File size: 8,007 Bytes
d681572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
#!/usr/bin/env python3
"""
Generate an animation GIF of a single Schrödinger equation sample time evolution.
Animates quantum wave packet dynamics including:
- Real and imaginary parts of wavefunction
- Probability density |ψ|²
- Wave packet motion in harmonic potential
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from dataset import SchrodingerDataset
def create_schrodinger_animation(sample, save_path="sample_animation.gif", fps=15):
"""Create an animation GIF from a Schrödinger sample"""
# Extract data
x = sample['spatial_coordinates']
t = sample['time_coordinates']
psi_r = sample['psi_r_trajectory']
psi_i = sample['psi_i_trajectory']
prob = sample['probability_density']
V = sample['potential']
energy = sample['total_energy']
# Set up the figure with subplots
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 10))
fig.suptitle(f'Quantum Harmonic Oscillator Evolution\n' +
f'ℏ={sample["hbar"]}, m={sample["mass"]}, ω={sample["omega"]}',
fontsize=14, fontweight='bold')
# Colors for consistency
color_real = '#1f77b4'
color_imag = '#ff7f0e'
color_prob = '#2ca02c'
color_potential = '#d62728'
# Subplot 1: Wavefunction components
ax1.set_xlim(x[0], x[-1])
psi_max = max(np.max(np.abs(psi_r)), np.max(np.abs(psi_i))) * 1.1
ax1.set_ylim(-psi_max, psi_max)
ax1.set_ylabel('ψ(x,t)')
ax1.set_title('Wavefunction Components')
ax1.grid(True, alpha=0.3)
# Plot potential well (scaled for background)
V_scaled = V / np.max(V) * psi_max * 0.2
ax1.fill_between(x, -psi_max, V_scaled - psi_max, alpha=0.1, color=color_potential)
ax1.plot(x, V_scaled - psi_max, '--', alpha=0.5, color=color_potential, linewidth=1, label='V(x)')
real_line, = ax1.plot([], [], color=color_real, linewidth=2, label='ψᵣ(x,t)')
imag_line, = ax1.plot([], [], color=color_imag, linewidth=2, label='ψᵢ(x,t)')
ax1.legend(loc='upper right')
# Subplot 2: Probability density
ax2.set_xlim(x[0], x[-1])
prob_max = np.max(prob) * 1.1
ax2.set_ylim(0, prob_max)
ax2.set_ylabel('|ψ(x,t)|²')
ax2.set_title('Probability Density')
ax2.grid(True, alpha=0.3)
# Plot potential well (scaled for background)
V_scaled_prob = V / np.max(V) * prob_max * 0.3
ax2.fill_between(x, V_scaled_prob, alpha=0.2, color=color_potential)
prob_line, = ax2.plot([], [], color=color_prob, linewidth=2, label='|ψ|²')
ax2.legend(loc='upper right')
# Subplot 3: Energy over time
ax3.set_xlim(t[0], t[-1])
E_mean = np.mean(energy)
E_range = np.max(energy) - np.min(energy)
if E_range > 0:
ax3.set_ylim(np.min(energy) - 0.1*E_range, np.max(energy) + 0.1*E_range)
else:
ax3.set_ylim(E_mean - 0.1*abs(E_mean), E_mean + 0.1*abs(E_mean))
ax3.set_xlabel('Time t')
ax3.set_ylabel('Total Energy')
ax3.set_title('Energy Conservation')
ax3.grid(True, alpha=0.3)
# Plot full energy trace as background
ax3.plot(t, energy, 'k-', alpha=0.3, linewidth=1)
ax3.axhline(E_mean, color='red', linestyle='--', alpha=0.7, linewidth=1)
# Current energy point
energy_point, = ax3.plot([], [], 'o', color='darkgreen', markersize=8)
energy_line, = ax3.plot([], [], color='darkgreen', linewidth=2)
# Time text
time_text = fig.text(0.02, 0.02, '', fontsize=12, fontweight='bold',
bbox=dict(boxstyle="round,pad=0.3", facecolor='yellow', alpha=0.7))
# Store fill object
prob_fill = None
def animate(frame):
"""Animation function"""
nonlocal prob_fill
# Update wavefunction components
real_line.set_data(x, psi_r[frame])
imag_line.set_data(x, psi_i[frame])
# Update probability density
prob_line.set_data(x, prob[frame])
# Remove old fill and create new one
if prob_fill is not None:
prob_fill.remove()
prob_fill = ax2.fill_between(x, prob[frame], alpha=0.3, color=color_prob)
# Update energy plot
current_t = t[:frame+1]
current_e = energy[:frame+1]
energy_line.set_data(current_t, current_e)
energy_point.set_data([t[frame]], [energy[frame]])
# Update time display
time_text.set_text(f'Time: {t[frame]:.3f} / {t[-1]:.3f}')
return real_line, imag_line, prob_line, energy_line, energy_point, time_text
# Create animation with more frames for smoother motion
print(f"Creating animation with {len(t)} frames...")
anim = animation.FuncAnimation(
fig, animate, frames=len(t),
interval=1000/fps, blit=False, repeat=True # blit=False due to fill_between
)
# Save as GIF
print(f"Saving animation to {save_path}...")
anim.save(save_path, writer='pillow', fps=fps)
plt.close()
print(f"Animation saved to {save_path}")
def create_simple_animation(sample, save_path="simple_animation.gif", fps=15):
"""Create a simpler single-panel animation focusing on probability density"""
# Extract data
x = sample['spatial_coordinates']
t = sample['time_coordinates']
prob = sample['probability_density']
V = sample['potential']
# Set up single plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.set_xlim(x[0], x[-1])
prob_max = np.max(prob) * 1.1
ax.set_ylim(0, prob_max)
ax.set_xlabel('Position x')
ax.set_ylabel('Probability Density |ψ|²')
ax.set_title(f'Quantum Wave Packet in Harmonic Oscillator\n' +
f'ℏ={sample["hbar"]}, m={sample["mass"]}, ω={sample["omega"]}')
ax.grid(True, alpha=0.3)
# Plot potential well (scaled)
V_scaled = V / np.max(V) * prob_max * 0.3
ax.fill_between(x, V_scaled, alpha=0.2, color='red', label='V(x) (scaled)')
ax.plot(x, V_scaled, 'r--', alpha=0.7, linewidth=1)
# Initialize probability line
prob_line, = ax.plot([], [], 'b-', linewidth=3, label='|ψ(x,t)|²')
# Time text
time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes, fontsize=12,
bbox=dict(boxstyle="round", facecolor='white', alpha=0.8))
ax.legend()
# Store fill object
prob_fill = None
def animate(frame):
"""Simple animation function"""
nonlocal prob_fill
# Update probability line
prob_line.set_data(x, prob[frame])
# Remove previous fill if it exists
if prob_fill is not None:
prob_fill.remove()
# Create new fill
prob_fill = ax.fill_between(x, prob[frame], alpha=0.4, color='blue')
# Update time text
time_text.set_text(f'Time: {t[frame]:.3f}')
return prob_line, time_text
# Create animation
anim = animation.FuncAnimation(
fig, animate, frames=len(t),
interval=1000/fps, blit=False, repeat=True
)
# Save as GIF
anim.save(save_path, writer='pillow', fps=fps)
plt.close()
print(f"Simple animation saved to {save_path}")
if __name__ == "__main__":
# Set random seed for reproducibility
np.random.seed(42)
# Create dataset
dataset = SchrodingerDataset(
Lx=20.0,
Nx=128, # Lower resolution for faster animation generation
stop_sim_time=3.0,
timestep=2e-3 # Slightly larger timestep for fewer frames
)
# Generate a single sample
sample = next(iter(dataset))
print("Creating animations...")
print(f"Time steps: {len(sample['time_coordinates'])}")
print(f"Spatial points: {len(sample['spatial_coordinates'])}")
# Create both animations
create_simple_animation(sample, "simple_animation.gif", fps=12)
create_schrodinger_animation(sample, "sample_animation.gif", fps=10) |