schrodinger-dedalus / dataset.py
ajthor's picture
Upload folder using huggingface_hub
d681572 verified
"""
1D Time-Dependent Schrödinger Equation Dataset with Harmonic Oscillator Potential.
Solves the time-dependent Schrödinger equation:
iℏ ∂ψ/∂t = Ĥψ
where Ĥ = -ℏ²/2m ∇² + V(x) and V(x) = ½mω²x²
The complex wavefunction ψ = ψᵣ + iψᵢ is split into real and imaginary parts,
which are evolved separately and concatenated into a 2×Nx state vector.
Physical applications: quantum mechanics, atom optics, Bose-Einstein condensates.
"""
import numpy as np
from torch.utils.data import IterableDataset
import dedalus.public as d3
import logging
logger = logging.getLogger(__name__)
def generate_gaussian_wave_packet(x, x0, sigma, k0, amplitude=1.0):
"""
Generate a Gaussian wave packet initial condition for the Schrödinger equation.
Creates a localized wave packet: ψ(x) = A * exp[-(x-x₀)²/(2σ²)] * exp(ik₀x)
This represents a particle localized around position x₀ with momentum k₀.
Args:
x: Spatial coordinates array
x0: Center position of the wave packet
sigma: Width parameter (standard deviation of Gaussian envelope)
k0: Initial momentum (wave number)
amplitude: Amplitude scaling factor
Returns:
Complex wavefunction ψ = ψᵣ + iψᵢ as numpy array
Notes:
The wave packet satisfies the normalization ∫|ψ|²dx = 1 after normalization
in the calling code.
"""
envelope = amplitude * np.exp(-(x - x0)**2 / (2 * sigma**2))
phase = np.exp(1j * k0 * x)
return envelope * phase
class SchrodingerDataset(IterableDataset):
"""
Dataset for 1D time-dependent Schrödinger equation with harmonic oscillator potential.
This dataset generates solutions to the quantum harmonic oscillator by solving:
iℏ ∂ψ/∂t = Ĥψ
where the Hamiltonian is:
Ĥ = -ℏ²/2m ∇² + V(x)
and the potential is:
V(x) = ½mω²x²
The complex wavefunction ψ = ψᵣ + iψᵢ is split into real and imaginary parts
that are evolved separately using coupled PDEs:
∂ψᵣ/∂t = (ℏ/2m)∇²ψᵢ - V(x)ψᵢ/ℏ
∂ψᵢ/∂t = -(ℏ/2m)∇²ψᵣ + V(x)ψᵣ/ℏ
For machine learning applications, the solution is provided as:
- Individual trajectories: ψᵣ(x,t) and ψᵢ(x,t)
- Combined state vector: [ψᵣ, ψᵢ] with shape (2×Nx,)
- Probability density: |ψ|² = ψᵣ² + ψᵢ²
- Energy conservation: Total energy ⟨ψ|Ĥ|ψ⟩
Physical Applications:
- Quantum mechanics education and visualization
- Trapped atom dynamics in optical/magnetic traps
- Bose-Einstein condensate mean-field dynamics
- Neural operator learning for quantum systems
Mathematical Properties:
- Unitary evolution (probability conservation)
- Energy conservation in the absence of dissipation
- Spectral accuracy via Fourier pseudospectral methods
"""
def __init__(
self,
# Domain parameters
Lx=20.0, # Domain length (centered around 0)
Nx=1024, # Number of grid points
# Physical parameters
hbar=1.0, # Reduced Planck constant
mass=1.0, # Particle mass
omega=1.0, # Harmonic oscillator frequency
# Solver parameters
dealias=3/2, # Dealiasing factor
stop_sim_time=5.0, # Final simulation time
timestep=1e-3, # Time step size
timestepper=d3.RK443, # Time integration scheme
dtype=np.float64,
):
"""
Initialize Schrödinger equation dataset with harmonic oscillator potential.
Sets up the numerical infrastructure to solve the time-dependent Schrödinger
equation using Dedalus spectral methods. Creates Fourier basis functions
for spatial derivatives and configures the coupled PDE system for real
and imaginary parts of the wavefunction.
Mathematical Setup:
Domain: x ∈ [-Lx/2, Lx/2] with periodic boundary conditions
Grid: Nx Fourier modes with dealiasing for nonlinear terms
Time Integration: High-order Runge-Kutta schemes (RK443 recommended)
Args:
Lx: Spatial domain length. Domain extends from -Lx/2 to +Lx/2.
Should be large enough to contain the wave packet throughout
the simulation without significant boundary effects.
Nx: Number of Fourier modes. Higher values give better spatial
resolution. Recommended: 256-1024 for typical simulations.
hbar: Reduced Planck constant (ℏ). In natural units, often set to 1.
mass: Particle mass (m). Controls kinetic energy scale.
omega: Harmonic oscillator frequency (ω). Sets potential energy scale
and oscillation period T = 2π/ω.
dealias: Dealiasing factor for spectral methods. 3/2 removes aliasing
for quadratic nonlinearities (standard for Schrödinger eq).
stop_sim_time: Maximum simulation time. Should be several oscillation
periods (>> 2π/ω) to see full dynamics.
timestep: Time step size. Should satisfy CFL condition for stability.
Recommended: dt ≤ 0.01 * (2π/ω) for accuracy.
timestepper: Dedalus time integration scheme. RK443 (4th order)
provides good accuracy/stability balance.
dtype: Floating point precision. np.float64 recommended for accuracy.
Raises:
ValueError: If domain or grid parameters are invalid.
ImportError: If Dedalus is not properly installed.
"""
super().__init__()
# Basic parameter validation
if Lx <= 0:
raise ValueError("Domain length Lx must be positive")
if Nx <= 0 or not isinstance(Nx, int):
raise ValueError("Grid points Nx must be a positive integer")
if hbar <= 0:
raise ValueError("Reduced Planck constant hbar must be positive")
if mass <= 0:
raise ValueError("Particle mass must be positive")
if omega <= 0:
raise ValueError("Oscillator frequency omega must be positive")
if timestep <= 0:
raise ValueError("Time step must be positive")
if stop_sim_time <= 0:
raise ValueError("Simulation time must be positive")
# Store domain and grid parameters
self.Lx = Lx # Physical domain size [-Lx/2, Lx/2]
self.Nx = Nx # Number of Fourier modes for spatial resolution
# Store physical parameters (in natural units where convenient)
self.hbar = hbar # Reduced Planck constant - sets quantum scale
self.mass = mass # Particle mass - affects kinetic energy
self.omega = omega # Oscillator frequency - sets energy and time scales
# Store numerical solver parameters
self.dealias = dealias # Prevents aliasing in spectral methods
self.stop_sim_time = stop_sim_time # Total evolution time
self.timestep = timestep # Time step (must satisfy CFL condition)
self.timestepper = timestepper # Runge-Kutta integration scheme
self.dtype = dtype # Floating point precision
# Setup Dedalus spectral method infrastructure
self.xcoord = d3.Coordinate("x") # Define spatial coordinate
self.dist = d3.Distributor(self.xcoord, dtype=dtype) # Handle parallel distribution
# Create Fourier basis: periodic functions on [-Lx/2, Lx/2]
# RealFourier uses cosines/sines, ideal for real-valued problems
self.xbasis = d3.RealFourier(self.xcoord, size=Nx, bounds=(-Lx/2, Lx/2), dealias=dealias)
# Generate physical grid points for visualization and analysis
self.x = self.dist.local_grid(self.xbasis)
def __iter__(self):
"""
Generate infinite samples from the dataset.
Creates diverse quantum wave packet initial conditions by randomly sampling
Gaussian wave packet parameters. Each sample represents a different physical
scenario with varying localization, momentum, and energy.
Initial Condition Generation:
1. Random wave packet center x₀ ~ U[-Lx/4, Lx/4]
2. Random width σ ~ U[0.5, 2.0] (controls localization)
3. Random momentum k₀ ~ U[-2.0, 2.0] (initial velocity)
4. Random amplitude A ~ U[0.5, 2.0] (before normalization)
5. Normalize to ensure ∫|ψ|²dx = 1 (probability conservation)
Physics:
- Narrow wave packets (small σ) are highly localized but spread quickly
- Wide wave packets (large σ) are delocalized but maintain shape longer
- Higher |k₀| gives faster initial motion and higher kinetic energy
- All initial conditions are proper quantum states (normalized)
Yields:
Dict containing complete solution trajectory and physical quantities
"""
while True:
# Generate random physical parameters for wave packet diversity
# Center position: avoid boundaries to prevent edge effects
x0 = np.random.uniform(-self.Lx/4, self.Lx/4)
# Wave packet width: balance between localization and numerical stability
sigma = np.random.uniform(0.5, 2.0)
# Initial momentum: determines kinetic energy and motion direction
k0 = np.random.uniform(-2.0, 2.0)
# Initial amplitude: will be normalized, but affects relative scales
amplitude = np.random.uniform(0.5, 2.0)
# Generate complex Gaussian wave packet: ψ(x) = A*exp[-(x-x₀)²/2σ²]*exp(ik₀x)
# This represents a localized particle with definite momentum
# Use full grid from Dedalus (includes dealiasing padding)
x_grid = self.x.ravel() # Get full dealiased grid for initialization
psi_init = generate_gaussian_wave_packet(
x_grid, x0, sigma, k0, amplitude
)
# Normalize wavefunction to satisfy quantum probability condition ∫|ψ|²dx = 1
# This ensures proper quantum state throughout evolution
norm = np.sqrt(np.trapezoid(np.abs(psi_init)**2, x_grid))
psi_init /= norm
# Solve time-dependent Schrödinger equation and return full solution data
# Pass the complex initial condition (splitting happens in solve method)
yield self.solve(psi_init)
def solve(self, initial_condition):
"""
Solve the time-dependent Schrödinger equation using spectral methods.
Integrates the coupled PDE system forward in time using high-order
Runge-Kutta methods, storing snapshots of the solution and computing
physical quantities like energy for validation.
Numerical Method:
- Spectral differentiation for spatial derivatives (machine precision)
- High-order Runge-Kutta time stepping (4th order RK443)
- Adaptive time step control via Dedalus CFL condition
- Energy monitoring for conservation verification
Args:
initial_condition: Complex initial wavefunction ψ(x,0) = ψᵣ + iψᵢ
Returns:
Dictionary containing:
- Solution trajectories: ψᵣ(x,t), ψᵢ(x,t), |ψ(x,t)|²
- Coordinate arrays: spatial grid x, time points t
- ML-ready state vector: concatenated [ψᵣ, ψᵢ]
- Physical quantities: total energy, potential V(x)
- System parameters: ℏ, m, ω for reproducibility
Note:
Energy should be conserved to within numerical precision.
Large energy drift indicates time step is too large or
simulation time exceeds numerical stability limits.
"""
# Setup PDE fields for real and imaginary parts of wavefunction
# These will store ψᵣ(x,t) and ψᵢ(x,t) at each time step
psi_r = self.dist.Field(name="psi_r", bases=self.xbasis) # Real part ψᵣ
psi_i = self.dist.Field(name="psi_i", bases=self.xbasis) # Imaginary part ψᵢ
# Define spatial derivative operator for kinetic energy term
# d/dx operator using spectral differentiation (exact for polynomials)
dx = lambda A: d3.Differentiate(A, self.xcoord)
# Create harmonic oscillator potential V(x) = ½mω²x²
# This confines the quantum particle to oscillate around x=0
V = self.dist.Field(name="V", bases=self.xbasis)
V['g'] = 0.5 * self.mass * (self.omega * self.x)**2 # Set grid values
# Setup coupled PDE system for real and imaginary parts
#
# Starting from the Schrödinger equation: iℏ ∂ψ/∂t = Ĥψ
# where Ĥ = -ℏ²/2m ∇² + V(x) and ψ = ψᵣ + iψᵢ
#
# Substituting ψ = ψᵣ + iψᵢ and separating real/imaginary parts:
# Real part: ∂ψᵣ/∂t = (ℏ/2m)∇²ψᵢ - V(x)ψᵢ/ℏ
# Imaginary part: ∂ψᵢ/∂t = -(ℏ/2m)∇²ψᵣ + V(x)ψᵣ/ℏ
#
# These equations are coupled: ψᵣ evolution depends on ψᵢ and vice versa
# This preserves the unitary evolution and probability conservation
# Create namespace with all variables for Dedalus equation parser
hbar = self.hbar
mass = self.mass
namespace = locals() # Include all local variables (hbar, mass, dx, etc.)
# Define the initial value problem with two coupled fields
problem = d3.IVP([psi_r, psi_i], namespace=namespace)
# Add the coupled evolution equations
# Note: dx(dx(field)) computes the second derivative ∇²field
problem.add_equation("dt(psi_r) - (hbar/(2*mass))*dx(dx(psi_i)) = - V*psi_i/hbar")
problem.add_equation("dt(psi_i) + (hbar/(2*mass))*dx(dx(psi_r)) = V*psi_r/hbar")
# Split complex initial condition into real and imaginary parts
# This converts ψ = ψᵣ + iψᵢ to two real-valued fields for the PDE solver
psi_r_init = np.real(initial_condition) # Real component ψᵣ(x,0)
psi_i_init = np.imag(initial_condition) # Imaginary component ψᵢ(x,0)
# Set initial conditions in Dedalus fields
# ['g'] accessor sets grid point values directly
psi_r['g'] = psi_r_init # Initialize real part ψᵣ(x,0)
psi_i['g'] = psi_i_init # Initialize imaginary part ψᵢ(x,0)
# Build time integrator from the PDE system
# This compiles the equations and sets up the Runge-Kutta stepper
solver = problem.build_solver(self.timestepper)
solver.stop_sim_time = self.stop_sim_time # Set maximum evolution time
# Initialize storage arrays for solution snapshots
# ['g', 1] gets grid values in proper layout for post-processing
psi_r_list = [psi_r['g', 1].copy()] # Store ψᵣ(x,t) snapshots
psi_i_list = [psi_i['g', 1].copy()] # Store ψᵢ(x,t) snapshots
t_list = [solver.sim_time] # Store corresponding time values
energy_list = [] # Store energy for conservation check
# Calculate initial total energy E = ⟨ψ|Ĥ|ψ⟩
# This should be conserved throughout the evolution (Hamiltonian is Hermitian)
x_1d = self.x.ravel() # Get full grid for energy calculation
dx = x_1d[1] - x_1d[0] # Uniform grid spacing for integration
energy_initial = self._compute_energy(psi_r_init, psi_i_init, V, dx)
energy_list.append(energy_initial)
# Main time evolution loop
# Save snapshots periodically to avoid memory issues while capturing dynamics
save_frequency = max(1, int(0.05 / self.timestep)) # Save every ~0.05 time units
while solver.proceed: # Continue until stop_sim_time reached
# Advance solution by one time step using Runge-Kutta
solver.step(self.timestep)
# Periodically store snapshots for analysis/visualization
if solver.iteration % save_frequency == 0:
# Extract current wavefunction components from Dedalus fields
psi_r_current = psi_r['g', 1].copy() # Current real part
psi_i_current = psi_i['g', 1].copy() # Current imaginary part
# Store snapshot data
psi_r_list.append(psi_r_current)
psi_i_list.append(psi_i_current)
t_list.append(solver.sim_time)
# Monitor energy conservation (should remain constant)
energy = self._compute_energy(psi_r_current, psi_i_current, V, dx)
energy_list.append(energy)
# Convert to numpy arrays
psi_r_trajectory = np.array(psi_r_list)
psi_i_trajectory = np.array(psi_i_list)
time_coordinates = np.array(t_list)
energy_trajectory = np.array(energy_list)
# Compute probability density |ψ|²
prob_density = psi_r_trajectory**2 + psi_i_trajectory**2
# Create combined state vector (concatenate real and imaginary parts)
state_trajectory = np.concatenate([psi_r_trajectory, psi_i_trajectory], axis=1)
# Compute potential energy at grid points
V_values = V['g', 1].copy()
return {
# Coordinates
"spatial_coordinates": self.x.ravel(),
"time_coordinates": time_coordinates,
# Initial conditions
"psi_r_initial": psi_r_init,
"psi_i_initial": psi_i_init,
# Solution trajectories
"psi_r_trajectory": psi_r_trajectory,
"psi_i_trajectory": psi_i_trajectory,
"state_trajectory": state_trajectory, # Combined (2*Nx,) for ML
"probability_density": prob_density, # |ψ|²
# Physical quantities
"potential": V_values, # Harmonic oscillator potential
"total_energy": energy_trajectory, # Energy conservation check
# Physical parameters
"hbar": self.hbar,
"mass": self.mass,
"omega": self.omega,
}
def _compute_energy(self, psi_r, psi_i, V_field, dx):
"""
Compute total energy of the quantum system using wavefunction components.
Calculates the expectation value of the Hamiltonian: E = ⟨ψ|Ĥ|ψ⟩
where Ĥ = -ℏ²/2m ∇² + V(x) is the quantum harmonic oscillator Hamiltonian.
The energy should be conserved during unitary evolution, making this
a crucial diagnostic for numerical accuracy and stability.
Mathematical Details:
Total Energy: E = T + V
Kinetic Energy: T = -ℏ²/2m ∫ ψ*(x) ∇²ψ(x) dx
Potential Energy: V = ∫ |ψ(x)|² V(x) dx
For split wavefunction ψ = ψᵣ + iψᵢ:
T = -ℏ²/2m ∫ [ψᵣ ∇²ψᵣ + ψᵢ ∇²ψᵢ] dx
V = ∫ [ψᵣ² + ψᵢ²] V(x) dx
Args:
psi_r: Real part of wavefunction at current time
psi_i: Imaginary part of wavefunction at current time
V_field: Potential field from Dedalus
dx: Spatial grid spacing for numerical integration
Returns:
Total energy (float): Should be conserved throughout evolution
Note:
Uses finite differences for spatial derivatives. For high accuracy,
the Dedalus spectral derivatives could be used instead, but this
simple approach is sufficient for energy monitoring.
"""
# Compute kinetic energy: T = -ℏ²/2m ⟨ψ|∇²ψ⟩
# For complex ψ = ψᵣ + iψᵢ: T = -ℏ²/2m ∫[ψᵣ∇²ψᵣ + ψᵢ∇²ψᵢ] dx
# Use second-order finite differences for ∇² approximation
psi_r_xx = np.gradient(np.gradient(psi_r, dx), dx) # ∂²ψᵣ/∂x²
psi_i_xx = np.gradient(np.gradient(psi_i, dx), dx) # ∂²ψᵢ/∂x²
# Integrate kinetic energy density over space
kinetic = -(self.hbar**2)/(2*self.mass) * np.trapezoid(
psi_r * psi_r_xx + psi_i * psi_i_xx, dx=dx
)
# Compute potential energy: V = ⟨ψ|V|ψ⟩ = ∫ |ψ(x)|² V(x) dx
# Probability density |ψ|² = ψᵣ² + ψᵢ² weighted by potential
V_values = V_field['g', 1] # Extract potential values from Dedalus field
potential = np.trapezoid((psi_r**2 + psi_i**2) * V_values, dx=dx)
# Total energy = kinetic + potential (should be conserved)
return kinetic + potential