File size: 5,420 Bytes
d681572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python3
"""
Plot a single sample from the Schrödinger equation dataset.

Visualizes quantum wave packet evolution including:
- Real and imaginary parts
- Probability density |ψ|²
- Potential well
- Energy conservation
"""

import numpy as np
import matplotlib.pyplot as plt
from dataset import SchrodingerDataset


def plot_schrodinger_sample(sample, save_path="sample_plot.png"):
    """Plot a single sample from the Schrödinger dataset"""
    fig = plt.figure(figsize=(16, 12))

    # Create subplot layout
    gs = fig.add_gridspec(3, 2, height_ratios=[1, 1, 0.8], hspace=0.3, wspace=0.3)

    # Extract data
    x = sample["spatial_coordinates"]
    t = sample["time_coordinates"]
    psi_r = sample["psi_r_trajectory"]
    psi_i = sample["psi_i_trajectory"]
    prob = sample["probability_density"]
    V = sample["potential"]
    energy = sample["total_energy"]

    # Colors for consistency
    color_real = "#1f77b4"
    color_imag = "#ff7f0e"
    color_prob = "#2ca02c"
    color_potential = "#d62728"

    # Plot 1: Initial and final wavefunction components
    ax1 = fig.add_subplot(gs[0, 0])
    ax1.plot(x, psi_r[0], color=color_real, linewidth=2, label="ψᵣ(x,t=0)")
    ax1.plot(x, psi_i[0], color=color_imag, linewidth=2, label="ψᵢ(x,t=0)")
    ax1.plot(
        x,
        psi_r[-1],
        "--",
        color=color_real,
        alpha=0.7,
        linewidth=2,
        label=f"ψᵣ(x,t={t[-1]:.1f})",
    )
    ax1.plot(
        x,
        psi_i[-1],
        "--",
        color=color_imag,
        alpha=0.7,
        linewidth=2,
        label=f"ψᵢ(x,t={t[-1]:.1f})",
    )
    ax1.set_xlabel("Position x")
    ax1.set_ylabel("ψ(x)")
    ax1.set_title("Wavefunction Components")
    ax1.grid(True, alpha=0.3)
    ax1.legend()

    # Plot 2: Probability density evolution
    ax2 = fig.add_subplot(gs[0, 1])
    ax2.plot(x, prob[0], color=color_prob, linewidth=2, label="|ψ(x,t=0)|²")
    ax2.plot(
        x,
        prob[-1],
        "--",
        color=color_prob,
        alpha=0.7,
        linewidth=2,
        label=f"|ψ(x,t={t[-1]:.1f})|²",
    )

    # Add potential well (scaled for visibility)
    V_scaled = V / np.max(V) * np.max(prob[0]) * 0.3
    ax2.fill_between(
        x, V_scaled, alpha=0.2, color=color_potential, label="V(x) (scaled)"
    )

    ax2.set_xlabel("Position x")
    ax2.set_ylabel("Probability Density")
    ax2.set_title("Quantum Probability |ψ|²")
    ax2.grid(True, alpha=0.3)
    ax2.legend()

    # Plot 3: Real part space-time evolution
    ax3 = fig.add_subplot(gs[1, 0])
    vmax = np.max(np.abs(psi_r))
    im1 = ax3.pcolormesh(
        x, t, psi_r, cmap="RdBu", vmin=-vmax, vmax=vmax, shading="gouraud"
    )
    ax3.set_xlabel("Position x")
    ax3.set_ylabel("Time t")
    ax3.set_title("Real Part Evolution ψᵣ(x,t)")
    plt.colorbar(im1, ax=ax3, label="ψᵣ")

    # Plot 4: Imaginary part space-time evolution
    ax4 = fig.add_subplot(gs[1, 1])
    vmax = np.max(np.abs(psi_i))
    im2 = ax4.pcolormesh(
        x, t, psi_i, cmap="RdBu", vmin=-vmax, vmax=vmax, shading="gouraud"
    )
    ax4.set_xlabel("Position x")
    ax4.set_ylabel("Time t")
    ax4.set_title("Imaginary Part Evolution ψᵢ(x,t)")
    plt.colorbar(im2, ax=ax4, label="ψᵢ")

    # Plot 5: Bottom spanning plots - Probability density heatmap and energy
    ax5 = fig.add_subplot(gs[2, 0])
    im3 = ax5.pcolormesh(x, t, prob, cmap="viridis", shading="gouraud")
    ax5.set_xlabel("Position x")
    ax5.set_ylabel("Time t")
    ax5.set_title("Probability Density Evolution |ψ(x,t)|²")
    plt.colorbar(im3, ax=ax5, label="|ψ|²")

    # Plot 6: Energy conservation
    ax6 = fig.add_subplot(gs[2, 1])
    ax6.plot(t, energy, "o-", color="darkgreen", linewidth=2, markersize=4)
    ax6.set_xlabel("Time t")
    ax6.set_ylabel("Total Energy")
    ax6.set_title("Energy Conservation")
    ax6.grid(True, alpha=0.3)

    # Add energy statistics
    E_mean = np.mean(energy)
    E_std = np.std(energy)
    ax6.axhline(
        E_mean, color="red", linestyle="--", alpha=0.7, label=f"Mean: {E_mean:.3f}"
    )
    ax6.text(
        0.02,
        0.95,
        f"σ/⟨E⟩ = {E_std/E_mean:.2e}",
        transform=ax6.transAxes,
        bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
        verticalalignment="top",
    )
    ax6.legend()

    # Add main title with physical parameters
    hbar = sample["hbar"]
    mass = sample["mass"]
    omega = sample["omega"]
    fig.suptitle(
        f"Quantum Harmonic Oscillator (ℏ={hbar}, m={mass}, ω={omega})",
        fontsize=16,
        fontweight="bold",
    )

    plt.savefig(save_path, dpi=200, bbox_inches="tight")
    plt.close()

    print(f"Schrödinger sample visualization saved to {save_path}")


if __name__ == "__main__":
    # Set random seed for reproducibility
    np.random.seed(42)

    # Create dataset with reasonable parameters for visualization
    dataset = SchrodingerDataset(Lx=20.0, Nx=256, stop_sim_time=2.0, timestep=1e-3)

    # Generate a single sample
    dataset_iter = iter(dataset)
    sample = next(dataset_iter)
    sample = next(dataset_iter)

    print("Sample keys:", list(sample.keys()))
    for key, value in sample.items():
        if hasattr(value, "shape"):
            print(f"{key}: shape {value.shape}")
        else:
            print(f"{key}: {type(value)} - {value}")

    # Plot the sample
    plot_schrodinger_sample(sample)