|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Custom rotation utilities to replace scipy.spatial.transform.Rotation."""
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
class Rotation:
|
|
|
"""
|
|
|
Custom rotation class that provides a subset of scipy.spatial.transform.Rotation functionality.
|
|
|
|
|
|
Supports conversions between rotation vectors, rotation matrices, and quaternions.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, quat: np.ndarray) -> None:
|
|
|
"""Initialize rotation from quaternion [x, y, z, w]."""
|
|
|
self._quat = np.asarray(quat, dtype=float)
|
|
|
|
|
|
norm = np.linalg.norm(self._quat)
|
|
|
if norm > 0:
|
|
|
self._quat = self._quat / norm
|
|
|
|
|
|
@classmethod
|
|
|
def from_rotvec(cls, rotvec: np.ndarray) -> "Rotation":
|
|
|
"""
|
|
|
Create rotation from rotation vector using Rodrigues' formula.
|
|
|
|
|
|
Args:
|
|
|
rotvec: Rotation vector [x, y, z] where magnitude is angle in radians
|
|
|
|
|
|
Returns:
|
|
|
Rotation instance
|
|
|
"""
|
|
|
rotvec = np.asarray(rotvec, dtype=float)
|
|
|
angle = np.linalg.norm(rotvec)
|
|
|
|
|
|
if angle < 1e-8:
|
|
|
|
|
|
quat = np.array([0.0, 0.0, 0.0, 1.0])
|
|
|
else:
|
|
|
axis = rotvec / angle
|
|
|
half_angle = angle / 2.0
|
|
|
sin_half = np.sin(half_angle)
|
|
|
cos_half = np.cos(half_angle)
|
|
|
|
|
|
|
|
|
quat = np.array([axis[0] * sin_half, axis[1] * sin_half, axis[2] * sin_half, cos_half])
|
|
|
|
|
|
return cls(quat)
|
|
|
|
|
|
@classmethod
|
|
|
def from_matrix(cls, matrix: np.ndarray) -> "Rotation":
|
|
|
"""
|
|
|
Create rotation from 3x3 rotation matrix.
|
|
|
|
|
|
Args:
|
|
|
matrix: 3x3 rotation matrix
|
|
|
|
|
|
Returns:
|
|
|
Rotation instance
|
|
|
"""
|
|
|
matrix = np.asarray(matrix, dtype=float)
|
|
|
|
|
|
|
|
|
trace = np.trace(matrix)
|
|
|
|
|
|
if trace > 0:
|
|
|
s = np.sqrt(trace + 1.0) * 2
|
|
|
qw = 0.25 * s
|
|
|
qx = (matrix[2, 1] - matrix[1, 2]) / s
|
|
|
qy = (matrix[0, 2] - matrix[2, 0]) / s
|
|
|
qz = (matrix[1, 0] - matrix[0, 1]) / s
|
|
|
elif matrix[0, 0] > matrix[1, 1] and matrix[0, 0] > matrix[2, 2]:
|
|
|
s = np.sqrt(1.0 + matrix[0, 0] - matrix[1, 1] - matrix[2, 2]) * 2
|
|
|
qw = (matrix[2, 1] - matrix[1, 2]) / s
|
|
|
qx = 0.25 * s
|
|
|
qy = (matrix[0, 1] + matrix[1, 0]) / s
|
|
|
qz = (matrix[0, 2] + matrix[2, 0]) / s
|
|
|
elif matrix[1, 1] > matrix[2, 2]:
|
|
|
s = np.sqrt(1.0 + matrix[1, 1] - matrix[0, 0] - matrix[2, 2]) * 2
|
|
|
qw = (matrix[0, 2] - matrix[2, 0]) / s
|
|
|
qx = (matrix[0, 1] + matrix[1, 0]) / s
|
|
|
qy = 0.25 * s
|
|
|
qz = (matrix[1, 2] + matrix[2, 1]) / s
|
|
|
else:
|
|
|
s = np.sqrt(1.0 + matrix[2, 2] - matrix[0, 0] - matrix[1, 1]) * 2
|
|
|
qw = (matrix[1, 0] - matrix[0, 1]) / s
|
|
|
qx = (matrix[0, 2] + matrix[2, 0]) / s
|
|
|
qy = (matrix[1, 2] + matrix[2, 1]) / s
|
|
|
qz = 0.25 * s
|
|
|
|
|
|
quat = np.array([qx, qy, qz, qw])
|
|
|
return cls(quat)
|
|
|
|
|
|
@classmethod
|
|
|
def from_quat(cls, quat: np.ndarray) -> "Rotation":
|
|
|
"""
|
|
|
Create rotation from quaternion.
|
|
|
|
|
|
Args:
|
|
|
quat: Quaternion [x, y, z, w] or [w, x, y, z] (specify convention in docstring)
|
|
|
This implementation expects [x, y, z, w] format
|
|
|
|
|
|
Returns:
|
|
|
Rotation instance
|
|
|
"""
|
|
|
return cls(quat)
|
|
|
|
|
|
def as_matrix(self) -> np.ndarray:
|
|
|
"""
|
|
|
Convert rotation to 3x3 rotation matrix.
|
|
|
|
|
|
Returns:
|
|
|
3x3 rotation matrix
|
|
|
"""
|
|
|
qx, qy, qz, qw = self._quat
|
|
|
|
|
|
|
|
|
return np.array(
|
|
|
[
|
|
|
[1 - 2 * (qy * qy + qz * qz), 2 * (qx * qy - qz * qw), 2 * (qx * qz + qy * qw)],
|
|
|
[2 * (qx * qy + qz * qw), 1 - 2 * (qx * qx + qz * qz), 2 * (qy * qz - qx * qw)],
|
|
|
[2 * (qx * qz - qy * qw), 2 * (qy * qz + qx * qw), 1 - 2 * (qx * qx + qy * qy)],
|
|
|
],
|
|
|
dtype=float,
|
|
|
)
|
|
|
|
|
|
def as_rotvec(self) -> np.ndarray:
|
|
|
"""
|
|
|
Convert rotation to rotation vector.
|
|
|
|
|
|
Returns:
|
|
|
Rotation vector [x, y, z] where magnitude is angle in radians
|
|
|
"""
|
|
|
qx, qy, qz, qw = self._quat
|
|
|
|
|
|
|
|
|
if qw < 0:
|
|
|
qx, qy, qz, qw = -qx, -qy, -qz, -qw
|
|
|
|
|
|
|
|
|
angle = 2.0 * np.arccos(np.clip(abs(qw), 0.0, 1.0))
|
|
|
sin_half_angle = np.sqrt(1.0 - qw * qw)
|
|
|
|
|
|
if sin_half_angle < 1e-8:
|
|
|
|
|
|
return 2.0 * np.array([qx, qy, qz])
|
|
|
|
|
|
|
|
|
axis = np.array([qx, qy, qz]) / sin_half_angle
|
|
|
return angle * axis
|
|
|
|
|
|
def as_quat(self) -> np.ndarray:
|
|
|
"""
|
|
|
Get quaternion representation.
|
|
|
|
|
|
Returns:
|
|
|
Quaternion [x, y, z, w]
|
|
|
"""
|
|
|
return self._quat.copy()
|
|
|
|
|
|
def apply(self, vectors: np.ndarray, inverse: bool = False) -> np.ndarray:
|
|
|
"""
|
|
|
Apply this rotation to a set of vectors.
|
|
|
|
|
|
This is equivalent to applying the rotation matrix to the vectors:
|
|
|
self.as_matrix() @ vectors (or self.as_matrix().T @ vectors if inverse=True).
|
|
|
|
|
|
Args:
|
|
|
vectors: Array of shape (3,) or (N, 3) representing vectors in 3D space
|
|
|
inverse: If True, apply the inverse of the rotation. Default is False.
|
|
|
|
|
|
Returns:
|
|
|
Rotated vectors with shape:
|
|
|
- (3,) if input was single vector with shape (3,)
|
|
|
- (N, 3) in all other cases
|
|
|
"""
|
|
|
vectors = np.asarray(vectors, dtype=float)
|
|
|
original_shape = vectors.shape
|
|
|
|
|
|
|
|
|
if vectors.ndim == 1:
|
|
|
if len(vectors) != 3:
|
|
|
raise ValueError("Single vector must have length 3")
|
|
|
vectors = vectors.reshape(1, 3)
|
|
|
single_vector = True
|
|
|
elif vectors.ndim == 2:
|
|
|
if vectors.shape[1] != 3:
|
|
|
raise ValueError("Vectors must have shape (N, 3)")
|
|
|
single_vector = False
|
|
|
else:
|
|
|
raise ValueError("Vectors must be 1D or 2D array")
|
|
|
|
|
|
|
|
|
rotation_matrix = self.as_matrix()
|
|
|
|
|
|
|
|
|
if inverse:
|
|
|
rotation_matrix = rotation_matrix.T
|
|
|
|
|
|
|
|
|
rotated_vectors = vectors @ rotation_matrix.T
|
|
|
|
|
|
|
|
|
if single_vector and original_shape == (3,):
|
|
|
return rotated_vectors.flatten()
|
|
|
|
|
|
return rotated_vectors
|
|
|
|
|
|
def inv(self) -> "Rotation":
|
|
|
"""
|
|
|
Invert this rotation.
|
|
|
|
|
|
Composition of a rotation with its inverse results in an identity transformation.
|
|
|
|
|
|
Returns:
|
|
|
Rotation instance containing the inverse of this rotation
|
|
|
"""
|
|
|
qx, qy, qz, qw = self._quat
|
|
|
|
|
|
|
|
|
inverse_quat = np.array([-qx, -qy, -qz, qw])
|
|
|
|
|
|
return Rotation(inverse_quat)
|
|
|
|
|
|
def __mul__(self, other: "Rotation") -> "Rotation":
|
|
|
"""
|
|
|
Compose this rotation with another rotation using the * operator.
|
|
|
|
|
|
The composition `r2 * r1` means "apply r1 first, then r2".
|
|
|
This is equivalent to applying rotation matrices: r2.as_matrix() @ r1.as_matrix()
|
|
|
|
|
|
Args:
|
|
|
other: Another Rotation instance to compose with
|
|
|
|
|
|
Returns:
|
|
|
Rotation instance representing the composition of rotations
|
|
|
"""
|
|
|
if not isinstance(other, Rotation):
|
|
|
return NotImplemented
|
|
|
|
|
|
|
|
|
x1, y1, z1, w1 = other._quat
|
|
|
x2, y2, z2, w2 = self._quat
|
|
|
|
|
|
|
|
|
composed_quat = np.array(
|
|
|
[
|
|
|
w2 * x1 + x2 * w1 + y2 * z1 - z2 * y1,
|
|
|
w2 * y1 - x2 * z1 + y2 * w1 + z2 * x1,
|
|
|
w2 * z1 + x2 * y1 - y2 * x1 + z2 * w1,
|
|
|
w2 * w1 - x2 * x1 - y2 * y1 - z2 * z1,
|
|
|
]
|
|
|
)
|
|
|
|
|
|
return Rotation(composed_quat)
|
|
|
|