hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1e0ccb4ce3722891503c29f85cc6f4b4ce0c9d8d
| 2,688
|
agda
|
Agda
|
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedHilbert.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedHilbert.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedHilbert.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
module BasicIPC.Metatheory.Hilbert-KripkeConcreteGluedHilbert where
open import BasicIPC.Syntax.Hilbert public
open import BasicIPC.Semantics.KripkeConcreteGluedHilbert public
-- Internalisation of syntax as syntax representation in a particular model.
module _ {{_ : Model}} where
[_] : ∀ {A Γ} → Γ ⊢ A → Γ [⊢] A
[ var i ] = [var] i
[ app t u ] = [app] [ t ] [ u ]
[ ci ] = [ci]
[ ck ] = [ck]
[ cs ] = [cs]
[ cpair ] = [cpair]
[ cfst ] = [cfst]
[ csnd ] = [csnd]
[ unit ] = [unit]
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci γ = [ci] ⅋ K I
eval ck γ = [ck] ⅋ K ⟪K⟫
eval cs γ = [cs] ⅋ K ⟪S⟫′
eval cpair γ = [cpair] ⅋ K _⟪,⟫′_
eval cfst γ = [cfst] ⅋ K π₁
eval csnd γ = [csnd] ⅋ K π₂
eval unit γ = ∙
-- TODO: Correctness of evaluation with respect to conversion.
-- The canonical model.
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ w P → unwrap w ⊢ α P
; mono⊩ᵅ = λ ξ t → mono⊢ (unwrap≤ ξ) t
; _[⊢]_ = _⊢_
; mono[⊢] = mono⊢
; [var] = var
; [app] = app
; [ci] = ci
; [ck] = ck
; [cs] = cs
; [cpair] = cpair
; [cfst] = cfst
; [csnd] = csnd
; [unit] = unit
; [lam] = lam
}
-- Soundness and completeness with respect to the canonical model.
mutual
reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = t ⅋ λ ξ a → reflectᶜ (app (mono⊢ (unwrap≤ ξ) t) (reifyᶜ a))
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A w} → w ⊩ A → unwrap w ⊢ A
reifyᶜ {α P} s = syn s
reifyᶜ {A ▻ B} s = syn s
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
-- Reflexivity and transitivity.
refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
-- Completeness with respect to all models, or quotation.
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reifyᶜ (s refl⊩⋆)
-- Normalisation by evaluation.
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval
-- TODO: Correctness of normalisation with respect to conversion.
| 24.888889
| 82
| 0.514137
|
30693668f6ff0ac8a22ff5df17643f35f3d862b0
| 350
|
agda
|
Agda
|
test/Compiler/with-stdlib/DivMod.agda
|
andreasabel/agda-with-old-branches
|
04941fb75be06039b0085ab047117625294cbc99
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Compiler/with-stdlib/DivMod.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/Compiler/with-stdlib/DivMod.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
module DivMod where
open import IO
open import Data.Nat
open import Data.Nat.DivMod
open import Coinduction
open import Data.String
open import Data.Fin
g : ℕ
g = 7 div 5
k : ℕ
k = toℕ (7 mod 5)
showNat : ℕ → String
showNat zero = "Z"
showNat (suc x) = "S (" ++ showNat x ++ ")"
main = run (♯ (putStrLn (showNat g)) >> ♯ (putStrLn (showNat k)))
| 16.666667
| 65
| 0.66
|
35eac384da02ec395548d85b0d180fa801423d5e
| 17,731
|
agda
|
Agda
|
Cubical/Data/Fin/Properties.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
Cubical/Data/Fin/Properties.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
Cubical/Data/Fin/Properties.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Fin.Properties where
open import Cubical.Core.Everything
open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Data.Fin.Base as Fin
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Induction.WellFounded
open import Cubical.Relation.Nullary
private
variable
a b ℓ : Level
n : ℕ
A : Type a
-- Fin 0 is empty, and thus a proposition.
isPropFin0 : isProp (Fin 0)
isPropFin0 = Empty.rec ∘ ¬Fin0
-- Fin 1 has only one value.
isContrFin1 : isContr (Fin 1)
isContrFin1
= fzero , λ
{ (zero , _) → toℕ-injective refl
; (suc k , sk<1) → Empty.rec (¬-<-zero (pred-≤-pred sk<1))
}
Unit≃Fin1 : Unit ≃ Fin 1
Unit≃Fin1 =
isoToEquiv
(iso
(const fzero)
(const tt)
(isContrFin1 .snd)
(isContrUnit .snd)
)
-- Regardless of k, Fin k is a set.
isSetFin : ∀{k} → isSet (Fin k)
isSetFin {k} = isSetΣ isSetℕ (λ _ → isProp→isSet m≤n-isProp)
discreteFin : ∀ {n} → Discrete (Fin n)
discreteFin {n} (x , hx) (y , hy) with discreteℕ x y
... | yes prf = yes (Σ≡Prop (λ _ → m≤n-isProp) prf)
... | no prf = no λ h → prf (cong fst h)
inject<-ne : ∀ {n} (i : Fin n) → ¬ inject< ≤-refl i ≡ (n , ≤-refl)
inject<-ne {n} (k , k<n) p = <→≢ k<n (cong fst p)
Fin-fst-≡ : ∀ {n} {i j : Fin n} → fst i ≡ fst j → i ≡ j
Fin-fst-≡ = Σ≡Prop (λ _ → m≤n-isProp)
private
subst-app : (B : A → Type b) (f : (x : A) → B x) {x y : A} (x≡y : x ≡ y) →
subst B x≡y (f x) ≡ f y
subst-app B f {x = x} =
J (λ y e → subst B e (f x) ≡ f y) (substRefl {B = B} (f x))
-- Computation rules for the eliminator.
module _ (P : ∀ {k} → Fin k → Type ℓ)
(fz : ∀ {k} → P {suc k} fzero)
(fs : ∀ {k} {fn : Fin k} → P fn → P (fsuc fn))
{k : ℕ} where
elim-fzero : Fin.elim P fz fs {k = suc k} fzero ≡ fz
elim-fzero =
subst P (toℕ-injective _) fz ≡⟨ cong (λ p → subst P p fz) (isSetFin _ _ _ _) ⟩
subst P refl fz ≡⟨ substRefl {B = P} fz ⟩
fz ∎
elim-fsuc : (fk : Fin k) → Fin.elim P fz fs (fsuc fk) ≡ fs (Fin.elim P fz fs fk)
elim-fsuc fk =
subst P (toℕ-injective (λ _ → toℕ (fsuc fk′))) (fs (Fin.elim P fz fs fk′))
≡⟨ cong (λ p → subst P p (fs (Fin.elim P fz fs fk′)) ) (isSetFin _ _ _ _) ⟩
subst P (cong fsuc fk′≡fk) (fs (Fin.elim P fz fs fk′))
≡⟨ subst-app _ (λ fj → fs (Fin.elim P fz fs fj)) fk′≡fk ⟩
fs (Fin.elim P fz fs fk)
∎
where
fk′ = fst fk , pred-≤-pred (snd (fsuc fk))
fk′≡fk : fk′ ≡ fk
fk′≡fk = toℕ-injective refl
-- Helper function for the reduction procedure below.
--
-- If n = expand o k m, then n is congruent to m modulo k.
expand : ℕ → ℕ → ℕ → ℕ
expand 0 k m = m
expand (suc o) k m = k + expand o k m
expand≡ : ∀ k m o → expand o k m ≡ o * k + m
expand≡ k m zero = refl
expand≡ k m (suc o)
= cong (k +_) (expand≡ k m o) ∙ +-assoc k (o * k) m
-- Expand a pair. This is useful because the whole function is
-- injective.
expand× : ∀{k} → (Fin k × ℕ) → ℕ
expand× {k} (f , o) = expand o k (toℕ f)
private
lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r
lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p
expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2
expand×Inj k {f1 , zero} {f2 , zero} p i
= toℕ-injective {fj = f1} {f2} p i , zero
expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p
= Empty.rec (<-asym r<sk (lemma₀ refl p))
expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p
= Empty.rec (<-asym r<sk (lemma₀ refl (sym p)))
expand×Inj k {f1 , suc o1} {f2 , suc o2}
= cong (λ { (f , o) → (f , suc o) })
∘ expand×Inj k {f1 , o1} {f2 , o2}
∘ inj-m+ {suc k}
expand×Emb : ∀ k → isEmbedding (expand× {k})
expand×Emb 0 = Empty.rec ∘ ¬Fin0 ∘ fst
expand×Emb (suc k)
= injEmbedding (isSetΣ isSetFin (λ _ → isSetℕ)) isSetℕ (expand×Inj k)
-- A Residue is a family of types representing evidence that a
-- natural is congruent to a value of a finite type.
Residue : ℕ → ℕ → Type₀
Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n
-- There is at most one canonical finite value congruent to each
-- natural.
isPropResidue : ∀ k n → isProp (Residue k n)
isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k)
-- A value of a finite type is its own residue.
Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f)
Fin→Residue f = (f , 0) , refl
-- Fibers of numbers that differ by k are equivalent in a more obvious
-- way than via the fact that they are propositions.
Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n)
Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p
Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n
Residue-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p)
Residue+k-k
: (k n : ℕ)
→ (R : Residue k (k + n))
→ Residue+k k n (Residue-k k n R) ≡ R
Residue+k-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue+k-k k n ((f , suc o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) (k + n)) refl
Residue-k+k
: (k n : ℕ)
→ (R : Residue k n)
→ Residue-k k n (Residue+k k n R) ≡ R
Residue-k+k k n ((f , o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) n) refl
private
Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n)
Residue≃ k n
= Residue+k k n
, isoToIsEquiv (iso (Residue+k k n) (Residue-k k n)
(Residue+k-k k n) (Residue-k+k k n))
Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n)
Residue≡ k n = ua (Residue≃ k n)
-- For positive `k`, all `n` have a canonical residue mod `k`.
module Reduce (k₀ : ℕ) where
k : ℕ
k = suc k₀
base : ∀ n (n<k : n < k) → Residue k n
base n n<k = Fin→Residue (n , n<k)
step : ∀ n → Residue k n → Residue k (k + n)
step n = transport (Residue≡ k n)
reduce : ∀ n → Residue k n
reduce = +induction k₀ (Residue k) base step
reduce≡
: ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n)
reduce≡ n
= sym (+inductionStep k₀ _ base step n)
reduceP
: ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n))
reduceP n = toPathP (reduce≡ n)
open Reduce using (reduce; reduce≡) public
extract : ∀{k n} → Residue k n → Fin k
extract = fst ∘ fst
private
lemma₅
: ∀ k n (R : Residue k n)
→ extract R ≡ extract (transport (Residue≡ k n) R)
lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n)
-- The residue of n modulo k is the same as the residue of k + n.
extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n))
extract≡ k n
= lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n)
isContrResidue : ∀{k n} → isContr (Residue (suc k) n)
isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n)
-- the modulo operator on ℕ
_%_ : ℕ → ℕ → ℕ
n % zero = n
n % (suc k) = toℕ (extract (reduce k n))
_/_ : ℕ → ℕ → ℕ
n / zero = zero
n / (suc k) = reduce k n .fst .snd
moddiv : ∀ n k → (n / k) * k + n % k ≡ n
moddiv n zero = refl
moddiv n (suc k) = sym (expand≡ _ _ (n / suc k)) ∙ reduce k n .snd
n%k≡n[modk] : ∀ n k → Σ[ o ∈ ℕ ] o * k + n % k ≡ n
n%k≡n[modk] n k = (n / k) , moddiv n k
n%sk<sk : (n k : ℕ) → (n % suc k) < suc k
n%sk<sk n k = extract (reduce k n) .snd
fznotfs : ∀ {m : ℕ} {k : Fin m} → ¬ fzero ≡ fsuc k
fznotfs {m} p = subst F p tt
where
F : Fin (suc m) → Type₀
F (zero , _) = Unit
F (suc _ , _) = ⊥
fsuc-inj : {fj fk : Fin n} → fsuc fj ≡ fsuc fk → fj ≡ fk
fsuc-inj = toℕ-injective ∘ injSuc ∘ cong toℕ
punchOut : ∀ {m} {i j : Fin (suc m)} → (¬ i ≡ j) → Fin m
punchOut {_} {i} {j} p with fsplit i | fsplit j
punchOut {_} {i} {j} p | inl prfi | inl prfj =
Empty.elim (p (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut {_} {i} {j} p | inl prfi | inr (kj , prfj) =
kj
punchOut {zero} {i} {j} p | inr (ki , prfi) | inl prfj =
Empty.elim (p (
i ≡⟨ sym (isContrFin1 .snd i) ⟩
c ≡⟨ isContrFin1 .snd j ⟩
j ∎
))
where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inl prfj =
fzero
punchOut {zero} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
Empty.elim ((p (
i ≡⟨ sym (isContrFin1 .snd i) ⟩
c ≡⟨ isContrFin1 .snd j ⟩
j ∎)
))
where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
fsuc (punchOut {i = ki} {j = kj}
(λ q → p (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎))
)
punchOut-inj
: ∀ {m} {i j k : Fin (suc m)} (i≢j : ¬ i ≡ j) (i≢k : ¬ i ≡ k)
→ punchOut i≢j ≡ punchOut i≢k → j ≡ k
punchOut-inj {_} {i} {j} {k} i≢j i≢k p with fsplit i | fsplit j | fsplit k
punchOut-inj {zero} {i} {j} {k} i≢j i≢k p | _ | _ | _ =
Empty.elim (i≢j (i ≡⟨ sym (isContrFin1 .snd i) ⟩ c ≡⟨ isContrFin1 .snd j ⟩ j ∎))
where c = isContrFin1 .fst
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inl prfj | _ =
Empty.elim (i≢j (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | _ | inl prfk =
Empty.elim (i≢k (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfk ⟩ k ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inr (kj , prfj) | inr (kk , prfk) =
j ≡⟨ sym prfj ⟩
fsuc kj ≡⟨ cong fsuc p ⟩
fsuc kk ≡⟨ prfk ⟩
k ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inl prfk =
j ≡⟨ sym prfj ⟩
fzero ≡⟨ prfk ⟩
k ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inr (kk , prfk) =
j ≡⟨ sym prfj ⟩
fsuc kj ≡⟨ cong fsuc lemma4 ⟩
fsuc kk ≡⟨ prfk ⟩
k ∎
where
lemma1 = λ q → i≢j (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎)
lemma2 = λ q → i≢k (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kk ≡⟨ prfk ⟩ k ∎)
lemma3 = fsuc-inj p
lemma4 = punchOut-inj lemma1 lemma2 lemma3
punchOut-inj {suc m} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inr (kk , prfk) =
Empty.rec (fznotfs p)
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inl prfk =
Empty.rec (fznotfs (sym p))
pigeonhole-special
: ∀ {n}
→ (f : Fin (suc n) → Fin n)
→ Σ[ i ∈ Fin (suc n) ] Σ[ j ∈ Fin (suc n) ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole-special {zero} f = Empty.rec (¬Fin0 (f fzero))
pigeonhole-special {suc n} f =
proof (any?
(λ (i : Fin (suc n)) →
discreteFin (f (inject< ≤-refl i)) (f (suc n , ≤-refl))
))
where
proof
: Dec (Σ (Fin (suc n)) (λ z → f (inject< ≤-refl z) ≡ f (suc n , ≤-refl)))
→ Σ[ i ∈ Fin (suc (suc n)) ] Σ[ j ∈ Fin (suc (suc n)) ] (¬ i ≡ j) × (f i ≡ f j)
proof (yes (i , prf)) = inject< ≤-refl i , (suc n , ≤-refl) , inject<-ne i , prf
proof (no h) =
let
g : Fin (suc n) → Fin n
g k = punchOut
{i = f (suc n , ≤-refl)}
{j = f (inject< ≤-refl k)}
(λ p → h (k , Fin-fst-≡ (sym (cong fst p))))
i , j , i≢j , p = pigeonhole-special g
in
inject< ≤-refl i
, inject< ≤-refl j
, (λ q → i≢j (Fin-fst-≡ (cong fst q)))
, punchOut-inj
{i = f (suc n , ≤-refl)}
{j = f (inject< ≤-refl i)}
{k = f (inject< ≤-refl j)}
(λ q → h (i , Fin-fst-≡ (sym (cong fst q))))
(λ q → h (j , Fin-fst-≡ (sym (cong fst q))))
(Fin-fst-≡ (cong fst p))
pigeonhole
: ∀ {m n}
→ m < n
→ (f : Fin n → Fin m)
→ Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole {m} {n} (zero , sm≡n) f =
transport transport-prf (pigeonhole-special f′)
where
f′ : Fin (suc m) → Fin m
f′ = subst (λ h → Fin h → Fin m) (sym sm≡n) f
f′≡f : PathP (λ i → Fin (sm≡n i) → Fin m) f′ f
f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) (sym sm≡n)) (~ i) f
transport-prf
: (Σ[ i ∈ Fin (suc m) ] Σ[ j ∈ Fin (suc m) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
transport-prf φ =
Σ[ i ∈ Fin (sm≡n φ) ] Σ[ j ∈ Fin (sm≡n φ) ]
(¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
pigeonhole {m} {n} (suc k , prf) f =
let
g : Fin (suc n′) → Fin n′
g k = fst (f′ k) , <-trans (snd (f′ k)) m<n′
i , j , ¬q , r = pigeonhole-special g
in transport transport-prf (i , j , ¬q , Σ≡Prop (λ _ → m≤n-isProp) (cong fst r))
where
n′ : ℕ
n′ = k + suc m
n≡sn′ : n ≡ suc n′
n≡sn′ =
n ≡⟨ sym prf ⟩
suc (k + suc m) ≡⟨ refl ⟩
suc n′ ∎
m<n′ : m < n′
m<n′ = k , injSuc (suc (k + suc m) ≡⟨ prf ⟩ n ≡⟨ n≡sn′ ⟩ suc n′ ∎)
f′ : Fin (suc n′) → Fin m
f′ = subst (λ h → Fin h → Fin m) n≡sn′ f
f′≡f : PathP (λ i → Fin (n≡sn′ (~ i)) → Fin m) f′ f
f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) n≡sn′) (~ i) f
transport-prf
: (Σ[ i ∈ Fin (suc n′) ] Σ[ j ∈ Fin (suc n′) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
transport-prf φ =
Σ[ i ∈ Fin (n≡sn′ (~ φ)) ] Σ[ j ∈ Fin (n≡sn′ (~ φ)) ]
(¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
Fin-inj′ : {n m : ℕ} → n < m → ¬ Fin m ≡ Fin n
Fin-inj′ n<m p =
let
i , j , i≢j , q = pigeonhole n<m (transport p)
in i≢j (
i ≡⟨ refl ⟩
fst (pigeonhole n<m (transport p)) ≡⟨ transport-p-inj {p = p} q ⟩
fst (snd (pigeonhole n<m (transport p))) ≡⟨ refl ⟩
j ∎
)
where
transport-p-inj
: ∀ {A B : Type ℓ} {x y : A} {p : A ≡ B}
→ transport p x ≡ transport p y
→ x ≡ y
transport-p-inj {x = x} {y = y} {p = p} q =
x ≡⟨ sym (transport⁻Transport p x) ⟩
transport (sym p) (transport p x) ≡⟨ cong (transport (sym p)) q ⟩
transport (sym p) (transport p y) ≡⟨ transport⁻Transport p y ⟩
y ∎
Fin-inj : (n m : ℕ) → Fin n ≡ Fin m → n ≡ m
Fin-inj n m p with n ≟ m
... | eq prf = prf
... | lt n<m = Empty.rec (Fin-inj′ n<m (sym p))
... | gt n>m = Empty.rec (Fin-inj′ n>m p)
≤-*sk-cancel : ∀ {m} {k} {n} → m * suc k ≤ n * suc k → m ≤ n
≤-*sk-cancel {m} {k} {n} (d , p) = o , inj-*sm {m = k} goal where
r = d % suc k
o = d / suc k
resn*k : Residue (suc k) (n * suc k)
resn*k = ((r , n%sk<sk d k) , (o + m)) , reason where
reason = expand× ((r , n%sk<sk d k) , o + m) ≡⟨ expand≡ (suc k) r (o + m) ⟩
(o + m) * suc k + r ≡[ i ]⟨ +-comm (*-distribʳ o m (suc k) (~ i)) r i ⟩
r + (o * suc k + m * suc k) ≡⟨ +-assoc r (o * suc k) (m * suc k) ⟩
(r + o * suc k) + m * suc k ≡⟨ cong (_+ m * suc k) (+-comm r (o * suc k) ∙ moddiv d (suc k)) ⟩
d + m * suc k ≡⟨ p ⟩
n * suc k ∎
residuek*n : ∀ k n → (r : Residue (suc k) (n * suc k)) → ((fzero , n) , expand≡ (suc k) 0 n ∙ +-zero _) ≡ r
residuek*n _ _ = isContr→isProp isContrResidue _
r≡0 : r ≡ 0
r≡0 = cong (toℕ ∘ extract) (sym (residuek*n k n resn*k))
d≡o*sk : d ≡ o * suc k
d≡o*sk = sym (moddiv d (suc k)) ∙∙ cong (o * suc k +_) r≡0 ∙∙ +-zero _
goal : (o + m) * suc k ≡ n * suc k
goal = sym (*-distribʳ o m (suc k)) ∙∙ cong (_+ m * suc k) (sym d≡o*sk) ∙∙ p
<-*sk-cancel : ∀ {m} {k} {n} → m * suc k < n * suc k → m < n
<-*sk-cancel {m} {k} {n} p = goal where
≤-helper : m ≤ n
≤-helper = ≤-*sk-cancel (pred-≤-pred (<≤-trans p (≤-suc ≤-refl)))
goal : m < n
goal = case <-split (suc-≤-suc ≤-helper) of λ
{ (inl g) → g
; (inr e) → Empty.rec (¬m<m (subst (λ m → m * suc k < n * suc k) e p))
}
factorEquiv : ∀ {n} {m} → Fin n × Fin m ≃ Fin (n * m)
factorEquiv {zero} {m} = uninhabEquiv (¬Fin0 ∘ fst) ¬Fin0
factorEquiv {suc n} {m} = intro , isEmbedding×isSurjection→isEquiv (isEmbeddingIntro , isSurjectionIntro) where
intro : Fin (suc n) × Fin m → Fin (suc n * m)
intro (nn , mm) = nm , subst (λ nm₁ → nm₁ < suc n * m) (sym (expand≡ _ (toℕ nn) (toℕ mm))) nm<n*m where
nm : ℕ
nm = expand× (nn , toℕ mm)
nm<n*m : toℕ mm * suc n + toℕ nn < suc n * m
nm<n*m =
toℕ mm * suc n + toℕ nn <≤⟨ <-k+ (snd nn) ⟩
toℕ mm * suc n + suc n ≡≤⟨ +-comm _ (suc n) ⟩
suc (toℕ mm) * suc n ≤≡⟨ ≤-*k (snd mm) ⟩
m * suc n ≡⟨ *-comm _ (suc n) ⟩
suc n * m ∎ where open <-Reasoning
intro-injective : ∀ {o} {p} → intro o ≡ intro p → o ≡ p
intro-injective {o} {p} io≡ip = λ i → io′≡ip′ i .fst , toℕ-injective {fj = snd o} {fk = snd p} (cong snd io′≡ip′) i where
io′≡ip′ : (fst o , toℕ (snd o)) ≡ (fst p , toℕ (snd p))
io′≡ip′ = expand×Inj _ (cong fst io≡ip)
isEmbeddingIntro : isEmbedding intro
isEmbeddingIntro = injEmbedding (isSet× isSetFin isSetFin) isSetFin intro-injective
elimF : ∀ nm → fiber intro nm
elimF nm = ((nn , nn<n) , (mm , mm<m)) , toℕ-injective (reduce n (toℕ nm) .snd) where
mm = toℕ nm / suc n
nn = toℕ nm % suc n
nmmoddiv : mm * suc n + nn ≡ toℕ nm
nmmoddiv = moddiv _ (suc n)
nn<n : nn < suc n
nn<n = n%sk<sk (toℕ nm) _
nmsnd : mm * suc n + nn < suc n * m
nmsnd = subst (λ l → l < suc n * m) (sym nmmoddiv) (snd nm)
mm*sn<m*sn : mm * suc n < m * suc n
mm*sn<m*sn =
mm * suc n ≤<⟨ nn , +-comm nn (mm * suc n) ⟩
mm * suc n + nn <≡⟨ nmsnd ⟩
suc n * m ≡⟨ *-comm (suc n) m ⟩
m * suc n ∎ where open <-Reasoning
mm<m : mm < m
mm<m = <-*sk-cancel mm*sn<m*sn
isSurjectionIntro : isSurjection intro
isSurjectionIntro = ∣_∣ ∘ elimF
| 34.295938
| 123
| 0.523377
|
d1cf16a614597a513781f4326b4dfffef1ec84f2
| 8,508
|
agda
|
Agda
|
src/utm.agda
|
shinji-kono/automaton-in-agda
|
eba0538f088f3d0c0fedb19c47c081954fbc69cb
|
[
"MIT"
] | null | null | null |
src/utm.agda
|
shinji-kono/automaton-in-agda
|
eba0538f088f3d0c0fedb19c47c081954fbc69cb
|
[
"MIT"
] | null | null | null |
src/utm.agda
|
shinji-kono/automaton-in-agda
|
eba0538f088f3d0c0fedb19c47c081954fbc69cb
|
[
"MIT"
] | null | null | null |
module utm where
open import turing
open import Data.Product
-- open import Data.Bool
open import Data.List
open import Data.Nat
open import logic
data utmStates : Set where
reads : utmStates
read0 : utmStates
read1 : utmStates
read2 : utmStates
read3 : utmStates
read4 : utmStates
read5 : utmStates
read6 : utmStates
loc0 : utmStates
loc1 : utmStates
loc2 : utmStates
loc3 : utmStates
loc4 : utmStates
loc5 : utmStates
loc6 : utmStates
fetch0 : utmStates
fetch1 : utmStates
fetch2 : utmStates
fetch3 : utmStates
fetch4 : utmStates
fetch5 : utmStates
fetch6 : utmStates
fetch7 : utmStates
print0 : utmStates
print1 : utmStates
print2 : utmStates
print3 : utmStates
print4 : utmStates
print5 : utmStates
print6 : utmStates
print7 : utmStates
mov0 : utmStates
mov1 : utmStates
mov2 : utmStates
mov3 : utmStates
mov4 : utmStates
mov5 : utmStates
mov6 : utmStates
tidy0 : utmStates
tidy1 : utmStates
halt : utmStates
data utmΣ : Set where
0 : utmΣ
1 : utmΣ
B : utmΣ
* : utmΣ
$ : utmΣ
^ : utmΣ
X : utmΣ
Y : utmΣ
Z : utmΣ
@ : utmΣ
b : utmΣ
utmδ : utmStates → utmΣ → utmStates × (Write utmΣ) × Move
utmδ reads x = read0 , wnone , mnone
utmδ read0 * = read1 , write * , left
utmδ read0 x = read0 , write x , right
utmδ read1 x = read2 , write @ , right
utmδ read2 ^ = read3 , write ^ , right
utmδ read2 x = read2 , write x , right
utmδ read3 0 = read4 , write 0 , left
utmδ read3 1 = read5 , write 1 , left
utmδ read3 b = read6 , write b , left
utmδ read4 @ = loc0 , write 0 , right
utmδ read4 x = read4 , write x , left
utmδ read5 @ = loc0 , write 1 , right
utmδ read5 x = read5 , write x , left
utmδ read6 @ = loc0 , write B , right
utmδ read6 x = read6 , write x , left
utmδ loc0 0 = loc0 , write X , left
utmδ loc0 1 = loc0 , write Y , left
utmδ loc0 B = loc0 , write Z , left
utmδ loc0 $ = loc1 , write $ , right
utmδ loc0 x = loc0 , write x , left
utmδ loc1 X = loc2 , write 0 , right
utmδ loc1 Y = loc3 , write 1 , right
utmδ loc1 Z = loc4 , write B , right
utmδ loc1 * = fetch0 , write * , right
utmδ loc1 x = loc1 , write x , right
utmδ loc2 0 = loc5 , write X , right
utmδ loc2 1 = loc6 , write Y , right
utmδ loc2 B = loc6 , write Z , right
utmδ loc2 x = loc2 , write x , right
utmδ loc3 1 = loc5 , write Y , right
utmδ loc3 0 = loc6 , write X , right
utmδ loc3 B = loc6 , write Z , right
utmδ loc3 x = loc3 , write x , right
utmδ loc4 B = loc5 , write Z , right
utmδ loc4 0 = loc6 , write X , right
utmδ loc4 1 = loc6 , write Y , right
utmδ loc4 x = loc4 , write x , right
utmδ loc5 $ = loc1 , write $ , right
utmδ loc5 x = loc5 , write x , left
utmδ loc6 $ = halt , write $ , right
utmδ loc6 * = loc0 , write * , left
utmδ loc6 x = loc6 , write x , right
utmδ fetch0 0 = fetch1 , write X , left
utmδ fetch0 1 = fetch2 , write Y , left
utmδ fetch0 B = fetch3 , write Z , left
utmδ fetch0 x = fetch0 , write x , right
utmδ fetch1 $ = fetch4 , write $ , right
utmδ fetch1 x = fetch1 , write x , left
utmδ fetch2 $ = fetch5 , write $ , right
utmδ fetch2 x = fetch2 , write x , left
utmδ fetch3 $ = fetch6 , write $ , right
utmδ fetch3 x = fetch3 , write x , left
utmδ fetch4 0 = fetch7 , write X , right
utmδ fetch4 1 = fetch7 , write X , right
utmδ fetch4 B = fetch7 , write X , right
utmδ fetch4 * = print0 , write * , left
utmδ fetch4 x = fetch4 , write x , right
utmδ fetch5 0 = fetch7 , write Y , right
utmδ fetch5 1 = fetch7 , write Y , right
utmδ fetch5 B = fetch7 , write Y , right
utmδ fetch5 * = print0 , write * , left
utmδ fetch5 x = fetch5 , write x , right
utmδ fetch6 0 = fetch7 , write Z , right
utmδ fetch6 1 = fetch7 , write Z , right
utmδ fetch6 B = fetch7 , write Z , right
utmδ fetch6 * = print0 , write * , left
utmδ fetch6 x = fetch6 , write x , right
utmδ fetch7 * = fetch0 , write * , right
utmδ fetch7 x = fetch7 , write x , right
utmδ print0 X = print1 , write X , right
utmδ print0 Y = print2 , write Y , right
utmδ print0 Z = print3 , write Z , right
utmδ print1 ^ = print4 , write ^ , right
utmδ print1 x = print1 , write x , right
utmδ print2 ^ = print5 , write ^ , right
utmδ print2 x = print2 , write x , right
utmδ print3 ^ = print6 , write ^ , right
utmδ print3 x = print3 , write x , right
utmδ print4 x = print7 , write 0 , left
utmδ print5 x = print7 , write 1 , left
utmδ print6 x = print7 , write B , left
utmδ print7 X = mov0 , write X , right
utmδ print7 Y = mov1 , write Y , right
utmδ print7 x = print7 , write x , left
utmδ mov0 ^ = mov2 , write ^ , left
utmδ mov0 x = mov0 , write x , right
utmδ mov1 ^ = mov3 , write ^ , right
utmδ mov1 x = mov1 , write x , right
utmδ mov2 0 = mov4 , write ^ , right
utmδ mov2 1 = mov5 , write ^ , right
utmδ mov2 B = mov6 , write ^ , right
utmδ mov3 0 = mov4 , write ^ , left
utmδ mov3 1 = mov5 , write ^ , left
utmδ mov3 B = mov6 , write ^ , left
utmδ mov4 ^ = tidy0 , write 0 , left
utmδ mov5 ^ = tidy0 , write 1 , left
utmδ mov6 ^ = tidy0 , write B , left
utmδ tidy0 $ = tidy1 , write $ , left
utmδ tidy0 x = tidy0 , write x , left
utmδ tidy1 X = tidy1 , write 0 , left
utmδ tidy1 Y = tidy1 , write 1 , left
utmδ tidy1 Z = tidy1 , write B , left
utmδ tidy1 $ = reads , write $ , right
utmδ tidy1 x = tidy1 , write x , left
utmδ _ x = halt , write x , mnone
U-TM : Turing utmStates utmΣ
U-TM = record {
tδ = utmδ
; tstart = read0
; tend = tend
; tnone = b
} where
tend : utmStates → Bool
tend halt = true
tend _ = false
-- Copyδ : CopyStates → ℕ → CopyStates × ( Write ℕ ) × Move
-- Copyδ s1 0 = H , wnone , mnone
-- Copyδ s1 1 = s2 , write 0 , right
-- Copyδ s2 0 = s3 , write 0 , right
-- Copyδ s2 1 = s2 , write 1 , right
-- Copyδ s3 0 = s4 , write 1 , left
-- Copyδ s3 1 = s3 , write 1 , right
-- Copyδ s4 0 = s5 , write 0 , left
-- Copyδ s4 1 = s4 , write 1 , left
-- Copyδ s5 0 = s1 , write 1 , right
-- Copyδ s5 1 = s5 , write 1 , left
-- Copyδ H _ = H , wnone , mnone
-- Copyδ _ (suc (suc _)) = H , wnone , mnone
Copyδ-encode : List utmΣ
Copyδ-encode =
0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ -- s1 0 = H , wnone , mnone
* ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ -- s1 1 = s2 , write 0 , right
* ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ -- s2 0 = s3 , write 0 , right
* ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ -- s2 1 = s2 , write 1 , right
* ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s3 0 = s4 , write 1 , left
* ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s3 1 = s3 , write 1 , right
* ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ -- s4 0 = s5 , write 0 , left
* ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s4 1 = s4 , write 1 , left
* ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s5 0 = s1 , write 1 , right
* ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ -- s5 1 = s5 , write 1 , left
[]
input-encode : List utmΣ
input-encode = 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []
input+Copyδ : List utmΣ
input+Copyδ = ( $ ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ * ∷ [] ) -- start state
++ Copyδ-encode
++ ( $ ∷ ^ ∷ input-encode )
short-input : List utmΣ
short-input = $ ∷ 0 ∷ 0 ∷ 0 ∷ * ∷
0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ * ∷
0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ * ∷
0 ∷ 1 ∷ B ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ * ∷
1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ $ ∷
^ ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []
utm-test1 : List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ )
utm-test1 inp = Turing.taccept U-TM inp
{-# TERMINATING #-}
utm-test2 : ℕ → List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ )
utm-test2 n inp = loop n (Turing.tstart U-TM) inp []
where
loop : ℕ → utmStates → ( List utmΣ ) → ( List utmΣ ) → utmStates × ( List utmΣ ) × ( List utmΣ )
loop zero q L R = ( q , L , R )
loop (suc n) q L R with move {utmStates} {utmΣ} {0} {utmδ} q L R | q
... | nq , nL , nR | reads = loop n nq nL nR
... | nq , nL , nR | _ = loop (suc n) nq nL nR
t1 = utm-test2 20 short-input
t : (n : ℕ) → utmStates × ( List utmΣ ) × ( List utmΣ )
-- t n = utm-test2 n input+Copyδ
t n = utm-test2 n short-input
| 33.761905
| 109
| 0.551951
|
1ea71170036f6dc08f1cfb317a695c1805f97225
| 1,559
|
agda
|
Agda
|
src/Lib.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | 26
|
2015-08-31T09:49:52.000Z
|
2021-11-13T12:37:44.000Z
|
src/Lib.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | null | null | null |
src/Lib.agda
|
mietek/formal-logic
|
2dd761bfa96ccda089888e8defa6814776fa2922
|
[
"X11"
] | null | null | null |
module Lib where
-- Natural numbers
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
_+_ : Nat -> Nat -> Nat
zero + n = n
suc k + n = suc (k + n)
-- Finite sets
data Fin : Nat -> Set where
fzero : forall {n} -> Fin (suc n)
fsuc : forall {n} -> Fin n -> Fin (suc n)
fin : forall {n} (k : Nat) -> Fin (suc (k + n))
fin zero = fzero
fin (suc i) = fsuc (fin i)
-- Lists
infixl 0 _,_
data List (X : Set) : Set where
[] : List X
_,_ : List X -> X -> List X
-- List membership
data LMem {X : Set} (a : X) : List X -> Set where
lzero : forall {l} -> LMem a (l , a)
lsuc : forall {l b} -> LMem a l -> LMem a (l , b)
-- Vectors
data Vec (X : Set) : Nat -> Set where
[] : Vec X zero
_,_ : forall {n} -> Vec X n -> X -> Vec X (suc n)
proj : forall {X n} -> Vec X n -> Fin n -> X
proj [] ()
proj (_ , a) fzero = a
proj (v , _) (fsuc i) = proj v i
-- Vector membership
data VMem {X : Set} (a : X) : forall {n} -> Fin n -> Vec X n -> Set where
mzero : forall {n} {v : Vec X n} -> VMem a fzero (v , a)
msuc : forall {n i b} {v : Vec X n} -> VMem a i v -> VMem a (fsuc i) (v , b)
fmem : forall {X n} -> (i : Fin n) -> {v : Vec X n} -> VMem (proj v i) i v
fmem {_} {zero} ()
fmem {_} {suc n} fzero {_ , a} = mzero
fmem {_} {suc n} (fsuc i) {v , _} = msuc (fmem i)
mem : forall {X n} -> (k : Nat) -> {v : Vec X (suc (k + n))} -> VMem (proj v (fin k)) (fin k) v
mem i = fmem (fin i)
| 22.594203
| 95
| 0.474663
|
fd2f1a3719d7f4fb59eb0ea129f740a7b26224b3
| 2,357
|
agda
|
Agda
|
examples/simple-lib/Lib/List.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
examples/simple-lib/Lib/List.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | null | null | null |
examples/simple-lib/Lib/List.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module Lib.List where
open import Lib.Prelude
open import Lib.Id
infix 30 _∈_
infixr 40 _::_ _++_
infix 45 _!_
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
{-# COMPILED_DATA List [] [] (:) #-}
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _::_ #-}
_++_ : {A : Set} -> List A -> List A -> List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr f z [] = z
foldr f z (x :: xs) = f x (foldr f z xs)
map : {A B : Set} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs
map-id : forall {A}(xs : List A) -> map id xs ≡ xs
map-id [] = refl
map-id (x :: xs) with map id xs | map-id xs
... | .xs | refl = refl
data _∈_ {A : Set} : A -> List A -> Set where
hd : forall {x xs} -> x ∈ x :: xs
tl : forall {x y xs} -> x ∈ xs -> x ∈ y :: xs
data All {A : Set}(P : A -> Set) : List A -> Set where
[] : All P []
_::_ : forall {x xs} -> P x -> All P xs -> All P (x :: xs)
head : forall {A}{P : A -> Set}{x xs} -> All P (x :: xs) -> P x
head (x :: xs) = x
tail : forall {A}{P : A -> Set}{x xs} -> All P (x :: xs) -> All P xs
tail (x :: xs) = xs
_!_ : forall {A}{P : A -> Set}{x xs} -> All P xs -> x ∈ xs -> P x
xs ! hd = head xs
xs ! tl n = tail xs ! n
tabulate : forall {A}{P : A -> Set}{xs} -> ({x : A} -> x ∈ xs -> P x) -> All P xs
tabulate {xs = []} f = []
tabulate {xs = x :: xs} f = f hd :: tabulate (f ∘ tl)
mapAll : forall {A B}{P : A -> Set}{Q : B -> Set}{xs}(f : A -> B) ->
({x : A} -> P x -> Q (f x)) -> All P xs -> All Q (map f xs)
mapAll f h [] = []
mapAll f h (x :: xs) = h x :: mapAll f h xs
mapAll- : forall {A}{P Q : A -> Set}{xs} ->
({x : A} -> P x -> Q x) -> All P xs -> All Q xs
mapAll- {xs = xs} f zs with map id xs | map-id xs | mapAll id f zs
... | .xs | refl | r = r
infix 20 _⊆_
data _⊆_ {A : Set} : List A -> List A -> Set where
stop : [] ⊆ []
drop : forall {xs y ys} -> xs ⊆ ys -> xs ⊆ y :: ys
keep : forall {x xs ys} -> xs ⊆ ys -> x :: xs ⊆ x :: ys
⊆-refl : forall {A}{xs : List A} -> xs ⊆ xs
⊆-refl {xs = []} = stop
⊆-refl {xs = x :: xs} = keep ⊆-refl
_∣_ : forall {A}{P : A -> Set}{xs ys} -> All P ys -> xs ⊆ ys -> All P xs
[] ∣ stop = []
(x :: xs) ∣ drop p = xs ∣ p
(x :: xs) ∣ keep p = x :: (xs ∣ p)
| 28.059524
| 81
| 0.450573
|
34d91d239f5cb6e1a752a915086835dca2f2e58c
| 541
|
agda
|
Agda
|
test/interaction/Issue2729.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue2729.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue2729.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2017-09-03, issue #2729.
-- Expect non-indexed or -primed variables when splitting.
-- {-# OPTIONS -v interaction.case:100 #-}
-- {-# OPTIONS -v tc.cover:40 #-}
data Size : Set where
↑ : Size → Size
data Nat : Size → Set where
zero : ∀ i → Nat (↑ i)
suc : ∀ i → Nat i → Nat (↑ i)
pred : ∀ i → Nat i → Nat i
pred i x = {!x!} -- C-c C-c
-- WRONG (agda-2.5.3):
-- pred .(↑ i₁) (zero i₁) = ?
-- pred .(↑ i₁) (suc i₁ x) = ?
-- EXPECTED (correct in agda-2.5.1.1):
-- pred .(↑ i) (zero i) = ?
-- pred .(↑ i) (suc i x) = ?
| 22.541667
| 58
| 0.521257
|
fd00f8150e5f6ad2a145714a5efc7e9049219010
| 230
|
agda
|
Agda
|
test/Fail/Erased-cubical-Higher-constructor.agda
|
banacorn/agda
|
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
|
[
"MIT"
] | null | null | null |
test/Fail/Erased-cubical-Higher-constructor.agda
|
banacorn/agda
|
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
|
[
"MIT"
] | null | null | null |
test/Fail/Erased-cubical-Higher-constructor.agda
|
banacorn/agda
|
2a07bfdf2c1c4ae87f428809af0887aceb6632c0
|
[
"MIT"
] | 1
|
2021-04-18T13:34:07.000Z
|
2021-04-18T13:34:07.000Z
|
{-# OPTIONS --erased-cubical #-}
open import Agda.Builtin.Cubical.Path
-- Higher constructors must be erased when --erased-cubical is used.
data ∥_∥ (A : Set) : Set where
∣_∣ : A → ∥ A ∥
trivial : (x y : ∥ A ∥) → x ≡ y
| 23
| 68
| 0.595652
|
13bd40439363d5b693968e4d57506c0e1aec73f2
| 5,999
|
agda
|
Agda
|
Cubical/Foundations/Equiv.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Equiv.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/Equiv.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
{-
Theory about equivalences
Definitions are in Core/Glue.agda but re-exported by this module
- isEquiv is a proposition ([isPropIsEquiv])
- Any isomorphism is an equivalence ([isoToEquiv])
There are more statements about equivalences in Equiv/Properties.agda:
- if f is an equivalence then (cong f) is an equivalence
- if f is an equivalence then precomposition with f is an equivalence
- if f is an equivalence then postcomposition with f is an equivalence
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Equiv where
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv.Base public
private
variable
ℓ ℓ' ℓ'' : Level
A B C : Type ℓ
fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ')
fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y
equivIsEquiv : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) → isEquiv (equivFun e)
equivIsEquiv e = snd e
equivCtr : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) (y : B) → fiber (equivFun e) y
equivCtr e y = e .snd .equiv-proof y .fst
equivCtrPath : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) (y : B) →
(v : fiber (equivFun e) y) → Path _ (equivCtr e y) v
equivCtrPath e y = e .snd .equiv-proof y .snd
-- Proof using isPropIsContr. This is slow and the direct proof below is better
isPropIsEquiv' : (f : A → B) → isProp (isEquiv f)
equiv-proof (isPropIsEquiv' f u0 u1 i) y =
isPropIsContr (u0 .equiv-proof y) (u1 .equiv-proof y) i
-- Direct proof that computes quite ok (can be optimized further if
-- necessary, see:
-- https://github.com/mortberg/cubicaltt/blob/pi4s3_dimclosures/examples/brunerie2.ctt#L562
isPropIsEquiv : (f : A → B) → isProp (isEquiv f)
equiv-proof (isPropIsEquiv f p q i) y =
let p2 = p .equiv-proof y .snd
q2 = q .equiv-proof y .snd
in p2 (q .equiv-proof y .fst) i
, λ w j → hcomp (λ k → λ { (i = i0) → p2 w j
; (i = i1) → q2 w (j ∨ ~ k)
; (j = i0) → p2 (q2 w (~ k)) i
; (j = i1) → w })
(p2 w (i ∨ j))
equivEq : (e f : A ≃ B) → (h : e .fst ≡ f .fst) → e ≡ f
equivEq e f h = λ i → (h i) , isProp→PathP (λ i → isPropIsEquiv (h i)) (e .snd) (f .snd) i
module _ (w : A ≃ B) where
invEq : B → A
invEq y = fst (fst (snd w .equiv-proof y))
secEq : section invEq (w .fst)
secEq x = λ i → fst (snd (snd w .equiv-proof (fst w x)) (x , (λ j → fst w x)) i)
retEq : retract invEq (w .fst)
retEq y = λ i → snd (fst (snd w .equiv-proof y)) i
equivToIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → Iso A B
equivToIso {A = A} {B = B} e = iso (e .fst) (invEq e ) (retEq e) (secEq e)
invEquiv : A ≃ B → B ≃ A
invEquiv f = isoToEquiv (iso (invEq f) (fst f) (secEq f) (retEq f))
invEquivIdEquiv : (A : Type ℓ) → invEquiv (idEquiv A) ≡ idEquiv A
invEquivIdEquiv _ = equivEq _ _ refl
compEquiv : A ≃ B → B ≃ C → A ≃ C
compEquiv f g = isoToEquiv
(iso (λ x → g .fst (f .fst x))
(λ x → invEq f (invEq g x))
(λ y → (cong (g .fst) (retEq f (invEq g y))) ∙ (retEq g y))
(λ y → (cong (invEq f) (secEq g (f .fst y))) ∙ (secEq f y)))
compEquivIdEquiv : {A B : Type ℓ} (e : A ≃ B) → compEquiv (idEquiv A) e ≡ e
compEquivIdEquiv e = equivEq _ _ refl
LiftEquiv : {A : Type ℓ} → A ≃ Lift {i = ℓ} {j = ℓ'} A
LiftEquiv = isoToEquiv (iso lift lower (λ _ → refl) (λ _ → refl))
-- module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where
-- invEquivInvol : (f : A ≃ B) → invEquiv (invEquiv f) ≡ f
-- invEquivInvol f i .fst = fst f
-- invEquivInvol f i .snd = propIsEquiv (fst f) (snd (invEquiv (invEquiv f))) (snd f) i
Contr→Equiv : isContr A → isContr B → A ≃ B
Contr→Equiv Actr Bctr = isoToEquiv (iso (λ _ → fst Bctr) (λ _ → fst Actr) (snd Bctr) (snd Actr))
PropEquiv→Equiv : (Aprop : isProp A) (Bprop : isProp B) (f : A → B) (g : B → A) → (A ≃ B)
PropEquiv→Equiv Aprop Bprop f g = isoToEquiv (iso f g (λ b → Bprop (f (g b)) b) λ a → Aprop (g (f a)) a)
homotopyNatural : {f g : A → B} (H : ∀ a → f a ≡ g a) {x y : A} (p : x ≡ y) →
H x ∙ cong g p ≡ cong f p ∙ H y
homotopyNatural {f = f} {g = g} H {x} {y} p i j =
hcomp (λ k → λ { (i = i0) → compPath-filler (H x) (cong g p) k j
; (i = i1) → compPath-filler' (cong f p) (H y) k j
; (j = i0) → cong f p (i ∧ (~ k))
; (j = i1) → cong g p (i ∨ k) })
(H (p i) j)
Hfa≡fHa : ∀ {A : Type ℓ} (f : A → A) → (H : ∀ a → f a ≡ a) → ∀ a → H (f a) ≡ cong f (H a)
Hfa≡fHa {A = A} f H a =
H (f a) ≡⟨ rUnit (H (f a)) ⟩
H (f a) ∙ refl ≡⟨ cong (_∙_ (H (f a))) (sym (rCancel (H a))) ⟩
H (f a) ∙ H a ∙ sym (H a) ≡⟨ assoc _ _ _ ⟩
(H (f a) ∙ H a) ∙ sym (H a) ≡⟨ cong (λ x → x ∙ (sym (H a))) (homotopyNatural H (H a)) ⟩
(cong f (H a) ∙ H a) ∙ sym (H a) ≡⟨ sym (assoc _ _ _) ⟩
cong f (H a) ∙ H a ∙ sym (H a) ≡⟨ cong (_∙_ (cong f (H a))) (rCancel _) ⟩
cong f (H a) ∙ refl ≡⟨ sym (rUnit _) ⟩
cong f (H a) ∎
invEq≡→equivFun≡ : ∀ (e : A ≃ B) {x y} → invEq e x ≡ y → equivFun e y ≡ x
invEq≡→equivFun≡ e {x} p = cong (equivFun e) (sym p) ∙ retEq e x
equivPi
: ∀{F : A → Set ℓ} {G : A → Set ℓ'}
→ ((x : A) → F x ≃ G x) → (((x : A) → F x) ≃ ((x : A) → G x))
equivPi k .fst f x = k x .fst (f x)
equivPi k .snd .equiv-proof f
.fst .fst x = equivCtr (k x) (f x) .fst
equivPi k .snd .equiv-proof f
.fst .snd i x = equivCtr (k x) (f x) .snd i
equivPi k .snd .equiv-proof f
.snd (g , p) i .fst x = equivCtrPath (k x) (f x) (g x , λ j → p j x) i .fst
equivPi k .snd .equiv-proof f
.snd (g , p) i .snd j x = equivCtrPath (k x) (f x) (g x , λ k → p k x) i .snd j
-- Some helpful notation:
_≃⟨_⟩_ : (X : Type ℓ) → (X ≃ B) → (B ≃ C) → (X ≃ C)
_ ≃⟨ f ⟩ g = compEquiv f g
_■ : (X : Type ℓ) → (X ≃ X)
_■ = idEquiv
infixr 0 _≃⟨_⟩_
infix 1 _■
| 37.968354
| 104
| 0.53759
|
4bcf9a5295e11636c77d886b8b4439b6dbf831e8
| 13,962
|
agda
|
Agda
|
examples/outdated-and-incorrect/univ/univ.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/univ/univ.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/univ/univ.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --no-positivity-check #-}
module univ where
open import Base
open import Nat
import Logic.ChainReasoning
module Chain
{A : Set}( _==_ : A -> A -> Set)
(refl : {x : A} -> x == x)
(trans : {x y z : A} -> x == y -> y == z -> x == z) =
Logic.ChainReasoning.Mono.Homogenous _==_ (\x -> refl) (\x y z -> trans)
-- mutual inductive recursive definition of S and the functions _=S_, El, eq,
-- and all the proofs on these functions
mutual
infix 40 _==_ _=S_ _=Fam_
infixr 80 _<<_
infixl 80 _>>_
infixl 150 _!_
data S : Set where
nat : S
pi : (A : S)(F : Fam A) -> S
sigma : (A : S)(F : Fam A) -> S
data Fam (A : S) : Set where
fam : (F : El A -> S) -> Map _==_ _=S_ F -> Fam A
_=S'_ : rel S
nat =S' pi _ _ = False
nat =S' sigma _ _ = False
pi _ _ =S' nat = False
pi _ _ =S' sigma _ _ = False
sigma _ _ =S' nat = False
sigma _ _ =S' pi _ _ = False
nat =S' nat = True
pi A F =S' pi B G =
(B =S A) * \ B=A -> F =Fam G >> B=A
sigma A F =S' sigma B G =
(A =S B) * \A=B -> F >> A=B =Fam G
data _=S_ (A B : S) : Set where
eqS : A =S' B -> A =S B
El' : S -> Set
El' nat = Nat
El' (pi A F) =
((x : El A) -> El (F ! x)) * \f ->
{x y : El A}(x=y : x == y) -> f x == pFam F x=y << f y
El' (sigma A F) =
El A * \x -> El (F ! x)
data El (A : S) : Set where
el : El' A -> El A
_=='_ : {A : S} -> rel (El A)
_=='_ {nat} (el x) (el y) = x =N y
_=='_ {pi A F} (el < f , pf >) (el < g , pg >) =
(x : El A) -> f x == g x
_=='_ {sigma A F} (el < x , Fx >) (el < y , Fy >) =
x == y * \x=y -> Fx == pFam F x=y << Fy
data _==_ {A : S}(x y : El A) : Set where
eq : x ==' y -> x == y
_=Fam_ : {A : S} -> rel (Fam A)
F =Fam G = (x : El _) -> F ! x =S G ! x
_!_ : {A : S} -> Fam A -> El A -> S
fam F _ ! x = F x
pFam : {A : S}(F : Fam A) -> Map _==_ _=S_ (_!_ F)
pFam (fam F pF) = pF
-- Families are contravariant so they cast in the other direction.
_>>_ : {A B : S} -> Fam A -> A =S B -> Fam B
_>>_ {A}{B} F A=B = fam G pG
where
G : El B -> S
G x = F ! (A=B << x)
pG : Map _==_ _=S_ G
pG x=y = pFam F (p<< A=B x=y)
pfiFam : {A B : S}(p q : A =S B)(F : Fam A) -> F >> p =Fam F >> q
pfiFam p q F x = pFam F (pfi p q x)
_<<_ : {A B : S} -> A =S B -> El B -> El A
_<<_ {nat }{pi _ _ } (eqS ()) _
_<<_ {nat }{sigma _ _ } (eqS ()) _
_<<_ {pi _ _ }{nat } (eqS ()) _
_<<_ {pi _ _ }{sigma _ _ } (eqS ()) _
_<<_ {sigma _ _ }{nat } (eqS ()) _
_<<_ {sigma _ _ }{pi _ _ } (eqS ()) _
_<<_ {nat }{nat } p x = x
_<<_ {pi A F }{pi B G } (eqS < B=A , F=G >) (el < g , pg >) =
el < f , (\{x}{y} -> pf x y) >
where
f : (x : El A) -> El (F ! x)
f x = F=G x << g (B=A << x)
pf : (x y : El A)(x=y : x == y) -> f x == pFam F x=y << f y
pf x y x=y =
chain> F=G x << g (B=A << x)
=== F=G x << _ << g (B=A << y) by p<< _ (pg (p<< B=A x=y))
=== pFam F x=y << F=G y << g (B=A << y) by pfi2 _ _ _ _ _
where
open module C = Chain _==_ (ref {_}) (trans {_})
_<<_ {sigma A F}{sigma B G} (eqS < A=B , F=G >) (el < y , Gy >) =
el < A=B << y , F=G y << Gy >
p<< : {A B : S}(A=B : A =S B) -> Map _==_ _==_ (_<<_ A=B)
p<< {nat}{nat} _ x=y = x=y
p<< {pi A F} {pi B G} (eqS < B=A , F=G >)
{el < f , pf >} {el < g , pg >} (eq f=g) = eq cf=cg
where
cf=cg : (x : El A) -> F=G x << f (B=A << x) == F=G x << g (B=A << x)
cf=cg x = p<< (F=G x) (f=g (B=A << x))
p<< {sigma A F}{sigma B G}(eqS < A=B , F=G >)
{el < x , Gx >}{el < y , Gy >} (eq < x=y , Gx=Gy >) =
eq < cx=cy , cGx=cGy >
where
cx=cy : A=B << x == A=B << y
cx=cy = p<< A=B x=y
cGx=cGy : F=G x << Gx == pFam F cx=cy << F=G y << Gy
cGx=cGy =
chain> F=G x << Gx
=== F=G x << pFam G x=y << Gy by p<< (F=G x) Gx=Gy
=== pFam F cx=cy << F=G y << Gy by pfi2 _ _ _ _ Gy
where
open module C = Chain _==_ (ref {_}) (trans {_})
p<< {nat }{pi _ _ } (eqS ()) _
p<< {nat }{sigma _ _} (eqS ()) _
p<< {pi _ _ }{nat } (eqS ()) _
p<< {pi _ _ }{sigma _ _} (eqS ()) _
p<< {sigma _ _}{nat } (eqS ()) _
p<< {sigma _ _}{pi _ _ } (eqS ()) _
refS : Refl _=S_
refS {nat} = eqS T
refS {pi A F} = eqS < refS , (\x -> symS (pFam F (ref<< x))) >
refS {sigma A F} = eqS < refS , (\x -> pFam F (ref<< x)) >
transS : Trans _=S_
transS {nat }{nat }{pi _ _ } _ (eqS ())
transS {nat }{nat }{sigma _ _ } _ (eqS ())
transS {nat }{pi _ _ } (eqS ()) _
transS {nat }{sigma _ _ } (eqS ()) _
transS {pi _ _ }{nat } (eqS ()) _
transS {pi _ _ }{pi _ _ }{nat } _ (eqS ())
transS {pi _ _ }{pi _ _ }{sigma _ _ } _ (eqS ())
transS {pi _ _ }{sigma _ _ } (eqS ()) _
transS {sigma _ _ }{nat } (eqS ()) _
transS {sigma _ _ }{pi _ _ } (eqS ()) _
transS {sigma _ _ }{sigma _ _ }{nat } _ (eqS ())
transS {sigma _ _ }{sigma _ _ }{pi _ _ } _ (eqS ())
transS {nat}{nat}{nat} p q = p
transS {pi A F}{pi B G}{pi C H}
(eqS < B=A , F=G >) (eqS < C=B , G=H >) = eqS < C=A , F=H >
where
open module C = Chain _=S_ refS transS
C=A = transS C=B B=A
F=H : F =Fam H >> C=A
F=H x =
chain> F ! x
=== G ! (B=A << x) by F=G x
=== H ! (C=B << B=A << x) by G=H (B=A << x)
=== H ! (C=A << x) by pFam H (sym (trans<< C=B B=A x))
transS {sigma A F}{sigma B G}{sigma C H}
(eqS < A=B , F=G >)(eqS < B=C , G=H >) = eqS < A=C , F=H >
where
open module C = Chain _=S_ refS transS
A=C = transS A=B B=C
F=H : F >> A=C =Fam H
F=H x =
chain> F ! (A=C << x)
=== F ! (A=B << B=C << x) by pFam F (trans<< A=B B=C x)
=== G ! (B=C << x) by F=G (B=C << x)
=== H ! x by G=H x
symS : Sym _=S_
symS {nat }{pi _ _ } (eqS ())
symS {nat }{sigma _ _ } (eqS ())
symS {pi _ _ }{nat } (eqS ())
symS {pi _ _ }{sigma _ _ } (eqS ())
symS {sigma _ _ }{nat } (eqS ())
symS {sigma _ _ }{pi _ _ } (eqS ())
symS {nat}{nat} p = p
symS {pi A F}{pi B G} (eqS < B=A , F=G >) = eqS < A=B , G=F >
where
open module C = Chain _=S_ refS transS
A=B = symS B=A
G=F : G =Fam F >> A=B
G=F x = symS (
chain> F ! (A=B << x)
=== G ! (B=A << A=B << x) by F=G (A=B << x)
=== G ! (refS << x) by pFam G (casttrans B=A A=B refS x)
=== G ! x by pFam G (ref<< x)
)
symS {sigma A F}{sigma B G}(eqS < A=B , F=G >) = eqS < B=A , G=F >
where
open module C = Chain _=S_ refS transS
B=A = symS A=B
G=F : G >> B=A =Fam F
G=F x =
chain> G ! (B=A << x)
=== F ! (A=B << B=A << x) by symS (F=G _)
=== F ! (refS << x) by pFam F (casttrans _ _ _ x)
=== F ! x by pFam F (castref _ x)
pfi : {A B : S}(p q : A =S B)(x : El B) -> p << x == q << x
pfi {nat }{pi _ _ } (eqS ()) _ _
pfi {nat }{sigma _ _ } (eqS ()) _ _
pfi {pi _ _ }{nat } (eqS ()) _ _
pfi {pi _ _ }{sigma _ _ } (eqS ()) _ _
pfi {sigma _ _ }{nat } (eqS ()) _ _
pfi {sigma _ _ }{pi _ _ } (eqS ()) _ _
pfi {nat}{nat} _ _ x = ref
pfi {pi A F}{pi B G} (eqS < B=A1 , F=G1 >) (eqS < B=A2 , F=G2 >)
(el < g , pg >) = eq g1=g2
where
g1=g2 : (x : El A) -> F=G1 x << g (B=A1 << x)
== F=G2 x << g (B=A2 << x)
g1=g2 x =
chain> F=G1 x << g (B=A1 << x)
=== F=G1 x << _ << g (B=A2 << x) by p<< _ (pg (pfi B=A1 B=A2 x))
=== F=G2 x << g (B=A2 << x) by casttrans _ _ _ _
where
open module C = Chain _==_ (ref {_}) (trans {_})
pfi {sigma A F}{sigma B G} (eqS < A=B1 , F=G1 >) (eqS < A=B2 , F=G2 >)
(el < y , Gy >) = eq < x1=x2 , Fx1=Fx2 >
where
x1=x2 : A=B1 << y == A=B2 << y
x1=x2 = pfi A=B1 A=B2 y
Fx1=Fx2 : F=G1 y << Gy == pFam F x1=x2 << F=G2 y << Gy
Fx1=Fx2 = sym (casttrans _ _ _ _)
ref<< : {A : S}(x : El A) -> refS << x == x
ref<< {nat} x = ref
ref<< {sigma A F} (el < x , Fx >) = eq < ref<< x , pfi _ _ Fx >
ref<< {pi A F } (el < f , pf >) = eq rf=f
where
rf=f : (x : El A) -> _ << f (refS << x) == f x
rf=f x =
chain> _ << f (refS << x)
=== _ << pFam F (ref<< x) << f x by p<< _ (pf (ref<< x))
=== _ << f x by sym (trans<< _ _ (f x))
=== f x by castref _ _
where open module C = Chain _==_ (ref {_}) (trans {_})
trans<< : {A B C : S}(A=B : A =S B)(B=C : B =S C)(x : El C) ->
transS A=B B=C << x == A=B << B=C << x
trans<< {nat }{nat }{pi _ _ } _ (eqS ()) _
trans<< {nat }{nat }{sigma _ _ } _ (eqS ()) _
trans<< {nat }{pi _ _ } (eqS ()) _ _
trans<< {nat }{sigma _ _ } (eqS ()) _ _
trans<< {pi _ _ }{nat } (eqS ()) _ _
trans<< {pi _ _ }{pi _ _ }{nat } _ (eqS ()) _
trans<< {pi _ _ }{pi _ _ }{sigma _ _ } _ (eqS ()) _
trans<< {pi _ _ }{sigma _ _ } (eqS ()) _ _
trans<< {sigma _ _ }{nat } (eqS ()) _ _
trans<< {sigma _ _ }{pi _ _ } (eqS ()) _ _
trans<< {sigma _ _ }{sigma _ _ }{nat } _ (eqS ()) _
trans<< {sigma _ _ }{sigma _ _ }{pi _ _ } _ (eqS ()) _
trans<< {nat}{nat}{nat} _ _ _ = ref
trans<< {pi A F}{pi B G}{pi C H}
(eqS < B=A , F=G >)(eqS < C=B , G=H >)
(el < h , ph >) = eq prf
where
C=A = transS C=B B=A
prf : (x : El A) -> _
prf x =
chain> _ << h (C=A << x)
=== _ << _ << h (C=B << B=A << x) by p<< _ (ph (trans<< _ _ x))
=== F=G x << G=H _ << h (_ << _ << x) by pfi2 _ _ _ _ _
where open module C' = Chain _==_ (ref {_}) (trans {_})
trans<< {sigma A F}{sigma B G}{sigma C H}
(eqS < A=B , F=G >)(eqS < B=C , G=H >)
(el < z , Hz >) = eq < trans<< A=B B=C z , prf >
where
prf =
chain> _ << Hz
=== _ << Hz by pfi _ _ _
=== _ << _ << Hz by trans<< _ _ _
=== _ << F=G _ << G=H z << Hz by trans<< _ _ _
where open module C' = Chain _==_ (ref {_}) (trans {_})
-- we never need this one, but it feels like it should be here...
sym<< : {A B : S}(A=B : A =S B)(x : El B) ->
symS A=B << A=B << x == x
sym<< A=B x =
chain> symS A=B << A=B << x
=== refS << x by casttrans _ _ _ x
=== x by ref<< x
where open module C' = Chain _==_ (ref {_}) (trans {_})
castref : {A : S}(p : A =S A)(x : El A) -> p << x == x
castref A=A x =
chain> A=A << x
=== refS << x by pfi A=A refS x
=== x by ref<< x
where open module C = Chain _==_ (ref {_}) (trans {_})
casttrans : {A B C : S}(A=B : A =S B)(B=C : B =S C)(A=C : A =S C)(x : El C) ->
A=B << B=C << x == A=C << x
casttrans A=B B=C A=C x =
chain> A=B << B=C << x
=== _ << x by sym (trans<< _ _ _)
=== A=C << x by pfi _ _ _
where open module C' = Chain _==_ (ref {_}) (trans {_})
pfi2 : {A B1 B2 C : S}
(A=B1 : A =S B1)(A=B2 : A =S B2)(B1=C : B1 =S C)(B2=C : B2 =S C)
(x : El C) -> A=B1 << B1=C << x == A=B2 << B2=C << x
pfi2 A=B1 A=B2 B1=C B2=C x =
chain> A=B1 << B1=C << x
=== _ << x by casttrans _ _ _ x
=== A=B2 << B2=C << x by trans<< _ _ x
where
open module C = Chain _==_ (ref {_}) (trans {_})
ref : {A : S} -> Refl {El A} _==_
ref {nat} {el n} = eq (refN {n})
ref {pi A F} {el < f , pf >} = eq \x -> ref
ref {sigma A F} {el < x , Fx >} = eq < ref , sym (castref _ _) >
trans : {A : S} -> Trans {El A} _==_
trans {nat}{el x}{el y}{el z} (eq p) (eq q) = eq (transN {x}{y}{z} p q)
trans {pi A F}{el < f , pf >}{el < g , pg >}{el < h , ph >}
(eq f=g)(eq g=h) = eq \x -> trans (f=g x) (g=h x)
trans {sigma A F}{el < x , Fx >}{el < y , Fy >}{el < z , Fz >}
(eq < x=y , Fx=Fy >)(eq < y=z , Fy=Fz >) =
eq < x=z , Fx=Fz >
where
x=z = trans x=y y=z
Fx=Fz =
chain> Fx
=== pFam F x=y << Fy by Fx=Fy
=== pFam F x=y << pFam F y=z << Fz by p<< _ Fy=Fz
=== pFam F x=z << Fz by casttrans _ _ _ _
where open module C = Chain _==_ (ref {_}) (trans {_})
sym : {A : S} -> Sym {El A} _==_
sym {nat}{el x}{el y} (eq p) = eq (symN {x}{y} p)
sym {pi A F}{el < f , pf >}{el < g , pg >}
(eq f=g) = eq \x -> sym (f=g x)
sym {sigma A F}{el < x , Fx >}{el < y , Fy >}
(eq < x=y , Fx=Fy >) = eq < y=x , Fy=Fx >
where
y=x = sym x=y
Fy=Fx = sym (
chain> pFam F y=x << Fx
=== pFam F y=x << pFam F x=y << Fy by p<< (pFam F y=x) Fx=Fy
=== refS << Fy by casttrans _ _ _ _
=== Fy by castref _ _
)
where open module C = Chain _==_ (ref {_}) (trans {_})
refFam : {A : S} -> Refl (_=Fam_ {A})
refFam x = refS
transFam : {A : S} -> Trans (_=Fam_ {A})
transFam F=G G=H x = transS (F=G x) (G=H x)
symFam : {A : S} -> Sym (_=Fam_ {A})
symFam F=G x = symS (F=G x)
castref2 : {A B : S}(A=B : A =S B)(B=A : B =S A)(x : El A) ->
A=B << B=A << x == x
castref2 A=B B=A x = trans (casttrans A=B B=A refS x) (ref<< x)
| 36.742105
| 80
| 0.387767
|
35fc5ee37c9192e94782d563726ffe6f56668e32
| 2,511
|
agda
|
Agda
|
src/Equality/Propositional.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | 3
|
2020-05-21T22:58:50.000Z
|
2021-09-02T17:18:15.000Z
|
src/Equality/Propositional.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
src/Equality/Propositional.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Propositional equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Equality.Propositional where
open import Equality
open import Logical-equivalence hiding (_∘_)
open import Prelude
------------------------------------------------------------------------
-- Equality
open import Agda.Builtin.Equality public using (_≡_; refl)
private
refl′ : ∀ {a} {A : Type a} (x : A) → x ≡ x
refl′ x = refl
elim : ∀ {a p} {A : Type a} {x y}
(P : {x y : A} → x ≡ y → Type p) →
(∀ x → P (refl′ x)) →
(x≡y : x ≡ y) → P x≡y
elim P r refl = r _
elim-refl : ∀ {a p} {A : Type a} {x}
(P : {x y : A} → x ≡ y → Type p)
(r : ∀ x → P (refl′ x)) →
elim P r (refl′ x) ≡ r x
elim-refl P r = refl
------------------------------------------------------------------------
-- Various derived definitions and properties
reflexive-relation : ∀ ℓ → Reflexive-relation ℓ
Reflexive-relation._≡_ (reflexive-relation _) = _≡_
Reflexive-relation.refl (reflexive-relation _) = refl′
equality-with-J₀ : ∀ {a p} → Equality-with-J₀ a p reflexive-relation
Equality-with-J₀.elim equality-with-J₀ = elim
Equality-with-J₀.elim-refl equality-with-J₀ = elim-refl
equivalence-relation⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ
equivalence-relation⁺ _ = J₀⇒Equivalence-relation⁺ equality-with-J₀
-- The following definition has been expanded in order to ensure that
-- it does not reduce (unless a projection is applied to it).
equality-with-J : ∀ {a p} → Equality-with-J a p equivalence-relation⁺
equality-with-J .Equality-with-J.equality-with-J₀ = J₀⇒J equality-with-J₀ .Equality-with-J.equality-with-J₀
equality-with-J .Equality-with-J.cong = J₀⇒J equality-with-J₀ .Equality-with-J.cong
equality-with-J .Equality-with-J.cong-refl = J₀⇒J equality-with-J₀ .Equality-with-J.cong-refl
equality-with-J .Equality-with-J.subst = J₀⇒J equality-with-J₀ .Equality-with-J.subst
equality-with-J .Equality-with-J.subst-refl = J₀⇒J equality-with-J₀ .Equality-with-J.subst-refl
equality-with-J .Equality-with-J.dcong = J₀⇒J equality-with-J₀ .Equality-with-J.dcong
equality-with-J .Equality-with-J.dcong-refl = J₀⇒J equality-with-J₀ .Equality-with-J.dcong-refl
open Derived-definitions-and-properties equality-with-J public
hiding (_≡_; refl; reflexive-relation; equality-with-J₀)
| 39.857143
| 107
| 0.585026
|
34de47eb49a40fca6baad10e6640577a5c8f439a
| 840
|
agda
|
Agda
|
Tools/Product.agda
|
Vtec234/logrel-mltt
|
4746894adb5b8edbddc8463904ee45c2e9b29b69
|
[
"MIT"
] | null | null | null |
Tools/Product.agda
|
Vtec234/logrel-mltt
|
4746894adb5b8edbddc8463904ee45c2e9b29b69
|
[
"MIT"
] | null | null | null |
Tools/Product.agda
|
Vtec234/logrel-mltt
|
4746894adb5b8edbddc8463904ee45c2e9b29b69
|
[
"MIT"
] | null | null | null |
-- Σ type (also used as existential) and
-- cartesian product (also used as conjunction).
{-# OPTIONS --without-K --safe #-}
module Tools.Product where
open import Agda.Primitive
open import Agda.Builtin.Sigma public using (Σ; _,_)
open import Agda.Builtin.Sigma using (fst; snd)
infixr 2 _×_
-- Dependent pair type (aka dependent sum, Σ type).
private
variable
ℓ₁ ℓ₂ ℓ₃ : Level
proj₁ : ∀ {A : Set ℓ₁} {B : A → Set ℓ₂} → Σ A B → A
proj₁ = fst
proj₂ : ∀ {A : Set ℓ₁} {B : A → Set ℓ₂} → (S : Σ A B) → B (fst S)
proj₂ = snd
-- Existential quantification.
∃ : {A : Set ℓ₁} → (A → Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
∃ = Σ _
∃₂ : {A : Set ℓ₁} {B : A → Set ℓ₂}
(C : (x : A) → B x → Set ℓ₃) → Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
∃₂ C = ∃ λ a → ∃ λ b → C a b
-- Cartesian product.
_×_ : (A : Set ℓ₁) (B : Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
A × B = Σ A (λ x → B)
| 21.538462
| 65
| 0.567857
|
fd14a18395301abbac8171ccf38247c9b07aab4f
| 2,247
|
agda
|
Agda
|
Algebra/Construct/Cayley/Propositional.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Algebra/Construct/Cayley/Propositional.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Algebra/Construct/Cayley/Propositional.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe --prop #-}
open import Algebra
open import Prelude
open import Relation.Binary.Equivalence.PropTruncated
module Algebra.Construct.Cayley.Propositional {a} (mon : Monoid a) where
open Monoid mon
record 𝒞 : Type a where
constructor cayley
infixr 7 _⇓_
field
_⇓_ : 𝑆 → 𝑆
small : ∀ x → _⇓_ ε ∙ x ≐ _⇓_ x
open 𝒞 public
⟦_⇓⟧ : 𝒞 → 𝑆
⟦ x ⇓⟧ = x ⇓ ε
⟦_⇑⟧ : 𝑆 → 𝒞
⟦ x ⇑⟧ ⇓ y = x ∙ y
⟦ x ⇑⟧ .small y = ∣ cong (_∙ y) (∙ε x) ∣
ⓔ : 𝒞
ⓔ ⇓ x = x
ⓔ .small x = ∣ ε∙ x ∣
module _ where
open Reasoning
_⊙_ : 𝒞 → 𝒞 → 𝒞
(x ⊙ y) ⇓ z = x ⇓ y ⇓ z
(x ⊙ y) .small z =
x ⇓ y ⇓ ε ∙ z ≐˘⟨ ∙cong (_∙ z) (x .small (y ⇓ ε)) ⟩
x ⇓ ε ∙ y ⇓ ε ∙ z ≡⟨ assoc (x ⇓ ε) (y ⇓ ε) z ⟩
x ⇓ ε ∙ (y ⇓ ε ∙ z) ≐⟨ ∙cong (x ⇓ ε ∙_) (y .small z) ⟩
x ⇓ ε ∙ y ⇓ z ≐⟨ x .small (y ⇓ z) ⟩
x ⇓ y ⇓ z ∎
⊙-assoc : Associative _⊙_
⊙-assoc x y z = refl
ⓔ⊙ : ∀ x → ⓔ ⊙ x ≡ x
ⓔ⊙ x = refl
⊙ⓔ : ∀ x → x ⊙ ⓔ ≡ x
⊙ⓔ x = refl
cayleyMonoid : Monoid a
Monoid.𝑆 cayleyMonoid = 𝒞
Monoid._∙_ cayleyMonoid = _⊙_
Monoid.ε cayleyMonoid = ⓔ
Monoid.assoc cayleyMonoid = ⊙-assoc
Monoid.ε∙ cayleyMonoid = ⓔ⊙
Monoid.∙ε cayleyMonoid = ⊙ⓔ
open import Data.Sigma.Properties
open import Relation.Nullary.Stable
𝒞≡ : {x y : 𝒞} → (∀ z → x ⇓ z ≡ y ⇓ z) → x ≡ y
𝒞≡ { f } { cayley g q } f≡g =
subst
(λ (g′ : 𝑆 → 𝑆) → (q′ : ∀ x → g′ ε ∙ x ≐ g′ x) → f ≡ cayley g′ q′)
(funExt f≡g)
(λ _ → refl)
q
∙-homo : ∀ x y → ⟦ x ∙ y ⇑⟧ ≡ ⟦ x ⇑⟧ ⊙ ⟦ y ⇑⟧
∙-homo x y = 𝒞≡ (assoc x y)
ε-homo : ⟦ ε ⇑⟧ ≡ ⓔ
ε-homo = 𝒞≡ ε∙
homo-to : MonoidHomomorphism mon ⟶ cayleyMonoid
MonoidHomomorphism_⟶_.f homo-to = ⟦_⇑⟧
MonoidHomomorphism_⟶_.∙-homo homo-to = ∙-homo
MonoidHomomorphism_⟶_.ε-homo homo-to = ε-homo
ⓔ-homo : ⟦ ⓔ ⇓⟧ ≡ ε
ⓔ-homo = refl
module _ (sIsStable : ∀ {x y : 𝑆} → Stable (x ≡ y)) where
⊙-homo : ∀ x y → ⟦ x ⊙ y ⇓⟧ ≡ ⟦ x ⇓⟧ ∙ ⟦ y ⇓⟧
⊙-homo x y = sym (unsquash sIsStable (x .small ⟦ y ⇓⟧))
𝒞-iso : 𝒞 ⇔ 𝑆
fun 𝒞-iso = ⟦_⇓⟧
inv 𝒞-iso = ⟦_⇑⟧
rightInv 𝒞-iso = ∙ε
leftInv 𝒞-iso x = 𝒞≡ λ y → unsquash sIsStable (x .small y)
homo-from : MonoidHomomorphism cayleyMonoid ⟶ mon
MonoidHomomorphism_⟶_.f homo-from = ⟦_⇓⟧
MonoidHomomorphism_⟶_.∙-homo homo-from = ⊙-homo
MonoidHomomorphism_⟶_.ε-homo homo-from = ⓔ-homo
| 23.164948
| 72
| 0.53182
|
30e23ef44b2be7036aa8b2d756b36dcb6d3807c2
| 50
|
agda
|
Agda
|
test/interaction/Issue2162.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue2162.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue2162.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
record ⊤ : Set where
abstract
a : ⊤
a = {!!}
| 8.333333
| 20
| 0.48
|
046926637689b29893de0b63363235f05308ca32
| 867
|
agda
|
Agda
|
Cubical/HITs/S1/Properties.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/HITs/S1/Properties.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/HITs/S1/Properties.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.S1.Properties where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.HITs.S1.Base
open import Cubical.HITs.PropositionalTruncation
isConnectedS¹ : (s : S¹) → ∥ base ≡ s ∥
isConnectedS¹ base = ∣ refl ∣
isConnectedS¹ (loop i) =
squash ∣ (λ j → loop (i ∧ j)) ∣ ∣ (λ j → loop (i ∨ ~ j)) ∣ i
isGroupoidS¹ : isGroupoid S¹
isGroupoidS¹ s t =
recPropTrunc isPropIsSet
(λ p →
subst (λ s → isSet (s ≡ t)) p
(recPropTrunc isPropIsSet
(λ q → subst (λ t → isSet (base ≡ t)) q isSetΩS¹)
(isConnectedS¹ t)))
(isConnectedS¹ s)
| 27.967742
| 62
| 0.701269
|
d1c177ab3bbaee2ccfcb613104d751d1c762fd00
| 15,459
|
agda
|
Agda
|
Cubical/Categories/Instances/CommAlgebras.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Categories/Instances/CommAlgebras.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Categories/Instances/CommAlgebras.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Categories.Instances.CommAlgebras where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Algebra
open import Cubical.Algebra.CommAlgebra
open import Cubical.Algebra.CommAlgebra.Instances.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.Instances.CommRings
open import Cubical.HITs.PropositionalTruncation
open Category hiding (_∘_) renaming (_⋆_ to _⋆c_)
open CommAlgebraHoms
open Cospan
open Pullback
private
variable
ℓ ℓ' ℓ'' : Level
module _ (R : CommRing ℓ) where
CommAlgebrasCategory : Category (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ')
ob CommAlgebrasCategory = CommAlgebra R _
Hom[_,_] CommAlgebrasCategory = CommAlgebraHom
id CommAlgebrasCategory {A} = idCommAlgebraHom A
_⋆c_ CommAlgebrasCategory {A} {B} {C} = compCommAlgebraHom A B C
⋆IdL CommAlgebrasCategory {A} {B} = compIdCommAlgebraHom {A = A} {B}
⋆IdR CommAlgebrasCategory {A} {B} = idCompCommAlgebraHom {A = A} {B}
⋆Assoc CommAlgebrasCategory {A} {B} {C} {D} = compAssocCommAlgebraHom {A = A} {B} {C} {D}
isSetHom CommAlgebrasCategory = isSetAlgebraHom _ _
TerminalCommAlgebra : Terminal (CommAlgebrasCategory {ℓ' = ℓ'})
fst TerminalCommAlgebra = UnitCommAlgebra R
fst (fst (snd TerminalCommAlgebra A)) = λ _ → tt*
snd (fst (snd TerminalCommAlgebra A)) = makeIsAlgebraHom
refl (λ _ _ → refl) (λ _ _ → refl) (λ _ _ → refl)
snd (snd TerminalCommAlgebra A) f = AlgebraHom≡ (funExt (λ _ → refl))
module PullbackFromCommRing (R : CommRing ℓ)
(commRingCospan : Cospan (CommRingsCategory {ℓ = ℓ}))
(commRingPB : Pullback _ commRingCospan)
(f₁ : CommRingHom R (commRingPB .pbOb))
(f₂ : CommRingHom R (commRingCospan .r))
(f₃ : CommRingHom R (commRingCospan .l))
(f₄ : CommRingHom R (commRingCospan .m))
where
open AlgebraHoms
open CommAlgChar R
open CommAlgebraStr ⦃...⦄
private
CommAlgCat = CommAlgebrasCategory {ℓ = ℓ} R {ℓ' = ℓ}
A = commRingPB .pbOb
B = commRingCospan .r
C = commRingCospan .l
D = commRingCospan .m
g₁ = commRingPB .pbPr₂
g₂ = commRingPB .pbPr₁
g₃ = commRingCospan .s₂
g₄ = commRingCospan .s₁
{-
g₁
A → B
⌟
g₂ ↓ ↓ g₃
C → D
g₄
-}
open RingHoms
univPropCommRingWithHomHom : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁)
(isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂)
(isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃)
(isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄)
(E,f₅ : CommRingWithHom)
(h₂ : CommRingWithHomHom E,f₅ (C , f₃))
(h₁ : CommRingWithHomHom E,f₅ (B , f₂))
→ g₄ ∘r fst h₂ ≡ g₃ ∘r fst h₁
→ ∃![ h₃ ∈ CommRingWithHomHom E,f₅ (A , f₁) ]
(fst h₂ ≡ g₂ ∘r fst h₃) × (fst h₁ ≡ g₁ ∘r fst h₃)
univPropCommRingWithHomHom isRHom₁ isRHom₂ isRHom₃ isRHom₄
(E , f₅) (h₂ , comm₂) (h₁ , comm₁) squareComm =
((h₃ , h₃∘f₅≡f₁) , h₂≡g₂∘h₃ , h₁≡g₁∘h₃)
, λ h₃' → Σ≡Prop (λ _ → isProp× (isSetRingHom _ _ _ _) (isSetRingHom _ _ _ _))
(Σ≡Prop (λ _ → isSetRingHom _ _ _ _)
(cong fst (commRingPB .univProp h₂ h₁ squareComm .snd
(h₃' .fst .fst , h₃' .snd .fst , h₃' .snd .snd))))
where
h₃ : CommRingHom E A
h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .fst
h₂≡g₂∘h₃ : h₂ ≡ g₂ ∘r h₃
h₂≡g₂∘h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .snd .fst
h₁≡g₁∘h₃ : h₁ ≡ g₁ ∘r h₃
h₁≡g₁∘h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .snd .snd
-- the crucial obervation:
-- we can apply the universal property to maps R → A
fgSquare : g₄ ∘r f₃ ≡ g₃ ∘r f₂
fgSquare = isRHom₄ ∙ sym isRHom₃
h₃∘f₅≡f₁ : h₃ ∘r f₅ ≡ f₁
h₃∘f₅≡f₁ = cong fst (isContr→isProp (commRingPB .univProp f₃ f₂ fgSquare)
(h₃ ∘r f₅ , triangle1 , triangle2) (f₁ , (sym isRHom₂) , sym isRHom₁))
where
triangle1 : f₃ ≡ g₂ ∘r (h₃ ∘r f₅)
triangle1 = sym comm₂ ∙∙ cong (compRingHom f₅) h₂≡g₂∘h₃ ∙∙ sym (compAssocRingHom f₅ h₃ g₂)
triangle2 : f₂ ≡ g₁ ∘r (h₃ ∘r f₅)
triangle2 = sym comm₁ ∙∙ cong (compRingHom f₅) h₁≡g₁∘h₃ ∙∙ sym (compAssocRingHom f₅ h₃ g₁)
algCospan : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁)
(isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂)
(isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃)
(isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄)
→ Cospan CommAlgCat
l (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (C , f₃)
m (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (D , f₄)
r (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (B , f₂)
s₁ (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₄ isRHom₄
s₂ (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₃ isRHom₃
algPullback : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁)
(isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂)
(isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃)
(isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄)
→ Pullback CommAlgCat (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄)
pbOb (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (A , f₁)
pbPr₁ (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₂ isRHom₂
pbPr₂ (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₁ isRHom₁
pbCommutes (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) =
AlgebraHom≡ (cong fst (pbCommutes commRingPB))
univProp (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) {d = F} h₂' h₁' g₄∘h₂'≡g₃∘h₁' =
(k , kComm₂ , kComm₁) , uniqueness
where
E = fromCommAlg F .fst
f₅ = fromCommAlg F .snd
h₁ : CommRingHom E B
fst h₁ = fst h₁'
IsRingHom.pres0 (snd h₁) = IsAlgebraHom.pres0 (snd h₁')
IsRingHom.pres1 (snd h₁) = IsAlgebraHom.pres1 (snd h₁')
IsRingHom.pres+ (snd h₁) = IsAlgebraHom.pres+ (snd h₁')
IsRingHom.pres· (snd h₁) = IsAlgebraHom.pres· (snd h₁')
IsRingHom.pres- (snd h₁) = IsAlgebraHom.pres- (snd h₁')
h₁comm : h₁ ∘r f₅ ≡ f₂
h₁comm = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd h₁') x 1a
∙∙ cong (fst f₂ x ·_) (IsAlgebraHom.pres1 (snd h₁'))
∙∙ ·Rid _))
where
instance
_ = snd F
_ = snd (toCommAlg (B , f₂))
h₂ : CommRingHom E C
fst h₂ = fst h₂'
IsRingHom.pres0 (snd h₂) = IsAlgebraHom.pres0 (snd h₂')
IsRingHom.pres1 (snd h₂) = IsAlgebraHom.pres1 (snd h₂')
IsRingHom.pres+ (snd h₂) = IsAlgebraHom.pres+ (snd h₂')
IsRingHom.pres· (snd h₂) = IsAlgebraHom.pres· (snd h₂')
IsRingHom.pres- (snd h₂) = IsAlgebraHom.pres- (snd h₂')
h₂comm : h₂ ∘r f₅ ≡ f₃
h₂comm = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd h₂') x 1a
∙∙ cong (fst f₃ x ·_) (IsAlgebraHom.pres1 (snd h₂'))
∙∙ ·Rid _))
where
instance
_ = snd F
_ = snd (toCommAlg (C , f₃))
commRingSquare : g₄ ∘r h₂ ≡ g₃ ∘r h₁
commRingSquare = RingHom≡ (funExt (λ x → funExt⁻ (cong fst g₄∘h₂'≡g₃∘h₁') x))
uniqueH₃ : ∃![ h₃ ∈ CommRingWithHomHom (E , f₅) (A , f₁) ] (h₂ ≡ g₂ ∘r fst h₃) × (h₁ ≡ g₁ ∘r fst h₃)
uniqueH₃ = univPropCommRingWithHomHom isRHom₁ isRHom₂ isRHom₃ isRHom₄
(E , f₅) (h₂ , h₂comm) (h₁ , h₁comm) commRingSquare
h₃ : CommRingHom E A
h₃ = uniqueH₃ .fst .fst .fst
h₃comm = uniqueH₃ .fst .fst .snd
k : CommAlgebraHom F (toCommAlg (A , f₁))
fst k = fst h₃
IsAlgebraHom.pres0 (snd k) = IsRingHom.pres0 (snd h₃)
IsAlgebraHom.pres1 (snd k) = IsRingHom.pres1 (snd h₃)
IsAlgebraHom.pres+ (snd k) = IsRingHom.pres+ (snd h₃)
IsAlgebraHom.pres· (snd k) = IsRingHom.pres· (snd h₃)
IsAlgebraHom.pres- (snd k) = IsRingHom.pres- (snd h₃)
IsAlgebraHom.pres⋆ (snd k) =
λ r y → sym (fst f₁ r · fst h₃ y ≡⟨ cong (_· fst h₃ y) (sym (funExt⁻ (cong fst h₃comm) r)) ⟩
fst h₃ (fst f₅ r) · fst h₃ y ≡⟨ sym (IsRingHom.pres· (snd h₃) _ _) ⟩
fst h₃ (fst f₅ r · y) ≡⟨ refl ⟩
fst h₃ ((r ⋆ 1a) · y) ≡⟨ cong (fst h₃) (⋆-lassoc _ _ _) ⟩
fst h₃ (r ⋆ (1a · y)) ≡⟨ cong (λ x → fst h₃ (r ⋆ x)) (·Lid y) ⟩
fst h₃ (r ⋆ y) ∎)
where
instance
_ = snd F
_ = (toCommAlg (A , f₁) .snd)
kComm₂ : h₂' ≡ toCommAlgebraHom _ _ g₂ isRHom₂ ∘a k
kComm₂ = AlgebraHom≡ (cong fst (uniqueH₃ .fst .snd .fst))
kComm₁ : h₁' ≡ toCommAlgebraHom _ _ g₁ isRHom₁ ∘a k
kComm₁ = AlgebraHom≡ (cong fst (uniqueH₃ .fst .snd .snd))
uniqueness : (y : Σ[ k' ∈ CommAlgebraHom F (toCommAlg (A , f₁)) ]
(h₂' ≡ toCommAlgebraHom _ _ g₂ isRHom₂ ∘a k')
× (h₁' ≡ toCommAlgebraHom _ _ g₁ isRHom₁ ∘a k'))
→ (k , kComm₂ , kComm₁) ≡ y
uniqueness (k' , k'Comm₂ , k'Comm₁) = Σ≡Prop (λ _ → isProp× (isSetAlgebraHom _ _ _ _)
(isSetAlgebraHom _ _ _ _))
(AlgebraHom≡ (cong (fst ∘ fst ∘ fst) uniqHelper))
where
h₃' : CommRingHom E A
fst h₃' = fst k'
IsRingHom.pres0 (snd h₃') = IsAlgebraHom.pres0 (snd k')
IsRingHom.pres1 (snd h₃') = IsAlgebraHom.pres1 (snd k')
IsRingHom.pres+ (snd h₃') = IsAlgebraHom.pres+ (snd k')
IsRingHom.pres· (snd h₃') = IsAlgebraHom.pres· (snd k')
IsRingHom.pres- (snd h₃') = IsAlgebraHom.pres- (snd k')
h₃'IsRHom : h₃' ∘r f₅ ≡ f₁
h₃'IsRHom = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd k') x 1a
∙ cong (fst f₁ x ·_) (IsAlgebraHom.pres1 (snd k'))
∙ ·Rid (fst f₁ x)))
where
instance
_ = snd F
_ = (toCommAlg (A , f₁) .snd)
h₃'Comm₂ : h₂ ≡ g₂ ∘r h₃'
h₃'Comm₂ = RingHom≡ (cong fst k'Comm₂)
h₃'Comm₁ : h₁ ≡ g₁ ∘r h₃'
h₃'Comm₁ = RingHom≡ (cong fst k'Comm₁)
-- basically saying that h₃≡h₃' but we have to give all the commuting triangles
uniqHelper : uniqueH₃ .fst ≡ ((h₃' , h₃'IsRHom) , h₃'Comm₂ , h₃'Comm₁)
uniqHelper = uniqueH₃ .snd ((h₃' , h₃'IsRHom) , h₃'Comm₂ , h₃'Comm₁)
module PreSheafFromUniversalProp (C : Category ℓ ℓ') (P : ob C → Type ℓ)
{R : CommRing ℓ''} (𝓕 : Σ (ob C) P → CommAlgebra R ℓ'')
(uniqueHom : ∀ x y → C [ fst x , fst y ] → isContr (CommAlgebraHom (𝓕 y) (𝓕 x)))
where
private
∥P∥ : ℙ (ob C)
∥P∥ x = ∥ P x ∥₁ , isPropPropTrunc
ΣC∥P∥Cat = ΣPropCat C ∥P∥
CommAlgCat = CommAlgebrasCategory {ℓ = ℓ''} R {ℓ' = ℓ''}
𝓕UniqueEquiv : (x : ob C) (p q : P x) → isContr (CommAlgebraEquiv (𝓕 (x , p)) (𝓕 (x , q)))
𝓕UniqueEquiv x = contrCommAlgebraHom→contrCommAlgebraEquiv (curry 𝓕 x) λ p q → uniqueHom _ _ (id C)
theMap : (x : ob C) → ∥ P x ∥₁ → CommAlgebra R ℓ''
theMap x = recPT→CommAlgebra (curry 𝓕 x) (λ p q → 𝓕UniqueEquiv x p q .fst)
λ p q r → 𝓕UniqueEquiv x p r .snd _
theAction : (x y : ob C) → C [ x , y ]
→ (p : ∥ P x ∥₁) (q : ∥ P y ∥₁) → isContr (CommAlgebraHom (theMap y q) (theMap x p))
theAction _ _ f = elim2 (λ _ _ → isPropIsContr) λ _ _ → uniqueHom _ _ f
open Functor
universalPShf : Functor (ΣC∥P∥Cat ^op) CommAlgCat
F-ob universalPShf = uncurry theMap
F-hom universalPShf {x = x} {y = y} f = theAction _ _ f (y .snd) (x. snd) .fst
F-id universalPShf {x = x} = theAction (x .fst) (x .fst) (id C) (x .snd) (x .snd) .snd _
F-seq universalPShf {x = x} {z = z} f g = theAction _ _ (g ⋆⟨ C ⟩ f) (z .snd) (x .snd) .snd _
-- a big transport to help verifying the sheaf property
module toSheaf (x y u v : ob ΣC∥P∥Cat)
{f : C [ v .fst , y . fst ]} {g : C [ v .fst , u .fst ]}
{h : C [ u .fst , x . fst ]} {k : C [ y .fst , x .fst ]}
(Csquare : g ⋆⟨ C ⟩ h ≡ f ⋆⟨ C ⟩ k)
{-
v → y
↓ ↓
u → x
-}
(AlgCospan : Cospan CommAlgCat)
(AlgPB : Pullback _ AlgCospan)
(p₁ : AlgPB .pbOb ≡ F-ob universalPShf x) (p₂ : AlgCospan .l ≡ F-ob universalPShf u)
(p₃ : AlgCospan .r ≡ F-ob universalPShf y) (p₄ : AlgCospan .m ≡ F-ob universalPShf v)
where
private
-- just: 𝓕 k ⋆ 𝓕 f ≡ 𝓕 h ⋆ 𝓕 g
inducedSquare : seq' CommAlgCat {x = F-ob universalPShf x}
{y = F-ob universalPShf u}
{z = F-ob universalPShf v}
(F-hom universalPShf h) (F-hom universalPShf g)
≡ seq' CommAlgCat {x = F-ob universalPShf x}
{y = F-ob universalPShf y}
{z = F-ob universalPShf v}
(F-hom universalPShf k) (F-hom universalPShf f)
inducedSquare = F-square universalPShf Csquare
f' = F-hom universalPShf {x = y} {y = v} f
g' = F-hom universalPShf {x = u} {y = v} g
h' = F-hom universalPShf {x = x} {y = u} h
k' = F-hom universalPShf {x = x} {y = y} k
gPathP : PathP (λ i → CommAlgCat [ p₂ i , p₄ i ]) (AlgCospan .s₁) g'
gPathP = toPathP (sym (theAction _ _ g (v .snd) (u .snd) .snd _))
fPathP : PathP (λ i → CommAlgCat [ p₃ i , p₄ i ]) (AlgCospan .s₂) f'
fPathP = toPathP (sym (theAction _ _ f (v .snd) (y .snd) .snd _))
kPathP : PathP (λ i → CommAlgCat [ p₁ i , p₃ i ]) (AlgPB .pbPr₂) k'
kPathP = toPathP (sym (theAction _ _ k (y .snd) (x .snd) .snd _))
hPathP : PathP (λ i → CommAlgCat [ p₁ i , p₂ i ]) (AlgPB .pbPr₁) h'
hPathP = toPathP (sym (theAction _ _ h (u .snd) (x .snd) .snd _))
fgCospan : Cospan CommAlgCat
l fgCospan = F-ob universalPShf u
m fgCospan = F-ob universalPShf v
r fgCospan = F-ob universalPShf y
s₁ fgCospan = g'
s₂ fgCospan = f'
cospanPath : AlgCospan ≡ fgCospan
l (cospanPath i) = p₂ i
m (cospanPath i) = p₄ i
r (cospanPath i) = p₃ i
s₁ (cospanPath i) = gPathP i
s₂ (cospanPath i) = fPathP i
squarePathP : PathP (λ i → hPathP i ⋆⟨ CommAlgCat ⟩ gPathP i ≡ kPathP i ⋆⟨ CommAlgCat ⟩ fPathP i)
(AlgPB .pbCommutes) inducedSquare
squarePathP = toPathP (CommAlgCat .isSetHom _ _ _ _)
abstract
lemma : isPullback CommAlgCat fgCospan {c = F-ob universalPShf x} h' k' inducedSquare
lemma = transport (λ i → isPullback CommAlgCat (cospanPath i) {c = p₁ i}
(hPathP i) (kPathP i) (squarePathP i))
(AlgPB .univProp)
| 42.237705
| 102
| 0.5697
|
ad26fe9c64a39bca297a77b0017e60c22171c2b9
| 1,591
|
agda
|
Agda
|
src/Categories/Category/Construction/Monoids.agda
|
turion/agda-categories
|
ad0f94b6cf18d8a448b844b021aeda58e833d152
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Category/Construction/Monoids.agda
|
turion/agda-categories
|
ad0f94b6cf18d8a448b844b021aeda58e833d152
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Category/Construction/Monoids.agda
|
turion/agda-categories
|
ad0f94b6cf18d8a448b844b021aeda58e833d152
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
open import Categories.Category.Monoidal.Core
-- This module defines the category of monoids internal to a given monoidal
-- category.
module Categories.Category.Construction.Monoids {o ℓ e} {𝒞 : Category o ℓ e} (C : Monoidal 𝒞) where
open import Level
open import Categories.Functor using (Functor)
open import Categories.Morphism.Reasoning 𝒞
open import Categories.Object.Monoid C
open Category 𝒞
open Monoidal C
open HomReasoning
open Monoid using (η; μ)
open Monoid⇒
Monoids : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e
Monoids = record
{ Obj = Monoid
; _⇒_ = Monoid⇒
; _≈_ = λ f g → arr f ≈ arr g
; id = record
{ arr = id
; preserves-μ = identityˡ ○ introʳ (Functor.identity ⊗)
; preserves-η = identityˡ
}
; _∘_ = λ {A B C} f g → record
{ arr = arr f ∘ arr g
; preserves-μ = begin
(arr f ∘ arr g) ∘ μ A ≈⟨ pullʳ (preserves-μ g) ⟩
arr f ∘ (μ B ∘ arr g ⊗₁ arr g) ≈⟨ pullˡ (preserves-μ f) ⟩
(μ C ∘ arr f ⊗₁ arr f) ∘ arr g ⊗₁ arr g ≈˘⟨ pushʳ (Functor.homomorphism ⊗) ⟩
μ C ∘ (arr f ∘ arr g) ⊗₁ (arr f ∘ arr g) ∎
; preserves-η = pullʳ (preserves-η g) ○ preserves-η f
}
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
-- We cannot define equiv = equiv here, because _⇒_ of this category is a
-- different level to the _⇒_ of 𝒞.
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
} where open Equiv
| 28.927273
| 99
| 0.612822
|
1e2c532eae2879425f07a0e4b1703d6863d2ff87
| 9,287
|
agda
|
Agda
|
src/STLC/Kovacs/PresheafRefinement.agda
|
mietek/coquand-kovacs
|
bd626509948fbf8503ec2e31c1852e1ac6edcc79
|
[
"X11"
] | null | null | null |
src/STLC/Kovacs/PresheafRefinement.agda
|
mietek/coquand-kovacs
|
bd626509948fbf8503ec2e31c1852e1ac6edcc79
|
[
"X11"
] | null | null | null |
src/STLC/Kovacs/PresheafRefinement.agda
|
mietek/coquand-kovacs
|
bd626509948fbf8503ec2e31c1852e1ac6edcc79
|
[
"X11"
] | null | null | null |
module STLC.Kovacs.PresheafRefinement where
open import STLC.Kovacs.Substitution public
open import STLC.Kovacs.Normalisation public
open import Category
--------------------------------------------------------------------------------
-- (Tyᴺ-idₑ)
idacc : ∀ {A Γ} → (a : Γ ⊩ A)
→ acc idₑ a ≡ a
idacc {⎵} M = idrenⁿᶠ M
idacc {A ⇒ B} f = fext¡ (fext! (λ η → f & lid○ η))
-- (Tyᴺ-∘ₑ)
acc○ : ∀ {A Γ Γ′ Γ″} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (a : Γ ⊩ A)
→ acc (η₂ ○ η₁) a ≡ (acc η₁ ∘ acc η₂) a
acc○ {⎵} η₁ η₂ M = renⁿᶠ○ η₁ η₂ M
acc○ {A ⇒ B} η₁ η₂ f = fext¡ (fext! (λ η′ → f & assoc○ η′ η₁ η₂))
-- (Conᴺ-idₑ)
lid⬖ : ∀ {Γ Ξ} → (ρ : Γ ⊩⋆ Ξ)
→ ρ ⬖ idₑ ≡ ρ
lid⬖ ∅ = refl
lid⬖ (ρ , a) = _,_ & lid⬖ ρ
⊗ idacc a
-- (Conᴺ-∘ₑ)
comp⬖○ : ∀ {Γ Γ′ Γ″ Ξ} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (ρ : Γ ⊩⋆ Ξ)
→ (ρ ⬖ η₂) ⬖ η₁ ≡ ρ ⬖ (η₂ ○ η₁)
comp⬖○ η₁ η₂ ∅ = refl
comp⬖○ η₁ η₂ (ρ , a) = _,_ & comp⬖○ η₁ η₂ ρ
⊗ (acc○ η₁ η₂ a ⁻¹)
-- (∈ᴺ-nat)
get⬖ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ⊇ Γ) (ρ : Γ ⊩⋆ Ξ) (i : Ξ ∋ A)
→ getᵥ (ρ ⬖ η) i ≡ (acc η ∘ getᵥ ρ) i
get⬖ η (ρ , a) zero = refl
get⬖ η (ρ , a) (suc i) = get⬖ η ρ i
--------------------------------------------------------------------------------
-- (Tyᴾ)
𝒰 : ∀ {A Γ} → Γ ⊩ A → Set
𝒰 {⎵} {Γ} M = ⊤
𝒰 {A ⇒ B} {Γ} f = ∀ {Γ′} → (η : Γ′ ⊇ Γ) {a : Γ′ ⊩ A} (u : 𝒰 a)
→ (∀ {Γ″} → (η′ : Γ″ ⊇ Γ′)
→ (f (η ○ η′) ∘ acc η′) a ≡
(acc η′ ∘ f η) a)
× 𝒰 (f η a)
-- (Tyᴾₑ)
acc𝒰 : ∀ {A Γ Γ′} → {a : Γ ⊩ A}
→ (η : Γ′ ⊇ Γ) → 𝒰 a
→ 𝒰 (acc η a)
acc𝒰 {⎵} {a = M} η tt = tt
acc𝒰 {A ⇒ B} {a = f} η u = λ η′ {a} u′ →
let
natf , u″ = u (η ○ η′) u′
in
(λ η″ → (λ η‴ → (f η‴ ∘ acc η″) a)
& (assoc○ η″ η′ η ⁻¹)
⦙ natf η″)
, u″
-- (Conᴾ ; ∙ ; _,_)
data 𝒰⋆ : ∀ {Γ Ξ} → Γ ⊩⋆ Ξ → Set where
∅ : ∀ {Γ} → 𝒰⋆ (∅ {Γ})
_,_ : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ} {a : Γ ⊩ A}
→ (υ : 𝒰⋆ ρ) (u : 𝒰 a)
→ 𝒰⋆ (ρ , a)
-- (Conᴾₑ)
-- NOTE _⬖𝒰_ = acc𝒰⋆
_⬖𝒰_ : ∀ {Γ Γ′ Ξ} → {ρ : Γ ⊩⋆ Ξ}
→ 𝒰⋆ ρ → (η : Γ′ ⊇ Γ)
→ 𝒰⋆ (ρ ⬖ η)
∅ ⬖𝒰 η = ∅
(υ , u) ⬖𝒰 η = υ ⬖𝒰 η , acc𝒰 η u
--------------------------------------------------------------------------------
-- (∈ᴾ)
get𝒰 : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ 𝒰⋆ ρ → (i : Ξ ∋ A)
→ 𝒰 (getᵥ ρ i)
get𝒰 (υ , u) zero = u
get𝒰 (υ , u) (suc i) = get𝒰 υ i
mutual
-- (Tmᴾ)
eval𝒰 : ∀ {Γ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ 𝒰⋆ ρ → (M : Ξ ⊢ A)
→ 𝒰 (eval ρ M)
eval𝒰 {ρ = ρ} υ (𝓋 i) = get𝒰 υ i
eval𝒰 {ρ = ρ} υ (ƛ M) = λ η {a} u →
(λ η′ → (λ ρ′ → eval (ρ′ , acc η′ a) M)
& (comp⬖○ η′ η ρ ⁻¹)
⦙ eval⬖ η′ (υ ⬖𝒰 η , u) M)
, eval𝒰 (υ ⬖𝒰 η , u) M
eval𝒰 {ρ = ρ} υ (M ∙ N) = proj₂ (eval𝒰 υ M idₑ (eval𝒰 υ N))
-- (Tmᴺ-nat)
eval⬖ : ∀ {Γ Γ′ Ξ A} → {ρ : Γ ⊩⋆ Ξ}
→ (η : Γ′ ⊇ Γ) → 𝒰⋆ ρ → (M : Ξ ⊢ A)
→ eval (ρ ⬖ η) M ≡ (acc η ∘ eval ρ) M
eval⬖ {ρ = ρ} η υ (𝓋 i) = get⬖ η ρ i
eval⬖ {ρ = ρ} η υ (ƛ M) = fext¡ (fext! (λ η′ → fext! (λ a →
(λ ρ′ → eval ρ′ M)
& ((_, a) & comp⬖○ η′ η ρ))))
eval⬖ {ρ = ρ} η υ (M ∙ N) rewrite eval⬖ η υ M | eval⬖ η υ N
= (λ η′ → eval ρ M η′ (acc η (eval ρ N)))
& (rid○ η ⦙ lid○ η ⁻¹)
⦙ proj₁ (eval𝒰 υ M idₑ (eval𝒰 υ N)) η
mutual
-- (uᴾ)
reflect𝒰 : ∀ {A Γ} → (M : Γ ⊢ⁿᵉ A)
→ 𝒰 (reflect M)
reflect𝒰 {⎵} M = tt
reflect𝒰 {A ⇒ B} M = λ η {a} u →
(λ η′ → (λ M′ N′ → reflect (M′ ∙ N′))
& renⁿᵉ○ η′ η M
⊗ (natreify η′ a u)
⦙ natreflect η′ (renⁿᵉ η M ∙ reify a))
, reflect𝒰 (renⁿᵉ η M ∙ reify a)
-- (qᴺ-nat)
natreify : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ) (a : Γ ⊩ A) → 𝒰 a
→ (reify ∘ acc η) a ≡ (renⁿᶠ η ∘ reify) a
natreify {⎵} η M u = refl
natreify {A ⇒ B} η f u =
let
natf , u′ = u (wkₑ idₑ) (reflect𝒰 0)
in
ƛ & ( reify & ( f & (wkₑ & ( rid○ η
⦙ lid○ η ⁻¹
))
⊗ natreflect (liftₑ η) 0
⦙ natf (liftₑ η)
)
⦙ natreify (liftₑ η) (f (wkₑ idₑ) (reflect 0)) u′
)
-- (uᴺ-nat)
natreflect : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ⁿᵉ A)
→ (reflect ∘ renⁿᵉ η) M ≡ (acc η ∘ reflect) M
natreflect {⎵} η M = refl
natreflect {A ⇒ B} η M = fext¡ (fext! (λ η′ → fext! (λ a →
(λ M′ → reflect (M′ ∙ reify a))
& (renⁿᵉ○ η′ η M ⁻¹))))
-- (uᶜᴾ)
id𝒰 : ∀ {Γ} → 𝒰⋆ (idᵥ {Γ})
id𝒰 {∅} = ∅
id𝒰 {Γ , A} = id𝒰 ⬖𝒰 wkₑ idₑ , reflect𝒰 0
--------------------------------------------------------------------------------
-- (OPEᴺ)
_⬗_ : ∀ {Γ Ξ Ξ′} → Ξ′ ⊇ Ξ → Γ ⊩⋆ Ξ′ → Γ ⊩⋆ Ξ
done ⬗ ρ = ρ
wkₑ η ⬗ (ρ , a) = η ⬗ ρ
liftₑ η ⬗ (ρ , a) = η ⬗ ρ , a
-- (OPEᴺ-nat)
nat⬗ : ∀ {Γ Γ′ Ξ Ξ′} → (η₁ : Γ′ ⊇ Γ) (ρ : Γ ⊩⋆ Ξ′) (η₂ : Ξ′ ⊇ Ξ)
→ η₂ ⬗ (ρ ⬖ η₁) ≡ (η₂ ⬗ ρ) ⬖ η₁
nat⬗ η₁ ρ done = refl
nat⬗ η₁ (ρ , a) (wkₑ η₂) = nat⬗ η₁ ρ η₂
nat⬗ η₁ (ρ , a) (liftₑ η₂) = (_, acc η₁ a) & nat⬗ η₁ ρ η₂
-- (OPEᴺ-idₑ)
lid⬗ : ∀ {Γ Ξ} → (ρ : Γ ⊩⋆ Ξ)
→ idₑ ⬗ ρ ≡ ρ
lid⬗ ∅ = refl
lid⬗ (ρ , a) = (_, a) & lid⬗ ρ
--------------------------------------------------------------------------------
-- (∈ₑᴺ)
get⬗ : ∀ {Γ Ξ Ξ′ A} → (ρ : Γ ⊩⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (i : Ξ ∋ A)
→ getᵥ (η ⬗ ρ) i ≡ (getᵥ ρ ∘ getₑ η) i
get⬗ ρ done i = refl
get⬗ (ρ , a) (wkₑ η) i = get⬗ ρ η i
get⬗ (ρ , a) (liftₑ η) zero = refl
get⬗ (ρ , a) (liftₑ η) (suc i) = get⬗ ρ η i
-- (Tmₑᴺ)
eval⬗ : ∀ {Γ Ξ Ξ′ A} → (ρ : Γ ⊩⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (M : Ξ ⊢ A)
→ eval (η ⬗ ρ) M ≡ (eval ρ ∘ ren η) M
eval⬗ ρ η (𝓋 i) = get⬗ ρ η i
eval⬗ ρ η (ƛ M) = fext¡ (fext! (λ η′ → fext! (λ a →
(λ ρ′ → eval (ρ′ , a) M) & nat⬗ η′ ρ η ⁻¹
⦙ eval⬗ (ρ ⬖ η′ , a) (liftₑ η) M)))
eval⬗ ρ η (M ∙ N) rewrite eval⬗ ρ η M | eval⬗ ρ η N
= refl
--------------------------------------------------------------------------------
-- (Subᴺ)
-- NOTE: _◆_ = eval⋆
_◆_ : ∀ {Γ Ξ Φ} → Ξ ⊢⋆ Φ → Γ ⊩⋆ Ξ → Γ ⊩⋆ Φ
∅ ◆ ρ = ∅
(σ , M) ◆ ρ = σ ◆ ρ , eval ρ M
-- (Subᴺ-nat)
comp◆⬖ : ∀ {Γ Γ′ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ}
→ (η : Γ′ ⊇ Γ) → 𝒰⋆ ρ → (σ : Ξ ⊢⋆ Φ)
→ (σ ◆ ρ) ⬖ η ≡ σ ◆ (ρ ⬖ η)
comp◆⬖ η υ ∅ = refl
comp◆⬖ η υ (σ , M) = _,_ & comp◆⬖ η υ σ
⊗ (eval⬖ η υ M ⁻¹)
-- (Subᴺ-ₛ∘ₑ)
comp◆⬗ : ∀ {Γ Ξ Ξ′ Φ} → (ρ : Γ ⊩⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (σ : Ξ ⊢⋆ Φ)
→ (σ ◐ η) ◆ ρ ≡ σ ◆ (η ⬗ ρ)
comp◆⬗ ρ η ∅ = refl
comp◆⬗ ρ η (σ , M) = _,_ & comp◆⬗ ρ η σ
⊗ (eval⬗ ρ η M ⁻¹)
-- (∈ₛᴺ)
get◆ : ∀ {Γ Ξ Φ A} → (ρ : Γ ⊩⋆ Ξ) (σ : Ξ ⊢⋆ Φ) (i : Φ ∋ A)
→ getᵥ (σ ◆ ρ) i ≡ (eval ρ ∘ getₛ σ) i
get◆ ρ (σ , M) zero = refl
get◆ ρ (σ , M) (suc i) = get◆ ρ σ i
-- (Subᴺ-idₛ)
lid◆ : ∀ {Γ Ξ} → (ρ : Γ ⊩⋆ Ξ)
→ idₛ ◆ ρ ≡ ρ
lid◆ ∅ = refl
lid◆ (ρ , a) = (_, a) & ( comp◆⬗ (ρ , a) (wkₑ idₑ) idₛ
⦙ lid◆ (idₑ ⬗ ρ)
⦙ lid⬗ ρ
)
--------------------------------------------------------------------------------
accPsh : 𝒯 → Presheaf₀ 𝗢𝗣𝗘
accPsh A =
record
{ Fₓ = _⊩ A
; F = acc
; idF = fext! idacc
; F⋄ = λ η₁ η₂ → fext! (acc○ η₂ η₁)
}
flip⬖Psh : 𝒞 → Presheaf₀ 𝗢𝗣𝗘
flip⬖Psh Ξ =
record
{ Fₓ = _⊩⋆ Ξ
; F = flip _⬖_
; idF = fext! lid⬖
; F⋄ = λ η₁ η₂ → fext! (λ ρ → comp⬖○ η₂ η₁ ρ ⁻¹)
}
getᵥNT : ∀ {Ξ A} → (i : Ξ ∋ A)
→ NaturalTransformation (flip⬖Psh Ξ) (accPsh A)
getᵥNT i =
record
{ N = flip getᵥ i
; natN = λ η → fext! (λ ρ → get⬖ η ρ i)
}
-- TODO
-- evalNT : ∀ {Ξ A} → (M : Ξ ⊢ A)
-- → NaturalTransformation (flip⬖Psh Ξ) (accPsh A)
-- evalNT M =
-- record
-- { N = flip eval M
-- ; natN = λ η → fext! (λ ρ → eval⬖ {ρ = ρ} η {!!} M)
-- }
-- TODO
-- reifyNT : ∀ {A} → NaturalTransformation (accPsh A) (renⁿᶠPsh A)
-- reifyNT =
-- record
-- { N = reify
-- ; natN = λ η → fext! (λ a → natreify η a {!!})
-- }
reflectNT : ∀ {A} → NaturalTransformation (renⁿᵉPsh A) (accPsh A)
reflectNT =
record
{ N = reflect
; natN = λ η → fext! (λ M → natreflect η M)
}
--------------------------------------------------------------------------------
| 29.861736
| 80
| 0.299128
|
433bac51dc5869c26ed03296c2736c3d95680f35
| 23,213
|
agda
|
Agda
|
src/Data/Fin/Substitution/ExtraLemmas.agda
|
sstucki/f-omega-int-agda
|
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
|
[
"MIT"
] | 12
|
2017-06-13T16:05:35.000Z
|
2021-09-27T05:53:06.000Z
|
src/Data/Fin/Substitution/ExtraLemmas.agda
|
sstucki/f-omega-int-agda
|
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
|
[
"MIT"
] | 1
|
2021-05-14T08:09:40.000Z
|
2021-05-14T08:54:39.000Z
|
src/Data/Fin/Substitution/ExtraLemmas.agda
|
sstucki/f-omega-int-agda
|
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
|
[
"MIT"
] | 2
|
2021-05-13T22:29:48.000Z
|
2021-05-14T10:25:05.000Z
|
------------------------------------------------------------------------
-- Extra lemmas about substitutions
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Data.Fin.Substitution.ExtraLemmas where
open import Data.Fin using (Fin; zero; suc)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Extra
open import Data.Fin.Substitution.Lemmas
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Vec using (_∷_; lookup; map)
open import Data.Vec.Properties using (map-cong; map-∘; lookup-map)
open import Data.Vec.Relation.Unary.All hiding (lookup; map)
open import Function using (_∘_; _$_; flip)
open import Level using (_⊔_) renaming (zero to lzero; suc to lsuc)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
using (Star; ε; _◅_; _▻_)
open import Relation.Binary.PropositionalEquality as PropEq hiding (subst)
open PropEq.≡-Reasoning
open import Relation.Unary using (Pred)
------------------------------------------------------------------------
-- Lemmas generalizing those in Data.Fin.Substitution.Lemmas.
--
-- NOTE. The modules below generalize the Lemmasᵢ record modules from
-- Data.Fin.Substitution.Lemmas in two ways:
--
-- 1) by proving generalized versions of existing lemmas that relate
-- extended substitutions t /∷ ρ instead of lifted ones ρ ↑ and
--
-- 2) by adding extra lemmas that were not present in the original
-- modules.
-- An generalized version of Data.Fin.Lemmas.Lemmas₀
module ExtLemmas₀ {ℓ} {T : Pred ℕ ℓ} (lemmas₀ : Lemmas₀ T) where
open Data.Fin using (lift; raise)
open Lemmas₀ lemmas₀ public hiding (lookup-map-weaken-↑⋆)
open SimpleExt simple
-- A generalized variant of Lemmas₀.lookup-map-weaken-↑⋆.
lookup-map-weaken-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} {t} →
lookup (map weaken ρ ↑⋆ k) x ≡
lookup ((t /∷ ρ) ↑⋆ k) (lift k suc x)
lookup-map-weaken-↑⋆ zero x = refl
lookup-map-weaken-↑⋆ (suc k) zero = refl
lookup-map-weaken-↑⋆ (suc k) (suc x) {ρ} {t} = begin
lookup (map weaken (map weaken ρ ↑⋆ k)) x
≡⟨ lookup-map x weaken (map weaken ρ ↑⋆ k) ⟩
weaken (lookup (map weaken ρ ↑⋆ k) x)
≡⟨ cong weaken (lookup-map-weaken-↑⋆ k x) ⟩
weaken (lookup ((t /∷ ρ) ↑⋆ k) (lift k suc x))
≡⟨ sym (lookup-map (lift k suc x) weaken ((t /∷ ρ) ↑⋆ k)) ⟩
lookup (map weaken ((t /∷ ρ) ↑⋆ k)) (lift k suc x)
∎
-- A version of Data.Fin.Lemmas.Lemmas₁ with additional lemmas.
module ExtLemmas₁ {ℓ} {T : Pred ℕ ℓ} (lemmas₁ : Lemmas₁ T) where
open Data.Fin using (raise; fromℕ; lift)
open Lemmas₁ lemmas₁
open Simple simple
lookup-wk⋆ : ∀ {n} (x : Fin n) k → lookup (wk⋆ k) x ≡ var (raise k x)
lookup-wk⋆ x zero = lookup-id x
lookup-wk⋆ x (suc k) = lookup-map-weaken x {_} {wk⋆ k} (lookup-wk⋆ x k)
lookup-raise-↑⋆ : ∀ k {m n} x {y} {σ : Sub T m n} →
lookup σ x ≡ var y →
lookup (σ ↑⋆ k) (raise k x) ≡ var (raise k y)
lookup-raise-↑⋆ zero x hyp = hyp
lookup-raise-↑⋆ (suc k) x {y} {σ} hyp =
lookup-map-weaken (raise k x) {_} {σ ↑⋆ k} (lookup-raise-↑⋆ k x hyp)
-- A generalized version of Data.Fin.Lemmas.Lemmas₄
module ExtLemmas₄ {ℓ} {T : Pred ℕ ℓ} (lemmas₄ : Lemmas₄ T) where
open Data.Fin using (lift; raise)
open Lemmas₄ lemmas₄ public hiding (⊙-wk; wk-commutes)
open Lemmas₃ lemmas₃ using (lookup-wk-↑⋆-⊙; /✶-↑✶′)
open SimpleExt simple using (_/∷_; weaken⋆)
open ExtLemmas₀ lemmas₀ using (lookup-map-weaken-↑⋆)
⊙-wk-↑⋆ : ∀ {m n} {ρ : Sub T m n} {t} k →
ρ ↑⋆ k ⊙ wk ↑⋆ k ≡ wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k
⊙-wk-↑⋆ {ρ = ρ} {t} k = sym (begin
wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k ≡⟨ lemma ⟩
map weaken ρ ↑⋆ k ≡⟨ cong (λ ρ′ → ρ′ ↑⋆ k) map-weaken ⟩
(ρ ⊙ wk) ↑⋆ k ≡⟨ ↑⋆-distrib k ⟩
ρ ↑⋆ k ⊙ wk ↑⋆ k ∎)
where
lemma = extensionality λ x → begin
lookup (wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k) x
≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup ((t /∷ ρ) ↑⋆ k) (lift k suc x)
≡⟨ sym (lookup-map-weaken-↑⋆ k x) ⟩
lookup (map weaken ρ ↑⋆ k) x
∎
⊙-wk : ∀ {m n} {ρ : Sub T m n} {t} → ρ ⊙ wk ≡ wk ⊙ (t /∷ ρ)
⊙-wk = ⊙-wk-↑⋆ zero
wk-⊙-∷ : ∀ {n m} t {ρ : Sub T m n} → wk ⊙ (t ∷ ρ) ≡ ρ
wk-⊙-∷ t {ρ} = extensionality λ x → begin
lookup (wk ⊙ (t ∷ ρ)) x ≡⟨ lookup-wk-↑⋆-⊙ zero {x} ⟩
lookup (t ∷ ρ) (suc x) ≡⟨⟩
lookup ρ x ∎
wk-↑⋆-commutes : ∀ {m n} {ρ : Sub T m n} {t′} k t →
t / ρ ↑⋆ k / wk ↑⋆ k ≡ t / wk ↑⋆ k / (t′ /∷ ρ) ↑⋆ k
wk-↑⋆-commutes {ρ = ρ} {t} k =
/✶-↑✶′ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ (t /∷ ρ)) ⊙-wk-↑⋆ k
wk-commutes : ∀ {m n} {ρ : Sub T m n} {t′} t →
t / ρ / wk ≡ t / wk / (t′ /∷ ρ)
wk-commutes = wk-↑⋆-commutes zero
raise-/-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} →
var (raise k x) / ρ ↑⋆ k ≡ var x / ρ / wk⋆ k
raise-/-↑⋆ zero x {ρ} = sym (id-vanishes (var x / ρ))
raise-/-↑⋆ (suc k) x {ρ} = begin
var (suc (raise k x)) / ρ ↑⋆ suc k ≡⟨ suc-/-↑ (raise k x) ⟩
var (raise k x) / ρ ↑⋆ k / wk ≡⟨ cong (_/ wk) (raise-/-↑⋆ k x) ⟩
var x / ρ / wk⋆ k / wk ≡⟨ sym (/-⊙ (var x / ρ)) ⟩
var x / ρ / wk⋆ k ⊙ wk ≡⟨ cong (var x / ρ /_) (sym map-weaken) ⟩
var x / ρ / wk⋆ (suc k) ∎
/-wk⋆ : ∀ {n} k {t : T n} → t / wk⋆ k ≡ weaken⋆ k t
/-wk⋆ zero {t} = id-vanishes t
/-wk⋆ (suc k) {t} = begin
t / map weaken (wk⋆ k) ≡⟨ cong (t /_) map-weaken ⟩
t / wk⋆ k ⊙ wk ≡⟨ /-⊙ t ⟩
t / wk⋆ k / wk ≡⟨ /-wk ⟩
weaken (t / wk⋆ k) ≡⟨ cong weaken (/-wk⋆ k) ⟩
weaken (weaken⋆ k t) ∎
-- Weakening commutes with substitution.
weaken-/ : ∀ {m n} {ρ : Sub T m n} {t′} t →
weaken (t / ρ) ≡ weaken t / (t′ /∷ ρ)
weaken-/ {ρ = ρ} {t′} t = begin
weaken (t / ρ) ≡⟨ sym /-wk ⟩
t / ρ / wk ≡⟨ wk-commutes t ⟩
t / wk / (t′ /∷ ρ) ≡⟨ cong₂ _/_ /-wk refl ⟩
weaken t / (t′ /∷ ρ) ∎
weaken-/-∷ : ∀ {n m} {t′} {ρ : Sub T m n} t → weaken t / (t′ ∷ ρ) ≡ t / ρ
weaken-/-∷ {_} {_} {t′} {ρ} t = begin
weaken t / (t′ ∷ ρ) ≡⟨ cong (_/ (t′ ∷ ρ)) (sym /-wk) ⟩
t / wk / (t′ ∷ ρ) ≡⟨ sym (/-⊙ t) ⟩
t / (wk ⊙ (t′ ∷ ρ)) ≡⟨ cong (t /_) (wk-⊙-∷ t′) ⟩
t / ρ ∎
-- A generalized version of Data.Fin.Lemmas.AppLemmas
module ExtAppLemmas {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂}
(appLemmas : AppLemmas T₁ T₂) where
open AppLemmas appLemmas public hiding (wk-commutes)
open SimpleExt simple using (_/∷_)
private module L₄ = ExtLemmas₄ lemmas₄
open L₄ public using (wk-⊙-∷)
wk-↑⋆-commutes : ∀ {m n} {ρ : Sub T₂ m n} {t′} k t →
t / ρ ↑⋆ k / wk ↑⋆ k ≡ t / wk ↑⋆ k / (t′ /∷ ρ) ↑⋆ k
wk-↑⋆-commutes {ρ = ρ} {t} k =
⨀→/✶ (ε ▻ ρ ↑⋆ k ▻ wk ↑⋆ k) (ε ▻ wk ↑⋆ k ▻ (t /∷ ρ) ↑⋆ k) (L₄.⊙-wk-↑⋆ k)
wk-commutes : ∀ {m n} {ρ : Sub T₂ m n} {t′} t →
t / ρ / wk ≡ t / wk / (t′ /∷ ρ)
wk-commutes = wk-↑⋆-commutes zero
------------------------------------------------------------------------
-- Lemmas relating substitutions defined over and applied to different
-- kinds of terms.
-- Lemmas relating T₃ substitutions in T₁ and T₂.
record LiftAppLemmas {ℓ₁ ℓ₂ ℓ₃}
(T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) (T₃ : Pred ℕ ℓ₃)
: Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
lift : ∀ {n} → T₃ n → T₂ n
application₁₃ : Application T₁ T₃
application₂₃ : Application T₂ T₃
lemmas₂ : Lemmas₄ T₂
lemmas₃ : Lemmas₄ T₃
private
module L₂ = ExtLemmas₄ lemmas₂
module L₃ = ExtLemmas₄ lemmas₃
module A₁ = Application application₁₃
module A₂ = Application application₂₃
field
-- Lifting commutes with application of T₃ substitutions.
lift-/ : ∀ {m n} t {σ : Sub T₃ m n} → lift (t L₃./ σ) ≡ lift t A₂./ σ
-- Lifting preserves variables.
lift-var : ∀ {n} (x : Fin n) → lift (L₃.var x) ≡ L₂.var x
-- Sequences of T₃ substitutions are equivalent when applied to
-- T₁s if they are equivalent when applied to T₂ variables.
/✶-↑✶ :
∀ {m n} (σs₁ σs₂ : Subs T₃ m n) →
(∀ k x → L₂.var x A₂./✶ σs₁ L₃.↑✶ k ≡ L₂.var x A₂./✶ σs₂ L₃.↑✶ k) →
∀ k t → t A₁./✶ σs₁ L₃.↑✶ k ≡ t A₁./✶ σs₂ L₃.↑✶ k
lift-lookup-⊙ : ∀ {m n k} x {σ₁ : Sub T₃ m n} {σ₂ : Sub T₃ n k} →
lift (lookup (σ₁ L₃.⊙ σ₂) x) ≡ lift (lookup σ₁ x) A₂./ σ₂
lift-lookup-⊙ x {σ₁} {σ₂} = begin
lift (lookup (σ₁ L₃.⊙ σ₂) x) ≡⟨ cong lift (L₃.lookup-⊙ x {σ₁}) ⟩
lift (lookup σ₁ x L₃./ σ₂) ≡⟨ lift-/ (lookup σ₁ x) ⟩
lift (lookup σ₁ x) A₂./ σ₂ ∎
lift-lookup-⨀ : ∀ {m n} x (σs : Subs T₃ m n) →
lift (lookup (L₃.⨀ σs) x) ≡ L₂.var x A₂./✶ σs
lift-lookup-⨀ x ε = begin
lift (lookup L₃.id x) ≡⟨ cong lift (L₃.lookup-id x) ⟩
lift (L₃.var x) ≡⟨ lift-var x ⟩
L₂.var x ∎
lift-lookup-⨀ x (σ ◅ ε) = begin
lift (lookup σ x) ≡⟨ cong lift (sym L₃.var-/) ⟩
lift (L₃.var x L₃./ σ) ≡⟨ lift-/ _ ⟩
lift (L₃.var x) A₂./ σ ≡⟨ cong₂ A₂._/_ (lift-var x) refl ⟩
L₂.var x A₂./ σ ∎
lift-lookup-⨀ x (σ ◅ (σ′ ◅ σs′)) = begin
lift (lookup (L₃.⨀ σs L₃.⊙ σ) x)
≡⟨ lift-lookup-⊙ x {L₃.⨀ σs} ⟩
lift (lookup (L₃.⨀ σs) x) A₂./ σ
≡⟨ cong₂ A₂._/_ (lift-lookup-⨀ x (σ′ ◅ σs′)) refl ⟩
L₂.var x A₂./✶ σs A₂./ σ
∎
where σs = σ′ ◅ σs′
-- Sequences of T₃ substitutions are equivalent when applied to
-- T₁s if they are equivalent when applied as composites.
/✶-↑✶′ : ∀ {m n} (σs₁ σs₂ : Subs T₃ m n) →
(∀ k → L₃.⨀ (σs₁ L₃.↑✶ k) ≡ L₃.⨀ (σs₂ L₃.↑✶ k)) →
∀ k t → t A₁./✶ σs₁ L₃.↑✶ k ≡ t A₁./✶ σs₂ L₃.↑✶ k
/✶-↑✶′ σs₁ σs₂ hyp = /✶-↑✶ σs₁ σs₂ (λ k x → begin
L₂.var x A₂./✶ σs₁ L₃.↑✶ k
≡⟨ sym (lift-lookup-⨀ x (σs₁ L₃.↑✶ k)) ⟩
lift (lookup (L₃.⨀ (σs₁ L₃.↑✶ k)) x)
≡⟨ cong (λ σ → lift (lookup σ x)) (hyp k) ⟩
lift (lookup (L₃.⨀ (σs₂ L₃.↑✶ k)) x)
≡⟨ lift-lookup-⨀ x (σs₂ L₃.↑✶ k) ⟩
L₂.var x A₂./✶ σs₂ L₃.↑✶ k
∎)
-- Derived lemmas about applications of T₃ substitutions to T₁s.
appLemmas : AppLemmas T₁ T₃
appLemmas = record
{ application = application₁₃
; lemmas₄ = lemmas₃
; id-vanishes = /✶-↑✶′ (ε ▻ L₃.id) ε L₃.id-↑⋆ 0
; /-⊙ = /✶-↑✶′ (ε ▻ _ L₃.⊙ _) (ε ▻ _ ▻ _) L₃.↑⋆-distrib 0
}
open ExtAppLemmas appLemmas public
hiding (application; lemmas₂; lemmas₃; var; weaken; subst; simple)
-- Lemmas relating T₂ and T₃ substitutions in T₁.
record LiftSubLemmas {ℓ₁ ℓ₂ ℓ₃}
(T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) (T₃ : Pred ℕ ℓ₃)
: Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
field
application₁₂ : Application T₁ T₂
liftAppLemmas : LiftAppLemmas T₁ T₂ T₃
open LiftAppLemmas liftAppLemmas hiding (/✶-↑✶; /-wk)
private
module L₃ = ExtLemmas₄ lemmas₃
module L₂ = ExtLemmas₄ lemmas₂
module A₁₂ = Application application₁₂
module A₁₃ = Application (AppLemmas.application appLemmas)
module A₂₃ = Application application₂₃
field
-- Weakening commutes with lifting.
weaken-lift : ∀ {n} (t : T₃ n) → L₂.weaken (lift t) ≡ lift (L₃.weaken t)
-- Applying a composition of T₂ substitutions to T₁s
-- corresponds to two consecutive applications.
/-⊙₂ : ∀ {m n k} {σ₁ : Sub T₂ m n} {σ₂ : Sub T₂ n k} t →
t A₁₂./ σ₁ L₂.⊙ σ₂ ≡ t A₁₂./ σ₁ A₁₂./ σ₂
-- Sequences of T₃ substitutions are equivalent to T₂
-- substitutions when applied to T₁s if they are equivalent when
-- applied to variables.
/✶-↑✶₁ :
∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₂ m n) →
(∀ k x → L₂.var x A₂₃./✶ σs₁ ↑✶ k ≡ L₂.var x L₂./✶ σs₂ L₂.↑✶ k) →
∀ k t → t A₁₃./✶ σs₁ ↑✶ k ≡ t A₁₂./✶ σs₂ L₂.↑✶ k
-- Sequences of T₃ substitutions are equivalent to T₂
-- substitutions when applied to T₂s if they are equivalent when
-- applied to variables.
/✶-↑✶₂ :
∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₂ m n) →
(∀ k x → L₂.var x A₂₃./✶ σs₁ ↑✶ k ≡ L₂.var x L₂./✶ σs₂ L₂.↑✶ k) →
∀ k t → t A₂₃./✶ σs₁ ↑✶ k ≡ t L₂./✶ σs₂ L₂.↑✶ k
-- Lifting of T₃ substitutions to T₂ substitutions.
liftSub : ∀ {m n} → Sub T₃ m n → Sub T₂ m n
liftSub σ = map lift σ
-- The two types of lifting commute.
liftSub-↑⋆ : ∀ {m n} (σ : Sub T₃ m n) k →
liftSub σ L₂.↑⋆ k ≡ liftSub (σ ↑⋆ k)
liftSub-↑⋆ σ zero = refl
liftSub-↑⋆ σ (suc k) = cong₂ _∷_ (sym (lift-var _)) (begin
map L₂.weaken (liftSub σ L₂.↑⋆ k) ≡⟨ cong (map _) (liftSub-↑⋆ σ k) ⟩
map L₂.weaken (map lift (σ ↑⋆ k)) ≡⟨ sym (map-∘ _ _ _) ⟩
map (L₂.weaken ∘ lift) (σ ↑⋆ k) ≡⟨ map-cong weaken-lift _ ⟩
map (lift ∘ L₃.weaken) (σ ↑⋆ k) ≡⟨ map-∘ _ _ _ ⟩
map lift (map L₃.weaken (σ ↑⋆ k)) ∎)
-- The identity substitutions are equivalent up to lifting.
liftSub-id : ∀ {n} → liftSub (L₃.id {n}) ≡ L₂.id {n}
liftSub-id {zero} = refl
liftSub-id {suc n} = begin
liftSub (L₃.id L₃.↑) ≡⟨ sym (liftSub-↑⋆ L₃.id 1) ⟩
liftSub L₃.id L₂.↑ ≡⟨ cong L₂._↑ liftSub-id ⟩
L₂.id ∎
-- Weakening is equivalent up to lifting.
liftSub-wk⋆ : ∀ k {n} → liftSub (L₃.wk⋆ k {n}) ≡ L₂.wk⋆ k {n}
liftSub-wk⋆ zero = liftSub-id
liftSub-wk⋆ (suc k) = begin
liftSub (map L₃.weaken (L₃.wk⋆ k)) ≡⟨ sym (map-∘ _ _ _) ⟩
map (lift ∘ L₃.weaken) (L₃.wk⋆ k) ≡⟨ sym (map-cong weaken-lift _) ⟩
map (L₂.weaken ∘ lift) (L₃.wk⋆ k) ≡⟨ map-∘ _ _ _ ⟩
map L₂.weaken (liftSub (L₃.wk⋆ k)) ≡⟨ cong (map _) (liftSub-wk⋆ k) ⟩
map L₂.weaken (L₂.wk⋆ k) ∎
-- Weakening is equivalent up to lifting.
liftSub-wk : ∀ {n} → liftSub (L₃.wk {n}) ≡ L₂.wk {n}
liftSub-wk = liftSub-wk⋆ 1
-- Single variable substitution is equivalent up to lifting.
liftSub-sub : ∀ {n} (t : T₃ n) → liftSub (L₃.sub t) ≡ L₂.sub (lift t)
liftSub-sub t = cong₂ _∷_ refl liftSub-id
-- Lifting commutes with application to variables.
var-/-liftSub-↑⋆ : ∀ {m n} (σ : Sub T₃ m n) k x →
L₂.var x A₂₃./ σ ↑⋆ k ≡ L₂.var x L₂./ liftSub σ L₂.↑⋆ k
var-/-liftSub-↑⋆ σ k x = begin
L₂.var x A₂₃./ σ ↑⋆ k
≡⟨ cong₂ A₂₃._/_ (sym (lift-var x)) refl ⟩
lift (L₃.var x) A₂₃./ σ ↑⋆ k
≡⟨ sym (lift-/ _) ⟩
lift (L₃.var x L₃./ σ ↑⋆ k)
≡⟨ cong lift L₃.var-/ ⟩
lift (lookup (σ ↑⋆ k) x)
≡⟨ sym (lookup-map x lift (σ ↑⋆ k)) ⟩
lookup (liftSub (σ ↑⋆ k)) x
≡⟨ sym L₂.var-/ ⟩
L₂.var x L₂./ liftSub (σ ↑⋆ k)
≡⟨ cong (L₂._/_ (L₂.var x)) (sym (liftSub-↑⋆ σ k)) ⟩
L₂.var x L₂./ liftSub σ L₂.↑⋆ k
∎
-- Lifting commutes with application.
/-liftSub-↑⋆ : ∀ {m n} k t {σ : Sub T₃ m n} →
t A₁₃./ σ ↑⋆ k ≡ t A₁₂./ liftSub σ L₂.↑⋆ k
/-liftSub-↑⋆ k t {σ} =
/✶-↑✶₁ (ε ▻ σ) (ε ▻ liftSub σ) (var-/-liftSub-↑⋆ σ) k t
/-liftSub : ∀ {m n} t {σ : Sub T₃ m n} → t A₁₃./ σ ≡ t A₁₂./ liftSub σ
/-liftSub = /-liftSub-↑⋆ zero
-- Weakening is equivalent up to choice of application.
/-wk-↑⋆ : ∀ {n} k {t : T₁ (k + n)} →
t A₁₃./ L₃.wk ↑⋆ k ≡ t A₁₂./ L₂.wk L₂.↑⋆ k
/-wk-↑⋆ k {t = t} = begin
t A₁₃./ L₃.wk ↑⋆ k
≡⟨ /-liftSub-↑⋆ k t ⟩
t A₁₂./ (liftSub L₃.wk) L₂.↑⋆ k
≡⟨ cong (λ σ → t A₁₂./ σ L₂.↑⋆ k) liftSub-wk ⟩
t A₁₂./ L₂.wk L₂.↑⋆ k
∎
/-wk : ∀ {n} {t : T₁ n} → t A₁₃./ L₃.wk ≡ t A₁₂./ L₂.wk
/-wk = /-wk-↑⋆ zero
-- Single-variable substitution is equivalent up to choice of
-- application.
/-sub-↑⋆ : ∀ {n} k t (s : T₃ n) →
t A₁₃./ L₃.sub s ↑⋆ k ≡ t A₁₂./ L₂.sub (lift s) L₂.↑⋆ k
/-sub-↑⋆ k t s = begin
t A₁₃./ L₃.sub s ↑⋆ k
≡⟨ /-liftSub-↑⋆ k t ⟩
t A₁₂./ liftSub (L₃.sub s) L₂.↑⋆ k
≡⟨ cong (λ σ → t A₁₂./ σ L₂.↑⋆ k) (liftSub-sub s) ⟩
t A₁₂./ L₂.sub (lift s) L₂.↑⋆ k
∎
/-sub : ∀ {n} t (s : T₃ n) →
t A₁₃./ L₃.sub s ≡ t A₁₂./ L₂.sub (lift s)
/-sub = /-sub-↑⋆ zero
-- Lifting commutes with application.
/-sub-↑ : ∀ {m n} t s (σ : Sub T₃ m n) →
t A₁₂./ L₂.sub s A₁₃./ σ ≡ (t A₁₃./ σ ↑) A₁₂./ L₂.sub (s A₂₃./ σ)
/-sub-↑ t s σ = begin
t A₁₂./ L₂.sub s A₁₃./ σ
≡⟨ /-liftSub _ ⟩
t A₁₂./ L₂.sub s A₁₂./ liftSub σ
≡⟨ sym (/-⊙₂ t) ⟩
t A₁₂./ (L₂.sub s L₂.⊙ liftSub σ)
≡⟨ cong₂ A₁₂._/_ refl (L₂.sub-⊙ s) ⟩
t A₁₂./ (liftSub σ L₂.↑ L₂.⊙ L₂.sub (s L₂./ liftSub σ))
≡⟨ /-⊙₂ t ⟩
t A₁₂./ liftSub σ L₂.↑ A₁₂./ L₂.sub (s L₂./ liftSub σ)
≡⟨ cong₂ (A₁₂._/_ ∘ A₁₂._/_ t) (liftSub-↑⋆ _ 1)
(cong L₂.sub (sym (/-liftSub₂ s))) ⟩
t A₁₂./ liftSub (σ ↑) A₁₂./ L₂.sub (s A₂₃./ σ)
≡⟨ cong₂ A₁₂._/_ (sym (/-liftSub t)) refl ⟩
t A₁₃./ σ ↑ A₁₂./ L₂.sub (s A₂₃./ σ)
∎
where
/-liftSub₂ : ∀ {m n} s {σ : Sub T₃ m n} →
s A₂₃./ σ ≡ s L₂./ liftSub σ
/-liftSub₂ s {σ} = /✶-↑✶₂ (ε ▻ σ) (ε ▻ liftSub σ)
(var-/-liftSub-↑⋆ σ) zero s
-- Lemmas relating weakening of T₁ to T₂ substitutions in T₁.
record WeakenLemmas {ℓ₁ ℓ₂} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂)
: Set (ℓ₁ ⊔ ℓ₂) where
field
weaken : ∀ {n} → T₁ n → T₁ (suc n) -- Weakening of T₁s.
-- Lemmas about application of T₂ substitutions in T₁
appLemmas : AppLemmas T₁ T₂
open ExtAppLemmas appLemmas hiding (/-wk; weaken; _⊙_)
open Lemmas₄ lemmas₄ using (_⊙_) renaming (weaken to weaken′)
-- A lemma relating weakening to the wk substitution
field /-wk : ∀ {n} {t : T₁ n} → t / wk ≡ weaken t
extension : Extension T₁
extension = record { weaken = weaken }
open Extension extension public using (weaken⋆)
-- A generalized version of wk-sub-vanishes for T₁s.
weaken-sub : ∀ {n t′} → (t : T₁ n) → weaken t / sub t′ ≡ t
weaken-sub t = begin
weaken t / sub _ ≡⟨ cong₂ _/_ (sym /-wk) refl ⟩
t / wk / sub _ ≡⟨ wk-sub-vanishes t ⟩
t ∎
-- A variants of /-wk⋆ for T₁s.
/-wk⋆ : ∀ {n} k {t : T₁ n} → t / wk⋆ k ≡ weaken⋆ k t
/-wk⋆ zero {t} = id-vanishes t
/-wk⋆ (suc k) {t} = begin
t / map weaken′ (wk⋆ k) ≡⟨ /-weaken t ⟩
t / wk⋆ k / wk ≡⟨ /-wk ⟩
weaken (t / wk⋆ k) ≡⟨ cong weaken (/-wk⋆ k) ⟩
weaken (weaken⋆ k t) ∎
open SimpleExt simple public using (_/∷_)
-- Weakening commutes with substitution.
weaken-/ : ∀ {m n} {σ : Sub T₂ m n} {t′} t →
weaken (t / σ) ≡ weaken t / (t′ /∷ σ)
weaken-/ {σ = σ} {t′} t = begin
weaken (t / σ) ≡⟨ sym /-wk ⟩
t / σ / wk ≡⟨ wk-commutes t ⟩
t / wk / (t′ /∷ σ) ≡⟨ cong₂ _/_ /-wk refl ⟩
weaken t / (t′ /∷ σ) ∎
weaken-/-∷ : ∀ {n m} {t′} {σ : Sub T₂ m n} (t : T₁ m) →
weaken t / (t′ ∷ σ) ≡ t / σ
weaken-/-∷ {_} {_} {t′} {σ} t = begin
weaken t / (t′ ∷ σ) ≡⟨ cong (_/ (t′ ∷ σ)) (sym /-wk) ⟩
t / wk / (t′ ∷ σ) ≡⟨ sym (/-⊙ t) ⟩
t / wk ⊙ (t′ ∷ σ) ≡⟨ cong (t /_) (wk-⊙-∷ t′) ⟩
t / σ ∎
-- Lemmas for a term-like T₁ derived from term lemmas for T₂
record TermLikeLemmas {ℓ} (T₁ : Pred ℕ ℓ) (T₂ : ℕ → Set)
: Set (lsuc (ℓ ⊔ lzero)) where
field
app : ∀ {T₃} → Lift T₃ T₂ → ∀ {m n} → T₁ m → Sub T₃ m n → T₁ n
termLemmas : TermLemmas T₂
termLikeSubst : TermLikeSubst T₁ T₂
termLikeSubst = record
{ app = app
; termSubst = TermLemmas.termSubst termLemmas
}
open TermLikeSubst termLikeSubst using (termSubst; termLift; varLift; weaken)
open TermSubst termSubst using (var; _⊙_; module Lifted)
field /✶-↑✶₁ : ∀ {T₃} {lift : Lift T₃ T₂} →
let open Application (record { _/_ = app lift })
using () renaming (_/✶_ to _/✶₁_)
open Lifted lift
using (_↑✶_) renaming (_/✶_ to _/✶₂_)
in
∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₃ m n) →
(∀ k x → var x /✶₂ σs₁ ↑✶ k ≡ var x /✶₂ σs₂ ↑✶ k) →
∀ k t → t /✶₁ σs₁ ↑✶ k ≡ t /✶₁ σs₂ ↑✶ k
termApplication : Application T₁ T₂
termApplication = record { _/_ = app termLift }
varApplication : Application T₁ Fin
varApplication = record { _/_ = app varLift }
field /✶-↑✶₂ : let open Application varApplication
using () renaming (_/✶_ to _/✶₁₃_)
open Application termApplication
using () renaming (_/✶_ to _/✶₁₂_)
open Lifted varLift
using () renaming (_↑✶_ to _↑✶₃_; _/✶_ to _/✶₂₃_)
open TermSubst termSubst
using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂₂_)
in
∀ {m n} (σs₁ : Subs Fin m n) (σs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₂₃ σs₁ ↑✶₃ k ≡ var x /✶₂₂ σs₂ ↑✶₂ k) →
∀ k t → t /✶₁₃ σs₁ ↑✶₃ k ≡ t /✶₁₂ σs₂ ↑✶₂ k
-- An instantiation of the above lemmas for T₂ substitutions in T₁s.
termLiftAppLemmas : LiftAppLemmas T₁ T₂ T₂
termLiftAppLemmas = record
{ lift = Lift.lift termLift
; application₁₃ = termApplication
; application₂₃ = TermLemmas.application termLemmas
; lemmas₂ = TermLemmas.lemmas₄ termLemmas
; lemmas₃ = TermLemmas.lemmas₄ termLemmas
; lift-/ = λ _ → refl
; lift-var = λ _ → refl
; /✶-↑✶ = /✶-↑✶₁
}
open LiftAppLemmas termLiftAppLemmas public hiding (/-wk; _⊙_)
-- An instantiation of the above lemmas for variable substitutions
-- (renamings) in T₁s.
varLiftSubLemmas : LiftSubLemmas T₁ T₂ Fin
varLiftSubLemmas = record
{ application₁₂ = termApplication
; liftAppLemmas = record
{ lift = Lift.lift varLift
; application₁₃ = varApplication
; application₂₃ = Lifted.application varLift
; lemmas₂ = TermLemmas.lemmas₄ termLemmas
; lemmas₃ = VarLemmas.lemmas₄
; lift-/ = λ _ → sym (TermLemmas.app-var termLemmas)
; lift-var = λ _ → refl
; /✶-↑✶ = /✶-↑✶₁
}
; weaken-lift = λ _ → TermLemmas.weaken-var termLemmas
; /-⊙₂ = AppLemmas./-⊙ appLemmas
; /✶-↑✶₁ = /✶-↑✶₂
; /✶-↑✶₂ = TermLemmas./✶-↑✶ termLemmas
}
open Application varApplication public using () renaming (_/_ to _/Var_)
open LiftSubLemmas varLiftSubLemmas public hiding (/✶-↑✶₁; /✶-↑✶₂; /-wk)
renaming (liftAppLemmas to varLiftAppLemmas)
-- Lemmas relating weakening of T₁s to T₂-substitutions in T₁s.
weakenLemmas : WeakenLemmas T₁ T₂
weakenLemmas = record
{ weaken = weaken
; appLemmas = appLemmas
; /-wk = sym /-wk
}
where open LiftSubLemmas varLiftSubLemmas using (/-wk)
open WeakenLemmas weakenLemmas public hiding (appLemmas)
-- Another variant of /-wk⋆ relating VarSubst.wk to weakening of T₁s.
/Var-wk⋆ : ∀ {n} k {t : T₁ n} →
t /Var VarSubst.wk⋆ k ≡ weaken⋆ k t
/Var-wk⋆ k {t} = begin
t /Var VarSubst.wk⋆ k ≡⟨ /-liftSub t ⟩
t / liftSub (VarSubst.wk⋆ k) ≡⟨ cong (t /_) (liftSub-wk⋆ k) ⟩
t / wk⋆ k ≡⟨ /-wk⋆ k ⟩
weaken⋆ k t ∎
| 37.022329
| 79
| 0.505579
|
13a3cde54a3536630517ec9bdab5e445a5562e64
| 1,143
|
agda
|
Agda
|
hott/equivalence/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 27
|
2015-04-14T15:47:03.000Z
|
2022-01-09T07:26:57.000Z
|
src/hott/equivalence/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T14:32:16.000Z
|
2016-10-26T11:57:26.000Z
|
src/hott/equivalence/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T12:17:00.000Z
|
2019-05-04T19:31:00.000Z
|
{-# OPTIONS --without-K #-}
module hott.equivalence.core where
open import equality.core using (_≡_ ; refl ; ap)
open import sum using (Σ ; proj₁ ; proj₂ ; _,_)
open import level using (_⊔_)
open import hott.level.core using (contr ; prop ; _⁻¹_)
open import function.core using (_$_)
open import function.isomorphism.core using (_≅_ ; iso)
-- a function is a weak equivalence, if the inverse images of all points are contractible
weak-equiv : ∀ {i k} {X : Set i} {Y : Set k} (f : X → Y) → Set (i ⊔ k)
weak-equiv {_} {_} {X} {Y} f = (y : Y) → contr $ f ⁻¹ y
-- weak equivalences
_≈_ : ∀ {i j} (X : Set i) (Y : Set j) → Set _
X ≈ Y = Σ (X → Y) λ f → weak-equiv f
apply≈ : ∀ {i j} {X : Set i}{Y : Set j} → X ≈ Y → X → Y
apply≈ = proj₁
≈⇒≅ : ∀ {i j} {X : Set i} {Y : Set j} → X ≈ Y → X ≅ Y
≈⇒≅ {X = X}{Y} (f , we) = iso f g iso₁ iso₂
where
g : Y → X
g y = proj₁ (proj₁ (we y))
iso₁ : (x : X) → g (f x) ≡ x
iso₁ x = ap proj₁ (proj₂ (we (f x)) (x , refl))
iso₂ : (y : Y) → f (g y) ≡ y
iso₂ y = proj₂ (proj₁ (we y))
invert≈ : ∀ {i j} {X : Set i}{Y : Set j} → X ≈ Y → Y → X
invert≈ (_ , we) y = proj₁ (proj₁ (we y))
| 31.75
| 89
| 0.540682
|
ad98d878552c6f72035eea9d0dc746bf0605d272
| 382
|
agda
|
Agda
|
Lists/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Lists/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Lists/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
module Lists.Definition where
data List {a : _} (A : Set a) : Set a where
[] : List A
_::_ : (x : A) (xs : List A) → List A
infixr 10 _::_
{-# BUILTIN LIST List #-}
[_] : {a : _} {A : Set a} → (a : A) → List A
[ a ] = a :: []
_++_ : {a : _} {A : Set a} → List A → List A → List A
[] ++ m = m
(x :: l) ++ m = x :: (l ++ m)
| 21.222222
| 53
| 0.460733
|
341c03aad60d00bd990be17132ba927fc576c7b1
| 15
|
agda
|
Agda
|
test/interaction/Issue4835.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue4835.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue4835.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Dummy file.
| 7.5
| 14
| 0.6
|
2207a5789894e6497f96028bb47d708c27d0845e
| 4,077
|
agda
|
Agda
|
agda-stdlib/src/Function/Construct/Identity.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Function/Construct/Identity.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Function/Construct/Identity.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The identity function
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Function.Construct.Identity where
open import Data.Product using (_,_)
open import Function using (id)
open import Function.Bundles
import Function.Definitions as Definitions
import Function.Structures as Structures
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_; setoid)
private
variable
a ℓ : Level
A : Set a
------------------------------------------------------------------------
-- Properties
module _ (_≈_ : Rel A ℓ) where
open Definitions _≈_ _≈_
injective : Injective id
injective = id
surjective : Reflexive _≈_ → Surjective id
surjective refl x = x , refl
bijective : Reflexive _≈_ → Bijective id
bijective refl = injective , surjective refl
inverseˡ : Reflexive _≈_ → Inverseˡ id id
inverseˡ refl x = refl
inverseʳ : Reflexive _≈_ → Inverseʳ id id
inverseʳ refl x = refl
inverseᵇ : Reflexive _≈_ → Inverseᵇ id id
inverseᵇ refl = inverseˡ refl , inverseʳ refl
------------------------------------------------------------------------
-- Structures
module _ {_≈_ : Rel A ℓ} (isEq : IsEquivalence _≈_) where
open Structures _≈_ _≈_
open IsEquivalence isEq
isCongruent : IsCongruent id
isCongruent = record
{ cong = id
; isEquivalence₁ = isEq
; isEquivalence₂ = isEq
}
isInjection : IsInjection id
isInjection = record
{ isCongruent = isCongruent
; injective = injective _≈_
}
isSurjection : IsSurjection id
isSurjection = record
{ isCongruent = isCongruent
; surjective = surjective _≈_ refl
}
isBijection : IsBijection id
isBijection = record
{ isInjection = isInjection
; surjective = surjective _≈_ refl
}
isLeftInverse : IsLeftInverse id id
isLeftInverse = record
{ isCongruent = isCongruent
; cong₂ = id
; inverseˡ = inverseˡ _≈_ refl
}
isRightInverse : IsRightInverse id id
isRightInverse = record
{ isCongruent = isCongruent
; cong₂ = id
; inverseʳ = inverseʳ _≈_ refl
}
isInverse : IsInverse id id
isInverse = record
{ isLeftInverse = isLeftInverse
; inverseʳ = inverseʳ _≈_ refl
}
------------------------------------------------------------------------
-- Setoid bundles
module _ (S : Setoid a ℓ) where
open Setoid S
injection : Injection S S
injection = record
{ f = id
; cong = id
; injective = injective _≈_
}
surjection : Surjection S S
surjection = record
{ f = id
; cong = id
; surjective = surjective _≈_ refl
}
bijection : Bijection S S
bijection = record
{ f = id
; cong = id
; bijective = bijective _≈_ refl
}
equivalence : Equivalence S S
equivalence = record
{ f = id
; g = id
; cong₁ = id
; cong₂ = id
}
leftInverse : LeftInverse S S
leftInverse = record
{ f = id
; g = id
; cong₁ = id
; cong₂ = id
; inverseˡ = inverseˡ _≈_ refl
}
rightInverse : RightInverse S S
rightInverse = record
{ f = id
; g = id
; cong₁ = id
; cong₂ = id
; inverseʳ = inverseʳ _≈_ refl
}
inverse : Inverse S S
inverse = record
{ f = id
; f⁻¹ = id
; cong₁ = id
; cong₂ = id
; inverse = inverseᵇ _≈_ refl
}
------------------------------------------------------------------------
-- Propositional bundles
module _ (A : Set a) where
id-↣ : A ↣ A
id-↣ = injection (setoid A)
id-↠ : A ↠ A
id-↠ = surjection (setoid A)
id-⤖ : A ⤖ A
id-⤖ = bijection (setoid A)
id-⇔ : A ⇔ A
id-⇔ = equivalence (setoid A)
id-↩ : A ↩ A
id-↩ = leftInverse (setoid A)
id-↪ : A ↪ A
id-↪ = rightInverse (setoid A)
id-↔ : A ↔ A
id-↔ = inverse (setoid A)
| 21.34555
| 72
| 0.540594
|
19bfcd20ffcff7db1dc9632d27a0093f502a2a0b
| 3,161
|
agda
|
Agda
|
test/Succeed/SizedTypesMergeSort.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/SizedTypesMergeSort.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/SizedTypesMergeSort.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS -v tc.size:100 #-}
{-# OPTIONS --sized-types #-}
module SizedTypesMergeSort where
open import Common.Size
open import Common.Prelude using (Bool; true; false; if_then_else_)
open import Common.Product
module Old where
-- sized lists
data List (A : Set) : {_ : Size} -> Set where
[] : {size : Size} -> List A {↑ size}
_::_ : {size : Size} -> A -> List A {size} -> List A {↑ size}
-- CPS split (non-size increasing)
split : {A : Set}{i : Size} -> List A {i} ->
{C : Set} -> (List A {i} -> List A {i} -> C) -> C
split [] k = k [] []
split (x :: xs) k = split xs (\ l r -> k (x :: r) l)
module Sort (A : Set) (compare : A -> A -> {B : Set} -> B -> B -> B) where
-- Andreas, 4 Sep 2008
-- the size indices i and j should not be necessary here
-- but without them, the termination checker does not recognise that
-- the pattern x :: xs is equal to the term x :: xs
-- I suspect that _::_ {∞} x xs is not equal to itself since ∞ is a term
-- not a constructor or variable
merge : {i j : Size} -> List A {i} -> List A {j} -> List A
merge [] ys = ys
merge xs [] = xs
merge (x :: xs) (y :: ys) =
compare x y (x :: merge xs (y :: ys))
(y :: merge (x :: xs) ys)
sort : {i : Size} -> List A {i} -> List A
sort [] = []
sort (x :: []) = x :: []
sort (x :: (y :: xs)) = split xs (\ l r -> merge (sort (x :: l))
(sort (y :: r)))
module New where
-- sized lists
data List (A : Set) {i} : Set where
[] : List A
_::_ : {i' : Size< i} → A → List A {i'} → List A
module CPS where
-- CPS split (non-size increasing)
split : ∀ {A i} → List A {i} →
{C : Set} → (List A {i} → List A {i} → C) → C
split [] k = k [] []
split (x :: xs) k = split xs (\ l r → k (x :: r) l)
module Sort (A : Set) (compare : A → A → {B : Set} → B → B → B) where
merge : List A → List A → List A
merge [] ys = ys
merge xs [] = xs
merge (x :: xs) (y :: ys) =
compare x y (x :: merge xs (y :: ys))
(y :: merge (x :: xs) ys)
sort : {i : Size} → List A {i} → List A
sort [] = []
sort (x :: []) = x :: []
sort (x :: (y :: xs)) = split xs (\ l r → merge (sort (x :: l))
(sort (y :: r)))
module Direct where
split : ∀ {A i} → List A {i} → List A {i} × List A {i}
split [] = [] , []
split (x :: xs) = let l , r = split xs in (x :: r) , l
module Sort (A : Set) (_≤_ : A → A → Bool) where
merge : List A → List A → List A
merge [] ys = ys
merge xs [] = xs
merge (x :: xs) (y :: ys) =
if x ≤ y then (x :: merge xs (y :: ys))
else (y :: merge (x :: xs) ys)
sort : {i : Size} → List A {i} → List A
sort [] = []
sort (x :: []) = x :: []
sort (x :: (y :: xs)) = let l , r = split xs in merge (sort (x :: l))
(sort (y :: r))
| 30.990196
| 76
| 0.427396
|
fd5db6b72e9e33e4fd60e1ffca93e35ea381d208
| 1,571
|
agda
|
Agda
|
Cubical/Structures/Transfer.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
Cubical/Structures/Transfer.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
Cubical/Structures/Transfer.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
{-
Transferring properties of terms between equivalent structures
-}
{-# OPTIONS --safe #-}
module Cubical.Structures.Transfer where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Transport
open import Cubical.Structures.Product
private
variable
ℓ ℓ₀ ℓ₁ ℓ₂ ℓ₂' : Level
transfer : {ℓ₂' ℓ₀ : Level} {S : Type ℓ → Type ℓ₁} {H : Type ℓ → Type ℓ₂}
(P : ∀ X → S X → H X → Type ℓ₀)
(α : EquivAction H) (τ : TransportStr α)
(ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι)
{X Y : Type ℓ} {s : S X} {t : S Y}
(e : (X , s) ≃[ ι ] (Y , t))
→ (h : H Y) → P X s (invEq (α (e .fst)) h) → P Y t h
transfer P α τ ι θ {X} {Y} {s} {t} e h =
subst (λ {(Z , u , h) → P Z u h})
(sip
(productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ))
(X , s , invEq (α (e .fst)) h)
(Y , t , h)
(e .fst , e .snd , retEq (α (e .fst)) h))
transfer⁻ : {ℓ₂' ℓ₀ : Level} {S : Type ℓ → Type ℓ₁} {H : Type ℓ → Type ℓ₂}
(P : ∀ X → S X → H X → Type ℓ₀)
(α : EquivAction H) (τ : TransportStr α)
(ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι)
{X Y : Type ℓ} {s : S X} {t : S Y}
(e : (X , s) ≃[ ι ] (Y , t))
→ (h : H X) → P Y t (equivFun (α (e .fst)) h) → P X s h
transfer⁻ P α τ ι θ {X} {Y} {s} {t} e h =
subst⁻ (λ {(Z , u , h) → P Z u h})
(sip
(productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ))
(X , s , h)
(Y , t , equivFun (α (e .fst)) h)
(e .fst , e .snd , refl))
| 32.729167
| 89
| 0.553151
|
2224b434dde64f4794088e2fdd2c50d9a76a6b4b
| 965
|
agda
|
Agda
|
test/Fail/Issue2455.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue2455.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue2455.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2017-02-14 issue #2455 reported by mechvel
-- Test case by Andrea
-- Seem that the fix for issue #44 was not complete.
-- When inserting module parameters for a definition,
-- we need to respect polarities!
-- Jesper, 2017-05-10 temporarily moved to Fail
-- {-# OPTIONS -v tc.decl:10 -v tc.polarity:70 -v tc.sig.inst:30 #-}
module Issue2455 where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data Unit : Set where
unit : Unit
postulate
A : Set
P : A → Set
p : ∀ {e} → P e
module M (e : A) (f : Unit) where
aux : Unit → P e
aux unit = p
-- se does not depent on f
-- se gets type (e : A) (f :{UnusedArg} Unit) -> A
se = e
-- aux' should not depend on f
-- For this to work, the module parameters for se must be
-- respecting UnusedArg.
aux' : Unit → P se
aux' unit = p
works : ∀ x y e → M.aux e x ≡ M.aux e y
works _ _ _ = refl
fails : ∀ x y e → M.aux' e x ≡ M.aux' e y
fails _ _ _ = refl
| 20.978261
| 68
| 0.603109
|
3564307722fb2da9a947f067d590b2e35c24c26c
| 368
|
agda
|
Agda
|
test/Fail/Issue721b.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue721b.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue721b.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- 2012-10-20 Andreas
module Issue721b where
data Bool : Set where
false true : Bool
record Foo (b : Bool) : Set where
field
_*_ : Bool → Bool → Bool
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
test : (F : Foo false) → let open Foo F in (x : Bool) → _*_ x ≡ (λ x → x)
test F x = x
where open Foo F
-- Don't want to see any anonymous module
| 20.444444
| 73
| 0.597826
|
35a7d01af419e6a37f11c4bac8e3a40feffd1a00
| 115
|
agda
|
Agda
|
test/Fail/Issue.1947.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue.1947.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue.1947.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-06-02
-- The filename "Issue.1947.agda" is invalid as "1947" is not a valid name.
module _ where
| 23
| 75
| 0.704348
|
13c3e24b7e34796a90e0a05862ab32d5f6c8d5b1
| 186
|
agda
|
Agda
|
Cubical/HITs/FiniteMultiset.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/HITs/FiniteMultiset.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/HITs/FiniteMultiset.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.FiniteMultiset where
open import Cubical.HITs.FiniteMultiset.Base public
open import Cubical.HITs.FiniteMultiset.Properties public
| 26.571429
| 57
| 0.806452
|
383e71c7ce874ea4b79e5b1f8db97b64d2722945
| 548
|
agda
|
Agda
|
internal/well-typed-syntax-interpreter-full.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 19
|
2015-07-17T17:53:30.000Z
|
2021-03-17T14:04:53.000Z
|
internal/well-typed-syntax-interpreter-full.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 1
|
2015-07-17T20:20:43.000Z
|
2015-07-17T20:20:43.000Z
|
internal/well-typed-syntax-interpreter-full.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 1
|
2015-07-17T18:53:37.000Z
|
2015-07-17T18:53:37.000Z
|
{-# OPTIONS --without-K #-}
module well-typed-syntax-interpreter-full where
open import common public
open import well-typed-syntax
open import well-typed-syntax-interpreter
Contextε⇓ : Context⇓ ε
Contextε⇓ = tt
Typε⇓ : Typ ε → Set max-level
Typε⇓ T = Typ⇓ T Contextε⇓
Termε⇓ : {T : Typ ε} → Term T → Typε⇓ T
Termε⇓ t = Term⇓ t Contextε⇓
Typε▻⇓ : ∀ {A} → Typ (ε ▻ A) → Typε⇓ A → Set max-level
Typε▻⇓ T A⇓ = Typ⇓ T (Contextε⇓ , A⇓)
Termε▻⇓ : ∀ {A} → {T : Typ (ε ▻ A)} → Term T → (x : Typε⇓ A) → Typε▻⇓ T x
Termε▻⇓ t x = Term⇓ t (Contextε⇓ , x)
| 26.095238
| 73
| 0.611314
|
3447436857ce4dbfc13a814955593c1da6b90190
| 624
|
agda
|
Agda
|
Rings/Divisible/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Rings/Divisible/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Rings/Divisible/Definition.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Rings.Definition
module Rings.Divisible.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open Setoid S
open Equivalence eq
open Ring R
_∣_ : Rel A
a ∣ b = Sg A (λ c → (a * c) ∼ b)
divisibleWellDefined : {x y a b : A} → (x ∼ y) → (a ∼ b) → x ∣ a → y ∣ b
divisibleWellDefined x=y a=b (c , xc=a) = c , transitive (*WellDefined (symmetric x=y) reflexive) (transitive xc=a a=b)
| 31.2
| 127
| 0.655449
|
1ead1ccb4ed7fc5aba7a9560766e09c559b6c246
| 944
|
agda
|
Agda
|
test/Succeed/Issue5944.agda
|
KDr2/agda
|
98c9382a59f707c2c97d75919e389fc2a783ac75
|
[
"BSD-2-Clause"
] | null | null | null |
test/Succeed/Issue5944.agda
|
KDr2/agda
|
98c9382a59f707c2c97d75919e389fc2a783ac75
|
[
"BSD-2-Clause"
] | null | null | null |
test/Succeed/Issue5944.agda
|
KDr2/agda
|
98c9382a59f707c2c97d75919e389fc2a783ac75
|
[
"BSD-2-Clause"
] | null | null | null |
-- Andreas Abel, 2022-06-06, issue #5944 reported by Mike Shulman
-- Support rewriting with 2ltt (match SSet).
{-# OPTIONS --type-in-type --rewriting --two-level #-}
open import Agda.Primitive public
postulate
Tel : SSet
ε : Tel
_≡_ : {A : SSet} (a : A) → A → SSet
cong : (A B : SSet) (f : A → B) {x y : A} (p : x ≡ y) → f x ≡ f y
coe← : (A B : SSet) → (A ≡ B) → B → A
el : Tel → SSet
[] : el ε
ID : (Δ : Tel) → Tel
ID′ : (Δ : Tel) (Θ : el Δ → Tel) → Tel
ID′ε : (Δ : Tel) → ID′ Δ (λ _ → ε) ≡ ε
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE ID′ε #-}
postulate
ID′-CONST : (Θ : Tel) (Δ : Tel)
→ ID′ Θ (λ _ → Δ) ≡ ID Δ
ID′-CONST-ε : (Θ : Tel) (δ₂ : el (ID ε))
→ coe← (el (ID′ Θ (λ _ → ε))) (el (ID ε)) (cong Tel (SSet lzero) el (ID′-CONST Θ ε)) δ₂ ≡ []
{-# REWRITE ID′-CONST-ε #-}
-- WAS: internal error when trying to make a pattern from SSet
-- Should succeed now
| 25.513514
| 106
| 0.495763
|
fda4c070f6e6b785b54703984c9c0f6a964600aa
| 6,743
|
agda
|
Agda
|
test/succeed/PatternSynonyms.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/succeed/PatternSynonyms.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
test/succeed/PatternSynonyms.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
-- {-# OPTIONS -v scope.pat:10 #-}
-- {-# OPTIONS -v tc.lhs:10 #-}
module PatternSynonyms where
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
pattern z = zero
pattern sz = suc z
pattern ss x = suc (suc x)
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
test : z ≡ zero
test = refl
test′ : sz ≡ suc zero
test′ = refl
test″ : ss z ≡ suc (suc zero)
test″ = refl
test‴ : ss ≡ λ x → suc (suc x)
test‴ = refl
f : ℕ → ℕ
f z = zero
f sz = suc z
f (ss 0) = 2
f (ss (suc n)) = n
test-f : f zero ≡ zero
test-f = refl
test-f′ : f (suc zero) ≡ suc zero
test-f′ = refl
test-f″ : f (suc (suc 0)) ≡ 2
test-f″ = refl
test-f‴ : ∀ {n} → f (suc (suc (suc n))) ≡ n
test-f‴ = refl
------------------------------------------------------------------------
data L (A : Set) : Set where
nil : L A
cons : A → L A → L A
pattern cc x y xs = cons x (cons y xs)
test-cc : ∀ {A} → cc ≡ λ (x : A) y xs → cons x (cons y xs)
test-cc = refl
crazyLength : ∀ {A} → L A → ℕ
crazyLength nil = 0
crazyLength (cons x nil) = 1
crazyLength (cc x y xs) = 9000
swap : ∀ {A} → L A → L A
swap nil = nil
swap (cons x nil) = cons x nil
swap (cc x y xs) = cc y x xs
test-swap : ∀ {xs} → swap (cons 1 (cons 2 xs)) ≡ cons 2 (cons 1 xs)
test-swap = refl
------------------------------------------------------------------------
-- refl and _
record ⊤ : Set where
constructor tt
data _⊎_ (A B : Set) : Set where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
infixr 4 _,_
record Σ (A : Set)(B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ
_×_ : (A B : Set) → Set
A × B = Σ A λ _ → B
infixr 5 _+_
infixr 6 _*_
data Sig (O : Set) : Set₁ where
ε ψ : Sig O
ρ : (o : O) → Sig O
ι : (o : O) → Sig O
_+_ _*_ : (Σ Σ′ : Sig O) → Sig O
σ π : (A : Set)(φ : A → Sig O) → Sig O
⟦_⟧ : ∀ {O} → Sig O → (Set → (O → Set) → (O → Set))
⟦ ε ⟧ P R o = ⊤
⟦ ψ ⟧ P R o = P
⟦ ρ o′ ⟧ P R o = R o′
⟦ ι o′ ⟧ P R o = o ≡ o′
⟦ Σ + Σ′ ⟧ P R o = ⟦ Σ ⟧ P R o ⊎ ⟦ Σ′ ⟧ P R o
⟦ Σ * Σ′ ⟧ P R o = ⟦ Σ ⟧ P R o × ⟦ Σ′ ⟧ P R o
⟦ σ A φ ⟧ P R o = Σ A λ x → ⟦ φ x ⟧ P R o
⟦ π A φ ⟧ P R o = (x : A) → ⟦ φ x ⟧ P R o
′List : Sig ⊤
′List = ε + ψ * ρ _
data μ {O}(Σ : Sig O)(P : Set)(o : O) : Set where
⟨_⟩ : ⟦ Σ ⟧ P (μ Σ P) o → μ Σ P o
List : Set → Set
List A = μ ′List A _
infixr 5 _∷_
pattern [] = ⟨ inj₁ _ ⟩
pattern _∷_ x xs = ⟨ inj₂ (x , xs) ⟩
length : ∀ {A} → List A → ℕ
length [] = zero
length (x ∷ xs) = suc (length xs)
test-list : List ℕ
test-list = 1 ∷ 2 ∷ []
test-length : length test-list ≡ 2
test-length = refl
′Vec : Sig ℕ
′Vec = ι 0
+ σ ℕ λ m → ψ * ρ m * ι (suc m)
Vec : Set → ℕ → Set
Vec A n = μ ′Vec A n
pattern []V = ⟨ inj₁ refl ⟩
pattern _∷V_ x xs = ⟨ inj₂ (_ , x , xs , refl) ⟩
nilV : ∀ {A} → Vec A zero
nilV = []V
consV : ∀ {A n} → A → Vec A n → Vec A (suc n)
consV x xs = x ∷V xs
lengthV : ∀ {A n} → Vec A n → ℕ
lengthV []V = 0
lengthV (x ∷V xs) = suc (lengthV xs)
test-lengthV : lengthV (consV 1 (consV 2 (consV 3 nilV))) ≡ 3
test-lengthV = refl
------------------------------------------------------------------------
-- .-patterns
pattern zr = (.zero , refl)
pattern underscore² = _ , _
dot : (p : Σ ℕ λ n → n ≡ zero) → ⊤ × ⊤
dot zr = underscore²
------------------------------------------------------------------------
-- Implicit arguments
{-
pattern hiddenUnit = {_} -- XXX: We get lhs error msgs, can we refine
-- that?
imp : {p : ⊤} → ⊤
imp hiddenUnit = _
-}
data Box (A : Set) : Set where
box : {x : A} → Box A
pattern [_] y = box {x = y}
b : Box ℕ
b = [ 1 ]
test-box : b ≡ box {x = 1}
test-box = refl
------------------------------------------------------------------------
-- Anonymous λs
g : ℕ → ℕ
g = λ { z → z
; sz → sz
; (ss n) → n
}
test-g : g zero ≡ zero
test-g = refl
test-g′ : g sz ≡ suc zero
test-g′ = refl
test-g″ : ∀ {n} → g (suc (suc n)) ≡ n
test-g″ = refl
------------------------------------------------------------------------
-- λs
postulate
X Y : Set
h : X → Y
p : (x : X)(y : Y) → h x ≡ y → ⊤
p x .((λ x → x) (h x)) refl = _
pattern app x = x , .((λ x → x) (h x))
p′ : (p : X × Y) → h (proj₁ p) ≡ proj₂ p → ⊤
p′ (app x) refl = _
------------------------------------------------------------------------
-- records
record Rec : Set where
constructor rr
field
r : ℕ
rrr : (x : Rec) → x ≡ record { r = 0 } → ⊤
rrr .(record { r = 0}) refl = _
rrr′ : (x : Rec) → x ≡ record { r = 0 } → ⊤
rrr′ .(rr 0) refl = _
rrrr : (a : Rec × ℕ) → proj₁ a ≡ record { r = proj₂ a } → ⊤
rrrr (.(rr 0) , 0) refl = _
rrrr (.(rr (suc n)) , suc n) refl = _
pattern pair x = (.(record { r = x }) , x)
rrrr′ : (a : Rec × ℕ) → proj₁ a ≡ record { r = proj₂ a } → ⊤
rrrr′ (pair 0) refl = _
rrrr′ (pair (suc n)) refl = _
------------------------------------------------------------------------
-- lets
-- Ulf, 2013-11-07: Lets are no longer allowed in patterns.
-- pp : (x : X)(y : Y) → h x ≡ y → ⊤
-- pp x .(let i = (λ x → x) in i (h x)) refl = _
-- pattern llet x = x , .(let i = (λ x → x) in i (h x))
-- pp′ : (p : X × Y) → h (proj₁ p) ≡ proj₂ p → ⊤
-- pp′ (llet x) refl = _
------------------------------------------------------------------------
-- absurd patterns
pattern absurd = ()
data ⊥ : Set where
⊥-elim : ∀ {A : Set} → ⊥ → A
⊥-elim absurd
------------------------------------------------------------------------
-- ambiguous constructors
data ℕ2 : Set where
zero : ℕ2
suc : ℕ2 -> ℕ2
-- This needs a type signature, because it is ambiguous:
amb : ℕ2
amb = suc (suc zero)
-- This isn't ambiguous, because the overloading is resolved when the
-- pattern synonym is scope-checked:
unamb = ss z
------------------------------------------------------------------------
-- underscore
pattern trivial = ._
trivf : (a : ⊤) -> a ≡ tt -> ⊤
trivf trivial refl = trivial
------------------------------------------------------------------------
-- let open
-- Ulf, 2013-11-07: Lets are no longer allowed in patterns.
-- pattern nuts = .(let open Σ in z)
-- foo : (n : ℕ) -> n ≡ z -> ℕ
-- foo nuts refl = nuts
------------------------------------------------------------------------
-- pattern synonym inside unparamterised module
module M where
pattern sss x = suc (suc (suc x))
a : ℕ
a = sss 2
mb : ℕ
mb = M.sss 0
mf : ℕ -> ℕ -> ℕ
mf (M.sss _) = M.sss
mf _ = \ _ -> 0
{-
module M (A : Set)(a : A) where
pattern peep x = x , .a
pop : (z : A × A) -> proj₂ z ≡ a -> ⊤
pop (peep x) refl = _
peep' = peep
pop' : (z : ⊤ × ⊤) -> proj₂ z ≡ tt -> ⊤
pop' (M.peep tt) refl = _
peep' = M.peep
-}
| 19.432277
| 72
| 0.424885
|
fde6f77dbcfdb7efb171db8f8bd41f3b39d5e319
| 469
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Int.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2016-05-20T13:58:52.000Z
|
2016-05-20T13:58:52.000Z
|
src/data/lib/prim/Agda/Builtin/Int.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T15:49:15.000Z
|
2015-09-15T15:49:15.000Z
|
src/data/lib/prim/Agda/Builtin/Int.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2020-05-16T20:10:05.000Z
|
2020-05-16T20:10:05.000Z
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Int where
open import Agda.Builtin.Nat
open import Agda.Builtin.String
infix 8 pos -- Standard library uses this as +_
data Int : Set where
pos : (n : Nat) → Int
negsuc : (n : Nat) → Int
{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}
primitive primShowInteger : Int → String
| 23.45
| 64
| 0.639659
|
34d399fa8c0ef9b0c5e3c8f11a4add28679d6599
| 1,003
|
agda
|
Agda
|
archive/agda-2/Oscar/Class/Substitution.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-2/Oscar/Class/Substitution.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-2/Oscar/Class/Substitution.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
module Oscar.Class.Substitution where
open import Oscar.Data.Equality
open import Oscar.Function
open import Oscar.Relation
open import Oscar.Level
record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where
field
ε : ∀ {m} → B m → C m
_◇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n
◇-left-identity : ∀ {m n} → (f : B m → C n) → ε ◇ f ≡̇ f
◇-right-identity : ∀ {m n} → (f : B m → C n) → f ◇ ε ≡̇ f
◇-associativity : ∀ {k l m n} (f : B k → C l) (g : B l → C m) (h : B m → C n) → h ◇ (g ◇ f) ≡̇ (h ◇ g) ◇ f
open Substitution ⦃ … ⦄ public
{-# DISPLAY Substitution._◇_ _ = _◇_ #-}
instance Substitution-id : ∀ {a} {A : Set a} {bc} {BC : A → Set bc} → Substitution BC BC
Substitution.ε Substitution-id = id
Substitution._◇_ Substitution-id g f = g ∘ f
Substitution.◇-left-identity Substitution-id _ _ = refl
Substitution.◇-right-identity Substitution-id _ _ = refl
Substitution.◇-associativity Substitution-id _ _ _ _ = refl
| 37.148148
| 110
| 0.58325
|
21f708be731970838702e15360ba81fa98cf8b89
| 155
|
agda
|
Agda
|
test/Fail/Issue5448-2.agda
|
MxmUrw/agda
|
6ede01fa854c5472e54f7d1799ca2c08ed316129
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue5448-2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue5448-2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --without-K #-}
open import Agda.Builtin.Equality
subst :
{@0 A : Set} {x y : A}
(@0 P : A → Set) → x ≡ y → P x → P y
subst P refl p = p
| 17.222222
| 38
| 0.522581
|
35c59d14b4932ff3203bf69f203a736d2a110128
| 1,182
|
agda
|
Agda
|
notes/FOT/PA/Inductive/ImplicitArgumentInductionSL.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/FOT/PA/Inductive/ImplicitArgumentInductionSL.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/FOT/PA/Inductive/ImplicitArgumentInductionSL.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Testing an implicit argument for natural numbers induction
------------------------------------------------------------------------------
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.PA.Inductive.ImplicitArgumentInductionSL where
open import Data.Nat renaming ( suc to succ )
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n
succCong refl = refl
-- N.B. It is not possible to use an implicit argument in the
-- inductive hypothesis.
ℕ-ind : (A : ℕ → Set) → A zero → (∀ {n} → A n → A (succ n)) → ∀ n → A n
ℕ-ind A A0 h zero = A0
ℕ-ind A A0 h (succ n) = h (ℕ-ind A A0 h n)
+-assoc : ∀ m n o → m + n + o ≡ m + (n + o)
+-assoc m n o = ℕ-ind A A0 is m
where
A : ℕ → Set
A i = i + n + o ≡ i + (n + o)
A0 : A zero
A0 = refl
is : ∀ {i} → A i → A (succ i)
is ih = succCong ih
| 31.105263
| 78
| 0.456853
|
34855abc8f404c585f18eeeb40d344ec01319f7c
| 344
|
agda
|
Agda
|
test/Fail/MissingDefinitions.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/MissingDefinitions.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/MissingDefinitions.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module MissingDefinitions where
open import Agda.Builtin.Equality
Q : Set
data U : Set
S : Set
S = U
T : S → Set
T _ = U
V : Set
W : V → Set
private
X : Set
module AB where
data A : Set
B : (a b : A) → a ≡ b
mutual
U₂ : Set
data T₂ : U₂ → Set
V₂ : (u₂ : U₂) → T₂ u₂ → Set
data W₂ (u₂ : U₂) (t₂ : T₂ u₂) : V₂ u₂ t₂ → Set
| 11.096774
| 49
| 0.555233
|
041b6a6ce5413b9b86911e15e6e0692473a08513
| 6,094
|
agda
|
Agda
|
Cubical/Algebra/Semigroup/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Semigroup/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Algebra/Semigroup/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Semigroup.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Record
open Iso
private
variable
ℓ : Level
-- Semigroups as a record, inspired by the Agda standard library:
--
-- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Bundles.agda#L48
-- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Structures.agda#L50
--
-- Note that as we are using Path for all equations the IsMagma record
-- would only contain isSet A if we had it.
record IsSemigroup {A : Type ℓ} (_·_ : A → A → A) : Type ℓ where
constructor issemigroup
field
is-set : isSet A
assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z
record SemigroupStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor semigroupstr
field
_·_ : A → A → A
isSemigroup : IsSemigroup _·_
infixl 7 _·_
open IsSemigroup isSemigroup public
Semigroup : Type (ℓ-suc ℓ)
Semigroup = TypeWithStr _ SemigroupStr
semigroup : (A : Type ℓ) (_·_ : A → A → A) (h : IsSemigroup _·_) → Semigroup
semigroup A _·_ h = A , semigroupstr _·_ h
record SemigroupEquiv (M N : Semigroup {ℓ}) (e : ⟨ M ⟩ ≃ ⟨ N ⟩) : Type ℓ where
constructor semigroupequiv
-- Shorter qualified names
private
module M = SemigroupStr (snd M)
module N = SemigroupStr (snd N)
field
isHom : (x y : ⟨ M ⟩) → equivFun e (x M.· y) ≡ equivFun e x N.· equivFun e y
open SemigroupStr
open IsSemigroup
open SemigroupEquiv
-- Develop some theory about Semigroups using various general results
-- that are stated using Σ-types. For this we define Semigroup as a
-- nested Σ-type, prove that it's equivalent to the above record
-- definition and then transport results along this equivalence.
module SemigroupΣTheory {ℓ} where
RawSemigroupStructure : Type ℓ → Type ℓ
RawSemigroupStructure X = X → X → X
RawSemigroupEquivStr = AutoEquivStr RawSemigroupStructure
rawSemigroupUnivalentStr : UnivalentStr _ RawSemigroupEquivStr
rawSemigroupUnivalentStr = autoUnivalentStr RawSemigroupStructure
SemigroupAxioms : (A : Type ℓ) → RawSemigroupStructure A → Type ℓ
SemigroupAxioms A _·_ = isSet A
× ((x y z : A) → x · (y · z) ≡ (x · y) · z)
SemigroupStructure : Type ℓ → Type ℓ
SemigroupStructure = AxiomsStructure RawSemigroupStructure SemigroupAxioms
SemigroupΣ : Type (ℓ-suc ℓ)
SemigroupΣ = TypeWithStr ℓ SemigroupStructure
isPropSemigroupAxioms : (A : Type ℓ) (_·_ : RawSemigroupStructure A)
→ isProp (SemigroupAxioms A _·_)
isPropSemigroupAxioms _ _ = isPropΣ isPropIsSet λ isSetA → isPropΠ3 λ _ _ _ → isSetA _ _
SemigroupEquivStr : StrEquiv SemigroupStructure ℓ
SemigroupEquivStr = AxiomsEquivStr RawSemigroupEquivStr SemigroupAxioms
SemigroupAxiomsIsoIsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A)
→ Iso (SemigroupAxioms A _·_) (IsSemigroup _·_)
fun (SemigroupAxiomsIsoIsSemigroup s) (x , y) = issemigroup x y
inv (SemigroupAxiomsIsoIsSemigroup s) M = is-set M , assoc M
rightInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl
leftInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl
SemigroupAxioms≡IsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A)
→ SemigroupAxioms _ _·_ ≡ IsSemigroup _·_
SemigroupAxioms≡IsSemigroup s = isoToPath (SemigroupAxiomsIsoIsSemigroup s)
Semigroup→SemigroupΣ : Semigroup → SemigroupΣ
Semigroup→SemigroupΣ (A , semigroupstr _·_ isSemigroup) =
A , _·_ , SemigroupAxiomsIsoIsSemigroup _ .inv isSemigroup
SemigroupΣ→Semigroup : SemigroupΣ → Semigroup
SemigroupΣ→Semigroup (A , _·_ , isSemigroupΣ) =
semigroup A _·_ (SemigroupAxiomsIsoIsSemigroup _ .fun isSemigroupΣ)
SemigroupIsoSemigroupΣ : Iso Semigroup SemigroupΣ
SemigroupIsoSemigroupΣ =
iso Semigroup→SemigroupΣ SemigroupΣ→Semigroup (λ _ → refl) (λ _ → refl)
semigroupUnivalentStr : UnivalentStr SemigroupStructure SemigroupEquivStr
semigroupUnivalentStr = axiomsUnivalentStr _ isPropSemigroupAxioms rawSemigroupUnivalentStr
SemigroupΣPath : (M N : SemigroupΣ) → (M ≃[ SemigroupEquivStr ] N) ≃ (M ≡ N)
SemigroupΣPath = SIP semigroupUnivalentStr
SemigroupEquivΣ : (M N : Semigroup) → Type ℓ
SemigroupEquivΣ M N = Semigroup→SemigroupΣ M ≃[ SemigroupEquivStr ] Semigroup→SemigroupΣ N
SemigroupIsoΣPath : {M N : Semigroup} → Iso (Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e) (SemigroupEquivΣ M N)
fun SemigroupIsoΣPath (e , x) = e , isHom x
inv SemigroupIsoΣPath (e , h) = e , semigroupequiv h
rightInv SemigroupIsoΣPath _ = refl
leftInv SemigroupIsoΣPath _ = refl
SemigroupPath : (M N : Semigroup) → (Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e) ≃ (M ≡ N)
SemigroupPath M N =
Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e ≃⟨ isoToEquiv SemigroupIsoΣPath ⟩
SemigroupEquivΣ M N ≃⟨ SemigroupΣPath _ _ ⟩
Semigroup→SemigroupΣ M ≡ Semigroup→SemigroupΣ N ≃⟨ isoToEquiv (invIso (congIso SemigroupIsoSemigroupΣ)) ⟩
M ≡ N ■
-- We now extract the important results from the above module
isPropIsSemigroup : {A : Type ℓ} (_·_ : A → A → A) → isProp (IsSemigroup _·_)
isPropIsSemigroup _·_ =
subst isProp (SemigroupΣTheory.SemigroupAxioms≡IsSemigroup _·_)
(SemigroupΣTheory.isPropSemigroupAxioms _ _·_)
SemigroupPath : (M N : Semigroup {ℓ}) → (Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e) ≃ (M ≡ N)
SemigroupPath {ℓ = ℓ} =
SIP
(autoUnivalentRecord
(autoRecordSpec (SemigroupStr {ℓ}) SemigroupEquiv
(fields:
data[ _·_ ∣ isHom ]
prop[ isSemigroup ∣ (λ _ → isPropIsSemigroup _) ]))
_ _)
| 36.491018
| 113
| 0.702822
|
fd3e89cb89848f21ca93f687bf3b33174b841d38
| 106
|
agda
|
Agda
|
test/Fail/Issue1644.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue1644.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue1644.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
postulate
A B : Set
{-# DISPLAY A = B #-}
{-# DISPLAY B = A #-}
loop : A
loop = {!!}
| 8.833333
| 21
| 0.5
|
21e9a449e68be768a1335d9b446fd28988cf3607
| 11,197
|
agda
|
Agda
|
Definition/Conversion.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2018-06-21T08:39:01.000Z
|
2022-01-17T16:13:53.000Z
|
Definition/Conversion.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | null | null | null |
Definition/Conversion.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2022-01-26T14:55:51.000Z
|
2022-02-15T19:42:19.000Z
|
-- Algorithmic equality.
{-# OPTIONS --safe #-}
module Definition.Conversion where
open import Definition.Untyped
open import Definition.Typed
open import Tools.Nat
import Tools.PropositionalEquality as PE
infix 10 _⊢_~_↑_^_
infix 10 _⊢_[conv↑]_^_
infix 10 _⊢_[conv↓]_^_
infix 10 _⊢_[conv↑]_∷_^_
infix 10 _⊢_[conv↓]_∷_^_
infix 10 _⊢_[genconv↑]_∷_^_
mutual
-- Neutral equality.
data _⊢_~_↑!_^_ (Γ : Con Term) : (k l A : Term) → TypeLevel → Set where
var-refl : ∀ {x y A l}
→ Γ ⊢ var x ∷ A ^ [ ! , l ]
→ x PE.≡ y
→ Γ ⊢ var x ~ var y ↑! A ^ l
app-cong : ∀ {k l t v F rF lF lG G lΠ}
→ Γ ⊢ k ~ l ↓! Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ ι lΠ
→ Γ ⊢ t [genconv↑] v ∷ F ^ [ rF , ι lF ]
→ Γ ⊢ k ∘ t ^ lΠ ~ l ∘ v ^ lΠ ↑! G [ t ] ^ ι lG
natrec-cong : ∀ {k l h g a₀ b₀ F G lF}
→ Γ ∙ ℕ ^ [ ! , ι ⁰ ] ⊢ F [conv↑] G ^ [ ! , ι lF ]
→ Γ ⊢ a₀ [conv↑] b₀ ∷ F [ zero ] ^ ι lF
→ Γ ⊢ h [conv↑] g ∷ Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF) ° lF ° lF ^ ι lF
→ Γ ⊢ k ~ l ↓! ℕ ^ ι ⁰
→ Γ ⊢ natrec lF F a₀ h k ~ natrec lF G b₀ g l ↑! F [ k ] ^ ι lF
Emptyrec-cong : ∀ {k l F G ll lEmpty}
→ Γ ⊢ F [conv↑] G ^ [ ! , ι ll ]
→ Γ ⊢ k ~ l ↑% Empty lEmpty ^ ι lEmpty
→ Γ ⊢ Emptyrec ll lEmpty F k ~ Emptyrec ll lEmpty G l ↑! F ^ ι ll
Id-cong : ∀ {l A A' t t' u u'}
→ Γ ⊢ A ~ A' ↓! U l ^ next l
→ Γ ⊢ t [conv↑] t' ∷ A ^ ι l
→ Γ ⊢ u [conv↑] u' ∷ A ^ ι l
→ Γ ⊢ Id A t u ~ Id A' t' u' ↑! SProp l ^ next l
Id-ℕ : ∀ {t t' u u'}
→ Γ ⊢ t ~ t' ↓! ℕ ^ ι ⁰
→ Γ ⊢ u [conv↑] u' ∷ ℕ ^ ι ⁰
→ Γ ⊢ Id ℕ t u ~ Id ℕ t' u' ↑! SProp ⁰ ^ next ⁰
Id-ℕ0 : ∀ {t t'}
→ Γ ⊢ t ~ t' ↓! ℕ ^ ι ⁰
→ Γ ⊢ Id ℕ zero t ~ Id ℕ zero t' ↑! SProp ⁰ ^ next ⁰
Id-ℕS : ∀ {t t' u u'}
→ Γ ⊢ t [conv↑] t' ∷ ℕ ^ ι ⁰
→ Γ ⊢ u ~ u' ↓! ℕ ^ ι ⁰
→ Γ ⊢ Id ℕ (suc t) u ~ Id ℕ (suc t') u' ↑! SProp ⁰ ^ next ⁰
Id-U : ∀ {t t' u u'}
→ Γ ⊢ t ~ t' ↓! U ⁰ ^ ι ¹
→ Γ ⊢ u [conv↑] u' ∷ U ⁰ ^ ι ¹
→ Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) t' u' ↑! SProp ¹ ^ next ¹
Id-Uℕ : ∀ {t t'}
→ Γ ⊢ t ~ t' ↓! U ⁰ ^ ι ¹
→ Γ ⊢ Id (U ⁰) ℕ t ~ Id (U ⁰) ℕ t' ↑! SProp ¹ ^ next ¹
Id-UΠ : ∀ {A rA B A' B' t t'}
→ Γ ⊢ Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹
→ Γ ⊢ t ~ t' ↓! U ⁰ ^ ι ¹
→ Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ ) t ~ Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ) t' ↑! SProp ¹ ^ next ¹
cast-cong : ∀ {A A' B B' t t' e e'}
→ Γ ⊢ A ~ A' ↓! U ⁰ ^ next ⁰
→ Γ ⊢ B [conv↑] B' ∷ U ⁰ ^ ι ¹
→ Γ ⊢ t [conv↑] t' ∷ A ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) A B) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) A' B') ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ A B e t ~ cast ⁰ A' B' e' t' ↑! B ^ ι ⁰
cast-ℕ : ∀ {A A' t t' e e'}
→ Γ ⊢ A ~ A' ↓! U ⁰ ^ next ⁰
→ Γ ⊢ t [conv↑] t' ∷ ℕ ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) ℕ A) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) ℕ A') ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ ℕ A' e' t' ↑! A ^ ι ⁰
cast-ℕℕ : ∀ {t t' e e'}
→ Γ ⊢ t ~ t' ↓! ℕ ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) ℕ ℕ) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) ℕ ℕ) ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ ℕ e' t' ↑! ℕ ^ ι ⁰
cast-Π : ∀ {A rA P A' P' B B' t t' e e'}
→ Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ next ⁰
→ Γ ⊢ B ~ B' ↓! U ⁰ ^ next ⁰
→ Γ ⊢ t [conv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) B) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) B') ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) B e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) B' e' t' ↑! B ^ ι ⁰
cast-Πℕ : ∀ {A rA P A' P' t t' e e'}
→ Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹
→ Γ ⊢ t [conv↑] t' ∷ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) ℕ) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) ℕ) ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) ℕ e t ~ cast ⁰ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) ℕ e' t' ↑! ℕ ^ ι ⁰
cast-ℕΠ : ∀ {A rA P A' P' t t' e e'}
→ Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹
→ Γ ⊢ t [conv↑] t' ∷ ℕ ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) e t ~ cast ⁰ ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ) e' t' ↑! (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ) ^ ι ⁰
cast-ΠΠ%! : ∀ {A P A' P' B Q B' Q' t t' e e'}
→ Γ ⊢ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹
→ Γ ⊢ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ [conv↑] Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹
→ Γ ⊢ t [conv↑] t' ∷ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ) e t ~
cast ⁰ (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ ) e' t' ↑! (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ) ^ ι ⁰
cast-ΠΠ!% : ∀ {A P A' P' B Q B' Q' t t' e e'}
→ Γ ⊢ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ [conv↑] Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹
→ Γ ⊢ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ [conv↑] Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ ι ¹
→ Γ ⊢ t [conv↑] t' ∷ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ^ ι ⁰
→ Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ]
→ Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ )) ^ [ % , next ⁰ ]
→ Γ ⊢ cast ⁰ (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ) e t ~
cast ⁰ (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ ) e' t' ↑! (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ) ^ ι ⁰
record _⊢_~_↑%_^_ (Γ : Con Term) (k l A : Term) (ll : TypeLevel) : Set where
inductive
constructor %~↑
field
⊢k : Γ ⊢ k ∷ A ^ [ % , ll ]
⊢l : Γ ⊢ l ∷ A ^ [ % , ll ]
data _⊢_~_↑_^_ (Γ : Con Term) : (k l A : Term) → TypeInfo → Set where
~↑! : ∀ {k l A ll} → Γ ⊢ k ~ l ↑! A ^ ll → Γ ⊢ k ~ l ↑ A ^ [ ! , ll ]
~↑% : ∀ {k l A ll} → Γ ⊢ k ~ l ↑% A ^ ll → Γ ⊢ k ~ l ↑ A ^ [ % , ll ]
-- Neutral equality with types in WHNF.
record _⊢_~_↓!_^_ (Γ : Con Term) (k l B : Term) (ll : TypeLevel) : Set where
inductive
constructor [~]
field
A : Term
D : Γ ⊢ A ⇒* B ^ [ ! , ll ]
whnfB : Whnf B
k~l : Γ ⊢ k ~ l ↑! A ^ ll
-- Type equality.
record _⊢_[conv↑]_^_ (Γ : Con Term) (A B : Term) (rA : TypeInfo) : Set where
inductive
constructor [↑]
field
A′ B′ : Term
D : Γ ⊢ A ⇒* A′ ^ rA
D′ : Γ ⊢ B ⇒* B′ ^ rA
whnfA′ : Whnf A′
whnfB′ : Whnf B′
A′<>B′ : Γ ⊢ A′ [conv↓] B′ ^ rA
-- Type equality with types in WHNF.
data _⊢_[conv↓]_^_ (Γ : Con Term) : (A B : Term) → TypeInfo → Set where
U-refl : ∀ {r r' }
→ r PE.≡ r' -- needed for K issues
→ ⊢ Γ → Γ ⊢ Univ r ¹ [conv↓] Univ r' ¹ ^ [ ! , next ¹ ]
univ : ∀ {A B r l}
→ Γ ⊢ A [conv↓] B ∷ Univ r l ^ next l
→ Γ ⊢ A [conv↓] B ^ [ r , ι l ]
-- Term equality.
record _⊢_[conv↑]_∷_^_ (Γ : Con Term) (t u A : Term) (l : TypeLevel) : Set where
inductive
constructor [↑]ₜ
field
B t′ u′ : Term
D : Γ ⊢ A ⇒* B ^ [ ! , l ]
d : Γ ⊢ t ⇒* t′ ∷ B ^ l
d′ : Γ ⊢ u ⇒* u′ ∷ B ^ l
whnfB : Whnf B
whnft′ : Whnf t′
whnfu′ : Whnf u′
t<>u : Γ ⊢ t′ [conv↓] u′ ∷ B ^ l
-- Term equality with types and terms in WHNF.
data _⊢_[conv↓]_∷_^_ (Γ : Con Term) : (t u A : Term) (l : TypeLevel) → Set where
U-refl : ∀ {r r' }
→ r PE.≡ r' -- needed for K issues
→ ⊢ Γ → Γ ⊢ Univ r ⁰ [conv↓] Univ r' ⁰ ∷ U ¹ ^ next ¹
ne : ∀ {r K L lU l}
→ Γ ⊢ K ~ L ↓! Univ r lU ^ l
→ Γ ⊢ K [conv↓] L ∷ Univ r lU ^ l
ℕ-refl : ⊢ Γ → Γ ⊢ ℕ [conv↓] ℕ ∷ U ⁰ ^ next ⁰
Empty-refl : ∀ {l ll} → ll PE.≡ next l → ⊢ Γ → Γ ⊢ Empty l [conv↓] Empty l ∷ SProp l ^ ll
Π-cong : ∀ {F G H E rF rH rΠ lF lH lG lE lΠ ll}
→ ll PE.≡ next lΠ
→ rF PE.≡ rH -- needed for K issues
→ lF PE.≡ lH -- needed for K issues
→ lG PE.≡ lE -- needed for K issues
→ lF ≤ lΠ
→ lG ≤ lΠ
→ Γ ⊢ F ^ [ rF , ι lF ]
→ Γ ⊢ F [conv↑] H ∷ Univ rF lF ^ next lF
→ Γ ∙ F ^ [ rF , ι lF ] ⊢ G [conv↑] E ∷ Univ rΠ lG ^ next lG
→ Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ [conv↓] Π H ^ rH ° lH ▹ E ° lE ° lΠ ∷ Univ rΠ lΠ ^ ll
∃-cong : ∀ {F G H E l ll}
→ ll PE.≡ next l
→ Γ ⊢ F ^ [ % , ι l ]
→ Γ ⊢ F [conv↑] H ∷ SProp l ^ next l
→ Γ ∙ F ^ [ % , ι l ] ⊢ G [conv↑] E ∷ SProp l ^ next l
→ Γ ⊢ ∃ F ▹ G [conv↓] ∃ H ▹ E ∷ SProp l ^ ll
ℕ-ins : ∀ {k l}
→ Γ ⊢ k ~ l ↓! ℕ ^ ι ⁰
→ Γ ⊢ k [conv↓] l ∷ ℕ ^ ι ⁰
ne-ins : ∀ {k l M N ll}
→ Γ ⊢ k ∷ N ^ [ ! , ι ll ]
→ Γ ⊢ l ∷ N ^ [ ! , ι ll ]
→ Neutral N
→ Γ ⊢ k ~ l ↓! M ^ ι ll
→ Γ ⊢ k [conv↓] l ∷ N ^ ι ll
zero-refl : ⊢ Γ → Γ ⊢ zero [conv↓] zero ∷ ℕ ^ ι ⁰
suc-cong : ∀ {m n}
→ Γ ⊢ m [conv↑] n ∷ ℕ ^ ι ⁰
→ Γ ⊢ suc m [conv↓] suc n ∷ ℕ ^ ι ⁰
η-eq : ∀ {f g F G rF lF lG l}
→ lF ≤ l
→ lG ≤ l
→ Γ ⊢ F ^ [ rF , ι lF ]
→ Γ ⊢ f ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ]
→ Γ ⊢ g ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ]
→ Function f
→ Function g
→ Γ ∙ F ^ [ rF , ι lF ] ⊢ wk1 f ∘ var 0 ^ l [conv↑] wk1 g ∘ var 0 ^ l ∷ G ^ ι lG
→ Γ ⊢ f [conv↓] g ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ ι l
_⊢_[genconv↑]_∷_^_ : (Γ : Con Term) (t u A : Term) (r : TypeInfo) → Set
_⊢_[genconv↑]_∷_^_ Γ k l A [ ! , ll ] = Γ ⊢ k [conv↑] l ∷ A ^ ll
_⊢_[genconv↑]_∷_^_ Γ k l A [ % , ll ] = Γ ⊢ k ~ l ↑% A ^ ll
var-refl′ : ∀ {Γ x A rA ll}
→ Γ ⊢ var x ∷ A ^ [ rA , ll ]
→ Γ ⊢ var x ~ var x ↑ A ^ [ rA , ll ]
var-refl′ {rA = !} ⊢x = ~↑! (var-refl ⊢x PE.refl)
var-refl′ {rA = %} ⊢x = ~↑% (%~↑ ⊢x ⊢x)
| 46.460581
| 144
| 0.327052
|
fd4b6472c93d9f288f3f37b3a3fdda6688d1a0da
| 1,021
|
agda
|
Agda
|
test/fail/Issue970.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/fail/Issue970.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
test/fail/Issue970.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
data Dec (A : Set) : Set where
yes : A → Dec A
no : Dec A
record ⊤ : Set where constructor tt
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
subst : ∀ {A}(P : A → Set){x y} → x ≡ y → P x → P y
subst P refl px = px
cong : ∀ {A B}(f : A → B){x y} → x ≡ y → f x ≡ f y
cong f refl = refl
postulate _≟_ : (n n' : ⊤) → Dec (n ≡ n')
record _×_ A B : Set where
constructor _,_
field proj₁ : A
proj₂ : B
open _×_
data Maybe : Set where
nothing : Maybe
data Blah (a : Maybe × ⊤) : Set where
blah : {b : Maybe × ⊤} → Blah b → Blah a
update : {A : Set} → ⊤ → A → A
update n m with n ≟ n
update n m | yes p = m
update n m | no = m
lem-upd : ∀ {A} n (m : A) → update n m ≡ m
lem-upd n m with n ≟ n
... | yes p = refl
... | no = refl
bug : {x : Maybe × ⊤} → proj₁ x ≡ nothing → Blah x
bug ia = blah (bug (subst {⊤}
(λ _ → proj₁ {B = ⊤}
(update tt (nothing , tt)) ≡ nothing)
refl (cong proj₁ (lem-upd _ _))))
| 22.195652
| 72
| 0.476983
|
210439c8c2e2d91359e987cc187cbd02fe133adc
| 872
|
agda
|
Agda
|
theorems/homotopy/PathSetIsInitalCover.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
theorems/homotopy/PathSetIsInitalCover.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
theorems/homotopy/PathSetIsInitalCover.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.PathSetIsInitalCover {i} (X : Ptd i)
-- and an arbitrary covering
{k} (⊙cov : ⊙Cover X k) where
open Cover
private
univ-cover = path-set-cover X
module ⊙cov = ⊙Cover ⊙cov
-- Weak initiality by transport.
quotient-cover : CoverHom univ-cover ⊙cov.cov
quotient-cover _ p = cover-trace ⊙cov.cov ⊙cov.pt p
-- Strong initiality by path induction.
module Uniqueness
(cover-hom : CoverHom univ-cover ⊙cov.cov)
(pres-pt : cover-hom (pt X) idp₀ == ⊙cov.pt)
where
private
lemma₁ : ∀ a p → cover-hom a [ p ] == quotient-cover a [ p ]
lemma₁ ._ idp = pres-pt
lemma₂ : ∀ a p → cover-hom a p == quotient-cover a p
lemma₂ a = Trunc-elim
(lemma₁ a)
theorem : cover-hom == quotient-cover
theorem = λ= λ a → λ= $ lemma₂ a
| 24.914286
| 66
| 0.614679
|
34562899aa5dcc1099db0468ba7dd9a82004dc3e
| 1,447
|
agda
|
Agda
|
notes/FOT/FOTC/UnguardedCorecursion/Alter/PropertiesI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/FOT/FOTC/UnguardedCorecursion/Alter/PropertiesI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/FOT/FOTC/UnguardedCorecursion/Alter/PropertiesI.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Properties of the alter list
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.UnguardedCorecursion.Alter.PropertiesI where
open import FOT.FOTC.UnguardedCorecursion.Alter.Alter
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Data.Stream.Type
open import FOTC.Relation.Binary.Bisimilarity.Type
------------------------------------------------------------------------------
-- TODO (23 December 2013).
-- alter-Stream : Stream alter
-- alter-Stream = Stream-coind A h refl
-- where
-- A : D → Set
-- A xs = xs ≡ alter
-- h : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs'
-- h Ax = true , (false ∷ alter) , trans Ax alter-eq , {!!}
-- TODO (23 December 2013).
-- alter≈alter' : alter ≈ alter'
-- alter≈alter' = ≈-coind B h₁ h₂
-- where
-- B : D → D → Set
-- B xs ys = xs ≡ xs
-- h₁ : B alter alter' → ∃[ x' ] ∃[ xs' ] ∃[ ys' ]
-- alter ≡ x' ∷ xs' ∧ alter' ≡ x' ∷ ys' ∧ B xs' ys'
-- h₁ _ = true
-- , false ∷ alter
-- , map not₀ alter'
-- , alter-eq
-- , alter'-eq
-- , refl
-- h₂ : B alter alter'
-- h₂ = refl
| 29.530612
| 78
| 0.454734
|
4b3aa74abacf4f0f1343bff4d96077cd2c9426e3
| 1,148
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Symmetric.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Symmetric.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Symmetric.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Symmetric closures of binary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Construct.Closure.Symmetric where
open import Data.Sum as Sum using (_⊎_)
open import Function using (id)
open import Relation.Binary
open Sum public using () renaming (inj₁ to fwd; inj₂ to bwd)
-- The symmetric closure of a relation.
SymClosure : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Rel A ℓ
SymClosure _∼_ a b = a ∼ b ⊎ b ∼ a
module _ {a ℓ} {A : Set a} where
-- Symmetric closures are symmetric.
symmetric : (_∼_ : Rel A ℓ) → Symmetric (SymClosure _∼_)
symmetric _ (fwd a∼b) = bwd a∼b
symmetric _ (bwd b∼a) = fwd b∼a
-- A generalised variant of map which allows the index type to change.
gmap : ∀ {b ℓ₂} {B : Set b} {P : Rel A ℓ} {Q : Rel B ℓ₂} →
(f : A → B) → P =[ f ]⇒ Q → SymClosure P =[ f ]⇒ SymClosure Q
gmap _ g = Sum.map g g
map : ∀ {ℓ₂} {P : Rel A ℓ} {Q : Rel A ℓ₂} →
P ⇒ Q → SymClosure P ⇒ SymClosure Q
map = gmap id
| 29.435897
| 72
| 0.540941
|
212067b74910ba670b440a4993266af759ae9a39
| 137
|
agda
|
Agda
|
prototyping/Examples.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | 1
|
2022-03-18T04:10:20.000Z
|
2022-03-18T04:10:20.000Z
|
prototyping/Examples.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
prototyping/Examples.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --rewriting #-}
module Examples where
import Examples.Syntax
import Examples.OpSem
import Examples.Run
import Examples.Type
| 17.125
| 27
| 0.79562
|
d1dc4973749fac1a0305091492f83002d6e52751
| 10,028
|
agda
|
Agda
|
Data/AVLTree/Internal.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Data/AVLTree/Internal.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Data/AVLTree/Internal.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
open import Prelude
open import Relation.Binary
module Data.AVLTree.Internal {k} {K : Type k} {r₁ r₂} (totalOrder : TotalOrder K r₁ r₂) where
open import Relation.Binary.Construct.Bounded totalOrder
open import Data.Nat using (_+_)
open TotalOrder totalOrder using (_<?_; compare)
open TotalOrder b-ord using (<-trans) renaming (refl to <-refl)
import Data.Empty.UniversePolymorphic as Poly
private
variable
n m l : ℕ
data Bal : ℕ → ℕ → ℕ → Type where
ll : Bal (suc n) n (suc n)
ee : Bal n n n
rr : Bal n (suc n) (suc n)
balr : Bal n m l → Bal l n l
balr ll = ee
balr ee = ee
balr rr = ll
ball : Bal n m l → Bal m l l
ball ll = rr
ball ee = ee
ball rr = ee
private
variable
v : Level
Val : K → Type v
data Tree {v} (Val : K → Type v) (lb ub : [∙]) : ℕ → Type (k ℓ⊔ r₁ ℓ⊔ v) where
leaf : (lb<ub : lb [<] ub) →
Tree Val lb ub zero
node : (key : K)
(val : Val key)
(bal : Bal n m l)
(lchild : Tree Val lb [ key ] n)
(rchild : Tree Val [ key ] ub m) →
Tree Val lb ub (suc l)
private
variable
lb ub : [∙]
data Inc {t} (T : ℕ → Type t) (n : ℕ) : Type t where
stay : T n → Inc T n
high : T (suc n) → Inc T n
private
variable
t : Level
N : ℕ → Type t
rotʳ : (x : K) →
(xv : Val x) →
(ls : Tree Val lb [ x ] (2 + n)) →
(rs : Tree Val [ x ] ub n) →
Inc (Tree Val lb ub) (2 + n)
rotʳ y yv (node x xv ll xl xr) zs = stay (node x xv ee xl (node y yv ee xr zs))
rotʳ y yv (node x xv ee xl xr) zs = high (node x xv rr xl (node y yv ll xr zs))
rotʳ z zv (node x xv rr xl (node y yv bl yl yr)) zr = stay (node y yv ee (node x xv (balr bl) xl yl) (node z zv (ball bl) yr zr))
rotˡ : (x : K) → (xv : Val x) →
(ls : Tree Val lb [ x ] n) →
(rs : Tree Val [ x ] ub (2 + n)) →
Inc (Tree Val lb ub) (2 + n)
rotˡ x xv xl (node y yv ee yl yr) = high (node y yv ll (node x xv rr xl yl) yr)
rotˡ x xv xl (node y yv rr yl yr) = stay (node y yv ee (node x xv ee xl yl) yr)
rotˡ x xv xl (node z zv ll (node y yv bl yl yr) zr) = stay (node y yv ee (node x xv (balr bl) xl yl) (node z zv (ball bl) yr zr))
insertWith : (x : K) → Val x →
((new : Val x) → (old : Val x) → Val x) →
(lb [<] [ x ]) →
([ x ] [<] ub) →
(tr : Tree Val lb ub n) →
Inc (Tree Val lb ub) n
insertWith x xv xf lb<x x<ub (leaf lb<ub) =
high (node x xv ee (leaf lb<x) (leaf x<ub))
insertWith x xv xf lb<x x<ub (node y yv bal ls rs) with compare x y
... | lt x<y with insertWith x xv xf lb<x x<y ls
... | stay ls′ = stay (node y yv bal ls′ rs)
... | high ls′ with bal
... | ll = rotʳ y yv ls′ rs
... | ee = high (node y yv ll ls′ rs)
... | rr = stay (node y yv ee ls′ rs)
insertWith x xv xf lb<x x<ub (node y yv bal ls rs)
| gt y<x with insertWith x xv xf y<x x<ub rs
... | stay rs′ = stay (node y yv bal ls rs′)
... | high rs′ with bal
... | ll = stay (node y yv ee ls rs′)
... | ee = high (node y yv rr ls rs′)
... | rr = rotˡ y yv ls rs′
insertWith x xv xf lb<x x<ub (node y yv bal ls rs)
| eq x≡y = stay (node y (subst _ x≡y (xf xv (subst _ (sym x≡y) yv))) bal ls rs)
lookup : (x : K) → Tree Val lb ub n → Maybe (Val x)
lookup x (leaf lb<ub) = nothing
lookup x (node y val bal lhs rhs) with compare y x
... | lt x<y = lookup x lhs
... | eq x≡y = just (subst _ x≡y val)
... | gt x>y = lookup x rhs
record Cons (Val : K → Type v) (lb ub : [∙]) (h : ℕ) : Type (k ℓ⊔ v ℓ⊔ r₁) where
constructor cons
field
head : K
val : Val head
bounds : lb [<] [ head ]
tail : Inc (Tree Val [ head ] ub) h
open Cons public
map-tail : ∀ {ub₁ ub₂} →
Cons Val lb ub₁ n →
(∀ {lb} → Inc (Tree Val lb ub₁) n → Inc (Tree Val lb ub₂) m) →
Cons Val lb ub₂ m
map-tail (cons h v b t) f = cons h v b (f t)
uncons : (x : K) →
Val x →
Bal n m l →
Tree Val lb [ x ] n →
Tree Val [ x ] ub m →
Cons Val lb ub l
uncons x xv bl (leaf lb<ub) rhs .head = x
uncons x xv bl (leaf lb<ub) rhs .val = xv
uncons x xv bl (leaf lb<ub) rhs .bounds = lb<ub
uncons x xv ee (leaf lb<ub) rhs .tail = stay rhs
uncons x xv rr (leaf lb<ub) rhs .tail = stay rhs
uncons x xv bl (node y yv yb ls yrs) rs =
map-tail (uncons y yv yb ls yrs)
λ { (high ys) → high (node x xv bl ys rs)
; (stay ys) → case bl of
λ { ll → stay (node x xv ee ys rs)
; ee → high (node x xv rr ys rs)
; rr → rotˡ x xv ys rs
}
}
ext : ∀ {ub′} → ub [<] ub′ → Tree Val lb ub n → Tree Val lb ub′ n
ext {lb = lb} ub<ub′ (leaf lb<ub) = leaf (<-trans {x = lb} lb<ub ub<ub′)
ext ub<ub′ (node x xv bal lhs rhs) = node x xv bal lhs (ext ub<ub′ rhs)
join : ∀ {x} →
Tree Val lb [ x ] m →
Bal m n l →
Tree Val [ x ] ub n →
Inc (Tree Val lb ub) l
join lhs ll (leaf lb<ub) = stay (ext lb<ub lhs)
join {lb = lb} (leaf lb<ub₁) ee (leaf lb<ub) = stay (leaf (<-trans {x = lb} lb<ub₁ lb<ub))
join lhs bl (node x xv xb xl xr) with uncons x xv xb xl xr
... | cons k′ v′ l<u (high tr′) = high (node k′ v′ bl (ext l<u lhs) tr′)
... | cons k′ v′ l<u (stay tr′) with bl
... | ll = rotʳ k′ v′ (ext l<u lhs) tr′
... | ee = high (node k′ v′ ll (ext l<u lhs) tr′)
... | rr = stay (node k′ v′ ee (ext l<u lhs) tr′)
data Decr {t} (T : ℕ → Type t) : ℕ → Type t where
same : T n → Decr T n
decr : T n → Decr T (suc n)
inc→dec : Inc N n → Decr N (suc n)
inc→dec (stay x) = decr x
inc→dec (high x) = same x
delete : (x : K)
→ Tree Val lb ub n
→ Decr (Tree Val lb ub) n
delete x (leaf l<u) = same (leaf l<u)
delete x (node y yv b l r) with compare x y
delete x (node y yv b l r) | eq _ = inc→dec (join l b r)
delete x (node y yv b l r) | lt a with delete x l
... | same l′ = same (node y yv b l′ r)
... | decr l′ with b
... | ll = decr (node y yv ee l′ r)
... | ee = same (node y yv rr l′ r)
... | rr = inc→dec (rotˡ y yv l′ r)
delete x (node y yv b l r) | gt c with delete x r
... | same r′ = same (node y yv b l r′)
... | decr r′ with b
... | ll = inc→dec (rotʳ y yv l r′)
... | ee = same (node y yv ll l r′)
... | rr = decr (node y yv ee l r′)
data Change {t} (T : ℕ → Type t) : ℕ → Type t where
up : T (suc n) → Change T n
ev : T n → Change T n
dn : T n → Change T (suc n)
inc→changeup : Inc N n → Change N (suc n)
inc→changeup (stay x) = dn x
inc→changeup (high x) = ev x
inc→changedn : Inc N n → Change N n
inc→changedn (stay x) = ev x
inc→changedn (high x) = up x
_<_<_ : [∙] → K → [∙] → Type _
l < x < u = l [<] [ x ] × [ x ] [<] u
alter : (x : K)
→ (Maybe (Val x) → Maybe (Val x))
→ Tree Val lb ub n
→ lb < x < ub
→ Change (Tree Val lb ub) n
alter x f (leaf l<u) (l , u) with f nothing
... | just xv = up (node x xv ee (leaf l) (leaf u))
... | nothing = ev (leaf l<u)
alter x f (node y yv b tl tr) (l , u) with compare x y
alter x f (node y yv b tl tr) (l , u)
| eq x≡y with f (just (subst _ (sym x≡y) yv))
... | just xv = ev (node y (subst _ x≡y xv) b tl tr)
... | nothing = inc→changeup (join tl b tr)
alter x f (node y yv b tl tr) (l , u)
| lt a with alter x f tl (l , a) | b
... | ev tl′ | _ = ev (node y yv b tl′ tr)
... | up tl′ | ll = inc→changedn (rotʳ y yv tl′ tr)
... | up tl′ | ee = up (node y yv ll tl′ tr)
... | up tl′ | rr = ev (node y yv ee tl′ tr)
... | dn tl′ | ll = dn (node y yv ee tl′ tr)
... | dn tl′ | ee = ev (node y yv rr tl′ tr)
... | dn tl′ | rr = inc→changeup (rotˡ y yv tl′ tr)
alter x f (node y yv b tl tr) (l , u)
| gt c with alter x f tr (c , u) | b
... | ev tr′ | _ = ev (node y yv b tl tr′)
... | up tr′ | ll = ev (node y yv ee tl tr′)
... | up tr′ | ee = up (node y yv rr tl tr′)
... | up tr′ | rr = inc→changedn (rotˡ y yv tl tr′)
... | dn tr′ | ll = inc→changeup (rotʳ y yv tl tr′)
... | dn tr′ | ee = ev (node y yv ll tl tr′)
... | dn tr′ | rr = dn (node y yv ee tl tr′)
open import Lens
alterF : (x : K) →
Tree Val lb ub n →
lb < x < ub →
LensPart (Change (Tree Val lb ub) n) (Maybe (Val x))
alterF x xs bnds = go (ev xs) x xs bnds id
where
go : A → (x : K) →
Tree Val lb ub n →
lb < x < ub →
(Change (Tree Val lb ub) n → A) →
LensPart A (Maybe (Val x))
go xs x (leaf lb<ub) (l , u) k = λ where
.get → nothing
.set nothing → xs
.set (just xv) → k (up (node x xv ee (leaf l) (leaf u)))
go xs x (node y yv bl yl yr) (l , u) k with compare x y
go xs x (node y yv bl yl yr) (l , u) k | eq x≡y = λ where
.get → just (subst _ (sym x≡y) yv)
.set nothing → k (inc→changeup (join yl bl yr))
.set (just xv) → k (ev (node y (subst _ x≡y xv) bl yl yr))
go xs x (node y yv bl yl yr) (l , u) k | lt x<y =
go xs x yl (l , x<y)
λ { (up yl′) → case bl of
λ { ll → k (inc→changedn (rotʳ y yv yl′ yr))
; ee → k (up (node y yv ll yl′ yr))
; rr → k (ev (node y yv ee yl′ yr))
}
; (ev yl′) → k (ev (node y yv bl yl′ yr))
; (dn yl′) → case bl of
λ { rr → k (inc→changeup (rotˡ y yv yl′ yr))
; ee → k (ev (node y yv rr yl′ yr))
; ll → k (dn (node y yv ee yl′ yr))
}
}
go xs x (node y yv bl yl yr) (l , u) k | gt x>y =
go xs x yr (x>y , u)
λ { (up yr′) → case bl of
λ { rr → k (inc→changedn (rotˡ y yv yl yr′))
; ee → k (up (node y yv rr yl yr′))
; ll → k (ev (node y yv ee yl yr′))
}
; (ev yr′) → k (ev (node y yv bl yl yr′))
; (dn yr′) → case bl of
λ { ll → k (inc→changeup (rotʳ y yv yl yr′))
; ee → k (ev (node y yv ll yl yr′))
; rr → k (dn (node y yv ee yl yr′))
}
}
open import Data.List
toList⊙ : Tree Val lb ub n → List (∃ x × Val x) → List (∃ x × Val x)
toList⊙ (leaf lb<ub) ks = ks
toList⊙ (node x xv bal xl xr) ks = toList⊙ xl ((x , xv) ∷ toList⊙ xr ks)
toList : Tree Val lb ub n → List (∃ x × Val x)
toList xs = toList⊙ xs []
| 33.651007
| 129
| 0.51446
|
fdb959123b24fa66fbb299406cebe83e7a0ecdb7
| 1,746
|
agda
|
Agda
|
src/Algebra/Dioid.agda
|
algebraic-graphs/alga-theory
|
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
|
[
"MIT"
] | 60
|
2017-12-27T14:57:04.000Z
|
2022-03-22T23:05:29.000Z
|
src/Algebra/Dioid.agda
|
algebraic-graphs/alga-theory
|
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
|
[
"MIT"
] | 3
|
2018-04-12T16:25:13.000Z
|
2018-06-23T13:54:02.000Z
|
src/Algebra/Dioid.agda
|
algebraic-graphs/alga-theory
|
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
|
[
"MIT"
] | 6
|
2017-12-17T20:48:20.000Z
|
2019-05-09T23:53:28.000Z
|
module Algebra.Dioid where
record Dioid A (_≡_ : A -> A -> Set) : Set where
field
zero : A
one : A
_+_ : A -> A -> A
_*_ : A -> A -> A
reflexivity : ∀ {r : A} -> r ≡ r
symmetry : ∀ {r s : A} -> r ≡ s -> s ≡ r
transitivity : ∀ {r s t : A} -> r ≡ s -> s ≡ t -> r ≡ t
+left-congruence : ∀ {r s t : A} -> r ≡ s -> (r + t) ≡ (s + t)
-- +right-congruence holds but as a theorem, please see below
*left-congruence : ∀ {r s t : A} -> r ≡ s -> (r * t) ≡ (s * t)
*right-congruence : ∀ {r s t : A} -> r ≡ s -> (t * r) ≡ (t * s)
+idempotence : ∀ {r : A} -> (r + r) ≡ r
+commutativity : ∀ {r s : A} -> (r + s) ≡ (s + r)
+associativity : ∀ {r s t : A} -> (r + (s + t)) ≡ ((r + s) + t)
+zero-identity : ∀ {r : A} -> (r + zero) ≡ r
*associativity : ∀ {r s t : A} -> (r * (s * t)) ≡ ((r * s) * t)
*left-zero : ∀ {r : A} -> (zero * r) ≡ zero
*right-zero : ∀ {r : A} -> (r * zero) ≡ zero
*left-identity : ∀ {r : A} -> (one * r) ≡ r
*right-identity : ∀ {r : A} -> (r * one) ≡ r
left-distributivity : ∀ {r s t : A} -> (r * (s + t)) ≡ ((r * s) + (r * t))
right-distributivity : ∀ {r s t : A} -> ((r + s) * t) ≡ ((r * t) + (s * t))
-- For convenience to avoid `Dioid._+_ d r s`
plus : A -> A -> A
plus x y = x + y
times : A -> A -> A
times x y = x * y
+right-congruence : ∀ {D eq} {d : Dioid D eq} {r s t : D} -> eq r s -> eq (Dioid.plus d t r) (Dioid.plus d t s)
+right-congruence {_} {_} {d} {r} {s} {t} e = trans commut (trans (Dioid.+left-congruence d e) commut)
where
trans = Dioid.transitivity d
commut = Dioid.+commutativity d
| 38.8
| 111
| 0.41638
|
3176c89c379feab32995354a595adab0d08108b9
| 709
|
agda
|
Agda
|
test/Fail/Issue690a.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue690a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue690a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue690a where
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
-- A negative type.
data T : Set → Set where
c : T (T ℕ)
-- From Andreas (2012-09-07) message on Agda mailing list "Forget
-- Hurken's paradox ..."
--
-- Trying to make sense of T in terms of inductive types, explaining
-- indices via equalities, one arrives at
--
-- data T (X : Set) : Set where
-- c : (X ≡ T ℕ) → T X
--
-- which has a non-positive occurrence of T in (X ≡ T ℕ).
--
-- An argument for the existence of T would have to argue for the
-- existence this least fixed point:
--
-- lfp \lambda T X → (X ≡ T ℕ)
-- ASR (14 August 2014): In Coq'Art, § 14.1.2.1, the type T is
-- rejected due to the head type constrains.
| 23.633333
| 68
| 0.634697
|
30f7bc8aa04e7977dab32d8b748e4f09d1c5e761
| 199
|
agda
|
Agda
|
cohesion/david_jaz_261/Axiom/LEM.agda
|
glangmead/formalization
|
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
|
[
"CC0-1.0"
] | 6
|
2021-10-06T17:39:22.000Z
|
2022-02-13T05:51:12.000Z
|
cohesion/david_jaz_261/Axiom/LEM.agda
|
glangmead/formalization
|
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
|
[
"CC0-1.0"
] | null | null | null |
cohesion/david_jaz_261/Axiom/LEM.agda
|
glangmead/formalization
|
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
|
[
"CC0-1.0"
] | null | null | null |
{-# OPTIONS --without-K --rewriting #-}
module Axiom.LEM where
open import Basics
open import Flat
open import lib.Basics
postulate LEM : {@♭ i : ULevel} (@♭ P : PropT i) → Dec (P holds)
| 22.111111
| 66
| 0.638191
|
2136bcf601c2ec8df12e796b2c0887ff319c3a3e
| 966
|
agda
|
Agda
|
src/StateSizedIO/IOObject.agda
|
stephanadls/state-dependent-gui
|
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
|
[
"MIT"
] | 2
|
2020-07-31T15:37:39.000Z
|
2020-07-31T17:20:59.000Z
|
src/StateSizedIO/IOObject.agda
|
stephanadls/state-dependent-gui
|
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
|
[
"MIT"
] | null | null | null |
src/StateSizedIO/IOObject.agda
|
stephanadls/state-dependent-gui
|
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
|
[
"MIT"
] | null | null | null |
module StateSizedIO.IOObject where
open import Data.Product
open import Size
open import SizedIO.Base
open import StateSizedIO.Object
-- ---
-- ---
-- --- FILE IS DELETED !!!
-- ---
-- ---
-- An IO object is like a simple object,
-- but the method returns IO applied to the result type of a simple object
-- which means the method returns an IO program which when terminating
-- returns the result of the simple object
{- NOTE IOObject is now replaced by IOObjectˢ as defined in
StateSizedIO.Base
-}
{-
module _ (ioi : IOInterface) (let C = Command ioi) (let R = Response ioi)
(oi : Interfaceˢ) (let S = Stateˢ oi) (let M = Methodˢ oi)
(let Rt = Resultˢ oi) (let next = nextˢ oi)
where
record IOObject (i : Size) (s : S) : Set where
coinductive
field
method : ∀{j : Size< i} (m : M s) → IO ioi ∞ (Σ[ r ∈ Rt s m ] IOObject j (next s m r) )
open IOObject public
-}
| 21.954545
| 93
| 0.613872
|
43e030b23935250e3370d8449a6ec7760ff22bbe
| 1,305
|
agda
|
Agda
|
test/Succeed/TerminationListInsertionNaive.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/TerminationListInsertionNaive.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/TerminationListInsertionNaive.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module TerminationListInsertionNaive where
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
infixr 50 _::_
-- non-deterministic choice
postulate
_⊕_ : {A : Set} -> A -> A -> A
infixl 10 _⊕_
-- a funny formulation of insert
-- insert (a :: l) inserts a into l
--
-- this example cannot be handled with subpatterns
-- it is done with structured orders
-- could also be done with sized types
insert : {A : Set} -> List A -> List A
insert [] = []
insert (a :: []) = a :: []
insert (a :: b :: bs) = a :: b :: bs ⊕ -- case a <= b
b :: insert (a :: bs) -- case a > b
-- list flattening
-- termination using structured orders
flat : {A : Set} -> List (List A) -> List A
flat [] = []
flat ([] :: ll) = flat ll
flat ((x :: l) :: ll) = x :: flat (l :: ll)
{- generates two recursive calls with the following call matrices
[] :: ll (x :: l) ll
ll < l < .
ll . =
during composition, the second is collapsed to =, so the call graph is
already complete. Both matrices are idempotent and contain a strictly
decreasing argument.
It could also be done with sized types; lexicographic in (i,j)
with type
flat : {A : Set} -> (1 + Listʲ A × List^i (List^∞ A)) -> List^∞ A
-}
| 24.166667
| 70
| 0.563218
|
30926a049b890cf8faca77298f598d072495c65a
| 2,867
|
agda
|
Agda
|
Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Algebra/CommAlgebra/QuotientAlgebra.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.QuotientAlgebra where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset using (_∈_)
open import Cubical.HITs.SetQuotients hiding (_/_)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.QuotientRing renaming (_/_ to _/Ring_) hiding ([_]/)
open import Cubical.Algebra.CommAlgebra
open import Cubical.Algebra.CommAlgebra.Ideal
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Ideal using (isIdeal)
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) where
open CommRingStr {{...}} hiding (_-_; -_; dist; ·Lid; ·Rdist+) renaming (_·_ to _·R_; _+_ to _+R_)
open CommAlgebraStr {{...}}
open RingTheory (CommRing→Ring (CommAlgebra→CommRing A)) using (-DistR·)
instance
_ : CommRingStr _
_ = snd R
_ : CommAlgebraStr _ _
_ = snd A
_/_ : (I : IdealsIn A) → CommAlgebra R ℓ
_/_ I = commAlgebraFromCommRing
((CommAlgebra→CommRing A) /Ring I)
(λ r → elim (λ _ → squash/) (λ x → [ r ⋆ x ]) (eq r))
(λ r s → elimProp (λ _ → squash/ _ _)
λ x i → [ ((r ·R s) ⋆ x ≡⟨ ⋆-assoc r s x ⟩
r ⋆ (s ⋆ x) ∎) i ])
(λ r s → elimProp (λ _ → squash/ _ _)
λ x i → [ ((r +R s) ⋆ x ≡⟨ ⋆-ldist r s x ⟩
r ⋆ x + s ⋆ x ∎) i ])
(λ r → elimProp2 (λ _ _ → squash/ _ _)
λ x y i → [ (r ⋆ (x + y) ≡⟨ ⋆-rdist r x y ⟩
r ⋆ x + r ⋆ y ∎) i ])
(elimProp (λ _ → squash/ _ _)
(λ x i → [ (1r ⋆ x ≡⟨ ⋆-lid x ⟩ x ∎) i ]))
λ r → elimProp2 (λ _ _ → squash/ _ _)
λ x y i → [ ((r ⋆ x) · y ≡⟨ ⋆-lassoc r x y ⟩
r ⋆ (x · y) ∎) i ]
where
eq : (r : fst R) (x y : fst A) → x - y ∈ (fst I) → [ r ⋆ x ] ≡ [ r ⋆ y ]
eq r x y x-y∈I = eq/ _ _
(subst (λ u → u ∈ fst I)
((r ⋆ 1a) · (x - y) ≡⟨ ·Rdist+ (r ⋆ 1a) x (- y) ⟩
(r ⋆ 1a) · x + (r ⋆ 1a) · (- y) ≡[ i ]⟨ (r ⋆ 1a) · x + -DistR· (r ⋆ 1a) y i ⟩
(r ⋆ 1a) · x - (r ⋆ 1a) · y ≡[ i ]⟨ ⋆-lassoc r 1a x i
- ⋆-lassoc r 1a y i ⟩
r ⋆ (1a · x) - r ⋆ (1a · y) ≡[ i ]⟨ r ⋆ (·Lid x i) - r ⋆ (·Lid y i) ⟩
r ⋆ x - r ⋆ y ∎ )
(isIdeal.·-closedLeft (snd I) _ x-y∈I))
[_]/ : {R : CommRing ℓ} {A : CommAlgebra R ℓ} {I : IdealsIn A}
→ (a : fst A) → fst (A / I)
[ a ]/ = [ a ]
| 43.439394
| 100
| 0.44053
|
34e53ea0ef51703a4acc35bf2906e2780fb499ad
| 3,429
|
agda
|
Agda
|
lib/cubical/elims/CofWedge.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
lib/cubical/elims/CofWedge.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
lib/cubical/elims/CofWedge.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT
open import lib.cubical.elims.CubeMove
module lib.cubical.elims.CofWedge where
cof-wedge-path-rec : ∀ {i j k l}
{X : Ptd i} {Y : Ptd j} {C : Type k} {D : Type l}
{f : X ∨ Y → C} {d₁ d₂ : D}
→ (p : d₁ == d₂)
→ (q : C → d₁ == d₂)
→ ((x : fst X) → p == q (f (winl x)))
→ ((y : fst Y) → p == q (f (winr y)))
→ ((κ : Cofiber f) → d₁ == d₂)
cof-wedge-path-rec {X = X} {Y = Y} {f = f} base* cod* winl* winr* =
CofiberRec.f _
base*
cod*
(WedgeElim.f
winl*
(λ y → (winl* (snd X) ∙ ap (cod* ∘ f) wglue)
∙ ! (winr* (snd Y)) ∙ winr* y)
(↓-cst=app-from-square $ disc-to-square $ ! $
ap (λ w → (winl* (snd X) ∙ ap (cod* ∘ f) wglue) ∙ w)
(!-inv-l (winr* (snd Y)))
∙ ∙-unit-r _))
cof-wedge-path-elim : ∀ {i j k l}
{X : Ptd i} {Y : Ptd j} {C : Type k} {D : Type l}
{f : X ∨ Y → C} (g h : Cofiber f → D)
→ (p : g (cfbase _) == h (cfbase _))
→ (q : (c : C) → g (cfcod _ c) == h (cfcod _ c))
→ ((x : fst X) → Square p (ap g (cfglue _ (winl x)))
(ap h (cfglue _ (winl x))) (q (f (winl x))))
→ ((y : fst Y) → Square p (ap g (cfglue _ (winr y)))
(ap h (cfglue _ (winr y))) (q (f (winr y))))
→ ((κ : Cofiber f) → g κ == h κ)
cof-wedge-path-elim {X = X} {Y = Y} {f = f} g h base* cod* winl* winr* =
Cofiber-elim _
base*
cod*
(↓-='-from-square ∘ Wedge-elim
winl*
(λ y → fst fill ⊡h winr* y)
(cube-to-↓-square $
cube-right-from-front _ (winr* (snd Y)) (snd fill)))
where
fill : Σ (Square base* idp idp base*) (λ sq' →
Cube (winl* (snd X)) sq'
(natural-square (λ _ → base*) wglue)
(square-push-rb _ _ (natural-square (ap g ∘ cfglue _) wglue))
(square-push-rb _ _ (natural-square (ap h ∘ cfglue _) wglue))
(natural-square (cod* ∘ f) wglue ⊡h' !□h (winr* (snd Y))))
fill = fill-cube-right _ _ _ _ _
{- Note, only squares with constant endpoints. General case? -}
cof-wedge-square-elim : ∀ {i j k l}
{X : Ptd i} {Y : Ptd j} {C : Type k} {D : Type l}
{f : X ∨ Y → C} {d₀₀ d₀₁ d₁₀ d₁₁ : D}
(p₀₋ : (κ : Cofiber f) → d₀₀ == d₀₁)
(p₋₀ : (κ : Cofiber f) → d₀₀ == d₁₀)
(p₋₁ : (κ : Cofiber f) → d₀₁ == d₁₁)
(p₁₋ : (κ : Cofiber f) → d₁₀ == d₁₁)
→ (base* : Square (p₀₋ (cfbase _)) (p₋₀ (cfbase _))
(p₋₁ (cfbase _)) (p₁₋ (cfbase _)))
→ (cod* : (c : C) → Square (p₀₋ (cfcod _ c)) (p₋₀ (cfcod _ c))
(p₋₁ (cfcod _ c)) (p₁₋ (cfcod _ c)))
→ ((x : fst X) → Cube base* (cod* (f (winl x)))
(natural-square p₀₋ (cfglue _ (winl x)))
(natural-square p₋₀ (cfglue _ (winl x)))
(natural-square p₋₁ (cfglue _ (winl x)))
(natural-square p₁₋ (cfglue _ (winl x))))
→ ((y : fst Y) → Cube base* (cod* (f (winr y)))
(natural-square p₀₋ (cfglue _ (winr y)))
(natural-square p₋₀ (cfglue _ (winr y)))
(natural-square p₋₁ (cfglue _ (winr y)))
(natural-square p₁₋ (cfglue _ (winr y))))
→ ((κ : Cofiber f) → Square (p₀₋ κ) (p₋₀ κ) (p₋₁ κ) (p₁₋ κ))
cof-wedge-square-elim p₀₋ p₋₀ p₋₁ p₁₋ base* cod* winl* winr* =
disc-to-square ∘ cof-wedge-path-elim _ _
(square-to-disc base*)
(square-to-disc ∘ cod*)
(cube-to-disc-square ∘ winl*)
(cube-to-disc-square ∘ winr*)
| 38.965909
| 72
| 0.473024
|
0651da043aaaa9c2a2f5fb8ae8aae95c661a08fe
| 947
|
agda
|
Agda
|
test/succeed/Issue286.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
test/succeed/Issue286.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/succeed/Issue286.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
{-# OPTIONS --universe-polymorphism #-}
module Issue286 where
open import Common.Level
data Bool : Set where
true false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
data _≡_ {ℓ : Level} {A : Set ℓ} : A → A → Set ℓ where
refl : {a : A} → a ≡ a
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
primitive
primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
postulate String : Set
{-# BUILTIN STRING String #-}
primitive
primStringEquality : String → String → Bool
data Maybe (A : Set) : Set where
just : A → Maybe A
nothing : Maybe A
_≟_ : (s₁ s₂ : String) → Maybe (s₁ ≡ s₂)
s₁ ≟ s₂ with primStringEquality s₁ s₂
... | true = just primTrustMe
... | false = nothing
_≟′_ : (s₁ s₂ : String) → Maybe (s₁ ≡ s₂)
s₁ ≟′ s₂ with s₁ ≟ s₂
s ≟′ .s | just refl = just refl
_ ≟′ _ | nothing = nothing
test : Maybe ("" ≡ "")
test = "" ≟′ ""
ok : test ≡ just refl
ok = refl
| 19.326531
| 54
| 0.579725
|
ada3fc13cbf06713a798a3a123f6f29b580f52c0
| 2,046
|
agda
|
Agda
|
agda-stdlib/src/Data/Container/FreeMonad.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/Container/FreeMonad.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/Container/FreeMonad.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The free monad construction on containers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Data.Container.FreeMonad where
open import Level
open import Data.Sum.Base using (inj₁; inj₂ ; [_,_]′)
open import Data.Product
open import Data.Container
open import Data.Container.Combinator using (const; _⊎_)
open import Data.W
open import Category.Monad
infixl 1 _⋆C_
infix 1 _⋆_
------------------------------------------------------------------------
-- The free monad construction over a container and a set is, in
-- universal algebra terminology, also known as the term algebra over a
-- signature (a container) and a set (of variable symbols). The return
-- of the free monad corresponds to variables and the bind operator
-- corresponds to (parallel) substitution.
-- A useful intuition is to think of containers describing single
-- operations and the free monad construction over a container and a set
-- describing a tree of operations as nodes and elements of the set as
-- leafs. If one starts at the root, then any path will pass finitely
-- many nodes (operations described by the container) and eventually end
-- up in a leaf (element of the set) -- hence the Kleene star notation
-- (the type can be read as a regular expression).
_⋆C_ : ∀ {x s p} → Container s p → Set x → Container (s ⊔ x) p
C ⋆C X = const X ⊎ C
_⋆_ : ∀ {x s p} → Container s p → Set x → Set (x ⊔ s ⊔ p)
C ⋆ X = μ (C ⋆C X)
module _ {s p} {C : Container s p} where
inn : ∀ {x} {X : Set x} → ⟦ C ⟧ (C ⋆ X) → C ⋆ X
inn (s , f) = sup (inj₂ s , f)
rawMonad : ∀ {x} → RawMonad {s ⊔ p ⊔ x} (C ⋆_)
rawMonad = record { return = return; _>>=_ = _>>=_ }
where
return : ∀ {X} → X → C ⋆ X
return x = sup (inj₁ x , λ ())
_>>=_ : ∀ {X Y} → C ⋆ X → (X → C ⋆ Y) → C ⋆ Y
sup (inj₁ x , _) >>= k = k x
sup (inj₂ s , f) >>= k = inn (s , λ p → f p >>= k)
| 35.894737
| 72
| 0.575269
|
35fa2cbfca4b569737007f886827b02a18e1cdaa
| 4,024
|
agda
|
Agda
|
Cubical/ZCohomology/Groups/Unit.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/ZCohomology/Groups/Unit.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/Groups/Unit.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.ZCohomology.Groups.Unit where
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Data.Int hiding (ℤ ; _+_ ; +Comm)
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.Instances.Unit
open import Cubical.HITs.SetTruncation as ST
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.HITs.Truncation
open import Cubical.Homotopy.Connected
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.GroupStructure
-- H⁰(Unit)
open IsGroupHom
open Iso
H⁰-Unit≅ℤ : GroupIso (coHomGr 0 Unit) ℤGroup
fun (fst H⁰-Unit≅ℤ) = ST.rec isSetℤ (λ f → f tt)
inv (fst H⁰-Unit≅ℤ) a = ∣ (λ _ → a) ∣₂
rightInv (fst H⁰-Unit≅ℤ) _ = refl
leftInv (fst H⁰-Unit≅ℤ) = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ a → refl
snd H⁰-Unit≅ℤ = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 isSetℤ _ _) λ a b → refl)
{- Hⁿ(Unit) for n ≥ 1 -}
isContrHⁿ-Unit : (n : ℕ) → isContr (coHom (suc n) Unit)
isContrHⁿ-Unit n = subst isContr (λ i → ∥ UnitToTypePath (coHomK (suc n)) (~ i) ∥₂) (helper' n)
where
helper' : (n : ℕ) → isContr (∥ coHomK (suc n) ∥₂)
helper' n =
subst isContr
((isoToPath (truncOfTruncIso {A = S₊ (1 + n)} 2 (1 + n)))
∙∙ sym propTrunc≡Trunc2
∙∙ λ i → ∥ hLevelTrunc (suc (+-comm n 2 i)) (S₊ (1 + n)) ∥₂)
(isConnectedSubtr 2 (helper2 n .fst)
(subst (λ x → isConnected x (S₊ (suc n))) (sym (helper2 n .snd)) (sphereConnected (suc n))) )
where
helper2 : (n : ℕ) → Σ[ m ∈ ℕ ] m + 2 ≡ 2 + n
helper2 zero = 0 , refl
helper2 (suc n) = (suc n) , λ i → suc (+-comm n 2 i)
Hⁿ-Unit≅0 : (n : ℕ) → GroupIso (coHomGr (suc n) Unit) UnitGroup₀
fun (fst (Hⁿ-Unit≅0 n)) _ = _
inv (fst (Hⁿ-Unit≅0 n)) _ = 0ₕ (suc n)
rightInv (fst (Hⁿ-Unit≅0 n)) _ = refl
leftInv (fst (Hⁿ-Unit≅0 n)) _ = isOfHLevelSuc 0 (isContrHⁿ-Unit n) _ _
snd (Hⁿ-Unit≅0 n) = makeIsGroupHom λ _ _ → refl
{- Hⁿ for arbitrary contractible types -}
private
Hⁿ-contrTypeIso : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A
→ Iso (coHom (suc n) A) (coHom (suc n) Unit)
Hⁿ-contrTypeIso n contr = compIso (setTruncIso (isContr→Iso2 contr))
(setTruncIso (invIso (isContr→Iso2 isContrUnit)))
Hⁿ-contrType≅0 : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A
→ GroupIso (coHomGr (suc n) A) UnitGroup₀
fun (fst (Hⁿ-contrType≅0 n contr)) _ = _
inv (fst (Hⁿ-contrType≅0 n contr)) _ = 0ₕ (suc n)
rightInv (fst (Hⁿ-contrType≅0 n contr)) _ = refl
leftInv (fst (Hⁿ-contrType≅0 {A = A} n contr)) _ = isOfHLevelSuc 0 helper _ _
where
helper : isContr (coHom (suc n) A)
helper = (inv (Hⁿ-contrTypeIso n contr) (0ₕ (suc n)))
, λ y → cong (inv (Hⁿ-contrTypeIso n contr))
(isOfHLevelSuc 0 (isContrHⁿ-Unit n) (0ₕ (suc n)) (fun (Hⁿ-contrTypeIso n contr) y))
∙ leftInv (Hⁿ-contrTypeIso n contr) y
snd (Hⁿ-contrType≅0 n contr) = makeIsGroupHom λ _ _ → refl
isContr-HⁿRed-Unit : (n : ℕ) → isContr (coHomRed n (Unit , tt))
fst (isContr-HⁿRed-Unit n) = 0ₕ∙ _
snd (isContr-HⁿRed-Unit n) =
ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _)
λ {(f , p) → cong ∣_∣₂ (ΣPathP (funExt (λ _ → sym p)
, λ i j → p (~ i ∨ j)))}
×rUnitCohomIso : ∀ {ℓ} {A : Type ℓ} (n : ℕ)
→ GroupIso (×coHomGr (suc n) A Unit) (coHomGr (suc n) A)
fun (fst (×rUnitCohomIso n)) = fst
inv (fst (×rUnitCohomIso n)) x = x , 0ₕ (suc n)
rightInv (fst (×rUnitCohomIso n)) _ = refl
leftInv (fst (×rUnitCohomIso n)) x =
ΣPathP (refl , isContr→isProp (isContrHⁿ-Unit n) (0ₕ (suc n)) (snd x))
snd (×rUnitCohomIso n) = makeIsGroupHom λ _ _ → refl
| 39.067961
| 108
| 0.637674
|
2121a7ac94ccdc939dfcc25b39b1bef22223745c
| 794
|
agda
|
Agda
|
agda/Heapsort/Impl1.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | 6
|
2015-05-21T12:50:35.000Z
|
2021-08-24T22:11:15.000Z
|
agda/Heapsort/Impl1.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
agda/Heapsort/Impl1.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
open import Relation.Binary.Core
module Heapsort.Impl1 {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import BBHeap _≤_ hiding (flatten)
open import BBHeap.Heapify _≤_ tot≤ trans≤
open import BHeap _≤_ hiding (flatten)
open import BHeap.Order _≤_
open import BHeap.Order.Properties _≤_
open import BHeap.Properties _≤_
open import Bound.Lower A
open import Data.List
open import OList _≤_
flatten : {b : Bound}(h : BHeap b) → Acc h → OList b
flatten lf _ = onil
flatten (nd {x = x} b≤x l r) (acc rs) = :< b≤x (flatten (merge tot≤ l r) (rs (merge tot≤ l r) (lemma-merge≤′ tot≤ b≤x l r)))
heapsort : List A → OList bot
heapsort xs = flatten (relax (heapify xs)) (≺-wf (relax (heapify xs)))
| 33.083333
| 124
| 0.630982
|
34c0a9649601cce1b49a0bb512e7bdd60ff5cf1a
| 9,969
|
agda
|
Agda
|
core/lib/groups/GroupProduct.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/groups/GroupProduct.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/groups/GroupProduct.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Bool
open import lib.types.Group
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Coproduct
open import lib.types.Truncation
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
open import lib.groups.SubgroupProp
open import lib.groups.Lift
open import lib.groups.Unit
module lib.groups.GroupProduct where
{- binary product -}
×-group-struct : ∀ {i j} {A : Type i} {B : Type j}
(GS : GroupStructure A) (HS : GroupStructure B)
→ GroupStructure (A × B)
×-group-struct {A = A} {B = B} GS HS = record {M} where
module G = GroupStructure GS
module H = GroupStructure HS
module M where
ident : A × B
ident = G.ident , H.ident
inv : A × B → A × B
inv (g , h) = G.inv g , H.inv h
comp : A × B → A × B → A × B
comp (g₁ , h₁) (g₂ , h₂) = G.comp g₁ g₂ , H.comp h₁ h₂
abstract
unit-l : ∀ ab → comp ident ab == ab
unit-l (g , h) = pair×= (G.unit-l g) (H.unit-l h)
assoc : ∀ ab₁ ab₂ ab₃ → comp (comp ab₁ ab₂) ab₃ == comp ab₁ (comp ab₂ ab₃)
assoc (g₁ , h₁) (g₂ , h₂) (g₃ , h₃) =
pair×= (G.assoc g₁ g₂ g₃) (H.assoc h₁ h₂ h₃)
inv-l : ∀ ab → comp (inv ab) ab == ident
inv-l (g , h) = pair×= (G.inv-l g) (H.inv-l h)
infix 80 _×ᴳ_
_×ᴳ_ : ∀ {i j} → Group i → Group j → Group (lmax i j)
_×ᴳ_ (group A A-level A-struct) (group B B-level B-struct) =
group (A × B) (×-level A-level B-level) (×-group-struct A-struct B-struct)
{- general product -}
Π-group-struct : ∀ {i j} {I : Type i} {A : I → Type j}
(FS : (i : I) → GroupStructure (A i))
→ GroupStructure (Π I A)
Π-group-struct FS = record {
ident = ident ∘ FS;
inv = λ f i → inv (FS i) (f i);
comp = λ f g i → comp (FS i) (f i) (g i);
unit-l = λ f → (λ= (λ i → unit-l (FS i) (f i)));
assoc = λ f g h → (λ= (λ i → assoc (FS i) (f i) (g i) (h i)));
inv-l = λ f → (λ= (λ i → inv-l (FS i) (f i)))}
where open GroupStructure
Πᴳ : ∀ {i j} (I : Type i) (F : I → Group j) → Group (lmax i j)
Πᴳ I F = group (Π I (El ∘ F)) (Π-level (λ i → El-level (F i)))
(Π-group-struct (group-struct ∘ F))
where open Group
{- functorial behavior of [Πᴳ] -}
Πᴳ-emap-r : ∀ {i j k} (I : Type i) {F : I → Group j} {G : I → Group k}
→ (∀ i → F i ≃ᴳ G i) → Πᴳ I F ≃ᴳ Πᴳ I G
Πᴳ-emap-r I {F} {G} iso = ≃-to-≃ᴳ (Π-emap-r (GroupIso.f-equiv ∘ iso))
(λ f g → λ= λ i → GroupIso.pres-comp (iso i) (f i) (g i))
{- the product of abelian groups is abelian -}
×ᴳ-is-abelian : ∀ {i j} (G : Group i) (H : Group j)
→ is-abelian G → is-abelian H → is-abelian (G ×ᴳ H)
×ᴳ-is-abelian G H aG aH (g₁ , h₁) (g₂ , h₂) = pair×= (aG g₁ g₂) (aH h₁ h₂)
×ᴳ-abgroup : ∀ {i j} → AbGroup i → AbGroup j → AbGroup (lmax i j)
×ᴳ-abgroup (G , aG) (H , aH) = G ×ᴳ H , ×ᴳ-is-abelian G H aG aH
Πᴳ-is-abelian : ∀ {i j} {I : Type i} {F : I → Group j}
→ (∀ i → is-abelian (F i)) → is-abelian (Πᴳ I F)
Πᴳ-is-abelian aF f₁ f₂ = λ= (λ i → aF i (f₁ i) (f₂ i))
{- defining a homomorphism into a product -}
×ᴳ-fanout : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k}
→ (G →ᴳ H) → (G →ᴳ K) → (G →ᴳ H ×ᴳ K)
×ᴳ-fanout (group-hom h h-comp) (group-hom k k-comp) =
group-hom
(λ x → (h x , k x))
(λ x y → pair×= (h-comp x y) (k-comp x y))
Πᴳ-fanout : ∀ {i j k} {I : Type i} {G : Group j} {F : I → Group k}
→ ((i : I) → G →ᴳ F i) → (G →ᴳ Πᴳ I F)
Πᴳ-fanout h = group-hom
(λ x i → GroupHom.f (h i) x)
(λ x y → λ= (λ i → GroupHom.pres-comp (h i) x y))
×ᴳ-fanout-pre∘ : ∀ {i j k l}
{G : Group i} {H : Group j} {K : Group k} {J : Group l}
(φ : G →ᴳ H) (ψ : G →ᴳ K) (χ : J →ᴳ G)
→ ×ᴳ-fanout φ ψ ∘ᴳ χ == ×ᴳ-fanout (φ ∘ᴳ χ) (ψ ∘ᴳ χ)
×ᴳ-fanout-pre∘ φ ψ χ = group-hom= idp
{- projection homomorphisms -}
×ᴳ-fst : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ G)
×ᴳ-fst = group-hom fst (λ _ _ → idp)
×ᴳ-snd : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ H)
×ᴳ-snd = group-hom snd (λ _ _ → idp)
×ᴳ-snd-is-surj : ∀ {i j} {G : Group i} {H : Group j}
→ is-surjᴳ (×ᴳ-snd {G = G} {H = H})
×ᴳ-snd-is-surj {G = G} h = [ (Group.ident G , h) , idp ]
Πᴳ-proj : ∀ {i j} {I : Type i} {F : I → Group j} (i : I)
→ (Πᴳ I F →ᴳ F i)
Πᴳ-proj i = group-hom (λ f → f i) (λ _ _ → idp)
{- injection homomorphisms -}
module _ {i j} {G : Group i} {H : Group j} where
×ᴳ-inl : G →ᴳ G ×ᴳ H
×ᴳ-inl = ×ᴳ-fanout (idhom G) cst-hom
×ᴳ-inr : H →ᴳ G ×ᴳ H
×ᴳ-inr = ×ᴳ-fanout (cst-hom {H = G}) (idhom H)
×ᴳ-diag : ∀ {i} {G : Group i} → (G →ᴳ G ×ᴳ G)
×ᴳ-diag = ×ᴳ-fanout (idhom _) (idhom _)
{- when G is abelian, we can define a map H×K → G as a sum of maps
- H → G and K → G (that is, the product behaves as a sum) -}
module _ {i j k} {G : Group i} {H : Group j} {K : Group k}
(G-abelian : is-abelian G) where
private
module G = Group G
module H = Group H
module K = Group K
abstract
interchange : (g₁ g₂ g₃ g₄ : G.El) →
G.comp (G.comp g₁ g₂) (G.comp g₃ g₄)
== G.comp (G.comp g₁ g₃) (G.comp g₂ g₄)
interchange g₁ g₂ g₃ g₄ =
(g₁ □ g₂) □ (g₃ □ g₄)
=⟨ G.assoc g₁ g₂ (g₃ □ g₄) ⟩
g₁ □ (g₂ □ (g₃ □ g₄))
=⟨ G-abelian g₃ g₄ |in-ctx (λ w → g₁ □ (g₂ □ w)) ⟩
g₁ □ (g₂ □ (g₄ □ g₃))
=⟨ ! (G.assoc g₂ g₄ g₃) |in-ctx (λ w → g₁ □ w) ⟩
g₁ □ ((g₂ □ g₄) □ g₃)
=⟨ G-abelian (g₂ □ g₄) g₃ |in-ctx (λ w → g₁ □ w) ⟩
g₁ □ (g₃ □ (g₂ □ g₄))
=⟨ ! (G.assoc g₁ g₃ (g₂ □ g₄)) ⟩
(g₁ □ g₃) □ (g₂ □ g₄) =∎
where
infix 80 _□_
_□_ = G.comp
×ᴳ-fanin : (H →ᴳ G) → (K →ᴳ G) → (H ×ᴳ K →ᴳ G)
×ᴳ-fanin φ ψ = group-hom (λ {(h , k) → G.comp (φ.f h) (ψ.f k)}) lemma
where
module φ = GroupHom φ
module ψ = GroupHom ψ
abstract
lemma : preserves-comp (Group.comp (H ×ᴳ K)) G.comp
(λ {(h , k) → G.comp (φ.f h) (ψ.f k)})
lemma (h₁ , k₁) (h₂ , k₂) =
G.comp (φ.f (H.comp h₁ h₂)) (ψ.f (K.comp k₁ k₂))
=⟨ φ.pres-comp h₁ h₂ |in-ctx (λ w → G.comp w (ψ.f (K.comp k₁ k₂))) ⟩
G.comp (G.comp (φ.f h₁) (φ.f h₂)) (ψ.f (K.comp k₁ k₂))
=⟨ ψ.pres-comp k₁ k₂
|in-ctx (λ w → G.comp (G.comp (φ.f h₁) (φ.f h₂)) w) ⟩
G.comp (G.comp (φ.f h₁) (φ.f h₂)) (G.comp (ψ.f k₁) (ψ.f k₂))
=⟨ interchange (φ.f h₁) (φ.f h₂) (ψ.f k₁) (ψ.f k₂) ⟩
G.comp (G.comp (φ.f h₁) (ψ.f k₁)) (G.comp (φ.f h₂) (ψ.f k₂)) =∎
abstract
×ᴳ-fanin-η : ∀ {i j} (G : Group i) (H : Group j)
(aGH : is-abelian (G ×ᴳ H))
→ idhom (G ×ᴳ H) == ×ᴳ-fanin aGH (×ᴳ-inl {G = G}) (×ᴳ-inr {G = G})
×ᴳ-fanin-η G H aGH = group-hom= $ λ= λ {(g , h) →
! (pair×= (Group.unit-r G g) (Group.unit-l H h))}
×ᴳ-fanin-pre∘ : ∀ {i j k l}
{G : Group i} {H : Group j} {K : Group k} {L : Group l}
(aK : is-abelian K) (aL : is-abelian L)
(φ : K →ᴳ L) (ψ : G →ᴳ K) (χ : H →ᴳ K)
→ ×ᴳ-fanin aL (φ ∘ᴳ ψ) (φ ∘ᴳ χ) == φ ∘ᴳ (×ᴳ-fanin aK ψ χ)
×ᴳ-fanin-pre∘ aK aL φ ψ χ = group-hom= $ λ= λ {(g , h) →
! (GroupHom.pres-comp φ (GroupHom.f ψ g) (GroupHom.f χ h))}
{- define a homomorphism [G₁ × G₂ → H₁ × H₂] from homomorphisms
- [G₁ → H₁] and [G₂ → H₂] -}
×ᴳ-fmap : ∀ {i j k l} {G₁ : Group i} {G₂ : Group j}
{H₁ : Group k} {H₂ : Group l}
→ (G₁ →ᴳ H₁) → (G₂ →ᴳ H₂) → (G₁ ×ᴳ G₂ →ᴳ H₁ ×ᴳ H₂)
×ᴳ-fmap {G₁ = G₁} {G₂} {H₁} {H₂} φ ψ = group-hom (×-fmap φ.f ψ.f) lemma
where
module φ = GroupHom φ
module ψ = GroupHom ψ
abstract
lemma : preserves-comp (Group.comp (G₁ ×ᴳ G₂)) (Group.comp (H₁ ×ᴳ H₂))
(λ {(h₁ , h₂) → (φ.f h₁ , ψ.f h₂)})
lemma (h₁ , h₂) (h₁' , h₂') = pair×= (φ.pres-comp h₁ h₁') (ψ.pres-comp h₂ h₂')
×ᴳ-emap : ∀ {i j k l} {G₁ : Group i} {G₂ : Group j}
{H₁ : Group k} {H₂ : Group l}
→ (G₁ ≃ᴳ H₁) → (G₂ ≃ᴳ H₂) → (G₁ ×ᴳ G₂ ≃ᴳ H₁ ×ᴳ H₂)
×ᴳ-emap (φ , φ-is-equiv) (ψ , ψ-is-equiv) =
×ᴳ-fmap φ ψ , ×-isemap φ-is-equiv ψ-is-equiv
{- equivalences in Πᴳ -}
Πᴳ-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (F : B → Group k)
→ (e : A ≃ B) → Πᴳ A (F ∘ –> e) ≃ᴳ Πᴳ B F
Πᴳ-emap-l {A = A} {B = B} F e = ≃-to-≃ᴳ (Π-emap-l (Group.El ∘ F) e) lemma
where abstract lemma = λ f g → λ= λ b → transp-El-pres-comp F (<–-inv-r e b) (f (<– e b)) (g (<– e b))
{- 0ᴳ is a unit for product -}
×ᴳ-unit-l : ∀ {i} (G : Group i) → 0ᴳ ×ᴳ G ≃ᴳ G
×ᴳ-unit-l _ = ×ᴳ-snd {G = 0ᴳ} , is-eq snd (λ g → (unit , g)) (λ _ → idp) (λ _ → idp)
×ᴳ-unit-r : ∀ {i} (G : Group i) → G ×ᴳ 0ᴳ ≃ᴳ G
×ᴳ-unit-r _ = ×ᴳ-fst , is-eq fst (λ g → (g , unit)) (λ _ → idp) (λ _ → idp)
{- A product Πᴳ indexed by Bool is the same as a binary product -}
module _ {i j k} {A : Type i} {B : Type j} (F : A ⊔ B → Group k) where
Πᴳ₁-⊔-iso-×ᴳ : Πᴳ (A ⊔ B) F ≃ᴳ Πᴳ A (F ∘ inl) ×ᴳ Πᴳ B (F ∘ inr)
Πᴳ₁-⊔-iso-×ᴳ = ≃-to-≃ᴳ (Π₁-⊔-equiv-× (Group.El ∘ F)) (λ _ _ → idp)
{- Commutativity of ×ᴳ -}
×ᴳ-comm : ∀ {i j} (H : Group i) (K : Group j) → H ×ᴳ K ≃ᴳ K ×ᴳ H
×ᴳ-comm H K =
group-hom (λ {(h , k) → (k , h)}) (λ _ _ → idp) ,
is-eq _ (λ {(k , h) → (h , k)}) (λ _ → idp) (λ _ → idp)
{- Associativity of ×ᴳ -}
×ᴳ-assoc : ∀ {i j k} (G : Group i) (H : Group j) (K : Group k)
→ ((G ×ᴳ H) ×ᴳ K) ≃ᴳ (G ×ᴳ (H ×ᴳ K))
×ᴳ-assoc G H K =
group-hom (λ {((g , h) , k) → (g , (h , k))}) (λ _ _ → idp) ,
is-eq _ (λ {(g , (h , k)) → ((g , h) , k)}) (λ _ → idp) (λ _ → idp)
module _ {i} where
infixl 80 _^ᴳ_
_^ᴳ_ : Group i → ℕ → Group i
H ^ᴳ O = Lift-group {j = i} 0ᴳ
H ^ᴳ (S n) = H ×ᴳ (H ^ᴳ n)
^ᴳ-+ : (H : Group i) (m n : ℕ) → H ^ᴳ (m + n) ≃ᴳ (H ^ᴳ m) ×ᴳ (H ^ᴳ n)
^ᴳ-+ H O n = ×ᴳ-emap (lift-iso {G = 0ᴳ}) (idiso (H ^ᴳ n)) ∘eᴳ ×ᴳ-unit-l (H ^ᴳ n) ⁻¹ᴳ
^ᴳ-+ H (S m) n = ×ᴳ-assoc H (H ^ᴳ m) (H ^ᴳ n) ⁻¹ᴳ ∘eᴳ ×ᴳ-emap (idiso H) (^ᴳ-+ H m n)
module _ where
Πᴳ-is-trivial : ∀ {i j} (I : Type i) (F : I → Group j)
→ (∀ (i : I) → is-trivialᴳ (F i)) → is-trivialᴳ (Πᴳ I F)
Πᴳ-is-trivial I F F-is-trivial = λ f → λ= λ i → F-is-trivial i (f i)
module _ {j} {F : Unit → Group j} where
Πᴳ₁-Unit : Πᴳ Unit F ≃ᴳ F unit
Πᴳ₁-Unit = ≃-to-≃ᴳ Π₁-Unit (λ _ _ → idp)
| 36.785978
| 104
| 0.49674
|
21d8f94ce9d4fb09c6188bd7614f99c0991fad6e
| 235
|
agda
|
Agda
|
src/Pair.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
src/Pair.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
src/Pair.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
module Pair where
postulate
_,_ : Set → Set → Set
fst : {A B : Set} → (A , B) → A
snd : {A B : Set} → (A , B) → B
{-# COMPILE GHC _,_ = type (,) #-}
{-# COMPILE GHC fst = \ _ _ -> fst #-}
{-# COMPILE GHC snd = \ _ _ -> snd #-}
| 21.363636
| 38
| 0.46383
|
214383e4dc3e8ebaab0603f364448129eda726ae
| 787
|
agda
|
Agda
|
Data.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Data.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Data.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Data where
import Lvl
open import Type
-- An empty type which cannot be constructed.
-- By default, this should be used to represent _the_ empty type.
data Empty {ℓ} : Type{ℓ} where
{-# FOREIGN GHC data Empty ℓ #-}
{-# COMPILE GHC Empty = data Empty () #-}
-- Empty functions.
-- The empty type eliminator.
-- Any type can be constructed from the empty type.
empty : ∀{ℓ₁ ℓ₂}{T : Type{ℓ₁}} → Empty{ℓ₂} → T
empty ()
{-# COMPILE GHC empty = \_ _ _ e -> case e of{} #-}
-- An unit type which can only be constructed in one way.
-- By default, this should be used to represent _the_ unit type.
record Unit {ℓ} : Type{ℓ} where
instance constructor <>
open Unit public
{-# BUILTIN UNIT Unit #-}
{-# FOREIGN GHC type Unit ℓ = () #-}
{-# COMPILE GHC Unit = data Unit (()) #-}
| 28.107143
| 65
| 0.659466
|
19d5e57d3c5e578b065c7a953a72d8d2d6fce848
| 1,413
|
agda
|
Agda
|
src/fot/GroupTheory/Commutator.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/GroupTheory/Commutator.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/GroupTheory/Commutator.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- The group commutator
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module GroupTheory.Commutator where
open import GroupTheory.Base
------------------------------------------------------------------------------
-- The group commutator
--
-- There are two definitions for the group commutator:
--
-- [a,b] = aba⁻¹b⁻¹ (Mac Lane and Garret 1999, p. 418), or
--
-- [a,b] = a⁻¹b⁻¹ab (Kurosh 1960, p. 99).
--
-- We use Kurosh's definition, because this is the definition used by
-- the TPTP 6.4.0 problem GRP/GRP024-5.p. Actually the problem uses
-- the definition
--
-- [a,b] = a⁻¹(b⁻¹(ab)).
[_,_] : G → G → G
[ a , b ] = a ⁻¹ · b ⁻¹ · a · b
{-# ATP definition [_,_] #-}
commutatorAssoc : G → G → G → Set
commutatorAssoc a b c = [ [ a , b ] , c ] ≡ [ a , [ b , c ] ]
{-# ATP definition commutatorAssoc #-}
------------------------------------------------------------------------------
-- References
--
-- Mac Lane, S. and Birkhof, G. (1999). Algebra. 3rd ed. AMS Chelsea
-- Publishing.
--
-- Kurosh, A. G. (1960). The Theory of Groups. 2nd
-- ed. Vol. 1. Translated and edited by K. A. Hirsch. Chelsea
-- Publising Company.
| 30.717391
| 78
| 0.46143
|
1b0de47b64a83139df46d0350d6cd2e35268b2c9
| 11,030
|
agda
|
Agda
|
core/lib/Base.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
core/lib/Base.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
core/lib/Base.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
{-
This file contains a bunch of basic stuff which is needed early.
Maybe it should be organised better.
-}
module lib.Base where
{- Universes and typing
Agda has explicit universe polymorphism, which means that there is an actual
type of universe levels on which you can quantify. This type is called [ULevel]
and comes equipped with the following operations:
- [lzero] : [ULevel] (in order to have at least one universe)
- [lsucc] : [ULevel → ULevel] (the [i]th universe level is a term in the
[lsucc i]th universe)
- [lmax] : [ULevel → ULevel → ULevel] (in order to type dependent products (where
the codomain is in a uniform universe level)
This type is postulated below and linked to Agda’s universe polymorphism
mechanism via the built-in module Agda.Primitive (it’s the new way).
In plain Agda, the [i]th universe is called [Set i], which is not a very good
name from the point of view of HoTT, so we define [Type] as a synonym of [Set]
and [Set] should never be used again.
-}
open import Agda.Primitive public using (lzero)
renaming (Level to ULevel; lsuc to lsucc; _⊔_ to lmax)
Type : (i : ULevel) → Set (lsucc i)
Type i = Set i
Type₀ = Type lzero
Type0 = Type lzero
Type₁ = Type (lsucc lzero)
Type1 = Type (lsucc lzero)
{-
There is no built-in or standard way to coerce an ambiguous term to a given type
(like [u : A] in ML), the symbol [:] is reserved, and the Unicode [∶] is really
a bad idea.
So we’re using the symbol [_:>_], which has the advantage that it can micmic
Coq’s [u = v :> A].
-}
of-type : ∀ {i} (A : Type i) (u : A) → A
of-type A u = u
infix 40 of-type
syntax of-type A u = u :> A
{- Identity type
The identity type is called [Path] and [_==_] because the symbol [=] is
reserved in Agda.
The constant path is [idp]. Note that all arguments of [idp] are implicit.
-}
infix 30 _==_
data _==_ {i} {A : Type i} (a : A) : A → Type i where
idp : a == a
Path = _==_
{-# BUILTIN EQUALITY _==_ #-}
{-# BUILTIN REFL idp #-}
{- Paulin-Mohring J rule
At the time I’m writing this (July 2013), the identity type is somehow broken in
Agda dev, it behaves more or less as the Martin-Löf identity type instead of
behaving like the Paulin-Mohring identity type.
So here is the Paulin-Mohring J rule -}
J : ∀ {i j} {A : Type i} {a : A} (B : (a' : A) (p : a == a') → Type j) (d : B a idp)
{a' : A} (p : a == a') → B a' p
J B d idp = d
J' : ∀ {i j} {A : Type i} {a : A} (B : (a' : A) (p : a' == a) → Type j) (d : B a idp)
{a' : A} (p : a' == a) → B a' p
J' B d idp = d
{- Unit type
The unit type is defined as record so that we also get the η-rule definitionally.
-}
record ⊤ : Type₀ where
instance constructor unit
Unit = ⊤
{-# BUILTIN UNIT ⊤ #-}
{- Dependent paths
The notion of dependent path is a very important notion.
If you have a dependent type [B] over [A], a path [p : x == y] in [A] and two
points [u : B x] and [v : B y], there is a type [u == v [ B ↓ p ]] of paths from
[u] to [v] lying over the path [p].
By definition, if [p] is a constant path, then [u == v [ B ↓ p ]] is just an
ordinary path in the fiber.
-}
PathOver : ∀ {i j} {A : Type i} (B : A → Type j)
{x y : A} (p : x == y) (u : B x) (v : B y) → Type j
PathOver B idp u v = (u == v)
infix 30 PathOver
syntax PathOver B p u v =
u == v [ B ↓ p ]
{- Ap, coe and transport
Given two fibrations over a type [A], a fiberwise map between the two fibrations
can be applied to any dependent path in the first fibration ([ap↓]).
As a special case, when [A] is [Unit], we find the familiar [ap] ([ap] is
defined in terms of [ap↓] because it shouldn’t change anything for the user
and this is helpful in some rare cases)
-}
ap : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A}
→ (x == y → f x == f y)
ap f idp = idp
ap↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) {x y : A} {p : x == y}
{u : B x} {v : B y}
→ (u == v [ B ↓ p ] → g u == g v [ C ↓ p ])
ap↓ g {p = idp} p = ap g p
{-
[apd↓] is defined in lib.PathOver. Unlike [ap↓] and [ap], [apd] is not
definitionally a special case of [apd↓]
-}
apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A}
→ (p : x == y) → f x == f y [ B ↓ p ]
apd f idp = idp
{-
An equality between types gives two maps back and forth
-}
coe : ∀ {i} {A B : Type i} (p : A == B) → A → B
coe idp x = x
coe! : ∀ {i} {A B : Type i} (p : A == B) → B → A
coe! idp x = x
{-
The operations of transport forward and backward are defined in terms of [ap]
and [coe], because this is more convenient in practice.
-}
transport : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y)
→ (B x → B y)
transport B p = coe (ap B p)
transport! : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y)
→ (B y → B x)
transport! B p = coe! (ap B p)
{- Π-types
Shorter notation for Π-types.
-}
Π : ∀ {i j} (A : Type i) (P : A → Type j) → Type (lmax i j)
Π A P = (x : A) → P x
{- Σ-types
Σ-types are defined as a record so that we have definitional η.
-}
infixr 60 _,_
record Σ {i j} (A : Type i) (B : A → Type j) : Type (lmax i j) where
constructor _,_
field
fst : A
snd : B fst
open Σ public
pair= : ∀ {i j} {A : Type i} {B : A → Type j}
{a a' : A} (p : a == a') {b : B a} {b' : B a'}
(q : b == b' [ B ↓ p ])
→ (a , b) == (a' , b')
pair= idp q = ap (_,_ _) q
pair×= : ∀ {i j} {A : Type i} {B : Type j}
{a a' : A} (p : a == a') {b b' : B} (q : b == b')
→ (a , b) == (a' , b')
pair×= idp q = pair= idp q
{- Empty type
We define the eliminator of the empty type using an absurd pattern. Given that
absurd patterns are not consistent with HIT, we will not use empty patterns
anymore after that.
-}
data ⊥ : Type₀ where
Empty = ⊥
⊥-elim : ∀ {i} {P : ⊥ → Type i} → ((x : ⊥) → P x)
⊥-elim ()
Empty-elim = ⊥-elim
{- Negation and disequality -}
¬ : ∀ {i} (A : Type i) → Type i
¬ A = A → ⊥
_≠_ : ∀ {i} {A : Type i} → (A → A → Type i)
x ≠ y = ¬ (x == y)
{- Natural numbers -}
data ℕ : Type₀ where
O : ℕ
S : (n : ℕ) → ℕ
Nat = ℕ
{-# BUILTIN NATURAL ℕ #-}
{- Lifting to a higher universe level
The operation of lifting enjoys both β and η definitionally.
It’s a bit annoying to use, but it’s not used much (for now).
-}
record Lift {i j} (A : Type i) : Type (lmax i j) where
instance constructor lift
field
lower : A
open Lift public
{- Equational reasoning
Equational reasoning is a way to write readable chains of equalities.
The idea is that you can write the following:
t : a == e
t = a =⟨ p ⟩
b =⟨ q ⟩
c =⟨ r ⟩
d =⟨ s ⟩
e ∎
where [p] is a path from [a] to [b], [q] is a path from [b] to [c], and so on.
You often have to apply some equality in some context, for instance [p] could be
[ap ctx thm] where [thm] is the interesting theorem used to prove that [a] is
equal to [b], and [ctx] is the context.
In such cases, you can use instead [thm |in-ctx ctx]. The advantage is that
[ctx] is usually boring whereas the first word of [thm] is the most interesting
part.
_=⟨_⟩ is not definitionally the same thing as concatenation of paths _∙_ because
we haven’t defined concatenation of paths yet, and also you probably shouldn’t
reason on paths constructed with equational reasoning.
If you do want to reason on paths constructed with equational reasoning, check
out lib.types.PathSeq instead.
-}
infix 15 _∎
infixr 10 _=⟨_⟩_
_=⟨_⟩_ : ∀ {i} {A : Type i} (x : A) {y z : A} → x == y → y == z → x == z
_ =⟨ idp ⟩ idp = idp
_∎ : ∀ {i} {A : Type i} (x : A) → x == x
_ ∎ = idp
infixr 40 ap
syntax ap f p = p |in-ctx f
{- Various basic functions and function operations
The identity function on a type [A] is [idf A] and the constant function at some
point [b] is [cst b].
Composition of functions ([_∘_]) can handle dependent functions.
-}
idf : ∀ {i} (A : Type i) → (A → A)
idf A = λ x → x
cst : ∀ {i j} {A : Type i} {B : Type j} (b : B) → (A → B)
cst b = λ _ → b
infixr 80 _∘_
_∘_ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → (B a → Type k)}
→ (g : {a : A} → Π (B a) (C a)) → (f : Π A B) → Π A (λ a → C a (f a))
g ∘ f = λ x → g (f x)
-- Application
infixr 0 _$_
_$_ : ∀ {i j} {A : Type i} {B : A → Type j} → (∀ x → B x) → (∀ x → B x)
f $ x = f x
-- (Un)curryfication
curry : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Σ A B → Type k}
→ (∀ s → C s) → (∀ x y → C (x , y))
curry f x y = f (x , y)
uncurry : ∀ {i j k} {A : Type i} {B : A → Type j} {C : ∀ x → B x → Type k}
→ (∀ x y → C x y) → (∀ s → C (fst s) (snd s))
uncurry f (x , y) = f x y
-- (Un)curryfication with the first argument made implicit
curryi : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Σ A B → Type k}
→ (∀ s → C s) → (∀ {x} y → C (x , y))
curryi f y = f (_ , y)
uncurryi : ∀ {i j k} {A : Type i} {B : A → Type j} {C : ∀ x → B x → Type k}
→ (∀ {x} y → C x y) → (∀ s → C (fst s) (snd s))
uncurryi f (x , y) = f y
{- Truncation levels
The type of truncation levels is isomorphic to the type of natural numbers but
"starts at -2".
-}
data TLevel : Type₀ where
⟨-2⟩ : TLevel
S : (n : TLevel) → TLevel
ℕ₋₂ = TLevel
⟨_⟩₋₂ : ℕ → ℕ₋₂
⟨ O ⟩₋₂ = ⟨-2⟩
⟨ S n ⟩₋₂ = S ⟨ n ⟩₋₂
{- Coproducts and case analysis -}
data Coprod {i j} (A : Type i) (B : Type j) : Type (lmax i j) where
inl : A → Coprod A B
inr : B → Coprod A B
infixr 80 _⊔_
_⊔_ = Coprod
match_withl_withr_ : ∀ {i j k} {A : Type i} {B : Type j}
{C : Coprod A B → Type k}
(x : Coprod A B) (l : (a : A) → C (inl a)) (r : (b : B) → C (inr b)) → C x
match (inl a) withl l withr r = l a
match (inr b) withl l withr r = r b
Dec : ∀ {i} (P : Type i) → Type i
Dec P = P ⊔ ¬ P
{-
Used in a hack to make HITs maybe consistent. This is just a parametrized unit
type (positively)
-}
data Phantom {i} {A : Type i} (a : A) : Type₀ where
phantom : Phantom a
{-
-- When you want to cheat
module ADMIT where
postulate
ADMIT : ∀ {i} {A : Type i} → A
-}
{- Numeric literal overloading
-
- This enables writing numeric literals
-}
record FromNat {i} (A : Type i) : Type (lsucc i) where
field
in-range : ℕ → Type i
read : ∀ n → ⦃ _ : in-range n ⦄ → A
open FromNat ⦃...⦄ public using () renaming (read to from-nat)
{-# BUILTIN FROMNAT from-nat #-}
record FromNeg {i} (A : Type i) : Type (lsucc i) where
field
in-range : ℕ → Type i
read : ∀ n → ⦃ _ : in-range n ⦄ → A
open FromNeg ⦃...⦄ public using () renaming (read to from-neg)
{-# BUILTIN FROMNEG from-neg #-}
instance
ℕ-reader : FromNat ℕ
FromNat.in-range ℕ-reader _ = ⊤
FromNat.read ℕ-reader n = n
TLevel-reader : FromNat TLevel
FromNat.in-range TLevel-reader _ = ⊤
FromNat.read TLevel-reader n = S (S ⟨ n ⟩₋₂)
TLevel-neg-reader : FromNeg TLevel
FromNeg.in-range TLevel-neg-reader O = ⊤
FromNeg.in-range TLevel-neg-reader 1 = ⊤
FromNeg.in-range TLevel-neg-reader 2 = ⊤
FromNeg.in-range TLevel-neg-reader (S (S (S _))) = ⊥
FromNeg.read TLevel-neg-reader O = S (S ⟨-2⟩)
FromNeg.read TLevel-neg-reader 1 = S ⟨-2⟩
FromNeg.read TLevel-neg-reader 2 = ⟨-2⟩
FromNeg.read TLevel-neg-reader (S (S (S _))) ⦃()⦄
| 25.771028
| 85
| 0.586673
|
21ea9cd1dc6452a63386b6e2172e18bfc906f702
| 177
|
agda
|
Agda
|
test/Fail/Issue154.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue154.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue154.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- The same name can not be exported more than once from a module.
module Issue154 where
module A where
postulate X : Set
module B where
postulate X : Set
open A public
| 17.7
| 66
| 0.734463
|
58715c0ac2cde6a19681fc4b45e7443fd1b2e86a
| 8,192
|
agda
|
Agda
|
Fields/CauchyCompletion/BaseExpansion.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Fields/CauchyCompletion/BaseExpansion.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Fields/CauchyCompletion/BaseExpansion.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Semirings.Definition
open import Numbers.Modulo.Definition
open import Orders.Total.Definition
module Fields.CauchyCompletion.BaseExpansion {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open PartiallyOrderedRing pRing
open Ring R
open Group additiveGroup
open Field F
open import Fields.Orders.Limits.Definition {F = F} (record { oRing = order })
open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order })
open import Fields.Orders.Limits.Lemmas {F = F} (record { oRing = order })
open import Fields.Lemmas F
open import Fields.Orders.Lemmas {F = F} record { oRing = order }
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Total.AbsoluteValue order
open import Rings.Orders.Partial.Lemmas pRing
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Setoid order F
open import Fields.CauchyCompletion.Addition order F
open import Fields.CauchyCompletion.Comparison order F
open import Fields.CauchyCompletion.Approximation order F
open import Rings.InitialRing R
open import Rings.Orders.Partial.Bounded pRing
open import Rings.Orders.Total.Bounded order
open import Rings.Orders.Total.Cauchy order
-- TODO this is not necessarily true :( the bounded sequence could oscillate between 1 and -1
cauchyTimesBoundedIsCauchy : {s : Sequence A} → cauchy s → {t : Sequence A} → Bounded t → cauchy (apply _*_ s t)
cauchyTimesBoundedIsCauchy {s} cau {t} (K , bounded) e 0<e with allInvertible K (boundNonzero (K , bounded))
... | 1/K , prK with cau (1/K * e) (orderRespectsMultiplication (reciprocalPositive K 1/K (boundGreaterThanZero (K , bounded)) (transitive *Commutative prK)) 0<e)
... | N , cauPr = N , ans
where
ans : {m n : ℕ} (N<m : N <N m) (N<n : N <N n) → (abs (index (apply _*_ s t) m + inverse (index (apply _*_ s t) n))) < e
ans N<m N<n with cauPr N<m N<n
... | r = {!!}
boundedTimesCauchyIsCauchy : {s : Sequence A} → cauchy s → {t : Sequence A} → Bounded t → cauchy (apply _*_ t s)
boundedTimesCauchyIsCauchy {s} cau {t} bou = cauchyWellDefined (ans s t) (cauchyTimesBoundedIsCauchy cau bou)
where
ans : (s t : Sequence A) (m : ℕ) → index (apply _*_ s t) m ∼ index (apply _*_ t s) m
ans s t m rewrite indexAndApply t s _*_ {m} | indexAndApply s t _*_ {m} = *Commutative
private
digitExpansionSeq : {n : ℕ} → .(0<n : 0 <N n) → Sequence (ℤn n 0<n) → Sequence A
Sequence.head (digitExpansionSeq {n} 0<n seq) = fromN (ℤn.x (Sequence.head seq))
Sequence.tail (digitExpansionSeq {n} 0<n seq) = digitExpansionSeq 0<n (Sequence.tail seq)
powerSeq : (i : A) → (start : A) → Sequence A
Sequence.head (powerSeq i start) = start
Sequence.tail (powerSeq i start) = powerSeq i (start * i)
powerSeqInduction : (i : A) (start : A) → (m : ℕ) → (index (powerSeq i start) (succ m)) ∼ i * (index (powerSeq i start) m)
powerSeqInduction i start zero = *Commutative
powerSeqInduction i start (succ m) = powerSeqInduction i (start * i) m
ofBaseExpansionSeq : {n : ℕ} → .(0<n : 0 <N n) → Sequence (ℤn n 0<n) → Sequence A
ofBaseExpansionSeq {succ n} 0<n seq = apply _*_ (digitExpansionSeq 0<n seq) (powerSeq pow pow)
where
pow : A
pow = underlying (allInvertible (fromN (succ n)) (charNotN n))
powerSeqPositive : {i : A} → (0R < i) → {s : A} → (0R < s) → (m : ℕ) → 0R < index (powerSeq i s) m
powerSeqPositive {i} 0<i {s} 0<s zero = 0<s
powerSeqPositive {i} 0<i {s} 0<s (succ m) = <WellDefined reflexive (symmetric (powerSeqInduction i s m)) (orderRespectsMultiplication 0<i (powerSeqPositive 0<i 0<s m))
powerSeqConvergesTo0 : (i : A) → (0R < i) → (i < 1R) → {s : A} → (0R < s) → (powerSeq i s) ~> 0G
powerSeqConvergesTo0 i 0<i i<1 {s} 0<s e 0<e = {!!}
powerSeqConverges : (i : A) → (0R < i) → (i < 1R) → {s : A} → (0R < s) → cauchy (powerSeq i s)
powerSeqConverges i 0<i i<1 {s} 0<s = convergentSequenceCauchy nontrivial {r = 0R} (powerSeqConvergesTo0 i 0<i i<1 0<s)
0<n : {n : ℕ} → 1 <N n → 0 <N n
0<n 1<n = TotalOrder.<Transitive ℕTotalOrder (le 0 refl) 1<n
digitExpansionBoundedLemma : {n : ℕ} → .(0<n : 0 <N n) → (seq : Sequence (ℤn n 0<n)) → (m : ℕ) → index (digitExpansionSeq _ seq) m < fromN n
digitExpansionBoundedLemma {n} 0<n seq zero with Sequence.head seq
... | record { x = x ; xLess = xLess } = fromNPreservesOrder (0<1 nontrivial) {x} {n} ((squash<N xLess))
digitExpansionBoundedLemma 0<n seq (succ m) = digitExpansionBoundedLemma 0<n (Sequence.tail seq) m
digitExpansionBoundedLemma2 : {n : ℕ} → .(0<n : 0 <N n) → (seq : Sequence (ℤn n 0<n)) → (m : ℕ) → inverse (fromN n) < index (digitExpansionSeq 0<n seq) m
digitExpansionBoundedLemma2 {n} 0<n seq zero = <WellDefined identLeft (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (orderRespectsAddition {_} {fromN (ℤn.x (Sequence.head seq)) + fromN n} (<WellDefined reflexive (fromNPreserves+ (ℤn.x (Sequence.head seq)) n) (fromNPreservesOrder (0<1 nontrivial) {0} {ℤn.x (Sequence.head seq) +N n} (canAddToOneSideOfInequality' _ (squash<N 0<n)))) (inverse (fromN n)))
digitExpansionBoundedLemma2 0<n seq (succ m) = digitExpansionBoundedLemma2 0<n (Sequence.tail seq) m
digitExpansionBounded : {n : ℕ} → .(0<n : 0 <N n) → (seq : Sequence (ℤn n 0<n)) → Bounded (digitExpansionSeq 0<n seq)
digitExpansionBounded {n} 0<n seq = fromN n , λ m → ((digitExpansionBoundedLemma2 0<n seq m) ,, digitExpansionBoundedLemma 0<n seq m)
private
1/nPositive : (n : ℕ) → 0R < underlying (allInvertible (fromN (succ n)) (charNotN n))
1/nPositive n with allInvertible (fromN (succ n)) (charNotN n)
... | a , b = reciprocalPositive (fromN (succ n)) a (fromNPreservesOrder (0<1 nontrivial) (succIsPositive n)) (transitive *Commutative b)
1/n<1 : (n : ℕ) → (0 <N n) → underlying (allInvertible (fromN (succ n)) (charNotN n)) < 1R
1/n<1 n 1<n with allInvertible (fromN (succ n)) (charNotN n)
... | a , b = reciprocal<1 (fromN (succ n)) a (<WellDefined identRight reflexive (fromNPreservesOrder (0<1 nontrivial) {1} {succ n} (succPreservesInequality 1<n))) (transitive *Commutative b)
-- Construct the real that is the given base-n expansion between 0 and 1.
ofBaseExpansion : {n : ℕ} → .(1<n : 1 <N n) → (fromN n ∼ 0R → False) → Sequence (ℤn n (0<n 1<n)) → CauchyCompletion
ofBaseExpansion {succ n} 1<n charNotN seq = record { elts = ofBaseExpansionSeq (0<n 1<n) seq ; converges = boundedTimesCauchyIsCauchy (powerSeqConverges _ (1/nPositive n) (1/n<1 n (canRemoveSuccFrom<N (squash<N 1<n))) (1/nPositive n)) (digitExpansionBounded (0<n 1<n) seq)}
toBaseExpansion : {n : ℕ} → .(1<n : 1 <N n) → (fromN n ∼ 0R → False) → (a : CauchyCompletion) → 0R r<C a → a <Cr 1R → Sequence (ℤn n (0<n 1<n))
Sequence.head (toBaseExpansion {n} 1<n charNotN c 0<c c<1) = {!!}
-- TOOD: approximate c to within 1/n^2, extract the first decimal of the result.
Sequence.tail (toBaseExpansion {n} 1<n charNotN c 0<c c<1) = toBaseExpansion 1<n charNotN {!!} {!!} {!!}
baseExpansionProof : {n : ℕ} → .{1<n : 1 <N n} → {charNotN : fromN n ∼ 0R → False} → (as : CauchyCompletion) → (0<a : 0R r<C as) → (a<1 : as <Cr 1R) → Setoid._∼_ cauchyCompletionSetoid (ofBaseExpansion 1<n charNotN (toBaseExpansion 1<n charNotN as 0<a a<1)) as
baseExpansionProof = {!!}
| 61.593985
| 455
| 0.693481
|
ad5894d5b424a0146ec9fff97e221f96125c9e72
| 2,584
|
agda
|
Agda
|
Cubical/Codata/M/AsLimit/itree.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Codata/M/AsLimit/itree.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Codata/M/AsLimit/itree.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-}
module Cubical.Codata.M.AsLimit.itree where
open import Cubical.Data.Unit
open import Cubical.Data.Prod
open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ )
open import Cubical.Data.Sum
open import Cubical.Data.Empty
open import Cubical.Data.Bool
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Codata.M.AsLimit.Container
open import Cubical.Codata.M.AsLimit.M
open import Cubical.Codata.M.AsLimit.Coalg
-- Delay monad defined as an M-type
delay-S : (R : Type₀) -> Container ℓ-zero
delay-S R = (Unit ⊎ R) , λ { (inr _) -> ⊥ ; (inl tt) -> Unit }
delay : (R : Type₀) -> Type₀
delay R = M (delay-S R)
delay-ret : {R : Type₀} -> R -> delay R
delay-ret r = in-fun (inr r , λ ())
delay-tau : {R : Type₀} -> delay R -> delay R
delay-tau S = in-fun (inl tt , λ x → S)
-- Bottom element raised
data ⊥₁ : Type₁ where
-- TREES
tree-S : (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
tree-S E R = (R ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl _) -> ⊥₁ ; (inr (A , e)) -> Lift A } )
tree : (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
tree E R = M (tree-S E R)
tree-ret : ∀ {E} {R} -> R -> tree E R
tree-ret {E} {R} r = in-fun (inl r , λ ())
tree-vis : ∀ {E} {R} -> ∀ {A} -> E A -> (A -> tree E R) -> tree E R
tree-vis {A = A} e k = in-fun (inr (A , e) , λ { (lift x) -> k x } )
-- ITrees (and buildup examples)
-- https://arxiv.org/pdf/1906.00046.pdf
-- Interaction Trees: Representing Recursive and Impure Programs in Coq
-- Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, Steve Zdancewic
itree-S : ∀ (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
itree-S E R = ((Unit ⊎ R) ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl (inl _)) -> Lift Unit ; (inl (inr _)) -> ⊥₁ ; (inr (A , e)) -> Lift A } )
itree : ∀ (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
itree E R = M (itree-S E R)
ret' : ∀ {E} {R} -> R -> P₀ (itree-S E R) (itree E R)
ret' {E} {R} r = inl (inr r) , λ ()
tau' : {E : Type₀ -> Type₁} -> {R : Type₀} -> itree E R -> P₀ (itree-S E R) (itree E R)
tau' t = inl (inl tt) , λ x → t
vis' : ∀ {E} {R} -> ∀ {A : Type₀} -> E A -> (A -> itree E R) -> P₀ (itree-S E R) (itree E R)
vis' {A = A} e k = inr (A , e) , λ { (lift x) -> k x }
ret : ∀ {E} {R} -> R -> itree E R
ret = in-fun ∘ ret'
tau : {E : Type₀ -> Type₁} -> {R : Type₀} -> itree E R -> itree E R
tau = in-fun ∘ tau'
vis : ∀ {E} {R} -> ∀ {A : Type₀} -> E A -> (A -> itree E R) -> itree E R
vis {A = A} e = in-fun ∘ (vis' {A = A} e)
| 34
| 137
| 0.565402
|
439b9aaa63d823bac058fd0b0de9e578e0d951ab
| 658
|
agda
|
Agda
|
test/Succeed/Issue856.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue856.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue856.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS -v tc.conv.inequal:20 #-}
module Issue856 where
import Common.Level
record ⊤ : Set where
data ⊥ : Set where
data Bool : Set where
true : Bool
false : Bool
T : Bool → Set
T true = ⊤
T false = ⊥
record ∃ {A : Set} (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
postulate
G : Set → Set
D : ∀ {A} → G A → A → Set
P : {A : Set} → G A → Set
P g = ∀ x → D g x
postulate
f : ∀ {A} {g : G A} → P g → P g
g : (p : ⊥ → Bool) → G (∃ λ t → T (p t))
h : ∀ {p : ⊥ → Bool} {t pt} → D (g p) (t , pt)
p : ⊥ → Bool
works : P (g p)
works = f (λ _ → h {p = p})
fails : P (g p)
fails = f (λ _ → h)
| 16.04878
| 48
| 0.487842
|
43aff7ccfd4ad5e86a9d5ddd78eeae3536a8a3ea
| 41,575
|
agda
|
Agda
|
Cubical/ZCohomology/GroupStructure.agda
|
howsiyu/cubical
|
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
|
[
"MIT"
] | 1
|
2022-03-05T00:28:39.000Z
|
2022-03-05T00:28:39.000Z
|
Cubical/ZCohomology/GroupStructure.agda
|
snu-development/cubical
|
58f2d0dd07e51f8aa5b348a522691097b6695d1c
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/GroupStructure.agda
|
snu-development/cubical
|
58f2d0dd07e51f8aa5b348a522691097b6695d1c
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.ZCohomology.GroupStructure where
open import Cubical.ZCohomology.Base
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed hiding (id)
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙)
open import Cubical.Data.Sigma
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; isSetSetTrunc to §)
open import Cubical.Data.Int renaming (_+_ to _ℤ+_ ; -_ to -ℤ_)
open import Cubical.Data.Nat renaming (+-assoc to +-assocℕ ; +-comm to +-commℕ)
open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3 ; map2 to trMap2)
open import Cubical.Homotopy.Loopspace
open import Cubical.Algebra.Group renaming (ℤ to ℤGroup)
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open Iso renaming (inv to inv')
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
A' : Pointed ℓ
infixr 34 _+ₖ_
infixr 34 _+ₕ_
infixr 34 _+ₕ∙_
-- Addition in the Eilenberg-Maclane spaces is uniquely determined if we require it to have left- and right-unit laws,
-- such that these agree on 0. In particular, any h-structure (see http://ericfinster.github.io/files/emhott.pdf) is unique.
+ₖ-unique : (n : ℕ) → (comp1 comp2 : coHomK (suc n) → coHomK (suc n) → coHomK (suc n))
→ (rUnit1 : (x : _) → comp1 x (coHom-pt (suc n)) ≡ x)
→ (lUnit1 : (x : _) → comp1 (coHom-pt (suc n)) x ≡ x)
→ (rUnit2 : (x : _) → comp2 x (coHom-pt (suc n)) ≡ x)
→ (lUnit2 : (x : _) → comp2 (coHom-pt (suc n)) x ≡ x)
→ (unId1 : rUnit1 (coHom-pt (suc n)) ≡ lUnit1 (coHom-pt (suc n)))
→ (unId2 : rUnit2 (coHom-pt (suc n)) ≡ lUnit2 (coHom-pt (suc n)))
→ (x y : _) → comp1 x y ≡ comp2 x y
+ₖ-unique n comp1 comp2 rUnit1 lUnit1 rUnit2 lUnit2 unId1 unId2 =
elim2 (λ _ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _)
(wedgeconFun _ _
(λ _ _ → help _ _)
(λ x → lUnit1 ∣ x ∣ ∙ sym (lUnit2 ∣ x ∣))
(λ x → rUnit1 ∣ x ∣ ∙ sym (rUnit2 ∣ x ∣))
(cong₂ _∙_ unId1 (cong sym unId2)))
where
help : isOfHLevel (2 + (n + suc n)) (coHomK (suc n))
help = subst (λ x → isOfHLevel x (coHomK (suc n))) (+-suc n (2 + n) ∙ +-suc (suc n) (suc n))
(isOfHLevelPlus n (isOfHLevelTrunc (3 + n)))
wedgeConHLev : (n : ℕ) → isOfHLevel ((2 + n) + (2 + n)) (coHomK (2 + n))
wedgeConHLev n = subst (λ x → isOfHLevel x (coHomK (2 + n)))
(sym (+-suc (2 + n) (suc n) ∙ +-suc (3 + n) n))
(isOfHLevelPlus' {n = n} (4 + n) (isOfHLevelTrunc (4 + n)))
wedgeConHLev' : (n : ℕ) → isOfHLevel ((2 + n) + (2 + n)) (typ (Ω (coHomK-ptd (3 + n))))
wedgeConHLev' n = subst (λ x → isOfHLevel x (typ (Ω (coHomK-ptd (3 + n)))))
(sym (+-suc (2 + n) (suc n) ∙ +-suc (3 + n) n))
(isOfHLevelPlus' {n = n} (4 + n) (isOfHLevelTrunc (5 + n) _ _))
wedgeConHLevPath : (n : ℕ) → (x y : coHomK (suc n)) → isOfHLevel ((suc n) + (suc n)) (x ≡ y)
wedgeConHLevPath zero x y = isOfHLevelTrunc 3 _ _
wedgeConHLevPath (suc n) x y = isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _
-- addition for n ≥ 2 together with the left- and right-unit laws (modulo truncations)
preAdd : (n : ℕ) → (S₊ (2 + n) → S₊ (2 + n) → coHomK (2 + n))
preAdd n =
wedgeconFun _ _
(λ _ _ → wedgeConHLev n)
∣_∣
∣_∣
refl
preAdd-l : (n : ℕ) → (x : (S₊ (2 + n))) → preAdd n north x ≡ ∣ x ∣
preAdd-l n _ = refl
preAdd-r : (n : ℕ) → (x : (S₊ (2 + n))) → preAdd n x north ≡ ∣ x ∣
preAdd-r n =
wedgeconRight _ (suc n)
(λ _ _ → wedgeConHLev n)
∣_∣
∣_∣
refl
-- addition for n = 1
wedgeMapS¹ : S¹ → S¹ → S¹
wedgeMapS¹ base y = y
wedgeMapS¹ (loop i) base = loop i
wedgeMapS¹ (loop i) (loop j) =
hcomp (λ k → λ { (i = i0) → loop j
; (i = i1) → loop (j ∧ k)
; (j = i0) → loop i
; (j = i1) → loop (i ∧ k)})
(loop (i ∨ j))
---------- Algebra/Group stuff --------
0ₖ : (n : ℕ) → coHomK n
0ₖ = coHom-pt
_+ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n
_+ₖ_ {n = zero} x y = x ℤ+ y
_+ₖ_ {n = suc zero} = trMap2 wedgeMapS¹
_+ₖ_ {n = suc (suc n)} = trRec (isOfHLevelΠ (4 + n) λ _ → isOfHLevelTrunc (4 + n))
λ x → trRec (isOfHLevelTrunc (4 + n)) (preAdd n x)
private
isEquiv+ : (n : ℕ) → (x : coHomK (suc n)) → isEquiv (_+ₖ_ {n = (suc n)} x)
isEquiv+ zero =
trElim (λ _ → isProp→isOfHLevelSuc 2 (isPropIsEquiv _))
(toPropElim (λ _ → isPropIsEquiv _)
(subst isEquiv (sym help) (idIsEquiv _)))
where
help : _+ₖ_ {n = 1} (coHom-pt 1) ≡ idfun _
help = funExt (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ _ → refl)
isEquiv+ (suc n) =
trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropIsEquiv _))
(suspToPropElim (ptSn (suc n)) (λ _ → isPropIsEquiv _)
(subst isEquiv (sym help) (idIsEquiv _)))
where
help : _+ₖ_ {n = (2 + n)} (coHom-pt (2 + n)) ≡ idfun _
help = funExt (trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ _ → refl)
Kₙ≃Kₙ : (n : ℕ) (x : coHomK (suc n)) → coHomK (suc n) ≃ coHomK (suc n)
Kₙ≃Kₙ n x = _ , isEquiv+ n x
-ₖ_ : {n : ℕ} → coHomK n → coHomK n
-ₖ_ {n = zero} x = 0 - x
-ₖ_ {n = suc zero} = trMap λ {base → base ; (loop i) → (loop (~ i))}
-ₖ_ {n = suc (suc n)} = trMap λ {north → north
; south → north
; (merid a i) → ((merid (ptSn (suc n)) ∙ sym (merid a))) i}
_-ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n
_-ₖ_ {n = n} x y = _+ₖ_ {n = n} x (-ₖ_ {n = n} y)
+ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n
+ₖ-syntax n = _+ₖ_ {n = n}
-ₖ-syntax : (n : ℕ) → coHomK n → coHomK n
-ₖ-syntax n = -ₖ_ {n = n}
-'ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n
-'ₖ-syntax n = _-ₖ_ {n = n}
syntax +ₖ-syntax n x y = x +[ n ]ₖ y
syntax -ₖ-syntax n x = -[ n ]ₖ x
syntax -'ₖ-syntax n x y = x -[ n ]ₖ y
-ₖ^2 : {n : ℕ} → (x : coHomK n) → (-ₖ (-ₖ x)) ≡ x
-ₖ^2 {n = zero} x =
+Comm (pos zero) (-ℤ (pos zero ℤ+ (-ℤ x))) ∙∙ -Dist+ (pos zero) (-ℤ x)
∙∙ (+Comm (pos zero) (-ℤ (-ℤ x)) ∙ -Involutive x)
-ₖ^2 {n = suc zero} =
trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ { base → refl ; (loop i) → refl}
-ₖ^2 {n = suc (suc n)} =
trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
λ { north → refl
; south j → ∣ merid (ptSn _) j ∣ₕ
; (merid a i) j
→ hcomp (λ k → λ { (i = i0) → ∣ north ∣
; (i = i1) → ∣ compPath-filler' (merid a) (sym (merid (ptSn _))) (~ k) (~ j) ∣ₕ
; (j = i0) → help a (~ k) i
; (j = i1) → ∣ merid a (i ∧ k) ∣})
∣ (merid a ∙ sym (merid (ptSn _))) (i ∧ ~ j) ∣ₕ}
where
help : (a : _) → cong (-ₖ_ ∘ (-ₖ_ {n = suc (suc n)})) (cong ∣_∣ₕ (merid a))
≡ cong ∣_∣ₕ (merid a ∙ sym (merid (ptSn _)))
help a = cong (cong ((-ₖ_ {n = suc (suc n)}))) (cong-∙ ∣_∣ₕ (merid (ptSn (suc n))) (sym (merid a)))
∙∙ cong-∙ (-ₖ_ {n = suc (suc n)}) (cong ∣_∣ₕ (merid (ptSn (suc n)))) (cong ∣_∣ₕ (sym (merid a)))
∙∙ (λ i → (λ j → ∣ rCancel (merid (ptSn (suc n))) i j ∣ₕ)
∙ λ j → ∣ symDistr (merid (ptSn (suc n))) (sym (merid a)) i j ∣ₕ)
∙ sym (lUnit _)
------- Groupoid Laws for Kₙ ---------
commₖ : (n : ℕ) → (x y : coHomK n) → x +[ n ]ₖ y ≡ y +[ n ]ₖ x
commₖ zero = +Comm
commₖ (suc zero) =
elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
(wedgeconFun _ _
(λ _ _ → isOfHLevelTrunc 3 _ _)
(λ {base → refl ; (loop i) → refl})
(λ {base → refl ; (loop i) → refl})
refl)
commₖ (suc (suc n)) =
elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
(wedgeconFun _ _
(λ x y → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _)
(λ x → preAdd-l n x ∙ sym (preAdd-r n x))
(λ x → preAdd-r n x ∙ sym (preAdd-l n x))
refl)
commₖ-base : (n : ℕ) → commₖ n (coHom-pt n) (coHom-pt n) ≡ refl
commₖ-base zero = refl
commₖ-base (suc zero) = refl
commₖ-base (suc (suc n)) = sym (rUnit _)
rUnitₖ : (n : ℕ) → (x : coHomK n) → x +[ n ]ₖ coHom-pt n ≡ x
rUnitₖ zero x = refl
rUnitₖ (suc zero) =
trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ {base → refl
; (loop i) → refl}
rUnitₖ (suc (suc n)) =
trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
(preAdd-r n)
lUnitₖ : (n : ℕ) → (x : coHomK n) → coHom-pt n +[ n ]ₖ x ≡ x
lUnitₖ zero x = sym (pos0+ x)
lUnitₖ (suc zero) =
trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ {base → refl
; (loop i) → refl}
lUnitₖ (suc (suc n)) =
trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
λ x → refl
∙≡+₁ : (p q : typ (Ω (coHomK-ptd 1))) → p ∙ q ≡ cong₂ _+ₖ_ p q
∙≡+₁ p q = (λ i → (λ j → rUnitₖ 1 (p j) (~ i)) ∙ λ j → lUnitₖ 1 (q j) (~ i)) ∙ sym (cong₂Funct _+ₖ_ p q)
∙≡+₂ : (n : ℕ) (p q : typ (Ω (coHomK-ptd (suc (suc n))))) → p ∙ q ≡ cong₂ _+ₖ_ p q
∙≡+₂ n p q = (λ i → (λ j → rUnitₖ (2 + n) (p j) (~ i)) ∙ λ j → lUnitₖ (2 + n) (q j) (~ i)) ∙ sym (cong₂Funct _+ₖ_ p q)
lCancelₖ : (n : ℕ) → (x : coHomK n) → (-ₖ_ {n = n} x) +ₖ x ≡ coHom-pt n
lCancelₖ zero x = minusPlus x 0
lCancelₖ (suc zero) =
trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ {base → refl ; (loop i) j → help j i}
where
help : cong₂ _+ₖ_ (sym (cong ∣_∣ loop)) (cong ∣_∣ loop) ≡ refl
help = sym (∙≡+₁ (sym (cong ∣_∣ loop)) (cong ∣_∣ loop)) ∙ lCancel _
lCancelₖ (suc (suc n)) =
trElim (λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
λ {north → refl ; south → cong ∣_∣ (sym (merid (ptSn (suc n)))) ; (merid a i) → help a i }
where
s : (a : _) → _ ≡ _
s x = cong₂ _+ₖ_ (sym (cong ∣_∣ (merid (ptSn (suc n)) ∙ sym (merid x)))) (cong ∣_∣ (sym (merid x)))
help : (a : _) → PathP (λ i → (preAdd n ((merid (ptSn (suc n)) ∙ (λ i₁ → merid a (~ i₁))) i)
(merid a i)) ≡ ∣ north ∣) refl λ i₁ → ∣ merid (ptSn (suc n)) (~ i₁) ∣
help x =
compPathR→PathP
((sym (lCancel _)
∙∙ (λ i → ∙≡+₂ _ (cong ∣_∣ (symDistr (merid x) (sym (merid (ptSn (suc n)))) i)) (cong ∣_∣ ((merid x) ∙ sym (merid (ptSn (suc n))))) i)
∙∙ rUnit _)
∙∙ (λ j → cong₂ _+ₖ_ ((cong ∣_∣ (merid (ptSn (suc n)) ∙ sym (merid x))))
(λ i → ∣ compPath-filler ((merid x)) ((sym (merid (ptSn (suc n))))) (~ j) i ∣)
∙ λ i → ∣ merid (ptSn (suc n)) (~ i ∧ j) ∣)
∙∙ λ i → sym (s x) ∙ rUnit (cong ∣_∣ (sym (merid (ptSn (suc n))))) i)
rCancelₖ : (n : ℕ) → (x : coHomK n) → x +ₖ (-ₖ_ {n = n} x) ≡ coHom-pt n
rCancelₖ zero x = +Comm x (pos 0 - x) ∙ minusPlus x 0 -- +-comm x (pos 0 - x) ∙ minusPlus x 0
rCancelₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ {base → refl ; (loop i) j → help j i}
where
help : (λ i → ∣ loop i ∣ₕ +ₖ (-ₖ ∣ loop i ∣ₕ)) ≡ refl
help = sym (∙≡+₁ (cong ∣_∣ₕ loop) (sym (cong ∣_∣ₕ loop))) ∙ rCancel _
rCancelₖ (suc (suc n)) x = commₖ _ x (-ₖ x) ∙ lCancelₖ _ x
rCancel≡refl : (n : ℕ) → rCancelₖ (2 + n) (0ₖ _) ≡ refl
rCancel≡refl n i = rUnit (rUnit refl (~ i)) (~ i)
assocₖ : (n : ℕ) → (x y z : coHomK n) → x +[ n ]ₖ (y +[ n ]ₖ z) ≡ (x +[ n ]ₖ y) +[ n ]ₖ z
assocₖ zero = +Assoc
assocₖ (suc zero) =
trElim3 (λ _ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
λ x → wedgeconFun _ _
(λ _ _ → isOfHLevelTrunc 3 _ _)
(λ y i → rUnitₖ 1 ∣ x ∣ (~ i) +ₖ ∣ y ∣)
(λ z → cong (∣ x ∣ +ₖ_) (rUnitₖ 1 ∣ z ∣) ∙ sym (rUnitₖ 1 (∣ x ∣ +ₖ ∣ z ∣)))
(helper x)
where
helper : (x : S¹) → cong (∣ x ∣ +ₖ_) (rUnitₖ 1 ∣ base ∣) ∙ sym (rUnitₖ 1 (∣ x ∣ +ₖ ∣ base ∣))
≡ (cong (_+ₖ ∣ base ∣) (sym (rUnitₖ 1 ∣ x ∣)))
helper = toPropElim (λ _ → isOfHLevelTrunc 3 _ _ _ _)
(sym (lUnit refl))
assocₖ (suc (suc n)) =
trElim3 (λ _ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
(wedgeConSn-×3 _
(λ x z i → preAdd-r n x (~ i) +ₖ ∣ z ∣)
(λ x y → cong (∣ x ∣ +ₖ_) (rUnitₖ (2 + n) ∣ y ∣) ∙ sym (rUnitₖ (2 + n) (∣ x ∣ +ₖ ∣ y ∣)))
(lUnit (sym (rUnitₖ (2 + n) (∣ north ∣ +ₖ ∣ north ∣)))))
where
wedgeConSn-×3 : (n : ℕ)
→ (f : (x z : S₊ (2 + n))→ ∣ x ∣ +ₖ ((0ₖ _) +ₖ ∣ z ∣) ≡ (∣ x ∣ +ₖ (0ₖ _)) +ₖ ∣ z ∣)
→ (g : (x y : S₊ (2 + n)) → ∣ x ∣ +ₖ (∣ y ∣ +ₖ 0ₖ _) ≡ (∣ x ∣ +ₖ ∣ y ∣) +ₖ 0ₖ _)
→ (f (ptSn _) (ptSn _) ≡ g (ptSn _) (ptSn _))
→ (x y z : S₊ (2 + n)) → ∣ x ∣ +ₖ (∣ y ∣ +ₖ ∣ z ∣) ≡ (∣ x ∣ +ₖ ∣ y ∣) +ₖ ∣ z ∣
wedgeConSn-×3 n f g d x =
wedgeconFun _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _)
(f x)
(g x)
(sphereElim _ {A = λ x → g x (ptSn (suc (suc n))) ≡ f x (ptSn (suc (suc n))) }
(λ _ → isOfHLevelTrunc (4 + n) _ _ _ _)
(sym d) x)
{-
This was the original proof for the case n ≥ 2:
For some reason it doesn't check in reasonable time anymore:
assocₖ (suc (suc n)) =
trElim3 (λ _ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
λ x → wedgeConSn _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _)
(λ z i → preAdd n .snd .snd x (~ i) +ₖ ∣ z ∣)
(λ y → cong (∣ x ∣ +ₖ_) (rUnitₖ (2 + n) ∣ y ∣) ∙ sym (rUnitₖ (2 + n) (∣ x ∣ +ₖ ∣ y ∣)))
(helper x) .fst
where
helper : (x : S₊ (2 + n)) → cong (∣ x ∣ +ₖ_) (rUnitₖ (2 + n) ∣ north ∣) ∙ sym (rUnitₖ (2 + n) (∣ x ∣ +ₖ ∣ north ∣))
≡ cong (_+ₖ ∣ north ∣) (sym (preAdd n .snd .snd x))
helper = sphereElim (suc n) (λ _ → isOfHLevelTrunc (4 + n) _ _ _ _)
(sym (lUnit (sym (rUnitₖ (2 + n) (∣ north ∣ +ₖ ∣ north ∣)))))
-}
lUnitₖ≡rUnitₖ : (n : ℕ) → lUnitₖ n (coHom-pt n) ≡ rUnitₖ n (coHom-pt n)
lUnitₖ≡rUnitₖ zero = isSetℤ _ _ _ _
lUnitₖ≡rUnitₖ (suc zero) = refl
lUnitₖ≡rUnitₖ (suc (suc n)) = refl
------ Commutativity of ΩKₙ
-- We show that p ∙ q ≡ (λ i → (p i) +ₖ (q i)) for any p q : ΩKₙ₊₁. This allows us to prove that p ∙ q ≡ q ∙ p
-- without having to use the equivalence Kₙ ≃ ΩKₙ₊₁
cong+ₖ-comm : (n : ℕ) (p q : typ (Ω (coHomK-ptd (suc n)))) → cong₂ _+ₖ_ p q ≡ cong₂ _+ₖ_ q p
cong+ₖ-comm zero p q =
rUnit (cong₂ _+ₖ_ p q)
∙∙ (λ i → (λ j → commₖ 1 ∣ base ∣ ∣ base ∣ (i ∧ j))
∙∙ (λ j → commₖ 1 (p j) (q j) i)
∙∙ λ j → commₖ 1 ∣ base ∣ ∣ base ∣ (i ∧ ~ j))
∙∙ ((λ i → commₖ-base 1 i ∙∙ cong₂ _+ₖ_ q p ∙∙ sym (commₖ-base 1 i))
∙ sym (rUnit (cong₂ _+ₖ_ q p)))
cong+ₖ-comm (suc n) p q =
rUnit (cong₂ _+ₖ_ p q)
∙∙ (λ i → (λ j → commₖ (2 + n) ∣ north ∣ ∣ north ∣ (i ∧ j))
∙∙ (λ j → commₖ (2 + n) (p j) (q j) i )
∙∙ λ j → commₖ (2 + n) ∣ north ∣ ∣ north ∣ (i ∧ ~ j))
∙∙ ((λ i → commₖ-base (2 + n) i ∙∙ cong₂ _+ₖ_ q p ∙∙ sym (commₖ-base (2 + n) i))
∙ sym (rUnit (cong₂ _+ₖ_ q p)))
isCommΩK : (n : ℕ) → isComm∙ (coHomK-ptd n)
isCommΩK zero p q = isSetℤ _ _ (p ∙ q) (q ∙ p)
isCommΩK (suc zero) p q = ∙≡+₁ p q ∙∙ cong+ₖ-comm 0 p q ∙∙ sym (∙≡+₁ q p)
isCommΩK (suc (suc n)) p q = ∙≡+₂ n p q ∙∙ cong+ₖ-comm (suc n) p q ∙∙ sym (∙≡+₂ n q p)
----- some other useful lemmas about algebra in Kₙ
-0ₖ : {n : ℕ} → -[ n ]ₖ (0ₖ n) ≡ (0ₖ n)
-0ₖ {n = zero} = refl
-0ₖ {n = suc zero} = refl
-0ₖ {n = suc (suc n)} = refl
-distrₖ : (n : ℕ) (x y : coHomK n) → -[ n ]ₖ (x +[ n ]ₖ y) ≡ (-[ n ]ₖ x) +[ n ]ₖ (-[ n ]ₖ y)
-distrₖ zero x y = GroupTheory.invDistr ℤGroup x y ∙ +Comm (0 - y) (0 - x)
-distrₖ (suc zero) =
elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
(wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 3 _ _)
(λ x → sym (lUnitₖ 1 (-[ 1 ]ₖ ∣ x ∣)))
(λ x → cong (λ x → -[ 1 ]ₖ x) (rUnitₖ 1 ∣ x ∣) ∙ sym (rUnitₖ 1 (-[ 1 ]ₖ ∣ x ∣)))
(sym (rUnit refl)))
-distrₖ (suc (suc n)) =
elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
(wedgeconFun _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev n) _ _)
(λ x → sym (lUnitₖ (2 + n) (-[ (2 + n) ]ₖ ∣ x ∣)))
(λ x → cong (λ x → -[ (2 + n) ]ₖ x) (rUnitₖ (2 + n) ∣ x ∣ ) ∙ sym (rUnitₖ (2 + n) (-[ (2 + n) ]ₖ ∣ x ∣)))
(sym (rUnit refl)))
-cancelRₖ : (n : ℕ) (x y : coHomK n) → (y +[ n ]ₖ x) -[ n ]ₖ x ≡ y
-cancelRₖ zero x y = sym (+Assoc y x (0 - x))
∙∙ cong (y ℤ+_) (+Comm x (0 - x))
∙∙ cong (y ℤ+_) (minusPlus x (pos 0))
-cancelRₖ (suc zero) =
elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
(wedgeconFun _ _ (λ _ _ → wedgeConHLevPath 0 _ _)
(λ x → cong (_+ₖ ∣ base ∣) (rUnitₖ 1 ∣ x ∣) ∙ rUnitₖ 1 ∣ x ∣)
(λ x → rCancelₖ 1 ∣ x ∣)
(rUnit refl))
-cancelRₖ (suc (suc n)) =
elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
(wedgeconFun _ _ (λ _ _ → wedgeConHLevPath (suc n) _ _)
(λ x → cong (_+ₖ ∣ north ∣) (rUnitₖ (2 + n) ∣ x ∣) ∙ rUnitₖ (2 + n) ∣ x ∣)
(λ x → rCancelₖ (2 + n) ∣ x ∣)
(sym (rUnit _)))
-cancelLₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ x ≡ y
-cancelLₖ n x y = cong (λ z → z -[ n ]ₖ x) (commₖ n x y) ∙ -cancelRₖ n x y
-+cancelₖ : (n : ℕ) (x y : coHomK n) → (x -[ n ]ₖ y) +[ n ]ₖ y ≡ x
-+cancelₖ zero x y = sym (+Assoc x (0 - y) y) ∙ cong (x ℤ+_) (minusPlus y (pos 0))
-+cancelₖ (suc zero) =
elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _)
(wedgeconFun _ _ (λ _ _ → wedgeConHLevPath 0 _ _)
(λ x → cong (_+ₖ ∣ x ∣) (lUnitₖ 1 (-ₖ ∣ x ∣)) ∙ lCancelₖ 1 ∣ x ∣)
(λ x → cong (_+ₖ ∣ base ∣) (rUnitₖ 1 ∣ x ∣) ∙ rUnitₖ 1 ∣ x ∣)
refl)
-+cancelₖ (suc (suc n)) =
elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
(wedgeconFun _ _ (λ _ _ → wedgeConHLevPath (suc n) _ _)
(λ x → cong (_+ₖ ∣ x ∣) (lUnitₖ (2 + n) (-ₖ ∣ x ∣)) ∙ lCancelₖ (2 + n) ∣ x ∣)
(λ x → cong (_+ₖ ∣ north ∣) (rUnitₖ (2 + n) ∣ x ∣) ∙ rUnitₖ (2 + n) ∣ x ∣)
refl)
---- Group structure of cohomology groups
_+ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A
_+ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x +[ n ]ₖ b x) ∣₂
-ₕ_ : {n : ℕ} → coHom n A → coHom n A
-ₕ_ {n = n} = sRec § λ a → ∣ (λ x → -[ n ]ₖ a x) ∣₂
_-ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A
_-ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x -[ n ]ₖ b x) ∣₂
+ₕ-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A
+ₕ-syntax n = _+ₕ_ {n = n}
-ₕ-syntax : (n : ℕ) → coHom n A → coHom n A
-ₕ-syntax n = -ₕ_ {n = n}
-ₕ'-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A
-ₕ'-syntax n = _-ₕ_ {n = n}
syntax +ₕ-syntax n x y = x +[ n ]ₕ y
syntax -ₕ-syntax n x = -[ n ]ₕ x
syntax -ₕ'-syntax n x y = x -[ n ]ₕ y
0ₕ : (n : ℕ) → coHom n A
0ₕ n = ∣ (λ _ → (0ₖ n)) ∣₂
_+'ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A
_+'ₕ_ {n = n} x y = (x +ₕ 0ₕ _) +ₕ y +ₕ 0ₕ _
rUnitₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (0ₕ n) ≡ x
rUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rUnitₖ n (a x)) i ∣₂
lUnitₕ : (n : ℕ) (x : coHom n A) → (0ₕ n) +[ n ]ₕ x ≡ x
lUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lUnitₖ n (a x)) i ∣₂
rCancelₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (-[ n ]ₕ x) ≡ 0ₕ n
rCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rCancelₖ n (a x)) i ∣₂
lCancelₕ : (n : ℕ) (x : coHom n A) → (-[ n ]ₕ x) +[ n ]ₕ x ≡ 0ₕ n
lCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lCancelₖ n (a x)) i ∣₂
assocₕ : (n : ℕ) (x y z : coHom n A) → (x +[ n ]ₕ (y +[ n ]ₕ z)) ≡ ((x +[ n ]ₕ y) +[ n ]ₕ z)
assocₕ n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b c i → ∣ funExt (λ x → assocₖ n (a x) (b x) (c x)) i ∣₂
commₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) ≡ (y +[ n ]ₕ x)
commₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ funExt (λ x → commₖ n (a x) (b x)) i ∣₂
-cancelLₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) -[ n ]ₕ x ≡ y
-cancelLₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelLₖ n (a x) (b x) i) ∣₂
-cancelRₕ : (n : ℕ) (x y : coHom n A) → (y +[ n ]ₕ x) -[ n ]ₕ x ≡ y
-cancelRₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelRₖ n (a x) (b x) i) ∣₂
-+cancelₕ : (n : ℕ) (x y : coHom n A) → (x -[ n ]ₕ y) +[ n ]ₕ y ≡ x
-+cancelₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -+cancelₖ n (a x) (b x) i) ∣₂
-- Group structure of reduced cohomology groups (in progress - might need K to compute properly first)
_+ₕ∙_ : {A : Pointed ℓ} {n : ℕ} → coHomRed n A → coHomRed n A → coHomRed n A
_+ₕ∙_ {n = zero} = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ zero ]ₖ b x)
, (λ i → (pa i +[ zero ]ₖ pb i)) ∣₂ }
_+ₕ∙_ {n = (suc zero)} = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ 1 ]ₖ b x)
, (λ i → pa i +[ 1 ]ₖ pb i) ∣₂ }
_+ₕ∙_ {n = (suc (suc n))} =
sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ (2 + n) ]ₖ b x)
, (λ i → pa i +[ (2 + n) ]ₖ pb i) ∣₂ }
-ₕ∙_ : {A : Pointed ℓ} {n : ℕ} → coHomRed n A → coHomRed n A
-ₕ∙_ {n = zero} = sRec § λ {(f , p) → ∣ (λ x → -[ 0 ]ₖ (f x))
, cong (λ x → -[ 0 ]ₖ x) p ∣₂}
-ₕ∙_ {n = suc zero} = sRec § λ {(f , p) → ∣ (λ x → -ₖ (f x))
, cong -ₖ_ p ∣₂}
-ₕ∙_ {n = suc (suc n)} = sRec § λ {(f , p) → ∣ (λ x → -ₖ (f x))
, cong -ₖ_ p ∣₂}
0ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A
0ₕ∙ n = ∣ (λ _ → 0ₖ n) , refl ∣₂
+ₕ∙-syntax : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A
+ₕ∙-syntax n = _+ₕ∙_ {n = n}
-ₕ∙-syntax : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A
-ₕ∙-syntax n = -ₕ∙_ {n = n}
-'ₕ∙-syntax : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A
-'ₕ∙-syntax n x y = _+ₕ∙_ {n = n} x (-ₕ∙_ {n = n} y)
syntax +ₕ∙-syntax n x y = x +[ n ]ₕ∙ y
syntax -ₕ∙-syntax n x = -[ n ]ₕ∙ x
syntax -'ₕ∙-syntax n x y = x -[ n ]ₕ∙ y
commₕ∙ : {A : Pointed ℓ} (n : ℕ) (x y : coHomRed n A) → x +[ n ]ₕ∙ y ≡ y +[ n ]ₕ∙ x
commₕ∙ zero =
sElim2 (λ _ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) (g , q)
→ cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → commₖ 0 (f x) (g x) i)}
commₕ∙ (suc zero) =
sElim2 (λ _ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) (g , q)
→ cong ∣_∣₂ (ΣPathP ((λ i x → commₖ 1 (f x) (g x) i)
, λ i j → commₖ 1 (p j) (q j) i))}
commₕ∙ {A = A} (suc (suc n)) =
sElim2 (λ _ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) (g , q)
→ cong ∣_∣₂ (ΣPathP ((λ i x → commₖ (2 + n) (f x) (g x) i)
, λ i j → hcomp (λ k → λ {(i = i0) → p j +ₖ q j
; (i = i1) → q j +ₖ p j
; (j = i0) → commₖ (2 + n) (f (pt A)) (g (pt A)) i
; (j = i1) → rUnit (refl {x = 0ₖ (2 + n)}) (~ k) i})
(commₖ (2 + n) (p j) (q j) i)))}
rUnitₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → x +[ n ]ₕ∙ 0ₕ∙ n ≡ x
rUnitₕ∙ zero =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → rUnitₖ zero (f x) i)}
rUnitₕ∙ (suc zero) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → rUnitₖ 1 (f x) i) , λ i j → rUnitₖ 1 (p j) i))}
rUnitₕ∙ (suc (suc n)) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → rUnitₖ (2 + n) (f x) i) , λ i j → rUnitₖ (2 + n) (p j) i))}
lUnitₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → 0ₕ∙ n +[ n ]ₕ∙ x ≡ x
lUnitₕ∙ zero =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → lUnitₖ zero (f x) i)}
lUnitₕ∙ (suc zero) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → lUnitₖ 1 (f x) i) , λ i j → lUnitₖ 1 (p j) i))}
lUnitₕ∙ (suc (suc n)) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → lUnitₖ (2 + n) (f x) i) , λ i j → lUnitₖ (2 + n) (p j) i))}
private
pp : {A : Pointed ℓ} (n : ℕ) → (f : fst A → coHomK (suc (suc n)))
→ (p : f (snd A) ≡ snd (coHomK-ptd (suc (suc n))))
→ PathP (λ i → rCancelₖ (2 + n) (f (snd A)) i ≡ 0ₖ (suc (suc n)))
(λ i → (p i) +ₖ (-ₖ p i)) (λ _ → 0ₖ (suc (suc n)))
pp {A = A} n f p i j =
hcomp (λ k → λ {(i = i0) → rCancelₖ (suc (suc n)) (p j) (~ k)
; (i = i1) → 0ₖ (suc (suc n))
; (j = i0) → rCancelₖ (2 + n) (f (snd A)) (i ∨ ~ k)
; (j = i1) → rUnit (rUnit (λ _ → 0ₖ (suc (suc n))) (~ i)) (~ i) k})
(0ₖ (suc (suc n)))
rCancelₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → x +[ n ]ₕ∙ (-[ n ]ₕ∙ x) ≡ 0ₕ∙ n
rCancelₕ∙ zero =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → rCancelₖ zero (f x) i)}
rCancelₕ∙ {A = A} (suc zero) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (ΣPathP ((λ i x → rCancelₖ 1 (f x) i) , λ i j → rCancelₖ 1 (p j) i))}
rCancelₕ∙ {A = A} (suc (suc n)) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p)
→ cong ∣_∣₂ (ΣPathP ((λ i x → rCancelₖ (2 + n) (f x) i)
, pp n f p))}
lCancelₕ∙ : {A : Pointed ℓ} (n : ℕ) (x : coHomRed n A) → (-[ n ]ₕ∙ x) +[ n ]ₕ∙ x ≡ 0ₕ∙ n
lCancelₕ∙ zero =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _) λ i x → lCancelₖ zero (f x) i)}
lCancelₕ∙ {A = A} (suc zero) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p)
→ cong ∣_∣₂ (ΣPathP ((λ i x → lCancelₖ 1 (f x) i)
, λ i j → (lCancelₖ 1 (p j) i)))}
lCancelₕ∙ {A = A} (suc (suc n)) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p)
→ cong ∣_∣₂ (ΣPathP ((λ i x → lCancelₖ (2 + n) (f x) i)
, λ i j → lCancelₖ (2 + n) (p j) i))}
assocₕ∙ : {A : Pointed ℓ} (n : ℕ) (x y z : coHomRed n A)
→ (x +[ n ]ₕ∙ (y +[ n ]ₕ∙ z)) ≡ ((x +[ n ]ₕ∙ y) +[ n ]ₕ∙ z)
assocₕ∙ zero =
elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) (g , q) (h , r)
→ cong ∣_∣₂ (Σ≡Prop (λ _ → isSetℤ _ _)
(λ i x → assocₖ zero (f x) (g x) (h x) i))}
assocₕ∙ (suc zero) =
elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) (g , q) (h , r)
→ cong ∣_∣₂ (ΣPathP ((λ i x → assocₖ 1 (f x) (g x) (h x) i)
, λ i j → assocₖ 1 (p j) (q j) (r j) i))}
assocₕ∙ (suc (suc n)) =
elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) (g , q) (h , r)
→ cong ∣_∣₂ (ΣPathP ((λ i x → assocₖ (2 + n) (f x) (g x) (h x) i)
, λ i j → assocₖ (2 + n) (p j) (q j) (r j) i))}
open IsSemigroup
open IsMonoid
open GroupStr
open IsGroupHom
coHomGr : (n : ℕ) (A : Type ℓ) → Group ℓ
coHomGr n A = coHom n A , coHomGrnA
where
coHomGrnA : GroupStr (coHom n A)
1g coHomGrnA = 0ₕ n
GroupStr._·_ coHomGrnA = λ x y → x +[ n ]ₕ y
inv coHomGrnA = λ x → -[ n ]ₕ x
isGroup coHomGrnA = helper
where
abstract
helper : IsGroup {G = coHom n A} (0ₕ n) (λ x y → x +[ n ]ₕ y) (λ x → -[ n ]ₕ x)
helper = makeIsGroup § (assocₕ n) (rUnitₕ n) (lUnitₕ n) (rCancelₕ n) (lCancelₕ n)
×coHomGr : (n : ℕ) (A : Type ℓ) (B : Type ℓ') → Group _
×coHomGr n A B = DirProd (coHomGr n A) (coHomGr n B)
coHomGroup : (n : ℕ) (A : Type ℓ) → AbGroup ℓ
fst (coHomGroup n A) = coHom n A
AbGroupStr.0g (snd (coHomGroup n A)) = 0ₕ n
AbGroupStr._+_ (snd (coHomGroup n A)) = _+ₕ_ {n = n}
AbGroupStr.- snd (coHomGroup n A) = -ₕ_ {n = n}
IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd (coHomGroup n A))) = isGroup (snd (coHomGr n A))
IsAbGroup.comm (AbGroupStr.isAbGroup (snd (coHomGroup n A))) = commₕ n
-- Reduced cohomology group (direct def)
coHomRedGroupDir : (n : ℕ) (A : Pointed ℓ) → AbGroup ℓ
fst (coHomRedGroupDir n A) = coHomRed n A
AbGroupStr.0g (snd (coHomRedGroupDir n A)) = 0ₕ∙ n
AbGroupStr._+_ (snd (coHomRedGroupDir n A)) = _+ₕ∙_ {n = n}
AbGroupStr.- snd (coHomRedGroupDir n A) = -ₕ∙_ {n = n}
IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd (coHomRedGroupDir n A))) = helper
where
abstract
helper : IsGroup {G = coHomRed n A} (0ₕ∙ n) (_+ₕ∙_ {n = n}) (-ₕ∙_ {n = n})
helper = makeIsGroup § (assocₕ∙ n) (rUnitₕ∙ n) (lUnitₕ∙ n) (rCancelₕ∙ n) (lCancelₕ∙ n)
IsAbGroup.comm (AbGroupStr.isAbGroup (snd (coHomRedGroupDir n A))) = commₕ∙ n
coHomRedGrDir : (n : ℕ) (A : Pointed ℓ) → Group ℓ
coHomRedGrDir n A = AbGroup→Group (coHomRedGroupDir n A)
-- Induced map
coHomFun : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → coHom n B → coHom n A
coHomFun n f = sRec § λ β → ∣ β ∘ f ∣₂
coHomMorph : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → GroupHom (coHomGr n B) (coHomGr n A)
fst (coHomMorph n f) = coHomFun n f
snd (coHomMorph n f) = makeIsGroupHom (helper n)
where
helper : ℕ → _
helper zero = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl
helper (suc zero) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl
helper (suc (suc n)) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl
coHomIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) → Iso A B
→ GroupIso (coHomGr n B) (coHomGr n A)
fun (fst (coHomIso n is)) = fst (coHomMorph n (fun is))
inv' (fst (coHomIso n is)) = fst (coHomMorph n (inv' is))
rightInv (fst (coHomIso n is)) =
sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → cong f (leftInv is x))
leftInv (fst (coHomIso n is)) =
sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → cong f (rightInv is x))
snd (coHomIso n is) = snd (coHomMorph n (fun is))
-- Alternative definition of cohomology using ΩKₙ instead. Useful for breaking proofs of group isos
-- up into smaller parts
coHomGrΩ : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Group ℓ
coHomGrΩ n A = ∥ (A → typ (Ω (coHomK-ptd (suc n)))) ∥₂ , coHomGrnA
where
coHomGrnA : GroupStr ∥ (A → typ (Ω (coHomK-ptd (suc n)))) ∥₂
1g coHomGrnA = ∣ (λ _ → refl) ∣₂
GroupStr._·_ coHomGrnA = sRec2 § λ p q → ∣ (λ x → p x ∙ q x) ∣₂
inv coHomGrnA = map λ f x → sym (f x)
isGroup coHomGrnA = helper
where
abstract
helper :
IsGroup {G = ∥ (A → typ (Ω (coHomK-ptd (suc n)))) ∥₂}
(∣ (λ _ → refl) ∣₂) (sRec2 § λ p q → ∣ (λ x → p x ∙ q x) ∣₂) (map λ f x → sym (f x))
helper = makeIsGroup § (elim3 (λ _ _ _ → isOfHLevelPath 2 § _ _)
(λ p q r → cong ∣_∣₂ (funExt λ x → assoc∙ (p x) (q x) (r x))))
(sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → sym (rUnit (p x))))
(sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → sym (lUnit (p x))))
(sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → rCancel (p x)))
(sElim (λ _ → isOfHLevelPath 2 § _ _) λ p → cong ∣_∣₂ (funExt λ x → lCancel (p x)))
--- the loopspace of Kₙ is commutative regardless of base
addIso : (n : ℕ) (x : coHomK n) → Iso (coHomK n) (coHomK n)
fun (addIso n x) y = y +[ n ]ₖ x
inv' (addIso n x) y = y -[ n ]ₖ x
rightInv (addIso n x) y = -+cancelₖ n y x
leftInv (addIso n x) y = -cancelRₖ n x y
baseChange : (n : ℕ) (x : coHomK (suc n)) → (0ₖ (suc n) ≡ 0ₖ (suc n)) ≃ (x ≡ x)
baseChange n x = isoToEquiv is
where
f : (n : ℕ) (x : coHomK (suc n)) → (0ₖ (suc n) ≡ 0ₖ (suc n)) → (x ≡ x)
f n x p = sym (rUnitₖ _ x) ∙∙ cong (x +ₖ_) p ∙∙ rUnitₖ _ x
g : (n : ℕ) (x : coHomK (suc n)) → (x ≡ x) → (0ₖ (suc n) ≡ 0ₖ (suc n))
g n x p = sym (rCancelₖ _ x) ∙∙ cong (λ y → y -ₖ x) p ∙∙ rCancelₖ _ x
f-g : (n : ℕ) (x : coHomK (suc n)) (p : x ≡ x) → f n x (g n x p) ≡ p
f-g n =
trElim (λ _ → isOfHLevelΠ (3 + n) λ _ → isOfHLevelPath (3 + n)
(isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) _ _)
(ind n)
where
ind : (n : ℕ) (a : S₊ (suc n)) (p : ∣ a ∣ₕ ≡ ∣ a ∣ₕ) → f n ∣ a ∣ₕ (g n ∣ a ∣ₕ p) ≡ p
ind zero =
toPropElim (λ _ → isPropΠ λ _ → isOfHLevelTrunc 3 _ _ _ _)
λ p → cong (f zero (0ₖ 1)) (sym (rUnit _) ∙ (λ k i → rUnitₖ _ (p i) k))
∙∙ sym (rUnit _)
∙∙ λ k i → lUnitₖ _ (p i) k
ind (suc n) =
sphereElim (suc n) (λ _ → isOfHLevelΠ (2 + n) λ _ → isOfHLevelTrunc (4 + n) _ _ _ _)
λ p → cong (f (suc n) (0ₖ (2 + n)))
((λ k → (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k
∙∙ (λ i → p i +ₖ 0ₖ (2 + n)) ∙∙ (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k)
∙ (λ k → rUnit (λ i → rUnitₖ _ (p i) k) (~ k)))
∙ λ k → rUnit (λ i → lUnitₖ _ (p i) k) (~ k)
g-f : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ 0ₖ _) → g n x (f n x p) ≡ p
g-f n =
trElim (λ _ → isOfHLevelΠ (3 + n) λ _ → isOfHLevelPath (3 + n)
(isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) _ _)
(ind n)
where
ind : (n : ℕ) (a : S₊ (suc n)) (p : 0ₖ (suc n) ≡ 0ₖ (suc n)) → g n ∣ a ∣ₕ (f n ∣ a ∣ₕ p) ≡ p
ind zero =
toPropElim (λ _ → isPropΠ λ _ → isOfHLevelTrunc 3 _ _ _ _)
λ p → cong (g zero (0ₖ 1)) (λ k → rUnit (λ i → lUnitₖ _ (p i) k) (~ k))
∙ (λ k → rUnit (λ i → rUnitₖ _ (p i) k) (~ k))
ind (suc n) =
sphereElim (suc n) (λ _ → isOfHLevelΠ (2 + n) λ _ → isOfHLevelTrunc (4 + n) _ _ _ _)
λ p → cong (g (suc n) (0ₖ (2 + n)))
(λ k → rUnit (λ i → lUnitₖ _ (p i) k) (~ k))
∙∙ (λ k → (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k
∙∙ (λ i → p i +ₖ 0ₖ (2 + n))
∙∙ (sym (rUnit (refl ∙ refl)) ∙ sym (rUnit refl)) k)
∙∙ λ k → rUnit (λ i → rUnitₖ _ (p i) k) (~ k)
is : Iso _ _
fun is = f n x
inv' is = g n x
rightInv is = f-g n x
leftInv is = g-f n x
isCommΩK-based : (n : ℕ) (x : coHomK n) → isComm∙ (coHomK n , x)
isCommΩK-based zero x p q = isSetℤ _ _ (p ∙ q) (q ∙ p)
isCommΩK-based (suc zero) x =
subst isComm∙ (λ i → coHomK 1 , lUnitₖ 1 x i)
(ptdIso→comm {A = (_ , 0ₖ 1)} (addIso 1 x)
(isCommΩK 1))
isCommΩK-based (suc (suc n)) x =
subst isComm∙ (λ i → coHomK (suc (suc n)) , lUnitₖ (suc (suc n)) x i)
(ptdIso→comm {A = (_ , 0ₖ (suc (suc n)))} (addIso (suc (suc n)) x)
(isCommΩK (suc (suc n))))
-- hidden versions of cohom stuff using the "lock" hack. The locked versions can be used when proving things.
-- Swapping "key" for "tt*" will then give computing functions.
Unit' : Type₀
Unit' = lockUnit {ℓ-zero}
lock : ∀ {ℓ} {A : Type ℓ} → Unit' → A → A
lock unlock = λ x → x
module lockedCohom (key : Unit') where
+K : (n : ℕ) → coHomK n → coHomK n → coHomK n
+K n = lock key (_+ₖ_ {n = n})
-K : (n : ℕ) → coHomK n → coHomK n
-K n = lock key (-ₖ_ {n = n})
-Kbin : (n : ℕ) → coHomK n → coHomK n → coHomK n
-Kbin n x y = +K n x (-K n y)
rUnitK : (n : ℕ) (x : coHomK n) → +K n x (0ₖ n) ≡ x
rUnitK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (0ₖ n) ≡ x
pm unlock = rUnitₖ n x
lUnitK : (n : ℕ) (x : coHomK n) → +K n (0ₖ n) x ≡ x
lUnitK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (0ₖ n) x ≡ x
pm unlock = lUnitₖ n x
rCancelK : (n : ℕ) (x : coHomK n) → +K n x (-K n x) ≡ 0ₖ n
rCancelK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (lock t (-ₖ_ {n = n}) x) ≡ 0ₖ n
pm unlock = rCancelₖ n x
lCancelK : (n : ℕ) (x : coHomK n) → +K n (-K n x) x ≡ 0ₖ n
lCancelK n x = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (-ₖ_ {n = n}) x) x ≡ 0ₖ n
pm unlock = lCancelₖ n x
-cancelRK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n y x) x ≡ y
-cancelRK n x y = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) y x) (lock t (-ₖ_ {n = n}) x) ≡ y
pm unlock = -cancelRₖ n x y
-cancelLK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n x y) x ≡ y
-cancelLK n x y = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) (lock t (-ₖ_ {n = n}) x) ≡ y
pm unlock = -cancelLₖ n x y
-+cancelK : (n : ℕ) (x y : coHomK n) → +K n (-Kbin n x y) y ≡ x
-+cancelK n x y = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x (lock t (-ₖ_ {n = n}) y)) y ≡ x
pm unlock = -+cancelₖ n x y
assocK : (n : ℕ) (x y z : coHomK n) → +K n x (+K n y z) ≡ +K n (+K n x y) z
assocK n x y z = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (lock t (_+ₖ_ {n = n}) y z)
≡ lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) z
pm unlock = assocₖ n x y z
commK : (n : ℕ) (x y : coHomK n) → +K n x y ≡ +K n y x
commK n x y = pm key
where
pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x y ≡ lock t (_+ₖ_ {n = n}) y x
pm unlock = commₖ n x y
-- cohom
+H : (n : ℕ) (x y : coHom n A) → coHom n A
+H n = sRec2 § λ a b → ∣ (λ x → +K n (a x) (b x)) ∣₂
-H : (n : ℕ) (x : coHom n A) → coHom n A
-H n = sRec § λ a → ∣ (λ x → -K n (a x)) ∣₂
-Hbin : (n : ℕ) → coHom n A → coHom n A → coHom n A
-Hbin n = sRec2 § λ a b → ∣ (λ x → -Kbin n (a x) (b x)) ∣₂
rUnitH : (n : ℕ) (x : coHom n A) → +H n x (0ₕ n) ≡ x
rUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rUnitK n (a x)) i ∣₂
lUnitH : (n : ℕ) (x : coHom n A) → +H n (0ₕ n) x ≡ x
lUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lUnitK n (a x)) i ∣₂
rCancelH : (n : ℕ) (x : coHom n A) → +H n x (-H n x) ≡ 0ₕ n
rCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → rCancelK n (a x)) i ∣₂
lCancelH : (n : ℕ) (x : coHom n A) → +H n (-H n x) x ≡ 0ₕ n
lCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _))
λ a i → ∣ funExt (λ x → lCancelK n (a x)) i ∣₂
assocH : (n : ℕ) (x y z : coHom n A) → (+H n x (+H n y z)) ≡ (+H n (+H n x y) z)
assocH n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b c i → ∣ funExt (λ x → assocK n (a x) (b x) (c x)) i ∣₂
commH : (n : ℕ) (x y : coHom n A) → (+H n x y) ≡ (+H n y x)
commH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ funExt (λ x → commK n (a x) (b x)) i ∣₂
-cancelRH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n y x) x ≡ y
-cancelRH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelRK n (a x) (b x) i) ∣₂
-cancelLH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n x y) x ≡ y
-cancelLH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -cancelLK n (a x) (b x) i) ∣₂
-+cancelH : (n : ℕ) (x y : coHom n A) → +H n (-Hbin n x y) y ≡ x
-+cancelH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _))
λ a b i → ∣ (λ x → -+cancelK n (a x) (b x) i) ∣₂
lUnitK≡rUnitK : (key : Unit') (n : ℕ) → lockedCohom.lUnitK key n (0ₖ n) ≡ lockedCohom.rUnitK key n (0ₖ n)
lUnitK≡rUnitK unlock = lUnitₖ≡rUnitₖ
open GroupStr renaming (_·_ to _+gr_)
open IsGroupHom
-- inducedCoHom : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ}
-- → GroupIso (coHomGr n A) G
-- → Group
-- inducedCoHom {A = A} {G = G} {n = n} e =
-- InducedGroup (coHomGr n A)
-- (coHom n A , λ x y → Iso.inv (isom e) (_+gr_ (snd G) (fun (isom e) x)
-- (fun (isom e) y)))
-- (idEquiv _)
-- λ x y → sym (leftInv (isom e) _)
-- ∙ cong (Iso.inv (isom e)) (isHom e x y)
-- induced+ : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ}
-- → (e : GroupIso (coHomGr n A) G)
-- → fst (inducedCoHom e) → fst (inducedCoHom e) → fst (inducedCoHom e)
-- induced+ e = _+gr_ (snd (inducedCoHom e))
-- inducedCoHomIso : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ}
-- → (e : GroupIso (coHomGr n A) G)
-- → GroupIso (coHomGr n A) (inducedCoHom e)
-- isom (inducedCoHomIso e) = idIso
-- isHom (inducedCoHomIso e) x y = sym (leftInv (isom e) _)
-- ∙ cong (Iso.inv (isom e)) (isHom e x y)
-- inducedCoHomPath : ∀ {ℓ ℓ'} {A : Type ℓ} {G : Group {ℓ'}} {n : ℕ}
-- → (e : GroupIso (coHomGr n A) G)
-- → coHomGr n A ≡ inducedCoHom e
-- inducedCoHomPath e = InducedGroupPath _ _ _ _
| 44.656284
| 138
| 0.478196
|
2130015862777b2b99dff9cefeaec86649927c42
| 1,176
|
agda
|
Agda
|
Cats/Category/Lift.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 24
|
2017-11-03T15:18:57.000Z
|
2021-08-06T05:00:46.000Z
|
Cats/Category/Lift.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | null | null | null |
Cats/Category/Lift.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 1
|
2019-03-18T15:35:07.000Z
|
2019-03-18T15:35:07.000Z
|
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Lift where
open import Relation.Binary using (IsEquivalence)
open import Level as L using (Level ; suc ; _⊔_ ; lift ; lower)
open import Cats.Category.Base
open IsEquivalence
LCategory : (l : Level) → Set (suc l)
LCategory l = Category l l l
Lift : ∀ {lo la l≈ lo′ la′ l≈′} → Category lo la l≈
→ Category (lo ⊔ lo′) (la ⊔ la′) (l≈ ⊔ l≈′)
Lift {lo′ = lo′} {la′} {l≈′} C = record
{ Obj = L.Lift lo′ C.Obj
; _⇒_ = λ A B → L.Lift la′ (lower A C.⇒ lower B)
; _≈_ = λ f g → L.Lift l≈′ (lower f C.≈ lower g)
; id = lift C.id
; _∘_ = λ f g → lift (lower f C.∘ lower g)
; equiv = record
{ refl = lift (refl C.equiv)
; sym = λ eq → lift (sym C.equiv (lower eq))
; trans = λ eq₁ eq₂ → lift (trans C.equiv (lower eq₁) (lower eq₂))
}
; ∘-resp = λ eq₁ eq₂ → lift (C.∘-resp (lower eq₁) (lower eq₂))
; id-r = lift C.id-r
; id-l = lift C.id-l
; assoc = lift C.assoc
}
where
module C = Category C
LiftEq : ∀ {lo la l≈} → Category lo la l≈
→ LCategory (lo ⊔ la ⊔ l≈)
LiftEq {lo} {la} {l≈} = Lift {lo′ = la ⊔ l≈} {la′ = lo ⊔ l≈} {l≈′ = lo ⊔ la}
| 28.682927
| 76
| 0.538265
|
8bd7414c0651da15b1d19bb547b300538ef5af02
| 7,838
|
agda
|
Agda
|
core/lib/types/NatColim.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/NatColim.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/NatColim.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NConnected
open import lib.NType2
open import lib.cubical.Square
open import lib.types.Lift
open import lib.types.Nat
open import lib.types.Sigma
open import lib.types.TLevel
open import lib.types.Truncation
open import lib.types.Unit
{- Sequential colimits -}
module lib.types.NatColim where
module _ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) where
postulate -- HIT
ℕColim : Type i
ncin' : (n : ℕ) → D n → ℕColim
ncglue' : (n : ℕ) → (x : D n) → ncin' n x == ncin' (S n) (d n x)
module _ {i} {D : ℕ → Type i} {d : (n : ℕ) → D n → D (S n)} where
ncin = ncin' d
ncglue = ncglue' d
module _ {i} {D : ℕ → Ptd i} where
⊙ℕColim : (d : (n : ℕ) → (D n ⊙→ D (S n))) → Ptd i
⊙ℕColim d = ⊙[ ℕColim (fst ∘ d) , ncin 0 (pt (D 0)) ]
module _ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) where
module ℕColimElim {j} {P : ℕColim d → Type j}
(ncin* : (n : ℕ) (x : D n) → P (ncin n x))
(ncglue* : (n : ℕ) (x : D n)
→ ncin* n x == ncin* (S n) (d n x) [ P ↓ ncglue n x ])
where
postulate -- HIT
f : Π (ℕColim d) P
ncin-β : ∀ n x → f (ncin n x) ↦ ncin* n x
{-# REWRITE ncin-β #-}
postulate -- HIT
ncglue-β : (n : ℕ) (x : D n) → apd f (ncglue n x) == ncglue* n x
open ℕColimElim public using () renaming (f to ℕColim-elim)
module ℕColimRec {j} {A : Type j}
(ncin* : (n : ℕ) → D n → A)
(ncglue* : (n : ℕ) → (x : D n) → ncin* n x == ncin* (S n) (d n x))
where
private
module M = ℕColimElim ncin* (λ n x → ↓-cst-in (ncglue* n x))
f : ℕColim d → A
f = M.f
ncglue-β : (n : ℕ) (x : D n) → ap f (ncglue n x) == ncglue* n x
ncglue-β n x = apd=cst-in {f = f} (M.ncglue-β n x)
{- Raising and lifting -}
module _ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) where
{- Can define a function [nc-raise d : ℕColim d → ℕColim d]
so that [inn (S n) ∘ d = nc-raise d ∘ inn n] -}
module ℕCRaise = ℕColimRec d {A = ℕColim d}
(λ n x → ncin (S n) (d n x))
(λ n x → ncglue (S n) (d n x))
nc-raise : ℕColim d → ℕColim d
nc-raise = ℕCRaise.f
nc-raise-= : (c : ℕColim d) → c == nc-raise c
nc-raise-= = ℕColimElim.f d
(λ n x → ncglue n x)
(λ n x → ↓-='-from-square $
ap-idf (ncglue n x) ∙v⊡ (connection2 ⊡v∙ (! (ℕCRaise.ncglue-β n x))))
{- Lift an element of D₀ to any level -}
nc-lift : (n : ℕ) → D O → D n
nc-lift O x = x
nc-lift (S n) x = d n (nc-lift n x)
nc-lift-= : (n : ℕ) (x : D O)
→ ncin' d O x == ncin n (nc-lift n x)
nc-lift-= O x = idp
nc-lift-= (S n) x = nc-lift-= n x ∙ ncglue n (nc-lift n x)
{- Lift an element of D₀ to the 'same level' as some element of ℕColim d -}
module ℕCMatch (x : D O) = ℕColimRec d {A = ℕColim d}
(λ n _ → ncin n (nc-lift n x))
(λ n _ → ncglue n (nc-lift n x))
nc-match = ℕCMatch.f
nc-match-=-base : (x : D O) (c : ℕColim d) → ncin O x == nc-match x c
nc-match-=-base x = ℕColimElim.f d
(λ n _ → nc-lift-= n x)
(λ n y → ↓-cst=app-from-square $
disc-to-square idp ⊡v∙ ! (ℕCMatch.ncglue-β x n y))
{- If all Dₙ are m-connected, then the colim is m-connected -}
ncolim-conn : ∀ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) (m : ℕ₋₂)
→ ((n : ℕ) → is-connected m (D n))
→ is-connected m (ℕColim d)
ncolim-conn {D = D} d ⟨-2⟩ cD = -2-conn (ℕColim d)
ncolim-conn {D = D} d (S m) cD =
Trunc-rec (prop-has-level-S is-contr-is-prop)
(λ x → ([ ncin O x ] ,
(Trunc-elim (λ _ → =-preserves-level Trunc-level) $
λ c → ap [_] (nc-match-=-base d x c) ∙ nc-match-=-point x c)))
(fst (cD O))
where
nc-match-=-point : (x : D O) (c : ℕColim d)
→ [_] {n = S m} (nc-match d x c) == [ c ]
nc-match-=-point x = ℕColimElim.f d
(λ n y → ap (Trunc-fmap (ncin n))
(contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ]))
(λ n y → ↓-='-from-square $
(ap-∘ [_] (nc-match d x) (ncglue n y)
∙ ap (ap [_]) (ℕCMatch.ncglue-β d x n y))
∙v⊡
! (ap-idf _)
∙h⊡
square-symmetry
(natural-square
(Trunc-elim (λ _ → =-preserves-level Trunc-level)
(λ c → ap [_] (nc-raise-= d c)))
(ap (Trunc-fmap (ncin n))
(contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ])))
⊡h∙
∘-ap (Trunc-fmap (nc-raise d)) (Trunc-fmap (ncin n))
(contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ])
⊡h∙
vert-degen-path
(natural-square
(λ t → Trunc-fmap-∘ (nc-raise d) (ncin n) t
∙ ! (Trunc-fmap-∘ (ncin (S n)) (d n) t))
(contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ]))
⊡h∙
ap-∘ (Trunc-fmap (ncin (S n))) (Trunc-fmap (d n))
(contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ])
⊡h∙
ap (ap (Trunc-fmap (ncin (S n))))
(contr-has-all-paths (=-preserves-level (cD (S n))) _ _))
{- Type of finite tuples -}
⊙FinTuplesType : ∀ {i} → (ℕ → Ptd i) → ℕ → Ptd i
⊙FinTuplesType F O = ⊙Lift ⊙Unit
⊙FinTuplesType F (S n) = F O ⊙× ⊙FinTuplesType (F ∘ S) n
FinTuplesType : ∀ {i} → (ℕ → Ptd i) → ℕ → Type i
FinTuplesType F n = de⊙ (⊙FinTuplesType F n)
fin-tuples-map : ∀ {i} (F : ℕ → Ptd i) (n : ℕ)
→ (⊙FinTuplesType F n ⊙→ ⊙FinTuplesType F (S n))
fin-tuples-map F O = (_ , idp)
fin-tuples-map F (S n) =
((λ {(x , r) → (x , fst (fin-tuples-map (F ∘ S) n) r)}) ,
pair×= idp (snd (fin-tuples-map (F ∘ S) n)))
⊙FinTuples : ∀ {i} → (ℕ → Ptd i) → Ptd i
⊙FinTuples {i} F = ⊙ℕColim (fin-tuples-map F)
FinTuples : ∀ {i} → (ℕ → Ptd i) → Type i
FinTuples = de⊙ ∘ ⊙FinTuples
fin-tuples-cons : ∀ {i} (F : ℕ → Ptd i)
→ de⊙ (F O) × FinTuples (F ∘ S) ≃ FinTuples F
fin-tuples-cons {i} F = equiv into out into-out out-into
where
module Into (x : de⊙ (F O)) =
ℕColimRec (fst ∘ fin-tuples-map (F ∘ S)) {A = FinTuples F}
(λ n r → ncin (S n) (x , r))
(λ n r → ncglue (S n) (x , r))
into = uncurry Into.f
out-ncin : (n : ℕ)
→ FinTuplesType F n → de⊙ (F O) × FinTuples (F ∘ S)
out-ncin O x = (pt (F O) , ncin O _)
out-ncin (S n) (x , r) = (x , ncin n r)
out-ncglue : (n : ℕ) (r : FinTuplesType F n)
→ out-ncin n r == out-ncin (S n) (fst (fin-tuples-map F n) r)
out-ncglue O x = idp
out-ncglue (S n) (x , r) = pair= idp (ncglue n r)
module Out = ℕColimRec _ out-ncin out-ncglue
out = Out.f
abstract
into-out-ncin : (n : ℕ) (r : FinTuplesType F n)
→ into (out-ncin n r) == ncin n r
into-out-ncin O x = ! (ncglue O x)
into-out-ncin (S n) (x , r) = idp
into-out-ncglue : (n : ℕ) (r : FinTuplesType F n)
→ into-out-ncin n r == into-out-ncin (S n) (fst (fin-tuples-map F n) r)
[ (λ s → into (out s) == s) ↓ ncglue n r ]
into-out-ncglue O x =
↓-∘=idf-from-square into out $
ap (ap into) (Out.ncglue-β O x)
∙v⊡ bl-square (ncglue O x)
into-out-ncglue (S n) (x , r) =
↓-∘=idf-from-square into out $
(ap (ap into) (Out.ncglue-β (S n) (x , r))
∙ ∘-ap into (_,_ x) (ncglue n r)
∙ Into.ncglue-β x n r)
∙v⊡ vid-square
into-out : (r : FinTuples F) → into (out r) == r
into-out = ℕColimElim.f _
into-out-ncin
into-out-ncglue
out-into : (t : de⊙ (F O) × FinTuples (F ∘ S)) → out (into t) == t
out-into = uncurry $ λ x → ℕColimElim.f _
(λ n r → idp)
(λ n r → ↓-='-from-square $
(ap-∘ out (Into.f x) (ncglue n r)
∙ ap (ap out) (Into.ncglue-β x n r)
∙ Out.ncglue-β (S n) (x , r))
∙v⊡ vid-square)
⊙fin-tuples-cons : ∀ {i} (F : ℕ → Ptd i)
→ (F O ⊙× ⊙FinTuples (F ∘ S)) ⊙≃ ⊙FinTuples F
⊙fin-tuples-cons F = ≃-to-⊙≃ (fin-tuples-cons F) (! (ncglue O _))
| 32.658333
| 79
| 0.501786
|
353e16250d8eaff4fca3f4706cb838ec4b0be58f
| 1,915
|
agda
|
Agda
|
test/Succeed/RecordUpdateSyntax.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2021-06-14T11:08:59.000Z
|
2021-06-14T11:08:59.000Z
|
test/Succeed/RecordUpdateSyntax.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2020-05-29T19:45:38.000Z
|
2020-05-29T19:45:38.000Z
|
test/Succeed/RecordUpdateSyntax.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2021-06-14T11:07:38.000Z
|
2021-06-14T11:07:38.000Z
|
module RecordUpdateSyntax where
open import Common.Prelude
open import Common.Equality
data Param : Nat → Set where
param : ∀ n → Param (suc n)
record R : Set where
field
{i} : Nat
p : Param i
s : Nat
old : R
old = record { p = param 0; s = 1 }
-- Simple update, it should be able to infer the type and the implicit.
new : _
new = record old { p = param 1 }
new′ : R
new′ = record { i = 2; p = param 1; s = 1 }
-- Here's a needlessly complex update.
upd-p-s : Nat → _ → _ → R
upd-p-s zero s r = record r { p = param zero; s = s }
upd-p-s (suc n) s r = record (upd-p-s n 0 r) { p = param n; s = s }
eq₁ : new ≡ new′
eq₁ = refl
eq₂ : upd-p-s zero 1 (record new { s = 0 }) ≡ old
eq₂ = refl
-- Check that instance arguments are handled properly
postulate
T : Nat → Set
instance
t0 : T 0
t1 : T 1
record Instance : Set where
field
n : Nat
{{t}} : T n
r0 : Instance
r0 = record { n = 0 }
r1 : Instance
r1 = record r0 { n = 1 }
check : Instance.t r1 ≡ t1
check = refl
-- Andreas, 2020-03-27, issue #3684
-- warn only if there are invalid or duplicate fields
_ = record old { invalidField = 1 }
_ = record old { s = 1; s = 0 }
_ = record old { foo = 1; bar = 0; s = 1; s = 0 }
-- The record type R does not have the field invalidField but it would
-- have the fields i, p, s
-- when checking that the expression record old { invalidField = 1 }
-- has type R
-- Duplicate field s in record
-- when checking that the expression record old { s = 1 ; s = 0 } has
-- type R
-- /Users/abel/agda-erasure/test/Succeed/RecordUpdateSyntax.agda:59,5-50
-- The record type R does not have the fields foo, bar but it would
-- have the fields i, p
-- when checking that the expression
-- record old { foo = 1 ; bar = 0 ; s = 1 ; s = 0 } has type R
-- Duplicate field s in record
-- when checking that the expression
-- record old { foo = 1 ; bar = 0 ; s = 1 ; s = 0 } has type R
| 23.353659
| 72
| 0.622454
|
19cb581494bdcb594c7b4d11afe0ad2ae69b6342
| 2,773
|
agda
|
Agda
|
src/LibraBFT/Impl/Consensus/ConsensusTypes/QuorumCert.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/ConsensusTypes/QuorumCert.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/ConsensusTypes/QuorumCert.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData
open import LibraBFT.Impl.OBM.Logging.Logging
import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Hash
import Util.KVMap as Map
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert where
certificateForGenesisFromLedgerInfo : LedgerInfo → HashValue → QuorumCert
certificateForGenesisFromLedgerInfo ledgerInfo genesisId =
let ancestor = BlockInfo∙new
(ledgerInfo ^∙ liEpoch + 1)
0
genesisId
(ledgerInfo ^∙ liTransactionAccumulatorHash)
(ledgerInfo ^∙ liVersion)
--(ledgerInfo ^∙ liTimestamp)
nothing
voteData = VoteData.new ancestor ancestor
li = LedgerInfo∙new ancestor (hashVD voteData)
in QuorumCert∙new
voteData
(LedgerInfoWithSignatures∙new li Map.empty)
verify : QuorumCert → ValidatorVerifier → Either ErrLog Unit
verify self validator = do
let voteHash = hashVD (self ^∙ qcVoteData)
lcheck (self ^∙ qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash == voteHash)
(here' ("Quorum Cert's hash mismatch LedgerInfo" ∷ []))
if (self ^∙ qcCertifiedBlock ∙ biRound == 0)
-- TODO-?: It would be nice not to require the parens around the do block
then (do
lcheck (self ^∙ qcParentBlock == self ^∙ qcCertifiedBlock)
(here' ("Genesis QC has inconsistent parent block with certified block" ∷ []))
lcheck (self ^∙ qcCertifiedBlock == self ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liCommitInfo)
(here' ("Genesis QC has inconsistent commit block with certified block" ∷ []))
lcheck (Map.kvm-size (self ^∙ qcLedgerInfo ∙ liwsSignatures) == 0)
(here' ("Genesis QC should not carry signatures" ∷ []))
)
else do
withErrCtx'
("fail to verify QuorumCert" ∷ [])
(LedgerInfoWithSignatures.verifySignatures (self ^∙ qcLedgerInfo) validator)
VoteData.verify (self ^∙ qcVoteData)
where
here' : List String → List String
here' t = "QuorumCert" ∷ "verify" {- ∷ lsQC self-} ∷ t
| 45.459016
| 111
| 0.652362
|
21ca2d356cd0c788b719c61efe9cb9914bcc882d
| 284
|
agda
|
Agda
|
test/Succeed/Issue3666.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3666.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3666.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
data Unit : Set where
unit : Unit
F : Unit → Set₁
F unit = Set
data D (u : Unit) (f : F u) : Set where
variable
u : Unit
f : F u
d : D u f
postulate
P : {u : Unit} {f : F u} → D u f → Set
p : P d
p' : (u : Unit) (f : F u) (d : D u f) → P d
p' u f d = p {u} {f} {d}
| 13.52381
| 43
| 0.464789
|
30a8dc6b567d7d761798c2a260f945deb524e2e1
| 2,131
|
agda
|
Agda
|
src/Implicits/Resolution/GenericFinite/Expressiveness.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | 4
|
2019-04-05T17:57:11.000Z
|
2021-05-07T04:08:41.000Z
|
src/Implicits/Resolution/GenericFinite/Expressiveness.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
src/Implicits/Resolution/GenericFinite/Expressiveness.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
open import Prelude
module Implicits.Resolution.GenericFinite.Expressiveness
where
open import Coinduction
open import Data.Fin.Substitution
open import Implicits.Syntax
open import Implicits.Substitutions
open import Implicits.Resolution.Deterministic.Resolution as D
open import Implicits.Resolution.Ambiguous.Resolution as A
open import Implicits.Resolution.Finite.Resolution as F
open import Implicits.Resolution.Infinite.Resolution as ∞
open import Implicits.Resolution.Termination
open import Extensions.ListFirst
module Finite⊆Infinite where
p : ∀ {ν} {a} {Δ : ICtx ν} → Δ F.⊢ᵣ a → Δ ∞.⊢ᵣ a
p (r-simp a a↓τ) = r-simp a (lem a↓τ)
where
lem : ∀ {ν} {a τ} {Δ : ICtx ν} → Δ F.⊢ a ↓ τ → Δ ∞.⊢ a ↓ τ
lem (i-simp τ) = i-simp τ
lem (i-iabs _ ⊢ᵣa b↓τ) = i-iabs (p ⊢ᵣa) (lem b↓τ)
lem (i-tabs b a[/b]↓τ) = i-tabs b (lem a[/b]↓τ)
p (r-iabs x) = r-iabs (p x)
p (r-tabs x) = r-tabs (p x)
module Finite⊆Ambiguous where
p : ∀ {ν} {a} {Δ : ICtx ν} → Δ F.⊢ᵣ a → Δ A.⊢ᵣ a
p (r-simp a a↓τ) = lem a↓τ (r-ivar a)
where
lem : ∀ {ν} {a τ} {Δ : ICtx ν} → Δ F.⊢ a ↓ τ → Δ A.⊢ᵣ a → Δ A.⊢ᵣ simpl τ
lem (i-simp τ) K⊢ᵣτ = K⊢ᵣτ
lem (i-iabs _ ⊢ᵣa b↓τ) K⊢ᵣa⇒b = lem b↓τ (r-iapp K⊢ᵣa⇒b (p ⊢ᵣa))
lem (i-tabs b a[/b]↓τ) K⊢ᵣ∀a = lem a[/b]↓τ (r-tapp b K⊢ᵣ∀a)
p (r-iabs x) = r-iabs (p x)
p (r-tabs x) = r-tabs (p x)
module Deterministic⊆Finite where
open FirstLemmas
-- Oliveira's termination condition is part of the well-formdness of types
-- So we assume here that ⊢term x holds for all types x
p : ∀ {ν} {a : Type ν} {Δ : ICtx ν} → (∀ {ν} (a : Type ν) → ⊢term a) → Δ D.⊢ᵣ a → Δ F.⊢ᵣ a
p term (r-simp {ρ = r} x r↓a) =
r-simp (proj₁ $ first⟶∈ x) (lem r↓a)
where
lem : ∀ {ν} {Δ : ICtx ν} {a r} → Δ D.⊢ r ↓ a → Δ F.⊢ r ↓ a
lem (i-simp a) = i-simp a
lem (i-iabs {ρ₁ = ρ₁} {ρ₂ = ρ₂} ⊢ᵣρ₁ ρ₂↓τ) with term (ρ₁ ⇒ ρ₂)
lem (i-iabs ⊢ᵣρ₁ ρ₂↓τ) | term-iabs _ _ a-ρ<-b _ = i-iabs a-ρ<-b (p term ⊢ᵣρ₁) (lem ρ₂↓τ)
lem (i-tabs b x₁) = i-tabs b (lem x₁)
p term (r-iabs ρ₁ {ρ₂ = ρ₂} x) = r-iabs (p term x)
p term (r-tabs x) = r-tabs (p term x)
| 36.741379
| 94
| 0.584702
|
523f8c4d533408799ad349e7c226d9306daf144c
| 1,698
|
agda
|
Agda
|
src/Categories/Category/Restriction.agda
|
yourboynico/agda-categories
|
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Category/Restriction.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Category/Restriction.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
-- Defines Restriction Category
-- https://ncatlab.org/nlab/show/restriction+category
-- but see also
-- https://github.com/jmchapman/restriction-categories
-- Notation choice: one of the interpretations is that the
-- restriction structure captures the "domain of definedness"
-- of a morphism, as a (partial) identity. As this is positive
-- information, we will use f ↓ (as a postfix operation) to
-- denote this. Note that computability theory uses the same
-- notation to mean definedness.
-- Note, as we're working in Setoid-Enriched Categories, we need
-- to add an explicit axiom, that ↓ preserves ≈
module Categories.Category.Restriction where
open import Level using (Level; _⊔_)
open import Categories.Category.Core using (Category)
private
variable
o ℓ e : Level
record Restriction (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where
open Category C using (Obj; _⇒_; _∘_; _≈_; id)
field
_↓ : {A B : Obj} → A ⇒ B → A ⇒ A
-- partial identity on the right
pidʳ : {A B : Obj} {f : A ⇒ B} → f ∘ f ↓ ≈ f
-- the domain-of-definition arrows commute
↓-comm : {A B C : Obj} {f : A ⇒ B} {g : A ⇒ C} → f ↓ ∘ g ↓ ≈ g ↓ ∘ f ↓
-- domain-of-definition denests (on the right)
↓-denestʳ : {A B C : Obj} {f : A ⇒ B} {g : A ⇒ C} → (g ∘ f ↓) ↓ ≈ g ↓ ∘ f ↓
-- domain-of-definition has a skew-commutative law
↓-skew-comm : {A B C : Obj} {g : A ⇒ B} {f : C ⇒ A} → g ↓ ∘ f ≈ f ∘ (g ∘ f) ↓
-- and the new axiom, ↓ is a congruence
↓-cong : {A B : Obj} {f g : A ⇒ B} → f ≈ g → f ↓ ≈ g ↓
-- it is convenient to define the total predicate in this context
total : {A B : Obj} (f : A ⇒ B) → Set e
total f = f ↓ ≈ id
| 36.913043
| 81
| 0.610718
|
c74634b9e4c714b01e42708e4cc5fe100a6ddb70
| 2,599
|
agda
|
Agda
|
test/succeed/EtaContractionDefBody.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
test/succeed/EtaContractionDefBody.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
test/succeed/EtaContractionDefBody.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
-- 2010-11-16
-- compactification of Data.Set.Decoration.gmapAll
--
-- This test case fails if we remove instantiateFull
-- (and with it eta-contraction) from definition bodies in Def.hs
-- see Issue 361
-- {-# OPTIONS -v tc.lhs.unify:25 #-}
module EtaContractionDefBody where
------------------------------------------------------------------------
-- Binary relations
-- Homogeneous binary relations
Rel : Set → Set1
Rel A = A → A → Set
-- Generalised implication. If P ≡ Q it can be read as "f preserves
-- P".
_=[_]⇒_ : {A B : Set} →
Rel A → (A → B) → Rel B → Set
P =[ f ]⇒ Q = ∀ {x y} → P x y → Q (f x) (f y)
record Σ₂ {A B : Set}
(T : A → B → Set) : Set where
constructor pack₂
field
{x} : A
{y} : B
proof : T x y
-- Data.Star
infixr 5 _◅_
-- Reflexive transitive closure.
data Star {I : Set} (T : Rel I) : Rel I where
ε : ∀ {i} → Star T i i
_◅_ : ∀ {i j k} (x : T i j) (xs : Star T j k) → Star T i k
-- The type of _◅_ is Trans T (Star T) (Star T); I expanded
-- the definition in order to be able to name the arguments (x
-- and xs).
-- A generalised variant of map which allows the index type to change.
gmap : ∀ {I} {T : Rel I} {J} {U : Rel J} →
(f : I → J) → T =[ f ]⇒ U → Star T =[ f ]⇒ Star U
gmap f g ε = ε
gmap f g (x ◅ xs) = g x ◅ gmap f g xs
-- Data.Star.Decoration
EdgePred : ∀ {I} → Rel I → Set₁
EdgePred T = ∀ {i j} → T i j → Set
-- Decorating an edge with more information.
data DecoratedWith {I : Set} {T : Rel I} (P : EdgePred T)
: Rel (Σ₂ (Star T)) where
↦ : ∀ {i j k} {x : T i j} {xs : Star T j k}
(p : P x) → DecoratedWith P (pack₂ (x ◅ xs)) (pack₂ xs)
-- Star-lists decorated with extra information. All P xs means that
-- all edges in xs satisfy P.
All : ∀ {I} {T : Rel I} → EdgePred T → EdgePred (Star T)
All P {j = j} xs =
Star (DecoratedWith P) (pack₂ xs) (pack₂ {y = j} ε)
-- We can map over decorated vectors.
gmapAll : ∀ {I} {T : Rel I} {P : EdgePred T}
{J} {U : Rel J} {Q : EdgePred U}
{i j} {xs : Star T i j}
(f : I → J) (g : T =[ f ]⇒ U) →
(∀ {i j} {x : T i j} → P x → Q (g x)) →
All P xs → All {T = U} Q (gmap f g xs)
gmapAll f g h ε = ε
gmapAll f g h (↦ x ◅ xs) = ↦ (h x) ◅ gmapAll f g h xs
{- THIS WOULD BE THE ERROR MESSAGE:
/Users/abel/cover/alfa/Agda2/test/succeed/EtaContractionDefBody.agda:76,15-16
xs != ε of type Star (λ .i' .j → T .i' .j) j j
when checking that the pattern ε has type
Star (DecoratedWith (λ {.i} {.j} → P)) (pack₂ xs) (pack₂ ε)
-}
| 28.56044
| 77
| 0.532128
|
1946d7ff8b2fb047c95dfb9294a950bfa520283d
| 18,158
|
agda
|
Agda
|
TotalRecognisers/LeftRecursion.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 7
|
2016-12-13T05:23:14.000Z
|
2021-06-22T05:35:31.000Z
|
TotalRecognisers/LeftRecursion.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 1
|
2018-01-22T22:21:41.000Z
|
2018-01-24T16:39:37.000Z
|
TotalRecognisers/LeftRecursion.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Total recognisers which can handle left recursion
------------------------------------------------------------------------
-- The recognisers are parametrised on the alphabet.
module TotalRecognisers.LeftRecursion (Tok : Set) where
open import Algebra
open import Coinduction
open import Data.Bool as Bool hiding (_∧_)
import Data.Bool.Properties as Bool
private
module BoolCS = CommutativeSemiring Bool.commutativeSemiring-∧-∨
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq
using (_⇔_; equivalence; module Equivalence)
renaming (_∘_ to _⟨∘⟩_)
open import Data.List using (List; []; _∷_; _++_; [_])
import Data.List.Properties
private
module ListMonoid {A : Set} =
Monoid (Data.List.Properties.++-monoid A)
open import Data.Product as Prod
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Decidable as Decidable
------------------------------------------------------------------------
-- A "right-strict" variant of _∧_
-- If the left-strict variant of _∧_ were used to type _·_ below, then
-- the inferred definition of D-nullable would not be total; it would
-- contain expressions of the form "D-nullable t (♭ p₁) ∧ false". With
-- the right-strict definition of _∧_ such expressions reduce to
-- "false".
infixr 6 _∧_
_∧_ : Bool → Bool → Bool
b ∧ true = b
b ∧ false = false
-- A lemma.
left-zero : ∀ b → false ∧ b ≡ false
left-zero true = refl
left-zero false = refl
------------------------------------------------------------------------
-- Recogniser combinators
infixl 10 _·_
infixl 5 _∣_
mutual
-- The index is true if the corresponding language contains the empty
-- string (is nullable).
data P : Bool → Set where
fail : P false
empty : P true
sat : (Tok → Bool) → P false
_∣_ : ∀ {n₁ n₂} → P n₁ → P n₂ → P (n₁ ∨ n₂)
_·_ : ∀ {n₁ n₂} → ∞⟨ n₂ ⟩P n₁ → ∞⟨ n₁ ⟩P n₂ → P (n₁ ∧ n₂)
nonempty : ∀ {n} → P n → P false
cast : ∀ {n₁ n₂} → n₁ ≡ n₂ → P n₁ → P n₂
-- Delayed if the index is /false/.
∞⟨_⟩P : Bool → Bool → Set
∞⟨ false ⟩P n = ∞ (P n)
∞⟨ true ⟩P n = P n
-- Note that fail, nonempty and cast could be defined as derived
-- combinators. (For cast this is obvious, fail could be defined
-- either using sat or the combinator leftRight below, and nonempty is
-- defined in the module AlternativeNonempty. Note also that the proof
-- in TotalRecognisers.LeftRecursion.ExpressiveStrength does not rely
-- on these constructors.) However, Agda uses /guarded/ corecursion,
-- so the fact that nonempty and cast are constructors can be very
-- convenient when constructing other recognisers.
-- For an example of the use of nonempty, see the Kleene star example
-- in TotalRecognisers.LeftRecursion.Lib. For examples of the use of
-- cast, see TotalRecognisers.LeftRecursion.ExpressiveStrength and
-- TotalRecognisers.LeftRecursion.NotOnlyContextFree.
------------------------------------------------------------------------
-- Helpers
♭? : ∀ {b n} → ∞⟨ b ⟩P n → P n
♭? {b = false} x = ♭ x
♭? {b = true} x = x
♯? : ∀ {b n} → P n → ∞⟨ b ⟩P n
♯? {b = false} x = ♯ x
♯? {b = true} x = x
forced? : ∀ {b n} → ∞⟨ b ⟩P n → Bool
forced? {b = b} _ = b
-- A lemma.
♭?♯? : ∀ b {n} {p : P n} → ♭? {b} (♯? p) ≡ p
♭?♯? false = refl
♭?♯? true = refl
------------------------------------------------------------------------
-- Semantics
-- The semantics is defined inductively: s ∈ p iff the string s is
-- contained in the language defined by p.
infix 4 _∈_
data _∈_ : ∀ {n} → List Tok → P n → Set where
empty : [] ∈ empty
sat : ∀ {f t} → T (f t) → [ t ] ∈ sat f
∣-left : ∀ {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
s ∈ p₁ → s ∈ p₁ ∣ p₂
∣-right : ∀ {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
s ∈ p₂ → s ∈ p₁ ∣ p₂
_·_ : ∀ {s₁ s₂ n₁ n₂}
{p₁ : ∞⟨ n₂ ⟩P n₁} {p₂ : ∞⟨ n₁ ⟩P n₂} →
s₁ ∈ ♭? p₁ → s₂ ∈ ♭? p₂ → s₁ ++ s₂ ∈ p₁ · p₂
nonempty : ∀ {n t s} {p : P n} →
t ∷ s ∈ p → t ∷ s ∈ nonempty p
cast : ∀ {n₁ n₂ s} {p : P n₁} {eq : n₁ ≡ n₂} →
s ∈ p → s ∈ cast eq p
infix 4 _≤_ _≈_
-- p₁ ≤ p₂ iff the language (defined by) p₂ contains all the strings
-- in the language p₁.
_≤_ : ∀ {n₁ n₂} → P n₁ → P n₂ → Set
p₁ ≤ p₂ = ∀ {s} → s ∈ p₁ → s ∈ p₂
-- p₁ ≈ p₂ iff the languages p₁ and p₂ contain the same strings.
_≈_ : ∀ {n₁ n₂} → P n₁ → P n₂ → Set
p₁ ≈ p₂ = ∀ {s} → s ∈ p₁ ⇔ s ∈ p₂
-- p₁ ≈ p₂ iff both p₁ ≤ p₂ and p₂ ≤ p₁.
≈⇔≤≥ : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈ p₂ ⇔ (p₁ ≤ p₂ × p₂ ≤ p₁)
≈⇔≤≥ = equivalence
(λ p₁≈p₂ → ((λ {s} → _⟨$⟩_ (Equivalence.to (p₁≈p₂ {s = s})))
, λ {s} → _⟨$⟩_ (Equivalence.from (p₁≈p₂ {s = s}))))
(λ p₁≤≥p₂ {s} → equivalence (proj₁ p₁≤≥p₂ {s = s})
(proj₂ p₁≤≥p₂ {s = s}))
-- Some lemmas.
cast∈ : ∀ {n} {p p′ : P n} {s s′} → s ≡ s′ → p ≡ p′ → s ∈ p → s′ ∈ p′
cast∈ refl refl s∈ = s∈
drop-♭♯ : ∀ n {n′} {p : P n′} → ♭? (♯? {n} p) ≤ p
drop-♭♯ n = cast∈ refl (♭?♯? n)
add-♭♯ : ∀ n {n′} {p : P n′} → p ≤ ♭? (♯? {n} p)
add-♭♯ n = cast∈ refl (sym $ ♭?♯? n)
------------------------------------------------------------------------
-- Example: A definition which is left and right recursive
leftRight : P false
leftRight = ♯ leftRight · ♯ leftRight
-- Note that leftRight is equivalent to fail, so fail does not need to
-- be a primitive combinator.
leftRight≈fail : leftRight ≈ fail
leftRight≈fail = equivalence ≤fail (λ ())
where
≤fail : ∀ {s A} → s ∈ leftRight → A
≤fail (∈₁ · ∈₂) = ≤fail ∈₁
-- For more examples, see TotalRecognisers.LeftRecursion.Lib.
------------------------------------------------------------------------
-- Nullability
-- The nullability index is correct.
⇒ : ∀ {n} {p : P n} → [] ∈ p → n ≡ true
⇒ pr = ⇒′ pr refl
where
⇒′ : ∀ {n s} {p : P n} → s ∈ p → s ≡ [] → n ≡ true
⇒′ empty refl = refl
⇒′ (sat _) ()
⇒′ (∣-left pr₁) refl with ⇒ pr₁
⇒′ (∣-left pr₁) refl | refl = refl
⇒′ (∣-right pr₂) refl with ⇒ pr₂
⇒′ (∣-right {n₁ = n₁} pr₂) refl | refl = proj₂ BoolCS.zero n₁
⇒′ (nonempty p) ()
⇒′ (cast {eq = refl} p) refl = ⇒′ p refl
⇒′ (_·_ {[]} pr₁ pr₂) refl = cong₂ _∧_ (⇒ pr₁) (⇒ pr₂)
⇒′ (_·_ {_ ∷ _} pr₁ pr₂) ()
⇐ : ∀ {n} (p : P n) → n ≡ true → [] ∈ p
⇐ fail ()
⇐ empty refl = empty
⇐ (sat f) ()
⇐ (_∣_ {true} p₁ p₂) refl = ∣-left (⇐ p₁ refl)
⇐ (_∣_ {false} {true} p₁ p₂) refl = ∣-right {p₁ = p₁} (⇐ p₂ refl)
⇐ (_∣_ {false} {false} p₁ p₂) ()
⇐ (nonempty p) ()
⇐ (cast refl p) refl = cast (⇐ p refl)
⇐ (_·_ {.true} {true} p₁ p₂) refl = ⇐ p₁ refl · ⇐ p₂ refl
⇐ (_·_ {_} {false} p₁ p₂) ()
index-correct : ∀ {n} {p : P n} → [] ∈ p ⇔ n ≡ true
index-correct = equivalence ⇒ (⇐ _)
-- We can decide if the empty string belongs to a given language.
nullable? : ∀ {n} (p : P n) → Dec ([] ∈ p)
nullable? {n} p = Decidable.map (Eq.sym index-correct) (Bool._≟_ n true)
------------------------------------------------------------------------
-- Derivative
-- The index of the derivative.
D-nullable : ∀ {n} → Tok → P n → Bool
D-nullable t fail = false
D-nullable t empty = false
D-nullable t (sat f) = f t
D-nullable t (p₁ ∣ p₂) = D-nullable t p₁ ∨ D-nullable t p₂
D-nullable t (nonempty p) = D-nullable t p
D-nullable t (cast _ p) = D-nullable t p
D-nullable t (p₁ · p₂) with forced? p₁ | forced? p₂
... | true | false = D-nullable t p₁
... | false | false = false
... | true | true = D-nullable t p₁ ∨ D-nullable t p₂
... | false | true = D-nullable t p₂
-- D t p is the "derivative" of p with respect to t. It is specified
-- by the equivalence s ∈ D t p ⇔ t ∷ s ∈ p (proved below).
D : ∀ {n} (t : Tok) (p : P n) → P (D-nullable t p)
D t fail = fail
D t empty = fail
D t (sat f) with f t
... | true = empty
... | false = fail
D t (p₁ ∣ p₂) = D t p₁ ∣ D t p₂
D t (nonempty p) = D t p
D t (cast _ p) = D t p
D t (p₁ · p₂) with forced? p₁ | forced? p₂
... | true | false = D t p₁ · ♯? (♭ p₂)
... | false | false = ♯ D t (♭ p₁) · ♯? (♭ p₂)
... | true | true = D t p₁ · ♯? p₂ ∣ D t p₂
... | false | true = ♯ D t (♭ p₁) · ♯? p₂ ∣ D t p₂
-- D is correct.
D-sound : ∀ {n s t} {p : P n} → s ∈ D t p → t ∷ s ∈ p
D-sound s∈ = D-sound′ _ _ s∈
where
sat-lemma : ∀ {s} f t → s ∈ D t (sat f) → T (f t) × s ≡ []
sat-lemma f t ∈ with f t
sat-lemma f t empty | true = (_ , refl)
sat-lemma f t () | false
D-sound′ : ∀ {s n} (p : P n) t → s ∈ D t p → t ∷ s ∈ p
D-sound′ fail t ()
D-sound′ empty t ()
D-sound′ (sat f) t s∈ with sat-lemma f t s∈
... | (ok , refl) = sat ok
D-sound′ (p₁ ∣ p₂) t (∣-left ∈₁) = ∣-left (D-sound′ p₁ t ∈₁)
D-sound′ (p₁ ∣ p₂) t (∣-right ∈₂) = ∣-right {p₁ = p₁} (D-sound′ p₂ t ∈₂)
D-sound′ (nonempty p) t ∈ = nonempty (D-sound ∈)
D-sound′ (cast _ p) t ∈ = cast (D-sound ∈)
D-sound′ (p₁ · p₂) t s∈ with forced? p₁ | forced? p₂
D-sound′ (p₁ · p₂) t (∣-left (∈₁ · ∈₂)) | true | true = D-sound ∈₁ · drop-♭♯ (D-nullable t p₁) ∈₂
D-sound′ (p₁ · p₂) t (∣-right ∈₂) | true | true = ⇐ p₁ refl · D-sound′ p₂ t ∈₂
D-sound′ (p₁ · p₂) t (∣-left (∈₁ · ∈₂)) | false | true = D-sound ∈₁ · drop-♭♯ (D-nullable t (♭ p₁)) ∈₂
D-sound′ (p₁ · p₂) t (∣-right ∈₂) | false | true = ⇐ (♭ p₁) refl · D-sound′ p₂ t ∈₂
D-sound′ (p₁ · p₂) t (∈₁ · ∈₂) | true | false = D-sound ∈₁ · drop-♭♯ (D-nullable t p₁ ) ∈₂
D-sound′ (p₁ · p₂) t (∈₁ · ∈₂) | false | false = D-sound ∈₁ · drop-♭♯ (D-nullable t (♭ p₁)) ∈₂
D-complete : ∀ {n s t} {p : P n} → t ∷ s ∈ p → s ∈ D t p
D-complete {t = t} t∷s∈ = D-complete′ _ t∷s∈ refl
where
D-complete′ : ∀ {s s′ n} (p : P n) → s′ ∈ p → s′ ≡ t ∷ s → s ∈ D t p
D-complete′ fail () refl
D-complete′ empty () refl
D-complete′ (sat f) (sat ok) refl with f t
D-complete′ (sat f) (sat ok) refl | true = empty
D-complete′ (sat f) (sat ()) refl | false
D-complete′ (p₁ ∣ p₂) (∣-left ∈₁) refl = ∣-left (D-complete ∈₁)
D-complete′ (p₁ ∣ p₂) (∣-right ∈₂) refl = ∣-right {p₁ = D t p₁} (D-complete ∈₂)
D-complete′ (nonempty p) (nonempty ∈) refl = D-complete ∈
D-complete′ (cast _ p) (cast ∈) refl = D-complete ∈
D-complete′ (p₁ · p₂) _ _ with forced? p₁ | forced? p₂
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | true | true = ∣-right {p₁ = D t p₁ · _} (D-complete ∈₂)
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | true | true = ∣-left (D-complete ∈₁ · add-♭♯ (D-nullable t p₁) ∈₂)
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | true | false with ⇒ ∈₁
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | true | false | ()
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | true | false = D-complete ∈₁ · add-♭♯ (D-nullable t p₁) ∈₂
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | false | true = ∣-right {p₁ = _·_ {n₂ = false} _ _} (D-complete ∈₂)
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | false | true = ∣-left (D-complete ∈₁ · add-♭♯ (D-nullable t (♭ p₁)) ∈₂)
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | false | false with ⇒ ∈₁
D-complete′ (p₁ · p₂) (_·_ {[]} ∈₁ ∈₂) refl | false | false | ()
D-complete′ (p₁ · p₂) (_·_ {._ ∷ _} ∈₁ ∈₂) refl | false | false = D-complete ∈₁ · add-♭♯ (D-nullable t (♭ p₁)) ∈₂
D-correct : ∀ {n s t} {p : P n} → s ∈ D t p ⇔ t ∷ s ∈ p
D-correct = equivalence D-sound D-complete
------------------------------------------------------------------------
-- _∈_ is decidable
-- _∈?_ runs a recogniser. Note that the result is yes or no plus a
-- /proof/ verifying that the answer is correct.
infix 4 _∈?_
_∈?_ : ∀ {n} (s : List Tok) (p : P n) → Dec (s ∈ p)
[] ∈? p = nullable? p
t ∷ s ∈? p with s ∈? D t p
t ∷ s ∈? p | yes s∈Dtp = yes (D-sound s∈Dtp)
t ∷ s ∈? p | no s∉Dtp = no (s∉Dtp ∘ D-complete)
-- The last three lines could be replaced by the following one:
--
-- t ∷ s ∈? p = Decidable.map D-correct (s ∈? D t p)
------------------------------------------------------------------------
-- Alternative characterisation of equality
infix 5 _∷_
infix 4 _≈′_
-- Two recognisers/languages are equal if their nullability indices
-- are equal and all their derivatives are equal (coinductively). Note
-- that the elements of this type are bisimulations.
data _≈′_ {n₁ n₂} (p₁ : P n₁) (p₂ : P n₂) : Set where
_∷_ : n₁ ≡ n₂ → (∀ t → ∞ (D t p₁ ≈′ D t p₂)) → p₁ ≈′ p₂
-- This definition is equivalent to the one above.
≈′-sound : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} → p₁ ≈′ p₂ → p₁ ≈ p₂
≈′-sound (refl ∷ rest) {[]} = Eq.sym index-correct ⟨∘⟩ index-correct
≈′-sound (refl ∷ rest) {t ∷ s} =
D-correct ⟨∘⟩ ≈′-sound (♭ (rest t)) ⟨∘⟩ Eq.sym D-correct
same-nullability : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈ p₂ → n₁ ≡ n₂
same-nullability p₁≈p₂ =
Bool.⇔→≡ (index-correct ⟨∘⟩ p₁≈p₂ ⟨∘⟩ Eq.sym index-correct)
D-cong : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} {t} →
p₁ ≈ p₂ → D t p₁ ≈ D t p₂
D-cong p₁≈p₂ = Eq.sym D-correct ⟨∘⟩ p₁≈p₂ ⟨∘⟩ D-correct
≈′-complete : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} → p₁ ≈ p₂ → p₁ ≈′ p₂
≈′-complete p₁≈p₂ =
same-nullability p₁≈p₂ ∷ λ _ → ♯ ≈′-complete (D-cong p₁≈p₂)
≈′-correct : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} → p₁ ≈′ p₂ ⇔ p₁ ≈ p₂
≈′-correct = equivalence ≈′-sound ≈′-complete
------------------------------------------------------------------------
-- The combinator nonempty does not need to be primitive
-- The variant of nonempty which is defined below (nonempty′) makes
-- many recognisers larger, though.
module AlternativeNonempty where
nonempty′ : ∀ {n} → P n → P false
nonempty′ fail = fail
nonempty′ empty = fail
nonempty′ (sat f) = sat f
nonempty′ (p₁ ∣ p₂) = nonempty′ p₁ ∣ nonempty′ p₂
nonempty′ (nonempty p) = nonempty′ p
nonempty′ (cast eq p) = nonempty′ p
nonempty′ (p₁ · p₂) with forced? p₁ | forced? p₂
... | false | _ = p₁ · p₂
... | true | false = p₁ · p₂
... | true | true = nonempty′ p₁ ∣ nonempty′ p₂
∣ ♯ nonempty′ p₁ · ♯ nonempty′ p₂
sound : ∀ {n} {p : P n} → nonempty′ p ≤ nonempty p
sound {s = []} pr with ⇒ pr
... | ()
sound {s = _ ∷ _} pr = nonempty (sound′ _ pr refl)
where
sound′ : ∀ {n t s s′} (p : P n) →
s′ ∈ nonempty′ p → s′ ≡ t ∷ s → t ∷ s ∈ p
sound′ fail () refl
sound′ empty () refl
sound′ (sat f) (sat ok) refl = sat ok
sound′ (p₁ ∣ p₂) (∣-left pr) refl = ∣-left (sound′ p₁ pr refl)
sound′ (p₁ ∣ p₂) (∣-right pr) refl = ∣-right {p₁ = p₁} (sound′ p₂ pr refl)
sound′ (nonempty p) pr refl = nonempty (sound′ p pr refl)
sound′ (cast _ p) pr refl = cast (sound′ p pr refl)
sound′ (p₁ · p₂) pr _ with forced? p₁ | forced? p₂
sound′ (p₁ · p₂) pr refl | false | _ = pr
sound′ (p₁ · p₂) pr refl | true | false = pr
sound′ (p₁ · p₂) (∣-left (∣-left pr)) refl | true | true = cast∈ (proj₂ ListMonoid.identity _) refl $
sound′ p₁ pr refl · ⇐ p₂ refl
sound′ (p₁ · p₂) (∣-left (∣-right pr)) refl | true | true = ⇐ p₁ refl · sound′ p₂ pr refl
sound′ (p₁ · p₂) (∣-right (_·_ {[]} pr₁ pr₂)) refl | true | true with ⇒ pr₁
... | ()
sound′ (p₁ · p₂) (∣-right (_·_ {_ ∷ _} pr₁ pr₂)) refl | true | true with sound {p = p₂} pr₂
... | nonempty pr₂′ = sound′ p₁ pr₁ refl · pr₂′
complete : ∀ {n} {p : P n} → nonempty p ≤ nonempty′ p
complete (nonempty pr) = complete′ _ pr refl
where
complete′ : ∀ {n t s s′} (p : P n) →
s ∈ p → s ≡ t ∷ s′ → t ∷ s′ ∈ nonempty′ p
complete′ fail () refl
complete′ empty () refl
complete′ (sat f) (sat ok) refl = sat ok
complete′ (p₁ ∣ p₂) (∣-left pr) refl = ∣-left (complete′ p₁ pr refl)
complete′ (p₁ ∣ p₂) (∣-right pr) refl = ∣-right {n₁ = false} (complete′ p₂ pr refl)
complete′ (nonempty p) (nonempty pr) refl = complete′ p pr refl
complete′ (cast _ p) (cast pr) refl = complete′ p pr refl
complete′ (p₁ · p₂) pr _ with forced? p₁ | forced? p₂
complete′ (p₁ · p₂) pr refl | false | _ = pr
complete′ (p₁ · p₂) pr refl | true | false = pr
complete′ (p₁ · p₂) (_·_ {[]} pr₁ pr₂) refl | true | true = ∣-left (∣-right {n₁ = false} (complete′ p₂ pr₂ refl))
complete′ (p₁ · p₂) (_·_ {_ ∷ _} {[]} pr₁ pr₂) refl | true | true = cast∈ (sym $ proj₂ ListMonoid.identity _) refl $
∣-left (∣-left {n₂ = false} (complete′ p₁ pr₁ refl))
complete′ (p₁ · p₂) (_·_ {_ ∷ _} {_ ∷ _} pr₁ pr₂) refl | true | true = ∣-right {n₁ = false} (complete′ p₁ pr₁ refl ·
complete′ p₂ pr₂ refl)
correct : ∀ {n} {p : P n} → nonempty′ p ≈ nonempty p
correct = equivalence sound complete
| 41.362187
| 134
| 0.472574
|
1b388f3455c9b2fa23f8795c858cae1c58c0f8fa
| 2,042
|
agda
|
Agda
|
test/Fail/Issue2170-subtyping.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2020-04-26T09:35:17.000Z
|
2020-04-26T09:35:17.000Z
|
test/Fail/Issue2170-subtyping.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T15:49:15.000Z
|
2015-09-15T15:49:15.000Z
|
test/Fail/Issue2170-subtyping.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2021-04-18T13:34:07.000Z
|
2021-04-18T13:34:07.000Z
|
-- Andreas, 2018-06-12, issue #2170
-- Reported by tomjack
{-# OPTIONS --irrelevant-projections --subtyping #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Bool
infixr 42 _,_
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
fst : A
snd : B fst
open Σ
record Irr (A : Set) : Set where
constructor irr
field
.unirr : A
open Irr
-- Usually, unirr (irr a) = .(a) which is DontCare a in internal syntax.
-- The DontCare protection of an irrelevant field could be circumvented
-- using subtyping irr : (.Bool → Irr Bool) ≤ (Bool → Irr Bool):
-- The argument a in (i a) would not have ArgInfo Irrelevant, even
-- after substitution irr/i. Since the DontCare came from the ArgInfo of a,
-- there was none. Now, the record constructor name also carries ArgInfo for
-- each of its fields, which is used to produce a DontCare.
bizarre : Irr (Σ (Bool → Irr Bool) (λ i → Σ (Irr Bool → Bool) (λ u → (a : Bool) → u (i a) ≡ a)))
bizarre = irr (irr , unirr , λ a → refl) -- Should not pass
-- Expected error:
-- .(a) != a of type Bool
-- when checking that the expression refl has type .(a) ≡ a
-- The rest is proving False.
data ⊥ : Set where
¬_ : Set → Set
¬ A = (A → ⊥)
true≠false : ¬ (true ≡ false)
true≠false ()
infixr 30 _∙_
_∙_ : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
refl ∙ q = q
infix 42 !_
!_ : {A : Set} {x y : A} → x ≡ y → y ≡ x
! refl = refl
map-irr : {A B : Set} → (A → B) → Irr A → Irr B
map-irr f (irr x) = irr (f x)
factivity : ¬ (Irr ⊥)
factivity (irr ())
bad : Irr (true ≡ false)
bad = map-irr (λ { (i , u , s) → ! (s true) ∙ s false }) bizarre
boom : ⊥
boom = factivity (map-irr true≠false bad)
-- the hole here is is .(a) ≡ a
-- bizarre' : Irr (Σ (Irr Bool → Bool) (λ u → (a : Bool) → u (irr a) ≡ a))
-- bizarre' = irr (unirr , (λ a → {!!}))
-- also fails, unirr (irr a) = .(a)
-- bizarre' : Irr (Σ (Bool → Irr Bool) (λ i → Σ (Irr Bool → Bool) (λ u → (a : Bool) → u (i a) ≡ a)))
-- bizarre' = irr (irr , unirr , (λ a → refl {x = unirr (irr a)})
| 26.868421
| 100
| 0.588639
|
3511b0226337a8aabe42b5dc320175949186917d
| 377
|
agda
|
Agda
|
test/Succeed/WarningInstanceWithExplicitArg.agda
|
strake/agda
|
c8a3cfa002e77acc5ae1993bae413fde42d4f93b
|
[
"BSD-3-Clause"
] | 2
|
2019-10-29T09:40:30.000Z
|
2020-09-20T00:28:57.000Z
|
test/Succeed/WarningInstanceWithExplicitArg.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/WarningInstanceWithExplicitArg.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 1
|
2021-04-01T18:30:09.000Z
|
2021-04-01T18:30:09.000Z
|
-- Jesper, 2018-11-29: Instances with explicit arguments will never be
-- used, so declaring them should give a warning.
postulate
X : Set
instance _ : Set → X -- this should give a warning
it : {{_ : X}} → X
it {{x}} = x
-- OTOH, this is fine as the instance can be used inside the module
module _ (A : Set) where
postulate instance instX : X
test : X
test = it
| 22.176471
| 70
| 0.66313
|
22267f9d48c8c8ea2569c21eced19c1eb01bc3c7
| 373
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Int.agda
|
redfish64/autonomic-agda
|
c0ae7d20728b15d7da4efff6ffadae6fe4590016
|
[
"BSD-3-Clause"
] | null | null | null |
src/data/lib/prim/Agda/Builtin/Int.agda
|
redfish64/autonomic-agda
|
c0ae7d20728b15d7da4efff6ffadae6fe4590016
|
[
"BSD-3-Clause"
] | null | null | null |
src/data/lib/prim/Agda/Builtin/Int.agda
|
redfish64/autonomic-agda
|
c0ae7d20728b15d7da4efff6ffadae6fe4590016
|
[
"BSD-3-Clause"
] | null | null | null |
module Agda.Builtin.Int where
open import Agda.Builtin.Nat
open import Agda.Builtin.String
infix 8 pos -- Standard library uses this as +_
data Int : Set where
pos : (n : Nat) → Int
negsuc : (n : Nat) → Int
{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}
primitive primShowInteger : Int → String
| 20.722222
| 48
| 0.656836
|
196ef20434e9838458db58062d397514e0b4d6a6
| 251
|
agda
|
Agda
|
src/Data/Star/Properties/Extra.agda
|
metaborg/mj.agda
|
0c096fea1716d714db0ff204ef2a9450b7a816df
|
[
"Apache-2.0"
] | 10
|
2017-11-17T17:10:36.000Z
|
2021-09-24T08:02:33.000Z
|
src/Data/Star/Properties/Extra.agda
|
metaborg/mj.agda
|
0c096fea1716d714db0ff204ef2a9450b7a816df
|
[
"Apache-2.0"
] | 1
|
2019-01-13T13:03:47.000Z
|
2020-10-14T13:41:58.000Z
|
src/Data/Star/Properties/Extra.agda
|
metaborg/mj.agda
|
0c096fea1716d714db0ff204ef2a9450b7a816df
|
[
"Apache-2.0"
] | 1
|
2021-12-28T17:38:05.000Z
|
2021-12-28T17:38:05.000Z
|
module Data.Star.Properties.Extra where
open import Relation.Binary.Core
open import Data.Star
module _ {i}{I : Set i}{r}{R : Rel I r} where
_◅◅-ε : ∀ {i j} → (xs : Star R i j) → xs ◅◅ ε ≡ xs
ε ◅◅-ε = refl
(x ◅ xs) ◅◅-ε rewrite xs ◅◅-ε = refl
| 25.1
| 52
| 0.585657
|
4130d0f360e7429edbbc3359c69beccd8e743f8b
| 96
|
agda
|
Agda
|
Data/Empty.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Data/Empty.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Data/Empty.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --without-K --safe #-}
module Data.Empty where
open import Data.Empty.Base public
| 16
| 34
| 0.708333
|
4d3cdf3754f8e2105bfa6d42ec05a9425f156875
| 1,376
|
agda
|
Agda
|
main/Groups/Definition.agda
|
awswan/nielsenschreier-hott
|
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
|
[
"MIT"
] | null | null | null |
main/Groups/Definition.agda
|
awswan/nielsenschreier-hott
|
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
|
[
"MIT"
] | null | null | null |
main/Groups/Definition.agda
|
awswan/nielsenschreier-hott
|
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --exact-split --rewriting --overlapping-instances #-}
open import lib.Basics
open import lib.NConnected
open import lib.NType2
open import lib.types.Truncation
open import Coequalizers.Definition
open import Coequalizers.Misc
open import Graphs.Definition
open import Util.Misc
module Groups.Definition where
{- BG has the structure of a type theoretic group if it is pointed, connected and
1-truncated.
-}
record TTGroup {i : ULevel} (BG : Type i) : Type i where
field
base : BG
⦃ gp-conn ⦄ : is-connected 0 BG
⦃ gp-trunc ⦄ : is-gpd BG
open TTGroup ⦃...⦄ public
{- Some functions related to free higher groups (which we never define explicitly). -}
module _ {i : ULevel} {A : Type i} where
instance -- Whenever we need a pair of maps A ⇉ 1 they are defined as follows
gph-fhg : Graph A Unit
gph-fhg = record { π₀ = λ _ → unit ; π₁ = λ _ → unit }
conn-fhg : is-connected 0 (⊤ / A)
conn-fhg = has-level-in ([ c[ unit ] ] , Trunc-elim (λ x → Trunc-rec (λ { (t , p) → ap [_] p}) (quotient-map-is-surj x)))
fhg-base : ⊤ / A
fhg-base = c[ unit ]
{- The definition of a free group. -}
FreeGroup : {i : ULevel} (A : Type i) → Type i
FreeGroup A = ∥ ⊤ / A ∥₁
instance -- free groups are groups
free-gp-str : {i : ULevel} {A : Type i} → TTGroup (FreeGroup A)
free-gp-str = record { base = [ fhg-base ] }
| 28.666667
| 125
| 0.653343
|
57e8878bf2242dfef3e619bb93887b1f9be962a6
| 3,226
|
agda
|
Agda
|
Structure/Category/NaturalTransformation/NaturalTransformations.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Structure/Category/NaturalTransformation/NaturalTransformations.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Structure/Category/NaturalTransformation/NaturalTransformations.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Structure.Category.NaturalTransformation.NaturalTransformations where
open import Functional using () renaming (id to idᶠⁿ)
open import Functional.Dependent using () renaming (_∘_ to _∘ᶠⁿ_)
open import Logic
open import Logic.Predicate
import Lvl
open import Structure.Category
open import Structure.Category.Functor
open import Structure.Category.NaturalTransformation
open import Structure.Categorical.Properties
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
open CategoryObject
private variable ℓₒₗ ℓₒᵣ ℓₘₗ ℓₘᵣ ℓₑₗ ℓₑᵣ : Lvl.Level
module Raw
(catₗ : CategoryObject{ℓₒₗ}{ℓₘₗ}{ℓₑₗ})
(catᵣ : CategoryObject{ℓₒᵣ}{ℓₘᵣ}{ℓₑᵣ})
where
private variable F F₁ F₂ F₃ : Object(catₗ) → Object(catᵣ)
private instance _ = category catₗ
private instance _ = category catᵣ
open Category.ArrowNotation ⦃ … ⦄
open Category ⦃ … ⦄ hiding (identity)
idᴺᵀ : (x : Object(catₗ)) → (F(x) ⟶ F(x))
idᴺᵀ _ = id
_∘ᴺᵀ_ : ((x : Object(catₗ)) → (F₂(x) ⟶ F₃(x))) → ((x : Object(catₗ)) → (F₁(x) ⟶ F₂(x))) → ((x : Object(catₗ)) → (F₁(x) ⟶ F₃(x)))
(comp₁ ∘ᴺᵀ comp₂)(x) = comp₁(x) ∘ comp₂(x)
module _
{catₗ : CategoryObject{ℓₒₗ}{ℓₘₗ}{ℓₑₗ}}
{catᵣ : CategoryObject{ℓₒᵣ}{ℓₘᵣ}{ℓₑᵣ}}
where
private instance _ = category catₗ
private instance _ = category catᵣ
open Category ⦃ … ⦄ hiding (identity)
open Functor ⦃ … ⦄
private open module Equivᵣ {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv(catᵣ){x}{y} ⦄) using ()
module _ where
open Raw(catₗ)(catᵣ)
module _ {functor@([∃]-intro F) : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ} where
identity : NaturalTransformation(functor)(functor)(idᴺᵀ)
NaturalTransformation.natural identity {x} {y} {f} =
id ∘ map f 🝖-[ Morphism.identityₗ(_)(id) ⦃ identityₗ ⦄ ]
map f 🝖-[ Morphism.identityᵣ(_)(id) ⦃ identityᵣ ⦄ ]-sym
map f ∘ id 🝖-end
module _ {functor₁@([∃]-intro F₁) functor₂@([∃]-intro F₂) functor₃@([∃]-intro F₃) : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ} where
composition : ∀{comp₁ comp₂} → NaturalTransformation(functor₂)(functor₃)(comp₁) → NaturalTransformation(functor₁)(functor₂)(comp₂) → NaturalTransformation(functor₁)(functor₃)(comp₁ ∘ᴺᵀ comp₂)
NaturalTransformation.natural (composition {comp₁} {comp₂} nat₁ nat₂) {x} {y} {f} =
(comp₁(y) ∘ comp₂(y)) ∘ map f 🝖-[ Morphism.associativity(_) ⦃ associativity ⦄ ]
comp₁(y) ∘ (comp₂(y) ∘ map f) 🝖-[ congruence₂ᵣ(_∘_)(comp₁(y)) (NaturalTransformation.natural nat₂) ]
comp₁(y) ∘ (map f ∘ comp₂(x)) 🝖-[ Morphism.associativity(_) ⦃ associativity ⦄ ]-sym
(comp₁(y) ∘ map f) ∘ comp₂(x) 🝖-[ congruence₂ₗ(_∘_)(comp₂(x)) (NaturalTransformation.natural nat₁) ]
(map f ∘ comp₁(x)) ∘ comp₂(x) 🝖-[ Morphism.associativity(_) ⦃ associativity ⦄ ]
map f ∘ (comp₁(x) ∘ comp₂(x)) 🝖-end
module Wrapped where
private variable F F₁ F₂ F₃ : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ
idᴺᵀ : (F →ᴺᵀ F)
idᴺᵀ = [∃]-intro (Raw.idᴺᵀ(catₗ)(catᵣ)) ⦃ identity ⦄
_∘ᴺᵀ_ : (F₂ →ᴺᵀ F₃) → (F₁ →ᴺᵀ F₂) → (F₁ →ᴺᵀ F₃)
_∘ᴺᵀ_ ([∃]-intro F ⦃ F-proof ⦄) ([∃]-intro G ⦃ G-proof ⦄) = [∃]-intro (Raw._∘ᴺᵀ_ (catₗ)(catᵣ) F G) ⦃ composition F-proof G-proof ⦄
| 40.835443
| 197
| 0.65933
|
52dbe194f0d7de6c045733c2998466f751ec5387
| 2,479
|
agda
|
Agda
|
Cubical/HITs/Rationals/QuoQ/Base.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Rationals/QuoQ/Base.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Rationals/QuoQ/Base.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.QuoQ.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat as ℕ using (discreteℕ)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.HITs.Ints.QuoInt
open import Cubical.HITs.SetQuotients as SetQuotient
using ([_]; eq/; discreteSetQuotients) renaming (_/_ to _//_) public
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
ℕ₊₁→ℤ : ℕ₊₁ → ℤ
ℕ₊₁→ℤ n = pos (ℕ₊₁→ℕ n)
private
ℕ₊₁→ℤ-hom : ∀ m n → ℕ₊₁→ℤ (m ·₊₁ n) ≡ ℕ₊₁→ℤ m · ℕ₊₁→ℤ n
ℕ₊₁→ℤ-hom _ _ = refl
-- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book)
_∼_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → Type₀
(a , b) ∼ (c , d) = a · ℕ₊₁→ℤ d ≡ c · ℕ₊₁→ℤ b
ℚ : Type₀
ℚ = (ℤ × ℕ₊₁) // _∼_
isSetℚ : isSet ℚ
isSetℚ = SetQuotient.squash/
[_/_] : ℤ → ℕ₊₁ → ℚ
[ a / b ] = [ a , b ]
isEquivRel∼ : isEquivRel _∼_
isEquivRel.reflexive isEquivRel∼ (a , b) = refl
isEquivRel.symmetric isEquivRel∼ (a , b) (c , d) = sym
isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = ·-injʳ _ _ _ r
where r = (a · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ d ≡[ i ]⟨ ·-comm a (ℕ₊₁→ℤ f) i · ℕ₊₁→ℤ d ⟩
(ℕ₊₁→ℤ f · a) · ℕ₊₁→ℤ d ≡⟨ sym (·-assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) ⟩
ℕ₊₁→ℤ f · (a · ℕ₊₁→ℤ d) ≡[ i ]⟨ ℕ₊₁→ℤ f · p i ⟩
ℕ₊₁→ℤ f · (c · ℕ₊₁→ℤ b) ≡⟨ ·-assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) ⟩
(ℕ₊₁→ℤ f · c) · ℕ₊₁→ℤ b ≡[ i ]⟨ ·-comm (ℕ₊₁→ℤ f) c i · ℕ₊₁→ℤ b ⟩
(c · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ b ≡[ i ]⟨ q i · ℕ₊₁→ℤ b ⟩
(e · ℕ₊₁→ℤ d) · ℕ₊₁→ℤ b ≡⟨ sym (·-assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) ⟩
e · (ℕ₊₁→ℤ d · ℕ₊₁→ℤ b) ≡[ i ]⟨ e · ·-comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i ⟩
e · (ℕ₊₁→ℤ b · ℕ₊₁→ℤ d) ≡⟨ ·-assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) ⟩
(e · ℕ₊₁→ℤ b) · ℕ₊₁→ℤ d ∎
eq/⁻¹ : ∀ x y → Path ℚ [ x ] [ y ] → x ∼ y
eq/⁻¹ = SetQuotient.effective (λ _ _ → isSetℤ _ _) isEquivRel∼
discreteℚ : Discrete ℚ
discreteℚ = discreteSetQuotients (discreteΣ discreteℤ (λ _ → subst Discrete 1+Path discreteℕ))
(λ _ _ → isSetℤ _ _) isEquivRel∼ (λ _ _ → discreteℤ _ _)
-- Natural number and negative integer literals for ℚ
open import Cubical.Data.Nat.Literals public
instance
fromNatℚ : HasFromNat ℚ
fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n / 1 ] }
instance
fromNegℚ : HasFromNeg ℚ
fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n / 1 ] }
| 32.194805
| 94
| 0.553046
|
8b119e571de4f1f26fa5f581acd8eccf9ec7b2ee
| 139
|
agda
|
Agda
|
test/fail/Issue481NonExistentModule.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2019-11-27T04:41:05.000Z
|
2019-11-27T04:41:05.000Z
|
test/fail/Issue481NonExistentModule.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/fail/Issue481NonExistentModule.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
-- Andreas, 2012-10-20
module Issue481NonExistentModule where
open import NonExistentModule Set
-- test the error message and location
| 15.444444
| 38
| 0.798561
|
8b23988cee18fbd687f47e36742a0921ee219ee6
| 788
|
agda
|
Agda
|
test/Succeed/HereditarilySingletonRecord.agda
|
redfish64/autonomic-agda
|
c0ae7d20728b15d7da4efff6ffadae6fe4590016
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/HereditarilySingletonRecord.agda
|
redfish64/autonomic-agda
|
c0ae7d20728b15d7da4efff6ffadae6fe4590016
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/HereditarilySingletonRecord.agda
|
redfish64/autonomic-agda
|
c0ae7d20728b15d7da4efff6ffadae6fe4590016
|
[
"BSD-3-Clause"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
-- Modified: Andreas, 2011-04-11 freezing Metas
module HereditarilySingletonRecord where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
-- * trivial unit type
record Singleton : Set where
foo : Singleton
foo = _
-- * product of unit types
record HereditarilySingleton : Set where
field
singleton : Singleton
also-singleton : Singleton
bar : HereditarilySingleton
bar = _
-- * hiding the unit types behind a type case
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
Unit : ℕ → Set
Unit zero = Singleton
Unit (suc n) = Unit n
mutual -- needed to avoid freezing
one : ℕ
one = _
record HereditarilySingleton₂ : Set where
field
singleton : Unit one
baz : HereditarilySingleton₂
baz = _
force : one ≡ suc zero
force = refl
| 16.416667
| 47
| 0.661168
|
52670f36d5cdc79183cf9030633df77598689685
| 250
|
agda
|
Agda
|
src/Implicits/Resolution/Termination.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | 4
|
2019-04-05T17:57:11.000Z
|
2021-05-07T04:08:41.000Z
|
src/Implicits/Resolution/Termination.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
src/Implicits/Resolution/Termination.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
open import Prelude
module Implicits.Resolution.Termination where
open import Implicits.Resolution.Termination.SizeMeasures public
open import Implicits.Resolution.Termination.Stack public
open import Implicits.Resolution.Termination.Lemmas public
| 31.25
| 64
| 0.876
|
1b7f614a3fa09d957bd8c1ca0ae68ba11aa7abe5
| 2,984
|
agda
|
Agda
|
agda-stdlib-0.9/src/Algebra/Properties/DistributiveLattice.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Algebra/Properties/DistributiveLattice.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Algebra/Properties/DistributiveLattice.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------
open import Algebra
module Algebra.Properties.DistributiveLattice
{dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂)
where
open DistributiveLattice DL
import Algebra.Properties.Lattice
private
open module L = Algebra.Properties.Lattice lattice public
hiding (replace-equality)
open import Algebra.Structures
import Algebra.FunctionProperties as P; open P _≈_
open import Relation.Binary
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product
∨-∧-distrib : _∨_ DistributesOver _∧_
∨-∧-distrib = ∨-∧-distribˡ , ∨-∧-distribʳ
where
∨-∧-distribˡ : _∨_ DistributesOverˡ _∧_
∨-∧-distribˡ x y z = begin
x ∨ y ∧ z ≈⟨ ∨-comm _ _ ⟩
y ∧ z ∨ x ≈⟨ ∨-∧-distribʳ _ _ _ ⟩
(y ∨ x) ∧ (z ∨ x) ≈⟨ ∨-comm _ _ ⟨ ∧-cong ⟩ ∨-comm _ _ ⟩
(x ∨ y) ∧ (x ∨ z) ∎
∧-∨-distrib : _∧_ DistributesOver _∨_
∧-∨-distrib = ∧-∨-distribˡ , ∧-∨-distribʳ
where
∧-∨-distribˡ : _∧_ DistributesOverˡ _∨_
∧-∨-distribˡ x y z = begin
x ∧ (y ∨ z) ≈⟨ sym (proj₂ absorptive _ _) ⟨ ∧-cong ⟩ refl ⟩
(x ∧ (x ∨ y)) ∧ (y ∨ z) ≈⟨ (refl ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ refl ⟩
(x ∧ (y ∨ x)) ∧ (y ∨ z) ≈⟨ ∧-assoc _ _ _ ⟩
x ∧ ((y ∨ x) ∧ (y ∨ z)) ≈⟨ refl ⟨ ∧-cong ⟩ sym (proj₁ ∨-∧-distrib _ _ _) ⟩
x ∧ (y ∨ x ∧ z) ≈⟨ sym (proj₁ absorptive _ _) ⟨ ∧-cong ⟩ refl ⟩
(x ∨ x ∧ z) ∧ (y ∨ x ∧ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩
x ∧ y ∨ x ∧ z ∎
∧-∨-distribʳ : _∧_ DistributesOverʳ _∨_
∧-∨-distribʳ x y z = begin
(y ∨ z) ∧ x ≈⟨ ∧-comm _ _ ⟩
x ∧ (y ∨ z) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
x ∧ y ∨ x ∧ z ≈⟨ ∧-comm _ _ ⟨ ∨-cong ⟩ ∧-comm _ _ ⟩
y ∧ x ∨ z ∧ x ∎
-- The dual construction is also a distributive lattice.
∧-∨-isDistributiveLattice : IsDistributiveLattice _≈_ _∧_ _∨_
∧-∨-isDistributiveLattice = record
{ isLattice = ∧-∨-isLattice
; ∨-∧-distribʳ = proj₂ ∧-∨-distrib
}
∧-∨-distributiveLattice : DistributiveLattice _ _
∧-∨-distributiveLattice = record
{ _∧_ = _∨_
; _∨_ = _∧_
; isDistributiveLattice = ∧-∨-isDistributiveLattice
}
-- One can replace the underlying equality with an equivalent one.
replace-equality :
{_≈′_ : Rel Carrier dl₂} →
(∀ {x y} → x ≈ y ⇔ x ≈′ y) → DistributiveLattice _ _
replace-equality {_≈′_} ≈⇔≈′ = record
{ _≈_ = _≈′_
; _∧_ = _∧_
; _∨_ = _∨_
; isDistributiveLattice = record
{ isLattice = Lattice.isLattice (L.replace-equality ≈⇔≈′)
; ∨-∧-distribʳ = λ x y z → to ⟨$⟩ ∨-∧-distribʳ x y z
}
} where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})
| 34.697674
| 81
| 0.528485
|
fdc8e6d10f86b9a195ec450754a3821f7a4f3565
| 480
|
agda
|
Agda
|
old/Mathematical/Type/Quotient.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
old/Mathematical/Type/Quotient.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
old/Mathematical/Type/Quotient.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Type.Quotient where
open import Logic
open import Relator.Equals
open import Type
open import Lvl
private variable ℓ₁ : Lvl.Level
private variable ℓ₂ : Lvl.Level
data _/_ (T : Type{ℓ₁}) (_≅_ : T → T → Stmt{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} where
[_] : T → (T / (_≅_))
[/]-equiv-to-eq : ∀{x y : T} → (x ≅ y) → ([ x ] ≡ [ y ])
[/]-uip : ∀{X Y : (T / (_≅_))} → (proof₁ proof₂ : (X ≡ Y)) → (proof₁ ≡ proof₂)
-- TODO: [/]-eq-to-equiv : (x y : A) → (x ≅ y) ← ([ x ] ≡ [ y ])
| 28.235294
| 80
| 0.525
|
388284763c06517a6f81d1ffff6fee4b4c5e8fb8
| 2,576
|
agda
|
Agda
|
Experiment/Categories/Solver/Functor.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | 3
|
2020-04-07T17:49:42.000Z
|
2020-04-21T00:03:43.000Z
|
Experiment/Categories/Solver/Functor.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
Experiment/Categories/Solver/Functor.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
-- Solver for Functor
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Functor renaming (id to idF)
module Experiment.Categories.Solver.Functor
{o ℓ e o′ ℓ′ e′} {𝒞 : Category o ℓ e} {𝒟 : Category o′ ℓ′ e′}
(F : Functor 𝒞 𝒟)
where
open import Level
open import Relation.Binary using (Rel)
import Categories.Morphism.Reasoning as MR
import Experiment.Categories.Solver.Category
module 𝒞 = Category 𝒞
module CS = Experiment.Categories.Solver.Category 𝒞
open CS using (:id; _:∘_; ∥_∥) renaming (∥-∥ to ∥-∥′) public
open Category 𝒟
open HomReasoning
open MR 𝒟
open Functor F
private
variable
A B C D E : Obj
infixr 9 _:∘_
data Expr : Rel Obj (o ⊔ o′ ⊔ ℓ ⊔ ℓ′) where
:id : Expr A A
_:∘_ : Expr B C → Expr A B → Expr A C
:F₁ : ∀ {A B} → CS.Expr A B → Expr (F₀ A) (F₀ B)
∥_∥ : A ⇒ B → Expr A B
-- Semantics
⟦_⟧ : Expr A B → A ⇒ B
⟦ :id ⟧ = id
⟦ e₁ :∘ e₂ ⟧ = ⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧
⟦ :F₁ e ⟧ = F₁ CS.⟦ e ⟧
⟦ ∥ f ∥ ⟧ = f
F₁⟦_⟧N∘_ : ∀ {B C} → CS.Expr B C → A ⇒ F₀ B → A ⇒ F₀ C
F₁⟦ :id ⟧N∘ g = g
F₁⟦ e₁ :∘ e₂ ⟧N∘ g = F₁⟦ e₁ ⟧N∘ (F₁⟦ e₂ ⟧N∘ g)
F₁⟦ ∥ f ∥ ⟧N∘ g = F₁ f ∘ g
⟦_⟧N∘_ : Expr B C → A ⇒ B → A ⇒ C
⟦ :id ⟧N∘ g = g
⟦ e₁ :∘ e₂ ⟧N∘ g = ⟦ e₁ ⟧N∘ (⟦ e₂ ⟧N∘ g)
⟦ :F₁ e ⟧N∘ g = F₁⟦ e ⟧N∘ g
⟦ ∥ f ∥ ⟧N∘ g = f ∘ g
⟦_⟧N : Expr A B → A ⇒ B
⟦ e ⟧N = ⟦ e ⟧N∘ id
F₁⟦e⟧N∘f≈F₁⟦e⟧∘f : ∀ {B C} (e : CS.Expr B C) (g : A ⇒ F₀ B) →
F₁⟦ e ⟧N∘ g ≈ F₁ CS.⟦ e ⟧ ∘ g
F₁⟦e⟧N∘f≈F₁⟦e⟧∘f :id g = begin
g ≈˘⟨ identityˡ ⟩
id ∘ g ≈˘⟨ identity ⟩∘⟨refl ⟩
F₁ 𝒞.id ∘ g ∎
F₁⟦e⟧N∘f≈F₁⟦e⟧∘f (e₁ :∘ e₂) g = begin
F₁⟦ e₁ ⟧N∘ (F₁⟦ e₂ ⟧N∘ g) ≈⟨ F₁⟦e⟧N∘f≈F₁⟦e⟧∘f e₁ (F₁⟦ e₂ ⟧N∘ g) ⟩
F₁ CS.⟦ e₁ ⟧ ∘ (F₁⟦ e₂ ⟧N∘ g) ≈⟨ pushʳ (F₁⟦e⟧N∘f≈F₁⟦e⟧∘f e₂ g) ⟩
(F₁ CS.⟦ e₁ ⟧ ∘ F₁ CS.⟦ e₂ ⟧) ∘ g ≈˘⟨ homomorphism ⟩∘⟨refl ⟩
F₁ (CS.⟦ e₁ ⟧ 𝒞.∘ CS.⟦ e₂ ⟧) ∘ g ∎
F₁⟦e⟧N∘f≈F₁⟦e⟧∘f ∥ x ∥ g = refl
⟦e⟧N∘f≈⟦e⟧∘f : (e : Expr B C) (g : A ⇒ B) → ⟦ e ⟧N∘ g ≈ ⟦ e ⟧ ∘ g
⟦e⟧N∘f≈⟦e⟧∘f :id g = ⟺ identityˡ
⟦e⟧N∘f≈⟦e⟧∘f (e₁ :∘ e₂) g = begin
⟦ e₁ ⟧N∘ (⟦ e₂ ⟧N∘ g) ≈⟨ ⟦e⟧N∘f≈⟦e⟧∘f e₁ (⟦ e₂ ⟧N∘ g) ⟩
⟦ e₁ ⟧ ∘ (⟦ e₂ ⟧N∘ g) ≈⟨ pushʳ (⟦e⟧N∘f≈⟦e⟧∘f e₂ g) ⟩
(⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧) ∘ g ∎
⟦e⟧N∘f≈⟦e⟧∘f (:F₁ e) g = F₁⟦e⟧N∘f≈F₁⟦e⟧∘f e g
⟦e⟧N∘f≈⟦e⟧∘f ∥ f ∥ g = refl
⟦e⟧N≈⟦e⟧ : (e : Expr A B) → ⟦ e ⟧N ≈ ⟦ e ⟧
⟦e⟧N≈⟦e⟧ e = ⟦e⟧N∘f≈⟦e⟧∘f e id ○ identityʳ
solve : (e₁ e₂ : Expr A B) → ⟦ e₁ ⟧N ≈ ⟦ e₂ ⟧N → ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧
solve e₁ e₂ eq = begin
⟦ e₁ ⟧ ≈˘⟨ ⟦e⟧N≈⟦e⟧ e₁ ⟩
⟦ e₁ ⟧N ≈⟨ eq ⟩
⟦ e₂ ⟧N ≈⟨ ⟦e⟧N≈⟦e⟧ e₂ ⟩
⟦ e₂ ⟧ ∎
∥-∥ : ∀ {f : A ⇒ B} → Expr A B
∥-∥ {f = f} = ∥ f ∥
| 26.556701
| 75
| 0.456522
|
fd1757f80e7939be639151acdad4034ad90382ab
| 358
|
agda
|
Agda
|
examples/outdated-and-incorrect/clowns/Zipper.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/clowns/Zipper.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/clowns/Zipper.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Zipper where
import Derivative
import Functor
import Sets
open Functor
open Derivative
open Semantics
open Recursive
open Sets
Zipper : U -> Set
Zipper F = List (⟦ ∂ F ⟧ (μ F))
-- Plugging a zipper
unzip : {F : U} -> Zipper F -> μ F -> μ F
unzip [] t = t
unzip {F} (c :: γ) t = inn (plug-∂ F c (unzip γ t))
| 16.272727
| 53
| 0.569832
|
19d378cebdddfb5e5bad83cdfed9f424ddc89b59
| 6,120
|
agda
|
Agda
|
src/Categories/Adjoint/AFT.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Adjoint/AFT.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Adjoint/AFT.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
-- Adjoint Functor Theorem
module Categories.Adjoint.AFT where
open import Level
open import Data.Product
open import Data.Product using (Σ)
open import Categories.Category
open import Categories.Category.Complete
open import Categories.Category.Complete.Properties
open import Categories.Category.Construction.Cones
open import Categories.Category.Construction.Comma
open import Categories.Functor
open import Categories.Functor.Limits
open import Categories.Functor.Properties
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Diagram.Limit as Lim
open import Categories.Diagram.Cone.Properties
open import Categories.Morphism as Mor
open import Categories.Morphism.Universal
import Categories.Adjoint.AFT.SolutionSet as SS
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D : Category o ℓ e
module _ {R : Functor C D} where
private
module C = Category C
module D = Category D
module R = Functor R
o-level : Level
o-level = C.o-level ⊔ C.ℓ-level ⊔ D.ℓ-level ⊔ D.e-level
ℓ-level : Level
ℓ-level = C.o-level ⊔ C.ℓ-level ⊔ D.ℓ-level ⊔ D.e-level
e-level : Level
e-level = C.o-level ⊔ C.ℓ-level ⊔ D.ℓ-level ⊔ D.e-level
open SS R using (SolutionSet′)
module _ {L : Functor D C} (L⊣R : L ⊣ R) where
private
module L = Functor L
open Adjoint L⊣R
L⊣R⇒solutionSet′ : SolutionSet′
L⊣R⇒solutionSet′ = record
{ S₀ = λ {_ X} _ → L.₀ X
; S₁ = Radjunct
; ϕ = λ _ → unit.η _
; commute = λ _ → LRadjunct≈id
}
module _ (Com : Complete o-level ℓ-level e-level C)
(Rcon : Continuous o-level ℓ-level e-level R)
(s : SolutionSet′) where
open SolutionSet′ s
open D.Equiv
open D.HomReasoning
open MR D
private
module _ X where
X↙R : Category (C.o-level ⊔ D.ℓ-level) (C.ℓ-level ⊔ D.e-level) C.e-level
X↙R = X ↙ R
module X↙R = Category X↙R
s′ : SolutionSet X↙R
s′ = record
{ D = D′
; arr = arr′
}
where D′ : X↙R.Obj → X↙R.Obj
D′ Z = record
{ f = ϕ Z.f
}
where module Z = CommaObj Z
arr′ : ∀ Z → X↙R [ D′ Z , Z ]
arr′ Z = record
{ h = S₁ Z.f
; commute = commute _ ○ ⟺ D.identityʳ
}
where module Z = CommaObj Z
open D.HomReasoning
module _ {J : Category o-level ℓ-level e-level} (F : Functor J X↙R) where
module J = Category J
module F = Functor F
F′ : Functor J C
F′ = Cod _ _ ∘F F
LimF′ : Limit F′
LimF′ = Com F′
module LimF′ = Limit LimF′
RLimF′ : Cone (R ∘F F′)
RLimF′ = F-map-Coneˡ R LimF′.limit
module RLimF′ = Cone _ RLimF′
LimRF′ : Limit (R ∘F F′)
LimRF′ = record
{ terminal = record
{ ⊤ = RLimF′
; ⊤-is-terminal = Rcon LimF′
}
}
module LimRF′ = Limit LimRF′
coneF : Cone (R ∘F F′)
coneF = record
{ N = X
; apex = record
{ ψ = λ j → CommaObj.f (F.₀ j)
; commute = λ f → Comma⇒.commute (F.₁ f) ○ D.identityʳ
}
}
⊤-arr : Cone⇒ (R ∘F F′) coneF RLimF′
⊤-arr = LimRF′.rep-cone coneF
module ⊤-arr = Cone⇒ (R ∘F F′) ⊤-arr
⊤ : Cone F
⊤ = record
{ N = record
{ f = ⊤-arr.arr
}
; apex = record
{ ψ = λ j → record
{ h = LimF′.proj j
; commute = begin
R.₁ (LimF′.proj j) D.∘ ⊤-arr.arr ≈⟨ ⊤-arr.commute ⟩
CommaObj.f (F.₀ j) ≈˘⟨ D.identityʳ ⟩
CommaObj.f (F.₀ j) D.∘ D.id ∎
}
; commute = λ f → -, LimF′.limit-commute f
}
}
K-conv : Cone F → Cone F′
K-conv = F-map-Coneˡ (Cod _ _)
K-conv′ : Cone F → Cone (R ∘F F′)
K-conv′ K = F-map-Coneˡ R (K-conv K)
! : (K : Cone F) → Cones F [ K , ⊤ ]
! K = record
{ arr = record
{ h = LimF′.rep (K-conv K)
; commute = ⟺ (LimRF′.terminal.!-unique (record
{ arr = R.₁ (LimF′.rep (K-conv K)) D.∘ CommaObj.f N
; commute = λ {j} → begin
LimRF′.proj j D.∘ R.₁ (LimF′.rep (K-conv K)) D.∘ CommaObj.f N
≈⟨ pullˡ ([ R ]-resp-∘ LimF′.commute) ⟩
R.₁ (Comma⇒.h (ψ j)) D.∘ CommaObj.f N
≈⟨ Comma⇒.commute (ψ j) ⟩
CommaObj.f (F.F₀ j) D.∘ D.id
≈⟨ D.identityʳ ⟩
CommaObj.f (F.₀ j)
∎
})) ○ ⟺ D.identityʳ
}
; commute = -, LimF′.commute
}
where open Cone _ K
!-unique : {K : Cone F} (f : Cones F [ K , ⊤ ]) → Cones F [ ! K ≈ f ]
!-unique f = -, LimF′.terminal.!-unique record
{ arr = Comma⇒.h f.arr
; commute = proj₂ f.commute
}
where module f = Cone⇒ _ f
complete : Limit F
complete = record
{ terminal = record
{ ⊤ = ⊤
; ⊤-is-terminal = record
{ ! = ! _
; !-unique = !-unique
}
}
}
solutionSet′⇒universalMorphism : UniversalMorphism X R
solutionSet′⇒universalMorphism = record
{ initial = SolutionSet⇒Initial {o′ = 0ℓ} {0ℓ} {0ℓ} {C = X ↙ R} complete s′
}
solutionSet⇒adjoint : Σ (Functor D C) (λ L → L ⊣ R)
solutionSet⇒adjoint = universalMophisms⇒adjoint solutionSet′⇒universalMorphism
| 30.29703
| 85
| 0.470915
|
a0fc42d2bc54ca32f3e7af4e39714eb9af7bf125
| 3,438
|
agda
|
Agda
|
agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Bundles.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Bundles.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Bundles.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Homogeneously-indexed binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via
-- `Relation.Binary.Indexed.Homogeneous`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Homogeneous.Bundles where
open import Data.Product using (_,_)
open import Function using (_⟨_⟩_)
open import Level using (Level; _⊔_; suc)
open import Relation.Binary as B using (_⇒_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary using (¬_)
open import Relation.Binary.Indexed.Homogeneous.Core
open import Relation.Binary.Indexed.Homogeneous.Structures
-- Indexed structures are laid out in a similar manner as to those
-- in Relation.Binary. The main difference is each structure also
-- contains proofs for the lifted version of the relation.
------------------------------------------------------------------------
-- Equivalences
record IndexedSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈ᵢ_ _≈_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ
isEquivalenceᵢ : IsIndexedEquivalence Carrierᵢ _≈ᵢ_
open IsIndexedEquivalence isEquivalenceᵢ public
Carrier : Set _
Carrier = ∀ i → Carrierᵢ i
_≈_ : B.Rel Carrier _
_≈_ = Lift Carrierᵢ _≈ᵢ_
_≉_ : B.Rel Carrier _
x ≉ y = ¬ (x ≈ y)
setoid : B.Setoid _ _
setoid = record
{ isEquivalence = isEquivalence
}
record IndexedDecSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈ᵢ_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ
isDecEquivalenceᵢ : IsIndexedDecEquivalence Carrierᵢ _≈ᵢ_
open IsIndexedDecEquivalence isDecEquivalenceᵢ public
indexedSetoid : IndexedSetoid I c ℓ
indexedSetoid = record
{ isEquivalenceᵢ = isEquivalenceᵢ
}
open IndexedSetoid indexedSetoid public
using (Carrier; _≈_; _≉_; setoid)
------------------------------------------------------------------------
-- Preorders
record IndexedPreorder {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈ᵢ_ _∼ᵢ_ _≈_ _∼_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ₁
_∼ᵢ_ : IRel Carrierᵢ ℓ₂
isPreorderᵢ : IsIndexedPreorder Carrierᵢ _≈ᵢ_ _∼ᵢ_
open IsIndexedPreorder isPreorderᵢ public
Carrier : Set _
Carrier = ∀ i → Carrierᵢ i
_≈_ : B.Rel Carrier _
x ≈ y = ∀ i → x i ≈ᵢ y i
_∼_ : B.Rel Carrier _
x ∼ y = ∀ i → x i ∼ᵢ y i
preorder : B.Preorder _ _ _
preorder = record
{ isPreorder = isPreorder
}
------------------------------------------------------------------------
-- Partial orders
record IndexedPoset {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ₁
_≤ᵢ_ : IRel Carrierᵢ ℓ₂
isPartialOrderᵢ : IsIndexedPartialOrder Carrierᵢ _≈ᵢ_ _≤ᵢ_
open IsIndexedPartialOrder isPartialOrderᵢ public
preorderᵢ : IndexedPreorder I c ℓ₁ ℓ₂
preorderᵢ = record
{ isPreorderᵢ = isPreorderᵢ
}
open IndexedPreorder preorderᵢ public
using (Carrier; _≈_; preorder) renaming (_∼_ to _≤_)
poset : B.Poset _ _ _
poset = record
{ isPartialOrder = isPartialOrder
}
| 27.285714
| 73
| 0.587551
|
34072165c2d17f70c9829ee3d74f5e9cf92307e5
| 607
|
agda
|
Agda
|
test/Succeed/Issue483.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue483.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue483.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2011-10-02
-- {-# OPTIONS -v tc.meta:20 #-}
module Issue483 where
data _≡_ (a : Set) : Set → Set where
refl : a ≡ a
test : (P : .Set → Set) →
let X : .Set → Set
X = _
in (x : Set) → X x ≡ P (P x)
test P x = refl
-- expected behavior: solving X = P
{- THE FOLLOWING COULD BE SOLVED IN THE SPECIFIC CASE, BUT NOT IN GENERAL
postulate
A : Set
a : A
f : .A → A
test2 : let X : .A → A
X = _
in (x : A) → X a ≡ f x
test2 x = refl
-- should solve as X = f
-- it was treated as X _ = f _ before with solution X = \ x -> f _
-- which eta-contracts to X = f
-}
| 20.931034
| 74
| 0.540362
|
cbf49c5c36f0507d252af84a749fe41c44e119a5
| 543
|
agda
|
Agda
|
test/Fail/RewritingNonConfluent1.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/RewritingNonConfluent1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/RewritingNonConfluent1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Nat using (Nat; zero; suc)
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
variable
k l m n : Nat
postulate
max : Nat → Nat → Nat
max-0l : max 0 n ≡ n
max-0r : max m 0 ≡ m
max-diag : max m m ≡ m
max-ss : max (suc m) (suc n) ≡ suc (max m n)
max-assoc : max (max k l) m ≡ max k (max l m)
{-# REWRITE max-0l #-}
{-# REWRITE max-0r #-}
{-# REWRITE max-diag #-}
{-# REWRITE max-ss #-}
{-# REWRITE max-assoc #-} -- not confluent!
| 22.625
| 51
| 0.61326
|
35d0191060b48fa96dc95ee2edbe1eb7c418e202
| 8,156
|
agda
|
Agda
|
legacy/Data/Num.agda
|
banacorn/numeral
|
aae093cc9bf21f11064e7f7b12049448cd6449f1
|
[
"MIT"
] | 1
|
2015-04-23T15:58:28.000Z
|
2015-04-23T15:58:28.000Z
|
legacy/Data/Num.agda
|
banacorn/numeral
|
aae093cc9bf21f11064e7f7b12049448cd6449f1
|
[
"MIT"
] | null | null | null |
legacy/Data/Num.agda
|
banacorn/numeral
|
aae093cc9bf21f11064e7f7b12049448cd6449f1
|
[
"MIT"
] | 1
|
2015-05-30T05:50:50.000Z
|
2015-05-30T05:50:50.000Z
|
module Data.Num where
open import Data.List using (List; []; _∷_; foldr)
open import Data.Nat
open ≤-Reasoning
open import Data.Nat.Etc
open import Data.Nat.DivMod
open import Data.Nat.DivMod.Properties using (div-mono)
open import Data.Nat.Properties using (m≤m+n; n≤m+n;_+-mono_; pred-mono; ∸-mono; ≰⇒>; n∸n≡0; +-∸-assoc; m+n∸n≡m)
open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; distribʳ-*-+)
open import Data.Fin.Properties using (bounded)
open import Data.Fin using (Fin; fromℕ≤; inject≤; #_)
renaming (toℕ to F→N; fromℕ to N→F; zero to Fz; suc to Fs)
open import Data.Product
open import Data.Maybe
open import Induction.Nat using (rec; Rec)
import Level
open import Function
open import Data.Unit using (tt)
open import Relation.Nullary
open import Relation.Nullary.Decidable using (True; False; toWitness; toWitnessFalse; fromWitness; fromWitnessFalse)
open import Relation.Nullary.Negation using (contradiction; contraposition)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; sym; trans; inspect)
open PropEq.≡-Reasoning
renaming (begin_ to beginEq_; _≡⟨_⟩_ to _≡Eq⟨_⟩_; _∎ to _∎Eq)
-- Surjective (ℕm):
-- base = 1, digits = {m ... (m + n) - 1}, m ≥ 1, n ≥ m
-- base > 1, digits = {m ... (m + n) - 1}, m ≥ 0, n ≥ max base (base × m)
-- Bijective:
-- base ≥ 1, digits = {1 .. base}
--
-- Digits:
-- Digit m n represents a Digit ranging from m to (m + n - 1)
-- e.g. Digit 2 0 2 = {0, 1} for ordinary binary number
-- Digit 2 1 2 = {1, 2} for zeroless binary number
-- Digit 2 0 3 = {0, 1, 2} for redundant binary number
--
data Digit : (base from range : ℕ) → Set where
-- unary digit: {0, 1 .. n-1}
U0 : ∀ {n} → Fin n
→ {2≤n : True (2 ≤? n)} -- i.e. must have digit '1'
→ Digit 1 0 n
-- unary digit: {m .. m+n-1}
U1 : ∀ {m n}
→ Fin n
→ {m≤n : True (suc m ≤? n)}
→ Digit 1 (suc m) n
-- k-adic digit: {m .. m+n-1}
D : ∀ {b m n}
→ Fin n
→ let base = suc (suc b) in
{b≤n : True (base ≤? n)} → {bm≤n : True ((base * m) ≤? n)}
→ Digit base m n
-- without offset, {0 .. n-1}
D→F : ∀ {b m n} → Digit b m n → Fin n
D→F (U0 x) = x
D→F (U1 x) = x
D→F (D x) = x
-- with offset, {m .. m+n-1}
D→N : ∀ {b m n} → Digit b m n → ℕ
D→N {m = m} d = m + F→N (D→F d)
-- infix 4 _D≤_ -- _D<_ _≥′_ _>′_
-- data _D≤_ {b m n} (x : Digit b m n) : (y : Digit b m n) → Set where
-- D≤-refl : x D≤ x
-- D≤-step : ∀ {y} (xD≤y : x D≤ y) → x D≤
-- ≤′-step : ∀ {n} (m≤′n : m ≤′ n) → m ≤′ suc n
private
-- alias
ℕ-isDecTotalOrder = DecTotalOrder.isDecTotalOrder decTotalOrder
ℕ-isTotalOrder = IsDecTotalOrder.isTotalOrder ℕ-isDecTotalOrder
ℕ-isPartialOrder = IsTotalOrder.isPartialOrder ℕ-isTotalOrder
ℕ-isPreorder = IsPartialOrder.isPreorder ℕ-isPartialOrder
≤-refl = IsPreorder.reflexive ℕ-isPreorder
≤-antisym = IsPartialOrder.antisym ℕ-isPartialOrder
≤-total = IsTotalOrder.total ℕ-isTotalOrder
-- helper function for adding two 'Fin n' with offset 'm'
-- (m + x) + (m + y) - m = m + x + y
D+sum : ∀ {n} (m : ℕ) → (x y : Fin n) → ℕ
D+sum m x y = m + (F→N x) + (F→N y)
maxpress-pred : ℕ → Set
maxpress-pred _ = ℕ → ℕ
maxpress-rec-struct : (x : ℕ) → Rec Level.zero maxpress-pred x → (bound : ℕ) → ℕ
maxpress-rec-struct zero p bound = 0
maxpress-rec-struct (suc x) p bound with bound ≤? suc (p bound)
maxpress-rec-struct (suc x) p bound | yes q = suc (p bound) ∸ bound
maxpress-rec-struct (suc x) p bound | no ¬q = suc (p bound)
-- if x ≥ bound, then substract bound from x, until x < bound
maxpress : (x bound : ℕ) → ℕ
maxpress = rec maxpress-pred maxpress-rec-struct
maxpressed<bound : (x bound : ℕ) → (≢0 : False (bound ≟ 0)) → maxpress x bound < bound
maxpressed<bound zero zero ()
maxpressed<bound zero (suc bound) ≢0 = s≤s z≤n
maxpressed<bound (suc x) zero ()
maxpressed<bound (suc x) (suc bound) ≢0 with suc bound ≤? suc (maxpress x (suc bound))
maxpressed<bound (suc x) (suc bound) ≢0 | yes p =
begin
suc (maxpress x (suc bound) ∸ bound)
≤⟨ ≤-refl (sym (+-∸-assoc 1 p)) ⟩
suc (maxpress x (suc bound)) ∸ bound
≤⟨ ∸-mono {suc (maxpress x (suc bound))} {suc bound} {bound} {bound} (maxpressed<bound x (suc bound) tt) (≤-refl refl) ⟩
suc bound ∸ bound
≤⟨ ≤-refl (m+n∸n≡m 1 bound) ⟩
suc zero
≤⟨ s≤s z≤n ⟩
suc bound
∎
maxpressed<bound (suc x) (suc bound) ≢0 | no ¬p = ≰⇒> ¬p
maxpress′ : (x bound : ℕ) → (≢0 : False (bound ≟ 0)) → Fin bound
maxpress′ x bound ≢0 = fromℕ≤ {maxpress x bound} (maxpressed<bound x bound ≢0)
_D+_ : ∀ {b m n} → Digit b m n → Digit b m n → Digit b m n
_D+_ {zero} () ()
_D+_ {suc zero} x _ = x
_D+_ {suc (suc b)} {m} {n} (D x) (D y {b≤n} {bm≤n}) = D (maxpress′ (D+sum m x y) n n≢0) {b≤n} {bm≤n}
where n≢0 = fromWitnessFalse $ >⇒≢ $
begin
suc zero
≤⟨ s≤s z≤n ⟩
suc (suc b)
≤⟨ toWitness b≤n ⟩
n
∎
-- 2 ≤ base
-- ⇒ max * 2 ≤ max * base
-- ⇒ max * 2 / base ≤ max
{-
_D⊕_ : ∀ {b m n} → Digit b m n → Digit b m n → Maybe (Digit b m n)
_D⊕_ (U0 x) y = just y
_D⊕_ (U1 x) y = just y
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y) with suc (D+sum m x y) ≤? n
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y) | yes p = nothing
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y {b≤n} {bm≤n}) | no ¬p with D+sum m x y divMod (suc (suc b)) | inspect (λ w → _divMod_ (D+sum m x y) (suc (suc b)) {≢0 = w}) tt
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y {b≤n} {bm≤n}) | no ¬p | result quotient remainder property | PropEq.[ eq ] =
let base = suc (suc b)
sum = D+sum m x y
quotient<n = begin
suc quotient
≤⟨ div-mono base tt {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
n
∎
in just (D (fromℕ≤ {quotient} quotient<n) {b≤n} {bm≤n})
-}
{-
let base = suc (suc b)
sum = D+sum m x y
result quotient remainder property = _divMod_ sum base {tt}
quotient<n = begin
DivMod.quotient (sum divMod {! base !})
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
n
∎
in just (D (fromℕ≤ {quotient} quotient<n) {b≤n} {bm≤n})
-}
{-
begin
{! !}
<⟨ {! !} ⟩
{! !}
<⟨ {! !} ⟩
{! !}
∎
begin
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
∎
beginEq
{! !}
≡Eq⟨ {! !} ⟩
{! !}
≡Eq⟨ {! !} ⟩
{! !}
≡Eq⟨ {! !} ⟩
{! !}
≡Eq⟨ {! !} ⟩
{! !}
∎Eq
-}
data System : (base from range : ℕ) → Set where
Sys : ∀ {b m n} → List (Digit (suc b) m n) → System (suc b) m n
{-
_S+_ : ∀ {b m n} → System b m n → System b m n → System b m n
Sys [] S+ Sys ys = Sys ys
Sys xs S+ Sys [] = Sys xs
Sys (x ∷ xs) S+ Sys (y ∷ ys) = {! x !}
S→N : ∀ {b m n} → System b m n → ℕ
S→N {zero} ()
S→N {suc b} (Sys list) = foldr (shift-then-add (suc b)) 0 list
where shift-then-add : ∀ {m n} → (b : ℕ) → Digit b m n → ℕ → ℕ
shift-then-add b x acc = (D→N x) + (acc * b)
-}
--
-- Example
--
private
one : Digit 2 1 2
one = D Fz
two : Digit 2 1 2
two = D (Fs Fz)
u0 : Digit 1 0 2
u0 = U0 Fz
u1 : Digit 1 1 1
u1 = U1 Fz
a0 : Digit 3 0 4
a0 = D Fz
a1 : Digit 3 0 4
a1 = D (Fs Fz)
a2 : Digit 3 0 4
a2 = D (Fs (Fs Fz))
a3 : Digit 3 0 4
a3 = D (Fs (Fs (Fs Fz)))
a : System 2 1 2
a = Sys (one ∷ two ∷ two ∷ [])
| 30.319703
| 164
| 0.48541
|
437bf4eb1819e32a63725fd04ff37541f4169d0a
| 10,911
|
agda
|
Agda
|
Cubical/Foundations/HLevels.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/HLevels.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/HLevels.agda
|
limemloh/cubical
|
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
|
[
"MIT"
] | null | null | null |
{-
Basic theory about h-levels/n-types:
- Basic properties of isContr, isProp and isSet (definitions are in Prelude)
- Hedberg's theorem can be found in Cubical/Relation/Nullary/DecidableEq
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.HLevels where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.FunExtEquiv
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HAEquiv using (congEquiv)
open import Cubical.Foundations.Univalence using (ua; univalence)
open import Cubical.Data.Sigma using (ΣPathP; sigmaPath→pathSigma; pathSigma≡sigmaPath; _Σ≡T_)
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-comm)
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : A → Type ℓ
x y : A
n : ℕ
hProp : ∀ ℓ → Type (ℓ-suc ℓ)
hProp ℓ = Σ (Type ℓ) isProp
isOfHLevel : ℕ → Type ℓ → Type ℓ
isOfHLevel 0 A = isContr A
isOfHLevel 1 A = isProp A
isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y)
HLevel : ∀ ℓ → ℕ → Type (ℓ-suc ℓ)
HLevel ℓ n = Σ[ A ∈ Type ℓ ] (isOfHLevel n A)
inhProp→isContr : A → isProp A → isContr A
inhProp→isContr x h = x , h x
isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ}
→ (extend : ∀ φ → Partial φ A → A)
→ (∀ u → u ≡ (extend i1 λ { _ → u}))
→ isContr A
isContrPartial→isContr {A = A} extend law
= ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y)
where ex = extend i0 empty
module Aux (y : A) (i : I) where
φ = ~ i ∨ i
u : Partial φ A
u = λ { (i = i0) → ex ; (i = i1) → y }
v = extend φ u
-- Dependent h-level over a type
isOfHLevelDep : ℕ → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
isOfHLevelDep 0 {A = A} B = {a : A} → Σ[ b ∈ B a ] ({a' : A} (b' : B a') (p : a ≡ a') → PathP (λ i → B (p i)) b b')
isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1
isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1)
isOfHLevel→isOfHLevelDep : (n : ℕ)
→ {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B
isOfHLevel→isOfHLevelDep 0 h {a} =
(h a .fst , λ b' p → isProp→PathP (λ i → isContr→isProp (h (p i))) (h a .fst) b')
isOfHLevel→isOfHLevelDep 1 h = λ b0 b1 p → isProp→PathP (λ i → h (p i)) b0 b1
isOfHLevel→isOfHLevelDep (suc (suc n)) {A = A} {B} h {a0} {a1} b0 b1 =
isOfHLevel→isOfHLevelDep (suc n) (λ p → helper a1 p b1)
where
helper : (a1 : A) (p : a0 ≡ a1) (b1 : B a1) →
isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)
helper a1 p b1 = J
(λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1))
(λ _ → h _ _ _) p b1
-- Fillers for cubes from h-level
isSet→isSet' : isSet A → isSet' A
isSet→isSet' {A = A} Aset a₀₋ a₁₋ a₋₀ a₋₁ =
transport⁻ (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋) (Aset _ _ _ _)
isSet'→isSet : isSet' A → isSet A
isSet'→isSet {A = A} Aset' x y p q = Aset' p q refl refl
isGroupoid→isGroupoid' : {A : Type ℓ} → isGroupoid A → isGroupoid' A
isGroupoid→isGroupoid' {A = A} Agpd a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ =
transport⁻ (PathP≡Path (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋)
(isGroupoid→isPropSquare _ _ _ _ _ _)
where
isGroupoid→isPropSquare :
{a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁)
{a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁)
(a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁)
→ isProp (Square a₀₋ a₁₋ a₋₀ a₋₁)
isGroupoid→isPropSquare a₀₋ a₁₋ a₋₀ a₋₁ =
transport⁻
(cong isProp (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋))
(Agpd _ _ _ _)
isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A
isGroupoid'→isGroupoid Agpd' x y p q r s = Agpd' r s refl refl refl refl
-- hlevels are preserved by retracts (and consequently equivalences)
retractIsContr
: ∀ {B : Type ℓ}
→ (f : A → B) (g : B → A)
→ (h : retract f g)
→ (v : isContr B) → isContr A
retractIsContr f g h (b , p) = (g b , λ x → (cong g (p (f x))) ∙ (h x))
retractIsProp
: {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isProp B → isProp A
retractIsProp f g h p x y i =
hcomp
(λ j → λ
{ (i = i0) → h x j
; (i = i1) → h y j})
(g (p (f x) (f y) i))
retractIsOfHLevel
: (n : ℕ) {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isOfHLevel n B → isOfHLevel n A
retractIsOfHLevel 0 = retractIsContr
retractIsOfHLevel 1 = retractIsProp
retractIsOfHLevel (suc (suc n)) f g h ofLevel x y =
retractIsOfHLevel (suc n)
(cong f)
(λ q i →
hcomp
(λ j → λ
{ (i = i0) → h x j
; (i = i1) → h y j})
(g (q i)))
(λ p k i →
hcomp
(λ j → λ
{ (i = i0) → h x (j ∨ k)
; (i = i1) → h y (j ∨ k)
; (k = i1) → p i})
(h (p i) k))
(ofLevel (f x) (f y))
hLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : ℕ) → A ≃ B → isOfHLevel n A → isOfHLevel n B
hLevelRespectEquiv n eq = retractIsOfHLevel n (invEq eq) (eq .fst) (retEq eq)
-- hlevel of path and dependent path types
isProp→isPropPathP : {A : I → Type ℓ} (isPropA : ∀ i → isProp (A i))
(g : A i0) (h : A i1)
→ isProp (PathP A g h)
isProp→isPropPathP {A = A} isPropA g h =
transport⁻ (λ i → isProp (PathP≡Path A g h i)) (isProp→isSet (isPropA i1) _ _)
isProp→isContrPathP : {A : I → Type ℓ} (isPropA : ∀ i → isProp (A i))
(g : A i0) (h : A i1)
→ isContr (PathP A g h)
isProp→isContrPathP isPropA g h =
inhProp→isContr (isProp→PathP isPropA g h) (isProp→isPropPathP isPropA g h)
-- inhProp→isContr (isProp→PathP (λ i → isPropB (m i)) g h) (isProp→isPropPathP isPropB m g h)
isProp→isContr≡ : isProp A → (x y : A) → isContr (x ≡ y)
isProp→isContr≡ isPropA x y = inhProp→isContr (isPropA x y) (isProp→isSet isPropA x y)
isContrPath : isContr A → (x y : A) → isContr (x ≡ y)
isContrPath cA = isProp→isContr≡ (isContr→isProp cA)
hLevelPath : (n : ℕ) → isOfHLevel (suc n) A → (x y : A) → isOfHLevel n (x ≡ y)
hLevelPath zero h = isProp→isContr≡ h
hLevelPath (suc n) h = h
-- h-level of Σ-types
isContrSigma
: isContr A
→ ((x : A) → isContr (B x))
→ isContr (Σ[ x ∈ A ] B x)
isContrSigma {A = A} {B = B} (a , p) q =
let h : (x : A) (y : B x) → (q x) .fst ≡ y
h x y = (q x) .snd y
in (( a , q a .fst)
, ( λ x i → p (x .fst) i
, h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i))
ΣProp≡
: ((x : A) → isProp (B x)) → {u v : Σ[ a ∈ A ] B a}
→ (p : u .fst ≡ v .fst) → u ≡ v
ΣProp≡ pB {u} {v} p i = (p i) , isProp→PathP (λ i → pB (p i)) (u .snd) (v .snd) i
isPropSigma : isProp A → ((x : A) → isProp (B x)) → isProp (Σ[ x ∈ A ] B x)
isPropSigma pA pB t u = ΣProp≡ pB (pA (t .fst) (u .fst))
isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n (Σ A B)
isOfHLevelΣ 0 = isContrSigma
isOfHLevelΣ 1 = isPropSigma
isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y =
let h3 : isOfHLevel (suc n) (x Σ≡T y)
h3 = isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ p → h2 (p i1)
(subst B p (snd x)) (snd y)
in transport (λ i → isOfHLevel (suc n) (pathSigma≡sigmaPath x y (~ i))) h3
-- h-level of Π-types
propPi : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x)
propPi h f0 f1 i x = h x (f0 x) (f1 x) i
hLevelPi
: ∀ n
→ ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n ((x : A) → B x)
hLevelPi 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i
hLevelPi {B = B} 1 h f g i x = (h x) (f x) (g x) i
hLevelPi (suc (suc n)) h f g =
subst (isOfHLevel (suc n)) funExtPath (hLevelPi (suc n) λ x → h x (f x) (g x))
isSetPi : ((x : A) → isSet (B x)) → isSet ((x : A) → B x)
isSetPi Bset = hLevelPi 2 (λ a → Bset a)
-- lower h-levels imply higher h-levels
hLevelSuc : (n : ℕ) (A : Type ℓ) → isOfHLevel n A → isOfHLevel (suc n) A
hLevelSuc 0 A = isContr→isProp
hLevelSuc 1 A = isProp→isSet
hLevelSuc (suc (suc n)) A h a b = hLevelSuc (suc n) (a ≡ b) (h a b)
hLevelLift : (m : ℕ) (hA : isOfHLevel n A) → isOfHLevel (m + n) A
hLevelLift zero hA = hA
hLevelLift {A = A} (suc m) hA = hLevelSuc _ A (hLevelLift m hA)
-- h-level of isOfHLevel
isPropIsProp : isProp (isProp A)
isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i
isPropIsOfHLevel : (n : ℕ) (A : Type ℓ) → isProp (isOfHLevel n A)
isPropIsOfHLevel 0 A = isPropIsContr
isPropIsOfHLevel 1 A = isPropIsProp
isPropIsOfHLevel (suc (suc n)) A f g i a b =
isPropIsOfHLevel (suc n) (a ≡ b) (f a b) (g a b) i
isPropIsSet : isProp (isSet A)
isPropIsSet {A = A} = isPropIsOfHLevel 2 A
-- h-level of A ≃ B and A ≡ B
hLevel≃ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B)
hLevel≃ zero {A = A} {B = B} hA hB = A≃B , contr
where
A≃B : A ≃ B
A≃B = isoToEquiv (iso (λ _ → fst hB) (λ _ → fst hA) (snd hB ) (snd hA))
contr : (y : A ≃ B) → A≃B ≡ y
contr y = ΣProp≡ isPropIsEquiv (funExt (λ a → snd hB (fst y a)))
hLevel≃ (suc n) hA hB =
isOfHLevelΣ (suc n) (hLevelPi (suc n) (λ _ → hB))
(λ a → subst (λ n → isOfHLevel n (isEquiv a)) (+-comm n 1) (hLevelLift n (isPropIsEquiv a)))
hLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) →
isOfHLevel n (A ≡ B)
hLevel≡ n hA hB = hLevelRespectEquiv n (invEquiv univalence) (hLevel≃ n hA hB)
-- h-level of HLevel
HLevel≡ : ∀ {A B : Type ℓ} {hA : isOfHLevel n A} {hB : isOfHLevel n B} →
(A ≡ B) ≡ ((A , hA) ≡ (B , hB))
HLevel≡ {n = n} {A = A} {B = B} {hA} {hB} =
isoToPath (iso intro elim intro-elim elim-intro)
where
intro : A ≡ B → (A , hA) ≡ (B , hB)
intro eq = ΣProp≡ (λ A → isPropIsOfHLevel n _) eq
elim : (A , hA) ≡ (B , hB) → A ≡ B
elim = cong fst
intro-elim : ∀ x → intro (elim x) ≡ x
intro-elim eq = cong ΣPathP (ΣProp≡ (λ e →
J (λ B e →
∀ k → (x y : PathP (λ i → isOfHLevel n (e i)) hA k) → x ≡ y)
(λ k → isProp→isSet (isPropIsOfHLevel n _) _ _) e hB) refl)
elim-intro : ∀ x → elim (intro x) ≡ x
elim-intro eq = refl
isPropHContr : isProp (HLevel ℓ 0)
isPropHContr x y = ΣProp≡ (λ _ → isPropIsContr) ((hLevel≡ 0 (x .snd) (y .snd) .fst))
hLevelHLevel : ∀ n → isOfHLevel (suc n) (HLevel ℓ n)
hLevelHLevel 0 = isPropHContr
hLevelHLevel (suc n) x y = subst (λ e → isOfHLevel (suc n) e) HLevel≡ (hLevel≡ (suc n) (snd x) (snd y))
isSetHProp : isSet (hProp ℓ)
isSetHProp = hLevelHLevel 1
-- h-level of lifted type
isOfHLevelLift : ∀ {ℓ ℓ'} (n : ℕ) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A)
isOfHLevelLift n = retractIsOfHLevel n lower lift λ _ → refl
| 34.971154
| 150
| 0.56136
|
22b17a03b41880725c723b0795dfa7c90256bcd0
| 3,760
|
agda
|
Agda
|
TotalParserCombinators/Laws/ReturnStar.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | 1
|
2020-07-03T08:56:13.000Z
|
2020-07-03T08:56:13.000Z
|
TotalParserCombinators/Laws/ReturnStar.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
TotalParserCombinators/Laws/ReturnStar.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Laws related to return⋆
------------------------------------------------------------------------
module TotalParserCombinators.Laws.ReturnStar where
open import Algebra
open import Category.Monad
open import Codata.Musical.Notation
open import Data.List
import Data.List.Categorical
open import Data.List.Relation.Binary.BagAndSetEquality as Eq
using (bag) renaming (_∼[_]_ to _List-∼[_]_)
open import Function
open import Level
private
module BagMonoid {A : Set} =
CommutativeMonoid (Eq.commutativeMonoid bag A)
open module ListMonad =
RawMonad {f = zero} Data.List.Categorical.monad
using () renaming (_⊛_ to _⊛′_; _>>=_ to _>>=′_)
open import TotalParserCombinators.Derivative using (D)
open import TotalParserCombinators.Congruence
hiding (fail)
import TotalParserCombinators.Laws.AdditiveMonoid as AdditiveMonoid
open import TotalParserCombinators.Laws.Derivative
open import TotalParserCombinators.Lib
open import TotalParserCombinators.Parser
-- return⋆ preserves equality.
cong : ∀ {k Tok R} {xs₁ xs₂ : List R} →
xs₁ List-∼[ k ] xs₂ → return⋆ {Tok = Tok} xs₁ ∼[ k ]P return⋆ xs₂
cong {xs₁ = xs₁} {xs₂} xs₁≈xs₂ = xs₁≈xs₂ ∷ λ t → ♯ (
D t (return⋆ xs₁) ≅⟨ D-return⋆ xs₁ ⟩
fail ≅⟨ sym $ D-return⋆ xs₂ ⟩
D t (return⋆ xs₂) ∎)
-- return⋆ is homomorphic with respect to _++_/_∣_.
distrib-∣ :
∀ {Tok R} (xs₁ xs₂ : List R) →
return⋆ {Tok = Tok} (xs₁ ++ xs₂) ≅P return⋆ xs₁ ∣ return⋆ xs₂
distrib-∣ xs₁ xs₂ =
BagMonoid.refl ∷ λ t → ♯ (
D t (return⋆ (xs₁ ++ xs₂)) ≅⟨ D-return⋆ (xs₁ ++ xs₂) ⟩
fail ≅⟨ sym $ AdditiveMonoid.left-identity fail ⟩
fail ∣ fail ≅⟨ sym $ D-return⋆ xs₁ ∣ D-return⋆ xs₂ ⟩
D t (return⋆ xs₁) ∣ D t (return⋆ xs₂) ∎)
-- return⋆ is homomorphic with respect to _⊛′_/_⊛_.
distrib-⊛ :
∀ {Tok R₁ R₂} (fs : List (R₁ → R₂)) xs →
return⋆ {Tok = Tok} (fs ⊛′ xs) ≅P return⋆ fs ⊛ return⋆ xs
distrib-⊛ fs xs =
BagMonoid.refl ∷ λ t → ♯ (
D t (return⋆ (fs ⊛′ xs)) ≅⟨ D-return⋆ (fs ⊛′ xs) ⟩
fail ≅⟨ sym $ AdditiveMonoid.left-identity fail ⟩
fail ∣ fail ≅⟨ sym $ left-zero-⊛ (return⋆ xs) ∣
right-zero-⊛ (return⋆ fs) ⟩
fail ⊛ return⋆ xs ∣
return⋆ fs ⊛ fail ≅⟨ sym $ [ ○ - ○ - ○ - ○ ] D-return⋆ fs ⊛ (return⋆ xs ∎) ∣
[ ○ - ○ - ○ - ○ ] return⋆ fs ∎ ⊛ D-return⋆ xs ⟩
D t (return⋆ fs) ⊛ return⋆ xs ∣
return⋆ fs ⊛ D t (return⋆ xs) ≅⟨ sym $ D-⊛ (return⋆ fs) (return⋆ xs) ⟩
D t (return⋆ fs ⊛ return⋆ xs) ∎)
-- return⋆ is homomorphic with respect to _>>=′_/_>>=_.
distrib->>= :
∀ {Tok R₁ R₂} xs (f : R₁ → List R₂) →
return⋆ {Tok = Tok} (xs >>=′ f) ≅P return⋆ xs >>= (return⋆ ∘ f)
distrib->>= xs f =
BagMonoid.refl ∷ λ t → ♯ (
D t (return⋆ (xs >>=′ f)) ≅⟨ D-return⋆ (xs >>=′ f) ⟩
fail ≅⟨ sym $ AdditiveMonoid.left-identity fail ⟩
fail ∣ fail ≅⟨ sym $ left-zero->>= (return⋆ ∘ f) ∣
right-zero->>= (return⋆ xs) ⟩
fail >>= (return⋆ ∘ f) ∣
return⋆ xs >>= (λ _ → fail) ≅⟨ sym $ [ ○ - ○ - ○ - ○ ] D-return⋆ xs >>= (λ x → return⋆ (f x) ∎) ∣
[ ○ - ○ - ○ - ○ ] return⋆ xs ∎ >>= (λ x → D-return⋆ (f x)) ⟩
D t (return⋆ xs) >>= (return⋆ ∘ f) ∣
return⋆ xs >>= (λ x → D t (return⋆ (f x))) ≅⟨ sym $ D->>= (return⋆ xs) (return⋆ ∘ f) ⟩
D t (return⋆ xs >>= (return⋆ ∘ f)) ∎)
| 40
| 117
| 0.488032
|
c783d28c18ad643a710e5b0fc42fdc81970f51d5
| 4,497
|
agda
|
Agda
|
theorems/groups/ProductRepr.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/groups/ProductRepr.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/groups/ProductRepr.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module groups.ProductRepr {i j}
{G : Group (lmax i j)} {H₁ : Group i} {H₂ : Group j}
(i₁ : H₁ →ᴳ G) (i₂ : H₂ →ᴳ G) (j₁ : G →ᴳ H₁) (j₂ : G →ᴳ H₂)
(p₁ : ∀ h₁ → GroupHom.f j₁ (GroupHom.f i₁ h₁) == h₁)
(p₂ : ∀ h₂ → GroupHom.f j₂ (GroupHom.f i₂ h₂) == h₂)
(ex₁ : is-exact i₁ j₂) (ex₂ : is-exact i₂ j₁) where
{- Given the following commutative diagram of homomorphisms,
H₁ i₁ i₂ H₂
↘ ↙
id ↓ G ↓ id
↙ ↘
H₁ j₁ j₂ H₂
- assuming i₁,j₂ and i₂,j₁ are exact sequences,
- there exists an isomorphism G == H₁ × H₂ such that i₁,i₂ correspond
- to the natural injections and j₁,j₂ correspond to the natural
- projections. -}
private
module G = Group G
module H₁ = Group H₁
module H₂ = Group H₂
module i₁ = GroupHom i₁
module i₂ = GroupHom i₂
module j₁ = GroupHom j₁
module j₂ = GroupHom j₂
fanout-has-trivial-ker : has-trivial-kerᴳ (×ᴳ-fanout j₁ j₂)
fanout-has-trivial-ker g q = Trunc-rec (G.El-level _ _)
(lemma g (fst×= q))
(ker-sub-im ex₁ g (snd×= q))
where
lemma : ∀ g → j₁.f g == H₁.ident
→ hfiber i₁.f g → g == G.ident
lemma ._ r (h , idp) =
ap i₁.f (! (p₁ h) ∙ r) ∙ i₁.pres-ident
β₁ : (h₁ : H₁.El) (h₂ : H₂.El)
→ j₁.f (G.comp (i₁.f h₁) (i₂.f h₂)) == h₁
β₁ h₁ h₂ =
j₁.pres-comp (i₁.f h₁) (i₂.f h₂)
∙ ap2 H₁.comp (p₁ h₁) (im-sub-ker ex₂ _ [ h₂ , idp ])
∙ H₁.unit-r h₁
β₂ : (h₁ : H₁.El) (h₂ : H₂.El)
→ j₂.f (G.comp (i₁.f h₁) (i₂.f h₂)) == h₂
β₂ h₁ h₂ =
j₂.pres-comp (i₁.f h₁) (i₂.f h₂)
∙ ap2 H₂.comp (im-sub-ker ex₁ _ [ h₁ , idp ]) (p₂ h₂)
∙ H₂.unit-l h₂
iso : G ≃ᴳ (H₁ ×ᴳ H₂)
iso = surjᴳ-and-injᴳ-iso (×ᴳ-fanout j₁ j₂)
(λ {(h₁ , h₂) → [ G.comp (i₁.f h₁) (i₂.f h₂) ,
pair×= (β₁ h₁ h₂) (β₂ h₁ h₂) ]})
(has-trivial-ker-is-injᴳ (×ᴳ-fanout j₁ j₂) fanout-has-trivial-ker)
j₁-fst-comm-sqr : CommSquareᴳ j₁ ×ᴳ-fst (–>ᴳ iso) (idhom _)
j₁-fst-comm-sqr = comm-sqrᴳ λ _ → idp
j₂-snd-comm-sqr : CommSquareᴳ j₂ (×ᴳ-snd {G = H₁}) (–>ᴳ iso) (idhom _)
j₂-snd-comm-sqr = comm-sqrᴳ λ _ → idp
abstract
i₁-inl-comm-sqr : CommSquareᴳ i₁ ×ᴳ-inl (idhom _) (–>ᴳ iso)
i₁-inl-comm-sqr = comm-sqrᴳ λ h₁ →
pair×= (p₁ h₁) (im-sub-ker ex₁ _ [ h₁ , idp ])
i₂-inr-comm-sqr : CommSquareᴳ i₂ ×ᴳ-inr (idhom _) (–>ᴳ iso)
i₂-inr-comm-sqr = comm-sqrᴳ λ h₂ →
pair×= (im-sub-ker ex₂ _ [ h₂ , idp ]) (p₂ h₂)
{- Given additionally maps
i₀ j₀
K –––→ G ––→ L
- such that j₀∘i₀ = 0, we have j₀(i₁(j₁(i₀ k)))⁻¹ = j₀(i₂(j₂(i₀ k))).
- (This is called the hexagon lemma in Eilenberg & Steenrod's book.
- The hexagon is not visible in this presentation.)
-}
module HexagonLemma {k l}
{K : Group k} {L : Group l}
(i₀ : K →ᴳ G) (j₀ : G →ᴳ L)
(ex₀ : ∀ g → GroupHom.f j₀ (GroupHom.f i₀ g) == Group.ident L)
where
abstract
decomp : ∀ g → G.comp (i₁.f (j₁.f g)) (i₂.f (j₂.f g)) == g
decomp g = <– (ap-equiv (GroupIso.f-equiv iso) _ g) $
GroupIso.f iso (G.comp (i₁.f (j₁.f g)) (i₂.f (j₂.f g)))
=⟨ GroupIso.pres-comp iso (i₁.f (j₁.f g)) (i₂.f (j₂.f g)) ⟩
Group.comp (H₁ ×ᴳ H₂) (GroupIso.f iso (i₁.f (j₁.f g))) (GroupIso.f iso (i₂.f (j₂.f g)))
=⟨ ap2 (Group.comp (H₁ ×ᴳ H₂))
((i₁-inl-comm-sqr □$ᴳ j₁.f g) ∙ ap (_, H₂.ident) (j₁-fst-comm-sqr □$ᴳ g))
((i₂-inr-comm-sqr □$ᴳ j₂.f g) ∙ ap (H₁.ident ,_) (j₂-snd-comm-sqr □$ᴳ g)) ⟩
(H₁.comp (fst (GroupIso.f iso g)) H₁.ident , H₂.comp H₂.ident (snd (GroupIso.f iso g)))
=⟨ pair×= (H₁.unit-r (fst (GroupIso.f iso g))) (H₂.unit-l (snd (GroupIso.f iso g))) ⟩
(fst (GroupIso.f iso g) , snd (GroupIso.f iso g))
=⟨ idp ⟩
GroupIso.f iso g
=∎
cancel : ∀ k →
Group.comp L (GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k)
(GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k)
== Group.ident L
cancel k = ! (GroupHom.pres-comp j₀ _ _)
∙ ap (GroupHom.f j₀) (decomp (GroupHom.f i₀ k))
∙ ex₀ k
inv₁ : ∀ k → Group.inv L (GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k)
== GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k
inv₁ k = Group.inv-unique-r L _ _ (cancel k)
inv₂ : ∀ k → Group.inv L (GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k)
== GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k
inv₂ k = Group.inv-unique-l L _ _ (cancel k)
| 35.690476
| 95
| 0.522793
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.