Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
|---|---|---|---|---|---|---|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n, k = map(int, input().split())
both = []
x = []
y = []
for i in range(n):
t,a,b = map(int, input().split())
if(a == 1 and b == 1):
both.append(t)
elif(a == 1 and b == 0):
x.append(t)
elif(a == 0 and b == 1):
y.append(t)
if(min(len(x), len(y)) + len(both) != k):
print(-1)
else:
both.sort()
x.sort()
y.sort()
for i in range(1,len(both)):
both[i] += both[i-1]
for i in range(1,len(x)):
x[i] += x[i-1]
for i in range(1,len(y)):
y[i] += y[i-1]
ans = 10**18
if(len(x) >= k and len(y) >= k):
ans = x[k-1] + y[k-1]
for i in range(len(both)):
kk = k-i-1
if(kk<1):
break
if(len(x) >= k and len(y) >= k):
ans = min(ans, both[i]+x[kk-1]+y[kk-1])
if(k <= len(both)):
ans = min(ans, both[k-1])
if(ans - 10**18):
print(ans)
else:
print(-1)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long n, k;
long long a[200005];
long long b[200005];
long long t[200005];
bool used[200005];
long long min(long long a, long long b) {
if (a < b) return a;
return b;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> k;
long long x = 0;
long long y = 0;
vector<pair<long long, long long> > v;
vector<pair<long long, long long> > p;
for (long long i = 0; i < n; i++) {
cin >> t[i] >> a[i] >> b[i];
used[i] = false;
if (a[i]) x++;
if (b[i]) y++;
if (a[i]) v.push_back({t[i], i});
if (b[i]) p.push_back({t[i], i});
}
sort(v.begin(), v.end());
sort(p.begin(), p.end());
if (x < k || y < k) {
cout << "-1" << endl;
return 0;
}
long long ans = 0;
long long gol = 0;
for (long long i = 0; i < k; i++) {
long long mp = v[i].second;
if (b[mp]) {
used[mp] = true;
gol++;
}
gol++;
ans += v[i].first;
}
for (long long i = 0; i < k; i++) {
if (!used[p[i].second] && gol < (2 * k)) {
ans += p[i].first;
gol++;
}
}
for (long long i = 0; i < n; i++) {
used[i] = false;
}
long long saleh = 0;
gol = 0;
for (long long i = 0; i < k; i++) {
long long mp = p[i].second;
if (a[mp]) {
used[mp] = true;
gol++;
}
gol++;
saleh += p[i].first;
}
for (long long i = 0; i < k; i++) {
if (!used[v[i].second] && gol < (2 * k)) {
saleh += v[i].first;
gol++;
}
}
cout << min(ans, saleh) << endl;
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new Solution(), "Main", 1 << 27).start();
}
static class Pair {
int x, y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + x * 7 + (y * 3 + 5 * (y - x));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
Pair other = (Pair) obj;
if (x != other.x && y != other.y) {
return false;
}
return true;
}
}
static void sieveOfEratosthenes(int n) {
//Prints prime nos till n
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
if (prime[p] == true) {
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
for (int i = 2; i <= n; i++) {
if (prime[i] == true)
System.out.print(i + " ");
}
}
public void run() {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n=in.nextInt();
int k=in.nextInt();
ArrayList<Integer> A=new ArrayList<Integer>();
ArrayList<Integer> B=new ArrayList<Integer>();
ArrayList<Integer> AB=new ArrayList<Integer>();
for(int i=0;i<n;i++)
{
int t=in.nextInt();
int a=in.nextInt();
int b=in.nextInt();
if(a==1 && b==1)
AB.add(t);
else if(a==1 && b==0)
A.add(t);
else if(a==0 && b==1)
B.add(t);
}
Collections.sort(A);
Collections.sort(B);
Collections.sort(AB);
if((A.size()+AB.size())<k)
w.println(-1);
else if((B.size()+AB.size())<k)
w.println(-1);
else
{
long count=0;
if(A.size()==0 || B.size()==0)
{
for(int i=0;i<AB.size();i++)
count+=AB.get(i);
w.println(count);
}
else
{
int i=0,j=0,x=0;
while(i<A.size() && i<B.size() && j<AB.size())
{
if((A.get(i)+B.get(i))<(AB.get(j)))
{
count+=A.get(i)+B.get(i);
i++;
}
else
{
count+=AB.get(j);
j++;
}
x++;
}
while(x<k && j<AB.size())
{
count+=AB.get(j);
j++;
x++;
}
int x1=x,x2=x,i1=i,i2=i;
while(x1<k && i1<A.size())
{
count+=A.get(i1);
i1++;
x1++;
}
while(x2<k && i2<B.size())
{
count+=B.get(i2);
i2++;
x2++;
}
w.println(count);
}
}
w.flush();
w.close();
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long t = 1, i, j, k;
for (long long ii = 1; ii <= t; ii++) {
long long n, m;
cin >> n >> m;
vector<long long> a, b, c, ta(n), tb(n), tc(n);
for (i = 0; i < n; i++) cin >> ta[i] >> tb[i] >> tc[i];
for (i = 0; i < n; i++) {
if (tb[i] == 1) {
if (tc[i] == 1)
a.push_back(ta[i]);
else
b.push_back(ta[i]);
} else if (ta[i] == 1)
c.push_back(ta[i]);
}
sort(a.begin(), a.end());
sort(b.begin(), b.end());
sort(c.begin(), c.end());
long long ans = 0;
for (i = 0; i < min(m, (long long)a.size()); i++) ans += a[i];
k = i;
for (j = 0; j < b.size() && k < m; j++, k++) ans += b[j];
if (k < m) {
cout << "-1" << '\n';
continue;
}
k = i;
for (j = 0; j < c.size() && k < m; j++, k++) ans += c[j];
if (k < m) {
cout << "-1" << '\n';
continue;
}
cout << ans << '\n';
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
String s[]=bu.readLine().split(" ");
int n=Integer.parseInt(s[0]),k=Integer.parseInt(s[1]);
ArrayList<Integer> ab=new ArrayList<>();
ArrayList<Integer> a=new ArrayList<>();
ArrayList<Integer> b=new ArrayList<>();
int i,al=0,bo=0,x,y,z;
for(i=0;i<n;i++)
{
s=bu.readLine().split(" ");
x=Integer.parseInt(s[0]); y=Integer.parseInt(s[1]); z=Integer.parseInt(s[2]);
if(y==1) al++;
if(z==1) bo++;
if(y==1 && z==1) ab.add(x);
else if(y==1) a.add(x);
else b.add(x);
}
if(al<k || bo<k) {System.out.print("-1"); return;}
Collections.sort(ab); Collections.sort(a); Collections.sort(b);
ArrayList<Integer> alb=new ArrayList<>();
for(i=0;i<Math.min(a.size(),b.size());i++)
alb.add(a.get(i)+b.get(i));
long min=0,c=0;
if(alb.size()==0)
{
for(i=0;i<k;i++)
min+=ab.get(i);
System.out.print(min);
return;
}
if(ab.size()==0)
{
for(i=0;i<k;i++)
min+=alb.get(i);
System.out.print(min);
return;
}
x=0; y=0;
while(x<ab.size() && y<alb.size() && c<k)
{
if(ab.get(x)<=alb.get(y)) {min+=ab.get(x); x++;}
else {min+=alb.get(y); y++;}
c++;
}
if(c==k) {System.out.print(min); return;}
while(x<ab.size() && c<k)
{
min+=ab.get(x);
x++;
c++;
}
while(y<alb.size() && c<k)
{
min+=alb.get(y);
y++;
c++;
}
if(c<k) min=-1;
System.out.print(min);
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
import java.awt.Point;
public class Main {
//static final long MOD = 998244353L;
//static final long INF = 1000000000000000007L;
static String letters = "abcdefghijklmnopqrstuvwxyz";
//static final long MOD = 1000000007L;
static final int INF = 1000000007;
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int N = sc.ni();
int M = sc.ni();
int K = sc.ni();
int X = 0;
int[][] input = new int[N][3];
for (int i = 0; i < N; i++) {
for (int j = 0; j < 3; j++)
input[i][j] = sc.ni();
if (2*input[i][1]+input[i][2]==3)
X++;
}
int[][] both = new int[X][2];
int i1 = 0;
int[][] nums = new int[N-X][4]; //val,type (0 is neither, 1 is bob, 2 is alice),index in nums, index in input
int i2 = 0;
for (int i = 0; i < N; i++) {
int[] in = input[i];
if (2*in[1]+in[2]==3) {
both[i1][0] = in[0];
both[i1][1] = i;
i1++;
} else {
nums[i2][0] = in[0];
nums[i2][1] = 2*in[1]+in[2];
nums[i2][2] = i2;
nums[i2][3] = i;
i2++;
}
}
both = sort(both);
int[] bothPref = new int[X+1];
for (int i = 1; i <= X; i++)
bothPref[i] = bothPref[i-1]+both[i-1][0];
nums = sort(nums);
ArrayList<Integer> alice = new ArrayList<Integer>();
ArrayList<Integer> bob = new ArrayList<Integer>();
for (int i = 0; i < N-X; i++) {
int[] in = nums[i];
if (in[1]==1)
bob.add(i);
else if (in[1]==2)
alice.add(i);
}
BinaryIndexedTree exists = new BinaryIndexedTree(N-X);
BinaryIndexedTree bit = new BinaryIndexedTree(N-X);
for (int i = 0; i < N-X; i++) {
exists.add(1, i);
bit.add(nums[i][0],i);
}
int ans = Integer.MAX_VALUE;
int readBoth = -1;
for (int i = M; i >= K; i--) {
//i is the number of books read that are liked by both
if (i < bothPref.length) {
int rem = M-i;
if (rem <= N-X) {
int total = bothPref[i]+bit.sum(rem);
if (total < ans) {
ans = total;
readBoth = i;
}
}
}
}
int taken = 0;
int read = 0;
for (int i = K-1; i >= 0; i--) {
if (2*K-i > M) break;
if (K-1-i < bob.size() && K-1-i < alice.size()) {
int b = nums[bob.get(K-1-i)][0];
int a = nums[alice.get(K-1-i)][0];
exists.add(-1, bob.get(K-1-i));
exists.add(-1, alice.get(K-1-i));
bit.add(0-b,bob.get(K-1-i));
bit.add(0-a,alice.get(K-1-i));
taken += b;
taken += a;
read += 2;
} else {
break;
}
//i is the number of books read that are liked by both
if (i < bothPref.length) {
int rem = M-i-read;
if (rem <= exists.sum(N-X)) {
int low = 0;
int high = N-X;
while (low < high) {
int med = (low+high)/2;
if (bit.sum(med) < rem) {
low = med+1;
} else {
high = med;
}
}
int total = bothPref[i]+bit.sum(low)+taken;
if (total < ans) {
ans = total;
readBoth = i;
}
}
}
}
if (ans == Integer.MAX_VALUE) {
pw.println(-1);
} else {
ArrayList<Integer> take = new ArrayList<Integer>();
for (int i = 0; i < readBoth; i++) {
take.add(1+both[i][1]);
}
for (int i = 0; i < K-readBoth; i++) {
take.add(1+nums[alice.get(i)][3]);
take.add(1+nums[bob.get(i)][3]);
}
PriorityQueue<Pair> left = new PriorityQueue<Pair>();
for (int[] in: nums) {
if (in[1] == 0)
left.add(new Pair(in[0],in[3]));
}
if (K-readBoth < alice.size()) {
for (int i = Math.max(0,K-readBoth); i < alice.size(); i++) {
left.add(new Pair(nums[alice.get(i)][0],nums[alice.get(i)][3]));
}
}
if (K-readBoth < bob.size()) {
for (int i = Math.max(0,K-readBoth); i < bob.size(); i++) {
left.add(new Pair(nums[bob.get(i)][0],nums[bob.get(i)][3]));
}
}
while (!left.isEmpty() && take.size() < M) {
Pair p = left.poll();
take.add(1+p.index);
}
Collections.sort(take);
pw.println(ans);
for (int t: take)
pw.print(t + " ");
if (ans==8195)
pw.println(readBoth);
}
pw.close();
}
static class Pair implements Comparable<Pair> {
public int val;
public int index;
public Pair(int val, int index) {
this.val = val;
this.index = index;
}
public int compareTo(Pair p) {
return val-p.val;
}
}
static class BinaryIndexedTree {
public int[] arr;
public BinaryIndexedTree (int N) {
arr = new int[N+1];
}
//add k to the i-th element.
public void add(int k, int i) {
int node = i+1;
while (node < arr.length) {
arr[node] += k;
node += node & (-node);
}
}
//sum up the elements from input[s_i] to input[e_i], from [s_i,e_i).
public int sum(int s_i, int e_i) {
return sum(e_i) - sum(s_i);
}
public int sum(int i) {
int total = 0;
int node = i;
while (node > 0) {
total += arr[node];
node -= node & (-node);
}
return total;
}
}
public static long dist(long[] p1, long[] p2) {
return (Math.abs(p2[0]-p1[0])+Math.abs(p2[1]-p1[1]));
}
//Find the GCD of two numbers
public static long gcd(long a, long b) {
if (a < b) return gcd(b,a);
if (b == 0)
return a;
else
return gcd(b,a%b);
}
//Fast exponentiation (x^y mod m)
public static long power(long x, long y, long m) {
if (y < 0) return 0L;
long ans = 1;
x %= m;
while (y > 0) {
if(y % 2 == 1)
ans = (ans * x) % m;
y /= 2;
x = (x * x) % m;
}
return ans;
}
public static int[] shuffle(int[] array) {
Random rgen = new Random();
for (int i = 0; i < array.length; i++) {
int randomPosition = rgen.nextInt(array.length);
int temp = array[i];
array[i] = array[randomPosition];
array[randomPosition] = temp;
}
return array;
}
public static long[] shuffle(long[] array) {
Random rgen = new Random();
for (int i = 0; i < array.length; i++) {
int randomPosition = rgen.nextInt(array.length);
long temp = array[i];
array[i] = array[randomPosition];
array[randomPosition] = temp;
}
return array;
}
public static int[][] sort(int[][] array) {
//Sort an array (immune to quicksort TLE)
Random rgen = new Random();
for (int i = 0; i < array.length; i++) {
int randomPosition = rgen.nextInt(array.length);
int[] temp = array[i];
array[i] = array[randomPosition];
array[randomPosition] = temp;
}
Arrays.sort(array, new Comparator<int[]>() {
@Override
public int compare(int[] a, int[] b) {
return a[0]-b[0]; //ascending order
}
});
return array;
}
public static long[][] sort(long[][] array) {
//Sort an array (immune to quicksort TLE)
Random rgen = new Random();
for (int i = 0; i < array.length; i++) {
int randomPosition = rgen.nextInt(array.length);
long[] temp = array[i];
array[i] = array[randomPosition];
array[randomPosition] = temp;
}
Arrays.sort(array, new Comparator<long[]>() {
@Override
public int compare(long[] a, long[] b) {
if (a[0] < b[0])
return -1;
else
return 1;
}
});
return array;
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String[] cmd=br.readLine().split(" ");
int n=Integer.valueOf(cmd[0]);
int k=Integer.valueOf(cmd[1]);
ArrayList<Integer> both=new ArrayList<>();
ArrayList<Integer> al=new ArrayList<Integer>();
ArrayList<Integer> bo=new ArrayList<Integer>();
for(int i=0;i<n;i++)
{
cmd=br.readLine().split(" ");
int t=Integer.valueOf(cmd[0]);
int a=Integer.valueOf(cmd[1]);
int b=Integer.valueOf(cmd[2]);
if(a==1 && b==1)
both.add(t);
else if(a==1 && b==0)
al.add(t);
else if(a==0 && b==1)
bo.add(t);
}
if(both.size()+al.size()<k || both.size()+bo.size()<k)
System.out.println(-1);
else
{
int ans=0;
Collections.sort(both);
Collections.sort(al);
Collections.sort(bo);
for(int i=0;i<both.size();i++)
{
if(k==0)
break;
ans=ans+both.get(i);
k--;
}
int m1=k;
int m2=k;
for(int i=0;i<al.size();i++)
{
if(m1==0)
break;
ans=ans+al.get(i);
m1--;
}
for(int i=0;i<bo.size();i++)
{
if(m2==0)
break;
ans=ans+bo.get(i);
m2--;
}
System.out.println(ans);
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import sys
import math as mt
input=sys.stdin.buffer.readline
t=1
def Sort(sub_li):
sub_li.sort(key = lambda x: x[0])
return sub_li
#t=int(input())
for _ in range(t):
#n=int(input())
n,k=map(int,input().split())
#l=list(map(int,input().split()))
l2=[]
for ___ in range(n):
time,a,b=map(int,input().split())
l2.append([time,a,b])
l1=Sort(l2)
#print(l1)
ans=0
k1,k2=k,k
res=[]
rem1=[]
rem2=[]
tot1,tot2=0,0
for i in range(n):
if l1[i][1]==1:
tot1+=1
if l1[i][2]==1:
tot2+=1
occ1,occ2=0,0
for i in range(n):
if l1[i][1]!=l1[i][2]:
if l1[i][1]==1:
if k1>0:
occ1+=1
res.append([l1[i][0],1,0])
k1-=1
ans+=l1[i][0]
else:
if k2>0:
occ2+=1
res.append([l1[i][0],0,1])
k2-=1
ans+=l1[i][0]
else:
if l1[i][1]==l1[i][2] and l1[i][1]==1:
if len(res)>=2:
rem1=((tot1-occ1+(res[-1][1]+res[-2][1])))
rem2=((tot2-occ2+(res[-1][2]+res[-2][2])))
rem3=(tot1-occ1)
rem4=(tot2-occ2)
#print(120,res)
#print(121,i,rem1,k1,rem2,k2,rem3,rem4)
if (rem1<k1 or rem2<k2):
if k1>0:
occ1+=1
if k2>0:
occ2+=1
k1=max(k1-1,0)
k2=max(k2-1,0)
ans+=l1[i][0]
else:
if ((res[-1][0]+res[-2][0])>=l1[i][0] and rem1>=k1 and rem2>=k2):
#print(11,i)
#occ1-=(res[-1][1]+res[-2][1])
#occ2-=(res[-1][2]+res[-2][2])
if k1>0:
occ1+=1
if k2>0:
occ2+=1
ans-=(res[-1][0]+res[-2][0])
k1=max(k1-1,0)
k2=max(k2-1,0)
occ1+=1
occ2+=1
ans+=l1[i][0]
res.pop()
res.pop()
else:
if k1>0 or k2>0:
ans+=l1[i][0]
k1=max(k1-1,0)
k2=max(k2-1,0)
if k1>0 or k2>0:
print(-1)
else:
print(ans)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct book {
int time, a, b;
} bk[200010];
queue<book> q1, q2, q3;
int cmp(book a, book b) { return a.time > b.time; }
int main() {
int k, t, x, y, n;
long long rzt = 0;
book a, b, c;
x = 0;
y = 0;
scanf("%d%d", &n, &k);
for (int l1 = 0; l1 < n; l1++) {
scanf("%d%d%d", &bk[l1].time, &bk[l1].a, &bk[l1].b);
if (bk[l1].a) x++;
if (bk[l1].b) y++;
}
if (x < k || y < k) {
printf("-1\n");
return 0;
}
x = 0;
y = 0;
sort(bk, bk + n, cmp);
for (int l1 = 0; l1 < n; l1++) {
if (bk[l1].a && bk[l1].b) {
q1.push(bk[l1]);
} else {
if (bk[l1].a) {
q2.push(bk[l1]);
}
if (bk[l1].b) {
q3.push(bk[l1]);
}
}
}
while (x < k) {
if (q1.empty()) {
}
if (!q2.empty() && !q3.empty() && !q1.empty()) {
a = q2.front();
b = q3.front();
c = q1.front();
if (a.time + b.time <= c.time) {
rzt += a.time;
rzt += b.time;
x++;
q2.pop();
q3.pop();
} else {
rzt += c.time;
x++;
q1.pop();
}
} else {
if (q2.empty() || q3.empty()) {
c = q1.front();
rzt += c.time;
x++;
q1.pop();
} else {
a = q2.front();
b = q3.front();
rzt += a.time;
rzt += b.time;
x++;
q2.pop();
q3.pop();
}
}
}
printf("%lld\n", rzt);
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int MAX = 2e5 + 10;
const int inf = 0xfffff;
struct Book {
int pos;
int t;
bool operator<(const Book &b) const { return t < b.t; }
};
int n, m, k, anum = 0, bnum = 0, abnum = 0;
vector<Book> book[4], other;
int visited[MAX] = {false};
long long anst = 0;
int cal(int num) {
other.clear();
int total = 0, need = max(k - num, 0);
if (book[1].size() < need || book[2].size() < need) return inf;
for (int i = 0; i < num; i++) {
total += book[3][i].t;
}
for (int i = 0; i < need; i++) {
total += book[1][i].t;
}
for (int i = 0; i < need; i++) {
total += book[2][i].t;
}
for (int i = need; i < book[1].size(); i++) {
other.push_back(book[1][i]);
}
for (int i = need; i < book[2].size(); i++) {
other.push_back(book[2][i]);
}
for (int i = 0; i < book[0].size(); i++) {
other.push_back(book[0][i]);
}
for (int i = num; i < book[3].size(); i++) {
other.push_back(book[3][i]);
}
sort(other.begin(), other.end());
for (int i = 0; i < m - (num + 2 * need); i++) {
total += other[i].t;
}
return total;
}
int main() {
cin >> n >> m >> k;
for (int i = 0; i < n; i++) {
int t, al, bo;
scanf("%d%d%d", &t, &al, &bo);
if (al) anum++;
if (bo) bnum++;
if (al && bo) abnum++;
book[2 * al + bo].push_back({i + 1, t});
}
if (anum < k || bnum < k || abnum < 2 * k - m) {
printf("-1");
return 0;
}
for (int i = 0; i < 4; i++) sort(book[i].begin(), book[i].end());
int l = max(0, 2 * k - m), r = min(m, (int)book[3].size());
while (l < r) {
int minl = l + (r - l) / 3;
int minr = r - (r - l) / 3;
if (cal(minl) < cal(minr))
r = minr - 1;
else
l = minl + 1;
}
int num = l, need = max(0, k - num);
printf("%d\n", cal(num));
for (int i = 0; i < num; i++) {
printf("%d ", book[3][i].pos);
}
for (int i = 0; i < need; i++) {
printf("%d ", book[1][i].pos);
}
for (int i = 0; i < need; i++) {
printf("%d ", book[2][i].pos);
}
for (int i = 0; i < m - (num + 2 * need); i++) {
printf("%d ", other[i].pos);
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<long long> v1, va, vb;
vector<pair<long long, char> > v;
bool cmp(pair<long long, char> a, pair<long long, char> b) {
if (a.second == 'c' && b.second == 'c') return (a.first < b.first);
if (b.second == 'c') return (0);
if (a.second == 'c') return (1);
return (a.first < b.first);
}
int main() {
long long n, k;
scanf("%lld", &n);
scanf("%lld", &k);
long long i, j, l;
for (i = 0; i < n; i++) {
long long t, a, b;
scanf("%lld", &t);
scanf("%lld", &a);
scanf("%lld", &b);
if (a == 1 && b == 1) {
v1.push_back(t);
} else if (a == 1) {
va.push_back(t);
} else if (b == 1) {
vb.push_back(t);
}
}
l = min(min(va.size(), vb.size()), v1.size());
long long ans = 0, a = 0, b = 0;
for (i = 0; i < l; i++) {
if (va[i] + vb[i] < v1[i]) {
ans += (va[i] + vb[i]);
v.push_back({v1[i], 'c'});
} else {
ans += v1[i];
v.push_back({va[i], 'a'});
v.push_back({vb[i], 'b'});
}
a++;
b++;
}
for (i = l; i < v1.size(); i++) {
v.push_back({v1[i], 'c'});
}
for (i = l; i < va.size(); i++) {
v.push_back({va[i], 'a'});
}
for (i = l; i < vb.size(); i++) {
v.push_back({vb[i], 'b'});
}
if (a >= k && b >= k) {
cout << ans;
return 0;
}
sort(v.begin(), v.end(), cmp);
for (i = 0; i < v.size(); i++) {
if (v[i].second == 'a') {
if (a < k) {
ans += v[i].first;
a++;
}
}
if (v[i].second == 'b') {
if (b < k) {
ans += v[i].first;
b++;
}
}
if (v[i].second == 'c') {
if (a < k || b < k) {
ans += v[i].first;
a++;
b++;
}
}
}
if (a >= k && b >= k)
printf("%lld\n", ans);
else
cout << "-1\n";
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import sys, os
from io import BytesIO, IOBase
from math import floor, gcd, fabs, factorial, fmod, sqrt, inf, log
from collections import defaultdict as dd, deque
from heapq import merge, heapify, heappop, heappush, nsmallest
from bisect import bisect_left as bl, bisect_right as br, bisect
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
stdin, stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
mod = pow(10, 9) + 7
mod2 = 998244353
def inp(): return stdin.readline().strip()
def iinp(): return int(inp())
def out(var, end="\n"): stdout.write(str(var)+"\n")
def outa(*var, end="\n"): stdout.write(' '.join(map(str, var)) + end)
def lmp(): return list(mp())
def mp(): return map(int, inp().split())
def l1d(n, val=0): return [val for i in range(n)]
def l2d(n, m, val=0): return [l1d(m, val) for j in range(n)]
def ceil(a, b): return (a+b-1)//b
S1 = 'abcdefghijklmnopqrstuvwxyz'
S2 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def isprime(x):
if x<=1: return False
if x in (2, 3): return True
if x%2 == 0: return False
for i in range(3, int(sqrt(x))+1, 2):
if x%i == 0: return False
return True
n, k = mp()
a, b, ab = l2d(3, 0)
for i in range(n):
x, y, z = mp()
if y==z==1:
ab.append(x)
elif y==1:
a.append(x)
else:
b.append(x)
if min(len(b), len(a))+len(ab)<k:
print(-1)
exit()
a.sort(reverse=True)
b.sort(reverse=True)
ab.sort(reverse=True)
ans = 0
i = 0
while i < k:
if len(a)==0 or len(b)==0:
ans += ab.pop()
elif len(ab)==0:
ans += a.pop() + b.pop()
else:
x, y, z = a[-1], b[-1], ab[-1]
if x+y < z:
ans += a.pop()+b.pop()
else:
ans += ab.pop()
i+=1
print(ans)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int A[100000], B[100000], C[100000];
int main() {
int n, k, t, a, b;
cin >> n >> k;
int num1 = 0, num2 = 0, num3 = 0;
for (int i = 1; i <= n; i++) {
cin >> t >> a >> b;
if (a == 1 && b != 1) A[++num1] = t;
if (a == 0 && b == 1) B[++num2] = t;
if (a == 1 && b == 1) C[++num3] = t;
}
if (num1 + num3 < k || num2 + num3 < k) {
cout << -1;
return 0;
}
sort(A + 1, A + num1 + 1);
sort(B + 1, B + num2 + 1);
sort(C + 1, C + num3 + 1);
int i = 1, j = 1;
int num = 0;
int sum = 0;
while (num < k) {
if ((i > num1 && num1 < k) || (i > num2 && num2 < k)) {
sum += C[j];
j++;
num++;
continue;
}
if (A[i] + B[i] <= C[j] || j >= num3) {
sum += (A[i] + B[i]);
i++;
} else {
sum += C[j];
j++;
}
num++;
}
cout << sum << endl;
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
#pragma GCC optimize("Ofast,no-stack-protector")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC optimize("unroll-loops")
template <class T>
inline T bigMod(T p, T e, T M) {
T ret = 1;
for (; e > 0; e >>= 1) {
if (e & 1) ret = (ret * p) % M;
p = (p * p) % M;
}
return (T)ret;
}
template <class T>
inline T modInverse(T a, T M) {
return bigMod(a, M - 2, M);
}
template <class T>
inline T gcd(T a, T b) {
if (b == 0) return a;
return gcd(b, a % b);
}
template <class T>
inline T lcm(T a, T b) {
a = abs(a);
b = abs(b);
return (a / gcd(a, b)) * b;
}
template <class T>
inline string int2String(T a) {
ostringstream str;
str << a;
return str.str();
}
const int maxn = 2e5 + 10;
struct info {
int t, a, b;
} v[maxn];
int n, k, id[maxn];
bool cmp(const int& a, const int& b) {
if (v[a].b == v[b].b) {
return v[a].t < v[b].t;
}
return v[a].b > v[b].b;
}
std::priority_queue<int, std::vector<int>, decltype(&cmp)> pq(cmp);
bool cmp1(const int& a, const int& b) { return v[a].a > v[b].a; }
int main() {
scanf("%d%d", &n, &k);
for (int i = int(0); i < int(n); i++) {
scanf("%d%d%d", &v[i].t, &v[i].a, &v[i].b);
id[i] = i;
}
sort(id, id + n, cmp1);
long long sum = 0;
int j, cnta = 0, cntb = 0;
for (int i = int(0); i < int(k); i++) {
j = id[i];
pq.push(j);
sum += v[j].t;
cnta += v[j].a;
cntb += v[j].b;
}
if (cnta < k) {
puts("-1");
return 0;
}
long long ans = 0x3f3f3f3f3f3f3f3f;
if (cntb >= k) {
ans = sum;
};
for (int i = int(k); i < int(n); i++) {
;
j = id[i];
pq.push(j);
sum += v[j].t;
cnta += v[j].a;
cntb += v[j].b;
;
while (cnta >= k && cntb >= k) {
ans = min(ans, sum);
j = pq.top();
pq.pop();
;
sum -= v[j].t;
cnta -= v[j].a;
cntb -= v[j].b;
}
cout << endl;
}
printf("%lld\n", ans >= 0x3f3f3f3f3f3f3f3f ? -1LL : ans);
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n,m,k = map(int, input().split())
oo = list()
oa = list()
ob = list()
zz = list()
for i in range(n):
t,a,b = map(int, input().split())
if a == 1 and b == 1:
oo.append((t,i))
elif a == 0 and b == 1:
ob.append((t,i))
elif a == 1 and b == 0:
oa.append((t,i))
else:
zz.append((t,i))
oo = sorted(oo)
oa = sorted(oa)
ob = sorted(ob)
oo_p = 0
oa_p = 0
ob_p = 0
ca = 0
cb = 0
ans = 0
ans_arr = list()
MAX = 23942034809238409823048
def condition(ko, loa, lob, loo, mo):
if max(0, max(ko-loa, ko-lob)) > loo or max(0, max(ko-loa, ko-lob)) > mo:
return False
return True
def get_first_elem_from_list(l, pos):
if pos < len(l):
return l[pos]
else:
return (MAX,-1)
def remove_first_elem_from_list(l, pos):
if len(l)>pos:
pos += 1
return pos
if not condition(k, len(oa), len(ob), len(oo), m):
print("-1")
exit(0)
while ca < k or cb < k:
oo_f = get_first_elem_from_list(oo, oo_p)
oa_f = get_first_elem_from_list(oa, oa_p)
ob_f = get_first_elem_from_list(ob, ob_p)
if ca < k and cb < k:
if oo_f[0] <= oa_f[0] + ob_f[0] or not condition(k-oo_p-oa_p-1, len(oa)-oa_p-1, len(ob) - ob_p -1, len(oo) - oo_p, m - oo_p - oa_p - ob_p - 2):
if oo_f[0] == MAX:
print("-1")
exit(0)
if n == 19683 and m == 507 and k == 254:
print(oo_f, oa_f, ob_f)
ca += 1
cb += 1
ans+=oo_f[0]
ans_arr.append(oo_f[1])
oo_p = remove_first_elem_from_list(oo, oo_p)
elif oa_f[0] + ob_f[0] < oo_f[0]:
ca += 1
cb += 1
ans+=oa_f[0]+ob_f[0]
ans_arr.extend([oa_f[1], ob_f[1]])
oa_p = remove_first_elem_from_list(oa, oa_p)
ob_p = remove_first_elem_from_list(ob, ob_p)
elif ca < k:
if oo_f[0] <= oa_f[0]:
ca += 1
ans+=oo_f[0]
ans_arr.append(oo_f[1])
oo_p = remove_first_elem_from_list(oo, oo_p)
elif oa_f[0] < oo_f[0]:
ca += 1
ans+=oa_f[0]
ans_arr.append(oa_f[1])
oa_p = remove_first_elem_from_list(oa, oa_p)
else:
if oo_f[0] <= ob_f[0]:
cb += 1
ans+=oo_f[0]
ans_arr.append(oo_f[1])
oo_p = remove_first_elem_from_list(oo, oo_p)
elif ob_f[0] < oo_f[0]:
cb += 1
ans+=ob_f[0]
ans_arr.append(ob_f[1])
ob_p = remove_first_elem_from_list(ob, ob_p)
if len(ans_arr) < m:
zz.extend(oo[oo_p:])
zz.extend(oa[oa_p:])
zz.extend(ob[ob_p:])
zz = sorted(zz)
curr_size = len(ans_arr)
for i in range(m-curr_size):
ans += zz[i][0]
ans_arr.append(zz[i][1])
print(ans)
assert len(ans_arr) == m
for i in ans_arr:
print(i + 1, end =" ")
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
def main():
n,k=list(map(int,input().split()))
l=[]
c1=0
c2=0
for j in range(0,n):
l1=list(map(int,input().split()))
if l1[1]==1:
c1+=1
if l1[2]==1:
c2+=1
l.append(l1)
if c1<k or c2<k:
print(-1)
return
l.sort()
c=0
d={}
d['a']=[]
d['b']=[]
d['c']=[]
for j in range(0,n):
if l[j][1]==1 and l[j][2]==1:
d['c'].append(l[j][0])
elif l[j][1]==1:
d['a'].append(l[j][0])
elif l[j][2]==1:
d['b'].append(l[j][0])
m=10**9+7
l2=d['a']
l3=d['b']
l4=d['c']
l2.append(m)
l3.append(m)
l4.append(m)
#print(l2,l3,l4)
p1=0
p2=0
p3=0
f=0
k1=k
k2=k
j=0
while j<n:
if l2[p1]+l3[p2] > l4[p3] and (p1!=len(l2)-1 and p2!=len(l3)-1 and p3!=len(l4)-1):
c+=l4[p3]
if p3!=len(l4)-1:
p3+=1
k1-=1
k2-=1
elif l2[p1] <= l3[p2] and k1!=0:
c+=l2[p1]
if p1!=len(l2)-1:
p1+=1
k1-=1
elif l2[p1] >= l3[p2] and k2!=0:
c+=l3[p2]
if p2!=len(l3)-1:
p2+=1
k2-=1
if k1==0 and k2==0:
break
j+=1
print(c)
t=1
for i in range(0,t):
main()
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set;
import java.util.StringTokenizer;
public class q5 {
static PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out));
public static class node{
int ind;
node left;
node right;
}
public static void main(String[] args) {
FastReader s = new FastReader();
int t = 1;
while(t-- > 0)
{
int n = s.nextInt();
int k = s.nextInt();
int count = 0;
long ans = 0;
PriorityQueue<Integer> c = new PriorityQueue<>();
PriorityQueue<Integer> a = new PriorityQueue<>();
PriorityQueue<Integer> b = new PriorityQueue<>();
for(int i=0;i<n;++i)
{
int l = s.nextInt();
int m = s.nextInt();
int p = s.nextInt();
if(m == 1 && p == 1)
c.add(l);
else if(m == 1)
a.add(l);
else if(p == 1)
b.add(l);
}
while(!c.isEmpty() && count < k)
{
ans += c.poll();
count++;
}
int h = count;
while(!a.isEmpty() && count < k)
{
ans += a.poll();
count++;
}
while(!b.isEmpty() && h < k)
{
ans += b.poll();
h++;
}
if(count < k || h < k)
out.println(-1);
else out.println(ans);
}
out.flush();
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include<bits/stdc++.h>
using namespace std;
#define int long long int
int min(int a,int b)
{ if(a<=b)
return a;
else
return b;
}
signed main()
{ int n,m,k;
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin>>n>>m>>k;
vector<pair<int,int>> g1,g2,g3,g4;
int arr[n+10][3]={0};
int a,b,c;
for(int i=1;i<=n;i++)
{ cin>>a>>b>>c;
arr[i][0]=a;
arr[i][1]=b;
arr[i][2]=c;
if(b==1&&c==1)
g3.push_back(make_pair(a,i));
else if(b==1 && c==0)
g1.push_back(make_pair(a,i));
else if(b==0 && c==1)
g2.push_back(make_pair(a,i));
else
g4.push_back(make_pair(a,i));
}
int zero=0;
int l=max(zero,2*k-m),r=k;
sort(g1.begin(),g1.end());
sort(g2.begin(),g2.end());
sort(g3.begin(),g3.end());
sort(g4.begin(),g4.end());
vector<int> sum1,sum2,sum3;
for(int i=0;i<min(g1.size(),g2.size());i++)
{ if(i==0)
sum1.push_back(g1[0].first);
else
sum1.push_back(sum1[i-1]+g1[i].first);
}
for(int i=0;i<min(g1.size(),g2.size());i++)
{ if(i==0)
sum2.push_back(g2[0].first);
else
sum2.push_back(sum2[i-1]+g2[i].first);
}
for(int i=0;i<g3.size();i++)
{ if(i==0)
sum3.push_back(g3[0].first);
else
sum3.push_back(sum3[i-1]+g3[i].first);
}
int ans=INT_MAX,ind=-1;
//cout<<l<<" "<<r<<" "<<g1.size()<<" "<<g2.size()<<" "<<g3.size()<<" "<<g4.size()<<endl;
for(int i=l;i<=r;i++)
{ int var=0;
int i1=0,i2=0;
if(i<=sum3.size())
{if(i>0)
{var+=sum3[i-1];
}
i1=i;
}
if(k-i<=sum2.size() && k-i<=sum1.size() )
{ if(k-i>0)
{var+=sum2[k-i-1];
var+=sum1[k-i-1];
}
i2=k-i;
}
if(var<ans && i1+2*i2<=m&& i1+i2==k)
{ ans=var;
ind=i;
}
}
if(ind==-1)
ind=0;
//cout<<ans<<" "<<ind<<"---------------------------------------------"<<endl;
int n1=0,n2=0;
vector<int> res;
int ct=0,i;
for( i=0;i<min(g3.size(),ind);i++)
{ ct++;
res.push_back(g3[i].second);
}
for(i=min(g3.size(),ind);i<g3.size();i++)
g4.push_back(make_pair(g3[i].first,g3[i].second));
for( i=0;i<min(g2.size(),k-ind);i++)
{ ct++;
res.push_back(g2[i].second);
}
for(i=min(g2.size(),k-ind);i<g2.size();i++)
g4.push_back(make_pair(g2[i].first,g2[i].second));
for( i=0;i<min(g1.size(),k-ind);i++)
{ ct++;
res.push_back(g1[i].second);
}
for(i=min(g1.size(),k-ind);i<g1.size();i++)
g4.push_back(make_pair(g1[i].first,g1[i].second));
sort(g4.begin(),g4.end());
int itr=0;
while(ct<m && itr<g4.size())
{ ct++;
res.push_back(g4[itr].second);
ans+=g4[itr].first;
itr++;
}
n1=0;
n2=0;
ans=0;
for(int i=0;i<res.size();i++)
{ int in=res[i];
ans+=arr[in][0];
if(arr[in][1]==1)
n1++;
if(arr[in][2]==1)
n2++;
if(n==243)
{ cout<<arr[in][0]<<" ";
}
}
if(n==243)
cout<<n1<<" "<<n2<<endl;
if(n1<k || n2<k)
ans=-1;
cout<<ans<<endl;
if(ans!=-1)
{ for(int i=0;i<m;i++)
cout<<res[i]<<" ";
cout<<endl;
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<pair<int, int>> numa, numb, numc, numd;
vector<int> ansa, ansb, ansc, ansd;
vector<int> mema, memb;
int main(int argc, const char* argv[]) {
int n, m, k;
cin >> n >> m >> k;
int cnta = 0, cntb = 0, cntc = 0;
for (int i = 0; i < n; i++) {
int temp, a, b;
cin >> temp >> a >> b;
if (a) {
cnta++;
}
if (b) {
cntb++;
}
if (a && b) {
cntc++;
numc.push_back({temp, i + 1});
} else if (a) {
numa.push_back({temp, i + 1});
} else if (b) {
numb.push_back({temp, i + 1});
} else {
numd.push_back({temp, i + 1});
}
}
if (cnta < k || cntb < k) {
cout << -1 << endl;
return 0;
}
sort(numa.begin(), numa.end(), greater<pair<int, int>>());
sort(numb.begin(), numb.end(), greater<pair<int, int>>());
sort(numc.begin(), numc.end(), greater<pair<int, int>>());
sort(numd.begin(), numd.end(), greater<pair<int, int>>());
int cnt = 0;
long long ans = 0, tmin = 1e6;
if (numa.size() < k || numb.size() < k || 2 * k > m) {
int tempa = k - numa.size(), tempb = k - numb.size();
if (tempa < 0) {
tempa = 0;
}
if (tempb < 0) {
tempb = 0;
}
int ttemp = max(max(tempa, tempb), 2 * k - m);
for (int i = 0; i < ttemp; i++) {
ans += numc.back().first;
ansc.push_back(numc.back().second);
cnt++;
numc.pop_back();
cntc--;
}
}
for (int i = cnt; i < k; i++) {
ans += numb.back().first;
ans += numa.back().first;
ansa.push_back(numa.back().second);
ansb.push_back(numb.back().second);
mema.push_back(numa.back().first);
memb.push_back(numb.back().first);
numa.pop_back(), numb.pop_back();
}
cnt += 2 * (k - cnt);
for (int i = cnt; i < m; i++) {
ans += numd.back().first;
ansd.push_back(numd.back().second);
numd.pop_back();
}
if (ans) {
if (ans < tmin) {
tmin = ans;
}
}
for (int i = 0; i < cntc; i++) {
if (!mema.size() || !memb.size()) {
break;
}
pair<int, int> tempa = {mema.back(), 0}, tempb = {memb.back(), 1},
tempd = {1e6, 2};
int tempc = numc.back().first;
if (numd.size()) {
tempd = {numd.back().first, 2};
}
ans += tempc;
ans -= tempa.first;
ans -= tempb.first;
auto ttmin = min(min(tempa, tempb), tempd);
switch (ttmin.second) {
case 0:
ans += tempa.first;
break;
case 1:
ans += tempb.first;
break;
case 2:
ans += tempd.first;
break;
default:
break;
}
if (ans < tmin) {
ansc.push_back(numc.back().second);
switch (ttmin.second) {
case 0:
ansb.pop_back();
break;
case 1:
ansa.pop_back();
break;
case 2:
ansa.pop_back();
ansb.pop_back();
ansd.push_back(numd.back().second);
break;
default:
break;
}
tmin = ans;
}
numc.pop_back();
mema.pop_back();
memb.pop_back();
if (numd.size()) {
numd.pop_back();
}
}
cout << tmin << endl;
for (auto i : ansa) {
cout << i << " ";
}
for (auto i : ansb) {
cout << i << " ";
}
for (auto i : ansc) {
cout << i << " ";
}
for (auto i : ansd) {
cout << i << " ";
}
cout << endl;
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct ele {
long long t;
long long a;
long long b;
};
bool comp(ele e1, ele e2) {
return (e2.t > e1.t || ((e2.t == e1.t) && (e2.b * e2.a < e1.b * e1.a)));
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long T;
T = 1;
while (T--) {
long long n, k, i;
cin >> n >> k;
struct ele e[n];
for (i = 0; i < n; i++) cin >> e[i].t >> e[i].a >> e[i].b;
long long p = 0, q = 0;
for (i = 0; i < n; i++) {
p += e[i].a;
q += e[i].b;
}
if (p < k || q < k) {
cout << "-1" << endl;
} else {
sort(e, e + n, comp);
long long ans = 0, k1 = 0, k2 = 0;
i = 0;
while (k1 < k || k2 < k) {
if (e[i].a + e[i].b > 0) {
ans += e[i].t;
k1 += e[i].a;
k2 += e[i].b;
}
i++;
}
i--;
long long t1 = i, t2 = i;
while (k1 > k2 && t1 >= 0) {
if (e[t1].a == 1 && e[t1].b == 0) {
ans -= e[t1].t;
k1--;
}
t1--;
}
while (k2 > k1 && t2 >= 0) {
if (e[t2].b == 1 && e[t2].a == 0) {
ans -= e[t2].t;
k2--;
}
t2--;
}
cout << ans << endl;
}
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
public static class Node
{
int key;
int value;
Node(int a,int b)
{
key=a;
value=b;
}
}
public static class comp implements Comparator<Node>
{
public int compare(Node a,Node b)
{
return (int)a.key-(int)b.key;
}
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int k=sc.nextInt();
ArrayList<Node> both=new ArrayList<Node>();
ArrayList<Node> a=new ArrayList<Node>();
ArrayList<Node> b=new ArrayList<Node>();
ArrayList<Node> none=new ArrayList<Node>();
for(int i=0;i<n;i++)
{
int t=sc.nextInt();
int a1=sc.nextInt();
int b1=sc.nextInt();
if(a1==1&&b1==1)
both.add(new Node(t,i));
else if(a1==1)
a.add(new Node(t,i));
else if(b1==1)
b.add(new Node(t,i));
else
none.add(new Node(t,i));
}
Collections.sort(both,new comp());
Collections.sort(b,new comp());
Collections.sort(a,new comp());
Collections.sort(none,new comp());
int p1=0,p2=0,p3=0;
int tot=0;
ArrayList<Node>sol1=new ArrayList<Node>();
ArrayList<Node>sol2=new ArrayList<Node>();
int num=0;
for(int i=0;i<k;i++)
{
if(p1==both.size())
{
while(p2<a.size()&&p2<b.size()&& i<k)
{
tot=tot+a.get(p2).key+b.get(p2).key;
sol2.add(a.get(p2));
sol2.add(b.get(p2));
p2++;
i++;
}
if(i<k)
{
tot=-1;
}
break;
}
else if(p2==a.size()||p2==b.size())
{
while(p1<both.size()&& i<k)
{
tot=tot+both.get(p1).key;
sol1.add(both.get(p1));
p1++;
i++;
}
if(i<k)
{
tot=-1;
}
break;
}
if(both.get(p1).key<a.get(p2).key+b.get(p2).key)
{
tot=tot+both.get(p1).key;
sol1.add(both.get(p1));
num=num+2;
p1++;
}
else
{
tot=tot+a.get(p2).key+b.get(p2).key;
sol2.add(a.get(p2));
sol2.add(b.get(p2));
num=num+1;
p2++;
}
}
// for(int i=0;i<sol1.size();i++)
// System.out.print(sol1.get(i).getValue()+" ");
// for(int i=0;i<sol2.size();i++)
// System.out.print(sol2.get(i).getValue()+" ");
// System.out.println();
if(tot==-1){
System.out.println(tot);
return;
}
if(sol1.size()+sol2.size()==m){
System.out.println(tot);
for(int i=0;i<sol1.size();i++)
System.out.print(sol1.get(i).value+1+" ");
for(int i=0;i<sol2.size();i++)
System.out.print(sol2.get(i).value+1+" ");
return;
}
if(sol1.size()+sol2.size()<m)
{
// System.out.println(sol1.size()+sol2.size()+" "+m);
for(int i=p2;i<a.size();i++)
{
both.add(a.get(i));
}
for(int i=p2;i<b.size();i++)
{
both.add(b.get(i));
}
for(int i=p3;i<none.size();i++)
{
both.add(none.get(i));
}
Collections.sort(both,new comp());
p1=0;
for(int i=sol1.size()+sol2.size();i<m;i++)
{
sol1.add(both.get(p1));
// System.out.print(" hi "+both.get(p1).getKey()+" ");
p1++;
}
}
if(sol1.size()+sol2.size()>m)
{
for(int i=0;i<sol1.size()+sol2.size()-m;i++)
{
if(sol2.size()==0)
{
System.out.println(-1);
return;
}
if(p1==both.size())
{
System.out.println(-1);
return;
}
sol2.remove(sol2.size()-1);
sol2.remove(sol2.size()-1);
sol1.add(both.get(p1));
p1++;
}
}
// System.out.println(tot);
tot=0;
for(int i=0;i<sol2.size();i++)
tot=tot+sol2.get(i).key;
for(int i=0;i<sol1.size();i++){
tot=tot+sol1.get(i).key;
}
// System.out.println();
System.out.println(tot);
for(int i=0;i<sol2.size();i++)
System.out.print((sol2.get(i).value+1)+" ");
for(int i=0;i<sol1.size();i++)
System.out.print((sol1.get(i).value+1)+" ");
System.out.println();
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 100;
const int mo = 2000000007;
pair<int, int> a[4][maxn];
int b[4][maxn], cnt[4];
int n, m, k, u, v, w;
int work(int v1, int v2) {
int l2 = 1, r2 = m - v1 - v2, tp = m - v1 - v2;
while (l2 < r2 + 1) {
int mid = l2 + r2 >> 1;
if (b[1][mid] + b[0][tp - mid] < b[1][mid + 1] + b[0][tp - mid - 1])
r2 = mid;
else
l2 = mid + 1;
}
return min(b[1][l2] + b[0][tp - l2], b[1][r2] + b[0][tp - r2]);
}
struct rr {
int a, b, c, d;
} tmp;
int main() {
int ans = mo;
scanf("%d%d%d", &n, &m, &k);
for (int i = (1); i <= (n); ++i) {
scanf("%d%d%d", &u, &v, &w);
a[w * 2 + v][++cnt[w * 2 + v]].first = u,
a[w * 2 + v][cnt[w * 2 + v]].second = i;
}
if (cnt[1] + cnt[3] < k || cnt[2] + cnt[3] < k || 2 * k - cnt[3] > m ||
m < k) {
printf("-1\n");
exit(0);
}
for (int i = (0); i <= (3); ++i) sort(a[i] + 1, a[i] + 1 + cnt[i]);
for (int i = (0); i <= (3); ++i) {
for (int j = (1); j <= (cnt[i]); ++j) {
b[i][j] = b[i][j - 1] + a[i][j].first;
}
}
deque<int> q[4];
int st = 0, val = 0;
if (cnt[1] >= k && cnt[2] >= k && m >= 2 * k) {
for (int i = (1); i <= (k); ++i)
q[1].push_back(a[1][i].second), q[2].push_back(a[2][i].second);
val = m - 2 * k;
st = (val > cnt[0]) ? val - cnt[0] : 0;
for (int i = (1); i <= (st); ++i) q[3].push_back(a[3][i].second);
} else {
st = max(k - min(cnt[1], cnt[2]), m - cnt[1] - cnt[2] - cnt[0]);
if (m < 2 * k) st = 2 * k - m;
for (int i = (1); i <= (k - st); ++i)
q[2].push_back(a[2][i].second), q[1].push_back(a[1][i].second);
for (int i = (1); i <= (st); ++i) q[3].push_back(a[3][i].second);
val = m - 2 * k + st;
}
for (int i = (1); i <= (val); ++i) {
int aa = a[1][q[1].size() + 1].first, bb = a[2][q[2].size() + 1].first,
cc = a[0][q[0].size() + 1].first;
if (aa == 0) aa = 1e9;
if (bb == 0) bb = 1e9;
if (cc == 0) cc = 1e9;
if (aa < bb && aa < cc)
q[1].push_back(a[1][i].second);
else if (bb < aa && bb < cc)
q[2].push_back(a[2][i].second);
else if (cc < 1e5)
q[0].push_back(a[0][i].second);
else
q[3].push_back(a[3][i].second);
}
ans = b[0][q[0].size()] + b[1][q[1].size()] + b[2][q[2].size()] +
b[3][q[3].size()];
tmp = {(int)q[0].size(), (int)q[1].size(), (int)q[2].size(),
(int)q[3].size()};
for (int i = (st + 1); i <= (cnt[3]); ++i) {
q[3].push_back(st);
q[2].pop_back(), q[1].pop_back();
int aa = a[1][q[1].size() + 1].first, bb = a[2][q[2].size() + 1].first,
cc = a[0][q[0].size() + 1].first;
if (aa == 0) aa = 1e9;
if (bb == 0) bb = 1e9;
if (cc == 0) cc = 1e9;
if (aa < bb && aa < cc)
q[1].push_back(a[1][i].second);
else if (bb < aa && bb < cc)
q[2].push_back(a[2][i].second);
else if (cc < 1e5)
q[0].push_back(a[0][i].second);
int cur = b[0][q[0].size()] + b[1][q[1].size()] + b[2][q[2].size()] +
b[3][q[3].size()];
if (cur < ans)
cur = ans, tmp = {(int)q[0].size(), (int)q[1].size(), (int)q[2].size(),
(int)q[3].size()};
}
printf("%d\n", ans);
for (int i = (1); i <= (tmp.a); ++i) printf("%d ", a[0][i].second);
for (int i = (1); i <= (tmp.b); ++i) printf("%d ", a[1][i].second);
for (int i = (1); i <= (tmp.c); ++i) printf("%d ", a[2][i].second);
for (int i = (1); i <= (tmp.d); ++i) printf("%d ", a[3][i].second);
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
const long long inf = 2e18 + 5;
void solve() {
long long n, k;
cin >> n >> k;
vector<pair<long long, pair<long long, long long> > > a(n);
vector<long long> alice, bob;
long long x, y, z;
for (long long i = (0); i < (n); i++) {
cin >> x >> y >> z;
a[i].first = x;
a[i].second.first = y;
a[i].second.second = z;
}
sort(a.begin(), a.end());
long long sum = 0, al = 0, bo = 0;
for (long long i = (0); i < (n); i++) {
if (a[i].second.first == 1 && a[i].second.second == 1) {
al++;
bo++;
sum += a[i].first;
} else if (a[i].second.first == 1) {
alice.push_back(a[i].first);
sum += a[i].first;
al++;
} else if (a[i].second.second == 1) {
bob.push_back(a[i].first);
sum += a[i].first;
bo++;
}
if (al >= k && bo >= k) break;
}
if (al < k || bo < k) {
cout << -1 << endl;
return;
}
for (long long i = (long long)alice.size() - 1; i >= 0, al > k; i--, al--)
sum -= alice[i];
for (long long i = (long long)bob.size() - 1; i >= 0, bo > k; i--, bo--)
sum -= bob[i];
cout << sum << endl;
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
long long cases = 1;
for (long long iter = 0; iter < cases; iter++) {
solve();
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
long long n, k;
cin >> n >> k;
vector<long long> a, b, ab;
for (long long i = 0; i < n; i++) {
long long t, x, y;
cin >> t >> x >> y;
if (x == 1 && y == 1) {
ab.push_back(t);
} else if (x == 1) {
a.push_back(t);
} else if (y == 1) {
b.push_back(t);
}
}
if ((long long)(a.size() + ab.size()) < k ||
(long long)(b.size() + ab.size()) < k) {
cout << -1 << "\n";
exit(0);
}
sort(ab.begin(), ab.end());
sort(a.begin(), a.end());
sort(b.begin(), b.end());
long long ans = 0;
long long i = 0, j = 0, rep = 0;
while (rep < k) {
if (i < (long long)ab.size()) {
if (j < (long long)a.size() && j < (long long)b.size()) {
long long sum = a[j] + b[j], sab = ab[i];
long long cnt = 1, og = j;
while (rep + cnt < n && i < (long long)ab.size() &&
j < (long long)a.size() && j < (long long)b.size() &&
sum <= sab) {
i++, j++;
cnt++;
sum += a[j] + b[j];
sab += ab[i];
}
if (og == j) {
ans += ab[i];
i++;
rep++;
} else {
if (j == (long long)a.size() || j == (long long)b.size()) {
ans += sum;
} else {
ans += sum - (a[j] + b[j]);
}
rep += j - og;
}
} else {
ans += ab[i];
i++;
rep++;
}
} else if (j < (long long)a.size() && j < (long long)b.size()) {
ans += a[j] + b[j];
j++;
rep++;
}
}
cout << ans << "\n";
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
/*
Just Another Source code by -
Ambuj
*/
#include<bits/stdc++.h>
using namespace std;
#define error(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); err(_it, args); }
void err(istream_iterator<string> it) {}
template<typename T, typename... Args>
void err(istream_iterator<string> it, T a, Args... args) {
cerr << *it << " = " << a << endl;
err(++it, args...);
}
#define ll long long
#define vi vector<int>
#define vl vector<ll>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define pii pair<int,int>
#define pll pair<ll,ll>
#define VP vector< pll >
#define MOD 1000000007
#define mp make_pair
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define FF first
#define SS second
#define teji ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
#define DI int n;cin>>n;
#define rep(i,a,b) for(ll i=a;i<b;i++)
int sum() { return 0; }
template<typename T, typename... Args>
auto sum(T a, Args... args) { return a + sum(args...); }
struct qwe
{
ll t,x,y;
};
bool desc(qwe a,qwe b)
{
return a.t < b.t;
}
int gcd(int a,int b)
{
if(a==0)return b;
if(b==0)return a;
return gcd(b,a%b);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("/home/ambuj/.config/sublime-text-3/Packages/User/input.txt","r",stdin);
freopen ("/home/ambuj/.config/sublime-text-3/Packages/User/output.txt","w",stdout);
#endif
ll n,k;
cin>>n>>k;
qwe s[n+1];
stack<ll> alice,bob;
ll a=k,b=k;
ll ans=0;
//ll t[n+1],x[n+1],y[n+1];
ll cnt1=0,cnt2=0;
rep(i,0,n)
{
cin>>s[i].t>>s[i].x>>s[i].y;
if(s[i].x==1)cnt1++;
if(s[i].y==1)cnt2++;
//if(s[i].x==1&&s[i].y==1)ans++,a--,b--;
}
if(cnt1<k||cnt2<k){cout<<-1<<endl;
return 0;}
sort(s,s+n,desc);
rep(i,0,n)
{
//if(alice.size()==a&&bob.size()==b)break;
if(s[i].x==0&&s[i].y==0)continue;
if(a==0&&b==0)break;
if(s[i].x==1&&s[i].y==1){
if(a!=0&&b!=0&&alice.size()==a&&bob.size()==b){
if(s[i].t<alice.top()+bob.top())
{
ans-=alice.top();
ans-=bob.top();
alice.pop();bob.pop();
a--;b--;
ans+=s[i].t;
}
}
if(!alice.empty()&&alice.size()==a){ans-=alice.top();alice.pop();}
if(!bob.empty()&&bob.size()==b){ans-=bob.top();bob.pop();}
ans+=s[i].t;
a--;b--;
}else
{
if(s[i].x==1&&alice.size()<a){
alice.push(s[i].t);ans+=s[i].t;
}else
if(s[i].y==1&&bob.size()<b)
{
bob.push(s[i].t);ans+=s[i].t;
}
}
}
cout<<ans<<endl;
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
void YES(bool t = 1) { cout << YESNO[t] << "\n"; }
void Yes(bool t = 1) { cout << YesNo[t] << "\n"; }
void yes(bool t = 1) { cout << yesno[t] << "\n"; }
const long long mod = 1e9 + 7;
const long long mxN = 2e6 + 5;
long long n, m, x, y;
array<long long, 3> a[mxN];
string s, t;
void code() {
cin >> n >> m;
vector<long long> v1, v2, v3;
for (long long i = 0; i < n; i++) {
a[i][0] = a[i][1] = a[i][2] = 0;
cin >> a[i][0] >> a[i][1] >> a[i][2];
if (a[i][1] == 1 && a[i][2] == 1) {
v1.push_back(a[i][0]);
}
if (a[i][1] == 1 && a[i][2] == 0) {
v2.push_back(a[i][0]);
}
if (a[i][1] == 0 && a[i][2] == 1) {
v3.push_back(a[i][0]);
}
}
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
sort(v3.begin(), v3.end());
long long ans = 0;
long long k = 0;
long long i = 0, j = 0;
long long x = v1.size(), y = v2.size(), z = v3.size();
while (k <= m && i < x && j < min(y, z)) {
k++;
if (v1[i] <= v2[j] + v3[j]) {
ans += v1[i];
i++;
} else {
ans += (v2[j] + v3[j]);
j++;
}
}
while (k <= m && i < x) {
ans += v1[i];
i++;
k++;
}
while (k <= m && j < min(y, z)) {
ans += (v2[j] + v3[j]);
k++;
j++;
}
if (k < m)
cout << -1 << "\n";
else
cout << ans << "\n";
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long t = 1;
while (t--) code();
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long lcm(long long a, long long b) { return (a * b) / gcd(a, b); }
void print(vector<long long> a) {
for (int i = 0; i < a.size(); i++) {
cout << a[i] << ' ';
}
cout << endl;
}
vector<long long> inp(int n) {
vector<long long> a;
long long x;
for (int i = 0; i < n; i++) {
cin >> x;
a.push_back(x);
}
return a;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long t, n, i, j, k, l, c1, cnt, flag, m1, m, m2, maxi, mini, x, y, z;
vector<long long> a, b, c;
string s, s1, s2;
cin >> n >> k;
for (i = 0; i < n; i++) {
cin >> x >> y >> z;
if (y + z == 2) {
c.push_back(x);
} else {
if (y == 1) {
a.push_back(x);
}
if (z == 1) {
b.push_back(x);
}
}
}
sort(a.begin(), a.end());
sort(b.begin(), b.end());
sort(c.begin(), c.end());
cnt = 0;
if (c.size() + a.size() >= k && c.size() + b.size() >= k) {
i = 0, j = 0, l = 0;
while (i != k) {
if (j < a.size() && j < b.size()) {
if (l < c.size()) {
if (a[j] + b[j] < c[l]) {
cnt = cnt + a[j] + b[j];
j++;
} else {
cnt = cnt + c[l];
l++;
}
} else {
cnt = cnt + a[j] + b[j];
}
} else {
cnt = cnt + c[l];
l++;
}
i++;
}
cout << cnt << endl;
} else {
cout << -1 << endl;
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import sys
s = sys.stdin.readline().split()
n, m, k = int(s[0]), int(s[1]), int(s[2])
all = []
All = []
Alice = []
Bob = []
Both = []
none = []
z = 1
while n:
i = sys.stdin.readline().split()
x = 3
i.append(z)
while x:
i[x-1] = int(i[x - 1])
x -= 1
all.append(i)
if i[1] == i[2]:
if i[1] == 0:
none.append(i)
else:
Both.append(i)
else:
if i[1] == 0:
Bob.append(i)
else:
Alice.append(i)
z += 1
n -= 1
Alice.sort(key=lambda x: x[0])
Bob.sort(key=lambda x: x[0])
Both.sort(key=lambda x: x[0])
none.sort(key=lambda x: x[0])
tresult = []
if 2 * k > m:
l = 2 * k - m
if len(Both) >= l:
tresult = Both[:l]
Both = Both[l:]
All = Alice + Both + Bob + none
m = 2 * (m - k)
k = k - l
else:
print(-1)
exit()
else:
tresult = []
tresult1 = []
if min(len(Alice), len(Bob)) == len(Alice):
if len(Alice) < k:
k1 = k - len(Alice)
if len(Both) < k1:
print(-1)
exit()
else:
tresult1 = Both[:k1]
Both = Both[k1:]
k = k - k1
else:
if len(Bob) < k:
k1 = k - len(Bob)
if len(Both) < k1:
print(-1)
exit()
else:
tresult1 = Both[:k1]
Both = Both[k1:]
k = k - k1
Alice1 = Alice[:k]
Bob1 = Bob[:k]
Alice = Alice[k:]
Bob = Bob[k:]
corr = []
elev = False
while len(Alice1) > 0 and len(Bob1) > 0 and len(Both) > 0 and len(none) > 0 and Alice1[-1][0] + Bob1[-1][0] >= Both[0][0]:
Alice.append(Alice1[-1])
Bob.append(Bob1[-1])
corr.append(Both[0])
Alice1.pop(-1)
Bob1.pop(-1)
Both.pop(0)
q = len(tresult1) + len(corr) + len(Alice1) + len(Bob1)
q = m - q
All = Alice + Bob + Both + none
All.sort(key=lambda x: x[0])
result2 = tresult + tresult1 + corr + Alice1 + Bob1
result = All[:q]
result = result + tresult + tresult1 + corr + Alice1 + Bob1
sum1 = 0
for row in result:
sum1 = sum1 + row[0]
print(sum1)
if sum1 == 0:
print(sum(row[1] for row in result2))
print(sum(row[2] for row in result2))
result.sort(key=lambda x: x[0])
print(result[-1])
print(result[-2])
chk = result[-1][0] - 1
for row in All:
if row[0] == chk:
print(row)
if sum1 == 0:
print(len(corr))
result.sort(key=lambda x: x[0])
print(sum(row[1] for row in result))
print(sum(row[2] for row in result))
print(All[q-2])
print(All[q-1])
print(All[q])
All = All[q:]
print(q)
print(result[-1])
print(All[0])
print(len(result))
print(len(All))
if sum1 == 0:
print(all[15429])
print(all[11655])
print(' '.join([str(row[3]) for row in result]))
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, k;
cin >> n >> k;
vector<int> afor;
vector<int> bfor;
int q = 0;
long sum1 = 0;
for (int i = 0; i < n; i++) {
int t, a, b;
cin >> t >> a >> b;
if (a == 1 && b == 0) afor.push_back(t);
if (b == 1 && a == 0) bfor.push_back(t);
if (a == 1 && b == 1) {
afor.push_back(t);
bfor.push_back(t);
sum1 += t;
}
}
sort(afor.begin(), afor.end());
sort(bfor.begin(), bfor.end());
if (afor.size() < k || bfor.size() < k)
cout << "-1" << endl;
else if (afor.size() == k && bfor.size() > k) {
long sum = 0;
sum = accumulate(afor.begin(), afor.begin() + afor.size(), sum);
cout << sum << endl;
} else if (bfor.size() == k && afor.size() > k) {
long sum = 0;
sum = accumulate(bfor.begin(), bfor.begin() + bfor.size(), sum);
cout << sum << endl;
} else {
long sum = 0;
int f = 0, g = 0;
for (int i = 0; i < k; i++) {
sum += afor[i];
sum += bfor[i];
}
sum -= sum1;
cout << sum << endl;
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import io,os
input=io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
import sys
def solve(n,k,TAB):
A,B,AB=[],[],[]
cnt_a,cnt_b=0,0
for t,a,b in TAB:
cnt_a+=a
cnt_b+=b
if a*b==1:
AB.append(t)
elif a==1:
A.append(t)
elif b==1:
B.append(t)
if cnt_a<k or cnt_b<k:
return -1
AB.sort(); A.sort(); B.sort()
l=len(AB)
AB=AB[:min(k,l)]
l=len(AB)
remain=k-l
ans=sum(AB)+sum(A[:remain])+sum(B[:remain])
l_a=len(A); l_b=len(B)
tmp=ans
for i in range(min(l,l_a-remain,l_b-remain)):
tmp-=AB.pop()
tmp+=A[remain+i+1]+B[remain+i+1]
ans=min(ans,tmp)
return ans
def main():
n,k=map(int,input().split())
TAB=[list(map(int,input().split())) for _ in range(n)]
ans=solve(n,k,TAB)
sys.stdout.write(str(ans)+'\n')
if __name__=='__main__':
main()
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
string to_string(const string& s) { return '"' + s + '"'; }
string to_string(bool b) { return (b ? "true" : "false"); }
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto& x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
void foo() {
int n, m, k;
cin >> n >> m >> k;
vector<pair<int, int>> both;
vector<pair<int, int>> alice;
vector<pair<int, int>> bob;
vector<pair<int, int>> none;
for (int i = 0; i < n; i++) {
int t, a, b;
cin >> t >> a >> b;
if (a && b) {
both.push_back({t, i + 1});
} else if (a) {
alice.push_back({t, i + 1});
} else if (b) {
bob.push_back({t, i + 1});
} else {
none.push_back({t, i + 1});
}
}
sort(both.begin(), both.end());
sort(alice.begin(), alice.end());
sort(bob.begin(), bob.end());
sort(none.begin(), none.end());
20;
20;
20;
20;
20;
if ((int)both.size() + (int)min(alice.size(), bob.size()) < k) {
cout << -1 << endl;
return;
}
vector<int> ans;
long long total = 0;
int bi = 0;
for (; bi < max(k * 2 - m, 0); bi++) {
if (bi == (int)both.size()) {
cout << -1 << endl;
return;
}
total += both[bi].first;
ans.push_back(both[bi].second);
}
20;
int si = 0;
priority_queue<pair<int, int>> pq;
int in = bi;
for (int i = bi; i < k; i++) {
if (si < (int)min(alice.size(), bob.size()) && in + 2 <= m) {
pq.push({alice[si].first, alice[si].second});
pq.push({bob[si].first, bob[si].second});
total += bob[si].first + alice[si].first;
si++;
in += 2;
} else {
ans.push_back(both[bi].second);
total += both[bi].first;
bi++;
in++;
}
}
20;
vector<pair<int, int>> more;
for (int i = si; i < (int)alice.size(); i++) {
more.push_back(alice[i]);
}
for (int i = si; i < (int)bob.size(); i++) {
more.push_back(bob[i]);
}
for (int i = 0; i < (int)none.size(); i++) {
more.push_back(none[i]);
}
sort(more.begin(), more.end());
for (int i = 0; in < m && i < (int)more.size(); in++, i++) {
pq.push(more[i]);
total += more[i].first;
}
20;
for (; in < m; in++) {
total += both[bi].first;
ans.push_back(both[bi].second);
bi++;
}
20;
vector<pair<int, int>> out;
long long best = total;
long long pos = bi;
for (; bi < (int)both.size() && pq.size();) {
total += both[bi].first;
ans.push_back(both[bi].second);
bi++;
pair<int, int> p = pq.top();
out.push_back(p);
pq.pop();
total -= p.first;
if (total < best) {
best = total;
pos = bi;
}
20;
}
20;
20;
for (int i = bi; i > pos; i--) {
pair<int, int> add = out.back();
out.pop_back();
pq.push(add);
ans.pop_back();
}
while (!pq.empty()) {
pair<int, int> p = pq.top();
ans.push_back(p.second);
pq.pop();
}
cout << best << endl;
for (int ind : ans) {
cout << ind << " ";
}
cout << endl;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
foo();
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.*;
import java.math.*;
import java.io.*;
public class A{
static FastReader scan=new FastReader();
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
static LinkedList<Integer>edges[];
// static LinkedList<Pair>edges[];
static boolean stdin = true;
static String filein = "input";
static String fileout = "output";
static int dx[] = { -1, 0, 1, 0 };
static int dy[] = { 0, 1, 0, -1 };
int dx_8[]={1,1,1,0,0,-1,-1,-1};
int dy_8[]={-1,0,1,-1,1,-1,0,1};
static char sts[]={'U','R','D','L'};
static boolean prime[];
static long LCM(long a,long b){
return (Math.abs(a*b))/gcd(a,b);
}
public static int upperBound(long[] array, int length, long value) {
int low = 0;
int high = length;
while (low < high) {
final int mid = low+(high-low) / 2;
if ( array[mid]>value) {
high = mid ;
} else {
low = mid+1;
}
}
return low;
}
static long gcd(long a, long b) {
if(a!=0&&b!=0)
while((a%=b)!=0&&(b%=a)!=0);
return a^b;
}
static int countSetBits(int n)
{
int count = 0;
while (n > 0) {
if((n&1)!=1)
count++;
//count += n & 1;
n >>= 1;
}
return count;
}
static void sieve(long n)
{
prime = new boolean[(int)n+1];
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
}
static boolean isprime(long x)
{
for(long i=2;i*i<=x;i++)
if(x%i==0)
return false;
return true;
}
static int perm=0,FOR=0;
static boolean flag=false;
static int len=100000000;
static ArrayList<Pair>inters=new ArrayList<Pair>();
static class comp1 implements Comparator<Pair>{
public int compare(Pair o1,Pair o2){
return Integer.compare((int)o2.x,(int)o1.x);
}
}
public static class comp2 implements Comparator<Pair>{
public int compare(Pair o1,Pair o2){
return Integer.compare((int)o2.x,(int)o1.x);
}
}
static StringBuilder a,b;
static boolean isPowerOfTwo(int n)
{
if(n==0)
return false;
return (int)(Math.ceil((Math.log(n) / Math.log(2)))) ==
(int)(Math.floor(((Math.log(n) / Math.log(2)))));
}
static ArrayList<Integer>v;
static ArrayList<Integer>pows;
static void block(long x)
{
v = new ArrayList<Integer>();
pows=new ArrayList<Integer>();
while (x > 0)
{
v.add((int)x % 2);
x = x / 2;
}
// Displaying the output when
// the bit is '1' in binary
// equivalent of number.
for (int i = 0; i < v.size(); i++)
{
if (v.get(i)==1)
{
pows.add(i);
}
}
}
static long ceil(long a,long b)
{
if(a%b==0)
return a/b;
return a/b+1;
}
static boolean isprime(int n)
{
// Corner cases
if (n <= 1) return false;
if (n <= 3) return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to return the smallest
// prime number greater than N
static int nextPrime(int N)
{
// Base case
if (N <= 1)
return 2;
int prime = N;
boolean found = false;
// Loop continuously until isPrime returns
// true for a number greater than n
while (!found)
{
prime++;
if (isprime(prime))
found = true;
}
return prime;
}
static long mod=(long)1e9+7;
static int mx=0,k;
static long nPr(long n,long r)
{
long ret=1;
for(long i=n-r+1;i<=n;i++)
{
ret=1L*ret*i%mod;
}
return ret%mod;
}
public static void main(String[] args) throws Exception
{
//SUCK IT UP AND DO IT ALRIGHT
//scan=new FastReader("hps.in");
//out = new PrintWriter("hps.out");
//System.out.println( 1005899102^431072812);
//int elem[]={1,2,3,4,5};
//System.out.println("avjsmlfpb".compareTo("avjsmbpfl"));
int tt=1;
/*for(int i=0;i<=100;i++)
if(prime[i])
arr.add(i);
System.out.println(arr.size());*/
// check(new StringBuilder("05:11"));
// System.out.println(26010000000000L%150);
//System.out.println((1000000L*99000L));
//tt=scan.nextInt();
// System.out.println(2^6^4);
//StringBuilder o=new StringBuilder("GBGBGG");
//o.insert(2,"L");
int T=tt;
//System.out.println(gcd(3,gcd(24,gcd(120,168))));
//System.out.println(gcd(40,gcd(5,5)));
//System.out.println(gcd(45,gcd(10,5)));
//System.out.println(primes.size());
outer:while(tt-->0)
{
int n=scan.nextInt(),k=scan.nextInt();
ArrayList<Integer>first=new ArrayList<Integer>();
ArrayList<Integer>second=new ArrayList<Integer>();
ArrayList<Integer>third=new ArrayList<Integer>();
for(int i=0;i<n;i++)
{
int t=scan.nextInt(),a=scan.nextInt(),b=scan.nextInt();
if(a==1&&b==1)
first.add(t);
else if(a==1&&b==0)
second.add(t);
else if(a==0&&b==1)
third.add(t);
}
Collections.sort(second);
Collections.sort(first);
Collections.sort(third);
if(first.size()+second.size()<k||first.size()+third.size()<k)
{
out.println(-1);
out.close();
return;
}
int res=0;
if(first.size()==0)
{
for(int i=0;i<k;i++)
res+=second.get(i);
for(int i=0;i<k;i++)
res+=third.get(i);
out.println(res);
out.close();
return;
}
if(first.size()<k)
{
int tmpk=k;
for(int i=0;i<first.size();i++)
{
res+=first.get(i);
tmpk--;
}
for(int i=0;i<tmpk;i++)
{
res+=second.get(i);
res+=third.get(i);
}
out.println(res);
out.close();
return;
}
for(int i=0;i<Math.min(first.size(),k);i++)
{
res+=first.get(i);
}
int l=0,r=0;
for(int i=0;i<Math.min(first.size(),k);i++)
{
if(l<second.size()&&r<third.size()&&second.get(l)+third.get(r)<first.get(i))
{
res-=first.get(i);
res+=second.get(l)+third.get(r);
l++;
r++;
}
}
out.println(res);
}
out.close();
//SEE UP
}
static class special implements Comparable<special>{
int x,y,z,h;
String s;
special(int x,int y,int z,int h)
{
this.x=x;
this.y=y;
this.z=z;
this.h=h;
}
@Override
public boolean equals(Object o){
if (o == this) return true;
if (o.getClass() != getClass()) return false;
special t = (special)o;
return t.x == x && t.y == y&&t.s.equals(s);
}
public int compareTo(special o)
{
return Integer.compare(x,o.x);
}
}
static long binexp(long a,long n)
{
if(n==0)
return 1;
long res=binexp(a,n/2);
if(n%2==1)
return res*res*a;
else
return res*res;
}
static long powMod(long base, long exp, long mod) {
if (base == 0 || base == 1) return base;
if (exp == 0) return 1;
if (exp == 1) return (base % mod+mod)%mod;
long R = (powMod(base, exp/2, mod) % mod+mod)%mod;
R *= R;
R %= mod;
if ((exp & 1) == 1) {
return (base * R % mod+mod)%mod;
}
else return (R %mod+mod)%mod;
}
static double dis(double x1,double y1,double x2,double y2)
{
return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
static long mod(long x,long y)
{
if(x<0)
x=x+(-x/y+1)*y;
return x%y;
}
public static long pow(long b, long e) {
long r = 1;
while (e > 0) {
if (e % 2 == 1) r = r * b ;
b = b * b;
e >>= 1;
}
return r;
}
private static void sort(long[] arr) {
List<Long> list = new ArrayList<>();
for (long object : arr) list.add(object);
Collections.sort(list);
//Collections.reverse(list);
for (int i = 0; i < list.size(); ++i) arr[i] = list.get(i);
}
private static void sort2(int[] arr) {
List<Integer> list = new ArrayList<>();
for (int object : arr) list.add(object);
Collections.sort(list);
Collections.reverse(list);
for (int i = 0; i < list.size(); ++i) arr[i] = list.get(i);
}
public static class FastReader {
BufferedReader br;
StringTokenizer root;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
FastReader(String filename)throws Exception
{
br=new BufferedReader(new FileReader(filename));
}
boolean hasNext(){
String line;
while(root.hasMoreTokens())
return true;
return false;
}
String next() {
while (root == null || !root.hasMoreTokens()) {
try {
root = new StringTokenizer(br.readLine());
} catch (Exception addd) {
addd.printStackTrace();
}
}
return root.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception addd) {
addd.printStackTrace();
}
return str;
}
public int[] nextIntArray(int arraySize) {
int array[] = new int[arraySize];
for (int i = 0; i < arraySize; i++) {
array[i] = nextInt();
}
return array;
}
}
static class Pair implements Comparable<Pair>{
public long x, y;
public Pair(long x1, long y1) {
x=x1;
y=y1;
}
@Override
public int hashCode() {
return (int)(x + 31 * y);
}
public String toString() {
return x + " " + y;
}
@Override
public boolean equals(Object o){
if (o == this) return true;
if (o.getClass() != getClass()) return false;
Pair t = (Pair)o;
return t.x == x && t.y == y;
}
public int compareTo(Pair o)
{
return (int)(o.x-x);
}
}
static class tuple{
int x,y,z;
tuple(int a,int b,int c){
x=a;
y=b;
z=c;
}
}
static class Edge{
int d,w;
Edge(int d,int w)
{
this.d=d;
this.w=w;
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import os
import sys
from io import BytesIO, IOBase
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# ------------------------------
def RL(): return map(int, sys.stdin.readline().rstrip().split())
def RLL(): return list(map(int, sys.stdin.readline().rstrip().split()))
def N(): return int(input())
def comb(n, m): return factorial(n) / (factorial(m) * factorial(n - m)) if n >= m else 0
def perm(n, m): return factorial(n) // (factorial(n - m)) if n >= m else 0
def mdis(x1, y1, x2, y2): return abs(x1 - x2) + abs(y1 - y2)
mod = 998244353
INF = float('inf')
from math import factorial
from collections import Counter, defaultdict, deque
from heapq import heapify, heappop, heappush
# ------------------------------
# f = open('../input.txt')
# sys.stdin = f
def main():
n, k = RL()
na = 0
nb = 0
ab = 0
ar, br, abr = [], [], []
for _ in range(n):
t, a, b = RL()
if a and not b:
na+=1
ar.append(t)
if b and not a:
nb+=1
br.append(t)
if a==1 and b==1:
ab+=1
abr.append(t)
if na+ab<k or nb+ab<k:
print(-1)
else:
neab = max(k-na, k-nb)
abr.sort()
num = k
res = 0
if neab>0:
res+=sum(abr[:neab])
num-=neab
else:
neab = 0
ar.sort()
br.sort()
pa = 0; pb = neab
for i in range(num):
if pb==len(abr):
res+=ar[pa]+br[pa]
pa+=1
continue
elif pa==len(ar) or pa==len(br):
res+=abr[pb]
pb+=1
continue
if abr[pb]<ar[pa]+br[pa]:
pb+=1
res+=abr[pb]
else:
pa+=1
res+=ar[pa]+br[pa]
print(res)
if __name__ == "__main__":
main()
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
public class E {
public static void main(String[] args) throws IOException {
BufferedReader file = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(file.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
ArrayList<Integer> paired = new ArrayList<>();
PriorityQueue<Integer> a = new PriorityQueue<>();
PriorityQueue<Integer> b = new PriorityQueue<>();
while(n-->0) {
st = new StringTokenizer(file.readLine());
int time = Integer.parseInt(st.nextToken());
int val = Integer.parseInt(st.nextToken())*2+Integer.parseInt(st.nextToken());
if(val == 3)
paired.add(time);
else if(val == 2)
b.add(time);
else if(val == 1)
a.add(time);
}
while(!a.isEmpty() && !b.isEmpty()) {
paired.add(a.remove()+b.remove());
}
if(paired.size() < k)
System.out.println(-1);
else {
int ans = 0;
for(int i = 0; i < k; i++) {
ans += paired.get(i);
}
System.out.println(ans);
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int n, m, k;
cin >> n >> m >> k;
int A = k, B = k;
long long int res = 0;
vector<int> vec;
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
pq;
priority_queue<pair<pair<int, int>, pair<int, int>>,
vector<pair<pair<int, int>, pair<int, int>>>,
greater<pair<pair<int, int>, pair<int, int>>>>
ab1, ab2;
int dbl = max(0, 2 * k - m);
for (int i = 0; i < n; i++) {
int cost, a, b;
cin >> cost >> a >> b;
if (a == 0 and b == 0) {
pq.push(make_pair(cost, i + 1));
} else {
if (a and b)
ab1.push(make_pair(make_pair(cost, i + 1), make_pair(a, b)));
else
ab2.push(make_pair(make_pair(cost, i + 1), make_pair(a, b)));
}
}
if (dbl > ab1.size()) {
printf("-1\n");
return 0;
}
for (int i = 0; i < dbl; i++) {
res += ab1.top().first.first;
vec.push_back(ab1.top().first.second);
ab1.pop();
A--;
B--;
}
while (ab1.size()) {
ab2.push(ab1.top());
ab1.pop();
}
while (ab2.size()) {
bool use = false;
auto p = ab2.top();
ab2.pop();
if (A > 0 and p.second.first) use = true;
if (B > 0 and p.second.second) use = true;
if (!use) {
pq.push(p.first);
} else {
if (p.second.first) A = max(A - 1, 0);
if (p.second.second) B = max(B - 1, 0);
res += p.first.first;
vec.push_back(p.first.second);
}
}
if (A > 0 or B > 0) {
printf("-1\n");
return 0;
}
while (vec.size() < m) {
res += pq.top().first;
vec.push_back(pq.top().second);
pq.pop();
}
cout << res << endl;
for (int i : vec) {
cout << i << " ";
}
cout << endl;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class E {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
PriorityQueue<Pair>a = new PriorityQueue<>();
PriorityQueue<Pair>b = new PriorityQueue<>();
PriorityQueue<Pair>both = new PriorityQueue<>();
PriorityQueue<Pair>garb = new PriorityQueue<>();
for(int i=0;i<n;i++){
int t = sc.nextInt();
int x = sc.nextInt();
int y = sc.nextInt();
if(x==1 && y==1){
both.add(new Pair(t,i+1));
}else if(x==1 && y!=1){
a.add(new Pair(t,i+1));
}else if(x!=1 && y==1){
b.add(new Pair(t,i+1));
}else{
garb.add(new Pair(t,i+1));
}
}
// System.out.println(a);
// System.out.println(b);
// System.out.println(both);
ArrayList<Integer>result = new ArrayList<>();
int c = 2*k-m;
boolean t = true;
long res = 0;
if(m<k)t = false;
while (!both.isEmpty() && c>0 && t){
if(both.isEmpty()){
t = false;break;}
Pair p = both.poll();
res+=p.a;
result.add(p.b);
c--;
k--;
m--;
}
while (k>0 && t){
int x = 1000000000;
int y = 1000000000;
int z = 1000000000;
if(!a.isEmpty()){
x=a.peek().a;
}
if(!b.isEmpty())y = b.peek().a;
if(!both.isEmpty())z = both.peek().a;
if(z<=x+y && !both.isEmpty()){
Pair p = both.poll();
res+=p.a;
result.add(p.b);
m--;
}
else if(!a.isEmpty() && !b.isEmpty()){
Pair p1 = a.poll();
Pair p2 = b.poll();
res+=p1.a;
res+=p2.a;
result.add(p1.b);
result.add(p2.b);
m-=2;
}else{
t = false;
break;
}
k--;
}
while (m>0){
int x = 1000000000;
int y = 1000000000;
int z = 1000000000;
int g = 1000000000;
if(!a.isEmpty()){
x=a.peek().a;
}
if(!b.isEmpty())y = b.peek().a;
if(!both.isEmpty())z = both.peek().a;
if(!garb.isEmpty())g = garb.peek().a;
if(z<=x&& z<=y && z<=g&& !both.isEmpty()){
Pair p = both.poll();
res+=p.a;
result.add(p.b);
m--;
}
else if(x<=y && x<=z && x<=g &&!a.isEmpty()){
Pair p1 = a.poll();
res+=p1.a;
result.add(p1.b);
m--;
}else if(y<=z && y<=x && y<=g&&!b.isEmpty()){
Pair p1 = b.poll();
res+=p1.a;
result.add(p1.b);
m--;
}else if(g<=z && g<=x && g<=y&&!garb.isEmpty()){
Pair p1 = garb.poll();
res+=p1.a;
result.add(p1.b);
m--;
}else{
t = false;
break;
}
}
if(t){
pw.println(res);
for(int i=0;i<result.size();i++)
pw.print(result.get(i)+" ");
pw.println();
}else{
pw.println(-1);
}
pw.flush();
pw.close();
}
static long power(long x, long y, long m) {
if (y == 0)
return 1;
long p = power(x, y / 2, m) % m;
p = (p * p) % m;
if (y % 2 == 0)
return p;
else
return (x * p) % m;
}
static class Node{
long a;
long b;
long c;
public Node(long a,long b,long c){
this.a= a;
this.b = b;
this.c = c;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class Pair implements Comparable<Pair>{
int a;
int b;
public Pair(int a,int b){
this.a= a;
this.b = b;
}
public int compareTo(Pair o) {
if(this.a==o.a)return Integer.compare(b,o.b);
return Integer.compare(a,o.a);
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
line = input()
n, m, k = [int(i) for i in line.split(' ')]
books, allL, aliceL, bobL, other =list(range(1, n + 1)), [], [], [], []
ts = [[] for _ in range(n + 1)]
for i in range(n):
line = input()
t, a, b = [int(j) for j in line.split(' ')]
ts[i + 1] = [t, a, b]
if a == 1 and b == 1:
allL.append(i + 1)
if a == 1:
aliceL.append(i + 1)
if b == 1:
bobL.append(i + 1)
if min(len(aliceL), len(bobL)) < k or (len(allL) < k and 2 * (k - len(allL)) > m - len(allL)) :
print(-1)
exit()
books.sort(key=lambda x: ts[x][0])
allL.sort(key=lambda x: ts[x][0])
aliceL.sort(key=lambda x: ts[x][0])
bobL.sort(key=lambda x: ts[x][0])
aset = set(aliceL[:k])
bset = set(bobL[:k])
cset = aset | bset
a, b = 0, 0
la, lb = k - 1, k - 1
for i in cset:
a += ts[i][1]
b += ts[i][2]
while a > k:
while la >= 0:
if ts[aliceL[la]][2] == 0:
break
la -= 1
cset.remove(aliceL[la])
a -= 1
la -= 1
while b > k:
while lb >= 0:
if ts[bobL[lb]][1] == 0:
break
lb -= 1
cset.remove(bobL[lb])
b -= 1
lb -= 1
if len(cset) < m:
for i in books:
if i not in cset:
cset.add(i)
if len(cset) == m:
break
elif len(cset) > m:
for i in allL:
if len(cset) == m:
break
if i not in cset and ts[i][1] + ts[i][2] == 2:
cset.add(i)
while la >= 0:
if ts[aliceL[la]][2] == 0:
break
la -= 1
while lb >= 0:
if ts[bobL[lb]][1] == 0:
break
lb -= 1
cset.remove(aliceL[la])
cset.remove(bobL[lb])
la -= 1
lb -= 1
if len(cset) != m:
print(-1)
exit()
print (sum(ts[i][0] for i in cset))
for i in cset:
print(i, end=' ')
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
def partition(list,low,high):
p1 = low-1
for p2 in range(low,high):
if list[p2] < list[high]:
p1 = p1+1
list[p1],list[p2] = list[p2],list[p1]
list[p1+1],list[high] = list[high],list[p1+1]
return (p1+1)
def sort(list,low,high):
if low < high:
p = partition(list,low,high)
sort(list,0,p-1)
sort(list,p+1,high)
return list
n = list(map(int,input().split()))
l =[]
l0 = []
l1 =[]
z = 0
for i in range(0,n[0]):
x = list(map(int,input().split()))
l.append(x)
for i in range (0,n[0]):
x = l[i]
if x[1] == 1 and x[2] == 1:
l1.append(x[0])
if x[1] == 0 and x[2] == 0:
l0.append(x[0])
if len(l1) >= n[1]:
x = []
l1 = sort(l1,0,len(l1)-1)
for i in range (1,n[1]):
x.append(l1[i])
print(sum(x))
z =1
elif len(l1) < n[1]:
x = n[1] - len(l1)
if len(l0) >= x:
l0 = sort(l0,0,len(l0)-1)
for i in range(0,x):
l1.append(l0[i])
print(sum(l1))
z = 1
if z == 0:
print(-1)
z = [1]
print(sum(z))
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n,k=map(int,input().split())
l,l1,l2=[],[],[]
for i in range(n):
t,a,b=map(int,input().split())
if a==1 and b==1:
l.append(t)
if a==1 and b==0:
l1.append(t)
if a==0 and b==1:
l2.append(t)
l.sort()
l1.sort()
l2.sort()
c,ans,a,b=0,0,0,0
while a<k or b<k:
if l and l1 and l2:
if l[0]<=l1[0]+l2[0]:
ans+=l.pop(0)
a+=1
b+=1
if a==k:
l1=[]
if b==k:
l2=[]
else:
ans+=l1.pop(0)
ans+=l2.pop(0)
a+=1
b+=1
if a==k:
l1=[]
if b==k:
l2=[]
elif a<k and l and l1:
if l[0]>=l1[0]:
ans+=l.pop(0)
a+=1
b+=1
else:
ans+=l1.pop(0)
a+=1
elif b<k and l and l2:
if l[0]>=l2[0]:
ans+=l.pop(0)
b+=1
a+=1
else:
ans+=l2.pop(0)
b+=1
elif l:
ans+=l.pop(0)
a+=1
b+=1
elif l1:
ans+=l1.pop(0)
a+=1
elif l2:
ans+=l2.pop(0)
b+=1
else:
c=1
break
if c==1:
print(-1)
else:
print(ans)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import math as mt
import sys,string
input=sys.stdin.readline
#print=sys.stdout.write
L=lambda : list(map(int,input().split()))
Ls=lambda : list(input().split())
M=lambda : map(int,input().split())
I=lambda :int(input())
from collections import defaultdict
t=1
for _ in range(t):
n,k=M()
l=[]
for i in range(n):
x,a,b=M()
l.append((x,a,b))
l.sort(key=lambda x:((-x[1],-x[2]) or (-x[2],-x[1]),x[0]))
#print(l)
a=k
b=k
ans=0
key=0
for i in range(n):
if(l[i][1]==1):
a-=1
if(l[i][2]==1):
b-=1
ans+=l[i][0]
if(a==0 or b==0):
key=i
break
if(a!=0 and b!=0):
print(-1)
else:
if(a==0 and b==0):
print(ans)
else:
if(a>0):
#print(a,ans)
for i in range(key+1,n):
if(l[i][1]==1):
a-=1
ans+=l[i][0]
if(a==0):
break
if(a==0):
print(ans)
else:
print(-1)
else:
for i in range(key+1,n):
if(l[i][2]==1):
b-=1
ans+=l[i][0]
if(b==0):
break
if(b==0):
print(ans)
else:
print(-1)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import sys
s = sys.stdin.readline().split()
n, m, k = int(s[0]), int(s[1]), int(s[2])
all = []
All = []
Alice = []
Bob = []
Both = []
none = []
z = 1
while n:
i = sys.stdin.readline().split()
x = 3
i.append(z)
while x:
i[x-1] = int(i[x - 1])
x -= 1
all.append(i)
if i[1] == i[2]:
if i[1] == 0:
i[1] = 1
i[2] = 1
none.append(i)
else:
i[1] = 0
i[2] = 0
Both.append(i)
else:
if i[1] == 0:
i[1] = 1
i[2] = 0
Bob.append(i)
else:
i[1] = 0
i[2] = 1
Alice.append(i)
z += 1
n -= 1
Alice.sort(key=lambda x: x[0])
Bob.sort(key=lambda x: x[0])
Both.sort(key=lambda x: x[0])
none.sort(key=lambda x: x[0])
tresult = []
if 2 * k > m:
l = 2 * k - m
if len(Both) >= l:
tresult = Both[:l]
Both = Both[l:]
All = Alice + Both + Bob + none
m = 2 * (m - k)
k = k - l
else:
print(-1)
exit()
else:
tresult = []
tresult1 = []
if min(len(Alice), len(Bob)) == len(Alice):
if len(Alice) < k:
k1 = k - len(Alice)
if len(Both) < k1:
print(-1)
exit()
else:
tresult1 = Both[:k1]
Both = Both[k1:]
k = k - k1
else:
if len(Bob) < k:
k1 = k - len(Bob)
if len(Both) < k1:
print(-1)
exit()
else:
tresult1 = Both[:k1]
Both = Both[k1:]
k = k - k1
Alice1 = Alice[:k]
Bob1 = Bob[:k]
Alice = Alice[k:]
Bob = Bob[k:]
corr = []
elev = False
while len(Alice1) > 0 and len(Bob1) > 0 and len(Both) > 0 and len(none) > 0 and Alice1[-1][0] + Bob1[-1][0] >= Both[0][0]:
Alice.append(Alice1[-1])
Bob.append(Bob1[-1])
corr.append(Both[0])
Alice1.pop(-1)
Bob1.pop(-1)
Both.pop(0)
q = len(tresult1) + len(corr) + len(Alice1) + len(Bob1)
q = m - q
All = Alice + Bob + Both + none
All.sort(key=lambda x: x[0])
result = All[:q]
result = result + tresult + tresult1 + corr + Alice1 + Bob1
#print(sum(row[0] for row in result))
sum = 0
for row in result:
sum = sum + row[0]
print(sum)
if sum == 82207:
result.sort(key=lambda x: x[0])
print(All[q-2])
print(All[q-1])
print(All[q])
All = All[q:]
print(q)
print(result[-1])
print(All[0])
print(' '.join([str(row[3]) for row in result]))
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n, k = map(int, input().split())
books = []
alice = set()
bob = set()
for i in range(n):
books.append([int(i) for i in input().split()])
if books[-1][1] == 1:
alice.add(i)
if books[-1][2] == 1:
bob.add(i)
if len(alice) <= k < len(bob):
ans_a = sum([books[i][0] for i in alice])
print(ans_a)
elif len(bob) <= k < len(alice):
ans_b = sum([books[i][0] for i in bob])
print(ans_b)
elif len(alice) == k == len(bob):
temp = alice | bob
ans = sum([books[i][0] for i in temp])
print(ans)
elif len(alice) > k < len(bob):
time, a, b = 0, 0, 0
temp = alice | bob
temp_mass = [books[i] for i in temp]
temp_mass.sort(key=lambda x: (x[1] + x[2], -x[0]), reverse=True)
for i in temp_mass:
time += i[0]
a += i[1]
b += i[2]
if a >= k and b >= k:
break
print(time)
else:
print(-1)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python2
|
#!/usr/bin/env python
from __future__ import division, print_function
import os
import sys
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
def main():
n, k = map(int, input().split())
a_only = []
b_only = []
both = []
for _ in range(n):
t, a, b = map(int, input().split())
if a == 1 and b == 1:
both.append(t)
elif a == 1:
a_only.append(t)
elif b == 1:
b_only.append(t)
a_only = sorted(a_only)
b_only = sorted(b_only)
both = sorted(both)
read = both[:k]
if len(read) < k:
if len(a_only) < k - len(read) or len(b_only) < k - len(read):
print(-1)
return
t = len(read)
read.extend(a_only[:k - t])
read.extend(b_only[:k - t])
print(sum(read))
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
main()
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n, k = [int(x) for x in input().split()]
both = []
bob = []
alice = []
for i in range(n):
t, a, b = [int(x) for x in input().split()]
if(a==1 and b==1):
both.append(t)
elif(a==1):
alice.append(t)
elif(b==1):
bob.append(t)
both.sort()
bob.sort()
alice.sort()
y = max(k-min(len(bob),len(alice)),0)
soma_both=0
sa = 0
sb = 0
poss = (len(both)+min(len(alice),len(bob))>=k)
if(poss):
for i in range(y):
soma_both+=both[i]
for i in range(max(k-y,0)):
sa += alice[i]
for i in range(max(k-y,0)):
sb += bob[i]
resposta = sa+sb+soma_both
for i in range(y,len(both)-1):
if(k-i==-1):
break
soma_both+=both[i]
sa-=alice[k-i]
sb-=bob[k-i]
resposta = min(resposta,soma_both+sa+sb)
print(resposta)
else:
print(-1)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.math.*;
import java.util.*;
import java.lang.*;
// import java.text.DecimalFormat;
// import java.text.DecimalFormatSymbols;
// Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail
public class TestClass {
public static void main(String args[] ) throws Exception {
/* Sample code to perform I/O:
* Use either of these methods for input
//BufferedReader
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String name = br.readLine(); // Reading input from STDIN
System.out.println("Hi, " + name + "."); // Writing output to STDOUT
//Scanner
Scanner s = new Scanner(System.in);
String name = s.nextLine(); // Reading input from STDIN
System.out.println("Hi, " + name + "."); // Writing output to STDOUT
for Round off
DecimalFormat deciFormat = new DecimalFormat();
deciFormat.setMaximumFractionDigits(9);
*/
// Write your code here
StringBuffer str = new StringBuffer();
PrintWriter pw=new PrintWriter(System.out);
Scanner scn=new Scanner(System.in);
int n = scn.nextInt();
int k = scn.nextInt();
Queue<Integer> com =new PriorityQueue<Integer>();
Queue<Integer> al =new PriorityQueue<Integer>();
Queue<Integer> bo =new PriorityQueue<Integer>();
while(n-->0){
int t,a,b;
t = scn.nextInt();
a = scn.nextInt();
b = scn.nextInt();
if(a==1&&b==1)
com.add(t);
else if(a==1)
al.add(a);
else if(b==1)
bo.add(b);
}
int res=0;
for(int i=0;i<k;i++){
if((al.isEmpty()||bo.isEmpty())&&com.isEmpty()){
res=-1;
break;
}
if(al.isEmpty()||bo.isEmpty()||!com.isEmpty()&&com.peek()<al.peek()+bo.peek())
res+=com.poll();
else
res+=al.poll()+bo.poll();
}
str.append(res+"\n");
pw.println(str.toString());
pw.close();
}
public static List<Integer> prime(){
List<Integer> li = new ArrayList<Integer>();
int N = 100000;
li.add(1);
int[] pr = new int[N+1];
for(int i=2;i<=N;++i){
if(pr[i]==0){
pr[i]=i;
li.add(i);
}
for(int j=0;j<li.size()&&li.get(j)<=pr[i]&&i*li.get(j)<=N;++j)
pr[i*li.get(j)]=li.get(j);
}
return li;
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct s {
int t, a, b;
int pos1 = -1, pos2 = -1;
bool check = false;
int m_val = 1;
};
bool comp(s p, s q) {
if (p.t < q.t) return true;
return false;
}
bool comp1(s p, s q) {
if (p.t < q.t)
return true;
else if (p.t == q.t) {
if (p.m_val > q.m_val) return true;
return false;
} else
return false;
}
int main() {
int n, m, k;
cin >> n >> m >> k;
struct s all[n + 5];
struct s alice[n + 5];
struct s bob[n + 5];
struct s none[n + 5];
struct s combine[n + 5];
int u = 0, v = 0, x = 0, y = 0;
for (int i = 0; i < n; i++) {
int p, q, r;
cin >> p >> q >> r;
if (q == 1 && r == 1) {
all[u].t = p;
all[u].a = q;
all[u].b = r;
all[u++].pos2 = i;
} else if (q == 1 && r == 0) {
alice[v].t = p;
alice[v].a = q;
alice[v].b = r;
alice[v++].pos2 = i;
} else if (q == 0 && r == 1) {
bob[x].t = p;
bob[x].a = q;
bob[x].b = r;
bob[x++].pos2 = i;
} else {
none[y].t = p;
none[y].a = q;
none[y].b = r;
none[y++].pos2 = i;
}
}
if (v > 1) sort(alice, alice + v, comp);
if (x > 1) sort(bob, bob + x, comp);
int w;
for (w = 0; w < u; w++) {
combine[w].t = all[w].t;
combine[w].a = 1;
combine[w].b = 1;
combine[w].m_val = 1;
combine[w].pos1 = w;
}
for (int i = 0, j = 0; i < v and j < x; i++, j++) {
combine[w].t = alice[i].t + bob[j].t;
combine[w].a = 1;
combine[w].b = 1;
combine[w].pos1 = i;
combine[w++].m_val = 2;
}
if (w > 1) sort(combine, combine + w, comp1);
for (int i = 0; i < w; i++)
cout << combine[i].t << " " << combine[i].m_val << endl;
long long sum = 0;
int position[n + 5];
int cnt = 0;
int l = 0;
int m_count = 0;
for (int i = 0; i < w; i++) {
if (cnt == k)
break;
else if (cnt < k) {
if ((combine[i].m_val + m_count < m) ||
(combine[i].m_val + m_count == m && cnt + 1 == k)) {
sum += (long long)combine[i].t;
m_count += combine[i].m_val;
cnt++;
if (combine[i].m_val == 2) {
position[l++] = alice[combine[i].pos1].pos2;
position[l++] = bob[combine[i].pos1].pos2;
alice[combine[i].pos1].check = true;
bob[combine[i].pos1].check = true;
} else {
position[l++] = all[combine[i].pos1].pos2;
all[combine[i].pos1].check = true;
}
}
}
}
if (cnt == k) {
for (int i = 0; i < u; i++) {
if (all[i].check == false) none[y++] = all[i];
}
for (int i = 0; i < v; i++) {
if (alice[i].check == false) none[y++] = alice[i];
}
for (int i = 0; i < x; i++) {
if (bob[i].check == false) none[y++] = bob[i];
}
sort(none, none + y, comp);
for (int i = 0; i < y; i++) {
if (m_count == m)
break;
else if (m_count < m) {
sum += (long long)none[i].t;
position[l++] = none[i].pos2;
m_count++;
}
}
if (m_count == m) {
cout << sum << endl;
sort(position, position + l);
for (int i = 0; i < l; i++) cout << position[i] + 1 << " ";
cout << endl;
} else
cout << -1 << endl;
} else
cout << -1 << endl;
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import sys
n, k = [int(e) for e in input().split(' ')]
books = list()
books_map = dict()
for i in range(n):
t, a, b = [int(e) for e in input().split(' ')]
books.append((t, a, b, i))
books_map[i] = (t, a, b)
books = sorted(books, key = lambda x : x[0] * (1 if x[1] == 1 else 1e7))
alice_pay_time = 0
alice_liked_books = list()
for book in books:
if len(alice_liked_books) >= k:
break
if book[1] == 1 and book[2] == 0:
alice_pay_time += book[0]
alice_liked_books.append(book[3])
books = sorted(books, key = lambda x : x[0] * (1 if x[2] == 1 else 1e7))
bob_pay_time = 0
bob_liked_books = list()
for book in books:
if len(bob_liked_books) >= k:
break
if book[2] == 1 and book[1] == 0:
bob_pay_time += book[0]
bob_liked_books.append(book[3])
books = sorted(books, key = lambda x : x[0] * (1 if x[1] == 1 and x[2] == 1 else 1e7))
pay_time = alice_pay_time + bob_pay_time
alice_liked_book_count = len(alice_liked_books)
bob_liked_book_count = len(bob_liked_books)
for book in books:
if book[1] == 1 and book[2] == 1:
if alice_liked_book_count < k or bob_liked_book_count < k:
pay_time += book[0]
alice_liked_book_count += 1
bob_liked_book_count += 1
if alice_liked_book_count > k:
pay_time -= books_map[alice_liked_books[-1]][0]
alice_liked_books.pop()
bob_liked_book_count = k
if bob_liked_book_count > k:
pay_time -= books_map[bob_liked_books[-1]][0]
bob_liked_books.pop()
bob_liked_book_count = k
elif len(alice_liked_books) == 0 or len(bob_liked_books) == 0:
break
elif book[0] < books_map[alice_liked_books[-1]][0] + books_map[bob_liked_books[-1]][0]:
pay_time -= books_map[alice_liked_books[-1]][0]
pay_time -= books_map[bob_liked_books[-1]][0]
pay_time += book[0]
alice_liked_books.pop()
bob_liked_books.pop()
if alice_liked_book_count >= k and bob_liked_book_count >= k:
print(pay_time)
else:
print(-1)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 7;
int n, m, k, tot, tmp[4];
struct node {
int no, t;
bool operator<(const node &rhs) const { return t > rhs.t; }
};
priority_queue<node> book[4], ans[4];
void switchD(int v) {
node x = book[v].top();
tot += x.t, x.t = -x.t;
ans[v].push(x), book[v].pop(), --m;
}
void switchR(int v) {
node x = ans[v].top();
tot += x.t, x.t = -x.t;
book[v].push(x), ans[v].pop(), ++m;
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1, t, a, b; i <= n; ++i)
scanf("%d%d%d", &t, &a, &b), book[a << 1 | b].push({i, t});
while (k--) {
for (int i = 1; i < 4; ++i) tmp[i] = !book[i].empty();
if ((tmp[1] + tmp[2] < 2) && tmp[3])
switchD(3);
else if ((!tmp[3]) && tmp[1] && tmp[2])
switchD(1), switchD(2);
else if (tmp[3] + tmp[2] + tmp[1] == 3)
(book[1].top().t + book[2].top().t > book[3].top().t) ? switchD(3)
: switchD(1),
switchD(2);
else {
puts("-1");
return 0;
}
}
while (m < 0) {
tmp[1] = !ans[1].empty(), tmp[2] = !ans[2].empty(),
tmp[3] = !book[3].empty();
if (tmp[1] && tmp[2] && tmp[3])
switchR(1), switchR(2), switchD(3);
else {
puts("-1");
return 0;
}
}
while (m > 0) {
int now = -1, v = 1e9;
for (int i = 0; i < 4; ++i)
if ((!book[i].empty()) && v > book[i].top().t)
now = i, v = book[i].top().t;
if (now == -1) {
puts("-1");
return 0;
} else
switchD(now);
}
printf("%d\n", tot);
for (int i = 0; i < 4; ++i)
while (!ans[i].empty()) printf("%d ", ans[i].top().no), ans[i].pop();
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashSet;
import java.util.Scanner;
public class D {
static int mod = (int) 1e9 + 7;
static ArrayList<Integer> gr[];
static int ar[];
static Scanner sc = new Scanner(System.in);
static StringBuilder out = new StringBuilder();
static class pair implements Comparable<pair>{
int val;
int id;
pair(int a, int b){
id=a;
val=b;
}
@Override
public int compareTo(pair o) {
// TODO Auto-generated method stub
if(this.val==o.val)return this.id-o.id;
return this.val-o.val;
}
}
public static void main(String[] args) throws IOException {
int t = 1;//sc.nextInt();
while (t-- > 0) {
int n=sc.nextInt();
int k=sc.nextInt();
ArrayList<Integer>alice=new ArrayList<>();
ArrayList<Integer>bob=new ArrayList<>();
ArrayList<Integer>both=new ArrayList<>();
for(int i=0;i<n;i++) {
int ti=sc.nextInt();
int ai=sc.nextInt();
int bi=sc.nextInt();
if(ai==1 && bi==1) {
both.add(ti);
}
else if(ai==1)alice.add(ti);
else if(bi==1)bob.add(ti);
}
Collections.sort(alice);
Collections.sort(bob);
Collections.sort(both);
if(alice.size()+both.size()<k || bob.size()+both.size()<k) {
out.append(-1+"\n");continue;
}
int x=0;
int i=0,j=0,l=0;
int a=0,b=0;
int ans=0;
while(i<alice.size() && j<bob.size() && l<both.size()) {
if(alice.get(i)+bob.get(j)>=both.get(l)) {
ans+=alice.get(i)+bob.get(j);
i++;
j++;
}
else {
ans+=both.get(l);
l++;
}
a++;
b++;
}
if(a<k) {
if(i==alice.size() || j==bob.size()) {
while(a<k) {
ans+=both.get(l);
l++;
a++;
}
}
else if(l==both.size()) {
while(a<k) {
ans+=alice.get(i)+bob.get(j);
i++;
j++;
a++;
}
}
}
out.append(ans+"\n");
}
System.out.println(out);
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import sys
# from collections import defaultdict
# t=1
# t=int(input())
def fun(x):
# print(x)
return x[0]
n,m,k=list(map(int,sys.stdin.readline().strip().split()))
xx=[]
a=[]
b=[]
c=[]
d=[]
for i in range(n):
# n=int(input())
x=list(map(int,sys.stdin.readline().strip().split()))
# a,b,c,d=list(sys.stdin.readline().strip().split())
# n,k=list(map(int,sys.stdin.readline().strip().split()))
# xx.append(x)
if(x[1]==x[2]==1):
a.append([x[0],i+1])
elif(x[1]==1):
b.append([x[0],i+1])
elif(x[2]==1):
c.append([x[0],i+1])
else:
d.append([x[0],i+1])
# a=k
# b=k
# # print(xx)
# xx.sort(key=fun)
# # print(xx)
# op=0
# for i in xx:
# if()
ind=[]
b.sort(key=fun)
c.sort(key=fun)
for i in range(min(len(b),len(c))):
a.append([b[i][0]+c[i][0],b[i][1],c[i][1]])
a.sort(key=fun)
d+=b+c
# print(a,b,c,d)
# if(len(a)<k):
# print(-1)
# else:
# print(sum(a[:k]))
op=0
# print(a,b,c)
# print(a[0][1:])
for i in range(len(a)):
if(k==0):
break
if(m>=len(a[i][1:])):
m=m-len(a[i][1:])
op+=a[i][0]
ind+=a[i][1:]
k=k-1
if(k==0):
break
# print(m)
if(m):
d.sort(key=fun)
for i in d:
if(i[1] in ind):
continue
else:
ind.append(i[1])
op+=i[0]
m=m-1
if(m==0):
break
if(m):
print(-1)
else:
print(op)
print(*ind)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
arr=[int(x) for x in input().split()]
size=arr[0]
max_books=arr[1]
constraint=arr[2]
book_dict={'11':[],'10':[],'01':[],'00':[]}
for i in range(size):
book=input().split()
if book[1]+book[2]=='00':
book_dict['00'].append((str(i+1),int(book[0])))
elif book[1]+book[2]=='10':
book_dict['10'].append((str(i+1),int(book[0])))
elif book[1]+book[2]=='01':
book_dict['01'].append((str(i+1),int(book[0])))
else:
book_dict['11'].append((str(i+1),int(book[0])))
count11=len(book_dict['11'])
count10=len(book_dict['10'])
count01=len(book_dict['01'])
book_dict['00'].sort(key = lambda x: x[1])
book_dict['01'].sort(key = lambda x: x[1])
book_dict['10'].sort(key = lambda x: x[1])
result=0
indices=[]
if count11+count01>=constraint and count11+count10>=constraint:
for i in range(min(count01,count10)):
identity=book_dict['10'][i][0]+' '+book_dict['01'][i][0]
value=book_dict['10'][i][1]+book_dict['01'][i][1]
book_dict['11'].append((identity,value))
book_dict['11'].sort(key = lambda x: x[1])
count=0
for i in range(len(book_dict['11'])):
if len(book_dict['11'][i][0])!=1:
tot=2
else:
tot=1
if count+tot>max_books:
continue
else:
count+=tot
result+=book_dict['11'][i][1]
if tot==1:
indices.append(book_dict['11'][i][0])
else:
arr=book_dict['11'][i][0].split()
indices.extend(arr)
constraint-=1
if constraint==0:
break
if constraint!=0:
print(-1)
else:
if count==max_books:
print(result)
for i in indices:
print(i,end=" ")
else:
book_dict['00'].extend(book_dict['01'])
book_dict['00'].extend(book_dict['10'])
book_dict['00'].sort(key = lambda x: x[1])
for i in range(len(book_dict['00'])):
if book_dict['00'][i][0] in indices:
continue
else:
result+=book_dict['00'][i][1]
indices.append(book_dict['00'][i][0])
count+=1
if count==max_books:
print(result)
for i in indices:
print(i,end=" ")
break
else:
print(-1)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python2
|
import atexit, io, sys
# A stream implementation using an in-memory bytes
# buffer. It inherits BufferedIOBase.
buffer = io.BytesIO()
sys.stdout = buffer
# print via here
@atexit.register
def write():
sys.__stdout__.write(buffer.getvalue())
for _ in range(1):
n,m,k=map(int,raw_input().split())
v=[]
t=[]
al=0
pc=[]
jt=[]
for i in range(n):
vc=map(int,raw_input().split())
if vc[1] or vc[2]:
v.append(vc+[i+1])
else:
jt.append([vc[0]]+[i+1])
s=sorted(v)
ac,bc,at,bt=0,0,0,0
a,b=[],[]
for i in s:
if i[1]!=1 or i[2]!=1:
if i[1]==1:
ac+=1
a.append([i[0],1+i[3]])
else:
bc+=1
b.append([i[0],1+i[3]])
else:
t.append([i[0],1+i[3]])
ok=1
if len(t)>=k:
p,g=0,k-1
am=k
ca=0
for i in range(k):
ca+=t[i][0]
while( p<len(a) and p<len(b) and g>=0):
if (a[p][0]+b[p][0])<=t[g][0]:
ca=ca-t[g][0]+a[p][0]+b[p][0];p+=1;g-=1;am+=1
else:
break
if am<m:
gy=a[p:]+b[p:]+t[min(g+1,len(t)-1):]+jt
gy=sorted(gy)
if (m-am) >len(gy):
print -1
else:
for i in range(m-am):
ca+=gy[i][0]
print ca
ans=""
p-=1;g+=1
for i in range(1+p):
ans+=str(a[i][1])
ans+=" "
ans+=str(b[i][1])
ans+=" "
for i in range(g):
ans+=str(t[i]);ans+=" "
for i in range(m-am):
ans+=str(gy[i][1])
ans+=" "
print ans
else:
p-=1;g+=1
while(p>=0 and g<len(t) and am>m):
if p<0 or g==len(t):
print-1;ok=0;break
ca=ca-a[p][0]-b[p][0]+t[g][0];am-=1
p-=1;g+=1
if ok:
print ca
p-=1;g+=1;
for i in range(p+1):
ans+=str(a[i][1])
ans+=" "
ans+=str(b[i][1])
ans+=" "
for i in range(g):
ans+=str(t[i][1]);ans+=" "
print ans
elif( len(a)+len(t))<k or (len(b)+len(t)) <k:
print -1;continue
else :
f=k-len(t)
for i in range(f):
ca=ca+a[i][0]+b[i][0]
for i in range(len(t)):
ca+=t[i][0]
p,g=f,len(t)-1
am=len(t)+2*f
while( p<len(a) and p<len(b) and g>=0):
if (a[p][0]+b[p])<=t[g][0]:
ca=ca-t[g]+a[p]+b[p];p+=1;g-=1;am+=1
else:
break
if am<m:
gy=a[p:]+b[p:]+t[min(g+1,len(t)-1):]+jt
gy=sorted(gy)
if (m-am) >len(gy):
print -1
break
else:
for i in range(m-am):
ca+=gy[i][0]
print ca
p-=1;g+=1
for i in range(p+1):
ans+=str(a[i][1])
ans+=" "
ans+=str(b[i][1])
ans+=" "
for i in range(g):
ans+=str(t[i][1]);ans+=" "
for i in range(m-am):
ans+=str(gy[i][1])
ans+=" "
print ans,p,g
else:
p-=1;g+=1
while(p>=0 and g<len(t) and am>m):
if p<0 or p==min(len(a),len(b))or g==len(t):
print-1;ok=0;break
ca=ca-a[p][0]-b[p][0]+t[g][0];am-=1
p-=1;g+=1
if ok:
print ca
p-=1;g+=1
for i in range(p+1):
ans+=str(a[i][1])
ans+=" "
ans+=str(b[i][1])
ans+=" "
for i in range(g):
ans+=str(t[i][1]);ans+=" "
print ans
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include "bits/stdc++.h"
using namespace std;
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#define lld long long int
int main() {
// your code goes here
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int t;
//cin>>t;
t=1;
while(t--)
{
lld n,k;
cin>>n>>k;
vector <lld> a,b,s;
int x,y,z;
while(n--)
{
cin>>x>>y>>z;
if(y==z&&y==1)
s.push_back(x);
else if(y==1)
a.push_back(x);
else if(z==1)
b.push_back(x);
}
int cnta=k,cntb=k;
sort(a.begin(),a.end());
sort(b.begin(),b.end());
sort(s.begin(),s.end());
int lena=a.size(),lenb=b.size(),lens=s.size();
int i=0,j=0;
lld ans=0;
int mark[lens]={0};
while(i<lena&&j<lens)
{
if(cnta==0)
break;
if(a[i]>s[j])
{
ans+=a[i];
cnta--;
i++;
}
else
{
ans+=s[j];
cnta--;
cntb--;
mark[j]=1;
j++;
}
}
//cout<<ans<<" "<<i<<" "<<j<<'\n';
if(i!=lena)
{
while(i<lena)
{
if(cnta==0)
break;
ans+=a[i];
cnta--;
i++;
}
}
if(j!=lens)
{
while(j<lens)
{
if(cnta==0)
break;
mark[j]=1;
ans+=s[j];
cnta--;
cntb--;
j++;
}
}
//for(int i=0)
//cout<<ans<<"\n";
i=0,j=0;
while(i<lenb&&j<lens)
{
if(cntb==0)
break;
if(mark[j]==1)
{
j++;
while(j+1<lens&&mark[j+1]==1)
j++;
}
if(b[i]>s[j])
{
ans+=b[i];
cntb--;
i++;
}
else
{
ans+=s[j];
cnta--;
cntb--;
mark[j]=1;
j++;
}
}
if(i!=lenb)
{
while(i<lenb)
{
if(cntb==0)
break;
ans+=b[i];
cntb--;
i++;
}
}
if(j!=lens)
{
while(j<lens)
{
if(cntb==0)
break;
ans+=s[j];
cnta--;
cntb--;
mark[j]=1;
j++;
}
}
if(cnta>0||cntb>0)
cout<<"-1\n";
else
cout<<ans<<"\n";
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n,k=map(int,input().split())
L1=[]
L2=[]
L3=[]
s=0
for i in range(n):
t,a,b=map(int,input().split())
if a==1 and b==1:
L1.append(t)
elif a==1 and b==0:
L2.append(t)
elif a==0 and b==1:
L3.append(t)
L1.sort()
L2.sort()
L3.sort()
if k==len(L1):
print(sum(L1))
elif k<len(L1):
print(sum(L1[:k+1]))
else:
s=s+sum(L1)
k=k-len(L1)
if k<=len(L2) and k<=len(L3):
s=s+sum(L2[:k+1])+sum(L3[:k+1])
print(s)
else:
print(-1)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<pair<long long, long long>> segment, segment2, segment3;
long long n, m, k, t, need, ans = 1000000000000000000;
vector<pair<long long, long long>> vv[4];
vector<long long> v[3];
void add(long long curr) {
long long val = curr - t + 1;
while (curr) {
segment[curr].first += 1;
segment[curr].second += val;
curr /= 2;
}
}
void add2(long long curr) {
long long val = curr - t + 1;
while (curr) {
segment2[curr].first += 1;
segment2[curr].second += val;
curr /= 2;
}
}
void add3(long long curr) {
long long val = curr - t + 1;
while (curr) {
segment3[curr].first += 1;
segment3[curr].second += val;
curr /= 2;
}
}
void del(long long curr) {
long long val = curr - t + 1;
while (curr) {
segment3[curr].first -= 1;
segment3[curr].second -= val;
curr /= 2;
}
}
pair<long long, long long> getans1(long long cnt) {
long long curr = 1, ret = 0;
while (curr < t) {
if (segment[2 * curr].first > cnt) {
curr *= 2;
} else {
ret += segment[2 * curr].second;
cnt -= segment[2 * curr].first;
curr = 2 * curr + 1;
}
}
ret += cnt * (curr - t + 1);
return {ret, curr - t + 1};
}
long long getans2(long long a, long long b, long long curr, long long l,
long long r) {
if (b < l || a > r) {
return 0;
}
if (a <= l && b >= r) {
if (segment2[curr].first <= need) {
need -= segment2[curr].first;
return segment2[curr].second;
} else if (curr >= t) {
long long ret = need * (curr - t + 1);
need = 0;
return ret;
} else {
if (segment2[2 * curr].first >= need) {
return getans2(a, b, 2 * curr, l, (l + r) / 2);
} else {
need -= segment2[2 * curr].first;
return segment2[2 * curr].second +
getans2(a, b, 2 * curr + 1, (l + r) / 2 + 1, r);
}
}
}
long long mid = (l + r) / 2;
return getans2(a, b, 2 * curr, l, mid) +
getans2(a, b, 2 * curr + 1, mid + 1, r);
}
long long getans3(long long a, long long b, long long curr, long long l,
long long r) {
if (b < l || a > r) {
return 0;
}
if (a <= l && b >= r) {
if (segment3[curr].first <= need) {
need -= segment3[curr].first;
return segment3[curr].second;
} else if (curr >= t) {
long long ret = need * (curr - t + 1);
need = 0;
return ret;
} else {
if (segment3[2 * curr].first >= need) {
return getans3(a, b, 2 * curr, l, (l + r) / 2);
} else {
need -= segment3[2 * curr].first;
return segment3[2 * curr].second +
getans3(a, b, 2 * curr + 1, (l + r) / 2 + 1, r);
}
}
}
long long mid = (l + r) / 2;
return getans3(a, b, 2 * curr, l, mid) +
getans3(a, b, 2 * curr + 1, mid + 1, r);
}
long long gett(long long toadd) {
long long ret = 0;
pair<long long, long long> v = getans1(toadd);
ret += v.first;
need = m - toadd - k;
ret += getans2(1, v.second, 1, 1, t);
if (need) {
ret += getans3(v.second + 1, t, 1, 1, t);
}
return ret;
}
int main() {
ios_base::sync_with_stdio(false);
cout.tie(NULL);
cin.tie(NULL);
cin >> n >> m >> k;
t = pow(2, ceil(log2(10001)));
segment.resize(2 * t, {0, 0});
segment2.resize(2 * t, {0, 0});
segment3.resize(2 * t, {0, 0});
for (long long i = 0; i < n; i += 1) {
long long a, b, c;
cin >> a >> b >> c;
if (b && c) {
v[1].push_back(a);
vv[1].push_back({a, i});
add3(a + t - 1);
} else if (b) {
v[0].push_back(a);
vv[0].push_back({a, i});
} else if (c) {
v[2].push_back(a);
vv[2].push_back({a, i});
add3(a + t - 1);
} else {
vv[3].push_back({a, i});
add2(a + t - 1);
add3(a + t - 1);
}
}
for (long long i = 0; i < 3; i += 1) {
sort(v[i].begin(), v[i].end());
sort(vv[i].begin(), vv[i].end());
}
sort(vv[3].begin(), vv[3].end());
long long p0 = -1, p1 = -1, f = 0, s = 0, sum = 0;
for (long long i = 0; i < v[1].size(); i += 1) {
f += 1;
s += 1;
p1 += 1;
sum += v[1][i];
if (f == k) {
break;
}
}
if (f != k) {
for (long long i = 0; i < v[0].size(); i += 1) {
f += 1;
p0 += 1;
sum += v[0][i];
if (f == k) {
break;
}
}
}
long long pos = p0 + 1;
for (long long i = 0; i < v[2].size(); i += 1) {
add(v[2][i] + t - 1);
}
for (long long i = p1 + 1; i < v[1].size(); i += 1) {
add(v[1][i] + t - 1);
}
for (int i = p0 + 1; i < v[0].size(); i += 1) {
add3(v[0][i]);
}
if (f != k || v[2].size() + s < k || 2 * k - s > m) {
cout << -1 << endl;
return 0;
} else {
ans = min(ans, sum + gett(k - s));
}
for (long long x = p0 + 1; x < min(k, (long long)v[0].size()); x += 1) {
sum += v[0][x];
sum -= v[1][p1];
s -= 1;
p1 -= 1;
if (2 * k - s > m) {
break;
}
add(v[1][p1 + 1] + t - 1);
del(v[0][x]);
long long val = sum + gett(k - s);
if (val <= ans) {
ans = val;
pos = x + 1;
}
}
cout << ans << endl;
vector<long long> ret;
for (long long i = 0; i < pos; i += 1) {
ret.push_back(vv[0][i].second);
}
for (long long i = pos; i < k; i += 1) {
ret.push_back(vv[1][i - pos].second);
}
long long g1 = pos, g2 = k - pos, g3 = 0, g4 = 0;
for (long long i = 0; i < pos; i += 1) {
if (g2 < v[1].size() && g3 < v[2].size()) {
if (v[1][g2] < v[2][g3]) {
ret.push_back(vv[1][g2].second);
g2 += 1;
} else {
ret.push_back(vv[2][g3].second);
g3 += 1;
}
} else if (g2 < v[1].size()) {
ret.push_back(vv[1][g2].second);
g2 += 1;
} else {
ret.push_back(vv[2][g3].second);
g3 += 1;
}
}
long long need = m - g1 - g2 - g3 - g4;
for (long long i = 0; i < need; i += 1) {
long long v1 = 100000, v2 = 100000, v3 = 100000, v4 = 100000;
if (g1 < v[0].size()) {
v1 = vv[0][g1].first;
}
if (g2 < v[1].size()) {
v2 = vv[1][g2].first;
}
if (g3 < v[2].size()) {
v3 = vv[2][g3].first;
}
if (g4 < vv[3].size()) {
v4 = vv[3][g4].first;
}
if (v1 <= min({v2, v3, v4})) {
ret.push_back(vv[0][g1].second);
g1 += 1;
} else if (v2 <= min({v1, v3, v4})) {
ret.push_back(vv[1][g2].second);
g2 += 1;
} else if (v3 <= min({v1, v2, v4})) {
ret.push_back(vv[2][g3].second);
g3 += 1;
} else {
ret.push_back(vv[3][g4].second);
g4 += 1;
}
}
assert(ret.size() == m);
sort(ret.begin(), ret.end());
for (long long i : ret) {
cout << i + 1 << " ";
}
cout << endl;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n,k=map(int,input().split())
time=[]
a=[]
b=[]
count_a=0
count_b=0
for i in range(n):
t,a1,b1=map(int,input().split())
time.append(t)
a.append(a1)
b.append(b1)
if a1==1:
count_a+=1
if b1==1:
count_b+=1
#print(count_a,count_b)
if count_a<k or count_b<k:
print(-1)
elif count_a==k and count_b!=k:
ans=0
for i in range(n):
if a[i]==1:
ans+=time[i]
print(ans)
elif count_b==k and count_a!=k:
ans=0
for i in range(n):
if b[i]==1:
ans+=time[i]
print(ans)
else:
both=[]
a_not_b=[]
b_not_a=[]
for i in range(n):
if a[i]==1 and b[i]==1:
both.append(time[i])
elif a[i]==1 and b[i]==0:
a_not_b.append(time[i])
elif a[i]==0 and b[i]==1:
b_not_a.append(time[i])
#print(both,a_not_b,b_not_a)
a_not_b.sort()
b_not_a.sort()
both_len=len(both)
a_not_b_len=len(a_not_b)
b_not_a_len=len(b_not_a)
final=[]
req_len=min(a_not_b_len,b_not_a_len)
for i in range(req_len):
final.append(a_not_b[i]+b_not_a[i])
#print(both,final)
final.extend(both)
final.sort()
if len(final)<k:
print(-1)
else:
ans=0
for i in range(k):
ans+=final[i]
#print(final)
print(ans)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class E1 implements Comparable<E1>{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public int t,a,b;
public E1(int t,int a,int b){
this.t=t;
this.a=a;
this.b=b;
}
@Override
public int compareTo(E1 o) {
// TODO Auto-generated method stub
return toString().compareTo(o.toString());
}
public static void main(String[] args) throws NumberFormatException, IOException {
FastReader s=new FastReader();
int n=s.nextInt();
int k=s.nextInt();
int counta=0,countb=0,countmain=0,count11=0,ans=0,ans2=0;
E1[] arr = new E1[n];
for(int i=0;i<n;i++){
arr[i]=new E1(s.nextInt(),s.nextInt(),s.nextInt());
if(arr[i].a==1&&arr[i].b==1) count11++;
if(arr[i].a==1) counta++;
if(arr[i].b==1) countb++;
}
if(counta<k||countb<k) ans=-1;
else{
Arrays.sort(arr, new Comparator<E1>() {
@Override
public int compare(E1 o1, E1 o2) {
return o1.t-o2.t;
}
});
int i=0;counta=0;countb=0;
while((counta<k&&countb<k)&&(arr[i].a==1&&arr[i].b==1)){
ans2+=arr[i].t;
counta++;countb++;
i++;
}
i=0;
while(counta<k||countb<k){
if(arr[i].a==1&&arr[i].b==1){
counta++;
ans2+=arr[i].t;
countb++;
}
else if(counta<k&&(arr[i].a==1&&arr[i].b==0)){
counta++;
ans2+=arr[i].t;
}
else if(countb<k&&(arr[i].b==1&&arr[i].a==0)){
countb++;
ans2+=arr[i].t;
}
i++;
}
Arrays.sort(arr, new Comparator<E1>() {
@Override
public int compare(E1 o1, E1 o2) {
return (o2.a+o2.b)-(o1.a+o1.b);
}
});
// System.out.println();
// for(int i=0;i<n;i++){
// System.out.println(arr[i].t+" "+arr[i].a+" "+arr[i].b);
// }
i=0;counta=0;countb=0;
while((counta<k&&countb<k)&&(arr[i].a==1&&arr[i].b==1)){
ans+=arr[i].t;
counta++;countb++;
i++;
}
i=0;
while(counta<k||countb<k){
if(counta<k&&(arr[i].a==1&&arr[i].b==0)){
counta++;
ans+=arr[i].t;
}
else if(countb<k&&(arr[i].b==1&&arr[i].a==0)){
countb++;
ans+=arr[i].t;
}
i++;
}
}
System.out.println(Math.min(ans,ans2));
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
"""
Code of Ayush Tiwari
Codeforces: servermonk
Codechef: ayush572000
"""
import sys
input = sys.stdin.buffer.readline
def solution():
a=[]
b=[]
c=[]
n,k=map(int,input().split())
for i in range(n):
t,x,y=map(int,input().split())
if x==1 and y==1:
c.append(t)
elif x==1:
a.append(t)
elif y==1:
b.append(t)
a.sort()
b.sort()
c.sort()
ans=0
cnta=0
cntb=0
if len(a)+len(c)<k or len(b)+len(c)<k:
print(-1)
else:
z=0
i=0
j=0
while k>0:
if i<len(c) and j<min(len(a),len(b)):
if a[j]+b[j]<=k:
ans+=a[j]+b[j]
j+=1
else:
ans+=c[i]
i+=1
elif i<len(c):
ans+=c[i]
i+=1
else:
ans+=a[j]+b[j]
j+=1
k-=1
print(ans)
solution()
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class E1{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws NumberFormatException, IOException {
FastReader s=new FastReader();
int n=s.nextInt();
int k=s.nextInt();
int counta=0,countb=0,countab=0,ans=0,temp1,temp2,temp3;
ArrayList<Integer> arrab = new ArrayList<Integer>();
ArrayList<Integer> arra = new ArrayList<Integer>();
ArrayList<Integer> arrb = new ArrayList<Integer>();
for(int i=0;i<n;i++){
temp1=s.nextInt();
temp2=s.nextInt();
temp3=s.nextInt();
if(temp2==1&&temp3==1){
arrab.add(temp1);
countab++;
}
else if(temp2==1&&temp3==0){
arra.add(temp1);
counta++;
}
else if(temp2==0&&temp3==1){
arrb.add(temp1);
countb++;
}
}
Collections.sort(arra);Collections.sort(arrb);Collections.sort(arrab);
temp1=0;temp2=0;temp3=0;
if((counta+countab)<k||(countb+countab)<k){
ans=-1;
}
else if(counta==0||countb==0){
for(int i=0;i<k;i++) ans+=arrab.get(i);
}
else{
int i=0,j=0,sum=0;temp3=0;
while(temp1<k||temp2<k){
sum=0;
if(i<counta) sum+=arra.get(i);
if(j<countb) sum+=arrb.get(j);
if((!arrab.isEmpty()&&temp3<countab&&arrab.get(temp3)<=sum)||sum==0){
ans+=arrab.get(temp3);
temp3++;
temp1++;temp2++;
}
else{
if(i<counta){
ans+=arra.get(i);
i++;
temp1++;
}
if(j<countb){
ans+=arrb.get(j);
j++;
temp2++;
}
}
}
}
System.out.println(ans);
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import static java.lang.Math.abs;
import static java.lang.Math.max;
import static java.lang.Math.min;
public class Template {
static class Task {
int n, k;
int[] t, a, b;
public void solve(InputReader in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
t = new int[n];
a = new int[n];
b = new int[n];
for (int i = 0; i < n; i++) {
t[i] = in.nextInt();
a[i] = in.nextInt();
b[i] = in.nextInt();
}
ArrayList<Integer> alice = new ArrayList<>(), bob = new ArrayList<>(), both = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (a[i] == 1 && b[i] == 1) {
both.add(t[i]);
} else if (a[i] == 1) {
alice.add(t[i]);
} else {
bob.add(t[i]);
}
}
Collections.sort(alice);
Collections.sort(bob);
for (int i = 0; i < min(alice.size(), bob.size()); i++) {
both.add(alice.get(i) + bob.get(i));
}
Collections.sort(both);
if (both.size() < k) {
out.println(-1);
} else {
int total = 0;
for (int i = 0; i < k; i++) {
total += both.get(i);
}
out.println(total);
}
}
}
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int t = 1;
// t = in.nextInt();
for (int i = 1; i <= t; i++) {
// out.print("Case #" + i + ": ");
Task solver = new Task();
solver.solve(in, out);
}
out.close();
}
/**
* gcd/lcm
*/
static int gcd(int a, int b) {
if (a == 0) {
return b;
} else {
return gcd(b % a, a);
}
}
static long gcd(long a, long b) {
if (a == 0) {
return b;
} else {
return gcd(b % a, a);
}
}
static long lcm(int a, int b) {
return (long) a / gcd(a, b) * b;
}
static long lcm(long a, long b) {
return a / gcd(a, b) * b;
}
/*
* Modular arithmetic
*/
static int modPow(int base, int exponent, int mod) {
if (exponent == 0) {
return 1 % mod;
}
long ret = modPow(base, exponent / 2, mod);
ret = (ret * ret) % mod;
if (exponent % 2 == 1) {
ret = (ret * base) % mod;
}
return (int) ret;
}
static int inv(int number, int prime) {
return modPow(number, prime - 2, prime);
}
static final int MOD = (int) 1e9 + 7;
static int add(int a, int b) {
return (a + b) % MOD;
}
static int sub(int a, int b) {
int ret = (a - b) % MOD;
return (ret < 0) ? ret + MOD : ret;
}
static int mul(int a, int b) {
return (int) (((long) a * b) % MOD);
}
static int divide(int a, int b) {
return mul(a, inv(b, MOD));
}
/**
* IO
*/
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextIntArray(int n) {
int[] ret = new int[n];
Arrays.setAll(ret, i -> nextInt());
return ret;
}
public double[] nextDoubleArray(int n) {
double[] ret = new double[n];
Arrays.setAll(ret, i -> nextDouble());
return ret;
}
public long[] nextLongArray(int n) {
long[] ret = new long[n];
Arrays.setAll(ret, i -> nextLong());
return ret;
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
# Secdra @2020
from functools import cmp_to_key
class Node:
def __init__(self, t, a, b):
self.t = t
self.a = a
self.b = b
def __lt__(self, other):
if (self.a + self.b) == (other.a + other.b):
return self.t < other.t
else:
return (self.a + self.b) > (other.a + other.b)
# if self.t == other.t:
# return (self.a + self.b) > (other.a + other.b)
# return self.t < other.t
def main():
n, k = map(int, input().split())
data = list()
for _ in range(n):
t, a, b = map(int, input().split())
if a != 0 or b != 0:
book = Node(t, a, b)
data.append(book)
data.sort()
ans = 0
done_a = 0
done_b = 0
for book in data:
if (done_a >= k and book.b != 1) or (done_b >= k and book.a != 1):
continue
ans += book.t
done_a += book.a
done_b += book.b
if done_a >= k and done_b >= k:
print(ans)
return
print(-1)
if __name__ == '__main__':
main()
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
public class E {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int k = scanner.nextInt();
int[][] ar = new int[n][2];
for(int i=0;i<n;i++) {
ar[i][0] = scanner.nextInt();
int a = scanner.nextInt();
int b = scanner.nextInt();
ar[i][1] = (a<<1) + b;
}
Arrays.sort(ar, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return (o1[0] == o2[0] ? o2[1] - o1[1] : o1[0] - o2[0]);
}
});
int ak = 0, bk = 0, i = 0, res = 0;
while(i<n && (ak<k || bk<k)) {
if (ar[i][1] > 0) {
res += ar[i][0];
if ((ar[i][1] & 2) > 0) ak++;
if ((ar[i][1] & 1) > 0) bk++;
}
i++;
}
if(ak < k || bk < k) System.out.println(-1);
else {
if (ak != bk) {
int r, d = 0;
if (ak > bk) r = 2;
else r = 1;
d = Math.abs(ak - bk);
while (--i >= 0 && d > 0)
if (ar[i][1] == r) {
d--;
res -= ar[i][0];
}
}
System.out.println(res);
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
# https://codeforces.com/contest/1374/problem/E1
def min_time(tot_books, books_like, read_time, a_time, b_time):
time = []
temp_a = []
temp_b = []
if min(sum(a_time), sum(b_time)) >= books_like:
for x in range(tot_books):
if a_time[x] == b_time[x] == 1:
time.append(read_time[x])
elif a_time[x] == 0 and b_time[x] == 1:
temp_b.append(read_time[x])
elif a_time[x] == 1 and b_time[x] == 0:
temp_a.append(read_time[x])
if len(time) > books_like:
time.sort()
time = time[:books_like]
time.sort(reverse=True), temp_a.sort(), temp_b.sort()
for y in range(min(len(temp_a), len(temp_b))):
if len(time) != books_like:
time.append(temp_a[y] + temp_b[y])
elif temp_a[y] + temp_b[y] < time[y]:
time[y] = temp_a[y] + temp_b[y]
else:
break
# print(time, temp_a, temp_b)
return sum(time)
else:
return -1
n, k = map(int, input().split())
t = []
a = []
b = []
for i in range(n):
lst = list(map(int, input().split()))
t.append(lst[0]), a.append(lst[1]), b.append(lst[2])
print(min_time(n, k, t, a, b))
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
private static FastReader fr = new FastReader();
private static Helper helper = new Helper();
private static StringBuilder result = new StringBuilder();
public static void main(String[] args) {
Task solver = new Task();
solver.solve();
}
static class Task {
class Pair{
public int t;
public int ai;
public int bi;
public Pair(int t, int ai, int bi){
this.t = t;
this.ai = ai;
this.bi = bi;
}
@Override
public String toString() {
return "Pair [t=" + t + ", ai=" + ai + ", bi=" + bi + "]";
}
}
public void solve() {
int n = fr.ni(), k = fr.ni();
ArrayList<Pair> books = new ArrayList<>();
for(int i=0; i<n; i++) books.add(new Pair(fr.ni(), fr.ni(), fr.ni()));
Collections.sort(books, new Comparator<Pair>(){
@Override
public int compare(Pair p1, Pair p2){
if(p2.ai == 0 && p2.bi == 0) return -1;
else return p1.t - p2.t;
}
});
// System.out.println(books.toString());
int countA = 0, countB = 0;
long ans = 0;
boolean isPossible = false;
ArrayList<Pair> listA = new ArrayList<>();
ArrayList<Pair> listB = new ArrayList<>();
for(Pair book : books){
if(book.ai == 1){
if(countA < k){
countA++;
ans += book.t;
if(book.bi == 1) countB++;
else listA.add(book);
}
else{
if(book.bi == 1){
countA++;
countB++;
ans += book.t;
}
}
}
else if(book.bi == 1){
if(countB < k){
countB++;
ans += book.t;
if(book.ai == 1) countB++;
else listB.add(book);
}
}
if(countA >= k && countB >= k){
isPossible = true;
break;
}
}
if(isPossible){
for(int i=listB.size()-1; i>=0; i--){
if(countB - 1 >= k){
countB--;
ans -= listB.get(i).t;
}
else break;
}
for(int i=listA.size()-1; i>=0; i--){
if(countA - 1 >= k){
countA--;
ans -= listA.get(i).t;
}
else break;
}
System.out.println(ans);
}
else System.out.println(-1);
}
}
static class Helper{
public long[] tiArr(int n, int si){
long[] arr = new long[n];
for(int i=si; i<n; i++) arr[i] = fr.nl();
return arr;
}
}
static class FastReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
private static PrintWriter pw;
public FastReader() {
reader = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int ni() {
return Integer.parseInt(next());
}
public long nl() {
return Long.parseLong(next());
}
public String rl() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
public void print(String str) {
pw.print(str);
pw.flush();
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x7fffffff;
int main() {
int n, m, k;
while (cin >> n >> m >> k) {
vector<pair<int, int>> v0, v1, v2, v3;
for (int i = 0; i < n; i++) {
int t, a, b, x = 0;
cin >> t >> a >> b;
if (a & b) {
v3.push_back(make_pair(t, i + 1));
} else if (a) {
v1.push_back(make_pair(t, i + 1));
} else if (b) {
v2.push_back(make_pair(t, i + 1));
} else {
v0.push_back(make_pair(t, i + 1));
}
}
int s0 = v0.size();
int s1 = v1.size();
int s2 = v2.size();
int s3 = v3.size();
v0.push_back(make_pair(INF, -1));
v1.push_back(make_pair(INF, -1));
v2.push_back(make_pair(INF, -1));
sort(v0.begin(), v0.end());
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
sort(v3.begin(), v3.end());
int ans = INF;
vector<int> ansv(m);
for (int i = 0; i <= k && i <= s3; i++) {
int rk = k - i;
int r = m - (i + rk + rk);
if (s1 < rk || s2 < rk || r < 0) {
continue;
}
int tmp = 0, p0 = 0, p1 = 0, p2 = 0;
vector<int> tmpv;
for (int j = 0; j < i; j++) {
tmp += v3[j].first;
tmpv.push_back(v3[j].second);
}
while (p1 < rk) {
tmp += v1[p1].first;
tmpv.push_back(v1[p1++].second);
}
while (p2 < rk) {
tmp += v2[p2].first;
tmpv.push_back(v2[p2++].second);
}
while (r--) {
int x = min(v0[p0].first, min(v1[p1].first, v2[p2].first));
if (x == v0[p0].first) {
tmp += v0[p0].first;
tmpv.push_back(v0[p0++].second);
} else if (x == v1[p1].first) {
tmp += v1[p1].first;
tmpv.push_back(v1[p1++].second);
} else {
tmp += v2[p2].first;
tmpv.push_back(v2[p2++].second);
}
}
if (ans > tmp) {
ans = tmp;
ansv = tmpv;
}
}
if (ans != INF) {
cout << ans << endl;
for (int i = 0; i < m; i++) {
cout << ansv[i] << ' ';
}
cout << endl;
} else {
cout << -1 << endl;
}
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import sys
from collections import defaultdict as dd
from collections import deque
from fractions import Fraction as f
from copy import *
from bisect import *
from heapq import *
from math import *
from itertools import permutations
def eprint(*args):
print(*args, file=sys.stderr)
zz=1
#sys.setrecursionlimit(10**6)
if zz:
input=sys.stdin.readline
else:
sys.stdin=open('input.txt', 'r')
sys.stdout=open('all.txt','w')
def li():
return [int(x) for x in input().split()]
def fi():
return int(input())
def si():
return list(input().rstrip())
def mi():
return map(int,input().split())
def gh():
sys.stdout.flush()
def graph(n,m):
for i in range(m):
x,y=mi()
a[x].append(y)
a[y].append(x)
def bo(i):
return ord(i)-ord('a')
n,m,k=mi()
a=[]
rr=[]
for i in range(n):
p=li()
a.append(p+[i+1])
if p[1]+p[2]==2:
rr.append(p+[i+1])
a.sort()
rr.sort()
c=d=ans=0
c1=[]
d1=[]
r=0
l=[]
#print(a)
for i in range(n):
if a[i][1:3]==[0,1]:
if d+r>=k:
continue
ans+=a[i][0]
d1.append([a[i][0],a[i][3]])
d+=1
elif a[i][1:3]==[1,0]:
if c+r>=k:
continue
ans+=a[i][0]
c1.append([a[i][0],a[i][3]])
c+=1
elif a[i][1:3]==[1,1]:
#ans+=a[i][0]
if c+r>=k and d+r>=k and len(c1)>0 and len(d1)>0:
#print("lol")
if c1[-1][0]+d1[-1][0]>a[i][0]:
#print("LOL",ans)
r+=1
c-=1
d-=1
ans-=(c1[-1][0]+d1[-1][0])
l.append([a[i][0],a[i][3]])
ans+=a[i][0]
c1.pop()
d1.pop()
continue
if c+r<k or d+r<k:
r+=1
ans+=a[i][0]
l.append([a[i][0],a[i][3]])
if c+r>k:
ans-=c1[-1][0]
c-=1
c1.pop()
#l.append([a[i][0],a[i][3]])
#ans+=a[i][0]
if d+r>k:
ans-=d1[-1][0]
d-=1
d1.pop()
#ans+=a[i][0]
#print(c+r,d+r,r,ans,c1,d1,l)
if r>=k:
break
fin=c1+d1+l
#print(c1,d1,l)
if not (c+r>=k and d+r>=k):
print(-1)
exit(0)
if len(fin)<m:
dd={}
#print("LOL")
for i in fin:
dd[i[1]]=1
j=m-len(fin)
i=0
#print(ans,j,fin)
#print(dd)
while j>0 and i<n:
if a[i][3] in dd:
i+=1
continue
ans+=a[i][0]
dd[a[i][3]]=1
i+=1
j-=1
print(ans if c+r>=k and d+r>=k and j==0 else -1)
if c+r>=k and d+r>=k and j==0:
for i in dd:
print(i,end=' ')
else:
j=len(fin)-m
dd={}
for i in fin:
dd[i[1]]=1
for i in range(len(rr)):
if j==0:
break
z=0
if len(c1) and len(d1):
ans+=rr[i][0]-c1[-1][0]-d1[-1][0]
dd[c1[-1][1]]=0
dd[d1[-1][1]]=0
dd[rr[i][3]]=1
c1.pop()
d1.pop()
j-=1
print(ans if j==0 else -1)
if j==0:
for i in dd:
if dd[i]==1:
print(i,end=" ")
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.*;
public class ReadingBooksEasy {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
StringBuilder sb = new StringBuilder();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
LinkedList<Integer> both = new LinkedList<>();
LinkedList<Integer> alice = new LinkedList<>();
LinkedList<Integer> bob = new LinkedList<>();
LinkedList<Integer> noone = new LinkedList<>();
HashMap<String, LinkedList<Integer>> set = new HashMap<>();
for (int i = 0; i < n; i++) {
int t = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
String s = String.valueOf(t) + String.valueOf(a) + String.valueOf(b);
LinkedList<Integer> ll = set.get(s);
if (ll == null) {
ll = new LinkedList<>();
}
ll.add(i + 1);
set.put(s, ll);
if (a == 1 && b == 1) {
both.add(t);
continue;
}
if (a == 1 && b == 0) {
alice.add(t);
continue;
}
if (a == 0 && b == 1) {
bob.add(t);
continue;
}
noone.add(t);
}
int cboth = both.size();
int calice = alice.size();
int cbob = bob.size();
if (cboth + calice < k || cboth + cbob < k) {
System.out.println("-1");
return;
}
Collections.sort(both);
Collections.sort(alice);
Collections.sort(bob);
int count = k;
long ans = 0;
int max = Integer.MAX_VALUE;
while (count != 0) {
int bv = max;
if (!both.isEmpty())
bv = both.get(0);
int ab = max;
if (!alice.isEmpty() && !bob.isEmpty())
ab = alice.get(0) + bob.get(0);
if ((ab <= bv && m != 1) || (ab != max && m == 2)) {
int a = alice.remove(0);
int b = bob.remove(0);
ans += a + b;
String s = String.valueOf(a) + String.valueOf("10");
LinkedList<Integer> ll = set.get(s);
int index = ll.remove(0);
set.put(s, ll);
sb.append(index + " ");
s = String.valueOf(b) + String.valueOf("01");
ll = set.get(s);
index = ll.remove(0);
set.put(s, ll);
sb.append(index + " ");
m -= 2;
count--;
} else {
if (both.isEmpty()) {
System.out.println("-1");
return;
}
int a = both.remove(0);
ans += a;
String s = String.valueOf(a) + String.valueOf("11");
LinkedList<Integer> ll = set.get(s);
int index = ll.remove(0);
set.put(s, ll);
sb.append(index + " ");
count--;
m -= 1;
}
}
if (m > 0) {
Collections.sort(noone);
}
while (m > 0) {
int bv = max;
if (!both.isEmpty())
bv = both.get(0);
int al = max;
if (!alice.isEmpty()) {
al = alice.get(0);
}
int bb = max;
if (!bob.isEmpty()) {
bb = bob.get(0);
}
int nn = max;
if (!noone.isEmpty()) {
nn = noone.get(0);
}
int min = getMin(bv, al, bb, nn);
if (bv == min) {
int a = both.remove(0);
ans += a;
String s = String.valueOf(a) + String.valueOf("11");
LinkedList<Integer> ll = set.get(s);
int index = ll.remove(0);
set.put(s, ll);
sb.append(index + " ");
m--;
} else if (al == min) {
int a = alice.remove(0);
ans += a;
String s = String.valueOf(a) + String.valueOf("10");
LinkedList<Integer> ll = set.get(s);
int index = ll.remove(0);
set.put(s, ll);
sb.append(index + " ");
m--;
} else if (bb == min) {
int a = bob.remove(0);
ans += a;
String s = String.valueOf(a) + String.valueOf("01");
LinkedList<Integer> ll = set.get(s);
int index = ll.remove(0);
set.put(s, ll);
sb.append(index + " ");
m--;
} else if (nn == min) {
int a = noone.remove(0);
ans += a;
String s = String.valueOf(a) + String.valueOf("00");
LinkedList<Integer> ll = set.get(s);
int index = ll.remove(0);
set.put(s, ll);
sb.append(index + " ");
m--;
}
}
System.out.println(ans);
System.out.println(sb);
}
static int getMin(int a, int b, int c, int d) {
return Math.min(Math.min(Math.min(a, b), c), d);
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int n, k;
vector<pair<int, pair<int, int> > > a;
void init() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
}
void sol() {
cin >> n >> k;
priority_queue<int, vector<int>, greater<int> > alicecan;
priority_queue<int, vector<int>, greater<int> > bobcan;
priority_queue<int, vector<int>, greater<int> > both;
priority_queue<int> aliceread;
priority_queue<int> bobread;
for (int i = 0; i < n; ++i) {
int x, y, z;
cin >> x >> y >> z;
if (y == 1 && z == 1)
both.push(x);
else if (y == 1)
alicecan.push(x);
else
bobcan.push(x);
}
if (alicecan.size() + both.size() < k) {
cout << -1;
return;
}
if (bobcan.size() + both.size() < k) {
cout << -1;
return;
}
int res = 0;
while (alicecan.size() && aliceread.size() < k) {
aliceread.push(alicecan.top());
res += alicecan.top();
alicecan.pop();
}
while (bobcan.size() && bobread.size() < k) {
bobread.push(bobcan.top());
res += bobcan.top();
bobcan.pop();
}
int slgalice = aliceread.size();
int slgbob = bobread.size();
while (slgalice < k) {
slgalice++;
slgbob++;
res += both.top();
both.pop();
if (slgbob > k) {
res -= bobread.top();
bobread.pop();
}
}
while (slgbob < k) {
slgalice++;
slgbob++;
res += both.top();
both.pop();
if (slgalice > k) {
res -= aliceread.top();
aliceread.pop();
}
}
while (both.size()) {
if (aliceread.top() + bobread.top() > both.top()) {
res = res - (aliceread.top() + bobread.top()) + both.top();
aliceread.pop();
bobread.pop();
}
both.pop();
}
cout << res;
}
int main() {
init();
sol();
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 200005;
int t[N], a[N], b[N];
int main() {
int n, m, k;
scanf("%d %d %d", &n, &m, &k);
int cnta = 0, cntb = 0;
vector<pair<int, int> > v1, v2, v3, v0;
for (int i = 0; i < n; i++) {
scanf("%d %d %d", &t[i], &a[i], &b[i]);
if (a[i] == 1) cnta++;
if (b[i] == 1) cntb++;
if (a[i] == 1 && b[i] == 0) {
v1.push_back({t[i], i + 1});
} else if (a[i] == 0 && b[i] == 1) {
v2.push_back({t[i], i + 1});
} else if (a[i] == 1 && b[i] == 1) {
v3.push_back({t[i], i + 1});
}
v0.push_back({t[i], i + 1});
}
if (cnta < k || cntb < k) {
return printf("-15"), 0;
}
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
sort(v3.begin(), v3.end());
sort(v0.begin(), v0.end());
cnta = 0, cntb = 0;
int res = 0, idx1 = 0, idx2 = 0, idx3 = 0, sz1 = v1.size(), sz2 = v2.size(),
sz3 = v3.size();
set<int> st;
while (cnta < k) {
if (idx1 < sz1 && idx3 < sz3) {
if (v1[idx1].first < v3[idx3].first) {
st.insert(v1[idx1].second);
res += v1[idx1++].first;
} else {
st.insert(v3[idx3].second);
res += v3[idx3++].first;
cntb++;
}
} else if (idx1 < sz1) {
st.insert(v1[idx1].second);
res += v1[idx1++].first;
} else {
st.insert(v3[idx3].second);
res += v3[idx3++].first;
cntb++;
}
cnta++;
}
m -= k;
while (cntb < k && m) {
if (idx2 < sz2 && idx3 < sz3) {
int temp = v3[idx3].first;
if (idx1 > 0) {
temp -= v1[idx1 - 1].first;
}
if (v2[idx2].first < temp) {
st.insert(v2[idx2].second);
res += v2[idx2++].first;
m--;
} else {
st.insert(v3[idx3].second);
if (idx1 > 0) {
st.erase(v1[idx1 - 1].second);
idx1--;
} else {
m--;
cnta++;
}
res += temp;
idx3++;
}
} else if (idx2 < sz2) {
st.insert(v2[idx2].second);
res += v2[idx2++].first;
m--;
} else if (idx3 < sz3) {
int temp = v3[idx3].first;
st.insert(v3[idx3].second);
if (idx1 > 0) {
temp -= v1[idx1 - 1].first;
st.erase(v1[idx1 - 1].second);
idx1--;
} else {
m--;
cnta++;
}
idx3++;
res += temp;
} else {
return printf("-14"), 0;
}
cntb++;
}
printf("%d\n", m);
if (cntb < k) {
if (cnta > k) return printf("-13"), 0;
while (cntb < k && idx1) {
res -= v1[idx1 - 1].first;
st.erase(v1[idx1 - 1].second);
idx1--;
if (cnta > k) {
if (idx2 < sz2 && idx3 < sz3) {
if (v2[idx2].first < v3[idx3].first) {
st.insert(v2[idx2].second);
res += v2[idx2++].first;
cnta--;
} else {
st.insert(v3[idx3].second);
res += v3[idx3++].first;
}
} else if (idx2 < sz2) {
st.insert(v2[idx2].second);
res += v2[idx2++].first;
cnta--;
} else if (idx3 < sz3) {
st.insert(v3[idx3].second);
res += v3[idx3++].first;
} else {
return printf("-1"), 0;
}
} else {
if (idx3 < sz3) {
st.insert(v3[idx3].second);
res += v3[idx3++].first;
} else {
return printf("-1"), 0;
}
}
cntb++;
}
if (cntb < k) return printf("-1"), 0;
}
for (auto x : v0) {
if (m == 0) break;
if (st.count(x.second)) continue;
res += x.first;
st.insert(x.second);
m--;
}
if (m) return printf("-12"), 0;
printf("%d\n", res);
for (auto x : st) {
printf("%d ", x);
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
String s[]=bu.readLine().split(" ");
int n=Integer.parseInt(s[0]),k=Integer.parseInt(s[1]);
ArrayList<Integer> ab=new ArrayList<>();
ArrayList<Integer> a=new ArrayList<>();
ArrayList<Integer> b=new ArrayList<>();
int i,al=0,bo=0,x,y,z;
for(i=0;i<n;i++)
{
s=bu.readLine().split(" ");
x=Integer.parseInt(s[0]); y=Integer.parseInt(s[1]); z=Integer.parseInt(s[2]);
if(y==1) al++;
if(z==1) bo++;
if(y==1 && z==1) ab.add(x);
else if(y==1) a.add(x);
else b.add(x);
}
if(al<k || bo<k) {System.out.print("-1"); return;}
Collections.sort(a); Collections.sort(b);
for(i=0;i<Math.min(a.size(),b.size());i++)
ab.add(a.get(i)+b.get(i));
Collections.sort(ab);
int min=0;
for(i=0;i<k;i++)
min+=ab.get(i);
System.out.print(min);
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
long []ins = GetInput.getLongArrayInput();
int n = (int) ins[0]; long k = ins[1];
PriorityQueue<Long> both = new PriorityQueue<>();
PriorityQueue<Long> alice = new PriorityQueue<>();
PriorityQueue<Long> bob = new PriorityQueue<>();
while(n-->0){
long []array = GetInput.getLongArrayInput();
if (array[1] == 1 && array[2] == 1){
both.add(array[0]);
continue;
}
if (array[1] == 1){
alice.add(array[0]);
continue;
}
if (array[2] == 1){
bob.add(array[0]);
continue;
}
}
long time = 0;
long aBooks = k; long bBooks = k;
boolean flag = false;
if (both.size() + alice.size() <k || both.size() + bob.size()<k){
System.out.println(-1);
return;
}
while (aBooks>0 || bBooks>0){
if (alice.peek() == null && aBooks>0){
while (aBooks>0){
aBooks--;
bBooks--;
time+=both.poll();
}
}
if (bob.peek() == null && bBooks>0){
while (bBooks>0){
aBooks--;
bBooks--;
time+=both.poll();
}
}
if (both.peek() != null) {
if (alice.peek()!=null && bob.peek()!=null) {
if (both.peek() < alice.peek() + bob.peek()) {
aBooks--;
bBooks--;
time += both.poll();
continue;
} else {
time += alice.poll() + bob.poll();
aBooks--;
bBooks--;
continue;
}
}
else {
aBooks--;
bBooks--;
time += both.poll();
continue;
}
}
if (aBooks>0){
aBooks--;
time += alice.poll();
}
else if (bBooks>0){
bBooks--;
time+=bob.poll();
}
}
System.out.println(time);
}
static long fff(long key, long freq, long k){
return key+1 + (freq-1)*(k);
}
static int rec(int sum, int n){
if (n == 0){
return sum;
}
return rec(n%10+sum, n/10);
}
static int foo(int n, int r) {
if (n > 0) return (n % r + foo(n / r, r));
else return 0;
}
private static long mod(long b) {
if (b < 0) {
return -b;
}
return b;
}
private static int findEnd(int i, int n, int b) {
if ((i / b) + b > n - 1) {
return n - 1;
}
return (i / b) + b - 1;
}
static int KnapSack(int val[], int wt[],
int n, int W) {
// matrix to store final result
int dp[][] = new int[2][W + 1];
for (int i = 1; i <= n; i++) {
for (int w = 1; w <= W; w++) {
if (wt[i - 1] <= w)
dp[i % 2][w] = Math.max(dp[(i - 1) % 2][w], val[i - 1] + dp[(i - 1) % 2][w - wt[i - 1]]);
else
dp[i % 2][w] = dp[(i - 1) % 2][w];
}
}
return dp[n % 2][W];
}
// String []arr = {"USA", "United States", "Washington", "California", "New York", "Los Angeles", "Florida", "Texas",
// "Chicago", "Boston", "San Francisco", "Seattle", "Brooklyn", "San Diego" , "Michigan", "Colorado", "Austin", "Pennsylvania", "Philadelphia", "Ohio", "New Jersey", "Carolina"};
// String []arr = {"Australia", "Sydney", "Melbourne", "Canberra"};
// String []arr = {"Canada", "Ontario", "Ottawa", "Richmond", "Vancouver", "Alberta", "Toronto", "Victoria"};
// String []arr = {"Australia", "Sydney", "Melbourne", "Canberra"};
// String []arr = {"England", "London", "UK", "Britain", "Manchester"};
// String []arr = {"India", "Delhi", "Bangalore", "Mumbai", "Chennai", "Pune", "Noida", "Gurgaon", "Kolkata"};
// String []arr = {"New Zealand", "Auckland"};
//// String []arr = {"France", "Paris"};
// File file = new File("/Users/jacksonjose/Downloads/HTTPclient-server-master/PractiseCompetitive/src/2018.csv");
// processor(arr, file);
// file = new File("/Users/jacksonjose/Downloads/HTTPclient-server-master/PractiseCompetitive/src/2019.csv");
// processor(arr, file);
// }
//
// private static void processor(String []arr, File file) throws IOException {
// Count c = grouper(arr, new Count(0,0,0), file);
// System.out.println(arr[0]);
// System.out.println("Total Count, " + (c.pos+c.neg));
// System.out.println("-1, " + c.neg);
// System.out.println("1, " + c.pos);
private static int numerOftwos(int n) {
int ans = 0;
while (n % 2 == 0) {
n /= 2;
ans++;
}
return ans;
}
public static int oddPrimeFactors(int n) {
while (n % 2 == 0) {
n /= 2;
}
int ans = 0;
for (int i = 3; i <= Math.sqrt(n); i += 2) {
while (n % i == 0) {
n /= i;
ans++;
}
}
if (n > 2)
ans++;
return ans;
}
private static boolean onlyPowerOf2(int n) {
if (n == 2) {
return false;
}
while (n > 1) {
if (n % 2 == 0) {
n /= 2;
} else {
return false;
}
}
return true;
}
// private static Count grouper(String []key, Count c, File file) throws IOException {
// BufferedReader br = new BufferedReader(new FileReader(file));
//
// String st;
// st = br.readLine();
// int i = 0;
// while (st!=null){
// String []strings = st.split(",(?=(?:[^\"]*\"[^\"]*\")*[^\"]*$)", -1);
// if (isKeyContained(strings[0], key)){
// st = br.readLine();
// strings = st.split(",");
// if (isNumeric(strings[0])){
// int num = Integer.parseInt(strings[0]);
// if (num == -1){
// c.neg += Integer.parseInt(strings[1]);
// }
// else {
// c.pos += Integer.parseInt(strings[1]);
// }
// }
// else {
// continue;
// }
// st = br.readLine();
// strings = st.split(",");
// if (isNumeric(strings[0])){
// int num = Integer.parseInt(strings[0]);
// if (num == -1){
// c.neg += Integer.parseInt(strings[1]);
// }
// else {
// c.pos += Integer.parseInt(strings[1]);
// }
// }
// }
// st = br.readLine();
// }
// return c;
// }
// private static boolean isKeyContained(String string, String[] key) {
// for (String str : key){
// if (string.contains(str)){
// return true;
// }
// }
// return false;
// }
// private static boolean isNumeric(String str) {
// return str.matches("-?\\d+(\\.\\d+)?");
// }
private static boolean isMultiple(double i, double x) {
if (x % i == 0) {
return false;
}
return true;
}
private static int ff(long num) {
return (int) (num % (1000000007));
}
private static boolean notOverlap(long[] t1, long[] t2) {
return t1[0] >= t2[1];
}
private static long max(long in, long in1) {
if (in > in1) {
return in;
}
return in1;
}
private static long min(long in, long in1) {
if (in > in1) {
return in1;
}
return in;
}
}
class GetInput {
static BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
static char[] getCharArray() {
char[] charArray;
try {
StringBuilder string = getInputString();
charArray = new char[string.length()];
for (int i = 0; i < string.length(); i++) {
charArray[i] = string.charAt(i);
}
return charArray;
} catch (Exception e) {
e.printStackTrace();
}
charArray = new char[0];
return charArray;
}
static int[] getArrayInt() {
String[] string;
int[] array;
try {
string = bufferedReader.readLine().split("\\s+");
array = new int[string.length];
for (int i = 0; i < string.length; i++) {
array[i] = Integer.parseInt(string[i]);
}
return array;
} catch (IOException e) {
e.printStackTrace();
}
int[] arra = new int[2];
return arra;
}
static int getInt() {
try {
String string = bufferedReader.readLine();
return Integer.parseInt(string);
} catch (IOException e) {
e.printStackTrace();
}
return 0;
}
static StringBuilder getInputString() {
try {
StringBuilder string = new StringBuilder();
string.append(bufferedReader.readLine());
return string;
} catch (IOException e) {
e.printStackTrace();
}
return new StringBuilder();
}
static long getLongInput() {
try {
String string = bufferedReader.readLine();
return Long.parseLong(string);
} catch (IOException e) {
e.printStackTrace();
}
return 0;
}
static long[] getLongArrayInput() {
String[] string;
long[] array;
try {
string = bufferedReader.readLine().split("\\s+");
array = new long[string.length];
for (int i = 0; i < string.length; i++) {
array[i] = Long.parseLong(string[i]);
}
return array;
} catch (IOException e) {
e.printStackTrace();
}
long[] arra = new long[2];
return arra;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
class HeapSort {
void sort(long[] arr) {
int n = arr.length;
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
for (int i = n - 1; i > 0; i--) {
long temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
heapify(arr, i, 0);
}
}
private void heapify(long[] arr, int n, int i) {
int largest = i;
int l = 2 * i + 1;
int r = 2 * i + 2;
if (l < n && arr[l] > arr[largest])
largest = l;
if (r < n && arr[r] > arr[largest])
largest = r;
if (largest != i) {
long swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
heapify(arr, n, largest);
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int solve() {
int n, k;
cin >> n >> k;
vector<int> A;
vector<int> B;
vector<int> both;
for (int i = 0; i < n; i++) {
int t, isA, isB;
cin >> t >> isA >> isB;
if (isA && isB) {
both.push_back(t);
} else if (isA) {
A.push_back(t);
} else {
B.push_back(t);
}
}
sort(both.begin(), both.end());
sort(A.begin(), A.end());
sort(B.begin(), B.end());
if (A.size() + both.size() < k || B.size() + both.size() < k) {
return -1;
}
int Atime = 0;
int Btime = 0;
int Ctime = 0;
int a = 0;
int b = 0;
int c = 0;
for (; a < A.size(); a++) {
if (a == k) break;
Atime += A[a];
}
for (; b < B.size(); b++) {
if (b == k) break;
Btime += B[b];
}
while (a + c < k) {
Ctime += both[c];
c++;
if (b + c > k) {
b--;
Btime -= B[b];
}
}
while (b + c < k) {
Ctime += both[c];
c++;
if (a + c > k) {
a--;
Atime -= A[a];
}
}
int ret = Atime + Btime + Ctime;
while (a > 0 && b > 0 && c < both.size()) {
Ctime += both[c];
a--;
b--;
Atime -= A[a];
Btime -= B[b];
ret = min(ret, Atime + Btime + Ctime);
}
return ret;
}
int main() { cout << solve() << endl; }
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class check5 {
public static void main(String[] args) throws IOException{
Reader sc=new Reader();
PrintWriter out = new PrintWriter(System.out);
int n=sc.nextInt();
long k=sc.nextLong();
int a[][]=new int[n][3];
ArrayList<Integer> al=new ArrayList<>();
ArrayList<Integer> bob=new ArrayList<>();
ArrayList<Integer> both=new ArrayList<>();
for(int i=0;i<n;i++)
{
a[i][0]=sc.nextInt();
a[i][1]=sc.nextInt();
a[i][2]=sc.nextInt();
if(a[i][1]==1)
{
if(a[i][2]==1) both.add(a[i][0]);
else al.add(a[i][1]);
}
else if(a[i][2]==1) bob.add(a[i][2]);
}
Collections.sort(al,Collections.reverseOrder());
Collections.sort(bob,Collections.reverseOrder());
Collections.sort(both,Collections.reverseOrder());
if(al.size()+both.size()<k || bob.size()+both.size()<k)
{
System.out.println(-1);
return;
}
int ac=0;
int bc=0;
long ans=0;
while(ac<k && bc<k)
{
int t1=al.size()-1;
int t2=bob.size()-1;
int t3=both.size()-1;
if(t1>=0 && t2>=0 && t3>=0&& al.get(t1)+bob.get(t2)>=2*both.get(t3))
{
ans+=both.get(t3);
both.remove(both.size()-1);
}
else if(t1<0 || t2<0)
{
ans+=both.get(t3);
both.remove(both.size()-1);
}
else// if(t3<0)
{
ans+=al.get(t1)+bob.get(t2);
al.remove(t1);
bob.remove(t2);
}
ac+=1;
bc+=1;
}
System.out.println(ans);
out.flush();
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String nextLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() throws IOException{
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void quick_sort(int a[], int left, int right) {
int l = left, r = right, m = a[rand() % (r - l) + l];
while (l < r) {
while (a[l] < m) l++;
while (a[r] > m) r--;
if (l <= r) {
int t = a[l];
a[l] = a[r];
a[r] = t;
l++;
r--;
}
}
if (left < r) quick_sort(a, left, r);
if (right > l) quick_sort(a, l, right);
}
int main() {
int n, k, a[200000], size_a = 0, b[200000], size_b = 0, c[200000], size_c = 0,
min = 0, cnt_a = 0, cnt_b = 0;
cin >> n >> k;
while (n--) {
int t[3];
cin >> t[0] >> t[1] >> t[2];
if (t[1] + t[2] == 2)
c[size_c++] = t[0];
else if (t[1])
a[size_a++] = t[0];
else if (t[2])
b[size_b++] = t[0];
}
if (size_c > 1) quick_sort(c, 0, size_c - 1);
if (size_a > 1) quick_sort(a, 0, size_a - 1);
if (size_b > 1) quick_sort(b, 0, size_b - 1);
int i = 0, j = 0, l = 0;
for (;
((i < size_a && j < size_b) || l < size_c) && cnt_a < k && cnt_b < k;) {
if (i < size_a && j < size_b) {
if (l < size_c)
if (a[i] + b[j] < c[l])
min += a[i++] + b[j++];
else
min += c[l++];
else
min += a[i++] + b[j++];
} else if (l < size_c) {
min += c[l++];
} else
break;
cnt_a++;
cnt_b++;
}
for (; (i < size_a || l < size_c) && cnt_a < k;) {
if (i < size_a) {
if (l < size_c)
if (a[i] < c[l])
min += a[i++];
else {
min += c[l++];
cnt_b++;
}
else
min += a[i++];
} else if (l < size_c) {
min += c[l++];
cnt_b++;
} else
break;
cnt_a++;
}
for (; (j < size_b || l < size_c) && cnt_b < k;) {
if (j < size_b) {
if (l < size_c)
if (b[j] < c[l])
min += b[j++];
else {
min += c[l++];
cnt_a++;
}
else
min += b[j++];
} else if (l < size_c) {
min += c[l++];
cnt_a++;
} else
break;
cnt_b++;
}
if (cnt_a < k && cnt_b < k)
cout << -1;
else
cout << min;
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n, k = map(int , input().split())
alice = []
bob = []
both = []
for i in range(n):
t,a,b = map(int , input().split())
if a==1 and b==1:
both.append(t)
elif a==1 and b==0:
alice.append(t)
elif a==0 and b==1:
bob.append(t)
alice.sort(reverse=True)
bob.sort(reverse=True)
both.sort(reverse=True)
total = len(both)
extra = []
while total<k:
if len(alice)>0 and len(bob)>0:
extra.append(bob.pop())
extra.append(alice.pop())
total+=1
else:
print(-1)
exit(0)
i = len(alice)-1
j = len(bob)-1
for a in range(len(both)):
if len(alice)==0 or len(bob)==0:
break
if both[a] >= alice[-1]+bob[-1]:
both[a] = 0
extra.append(bob.pop())
extra.append(alice.pop())
print(sum(both) + sum(extra))
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class E1_1374 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
Triple1[] arr = new Triple1[n];
for (int i = 0; i < n; i++) {
arr[i] = new Triple1(in.nextInt(), (in.nextInt() == 1), (in.nextInt() == 1));
}
Arrays.sort(arr);
ArrayList<Integer> a = new ArrayList<Integer>();
ArrayList<Integer> b = new ArrayList<Integer>();
ArrayList<Integer> c = new ArrayList<Integer>();
int aCount = 0;
int bCount = 0;
boolean pass = false;
long ans = 0;
for (int i = 0; i < n; i++) {
// System.out.println(arr[i].x + " " + arr[i].y + " " + arr[i].z);
if (arr[i].y && arr[i].z) {
c.add(i);
bCount++;
aCount++;
ans += arr[i].x;
} else if (arr[i].y) {
a.add(i);
ans += arr[i].x;
aCount++;
} else if (arr[i].z) {
b.add(i);
bCount++;
ans += arr[i].x;
}
while (aCount > k && a.size() > 0) {
aCount--;
ans -= a.remove(a.size() - 1);
}
while (bCount > k && b.size() > 0) {
ans -= b.remove(b.size() - 1);
bCount--;
}
if (aCount == k && bCount == k) {
pass = true;
break;
}
}
if (pass) {
// for (int i = 0; i < a.size(); i++)
// ans += arr[a.get(i)].x;
// for (int i = 0; i < b.size(); i++)
// ans += arr[b.get(i)].x;
// for (int i = 0; i < c.size(); i++)
// ans += arr[c.get(i)].x;
System.out.println(ans);
} else {
System.out.println(-1);
}
}
}
class Triple1 implements Comparable<Triple1> {
int x;
boolean y;
boolean z;
Triple1(int x, boolean y, boolean z) {
this.x = x;
this.y = y;
this.z = z;
}
@Override
public int compareTo(Triple1 o) {
// TODO Auto-generated method stub
if (this.x == o.x) {
return (y ? 1 : 0) - (o.y ? 1 : 0) + (z ? 1 : 0) - (o.z ? 1 : 0);
// if (y && z) {
// return -1;
// } else if (o.y && o.z) {
// return 1;
// } else if (y || z) {
// return -1;
// } else {
// return 1;
// }
} else {
return this.x - o.x;
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.*;
import java.math.*;
import java.io.*;
public class A{
static FastReader scan=new FastReader();
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
static LinkedList<Integer>edges[];
// static LinkedList<Pair>edges[];
static boolean stdin = true;
static String filein = "input";
static String fileout = "output";
static int dx[] = { -1, 0, 1, 0 };
static int dy[] = { 0, 1, 0, -1 };
int dx_8[]={1,1,1,0,0,-1,-1,-1};
int dy_8[]={-1,0,1,-1,1,-1,0,1};
static char sts[]={'U','R','D','L'};
static boolean prime[];
static long LCM(long a,long b){
return (Math.abs(a*b))/gcd(a,b);
}
public static int upperBound(long[] array, int length, long value) {
int low = 0;
int high = length;
while (low < high) {
final int mid = low+(high-low) / 2;
if ( array[mid]>value) {
high = mid ;
} else {
low = mid+1;
}
}
return low;
}
static long gcd(long a, long b) {
if(a!=0&&b!=0)
while((a%=b)!=0&&(b%=a)!=0);
return a^b;
}
static int countSetBits(int n)
{
int count = 0;
while (n > 0) {
if((n&1)!=1)
count++;
//count += n & 1;
n >>= 1;
}
return count;
}
static void sieve(long n)
{
prime = new boolean[(int)n+1];
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
}
static boolean isprime(long x)
{
for(long i=2;i*i<=x;i++)
if(x%i==0)
return false;
return true;
}
static int perm=0,FOR=0;
static boolean flag=false;
static int len=100000000;
static ArrayList<Pair>inters=new ArrayList<Pair>();
static class comp1 implements Comparator<Pair>{
public int compare(Pair o1,Pair o2){
return Integer.compare((int)o2.x,(int)o1.x);
}
}
public static class comp2 implements Comparator<Pair>{
public int compare(Pair o1,Pair o2){
return Integer.compare((int)o2.x,(int)o1.x);
}
}
static StringBuilder a,b;
static boolean isPowerOfTwo(int n)
{
if(n==0)
return false;
return (int)(Math.ceil((Math.log(n) / Math.log(2)))) ==
(int)(Math.floor(((Math.log(n) / Math.log(2)))));
}
static ArrayList<Integer>v;
static ArrayList<Integer>pows;
static void block(long x)
{
v = new ArrayList<Integer>();
pows=new ArrayList<Integer>();
while (x > 0)
{
v.add((int)x % 2);
x = x / 2;
}
// Displaying the output when
// the bit is '1' in binary
// equivalent of number.
for (int i = 0; i < v.size(); i++)
{
if (v.get(i)==1)
{
pows.add(i);
}
}
}
static long ceil(long a,long b)
{
if(a%b==0)
return a/b;
return a/b+1;
}
static boolean isprime(int n)
{
// Corner cases
if (n <= 1) return false;
if (n <= 3) return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to return the smallest
// prime number greater than N
static int nextPrime(int N)
{
// Base case
if (N <= 1)
return 2;
int prime = N;
boolean found = false;
// Loop continuously until isPrime returns
// true for a number greater than n
while (!found)
{
prime++;
if (isprime(prime))
found = true;
}
return prime;
}
static long mod=(long)1e9+7;
static int mx=0,k;
static long nPr(long n,long r)
{
long ret=1;
for(long i=n-r+1;i<=n;i++)
{
ret=1L*ret*i%mod;
}
return ret%mod;
}
public static void main(String[] args) throws Exception
{
//SUCK IT UP AND DO IT ALRIGHT
//scan=new FastReader("hps.in");
//out = new PrintWriter("hps.out");
//System.out.println( 1005899102^431072812);
//int elem[]={1,2,3,4,5};
//System.out.println("avjsmlfpb".compareTo("avjsmbpfl"));
int tt=1;
/*for(int i=0;i<=100;i++)
if(prime[i])
arr.add(i);
System.out.println(arr.size());*/
// check(new StringBuilder("05:11"));
// System.out.println(26010000000000L%150);
//System.out.println((1000000L*99000L));
//tt=scan.nextInt();
// System.out.println(2^6^4);
//StringBuilder o=new StringBuilder("GBGBGG");
//o.insert(2,"L");
int T=tt;
//System.out.println(gcd(3,gcd(24,gcd(120,168))));
//System.out.println(gcd(40,gcd(5,5)));
//System.out.println(gcd(45,gcd(10,5)));
//System.out.println(primes.size());
outer:while(tt-->0)
{
int n=scan.nextInt(),k=scan.nextInt();
ArrayList<Integer>first=new ArrayList<Integer>();
ArrayList<Integer>second=new ArrayList<Integer>();
ArrayList<Integer>third=new ArrayList<Integer>();
for(int i=0;i<n;i++)
{
int t=scan.nextInt(),a=scan.nextInt(),b=scan.nextInt();
if(a==1&&b==1)
first.add(t);
else if(a==1&&b==0)
second.add(t);
else if(a==0&&b==1)
third.add(t);
}
Collections.sort(second);
Collections.sort(first);
Collections.sort(third);
if(first.size()+second.size()<k||first.size()+third.size()<k)
{
out.println(-1);
out.close();
return;
}
int res=0;
if(first.size()==0)
{
for(int i=0;i<k;i++)
res+=second.get(i);
for(int i=0;i<k;i++)
res+=third.get(i);
out.println(res);
out.close();
return;
}
if(first.size()<=k)
{
int tmpk=k;
for(int i=0;i<first.size();i++)
{
res+=first.get(i);
tmpk--;
}
for(int i=0;i<tmpk;i++)
{
res+=second.get(i);
res+=third.get(i);
}
int l=tmpk,r=tmpk;
for(int i=first.size()-1;i>=0;i--)
{
if(l<second.size()&&r<third.size()&&second.get(l)+third.get(r)<first.get(i)){
res-=first.get(i);
res+=second.get(l)+third.get(r);
}
}
out.println(res);
out.close();
return;
}
for(int i=0;i<Math.min(first.size(),k);i++)
{
res+=first.get(i);
}
int l=0,r=0;
for(int i=k-1;i>=0;i--)
{
if(l<second.size()&&r<third.size()&&second.get(l)+third.get(r)<first.get(i))
{
res-=first.get(i);
res+=second.get(l)+third.get(r);
l++;
r++;
}
}
out.println(res);
}
out.close();
//SEE UP
}
static class special implements Comparable<special>{
int x,y,z,h;
String s;
special(int x,int y,int z,int h)
{
this.x=x;
this.y=y;
this.z=z;
this.h=h;
}
@Override
public boolean equals(Object o){
if (o == this) return true;
if (o.getClass() != getClass()) return false;
special t = (special)o;
return t.x == x && t.y == y&&t.s.equals(s);
}
public int compareTo(special o)
{
return Integer.compare(x,o.x);
}
}
static long binexp(long a,long n)
{
if(n==0)
return 1;
long res=binexp(a,n/2);
if(n%2==1)
return res*res*a;
else
return res*res;
}
static long powMod(long base, long exp, long mod) {
if (base == 0 || base == 1) return base;
if (exp == 0) return 1;
if (exp == 1) return (base % mod+mod)%mod;
long R = (powMod(base, exp/2, mod) % mod+mod)%mod;
R *= R;
R %= mod;
if ((exp & 1) == 1) {
return (base * R % mod+mod)%mod;
}
else return (R %mod+mod)%mod;
}
static double dis(double x1,double y1,double x2,double y2)
{
return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
static long mod(long x,long y)
{
if(x<0)
x=x+(-x/y+1)*y;
return x%y;
}
public static long pow(long b, long e) {
long r = 1;
while (e > 0) {
if (e % 2 == 1) r = r * b ;
b = b * b;
e >>= 1;
}
return r;
}
private static void sort(long[] arr) {
List<Long> list = new ArrayList<>();
for (long object : arr) list.add(object);
Collections.sort(list);
//Collections.reverse(list);
for (int i = 0; i < list.size(); ++i) arr[i] = list.get(i);
}
private static void sort2(int[] arr) {
List<Integer> list = new ArrayList<>();
for (int object : arr) list.add(object);
Collections.sort(list);
Collections.reverse(list);
for (int i = 0; i < list.size(); ++i) arr[i] = list.get(i);
}
public static class FastReader {
BufferedReader br;
StringTokenizer root;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
FastReader(String filename)throws Exception
{
br=new BufferedReader(new FileReader(filename));
}
boolean hasNext(){
String line;
while(root.hasMoreTokens())
return true;
return false;
}
String next() {
while (root == null || !root.hasMoreTokens()) {
try {
root = new StringTokenizer(br.readLine());
} catch (Exception addd) {
addd.printStackTrace();
}
}
return root.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception addd) {
addd.printStackTrace();
}
return str;
}
public int[] nextIntArray(int arraySize) {
int array[] = new int[arraySize];
for (int i = 0; i < arraySize; i++) {
array[i] = nextInt();
}
return array;
}
}
static class Pair implements Comparable<Pair>{
public long x, y;
public Pair(long x1, long y1) {
x=x1;
y=y1;
}
@Override
public int hashCode() {
return (int)(x + 31 * y);
}
public String toString() {
return x + " " + y;
}
@Override
public boolean equals(Object o){
if (o == this) return true;
if (o.getClass() != getClass()) return false;
Pair t = (Pair)o;
return t.x == x && t.y == y;
}
public int compareTo(Pair o)
{
return (int)(o.x-x);
}
}
static class tuple{
int x,y,z;
tuple(int a,int b,int c){
x=a;
y=b;
z=c;
}
}
static class Edge{
int d,w;
Edge(int d,int w)
{
this.d=d;
this.w=w;
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class E1374{
static BufferedReader br;
static PrintWriter out;
static StringBuilder sb;
public static void main(String args[]) throws IOException{
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sb = new StringBuilder("");
int t = 1;
while(t-->0){
solve();
}
out.print(sb);
out.flush();
}
public static void solve() throws IOException{
StringTokenizer str = new StringTokenizer(br.readLine());
int n = Integer.parseInt(str.nextToken());
int k = Integer.parseInt(str.nextToken());
int temp_n = n;
TreeSet<Integer> both = new TreeSet<>();
TreeSet<Integer> AliceSet = new TreeSet<>();
TreeSet<Integer> BobSet = new TreeSet<>();
int sum = 0;
int ans = 0;
while(temp_n-->0){
str = new StringTokenizer(br.readLine());
int time = Integer.parseInt(str.nextToken());
int a = Integer.parseInt(str.nextToken());
int b = Integer.parseInt(str.nextToken());
if(a==0 && b==0)
continue;
else if(a==1 && b==1){
both.add(time);
sum+=time;
}else if(a==1 && b==0){
AliceSet.add(time);
}else{
BobSet.add(time);
}
}
if(k>both.size()){
ans = sum;
k-= both.size();
}else{
for(int i: both){
// System.out.println(i);
ans+= i;
k--;
if(k==0)
break;
}
}
// System.out.println("Remaining k = "+ k+" sum="+ans);
boolean flag = true;
int temp_k = k;
xt:
if(k>0){
if(AliceSet.size()>=k){
// System.out.println("ALICE");
for(int i: AliceSet){
// System.out.println(i);
ans+= i;
temp_k--;
if(temp_k==0)
break;
}
}else{
flag = false;
break xt;
}
if(BobSet.size()>=k){
// System.out.println("BOB");
for(int i: BobSet){
// System.out.println(i);
ans+= i;
k--;
if(k==0)
break;
}
}else{
flag = false;
break xt;
}
}
if(flag)
sb.append(ans);
else
sb.append("-1");
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class test1 {
static class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt() throws IOException {
if (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return Integer.parseInt(st.nextToken());
}
public float nextFloat() throws IOException {
if (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return Float.parseFloat(st.nextToken());
}
public String nextLine() throws IOException {
return br.readLine();
}
public String next() throws IOException {
if (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
}
static class Book implements Comparable<Book>{
int time;
boolean a,b;
public Book(int time, boolean a, boolean b) {
this.time = time;
this.a = a;
this.b = b;
}
@Override
public int compareTo(Book o) {
int ta = (this.a?1:0)+(this.b?1:0);
int tb = (o.a?1:0)+(o.b?1:0);
if(ta==tb) {
return this.time-o.time;
}
return tb-ta;
}
}
public static void main(String[] args) throws Exception {
Reader sc = new Reader();
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
try {
int n = sc.nextInt();
int k = sc.nextInt();
Book[] arr = new Book[n];
int c1 = 0, c2 = 0;
for(int i=0;i<n;i++) {
int time = sc.nextInt();
int t1 = sc.nextInt();
int t2 = sc.nextInt();
c1+=t1;
c2+=t2;
boolean a = t1==1?true:false;
boolean b = t2==1?true:false;
arr[i] = new Book(time,a,b);
}
if(c1<k || c2<k) {
out.println(-1);
} else {
Arrays.sort(arr);
// for(int i=0;i<n;i++) {
// System.out.println(arr[i].time+" "+arr[i].a+" "+arr[i].b);
// }
long min = Long.MAX_VALUE;
int a = 0, b = 0;
int last = -1;
long curr = 0;
for(int i=0;i<n;i++) {
Book temp = arr[i];
curr+=temp.time;
if(temp.a)
a++;
if(temp.b)
b++;
while(a>=k && b>=k) {
min = Math.min(curr, min);
last++;
curr-=arr[last].time;
if(arr[last].a)
a--;
if(arr[last].b)
b--;
}
if(!temp.a && !temp.b)
break;
}
out.println(min);
}
out.flush();
} catch (Exception e) {
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class test1{
static List<Integer> merge(List<Integer> list1, List<Integer> list2){
List<Integer> temp = new ArrayList<>();
int i=0, j=0;
for(; i<list1.size() && j<list2.size(); ){
if(list1.get(i) < list2.get(j)){
temp.add(list1.get(i++));
}
else{
temp.add(list2.get(j++));
}
}
while(!list1.isEmpty()){
temp.add(list1.get(i));
}
while(!list2.isEmpty()){
temp.add(list2.get(i));
}
return temp;
}
public static void main(String[] args) throws IOException{
long startTime = System.currentTimeMillis();
Reader sc = new Reader();
// int t = sc.nextInt();
StringBuilder finalResult= new StringBuilder();
// int count=0;
// while(t-- > 0){
int n=sc.nextInt();
int k=sc.nextInt();
int[] arr=new int[n];
List<Integer> a = new ArrayList<>();
List<Integer> b = new ArrayList<>();
List<Integer> c = new ArrayList<>();
for(int i=0; i<n; i++){
arr[i]=sc.nextInt();
int al=sc.nextInt();
int bob=sc.nextInt();
if(al == 1 && bob == 1)
c.add(arr[i]);
else if(al == 1)
a.add(arr[i]);
else if(bob == 1)
b.add(arr[i]);
}
Collections.sort(a);
Collections.sort(b);
Collections.sort(c);
// int i=0, j=0;
// while(i<a.size() && j<b.size()){
// c.add(a.get(i)+b.get(j));
// }
// if(c.size() < k)
// result=-1;
// else{
// for(i=0; i<k; i++){
// result += c.get(i);
// }
// }
int nal = a.size(), nbl = b.size(), ncl = c.size();
long result=0;
if(nal+ncl < k || nbl+ncl < k)
result=-1;
else{
int reqa=k, reqb=k;
int biggerReq = k-nal < k-nbl ? k-nbl : k-nal;
int cIndex=0;
// System.out.println("bigreq "+biggerReq);
for(cIndex=0; cIndex<biggerReq; cIndex++){
result += c.get(cIndex);
reqa--;
reqb--;
// System.out.println("reqa -"+reqa);
}
int aIndex=a.size()-1 , bIndex=b.size()-1;
while(cIndex<ncl && aIndex>0 && bIndex>0 && c.get(cIndex) < (a.get(aIndex)+b.get(bIndex))){
result += c.get(cIndex);
reqa--;
reqb--;
aIndex--;
bIndex--;
cIndex++;
}
// System.out.println("reqa "+reqa);
for(int i=0; i<reqa; i++){
result += a.get(i);
}
for(int i=0; i<reqb; i++){
result += b.get(i);
}
}
finalResult.append(result);
// }
System.out.print(finalResult);
long endTime = System.currentTimeMillis();
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[200002];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.')
while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
}
class Pair{
int x,y;
Pair(int a, int b){
x=a;y=b;
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n,k = map(int, input().split())
a = []
b = []
comman = []
for _ in range(n):
t,ai,bi = map(int, input().split())
if ai == 1:
a.append(t)
if bi == 1:
b.append(t)
if ai == 1 and bi == 1:
comman.append(t)
a.sort()
b.sort()
comman.sort()
if len(a) < k or len(b) < k:
print(-1)
else:
s = 0
ki = k
for i in range(k):
s += a[i]
if a[i] in comman:
b.remove(a[i])
comman.remove(a[i])
ki -= 1
for i in range(ki):
s += b[i]
print(s)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class ReadingBooks_1600 {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
int N = Integer.parseInt(sc.next());
int K = Integer.parseInt(sc.next());
TreeSet<Integer> bothLike = new TreeSet<>();
TreeSet<Integer> aliceLikes = new TreeSet<>();
TreeSet<Integer> bobLikes = new TreeSet<>();
for(int i = 0; i < N; i++) {
int time = Integer.parseInt(sc.next());
int alice = Integer.parseInt(sc.next());
int bob = Integer.parseInt(sc.next());
if(alice == 1 && bob == 1) bothLike.add(time);
else if(alice == 1 && bob == 0) aliceLikes.add(time);
else if(alice == 0 && bob == 1) bobLikes.add(time);
}
int result = 0;
int needed = K - bothLike.size();
if(needed > Math.min(aliceLikes.size(), bobLikes.size())) {
System.out.println(-1);
return;
}
if(needed <= 0) {
for(int i = 0; i < K; i++) {
result += bothLike.first();
bothLike.remove(bothLike.first());
}
System.out.println(result);
} else {
for(int i = 0; i < bothLike.size(); i++) {
result += bothLike.first();
bothLike.remove(bothLike.first());
}
for(int i = 0; i < needed; i++) {
result += aliceLikes.first();
aliceLikes.remove(aliceLikes.first());
result += bobLikes.first();
bobLikes.remove(bobLikes.first());
}
System.out.println(result);
}
out.close();
}
public static PrintWriter out;
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long int a, b, c, d, e, f = 5 * 1e9, m11[200000], m01[200000], m10[200000],
k, k1, k2;
int main() {
cin >> a >> b;
for (int i = 0; i < a; i++) {
cin >> c >> d >> e;
if (e == 1 && d == 1) m11[k] = c, k++;
if (d == 1 && e == 0) m10[k1] = c, k1++;
if (d == 0 && e == 1) m01[k2] = c, k2++;
}
sort(m11, m11 + k);
sort(m10, m10 + k1);
sort(m01, m01 + k2);
if (k + min(k1, k2) < b) {
cout << -1;
return 0;
}
for (int i = 1; i < max(max(k, k1), k2); i++) {
m11[i] += m11[i - 1];
m01[i] += m01[i - 1];
m10[i] += m10[i - 1];
}
for (int i = 0; i < min(b, k); i++) {
if (b - 2 - i < min(k1, k2) && i != b - 1)
f = min(m11[i] + m01[b - 2 - i] + m10[b - 2 - i], f);
}
if (k >= b) f = min(f, m11[b - 1]);
if (min(k1, k2) >= b) f = min(m01[b] + m10[b - 1], f);
cout << f;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new Solution(), "Main", 1 << 27).start();
}
static class Pair {
int x, y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + x * 7 + (y * 3 + 5 * (y - x));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
Pair other = (Pair) obj;
if (x != other.x && y != other.y) {
return false;
}
return true;
}
}
static void sieveOfEratosthenes(int n) {
//Prints prime nos till n
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
if (prime[p] == true) {
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
for (int i = 2; i <= n; i++) {
if (prime[i] == true)
System.out.print(i + " ");
}
}
public void run() {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n=in.nextInt();
int k=in.nextInt();
ArrayList<Integer> A=new ArrayList<Integer>();
ArrayList<Integer> B=new ArrayList<Integer>();
ArrayList<Integer> AB=new ArrayList<Integer>();
for(int i=0;i<n;i++)
{
int t=in.nextInt();
int a=in.nextInt();
int b=in.nextInt();
if(a==1 && b==1)
AB.add(t);
else if(a==1 && b==0)
A.add(t);
else if(a==0 && b==1)
B.add(t);
}
Collections.sort(A);
Collections.sort(B);
Collections.sort(AB);
if((A.size()+AB.size())<k)
w.println(-1);
else if((B.size()+AB.size())<k)
w.println(-1);
else
{
long count=0;
if(A.size()==0 || B.size()==0)
{
for(int i=0;i<AB.size();i++)
count+=AB.get(i);
w.println(count);
}
else
{
int i=0,j=0,x=0;
while(i<A.size() && i<B.size() && j<AB.size() && x<k)
{
if((A.get(i)+B.get(i))<(AB.get(j)))
{
count+=A.get(i)+B.get(i);
i++;
}
else
{
count+=AB.get(j);
j++;
}
x++;
}
while(x<k && j<AB.size())
{
count+=AB.get(j);
j++;
x++;
}
while(x<k && i<A.size() && i<B.size())
{
count+=A.get(i)+B.get(i);
i++;
x++;
}
w.println(count);
}
}
w.flush();
w.close();
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
void YES(bool t = 1) { cout << YESNO[t] << "\n"; }
void Yes(bool t = 1) { cout << YesNo[t] << "\n"; }
void yes(bool t = 1) { cout << yesno[t] << "\n"; }
const long long mod = 1e9 + 7;
const long long mxN = 2e6 + 5;
long long n, m, x, y, t, p, q;
array<long long, 3> a[mxN];
void code() {
cin >> n >> m;
vector<long long> v1, v2, v3;
for (long long i = 0; i < n; i++) {
cin >> t >> p >> q;
if (p == 1 && q == 1) {
v1.push_back(t);
}
if (p == 1 && q == 0) {
v2.push_back(t);
}
if (p == 0 && q == 1) {
v3.push_back(t);
}
}
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());
sort(v3.begin(), v3.end());
long long ans = 0;
long long k = 0;
long long i = 0, j = 0;
long long x = (long long)v1.size(), y = (long long)v2.size(),
z = (long long)v3.size();
while (k <= m && i < x && j < min(y, z)) {
k++;
if (v1[i] < (v2[j] + v3[j])) {
ans += v1[i];
i++;
} else {
ans += (v2[j] + v3[j]);
j++;
}
}
while (k <= m && i < x) {
ans += v1[i];
i++;
k++;
}
while (k <= m && j < min(y, z)) {
ans += (v2[j] + v3[j]);
k++;
j++;
}
if (k < m)
cout << -1 << "\n";
else
cout << ans << "\n";
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long t = 1;
while (t--) code();
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
inline int read() {
int x = 0, f = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-') f = -1;
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - 48;
ch = getchar();
}
return x * f;
}
priority_queue<int> v, v1, v2;
int main() {
int n = read(), k = read();
for (int i = 0; i < n; i++) {
int t = read(), a = read(), b = read();
if (a && b) {
v.push(t);
} else if (a) {
v1.push(t);
} else if (b) {
v2.push(t);
}
}
long long sum = 0;
if (v.size() + min(v1.size(), v2.size()) >= k) {
for (int i = 0; i < k; i++) {
if (v.size() && v1.size() && v2.size()) {
if (v.top() < v1.top() + v2.top()) {
sum += v.top();
v.pop();
} else {
sum += v1.top() + v2.top();
v1.pop();
v2.pop();
}
} else if (v.size()) {
sum += v.top();
v.pop();
} else if (v1.size() && v2.size()) {
sum += v1.top() + v2.top();
v1.pop();
v2.pop();
}
}
printf("%lld\n", sum);
} else {
printf("-1\n");
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
public class E2 {
static final boolean RUN_TIMING = false;
static char[] inputBuffer = new char[1 << 20];
static PushbackReader in = new PushbackReader(new BufferedReader(new InputStreamReader(System.in)), 1 << 20);
static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public void go() throws IOException {
// in = new PushbackReader(new BufferedReader(new FileReader(new File("test.txt"))), 1 << 20);
// out = new PrintWriter(new FileWriter(new File("output.txt")));
int n = ipar();
int m = ipar();
int k = ipar();
ArrayList<ArrayList<int[]>> books = new ArrayList<>();
for (int i = 0; i < 4; i++) {
books.add(new ArrayList<>());
}
for (int i = 0; i < n; i++) {
int t = ipar();
int a = ipar();
int b = ipar();
books.get(a*2+b).add(new int[]{t, i});
}
for (int i = 0; i < 4; i++) {
Collections.sort(books.get(i), this::compare);
}
int sum1 = 0, sum2 = 0, sum3 = 0;
int index1 = -1, index2 = -1;
for (int i = 0; i < k; i++) {
if (index1+1 < books.get(1).size()) {
index1++;
sum1 += books.get(1).get(index1)[0];
}
if (index2+1 < books.get(2).size()) {
index2++;
sum2 += books.get(2).get(index2)[0];
}
}
PriorityQueue<int[]> candidates = new PriorityQueue<>(this::compare);
for (int i = k; i < books.get(1).size(); i++) {
candidates.add(books.get(1).get(i));
}
for (int i = k; i < books.get(2).size(); i++) {
candidates.add(books.get(2).get(i));
}
for (int i = 0; i < books.get(0).size(); i++) {
candidates.add(books.get(0).get(i));
}
TreeSet<int[]> free = new TreeSet<>(this::compare);
int freeSum = 0;
while (index1+index2+2+free.size() < m && !candidates.isEmpty()) {
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
while (index1+index2+2+free.size() > m && !free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
}
// out.printf("%d %d %d %d : %d %d %d%n", sum1, sum2, sum3, freeSum, index1, index2, -1);
int best = Integer.MAX_VALUE;
int bestIndex = -2;
if (index1+index2+2+free.size() == m && index1+1 == k && index2+1 == k) {
best = sum1+sum2+freeSum;
bestIndex = -1;
}
int index3 = -1;
while (index3+1 < books.get(3).size()) {
index3++;
sum3 += books.get(3).get(index3)[0];
if (index1 >= 0 && index1+index3+2 > k) {
sum1 -= books.get(1).get(index1)[0];
candidates.add(books.get(1).get(index1));
index1--;
if (!free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
}
if (index2 >= 0 && index2+index3+2 > k) {
sum2 -= books.get(2).get(index2)[0];
candidates.add(books.get(2).get(index2));
index2--;
if (!free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
}
while (index1+index2+index3+3+free.size() < m && !candidates.isEmpty()) {
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
while (index1+index2+index3+3+free.size() > m && !free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
}
if (index1+index2+index3+3+free.size() == m && index1+index3+2 == k && index2+index3+2 == k && sum1+sum2+sum3+freeSum < best) {
best = sum1+sum2+sum3+freeSum;
bestIndex = index3;
}
// out.printf("%d %d %d %d : %d %d %d%n", sum1, sum2, sum3, freeSum, index1, index2, index3);
}
sum1 = sum2 = sum3 = 0;
index1 = index2 = -1;
for (int i = 0; i < k; i++) {
if (index1+1 < books.get(1).size()) {
index1++;
sum1 += books.get(1).get(index1)[0];
}
if (index2+1 < books.get(2).size()) {
index2++;
sum2 += books.get(2).get(index2)[0];
}
}
candidates.clear();
for (int i = k; i < books.get(1).size(); i++) {
candidates.add(books.get(1).get(i));
}
for (int i = k; i < books.get(2).size(); i++) {
candidates.add(books.get(2).get(i));
}
for (int i = 0; i < books.get(0).size(); i++) {
candidates.add(books.get(0).get(i));
}
free.clear();
freeSum = 0;
while (index1+index2+2+free.size() < m && !candidates.isEmpty()) {
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
while (index1+index2+2+free.size() > m && !free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
}
// out.printf("%d %d %d %d : %d %d %d%n", sum1, sum2, sum3, freeSum, index1, index2, index3);
index3 = -1;
while (index3+1 <= bestIndex) {
index3++;
sum3 += books.get(3).get(index3)[0];
if (index1 >= 0 && index1+index3+2 > k) {
sum1 -= books.get(1).get(index1)[0];
candidates.add(books.get(1).get(index1));
index1--;
if (!free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
}
if (index2 >= 0 && index2+index3+2 > k) {
sum2 -= books.get(2).get(index2)[0];
candidates.add(books.get(2).get(index2));
index2--;
if (!free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
}
while (index1+index2+index3+3+free.size() < m && !candidates.isEmpty()) {
int[] add = candidates.remove();
free.add(add);
freeSum += add[0];
}
while (index1+index2+index3+3+free.size() > m && !free.isEmpty()) {
int[] rem = free.last();
free.remove(rem);
freeSum -= rem[0];
candidates.add(rem);
}
// out.printf("%d %d %d %d : %d %d %d%n", sum1, sum2, sum3, freeSum, index1, index2, index3);
}
if (best == Integer.MAX_VALUE) {
out.println(-1);
return;
}
out.println(best);
for (int i = 0; i <= index1; i++) {
out.print(books.get(1).get(i)[1]+1);
out.print(" ");
}
for (int i = 0; i <= index2; i++) {
out.print(books.get(2).get(i)[1]+1);
out.print(" ");
}
for (int i = 0; i <= index3; i++) {
out.print(books.get(3).get(i)[1]+1);
out.print(" ");
}
for (int[] f : free) {
out.print(f[1]+1);
out.print(" ");
}
out.println();
}
public int compare(int[] a, int[] b) {
if (a[0] == b[0]) {
return a[1] - b[1];
}
return a[0] - b[0];
}
public int ipar() throws IOException {
return Integer.parseInt(spar());
}
public int[] iapar(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ipar();
}
return arr;
}
public long lpar() throws IOException {
return Long.parseLong(spar());
}
public long[] lapar(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = lpar();
}
return arr;
}
public double dpar() throws IOException {
return Double.parseDouble(spar());
}
public String spar() throws IOException {
int len = 0;
int c;
do {
c = in.read();
} while (Character.isWhitespace(c) && c != -1);
if (c == -1) {
throw new NoSuchElementException("Reached EOF");
}
do {
inputBuffer[len] = (char)c;
len++;
c = in.read();
} while (!Character.isWhitespace(c) && c != -1);
while (c != '\n' && Character.isWhitespace(c) && c != -1) {
c = in.read();
}
if (c != -1 && c != '\n') {
in.unread(c);
}
return new String(inputBuffer, 0, len);
}
public String linepar() throws IOException {
int len = 0;
int c;
while ((c = in.read()) != '\n' && c != -1) {
if (c == '\r') {
continue;
}
inputBuffer[len] = (char)c;
len++;
}
return new String(inputBuffer, 0, len);
}
public boolean haspar() throws IOException {
String line = linepar();
if (line.isEmpty()) {
return false;
}
in.unread('\n');
in.unread(line.toCharArray());
return true;
}
public static void main(String[] args) throws IOException {
long time = 0;
time -= System.nanoTime();
new E2().go();
time += System.nanoTime();
if (RUN_TIMING) {
System.out.printf("%.3f ms%n", time / 1000000.0);
}
out.flush();
in.close();
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int n, m, k;
vector<pair<int, int> > both, alice, bob, all;
pair<int, unordered_map<int, bool> > calcUtil(int bothTaken) {
int satisfy = 0;
unordered_map<int, bool> taken;
for (int i = 0; i < bothTaken; i++) {
satisfy += both[bothTaken - 1].first;
taken[both[i].second] = 1;
}
for (int i = 0; i < k - bothTaken; i++) {
satisfy += alice[i].first + bob[i].first;
taken[alice[i].second] = 1;
taken[bob[i].second] = 1;
}
int rest = m - (2 * k - bothTaken);
for (int i = 0; i < n && rest > 0; i++) {
if (!taken[all[i].second]) {
satisfy += all[i].first;
taken[all[i].second] = 1;
rest--;
}
}
return {satisfy, taken};
}
int calc(int bothTaken) { return calcUtil(bothTaken).first; }
void printAns(int bothTaken) {
auto ans = calcUtil(bothTaken);
cout << ans.first << endl;
for (int i = 0; i < n; i++) {
if (ans.second[i]) cout << i + 1 << " ";
}
cout << endl;
}
int main() {
cin >> n >> m >> k;
for (int i = 0; i < n; i++) {
int t, a, b;
cin >> t >> a >> b;
auto val = make_pair(t, i);
if (a && b)
both.push_back(val);
else if (a)
alice.push_back(val);
else if (b)
bob.push_back(val);
all.push_back(val);
}
sort(both.begin(), both.end());
sort(alice.begin(), alice.end());
sort(bob.begin(), bob.end());
sort(all.begin(), all.end());
int lo = max(0, max(2 * k - m, k - (int)min(alice.size(), bob.size())));
int hi = min((int)both.size(), m);
if (lo > hi) {
cout << -1 << endl;
return 0;
}
pair<int, int> mn = {calc(lo), lo};
while (lo < hi) {
int mid = (lo + hi) / 2;
int f1 = calc(mid);
int f2 = calc(mid + 1);
if (f1 > f2) {
lo = mid + 1;
mn = min(mn, {f2, mid + 1});
} else {
hi = mid;
mn = min(mn, {f1, mid});
}
}
printAns(mn.second);
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
book, m, k = map(int, input().split())
both, alice, bob, none = dict(), dict() ,dict(), dict()
for i in range(1, book+1):
time, x, y = map(int, input().split())
if x == 1 and y == 1:
both[i] = time
elif x == 1 and y == 0:
alice[i] = time
elif x == 0 and y == 1:
bob[i] = time
else:
none[i] = time
p1 = min(k, len(both))
p2 = k - p1
if 2*k - p1 > m or p2 > min(len(alice), len(bob)):
print(-1)
else:
both = sorted(both.items(), key = lambda x: x[1])
alice = sorted(alice.items(), key = lambda x: x[1])
bob = sorted(bob.items(), key = lambda x: x[1])
none = sorted(none.items(), key = lambda x: x[1])
count, x, y, z, temp = 0, 0, 0, 0, 0
check, index, ids = [], [], []
time = 0
while count < k:
if x < len(both) and y < len(alice) and z < len(bob) and both[x][1] <= alice[y][1] + bob[z][1]:
temp += 1
count += 1
time += both[x][1]
check.append([x])
x += 1
continue
elif x >= len(both) and y < len(alice) and z < len(bob):
temp += 2
count += 1
time += alice[y][1] + bob[z][1]
check.append([y, z])
y += 1
z += 1
continue
elif y >= len(alice) or z >= len(bob) and x < len(both):
temp += 1
count += 1
time += both[x][1]
check.append([x])
x += 1
continue
elif y < len(alice) and z < len(bob):
temp += 2
count += 1
time += alice[y][1] + bob[z][1]
check.append([y, z])
y += 1
z += 1
if temp >= m:
l = len(check)-1
while temp > m and l >= 0:
if len(check[l]) == 2 and x < len(both):
time -= alice[check[l][0]][1] + bob[check[l][1]][1]
time += both[x][1]
check.append([x])
x += 1
temp -= 1
count -= 1
check.pop(l)
l -= 1
else:
l -= 1
elif temp < m:
faltu = dict()
for i in range(x, len(both)):
faltu[both[i][0]] = both[i][1]
for i in range(y, len(alice)):
faltu[alice[i][0]] = alice[i][1]
for i in range(z, len(bob)):
faltu[bob[i][0]] = bob[i][1]
for i in range(len(none)):
faltu[none[i][0]] = none[i][1]
faltu = sorted(faltu.items(), key = lambda x: x[1])
for i in range(m - temp):
time += faltu[i][1]
ids.append(faltu[i][0])
print(time)
for i in check:
if len(i) == 2:
print(alice[i[0]][0], bob[i[0]][0], end = ' ')
else:
print(both[i[0]][0], end = ' ')
for i in ids:
print(i, end = ' ')
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n,m,k = map(int,input().split())
ab = []
a = []
b = []
other = []
for i in range(n):
t,c,d = map(int,input().split())
if c and d == 0:
a.append([t,i+1])
elif d and c == 0:
b.append([t,i+1])
elif c*d:
ab.append([t,i+1])
else:
other.append([t,i+1])
a.sort()
b.sort()
ab.sort()
la = len(a)
lb = len(b)
lab = len(ab)
s = set()
dis = set()
if la+lab < k or lb+lab < k:
print(-1)
exit()
if lb > la:
la,lb = lb,la
a,b = b,a
ans = 0
if lab >= k:
for i in range(k):
ans += ab[i][0]
s.add(ab[i][1])
now = k-1
na = 0
nb = 0
else:
for i,j in ab:
ans += i
s.add(j)
for i in range(k-lab):
ans += a[i][0]+b[i][0]
s.add(a[i][1])
s.add(b[i][1])
now = lab-1
na = k-lab
nb = k-lab
while nb < lb and now >= 0 and ab[now][0] > a[na][0]+b[nb][0]:
ans -= ab[now][0]-a[na][0]-b[nb][0]
s.add(a[na][1])
s.add(b[nb][1])
dis.add(ab[now][1])
na += 1
nb += 1
now -= 1
ab.append([float("INF"),-1])
s2 = set()
for i in s:
if i in dis:
continue
s2.add(i)
s = set()
dis = set()
if len(s2) >= m:
q = len(s2)-m
now += 1
for i in range(q):
na -= 1
nb -= 1
ans += ab[now][0]-a[na][0]-b[na][0]
s.add(ab[now][1])
dis.add(a[na][1])
dis.add(b[na][1])
now += 1
else:
for i in range(la):
if a[i][1] not in s2:
other += a[i:]
break
for i in range(lb):
if b[i][1] not in s2:
other += b[i:]
break
for i in range(lab):
if ab[i][1] not in s2:
other += ab[i:]
break
other.sort()
for i in range(m-len(s2)):
ans += other[i][0]
s.add(other[i][1])
s |= s2
count = []
for i in s:
if i in dis:
continue
count.append(i)
if ans == float("INF"):
print(-1)
else:
print(ans)
print(*count)
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
n, m, k = map(int, input().split())
books = []
booksA = []
booksB = []
booksAB = []
for ind in range(n):
t, a, b = map(int, input().split())
if a == 1 and b == 0:
booksA.append((t, ind + 1))
elif a == 0 and b == 1:
booksB.append((t, ind + 1))
elif a == 1 and b == 1:
books.append((t, ind + 1))
else:
booksAB.append((t, ind + 1))
booksAB.sort(reverse=True)
booksA.sort(reverse=True)
booksB.sort(reverse=True)
books.sort(reverse=True)
def f():
t = 0
ind_books = []
for ind in range(k):
if not books:
if (not booksA or not booksB):
return -1, []
else:
if len(ind_books) == m - 1:
return -1, []
bb1 = booksA.pop()
bb2 = booksB.pop()
ind_books.append(bb1[1])
ind_books.append(bb2[1])
t += bb1[0]
t += bb2[0]
elif len(ind_books) == m - 1 or ((not booksA or not booksB) or books[-1][0] <= booksA[-1][0] + booksB[-1][0]):
bb = books.pop()
ind_books.append(bb[1])
t += bb[0]
else:
bb1 = booksA.pop()
bb2 = booksB.pop()
ind_books.append(bb1[1])
ind_books.append(bb2[1])
t += bb1[0]
t += bb2[0]
for _ in range(m - len(ind_books)):
min_time = 1000000
types = [books, booksA, booksB, booksAB]
for b in types:
if not b:
continue
else:
if b[-1][0] < min_time:
min_time = b[-1][0]
if min_time == 1000000:
return -1
for b in types:
if not b:
continue
else:
if b[-1][0] == min_time:
bb = b.pop()
ind_books.append(bb[1])
t += bb[0]
break
return t, ind_books
time, indx = f()
print(time)
print(" ".join(map(str, indx)))
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class EasyReadingBook {
static class lib {
int t, a, b;
boolean flag;
public lib(int t, int a, int b, boolean flag) {
this.t = t;
this.a = a;
this.b = b;
this.flag = flag;
}
}
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
String l = reader.readLine();
String[] a = l.split(" ");
int n = Integer.parseInt(a[0]);
int k = Integer.parseInt(a[1]);
List<lib> libList = new ArrayList<>();
for (int i = 0; i < n; i++) {
l = reader.readLine();
a = l.split(" ");
int t = Integer.parseInt(a[0]);
int A = Integer.parseInt(a[1]);
int B = Integer.parseInt(a[2]);
libList.add(new lib(t, A, B, false));
}
libList.sort(new Comparator<lib>() {
@Override
public int compare(lib lib, lib t1) {
return lib.t - t1.t;
}
});
long ans = 0;
long A = 0, B = 0;
for (int i = 0; i < n; i++) {
if (A >= k || B >= k)
break;
if (libList.get(i).a == 1 && libList.get(i).b == 1) {
ans += libList.get(i).t;
A++;
B++;
libList.get(i).flag = true;
}
}
if (A < k) {
for (int i = 0; i < n; i++) {
if (A >= k)
break;
if (!libList.get(i).flag && libList.get(i).a == 1) {
ans += libList.get(i).t;
A++;
libList.get(i).flag = true;
}
}
}
if (B < k) {
for (int i = 0; i < n; i++) {
if (B >= k)
break;
if (!libList.get(i).flag && libList.get(i).b == 1) {
ans += libList.get(i).t;
B++;
libList.get(i).flag = true;
}
}
}
if (A < k || B < k)
System.out.println(-1);
else
System.out.println(ans);
}
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
book, m, k = map(int, input().split())
both, alice, bob, none = dict(), dict() ,dict(), dict()
for i in range(1, book+1):
time, x, y = map(int, input().split())
if x == 1 and y == 1:
both[i] = time
elif x == 1 and y == 0:
alice[i] = time
elif x == 0 and y == 1:
bob[i] = time
else:
none[i] = time
#manmohan
p1 = min(k, len(both))
p2 = k - p1
if 2*k - p1 > m or p2 > min(len(alice), len(bob)):
print(-1)
else:
both = sorted(both.items(), key = lambda x: x[1])
alice = sorted(alice.items(), key = lambda x: x[1])
bob = sorted(bob.items(), key = lambda x: x[1])
none = sorted(none.items(), key = lambda x: x[1])
count, x, y, z, temp = 0, 0, 0, 0, 0
check, index, ids = [], [], []
time = 0
while count < k:
if x < len(both) and y < len(alice) and z < len(bob) and both[x][1] <= alice[y][1] + bob[z][1]:
temp += 1
count += 1
time += both[x][1]
check.append([x])
x += 1
continue
elif x >= len(both) and y < len(alice) and z < len(bob):
temp += 2
count += 1
time += alice[y][1] + bob[z][1]
check.append([y, z])
y += 1
z += 1
continue
elif y >= len(alice) or z >= len(bob) and x < len(both):
temp += 1
count += 1
time += both[x][1]
check.append([x])
x += 1
continue
elif y < len(alice) and z < len(bob):
temp += 2
count += 1
time += alice[y][1] + bob[z][1]
check.append([y, z])
y += 1
z += 1
if temp >= m:
l = len(check)-1
while temp > m-2 and l >= 0:
if len(check[l]) == 2 and x < len(both):
time -= alice[check[l][0]][1] + bob[check[l][1]][1]
time += both[x][1]
check.append([x])
x += 1
temp -= 1
count -= 1
check.pop(l)
l -= 1
else:
l -= 1
elif temp < m:
faltu = dict()
for i in range(x, len(both)):
faltu[both[i][0]] = both[i][1]
for i in range(y, len(alice)):
faltu[alice[i][0]] = alice[i][1]
for i in range(z, len(bob)):
faltu[bob[i][0]] = bob[i][1]
for i in range(len(none)):
faltu[none[i][0]] = none[i][1]
faltu = sorted(faltu.items(), key = lambda x: x[1])
for i in range(m - temp):
time += faltu[i][1]
ids.append(faltu[i][0])
print(time)
for i in check:
if len(i) == 2:
print(alice[i[0]][0], bob[i[0]][0], end = ' ')
else:
print(both[i[0]][0], end = ' ')
for i in ids:
print(i, end = ' ')
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
book, m, k = map(int, input().split())
both, alice, bob, none = dict(), dict() ,dict(), dict()
for i in range(1, book+1):
time, x, y = map(int, input().split())
if x == 1 and y == 1:
both[i] = time
elif x == 1 and y == 0:
alice[i] = time
elif x == 0 and y == 1:
bob[i] = time
else:
none[i] = time
p1 = min(k, len(both))
p2 = k - p1
if 2*k - p1 > m or p2 > min(len(alice), len(bob)):
print(-1)
else:
both = sorted(both.items(), key = lambda x: x[1])
alice = sorted(alice.items(), key = lambda x: x[1])
bob = sorted(bob.items(), key = lambda x: x[1])
none = sorted(none.items(), key = lambda x: x[1])
count, x, y, z, temp = 0, 0, 0, 0, 0
check, index, ids = [], [], []
time = 0
while count < k:
if x >= len(both) and y < len(alice) and z < len(bob):
temp += 2
count += 1
time += alice[y][1] + bob[z][1]
check.append([y, z])
y += 1
z += 1
continue
elif y >= len(alice) or z >= len(bob) and x < len(both):
temp += 1
count += 1
time += both[x][1]
check.append([x])
x += 1
continue
elif x < len(both) and y < len(alice) and z < len(bob) and both[x][1] <= alice[y][1] + bob[z][1]:
temp += 1
count += 1
time += both[x][1]
check.append([x])
x += 1
continue
elif y < len(alice) and z < len(bob):
temp += 2
count += 1
time += alice[y][1] + bob[z][1]
check.append([y, z])
y += 1
z += 1
if temp >= m:
l = len(check)-1
while temp > m and l >= 0:
if len(check[l]) == 2 and x < len(both):
time -= alice[check[l][0]][1] + bob[check[l][1]][1]
time += both[x][1]
check.append([x])
x += 1
temp -= 1
count -= 1
check.pop(l)
l -= 1
else:
l -= 1
elif temp < m:
faltu = dict()
for i in range(x, len(both)):
faltu[both[i][0]] = both[i][1]
for i in range(y, len(alice)):
faltu[alice[i][0]] = alice[i][1]
for i in range(z, len(bob)):
faltu[bob[i][0]] = bob[i][1]
for i in range(len(none)):
faltu[none[i][0]] = none[i][1]
faltu = sorted(faltu.items(), key = lambda x: x[1])
for i in range(m - temp-1):
time += faltu[i][1]
ids.append(faltu[i][0])
print(time)
for i in check:
if len(i) == 2:
print(alice[i[0]][0], bob[i[0]][0], end = ' ')
else:
print(both[i[0]][0], end = ' ')
for i in ids:
print(i, end = ' ')
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, k;
cin >> n >> k;
set<int> v, v0, v1;
for (int i = 0; i < n; i++) {
int t, a, b;
cin >> t >> a >> b;
if (a == 0 && b == 0) continue;
if (a == 0 && b == 1) {
v1.insert(t);
}
if (a == 1 && b == 0) v0.insert(t);
if (a == 1 && b == 1) v.insert(t);
}
int c = 0;
int ans = 0;
while (c < k) {
if (v0.size() == 0 && v.size() == 0) {
cout << "-1";
return 0;
}
if (v1.size() == 0 && v.size() == 0) {
cout << "-1";
return 0;
}
if (v1.size() == 0) {
ans += *(v.begin());
v.erase(v.begin());
c++;
continue;
}
if (v0.size() == 0) {
ans += *(v.begin());
v.erase(v.begin());
c++;
continue;
}
if (v.size() == 0) {
ans += *(v1.begin()) + *(v0.begin());
v1.erase(v1.begin());
v0.erase(v0.begin());
c++;
continue;
}
if (*(v.begin()) < *(v1.begin()) + *(v0.begin())) {
ans += *(v.begin());
v.erase(v.begin());
c++;
} else {
ans += *(v1.begin()) + *(v0.begin());
v1.erase(v1.begin());
v0.erase(v0.begin());
c++;
}
}
cout << ans << endl;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-10, pi = 3.1415926535898;
const int mod = 1e9 + 7, maxn = 2e5 + 10;
int T, n, m, k, x, y, z, a1, b1, c1, vis[maxn];
char st[maxn];
struct P {
int x, y, z;
bool operator<(const P& a) const {
if (x == a.x) return y < a.y;
return x < a.x;
}
} p[maxn], a[maxn], b[maxn], c[maxn];
int main(int argc, char const* argv[]) {
int cnt = 0, ans = 2 * mod, w;
scanf("%d %d %d", &n, &m, &k);
priority_queue<P> q;
for (int i = 1; i <= n; ++i) {
scanf("%d %d %d", &x, &y, &z);
p[i].x = x;
p[i].z = i;
if (y and z) {
p[i].y = 1;
a[++a1] = p[i];
} else if (y == 1 and z == 0) {
p[i].y = 2;
b[++b1] = p[i];
} else if (y == 0 and z == 1) {
p[i].y = 3;
c[++c1] = p[i];
} else {
p[i].y = 4;
q.push({-x, 4, i});
}
}
if (min(b1, c1) < k - a1 or (k - a1) * 2 > m - a1) {
printf("-1\n");
return 0;
}
int l = min(min(b1, c1), k), r = k - l;
sort(a + 1, a + a1 + 1);
sort(b + 1, b + b1 + 1);
sort(c + 1, c + c1 + 1);
for (int i = l + 1; i <= b1; ++i) {
q.push({-b[i].x, b[i].y, b[i].z});
}
for (int i = l + 1; i <= c1; ++i) {
q.push({-c[i].x, c[i].y, c[i].z});
}
while (2 * l + r > m) {
q.push({-c[l].x, c[l].y, c[l].z});
q.push({-b[l].x, b[l].y, b[l].z});
--l;
++r;
}
for (int i = r + 1; i <= a1; ++i) {
q.push({-a[i].x, a[i].y, a[i].z});
}
for (int i = 1; i <= l; ++i) {
cnt += b[i].x + c[i].x;
}
for (int i = 1; i <= r; ++i) {
cnt += a[i].x;
}
for (int i = m - 2 * l - r; i >= 1; --i) {
P pp = q.top();
q.pop();
vis[pp.z] = 1;
cnt -= pp.x;
}
if (cnt < ans) {
ans = cnt;
w = l;
}
while (l and r < a1) {
q.push({-c[l].x, c[l].y, c[l].z});
q.push({-b[l].x, b[l].y, b[l].z});
cnt -= c[l].x;
cnt -= b[l].x;
if (vis[a[r + 1].z]) {
cnt -= a[r + 1].x;
P pp = q.top();
q.pop();
vis[pp.z] = 1;
cnt -= pp.x;
}
cnt += a[r + 1].x;
P pp = q.top();
q.pop();
vis[pp.z] = 1;
cnt -= pp.x;
--l;
++r;
if (cnt < ans) {
ans = cnt;
w = l;
}
}
printf("%d\n", ans);
memset(vis, 0, sizeof(vis));
x = w, y = k - w;
for (int i = 1; i <= x; ++i) {
printf("%d %d ", b[i].z, c[i].z);
vis[b[i].z] = vis[c[i].z] = 1;
}
for (int i = 1; i <= y; ++i) {
printf("%d ", a[i].z);
vis[a[i].z] = 1;
}
m -= k + x;
sort(p + 1, p + n + 1);
for (int i = 1; i <= n; ++i) {
if (m == 0) break;
if (vis[p[i].z]) continue;
printf("%d ", p[i].z);
--m;
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.util.Map.Entry;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.stream.Collectors;
public class Main {
static boolean check(int s, boolean isOdd) {
int l = 0;
boolean checking = isOdd;
for (int i = 1; i <= n; i++) {
if (!checking) {
l++;
checking = true;
} else {
if (a[i] <= s) {
l++;
checking = false;
}
}
}
return l >= k;
}
static int bs(int low, int high) {
while(low < high) {
int mid = (low + high) / 2;
if (check(mid, true) || check(mid, false)) {
high = mid;
} else {
low = mid + 1;
}
}
return low;
}
static long t;
static long n;
static long m;
static long k;
static long x;
static long y;
static long[] a;
static long[] a2;
static long[] a3;
static List<Long> aa;
static List<Long> aa2;
static List<Long> aa3;
static Long[] A;
static String s;
static String s2;
static long c;
static long c2;
static long ans;
static String anss;
static char[] cs;
static long max;
static long maxi;
static Map<Long, Long> mapll;
static long mod;
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
// Start writing your solution here. -------------------------------------
n = sc.nextInt();
m = sc.nextInt();
k = sc.nextInt();
List<Pair<Long, Integer>> aa = new ArrayList<>();
List<Pair<Long, Integer>> aa2 = new ArrayList<>();
List<Pair<Long, Integer>> aa3 = new ArrayList<>();
List<Pair<Long, Integer>> aa4 = new ArrayList<>();
for (int i = 0; i < n; i++) {
t = sc.nextInt();
x = sc.nextInt();
y = sc.nextInt();
if (x == 1 && y == 1) {
aa.add(new Pair(t, i + 1));
} else if (x == 1) {
aa2.add(new Pair(t, i + 1));
} else if (y == 1) {
aa3.add(new Pair(t, i + 1));
} else {
aa4.add(new Pair(t, i + 1));
}
}
aa.sort(Comparator.comparing(o -> o.l));
aa2.sort(Comparator.comparing(o -> o.l));
aa3.sort(Comparator.comparing(o -> o.l));
long finalAns = Integer.MAX_VALUE;
List<Integer> finalAnsi = new ArrayList<>();
if ((aa.size() + aa2.size()) < k || (aa.size() + aa3.size()) < k) {
finalAns = -1;
} else {
long cnt = Math.max(0, k - Math.min(aa2.size(), aa3.size()));
ans = 0;
List<Integer> ansi = new ArrayList<>();
c = 0;
int i, i2, i3;
for (i = 0; i < cnt; i++) {
ans += aa.get(i).l;
ansi.add(aa.get(i).r);
c++;
}
for (i2 = (int) (k - cnt - 1); i2 >= 0; i2--) {
ans += aa2.get(i2).l;
ansi.add(aa2.get(i2).r);
c++;
}
for (i3 = (int) (k - cnt - 1); i3 >= 0; i3--) {
ans += aa3.get(i3).l;
ansi.add(aa3.get(i3).r);
c++;
}
PriorityQueue<Pair<Long, Integer>> aa5 = new PriorityQueue<>(Comparator.comparing(o -> o.l));
if (i < aa.size()) {
aa5.addAll(aa.subList(i, aa.size()));
}
if (k - cnt < aa2.size()) {
aa5.addAll(aa2.subList((int) (k - cnt), aa2.size()));
}
if (k - cnt < aa3.size()) {
aa5.addAll(aa3.subList((int) (k - cnt), aa3.size()));
}
aa5.addAll(aa4);
long tans = ans;
List<Integer> tansi = new ArrayList<>(ansi);
long tc = c;
if (tc < m) {
while (tc < m && aa5.size() > 0) {
Pair<Long, Integer> h = aa5.poll();
assert h != null;
tans += h.l;
tansi.add(h.r);
tc++;
}
}
if (tc == m) {
if (tans < finalAns) {
finalAns = tans;
finalAnsi = tansi;
}
}
cnt++;
while (cnt <= aa.size() && cnt <= k) {
ans += aa.get((int) (cnt - 1)).l;
ansi.add(aa.get((int) (cnt - 1)).r);
aa5.remove(aa.get((int) (cnt - 1)));
c++;
ans -= aa2.get((int) (k - cnt)).l;
ansi.remove(aa2.get((int) (k - cnt)).r);
aa5.add(aa2.get((int) (k - cnt)));
c--;
ans -= aa3.get((int) (k - cnt)).l;
ansi.remove(aa3.get((int) (k - cnt)).r);
aa5.add(aa3.get((int) (k - cnt)));
c--;
tans = ans;
tansi = new ArrayList<>(ansi);
tc = c;
if (tc < m) {
while (tc < m && aa5.size() > 0) {
Pair<Long, Integer> h = aa5.poll();
assert h != null;
tans += h.l;
tansi.add(h.r);
tc++;
}
}
if (tc == m) {
if (tans < finalAns) {
finalAns = tans;
finalAnsi = tansi;
}
}
cnt++;
}
}
if (finalAns == Integer.MAX_VALUE) {
finalAns = -1;
}
out.println(finalAns);
if (finalAns != -1) {
for (Integer integer : finalAnsi) {
out.print(integer);
out.print(" ");
}
}
// Stop writing your solution here. -------------------------------------
out.close();
}
static int countMatches(String s, char c) {
return s.length() - s.replaceAll(String.valueOf(c), "").length();
}
public static class Pair<L,R> {
private L l;
private R r;
public Pair(L l, R r){
this.l = l;
this.r = r;
}
public L getL(){ return l; }
public R getR(){ return r; }
public void setL(L l){ this.l = l; }
public void setR(R r){ this.r = r; }
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
import os
is_dev = 'vscode' in os.environ
if is_dev:
inF = open(f'in.txt', 'r')
outF = open(f'out.txt', 'w')
def ins(r):
return list(map(int, r.split(' ')))
def inputT():
if is_dev:
return inF.readline()[:-1]
else:
return input()
def printT(data=''):
if is_dev:
return outF.write(str(data)+'\n')
else:
return print(data)
# Main:
# for _ in range(int(inputT())):
n, k = ins(inputT())
a = []
only_a_like = []
only_b_like = []
both_like = []
for _ in range(n):
t, a_l, b_l = ins(inputT())
if a_l and b_l:
both_like.append(t)
elif a_l:
only_a_like.append(t)
elif b_l:
only_b_like.append(t)
only_a_like = sorted(only_a_like)
only_b_like = sorted(only_b_like)
both_like = sorted(both_like)
only_a_like = only_a_like[:k]
only_b_like = only_b_like[:k]
both_like = both_like[:k]
total_time = 0
# fulfill basic requirements
go_out = False
while len(only_a_like) != k or len(only_b_like) != k:
if len(both_like) == 0:
printT(-1)
go_out = True
break
if len(only_a_like) != k and len(only_b_like) != k:
total_time += both_like.pop()
elif len(only_a_like) != k:
total_time += both_like.pop()
only_b_like.pop()
else:
total_time += both_like.pop()
only_a_like.pop()
k -= 1
if not go_out:
for b_t in both_like:
if b_t < (only_a_like[-1] + only_b_like[-1]) or b_t < only_a_like[-1] or b_t < only_b_like[-1]:
total_time += b_t
only_a_like.pop()
only_b_like.pop()
if len(only_a_like) == 0:
assert len(only_b_like) == 0
break
else:
break
if sum(only_a_like) + sum(only_b_like) + total_time == 337954032:
print(only_a_like)
print(only_b_like)
print(both_like)
printT(sum(only_a_like) + sum(only_b_like) + total_time)
# if (len(only_a_like) ) + + len(only_b_like) + len(both_like)) < 2*k:
# printT(-1)
# continue
# else:
# # fulfill basic requirements
# while len(only_a_like) != k or len(only_b_like) != k:
# if len(only_a_like) != k and len(only_b_like) != k:
# if len(only_a_like) < len(only_b_like):
# only_a_like.append(both_like.pop())
# else:
# only_b_like.append(both_like.pop())
# elif len(only_a_like) != k:
# only_a_like.append(both_like.pop())
# else:
# only_b_like.append(both_like.pop())
# total_time = 0
# a_index = -1
# b_index = -1
# for b_t in both_like:
# if b_t > only_a_like[a_index] and b_t > only_b_like[b_index]:
# if only_a_like[a_index] > only_b_like[b_index]:
# only_a_like[a_index] = b_t
# a_index -= 1
# elif only_a_like[a_index] < only_b_like[b_index]:
# only_b_like[b_index] = b_t
# b_index -= 1
# else:
# total_a_time = sum(only_a_like)
# total_b_time = sum(only_b_like)
# if total_a_time > total_b_time:
# only_a_like[a_index] = b_t
# a_index -= 1
# else:
# only_b_like[b_index] = b_t
# b_index -= 1
# elif b_t > only_a_like[a_index]:
# only_a_like[a_index] = b_t
# a_index -= 1
# elif b_t > only_b_like[b_index]:
# only_b_like[b_index] = b_t
# b_index -= 1
# else:
# break
# printT(sum(only_a_likesum(only_b_like))
if is_dev:
outF.close()
print(open(f'out.txt', 'r').read() == open(f'outactual.txt', 'r').read())
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct Obj {
long long int time;
int alice;
int bob;
};
bool sortByTime(const Obj &lhs, const Obj &rhs) { return lhs.time < rhs.time; }
bool sortByAlice(const Obj &lhs, const Obj &rhs) {
return lhs.alice > rhs.alice;
}
bool sortByBob(const Obj &lhs, const Obj &rhs) { return lhs.bob > rhs.bob; }
int main() {
long long int n, k, t, a, b, totala = 0, totalb = 0, tempofinal = 0, adda,
addb;
Obj aux;
vector<Obj> vetor, vetoraux;
cin >> n >> k;
for (int i = 0; i < n; i++) {
cin >> t >> a >> b;
if (a || b) {
totala += a;
totalb += b;
aux.time = t;
aux.alice = a;
aux.bob = b;
vetor.push_back(aux);
}
}
if (totala < k || totalb < k) {
cout << -1 << endl;
} else {
sort(vetor.begin(), vetor.end(), sortByAlice);
sort(vetor.begin(), vetor.end(), sortByBob);
sort(vetor.begin(), vetor.end(), sortByTime);
adda = 0;
addb = 0;
for (int i = 0; i < vetor.size(); i++) {
if (adda >= k && addb >= k) {
break;
} else {
tempofinal += vetor[i].time;
vetoraux.push_back(vetor[i]);
adda += vetor[i].alice;
addb += vetor[i].bob;
}
}
int i = vetoraux.size() - 1;
while (adda > k) {
if (vetoraux[i].alice == 1 && vetoraux[i].bob == 0) {
adda--;
tempofinal -= vetoraux[i].time;
}
i--;
}
i = vetoraux.size() - 1;
while (addb > k) {
if (vetoraux[i].bob == 1 && vetoraux[i].alice == 0) {
addb--;
tempofinal -= vetoraux[i].time;
}
i--;
}
cout << tempofinal << endl;
}
return 0;
}
|
1374_E1. Reading Books (easy version)
|
Easy and hard versions are actually different problems, so read statements of both problems completely and carefully.
Summer vacation has started so Alice and Bob want to play and joy, but... Their mom doesn't think so. She says that they have to read some amount of books before all entertainments. Alice and Bob will read each book together to end this exercise faster.
There are n books in the family library. The i-th book is described by three integers: t_i β the amount of time Alice and Bob need to spend to read it, a_i (equals 1 if Alice likes the i-th book and 0 if not), and b_i (equals 1 if Bob likes the i-th book and 0 if not).
So they need to choose some books from the given n books in such a way that:
* Alice likes at least k books from the chosen set and Bob likes at least k books from the chosen set;
* the total reading time of these books is minimized (they are children and want to play and joy as soon a possible).
The set they choose is the same for both Alice an Bob (it's shared between them) and they read all books together, so the total reading time is the sum of t_i over all books that are in the chosen set.
Your task is to help them and find any suitable set of books or determine that it is impossible to find such a set.
Input
The first line of the input contains two integers n and k (1 β€ k β€ n β€ 2 β
10^5).
The next n lines contain descriptions of books, one description per line: the i-th line contains three integers t_i, a_i and b_i (1 β€ t_i β€ 10^4, 0 β€ a_i, b_i β€ 1), where:
* t_i β the amount of time required for reading the i-th book;
* a_i equals 1 if Alice likes the i-th book and 0 otherwise;
* b_i equals 1 if Bob likes the i-th book and 0 otherwise.
Output
If there is no solution, print only one integer -1. Otherwise print one integer T β the minimum total reading time of the suitable set of books.
Examples
Input
8 4
7 1 1
2 1 1
4 0 1
8 1 1
1 0 1
1 1 1
1 0 1
3 0 0
Output
18
Input
5 2
6 0 0
9 0 0
1 0 1
2 1 1
5 1 0
Output
8
Input
5 3
3 0 0
2 1 0
3 1 0
5 0 1
3 0 1
Output
-1
|
{
"input": [
"8 4\n7 1 1\n2 1 1\n4 0 1\n8 1 1\n1 0 1\n1 1 1\n1 0 1\n3 0 0\n",
"5 2\n6 0 0\n9 0 0\n1 0 1\n2 1 1\n5 1 0\n",
"5 3\n3 0 0\n2 1 0\n3 1 0\n5 0 1\n3 0 1\n"
],
"output": [
"18\n",
"8\n",
"-1\n"
]
}
|
{
"input": [
"2 1\n7 1 1\n2 1 1\n",
"5 1\n2 1 0\n2 0 1\n1 0 1\n1 1 0\n1 0 1\n",
"6 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 1\n3 0 1\n3 1 0\n3 0 0\n",
"6 3\n7 1 1\n8 0 0\n9 1 1\n6 1 0\n10 1 1\n5 0 0\n",
"8 4 3\n1 1 1\n3 1 1\n12 1 1\n12 1 1\n4 0 0\n4 0 0\n5 1 0\n5 0 1\n",
"6 3 1\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"3 3 1\n27 0 0\n28 0 0\n11 0 0\n",
"1 1 1\n3 0 1\n",
"8 5 1\n43 0 1\n5 0 1\n23 1 1\n55 0 1\n19 1 1\n73 1 1\n16 1 1\n42 1 1\n",
"6 3 2\n6 0 0\n11 1 0\n9 0 1\n21 1 1\n10 1 0\n8 0 1\n",
"9 2 2\n74 0 0\n78 1 0\n21 1 0\n47 1 0\n20 0 0\n22 0 1\n52 0 0\n78 0 0\n90 0 0\n",
"3 2 1\n3 0 1\n3 1 0\n3 0 0\n",
"27 5 1\n232 0 1\n72 0 1\n235 0 1\n2 0 1\n158 0 0\n267 0 0\n242 0 1\n1 0 0\n64 0 0\n139 1 1\n250 0 1\n208 0 1\n127 0 1\n29 0 1\n53 0 1\n100 0 1\n52 0 1\n229 0 0\n1 0 1\n29 0 0\n17 0 1\n74 0 1\n211 0 1\n248 0 1\n15 0 0\n252 0 0\n159 0 1\n",
"6 4 3\n19 0 0\n6 1 1\n57 1 0\n21 0 1\n53 1 1\n9 1 1\n"
],
"output": [
"2\n",
"2\n",
"38\n",
"6\n",
"26\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1",
"-1",
"-1\n",
"-1\n",
"-1\n",
"-1"
]
}
|
IN-CORRECT
|
python3
|
from heapq import *
import sys
int1 = lambda x: int(x) - 1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def MI(): return map(int, sys.stdin.readline().split())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def SI(): return sys.stdin.readline()[:-1]
inf=10**16
def cumsum(aa):
res=[0]
resi=[]
for a,i in aa:
res.append(res[-1]+a)
resi.append(i)
return res,resi
def main():
n,m,k=MI()
tt=[[] for _ in range(4)]
for i in range(n):
t,a,b=MI()
tt[a+b*2].append((t,i+1))
cs = []
idx=[]
for i in range(4):
tt[i].sort()
ret0,ret1=cumsum(tt[i])
cs.append(ret0)
idx.append(ret1)
tt[i].append((inf,-1))
#print(cs)
#print(idx)
ans=inf
ansi=[]
n0=len(cs[0])
n1=len(cs[1])
n2=len(cs[2])
n3=len(cs[3])
mxc3=0
for c3 in range(min(k+1,n3)):
if c3<mxc3:continue
cur=cs[3][c3]
curi=idx[3][:c3]
c1=c2=max(0,k-c3)
if c1>n1-1 or c2>n2-1 or c1+c2+c3>m:continue
cur+=cs[1][c1]+cs[2][c2]
curi+=idx[1][:c1]+idx[2][:c2]
c0=0
hp=[]
heappush(hp,(tt[0][c0],0))
heappush(hp,(tt[1][c1],1))
heappush(hp,(tt[2][c2],2))
heappush(hp,(tt[3][c3],3))
while c0+c1+c2+c3<m:
(t,index),i=heappop(hp)
cur+=t
curi.append(index)
if i==0:c0+=1;heappush(hp,(tt[0][c0],0))
if i==1:c1+=1;heappush(hp,(tt[1][c1],1))
if i==2:c2+=1;heappush(hp,(tt[2][c2],2))
if i==3:c3+=1;heappush(hp,(tt[3][c3],3))
#print(cur,c0,c1,c2,c3)
mxc3=max(c3,mxc3)
if cur<ans:
ans=cur
ansi=curi
print(ans)
print(*ansi)
main()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.