Pair o2){ return Integer.compare((int)o2.x,(int)o1.x); } } static StringBuilder a,b; static boolean isPowerOfTwo(int n) { if(n==0) return false; return (int)(Math.ceil((Math.log(n) / Math.log(2)))) == (int)(Math.floor(((Math.log(n) / Math.log(2))))); } static ArrayList<Integer>v; static ArrayList<Integer>pows; static void block(long x) { v = new ArrayList<Integer>(); pows=new ArrayList<Integer>(); while (x > 0) { v.add((int)x % 2); x = x / 2; } // Displaying the output when // the bit is '1' in binary // equivalent of number. for (int i = 0; i < v.size(); i++) { if (v.get(i)==1) { pows.add(i); } } } static long ceil(long a,long b) { if(a%b==0) return a/b; return a/b+1; } static boolean isprime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } // Function to return the smallest // prime number greater than N static int nextPrime(int N) { // Base case if (N <= 1) return 2; int prime = N; boolean found = false; // Loop continuously until isPrime returns // true for a number greater than n while (!found) { prime++; if (isprime(prime)) found = true; } return prime; } static long mod=(long)1e9+7; static int mx=0,k; static long nPr(long n,long r) { long ret=1; for(long i=n-r+1;i<=n;i++) { ret=1L*ret*i%mod; } return ret%mod; } public static void main(String[] args) throws Exception { //SUCK IT UP AND DO IT ALRIGHT //scan=new FastReader("hps.in"); //out = new PrintWriter("hps.out"); //System.out.println( 1005899102^431072812); //int elem[]={1,2,3,4,5}; //System.out.println("avjsmlfpb".compareTo("avjsmbpfl")); int tt=1; /*for(int i=0;i<=100;i++) if(prime[i]) arr.add(i); System.out.println(arr.size());*/ // check(new StringBuilder("05:11")); // System.out.println(26010000000000L%150); //System.out.println((1000000L*99000L)); //tt=scan.nextInt(); // System.out.println(2^6^4); //StringBuilder o=new StringBuilder("GBGBGG"); //o.insert(2,"L"); int T=tt; //System.out.println(gcd(3,gcd(24,gcd(120,168)))); //System.out.println(gcd(40,gcd(5,5))); //System.out.println(gcd(45,gcd(10,5))); //System.out.println(primes.size()); outer:while(tt-->0) { int n=scan.nextInt(),k=scan.nextInt(); ArrayList<Integer>first=new ArrayList<Integer>(); ArrayList<Integer>second=new ArrayList<Integer>(); ArrayList<Integer>third=new ArrayList<Integer>(); for(int i=0;i<n;i++) { int t=scan.nextInt(),a=scan.nextInt(),b=scan.nextInt(); if(a==1&&b==1) first.add(t); else if(a==1&&b==0) second.add(t); else if(a==0&&b==1) third.add(t); } Collections.sort(second); Collections.sort(first); Collections.sort(third); if(first.size()+second.size()<k||first.size()+third.size()<k) { out.println(-1); out.close(); return; } int res=0; if(first.size()==0) { for(int i=0;i<k;i++) res+=second.get(i); for(int i=0;i<k;i++) res+=third.get(i); out.println(res); out.close(); return; } if(first.size()<k) { int tmpk=k; for(int i=0;i<first.size();i++) { res+=first.get(i); tmpk--; } for(int i=0;i<tmpk;i++) { res+=second.get(i); res+=third.get(i); } int l=tmpk,r=tmpk; for(int i=first.size()-1;i>=0;i--) { if(l<second.size()&&r<third.size()&&second.get(l)+third.get(r)<first.get(i)){ res-=first.get(i); res+=second.get(l)+third.get(r); } } out.println(res); out.close(); return; } for(int i=0;i<Math.min(first.size(),k);i++) { res+=first.get(i); } int l=0,r=0; for(int i=0;i<Math.min(first.size(),k);i++) { if(l<second.size()&&r<third.size()&&second.get(l)+third.get(r)<first.get(i)) { res-=first.get(i); res+=second.get(l)+third.get(r); l++; r++; } } out.println(res); } out.close(); //SEE UP } static class special implements Comparable<special>{ int x,y,z,h; String s; special(int x,int y,int z,int h) { this.x=x; this.y=y; this.z=z; this.h=h; } @Override public boolean equals(Object o){ if (o == this) return true; if (o.getClass() != getClass()) return false; special t = (special)o; return t.x == x && t.y == y&&t.s.equals(s); } public int compareTo(special o) { return Integer.compare(x,o.x); } } static long binexp(long a,long n) { if(n==0) return 1; long res=binexp(a,n/2); if(n%2==1) return res*res*a; else return res*res; } static long powMod(long base, long exp, long mod) { if (base == 0 || base == 1) return base; if (exp == 0) return 1; if (exp == 1) return (base % mod+mod)%mod; long R = (powMod(base, exp/2, mod) % mod+mod)%mod; R *= R; R %= mod; if ((exp & 1) == 1) { return (base * R % mod+mod)%mod; } else return (R %mod+mod)%mod; } static double dis(double x1,double y1,double x2,double y2) { return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); } static long mod(long x,long y) { if(x<0) x=x+(-x/y+1)*y; return x%y; } public static long pow(long b, long e) { long r = 1; while (e > 0) { if (e % 2 == 1) r = r * b ; b = b * b; e >>= 1; } return r; } private static void sort(long[] arr) { List<Long> list = new ArrayList<>(); for (long object : arr) list.add(object); Collections.sort(list); //Collections.reverse(list); for (int i = 0; i < list.size(); ++i) arr[i] = list.get(i); } private static void sort2(int[] arr) { List<Integer> list = new ArrayList<>(); for (int object : arr) list.add(object); Collections.sort(list); Collections.reverse(list); for (int i = 0; i < list.size(); ++i) arr[i] = list.get(i); } public static class FastReader { BufferedReader br; StringTokenizer root; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } FastReader(String filename)throws Exception { br=new BufferedReader(new FileReader(filename)); } boolean hasNext(){ String line; while(root.hasMoreTokens()) return true; return false; } String next() { while (root == null || !root.hasMoreTokens()) { try { root = new StringTokenizer(br.readLine()); } catch (Exception addd) { addd.printStackTrace(); } } return root.nextToken(); } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception addd) { addd.printStackTrace(); } return str; } public int[] nextIntArray(int arraySize) { int array[] = new int[arraySize]; for (int i = 0; i < arraySize; i++) { array[i] = nextInt(); } return array; } } static class Pair implements Comparable<Pair>{ public long x, y; public Pair(long x1, long y1) { x=x1; y=y1; } @Override public int hashCode() { return (int)(x + 31 * y); } public String toString() { return x + " " + y; } @Override public boolean equals(Object o){ if (o == this) return true; if (o.getClass() != getClass()) return false; Pair t = (Pair)o; return t.x == x && t.y == y; } public int compareTo(Pair o) { return (int)(o.x-x); } } static class tuple{ int x,y,z; tuple(int a,int b,int c){ x=a; y=b; z=c; } } static class Edge{ int d,w; Edge(int d,int w) { this.d=d; this.w=w; } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.util.*; import java.io.*; public class Main { public static void main(String args[]) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); for(int tt=0;tt<1;tt++) { String[] str = br.readLine().split(" "); int n = Integer.parseInt(str[0]); int k = Integer.parseInt(str[1]); ArrayList<Integer> a = new ArrayList<>(); ArrayList<Integer> b = new ArrayList<>(); ArrayList<Integer> c = new ArrayList<>(); for(int i=0;i<n;i++) { str = br.readLine().split(" "); int t = Integer.parseInt(str[0]); int x = Integer.parseInt(str[1]); int y = Integer.parseInt(str[2]); if(x==1 && y==1) { c.add(t); } else if(x==1) { a.add(t); } else if(y==1) { b.add(t); } } if((a.size()+c.size())<k) { System.out.println(-1); continue; } if((b.size()+c.size())<k) { System.out.println(-1); continue; } int ans = 0; int astart = 0; int cstart = 0; while(k>=1) { int op1 = Integer.MAX_VALUE; int op2 = Integer.MAX_VALUE; if(astart<a.size() && astart<b.size()) { op1 = a.get(astart) + b.get(astart); } if(cstart<c.size()) { op2 = c.get(cstart); } if(op1<op2) { ans = ans + op1; astart++; } else { ans = ans + op2; cstart++; } k--; } System.out.println(ans); } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
import sys input = sys.stdin.readline from math import ceil (n, m, k) = map(int, input().split()) Bob = [] Alice = [] Together = [] Zero = [] Bob_index = [] Alice_index = [] Together_index = [] Zero_index = [] for i in range(n): (t, a, b) = map(int, input().split()) if a*b == 1: Together.append(t) Together_index.append((t,i+1)) elif a == 1: Alice.append(t) Alice_index.append((t, i + 1)) elif b == 1: Bob.append(t) Bob_index.append((t, i + 1)) else: Zero.append(t) Zero_index.append((t, i + 1)) if (len(Bob) + len(Together) < k) or (len(Alice) + len(Together) < k): print(-1) exit() Bob.sort() Alice.sort() Together.sort() Zero.sort() Bob_index.sort(key=lambda x:x[0]) Alice_index.sort(key=lambda x:x[0]) Together_index.sort(key=lambda x:x[0]) Zero_index.sort(key=lambda x:x[0]) a = 0 b = 0 t = 0 z = 0 T = 0 Total_Bob = 0 Total_Alice = 0 while Total_Bob < k or Total_Alice < k: if Total_Alice < k and Total_Bob < k: if t < len(Together) and a < len(Alice) and b < len(Bob): if Together[t] < Alice[a] + Bob[b]: T += Together[t] t += 1 Total_Alice += 1 Total_Bob += 1 else: T += Alice[a] T += Bob[b] a += 1 b += 1 Total_Alice += 1 Total_Bob += 1 elif t >= len(Together): T += Alice[a] T += Bob[b] a += 1 b += 1 Total_Alice += 1 Total_Bob += 1 else: T += Together[t] Total_Alice += 1 Total_Bob += 1 t += 1 elif Total_Alice < k: if t < len(Together) and a < len(Alice): if Together[t] < Alice[a]: T += Together[t] t += 1 Total_Alice += 1 Total_Bob += 1 else: T += Alice[a] a += 1 Total_Alice += 1 elif t >= len(Together): T += Alice[a] a += 1 Total_Alice += 1 else: T += Together[t] t += 1 Total_Alice += 1 Total_Bob += 1 else: if t < len(Together) and b < len(Bob): if Together[t] < Bob[b]: T += Together[t] Total_Bob += 1 t += 1 Total_Alice += 1 else: T += Bob[b] Total_Bob += 1 b += 1 elif t >= len(Together): T += Bob[b] Total_Bob += 1 b += 1 else: T += Together[t] Total_Bob += 1 t += 1 Total_Alice += 1 if a + b + t < m: delta = m - a - b - t if delta > t + len(Zero): print(-1) exit() else: t -= 1 while delta > 0: if t > 0 and a < len(Alice) and b < len(Bob) and z < len(Zero): if Alice[a]+Bob[b] - Together[t] < Zero[z]: T += Alice[a]+Bob[b] - Together[t] delta -= 1 a += 1 b += 1 t -= 1 else: T += Zero[z] z += 1 delta -= 1 elif z >= len(Zero): T += Alice[a] + Bob[b] - Together[t] delta -= 1 a += 1 b += 1 t -= 1 else: T += Zero[z] z += 1 delta -= 1 print(T) ans = [] for i in range(a): ans.append(Alice_index[i][1]) for i in range(b): ans.append(Bob_index[i][1]) for i in range(t): ans.append(Together_index[i][1]) for i in range(z): ans.append(Zero_index[i][1]) print(*ans) exit() if a + b + t > m: delta = a + b + t - m if a < delta or b < delta: print(-1) exit() for i in range(delta): a -= 1 b -= 1 T -= Bob[b] T -= Alice[a] if t >= len(Together): print(-1) exit() T += Together[t] t += 1 print(T) ans = [] for i in range(a): ans.append(Alice_index[i][1]) for i in range(b): ans.append(Bob_index[i][1]) for i in range(t): ans.append(Together_index[i][1]) print(*ans) exit() print(T) ans = [] for i in range(a): ans.append(Alice_index[i][1]) for i in range(b): ans.append(Bob_index[i][1]) for i in range(t): ans.append(Together_index[i][1]) print(*ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> D; vector<int> B; vector<int> A; int main() { int a = 0, b = 0; int n, k; int ti, al, bl, time = 0; cin >> n >> k; for (int i = 0; i < n; ++i) { cin >> ti >> al >> bl; if (al + bl == 2) D.push_back(ti); else if (al == 1) A.push_back(ti); else if (bl == 1) B.push_back(ti); a += al; b += bl; } if (a < k || b < k) { cout << -1 << endl; return 0; } if (n == k && k == a && k == b) { time += accumulate(D.begin(), D.end(), 0); time += accumulate(A.begin(), A.end(), 0); time += accumulate(B.begin(), B.end(), 0); return 0; } a = b = k; sort(D.begin(), D.end()); sort(A.begin(), A.end()); sort(B.begin(), B.end()); for (int i = 0, j = 0, l = 0; a > 0 || b > 0;) { if (i < D.size() && j < A.size() && l < B.size()) { if (D[i] <= A[j] + B[l]) { time += D[i]; ++i; --a; --b; } else { time += A[j] + B[l]; ++j; ++l; --a; --b; } } else if (i < D.size() && j < A.size() && l >= B.size()) { if (a > 0 && b > 0) { time += D[i]; ++i; --a; --b; } else if (a > 0 && b <= 0) { if (D[i] < A[j]) { time += D[i]; ++i; --a; --b; } else { time += A[j]; ++j; --a; } } } else if (i < D.size() && j >= A.size() && l < B.size()) { if (a > 0 && b > 0) { time += D[i]; ++i; --a; --b; } else if (a <= 0 && b > 0) { if (D[i] < B[l]) { time += D[i]; ++i; --a; --b; } else { time += B[l]; ++l; --b; } } } else if (i >= D.size()) { if (a > 0 && j < A.size()) { time += A[j]; ++j; --a; } else if (b > 0 && l < B.size()) { time += B[l]; ++l; --b; } } } cout << time << endl; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int gcd(long long int a, long long int b) { if (a == 0) return b; return gcd(b % a, a); } long long int lcm(long long int a, long long int b) { return (a * b) / gcd(a, b); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int t = 1; while (t--) { long long int n, k, i, j; cin >> n >> k; vector<long long int> both, alice, bob; for (i = 0; i < n; i++) { long long int t, a, b; cin >> t >> a >> b; if (a == 1 && a == b) both.push_back(t); else if (a == 1) alice.push_back(t); else if (b == 1) bob.push_back(t); } sort(alice.begin(), alice.end()); sort(both.begin(), both.end()); sort(bob.begin(), bob.end()); long long int both_size = both.size(); long long int alice_size = alice.size(); long long int bob_size = bob.size(); if (both_size + alice_size < k || both_size + bob_size < k) { cout << -1 << endl; } else { long long int time = 0; long long int x = 0, y = 0; while (k) { if (x < both_size && y < alice_size && y < bob_size) { if (both[x] >= alice[y] + bob[y]) { time += both[x]; x++; } else { time += (alice[y] + bob[y]); y++; } k--; } else if (x < both_size) { time += both[x]; x++; k--; } else if (y < alice_size && y < bob_size) { time += (alice[y] + bob[y]); y++; k--; } } cout << time << endl; } } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
java
import java.util.*; public class Solution { public static void mainB(String[] args) { final Scanner in = new Scanner(System.in); final int T = in.nextInt(); for (int t = 0; t < T; t += 1) { int n = in.nextInt(); int count2 = 0; while (n % 2 == 0) { n /= 2; count2 += 1; } int count3 = 0; while (n % 3 == 0) { n /= 3; count3 += 1; } System.out.println((n > 1 || count2 > count3)? -1 : (count2 + 2 * (count3 - count2))); } } public static void mainC(String[] args) { final Scanner in = new Scanner(System.in); final int T = in.nextInt(); for (int t = 0; t < T; t += 1) { int n = in.nextInt(); in.nextLine(); char[] s = in.nextLine().trim().toCharArray(); int b = 0; int cost = 0; for (char c : s) { if (c == ')') b -= 1; else b += 1; if (b < 0) { b = 0; cost += 1; } } System.out.println(cost); } } public static void mainD(String[] args) { final Scanner in = new Scanner(System.in); final int T = in.nextInt(); for (int t = 0; t < T; t += 1) { final int n = in.nextInt(); final long k = in.nextLong(); final long[] a = new long[n]; for (int i = 0; i < n; i += 1) a[i] = in.nextLong(); final Map<Long, Long> r = new HashMap<>(); for (long ai : a) r.put(ai % k, r.getOrDefault(ai % k, 0L) + 1); if (r.getOrDefault(0L, 0L) == n) { System.out.println(0); continue; } long max = 0; long minR = 0; for (Map.Entry<Long, Long> e : r.entrySet()) { if (e.getKey() == 0) continue; if (e.getValue() > max || e.getValue() == max && e.getKey() < minR) { max = e.getValue(); minR = e.getKey(); } max = Math.max(max, e.getValue()); } final long moves = (max - 1) * k + k - minR + 1; System.out.println(moves); } } public static void mainE1(String[] args) { final Scanner in = new Scanner(System.in); final int n = in.nextInt(); final int k = in.nextInt(); final int[][] tab = new int[n][]; for (int i = 0; i < n; i += 1) tab[i] = new int[] {in.nextInt(), in.nextInt(), in.nextInt()}; final Comparator<int[]> CMP = new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { final int likeA = a[1] + a[2]; final int likeB = b[1] + b[2]; int cmp = Integer.compare(likeB, likeA); if (cmp != 0) return cmp; cmp = Integer.compare(b[1], a[1]); if (cmp != 0) return cmp; return Integer.compare(a[0], b[0]); } }; Arrays.sort(tab, CMP); // 0 == both, 1 = A, 2 = B, 3 = neither int state = 0; int i = 0; int likeA = 0; int likeB = 0; long total = 0; while (i < n && (likeA < k || likeB < k)) { int[] b = tab[i]; if (b[1] + b[2] == 2) state = 0; else if (b[1] == 1) state = 1; else if (b[2] == 1) state = 2; else state = 3; if (state == 1 && likeA >= k) { // skip to books that B likes // binary search; int lo = i + 1; int hi = n; i = n; while (lo < hi) { int mid = lo + (hi - lo) / 2; if (tab[mid][2] == 1) { i = Math.min(i, mid); hi = mid; } else lo = mid + 1; } } else if ((state == 2 && likeA < k) || state == 3) { System.out.println(-1); return; } likeA += tab[i][1]; likeB += tab[i][2]; total += (long)tab[i][0]; i += 1; } System.out.println(likeA >= k && likeB >= k ? total : -1); } public static void main(String[] args) { mainE1(args); } }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
n, k = [int(i) for i in input().split()] a1 = [] a2 = [] a3 = [] A1 = False A2 = False A3 = False amount = 0 summ = 0 for i in range(n): t, a, b = [int(z) for z in input().split()] if a == 1 and b == 1: a1.append(t) A1 = True elif a == 1: a2.append(t) A2 = True elif b == 1: a3.append(t) A3 = True a1 = sorted(a1) a2 = sorted(a2) a3 = sorted(a3) if len(a1) + min(len(a2), len(a3)) < k: print(-1) else: if not A3 or not A2: print(sum(a1[:k])) if not A1: print(sum(a2[:k]) + sum(a3[:k])) x, y = 0, 0 len1 = len(a1) len2 = len(a2) len3 = len(a3) while amount < k: if x == len2 or x == len3: summ += sum(a1[y:y+k-amount]) break if y == len1: summ += sum(a2[x:x+k-amount] + a3[x:x+k-amount]) break if a3[x] + a2[x] < a1[y]: summ += a3[x] + a2[x] x += 1 amount += 1 else: summ += a1[y] y += 1 amount += 1 print(summ)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python2
import sys import math from collections import defaultdict n,k = list(map(int, sys.stdin.readline().strip().split(' '))) t = [] a = [] b = [] for _ in range(n): ti,ai,bi = list(map(int, sys.stdin.readline().strip().split(' '))) t.append(ti) a.append(ai) b.append(bi) alice_only = [] alice = 0 bob = 0 bob_only = [] taken = [0 for i in range(n)] ts = sorted(enumerate(t), key=lambda x: x[1]) for i,ti in ts: if a[i] and b[i]: if alice == k and bob == k: if alice_only and bob_only: if ti < alice_only[-1] + bob_only[-1]: taken[alice_only.pop()] = 0 taken[bob_only.pop()] = 0 taken[i] = 1 continue if alice == k: if alice_only: j = alice_only.pop() taken[j] = 0 else: alice += 1 if bob == k: if bob_only: j = bob_only.pop() taken[j] = 0 else: bob += 1 taken[i] = 1 continue if a[i] and alice < k: alice += 1 alice_only.append(i) taken[i] = 1 if b[i] and bob < k: bob += 1 bob_only.append(i) taken[i] = 1 if alice != k or bob != k: print(-1) else: ans = 0 for i,ti in ts: if taken[i]: ans += ti print(ans)
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool isPrime(long long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } vector<long long> prime; signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); srand(static_cast<unsigned>(time(0))); long long t = 1; while (t--) { long long k, n, m; cin >> n >> m >> k; map<long long, long long> mp; long long ans = 0; vector<pair<long long, long long>> v; vector<pair<long long, long long>> alice; vector<pair<long long, long long>> bob; vector<pair<long long, long long>> al; vector<long long> res; for (long long i = 0; i < n; ++i) { long long t, a, b; cin >> t >> a >> b; if (b == 1 && a == 1) v.push_back({t, i + 1}); else if (a == 1 && b == 0) alice.push_back({t, i + 1}); else if (b == 1 && a == 0) bob.push_back({t, i + 1}); al.push_back({t, i + 1}); } sort(v.begin(), v.end()); sort(alice.begin(), alice.end()); sort(bob.begin(), bob.end()); sort(al.begin(), al.end()); long long c = 0, x = 0, y = 0, z = 0, c1 = 0; while (c < k) { if ((k - c < m - c1) && (x < alice.size() && y < bob.size() && (v.size() == z || (z < v.size() && alice[x].first + bob[y].first <= (v[z].first))))) { ans += alice[x].first + bob[y].first; res.push_back(alice[x].second); res.push_back(bob[y].second); mp[alice[x].second]++; mp[bob[y].second]++; x++, y++; c1 += 2; } else if ((z < v.size())) { ans += v[z].first; res.push_back(v[z].second); mp[v[z].second]++; z++; c1++; } else break; c++; } for (long long i = 0; i < (long long)al.size(); ++i) { if (c1 == m) break; if (mp[al[i].second] == 0) { ans += al[i].first; res.push_back(al[i].second); c1++; } } if (c1 == m && c == k) { cout << ans << '\n'; for (long long i = 0; i < (long long)res.size(); ++i) cout << res[i] << " "; } else cout << -1 << '\n'; } return 0; }
1374_E1. Reading Books (easy version)
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully. Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster. There are n books in the family library. The i-th book is described by three integers: t_i β€” the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not). So they need to choose some books from the given n books in such a way that: * Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set; * the total reading time of these books is minimized (they are children and want to play and joy as soon a possible). The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set. Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set. Input The first line of the input contains two integers n and k (1 ≀ k ≀ n ≀ 2 β‹… 10^5). The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 ≀ t_i ≀ 10^4, 0 ≀ a_i, b_i ≀ 1), where: * t_i β€” the amount of time required for reading the i-th book; * a_i equals 1 if Alice likes the i-th book and 0 otherwise; * b_i equals 1 if Bob likes the i-th book and 0 otherwise. Output If there is no solution, print only one integer -1. Otherwise print one integer T β€” the minimum total reading time of the suitable set of books. Examples Input 8 4 7 1 1 2 1 1 4 0 1 8 1 1 1 0 1 1 1 1 1 0 1 3 0 0 Output 18 Input 5 2 6 0 0 9 0 0 1 0 1 2 1 1 5 1 0 Output 8 Input 5 3 3 0 0 2 1 0 3 1 0 5 0 1 3 0 1 Output -1
{ "input": [ "8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n", "5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n", "5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n" ], "output": [ "18\n", "8\n", "-1\n" ] }
{ "input": [ "2 1\n7 1 1\n2 1 1\n", "5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n", "6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 1\n3 0 1\n3 1 0\n3 0 0\n", "6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n", "8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n", "6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "3 3 1\n27 0 0\n28 0 0\n11 0 0\n", "1 1 1\n3 0 1\n", "8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n", "6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n", "9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n", "3 2 1\n3 0 1\n3 1 0\n3 0 0\n", "27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n", "6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n" ], "output": [ "2\n", "2\n", "38\n", "6\n", "26\n", "-1", "-1", "-1\n", "-1\n", "-1", "-1", "-1\n", "-1\n", "-1\n", "-1" ] }
IN-CORRECT
python3
def main(): n,k=list(map(int,input().split())) l=[] c1=0 c2=0 for j in range(0,n): l1=list(map(int,input().split())) if l1[1]==1: c1+=1 if l1[2]==1: c2+=1 l.append(l1) if c1<k or c2<k: print(-1) return l.sort() c=0 d={} d['a']=[] d['b']=[] d['c']=[] for j in range(0,n): if l[j][1]==1 and l[j][2]==1: d['c'].append(l[j][0]) elif l[j][1]==1: d['a'].append(l[j][0]) elif l[j][2]==1: d['b'].append(l[j][0]) m=10**9+7 l2=d['a'] l3=d['b'] l4=d['c'] l2.append(m) l3.append(m) l4.append(m) #print(l2,l3,l4) p1=0 p2=0 p3=0 f=0 k1=k k2=k j=0 while j<n: if l2[p1]+l3[p2] >= l4[p3] and p3!=len(l4)-1: c+=l4[p3] if p3!=len(l4)-1: p3+=1 k1-=1 k2-=1 elif l2[p1] <= l3[p2] and k1!=0 and p1!=len(l2)-1: c+=l2[p1] if p1!=len(l2)-1: p1+=1 k1-=1 elif l2[p1] >= l3[p2] and k2!=0 and p2!=len(l3)-1: c+=l3[p2] if p2!=len(l3)-1: p2+=1 k2-=1 if k1==0 and k2==0: break #print(c) j+=1 print(c) t=1 for i in range(0,t): main()