hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
5e304c0d650de105fbec8223391d5945652814c4
693
agda
Agda
test/fail/JasonReedPruning.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/JasonReedPruning.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/fail/JasonReedPruning.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
-- Andreas, 2012-05-04 Example from Jason Reed, LFMTP 2009 {-# OPTIONS --allow-unsolved-metas #-} -- The option is supplied to force a real error to pass the regression test. module JasonReedPruning where open import Common.Equality open import Common.Product data o : Set where f : o -> o test : let U : o → o U = _ V : o → o V = _ W : o → o W = _ in (x y : o) → U x ≡ f (V (W y)) × V x ≡ U (W y) test x y = refl , refl {- Considering U (W y) = V x, we can prune x from V V x = V' After instantiation U x = f V' (solved) V' = U (W y) (not solved) U = \ x → f V' V' = f V' occurs check fails -}
19.25
76
0.532468
43fa482d0e0aeda9378af2f0ae2517ef87958152
5,033
agda
Agda
list-thms2.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
list-thms2.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
list-thms2.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module list-thms2 where open import bool open import bool-thms open import bool-thms2 open import functions open import list open import list-thms open import nat open import nat-thms open import product-thms open import logic list-and-++ : ∀(l1 l2 : 𝕃 𝔹) → list-and (l1 ++ l2) ≡ (list-and l1) && (list-and l2) list-and-++ [] l2 = refl list-and-++ (x :: l1) l2 rewrite (list-and-++ l1 l2) | (&&-assoc x (list-and l1) (list-and l2))= refl list-or-++ : ∀(l1 l2 : 𝕃 𝔹) → list-or (l1 ++ l2) ≡ (list-or l1) || (list-or l2) list-or-++ [] l2 = refl list-or-++ (x :: l1) l2 rewrite (list-or-++ l1 l2) | (||-assoc x (list-or l1) (list-or l2)) = refl ++-singleton : ∀{ℓ}{A : Set ℓ}(a : A)(l1 l2 : 𝕃 A) → (l1 ++ [ a ]) ++ l2 ≡ l1 ++ (a :: l2) ++-singleton a l1 [] rewrite ++[] (l1 ++ a :: []) = refl ++-singleton a l1 l2 rewrite (++-assoc l1 [ a ] l2) = refl list-member-++ : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → list-member eq a (l1 ++ l2) ≡ (list-member eq a l1) || (list-member eq a l2) list-member-++ eq a [] l2 = refl list-member-++ eq a (x :: l1) l2 with eq a x list-member-++ eq a (x :: l1) l2 | tt = refl list-member-++ eq a (x :: l1) l2 | ff rewrite (list-member-++ eq a l1 l2) = refl list-member-++2 : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → list-member eq a l1 ≡ tt → list-member eq a (l1 ++ l2) ≡ tt list-member-++2 eq a [] l2 () list-member-++2 eq a (x :: l1) l2 p with eq a x list-member-++2 eq a (x :: l1) l2 p | tt = refl list-member-++2 eq a (x :: l1) l2 p | ff rewrite (list-member-++2 eq a l1 l2 p) = refl list-member-++3 : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → list-member eq a l2 ≡ tt → list-member eq a (l1 ++ l2) ≡ tt list-member-++3 eq a [] l2 p = p list-member-++3 eq a (x :: l1) l2 p with eq a x list-member-++3 eq a (x :: l1) l2 p | tt = refl list-member-++3 eq a (x :: l1) l2 p | ff rewrite (list-member-++3 eq a l1 l2 p) = refl filter-ff-repeat : ∀{ℓ}{A : Set ℓ}{p : A → 𝔹}{a : A}(n : ℕ) → p a ≡ ff → filter p (repeat n a) ≡ [] filter-ff-repeat zero p1 = refl filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 with keep (p0 a) filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 | tt , y rewrite y = 𝔹-contra (sym p1) filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 | ff , y rewrite y = filter-ff-repeat {ℓ} {A} {p0} {a} n y is-empty-distr : ∀{ℓ}{A : Set ℓ} (l1 l2 : 𝕃 A) → is-empty (l1 ++ l2) ≡ (is-empty l1) && (is-empty l2) is-empty-distr [] l2 = refl is-empty-distr (x :: l1) l2 = refl is-empty-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → is-empty l ≡ is-empty (reverse l) is-empty-reverse [] = refl is-empty-reverse (x :: xs) rewrite (reverse-++h (x :: []) xs) | (is-empty-distr (reverse-helper [] xs) (x :: [])) | (&&-comm (is-empty (reverse-helper [] xs)) ff) = refl reverse-length : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → length (reverse l) ≡ length l reverse-length l = length-reverse-helper [] l last-distr : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A)(x : A)(p : is-empty l ≡ ff) → last (x :: l) refl ≡ last l p last-distr [] x () last-distr (x :: l) x2 refl = refl is-empty-[] : ∀{ℓ}{A : Set ℓ} (l : 𝕃 A)(p : is-empty l ≡ tt) → l ≡ [] is-empty-[] [] p = refl is-empty-[] (x :: l) () rev-help-empty : ∀ {ℓ}{A : Set ℓ} (l1 l2 : 𝕃 A) → (p1 : is-empty l2 ≡ ff) → is-empty (reverse-helper l1 l2) ≡ ff rev-help-empty l1 [] () rev-help-empty l1 (x :: l2) refl rewrite reverse-++h (x :: l1) l2 | is-empty-distr (reverse-helper [] l2) (x :: l1) | (&&-comm (is-empty (reverse-helper [] l2)) ff) = refl is-empty-revh : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A) → is-empty l ≡ ff → is-empty (reverse-helper h l) ≡ ff is-empty-revh h l p = rev-help-empty h l p head-last-reverse-lem : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A)(p : is-empty l ≡ ff) → last l p ≡ head (reverse-helper h l) (is-empty-revh h l p) head-last-reverse-lem h [] () head-last-reverse-lem h (x :: []) _ = refl head-last-reverse-lem h (x :: y :: l) refl = head-last-reverse-lem (x :: h) (y :: l) refl head-last-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A)(p : is-empty l ≡ ff) → last l p ≡ head (reverse l) (rev-help-empty [] l p) head-last-reverse [] () head-last-reverse (x :: l) p with keep (is-empty l) head-last-reverse (x :: l) refl | tt , b rewrite is-empty-[] l b = refl head-last-reverse (x :: l) refl | ff , b rewrite (last-distr l x b) = head-last-reverse-lem (x :: []) l b reverse-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → reverse (reverse l) ≡ l reverse-reverse [] = refl reverse-reverse (x :: l) rewrite (reverse-++h (x :: []) l) | (reverse-++ (reverse-helper [] l) (x :: [])) | reverse-reverse l = refl empty++elem : ∀ {ℓ}{A : Set ℓ} (a : A) (l : 𝕃 A) → is-empty ( l ++ [ a ]) ≡ ff empty++elem a [] = refl empty++elem a (x :: l) = refl last-++ : ∀{ℓ}{A : Set ℓ} (a : A) (l : 𝕃 A) → last (l ++ [ a ]) (empty++elem a l) ≡ a last-++ a [] = refl last-++ a (x :: l) rewrite last-distr (l ++ [ a ]) x (empty++elem a l) | last-++ a l = refl
46.174312
133
0.532287
30dd85a57dcec5345f5949de5e594e3bc7ab249c
2,174
agda
Agda
Cubical/HITs/2GroupoidTruncation/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/2GroupoidTruncation/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/2GroupoidTruncation/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- This file contains: - Properties of 2-groupoid truncations -} {-# OPTIONS --safe #-} module Cubical.HITs.2GroupoidTruncation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.HITs.2GroupoidTruncation.Base private variable ℓ : Level A : Type ℓ rec : ∀ {B : Type ℓ} → is2Groupoid B → (A → B) → ∥ A ∥₄ → B rec gB f ∣ x ∣₄ = f x rec gB f (squash₄ _ _ _ _ _ _ t u i j k l) = gB _ _ _ _ _ _ (λ m n o → rec gB f (t m n o)) (λ m n o → rec gB f (u m n o)) i j k l elim : {B : ∥ A ∥₄ → Type ℓ} (bG : (x : ∥ A ∥₄) → is2Groupoid (B x)) (f : (x : A) → B ∣ x ∣₄) (x : ∥ A ∥₄) → B x elim bG f ∣ x ∣₄ = f x elim bG f (squash₄ x y p q r s u v i j k l) = isOfHLevel→isOfHLevelDep 4 bG _ _ _ _ _ _ (λ j k l → elim bG f (u j k l)) (λ j k l → elim bG f (v j k l)) (squash₄ x y p q r s u v) i j k l elim2 : {B : ∥ A ∥₄ → ∥ A ∥₄ → Type ℓ} (gB : ((x y : ∥ A ∥₄) → is2Groupoid (B x y))) (g : (a b : A) → B ∣ a ∣₄ ∣ b ∣₄) (x y : ∥ A ∥₄) → B x y elim2 gB g = elim (λ _ → is2GroupoidΠ (λ _ → gB _ _)) (λ a → elim (λ _ → gB _ _) (g a)) elim3 : {B : (x y z : ∥ A ∥₄) → Type ℓ} (gB : ((x y z : ∥ A ∥₄) → is2Groupoid (B x y z))) (g : (a b c : A) → B ∣ a ∣₄ ∣ b ∣₄ ∣ c ∣₄) (x y z : ∥ A ∥₄) → B x y z elim3 gB g = elim2 (λ _ _ → is2GroupoidΠ (λ _ → gB _ _ _)) (λ a b → elim (λ _ → gB _ _ _) (g a b)) is2Groupoid2GroupoidTrunc : is2Groupoid ∥ A ∥₄ is2Groupoid2GroupoidTrunc a b p q r s = squash₄ a b p q r s 2GroupoidTruncIdempotent≃ : is2Groupoid A → ∥ A ∥₄ ≃ A 2GroupoidTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥₄ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣₄ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isOfHLevelSuc 4 is2Groupoid2GroupoidTrunc _ _) (λ _ → refl) 2GroupoidTruncIdempotent : is2Groupoid A → ∥ A ∥₄ ≡ A 2GroupoidTruncIdempotent hA = ua (2GroupoidTruncIdempotent≃ hA)
31.507246
89
0.569917
35a717f46694c7e210750fc4912ce475eb357857
14,366
agda
Agda
proglangs-learning/Agda/sv20/assign1/First.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
proglangs-learning/Agda/sv20/assign1/First.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
4
2020-03-10T19:20:21.000Z
2021-06-07T15:39:48.000Z
proglangs-learning/Agda/sv20/assign1/First.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
module sv20.assign1.First where {- Code partially taken from the book "Programming Language Foundations in - Agda" by Philip Wadler, Wen Kokke, Jeremy Siek and many others. The book - can be found at https://plfa.github.io/ - - Based on chapter 1 - Natural numbers - https://plfa.github.io/Naturals/ - - The solution for the homework can be found from line 161 -} data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- Gives us the power of writing `3` to mean `suc (suc (suc zero))` :) {-# BUILTIN NATURAL ℕ #-} import Relation.Binary.PropositionalEquality as Eq open import Function.Base using (flip) open Eq using (_≡_; _≢_; refl; cong; sym; trans) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) _+_ : ℕ → ℕ → ℕ zero + n = n -- +-def₀ (suc m) + n = suc (m + n) -- +-def₁ _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) _^_ : ℕ → ℕ → ℕ n ^ zero = suc zero n ^ (suc m) = n * (n ^ m) -- Monus _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n infixl 6 _+_ _∸_ infixl 7 _*_ infixr 8 _^_ assoc-+ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) assoc-+ zero n p = refl assoc-+ (suc m) n p rewrite assoc-+ m n p = refl comm-+₀ : ∀ (m : ℕ) → m + zero ≡ m comm-+₀ zero = refl -- Proofs on natural numbers can be written in a manner that ressembles a pen -- and paper proof. For example: comm-+₀ (suc n) = begin suc n + zero ≡⟨⟩ -- By addition definition suc (n + zero) ≡⟨ cong suc (comm-+₀ n) ⟩ suc n ∎ -- But often, proofs are written for Agda to check them and not to humans to -- read them. The above proof can be written succintly as: --comm-+₀ (suc n) rewrite comm-+₀ n = refl succ_right : ∀ (n m : ℕ) → suc (n + m) ≡ n + suc m succ_right zero m = refl succ_right (suc n) m rewrite succ_right n m = refl --succ_right (suc n) m = cong suc (succ_right n m) --succ_right (suc n) m = -- begin -- suc (suc n + m) -- ≡⟨⟩ -- suc (suc (n + m)) -- ≡⟨ cong suc (succ_right n m) ⟩ -- suc (n + suc m) -- ≡⟨⟩ -- suc n + suc m -- ∎ comm-+ : ∀ (n m : ℕ) → n + m ≡ m + n comm-+ zero n = sym (comm-+₀ n) comm-+ (suc n) m rewrite comm-+ n m | succ_right m n = refl --comm-+ (suc n) m = trans (cong suc (comm-+ n m)) (succ_right m n) --comm-+ (suc n) m = -- begin -- suc n + m -- ≡⟨⟩ -- +-def₁ -- suc (n + m) -- ≡⟨ cong suc (comm-+ n m) ⟩ -- suc (m + n) -- ≡⟨ succ_right m n ⟩ -- m + suc n -- ∎ swap-m-n-+ : ∀ (m n p) → m + (n + p) ≡ n + (m + p) swap-m-n-+ m n p rewrite sym (assoc-+ m n p) | sym (assoc-+ n m p) | comm-+ m n = refl right-zero-* : ∀ (n : ℕ) → n * 0 ≡ 0 right-zero-* zero = refl right-zero-* (suc n) rewrite right-zero-* n = refl suc-right-* : ∀ (m n) → m * suc n ≡ m + m * n suc-right-* zero n = refl suc-right-* (suc m) n rewrite suc-right-* m n | sym (assoc-+ n m (m * n)) | comm-+ n m | assoc-+ m n (m * n) = refl comm-* : ∀ (m n : ℕ) → m * n ≡ n * m comm-* zero n rewrite right-zero-* n = refl comm-* (suc m) n rewrite comm-* m n | suc-right-* n m = refl distr-*-+ : ∀ (m n p) → (m + n) * p ≡ m * p + n * p distr-*-+ zero _ _ = refl distr-*-+ (suc m) n p rewrite distr-*-+ m n p | assoc-+ p (m * p) (n * p) = refl distl-*-+ : ∀ (p m n) → p * (m + n) ≡ p * m + p * n distl-*-+ zero _ _ = refl distl-*-+ (suc p) m n rewrite distl-*-+ p m n | sym (assoc-+ (m + n) (p * m) (p * n)) | sym (assoc-+ (m + p * m) n (p * n)) | assoc-+ m n (p * m) | comm-+ n (p * m) | assoc-+ m (p * m) n = refl assoc-* : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) assoc-* zero n p = refl assoc-* (suc m) n p rewrite assoc-* m n p | distr-*-+ n (m * n) p | assoc-* m n p = refl swap-m-n-* : ∀ (m n p) → m * (n * p) ≡ n * (m * p) swap-m-n-* m n p rewrite sym (assoc-* m n p) | sym (assoc-* n m p) | comm-* m n = refl ------------------------------------------------------------------------------------------ -- HOMEWORK SOLUTION -- ------------------------------------------------------------------------------------------ -- We want to proof that: distr-^-* : ∀ (m n p) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) -- We will prove the `distr-^-*` by induction. To prove something by induction -- in Agda, we use recursion. -- The first basic case is when `p = 0` distr-^-* m n zero = begin (m * n) ^ zero ≡⟨⟩ -- The builtin option "NATURAL" allows us to write `0` instead of `zero` (m * n) ^ 0 ≡⟨⟩ -- because: n ^ zero = suc zero suc 0 ≡⟨⟩ -- because: zero + n = n suc (0 + 0) ≡⟨⟩ -- because: (suc m) + n = suc (m + n) suc 0 + 0 ≡⟨⟩ -- Agda builtin option "NATURAL" allows us to write `1` instead of `suc 0` 1 + 0 ≡⟨⟩ -- because: zero * n = zero 1 + 0 * 1 ≡⟨⟩ -- because: (suc m) * n = n + (m * n) suc 0 * 1 ≡⟨⟩ -- `1` instead of `suc 0` 1 * 1 ≡⟨⟩ -- because: n ^ zero = suc zero 1 * (n ^ 0) ≡⟨⟩ -- because: n ^ zero = suc zero (m ^ 0) * (n ^ 0) ∎ -- Agda computes every expression it is given until it can't apply any more -- rules, i.e, Agda reduces every expression to its normal form. -- For example, if we give Agda the expression `2 + 1`, it will apply the -- rule `(suc m) + n = suc (m + n)` until it arrives to -- `suc (suc (suc zero))`, `3`. -- -- Notice that every line in the previous proof reduces to `1`. This means -- that Agda read the previous proof as: -- --distr-^-* m n zero = -- begin -- 1 -- ≡⟨⟩ -- 1 -- ≡⟨⟩ -- ... -- 1 -- ≡⟨⟩ -- 1 -- ∎ -- -- So we could have written a shorter proof saying that `1 ≡⟨⟩ 1 ∎` and it -- would sufficient for Agda to approve our proof. -- --distr-^-* _ _ zero = 1 ≡⟨⟩ 1 ∎ -- -- In fact, `1 ≡⟨⟩ 1 ∎` can be written as `refl` in Agda. -- --distr-^-* _ _ zero = refl -- The following two base cases can be easily proven with the same technique as -- the previous proof: distr-^-* zero _ (suc p) = refl -- For the last base case, we need a little more human involvement because the -- expressions do not reduce completly to a common normal form. distr-^-* (suc m) zero (suc p) = begin (suc m * 0) ^ suc p ≡⟨⟩ -- Agda reduces the expression to m * 0 * (m * 0) ^ p -- Applying `right-zero-*` (`n * 0 ≡ 0`) lemma to the left side ≡⟨ cong (_* (m * 0) ^ p) (right-zero-* m) ⟩ 0 * (m * 0) ^ p ≡⟨⟩ -- reduces to 0 -- Applying `sym ∘ right-zero-*` (`0 ≡ n * 0`) lemma to the left side ≡⟨ sym (right-zero-* (suc m ^ suc p)) ⟩ (suc m ^ suc p) * 0 ≡⟨⟩ -- reduces to (suc m ^ p + m * suc m ^ p) * 0 ≡⟨⟩ -- reduced from our goal (suc m ^ suc p) * (0 ^ suc p) ∎ -- -- Notice how the previous proof required us to tell Agda which "lemmas" to use -- to be able to link the left side of the proof with the right side. -- -- As before, we have more ways to write the previous proof. We can forgo all -- the intermediate steps and tell Agda which lemmas the proof needs. -- --distr-^-* (suc m) 0 (suc p) = -- trans -- (cong (_* (m * 0) ^ p) (right-zero-* m)) -- (sym (right-zero-* (suc m ^ suc p))) -- -- An even shorter proof can be written using `rewrite`. `rewrite` will try to -- apply the `lemmas` we tell it to apply once, descending order. If the -- rewriting process works by the end, we will only need `refl` to indicate -- that both sides of the proof are the same. -- --distr-^-* (suc m) zero (suc p) -- rewrite ---- We start with what we want to proof: ---- ---- (suc m * zero) ^ suc p ≡ suc m ^ suc p * zero ^ suc p ---- ---- which reduces to ---- ---- m * 0 * (m * 0) ^ p ≡ (suc m ^ p + m * suc m ^ p) * 0 ---- -- right-zero-* m -- asking to rewrite all appearances of `m * 0` for `0` ---- ---- λ m p → 0 * 0 ^ p ≡ (suc m ^ p + m * suc m ^ p) * 0 ---- ---- which reduces to ---- ---- 0 ≡ (suc m ^ p + m * suc m ^ p) * 0 ---- -- -- asking to rewrite all appearances of `(suc m ^ suc p) * 0` for `0` -- -- (notice that: `(suc m ^ suc p)` reduces to `(suc m ^ p + m * suc m ^ p)`) -- | right-zero-* (suc m ^ suc p) ---- ---- 0 ≡ 0 ---- ---- We have arrived to a expression where both sides are equal. Thus we have ---- found a proof. -- = refl -- -- The final part of the inductive proof requires us to proof the inductive -- case: distr-^-* (suc m) (suc n) (suc p) rewrite -- First we start with expression: -- -- (m * n) ^ p ≡ (m ^ p) * (n ^ p) -- -- Reducing the expression to its normal form: -- -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ (suc m ^ p + m * suc m ^ p) * (suc n ^ p + n * suc n ^ p) -- Applying distributivity of _+_ over _*_ distr-*-+ (suc m ^ p) (m * suc m ^ p) (suc n ^ p + n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * (suc n ^ p + n * suc n ^ p) -- + m * suc m ^ p * (suc n ^ p + n * suc n ^ p) | assoc-* m (suc m ^ p) (suc n ^ p + n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * (suc n ^ p + n * suc n ^ p) -- + m * (suc m ^ p * (suc n ^ p + n * suc n ^ p)) | distl-*-+ (suc m ^ p) (suc n ^ p) (n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | comm-* m (suc n) -- suc (n + (m + n * m)) ^ p -- + (n + (m + n * m)) * suc (n + (m + n * m)) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | comm-* n m -- suc (n + (m + m * n)) ^ p -- + (n + (m + m * n)) * suc (n + (m + m * n)) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | sym (suc-right-* m n) -- suc (n + m * suc n) ^ p -- + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distr-^-* (suc m) (suc n) p -- INDUCTIVE HYPOTHESIS!! -- suc m ^ p * suc n ^ p + (n + m * suc n) * (suc m ^ p * suc n ^ p) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distr-*-+ n (m * suc n) (suc m ^ p * suc n ^ p) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + m * suc n * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distl-*-+ m (suc m ^ p * suc n ^ p) (suc m ^ p * (n * suc n ^ p)) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + m * suc n * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | comm-* m (suc n) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + (m + n * m) * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | distr-*-+ m (n * m) (suc m ^ p * suc n ^ p) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | swap-m-n-* n (suc m ^ p) (suc n ^ p) -- suc m ^ p * suc n ^ p + -- (suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | swap-m-n-* (suc m ^ p) n (suc n ^ p) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (n * (suc m ^ p * suc n ^ p))) | sym (assoc-* m n (suc m ^ p * suc n ^ p)) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * n * (suc m ^ p * suc n ^ p)) | comm-* m n -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) | assoc-+ (suc m ^ p * suc n ^ p) (n * (suc m ^ p * suc n ^ p)) (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) -- -- We finally find that the two expressions are equal! -- -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- -- QED = refl -- The full proof without comments: --distr-^-* : ∀ (m n p) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) --distr-^-* _ _ zero = refl --distr-^-* zero _ (suc p) = refl --distr-^-* (suc m) zero (suc p) -- rewrite -- right-zero-* m -- | right-zero-* (suc m ^ suc p) -- = refl --distr-^-* (suc m) (suc n) (suc p) -- rewrite -- distr-*-+ (suc m ^ p) (m * suc m ^ p) (suc n ^ p + n * suc n ^ p) -- | assoc-* m (suc m ^ p) (suc n ^ p + n * suc n ^ p) -- | distl-*-+ (suc m ^ p) (suc n ^ p) (n * suc n ^ p) -- | comm-* m (suc n) -- | comm-* n m -- | sym (suc-right-* m n) -- | distr-^-* (suc m) (suc n) p -- | distr-*-+ n (m * suc n) (suc m ^ p * suc n ^ p) -- | distl-*-+ m (suc m ^ p * suc n ^ p) (suc m ^ p * (n * suc n ^ p)) -- | comm-* m (suc n) -- | distr-*-+ m (n * m) (suc m ^ p * suc n ^ p) -- | swap-m-n-* n (suc m ^ p) (suc n ^ p) -- | swap-m-n-* (suc m ^ p) n (suc n ^ p) -- | sym (assoc-* m n (suc m ^ p * suc n ^ p)) -- | comm-* m n -- | assoc-+ (suc m ^ p * suc n ^ p) (n * (suc m ^ p * suc n ^ p)) -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) -- = refl
32.138702
90
0.450717
8b1d613500ca1dab89ffdda1138ffa9c3b2eda10
3,206
agda
Agda
agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to All ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Functional.Relation.Unary.All.Properties where open import Data.Fin.Base open import Data.Fin.Properties open import Data.Nat.Base open import Data.Product as Σ using (_×_; _,_; proj₁; proj₂; uncurry) open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]) open import Data.Vec.Functional as VF hiding (map) open import Data.Vec.Functional.Relation.Unary.All open import Function open import Level using (Level) open import Relation.Unary private variable a b c p q r ℓ : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- map module _ {P : Pred A p} {Q : Pred B q} {f : A → B} where map⁺ : (∀ {x} → P x → Q (f x)) → ∀ {n xs} → All P {n = n} xs → All Q (VF.map f xs) map⁺ pq ps i = pq (ps i) ------------------------------------------------------------------------ -- replicate module _ {P : Pred A p} {x : A} {n : ℕ} where replicate⁺ : P x → All P (replicate {n = n} x) replicate⁺ = const ------------------------------------------------------------------------ -- _⊛_ module _ {P : Pred A p} {Q : Pred B q} where ⊛⁺ : ∀ {n} {fs : Vector (A → B) n} {xs} → All (λ f → ∀ {x} → P x → Q (f x)) fs → All P xs → All Q (fs ⊛ xs) ⊛⁺ pqs ps i = (pqs i) (ps i) ------------------------------------------------------------------------ -- zipWith module _ {P : Pred A p} {Q : Pred B q} {R : Pred C r} where zipWith⁺ : ∀ {f} → (∀ {x y} → P x → Q y → R (f x y)) → ∀ {n xs ys} → All P xs → All Q ys → All R (zipWith f {n = n} xs ys) zipWith⁺ pqr ps qs i = pqr (ps i) (qs i) ------------------------------------------------------------------------ -- zip module _ {P : Pred A p} {Q : Pred B q} {n} {xs : Vector A n} {ys} where zip⁺ : All P xs → All Q ys → All (P ⟨×⟩ Q) (zip xs ys) zip⁺ ps qs i = ps i , qs i zip⁻ : All (P ⟨×⟩ Q) (zip xs ys) → All P xs × All Q ys zip⁻ pqs = proj₁ ∘ pqs , proj₂ ∘ pqs ------------------------------------------------------------------------ -- head head⁺ : ∀ (P : Pred A p) {n v} → All P v → P (head {n = n} v) head⁺ P ps = ps zero ------------------------------------------------------------------------ -- tail tail⁺ : ∀ (P : Pred A p) {n v} → All P v → All P (tail {n = n} v) tail⁺ P ps = ps ∘ suc ------------------------------------------------------------------------ -- ++ module _ (P : Pred A p) {m n : ℕ} {xs : Vector A m} {ys : Vector A n} where ++⁺ : All P xs → All P ys → All P (xs ++ ys) ++⁺ pxs pys i with splitAt m i ... | inj₁ i′ = pxs i′ ... | inj₂ j′ = pys j′ module _ (P : Pred A p) {m n : ℕ} (xs : Vector A m) {ys : Vector A n} where ++⁻ˡ : All P (xs ++ ys) → All P xs ++⁻ˡ ps i with ps (inject+ n i) ... | p rewrite splitAt-inject+ m n i = p ++⁻ʳ : All P (xs ++ ys) → All P ys ++⁻ʳ ps i with ps (raise m i) ... | p rewrite splitAt-raise m n i = p ++⁻ : All P (xs ++ ys) → All P xs × All P ys ++⁻ ps = ++⁻ˡ ps , ++⁻ʳ ps
29.412844
75
0.411104
347582945ec4c8a4e04be35bc1616f68153d8f57
1,973
agda
Agda
test/Fail/Issue3882.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3882.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3882.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} data _≡_ {ℓ} {A : Set ℓ} (x : A) : A → Set ℓ where instance refl : x ≡ x {-# BUILTIN REWRITE _≡_ #-} postulate admit : ∀ {ℓ} {A : Set ℓ} → A X : Set postulate Wrap : Set → Set wrap : {A : Set} → A → Wrap A rec : (A : Set) (P : Set) → (A → P) → Wrap A → P Rec : (A : Set) (P : Set₁) → (A → P) → Wrap A → P Rec-β : {A : Set} (P : Set₁) → ∀ f → (a : A) → Rec A P f (wrap a) ≡ f a {-# REWRITE Rec-β #-} -- bug disappears without this record Σ {ℓ} (A : Set ℓ) (B : A → Set) : Set ℓ where constructor _,_ field fst : A snd : B fst open Σ public -- bug disappears if Comp or isFib is not wrapped in a record record Comp (A : X → Set) : Set where field comp : ∀ s → A s open Comp public record isFib {Γ : Set} (A : Γ → Set) : Set where field lift : (p : X → Γ) → Comp (λ x → A (p x)) open isFib public compSys : (ψ : X → Set) (A : Σ X (λ x → Wrap (ψ x)) → Set) (u : ∀ s → Wrap (ψ s)) (s : X) → A (s , u s) compSys ψ A u s = rec (∀ i → ψ i) (A (s , u s)) (λ v → subst (λ s → wrap (v s)) (λ s → u s) admit .lift (λ s → s) .comp s) admit where subst : (w w' : ∀ i → Wrap (ψ i)) → isFib (λ s → A (s , w s)) → isFib (λ s → A (s , w' s)) subst = admit -- bug disappears if ×id is inlined ×id : {A A' : Set} {B : A' → Set} (f : A → A') → Σ A (λ x → B (f x)) → Σ A' B ×id f (a , b) = (f a , b) fib : (ψ : X → Set) (A : Σ X (λ x → Wrap (ψ x)) → Set) → isFib A fib ψ A .lift p .comp = compSys (λ x → ψ (p x .fst)) (λ xu → A (×id (λ x → p x .fst) xu)) (λ x → p x .snd) -- bug seems to disappear if the underscore in (Σ Set _) is filled in template : (ψ : X → Set) → X → Σ (Σ X (λ x → Wrap (ψ x)) → Set) isFib template ψ n = (_ , fib ψ (λ b → Rec (ψ (b .fst)) (Σ Set _) (λ _ → admit) (b .snd) .fst)) eq : {B : Set₁} (f : X → B) {x y : X} → f x ≡ f y eq = admit templateEq : (ψ : X → Set) (n₀ : X) → template ψ n₀ ≡ template ψ n₀ templateEq ψ n₀ = eq (template ψ)
24.974684
92
0.489103
ad6aab2d832e215aa20babe8e8dc074875b572fe
2,388
agda
Agda
test/interaction/NiceGoals.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/interaction/NiceGoals.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/interaction/NiceGoals.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module NiceGoals where ------------------------------------------------------------------------ postulate Level : Set zero : Level suc : (i : Level) → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} ------------------------------------------------------------------------ record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Carrier → Carrier → Set ℓ _∙_ : Carrier → Carrier → Carrier ε : Carrier module M (rm : RawMonoid zero zero) where open RawMonoid rm thm : ∀ x → x ∙ ε ≈ x thm = {!!} -- agda2-goal-and-context: -- rm : RawMonoid zero zero -- ------------------------ -- Goal: (x : RawMonoid.Carrier rm) → -- RawMonoid._≈_ rm (RawMonoid._∙_ rm x (RawMonoid.ε rm)) x ------------------------------------------------------------------------ record RawMonoid′ : Set₁ where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set _≈_ : Carrier → Carrier → Set _∙_ : Carrier → Carrier → Carrier ε : Carrier module M′ (rm : RawMonoid′) where open RawMonoid′ rm thm′ : ∀ x → x ∙ ε ≈ x thm′ = {!!} -- agda2-goal-and-context: -- rm : RawMonoid′ -- --------------- -- Goal: (x : Carrier) → x ∙ ε ≈ x ------------------------------------------------------------------------ -- UP isn't relevant. record RawMonoid″ (Carrier : Set) : Set₁ where infixl 7 _∙_ infix 4 _≈_ field _≈_ : Carrier → Carrier → Set _∙_ : Carrier → Carrier → Carrier ε : Carrier data Bool : Set where true false : Bool data List (A : Set) : Set where [] : List A _∷_ : (x : A)(xs : List A) → List A module M″ (rm : RawMonoid″ (List Bool)) where open RawMonoid″ rm thm″ : ∀ x → x ∙ ε ≈ x thm″ = {!!} -- agda2-goal-and-context: -- rm : RawMonoid″ (List Bool) -- --------------------------- -- Goal: (x : List Bool) → -- RawMonoid″._≈_ rm (RawMonoid″._∙_ rm x (RawMonoid″.ε rm)) x module M₁ (Z : Set₁) where postulate P : Set Q : Set → Set module M₂ (X Y : Set) where module M₁′ = M₁ Set open M₁′ p : P p = {!!} q : Q X q = {!!} postulate X : Set pp : M₂.M₁′.P X X pp = {!!}
19.414634
72
0.45603
4369bd472794f97584559c9cf0ed26c6b4c2ea3c
555
agda
Agda
Agda/AML.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
2
2020-02-03T05:05:52.000Z
2020-03-11T10:35:42.000Z
Agda/AML.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
null
null
null
Agda/AML.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
1
2019-12-13T04:50:46.000Z
2019-12-13T04:50:46.000Z
module AML where open import Level open import Data.Product data satisfied (a : Set) (m : Set → Set) : Set where s : m a → satisfied a m data reachability (m₀ : Set → Set) (m : Set → Set) : Set where tt : reachability m₀ m data necessarity (m₀ : Set → Set) (a : Set) : Set₁ where n : ∀ m → (reachability m₀ m) → satisfied a m → necessarity m₀ a □_ : Set → Set₁ □_ = necessarity {!!} data posibility (m₀ : Set → Set) (a : Set) : Set₁ where p : ∃[ m ](reachability m₀ m → satisfied a m) → posibility m₀ a ◇_ : Set → Set₁ ◇_ = posibility {!!}
24.130435
66
0.621622
58d5b3f906cffdfdfc4cdea58dbcc26f9b8af597
830
agda
Agda
HoTT/Exercises/Chapter3/Exercise10.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Exercises/Chapter3/Exercise10.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Exercises/Chapter3/Exercise10.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence open import HoTT.Equivalence.Lift open import HoTT.Identity.Sigma open import HoTT.Identity.Universe open import HoTT.HLevel open import HoTT.Logic module HoTT.Exercises.Chapter3.Exercise10 {i} where postulate lem : LEM {lsuc i} _ : Prop𝒰 i ≃ Prop𝒰 (lsuc i) _ = f , qinv→isequiv (g , η , ε) where f : _ f P = LiftProp P g : _ g P with lem P ... | inl _ = ⊤ ... | inr _ = ⊥ η : g ∘ f ~ id η P with lem (f P) ... | inl t = hlevel⁼ (ua (prop-equiv (const (lower t)) (const ★))) ... | inr f = hlevel⁼ (ua (prop-equiv 𝟎-rec (𝟎-rec ∘ f ∘ lift))) ε : f ∘ g ~ id ε P with lem P ... | inl t = hlevel⁼ (ua (Lift-equiv ∙ₑ prop-equiv (const t) (const ★))) ... | inr f = hlevel⁼ (ua (Lift-equiv ∙ₑ prop-equiv 𝟎-rec (𝟎-rec ∘ f)))
25.9375
75
0.603614
43f980e126ff82cc2e3193932c44ef7d04c1acab
3,888
agda
Agda
UniDB/Morph/Shifts.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Morph/Shifts.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Morph/Shifts.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
module UniDB.Morph.Shifts where open import UniDB.Spec -------------------------------------------------------------------------------- data Shifts : MOR where refl : {γ : Dom} → Shifts γ γ step : {γ₁ γ₂ : Dom} (ξ : Shifts γ₁ γ₂) → Shifts γ₁ (suc γ₂) skip : {γ₁ γ₂ : Dom} (ξ : Shifts γ₁ γ₂) → Shifts (suc γ₁) (suc γ₂) shiftIx : {γ₁ γ₂ : Dom} (ξ : Shifts γ₁ γ₂) (i : Ix γ₁) → Ix γ₂ shiftIx refl i = i shiftIx (step ξ) i = suc (shiftIx ξ i) shiftIx (skip ξ) zero = zero shiftIx (skip ξ) (suc i) = suc (shiftIx ξ i) -------------------------------------------------------------------------------- instance iLkShifts : {T : STX} {{vrT : Vr T}} → Lk T Shifts lk {{iLkShifts}} ξ i = vr (shiftIx ξ i) iUpShifts : Up Shifts _↑₁ {{iUpShifts}} refl = refl _↑₁ {{iUpShifts}} ξ = skip ξ _↑_ {{iUpShifts}} ξ 0 = ξ _↑_ {{iUpShifts}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpShifts}} ξ = refl ↑-suc {{iUpShifts}} ξ δ⁺ = refl iIdmShifts : Idm Shifts idm {{iIdmShifts}} γ = refl {γ} iWkmShifts : Wkm Shifts wkm {{iWkmShifts}} zero = idm _ wkm {{iWkmShifts}} (suc δ) = step (wkm δ) iCompShifts : Comp Shifts _⊙_ {{iCompShifts}} ξ₁ refl = ξ₁ _⊙_ {{iCompShifts}} ξ₁ (step ξ₂) = step (ξ₁ ⊙ ξ₂) _⊙_ {{iCompShifts}} refl (skip ξ₂) = skip ξ₂ _⊙_ {{iCompShifts}} (step ξ₁) (skip ξ₂) = step (ξ₁ ⊙ ξ₂) _⊙_ {{iCompShifts}} (skip ξ₁) (skip ξ₂) = skip (ξ₁ ⊙ ξ₂) -------------------------------------------------------------------------------- shiftIx-⊙ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts γ₁ γ₂) (ξ₂ : Shifts γ₂ γ₃) → (i : Ix γ₁) → shiftIx (ξ₁ ⊙ ξ₂) i ≡ shiftIx ξ₂ (shiftIx ξ₁ i) shiftIx-⊙ ξ₁ refl i = refl shiftIx-⊙ ξ₁ (step ξ₂) i = cong suc (shiftIx-⊙ ξ₁ ξ₂ i) shiftIx-⊙ refl (skip ξ₂) i = refl shiftIx-⊙ (step ξ₁) (skip ξ₂) i = cong suc (shiftIx-⊙ ξ₁ ξ₂ i) shiftIx-⊙ (skip ξ₁) (skip ξ₂) zero = refl shiftIx-⊙ (skip ξ₁) (skip ξ₂) (suc i) = cong suc (shiftIx-⊙ ξ₁ ξ₂ i) shiftIx-wkm : {γ : Dom} (δ : Dom) (i : Ix γ) → shiftIx (wkm δ) i ≡ wk δ i shiftIx-wkm zero i = refl shiftIx-wkm (suc δ) i = cong suc (shiftIx-wkm δ i) -------------------------------------------------------------------------------- instance iUpIdmShifts : UpIdm Shifts idm-↑₁ {{iUpIdmShifts}} = refl iCompIdmShifts : CompIdm Shifts ⊙-idm {{iCompIdmShifts}} ξ = refl idm-⊙ {{iCompIdmShifts}} refl = refl idm-⊙ {{iCompIdmShifts}} (step ξ) = cong step (idm-⊙ ξ) idm-⊙ {{iCompIdmShifts}} (skip ξ) = refl iUpCompShifts : UpComp Shifts ⊙-↑₁ {{iUpCompShifts}} ξ refl = refl ⊙-↑₁ {{iUpCompShifts}} refl (step ζ) = cong (skip ∘ step) (idm-⊙ ζ) ⊙-↑₁ {{iUpCompShifts}} (step ξ) (step ζ) = refl ⊙-↑₁ {{iUpCompShifts}} (skip ξ) (step ζ) = refl ⊙-↑₁ {{iUpCompShifts}} refl (skip ζ) = refl ⊙-↑₁ {{iUpCompShifts}} (step ξ) (skip ζ) = refl ⊙-↑₁ {{iUpCompShifts}} (skip ξ) (skip ζ) = refl iWkmHomShifts : WkmHom Shifts wkm-zero {{iWkmHomShifts}} = refl wkm-suc {{iWkmHomShifts}} δ = refl module _ {T : STX} {{vrT : Vr T}} where instance iLkUpShifts : {{wkT : Wk T}} {{wkVrT : WkVr T}} → LkUp T Shifts lk-↑₁-zero {{iLkUpShifts}} refl = refl lk-↑₁-zero {{iLkUpShifts}} (step ξ) = refl lk-↑₁-zero {{iLkUpShifts}} (skip ξ) = refl lk-↑₁-suc {{iLkUpShifts}} refl i = sym (wk₁-vr i) lk-↑₁-suc {{iLkUpShifts}} (step ξ) i = sym (wk₁-vr (suc (shiftIx ξ i))) lk-↑₁-suc {{iLkUpShifts}} (skip ξ) i = sym (wk₁-vr (shiftIx (skip ξ) i)) iLkRenShifts : LkRen T Shifts lk-ren {{iLkRenShifts}} ξ i = refl iLkIdmShifts : LkIdm T Shifts lk-idm {{iLkIdmShifts}} i = refl iLkWkmShifts : LkWkm T Shifts lk-wkm {{iLkWkmShifts}} δ i = cong vr (shiftIx-wkm δ i) --------------------------------------------------------------------------------
35.669725
80
0.508745
43f8313682311f338bce928ecd9db15df1954408
313
agda
Agda
Cubical/Data/Empty/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/Empty/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/Empty/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Empty.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Empty.Base isProp⊥ : isProp ⊥ isProp⊥ () isContr⊥→A : ∀ {ℓ} {A : Type ℓ} → isContr (⊥ → A) fst isContr⊥→A () snd isContr⊥→A f i ()
19.5625
49
0.690096
2ef6db7f3ba8bf114042e351c32557504a4580b6
3,599
agda
Agda
agda/Esterel/CompletionCode.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/Esterel/CompletionCode.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/Esterel/CompletionCode.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
module Esterel.CompletionCode where open import Data.Nat using (ℕ ; zero ; suc) renaming (_≟_ to _≟ℕ_ ; _⊔_ to _⊔ℕ_ ; _≤_ to _≤N_ ; _≤?_ to _≤?N_) open import Data.Nat.Properties using (⊔-⊓-isCommutativeSemiringWithoutOne) open import Function using (_∘_) open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong) import Level import Relation.Binary open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.Any.Properties using (++⁻) renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Empty using (⊥-elim) import Data.Bool open import Algebra.Structures using (IsCommutativeSemiringWithoutOne ; IsCommutativeMonoid) open import utility data CompletionCode : Set where nothin : CompletionCode pause : CompletionCode exit : ℕ → CompletionCode ↓* : CompletionCode → CompletionCode ↓* nothin = nothin ↓* pause = pause ↓* (exit zero) = nothin ↓* (exit (suc n)) = exit n exit-injective : ∀{n m} → exit n ≡ exit m → n ≡ m exit-injective refl = refl _≟_ : Decidable {A = CompletionCode} _≡_ nothin ≟ nothin = yes refl nothin ≟ pause = no λ() nothin ≟ exit _ = no λ() pause ≟ nothin = no λ() pause ≟ pause = yes refl pause ≟ exit _ = no λ() exit _ ≟ nothin = no λ() exit _ ≟ pause = no λ() exit n ≟ exit m with n ≟ℕ m ... | yes n≡m = yes (cong exit n≡m) ... | no ¬n≡m = no (¬n≡m ∘ exit-injective) open ListSet _≟_ _⊔_ : CompletionCode → CompletionCode → CompletionCode nothin ⊔ r = r pause ⊔ nothin = pause pause ⊔ r = r exit n ⊔ nothin = exit n exit n ⊔ pause = exit n exit n ⊔ exit m = exit (n ⊔ℕ m) ⊔-comm : ∀ c₁ c₂ → c₁ ⊔ c₂ ≡ c₂ ⊔ c₁ ⊔-comm nothin nothin = refl ⊔-comm nothin pause = refl ⊔-comm nothin (exit m) = refl ⊔-comm pause nothin = refl ⊔-comm pause pause = refl ⊔-comm pause (exit m) = refl ⊔-comm (exit n) nothin = refl ⊔-comm (exit n) pause = refl ⊔-comm (exit n) (exit m) rewrite IsCommutativeMonoid.comm (IsCommutativeSemiringWithoutOne.+-isCommutativeMonoid ⊔-⊓-isCommutativeSemiringWithoutOne) n m = refl data _≤_ : Relation.Binary.Rel CompletionCode Level.zero where nothin≤c : ∀ {c} -> nothin ≤ c pause≤pause : pause ≤ pause pause≤exit : ∀ {n} -> pause ≤ exit n exit≤exit : ∀ {n} {m} -> (n ≤N m) -> exit n ≤ exit m _≤?_ : Decidable _≤_ nothin ≤? c2 = yes nothin≤c pause ≤? nothin = no (λ ()) pause ≤? pause = yes pause≤pause pause ≤? exit x = yes pause≤exit exit n ≤? nothin = no (λ ()) exit n ≤? pause = no (λ ()) exit n ≤? exit m with n ≤?N m exit n ≤? exit m | yes n≤m = yes (exit≤exit n≤m) exit n ≤? exit m | no ¬n≤m = no ¬≤ where ¬≤ : Relation.Nullary.¬ (exit n ≤ exit m) ¬≤ (exit≤exit n) = ¬n≤m n codessub : (List CompletionCode) → (List CompletionCode) → Set codessub codes' codes = (∀ a → a ∈ codes' → a ∈ codes) codesub++ll : ∀{a b c} → codessub a b → codessub a (b ++ c) codesub++ll sub a a∈ = ++ˡ (sub a a∈) codesub++both : ∀{a b c d} → codessub a c → codessub b d → codessub (a ++ b) (c ++ d) codesub++both{a}{b}{c}{d} a⊂c b⊂d z z∈ with ++⁻ a z∈ ... | inj₁ z∈1 = ++ˡ (a⊂c z z∈1) ... | inj₂ z∈2 = ++ʳ c (b⊂d z z∈2) codesub- : ∀{a b} z → codessub a b → codessub (set-remove a z) (set-remove b z) codesub-{a}{b} z a⊂b x x∈ with z ≟ x ... | yes refl = ⊥-elim (set-remove-removed{x}{a} x∈) ... | no ¬refl = set-remove-not-removed ¬refl (a⊂b x (set-remove-mono-∈ z x∈))
31.849558
91
0.605446
21141cc16bad2208880594736245a197a1b4155b
909
agda
Agda
src/System/IO/Transducers.agda
agda/agda-system-io
121d6c66cba34b4c15b437366b80c65dd2b02a8d
[ "MIT" ]
10
2015-01-04T13:45:16.000Z
2021-09-15T04:35:41.000Z
src/System/IO/Transducers.agda
agda/agda-system-io
121d6c66cba34b4c15b437366b80c65dd2b02a8d
[ "MIT" ]
null
null
null
src/System/IO/Transducers.agda
agda/agda-system-io
121d6c66cba34b4c15b437366b80c65dd2b02a8d
[ "MIT" ]
2
2017-08-10T06:12:54.000Z
2022-03-12T11:40:23.000Z
open import Coinduction using ( ♭ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ) open import System.IO.Transducers.Lazy using () renaming ( done to doneL ; _⟫_ to _⟫L_ ) open import System.IO.Transducers.Strict using () renaming ( done to doneS ; _⟫_ to _⟫S_ ) open import System.IO.Transducers.Session using ( Session ; I ; Σ ) open import System.IO.Transducers.Trace using ( Trace ) module System.IO.Transducers where open System.IO.Transducers.Lazy public using ( _⇒_ ; inp ; out ; id ; ⟦_⟧ ; _≃_ ) open System.IO.Transducers.Strict public using ( _⇛_ ) data Style : Set where lazy strict : Style _⇒_is_ : Session → Session → Style → Set S ⇒ T is lazy = S ⇒ T S ⇒ T is strict = S ⇛ T done : ∀ {s S} → (S ⇒ S is s) done {lazy} = doneL done {strict} = doneS _⟫_ : ∀ {s S T U} → (S ⇒ T is s) → (T ⇒ U is s) → (S ⇒ U is s) _⟫_ {lazy} = _⟫L_ _⟫_ {strict} = _⟫S_
28.40625
70
0.649065
52e962e1dae80ccc9a38d75c3bc04d689d79daca
2,931
agda
Agda
src/Tactic/Cong.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Cong.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Cong.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
-- A tactic that applies congruence and symmetry of equality proofs. -- Given a hole and a lemma it tries (in order) -- - refl -- - lemma -- - sym lemma -- - f $≡ X₁ *≡ .. *≡ Xₙ and recurses on Xᵢ -- if the goal is f us ≡ f vs -- Hidden and instance arguments of f are left alone. module Tactic.Cong where open import Prelude open import Container.Traversable open import Tactic.Reflection private refl′ : ∀ {a} {A : Set a} (x : A) → x ≡ x refl′ _ = refl pattern `refl a = def₁ (quote refl′) a parseEq : Term → Maybe (Term × Term) parseEq (def (quote _≡_) (hArg _ ∷ hArg _ ∷ vArg x ∷ vArg y ∷ [])) = just (x , y) parseEq _ = nothing -- build-cong f ps = f $≡ p₁ *≡ .. *≡ pₙ build-cong : Term → List Term → Term build-cong f [] = `refl unknown -- we tried this build-cong f (p ∷ ps) = foldl ap (def₂ (quote cong) f p) ps where ap = λ p q → def₂ (quote _*≡_) p q zipWithM!₃ : {A B C : Set} → (A → B → C → TC ⊤) → List A → List B → List C → TC ⊤ zipWithM!₃ f (x ∷ xs) (y ∷ ys) (z ∷ zs) = f x y z *> zipWithM!₃ f xs ys zs zipWithM!₃ _ _ _ _ = pure _ module _ (lemma : Term) where go go-cong : (d : Nat) (lhs rhs hole : Term) → TC ⊤ go d lhs rhs hole = checkType hole (def₂ (quote _≡_) lhs rhs) *> ( unify hole (`refl lhs) <|> unify hole lemma <|> unify hole (def₁ (quote sym) lemma) <|> go-cong d lhs rhs hole <|> do lhs ← reduce lhs rhs ← reduce rhs go-cong d lhs rhs hole) solve : (d : Nat) (hole : Term) → TC ⊤ solve d hole = caseM parseEq <$> (reduce =<< inferType hole) of λ where nothing → typeErrorS "Goal is not an equality type." (just (lhs , rhs)) → go d lhs rhs hole go-cong′ : ∀ d f us vs hole → TC ⊤ go-cong′ d f us vs hole = do let us₁ = map unArg (filter isVisible us) vs₁ = map unArg (filter isVisible vs) holes ← traverse (const newMeta!) us₁ zipWithM!₃ (go d) us₁ vs₁ holes unify hole (build-cong f holes) go-cong (suc d) (def f us) (def f₁ vs) hole = guard (f == f₁) (go-cong′ d (def₀ f) us vs hole) go-cong (suc d) (con c us) (con c₁ vs) hole = guard (c == c₁) (go-cong′ d (con₀ c) us vs hole) go-cong (suc d) (var x us) (var x₁ vs) hole = guard (x == x₁) (go-cong′ d (var₀ x) us vs hole) go-cong _ lhs rhs _ = empty macro by-cong : ∀ {a} {A : Set a} {x y : A} → x ≡ y → Tactic by-cong {x = x} {y} lemma hole = do `lemma ← quoteTC lemma ensureNoMetas =<< inferType hole lemMeta ← lemProxy `lemma solve lemMeta 100 hole <|> typeErrorS "Congruence failed" unify lemMeta `lemma where -- Create a meta for the lemma to avoid retype-checking it in case -- it's expensive. Don't do this if the lemma is a variable. lemProxy : Term → TC Term lemProxy lemma@(var _ []) = pure lemma lemProxy lemma = newMeta =<< quoteTC (x ≡ y)
35.313253
98
0.573524
4386bfc15919c1c4c717a5ab91eeba497943a628
5,147
agda
Agda
Cubical/HITs/Colimit/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Colimit/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Colimit/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{- Homotopy colimits of graphs -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.Colimit.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Graph -- Cones under a diagram record Cocone ℓ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} (F : Diag ℓd I) (X : Type ℓ) : Type (ℓ-suc (ℓ-max ℓ (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd)))) where field leg : ∀ (j : Obj I) → F $ j → X com : ∀ {j k} (f : Hom I j k) → leg k ∘ F <$> f ≡ leg j postcomp : ∀ {ℓ'} {Y : Type ℓ'} → (X → Y) → Cocone ℓ' F Y leg (postcomp h) j = h ∘ leg j com (postcomp h) f = cong (h ∘_) (com f) open Cocone public -- Σ (Type ℓ) (Cocone ℓ F) forms a category: module _ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} where private -- the "lower star" functor _* : ∀ {ℓ ℓ'} {X : Type ℓ} {Y : Type ℓ'} → (X → Y) → Cocone _ F X → Cocone _ F Y (h *) C = postcomp C h CoconeMor : ∀ {ℓ ℓ'} → Σ (Type ℓ) (Cocone ℓ F) → Σ (Type ℓ') (Cocone ℓ' F) → Type _ CoconeMor (X , C) (Y , D) = Σ[ h ∈ (X → Y) ] (h *) C ≡ D idCoconeMor : ∀ {ℓ} (Cp : Σ (Type ℓ) (Cocone ℓ F)) → CoconeMor Cp Cp idCoconeMor Cp = (λ x → x) , refl compCoconeMor : ∀ {ℓ ℓ' ℓ''} {C : Σ (Type ℓ) (Cocone ℓ F)} {D : Σ (Type ℓ') (Cocone ℓ' F)} {E : Σ (Type ℓ'') (Cocone ℓ'' F)} → CoconeMor D E → CoconeMor C D → CoconeMor C E compCoconeMor (g , q) (f , p) = g ∘ f , (cong (g *) p) ∙ q -- Universal cocones are initial objects in the category Σ (Type ℓ) (Cocone ℓ F) module _ {ℓ ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} where isUniversalAt : ∀ ℓq → Cocone ℓ F X → Type (ℓ-max ℓ (ℓ-suc (ℓ-max ℓq (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))))) isUniversalAt ℓq C = ∀ (Y : Type ℓq) → isEquiv {A = (X → Y)} {B = Cocone ℓq F Y} (postcomp C) -- (unfolding isEquiv, this ^ is equivalent to what one might expect:) -- ∀ (Y : Type ℓ) (D : Cocone ℓ F Y) → isContr (Σ[ h ∈ (X → Y) ] (h *) C ≡ D) -- (≡ isContr (CoconeMor (X , C) (Y , D))) isPropIsUniversalAt : ∀ ℓq (C : Cocone ℓ F X) → isProp (isUniversalAt ℓq C) isPropIsUniversalAt ℓq C = propPi (λ Y → isPropIsEquiv (postcomp C)) isUniversal : Cocone ℓ F X → Typeω isUniversal C = ∀ ℓq → isUniversalAt ℓq C -- Colimits are universal cocones record isColimit {ℓ ℓd ℓv ℓe} {I : Graph ℓv ℓe} (F : Diag ℓd I) (X : Type ℓ) : Typeω where field cone : Cocone ℓ F X univ : isUniversal cone open isColimit public module _ {ℓ ℓ' ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} {Y : Type ℓ'} where postcomp⁻¹ : isColimit F X → Cocone ℓ' F Y → (X → Y) postcomp⁻¹ cl = invEq (_ , univ cl _ Y) postcomp⁻¹-inv : (cl : isColimit F X) (D : Cocone ℓ' F Y) → (postcomp (cone cl) (postcomp⁻¹ cl D)) ≡ D postcomp⁻¹-inv cl D = retEq (_ , univ cl _ Y) D postcomp⁻¹-mor : (cl : isColimit F X) (D : Cocone ℓ' F Y) → CoconeMor (X , cone cl) (Y , D) postcomp⁻¹-mor cl D = (postcomp⁻¹ cl D) , (postcomp⁻¹-inv cl D) -- Colimits are unique module _ {ℓ ℓ' ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} {X : Type ℓ} {Y : Type ℓ'} where uniqColimit : isColimit F X → isColimit F Y → X ≃ Y uniqColimit cl cl' = isoToEquiv (iso (fst fwd) (fst bwd) (λ x i → fst (isContr→isProp (equiv-proof (univ cl' ℓ' Y) (cone cl')) (compCoconeMor fwd bwd) (idCoconeMor (Y , cone cl')) i) x) (λ x i → fst (isContr→isProp (equiv-proof (univ cl ℓ X) (cone cl)) (compCoconeMor bwd fwd) (idCoconeMor (X , cone cl)) i) x)) where fwd : CoconeMor (X , cone cl ) (Y , cone cl') bwd : CoconeMor (Y , cone cl') (X , cone cl ) fwd = postcomp⁻¹-mor cl (cone cl') bwd = postcomp⁻¹-mor cl' (cone cl) -- Colimits always exist data colim {ℓd ℓe ℓv} {I : Graph ℓv ℓe} (F : Diag ℓd I) : Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))) where colim-leg : ∀ (j : Obj I) → F $ j → colim F colim-com : ∀ {j k} (f : Hom I j k) → colim-leg k ∘ F <$> f ≡ colim-leg j module _ {ℓd ℓv ℓe} {I : Graph ℓv ℓe} {F : Diag ℓd I} where colimCone : Cocone _ F (colim F) leg colimCone = colim-leg com colimCone = colim-com colim-rec : ∀ {ℓ} {X : Type ℓ} → Cocone ℓ F X → (colim F → X) colim-rec C (colim-leg j A) = leg C j A colim-rec C (colim-com f i A) = com C f i A colimIsColimit : isColimit F (colim F) cone colimIsColimit = colimCone univ colimIsColimit ℓq Y = isoToIsEquiv record { fun = postcomp colimCone ; inv = colim-rec ; rightInv = λ C → refl ; leftInv = λ h → funExt (eq h) } where eq : ∀ h (x : colim _) → colim-rec (postcomp colimCone h) x ≡ h x eq h (colim-leg j A) = refl eq h (colim-com f i A) = refl
38.125926
109
0.536235
192cd7b539b072c279aefb626b126b3676c9ef26
22,008
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to Any ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.Any.Properties where open import Category.Monad open import Data.Bool.Base using (Bool; false; true; T) open import Data.Bool.Properties open import Data.Empty using (⊥) open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.List as List open import Data.List.Categorical using (monad) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties.Core using (Any↔; find∘map; map∘find; lose∘find) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.Nat using (zero; suc; _<_; z≤n; s≤s) open import Data.Maybe using (Maybe; just; nothing) open import Data.Maybe.Relation.Unary.Any as MAny using (just) open import Data.Product as Prod using (_×_; _,_; ∃; ∃₂; proj₁; proj₂; uncurry′) open import Data.Product.Properties open import Data.Product.Function.NonDependent.Propositional using (_×-cong_) import Data.Product.Function.Dependent.Propositional as Σ open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Sum.Function.Propositional using (_⊎-cong_) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; Equivalence) open import Function.Inverse as Inv using (_↔_; inverse; Inverse) open import Function.Related as Related using (Related; SK-sym) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; inspect) open import Relation.Unary using (Pred; _⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_) open import Relation.Nullary using (¬_) open Related.EquationalReasoning private open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ}) ------------------------------------------------------------------------ -- Equality properties module _ {a p ℓ} {A : Set a} {P : A → Set p} {_≈_ : Rel A ℓ} where lift-resp : P Respects _≈_ → (Any P) Respects (Pointwise _≈_) lift-resp resp [] () lift-resp resp (x≈y ∷ xs≈ys) (here px) = here (resp x≈y px) lift-resp resp (x≈y ∷ xs≈ys) (there pxs) = there (lift-resp resp xs≈ys pxs) module _ {a p} {A : Set a} {P : A → Set p} where here-injective : ∀ {x xs} {p q : P x} → here {P = P} {xs = xs} p ≡ here q → p ≡ q here-injective refl = refl there-injective : ∀ {x xs} {p q : Any P xs} → there {x = x} p ≡ there q → p ≡ q there-injective refl = refl ------------------------------------------------------------------------ -- Misc module _ {a p} {A : Set a} {P : A → Set p} where ¬Any[] : ¬ Any P [] ¬Any[] () ------------------------------------------------------------------------ -- Any is a congruence module _ {a k p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where Any-cong : ∀ {xs ys : List A} → (∀ x → Related k (P x) (Q x)) → Preorder._∼_ (Related.InducedPreorder₂ k {A = A} _∈_) xs ys → Related k (Any P xs) (Any Q ys) Any-cong {xs} {ys} P↔Q xs≈ys = Any P xs ↔⟨ SK-sym Any↔ ⟩ (∃ λ x → x ∈ xs × P x) ∼⟨ Σ.cong Inv.id (xs≈ys ×-cong P↔Q _) ⟩ (∃ λ x → x ∈ ys × Q x) ↔⟨ Any↔ ⟩ Any Q ys ∎ ------------------------------------------------------------------------ -- map map-id : ∀ {a p} {A : Set a} {P : A → Set p} (f : P ⋐ P) {xs} → (∀ {x} (p : P x) → f p ≡ p) → (p : Any P xs) → Any.map f p ≡ p map-id f hyp (here p) = P.cong here (hyp p) map-id f hyp (there p) = P.cong there $ map-id f hyp p map-∘ : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} (f : Q ⋐ R) (g : P ⋐ Q) {xs} (p : Any P xs) → Any.map (f ∘ g) p ≡ Any.map f (Any.map g p) map-∘ f g (here p) = refl map-∘ f g (there p) = P.cong there $ map-∘ f g p ------------------------------------------------------------------------ -- Swapping -- Nested occurrences of Any can sometimes be swapped. See also ×↔. swap : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} {xs ys} → Any (λ x → Any (P x) ys) xs → Any (λ y → Any (flip P y) xs) ys swap (here pys) = Any.map here pys swap (there pxys) = Any.map there (swap pxys) swap-there : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} {x xs ys} → (any : Any (λ x → Any (P x) ys) xs) → swap (Any.map (there {x = x}) any) ≡ there (swap any) swap-there (here pys) = refl swap-there (there pxys) = P.cong (Any.map there) (swap-there pxys) swap-invol : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} {xs ys} → (any : Any (λ x → Any (P x) ys) xs) → swap (swap any) ≡ any swap-invol (here (here px)) = refl swap-invol (here (there pys)) = P.cong (Any.map there) (swap-invol (here pys)) swap-invol (there pxys) = P.trans (swap-there (swap pxys)) (P.cong there (swap-invol pxys)) swap↔ : ∀ {ℓ} {A B : Set ℓ} {P : A → B → Set ℓ} {xs ys} → Any (λ x → Any (P x) ys) xs ↔ Any (λ y → Any (flip P y) xs) ys swap↔ {P = P} = inverse swap swap swap-invol swap-invol ------------------------------------------------------------------------ -- Lemmas relating Any to ⊥ ⊥↔Any⊥ : ∀ {a} {A : Set a} {xs : List A} → ⊥ ↔ Any (const ⊥) xs ⊥↔Any⊥ {A = A} = inverse (λ()) (λ p → from p) (λ()) (λ p → from p) where from : {xs : List A} → Any (const ⊥) xs → ∀ {b} {B : Set b} → B from (here ()) from (there p) = from p ⊥↔Any[] : ∀ {a p} {A : Set a} {P : A → Set p} → ⊥ ↔ Any P [] ⊥↔Any[] = inverse (λ()) (λ()) (λ()) (λ()) ------------------------------------------------------------------------ -- Lemmas relating Any to ⊤ -- These introduction and elimination rules are not inverses, though. module _ {a} {A : Set a} where any⁺ : ∀ (p : A → Bool) {xs} → Any (T ∘ p) xs → T (any p xs) any⁺ p (here px) = Equivalence.from T-∨ ⟨$⟩ inj₁ px any⁺ p (there {x = x} pxs) with p x ... | true = _ ... | false = any⁺ p pxs any⁻ : ∀ (p : A → Bool) xs → T (any p xs) → Any (T ∘ p) xs any⁻ p [] () any⁻ p (x ∷ xs) px∷xs with p x | inspect p x any⁻ p (x ∷ xs) px∷xs | true | P.[ eq ] = here (Equivalence.from T-≡ ⟨$⟩ eq) any⁻ p (x ∷ xs) px∷xs | false | _ = there (any⁻ p xs px∷xs) any⇔ : ∀ {p : A → Bool} {xs} → Any (T ∘ p) xs ⇔ T (any p xs) any⇔ = equivalence (any⁺ _) (any⁻ _ _) ------------------------------------------------------------------------ -- Sums commute with Any module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where Any-⊎⁺ : ∀ {xs} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs Any-⊎⁺ = [ Any.map inj₁ , Any.map inj₂ ]′ Any-⊎⁻ : ∀ {xs} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs Any-⊎⁻ (here (inj₁ p)) = inj₁ (here p) Any-⊎⁻ (here (inj₂ q)) = inj₂ (here q) Any-⊎⁻ (there p) = Sum.map there there (Any-⊎⁻ p) ⊎↔ : ∀ {xs} → (Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs ⊎↔ = inverse Any-⊎⁺ Any-⊎⁻ from∘to to∘from where from∘to : ∀ {xs} (p : Any P xs ⊎ Any Q xs) → Any-⊎⁻ (Any-⊎⁺ p) ≡ p from∘to (inj₁ (here p)) = refl from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = refl from∘to (inj₂ (here q)) = refl from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = refl to∘from : ∀ {xs} (p : Any (λ x → P x ⊎ Q x) xs) → Any-⊎⁺ (Any-⊎⁻ p) ≡ p to∘from (here (inj₁ p)) = refl to∘from (here (inj₂ q)) = refl to∘from (there p) with Any-⊎⁻ p | to∘from p to∘from (there .(Any.map inj₁ p)) | inj₁ p | refl = refl to∘from (there .(Any.map inj₂ q)) | inj₂ q | refl = refl ------------------------------------------------------------------------ -- Products "commute" with Any. module _ {a b p q} {A : Set a} {B : Set b} {P : Pred A p} {Q : Pred B q} where Any-×⁺ : ∀ {xs ys} → Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs Any-×⁺ (p , q) = Any.map (λ p → Any.map (λ q → (p , q)) q) p Any-×⁻ : ∀ {xs ys} → Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys Any-×⁻ pq with Prod.map id (Prod.map id find) (find pq) ... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q) ×↔ : ∀ {xs ys} → (Any P xs × Any Q ys) ↔ Any (λ x → Any (λ y → P x × Q y) ys) xs ×↔ {xs} {ys} = inverse Any-×⁺ Any-×⁻ from∘to to∘from where from∘to : ∀ pq → Any-×⁻ (Any-×⁺ pq) ≡ pq from∘to (p , q) rewrite find∘map p (λ p → Any.map (λ q → (p , q)) q) | find∘map q (λ q → proj₂ (proj₂ (find p)) , q) | lose∘find p | lose∘find q = refl to∘from : ∀ pq → Any-×⁺ (Any-×⁻ pq) ≡ pq to∘from pq with find pq | (λ (f : (proj₁ (find pq) ≡_) ⋐ _) → map∘find pq {f}) ... | (x , x∈xs , pq′) | lem₁ with find pq′ | (λ (f : (proj₁ (find pq′) ≡_) ⋐ _) → map∘find pq′ {f}) ... | (y , y∈ys , p , q) | lem₂ rewrite P.sym $ map-∘ {R = λ x → Any (λ y → P x × Q y) ys} (λ p → Any.map (λ q → p , q) (lose y∈ys q)) (λ y → P.subst P y p) x∈xs = lem₁ _ helper where helper : Any.map (λ q → p , q) (lose y∈ys q) ≡ pq′ helper rewrite P.sym $ map-∘ (λ q → p , q) (λ y → P.subst Q y q) y∈ys = lem₂ _ refl ------------------------------------------------------------------------ -- Invertible introduction (⁺) and elimination (⁻) rules for various -- list functions ------------------------------------------------------------------------ -- map module _ {a p} {A : Set a} {P : Pred A p} where singleton⁺ : ∀ {x} → P x → Any P [ x ] singleton⁺ Px = here Px singleton⁻ : ∀ {x} → Any P [ x ] → P x singleton⁻ (here Px) = Px singleton⁻ (there ()) ------------------------------------------------------------------------ -- map module _ {a b} {A : Set a} {B : Set b} {f : A → B} where map⁺ : ∀ {p} {P : B → Set p} {xs} → Any (P ∘ f) xs → Any P (List.map f xs) map⁺ (here p) = here p map⁺ (there p) = there $ map⁺ p map⁻ : ∀ {p} {P : B → Set p} {xs} → Any P (List.map f xs) → Any (P ∘ f) xs map⁻ {xs = []} () map⁻ {xs = x ∷ xs} (here p) = here p map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p map⁺∘map⁻ : ∀ {p} {P : B → Set p} {xs} → (p : Any P (List.map f xs)) → map⁺ (map⁻ p) ≡ p map⁺∘map⁻ {xs = []} () map⁺∘map⁻ {xs = x ∷ xs} (here p) = refl map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p) map⁻∘map⁺ : ∀ {p} (P : B → Set p) {xs} → (p : Any (P ∘ f) xs) → map⁻ {P = P} (map⁺ p) ≡ p map⁻∘map⁺ P (here p) = refl map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p) map↔ : ∀ {p} {P : B → Set p} {xs} → Any (P ∘ f) xs ↔ Any P (List.map f xs) map↔ = inverse map⁺ map⁻ (map⁻∘map⁺ _) map⁺∘map⁻ ------------------------------------------------------------------------ -- mapMaybe module _ {a b p} {A : Set a} {B : Set b} {P : B → Set p} (f : A → Maybe B) where mapMaybe⁺ : ∀ xs → Any (MAny.Any P) (map f xs) → Any P (mapMaybe f xs) mapMaybe⁺ [] () mapMaybe⁺ (x ∷ xs) ps with f x | ps ... | nothing | here () ... | nothing | there pxs = mapMaybe⁺ xs pxs ... | just _ | here (just py) = here py ... | just _ | there pxs = there (mapMaybe⁺ xs pxs) ------------------------------------------------------------------------ -- _++_ module _ {a p} {A : Set a} {P : A → Set p} where ++⁺ˡ : ∀ {xs ys} → Any P xs → Any P (xs ++ ys) ++⁺ˡ (here p) = here p ++⁺ˡ (there p) = there (++⁺ˡ p) ++⁺ʳ : ∀ xs {ys} → Any P ys → Any P (xs ++ ys) ++⁺ʳ [] p = p ++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p) ++⁻ : ∀ xs {ys} → Any P (xs ++ ys) → Any P xs ⊎ Any P ys ++⁻ [] p = inj₂ p ++⁻ (x ∷ xs) (here p) = inj₁ (here p) ++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p) ++⁺∘++⁻ : ∀ xs {ys} (p : Any P (xs ++ ys)) → [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p ++⁺∘++⁻ [] p = refl ++⁺∘++⁻ (x ∷ xs) (here p) = refl ++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p ++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih ++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih ++⁻∘++⁺ : ∀ xs {ys} (p : Any P xs ⊎ Any P ys) → ++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p ++⁻∘++⁺ [] (inj₁ ()) ++⁻∘++⁺ [] (inj₂ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl ++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl ++↔ : ∀ {xs ys} → (Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys) ++↔ {xs = xs} = inverse [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs) (++⁻∘++⁺ xs) (++⁺∘++⁻ xs) ++-comm : ∀ xs ys → Any P (xs ++ ys) → Any P (ys ++ xs) ++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs ++-comm∘++-comm : ∀ xs {ys} (p : Any P (xs ++ ys)) → ++-comm ys xs (++-comm xs ys p) ≡ p ++-comm∘++-comm [] {ys} p rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = refl ++-comm∘++-comm (x ∷ xs) {ys} (here p) rewrite ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₂ (here p)) = refl ++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p)))) | inj₁ p | refl rewrite ++⁻∘++⁺ ys (inj₂ p) | ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = refl ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p)))) | inj₂ p | refl rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p) | ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = refl ++↔++ : ∀ xs ys → Any P (xs ++ ys) ↔ Any P (ys ++ xs) ++↔++ xs ys = inverse (++-comm xs ys) (++-comm ys xs) (++-comm∘++-comm xs) (++-comm∘++-comm ys) ++-insert : ∀ xs {ys x} → P x → Any P (xs ++ [ x ] ++ ys) ++-insert xs Px = ++⁺ʳ xs (++⁺ˡ (singleton⁺ Px)) ------------------------------------------------------------------------ -- concat module _ {a p} {A : Set a} {P : A → Set p} where concat⁺ : ∀ {xss} → Any (Any P) xss → Any P (concat xss) concat⁺ (here p) = ++⁺ˡ p concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p) concat⁻ : ∀ xss → Any P (concat xss) → Any (Any P) xss concat⁻ [] () concat⁻ ([] ∷ xss) p = there $ concat⁻ xss p concat⁻ ((x ∷ xs) ∷ xss) (here p) = here (here p) concat⁻ ((x ∷ xs) ∷ xss) (there p) with concat⁻ (xs ∷ xss) p ... | here p′ = here (there p′) ... | there p′ = there p′ concat⁻∘++⁺ˡ : ∀ {xs} xss (p : Any P xs) → concat⁻ (xs ∷ xss) (++⁺ˡ p) ≡ here p concat⁻∘++⁺ˡ xss (here p) = refl concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl concat⁻∘++⁺ʳ : ∀ xs xss (p : Any P (concat xss)) → concat⁻ (xs ∷ xss) (++⁺ʳ xs p) ≡ there (concat⁻ xss p) concat⁻∘++⁺ʳ [] xss p = refl concat⁻∘++⁺ʳ (x ∷ xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl concat⁺∘concat⁻ : ∀ xss (p : Any P (concat xss)) → concat⁺ (concat⁻ xss p) ≡ p concat⁺∘concat⁻ [] () concat⁺∘concat⁻ ([] ∷ xss) p = concat⁺∘concat⁻ xss p concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (here p) = refl concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there p) with concat⁻ (xs ∷ xss) p | concat⁺∘concat⁻ (xs ∷ xss) p concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ˡ p′)) | here p′ | refl = refl concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ʳ xs (concat⁺ p′))) | there p′ | refl = refl concat⁻∘concat⁺ : ∀ {xss} (p : Any (Any P) xss) → concat⁻ xss (concat⁺ p) ≡ p concat⁻∘concat⁺ (here p) = concat⁻∘++⁺ˡ _ p concat⁻∘concat⁺ (there {x = xs} {xs = xss} p) rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) = P.cong there $ concat⁻∘concat⁺ p concat↔ : ∀ {xss} → Any (Any P) xss ↔ Any P (concat xss) concat↔ {xss} = inverse concat⁺ (concat⁻ xss) concat⁻∘concat⁺ (concat⁺∘concat⁻ xss) ------------------------------------------------------------------------ -- applyUpTo module _ {a p} {A : Set a} {P : A → Set p} where applyUpTo⁺ : ∀ f {i n} → P (f i) → i < n → Any P (applyUpTo f n) applyUpTo⁺ _ p (s≤s z≤n) = here p applyUpTo⁺ f p (s≤s (s≤s i<n)) = there (applyUpTo⁺ (f ∘ suc) p (s≤s i<n)) applyUpTo⁻ : ∀ f {n} → Any P (applyUpTo f n) → ∃ λ i → i < n × P (f i) applyUpTo⁻ f {zero} () applyUpTo⁻ f {suc n} (here p) = zero , s≤s z≤n , p applyUpTo⁻ f {suc n} (there p) with applyUpTo⁻ (f ∘ suc) p ... | i , i<n , q = suc i , s≤s i<n , q ------------------------------------------------------------------------ -- tabulate module _ {a p} {A : Set a} {P : A → Set p} where tabulate⁺ : ∀ {n} {f : Fin n → A} i → P (f i) → Any P (tabulate f) tabulate⁺ fzero p = here p tabulate⁺ (fsuc i) p = there (tabulate⁺ i p) tabulate⁻ : ∀ {n} {f : Fin n → A} → Any P (tabulate f) → ∃ λ i → P (f i) tabulate⁻ {zero} () tabulate⁻ {suc n} (here p) = fzero , p tabulate⁻ {suc n} (there p) = Prod.map fsuc id (tabulate⁻ p) ------------------------------------------------------------------------ -- map-with-∈. module _ {a b p} {A : Set a} {B : Set b} {P : B → Set p} where map-with-∈⁺ : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B) → (∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) → Any P (map-with-∈ xs f) map-with-∈⁺ f (_ , here refl , p) = here p map-with-∈⁺ f (_ , there x∈xs , p) = there $ map-with-∈⁺ (f ∘ there) (_ , x∈xs , p) map-with-∈⁻ : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B) → Any P (map-with-∈ xs f) → ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs) map-with-∈⁻ [] f () map-with-∈⁻ (y ∷ xs) f (here p) = (y , here refl , p) map-with-∈⁻ (y ∷ xs) f (there p) = Prod.map id (Prod.map there id) $ map-with-∈⁻ xs (f ∘ there) p map-with-∈↔ : ∀ {xs : List A} {f : ∀ {x} → x ∈ xs → B} → (∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) ↔ Any P (map-with-∈ xs f) map-with-∈↔ = inverse (map-with-∈⁺ _) (map-with-∈⁻ _ _) (from∘to _) (to∘from _ _) where from∘to : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B) (p : ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) → map-with-∈⁻ xs f (map-with-∈⁺ f p) ≡ p from∘to f (_ , here refl , p) = refl from∘to f (_ , there x∈xs , p) rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl to∘from : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B) (p : Any P (map-with-∈ xs f)) → map-with-∈⁺ f (map-with-∈⁻ xs f p) ≡ p to∘from [] f () to∘from (y ∷ xs) f (here p) = refl to∘from (y ∷ xs) f (there p) = P.cong there $ to∘from xs (f ∘ there) p ------------------------------------------------------------------------ -- return module _ {a p} {A : Set a} {P : A → Set p} where return⁺ : ∀ {x} → P x → Any P (return x) return⁺ = here return⁻ : ∀ {x} → Any P (return x) → P x return⁻ (here p) = p return⁻ (there ()) return⁺∘return⁻ : ∀ {x} (p : Any P (return x)) → return⁺ (return⁻ p) ≡ p return⁺∘return⁻ (here p) = refl return⁺∘return⁻ (there ()) return⁻∘return⁺ : ∀ {x} (p : P x) → return⁻ (return⁺ p) ≡ p return⁻∘return⁺ p = refl return↔ : ∀ {x} → P x ↔ Any P (return x) return↔ = inverse return⁺ return⁻ return⁻∘return⁺ return⁺∘return⁻ ------------------------------------------------------------------------ -- _∷_ module _ {a p} {A : Set a} where ∷↔ : ∀ (P : Pred A p) {x xs} → (P x ⊎ Any P xs) ↔ Any P (x ∷ xs) ∷↔ P {x} {xs} = (P x ⊎ Any P xs) ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ∎) ⟩ (Any P [ x ] ⊎ Any P xs) ↔⟨ ++↔ {P = P} {xs = [ x ]} ⟩ Any P (x ∷ xs) ∎ ------------------------------------------------------------------------ -- _>>=_ module _ {ℓ p} {A B : Set ℓ} {P : B → Set p} {f : A → List B} where >>=↔ : ∀ {xs} → Any (Any P ∘ f) xs ↔ Any P (xs >>= f) >>=↔ {xs} = Any (Any P ∘ f) xs ↔⟨ map↔ ⟩ Any (Any P) (List.map f xs) ↔⟨ concat↔ ⟩ Any P (xs >>= f) ∎ ------------------------------------------------------------------------ -- _⊛_ module _ {ℓ} {A B : Set ℓ} where ⊛↔ : ∀ {P : B → Set ℓ} {fs : List (A → B)} {xs : List A} → Any (λ f → Any (P ∘ f) xs) fs ↔ Any P (fs ⊛ xs) ⊛↔ {P = P} {fs} {xs} = Any (λ f → Any (P ∘ f) xs) fs ↔⟨ Any-cong (λ _ → Any-cong (λ _ → return↔) (_ ∎)) (_ ∎) ⟩ Any (λ f → Any (Any P ∘ return ∘ f) xs) fs ↔⟨ Any-cong (λ _ → >>=↔ ) (_ ∎) ⟩ Any (λ f → Any P (xs >>= return ∘ f)) fs ↔⟨ >>=↔ ⟩ Any P (fs ⊛ xs) ∎ -- An alternative introduction rule for _⊛_ ⊛⁺′ : ∀ {P : A → Set ℓ} {Q : B → Set ℓ} {fs : List (A → B)} {xs} → Any (P ⟨→⟩ Q) fs → Any P xs → Any Q (fs ⊛ xs) ⊛⁺′ pq p = Inverse.to ⊛↔ ⟨$⟩ Any.map (λ pq → Any.map (λ {x} → pq {x}) p) pq ------------------------------------------------------------------------ -- _⊗_ module _ {ℓ} {A B : Set ℓ} where ⊗↔ : {P : A × B → Set ℓ} {xs : List A} {ys : List B} → Any (λ x → Any (λ y → P (x , y)) ys) xs ↔ Any P (xs ⊗ ys) ⊗↔ {P} {xs} {ys} = Any (λ x → Any (λ y → P (x , y)) ys) xs ↔⟨ return↔ ⟩ Any (λ _,_ → Any (λ x → Any (λ y → P (x , y)) ys) xs) (return _,_) ↔⟨ ⊛↔ ⟩ Any (λ x, → Any (P ∘ x,) ys) (_,_ <$> xs) ↔⟨ ⊛↔ ⟩ Any P (xs ⊗ ys) ∎ ⊗↔′ : {P : A → Set ℓ} {Q : B → Set ℓ} {xs : List A} {ys : List B} → (Any P xs × Any Q ys) ↔ Any (P ⟨×⟩ Q) (xs ⊗ ys) ⊗↔′ {P} {Q} {xs} {ys} = (Any P xs × Any Q ys) ↔⟨ ×↔ ⟩ Any (λ x → Any (λ y → P x × Q y) ys) xs ↔⟨ ⊗↔ ⟩ Any (P ⟨×⟩ Q) (xs ⊗ ys) ∎
37.879518
106
0.426618
576903df30cf7b89df3fcfd2cac4e44c3390ac3b
1,894
agda
Agda
theorems/homotopy/HopfConstruction.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/HopfConstruction.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/HopfConstruction.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace module homotopy.HopfConstruction {i} {X : Ptd i} {{_ : is-connected 0 (de⊙ X)}} (hX : HSpaceStructure X) where module μ = ConnectedHSpace hX μ = μ.μ private A = de⊙ X {- Using the fact that [μ a] is an equivalence, we define a fibration over the suspension of [A] with fiber [A] and applying [μ a] when you move along [merid a]. -} module H = SuspRecType A A μ.r-equiv {- The total space of the previous fibration is the pushout of the following span (thanks to the flattening lemma). -} s : Span s = span (⊤ × A) (⊤ × A) (A × A) (λ cc' → (tt , snd cc')) (λ cc' → (tt , uncurry μ cc')) lemma : Σ (Susp A) H.f == Pushout s lemma = H.flattening {- But that span is equal to the following span, which is almost the same as the span for the join. -} x : s == Span-flip (*-span A A) x = span= (equiv snd (_,_ tt) (λ b → idp) (λ a → idp)) (equiv snd (_,_ tt) (λ b → idp) (λ a → idp)) eq (λ a → idp) (λ a → idp) where eq : (A × A) ≃ (A × A) eq = equiv to from to-from from-to where to : A × A → A × A to (a , a') = (μ a a' , a') from : A × A → A × A from (a , a') = (<– (μ.l-equiv a') a , a') to-from : (a : A × A) → to (from a) == a to-from (a , a') = pair×= (<–-inv-r (μ.l-equiv a') a) idp from-to : (a : A × A) → from (to a) == a from-to (a , a') = pair×= (<–-inv-l (μ.l-equiv a') a) idp lemma2 : (A * A) ≃ (Pushout (Span-flip (*-span A A))) lemma2 = Pushout-flip-equiv (*-span A A) theorem : Σ (Susp A) H.f == (A * A) theorem = lemma ∙ ap Pushout x ∙ ! (ua lemma2) -- record FibSeq {i j k ℓ} (A : Type i) (B : Type j) (C : Type k) (c : C) -- : Type (lmax (lmax i j) (lmax k (lsucc ℓ))) where -- constructor fibSeq -- field -- fibration : C → Type ℓ -- fiber : fibration c ≃ A -- total : Σ C fibration ≃ B
26.305556
79
0.55227
c54225b856f2aef2f11f2ec2469a88ad61bd410d
879
agda
Agda
Numeral/PositiveInteger.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/PositiveInteger.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/PositiveInteger.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.PositiveInteger where import Lvl open import Syntax.Number open import Data.Boolean.Stmt open import Functional open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural as ℕ using (ℕ) open import Type data ℕ₊ : Type{Lvl.𝟎} where 𝟏 : ℕ₊ 𝐒 : ℕ₊ → ℕ₊ ℕ₊-to-ℕ : ℕ₊ → ℕ ℕ₊-to-ℕ (𝟏) = ℕ.𝐒(ℕ.𝟎) ℕ₊-to-ℕ (𝐒(n)) = ℕ.𝐒(ℕ₊-to-ℕ (n)) ℕ-to-ℕ₊ : (n : ℕ) → ⦃ _ : IsTrue(positive?(n)) ⦄ → ℕ₊ ℕ-to-ℕ₊ (ℕ.𝟎) ⦃ ⦄ ℕ-to-ℕ₊ (ℕ.𝐒(ℕ.𝟎)) ⦃ _ ⦄ = 𝟏 ℕ-to-ℕ₊ (ℕ.𝐒(ℕ.𝐒(x))) ⦃ p ⦄ = 𝐒(ℕ-to-ℕ₊ (ℕ.𝐒(x)) ⦃ p ⦄) instance ℕ₊-numeral : Numeral(ℕ₊) Numeral.restriction-ℓ (ℕ₊-numeral) = Lvl.𝟎 Numeral.restriction (ℕ₊-numeral) (n) = IsTrue(positive?(n)) num ⦃ ℕ₊-numeral ⦄ (n) ⦃ proof ⦄ = ℕ-to-ℕ₊ (n) ⦃ proof ⦄ 𝐒-from-ℕ : ℕ → ℕ₊ 𝐒-from-ℕ (ℕ.𝟎) = 𝟏 𝐒-from-ℕ (ℕ.𝐒(n)) = 𝐒(𝐒-from-ℕ(n)) 𝐏-to-ℕ : ℕ₊ → ℕ 𝐏-to-ℕ (𝟏) = ℕ.𝟎 𝐏-to-ℕ (𝐒(n)) = ℕ.𝐒(𝐏-to-ℕ(n))
23.756757
63
0.555176
218d967f216cae2667e55d15e48ceadbdc8fde10
930
agda
Agda
Data/List/Relation/Sublist.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/List/Relation/Sublist.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/List/Relation/Sublist.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Type module Data.List.Relation.Sublist {ℓ} {T : Type{ℓ}} where open import Data.List using (List ; ∅ ; _⊰_) open import Logic -- Whether a list's elements are contained in another list in order. -- Examples: -- [1,2,3] ⊑ [1,2,3] -- [1,2,3] ⊑ [1,2,3,4] -- [1,2,3] ⊑ [0,1,2,3] -- [1,2,3] ⊑ [0,1,10,2,20,3,30] -- [0,10,20,30] ⊑ [0,1,10,2,20,3,30] data _⊑_ : List(T) → List(T) → Stmt{ℓ} where empty : (∅ ⊑ ∅) use : ∀{x}{l₁ l₂} → (l₁ ⊑ l₂) → ((x ⊰ l₁) ⊑ (x ⊰ l₂)) skip : ∀{x}{l₁ l₂} → (l₁ ⊑ l₂) → (l₁ ⊑ (x ⊰ l₂)) -- Whether a list's elements are contained in another list in order while not containing the same sublist. -- Examples: -- [1,2,3] ⊏ [1,2,3,4] -- [1,2,3] ⊏ [0,1,2,3] -- [1,2,3] ⊏ [0,1,10,2,20,3,30] data _⊏_ : List(T) → List(T) → Stmt{ℓ} where use : ∀{x}{l₁ l₂} → (l₁ ⊏ l₂) → ((x ⊰ l₁) ⊏ (x ⊰ l₂)) skip : ∀{x}{l₁ l₂} → (l₁ ⊑ l₂) → (l₁ ⊏ (x ⊰ l₂))
32.068966
106
0.503226
35fff44095c0ef1f64b18c460b455c6db3781b78
5,740
agda
Agda
formalization/agda/Spire/Denotational.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
43
2015-05-28T23:25:33.000Z
2022-03-08T17:10:59.000Z
formalization/agda/Spire/Denotational.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
null
null
null
formalization/agda/Spire/Denotational.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
1
2015-08-17T21:00:07.000Z
2015-08-17T21:00:07.000Z
open import Spire.Type module Spire.Denotational where ---------------------------------------------------------------------- data Term : Set → Set₁ eval : {A : Set} → Term A → A ---------------------------------------------------------------------- data Term where {- Type introduction -} `⊥ `⊤ `Bool `ℕ `Desc `Type : ∀{ℓ} → Term (Type ℓ) `Π `Σ : ∀{ℓ} (A : Term (Type ℓ)) (B : ⟦ ℓ ∣ eval A ⟧ → Term (Type ℓ)) → Term (Type ℓ) `⟦_⟧ : ∀{ℓ} (A : Term (Type ℓ)) → Term (Type (suc ℓ)) `⟦_⟧ᵈ : ∀{ℓ} (D : Term (Desc ℓ)) (X : Term (Type ℓ)) → Term (Type ℓ) `μ : ∀{ℓ} (D : Term (Desc ℓ)) → Term (Type ℓ) {- Type elimination -} `elimType : ∀{ℓ} (P : (n : ℕ) → Type n → Term (Type ℓ)) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `⊥) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `⊤) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `Bool) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `ℕ) ⟧) → ((n : ℕ) (A : Type n) (B : ⟦ n ∣ A ⟧ → Type n) (rec₁ : ⟦ ℓ ∣ eval (P n A) ⟧) (rec₂ : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P n (B a)) ⟧) → Term ⟦ ℓ ∣ eval (P n (`Π A B)) ⟧) → ((n : ℕ) (A : Type n) (B : ⟦ n ∣ A ⟧ → Type n) (rec₁ : ⟦ ℓ ∣ eval (P n A) ⟧) (rec₂ : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P n (B a)) ⟧) → Term ⟦ ℓ ∣ eval (P n (`Σ A B)) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `Desc) ⟧) → ((n : ℕ) (D : Desc n) (X : Type n) (rec : ⟦ ℓ ∣ eval (P n X) ⟧) → Term ⟦ ℓ ∣ eval (P n (`⟦ D ⟧ᵈ X)) ⟧) → ((n : ℕ) (D : Desc n) → Term ⟦ ℓ ∣ eval (P n (`μ D)) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `Type) ⟧) → ((n : ℕ) (A : Type n) (rec : ⟦ ℓ ∣ eval (P n A) ⟧) → Term ⟦ ℓ ∣ eval (P (suc n) `⟦ A ⟧) ⟧) → (n : Term ℕ) (A : Term (Type (eval n))) → Term ⟦ ℓ ∣ eval (P (eval n) (eval A)) ⟧ {- Desc introduction -} `⊤ᵈ `Xᵈ : ∀{ℓ} → Term (Desc ℓ) `Πᵈ `Σᵈ : ∀{ℓ} (A : Term (Type ℓ)) (B : ⟦ ℓ ∣ eval A ⟧ → Term (Desc (suc ℓ))) → Term (Desc (suc ℓ)) {- Desc elimination -} `elimDesc : ∀{ℓ} (P : (n : ℕ) → Desc n → Term (Type ℓ)) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `⊤) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `X) ⟧) → ((n : ℕ) (A : Type n) (D : ⟦ n ∣ A ⟧ → Desc (suc n)) (rec : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P (suc n) (D a)) ⟧) → Term ⟦ ℓ ∣ eval (P (suc n) (`Π A D)) ⟧) → ((n : ℕ) (A : Type n) (D : ⟦ n ∣ A ⟧ → Desc (suc n)) (rec : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P (suc n) (D a)) ⟧) → Term ⟦ ℓ ∣ eval (P (suc n) (`Σ A D)) ⟧) → (n : Term ℕ) (D : Term (Desc (eval n))) → Term ⟦ ℓ ∣ eval (P (eval n) (eval D)) ⟧ {- Value introduction -} `tt : Term ⊤ `true `false : Term Bool `zero : Term ℕ `suc : Term ℕ → Term ℕ `λ : ∀{A} {B : A → Set} (f : (a : A) → Term (B a)) → Term ((a : A) → B a) _`,_ : ∀{A B} (a : Term A) (b : Term (B (eval a))) → Term (Σ A B) `con : ∀{ℓ D} (x : Term (⟦ ℓ ∣ D ⟧ᵈ (μ D))) → Term (μ D) {- Value elimination -} `elim⊥ : ∀{A} → Term ⊥ → Term A `elimBool : ∀{ℓ} (P : Bool → Term (Type ℓ)) (pt : Term ⟦ ℓ ∣ eval (P true) ⟧) (pf : Term ⟦ ℓ ∣ eval (P false) ⟧) (b : Term Bool) → Term ⟦ ℓ ∣ eval (P (eval b)) ⟧ `elimℕ : ∀{ℓ} (P : ℕ → Term (Type ℓ)) (pz : Term ⟦ ℓ ∣ eval (P zero) ⟧) (ps : (n : ℕ) → ⟦ ℓ ∣ eval (P n) ⟧ → Term ⟦ ℓ ∣ eval (P (suc n)) ⟧) (n : Term ℕ) → Term ⟦ ℓ ∣ eval (P (eval n)) ⟧ `proj₁ : ∀{A B} (ab : Term (Σ A B)) → Term A `proj₂ : ∀{A B} (ab : Term (Σ A B)) → Term (B (proj₁ (eval ab))) _`$_ : ∀{A} {B : A → Set} (f : Term ((a : A) → B a)) (a : Term A) → Term (B (eval a)) `des : ∀{ℓ} {D : Desc ℓ} → (Term (μ D)) → Term (⟦ ℓ ∣ D ⟧ᵈ (μ D)) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ = `⊥ eval `⊤ = `⊤ eval `Bool = `Bool eval `ℕ = `ℕ eval `Desc = `Desc eval `Type = `Type eval (`Π A B) = `Π (eval A) (λ a → eval (B a)) eval (`Σ A B) = `Σ (eval A) (λ a → eval (B a)) eval (`μ D) = `μ (eval D) eval (`⟦ D ⟧ᵈ X) = `⟦ eval D ⟧ᵈ (eval X) eval `⟦ A ⟧ = `⟦ eval A ⟧ {- Type elimination -} eval (`elimType {ℓ = ℓ} P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧ n A) = elimType (λ n A → ⟦ ℓ ∣ eval (P n A) ⟧) (λ n → eval (p⊥ n)) (λ n → eval (p⊤ n)) (λ n → eval (pBool n)) (λ n → eval (pℕ n)) (λ n A B rec₁ rec₂ → eval (pΠ n A B rec₁ rec₂)) (λ n A B rec₁ rec₂ → eval (pΣ n A B rec₁ rec₂)) (λ n → eval (pDesc n)) (λ n D X rec → eval (p⟦D⟧ᵈ n D X rec)) (λ n D → eval (pμ n D)) (λ n → eval (pType n)) (λ n A rec → eval (p⟦A⟧ n A rec)) (eval n) (eval A) {- Desc introduction -} eval `⊤ᵈ = `⊤ eval `Xᵈ = `X eval (`Πᵈ A D) = `Π (eval A) (λ a → eval (D a)) eval (`Σᵈ A D) = `Σ (eval A) (λ a → eval (D a)) {- Desc elimination -} eval (`elimDesc {ℓ = ℓ} P p⊤ pX pΠ pΣ n D) = elimDesc (λ n D → ⟦ ℓ ∣ eval (P n D) ⟧) (λ n → eval (p⊤ n)) (λ n → eval (pX n)) (λ n A D rec → eval (pΠ n A D rec)) (λ n A D rec → eval (pΣ n A D rec)) (eval n) (eval D) {- Value introduction -} eval `tt = tt eval `true = true eval `false = false eval `zero = zero eval (`suc n) = suc (eval n) eval (`λ f) = λ a → eval (f a) eval (a `, b) = eval a , eval b eval (`con x) = con (eval x) {- Value elimination -} eval (`elim⊥ bot) = elim⊥ (eval bot) eval (`elimBool {ℓ = ℓ} P pt pf b) = elimBool (λ b → ⟦ ℓ ∣ eval (P b) ⟧) (eval pt) (eval pf) (eval b) eval (`elimℕ {ℓ = ℓ} P pz ps n) = elimℕ (λ n → ⟦ ℓ ∣ eval (P n) ⟧) (eval pz) (λ n pn → eval (ps n pn)) (eval n) eval (`proj₁ ab) = proj₁ (eval ab) eval (`proj₂ ab) = proj₂ (eval ab) eval (f `$ a) = (eval f) (eval a) eval (`des {ℓ = ℓ} x) = des {ℓ = ℓ} (eval x) ----------------------------------------------------------------------
29.740933
86
0.401394
58aad59324c28aab06c46f1700442442e7a13f7a
346
agda
Agda
test/interaction/Issue3130Split.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3130Split.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3130Split.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-06-19, issue #3130 -- Produce parenthesized dot pattern .(p) instead of .p -- when is a projection. -- {-# OPTIONS -v reify.pat:80 #-} record R : Set₁ where field p : Set open R data D : (R → Set) → Set₁ where c : D p test : (f : R → Set) (x : D f) → Set₁ test f x = {!x!} -- split on x -- Expected: -- test .(p) c = ?
18.210526
55
0.566474
34e71ff7cba8b9fd9c21a994893a0797bd296db7
1,874
agda
Agda
vendor/stdlib/src/Data/List/NonEmpty/Properties.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/List/NonEmpty/Properties.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/List/NonEmpty/Properties.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Properties of non-empty lists ------------------------------------------------------------------------ module Data.List.NonEmpty.Properties where open import Algebra open import Category.Monad open import Data.Function open import Data.Product open import Data.List as List using (List; []; _∷_; _++_) open RawMonad List.monad using () renaming (_>>=_ to _⋆>>=_) private module LM {A} = Monoid (List.monoid A) open import Data.List.NonEmpty as List⁺ open RawMonad List⁺.monad open import Relation.Binary.PropositionalEquality open ≡-Reasoning η : ∀ {A} (xs : List⁺ A) → head xs ∷ tail xs ≡ List⁺.toList xs η [ x ] = refl η (x ∷ xs) = refl toList-fromList : ∀ {A} x (xs : List A) → x ∷ xs ≡ List⁺.toList (List⁺.fromList x xs) toList-fromList x [] = refl toList-fromList x (y ∷ xs) = cong (_∷_ x) (toList-fromList y xs) toList-⁺++ : ∀ {A} (xs : List⁺ A) ys → List⁺.toList xs ++ ys ≡ List⁺.toList (xs ⁺++ ys) toList-⁺++ [ x ] ys = toList-fromList x ys toList-⁺++ (x ∷ xs) ys = cong (_∷_ x) (toList-⁺++ xs ys) toList-⁺++⁺ : ∀ {A} (xs ys : List⁺ A) → List⁺.toList xs ++ List⁺.toList ys ≡ List⁺.toList (xs ⁺++⁺ ys) toList-⁺++⁺ [ x ] ys = refl toList-⁺++⁺ (x ∷ xs) ys = cong (_∷_ x) (toList-⁺++⁺ xs ys) toList->>= : ∀ {A B} (f : A → List⁺ B) (xs : List⁺ A) → (List⁺.toList xs ⋆>>= List⁺.toList ∘ f) ≡ (List⁺.toList (xs >>= f)) toList->>= f [ x ] = proj₂ LM.identity _ toList->>= f (x ∷ xs) = begin List⁺.toList (f x) ++ (List⁺.toList xs ⋆>>= List⁺.toList ∘ f) ≡⟨ cong (_++_ (List⁺.toList (f x))) (toList->>= f xs) ⟩ List⁺.toList (f x) ++ List⁺.toList (xs >>= f) ≡⟨ toList-⁺++⁺ (f x) (xs >>= f) ⟩ List⁺.toList (f x ⁺++⁺ (xs >>= f)) ∎
39.041667
119
0.495197
35388afa46b9a0644d931dddc907996ce6922d30
293
agda
Agda
test/fail/LevelLiterals.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/LevelLiterals.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/LevelLiterals.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- There are no level literals in the concrete syntax. This file tests -- if type errors use level literals. {-# OPTIONS --universe-polymorphism #-} module LevelLiterals where open import Imports.Level data ⊥ : Set₁ where DoubleNegated : ∀ {ℓ} → Set ℓ → Set DoubleNegated A = (A → ⊥) → ⊥
20.928571
70
0.699659
8b34ea5986a6bd904d95a3c6443e7e544d63f13c
7,702
agda
Agda
LibraBFT/Abstract/Obligations/LockedRound.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/Obligations/LockedRound.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/Obligations/LockedRound.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Abstract.Types module LibraBFT.Abstract.Obligations.LockedRound (𝓔 : EpochConfig) (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (𝓥 : VoteEvidence 𝓔 UID) where open import LibraBFT.Abstract.Records 𝓔 UID _≟UID_ 𝓥 open import LibraBFT.Abstract.Records.Extends 𝓔 UID _≟UID_ 𝓥 open import LibraBFT.Abstract.RecordChain 𝓔 UID _≟UID_ 𝓥 import LibraBFT.Abstract.RecordChain.Assumptions 𝓔 UID _≟UID_ 𝓥 as StaticAssumptions open import LibraBFT.Abstract.System 𝓔 UID _≟UID_ 𝓥 --------------------- -- * LockedRound * -- --------------------- module _ {ℓ}(𝓢 : AbsSystemState ℓ) where open AbsSystemState 𝓢 -- The LockedRound rule is a little more involved to be expressed in terms -- of /HasBeenSent/: it needs two additional pieces which are introduced -- next. -- Cand-3-chain v carries the information for estabilishing -- that v.proposed will be part of a 3-chain if a QC containing v is formed. -- The difficulty is that we can't easily access the "grandparent" of a vote. -- Instead, we must explicitly state that it exists. -- -- candidate 3-chain -- +------------------------------------------------------+ -- | | -- | 2-chain | -- +----------------------------------+ -- ⋯ <- v.grandparent <- q₁ <- v.parent <- q <- v.proposed <- v -- ̭ -- | -- The 'qc' defined below is an -- abstract view of q, above. record voteExtends (v : Vote) : Set where constructor mkVE field veBlock : Block veId : vBlockUID v ≡ bId veBlock veRounds≡ : vRound v ≡ bRound veBlock open voteExtends record Cand-3-chain-vote (v : Vote) : Set where field votesForB : voteExtends v qc : QC qc←b : Q qc ← B (veBlock votesForB) rc : RecordChain (Q qc) n : ℕ is-2chain : 𝕂-chain Contig (2 + n) rc open Cand-3-chain-vote public -- Returns the round of the head of the candidate 3-chain. In the diagram -- explaining Cand-3-chain-vote, this would be v.grandparent.round. Cand-3-chain-head-round : ∀{v} → Cand-3-chain-vote v → Round Cand-3-chain-head-round c3cand = getRound (kchainBlock (suc zero) (is-2chain c3cand)) -- The locked round rule states a fact about the /previous round/ -- of a vote; that is, the round of the parent of the block -- being voted for; the implementation will have to -- show it can construct this parent. data VoteParentData-BlockExt : Record → Set where vpParent≡I : VoteParentData-BlockExt I vpParent≡Q : ∀{b q} → B b ← Q q → VoteParentData-BlockExt (Q q) -- TODO-2: it may be cleaner to specify this as a RC 2 vpParent vpQC, -- and we should consider it once we address the issue in -- Abstract.RecordChain (below the definition of transp-𝕂-chain) record VoteParentData (v : Vote) : Set where field vpExt : voteExtends v vpParent : Record vpExt' : vpParent ← B (veBlock vpExt) vpMaybeBlock : VoteParentData-BlockExt vpParent open VoteParentData public -- The setup for LockedRoundRule is like thta for VotesOnce. -- Given two votes by an honest author α: Type : Set ℓ Type = ∀{α v v'} → Meta-Honest-Member 𝓔 α → vMember v ≡ α → (hbs : HasBeenSent v) → vMember v' ≡ α → (hbs' : HasBeenSent v') -- If v is a vote on a candidate 3-chain, that is, is a vote on a block -- that extends a 2-chain, → (c2 : Cand-3-chain-vote v) -- and the round of v is lower than that of v', → vRound v < vRound v' ------------------------------ -- then α obeyed the locked round rule: → Σ (VoteParentData v') (λ vp → Cand-3-chain-head-round c2 ≤ round (vpParent vp)) private make-cand-3-chain : ∀{n α q}{rc : RecordChain (Q q)} → (c3 : 𝕂-chain Contig (3 + n) rc) → (v : α ∈QC q) → Cand-3-chain-vote (∈QC-Vote q v) make-cand-3-chain {q = q} (s-chain {suc (suc n)} {rc = rc} {b = b} ext₀@(Q←B h0 refl) _ ext₁@(B←Q h1 refl) c2) v with c2 ...| (s-chain {q = q₀} _ _ _ (s-chain _ _ _ c)) = record { votesForB = mkVE b (All-lookup (qVotes-C3 q) (Any-lookup-correct v)) (trans (All-lookup (qVotes-C4 q) (Any-lookup-correct v)) h1) ; qc = q₀ ; qc←b = ext₀ ; rc = rc ; n = n ; is-2chain = c2 } -- It is important that the make-cand-3-chain lemma doesn't change the head of -- the 3-chain/cand-2-chain. make-cand-3-chain-lemma : ∀{n α q}{rc : RecordChain (Q q)} → (c3 : 𝕂-chain Contig (3 + n) rc) → (v : α ∈QC q) → NonInjective-≡ bId ⊎ kchainBlock (suc zero) (is-2chain (make-cand-3-chain c3 v)) ≡ kchainBlock (suc (suc zero)) c3 make-cand-3-chain-lemma {q = q} c3@(s-chain {suc (suc n)} {rc = rc} {b = b} ext₀@(Q←B h0 refl) _ ext₁@(B←Q h1 refl) c2) v with (veBlock (Cand-3-chain-vote.votesForB (make-cand-3-chain c3 v))) ≟Block b ...| no neq = inj₁ ((veBlock (Cand-3-chain-vote.votesForB (make-cand-3-chain c3 v)) , b) , neq , trans (sym (veId (votesForB (make-cand-3-chain c3 v)))) (All-lookup (qVotes-C3 q) (∈QC-Vote-correct q v))) ...| yes b≡ with c2 ...| (s-chain {q = q₀} _ _ _ (s-chain _ _ _ c)) rewrite b≡ = inj₂ refl vdParent-prevRound-lemma : ∀{α q}(rc : RecordChain (Q q))(va : α ∈QC q) → (vp : VoteParentData (∈QC-Vote q va)) → NonInjective-≡ bId ⊎ (round (vpParent vp) ≡ prevRound rc) vdParent-prevRound-lemma {q = q} (step {r = B b} (step rc y) x@(B←Q refl refl)) va vp with b ≟Block (veBlock (vpExt vp)) ...| no imp = inj₁ ( (b , veBlock (vpExt vp)) , (imp , id-B∨Q-inj (cong id-B∨Q (trans (sym (All-lookup (qVotes-C3 q) (∈QC-Vote-correct q va))) (veId (vpExt vp)))))) ...| yes refl with ←-inj y (vpExt' vp) ...| bSameId' with y | vpExt' vp ...| I←B y0 y1 | I←B e0 e1 = inj₂ refl ...| Q←B y0 refl | Q←B e0 refl with vpMaybeBlock vp ...| vpParent≡Q {b = bP} bP←qP with rc ...| step {r = B b'} rc' b←q with b' ≟Block bP ...| no imp = inj₁ ((b' , bP) , imp , id-B∨Q-inj (lemmaS1-2 (eq-Q refl) b←q bP←qP)) ...| yes refl with bP←qP | b←q ...| B←Q refl refl | B←Q refl refl = inj₂ refl -- Finally, we can prove the locked round rule from the global version; proof : Type → StaticAssumptions.LockedRoundRule InSys proof glob-inv α hα {q} {q'} q∈sys q'∈sys c3 va rc' va' hyp with ∈QC⇒HasBeenSent q∈sys hα va | ∈QC⇒HasBeenSent q'∈sys hα va' ...| sent-cv | sent-cv' with make-cand-3-chain c3 va | inspect (make-cand-3-chain c3) va ...| cand | [ R ] with glob-inv hα (sym (∈QC-Member q va )) sent-cv (sym (∈QC-Member q' va')) sent-cv' cand hyp ...| va'Par , res with vdParent-prevRound-lemma rc' va' va'Par ...| inj₁ hb = inj₁ hb ...| inj₂ final with make-cand-3-chain-lemma c3 va ...| inj₁ hb = inj₁ hb ...| inj₂ xx = inj₂ (subst₂ _≤_ (cong bRound (trans (cong (kchainBlock (suc zero) ∘ is-2chain) (sym R)) xx)) final res)
40.751323
124
0.542716
34ac5e117772c1e37847595d3bb685acce9f33aa
3,637
agda
Agda
examples/outdated-and-incorrect/cat/Category.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/cat/Category.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/cat/Category.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Category where open import Logic.Equivalence open import Logic.Relations open Equivalence using () renaming (_==_ to eq) record Cat : Set2 where field Obj : Set1 _─→_ : Obj -> Obj -> Set id : {A : Obj} -> A ─→ A _∘_ : {A B C : Obj} -> B ─→ C -> A ─→ B -> A ─→ C Eq : {A B : Obj} -> Equivalence (A ─→ B) cong : {A B C : Obj}{f₁ f₂ : B ─→ C}{g₁ g₂ : A ─→ B} -> eq Eq f₁ f₂ -> eq Eq g₁ g₂ -> eq Eq (f₁ ∘ g₁) (f₂ ∘ g₂) idLeft : {A B : Obj}{f : A ─→ B} -> eq Eq (id ∘ f) f idRight : {A B : Obj}{f : A ─→ B} -> eq Eq (f ∘ id) f assoc : {A B C D : Obj}{f : C ─→ D}{g : B ─→ C}{h : A ─→ B} -> eq Eq ((f ∘ g) ∘ h) (f ∘ (g ∘ h)) module Category (ℂ : Cat) where private module CC = Cat ℂ open CC public hiding (_─→_; _∘_) private module Eq {A B : Obj} = Equivalence (Eq {A}{B}) open Eq public hiding (_==_) infix 20 _==_ infixr 30 _─→_ infixr 90 _∘_ _─→_ = CC._─→_ _==_ : {A B : Obj} -> Rel (A ─→ B) _==_ = Eq._==_ _∘_ : {A B C : Obj} -> B ─→ C -> A ─→ B -> A ─→ C _∘_ = CC._∘_ congL : {A B C : Obj}{f₁ f₂ : B ─→ C}{g : A ─→ B} -> f₁ == f₂ -> f₁ ∘ g == f₂ ∘ g congL p = cong p (refl _) congR : {A B C : Obj}{f : B ─→ C}{g₁ g₂ : A ─→ B} -> g₁ == g₂ -> f ∘ g₁ == f ∘ g₂ congR p = cong (refl _) p module Poly-Cat where infix 20 _==_ infixr 30 _─→_ _─→'_ infixr 90 _∘_ private module C = Category -- Objects data Obj (ℂ : Cat) : Set1 where -- obj : C.Obj ℂ -> Obj ℂ -- obj⁻¹ : {ℂ : Cat} -> Obj ℂ -> C.Obj ℂ -- obj⁻¹ {ℂ} (obj A) = A postulate X : Set -- Arrows data _─→_ {ℂ : Cat}(A B : Obj ℂ) : Set where arr : X -> A ─→ B -- C._─→_ ℂ (obj⁻¹ A) (obj⁻¹ B) -> A ─→ B postulate ℂ : Cat A : Obj ℂ B : Obj ℂ foo : A ─→ B -> X foo (arr f) = ? -- arr⁻¹ : {ℂ : Cat}{A B : Obj ℂ} -> A ─→ B -> C._─→_ ℂ (obj⁻¹ A) (obj⁻¹ B) -- arr⁻¹ {ℂ}{A}{B} (arr f) = f open Poly-Cat open Category hiding (Obj; _─→_) {- id : {ℂ : Cat}{A : Obj ℂ} -> A ─→ A id {ℂ} = arr (Pr.id ℂ) _∘_ : {ℂ : Cat}{A B C : Obj ℂ} -> B ─→ C -> A ─→ B -> A ─→ C _∘_ {ℂ} (arr f) (arr g) = arr (Pr.compose ℂ f g) data _==_ {ℂ : Cat}{A B : Obj ℂ}(f g : A ─→ B) : Set where eqArr : Pr.equal ℂ (arr⁻¹ f) (arr⁻¹ g) -> f == g refl : {ℂ : Cat}{A B : Obj ℂ}{f : A ─→ B} -> f == f refl {ℂ} = eqArr (Pr.refl ℂ) sym : {ℂ : Cat}{A B : Obj ℂ}{f g : A ─→ B} -> f == g -> g == f sym {ℂ} (eqArr fg) = eqArr (Pr.sym ℂ fg) trans : {ℂ : Cat}{A B : Obj ℂ}{f g h : A ─→ B} -> f == g -> g == h -> f == h trans {ℂ} (eqArr fg) (eqArr gh) = eqArr (Pr.trans ℂ fg gh) cong : {ℂ : Cat}{A B C : Obj ℂ}{f₁ f₂ : B ─→ C}{g₁ g₂ : A ─→ B} -> f₁ == f₂ -> g₁ == g₂ -> f₁ ∘ g₁ == f₂ ∘ g₂ cong {ℂ} {f₁ = arr _}{f₂ = arr _}{g₁ = arr _}{g₂ = arr _} (eqArr p) (eqArr q) = eqArr (Pr.cong ℂ p q) congL : {ℂ : Cat}{A B C : Obj ℂ}{f₁ f₂ : B ─→ C}{g : A ─→ B} -> f₁ == f₂ -> f₁ ∘ g == f₂ ∘ g congL p = cong p refl congR : {ℂ : Cat}{A B C : Obj ℂ}{f : B ─→ C}{g₁ g₂ : A ─→ B} -> g₁ == g₂ -> f ∘ g₁ == f ∘ g₂ congR q = cong refl q Eq : {ℂ : Cat}{A B : Obj ℂ} -> Equivalence (A ─→ B) Eq = equiv _==_ (\x -> refl) (\x y -> sym) (\x y z -> trans) idL : {ℂ : Cat}{A B : Obj ℂ}{f : A ─→ B} -> id ∘ f == f idL {ℂ}{f = arr _} = eqArr (Pr.idL ℂ) idR : {ℂ : Cat}{A B : Obj ℂ}{f : A ─→ B} -> f ∘ id == f idR {ℂ}{f = arr _} = eqArr (Pr.idR ℂ) assoc : {ℂ : Cat}{A B C D : Obj ℂ}{f : C ─→ D}{g : B ─→ C}{h : A ─→ B} -> (f ∘ g) ∘ h == f ∘ (g ∘ h) assoc {ℂ}{f = arr _}{g = arr _}{h = arr _} = eqArr (Pr.assoc ℂ) -}
27.345865
78
0.432224
38ff0c7d44177b63928104cc0edf30a62e7f93ab
2,782
agda
Agda
Cubical/Algebra/Group/Morphisms.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:28:39.000Z
2022-03-05T00:28:39.000Z
Cubical/Algebra/Group/Morphisms.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Morphisms.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- Defines different notions of morphisms and properties of morphisms of groups: - GroupHom (homomorphisms) - GroupEquiv (equivs which are homomorphisms) - GroupIso (isos which are homomorphisms) - Image - Kernel - Surjective - Injective - Mono - BijectionIso (surjective + injective) -} {-# OPTIONS --safe #-} module Cubical.Algebra.Group.Morphisms where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.DirProd open import Cubical.Data.Sigma open import Cubical.Reflection.RecordEquiv private variable ℓ ℓ' ℓ'' ℓ''' : Level record IsGroupHom {A : Type ℓ} {B : Type ℓ'} (M : GroupStr A) (f : A → B) (N : GroupStr B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module M = GroupStr M module N = GroupStr N field pres· : (x y : A) → f (x M.· y) ≡ f x N.· f y pres1 : f M.1g ≡ N.1g presinv : (x : A) → f (M.inv x) ≡ N.inv (f x) unquoteDecl IsGroupHomIsoΣ = declareRecordIsoΣ IsGroupHomIsoΣ (quote IsGroupHom) GroupHom : (G : Group ℓ) (H : Group ℓ') → Type (ℓ-max ℓ ℓ') GroupHom G H = Σ[ f ∈ (G .fst → H .fst) ] IsGroupHom (G .snd) f (H .snd) GroupIso : (G : Group ℓ) (H : Group ℓ') → Type (ℓ-max ℓ ℓ') GroupIso G H = Σ[ e ∈ Iso (G .fst) (H .fst) ] IsGroupHom (G .snd) (e .Iso.fun) (H .snd) IsGroupEquiv : {A : Type ℓ} {B : Type ℓ'} (M : GroupStr A) (e : A ≃ B) (N : GroupStr B) → Type (ℓ-max ℓ ℓ') IsGroupEquiv M e N = IsGroupHom M (e .fst) N GroupEquiv : (G : Group ℓ) (H : Group ℓ') → Type (ℓ-max ℓ ℓ') GroupEquiv G H = Σ[ e ∈ (G .fst ≃ H .fst) ] IsGroupEquiv (G .snd) e (H .snd) groupEquivFun : {G : Group ℓ} {H : Group ℓ'} → GroupEquiv G H → G .fst → H .fst groupEquivFun e = e .fst .fst -- Image, kernel, surjective, injective, and bijections open IsGroupHom open GroupStr private variable G H : Group ℓ isInIm : GroupHom G H → ⟨ H ⟩ → Type _ isInIm {G = G} ϕ h = ∃[ g ∈ ⟨ G ⟩ ] ϕ .fst g ≡ h isInKer : GroupHom G H → ⟨ G ⟩ → Type _ isInKer {H = H} ϕ g = ϕ .fst g ≡ 1g (snd H) Ker : GroupHom G H → Type _ Ker {G = G} ϕ = Σ[ x ∈ ⟨ G ⟩ ] isInKer ϕ x Im : GroupHom G H → Type _ Im {H = H} ϕ = Σ[ x ∈ ⟨ H ⟩ ] isInIm ϕ x isSurjective : GroupHom G H → Type _ isSurjective {H = H} ϕ = (x : ⟨ H ⟩) → isInIm ϕ x isInjective : GroupHom G H → Type _ isInjective {G = G} ϕ = (x : ⟨ G ⟩) → isInKer ϕ x → x ≡ 1g (snd G) isMono : GroupHom G H → Type _ isMono {G = G} f = {x y : ⟨ G ⟩} → f .fst x ≡ f .fst y → x ≡ y -- Group bijections record BijectionIso (G : Group ℓ) (H : Group ℓ') : Type (ℓ-max ℓ ℓ') where constructor bijIso field fun : GroupHom G H inj : isInjective fun surj : isSurjective fun
26
87
0.626168
21241dd03057872ebee824019161a421aa363977
26,604
agda
Agda
AAOSL/Hops.agda
LaudateCorpus1/aaosl-agda
318881fb24af06bbaafa33edeea0745eca1873f0
[ "UPL-1.0" ]
9
2020-12-22T00:01:00.000Z
2022-03-31T10:16:38.000Z
AAOSL/Hops.agda
LaudateCorpus1/aaosl-agda
318881fb24af06bbaafa33edeea0745eca1873f0
[ "UPL-1.0" ]
5
2021-01-04T03:45:34.000Z
2021-02-12T04:16:40.000Z
AAOSL/Hops.agda
LaudateCorpus1/aaosl-agda
318881fb24af06bbaafa33edeea0745eca1873f0
[ "UPL-1.0" ]
3
2020-12-22T00:01:03.000Z
2022-02-18T04:33:50.000Z
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Data.Empty open import Data.Fin.Properties using (toℕ<n; toℕ-injective) open import Data.Product open import Data.Sum open import Data.Nat open import Data.Nat.Divisibility open import Data.Nat.Properties open import Data.Nat.Induction open import Data.List renaming (map to List-map) open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All import Relation.Binary.PropositionalEquality as Eq open import Relation.Binary.Definitions open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) open import Relation.Binary.PropositionalEquality renaming ( [_] to Reveal[_]) open import Relation.Binary.PropositionalEquality open import Relation.Binary.HeterogeneousEquality using (_≅_; ≅-to-≡; ≡-to-≅; _≇_) renaming (cong to ≅-cong; refl to ≅-refl; cong₂ to ≅-cong₂) open import Relation.Nullary open import Relation.Binary.Core open import Relation.Nullary.Negation using (contradiction; contraposition) import Relation.Nullary using (¬_) open import Function -- This module defines the hop relation used by the original AAOSL due to Maniatis -- and Baker, and proves various properties needed to establish it as a valid -- DepRel, so that we can instantiate the asbtract model with it to demonstrate that -- it is an instance of the class of AAOSLs for which we prove our properties. module AAOSL.Hops where open import AAOSL.Lemmas open import Data.Nat.Even -- The level of an index is 0 for index 0, -- otherwise, it is one plus the number of times -- that two divides said index. -- -- lvlOf must be marked terminating because, in one branch, we make a -- recursive call on the quotient of the argument. Agda's termination -- checker cannot confirm that this is structurally smaller than the -- argument. Use of the pragma is later justified by the proof -- lvlOf≡lvlOfWF that lvlOf is equal to lvlOfWF, an alternative -- implementation using well-founded recursion. {-# TERMINATING #-} lvlOf : ℕ → ℕ lvlOf 0 = 0 lvlOf (suc n) with even? (suc n) ...| no _ = 1 ...| yes e = suc (lvlOf (quotient e)) -- level of an index with well-founded recursion lvlOfWFHelp : (n : ℕ) → Acc _<_ n → ℕ lvlOfWFHelp 0 p = 0 lvlOfWFHelp (suc n) (acc rs) with even? (suc n) ...| no _ = 1 ...| yes (divides q eq) = suc (lvlOfWFHelp q (rs q (1+n=m*2⇒m<1+n q n eq))) lvlOfWF : ℕ → ℕ lvlOfWF n = lvlOfWFHelp n (<-wellFounded n) -- When looking at an index in the form 2^k * d, the level of -- said index is more easily defined. lvlOf' : ∀{n} → Pow2 n → ℕ lvlOf' zero = zero lvlOf' (pos l _ _ _) = suc l ------------------------------------------- -- Properties of lvlOf, lvlOfWF, and lvlOf' lvlOf≡lvlOfWFHelp : (n : ℕ) (p : Acc _<_ n) → lvlOf n ≡ lvlOfWFHelp n p lvlOf≡lvlOfWFHelp 0 p = refl lvlOf≡lvlOfWFHelp (suc n) (acc rs) with even? (suc n) ...| no _ = refl ...| yes (divides q eq) = cong suc (lvlOf≡lvlOfWFHelp q (rs q (1+n=m*2⇒m<1+n q n eq))) lvlOf≡lvlOfWF : (n : ℕ) → lvlOf n ≡ lvlOfWF n lvlOf≡lvlOfWF n = lvlOf≡lvlOfWFHelp n (<-wellFounded n) lvlOf≡lvlOf' : ∀ n → lvlOf n ≡ lvlOf' (to n) lvlOf≡lvlOf' n rewrite lvlOf≡lvlOfWF n = go n (<-wellFounded n) where go : (n : ℕ) (p : Acc _<_ n) → lvlOfWFHelp n p ≡ lvlOf' (to n) go 0 p = refl go (suc n) (acc rs) with even? (suc n) ...| no _ = refl ...| yes (divides q eq) with go q (rs q (1+n=m*2⇒m<1+n q n eq)) ...| ih with to q ...| pos l d odd prf = cong suc ih lvl≥2-even : ∀ {n} → 2 ≤ lvlOf n → Even n lvl≥2-even {suc n} x with 2 ∣? (suc n) ...| yes prf = prf ...| no prf = ⊥-elim ((≤⇒≯ x) (s≤s (s≤s z≤n))) lvlOfodd≡1 : ∀ n → Odd n → lvlOf n ≡ 1 lvlOfodd≡1 0 nodd = ⊥-elim (nodd (divides zero refl)) lvlOfodd≡1 (suc n) nodd with even? (suc n) ...| yes prf = ⊥-elim (nodd prf) ...| no prf = refl -- We eventually need to 'undo' a level lvlOf-undo : ∀{j}(e : Even (suc j)) → suc (lvlOf (quotient e)) ≡ lvlOf (suc j) lvlOf-undo {j} e with even? (suc j) ...| no abs = ⊥-elim (abs e) ...| yes prf rewrite even-irrelevant e prf = refl ∣-cmp : ∀{t u n} → (suc t * u) ∣ n → (d : suc t ∣ n) → u ∣ (quotient d) ∣-cmp {t} {u} {n} (divides q1 e1) (divides q2 e2) rewrite sym (*-assoc q1 (suc t) u) | *-comm q1 (suc t) | *-comm q2 (suc t) | *-assoc (suc t) q1 u = divides q1 (*-cancelˡ-≡ t (trans (sym e2) e1)) ∣-0< : ∀{n t} → 0 < n → (d : suc t ∣ n) → 0 < quotient d ∣-0< hip (divides zero e) = ⊥-elim (<⇒≢ hip (sym e)) ∣-0< hip (divides (suc q) e) = s≤s z≤n lvlOf-mono : ∀{n} k → 0 < n → 2 ^ k ∣ n → k ≤ lvlOf n lvlOf-mono zero hip prf = z≤n lvlOf-mono {suc n} (suc k) hip prf with even? (suc n) ...| no abs = ⊥-elim (abs (divides (quotient prf * (2 ^ k)) (trans (_∣_.equality prf) (trans (cong ((quotient prf) *_) (sym (*-comm (2 ^ k) 2))) (sym (*-assoc (quotient prf) (2 ^ k) 2)))))) ...| yes prf' = s≤s (lvlOf-mono {quotient prf'} k (∣-0< hip prf') (∣-cmp prf prf')) -- This property can be strenghtened to < if we ever need. lvlOf'-mono : ∀{k} d → 0 < d → k ≤ lvlOf' (to (2 ^ k * d)) lvlOf'-mono {k} d 0<d with to d ...| pos {d} kk dd odd eq with (2 ^ (k + kk)) * dd ≟ (2 ^ k) * d ...| no xx = ⊥-elim (xx ( trans (cong (_* dd) (^-distribˡ-+-* 2 k kk)) (trans (*-assoc (2 ^ k) (2 ^ kk) dd) (cong (λ x → (2 ^ k) * x) (sym eq))))) ...| yes xx with to-reduce {(2 ^ k) * d} {k + kk} {dd} (sym xx) odd ...| xx1 = ≤-trans (≮⇒≥ (m+n≮m k kk)) (≤-trans (n≤1+n (k + kk)) -- TODO-1: easy to strengthen to <; omit this step (≤-reflexive (sym (cong lvlOf' xx1)))) -- And a progress property about levels: -- These will be much easier to reason about in terms of lvlOf' -- as we can see in lvlOf-correct. lvlOf-correct : ∀{l j} → l < lvlOf j → 2 ^ l ≤ j lvlOf-correct {l} {j} prf rewrite lvlOf≡lvlOf' j with to j ...| zero = ⊥-elim (1+n≢0 (n≤0⇒n≡0 prf)) ...| pos l' d odd refl = 2^kd-mono (≤-unstep2 prf) (0<odd odd) -- lvlOf-prog states that if we have not reached 0, we landed somewhere -- where we can hop again at the same level. lvlOf-prog : ∀{l j} → 0 < j ∸ 2 ^ l → l < lvlOf j → l < lvlOf (j ∸ 2 ^ l) lvlOf-prog {l} {j} hip l<lvl rewrite lvlOf≡lvlOf' j | lvlOf≡lvlOf' (j ∸ 2 ^ l) with to j ...| zero = ⊥-elim (1+n≰n (≤-trans l<lvl z≤n)) ...| pos l₁ d₁ o₁ refl rewrite 2^ld-2l l₁ l d₁ (≤-unstep2 l<lvl) with l ≟ l₁ ...| no l≢l₁ rewrite to-2^kd l (odd-2^kd-1 (l₁ ∸ l) d₁ (0<m-n (≤∧≢⇒< (≤-unstep2 l<lvl) l≢l₁)) (0<odd o₁)) = ≤-refl ...| yes refl rewrite n∸n≡0 l₁ | +-comm d₁ 0 with odd∸1-even o₁ ...| divides q prf rewrite prf | sym (*-assoc (2 ^ l₁) q 2) | a*b*2-lemma (2 ^ l₁) q = lvlOf'-mono {suc l₁} q (1≤m*n⇒0<n {m = 2 ^ suc l₁} hip) lvlOf-no-overshoot : ∀ j l → suc l < lvlOf j → 0 < j ∸ 2 ^ l lvlOf-no-overshoot j l hip rewrite lvlOf≡lvlOf' j with to j ...| zero = ⊥-elim (1+n≰n (≤-trans (s≤s z≤n) hip)) ...| pos k d o refl = 0<m-n {2 ^ k * d} {2 ^ l} (<-≤-trans (2^-mono (≤-unstep2 hip)) (2^kd-mono {k} {k} ≤-refl (0<odd o))) --------------------------- -- The AAOSL Structure -- --------------------------- ------------------------------- -- Hops -- Encoding our hops into a relation. A value of type 'H l j i' -- witnesses the existence of a hop from j to i at level l. data H : ℕ → ℕ → ℕ → Set where hz : ∀ x → H 0 (suc x) x hs : ∀ {l x y z} → H l x y → H l y z → suc l < lvlOf x → H (suc l) x z ----------------------------- -- Hop's universal properties -- The universal property comes for free h-univ : ∀{l j i} → H l j i → i < j h-univ (hz x) = s≤s ≤-refl h-univ (hs h h₁ _) = <-trans (h-univ h₁) (h-univ h) -- It is easy to prove there are no hops from zero h-from0-⊥ : ∀{l i} → H l 0 i → ⊥ h-from0-⊥ (hs h h₁ _) = h-from0-⊥ h -- And it is easy to prove that i is a distance of 2 ^ l away -- from j. h-univ₂ : ∀{l i j} → H l j i → i ≡ j ∸ 2 ^ l h-univ₂ (hz x) = refl h-univ₂ (hs {l = l} {j} h₀ h₁ _) rewrite h-univ₂ h₀ | h-univ₂ h₁ | +-comm (2 ^ l) 0 | sym (∸-+-assoc j (2 ^ l) (2 ^ l)) = refl -- and vice versa. h-univ₁ : ∀{l i j} → H l j i → j ≡ i + 2 ^ l h-univ₁ (hz x) = sym (+-comm x 1) h-univ₁ (hs {l = l} {z = i} h₀ h₁ _) rewrite h-univ₁ h₀ | h-univ₁ h₁ | +-comm (2 ^ l) 0 = +-assoc i (2 ^ l) (2 ^ l) -------------- -- H and lvlOf -- A value of type H says something about the levels of their indices h-lvl-src : ∀{l j i} → H l j i → l < lvlOf j h-lvl-src (hz x) with even? (suc x) ...| no _ = s≤s z≤n ...| yes _ = s≤s z≤n h-lvl-src (hs h₀ h₁ prf) = prf h-lvl-tgt : ∀{l j i} → 0 < i → H l j i → l < lvlOf i h-lvl-tgt prf h rewrite h-univ₂ h = lvlOf-prog prf (h-lvl-src h) h-lvl-inj : ∀{l₁ l₂ j i} (h₁ : H l₁ j i)(h₂ : H l₂ j i) → l₁ ≡ l₂ h-lvl-inj {i = i} h₁ h₂ = 2^-injective (+-cancelˡ-≡ i (trans (sym (h-univ₁ h₁)) (h-univ₁ h₂))) -- TODO-1: document reasons for this pragma and justify it {-# TERMINATING #-} h-lvl-half : ∀{l j i y l₁} → H l j y → H l y i → H l₁ j i → lvlOf y ≡ suc l h-lvl-half w₀ w₁ (hz n) = ⊥-elim (1+n≰n (≤-<-trans (h-univ w₁) (h-univ w₀))) h-lvl-half {l}{j}{i}{y} w₀ w₁ (hs {l = l₁} {y = y₁} sh₀ sh₁ x) -- TODO-2: factor out a lemma to prove l₁ ≡ l and y₁ ≡ y (already exists?) with l₁ ≟ l ...| no imp with j ≟ i + (2 ^ l₁) + (2 ^ l₁) | j ≟ i + (2 ^ l) + (2 ^ l) ...| no imp1 | _ rewrite h-univ₁ sh₁ = ⊥-elim (imp1 (h-univ₁ sh₀)) ...| yes _ | no imp1 rewrite h-univ₁ w₁ = ⊥-elim (imp1 (h-univ₁ w₀)) ...| yes j₁ | yes j₂ with trans (sym j₂) j₁ ...| xx5 rewrite +-assoc i (2 ^ l) (2 ^ l) | +-assoc i (2 ^ l₁) (2 ^ l₁) with +-cancelˡ-≡ i xx5 ...| xx6 rewrite sym (+-identityʳ (2 ^ l)) | sym (+-identityʳ (2 ^ l₁)) | +-assoc (2 ^ l) 0 ((2 ^ l) + 0) | +-assoc (2 ^ l₁) 0 ((2 ^ l₁) + 0) | *-comm 2 (2 ^ l) | *-comm 2 (2 ^ l₁) = ⊥-elim (imp (sym (2^-injective {l} {l₁} ( sym (*2-injective (2 ^ l) (2 ^ l₁) xx6))))) h-lvl-half {l = l}{j = j}{i = i}{y = y} w₀ w₁ (hs {l = l₁} {y = y₁} sh₀ sh₁ x) | yes xx1 rewrite xx1 with y₁ ≟ y ...| no imp = ⊥-elim (imp (+-cancelʳ-≡ y₁ y (trans (sym (h-univ₁ sh₀)) (h-univ₁ w₀)))) ...| yes y₁≡y rewrite y₁≡y with w₀ ...| hs {l = l-1} ssh₀ ssh₁ xx rewrite sym xx1 = h-lvl-half sh₀ sh₁ (hs sh₀ sh₁ x) ...| hz y = lvlOfodd≡1 y (even-suc-odd y (lvl≥2-even {suc y} x)) -- If a hop goes over an index, then the level of this index is strictly -- less than the level of the hop. The '≤' is there because -- l starts at zero. -- -- For example, lvlOf 4 ≡ 3; the only hops that can go over 4 are -- those with l of 3 or higher. In fact, there is one at l ≡ 2 -- from 4 to 0: H 2 4 0 h-lvl-mid : ∀{l j i} → (k : ℕ) → H l j i → i < k → k < j → lvlOf k ≤ l h-lvl-mid k (hz x) i<k k<j = ⊥-elim (n≮n k (<-≤-trans k<j i<k)) h-lvl-mid {j = j} k (hs {l = l₀}{y = y} w₀ w₁ x) i<k k<j with <-cmp k y ...| tri< k<y k≢y k≯y = ≤-step (h-lvl-mid k w₁ i<k k<y) ...| tri> k≮y k≢y k>y = ≤-step (h-lvl-mid k w₀ k>y k<j) ...| tri≈ k≮y k≡y k≯y rewrite k≡y = ≤-reflexive (h-lvl-half w₀ w₁ (hs {l = l₀}{y = y} w₀ w₁ x)) h-lvl-≤₁ : ∀{l₁ l₂ j i₁ i₂} → (h : H l₁ j i₁)(v : H l₂ j i₂) → i₂ < i₁ → l₁ < l₂ h-lvl-≤₁ {l₁} {l₂} {j} {i₁} {i₂} h v i₂<i₁ = let h-univ = h-univ₁ h v-univ = h-univ₁ v eqj = trans (sym v-univ) h-univ in log-mono l₁ l₂ (n+p≡m+q∧n<m⇒q<p i₂<i₁ eqj) h-lvl-≤₂ : ∀{l₁ l₂ j₁ j₂ i} → (h : H l₁ j₁ i)(v : H l₂ j₂ i) → j₁ < j₂ → l₁ < l₂ h-lvl-≤₂ {l₁} {l₂} {j₁} {j₂} {i} h v j₂<j₁ = let h-univ = h-univ₁ h v-univ = h-univ₁ v in log-mono l₁ l₂ (+-cancelˡ-< i (subst (i + (2 ^ l₁) <_) v-univ (subst (_< j₂) h-univ j₂<j₁))) ------------------------------ -- Correctness and Irrelevance h-correct : ∀ j l → l < lvlOf j → H l j (j ∸ 2 ^ l) h-correct (suc j) zero prf = hz j h-correct (suc j) (suc l) prf with h-correct (suc j) l ...| ind with 2 ∣? (suc j) ...| no _ = ⊥-elim (ss≰1 prf) ...| yes e with ind (≤-unstep prf) ...| res₀ with h-correct (suc j ∸ 2 ^ l) l (lvlOf-prog {l} {suc j} (lvlOf-no-overshoot (suc j) l (subst (suc l <_ ) (lvlOf-undo e) prf)) (subst (l <_) (lvlOf-undo e) (≤-unstep prf))) ...| res₁ rewrite +-comm (2 ^ l) 0 | ∸-+-assoc (suc j) (2 ^ l) (2 ^ l) = hs res₀ res₁ (subst (suc l <_) (lvlOf-undo e) prf) h-irrelevant : ∀{l i j} → (h₁ : H l j i) → (h₂ : H l j i) → h₁ ≡ h₂ h-irrelevant (hz x) (hz .x) = refl h-irrelevant (hs {y = y} h₁ h₃ x) (hs {y = z} h₂ h₄ x₁) rewrite ≤-irrelevant x x₁ with y ≟ z ...| no abs = ⊥-elim (abs (trans (h-univ₂ h₁) (sym (h-univ₂ h₂)))) ...| yes refl = cong₂ (λ P Q → hs P Q x₁) (h-irrelevant h₁ h₂) (h-irrelevant h₃ h₄) ------------------------------------------------------------------- -- The non-overlapping property is stated in terms -- of subhops. The idea is that a hop is either separate -- from another one, or is entirely contained within the larger one. -- -- Entirely contained comes from _⊆Hop_ data _⊆Hop_ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → H l₁ j₁ i₁ → H l₂ j₂ i₂ → Set where here : ∀{l i j}(h : H l j i) → h ⊆Hop h left : ∀{l₁ i₁ j₁ l₂ i₂ w j₂ } → (h : H l₁ j₁ i₁) → (w₀ : H l₂ j₂ w) → (w₁ : H l₂ w i₂) → (p : suc l₂ < lvlOf j₂) → h ⊆Hop w₀ → h ⊆Hop (hs w₀ w₁ p) right : ∀{l₁ i₁ j₁ l₂ i₂ w j₂} → (h : H l₁ j₁ i₁) → (w₀ : H l₂ j₂ w) → (w₁ : H l₂ w i₂) → (p : suc l₂ < lvlOf j₂) → h ⊆Hop w₁ → h ⊆Hop (hs w₀ w₁ p) ⊆Hop-refl : ∀{l₁ l₂ j i} → (h₁ : H l₁ j i) → (h₂ : H l₂ j i) → h₁ ⊆Hop h₂ ⊆Hop-refl h₁ h₂ with h-lvl-inj h₁ h₂ ...| refl rewrite h-irrelevant h₁ h₂ = here h₂ ⊆Hop-univ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h1 : H l₁ j₁ i₁) → (h2 : H l₂ j₂ i₂) → h1 ⊆Hop h2 → i₂ ≤ i₁ × j₁ ≤ j₂ × l₁ ≤ l₂ ⊆Hop-univ h1 .h1 (here .h1) = ≤-refl , ≤-refl , ≤-refl ⊆Hop-univ h1 (hs w₀ w₁ p) (left h1 w₀ w₁ q hip) with ⊆Hop-univ h1 w₀ hip ...| a , b , c = (≤-trans (<⇒≤ (h-univ w₁)) a) , b , ≤-step c ⊆Hop-univ h1 (hs w₀ w₁ p) (right h1 w₀ w₁ q hip) with ⊆Hop-univ h1 w₁ hip ...| a , b , c = a , ≤-trans b (<⇒≤ (h-univ w₀)) , ≤-step c ⊆Hop-univ₁ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h1 : H l₁ j₁ i₁) → (h2 : H l₂ j₂ i₂) → h1 ⊆Hop h2 → i₂ ≤ i₁ ⊆Hop-univ₁ h1 h2 h1h2 = proj₁ (⊆Hop-univ h1 h2 h1h2) ⊆Hop-src-≤ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h1 : H l₁ j₁ i₁) → (h2 : H l₂ j₂ i₂) → h1 ⊆Hop h2 → j₁ ≤ j₂ ⊆Hop-src-≤ h1 h2 h1h2 = (proj₁ ∘ proj₂) (⊆Hop-univ h1 h2 h1h2) -- If two hops are not strictly the same, then the level of -- the smaller hop is strictly smaller than the level of -- the bigger hop. -- -- VERY IMPORTANT ⊆Hop-univ-lvl : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → h₁ ⊆Hop h₂ → j₁ < j₂ → l₁ < l₂ ⊆Hop-univ-lvl {l₁}{i₁}{j₁}{l₂}{i₂}{j₂} h₁ h₂ h₁⊆Hoph₂ j₁<j₂ = let r₁ : i₂ + (2 ^ l₁) ≤ i₁ + (2 ^ l₁) r₁ = +-monoˡ-≤ (2 ^ l₁) (proj₁ (⊆Hop-univ h₁ h₂ h₁⊆Hoph₂)) r₂ : i₁ + (2 ^ l₁) < i₂ + (2 ^ l₂) r₂ = subst₂ _<_ (h-univ₁ h₁) (h-univ₁ h₂) j₁<j₂ in log-mono l₁ l₂ ((+-cancelˡ-< i₂) (≤-<-trans r₁ r₂)) hz-⊆ : ∀{l j i k} → (v : H l j i) → i ≤ k → k < j → hz k ⊆Hop v hz-⊆ (hz x) i<k k<j rewrite ≤-antisym (≤-unstep2 k<j) i<k = here (hz x) hz-⊆ {k = k} (hs {y = y} v v₁ x) i<k k<j with k <? y ...| yes k<y = right (hz k) v v₁ x (hz-⊆ v₁ i<k k<y) ...| no k≮y = left (hz k) v v₁ x (hz-⊆ v (≮⇒≥ k≮y) k<j) ⊆Hop-inj₁ : ∀{l₁ l₂ j i₁ i₂} → (h : H l₁ j i₁)(v : H l₂ j i₂) → i₂ < i₁ → h ⊆Hop v ⊆Hop-inj₁ {i₁ = i₁} h (hz x) prf = ⊥-elim (n≮n i₁ (<-≤-trans (h-univ h) prf)) ⊆Hop-inj₁ {l} {j = j} {i₁ = i₁} h (hs {l = l₁} {y = y} v v₁ x) prf with y ≟ i₁ ...| yes refl = left h v v₁ x (⊆Hop-refl h v) ...| no y≢i₁ with h-lvl-≤₁ h (hs v v₁ x) prf ...| sl≤sl₁ with h-univ₂ h | h-univ₂ v ...| prf1 | prf2 = let r : j ∸ (2 ^ l₁) ≤ j ∸ (2 ^ l) r = ∸-monoʳ-≤ {m = 2 ^ l} {2 ^ l₁} j (^-mono l l₁ (≤-unstep2 sl≤sl₁)) in left h v v₁ x (⊆Hop-inj₁ h v (≤∧≢⇒< (subst₂ _≤_ (sym prf2) (sym prf1) r) y≢i₁)) ⊆Hop-inj₂ : ∀{l₁ l₂ j₁ j₂ i} → (h : H l₁ j₁ i)(v : H l₂ j₂ i) → j₁ < j₂ → h ⊆Hop v ⊆Hop-inj₂ h (hz x) prf = ⊥-elim (n≮n _ (<-≤-trans prf (h-univ h))) ⊆Hop-inj₂ {l} {j₁ = j₁} {i = i} h (hs {l = l₁} {y = y} v v₁ x) prf with y ≟ j₁ ...| yes refl = right h v v₁ x (⊆Hop-refl h v₁) ...| no y≢j₁ with h-lvl-≤₂ h (hs v v₁ x) prf ...| sl≤sl₁ with h-univ₁ h | h-univ₁ v₁ ...| prf1 | prf2 = let r : i + 2 ^ l ≤ i + 2 ^ l₁ r = +-monoʳ-≤ i (^-mono l l₁ (≤-unstep2 sl≤sl₁)) in right h v v₁ x (⊆Hop-inj₂ h v₁ (≤∧≢⇒< (subst₂ _≤_ (sym prf1) (sym prf2) r) (y≢j₁ ∘ sym))) ⊆Hop-inj₃ : ∀{l₁ l₂ j₁ j₂ i₁ i₂} → (h : H l₁ j₁ i₁)(v : H l₂ j₂ i₂) → i₁ ≡ i₂ → j₁ ≡ j₂ → h ⊆Hop v ⊆Hop-inj₃ h v refl refl with h-lvl-inj h v ...| refl rewrite h-irrelevant h v = here v -- This datatype encodes all the possible hop situations. This makes is -- much easier to structure proofs talking about two hops. data HopStatus : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → H l₁ j₁ i₁ → H l₂ j₂ i₂ → Set where -- Same hop; we carry the proofs explicitly here to be able to control -- when to perform the rewrites. Same : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → i₁ ≡ i₂ → j₁ ≡ j₂ → HopStatus h₁ h₂ -- h₂ h₁ -- ⌜⁻⁻⁻⁻⁻⁻⁻⌝ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ -- | | | | -- i₂ < j₂ ≤ i₁ < j₁ SepL : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → j₂ ≤ i₁ → HopStatus h₁ h₂ -- h₁ h₂ -- ⌜⁻⁻⁻⁻⁻⁻⁻⌝ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ -- | | | | -- i₁ < j₁ ≤ i₂ < j₂ SepR : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → j₁ ≤ i₂ → HopStatus h₁ h₂ -- h₂ -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- ∣ ∣ -- ∣ h₁ ∣ -- ∣ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | -- i₂ ≤ i₁ ⋯ j₁ ≤ j₂ SubL : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → i₂ < i₁ ⊎ j₁ < j₂ -- makes sure hops differ! → h₁ ⊆Hop h₂ → HopStatus h₁ h₂ -- h₁ -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- ∣ ∣ -- ∣ h₂ ∣ -- ∣ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | -- i₁ ≤ i₂ ⋯ j₂ < j₁ SubR : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → i₁ < i₂ ⊎ j₂ < j₁ -- makes sure hops differ → h₂ ⊆Hop h₁ → HopStatus h₁ h₂ -- Finally, we can prove our no-overlap property. As it turns out, it is -- just a special case of general non-overlapping, and therefore, it is -- defined as such. mutual -- Distinguish is used to understand the relation between two arbitrary hops. -- It is used to perform the induction step on arbitrary hops. Note how -- 'no-overlap' has a clause that impedes the hops from being equal. distinguish : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → HopStatus h₁ h₂ distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 with <-cmp i₁ i₂ ...| tri≈ i₁≮i₂ i₁≡i₂ i₂≮i₁ with <-cmp j₁ j₂ ...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ = Same h1 h2 i₁≡i₂ j₁≡j₂ ...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ rewrite i₁≡i₂ = SubL h1 h2 (inj₂ j₁<j₂) (⊆Hop-inj₂ h1 h2 j₁<j₂) ...| tri> j₁≮j₂ j₁≢j₂ j₂<j₁ rewrite i₁≡i₂ = SubR h1 h2 (inj₂ j₂<j₁) (⊆Hop-inj₂ h2 h1 j₂<j₁) distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri< i₁<i₂ i₁≢i₂ i₂≮i₁ with <-cmp j₁ j₂ ...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ rewrite j₁≡j₂ = SubR h1 h2 (inj₁ i₁<i₂) (⊆Hop-inj₁ h2 h1 i₁<i₂) ...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ with no-overlap h2 h1 i₁<i₂ ...| inj₁ a = SepR h1 h2 a ...| inj₂ b = SubR h1 h2 (inj₁ i₁<i₂) b distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri< i₁<i₂ i₁≢i₂ i₂≮i₁ | tri> j₁≮j₂ j₁≢j₂ j₂<j₁ with no-overlap h2 h1 i₁<i₂ ...| inj₁ a = SepR h1 h2 a ...| inj₂ b = SubR h1 h2 (inj₁ i₁<i₂) b distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri> i₁≮i₂ i₁≢i₂ i₂<i₁ with <-cmp j₁ j₂ ...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ rewrite j₁≡j₂ = SubL h1 h2 (inj₁ i₂<i₁) (⊆Hop-inj₁ h1 h2 i₂<i₁) ...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ with no-overlap h1 h2 i₂<i₁ ...| inj₁ a = SepL h1 h2 a ...| inj₂ b = SubL h1 h2 (inj₁ i₂<i₁) b distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri> i₁≮i₂ i₁≢i₂ i₂<i₁ | tri> j₁≮j₂ j₁≢j₂ j₂<j₁ with no-overlap h1 h2 i₂<i₁ ...| inj₁ a = SepL h1 h2 a ...| inj₂ b = SubL h1 h2 (inj₁ i₂<i₁) b no-overlap-< : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → i₂ < i₁ → i₁ < j₂ → j₁ ≤ j₂ no-overlap-< h₁ h₂ prf hip with no-overlap h₁ h₂ prf ...| inj₁ imp = ⊥-elim (1+n≰n (≤-trans hip imp)) ...| inj₂ res = ⊆Hop-src-≤ h₁ h₂ res -- TODO-1: rename to nocross for consistency with paper -- Non-overlapping is more general, as hops might be completely -- separate and then, naturally won't overlap. no-overlap : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → i₂ < i₁ -- this ensures h₁ ≢ h₂. → (j₂ ≤ i₁) ⊎ (h₁ ⊆Hop h₂) no-overlap h (hz x) prf = inj₁ prf no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip with distinguish h₁ v₀ ...| SepL _ _ prf = inj₁ prf ...| SubL _ _ case prf = inj₂ (left h₁ v₀ v₁ v-ok prf) ...| Same _ _ p1 p2 = inj₂ (left h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₀ p1 p2)) no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip | SepR _ _ j₁≤y with distinguish h₁ v₁ ...| SepL _ _ prf = ⊥-elim (<⇒≱ (h-univ h₁) (≤-trans j₁≤y prf)) ...| SepR _ _ prf = ⊥-elim (n≮n i₂ (<-trans hip (<-≤-trans (h-univ h₁) prf))) ...| SubR _ _ (inj₁ i₁<i₂) prf = ⊥-elim (n≮n i₂ (<-trans hip i₁<i₂)) ...| SubR _ _ (inj₂ y<j₁) prf = ⊥-elim (n≮n j₁ (≤-<-trans j₁≤y y<j₁)) ...| SubL _ _ case prf = inj₂ (right h₁ v₀ v₁ v-ok prf) ...| Same _ _ p1 p2 = inj₂ (right h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₁ p1 p2)) no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip | SubR _ _ (inj₁ i₁<y) v₀⊆h₁ with distinguish h₁ v₁ ...| SepL _ _ prf = ⊥-elim (n≮n i₁ (<-≤-trans i₁<y prf)) ...| SepR _ _ prf = ⊥-elim (n≮n i₂ (<-≤-trans (<-trans hip (h-univ h₁)) prf)) ...| SubR _ _ (inj₁ i₁<i₂) prf = ⊥-elim (n≮n i₂ (<-trans hip i₁<i₂)) ...| SubR _ _ (inj₂ y<j₁) prf = ⊥-elim (≤⇒≯ (no-overlap-< h₁ v₁ hip i₁<y) y<j₁) ...| SubL _ _ case prf = inj₂ (right h₁ v₀ v₁ v-ok prf) ...| Same _ _ p1 p2 = inj₂ (right h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₁ p1 p2)) no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip -- Here is the nasty case. We have to argue why this is impossible -- WITHOUT resorting to 'nov h₁ (hs v₀ v₁ v-ok)', otherwise this would -- result in an infinite loop. Note how 'nov' doesn't pattern match -- on any argument. -- -- Here's what this looks like: -- -- (hs v₀ v₁ v-ok) -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- | h₁ | -- | ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ -- | ∣ | ∣ -- | v₁ ∣ v₀ | ∣ -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⌜⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | | -- i₂ < i₁ ≤ y ⋯ j₂ < j₁ -- -- We can pattern match on i₁ ≟ y | SubR _ _ (inj₂ j₂<j₁) v₀⊆h₁ with i₁ ≟ y -- And we quickly discover that if i≢y, we have a crossing between -- v₁ and h₁, and that's impossible. ...| no i₁≢y = ⊥-elim (n≮n y (<-≤-trans (<-trans (h-univ v₀) j₂<j₁) (no-overlap-< h₁ v₁ hip (≤∧≢⇒< (⊆Hop-univ₁ v₀ h₁ v₀⊆h₁) i₁≢y)))) -- The hard part really is when i₁ ≡ y, here's how this looks like: -- -- (hs v₀ v₁ v-ok) -- lvl l+1 ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- | | h₁ -- | ⌜⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ lvl l₁ -- | ∣ | ∣ -- | v₁ ∣ v₀ | ∣ -- lvl l ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | -- i₂ < i₁ ⋯ j₂ < j₁ -- -- We must show that the composite hop (hs v₀ v₁ v-ok) is impossible to build -- to show that the crossing doesn't happen. -- -- Hence, we MUST reason about the levels of the indices and eliminate 'v-ok', -- Which is possible with a bit of struggling about levels. ...| yes refl with h-lvl-tgt (≤-trans (s≤s z≤n) hip) v₀ ...| l≤lvli₁ with ⊆Hop-univ-lvl _ _ v₀⊆h₁ j₂<j₁ ...| l<l₁ with h-lvl-mid i₁ (hs v₀ v₁ v-ok) hip (h-univ v₀) ...| lvli₁≤l+1 with h-lvl-tgt (≤-trans (s≤s z≤n) hip) h₁ ...| l₁≤lvli₁ rewrite ≤-antisym lvli₁≤l+1 l≤lvli₁ = ⊥-elim (n≮n _ (<-≤-trans l<l₁ (≤-unstep2 l₁≤lvli₁)))
39.066079
111
0.486919
358ae8a0dca140f6549f0959916a4d674ad9cd10
2,898
agda
Agda
agda/Chord.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
agda/Chord.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
agda/Chord.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --cubical --safe #-} module Chord where open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_) open import Data.Fin using (Fin; toℕ) renaming (zero to fz; suc to fs) open import Data.List using (List; map; []; _∷_; _++_; zip) open import Data.Nat using (ℕ) open import Data.Product using (_×_) open import Data.String using (String) renaming (_++_ to _++s_) open import Function using (_∘_) open import AssocList open import BitVec open import Pitch open import Util using (_+N_) data Root : Type where root : Fin s12 → Root showRoot : Root → String showRoot (root fz) = "I" showRoot (root (fs fz)) = "♭II" showRoot (root (fs (fs fz))) = "II" showRoot (root (fs (fs (fs fz)))) = "♭III" showRoot (root (fs (fs (fs (fs fz))))) = "III" showRoot (root (fs (fs (fs (fs (fs fz)))))) = "IV" showRoot (root (fs (fs (fs (fs (fs (fs fz))))))) = "♭V" showRoot (root (fs (fs (fs (fs (fs (fs (fs fz)))))))) = "V" showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))) = "♭VI" showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))) = "VI" showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))))) = "♭VII" showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))))) = "VII" data Quality : Type where maj : Quality min : Quality dom7 : Quality maj7 : Quality showQuality : Quality → String showQuality maj = "maj" showQuality min = "min" showQuality dom7 = "⁷" showQuality maj7 = "maj⁷" RootQuality : Type RootQuality = Root × Quality showRootQuality : RootQuality → String showRootQuality (r , q) = showRoot r ++s showQuality q Notes : Type Notes = BitVec s12 ChordList : Type ChordList = AList Notes RootQuality -- The list should not include the root. makeChord : Root → List ℕ → Notes makeChord (root n) [] = BitVec.insert n empty makeChord (root n) (x ∷ xs) = BitVec.insert (n +N x) (makeChord (root n) xs) -- The list should not include the root. qualityNotes : Quality → List ℕ qualityNotes maj = 4 ∷ 7 ∷ [] qualityNotes min = 3 ∷ 7 ∷ [] qualityNotes dom7 = 4 ∷ 7 ∷ 10 ∷ [] qualityNotes maj7 = 4 ∷ 7 ∷ 11 ∷ [] makeChordQuality : RootQuality → Notes makeChordQuality (r , q) = makeChord r (qualityNotes q) --------- --addMajor aa = show (makeChordQuality (root fz , maj)) {- allPairs : {A : Type} → List A → List (A × A) allPairs [] = [] allPairs (x ∷ xs) = map (x ,_) xs ++ allPairs xs aa = allPairs (c 5 ∷ e 5 ∷ g 5 ∷ []) bb = zip aa (map (toℕ ∘ unIntervalClass ∘ pitchPairToIntervalClass) aa) -}
31.846154
87
0.545549
34421584bdf2acf969b36cd223f1f92b522b6d7b
3,757
agda
Agda
legacy/Misc/NumeralSystem.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-04-23T15:58:28.000Z
2015-04-23T15:58:28.000Z
legacy/Misc/NumeralSystem.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
null
null
null
legacy/Misc/NumeralSystem.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-05-30T05:50:50.000Z
2015-05-30T05:50:50.000Z
module Misc.NumeralSystem where -- One Numeral System to rule them all!? open import Data.Maybe using (Maybe; nothing; just) open import Data.Nat open import Data.Product open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import Relation.Nullary using (¬_ ; yes; no) open import Relation.Binary open import Level renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; setoid; cong) open import Data.Nat.Properties using (≤-step) open DecTotalOrder Data.Nat.decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) infixr 5 _∷[_,_]_ -------------------------------------------------------------------------------- -- PN - Positional Notation -- http://en.wikipedia.org/wiki/Positional_notation -- -- base: b -- digits: consecutive ℕ from m to n -- ●────○ data PN (b m n : ℕ) : Set where [_] : m < n → PN b m n _∷[_,_]_ : (x : ℕ) → (m ≤ x) → (x < n) → PN b m n → PN b m n -------------------------------------------------------------------------------- toℕ : ∀ {b m n} → PN b m n → ℕ toℕ [ _ ] = 0 toℕ {b} (x ∷[ x≥m , x<n ] xs) = x + b * toℕ xs private ≤→< : ∀ {m n} → m ≤ n → ¬ (m ≡ n) → m < n ≤→< {n = zero} z≤n 0≠0 = ⊥-elim (0≠0 refl) ≤→< {n = suc n} z≤n neq = s≤s z≤n ≤→< (s≤s m≤n) 1+m≠1+n = s≤s (≤→< m≤n (λ m≡n → 1+m≠1+n (cong suc m≡n))) -------------------------------------------------------------------------------- -- increment -- the image of 'incr' is "continuous" if when -- b = 1 ⇒ m ≥ 1, n ≥ 2m -- b > 1 ⇒ m ≥ 0, n ≥ m + b, n ≥ 1 + mb incr : ∀ {b m n} → m ≤ 1 → 2 ≤ n → PN b m n → PN b m n incr m≤1 2≤n [ m<n ] = 1 ∷[ m≤1 , 2≤n ] [ m<n ] incr {b} {m} {n} m≤1 2≤n (x ∷[ m≤x , x<n ] xs) with suc x ≟ n incr {b} {m} m≤1 2≤n (x ∷[ m≤x , x<n ] xs) | no 1+x≠n = suc x ∷[ ≤-step m≤x , ≤→< x<n 1+x≠n ] xs incr {b} {m} m≤1 2≤n (x ∷[ m≤x , x<n ] xs) | yes refl = m ∷[ ≤-refl , s≤s m≤x ] incr m≤1 2≤n xs base=1-incr : ∀ {m n} → 1 ≤ m → m * 2 ≤ n → PN 1 m n → PN 1 m n base=1-incr {m} {n} 1≤m 2m≤n [ m<n ] = m ∷[ ≤-refl , m<n ] [ m<n ] base=1-incr {m} {n} 1≤m 2m≤n (x ∷[ m≤x , x<n ] xs) with suc x ≟ n base=1-incr {m} {n} 1≤m 2m≤n (x ∷[ m≤x , x<n ] xs) | no 1+x≠n = suc x ∷[ ≤-step m≤x , ≤→< x<n 1+x≠n ] xs base=1-incr {m} 1≤m 2m≤n (x ∷[ m≤x , x<n ] xs) | yes refl = m ∷[ ≤-refl , s≤s m≤x ] base=1-incr 1≤m 2m≤n xs base>1-incr : ∀ {b m n} → 1 < b → 0 ≤ m → m + b ≤ n → m * b + 1 ≤ n → PN b m n → PN b m n base>1-incr {b} {m} {n} 1<b 0≤m m+b≤n mb+1≤n [ m<n ] = m ∷[ ≤-refl , m<n ] [ m<n ] base>1-incr {b} {m} {n} 1<b 0≤m m+b≤n mb+1≤n (x ∷[ m≤x , x<n ] xs) with suc x ≟ n base>1-incr {b} {m} {n} 1<b 0≤m m+b≤n mb+1≤n (x ∷[ m≤x , x<n ] xs) | no 1+x≠n = suc x ∷[ ≤-step m≤x , ≤→< x<n 1+x≠n ] xs base>1-incr {b} {m} 1<b 0≤m m+b≤n mb+1≤n (x ∷[ m≤x , x<n ] xs) | yes refl = m ∷[ ≤-refl , s≤s m≤x ] base>1-incr 1<b 0≤m m+b≤n mb+1≤n xs -- -- A ── incr ⟶ A' -- | | -- toℕ toℕ -- ↓ ↓ -- n ── suc ⟶ suc n -- -- first attempt :p -- unary-toℕ-hom : (a : PN 1 1 2) → suc (toℕ a) ≡ toℕ (base=1-incr (s≤s z≤n) (s≤s (s≤s z≤n)) a) -- unary-toℕ-hom [ m<n ] = refl -- unary-toℕ-hom (zero ∷[ () , x<n ] xs) -- unary-toℕ-hom (suc zero ∷[ m≤x , x<n ] xs) = cong suc {! !} -- unary-toℕ-hom (suc (suc x) ∷[ m≤x , s≤s (s≤s ()) ] xs) -------------------------------------------------------------------------------- -- Instances private -- Unary Unary : Set Unary = PN 1 1 2 u₀ : Unary u₀ = 1 ∷[ s≤s z≤n , s≤s (s≤s z≤n) ] 1 ∷[ s≤s z≤n , s≤s (s≤s z≤n) ] [ s≤s (s≤s z≤n) ] -- Binary Bin : Set Bin = PN 2 0 2 b₀ : Bin b₀ = 1 ∷[ z≤n , s≤s (s≤s z≤n) ] 0 ∷[ z≤n , s≤s z≤n ] [ s≤s z≤n ] -- Zeroless Binary Bin+ : Set Bin+ = PN 2 1 3
34.154545
135
0.445036
2f6c0f855e4a5b7662847f3f09f29a18166f6ac4
885
agda
Agda
test/Succeed/Issue3332.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3332.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3332.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Jesper, Andreas, 2018-10-29, issue #3332 -- -- WAS: With-inlining failed in termination checker -- due to a DontCare protecting the clause bodies -- (introduced by Prop). {-# OPTIONS --prop #-} open import Agda.Builtin.Equality open import Agda.Builtin.List postulate A : Set _++_ : List A → List A → List A [] ++ l = l (a ∷ l) ++ l' = a ∷ (l ++ l') module PropEquality where data _≐_ {A : Set} (a : A) : A → Prop where refl : a ≐ a test : (l : List A) → (l ++ []) ≐ l test [] = refl test (x ∷ xs) with xs ++ [] | test xs test (x ∷ xs) | .xs | refl = refl module SquashedEquality where data Squash (A : Set) : Prop where sq : A → Squash A test : (l : List A) → Squash (l ++ [] ≡ l) test [] = sq refl test (x ∷ l) with test l test (x ∷ l) | sq eq with l ++ [] | eq test (x ∷ l) | .(test l) | .l | refl = sq refl -- Both should succeed.
21.585366
51
0.559322
4bcdac0ec551a135034d9701b6dd9650d1ca902a
3,449
agda
Agda
agda-stdlib/src/Algebra/Definitions.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Algebra/Definitions.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Algebra/Definitions.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of functions, such as associativity and commutativity ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Algebra`, unless -- you want to parameterise it via the equality relation. {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Algebra.Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where open import Algebra.Core open import Data.Product open import Data.Sum.Base ------------------------------------------------------------------------ -- Properties of operations Congruent₁ : Op₁ A → Set _ Congruent₁ f = f Preserves _≈_ ⟶ _≈_ Congruent₂ : Op₂ A → Set _ Congruent₂ ∙ = ∙ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ LeftCongruent : Op₂ A → Set _ LeftCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≈_ ⟶ _≈_ RightCongruent : Op₂ A → Set _ RightCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≈_ ⟶ _≈_ Associative : Op₂ A → Set _ Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z)) Commutative : Op₂ A → Set _ Commutative _∙_ = ∀ x y → (x ∙ y) ≈ (y ∙ x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _∙_ = ∀ x → (e ∙ x) ≈ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _∙_ = ∀ x → (x ∙ e) ≈ x Identity : A → Op₂ A → Set _ Identity e ∙ = (LeftIdentity e ∙) × (RightIdentity e ∙) LeftZero : A → Op₂ A → Set _ LeftZero z _∙_ = ∀ x → (z ∙ x) ≈ z RightZero : A → Op₂ A → Set _ RightZero z _∙_ = ∀ x → (x ∙ z) ≈ z Zero : A → Op₂ A → Set _ Zero z ∙ = (LeftZero z ∙) × (RightZero z ∙) LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _∙_ = ∀ x → ((x ⁻¹) ∙ x) ≈ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _∙_ = ∀ x → (x ∙ (x ⁻¹)) ≈ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ ∙ = (LeftInverse e ⁻¹) ∙ × (RightInverse e ⁻¹ ∙) LeftConical : A → Op₂ A → Set _ LeftConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → x ≈ e RightConical : A → Op₂ A → Set _ RightConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → y ≈ e Conical : A → Op₂ A → Set _ Conical e ∙ = (LeftConical e ∙) × (RightConical e ∙) _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ x y z → (x * (y + z)) ≈ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ x y z → ((y + z) * x) ≈ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _∙_ IdempotentOn x = (x ∙ x) ≈ x Idempotent : Op₂ A → Set _ Idempotent ∙ = ∀ x → ∙ IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ x → f (f x) ≈ f x Selective : Op₂ A → Set _ Selective _∙_ = ∀ x y → (x ∙ y) ≈ x ⊎ (x ∙ y) ≈ y _Absorbs_ : Op₂ A → Op₂ A → Set _ _∙_ Absorbs _∘_ = ∀ x y → (x ∙ (x ∘ y)) ≈ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive ∙ ∘ = (∙ Absorbs ∘) × (∘ Absorbs ∙) Involutive : Op₁ A → Set _ Involutive f = ∀ x → f (f x) ≈ x LeftCancellative : Op₂ A → Set _ LeftCancellative _•_ = ∀ x {y z} → (x • y) ≈ (x • z) → y ≈ z RightCancellative : Op₂ A → Set _ RightCancellative _•_ = ∀ {x} y z → (y • x) ≈ (z • x) → y ≈ z Cancellative : Op₂ A → Set _ Cancellative _•_ = (LeftCancellative _•_) × (RightCancellative _•_) Interchangable : Op₂ A → Op₂ A → Set _ Interchangable _∘_ _∙_ = ∀ w x y z → ((w ∙ x) ∘ (y ∙ z)) ≈ ((w ∘ y) ∙ (x ∘ z))
28.04065
78
0.546825
1e4eec31ec7a6fe62b67ceea11a122db3bf3dba3
2,742
agda
Agda
test/asset/agda-stdlib-1.0/Data/Table/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Table/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Table/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Tables, basic types and operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Table.Base where open import Data.Nat open import Data.Fin open import Data.Product using (_×_ ; _,_) open import Data.List as List using (List) open import Data.Vec as Vec using (Vec) open import Function using (_∘_; flip) ------------------------------------------------------------------------ -- Type record Table {a} (A : Set a) n : Set a where constructor tabulate field lookup : Fin n → A open Table public ------------------------------------------------------------------------ -- Basic operations module _ {a} {A : Set a} where head : ∀ {n} → Table A (suc n) → A head t = lookup t zero tail : ∀ {n} → Table A (suc n) → Table A n tail t = tabulate (lookup t ∘ suc) uncons : ∀ {n} → Table A (suc n) → A × Table A n uncons t = head t , tail t remove : ∀ {n} → Fin (suc n) → Table A (suc n) → Table A n remove i t = tabulate (lookup t ∘ punchIn i) ------------------------------------------------------------------------ -- Operations for transforming tables module _ {a} {A : Set a} where rearrange : ∀ {m n} → (Fin m → Fin n) → Table A n → Table A m rearrange f t = tabulate (lookup t ∘ f) module _ {a b} {A : Set a} {B : Set b} where map : ∀ {n} → (A → B) → Table A n → Table B n map f t = tabulate (f ∘ lookup t) _⊛_ : ∀ {n} → Table (A → B) n → Table A n → Table B n fs ⊛ xs = tabulate λ i → lookup fs i (lookup xs i) ------------------------------------------------------------------------ -- Operations for reducing tables module _ {a b} {A : Set a} {B : Set b} where foldr : ∀ {n} → (A → B → B) → B → Table A n → B foldr {n = zero} f z t = z foldr {n = suc n} f z t = f (head t) (foldr f z (tail t)) foldl : ∀ {n} → (B → A → B) → B → Table A n → B foldl {n = zero} f z t = z foldl {n = suc n} f z t = foldl f (f z (head t)) (tail t) ------------------------------------------------------------------------ -- Operations for building tables module _ {a} {A : Set a} where replicate : ∀ {n} → A → Table A n replicate x = tabulate (λ _ → x) ------------------------------------------------------------------------ -- Operations for converting tables module _ {a} {A : Set a} where toList : ∀ {n} → Table A n → List A toList = List.tabulate ∘ lookup fromList : ∀ (xs : List A) → Table A (List.length xs) fromList = tabulate ∘ List.lookup fromVec : ∀ {n} → Vec A n → Table A n fromVec = tabulate ∘ Vec.lookup toVec : ∀ {n} → Table A n → Vec A n toVec = Vec.tabulate ∘ lookup
28.5625
72
0.463166
8b9e3c4113c34bed3704226a2b547beef04490d0
5,094
agda
Agda
Cubical/Data/Sum/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/Sum/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/Sum/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Data.Sum.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Functions.Embedding open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.Sum.Base open Iso private variable ℓa ℓb ℓc ℓd : Level A : Type ℓa B : Type ℓb C : Type ℓc D : Type ℓd -- Path space of sum type module ⊎Path {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where Cover : A ⊎ B → A ⊎ B → Type (ℓ-max ℓ ℓ') Cover (inl a) (inl a') = Lift {j = ℓ-max ℓ ℓ'} (a ≡ a') Cover (inl _) (inr _) = Lift ⊥ Cover (inr _) (inl _) = Lift ⊥ Cover (inr b) (inr b') = Lift {j = ℓ-max ℓ ℓ'} (b ≡ b') reflCode : (c : A ⊎ B) → Cover c c reflCode (inl a) = lift refl reflCode (inr b) = lift refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode (inl a) (inl a') (lift p) = cong inl p decode (inl a) (inr b') () decode (inr b) (inl a') () decode (inr b) (inr b') (lift q) = cong inr q decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl (inl a) = refl decodeRefl (inr b) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) encodeDecode : ∀ c c' → (d : Cover c c') → encode c c' (decode c c' d) ≡ d encodeDecode (inl a) (inl _) (lift d) = J (λ a' p → encode (inl a) (inl a') (cong inl p) ≡ lift p) (encodeRefl (inl a)) d encodeDecode (inr a) (inr _) (lift d) = J (λ a' p → encode (inr a) (inr a') (cong inr p) ≡ lift p) (encodeRefl (inr a)) d Cover≃Path : ∀ c c' → Cover c c' ≃ (c ≡ c') Cover≃Path c c' = isoToEquiv (iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c')) isOfHLevelCover : (n : HLevel) → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p q (inl a) (inl a') = isOfHLevelLift (suc n) (p a a') isOfHLevelCover n p q (inl a) (inr b') = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p q (inr b) (inl a') = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p q (inr b) (inr b') = isOfHLevelLift (suc n) (q b b') isEmbedding-inl : isEmbedding (inl {A = A} {B = B}) isEmbedding-inl w z = snd (compEquiv LiftEquiv (⊎Path.Cover≃Path (inl w) (inl z))) isEmbedding-inr : isEmbedding (inr {A = A} {B = B}) isEmbedding-inr w z = snd (compEquiv LiftEquiv (⊎Path.Cover≃Path (inr w) (inr z))) isOfHLevel⊎ : (n : HLevel) → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → isOfHLevel (suc (suc n)) (A ⊎ B) isOfHLevel⊎ n lA lB c c' = isOfHLevelRetract (suc n) (⊎Path.encode c c') (⊎Path.decode c c') (⊎Path.decodeEncode c c') (⊎Path.isOfHLevelCover n lA lB c c') isSet⊎ : isSet A → isSet B → isSet (A ⊎ B) isSet⊎ = isOfHLevel⊎ 0 isGroupoid⊎ : isGroupoid A → isGroupoid B → isGroupoid (A ⊎ B) isGroupoid⊎ = isOfHLevel⊎ 1 is2Groupoid⊎ : is2Groupoid A → is2Groupoid B → is2Groupoid (A ⊎ B) is2Groupoid⊎ = isOfHLevel⊎ 2 ⊎Iso : Iso A C → Iso B D → Iso (A ⊎ B) (C ⊎ D) fun (⊎Iso iac ibd) (inl x) = inl (iac .fun x) fun (⊎Iso iac ibd) (inr x) = inr (ibd .fun x) inv (⊎Iso iac ibd) (inl x) = inl (iac .inv x) inv (⊎Iso iac ibd) (inr x) = inr (ibd .inv x) rightInv (⊎Iso iac ibd) (inl x) = cong inl (iac .rightInv x) rightInv (⊎Iso iac ibd) (inr x) = cong inr (ibd .rightInv x) leftInv (⊎Iso iac ibd) (inl x) = cong inl (iac .leftInv x) leftInv (⊎Iso iac ibd) (inr x) = cong inr (ibd .leftInv x) ⊎-swap-Iso : Iso (A ⊎ B) (B ⊎ A) fun ⊎-swap-Iso (inl x) = inr x fun ⊎-swap-Iso (inr x) = inl x inv ⊎-swap-Iso (inl x) = inr x inv ⊎-swap-Iso (inr x) = inl x rightInv ⊎-swap-Iso (inl _) = refl rightInv ⊎-swap-Iso (inr _) = refl leftInv ⊎-swap-Iso (inl _) = refl leftInv ⊎-swap-Iso (inr _) = refl ⊎-swap-≃ : A ⊎ B ≃ B ⊎ A ⊎-swap-≃ = isoToEquiv ⊎-swap-Iso ⊎-assoc-Iso : Iso ((A ⊎ B) ⊎ C) (A ⊎ (B ⊎ C)) fun ⊎-assoc-Iso (inl (inl x)) = inl x fun ⊎-assoc-Iso (inl (inr x)) = inr (inl x) fun ⊎-assoc-Iso (inr x) = inr (inr x) inv ⊎-assoc-Iso (inl x) = inl (inl x) inv ⊎-assoc-Iso (inr (inl x)) = inl (inr x) inv ⊎-assoc-Iso (inr (inr x)) = inr x rightInv ⊎-assoc-Iso (inl _) = refl rightInv ⊎-assoc-Iso (inr (inl _)) = refl rightInv ⊎-assoc-Iso (inr (inr _)) = refl leftInv ⊎-assoc-Iso (inl (inl _)) = refl leftInv ⊎-assoc-Iso (inl (inr _)) = refl leftInv ⊎-assoc-Iso (inr _) = refl ⊎-assoc-≃ : (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C) ⊎-assoc-≃ = isoToEquiv ⊎-assoc-Iso ⊎-⊥-Iso : Iso (A ⊎ ⊥) A fun ⊎-⊥-Iso (inl x) = x inv ⊎-⊥-Iso x = inl x rightInv ⊎-⊥-Iso _ = refl leftInv ⊎-⊥-Iso (inl _) = refl ⊎-⊥-≃ : A ⊎ ⊥ ≃ A ⊎-⊥-≃ = isoToEquiv ⊎-⊥-Iso
32.653846
88
0.59148
fb852e6594492522f654757ce237c74aca6f7a52
55,216
agda
Agda
Definition/LogicalRelation/Substitution/Introductions/Sigma.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/LogicalRelation/Substitution/Introductions/Sigma.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Introductions/Sigma.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Sigma {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening using (_∷_⊆_ ; _•ₜ_) open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.MaybeEmbed import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE open import Tools.Empty using (⊥; ⊥-elim) -- Validity of ∃. ∃ᵛ : ∀ {F G Γ l∃ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) → Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ] ∙ [F] → Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ^ [ % , ι l∃ ] / [Γ] ∃ᵛ {F} {G} {Γ} {l∃} {l} [Γ] [F] [G] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [F]σ {σ′} [σ′] = [F] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([F]σ [σ]) ⊢F {σ′} [σ′] = escape (proj₁ ([F]σ {σ′} [σ′])) ⊢F≡F = escapeEq [σF] (reflEq [σF]) [G]σ {σ′} [σ′] = [G] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F [σ′]) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]) ⊢G {σ′} [σ′] = escape (proj₁ ([G]σ {σ′} [σ′])) ⊢G≡G = escapeEq (proj₁ ([G]σ [σ])) (reflEq (proj₁ ([G]σ [σ]))) ⊢∃F▹G = ∃ⱼ un-univ (⊢F [σ]) ▹ un-univ (⊢G [σ]) in ∃ᵣ′ (subst σ F) (subst (liftSubst σ) G) (idRed:*: (univ ⊢∃F▹G)) (⊢F [σ]) (⊢G [σ]) (≅-univ (≅ₜ-∃-cong (⊢F [σ]) (≅-un-univ ⊢F≡F) (≅-un-univ ⊢G≡G))) (λ ρ ⊢Δ₁ → wk ρ ⊢Δ₁ [σF]) (λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] → let [a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) [a] in Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′) (λ {ρ} {Δ₁} {a} {b} [ρ] ⊢Δ₁ [a] [b] [a≡b] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [b]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [b] [a≡b]′ = irrelevanceEqTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a≡b] in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp b σ G)) PE.refl PE.refl (proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)) (Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′) (proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′) ([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₁ [ρσ] , [a≡b]′))) , λ {σ′} [σ′] [σ≡σ′] → let var0 = var (⊢Δ ∙ ⊢F [σ]) (PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ ∙ subst σ F ^ [ % , ι l∃ ])) (wk-subst F) here) [wk1σ] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ′] [wk1σ≡wk1σ′] = wk1SubstSEq [Γ] ⊢Δ (⊢F [σ]) [σ] [σ≡σ′] [F][wk1σ] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ]) [F][wk1σ′] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ′]) var0′ = conv var0 (≅-eq (escapeEq [F][wk1σ] (proj₂ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ]) [wk1σ′] [wk1σ≡wk1σ′]))) in ∃₌ _ _ (id (univ (∃ⱼ un-univ (⊢F [σ′]) ▹ un-univ (⊢G [σ′])))) (≅-univ (≅ₜ-∃-cong (⊢F [σ]) (≅-un-univ (escapeEq (proj₁ ([F] ⊢Δ [σ])) (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]))) (≅-un-univ (escapeEq (proj₁ ([G]σ [σ])) (proj₂ ([G]σ [σ]) ([wk1σ′] , neuTerm [F][wk1σ′] (var 0) var0′ (~-var var0′)) ([wk1σ≡wk1σ′] , neuEqTerm [F][wk1σ] (var 0) (var 0) var0 var0 (~-var var0))))))) (λ ρ ⊢Δ₁ → wkEq ρ ⊢Δ₁ [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])) (λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] [a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [a]″ = convTerm₁ (proj₁ ([F] ⊢Δ₁ [ρσ])) (proj₁ ([F] ⊢Δ₁ [ρσ′])) (proj₂ ([F] ⊢Δ₁ [ρσ]) [ρσ′] (wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′])) [a]′ [ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) (wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]) [F] [a]′ in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ′ G)) PE.refl PE.refl (proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)) (Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′) (proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′) (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] , [a]″) [ρσa≡ρσ′a])) -- Validity of ∃-congurence. ∃-congᵛ : ∀ {F G H E Γ l∃ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) ([G] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ] ∙ [F]) ([H] : Γ ⊩ᵛ⟨ l ⟩ H ^ [ % , ι l∃ ] / [Γ]) ([E] : Γ ∙ H ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ E ^ [ % , ι l∃ ] / [Γ] ∙ [H]) ([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H ^ [ % , ι l∃ ] / [Γ] / [F]) ([G≡E] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ≡ E ^ [ % , ι l∃ ] / [Γ] ∙ [F] / [G]) → Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ≡ ∃ H ▹ E ^ [ % , ι l∃ ] / [Γ] / ∃ᵛ {F} {G} [Γ] [F] [G] ∃-congᵛ {F} {G} {H} {E} [Γ] [F] [G] [H] [E] [F≡H] [G≡E] {σ = σ} ⊢Δ [σ] = let [∃FG] = ∃ᵛ {F} {G} [Γ] [F] [G] [σ∃FG] = proj₁ ([∃FG] ⊢Δ [σ]) _ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG]) [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢σF = escape [σF] [σG] = proj₁ ([G] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ])) ⊢σH = escape (proj₁ ([H] ⊢Δ [σ])) ⊢σE = escape (proj₁ ([E] (⊢Δ ∙ ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ]))) ⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ]) ⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ])) in ∃₌ (subst σ H) (subst (liftSubst σ) E) (id (univ (∃ⱼ (un-univ ⊢σH) ▹ (un-univ ⊢σE)))) (≅-univ (≅ₜ-∃-cong ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE))) (λ ρ ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ] in irrelevanceEq″ (PE.sym (wk-subst F)) (PE.sym (wk-subst H)) PE.refl PE.refl (proj₁ ([F] ⊢Δ₁ [ρσ])) ([F]′ ρ ⊢Δ₁) ([F≡H] ⊢Δ₁ [ρσ])) (λ {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl ([F]′ [ρ] ⊢Δ₁) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′ in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ E)) PE.refl PE.refl (proj₁ ([G] ⊢Δ₁ [aρσ])) ([G]′ [ρ] ⊢Δ₁ [a]) ([G≡E] ⊢Δ₁ [aρσ]) ) -- Validity of ∃ as a term. ∃ᵗᵛ₁ : ∀ {F G l∃ Γ} ([Γ] : ⊩ᵛ Γ)→ let l = ∞ [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) in ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) ([UG] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F]) → Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF] → Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ}) → ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩⟨ l ⟩ subst σ (∃ F ▹ G) ∷ subst σ (Univ % l∃) ^ [ ! , next l∃ ] / proj₁ ([U∃] ⊢Δ [σ]) ∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let l = ∞ l∃ = ¹ l∃≤ = ≡is≤ PE.refl [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] univΔ = proj₁ ([UF] ⊢Δ [σ]) [Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([Fₜ]σ [σ]) ⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])) ⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))) [UG]σ = proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ]) [Gₜ]σ = proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) ⊢Gₜ = escapeTerm [UG]σ [Gₜ]σ ⊢G≡Gₜ = escapeTermEq [UG]σ (reflEqTerm [UG]σ [Gₜ]σ) [F]₀ = univᵛ {F} [Γ] l∃≤ [UF] [Fₜ] [UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) [Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ] [G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ}) [Guniv] = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ]′ in Uₜ (∃ subst σ F ▹ subst (liftSubst σ) G) (idRedTerm:*: (∃ⱼ ⊢Fₜ ▹ ⊢Gₜ)) ∃ₙ (≅ₜ-∃-cong ⊢F ⊢F≡Fₜ ⊢G≡Gₜ) (λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let ⊢Fₜ' = Definition.Typed.Weakening.wkTerm [ρ] ⊢Δ₁ ⊢Fₜ ⊢Gₜ' = Definition.Typed.Weakening.wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') ⊢Gₜ [wkFₜ] = wkTerm [ρ] ⊢Δ₁ univΔ (proj₁ ([Fₜ] ⊢Δ [σ])) [wkGₜ] = wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])) [⊢weakF≡Fₜ] = escapeTermEq (wk [ρ] ⊢Δ₁ univΔ) (reflEqTerm (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ]) [⊢weakG≡Gₜ] = escapeTermEq (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))) (reflEqTerm (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))) (wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])))) [wkFₜ]Type : ∀ {ρ₁ Δ₂} [ρ₁] ⊢Δ₂ → Δ₂ ⊩⟨ ι ¹ ⟩ U.wk ρ₁ (U.wk ρ (subst σ F)) ^ [ % , ι l∃ ] [wkFₜ]Type = λ {ρ₁} {Δ₂} [ρ₁] ⊢Δ₂ → let [wkFₜ]Type = univEq (wk [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ)) (wkTerm [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ]) in maybeEmb′ l∃≤ [wkFₜ]Type in ∃ᵣ′ (U.wk ρ (subst σ F)) (U.wk (lift ρ) (subst (liftSubst σ) G)) (idRed:*: (univ (∃ⱼ ⊢Fₜ' ▹ ⊢Gₜ'))) (univ ⊢Fₜ') (univ ⊢Gₜ') (≅-univ (≅ₜ-∃-cong (univ ⊢Fₜ') [⊢weakF≡Fₜ] [⊢weakG≡Gₜ])) [wkFₜ]Type (λ {ρ₁} {Δ₂} {a} [ρ₁] ⊢Δ₂ [a] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ] [a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a] [Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ in PE.subst (λ X → _ ⊩⟨ ι ¹ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp]) (λ {ρ₁} {Δ₂} {a} {b} [ρ₁] ⊢Δ₂ [a] [b] [a≡b] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ] [a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a] [b]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [b] [a≡b]′ = irrelevanceEqTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a≡b] [Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ in irrelevanceEq″ (PE.trans (PE.sym (singleSubstWkComp a σ G)) (wk-comp-subst {a} ρ₁ ρ (subst (liftSubst σ) G))) (PE.trans (PE.sym (singleSubstWkComp b σ G)) (wk-comp-subst {b} ρ₁ ρ (subst (liftSubst σ) G))) PE.refl PE.refl (proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ )) (PE.subst (λ X → _ ⊩⟨ ι ¹ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp]) (proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ ) ([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₂ [ρσ] , [a≡b]′)))) ∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let l = ∞ l∃ = ⁰ l∃≤ = ≡is≤ PE.refl [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] univΔ = proj₁ ([UF] ⊢Δ [σ]) [Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([Fₜ]σ [σ]) ⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])) ⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))) [UG]σ = proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ]) [Gₜ]σ = proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) ⊢Gₜ = escapeTerm [UG]σ [Gₜ]σ ⊢G≡Gₜ = escapeTermEq [UG]σ (reflEqTerm [UG]σ [Gₜ]σ) [F]₀ = univᵛ {F} [Γ] l∃≤ [UF] [Fₜ] [UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) [Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ] [G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ}) [Guniv] = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ]′ in Uₜ (∃ subst σ F ▹ subst (liftSubst σ) G) (idRedTerm:*: (∃ⱼ ⊢Fₜ ▹ ⊢Gₜ)) ∃ₙ (≅ₜ-∃-cong ⊢F ⊢F≡Fₜ ⊢G≡Gₜ) (λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let ⊢Fₜ' = Definition.Typed.Weakening.wkTerm [ρ] ⊢Δ₁ ⊢Fₜ ⊢Gₜ' = Definition.Typed.Weakening.wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') ⊢Gₜ [wkFₜ] = wkTerm [ρ] ⊢Δ₁ univΔ (proj₁ ([Fₜ] ⊢Δ [σ])) [wkGₜ] = wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])) [⊢weakF≡Fₜ] = escapeTermEq (wk [ρ] ⊢Δ₁ univΔ) (reflEqTerm (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ]) [⊢weakG≡Gₜ] = escapeTermEq (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))) (reflEqTerm (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))) (wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])))) [wkFₜ]Type : ∀ {ρ₁ Δ₂} [ρ₁] ⊢Δ₂ → Δ₂ ⊩⟨ ι ⁰ ⟩ U.wk ρ₁ (U.wk ρ (subst σ F)) ^ [ % , ι l∃ ] [wkFₜ]Type = λ {ρ₁} {Δ₂} [ρ₁] ⊢Δ₂ → let [wkFₜ]Type = univEq (wk [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ)) (wkTerm [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ]) in maybeEmb′ l∃≤ [wkFₜ]Type in ∃ᵣ′ (U.wk ρ (subst σ F)) (U.wk (lift ρ) (subst (liftSubst σ) G)) (idRed:*: (univ (∃ⱼ ⊢Fₜ' ▹ ⊢Gₜ'))) (univ ⊢Fₜ') (univ ⊢Gₜ') (≅-univ (≅ₜ-∃-cong (univ ⊢Fₜ') [⊢weakF≡Fₜ] [⊢weakG≡Gₜ])) [wkFₜ]Type (λ {ρ₁} {Δ₂} {a} [ρ₁] ⊢Δ₂ [a] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ] [a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a] [Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ in PE.subst (λ X → _ ⊩⟨ ι ⁰ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp]) (λ {ρ₁} {Δ₂} {a} {b} [ρ₁] ⊢Δ₂ [a] [b] [a≡b] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ] [a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a] [b]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [b] [a≡b]′ = irrelevanceEqTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂) (proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a≡b] [Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ in irrelevanceEq″ (PE.trans (PE.sym (singleSubstWkComp a σ G)) (wk-comp-subst {a} ρ₁ ρ (subst (liftSubst σ) G))) (PE.trans (PE.sym (singleSubstWkComp b σ G)) (wk-comp-subst {b} ρ₁ ρ (subst (liftSubst σ) G))) PE.refl PE.refl (proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ )) (PE.subst (λ X → _ ⊩⟨ ι ⁰ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp]) (proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ ) ([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₂ [ρσ] , [a≡b]′)))) ∃ᵗᵛ : ∀ {F G l∃ Γ} ([Γ] : ⊩ᵛ Γ)→ let l = ∞ [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) in ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) ([UG] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F]) → Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF] → Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ}) → Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U∃] ∃ᵗᵛ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let l = ∞ l∃ = ¹ l∃≤ = ≡is≤ PE.refl [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) in ∃ᵗᵛ₁ {F} {G} {¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] , (λ {σ′} [σ′] [σ≡σ′] → let ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] univΔ = proj₁ ([UF] ⊢Δ [σ]) [Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([Fₜ]σ [σ]) ⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])) ⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))) [liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′] [wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′] var0 = conv (var (⊢Δ ∙ ⊢F) (PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ ∙ subst σ F ^ [ % , ι l∃ ])) (wk-subst F) here)) (≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ])) (proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′] (wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′])))) [liftσ′]′ = [wk1σ′] , neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var 0) var0 (~-var var0) ⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′])) univΔ = proj₁ ([UF] ⊢Δ [σ]) univΔ′ = proj₁ ([UF] ⊢Δ [σ′]) [Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([Fₜ]σ [σ]) ⊢Fₜ′ = escapeTerm univΔ′ (proj₁ ([Fₜ] ⊢Δ [σ′])) ⊢Gₜ′ = escapeTerm (proj₁ ([UG] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F′) [liftσ′])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′])) ⊢F≡F′ = escapeTermEq univΔ (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′]) ⊢G≡G′ = escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′ (liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′])) [F]₀ = univᵛ {F} [Γ] l∃≤ [UF] [Fₜ] [UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) [Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ] [G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ}) [∃FG-cong] = ∃-congᵛ {F} {G} {F} {G} [Γ] [F]₀ [G]₀ [F]₀ [G]₀ (λ ⊢Δ₁ [σ]₁ → proj₂ ([F]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst [Γ] ⊢Δ₁ [σ]₁)) (λ {Δ₁} {σ₁} ⊢Δ₁ [σ]₁ → proj₂ ([G]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst {σ₁} ((_∙_ {A = F} [Γ] [F]₀)) ⊢Δ₁ [σ]₁)) [∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] [∃FG]ᵗ′ = ∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ′} ⊢Δ [σ′] [∃FG] = ∃ᵛ {F} {G} {Γ} {l∃ = ¹} [Γ] [F]₀ [G]₀ in Uₜ₌ [∃FG]ᵗ [∃FG]ᵗ′ (≅ₜ-∃-cong ⊢F ⊢F≡F′ ⊢G≡G′) (λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [∃FG-cong]′ = [∃FG-cong] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) X = irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G))) (PE.sym (wk-subst (∃ F ▹ G))) PE.refl PE.refl (proj₁ ([∃FG] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) [∃FG-cong]′ [σ∃FG] = proj₁ ([∃FG] ⊢Δ [σ]) _ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG]) [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σF]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ]) ⊢σF₀ = escape [σF]₀ [σG]₀ = proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σF₀) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ])) [ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] [σF′]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ′]) ⊢σH = escape (proj₁ ([F]₀ ⊢Δ₁ [ρσ′])) ⊢σE = escape (proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σH) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ′]))) univΔ₁ = proj₁ ([UF] ⊢Δ₁ [ρσ]) [ρσ≡ρσ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′] [σF≡σH] = univEqEq univΔ₁ [σF]₀ (proj₂ ([Fₜ] ⊢Δ₁ [ρσ]) [ρσ′] [ρσ≡ρσ′]) ⊢σF≡σH = escapeEq [σF]₀ [σF≡σH] [σF] = proj₁ ([F] ⊢Δ₁ [ρσ]) ⊢σF = escape [σF] liftσ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [wk1σ] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ′] var0 = conv (var (⊢Δ₁ ∙ ⊢σF) (PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ])) (wk-subst F) here)) (≅-eq (escapeEq (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ])) (proj₂ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]) [wk1σ′] (wk1SubstSEq [Γ] ⊢Δ₁ ⊢σF [ρσ] [ρσ≡ρσ′])))) [liftσ′]′ : (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ]) ⊩ˢ liftSubst (ρ •ₛ σ′) ∷ Γ ∙ F ^ [ % , ι l∃ ] / [Γ] ∙ [F] / (⊢Δ₁ ∙ escape (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))) [liftσ′]′ = [wk1σ′] , neuTerm (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ′])) (var 0) var0 (~-var var0) liftσ′ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′] univΔ₁G = proj₁ ([UG] (⊢Δ₁ ∙ ⊢σF) liftσ) [σG≡σE] = univEqEq univΔ₁G [σG]₀ (proj₂ ([Gₜ] {σ = liftSubst (ρ •ₛ σ)} (⊢Δ₁ ∙ ⊢σF) liftσ) [liftσ′]′ (liftSubstSEq {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [ρσ≡ρσ′])) ⊢σG≡σE = escapeEq [σG]₀ [σG≡σE] X = ∃₌ (subst (ρ •ₛ σ′) F) (subst (liftSubst (ρ •ₛ σ′)) G) (id (univ (∃ⱼ (un-univ ⊢σH) ▹ (un-univ ⊢σE)))) ((≅-univ (≅ₜ-∃-cong ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE)))) (λ {ρ₂} {Δ₂} [ρ₂] ⊢Δ₂ → let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]) [σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ]) _ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG]) ⊢ρσ₂F = escape [ρσ₂F]₀ [ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′] ⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′])) univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂]) [σF≡σH] = univEqEq univΔ₂ [ρσ₂F]₀ (proj₂ ([Fₜ] ⊢Δ₂ [ρσ₂]) [ρσ₂′] (wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])) in irrelevanceEq″ (PE.sym (wk-subst F)) (PE.sym (wk-subst F)) PE.refl PE.refl [ρσ₂F]₀ ([F]′ [ρ₂] ⊢Δ₂) [σF≡σH]) (λ {ρ₂} {Δ₂} {a} [ρ₂] ⊢Δ₂ [a] → let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]) [σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ]) _ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG]) ⊢ρσ₂F = escape [ρσ₂F]₀ [ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′] ⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′])) univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂]) [a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ₂] ⊢Δ₂ [σF]₀) (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) [a] [a]″ = convTerm₁ (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′])) (proj₂ ([F]₀ ⊢Δ₂ [ρσ₂]) [ρσ₂′] (wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])) [a]′ [ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₂ (wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]) (wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]) [F]₀ [a]′ in irrelevanceEq″ (PE.sym (singleSubstWkComp a (ρ •ₛ σ) G)) (PE.sym (singleSubstWkComp a (ρ •ₛ σ′) G)) PE.refl PE.refl (proj₁ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)) (Gapp {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′) (proj₂ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′) ([ρσ₂′] , [a]″) [ρσa≡ρσ′a] )) in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G))) (PE.sym (wk-subst (∃ F ▹ G))) PE.refl PE.refl (proj₁ ([∃FG] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) X)) ∃ᵗᵛ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let l = ∞ l∃ = ⁰ l∃≤ = ≡is≤ PE.refl [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) in ∃ᵗᵛ₁ {F} {G} {⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] , (λ {σ′} [σ′] [σ≡σ′] → let ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] univΔ = proj₁ ([UF] ⊢Δ [σ]) [Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([Fₜ]σ [σ]) ⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])) ⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))) [liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′] [wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′] var0 = conv (var (⊢Δ ∙ ⊢F) (PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ ∙ subst σ F ^ [ % , ι l∃ ])) (wk-subst F) here)) (≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ])) (proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′] (wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′])))) [liftσ′]′ = [wk1σ′] , neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var 0) var0 (~-var var0) ⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′])) univΔ = proj₁ ([UF] ⊢Δ [σ]) univΔ′ = proj₁ ([UF] ⊢Δ [σ′]) [Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([Fₜ]σ [σ]) ⊢Fₜ′ = escapeTerm univΔ′ (proj₁ ([Fₜ] ⊢Δ [σ′])) ⊢Gₜ′ = escapeTerm (proj₁ ([UG] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F′) [liftσ′])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′])) ⊢F≡F′ = escapeTermEq univΔ (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′]) ⊢G≡G′ = escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′ (liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′])) [F]₀ = univᵛ {F} [Γ] (≡is≤ PE.refl) [UF] [Fₜ] [UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) [Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ] [G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ}) [∃FG-cong] = ∃-congᵛ {F} {G} {F} {G} [Γ] [F]₀ [G]₀ [F]₀ [G]₀ (λ ⊢Δ₁ [σ]₁ → proj₂ ([F]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst [Γ] ⊢Δ₁ [σ]₁)) (λ {Δ₁} {σ₁} ⊢Δ₁ [σ]₁ → proj₂ ([G]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst {σ₁} ((_∙_ {A = F} [Γ] [F]₀)) ⊢Δ₁ [σ]₁)) [∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] [∃FG]ᵗ′ = ∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ′} ⊢Δ [σ′] [∃FG] = ∃ᵛ {F} {G} {Γ} {l∃ = ⁰} [Γ] [F]₀ [G]₀ in Uₜ₌ [∃FG]ᵗ [∃FG]ᵗ′ (≅ₜ-∃-cong ⊢F ⊢F≡F′ ⊢G≡G′) (λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [∃FG-cong]′ = [∃FG-cong] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) X = irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G))) (PE.sym (wk-subst (∃ F ▹ G))) PE.refl PE.refl (proj₁ ([∃FG] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) [∃FG-cong]′ [σ∃FG] = proj₁ ([∃FG] ⊢Δ [σ]) _ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG]) [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σF]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ]) ⊢σF₀ = escape [σF]₀ [σG]₀ = proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σF₀) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ])) [ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] [σF′]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ′]) ⊢σH = escape (proj₁ ([F]₀ ⊢Δ₁ [ρσ′])) ⊢σE = escape (proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σH) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ′]))) univΔ₁ = proj₁ ([UF] ⊢Δ₁ [ρσ]) [ρσ≡ρσ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′] [σF≡σH] = univEqEq univΔ₁ [σF]₀ (proj₂ ([Fₜ] ⊢Δ₁ [ρσ]) [ρσ′] [ρσ≡ρσ′]) ⊢σF≡σH = escapeEq [σF]₀ [σF≡σH] [σF] = proj₁ ([F] ⊢Δ₁ [ρσ]) ⊢σF = escape [σF] liftσ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [wk1σ] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ′] var0 = conv (var (⊢Δ₁ ∙ ⊢σF) (PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ])) (wk-subst F) here)) (≅-eq (escapeEq (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ])) (proj₂ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]) [wk1σ′] (wk1SubstSEq [Γ] ⊢Δ₁ ⊢σF [ρσ] [ρσ≡ρσ′])))) [liftσ′]′ : (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ]) ⊩ˢ liftSubst (ρ •ₛ σ′) ∷ Γ ∙ F ^ [ % , ι l∃ ] / [Γ] ∙ [F] / (⊢Δ₁ ∙ escape (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))) [liftσ′]′ = [wk1σ′] , neuTerm (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ′])) (var 0) var0 (~-var var0) liftσ′ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′] univΔ₁G = proj₁ ([UG] (⊢Δ₁ ∙ ⊢σF) liftσ) [σG≡σE] = univEqEq univΔ₁G [σG]₀ (proj₂ ([Gₜ] {σ = liftSubst (ρ •ₛ σ)} (⊢Δ₁ ∙ ⊢σF) liftσ) [liftσ′]′ (liftSubstSEq {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [ρσ≡ρσ′])) ⊢σG≡σE = escapeEq [σG]₀ [σG≡σE] X = ∃₌ (subst (ρ •ₛ σ′) F) (subst (liftSubst (ρ •ₛ σ′)) G) (id (univ (∃ⱼ (un-univ ⊢σH) ▹ (un-univ ⊢σE)))) ((≅-univ (≅ₜ-∃-cong ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE)))) (λ {ρ₂} {Δ₂} [ρ₂] ⊢Δ₂ → let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]) [σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ]) _ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG]) ⊢ρσ₂F = escape [ρσ₂F]₀ [ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′] ⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′])) univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂]) [σF≡σH] = univEqEq univΔ₂ [ρσ₂F]₀ (proj₂ ([Fₜ] ⊢Δ₂ [ρσ₂]) [ρσ₂′] (wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])) in irrelevanceEq″ (PE.sym (wk-subst F)) (PE.sym (wk-subst F)) PE.refl PE.refl [ρσ₂F]₀ ([F]′ [ρ₂] ⊢Δ₂) [σF≡σH]) (λ {ρ₂} {Δ₂} {a} [ρ₂] ⊢Δ₂ [a] → let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]) [σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ]) _ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG]) ⊢ρσ₂F = escape [ρσ₂F]₀ [ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′] ⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′])) univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂]) [a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ₂] ⊢Δ₂ [σF]₀) (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) [a] [a]″ = convTerm₁ (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′])) (proj₂ ([F]₀ ⊢Δ₂ [ρσ₂]) [ρσ₂′] (wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])) [a]′ [ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₂ (wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]) (wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]) [F]₀ [a]′ in irrelevanceEq″ (PE.sym (singleSubstWkComp a (ρ •ₛ σ) G)) (PE.sym (singleSubstWkComp a (ρ •ₛ σ′) G)) PE.refl PE.refl (proj₁ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)) (Gapp {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′) (proj₂ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′) ([ρσ₂′] , [a]″) [ρσa≡ρσ′a] )) in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G))) (PE.sym (wk-subst (∃ F ▹ G))) PE.refl PE.refl (proj₁ ([∃FG] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) X)) -- Validity of ∃-congurence as a term equality. ∃-congᵗᵛ : ∀ {F G H E l∃ Γ} ([Γ] : ⊩ᵛ Γ) → let l = ∞ [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) in ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) ([H] : Γ ⊩ᵛ⟨ l ⟩ H ^ [ % , ι l∃ ] / [Γ]) ([UG] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F]) ([UE] : Γ ∙ H ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [H]) ([F]ₜ : Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF]) ([G]ₜ : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ})) ([H]ₜ : Γ ⊩ᵛ⟨ l ⟩ H ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF]) ([E]ₜ : Γ ∙ H ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ E ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [H] / (λ {Δ} {σ} → [UE] {Δ} {σ})) ([F≡H]ₜ : Γ ⊩ᵛ⟨ l ⟩ F ≡ H ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF]) ([G≡E]ₜ : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ≡ E ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ})) → Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ≡ ∃ H ▹ E ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U∃] ∃-congᵗᵛ {F} {G} {H} {E} {l∃ = ¹} {Γ} [Γ] [F] [H] [UG] [UE] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ {Δ} {σ} ⊢Δ [σ] = let l = ∞ l∃ = ¹ l∃≤ = ≡is≤ PE.refl [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [F]ₜ [G]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ] [∃HE]ᵗ = ∃ᵗᵛ₁ {H} {E} {l∃ = ¹} {Γ} [Γ] [H] (λ {Δ} {σ} → [UE] {Δ} {σ}) [H]ₜ [E]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ] ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] univΔ = proj₁ ([UF] ⊢Δ [σ]) [G] = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]) (univᵛ {G} (_∙_ {A = F} [Γ] [F]) l∃≤ (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ) [E] = maybeEmbᵛ {A = E} (_∙_ {A = H} [Γ] [H]) (univᵛ {E} (_∙_ {A = H} [Γ] [H]) l∃≤ (λ {Δ} {σ} → [UE] {Δ} {σ}) [E]ₜ) [F≡H] = univEqᵛ {F} {H} [Γ] [UF] [F] [F≡H]ₜ [G≡E] = univEqᵛ {G} {E} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G] [G≡E]ₜ in Uₜ₌ [∃FG]ᵗ [∃HE]ᵗ (≅ₜ-∃-cong ⊢F (escapeTermEq univΔ ([F≡H]ₜ ⊢Δ [σ])) (escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) ([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftσ]))) λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] X = ∃-congᵛ {F} {G} {H} {E} {Γ} {¹} [Γ] [F] [G] [H] [E] [F≡H] [G≡E] ⊢Δ₁ [ρσ] in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G))) (PE.sym (wk-subst (∃ H ▹ E))) PE.refl PE.refl (proj₁ (∃ᵛ {F} {G} [Γ] [F] [G] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) X ∃-congᵗᵛ {F} {G} {H} {E} {l∃ = ⁰} {Γ} [Γ] [F] [H] [UG] [UE] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ {Δ} {σ} ⊢Δ [σ] = let l = ∞ l∃ = ⁰ l∃≤ = ≡is≤ PE.refl [UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [F]ₜ [G]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ] [∃HE]ᵗ = ∃ᵗᵛ₁ {H} {E} {l∃ = ⁰} {Γ} [Γ] [H] (λ {Δ} {σ} → [UE] {Δ} {σ}) [H]ₜ [E]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ] ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] univΔ = proj₁ ([UF] ⊢Δ [σ]) [Fₜ]σ {σ′} [σ′] = [F]ₜ {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([Fₜ]σ [σ]) [G] = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]) (univᵛ {G} (_∙_ {A = F} [Γ] [F]) l∃≤ (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ) [E] = maybeEmbᵛ {A = E} (_∙_ {A = H} [Γ] [H]) (univᵛ {E} (_∙_ {A = H} [Γ] [H]) l∃≤ (λ {Δ} {σ} → [UE] {Δ} {σ}) [E]ₜ) [F≡H] = univEqᵛ {F} {H} [Γ] [UF] [F] [F≡H]ₜ [G≡E] = univEqᵛ {G} {E} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G] [G≡E]ₜ in Uₜ₌ [∃FG]ᵗ [∃HE]ᵗ (≅ₜ-∃-cong ⊢F (escapeTermEq univΔ ([F≡H]ₜ ⊢Δ [σ])) (escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) ([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftσ]))) λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] X = ∃-congᵛ {F} {G} {H} {E} {Γ} {⁰} [Γ] [F] [G] [H] [E] [F≡H] [G≡E] ⊢Δ₁ [ρσ] in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G))) (PE.sym (wk-subst (∃ H ▹ E))) PE.refl PE.refl (proj₁ (∃ᵛ {F} {G} [Γ] [F] [G] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) X -- Validity of non-dependent sum types. ××ᵛ : ∀ {F G l∃ Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ] → Γ ⊩ᵛ⟨ l ⟩ F ×× G ^ [ % , ι l∃ ] / [Γ] ××ᵛ {F} {G} [Γ] [F] [G] = ∃ᵛ {F} {wk1 G} [Γ] [F] (wk1ᵛ {G} {F} [Γ] [F] [G]) -- Validity of non-dependent sum type congurence. ××-congᵛ : ∀ {F F′ G G′ l∃ Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ ^ [ % , ι l∃ ] / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ ^ [ % , ι l∃ ] / [Γ] / [F]) ([G] : Γ ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ]) ([G′] : Γ ⊩ᵛ⟨ l ⟩ G′ ^ [ % , ι l∃ ] / [Γ]) ([G≡G′] : Γ ⊩ᵛ⟨ l ⟩ G ≡ G′ ^ [ % , ι l∃ ] / [Γ] / [G]) → Γ ⊩ᵛ⟨ l ⟩ F ×× G ≡ F′ ×× G′ ^ [ % , ι l∃ ] / [Γ] / ××ᵛ {F} {G} [Γ] [F] [G] ××-congᵛ {F} {F′} {G} {G′} [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] = ∃-congᵛ {F} {wk1 G} {F′} {wk1 G′} [Γ] [F] (wk1ᵛ {G} {F} [Γ] [F] [G]) [F′] (wk1ᵛ {G′} {F′} [Γ] [F′] [G′]) [F≡F′] (wk1Eqᵛ {G} {G′} {F} [Γ] [F] [G] [G≡G′]) ××ᵗᵛ : ∀ {F G l∃ Γ} ([Γ] : ⊩ᵛ Γ)→ let l = ∞ [U] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) in ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U] → Γ ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / (λ {Δ} {σ} → [U] {Δ} {σ}) → Γ ⊩ᵛ⟨ l ⟩ F ×× G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U] ××ᵗᵛ {F} {G} {l∃} [Γ] [F] [Fₜ] [Gₜ] = let l = ∞ [U] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ]) [Gₜ]′ = wk1ᵗᵛ {F} {G} {[ % , ι l∃ ]} {%} {l∃} [Γ] [F] [Gₜ] [wU] = maybeEmbᵛ {A = Univ % _} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → Uᵛ (proj₂ (levelBounded l∃)) (_∙_ {A = F} [Γ] [F]) {Δ} {σ}) [wU]′ = wk1ᵛ {Univ _ _ } {F} [Γ] [F] [U] in ∃ᵗᵛ {F} {wk1 G} [Γ] [F] (λ {Δ} {σ} → [wU]′ {Δ} {σ}) [Fₜ] (S.irrelevanceTerm {A = Univ _ _} {t = wk1 G} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [wU] {Δ} {σ}) (λ {Δ} {σ} → [wU]′ {Δ} {σ}) [Gₜ]′)
73.719626
186
0.286946
3d631f9ce2089ea03e232976be3d73d3cabe0fb3
11,150
agda
Agda
Cubical/HITs/PropositionalTruncation/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/PropositionalTruncation/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{- This file contains: - Eliminator for propositional truncation -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.PropositionalTruncation.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ : Level A B C : Type ℓ rec : {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P rec Pprop f ∣ x ∣ = f x rec Pprop f (squash x y i) = Pprop (rec Pprop f x) (rec Pprop f y) i rec2 : {P : Type ℓ} → isProp P → (A → A → P) → ∥ A ∥ → ∥ A ∥ → P rec2 Pprop f ∣ x ∣ ∣ y ∣ = f x y rec2 Pprop f ∣ x ∣ (squash y z i) = Pprop (rec2 Pprop f ∣ x ∣ y) (rec2 Pprop f ∣ x ∣ z) i rec2 Pprop f (squash x y i) z = Pprop (rec2 Pprop f x z) (rec2 Pprop f y z) i -- Old version -- rec2 : ∀ {P : Type ℓ} → isProp P → (A → A → P) → ∥ A ∥ → ∥ A ∥ → P -- rec2 Pprop f = rec (isProp→ Pprop) (λ a → rec Pprop (f a)) elim : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim Pprop f ∣ x ∣ = f x elim Pprop f (squash x y i) = isOfHLevel→isOfHLevelDep 1 Pprop (elim Pprop f x) (elim Pprop f y) (squash x y) i elim2 : {P : ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y : ∥ A ∥) → isProp (P x y))) (f : (a b : A) → P ∣ a ∣ ∣ b ∣) (x y : ∥ A ∥) → P x y elim2 Pprop f = elim (λ _ → isPropΠ (λ _ → Pprop _ _)) (λ a → elim (λ _ → Pprop _ _) (f a)) elim3 : {P : ∥ A ∥ → ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y z : ∥ A ∥) → isProp (P x y z))) (g : (a b c : A) → P (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : ∥ A ∥) → P x y z elim3 Pprop g = elim2 (λ _ _ → isPropΠ (λ _ → Pprop _ _ _)) (λ a b → elim (λ _ → Pprop _ _ _) (g a b)) propTruncIsProp : isProp ∥ A ∥ propTruncIsProp x y = squash x y propTruncIdempotent≃ : isProp A → ∥ A ∥ ≃ A propTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isProp→isSet propTruncIsProp _ _) (λ _ → refl) propTruncIdempotent : isProp A → ∥ A ∥ ≡ A propTruncIdempotent hA = ua (propTruncIdempotent≃ hA) -- We could also define the eliminator using the recursor elim' : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim' {P = P} Pprop f a = rec (Pprop a) (λ x → transp (λ i → P (squash ∣ x ∣ a i)) i0 (f x)) a map : (A → B) → (∥ A ∥ → ∥ B ∥) map f = rec squash (∣_∣ ∘ f) map2 : (A → B → C) → (∥ A ∥ → ∥ B ∥ → ∥ C ∥) map2 f = rec (isPropΠ λ _ → squash) (map ∘ f) -- The propositional truncation can be eliminated into non-propositional -- types as long as the function used in the eliminator is 'coherently -- constant.' The details of this can be found in the following paper: -- -- https://arxiv.org/pdf/1411.2682.pdf module SetElim (Bset : isSet B) where Bset' : isSet' B Bset' = isSet→isSet' Bset rec→Set : (f : A → B) (kf : 2-Constant f) → ∥ A ∥ → B helper : (f : A → B) (kf : 2-Constant f) → (t u : ∥ A ∥) → rec→Set f kf t ≡ rec→Set f kf u rec→Set f kf ∣ x ∣ = f x rec→Set f kf (squash t u i) = helper f kf t u i helper f kf ∣ x ∣ ∣ y ∣ = kf x y helper f kf (squash t u i) v = Bset' (helper f kf t v) (helper f kf u v) (helper f kf t u) refl i helper f kf t (squash u v i) = Bset' (helper f kf t u) (helper f kf t v) refl (helper f kf u v) i kcomp : (f : ∥ A ∥ → B) → 2-Constant (f ∘ ∣_∣) kcomp f x y = cong f (squash ∣ x ∣ ∣ y ∣) Fset : isSet (A → B) Fset = isSetΠ (const Bset) Kset : (f : A → B) → isSet (2-Constant f) Kset f = isSetΠ (λ _ → isSetΠ (λ _ → isProp→isSet (Bset _ _))) setRecLemma : (f : ∥ A ∥ → B) → rec→Set (f ∘ ∣_∣) (kcomp f) ≡ f setRecLemma f i t = elim {P = λ t → rec→Set (f ∘ ∣_∣) (kcomp f) t ≡ f t} (λ t → Bset _ _) (λ x → refl) t i mkKmap : (∥ A ∥ → B) → Σ (A → B) 2-Constant mkKmap f = f ∘ ∣_∣ , kcomp f fib : (g : Σ (A → B) 2-Constant) → fiber mkKmap g fib (g , kg) = rec→Set g kg , refl eqv : (g : Σ (A → B) 2-Constant) → ∀ fi → fib g ≡ fi eqv g (f , p) = Σ≡Prop (λ f → isOfHLevelΣ 2 Fset Kset _ _) (cong (uncurry rec→Set) (sym p) ∙ setRecLemma f) trunc→Set≃ : (∥ A ∥ → B) ≃ (Σ (A → B) 2-Constant) trunc→Set≃ .fst = mkKmap trunc→Set≃ .snd .equiv-proof g = fib g , eqv g -- The strategy of this equivalence proof follows the paper more closely. -- It is used further down for the groupoid version, because the above -- strategy does not generalize so easily. e : B → Σ (A → B) 2-Constant e b = const b , λ _ _ → refl eval : A → (γ : Σ (A → B) 2-Constant) → B eval a₀ (g , _) = g a₀ e-eval : ∀ (a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , kg) i .fst a₁ = kg a₀ a₁ i e-eval a₀ (g , kg) i .snd a₁ a₂ = Bset' refl (kg a₁ a₂) (kg a₀ a₁) (kg a₀ a₂) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₁ : ∥ A ∥ → B ≃ Σ (A → B) 2-Constant preEquiv₁ t = e , rec (isPropIsEquiv e) e-isEquiv t preEquiv₂ : (∥ A ∥ → Σ (A → B) 2-Constant) ≃ Σ (A → B) 2-Constant preEquiv₂ = isoToEquiv (iso to const (λ _ → refl) retr) where to : (∥ A ∥ → Σ (A → B) 2-Constant) → Σ (A → B) 2-Constant to f .fst x = f ∣ x ∣ .fst x to f .snd x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd x y i retr : retract to const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd x y = Bset' (λ j → f (squash ∣ x ∣ ∣ y ∣ j) .snd x y j) (f t .snd x y) (λ j → f (squash ∣ x ∣ t j) .fst x) (λ j → f (squash ∣ y ∣ t j) .fst y) i trunc→Set≃₂ : (∥ A ∥ → B) ≃ Σ (A → B) 2-Constant trunc→Set≃₂ = compEquiv (equivΠCod preEquiv₁) preEquiv₂ open SetElim public using (rec→Set; trunc→Set≃) elim→Set : {P : ∥ A ∥ → Type ℓ} → (∀ t → isSet (P t)) → (f : (x : A) → P ∣ x ∣) → (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y)) → (t : ∥ A ∥) → P t elim→Set {A = A} {P = P} Pset f kf t = rec→Set (Pset t) g gk t where g : A → P t g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x) gk : 2-Constant g gk x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i) RecHProp : (P : A → hProp ℓ) (kP : ∀ x y → P x ≡ P y) → ∥ A ∥ → hProp ℓ RecHProp P kP = rec→Set isSetHProp P kP module GpdElim (Bgpd : isGroupoid B) where Bgpd' : isGroupoid' B Bgpd' = isGroupoid→isGroupoid' Bgpd module _ (f : A → B) (3kf : 3-Constant f) where open 3-Constant 3kf rec→Gpd : ∥ A ∥ → B pathHelper : (t u : ∥ A ∥) → rec→Gpd t ≡ rec→Gpd u triHelper₁ : (t u v : ∥ A ∥) → Square (pathHelper t u) (pathHelper t v) refl (pathHelper u v) triHelper₂ : (t u v : ∥ A ∥) → Square (pathHelper t v) (pathHelper u v) (pathHelper t u) refl rec→Gpd ∣ x ∣ = f x rec→Gpd (squash t u i) = pathHelper t u i pathHelper ∣ x ∣ ∣ y ∣ = link x y pathHelper (squash t u j) v = triHelper₂ t u v j pathHelper ∣ x ∣ (squash u v j) = triHelper₁ ∣ x ∣ u v j triHelper₁ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₁ x y z triHelper₁ (squash s t i) u v = Bgpd' (triHelper₁ s u v) (triHelper₁ t u v) (triHelper₂ s t u) (triHelper₂ s t v) (λ i → refl) (λ i → pathHelper u v) i triHelper₁ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₁ ∣ x ∣ t v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ x ∣ t u) (λ i → pathHelper ∣ x ∣ v) (λ i → refl) (triHelper₂ t u v) i triHelper₁ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₁ ∣ x ∣ ∣ y ∣ u) (triHelper₁ ∣ x ∣ ∣ y ∣ v) (λ i → link x y) (triHelper₁ ∣ x ∣ u v) (λ i → refl) (triHelper₁ ∣ y ∣ u v) i triHelper₂ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₂ x y z triHelper₂ (squash s t i) u v = Bgpd' (triHelper₂ s u v) (triHelper₂ t u v) (triHelper₂ s t v) (λ i → pathHelper u v) (triHelper₂ s t u) (λ i → refl) i triHelper₂ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₂ ∣ x ∣ t v) (triHelper₂ ∣ x ∣ u v) (λ i → pathHelper ∣ x ∣ v) (triHelper₂ t u v) (triHelper₁ ∣ x ∣ t u) (λ i → refl) i triHelper₂ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₂ ∣ x ∣ ∣ y ∣ u) (triHelper₂ ∣ x ∣ ∣ y ∣ v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ y ∣ u v) (λ i → link x y) (λ i → refl) i preEquiv₁ : (∥ A ∥ → Σ (A → B) 3-Constant) ≃ Σ (A → B) 3-Constant preEquiv₁ = isoToEquiv (iso fn const (λ _ → refl) retr) where open 3-Constant fn : (∥ A ∥ → Σ (A → B) 3-Constant) → Σ (A → B) 3-Constant fn f .fst x = f ∣ x ∣ .fst x fn f .snd .link x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd .link x y i fn f .snd .coh₁ x y z i j = f (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) .snd .coh₁ x y z i j retr : retract fn const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd .link x y j = f (squash (squash ∣ x ∣ ∣ y ∣ j) t i) .snd .link x y j retr f i t .snd .coh₁ x y z = Bgpd' (λ k j → f (cb k j i0) .snd .coh₁ x y z k j ) (λ k j → f (cb k j i1) .snd .coh₁ x y z k j) (λ k j → f (cb i0 j k) .snd .link x y j) (λ k j → f (cb i1 j k) .snd .link x z j) (λ _ → refl) (λ k j → f (cb j i1 k) .snd .link y z j) i where cb : I → I → I → ∥ _ ∥ cb i j k = squash (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) t k e : B → Σ (A → B) 3-Constant e b .fst _ = b e b .snd = record { link = λ _ _ _ → b ; coh₁ = λ _ _ _ _ _ → b } eval : A → Σ (A → B) 3-Constant → B eval a₀ (g , _) = g a₀ module _ where open 3-Constant e-eval : ∀(a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , 3kg) i .fst x = 3kg .link a₀ x i e-eval a₀ (g , 3kg) i .snd .link x y = λ j → 3kg .coh₁ a₀ x y j i e-eval a₀ (g , 3kg) i .snd .coh₁ x y z = Bgpd' (λ _ _ → g a₀) (3kg .coh₁ x y z) (λ k j → 3kg .coh₁ a₀ x y j k) (λ k j → 3kg .coh₁ a₀ x z j k) (λ _ → refl) (λ k j → 3kg .coh₁ a₀ y z j k) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₂ : ∥ A ∥ → B ≃ Σ (A → B) 3-Constant preEquiv₂ t = e , rec (isPropIsEquiv e) e-isEquiv t trunc→Gpd≃ : (∥ A ∥ → B) ≃ Σ (A → B) 3-Constant trunc→Gpd≃ = compEquiv (equivΠCod preEquiv₂) preEquiv₁ open GpdElim using (rec→Gpd; trunc→Gpd≃) public RecHSet : (P : A → TypeOfHLevel ℓ 2) → 3-Constant P → ∥ A ∥ → TypeOfHLevel ℓ 2 RecHSet P 3kP = rec→Gpd (isOfHLevelTypeOfHLevel 2) P 3kP
31.948424
89
0.503229
52b33ebf1469336fa71f9d562cac132658ad6985
1,979
agda
Agda
Numeral/Natural/Combinatorics.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Combinatorics.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Combinatorics.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Combinatorics where open import Numeral.Natural open import Numeral.Natural.Oper -- Counting combinations. -- `𝑐𝐶 n k` is the number of ways one can pick `k` number of distinct objects from a set of `n` number of distinct objects. -- Equivalently, it is the number of `k`-sized subsets of an `n`-sized set. -- Also called: Binomial coefficients -- Formulated using sets: -- 𝐶: Set → ℕ → Set -- 𝐶 S k = {(K∊℘(S)). #K = k} -- 𝑐𝐶(n) = #𝐶(𝕟(n)) 𝑐𝐶 : ℕ → ℕ → ℕ 𝑐𝐶 _ 𝟎 = 𝐒 𝟎 𝑐𝐶 𝟎 (𝐒 k) = 𝟎 𝑐𝐶 (𝐒 n) (𝐒 k) = 𝑐𝐶 n k + 𝑐𝐶 n (𝐒 k) -- Counting partial permutations. -- `𝑐𝑃 n k` is the number of arrangements for a list of `n` number of distinct objects into `k` number of objects. -- Equivalently, it is the number of injective functions (function equality by the standard function extensionality) of type `𝕟(k) → 𝕟(n)`. -- Also called: Falling factorial -- Formulated using sets: -- 𝑃: Set → ℕ → Set -- 𝑃 S k = {(π: 𝕟(k) → S). Injective(π)} -- 𝑐𝑃(n) = #𝑃(𝕟(n)) 𝑐𝑃 : ℕ → ℕ → ℕ 𝑐𝑃 _ 𝟎 = 𝐒 𝟎 𝑐𝑃 𝟎 (𝐒 k) = 𝟎 𝑐𝑃 (𝐒 n) (𝐒 k) = 𝑐𝑃 n k ⋅ (𝐒 n) -- Counting derangements. -- `𝑐𝐷(n)` is the number of permutations of a list of `n` number of distinct objects such that in every permutation, no object is permuted with itself. -- Formulated using sets: -- 𝐷: Set → Set -- 𝐷(S) = {(π∊𝑃(S)). ∀(s∊S). π(s) ≠ s} -- 𝑐𝐷(n) = #𝐷(𝕟(n)) 𝑐𝐷 : ℕ → ℕ 𝑐𝐷(𝟎) = 𝐒 𝟎 𝑐𝐷(𝐒 𝟎) = 𝟎 𝑐𝐷(𝐒(𝐒 n)) = 𝐒(n) ⋅ (𝑐𝐷 (𝐒 n) + 𝑐𝐷 n) -- Stirling numbers of the first kind. stir₁ : ℕ → ℕ → ℕ stir₁ 𝟎 𝟎 = 𝐒(𝟎) stir₁ (𝐒(n)) 𝟎 = 𝟎 stir₁ 𝟎 (𝐒(k)) = 𝟎 stir₁ (𝐒(n)) (𝐒(k)) = (n ⋅ stir₁ n (𝐒(k))) + stir₁ n k -- Stirling numbers of the second kind. stir₂ : ℕ → ℕ → ℕ stir₂ 𝟎 𝟎 = 𝐒(𝟎) stir₂ (𝐒(n)) 𝟎 = 𝟎 stir₂ 𝟎 (𝐒(k)) = 𝟎 stir₂ (𝐒(n)) (𝐒(k)) = (𝐒(k) ⋅ stir₂ n (𝐒(k))) + stir₂ n k -- Counting injective functions. 𝑐𝐼𝑛𝑗 : ℕ → ℕ → ℕ 𝑐𝐼𝑛𝑗 = 𝑐𝑃 -- Counting surjective functions. 𝑐𝑆𝑢𝑟𝑗 : ℕ → ℕ → ℕ 𝑐𝑆𝑢𝑟𝑗 a b = stir₂ a b ⋅ (b !)
30.921875
151
0.580596
21c48cabcf3e4af0a7d67d73be8ab35bfdb22b46
171
agda
Agda
test/Fail/Issue2167.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2167.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2167.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-09-08, issue #2167 reported by effectfully loop : Set₁ loop = .Set -- WAS: looping of type checker -- NOW: proper error about invalid dotted expression
21.375
59
0.730994
43e2cce1959f58466f875120ba1400038d6c6627
41,878
agda
Agda
archive/agda-1/Scratch.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/Scratch.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/Scratch.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Scratch (FunctionName : Set) where open import Oscar.Data.Fin using (Fin; zero; suc; thick?) open import Data.Nat using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; cong; sym; trans) open import Function using (_∘_; flip) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (∃; _,_; _×_) open import Data.Empty using (⊥-elim) open import Data.Vec using (Vec; []; _∷_) data Term (n : ℕ) : Set where i : (x : Fin n) -> Term n leaf : Term n _fork_ : (s t : Term n) -> Term n function : FunctionName → ∀ {f} → Vec (Term n) f → Term n Term-function-inj-FunctionName : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → fn₁ ≡ fn₂ Term-function-inj-FunctionName refl = refl Term-function-inj-VecSize : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → N₁ ≡ N₂ Term-function-inj-VecSize refl = refl Term-function-inj-Vector : ∀ {fn₁ fn₂} {n N} {ts₁ : Vec (Term n) N} {ts₂ : Vec (Term n) N} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≡ ts₂ Term-function-inj-Vector refl = refl Term-fork-inj-left : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → l₁ ≡ l₂ Term-fork-inj-left refl = refl Term-fork-inj-right : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → r₁ ≡ r₂ Term-fork-inj-right refl = refl open import Relation.Binary.HeterogeneousEquality using (_≅_; refl) Term-function-inj-HetVector : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≅ ts₂ Term-function-inj-HetVector refl = refl _~>_ : (m n : ℕ) -> Set m ~> n = Fin m -> Term n ▹ : ∀ {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n ▹ r = i ∘ r record Substitution (T : ℕ → Set) : Set where field _◃_ : ∀ {m n} -> (f : m ~> n) -> T m -> T n open Substitution ⦃ … ⦄ public {-# DISPLAY Substitution._◃_ _ = _◃_ #-} mutual instance SubstitutionTerm : Substitution Term Substitution._◃_ SubstitutionTerm = _◃′_ where _◃′_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n f ◃′ i x = f x f ◃′ leaf = leaf f ◃′ (s fork t) = (f ◃ s) fork (f ◃ t) f ◃′ (function fn ts) = function fn (f ◃ ts) instance SubstitutionVecTerm : ∀ {N} → Substitution (flip Vec N ∘ Term ) Substitution._◃_ (SubstitutionVecTerm {N}) = _◃′_ where _◃′_ : ∀ {m n} -> (f : m ~> n) -> Vec (Term m) N -> Vec (Term n) N f ◃′ [] = [] f ◃′ (t ∷ ts) = f ◃ t ∷ f ◃ ts _≐_ : {m n : ℕ} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set f ≐ g = ∀ x -> f x ≡ g x record SubstitutionExtensionality (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set₁ where field ◃ext : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> (t : T m) -> f ◃ t ≡ g ◃ t open SubstitutionExtensionality ⦃ … ⦄ public mutual instance SubstitutionExtensionalityTerm : SubstitutionExtensionality Term SubstitutionExtensionality.◃ext SubstitutionExtensionalityTerm = ◃ext′ where ◃ext′ : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ t -> f ◃ t ≡ g ◃ t ◃ext′ p (i x) = p x ◃ext′ p leaf = refl ◃ext′ p (s fork t) = cong₂ _fork_ (◃ext p s) (◃ext p t) ◃ext′ p (function fn ts) = cong (function fn) (◃ext p ts) instance SubstitutionExtensionalityVecTerm : ∀ {N} → SubstitutionExtensionality (flip Vec N ∘ Term) SubstitutionExtensionality.◃ext (SubstitutionExtensionalityVecTerm {N}) = λ x → ◃ext′ x where ◃ext′ : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ {N} (t : Vec (Term m) N) -> f ◃ t ≡ g ◃ t ◃ext′ p [] = refl ◃ext′ p (t ∷ ts) = cong₂ _∷_ (◃ext p t) (◃ext p ts) _◇_ : ∀ {l m n : ℕ } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n f ◇ g = (f ◃_) ∘ g ≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f ≐ g -> (h ◇ f) ≐ (h ◇ g) ≐-cong h f≐g t = cong (h ◃_) (f≐g t) ≐-sym : ∀ {m n} {f : m ~> n} {g} -> f ≐ g -> g ≐ f ≐-sym f≐g = sym ∘ f≐g module Sub where record Fact1 (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set where field fact1 : ∀ {n} -> (t : T n) -> i ◃ t ≡ t open Fact1 ⦃ … ⦄ public mutual instance Fact1Term : Fact1 Term Fact1.fact1 Fact1Term (i x) = refl Fact1.fact1 Fact1Term leaf = refl Fact1.fact1 Fact1Term (s fork t) = cong₂ _fork_ (fact1 s) (fact1 t) Fact1.fact1 Fact1Term (function fn ts) = cong (function fn) (fact1 ts) instance Fact1TermVec : ∀ {N} → Fact1 (flip Vec N ∘ Term) Fact1.fact1 Fact1TermVec [] = refl Fact1.fact1 Fact1TermVec (t ∷ ts) = cong₂ _∷_ (fact1 t) (fact1 ts) record Fact2 (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set where field -- ⦃ s ⦄ : Substitution T fact2 : ∀ {l m n} -> {f : Fin m -> Term n} {g : _} (t : T l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) open Fact2 ⦃ … ⦄ public mutual instance Fact2Term : Fact2 Term -- Fact2.s Fact2Term = SubstitutionTerm Fact2.fact2 Fact2Term (i x) = refl Fact2.fact2 Fact2Term leaf = refl Fact2.fact2 Fact2Term (s fork t) = cong₂ _fork_ (fact2 s) (fact2 t) Fact2.fact2 Fact2Term {f = f} {g = g} (function fn ts) = cong (function fn) (fact2 {f = f} {g = g} ts) -- fact2 ts instance Fact2TermVec : ∀ {N} → Fact2 (flip Vec N ∘ Term) -- Fact2.s Fact2TermVec = SubstitutionVecTerm Fact2.fact2 Fact2TermVec [] = refl Fact2.fact2 Fact2TermVec (t ∷ ts) = cong₂ _∷_ (fact2 t) (fact2 ts) fact3 : ∀ {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f ◇ (▹ r)) ≡ (f ∘ r) fact3 f r = refl ◃ext' : ∀ {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f ≐ (h ◇ g) -> ∀ (t : Term _) -> f ◃ t ≡ h ◃ (g ◃ t) ◃ext' p t = trans (◃ext p t) (Sub.fact2 t) open import Data.Maybe using (Maybe; nothing; just; functor; maybe′) open import Category.Monad import Level open RawMonad (Data.Maybe.monad {Level.zero}) record Check (T : ℕ → Set) : Set where field check : ∀{n} (x : Fin (suc n)) (t : T (suc n)) -> Maybe (T n) open Check ⦃ … ⦄ public _<*>_ = _⊛_ mutual instance CheckTerm : Check Term Check.check CheckTerm x (i y) = i <$> thick? x y Check.check CheckTerm x leaf = just leaf Check.check CheckTerm x (s fork t) = _fork_ <$> check x s ⊛ check x t Check.check CheckTerm x (function fn ts) = ⦇ (function fn) (check x ts) ⦈ instance CheckTermVec : ∀ {N} → Check (flip Vec N ∘ Term) Check.check CheckTermVec x [] = just [] Check.check CheckTermVec x (t ∷ ts) = ⦇ check x t ∷ check x ts ⦈ _for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n (t' for x) y = maybe′ i t' (thick? x y) data AList : ℕ -> ℕ -> Set where anil : ∀ {n} -> AList n n _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m)) -> AList (suc m) n sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n sub anil = i sub (σ asnoc t' / x) = sub σ ◇ (t' for x) _++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n ρ ++ anil = ρ ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ ++-assoc ρ σ anil = refl ++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ) module SubList where anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ anil-id-l anil = refl anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ) fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ) fact1 ρ anil v = refl fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc where t = (t' for x) v hyp-on-terms = ◃ext (fact1 r s) t ◃-assoc = Sub.fact2 t _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m)) -> ∃ (AList (suc m)) (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m) flexFlex {suc m} x y with thick? x y ... | just y' = m , anil asnoc i y' / x ... | nothing = suc m , anil flexFlex {zero} () _ flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m)) flexRigid {suc m} x t with check x t ... | just t' = just (m , anil asnoc t' / x) ... | nothing = nothing flexRigid {zero} () _ -- module Scratch where -- open import Prelude -- open import Agda.Builtin.Size -- open import Tactic.Nat -- postulate -- Domain : Set -- record Interpretation : Set where -- field -- V : Nat → Domain -- F : (arity name : Nat) → Vec Domain arity → Domain -- P : (arity name : Nat) → Vec Domain arity → Bool -- data Term {i : Size} : Set where -- variable : Nat → Term -- function : (arity name : Nat) → {j : Size< i} → Vec (Term {j}) arity → Term {i} -- interpretTerm : Interpretation → {i : Size} → Term {i} → Domain -- interpretTerm I (variable v) = Interpretation.V I v -- interpretTerm I (function arity name {j} domA) = Interpretation.F I arity name (interpretTerm I <$> domA) -- data Formula : Set where -- atomic : (arity name : Nat) → Vec Term arity → Formula -- logical : Formula → -- Formula → -- Formula -- quantified : Nat → Formula → Formula -- infix 40 _⊗_ -- _⊗_ : Formula → Formula → Formula -- _⊗_ a b = logical a b -- ~ : Formula → Formula -- ~ a = logical a a -- infix 50 _⊃_ -- _⊃_ : Formula → Formula → Formula -- _⊃_ p q = ~ (~ p ⊗ q) -- data Literal : Formula → Set where -- Latomic : (arity name : Nat) → (terms : Vec Term arity) → Literal (atomic arity name terms) -- logical : (arity name : Nat) → (terms : Vec Term arity) → Literal (logical (atomic arity name terms) (atomic arity name terms)) -- record Sequent : Set where -- constructor _⊢_ -- field -- premises : List Formula -- conclusion : Formula -- data _∈_ {A : Set} (a : A) : List A → Set where -- here : (as : List A) → a ∈ (a ∷ as) -- there : (x : A) (as : List A) → a ∈ (x ∷ as) -- record SimpleNDProblem (s : Sequent) : Set where -- field -- simpleConclusion : Literal (Sequent.conclusion s) -- simplePremises : ∀ p → p ∈ Sequent.premises s → Literal p -- record _≞_/_ (I : Interpretation) (I₀ : Interpretation) (v₀ : Nat) : Set where -- field -- lawV : (v : Nat) → (v ≡ v₀ → ⊥) → Interpretation.V I v ≡ Interpretation.V I₀ v -- lawF : (arity name : Nat) → (domA : Vec Domain arity) → Interpretation.F I arity name domA ≡ Interpretation.F I₀ arity name domA -- lawP : (arity name : Nat) → (domA : Vec Domain arity) → Interpretation.P I arity name domA ≡ Interpretation.P I₀ arity name domA -- record Satisfaction (A : Set) : Set₁ where -- field -- _⊨_ : Interpretation → A → Set -- postulate _⊨?_ : (I : Interpretation) → (φ : A) → Dec (I ⊨ φ) -- _⊭_ : Interpretation → A → Set -- I ⊭ x = I ⊨ x → ⊥ -- open Satisfaction ⦃ … ⦄ -- instance -- SatisfactionFormula : Satisfaction Formula -- Satisfaction._⊨_ SatisfactionFormula = _⊨ᴹ_ where -- _⊨ᴹ_ : Interpretation → Formula → Set -- _⊨ᴹ_ I₀ (quantified v₀ φ) = (I : Interpretation) → I ≞ I₀ / v₀ → I ⊨ᴹ φ -- _⊨ᴹ_ I₀ (atomic arity name domA) = Interpretation.P I₀ arity name (interpretTerm I₀ <$> domA) ≡ true -- _⊨ᴹ_ I₀ (logical φ₁ φ₂) = (I₀ ⊨ᴹ φ₁ → ⊥) × (I₀ ⊨ᴹ φ₂ → ⊥) -- {-# DISPLAY _⊨ᴹ_ I f = I ⊨ f #-} -- record Validity (A : Set) : Set₁ where -- field -- ⊨_ : A → Set -- ⊭_ : A → Set -- ⊭ x = ⊨ x → ⊥ -- open Validity ⦃ … ⦄ -- instance -- ValidityFormula : Validity Formula -- Validity.⊨_ ValidityFormula φ = (I : Interpretation) → I ⊨ φ -- instance -- SatisfactionSequent : Satisfaction Sequent -- Satisfaction._⊨_ SatisfactionSequent I (premises ⊢ conclusion) = (_ : (premise : Formula) → premise ∈ premises → I ⊨ premise) → I ⊨ conclusion -- ValiditySequent : Validity Sequent -- Validity.⊨_ ValiditySequent sequent = (I : Interpretation) → I ⊨ sequent -- negationElimination : (I : Interpretation) (φ : Formula) → I ⊨ (φ ⊗ φ) ⊗ (φ ⊗ φ) → I ⊨ φ -- negationElimination I φ (x , y) with I ⊨? φ -- negationElimination I φ (x₁ , y) | yes x = x -- negationElimination I φ (x₁ , y) | no x = ⊥-elim (x₁ (x , x)) -- -- logical (logical (logical p p) q) (logical (logical p p) q) -- conditionalization : (I : Interpretation) (p q : Formula) → I ⊨ q → I ⊨ ((p ∷ []) ⊢ p ⊃ q) -- conditionalization I p q ⊨q -⊨p = let ⊨p = -⊨p p (here []) in (λ { (x , ~q) → ~q ⊨q}) , (λ { (x , y) → y ⊨q}) -- modusPonens : (I : Interpretation) (p q : Formula) → I ⊨ p → I ⊨ ((p ⊗ p) ⊗ q) ⊗ ((p ⊗ p) ⊗ q) → I ⊨ q -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) with I ⊨? q -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | yes x = x -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | no x = ⊥-elim (~[~p&~p&~q] ((λ { (x₁ , y) → y P}) , (λ x₁ → x x₁))) -- theorem1a : (s : Sequent) → SimpleNDProblem s → ⊨ s → Either (Sequent.conclusion s ∈ Sequent.premises s) (Σ _ λ q → q ∈ Sequent.premises s × ~ q ∈ Sequent.premises s) -- theorem1a ([] ⊢ atomic arity name x) record { simpleConclusion = (Latomic .arity .name .x) ; simplePremises = simplePremises } x₂ = {!!} -- theorem1a ((x₁ ∷ premises) ⊢ atomic arity name x) record { simpleConclusion = (Latomic .arity .name .x) ; simplePremises = simplePremises } x₂ = {!!} -- theorem1a (premises ⊢ logical .(atomic arity name terms) .(atomic arity name terms)) record { simpleConclusion = (logical arity name terms) ; simplePremises = simplePremises } x₁ = {!!} -- theorem1a (premises ⊢ quantified x conclusion) record { simpleConclusion = () ; simplePremises = simplePremises } x₂ -- theorem1b : (s : Sequent) → SimpleNDProblem s → Either (Sequent.conclusion s ∈ Sequent.premises s) (Σ _ λ q → q ∈ Sequent.premises s × ~ q ∈ Sequent.premises s) → ⊨ s -- theorem1b s x (left x₁) I x₂ = x₂ (Sequent.conclusion s) x₁ -- theorem1b s x (right (x₁ , x₂ , y)) I x₃ = let ~q = x₃ (~ x₁) y in let q = x₃ x₁ x₂ in ⊥-elim (fst ~q q) -- {- -- p ≡ q -- p -> q & q -> p -- (~p v q) & (~q v p) -- ~(p & ~q) & ~(q & ~p) -- ~(~~p & ~q) & ~(~~q & ~p) -- bicondit elim is just simplification -- modus ponens -- p , (p ⊗ (q ⊗ q)) ⊗ (p ⊗ (q ⊗ q)) --> q -- ~(~p & q) -- p or ~q -- p -> q -- ~p v q -- ~(p & ~q) -- ~(p & ~q) & ~(p & ~q) -- ~(~~p & ~q) & ~(~~p & ~q) -- (~~p & ~q) ⊗ (~~p & ~q) -- (~p ⊗ q) ⊗ (~p ⊗ q) -- ((p ⊗ p) ⊗ q) ⊗ ((p ⊗ p) ⊗ q) -- -} -- {- -- conditionalization p -> q from q, with discharge p -- (p ∷ [] ⊢ q) ⊨ (∅ ⊢ q) -- -} -- --data ReasonerState : List Sequent → List Sequent → Set -- {- -- p <-> q -- p -> q and q -> p -- ~p v q and ~q or p -- ~(p and ~q) and ~(q and ~p) -- (p and ~q) ⊗ (q and ~p) -- ((p ⊗ p) ⊗ q) ⊗ ((q ⊗ q) ⊗ p) -- p -> q -- ~p v q -- ~(p and ~q) -- ~(p and ~q) and ~(p and ~q) -- ((p ⊗ p) ⊗ q) ⊗ ((p ⊗ p) ⊗ q) -- but this is just simplification -- p , p -> q ⊢ q -- p , ((p ⊗ p) ⊗ q) ⊗ ((p ⊗ p) ⊗ q) ⊢ q -- p , q <-- p & q -- p <-- ~~p -- p <-- (p ⊗ p) ⊗ (p ⊗ p) -- -} -- -- PorNotP : (I : Interpretation) (P : Formula) → I ⊨ (logical (logical P (logical P P)) (logical P (logical P P))) -- -- PorNotP I P = (λ { (x , y) → y (x , x)}) , (λ { (x , y) → y (x , x)}) -- -- IFTHEN : Formula → Formula → Formula -- -- IFTHEN P Q = logical (logical (logical P P) Q) (logical (logical P P) Q) -- -- EXISTS : Nat → Formula → Formula -- -- EXISTS n φ = (logical (quantified n (logical φ φ)) (quantified n (logical φ φ))) -- -- F : Nat → Formula -- -- F n = atomic 1 0 (variable n ∷ []) -- -- Fa : Formula -- -- Fa = F 0 -- -- ∃xFx : Formula -- -- ∃xFx = EXISTS 1 (F 1) -- -- IfFaThenExistsFa : (I : Interpretation) → I ⊨ (IFTHEN Fa ∃xFx) -- -- IfFaThenExistsFa I = (λ { (I⊭~Fa , I⊭∃xFx) → I⊭~Fa ((λ x → I⊭∃xFx ((λ x₁ → fst (x₁ {!!} {!!}) {!!}) , (λ x₁ → {!!}))) , {!!})}) , (λ { (x , y) → {!!}}) -- -- NotPAndNotNotP : (I : Interpretation) (P : Formula) → I ⊨ (logical P (logical P P)) -- -- NotPAndNotNotP = {!!} -- -- -- Valid : Formula → Set₁ -- -- -- Valid φ = (I : Interpretation) → I Satisfies φ -- -- -- -- data SkolemFormula {ι : Size} (α : Alphabet) : Set where -- -- -- -- atomic : Predication α → SkolemFormula α -- -- -- -- logical : {ι¹ : Size< ι} → SkolemFormula {ι¹} α → {ι² : Size< ι} → SkolemFormula {ι²} α → SkolemFormula {ι} α -- -- -- -- record Alphabet₊ᵥ (α : Alphabet) : Set where -- -- -- -- constructor α₊ᵥ⟨_⟩ -- -- -- -- field -- -- -- -- alphabet : Alphabet -- -- -- -- .one-variable-is-added : (number ∘ variables $ alphabet) ≡ suc (number ∘ variables $ α) -- -- -- -- .there-are-no-functions-of-maximal-arity : number (functions alphabet) zero ≡ zero -- -- -- -- .shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → number (functions alphabet) (suc ytira₁) ≡ number (functions α) ytira₀ -- -- -- -- open Alphabet₊ᵥ -- -- -- -- record Alphabet₊ₛ (α : Alphabet) : Set where -- -- -- -- constructor α₊ₛ⟨_⟩ -- -- -- -- field -- -- -- -- alphabet : Alphabet -- -- -- -- open Alphabet₊ₛ -- -- -- -- {- -- -- -- -- toSkolemFormula -- -- -- -- ∀x(F x v₀ v₁) ⟿ F v₀ v₁ v₂ -- -- -- -- ∃x(F x v₀ v₁) ⟿ F (s₀͍₂ v₀ v₁) v₀ v₁ -- -- -- -- ∀x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F v₀ (s₀͍₂ v₁ v₂) v₂ -- -- -- -- ∃x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F (s₀͍₂ v₀ v₁) (s₁͍₂ v₁ v₂) v₂ -- -- -- -- F v₀ ⊗ G v₀ ⟿ F v₀ ⊗ G v₀ -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∀x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₂ v₃ ⊗ G v₁ (s₀͍₂ v₀ v₃) v₃ -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∃x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₁ v₂ ⊗ G (s₀͍₁ v₂) (s₁͍₂ (s₀͍₂ v₂) v₂) v₂ -- -- -- -- Φ₀ = ∃x(G x (s₀͍₂ x v₁) v₁) has alphabet of 2 variables, skolem functions: 0, 0, 1 -- -- -- -- this is existential {α₊ₛ} Φ₁, where -- -- -- -- Φ₁ = G (s₀͍₂ v₀ v₁) (s₁͍₂ (s₀͍₂ v₀ v₁)) v₁ -- -- -- -- α₊ₛ = ⟨ 2 , 0 ∷ 0 ∷ 2 ∷ [] ⟩ -- -- -- -- maybe Φ₋₁ = ∀y∃x(G x (s₀͍₂ x v₀) v₀) -- -- -- -- and Φ₋₂ = ∀z∀y∃x(G x (s₀͍₂ x z) z), finally having no free variables, but nevertheless having skolem functions! these are user-defined functions, so this notion of Alphabet is somehow wrong. we have also left out constants (i.e. user-defined skolem-functions of arity 0) -- -- -- -- Instead, take the alphabet as defining -- -- -- -- a stack of free variables -- -- -- -- a matrix (triangle?) of skolem functions -- -- -- -- Let's try to reverse Φ₁ from a Skolem to a 1st-order formula. Is there a unique way to do it? -- -- -- -- Φ₀' = ∀x(G (s₀͍₂ x v₀) (s₁͍₂ (s₀͍₂ x v₀)) v₀ -- -- -- -- Nope! -- -- -- -- toSkolemFormula of -- -- -- -- -} -- -- -- -- -- toSkolemFormula (logical Φ₁ Φ₂) ⟿ -- -- -- -- -- let α' , φ₁ = toSkolemFormula Φ₁ -- -- -- -- -- Φ₂' = transcodeToAugmentedAlphabet Φ₂ α' -- -- -- -- -- α'' , φ₂' = toSkolemFormula Φ₂' -- -- -- -- -- φ₁' = transcodeToAugmentedAlphabet φ₁ α'' -- -- -- -- {- -- -- -- -- given Δv = #varibles α' - #variables α -- -- -- -- for every variable v in α, v in Φ, v stays the same in Φ' -- -- -- -- for the added variable v⁺ in α₊ - α, v⁺ in Φ, v⁺ ⟿ v⁺ + Δv in transcode (universal {α₊} Φ) -- -- -- -- α'₊ = α' + 1 variable -- -- -- -- -} -- -- -- -- -- record AddVariable (A : Alphabet → Set) : Set where -- -- -- -- -- field -- -- -- -- -- addVariableToAlphabet : {α : Alphabet} → A α → {α₊ : Alphabet} → Alphabet₊ᵥ α₊ → A α₊ -- -- -- -- -- instance -- -- -- -- -- AddVariableFirstOrderFormula : AddVariable FirstOrderFormula -- -- -- -- -- AddVariableFirstOrderFormula = {!!} -- -- -- -- -- #variables = number ∘ variables -- -- -- -- -- #functions_ofArity_ : Alphabet → Nat → Nat -- -- -- -- -- #functions α⟨ V⟨ #variables ⟩ , S⟨ #functions ⟩ ⟩ ofArity arity = if′ lessNat arity (suc #variables) then #functions (natToFin arity) else 0 -- -- -- -- -- record _⊇_ (α' α : Alphabet) : Set where -- -- -- -- -- field -- -- -- -- -- at-least-as-many-variables : #variables α' ≥ #variables α -- -- -- -- -- at-least-as-many-functions : ∀ {arity} → arity < #variables α → #functions α' ofArity arity ≥ #functions α ofArity arity -- -- -- -- -- record AddAlphabet (α-top α-bottom : Alphabet) : Set where -- -- -- -- -- field -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- record Transcodeable (A : Alphabet → Set) : Set where -- -- -- -- -- field -- -- -- -- -- transcode : {α' α : Alphabet} → ⦃ _ : α' ⊇ α ⦄ → A α → A α' -- -- -- -- -- open Transcodeable ⦃ … ⦄ -- -- -- -- -- record TransferAlphabet {α' α : Alphabet} (α'⊇α : α' ⊇ α) (α₊ : Alphabet₊ᵥ α) (Φ : FirstOrderFormula (alphabet α₊)) : Set where -- -- -- -- -- field -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- firstOrderFormula : FirstOrderFormula alphabet -- -- -- -- -- instance -- -- -- -- -- TranscodeablePredication : Transcodeable Predication -- -- -- -- -- TranscodeablePredication = {!!} -- -- -- -- -- TranscodeableAlphabet+Variable : Transcodeable Alphabet₊ᵥ -- -- -- -- -- TranscodeableAlphabet+Variable = {!!} -- -- -- -- -- TranscodeableSkolemFormula : Transcodeable SkolemFormula -- -- -- -- -- TranscodeableSkolemFormula = {!!} -- -- -- -- -- TranscodeableFirstOrderFormula : Transcodeable FirstOrderFormula -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (atomic p) = atomic (transcode p) -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (logical Φ₁ Φ₂) = logical (transcode Φ₁) (transcode Φ₂) -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula {α'} {α} ⦃ α'⊇α ⦄ (universal {α₊} Φ) = {!!} -- universal {_} {_} {transcode α₊} (transcode Φ) -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (existential Φ) = {!!} -- -- -- -- -- --(α' α : Alphabet) (α'⊇α : α' ⊇ α) (α₊ : Alphabet+Variable α) (Φ : FirstOrderFormula (alphabet α₊)) → Σ _ λ (α''' : Alphabet) → FirstOrderFormula α''' -- -- -- -- -- --FirstOrderFormula (alphabet α₊) -- -- -- -- -- {- -- -- -- -- -- -} -- -- -- -- -- -- --transcodeIntoAugmentedAlphabet : -- -- -- -- -- -- --toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹) -- -- -- -- -- -- --record IsEquivalentFormulas {α₀ : Alphabet} (φ₀ : SkolemFormula α₀) {α₁ : Alphabet} (Φ₁ : FirstOrderFormula α₁) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- .atomicCase : {p : Predication α₀} → φ₀ ≡ atomic p → Φ₁ ≡ atomic p -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet+Alphabet (α₀ α₁ α₂ : Alphabet) : Set where -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- alphabet : -- -- -- -- -- -- -- -- ∀xφ₁(x) ⊗ φ₂ ⟿ ∀x(φ₁ ⊗ φ₂) -- -- -- -- -- -- -- -- hasQuantifiers : FirstOrderFormula α → Bool -- -- -- -- -- -- -- --record Skolemization {α : Alphabet} (φ : FirstOrderFormula α) : Set where -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- -- skolemization : SkolemFormula alphabet -- -- -- -- -- -- -- record _IsAugmentationOf_ (α₁ α₀ : Alphabet) : Set where -- -- -- -- -- -- -- record AugmentedAlphabet (α : Alphabet) : Set where -- -- -- -- -- -- -- constructor ⟨_⟩ -- -- -- -- -- -- -- field -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- ..laws : alphabet ≡ α -- -- -- -- -- -- -- open AugmentedAlphabet -- -- -- -- -- -- -- trivialAugmentation : (α : Alphabet) → AugmentedAlphabet α -- -- -- -- -- -- -- trivialAugmentation = {!!} -- -- -- -- -- -- -- record DisjointRelativeUnion {α : Alphabet} (α¹ α² : AugmentedAlphabet α) : Set where -- -- -- -- -- -- -- constructor ⟨_⟩ -- -- -- -- -- -- -- field -- -- -- -- -- -- -- augmentation : AugmentedAlphabet α -- -- -- -- -- -- -- .laws : {!!} -- -- -- -- -- -- -- open DisjointRelativeUnion -- -- -- -- -- -- -- disjointRelativeUnion : {α : Alphabet} → (α¹ α² : AugmentedAlphabet α) → DisjointRelativeUnion α¹ α² -- -- -- -- -- -- -- disjointRelativeUnion = {!!} -- -- -- -- -- -- -- -- inAugmentedAlphabet : {α : Alphabet} → (α¹ : AugmentedAlphabet α) → SkolemFormula α → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- inAugmentedAlphabet = {!!} -- -- -- -- -- -- -- -- toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (atomic 𝑃) = trivialAugmentation α₀ , atomic 𝑃 -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) with toSkolemFormula φ₁ | toSkolemFormula φ₂ -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) | α¹ , Φ₁ | α² , Φ₂ = augmentation (disjointRelativeUnion α¹ α²) , logical {!inAugmentedAlphabet (augmentation (disjointRelativeUnion α¹ α²)) Φ₁!} {!Φ₂!} -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (universal x) = {!!} -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (existential x) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- ... | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- --VariableName = Fin ∘ |v| -- -- -- -- -- -- -- -- -- -- -- --FunctionArity = Fin ∘ suc ∘ size -- -- -- -- -- -- -- -- -- -- -- --FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira) -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- |v| : Nat -- number of variables -- -- -- -- -- -- -- -- -- -- -- -- |f| : Fin (suc |v|) → Nat -- number of functions of each arity, |v| through 0 -- -- -- -- -- -- -- -- -- -- -- -- open Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- VariableName = Fin ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionArity = Fin ∘ suc ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira) -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- variable : VariableName alphabet → Term alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {arity : FunctionArity alphabet} → -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName alphabet (natToFin (|v| alphabet) - arity) → -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀ {j : Size< i} → Vec (Term {j} alphabet) (finToNat arity) → -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateArity = Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateName = Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a zeroth-order formula? (i.e. no quantifiers) -- -- -- -- -- -- -- -- -- -- -- -- -- -- data NQFormula {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → NQFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → NQFormula {j} alphabet → {k : Size< i} → NQFormula {k} alphabet → NQFormula {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedByVariable (alphabet₀ alphabet₁ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- one-variable-is-added : |v| alphabet₁ ≡ suc (|v| alphabet₀) -- -- -- -- -- -- -- -- -- -- -- -- -- -- function-domain-is-zero-at-new-variable : |f| alphabet₁ zero ≡ 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → |f| alphabet₁ (suc ytira₁) ≡ |f| alphabet₀ ytira₀ -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentVariables (alphabet₀ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet₁ : Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentation : AugmentedByVariable alphabet₀ alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- open AugmentVariables -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : (alphabet : Alphabet) → AugmentVariables alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables ⟨ |v| , |f| ⟩ = -- -- -- -- -- -- -- -- -- -- -- -- -- -- record -- -- -- -- -- -- -- -- -- -- -- -- -- -- { alphabet₁ = ⟨ suc |v| , (λ { zero → zero ; (suc ytira) → |f| ytira}) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; augmentation = -- -- -- -- -- -- -- -- -- -- -- -- -- -- record -- -- -- -- -- -- -- -- -- -- -- -- -- -- { one-variable-is-added = refl -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; function-domain-is-zero-at-new-variable = refl -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; shifted-function-matches = cong |f| ∘ finToNat-inj } } -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |f|₀ = |f|₀ + 1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions ⟨ |v| , |f| ⟩ = ⟨ |v| , (λ { zero → suc (|f| zero) ; (suc ytira) → |f| (suc ytira) }) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- data QFormula {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → QFormula {j} alphabet → {k : Size< i} → QFormula {k} alphabet → QFormula {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- universal : QFormula (alphabet₁ (augmentVariables alphabet)) → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- existential : QFormula (augmentFunctions alphabet) → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Assignment (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- μ : VariableName alphabet → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑓 : ∀ {arity} → FunctionName alphabet arity → Vec Domain (finToNat arity) → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm : ∀ {i alphabet} → Assignment alphabet → Term {i} alphabet → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm ⟨ μ , _ ⟩ (variable x) = μ x -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm 𝑎@(⟨ μ , 𝑓 ⟩) (function f x) = 𝑓 f (evaluateTerm 𝑎 <$> x) -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Interpretation (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- open Assignment -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑎 : Assignment alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑃 : PredicateName → ∀ {arity} → Vec Domain arity → Bool -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula : ∀ {i alphabet} → Interpretation alphabet → NQFormula {i} alphabet → Bool -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula ⟨ 𝑎 , 𝑃 ⟩ (atomic name terms) = 𝑃 name $ evaluateTerm 𝑎 <$> terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula I (logical formula₁ formula₂) = not (evaluateNQFormula I formula₁) && not (evaluateNQFormula I formula₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- ... | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- record IsADisjointUnionOfNQFormulas -- -- -- -- -- -- -- -- -- -- -- -- -- -- {alphabet₁ alphabet₂ alphabet₁₊₂ : Alphabet} -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁ : NQFormula alphabet₁) -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₂ : NQFormula alphabet₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁₊₂ : NQFormula alphabet₁₊₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet-size : |v| alphabet₁₊₂ ≡ |v| alphabet₁ + |v| alphabet₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- --|f| alphabet₁₊₂ ytira -- -- -- -- -- -- -- -- -- -- -- -- -- -- ----record AlphabetSummed (alphabet₀ alphabet₁ : Alphabet) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets : Alphabet → Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets ⟨ |v|₁ , |f|₁ ⟩ ⟨ |v|₂ , |f|₂ ⟩ = ⟨ (|v|₁ + |v|₂) , (λ x → if′ finToNat x ≤? |v|₁ && finToNat x ≤? |v|₂ then {!!} else {!!}) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup : ∀ {alphabet₁} → Formula alphabet₁ → ∀ {alphabet₂} → Formula alphabet₂ → Σ _ λ alphabet₁₊₂ → Formula alphabet₁₊₂ × Formula alphabet₁₊₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup {⟨ |v|₁ , |a|₁ , |f|₁ ⟩} φ₁ {⟨ |v|₂ , |a|₂ , |f|₂ ⟩} φ₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf : ∀ {alphabet} → Formula alphabet → Σ _ λ alphabet+ → Formula₀ alphabet+ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --universal (P 0) = ∀ x → P x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (∀ x ∃ y (P x y)) ∨ (∀ x ∃ y (P x y)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- P x₀ (s₀͍₁ x₀) ∨ P x₁ (s₁͍₁ x₁) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| : (arity : Arity) → Vec ℕ (suc |a|) → Vec ℕ (++arity (max arity |a|)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a variable to the alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN : ∀ {n} → Fin n → (Fin n → Nat) → Fin n → Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedFunctions {|a| : Arity} (arity : Arity) (|f| : Vec ℕ (++arity |a|)) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA : ℕ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA-law : max arity |a| ≡ maxA -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ++|f| : Vec ℕ maxA -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- f-law : increaseTabulationAt arity (indexVec |f|) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- define -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ⊗ b ≡ False a and False b -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- now, we can define -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ¬a = a ⊗ a ≡ False a and False a -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∨ b = ¬(a ⊗ b) ≡ False (False a and False b) and False (False a and False b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∧ b = ¬(¬a ∨ ¬b) = ¬(¬(¬a ⊗ ¬b)) = ¬a ⊗ ¬b = False (False a and False a) and False (False b and False b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a → b = ¬a ∨ b = (a ⊗ a) ∨ b = ¬((a ⊗ a) ⊗ b) = ((a ⊗ a) ⊗ b) ⊗ ((a ⊗ a) ⊗ b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- conversion to prenex -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀xF ⊗ G ⟿ ∃x(F ⊗ wk(G)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∃xF ⊗ G ⟿ ∀x(F ⊗ wk(G)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∀xG ⟿ ∃x(wk(F) ⊗ G) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∃xG ⟿ ∀x(wk(F) ⊗ G) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ======================== -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (a ⊗ ∀xB) ⊗ c ⟿ ∃x(wk(a) ⊗ B) ⊗ c ⟿ ∀x((wk(a) ⊗ B) ⊗ wk(c)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF : (arity : Arity) → ∀ {|a| : Arity} → Vec ℕ (++arity |a|) → Vec ℕ (++arity (max arity |a|)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- with decBool (lessNat |a| arity) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x with compare arity |a| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.(suc (k + arity))} |f| | yes x | less (diff k refl) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl with lessNat arity arity -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl | false = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF zero {.zero} |f| | yes true | equal refl | true = {!!} ∷ [] -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF (suc arity) {.(suc arity)} |f| | yes true | equal refl | true = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x | greater gt = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x with decBool (lessNat arity |a|) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | yes x = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | no x = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- = case arity <? |a| of λ { false → {!!} ; true → {!!} } -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a function of a given arity to the alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Arity → Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions arity ⟨ |v| , |a| , |f| ⟩ = ⟨ |v| , max arity |a| , augmentF arity |f| ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data DomainSignifier : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- free : Nat → DomainSignifier -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartiallyAppliedFunction : Nat → Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constant : PartiallyAppliedFunction 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {n} → PartiallyAppliedFunction 0 → PartiallyAppliedFunction (suc n) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term = PartiallyAppliedFunction 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartialyAppliedPredicate : Nat → Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- statement : PartialyAppliedPredicate 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- partial : ∀ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Language : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Name = String -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Function : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- name : Name -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- number-of-arguments : Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Vec -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Function : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : Function → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Sentence : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- predication : Name → -- -- -- -- {- -- -- -- -- record Variables : Set where -- -- -- -- constructor V⟨_⟩ -- -- -- -- field -- -- -- -- number : Nat -- -- -- -- open Variables -- -- -- -- record Functions (υ : Variables) : Set where -- -- -- -- constructor S⟨_⟩ -- -- -- -- field -- -- -- -- number : Fin (suc (number υ)) → Nat -- -- -- -- open Functions -- -- -- -- record Alphabet : Set where -- -- -- -- constructor α⟨_,_⟩ -- -- -- -- field -- -- -- -- variables : Variables -- -- -- -- functions : Functions variables -- -- -- -- open Alphabet -- -- -- -- record Variable (α : Alphabet) : Set where -- -- -- -- constructor v⟨_⟩ -- -- -- -- field -- -- -- -- name : Fin (number (variables α)) -- -- -- -- open Variable -- -- -- -- record Function (α : Alphabet) : Set where -- -- -- -- constructor s⟨_,_⟩ -- -- -- -- field -- -- -- -- arity : Fin ∘ suc ∘ number ∘ variables $ α -- -- -- -- name : Fin $ number (functions α) arity -- -- -- -- open Function -- -- -- -- data Term (𝑽 : Nat) : Set where -- -- -- -- variable : Fin 𝑽 → Term 𝑽 -- -- -- -- function : (𝑓 : Function α) → {ι₋₁ : Size< ι₀} → Vec (Term {ι₋₁} α) (finToNat (arity 𝑓)) → -- -- -- -- Term {ι₀} α -- -- -- -- record Predication (alphabet : Alphabet) : Set where -- -- -- -- constructor P⟨_,_,_⟩ -- -- -- -- field -- -- -- -- name : Nat -- -- -- -- arity : Nat -- -- -- -- terms : Vec (Term alphabet) arity -- -- -- -- open Predication -- -- -- -- -}
46.070407
286
0.456326
0399f5bba390b7c0ca0176d4820316b2dccfa1b7
4,520
agda
Agda
src/Tactic/Nat/Subtract/Reflect.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Nat/Subtract/Reflect.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Nat/Subtract/Reflect.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Nat.Subtract.Reflect where open import Prelude import Agda.Builtin.Nat as Builtin open import Builtin.Reflection open import Control.Monad.State open import Control.Monad.Transformer open import Tactic.Reflection open import Tactic.Reflection.Quote open import Tactic.Nat.Reflect open import Tactic.Nat.Subtract.Exp ⟨suc⟩s : SubExp → SubExp ⟨suc⟩s (lit n) = lit (suc n) ⟨suc⟩s (lit n ⟨+⟩ e) = lit (suc n) ⟨+⟩ e ⟨suc⟩s e = lit 1 ⟨+⟩ e freshS : Term → R SubExp freshS t = get >>= uncurry′ λ i Γ → var i <$ put (suc i , (t , i) ∷ Γ) pattern _`-_ x y = def (quote Builtin._-_) (vArg x ∷ vArg y ∷ []) private forceInstance : Name → Term → R ⊤ forceInstance i v = lift $ unify v (def₀ i) forceNumber = forceInstance (quote NumberNat) forceSemiring = forceInstance (quote SemiringNat) forceSubtractive = forceInstance (quote SubtractiveNat) termToSubExpR : Term → R SubExp termToSubExpR (a `+ b) = _⟨+⟩_ <$> termToSubExpR a <*> termToSubExpR b termToSubExpR (a `* b) = _⟨*⟩_ <$> termToSubExpR a <*> termToSubExpR b termToSubExpR (a `- b) = _⟨-⟩_ <$> termToSubExpR a <*> termToSubExpR b -- Handle unsolved instances termToSubExpR (def (quote Semiring._+_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ vArg b ∷ [])) = do forceSemiring i ⦇ termToSubExpR a ⟨+⟩ termToSubExpR b ⦈ termToSubExpR (def (quote Semiring._*_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ vArg b ∷ [])) = do lift $ unify i (def₀ (quote SemiringNat)) ⦇ termToSubExpR a ⟨*⟩ termToSubExpR b ⦈ termToSubExpR (def (quote Subtractive._-_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ vArg b ∷ [])) = do forceSubtractive i ⦇ termToSubExpR a ⟨-⟩ termToSubExpR b ⦈ termToSubExpR (def (quote Semiring.zro) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ [])) = do forceSemiring i pure (lit 0) termToSubExpR (def (quote Semiring.one) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ [])) = do forceSemiring i pure (lit 1) termToSubExpR (def (quote Number.fromNat) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ _ ∷ [])) = do forceNumber i termToSubExpR a termToSubExpR `0 = pure (lit 0) termToSubExpR (`suc a) = ⟨suc⟩s <$> termToSubExpR a termToSubExpR (meta x _) = lift (blockOnMeta x) termToSubExpR (lit (nat n)) = pure (lit n) termToSubExpR unknown = fail termToSubExpR t = do lift $ ensureNoMetas t just i ← gets (flip lookup t ∘ snd) where nothing → freshS t pure (var i) termToSubEqR : Term → R (SubExp × SubExp) termToSubEqR (lhs `≡ rhs) = _,_ <$> termToSubExpR lhs <*> termToSubExpR rhs termToSubEqR (def (quote _≡_) (_ ∷ hArg (meta x _) ∷ _)) = lift (blockOnMeta x) termToSubEqR _ = fail termToSubEq : Term → TC (Maybe ((SubExp × SubExp) × List Term)) termToSubEq t = runR (termToSubEqR t) pattern _`<_ a b = def (quote LessNat) (vArg a ∷ vArg b ∷ []) termToSubEqnR : Term → R Eqn termToSubEqnR (def (quote Ord._<_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg lhs ∷ vArg rhs ∷ [])) = do forceInstance (quote OrdNat) i ⦇ termToSubExpR lhs :< termToSubExpR rhs ⦈ termToSubEqnR (lhs `< rhs) = _:<_ <$> termToSubExpR lhs <*> termToSubExpR rhs termToSubEqnR (lhs `≡ rhs) = _:≡_ <$> termToSubExpR lhs <*> termToSubExpR rhs termToSubEqnR (def (quote _≡_) (_ ∷ hArg (meta x _) ∷ _)) = lift (blockOnMeta x) termToSubEqnR t = lift (ensureNoMetas t) *> fail termToSubEqn : Term → TC (Maybe (Eqn × List Term)) termToSubEqn t = runR (termToSubEqnR t) private lower : Nat → Term → R Term lower 0 = pure lower i = liftMaybe ∘ strengthen i termToSubHypsR′ : Nat → Term → R (List Eqn) termToSubHypsR′ i (pi (vArg hyp) (abs _ a)) = _∷_ <$> (termToSubEqnR =<< lower i hyp) <*> termToSubHypsR′ (suc i) a termToSubHypsR′ _ (meta x _) = lift (blockOnMeta x) termToSubHypsR′ i a = [_] <$> (termToSubEqnR =<< lower i a) termToSubHypsR : Term → R (List Eqn) termToSubHypsR = termToSubHypsR′ 0 termToSubHyps : Term → TC (Maybe (List Eqn × List Term)) termToSubHyps t = runR (termToSubHypsR t) instance QuotableSubExp : Quotable SubExp ` {{QuotableSubExp}} (var x) = con (quote SubExp.var) (vArg (` x) ∷ []) ` {{QuotableSubExp}} (lit n) = con (quote SubExp.lit) (vArg (` n) ∷ []) ` {{QuotableSubExp}} (e ⟨+⟩ e₁) = con (quote SubExp._⟨+⟩_) (map defaultArg $ ` e ∷ ` e₁ ∷ []) ` {{QuotableSubExp}} (e ⟨-⟩ e₁) = con (quote SubExp._⟨-⟩_) (map defaultArg $ ` e ∷ ` e₁ ∷ []) ` {{QuotableSubExp}} (e ⟨*⟩ e₁) = con (quote SubExp._⟨*⟩_) (map defaultArg $ ` e ∷ ` e₁ ∷ []) QuotableEqn : Quotable Eqn ` {{QuotableEqn}} (a :≡ b) = con (quote _:≡_) (vArg (` a) ∷ vArg (` b) ∷ []) ` {{QuotableEqn}} (a :< b) = con (quote _:<_) (vArg (` a) ∷ vArg (` b) ∷ [])
38.305085
99
0.645796
210619529f42c28a94de6efa1b5df1c1f6b3a439
1,164
agda
Agda
notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Dim.agda
rocketnia/lexmeta
2a958bf3987459e9197eb5963fe5107ea2e2e912
[ "Apache-2.0" ]
1
2020-02-03T21:26:07.000Z
2020-02-03T21:26:07.000Z
notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Dim.agda
rocketnia/lexmeta
2a958bf3987459e9197eb5963fe5107ea2e2e912
[ "Apache-2.0" ]
13
2021-03-12T03:11:01.000Z
2022-03-06T14:40:21.000Z
notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Dim.agda
rocketnia/lexmeta
2a958bf3987459e9197eb5963fe5107ea2e2e912
[ "Apache-2.0" ]
null
null
null
module Punctaffy.Hypersnippet.Dim where open import Level using (Level; suc; _⊔_) open import Algebra.Bundles using (IdempotentCommutativeMonoid) open import Algebra.Morphism using (IsIdempotentCommutativeMonoidMorphism) -- For all the purposes we have for it so far, a `DimSys` is a bounded -- semilattice. The `agda-stdlib` library calls this an idempotent commutative -- monoid. record DimSys {n l : Level} : Set (suc (n ⊔ l)) where field dimIdempotentCommutativeMonoid : IdempotentCommutativeMonoid n l open IdempotentCommutativeMonoid dimIdempotentCommutativeMonoid public record DimSysMorphism {n₀ n₁ l₀ l₁ : Level} : Set (suc (n₀ ⊔ n₁ ⊔ l₀ ⊔ l₁)) where field From : DimSys {n₀} {l₀} To : DimSys {n₁} {l₁} private module F = DimSys From module T = DimSys To field morphDim : F.Carrier → T.Carrier isIdempotentCommutativeMonoidMorphism : IsIdempotentCommutativeMonoidMorphism F.dimIdempotentCommutativeMonoid T.dimIdempotentCommutativeMonoid morphDim dimLte : {n l : Level} → {ds : DimSys {n} {l}} → DimSys.Carrier ds → DimSys.Carrier ds → Set l dimLte {n} {l} {ds} a b = DimSys._≈_ ds (DimSys._∙_ ds a b) b
36.375
118
0.736254
582e5e3be2c5b1d05a11c5c9d398b8dad795eb98
1,470
agda
Agda
src/Categories/Adjoint/AFT/SolutionSet.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Adjoint/AFT/SolutionSet.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Adjoint/AFT/SolutionSet.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor module Categories.Adjoint.AFT.SolutionSet {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Functor C D) where open import Level private module C = Category C module D = Category D module F = Functor F open D open F record SolutionSet i : Set (o ⊔ ℓ ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ (suc i)) where field I : Set i S : I → C.Obj S₀ : ∀ {A X} → X ⇒ F₀ A → I S₁ : ∀ {A X} (f : X ⇒ F₀ A) → S (S₀ f) C.⇒ A ϕ : ∀ {A X} (f : X ⇒ F₀ A) → X ⇒ F₀ (S (S₀ f)) commute : ∀ {A X} (f : X ⇒ F₀ A) → F₁ (S₁ f) ∘ ϕ f ≈ f record SolutionSet′ : Set (o ⊔ ℓ ⊔ o′ ⊔ ℓ′ ⊔ e′) where field S₀ : ∀ {A X} → X ⇒ F₀ A → C.Obj S₁ : ∀ {A X} (f : X ⇒ F₀ A) → S₀ f C.⇒ A ϕ : ∀ {A X} (f : X ⇒ F₀ A) → X ⇒ F₀ (S₀ f) commute : ∀ {A X} (f : X ⇒ F₀ A) → F₁ (S₁ f) ∘ ϕ f ≈ f SolutionSet⇒SolutionSet′ : ∀ {i} → SolutionSet i → SolutionSet′ SolutionSet⇒SolutionSet′ s = record { S₀ = λ f → S (S₀ f) ; S₁ = S₁ ; ϕ = ϕ ; commute = commute } where open SolutionSet s SolutionSet′⇒SolutionSet : ∀ i → SolutionSet′ → SolutionSet (o ⊔ i) SolutionSet′⇒SolutionSet i s = record { I = Lift i C.Obj ; S = lower ; S₀ = λ f → lift (S₀ f) ; S₁ = S₁ ; ϕ = ϕ ; commute = commute } where open SolutionSet′ s
27.222222
103
0.485034
29124991e6cbd6c1f02c6e916c0b714521b46fee
297
agda
Agda
test/Succeed/Issue2302.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2302.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2302.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality postulate A : Set x0 : A f : A → A → A {-# BUILTIN REWRITE _≡_ #-} postulate fxx : (x : A) → (f x x) ≡ x {-# REWRITE fxx #-} meta : A meta-reveal : meta ≡ x0 test : f x0 meta ≡ x0 meta = _ test = refl meta-reveal = refl
12.375
33
0.572391
2193a8a9997e570154564ab397a2b4abd64e7227
187
agda
Agda
test/Fail/PatternSynonymOverloaded.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/PatternSynonymOverloaded.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/PatternSynonymOverloaded.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module PatternSynonymOverloaded where data Nat : Set where zero : Nat suc : Nat -> Nat pattern ss x = suc (suc x) pattern ss x = suc x foo : Nat → Nat foo (ss n) = n foo _ = zero
14.384615
37
0.647059
5e419cacf5de1ec1de80e6e8e373ca309dc0b92f
49,970
agda
Agda
src/FOmegaInt/Kinding/Canonical.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/FOmegaInt/Kinding/Canonical.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/FOmegaInt/Kinding/Canonical.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Canonical kinding of Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Kinding.Canonical where open import Data.Context.WellFormed open import Data.Fin using (Fin; zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Typed open import Data.List using ([]; _∷_; _∷ʳ_) open import Data.Product using (∃; _,_; _×_) open import Data.Vec as Vec using ([]) open import Level using () renaming (zero to lzero) open import Relation.Binary.PropositionalEquality open import FOmegaInt.Syntax open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization import FOmegaInt.Kinding.Simple as SimpleKinding ------------------------------------------------------------------------ -- Canonical kinding derivations. -- -- TODO: explain the point of this and how "canonical" kinding differs -- from "algorithmic" kinding. -- -- NOTE. In the rules below, we use (singleton) kind synthesis -- judgments of the form `Γ ⊢Nf a ⇉ a ⋯ a' to ensure that `a' is a -- well-kinded proper type rather than kind checking judgments of the -- form `Γ ⊢Nf a ⇇ *'. While the latter may seem more natural, it -- involves the use of subsumption/subtyping to ensure that `Γ ⊢ a ⋯ a -- <∷ *'. As we will show, this is always true (if `a' is indeed a -- proper type) but the extra use of subsumption complicates the -- proofs of properties that require (partial) inversion of kinding -- derivations. See e.g. the Nf⇉-⋯-* and Nf⇇-⋯-* lemmas. module Kinding where open ElimCtx open Syntax infix 4 _⊢_wf _ctx _⊢_kd infix 4 _⊢Nf_⇉_ _⊢Ne_∈_ _⊢Var_∈_ _⊢_⇉∙_⇉_ _⊢Nf_⇇_ infix 4 _⊢_<∷_ _⊢_<:_ _⊢_<:_⇇_ infix 4 _⊢_≅_ _⊢_≃_⇇_ _⊢_⇉∙_≃_⇉_ mutual -- Well-formed type/kind ascriptions in typing contexts. -- -- A raw kind ascriptions is considered well-formed if it -- corresponds to a well-formed normal kind. Raw type ascriptions -- are are considered well-formed if they correspond to proper -- normal types. data _⊢_wf {n} (Γ : Ctx n) : ElimAsc n → Set where wf-kd : ∀ {a} → Γ ⊢ a kd → Γ ⊢ kd a wf wf-tp : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ tp a wf -- Well-formed typing contexts. -- -- Contexts and context extensions are well-formed if all the -- ascriptions they contain are well-formed. _ctx : ∀ {n} → Ctx n → Set Γ ctx = ContextFormation._wf _⊢_wf Γ -- Well-formedness checking for η-long β-normal kinds. data _⊢_kd {n} (Γ : Ctx n) : Kind Elim n → Set where kd-⋯ : ∀ {a b} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf b ⇉ b ⋯ b → Γ ⊢ a ⋯ b kd kd-Π : ∀ {j k} → Γ ⊢ j kd → kd j ∷ Γ ⊢ k kd → Γ ⊢ Π j k kd -- Kind synthesis for η-long β-normal types. data _⊢Nf_⇉_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ⇉-⊥-f : Γ ctx → Γ ⊢Nf ⊥∙ ⇉ ⊥∙ ⋯ ⊥∙ ⇉-⊤-f : Γ ctx → Γ ⊢Nf ⊤∙ ⇉ ⊤∙ ⋯ ⊤∙ ⇉-∀-f : ∀ {k a} → Γ ⊢ k kd → kd k ∷ Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf ∀∙ k a ⇉ ∀∙ k a ⋯ ∀∙ k a ⇉-→-f : ∀ {a b} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢Nf b ⇉ b ⋯ b → Γ ⊢Nf a ⇒∙ b ⇉ a ⇒∙ b ⋯ a ⇒∙ b ⇉-Π-i : ∀ {j a k} → Γ ⊢ j kd → kd j ∷ Γ ⊢Nf a ⇉ k → Γ ⊢Nf Λ∙ j a ⇉ Π j k ⇉-s-i : ∀ {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a -- Canonical kinding of neutral types. -- -- NOTE. This is *not* a kind synthesis judgment! See the -- comment on canonical variable kinding for an explanation. data _⊢Ne_∈_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ∈-∙ : ∀ {x j k} {as : Spine n} → Γ ⊢Var x ∈ j → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢Ne var x ∙ as ∈ k -- Canonical kinding of variables. -- -- NOTE. This would be a kind synthesis judgment if it weren't -- for the subsumption rule (⇇-⇑). Thanks to this rule, the proof -- of the "context narrowing" property is easy to establish for -- canonical typing (see the ContextNarrowing module below). -- Without a proof of this property, the various lemmas about -- kinded hereditary substitutions become difficult to establish -- (see Kinding.HereditarySubstitution). Unfortunately, proving -- that context narrowing is admissible *without* (⇇-⇑) would -- require precisely these substitution lemmas, leading to a -- cyclic dependency. Introducing the subsumption rule for -- variables thus allows us to break that cycle. On the other -- hand, the subsumption rule breaks functionality of the -- canonical kinding relations for variables and neutral types, -- i.e. their canonical kinds are no longer unique. This is -- partly remedied by the singleton-introduction rule (⇉-s-i) in -- the kind synthesis judgment for normal types: neutrals have -- unique (singleton) kinds when viewed as normal forms. However, -- neutral kinding is also used in subtyping, in particular by the -- bound projection rules (<:-⟨|) and (<:-|⟩). Because the kinds -- of neutrals are not unique, neither are the bounds projected by -- these subtyping rules, and eliminating adjacent instances of -- (<:-⟨|) and (<:-|⟩) becomes difficult. This, in turn, -- complicates transitivity elimination (i.e. a proof that -- transitivity of subtyping is admissible) in arbitrary contexts. -- However, it does not affect elimination of *top-level* -- occurrences of the transitivity rule (<:-trans), i.e. those in -- the empty contexts, because there are no closed neutral terms, -- and therefore no instances of the bound projection rules in -- top-level subtyping statements. data _⊢Var_∈_ {n} (Γ : Ctx n) : Fin n → Kind Elim n → Set where ⇉-var : ∀ {k} x → Γ ctx → lookup Γ x ≡ kd k → Γ ⊢Var x ∈ k ⇇-⇑ : ∀ {x j k} → Γ ⊢Var x ∈ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢Var x ∈ k -- Kind synthesis for spines: given the kind of the head and a -- spine, synthesize the overall kind of the elimination. data _⊢_⇉∙_⇉_ {n} (Γ : Ctx n) : Kind Elim n → Spine n → Kind Elim n → Set where ⇉-[] : ∀ {k} → Γ ⊢ k ⇉∙ [] ⇉ k ⇉-∷ : ∀ {a as j k l} → Γ ⊢Nf a ⇇ j → Γ ⊢ j kd → Γ ⊢ k Kind[ a ∈ ⌊ j ⌋ ] ⇉∙ as ⇉ l → Γ ⊢ Π j k ⇉∙ a ∷ as ⇉ l -- Kind checking for η-long β-normal types. data _⊢Nf_⇇_ {n} (Γ : Ctx n) : Elim n → Kind Elim n → Set where ⇇-⇑ : ∀ {a j k} → Γ ⊢Nf a ⇉ j → Γ ⊢ j <∷ k → Γ ⊢Nf a ⇇ k -- Canonical subkinding derivations. data _⊢_<∷_ {n} (Γ : Ctx n) : Kind Elim n → Kind Elim n → Set where <∷-⋯ : ∀ {a₁ a₂ b₁ b₂} → Γ ⊢ a₂ <: a₁ → Γ ⊢ b₁ <: b₂ → Γ ⊢ a₁ ⋯ b₁ <∷ a₂ ⋯ b₂ <∷-Π : ∀ {j₁ j₂ k₁ k₂} → Γ ⊢ j₂ <∷ j₁ → kd j₂ ∷ Γ ⊢ k₁ <∷ k₂ → Γ ⊢ Π j₁ k₁ kd → Γ ⊢ Π j₁ k₁ <∷ Π j₂ k₂ -- Canonical subtyping of proper types. data _⊢_<:_ {n} (Γ : Ctx n) : Elim n → Elim n → Set where <:-trans : ∀ {a b c} → Γ ⊢ a <: b → Γ ⊢ b <: c → Γ ⊢ a <: c <:-⊥ : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ ⊥∙ <: a <:-⊤ : ∀ {a} → Γ ⊢Nf a ⇉ a ⋯ a → Γ ⊢ a <: ⊤∙ <:-∀ : ∀ {k₁ k₂ a₁ a₂} → Γ ⊢ k₂ <∷ k₁ → kd k₂ ∷ Γ ⊢ a₁ <: a₂ → Γ ⊢Nf ∀∙ k₁ a₁ ⇉ ∀∙ k₁ a₁ ⋯ ∀∙ k₁ a₁ → Γ ⊢ ∀∙ k₁ a₁ <: ∀∙ k₂ a₂ <:-→ : ∀ {a₁ a₂ b₁ b₂} → Γ ⊢ a₂ <: a₁ → Γ ⊢ b₁ <: b₂ → Γ ⊢ a₁ ⇒∙ b₁ <: a₂ ⇒∙ b₂ <:-∙ : ∀ {x as₁ as₂ k b c} → Γ ⊢Var x ∈ k → Γ ⊢ k ⇉∙ as₁ ≃ as₂ ⇉ b ⋯ c → Γ ⊢ var x ∙ as₁ <: var x ∙ as₂ <:-⟨| : ∀ {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢ b <: a <:-|⟩ : ∀ {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢ a <: c -- Checked/kind-driven subtyping. data _⊢_<:_⇇_ {n} (Γ : Ctx n) : Elim n → Elim n → Kind Elim n → Set where <:-⇇ : ∀ {a b c d} → Γ ⊢Nf a ⇇ c ⋯ d → Γ ⊢Nf b ⇇ c ⋯ d → Γ ⊢ a <: b → Γ ⊢ a <: b ⇇ c ⋯ d <:-λ : ∀ {j₁ j₂ a₁ a₂ j k} → kd j ∷ Γ ⊢ a₁ <: a₂ ⇇ k → Γ ⊢Nf Λ∙ j₁ a₁ ⇇ Π j k → Γ ⊢Nf Λ∙ j₂ a₂ ⇇ Π j k → Γ ⊢ Λ∙ j₁ a₁ <: Λ∙ j₂ a₂ ⇇ Π j k -- Canonical kind equality. data _⊢_≅_ {n} (Γ : Ctx n) : Kind Elim n → Kind Elim n → Set where <∷-antisym : ∀ {j k} → Γ ⊢ j kd → Γ ⊢ k kd → Γ ⊢ j <∷ k → Γ ⊢ k <∷ j → Γ ⊢ j ≅ k -- Canonical type equality derivations with checked kinds. data _⊢_≃_⇇_ {n} (Γ : Ctx n) : Elim n → Elim n → Kind Elim n → Set where <:-antisym : ∀ {a b k} → Γ ⊢ k kd → Γ ⊢ a <: b ⇇ k → Γ ⊢ b <: a ⇇ k → Γ ⊢ a ≃ b ⇇ k -- Canonical equality of spines. data _⊢_⇉∙_≃_⇉_ {n} (Γ : Ctx n) : Kind Elim n → Spine n → Spine n → Kind Elim n → Set where ≃-[] : ∀ {k} → Γ ⊢ k ⇉∙ [] ≃ [] ⇉ k ≃-∷ : ∀ {a as b bs j k l} → Γ ⊢ a ≃ b ⇇ j → Γ ⊢ k Kind[ a ∈ ⌊ j ⌋ ] ⇉∙ as ≃ bs ⇉ l → Γ ⊢ Π j k ⇉∙ a ∷ as ≃ b ∷ bs ⇉ l -- Well-formed context extensions. open ContextFormation _⊢_wf public hiding (_wf) renaming (_⊢_wfExt to _⊢_ext) -- A wrapper for the _⊢Var_∈_ judgment that also provides term -- variable bindings. infix 4 _⊢Var′_∈_ data _⊢Var′_∈_ {n} (Γ : Ctx n) : Fin n → ElimAsc n → Set where ∈-tp : ∀ {x k} → Γ ⊢Var x ∈ k → Γ ⊢Var′ x ∈ kd k ∈-tm : ∀ x {a} → Γ ctx → lookup Γ x ≡ tp a → Γ ⊢Var′ x ∈ tp a -- A derived variable rule. ∈-var′ : ∀ {n} {Γ : Ctx n} x → Γ ctx → Γ ⊢Var′ x ∈ lookup Γ x ∈-var′ {Γ = Γ} x Γ-ctx with lookup Γ x | inspect (lookup Γ) x ∈-var′ x Γ-ctx | kd k | [ Γ[x]≡kd-k ] = ∈-tp (⇉-var x Γ-ctx Γ[x]≡kd-k) ∈-var′ x Γ-ctx | tp a | [ Γ[x]≡tp-a ] = ∈-tm x Γ-ctx Γ[x]≡tp-a ------------------------------------------------------------------------ -- Simple properties of canonical kindings open Syntax open ElimCtx open SimpleCtx using (kd; tp; ⌊_⌋Asc) open Kinding open ContextConversions using (⌊_⌋Ctx; module ⌊⌋Ctx-Lemmas) -- An inversion lemma for _⊢_wf. wf-kd-inv : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ kd k wf → Γ ⊢ k kd wf-kd-inv (wf-kd k-kd) = k-kd -- Subkinds have the same shape. <∷-⌊⌋ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → ⌊ j ⌋ ≡ ⌊ k ⌋ <∷-⌊⌋ (<∷-⋯ _ _) = refl <∷-⌊⌋ (<∷-Π j₂<∷j₁ k₁<∷k₂ _) = cong₂ _⇒_ (sym (<∷-⌊⌋ j₂<∷j₁)) (<∷-⌊⌋ k₁<∷k₂) -- Equal kinds have the same shape. ≅-⌊⌋ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → ⌊ j ⌋ ≡ ⌊ k ⌋ ≅-⌊⌋ (<∷-antisym j-kd k-kd j<∷k k<∷j) = <∷-⌊⌋ j<∷k -- Kind and type equality imply subkinding and subtyping, respectively. ≅⇒<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ j <∷ k ≅⇒<∷ (<∷-antisym j-kd k-kd j<∷k k<∷j) = j<∷k ≃⇒<: : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ a <: b ⇇ k ≃⇒<: (<:-antisym k-kd a<:b⇇k b<:a⇇k) = a<:b⇇k ≃⇒<:-⋯ : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a ≃ b ⇇ c ⋯ d → Γ ⊢ a <: b ≃⇒<:-⋯ (<:-antisym c⋯d-kd (<:-⇇ a⇇c⋯d b⇇c⋯d a<:b) b<:a⇇c⋯d) = a<:b -- Symmetry of kind and type equality. ≅-sym : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ k ≅ j ≅-sym (<∷-antisym j-kd k-kd j<:k k<∷j) = <∷-antisym k-kd j-kd k<∷j j<:k ≃-sym : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ b ≃ a ⇇ k ≃-sym (<:-antisym k-kd a<:b b<:a) = <:-antisym k-kd b<:a a<:b -- Transitivity of checked subtyping and type equality are admissible. <:⇇-trans : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a <: b ⇇ k → Γ ⊢ b <: c ⇇ k → Γ ⊢ a <: c ⇇ k <:⇇-trans (<:-⇇ a₁⇇b⋯c _ a₁<:a₂) (<:-⇇ _ a₃⇇b⋯c a₂<:a₃) = <:-⇇ a₁⇇b⋯c a₃⇇b⋯c (<:-trans a₁<:a₂ a₂<:a₃) <:⇇-trans (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk _) (<:-λ a₂<:a₃ _ Λj₃a₃⇇Πjk) = <:-λ (<:⇇-trans a₁<:a₂ a₂<:a₃) Λj₁a₁⇇Πjk Λj₃a₃⇇Πjk ≃-trans : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ b ≃ c ⇇ k → Γ ⊢ a ≃ c ⇇ k ≃-trans (<:-antisym k-kd a<:b⇇k b<:a⇇k) (<:-antisym _ b<:c⇇k c<:b⇇k) = <:-antisym k-kd (<:⇇-trans a<:b⇇k b<:c⇇k) (<:⇇-trans c<:b⇇k b<:a⇇k) -- The synthesized kind of a normal proper type is exactly the singleton -- containing that type. Nf⇉-≡ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → a ≡ b × a ≡ c Nf⇉-≡ (⇉-⊥-f Γ-ctx) = refl , refl Nf⇉-≡ (⇉-⊤-f Γ-ctx) = refl , refl Nf⇉-≡ (⇉-∀-f k-kd b⇉b⋯b) = refl , refl Nf⇉-≡ (⇉-→-f a⇉a⋯a b⇉b⋯b) = refl , refl Nf⇉-≡ (⇉-s-i a∈b⋯c) = refl , refl -- Derived singleton introduction rules where the premises are -- well-kinded normal forms rather than neutrals. Nf⇉-s-i : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a Nf⇉-s-i a⇉b⋯c with Nf⇉-≡ a⇉b⋯c Nf⇉-s-i a⇉a⋯a | refl , refl = a⇉a⋯a Nf⇇-s-i : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢Nf a ⇉ a ⋯ a Nf⇇-s-i (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = Nf⇉-s-i a⇉b₁⋯c₁ -- Inhabitants of interval kinds are proper types. Nf⇉-⋯-* : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢Nf a ⇇ ⌜*⌝ Nf⇉-⋯-* a⇉b⋯c with Nf⇉-≡ a⇉b⋯c Nf⇉-⋯-* a⇉a⋯a | refl , refl = ⇇-⇑ a⇉a⋯a (<∷-⋯ (<:-⊥ a⇉a⋯a) (<:-⊤ a⇉a⋯a)) Nf⇇-⋯-* : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢Nf a ⇇ ⌜*⌝ Nf⇇-⋯-* (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = Nf⇉-⋯-* a⇉b₁⋯c₁ -- Validity of synthesized kinds: synthesized kinds are well-formed. Nf⇉-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ⊢ k kd Nf⇉-valid (⇉-⊥-f Γ-ctx) = kd-⋯ (⇉-⊥-f Γ-ctx) (⇉-⊥-f Γ-ctx) Nf⇉-valid (⇉-⊤-f Γ-ctx) = kd-⋯ (⇉-⊤-f Γ-ctx) (⇉-⊤-f Γ-ctx) Nf⇉-valid (⇉-∀-f k-kd a⇉a⋯a) = kd-⋯ (⇉-∀-f k-kd a⇉a⋯a) (⇉-∀-f k-kd a⇉a⋯a) Nf⇉-valid (⇉-→-f a⇉a⋯a b⇉b⋯b) = kd-⋯ (⇉-→-f a⇉a⋯a b⇉b⋯b) (⇉-→-f a⇉a⋯a b⇉b⋯b) Nf⇉-valid (⇉-Π-i j-kd a⇉k) = kd-Π j-kd (Nf⇉-valid a⇉k) Nf⇉-valid (⇉-s-i a∈b⋯c) = kd-⋯ (⇉-s-i a∈b⋯c) (⇉-s-i a∈b⋯c) -- Validity of checked subtyping: the checked subtyping judgment -- relates well-kinded types. <:⇇-valid : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ⇇ k → Γ ⊢Nf a ⇇ k × Γ ⊢Nf b ⇇ k <:⇇-valid (<:-⇇ a⇇k b⇇k a<:b) = a⇇k , b⇇k <:⇇-valid (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) = Λj₁a₁⇇Πjk , Λj₂a₂⇇Πjk -- Validity of kind and type equality: the equality judgments relate -- well-formed kinds, resp. well-kinded types. ≅-valid : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ j kd × Γ ⊢ k kd ≅-valid (<∷-antisym j-kd k-kd j<∷k k<∷j) = j-kd , k-kd ≃-valid : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢Nf a ⇇ k × Γ ⊢Nf b ⇇ k ≃-valid (<:-antisym k-kd a<:b⇇k b<:a⇇k) = <:⇇-valid a<:b⇇k ≃-valid-kd : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ k kd ≃-valid-kd (<:-antisym k-kd a<:b b<:a) = k-kd -- NOTE. In order to prove validity for the remainder of the kinding, -- subkinding and subtyping judgments, we first need to prove that -- hereditary substitutions preserve well-formedness of kinds (see -- Kinding.Canonical.HereditarySubstitution). See the definition of -- `Var∈-valid' below and the module Kinding.Canonical.Validity for -- the remaining (strong) validity lemmas. -- The synthesized kinds of neutrals kind-check. Nf⇇-ne : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Γ ⊢Nf a ⇇ b ⋯ c Nf⇇-ne (∈-∙ x∈k k⇉as⇉b⋯c) = ⇇-⇑ (⇉-s-i (∈-∙ x∈k k⇉as⇉b⋯c)) (<∷-⋯ (<:-⟨| (∈-∙ x∈k k⇉as⇉b⋯c)) (<:-|⟩ (∈-∙ x∈k k⇉as⇉b⋯c))) -- The contexts of (most of) the above judgments are well-formed. -- -- NOTE. The exceptions are kinding and equality of spines, as the -- ⇉-[] and ≃-[] rules offer no guarantee that the enclosing context -- is well-formed. This is not a problem in practice, since -- well-kinded spines are used in the kinding of neutral types, the -- head of which is guaranteed to be kinded in a well-formed context. mutual kd-ctx : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ctx kd-ctx (kd-⋯ a⇉a⋯a b⇉b⋯b) = Nf⇉-ctx a⇉a⋯a kd-ctx (kd-Π j-kd k-kd) = kd-ctx j-kd Nf⇉-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ctx Nf⇉-ctx (⇉-⊥-f Γ-ctx) = Γ-ctx Nf⇉-ctx (⇉-⊤-f Γ-ctx) = Γ-ctx Nf⇉-ctx (⇉-∀-f k-kd a⇉a⋯a) = kd-ctx k-kd Nf⇉-ctx (⇉-→-f a⇉a⋯a b⇉b⋯b) = Nf⇉-ctx a⇉a⋯a Nf⇉-ctx (⇉-Π-i j-kd a⇉k) = kd-ctx j-kd Nf⇉-ctx (⇉-s-i a∈b⋯c) = Ne∈-ctx a∈b⋯c Ne∈-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Ne a ∈ k → Γ ctx Ne∈-ctx (∈-∙ x∈j j⇉as⇉k) = Var∈-ctx x∈j Var∈-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Var a ∈ k → Γ ctx Var∈-ctx (⇉-var x Γ-ctx _) = Γ-ctx Var∈-ctx (⇇-⇑ x∈j j<∷k k-kd) = Var∈-ctx x∈j Nf⇇-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ctx Nf⇇-ctx (⇇-⇑ a⇉j j<∷k) = Nf⇉-ctx a⇉j mutual <∷-ctx : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ ctx <∷-ctx (<∷-⋯ b₁<:a₁ a₂<:b₂) = <:-ctx b₁<:a₁ <∷-ctx (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = <∷-ctx j₂<∷j₁ <:-ctx : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a <: b → Γ ctx <:-ctx (<:-trans a<:b b<:c) = <:-ctx a<:b <:-ctx (<:-⊥ a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a <:-ctx (<:-⊤ a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a <:-ctx (<:-∀ k₂<∷k₁ a₁<:a₂ _) = <∷-ctx k₂<∷k₁ <:-ctx (<:-→ a₂<:a₁ b₁<:b₂) = <:-ctx a₂<:a₁ <:-ctx (<:-∙ x∈j as<:bs) = Var∈-ctx x∈j <:-ctx (<:-⟨| a∈b⋯c) = Ne∈-ctx a∈b⋯c <:-ctx (<:-|⟩ a∈b⋯c) = Ne∈-ctx a∈b⋯c ≅-ctx : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ctx ≅-ctx (<∷-antisym j-kd k-kd j<∷k k<∷j) = <∷-ctx j<∷k wf-ctx : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ a wf → Γ ctx wf-ctx (wf-kd k-kd) = kd-ctx k-kd wf-ctx (wf-tp a⇉a⋯a) = Nf⇉-ctx a⇉a⋯a <:⇇-ctx : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ⇇ k → Γ ctx <:⇇-ctx (<:-⇇ a⇇k b⇇k a<:b) = Nf⇇-ctx a⇇k <:⇇-ctx (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) = Nf⇇-ctx Λj₁a₁⇇Πjk ≃-ctx : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ⇇ k → Γ ctx ≃-ctx (<:-antisym k-kd a<:b b<:a) = <:⇇-ctx a<:b Var′∈-ctx : ∀ {n} {Γ : Ctx n} {x a} → Γ ⊢Var′ x ∈ a → Γ ctx Var′∈-ctx (∈-tp x∈k) = Var∈-ctx x∈k Var′∈-ctx (∈-tm _ Γ-ctx _) = Γ-ctx -- An admissible formation rule for the kind of proper types. kd-⌜*⌝ : ∀ {n} {Γ : Ctx n} → Γ ctx → Γ ⊢ ⌜*⌝ kd kd-⌜*⌝ Γ-ctx = kd-⋯ (⇉-⊥-f Γ-ctx) (⇉-⊤-f Γ-ctx) -- Admissible formation rules for canonically kinded proper types. Nf⇇-∀-f : ∀ {n} {Γ : Ctx n} {k a} → Γ ⊢ k kd → kd k ∷ Γ ⊢Nf a ⇇ ⌜*⌝ → Γ ⊢Nf ∀∙ k a ⇇ ⌜*⌝ Nf⇇-∀-f k-kd a⇇* = let a⇉a⋯a = Nf⇇-s-i a⇇* in Nf⇉-⋯-* (⇉-∀-f k-kd a⇉a⋯a) Nf⇇-→-f : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Nf a ⇇ ⌜*⌝ → Γ ⊢Nf b ⇇ ⌜*⌝ → Γ ⊢Nf a ⇒∙ b ⇇ ⌜*⌝ Nf⇇-→-f a⇇* b⇇* = let a⇉a⋯a = Nf⇇-s-i a⇇* b⇉b⋯b = Nf⇇-s-i b⇇* in Nf⇉-⋯-* (⇉-→-f a⇉a⋯a b⇉b⋯b) -- Admissible kinding and equality rules for appending a normal form -- to a spine. ⇉-∷ʳ : ∀ {n} {Γ : Ctx n} {as : Spine n} {a j k l} → Γ ⊢ j ⇉∙ as ⇉ Π k l → Γ ⊢Nf a ⇇ k → Γ ⊢ k kd → Γ ⊢ j ⇉∙ as ∷ʳ a ⇉ l Kind[ a ∈ ⌊ k ⌋ ] ⇉-∷ʳ ⇉-[] a⇇k k-kd = ⇉-∷ a⇇k k-kd ⇉-[] ⇉-∷ʳ (⇉-∷ a⇇j j-kd k[a]⇉as⇉Πlm) b⇇l l-kd = ⇉-∷ a⇇j j-kd (⇉-∷ʳ k[a]⇉as⇉Πlm b⇇l l-kd) ≃-∷ʳ : ∀ {n} {Γ : Ctx n} {as bs : Spine n} {a b j k l} → Γ ⊢ j ⇉∙ as ≃ bs ⇉ Π k l → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ j ⇉∙ as ∷ʳ a ≃ bs ∷ʳ b ⇉ l Kind[ a ∈ ⌊ k ⌋ ] ≃-∷ʳ ≃-[] a≃b = ≃-∷ a≃b ≃-[] ≃-∷ʳ (≃-∷ a≃b as≃bs) c≃d = ≃-∷ a≃b (≃-∷ʳ as≃bs c≃d) ---------------------------------------------------------------------- -- Well-kinded variable substitutions in canonically kinded types -- -- We define two different kinds of well-kinded variable -- substitutions: -- -- 1. well-kinded renamings, which don't change kinds of variables, -- -- 2. variable substitutions that also allow conversion/subsumption. -- -- The first kind are used to prove e.g. that weakening preserve -- (canonical) well-kindedness, while the second kind are used to -- prove context conversion/narrowing preserves well-kindedness. The -- two definitions share a common generic core, which is instantiated -- to obtain the concrete definitions. The two separate definitions -- are necessary because the latter requires the weakening lemma, -- which in turn depends on the former. -- Liftings between variable typings record LiftTo-Var′∈ (_⊢V_∈_ : Typing ElimAsc Fin ElimAsc lzero) : Set₁ where open Substitution using (weakenElimAsc; _ElimAsc/Var_) typedSub : TypedSub ElimAsc Fin lzero typedSub = record { _⊢_wf = _⊢_wf ; _⊢_∈_ = _⊢V_∈_ ; typeExtension = record { weaken = weakenElimAsc } ; typeTermApplication = record { _/_ = _ElimAsc/Var_ } ; termSimple = VarSubst.simple } open TypedSub typedSub public renaming (_⊢/_∈_ to _⊢/Var_∈_) hiding (_⊢_wf; _⊢_∈_; typeExtension) -- Simple typed variable substitutions. field typedSimple : TypedSimple typedSub open TypedSimple typedSimple public renaming (lookup to /∈-lookup) -- Lifts well-typed Term₁-terms to well-typed Term₂-terms. field ∈-lift : ∀ {n} {Γ : Ctx n} {x a} → Γ ⊢V x ∈ a → Γ ⊢Var′ x ∈ a module TypedVarSubstApp (_⊢V_∈_ : Typing ElimAsc Fin ElimAsc lzero) (liftTyped : LiftTo-Var′∈ _⊢V_∈_) where open LiftTo-Var′∈ liftTyped open Substitution hiding (subst; _/Var_) renaming (_Elim/Var_ to _/Var_) open RenamingCommutes using (Kind[∈⌊⌋]-/Var) -- A helper. ∈-↑′ : ∀ {m n} {Δ : Ctx n} {Γ : Ctx m} {k ρ} → Δ ⊢ k Kind′/Var ρ kd → Δ ⊢/Var ρ ∈ Γ → kd (k Kind′/Var ρ) ∷ Δ ⊢/Var ρ VarSubst.↑ ∈ kd k ∷ Γ ∈-↑′ k/ρ-kd ρ∈Γ = ∈-↑ (wf-kd k/ρ-kd) ρ∈Γ -- Convert between well-kindedness judgments for variables. V∈-Var∈ : ∀ {n} {Γ : Ctx n} {x a k} → a ≡ kd k → Γ ⊢V x ∈ a → Γ ⊢Var x ∈ k V∈-Var∈ refl xT∈kd-k with ∈-lift xT∈kd-k V∈-Var∈ refl xT∈kd-k | ∈-tp x∈k = x∈k mutual -- Renamings preserve well-formedness of ascriptions. wf-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a ρ} → Γ ⊢ a wf → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a ElimAsc/Var ρ wf wf-/Var (wf-kd k-kd) ρ∈Γ = wf-kd (kd-/Var k-kd ρ∈Γ) wf-/Var (wf-tp a⇉a⋯a) ρ∈Γ = wf-tp (Nf⇉-/Var a⇉a⋯a ρ∈Γ) -- Renamings preserve well-formedness of kinds. kd-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {k ρ} → Γ ⊢ k kd → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ k Kind′/Var ρ kd kd-/Var (kd-⋯ a⇉a⋯a b⇉b⋯b) ρ∈Γ = kd-⋯ (Nf⇉-/Var a⇉a⋯a ρ∈Γ) (Nf⇉-/Var b⇉b⋯b ρ∈Γ) kd-/Var (kd-Π j-kd k-kd) ρ∈Γ = let j/ρ-kd = kd-/Var j-kd ρ∈Γ in kd-Π j/ρ-kd (kd-/Var k-kd (∈-↑′ j/ρ-kd ρ∈Γ)) -- Renamings preserve synthesized kinds of normal types. Nf⇉-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} → Γ ⊢Nf a ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Nf a /Var ρ ⇉ k Kind′/Var ρ Nf⇉-/Var (⇉-⊥-f Γ-ctx) ρ∈Γ = ⇉-⊥-f (/∈-wf ρ∈Γ) Nf⇉-/Var (⇉-⊤-f Γ-ctx) ρ∈Γ = ⇉-⊤-f (/∈-wf ρ∈Γ) Nf⇉-/Var (⇉-∀-f k-kd a⇉a⋯a) ρ∈Γ = let k/ρ-kd = kd-/Var k-kd ρ∈Γ in ⇉-∀-f k/ρ-kd (Nf⇉-/Var a⇉a⋯a (∈-↑′ k/ρ-kd ρ∈Γ)) Nf⇉-/Var (⇉-→-f a⇉a⋯a b⇉b⋯b) ρ∈Γ = ⇉-→-f (Nf⇉-/Var a⇉a⋯a ρ∈Γ) (Nf⇉-/Var b⇉b⋯b ρ∈Γ) Nf⇉-/Var (⇉-Π-i j-kd a⇉k) ρ∈Γ = let j/ρ-kd = kd-/Var j-kd ρ∈Γ in ⇉-Π-i j/ρ-kd (Nf⇉-/Var a⇉k (∈-↑′ j/ρ-kd ρ∈Γ)) Nf⇉-/Var (⇉-s-i a∈b⋯c) ρ∈Γ = ⇉-s-i (Ne∈-/Var a∈b⋯c ρ∈Γ) -- Renamings preserve the kinds of variables. Var∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {x k ρ} → Γ ⊢Var x ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Var (Vec.lookup ρ x) ∈ k Kind′/Var ρ Var∈-/Var {ρ = ρ} (⇉-var x Γ-ctx Γ[x]≡kd-k) ρ∈Γ = V∈-Var∈ (cong (_ElimAsc/Var ρ) Γ[x]≡kd-k) (/∈-lookup ρ∈Γ x) Var∈-/Var (⇇-⇑ x∈j j<∷k k-kd) ρ∈Γ = ⇇-⇑ (Var∈-/Var x∈j ρ∈Γ) (<∷-/Var j<∷k ρ∈Γ) (kd-/Var k-kd ρ∈Γ) -- Renamings preserve synthesized kinds of neutral types. Ne∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} → Γ ⊢Ne a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Ne a /Var ρ ∈ k Kind′/Var ρ Ne∈-/Var (∈-∙ x∈j k⇉as⇉l) ρ∈Γ = ∈-∙ (Var∈-/Var x∈j ρ∈Γ) (Sp⇉-/Var k⇉as⇉l ρ∈Γ) -- Renamings preserve spine kindings. Sp⇉-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {as j k ρ} → Γ ⊢ j ⇉∙ as ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ ⇉∙ as //Var ρ ⇉ k Kind′/Var ρ Sp⇉-/Var ⇉-[] ρ∈Γ = ⇉-[] Sp⇉-/Var (⇉-∷ {a} {_} {j} {k} a⇇j j-kd k[a]⇉as⇉l) ρ∈Γ = ⇉-∷ (Nf⇇-/Var a⇇j ρ∈Γ) (kd-/Var j-kd ρ∈Γ) (subst (_ ⊢_⇉∙ _ ⇉ _) (Kind[∈⌊⌋]-/Var k a j) (Sp⇉-/Var k[a]⇉as⇉l ρ∈Γ)) -- Renamings preserve checked kinds of neutral types. Nf⇇-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} → Γ ⊢Nf a ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Nf a /Var ρ ⇇ k Kind′/Var ρ Nf⇇-/Var (⇇-⇑ a⇉j j<∷k) ρ∈Γ = ⇇-⇑ (Nf⇉-/Var a⇉j ρ∈Γ) (<∷-/Var j<∷k ρ∈Γ) -- Renamings preserve subkinding. <∷-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k ρ} → Γ ⊢ j <∷ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ <∷ k Kind′/Var ρ <∷-/Var (<∷-⋯ a₂<:a₁ b₁<:b₂) ρ∈Γ = <∷-⋯ (<:-/Var a₂<:a₁ ρ∈Γ) (<:-/Var b₁<:b₂ ρ∈Γ) <∷-/Var (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) ρ∈Γ = <∷-Π (<∷-/Var j₂<∷j₁ ρ∈Γ) (<∷-/Var k₁<∷k₂ (∈-↑ (<∷-/Var-wf k₁<∷k₂ ρ∈Γ) ρ∈Γ)) (kd-/Var Πj₁k₁-kd ρ∈Γ) -- Renamings preserve subtyping. <:-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b ρ} → Γ ⊢ a <: b → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a /Var ρ <: b /Var ρ <:-/Var (<:-trans a<:b b<:c) ρ∈Γ = <:-trans (<:-/Var a<:b ρ∈Γ) (<:-/Var b<:c ρ∈Γ) <:-/Var (<:-⊥ a⇉a⋯a) ρ∈Γ = <:-⊥ (Nf⇉-/Var a⇉a⋯a ρ∈Γ) <:-/Var (<:-⊤ a⇉a⋯a) ρ∈Γ = <:-⊤ (Nf⇉-/Var a⇉a⋯a ρ∈Γ) <:-/Var (<:-∀ k₂<∷k₁ a₁<:a₂ Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁) ρ∈Γ = <:-∀ (<∷-/Var k₂<∷k₁ ρ∈Γ) (<:-/Var a₁<:a₂ (∈-↑ (<:-/Var-wf a₁<:a₂ ρ∈Γ) ρ∈Γ)) (Nf⇉-/Var Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁ ρ∈Γ) <:-/Var (<:-→ a₂<:a₁ b₁<:b₂) ρ∈Γ = <:-→ (<:-/Var a₂<:a₁ ρ∈Γ) (<:-/Var b₁<:b₂ ρ∈Γ) <:-/Var (<:-∙ x∈j j⇉as₁<:as₂⇉k) ρ∈Γ = <:-∙ (Var∈-/Var x∈j ρ∈Γ) (Sp≃-/Var j⇉as₁<:as₂⇉k ρ∈Γ) <:-/Var (<:-⟨| a∈b⋯c) ρ∈Γ = <:-⟨| (Ne∈-/Var a∈b⋯c ρ∈Γ) <:-/Var (<:-|⟩ a∈b⋯c) ρ∈Γ = <:-|⟩ (Ne∈-/Var a∈b⋯c ρ∈Γ) <:⇇-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b k ρ} → Γ ⊢ a <: b ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a /Var ρ <: b /Var ρ ⇇ k Kind′/Var ρ <:⇇-/Var (<:-⇇ a⇇k b⇇k a<:b) ρ∈Γ = <:-⇇ (Nf⇇-/Var a⇇k ρ∈Γ) (Nf⇇-/Var b⇇k ρ∈Γ) (<:-/Var a<:b ρ∈Γ) <:⇇-/Var (<:-λ a₁<:a₂ Λj₁a₁⇇Πjk Λj₂a₂⇇Πjk) ρ∈Γ = <:-λ (<:⇇-/Var a₁<:a₂ (∈-↑ (<:⇇-/Var-wf a₁<:a₂ ρ∈Γ) ρ∈Γ)) (Nf⇇-/Var Λj₁a₁⇇Πjk ρ∈Γ) (Nf⇇-/Var Λj₂a₂⇇Πjk ρ∈Γ) -- Renamings preserve type equality. ≃-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b k ρ} → Γ ⊢ a ≃ b ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a /Var ρ ≃ b /Var ρ ⇇ k Kind′/Var ρ ≃-/Var (<:-antisym k-kd a<:b b<:a) ρ∈Γ = <:-antisym (kd-/Var k-kd ρ∈Γ) (<:⇇-/Var a<:b ρ∈Γ) (<:⇇-/Var b<:a ρ∈Γ) Sp≃-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {as bs j k ρ} → Γ ⊢ j ⇉∙ as ≃ bs ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ ⇉∙ as //Var ρ ≃ bs //Var ρ ⇉ k Kind′/Var ρ Sp≃-/Var ≃-[] ρ∈Γ = ≃-[] Sp≃-/Var (≃-∷ {a} {_} {_} {_} {j} {k} a≃b as≃bs) ρ∈Γ = ≃-∷ (≃-/Var a≃b ρ∈Γ) (subst (_ ⊢_⇉∙ _ ≃ _ ⇉ _) (Kind[∈⌊⌋]-/Var k a j) (Sp≃-/Var as≃bs ρ∈Γ)) -- Helpers (to satisfy the termination checker). -- -- These are simply (manual) expansions of the form -- -- XX-/Var-wf x ρ∈Γ = wf-/Var (wf-∷₁ (XX-ctx x)) ρ∈Γ -- -- to ensure the above definitions remain structurally recursive -- in the various derivations. kd-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k ρ} → kd j ∷ Γ ⊢ k kd → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf kd-/Var-wf (kd-⋯ a∈a⋯a _) ρ∈Γ = Nf⇉-/Var-wf a∈a⋯a ρ∈Γ kd-/Var-wf (kd-Π j-kd _) ρ∈Γ = kd-/Var-wf j-kd ρ∈Γ Nf⇉-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Nf a ⇉ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Nf⇉-/Var-wf (⇉-⊥-f (j-wf ∷ _)) ρ∈Γ = wf-/Var j-wf ρ∈Γ Nf⇉-/Var-wf (⇉-⊤-f (j-wf ∷ _)) ρ∈Γ = wf-/Var j-wf ρ∈Γ Nf⇉-/Var-wf (⇉-∀-f k-kd _) ρ∈Γ = kd-/Var-wf k-kd ρ∈Γ Nf⇉-/Var-wf (⇉-→-f a⇉a⋯a _) ρ∈Γ = Nf⇉-/Var-wf a⇉a⋯a ρ∈Γ Nf⇉-/Var-wf (⇉-Π-i j-kd _) ρ∈Γ = kd-/Var-wf j-kd ρ∈Γ Nf⇉-/Var-wf (⇉-s-i a∈b⋯c) ρ∈Γ = Ne∈-/Var-wf a∈b⋯c ρ∈Γ Ne∈-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Ne a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Ne∈-/Var-wf (∈-∙ x∈k _) ρ∈Γ = Var∈-/Var-wf x∈k ρ∈Γ Var∈-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Var a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Var∈-/Var-wf (⇉-var x (j-wf ∷ _) _) ρ∈Γ = wf-/Var j-wf ρ∈Γ Var∈-/Var-wf (⇇-⇑ x∈j _ _) ρ∈Γ = Var∈-/Var-wf x∈j ρ∈Γ Nf⇇-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k ρ} → kd j ∷ Γ ⊢Nf a ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf Nf⇇-/Var-wf (⇇-⇑ a⇉j _) ρ∈Γ = Nf⇉-/Var-wf a⇉j ρ∈Γ <∷-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k l ρ} → kd j ∷ Γ ⊢ k <∷ l → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf <∷-/Var-wf (<∷-⋯ a₂<:a₁ _) ρ∈Γ = <:-/Var-wf a₂<:a₁ ρ∈Γ <∷-/Var-wf (<∷-Π j₂<∷j₁ _ _) ρ∈Γ = <∷-/Var-wf j₂<∷j₁ ρ∈Γ <:-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b j ρ} → kd j ∷ Γ ⊢ a <: b → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf <:-/Var-wf (<:-trans a<:b _) ρ∈Γ = <:-/Var-wf a<:b ρ∈Γ <:-/Var-wf (<:-⊥ a⇉a⋯a) ρ∈Γ = Nf⇉-/Var-wf a⇉a⋯a ρ∈Γ <:-/Var-wf (<:-⊤ a⇉a⋯a) ρ∈Γ = Nf⇉-/Var-wf a⇉a⋯a ρ∈Γ <:-/Var-wf (<:-∀ k₂<∷k₁ _ _) ρ∈Γ = <∷-/Var-wf k₂<∷k₁ ρ∈Γ <:-/Var-wf (<:-→ a₂<:a₁ _) ρ∈Γ = <:-/Var-wf a₂<:a₁ ρ∈Γ <:-/Var-wf (<:-∙ x∈j _) ρ∈Γ = Var∈-/Var-wf x∈j ρ∈Γ <:-/Var-wf (<:-⟨| a∈b⋯c) ρ∈Γ = Ne∈-/Var-wf a∈b⋯c ρ∈Γ <:-/Var-wf (<:-|⟩ a∈b⋯c) ρ∈Γ = Ne∈-/Var-wf a∈b⋯c ρ∈Γ <:⇇-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b j k ρ} → kd j ∷ Γ ⊢ a <: b ⇇ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf <:⇇-/Var-wf (<:-⇇ a⇇k _ _) ρ∈Γ = Nf⇇-/Var-wf a⇇k ρ∈Γ <:⇇-/Var-wf (<:-λ _ Λj₁a₁⇇Πjk _) ρ∈Γ = Nf⇇-/Var-wf Λj₁a₁⇇Πjk ρ∈Γ ≅-/Var-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k l ρ} → kd j ∷ Γ ⊢ k ≅ l → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ kd (j Kind′/Var ρ) wf ≅-/Var-wf (<∷-antisym _ _ j<∷k _) ρ∈Γ = <∷-/Var-wf j<∷k ρ∈Γ -- Renamings preserve kind equality. ≅-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k ρ} → Γ ⊢ j ≅ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j Kind′/Var ρ ≅ k Kind′/Var ρ ≅-/Var (<∷-antisym j-kd k-kd j<∷k k<∷j) ρ∈Γ = <∷-antisym (kd-/Var j-kd ρ∈Γ) (kd-/Var k-kd ρ∈Γ) (<∷-/Var j<∷k ρ∈Γ) (<∷-/Var k<∷j ρ∈Γ) -- Renamings preserve wrapped variable typing Var′∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {x k ρ} → Γ ⊢Var′ x ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Var′ (Vec.lookup ρ x) ∈ k ElimAsc/Var ρ Var′∈-/Var (∈-tp x∈k) ρ∈Γ = ∈-tp (Var∈-/Var x∈k ρ∈Γ) Var′∈-/Var {ρ = ρ} (∈-tm x Γ-ctx Γ[x]≡tp-t) ρ∈Γ = subst (_ ⊢Var′ _ ∈_) (cong (_ElimAsc/Var ρ) Γ[x]≡tp-t) (∈-lift (/∈-lookup ρ∈Γ x)) -- Well-kinded renamings in canonically kinded types, i.e. lemmas -- showing that renaming preserves kinding. -- -- Note that these are pure renamings that cannot change the kinds of -- variables (i.e. they cannot be used to implement context conversion -- or narrowing). module KindedRenaming where open Substitution using (termLikeLemmasElimAsc) typedVarSubst : TypedVarSubst ElimAsc lzero typedVarSubst = record { _⊢_wf = _⊢_wf ; typeExtension = ElimCtx.weakenOps ; typeVarApplication = AppLemmas.application appLemmas ; wf-wf = wf-ctx ; /-wk = refl ; id-vanishes = id-vanishes ; /-⊙ = /-⊙ } where open TermLikeLemmas termLikeLemmasElimAsc using (varLiftAppLemmas) open LiftAppLemmas varLiftAppLemmas open TypedVarSubst typedVarSubst hiding (_⊢_wf) renaming (_⊢Var_∈_ to _⊢GenVar_∈_) -- Liftings from generic variable typings to variable kindings. liftTyped : LiftTo-Var′∈ _⊢GenVar_∈_ liftTyped = record { typedSimple = typedSimple ; ∈-lift = ∈-lift } where ∈-lift : ∀ {n} {Γ : Ctx n} {x a} → Γ ⊢GenVar x ∈ a → Γ ⊢Var′ x ∈ a ∈-lift (∈-var x Γ-ctx) = ∈-var′ x Γ-ctx open TypedVarSubstApp _⊢GenVar_∈_ liftTyped public open Substitution hiding (subst) -- Weakening preserves well-formedness of kinds. kd-weaken : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢ a wf → Γ ⊢ k kd → a ∷ Γ ⊢ weakenKind′ k kd kd-weaken a-wf k-kd = kd-/Var k-kd (∈-wk a-wf) -- Weakening preserves variable kinding. Var∈-weaken : ∀ {n} {Γ : Ctx n} {a x k} → Γ ⊢ a wf → Γ ⊢Var x ∈ k → a ∷ Γ ⊢Var Vec.lookup VarSubst.wk x ∈ weakenKind′ k Var∈-weaken a-wf x∈k = Var∈-/Var x∈k (∈-wk a-wf) Var′∈-weaken : ∀ {n} {Γ : Ctx n} {a x b} → Γ ⊢ a wf → Γ ⊢Var′ x ∈ b → a ∷ Γ ⊢Var′ suc x ∈ weakenElimAsc b Var′∈-weaken a-wf x∈b = subst (_ ⊢Var′_∈ _) VarLemmas./-wk (Var′∈-/Var x∈b (∈-wk a-wf)) -- Weakening preserves spine kinding. Sp⇉-weaken : ∀ {n} {Γ : Ctx n} {a bs j k} → Γ ⊢ a wf → Γ ⊢ j ⇉∙ bs ⇉ k → a ∷ Γ ⊢ weakenKind′ j ⇉∙ weakenSpine bs ⇉ weakenKind′ k Sp⇉-weaken a-wf j⇉bs⇉k = Sp⇉-/Var j⇉bs⇉k (∈-wk a-wf) -- Weakening preserves checked kinding. Nf⇇-weaken : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a wf → Γ ⊢Nf b ⇇ k → (a ∷ Γ) ⊢Nf weakenElim b ⇇ weakenKind′ k Nf⇇-weaken a-wf b⇇k = Nf⇇-/Var b⇇k (∈-wk a-wf) -- Weakening preserves subkinding. <∷-weaken : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢ a wf → Γ ⊢ j <∷ k → (a ∷ Γ) ⊢ weakenKind′ j <∷ weakenKind′ k <∷-weaken a-wf j<∷k = <∷-/Var j<∷k (∈-wk a-wf) -- Weakening preserves subtyping. <:-weaken : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a wf → Γ ⊢ b <: c → a ∷ Γ ⊢ weakenElim b <: weakenElim c <:-weaken a-wf b<:c = <:-/Var b<:c (∈-wk a-wf) <:⇇-weaken : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a wf → Γ ⊢ b <: c ⇇ k → a ∷ Γ ⊢ weakenElim b <: weakenElim c ⇇ weakenKind′ k <:⇇-weaken a-wf b<:c = <:⇇-/Var b<:c (∈-wk a-wf) -- Weakening preserves well-formedness of ascriptions. wf-weaken : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a wf → Γ ⊢ b wf → a ∷ Γ ⊢ weakenElimAsc b wf wf-weaken a-wf b-wf = wf-/Var b-wf (∈-wk a-wf) -- Weakening preserves kind and type equality. ≃-weaken : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a wf → Γ ⊢ b ≃ c ⇇ k → a ∷ Γ ⊢ weakenElim b ≃ weakenElim c ⇇ weakenKind′ k ≃-weaken a-wf b≃c = ≃-/Var b≃c (∈-wk a-wf) ≅-weaken : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢ a wf → Γ ⊢ j ≅ k → a ∷ Γ ⊢ weakenKind′ j ≅ weakenKind′ k ≅-weaken a-wf j≅k = ≅-/Var j≅k (∈-wk a-wf) Sp≃-weaken : ∀ {n} {Γ : Ctx n} {a bs cs j k} → Γ ⊢ a wf → Γ ⊢ j ⇉∙ bs ≃ cs ⇉ k → a ∷ Γ ⊢ weakenKind′ j ⇉∙ weakenSpine bs ≃ weakenSpine cs ⇉ weakenKind′ k Sp≃-weaken a-wf bs≃cs = Sp≃-/Var bs≃cs (∈-wk a-wf) -- Operations on well-formed contexts that require weakening of -- well-formedness judgments. module WfCtxOps where open KindedRenaming using (wf-weaken) wfWeakenOps : WellFormedWeakenOps weakenOps wfWeakenOps = record { wf-weaken = wf-weaken } open WellFormedWeakenOps wfWeakenOps public hiding (wf-weaken) renaming (lookup to lookup-wf) -- Lookup the kind of a type variable in a well-formed context. lookup-kd : ∀ {m} {Γ : Ctx m} {k} x → Γ ctx → ElimCtx.lookup Γ x ≡ kd k → Γ ⊢ k kd lookup-kd x Γ-ctx Γ[x]≡kd-k = wf-kd-inv (subst (_ ⊢_wf) Γ[x]≡kd-k (lookup-wf Γ-ctx x)) open WfCtxOps -- A corollary (validity of variable kinding): the kinds of variables -- are well-formed. Var∈-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Var a ∈ k → Γ ⊢ k kd Var∈-valid (⇉-var x Γ-ctx Γ[x]≡kd-k) = lookup-kd x Γ-ctx Γ[x]≡kd-k Var∈-valid (⇇-⇑ x∈j j<∷k k-kd) = k-kd ---------------------------------------------------------------------- -- Context narrowing -- -- The various judgments are preserved by narrowing of kind -- ascriptions in their contexts. module ContextNarrowing where open Substitution using (termLikeLemmasElim; termLikeLemmasKind′; termLikeLemmasElimAsc) open TermLikeLemmas termLikeLemmasElimAsc using (varLiftAppLemmas) open LiftAppLemmas varLiftAppLemmas open KindedRenaming using (kd-weaken; <∷-weaken; Var′∈-weaken) private module EL = LiftAppLemmas (TermLikeLemmas.varLiftAppLemmas termLikeLemmasElim) module KL = LiftAppLemmas (TermLikeLemmas.varLiftAppLemmas termLikeLemmasKind′) -- NOTE. Rather than proving context narrowing directly by induction -- on typing derivations, we instead define a more flexible variant -- of well-typed variable substitutions based on the canonical -- variable kinding judgment (_⊢Var_∈_). This judgment features a -- subsumption rule (∈-⇑), which is not available in the generic -- variable judgment from Data.Fin.Substitutions.Typed that we used -- to define basic typed renamings. With support for subsumption in -- typed renamings, we get context narrowing "for free", as it is -- just another variable substitution (one that happens to change -- the kind rather than the name of a variable). This way of -- proving context narrowing is more convenient since we can reuse -- the generic lemmas proven for typed variable substitution and -- avoid some explicit fiddling with context. -- -- Note also that we could not have defined typed renamings -- directly using the _⊢Var_∈_ judgment since that would have -- required a weakening lemma for subkiding, which in turn is -- implemented via typed renamings. -- The trivial lifting from _⊢Var′_∈_ to itself, and simple typed -- variable substitutions. liftTyped : LiftTo-Var′∈ _⊢Var′_∈_ liftTyped = record { typedSimple = record { typedWeakenOps = record { ∈-weaken = Var′∈-weaken ; ∈-wf = Var′∈-ctx ; /-wk = refl ; /-weaken = /-weaken ; weaken-/-∷ = weaken-/-∷ } ; ∈-var = ∈-var′ ; wf-wf = wf-ctx ; id-vanishes = id-vanishes } ; ∈-lift = λ x∈a → x∈a } where weakenLemmas : WeakenLemmas ElimAsc Fin weakenLemmas = record { appLemmas = appLemmas ; /-wk = refl } open WeakenLemmas weakenLemmas open LiftTo-Var′∈ liftTyped open TypedVarSubstApp _⊢Var′_∈_ liftTyped -- A typed renaming that narrows the kind of the first type -- variable. ∈-<∷-sub : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j kd → Γ ⊢ j <∷ k → (kd k ∷ Γ) ctx → kd j ∷ Γ ⊢/Var id ∈ kd k ∷ Γ ∈-<∷-sub j-kd j<∷k k∷Γ-ctx = ∈-tsub (∈-tp (⇇-⇑ x∈k (<∷-weaken j-wf j<∷k) k-kd)) where j-wf = wf-kd j-kd Γ-ctx = kd-ctx j-kd x∈k = ⇉-var zero (j-wf ∷ Γ-ctx) refl k-kd = kd-weaken j-wf (wf-kd-inv (wf-∷₁ k∷Γ-ctx)) -- Narrowing the kind of the first type variable preserves -- well-formedness of kinds. ⇓-kd : ∀ {n} {Γ : Ctx n} {j₁ j₂ k} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ k kd → kd j₁ ∷ Γ ⊢ k kd ⇓-kd j₁-kd j₁<∷j₂ k-kd = subst (_ ⊢_kd) (KL.id-vanishes _) (kd-/Var k-kd (∈-<∷-sub j₁-kd j₁<∷j₂ (kd-ctx k-kd))) -- Narrowing the kind of the first type variable preserves -- well-kindedness. ⇓-Nf⇉ : ∀ {n} {Γ : Ctx n} {j₁ j₂ a k} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢Nf a ⇉ k → kd j₁ ∷ Γ ⊢Nf a ⇉ k ⇓-Nf⇉ j₁-kd j₁<∷j₂ a⇉k = subst₂ (_ ⊢Nf_⇉_) (EL.id-vanishes _) (KL.id-vanishes _) (Nf⇉-/Var a⇉k (∈-<∷-sub j₁-kd j₁<∷j₂ (Nf⇉-ctx a⇉k))) -- Narrowing the kind of the first type variable preserves -- subkinding and subtyping. ⇓-<∷ : ∀ {n} {Γ : Ctx n} {j₁ j₂ k₁ k₂} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ k₁ <∷ k₂ → kd j₁ ∷ Γ ⊢ k₁ <∷ k₂ ⇓-<∷ j₁-kd j₁<∷j₂ k₁<∷k₂ = subst₂ (_ ⊢_<∷_) (KL.id-vanishes _) (KL.id-vanishes _) (<∷-/Var k₁<∷k₂ (∈-<∷-sub j₁-kd j₁<∷j₂ (<∷-ctx k₁<∷k₂))) ⇓-<: : ∀ {n} {Γ : Ctx n} {j₁ j₂ a₁ a₂} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ a₁ <: a₂ → kd j₁ ∷ Γ ⊢ a₁ <: a₂ ⇓-<: j₁-kd j₁<∷j₂ a₁<:a₂ = subst₂ (_ ⊢_<:_) (EL.id-vanishes _) (EL.id-vanishes _) (<:-/Var a₁<:a₂ (∈-<∷-sub j₁-kd j₁<∷j₂ (<:-ctx a₁<:a₂))) ⇓-<:⇇ : ∀ {n} {Γ : Ctx n} {j₁ j₂ a₁ a₂ k} → Γ ⊢ j₁ kd → Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ a₁ <: a₂ ⇇ k → kd j₁ ∷ Γ ⊢ a₁ <: a₂ ⇇ k ⇓-<:⇇ j₁-kd j₁<∷j₂ a₁<:a₂∈k = subst (_ ⊢ _ <: _ ⇇_) (KL.id-vanishes _) (subst₂ (_ ⊢_<:_⇇ _) (EL.id-vanishes _) (EL.id-vanishes _) (<:⇇-/Var a₁<:a₂∈k (∈-<∷-sub j₁-kd j₁<∷j₂ (<:⇇-ctx a₁<:a₂∈k)))) open KindedRenaming open ContextNarrowing open Substitution hiding (subst) private module TV = TypedVarSubst typedVarSubst -- Some corollaries of context narrowing: transitivity of subkinding -- and kind equality are admissible. <∷-trans : ∀ {n} {Γ : Ctx n} {j k l} → Γ ⊢ j <∷ k → Γ ⊢ k <∷ l → Γ ⊢ j <∷ l <∷-trans (<∷-⋯ a₂<:a₁ b₁<:b₂) (<∷-⋯ a₃<:a₂ b₂<:b₃) = <∷-⋯ (<:-trans a₃<:a₂ a₂<:a₁) (<:-trans b₁<:b₂ b₂<:b₃) <∷-trans (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) (<∷-Π j₃<∷j₂ k₂<∷k₃ _) = let j₃-kd = wf-kd-inv (wf-∷₁ (<∷-ctx k₂<∷k₃)) in <∷-Π (<∷-trans j₃<∷j₂ j₂<∷j₁) (<∷-trans (⇓-<∷ j₃-kd j₃<∷j₂ k₁<∷k₂) k₂<∷k₃) Πj₁k₁-kd ≅-trans : ∀ {n} {Γ : Ctx n} {j k l} → Γ ⊢ j ≅ k → Γ ⊢ k ≅ l → Γ ⊢ j ≅ l ≅-trans (<∷-antisym j-kd _ j<∷k k<∷j) (<∷-antisym _ l-kd k<∷l l<∷k) = <∷-antisym j-kd l-kd (<∷-trans j<∷k k<∷l) (<∷-trans l<∷k k<∷j) -- Some more corollaries: subsumption is admissible in canonical kind -- checking, checked subtyping and kind equality. -- -- NOTE. The proof of (<:⇇-⇑) is by induction on subkinding -- derivations (the second hypothesis) rather than kinding derivations -- (the first hypothesis). Nf⇇-⇑ : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢Nf a ⇇ j → Γ ⊢ j <∷ k → Γ ⊢Nf a ⇇ k Nf⇇-⇑ (⇇-⇑ a⇇j₁ j₁<∷j₂) j₂<∷j₃ = ⇇-⇑ a⇇j₁ (<∷-trans j₁<∷j₂ j₂<∷j₃) <:⇇-⇑ : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢ a <: b ⇇ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢ a <: b ⇇ k <:⇇-⇑ (<:-⇇ a⇇c₁⋯d₁ b⇇c₁⋯d₁ a<:b) (<∷-⋯ c₂<:c₁ d₁<:d₂) _ = <:-⇇ (Nf⇇-⇑ a⇇c₁⋯d₁ (<∷-⋯ c₂<:c₁ d₁<:d₂)) (Nf⇇-⇑ b⇇c₁⋯d₁ (<∷-⋯ c₂<:c₁ d₁<:d₂)) a<:b <:⇇-⇑ (<:-λ a₁<:a₂ Λj₁a₁⇇Πk₁l₁ Λj₂a₂⇇Πk₁l₁) (<∷-Π k₂<∷k₁ l₁<∷l₂ Πk₁l₁-kd) (kd-Π k₂-kd l₂-kd) = <:-λ (<:⇇-⇑ (⇓-<:⇇ k₂-kd k₂<∷k₁ a₁<:a₂) l₁<∷l₂ l₂-kd) (Nf⇇-⇑ Λj₁a₁⇇Πk₁l₁ (<∷-Π k₂<∷k₁ l₁<∷l₂ Πk₁l₁-kd)) (Nf⇇-⇑ Λj₂a₂⇇Πk₁l₁ (<∷-Π k₂<∷k₁ l₁<∷l₂ Πk₁l₁-kd)) ≃-⇑ : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢ a ≃ b ⇇ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢ a ≃ b ⇇ k ≃-⇑ (<:-antisym j-kd a<:b b<:a) j<∷k k-kd = <:-antisym k-kd (<:⇇-⇑ a<:b j<∷k k-kd) (<:⇇-⇑ b<:a j<∷k k-kd) ------------------------------------------------------------------------ -- Reflexivity of the various relations. -- -- NOTE. The proof is by mutual induction in the structure of the -- types and kinds being related to themselves, and then by -- case-analysis on formation/kinding derivations (rather than -- induction on the typing/kinding derivations directly). For -- example, the proof of (<:⇇-reflNf⇉-⇑) is not decreasing in the -- kinding derivation of `a' in the type abstraction (Π-intro) case. -- To avoid clutter, we do not make the corresponding type/kind -- parameters explicit in the implementations below: thanks to the -- structure of canonical formation/kinding, every kind/type -- constructor corresponds to exactly one kinding/typing rule -- (i.e. the rules are syntax directed). mutual -- Reflexivity of canonical subkinding. <∷-refl : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k <∷ k <∷-refl (kd-⋯ a⇉a⋯a b⇉b⋯b) = <∷-⋯ (<:-reflNf⇉ a⇉a⋯a) (<:-reflNf⇉ b⇉b⋯b) <∷-refl (kd-Π j-kd k-kd) = <∷-Π (<∷-refl j-kd) (<∷-refl k-kd) (kd-Π j-kd k-kd) -- Reflexivity of canonical subtyping. <:-reflNf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ a <: a <:-reflNf⇉ (⇉-⊥-f Γ-ctx) = <:-⊥ (⇉-⊥-f Γ-ctx) <:-reflNf⇉ (⇉-⊤-f Γ-ctx) = <:-⊤ (⇉-⊤-f Γ-ctx) <:-reflNf⇉ (⇉-∀-f k-kd a⇉a⋯a) = <:-∀ (<∷-refl k-kd) (<:-reflNf⇉ a⇉a⋯a) (⇉-∀-f k-kd a⇉a⋯a) <:-reflNf⇉ (⇉-→-f a⇉a⋯a b⇉b⋯b) = <:-→ (<:-reflNf⇉ a⇉a⋯a) (<:-reflNf⇉ b⇉b⋯b) <:-reflNf⇉ (⇉-s-i (∈-∙ x∈j j⇉as⇉k)) = <:-∙ x∈j (≃-reflSp⇉ j⇉as⇉k) <:⇇-reflNf⇉-⇑ : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢Nf a ⇉ j → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢ a <: a ⇇ k <:⇇-reflNf⇉-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂) _ = let a⇇b₂⋯c₂ = ⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂) in <:-⇇ a⇇b₂⋯c₂ a⇇b₂⋯c₂ (<:-reflNf⇉ a⇉b₁⋯c₁) <:⇇-reflNf⇉-⇑ (⇉-Π-i j₁-kd a⇉k₁) (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) (kd-Π j₂-kd k₂-kd) = let a<:a⇇k₂ = <:⇇-reflNf⇉-⇑ (⇓-Nf⇉ j₂-kd j₂<∷j₁ a⇉k₁) k₁<∷k₂ k₂-kd Λj₁a⇇Πj₂k₂ = ⇇-⇑ (⇉-Π-i j₁-kd a⇉k₁) (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) in <:-λ a<:a⇇k₂ Λj₁a⇇Πj₂k₂ Λj₁a⇇Πj₂k₂ <:⇇-reflNf⇇ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ⊢ k kd → Γ ⊢ a <: a ⇇ k <:⇇-reflNf⇇ (⇇-⇑ a⇉k j<∷k) k-kd = <:⇇-reflNf⇉-⇑ a⇉k j<∷k k-kd -- Reflexivity of canonical spine equality. ≃-reflSp⇉ : ∀ {n} {Γ : Ctx n} {as j k} → Γ ⊢ j ⇉∙ as ⇉ k → Γ ⊢ j ⇉∙ as ≃ as ⇉ k ≃-reflSp⇉ ⇉-[] = ≃-[] ≃-reflSp⇉ (⇉-∷ a⇇j j-kd k[a]⇉as⇉l) = ≃-∷ (≃-reflNf⇇ a⇇j j-kd) (≃-reflSp⇉ k[a]⇉as⇉l) -- A checked variant of reflexivity. ≃-reflNf⇇ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → Γ ⊢ k kd → Γ ⊢ a ≃ a ⇇ k ≃-reflNf⇇ a⇇k k-kd = <:-antisym k-kd (<:⇇-reflNf⇇ a⇇k k-kd) (<:⇇-reflNf⇇ a⇇k k-kd) -- Reflexivity of canonical kind equality. ≅-refl : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k ≅ k ≅-refl k-kd = <∷-antisym k-kd k-kd (<∷-refl k-kd) (<∷-refl k-kd) -- A shorthand. <:⇇-reflNf⇉ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ⊢ k kd → Γ ⊢ a <: a ⇇ k <:⇇-reflNf⇉ a⇉k k-kd = <:⇇-reflNf⇉-⇑ a⇉k (<∷-refl k-kd) k-kd -- Some corollaryies of reflexivity. -- The synthesized kinds of normal forms kind-check. Nf⇉⇒Nf⇇ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → Γ ⊢Nf a ⇇ k Nf⇉⇒Nf⇇ a⇉k = ⇇-⇑ a⇉k (<∷-refl (Nf⇉-valid a⇉k)) -- An admissible operator introduction rule accepting a checked body. Nf⇇-Π-i : ∀ {n} {Γ : Ctx n} {j a k} → Γ ⊢ j kd → kd j ∷ Γ ⊢Nf a ⇇ k → Γ ⊢Nf Λ∙ j a ⇇ Π j k Nf⇇-Π-i j-kd (⇇-⇑ a⇉l l<∷k) = ⇇-⇑ (⇉-Π-i j-kd a⇉l) (<∷-Π (<∷-refl j-kd) l<∷k (kd-Π j-kd (Nf⇉-valid a⇉l))) -- Admissible projection rules for canonically kinded proper types. <:-⟨|-Nf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ b <: a <:-⟨|-Nf⇉ a⇉b⋯c with Nf⇉-≡ a⇉b⋯c <:-⟨|-Nf⇉ a⇉a⋯a | refl , refl = <:-reflNf⇉ a⇉a⋯a <:-⟨|-Nf⇇ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ b <: a <:-⟨|-Nf⇇ (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = <:-trans b₂<:b₁ (<:-⟨|-Nf⇉ a⇉b₁⋯c₁) <:-|⟩-Nf⇉ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Γ ⊢ a <: c <:-|⟩-Nf⇉ a⇉b⋯c with Nf⇉-≡ a⇉b⋯c <:-|⟩-Nf⇉ a⇉a⋯a | refl , refl = <:-reflNf⇉ a⇉a⋯a <:-|⟩-Nf⇇ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Nf a ⇇ b ⋯ c → Γ ⊢ a <: c <:-|⟩-Nf⇇ (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) = <:-trans (<:-|⟩-Nf⇉ a⇉b₁⋯c₁) c₁<:c₂ -- An admissible interval rule for checked subtyping. <:⇇-⋯-i : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a <: b ⇇ c ⋯ d → Γ ⊢ a <: b ⇇ a ⋯ b <:⇇-⋯-i (<:-⇇ a⇇c⋯d b⇇c⋯d a<:b) = let a⇉a⋯a = Nf⇇-s-i a⇇c⋯d b⇉b⋯b = Nf⇇-s-i b⇇c⋯d in <:-⇇ (⇇-⇑ a⇉a⋯a (<∷-⋯ (<:-reflNf⇉ a⇉a⋯a) a<:b)) (⇇-⇑ b⇉b⋯b (<∷-⋯ a<:b (<:-reflNf⇉ b⇉b⋯b))) a<:b -- An inversion lemma about variable kinding. Var∈-inv : ∀ {n} {Γ : Ctx n} {x k} → Γ ⊢Var x ∈ k → ∃ λ j → lookup Γ x ≡ kd j × Γ ⊢ j <∷ k × Γ ⊢ j kd × Γ ⊢ k kd Var∈-inv (⇉-var x Γ-ctx Γ[x]≡kd-j) = let j-kd = lookup-kd x Γ-ctx Γ[x]≡kd-j in _ , Γ[x]≡kd-j , <∷-refl j-kd , j-kd , j-kd Var∈-inv (⇇-⇑ x∈j j<∷k k-kd) = let l , Γ[x]≡kd-l , l<∷j , l-kd , _ = Var∈-inv x∈j in l , Γ[x]≡kd-l , <∷-trans l<∷j j<∷k , l-kd , k-kd -- A "canonical forms" lemma for operator equality. ≃-Π-can : ∀ {n} {Γ : Ctx n} {a₁ a₂ j k} → Γ ⊢ a₁ ≃ a₂ ⇇ Π j k → ∃ λ j₁ → ∃ λ b₁ → ∃ λ j₂ → ∃ λ b₂ → Γ ⊢Nf Λ∙ j₁ b₁ ⇇ Π j k × Γ ⊢Nf Λ∙ j₂ b₂ ⇇ Π j k × Γ ⊢ Π j k kd × Γ ⊢ j <∷ j₁ × Γ ⊢ j <∷ j₂ × kd j ∷ Γ ⊢ b₁ <: b₂ ⇇ k × kd j ∷ Γ ⊢ b₂ <: b₁ ⇇ k × a₁ ≡ Λ∙ j₁ b₁ × a₂ ≡ Λ∙ j₂ b₂ ≃-Π-can (<:-antisym Πjk-kd (<:-λ a₁<:a₂ (⇇-⇑ (⇉-Π-i j₁-kd a₁⇉k₁) (<∷-Π j<∷j₁ k₁<∷k Πj₁k₁-kd)) (⇇-⇑ (⇉-Π-i j₂-kd a₂⇉k₂) (<∷-Π j<∷j₂ k₂<∷k Πj₂k₂-kd))) (<:-λ a₂<:a₁ _ _)) = _ , _ , _ , _ , (⇇-⇑ (⇉-Π-i j₁-kd a₁⇉k₁) (<∷-Π j<∷j₁ k₁<∷k Πj₁k₁-kd)) , (⇇-⇑ (⇉-Π-i j₂-kd a₂⇉k₂) (<∷-Π j<∷j₂ k₂<∷k Πj₂k₂-kd)) , Πjk-kd , j<∷j₁ , j<∷j₂ , a₁<:a₂ , a₂<:a₁ , refl , refl ------------------------------------------------------------------------ -- Simplification of well-formed kinding. module _ where open SimpleKinding open SimpleKinding.Kinding renaming (_⊢Var_∈_ to _⊢sVar_∈_; _⊢Ne_∈_ to _⊢sNe_∈_) open KindedHereditarySubstitution open ≡-Reasoning -- Simplification of well-formedness and kinding: well-formed kinds -- resp. well-kinded normal forms, neutrals and spines are also -- simply well-formed resp. well-kinded. Var∈-sVar∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Var a ∈ k → ⌊ Γ ⌋Ctx ⊢sVar a ∈ ⌊ k ⌋ Var∈-sVar∈ {_} {Γ} {_} {k} (⇉-var x Γ-ctx Γ[x]≡kd-k) = ∈-var x (begin SimpleCtx.lookup ⌊ Γ ⌋Ctx x ≡⟨ ⌊⌋Asc-lookup Γ x ⟩ ⌊ ElimCtx.lookup Γ x ⌋Asc ≡⟨ cong ⌊_⌋Asc Γ[x]≡kd-k ⟩ kd ⌊ k ⌋ ∎) where open ContextConversions Var∈-sVar∈ (⇇-⇑ x∈j j<∷k k-kd) = subst (_ ⊢sVar _ ∈_) (<∷-⌊⌋ j<∷k) (Var∈-sVar∈ x∈j) mutual kd-kds : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → ⌊ Γ ⌋Ctx ⊢ k kds kd-kds (kd-⋯ a∈a⋯a b∈b⋯b) = kds-⋯ (Nf⇉-Nf∈ a∈a⋯a) (Nf⇉-Nf∈ b∈b⋯b) kd-kds (kd-Π j-kd k-kd) = kds-Π (kd-kds j-kd) (kd-kds k-kd) Nf⇉-Nf∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇉ k → ⌊ Γ ⌋Ctx ⊢Nf a ∈ ⌊ k ⌋ Nf⇉-Nf∈ (⇉-⊥-f Γ-ctx) = ∈-⊥-f Nf⇉-Nf∈ (⇉-⊤-f Γ-ctx) = ∈-⊤-f Nf⇉-Nf∈ (⇉-∀-f k-kd a⇉a⋯a) = ∈-∀-f (kd-kds k-kd) (Nf⇉-Nf∈ a⇉a⋯a) Nf⇉-Nf∈ (⇉-→-f a∈a⋯a b∈b⋯b) = ∈-→-f (Nf⇉-Nf∈ a∈a⋯a) (Nf⇉-Nf∈ b∈b⋯b) Nf⇉-Nf∈ (⇉-Π-i j-kd a⇉k) = ∈-Π-i (kd-kds j-kd) (Nf⇉-Nf∈ a⇉k) Nf⇉-Nf∈ (⇉-s-i a∈b⋯c) = ∈-ne (Ne∈-sNe∈ a∈b⋯c) Ne∈-sNe∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Ne a ∈ k → ⌊ Γ ⌋Ctx ⊢sNe a ∈ ⌊ k ⌋ Ne∈-sNe∈ (∈-∙ x∈j j⇉as⇉k) = ∈-∙ (Var∈-sVar∈ x∈j) (Sp⇉-Sp∈ j⇉as⇉k) Sp⇉-Sp∈ : ∀ {n} {Γ : Ctx n} {as j k} → Γ ⊢ j ⇉∙ as ⇉ k → ⌊ Γ ⌋Ctx ⊢ ⌊ j ⌋ ∋∙ as ∈ ⌊ k ⌋ Sp⇉-Sp∈ ⇉-[] = ∈-[] Sp⇉-Sp∈ (⇉-∷ a⇇j j-kd k[a]⇉as⇉l) = ∈-∷ (Nf⇇-Nf∈ a⇇j) (subst (_ ⊢_∋∙ _ ∈ _) (⌊⌋-Kind/⟨⟩ _) (Sp⇉-Sp∈ k[a]⇉as⇉l)) Nf⇇-Nf∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Nf a ⇇ k → ⌊ Γ ⌋Ctx ⊢Nf a ∈ ⌊ k ⌋ Nf⇇-Nf∈ (⇇-⇑ a⇉j j<∷k) = subst (_ ⊢Nf _ ∈_) (<∷-⌊⌋ j<∷k) (Nf⇉-Nf∈ a⇉j)
41.059984
79
0.487432
5e0fff5b75e6878d3dea047e87002bb751ad4f67
578
agda
Agda
agda-stdlib/src/Relation/Binary/SymmetricClosure.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/SymmetricClosure.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/SymmetricClosure.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Construct.Closure.Symmetric module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.SymmetricClosure where open import Relation.Binary.Construct.Closure.Symmetric public {-# WARNING_ON_IMPORT "Relation.Binary.SymmetricClosure was deprecated in v0.16. Use Relation.Binary.Construct.Closure.Symmetric instead." #-}
32.111111
72
0.586505
9a097f81d25944405d0e754a4c098c6e01adbc06
5,432
agda
Agda
Cubical/Homotopy/Freudenthal.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Homotopy/Freudenthal.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Homotopy/Freudenthal.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- Freudenthal suspension theorem -} {-# OPTIONS --safe #-} module Cubical.Homotopy.Freudenthal where open import Cubical.Foundations.Everything -- open import Cubical.Data.HomotopyGroup open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.HITs.Nullification open import Cubical.HITs.Susp open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec ; elim to trElim) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.WedgeConnectivity open import Cubical.Homotopy.Loopspace open import Cubical.HITs.SmashProduct open import Cubical.HITs.S1 hiding (encode) open import Cubical.HITs.Sn open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.Foundations.Equiv.HalfAdjoint module _ {ℓ} (n : HLevel) {A : Pointed ℓ} (connA : isConnected (suc (suc n)) (typ A)) where σ : typ A → typ (Ω (∙Susp (typ A))) σ a = merid a ∙ merid (pt A) ⁻¹ private 2n+2 = suc n + suc n module WC (p : north ≡ north) = WedgeConnectivity (suc n) (suc n) A connA A connA (λ a b → ( (σ b ≡ p → hLevelTrunc 2n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p)) , isOfHLevelΠ 2n+2 λ _ → isOfHLevelTrunc 2n+2 )) (λ a r → ∣ a , (rCancel' (merid a) ∙ rCancel' (merid (pt A)) ⁻¹) ∙ r ∣) (λ b r → ∣ b , r ∣) (funExt λ r → cong′ (λ w → ∣ pt A , w ∣) (cong (_∙ r) (rCancel' (rCancel' (merid (pt A)))) ∙ lUnit r ⁻¹)) fwd : (p : north ≡ north) (a : typ A) → hLevelTrunc 2n+2 (fiber σ p) → hLevelTrunc 2n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p) fwd p a = Trunc.rec (isOfHLevelTrunc 2n+2) (uncurry (WC.extension p a)) isEquivFwd : (p : north ≡ north) (a : typ A) → isEquiv (fwd p a) isEquivFwd p a .equiv-proof = elim.isEquivPrecompose (λ _ → pt A) (suc n) (λ a → ( (∀ t → isContr (fiber (fwd p a) t)) , isProp→isOfHLevelSuc n (isPropΠ λ _ → isPropIsContr) )) (isConnectedPoint (suc n) connA (pt A)) .equiv-proof (λ _ → Trunc.elim (λ _ → isProp→isOfHLevelSuc (n + suc n) isPropIsContr) (λ fib → subst (λ k → isContr (fiber k ∣ fib ∣)) (cong (Trunc.rec (isOfHLevelTrunc 2n+2) ∘ uncurry) (funExt (WC.right p) ⁻¹)) (subst isEquiv (funExt (Trunc.mapId) ⁻¹) (idIsEquiv _) .equiv-proof ∣ fib ∣) )) .fst .fst a interpolate : (a : typ A) → PathP (λ i → typ A → north ≡ merid a i) (λ x → merid x ∙ merid a ⁻¹) merid interpolate a i x j = compPath-filler (merid x) (merid a ⁻¹) (~ i) j Code : (y : Susp (typ A)) → north ≡ y → Type ℓ Code north p = hLevelTrunc 2n+2 (fiber σ p) Code south q = hLevelTrunc 2n+2 (fiber merid q) Code (merid a i) p = Glue (hLevelTrunc 2n+2 (fiber (interpolate a i) p)) (λ { (i = i0) → _ , (fwd p a , isEquivFwd p a) ; (i = i1) → _ , idEquiv _ }) encode : (y : Susp (typ A)) (p : north ≡ y) → Code y p encode y = J Code ∣ pt A , rCancel' (merid (pt A)) ∣ encodeMerid : (a : typ A) → encode south (merid a) ≡ ∣ a , refl ∣ encodeMerid a = cong (transport (λ i → gluePath i)) (funExt⁻ (WC.left refl a) _ ∙ λ i → ∣ a , lem (rCancel' (merid a)) (rCancel' (merid (pt A))) i ∣) ∙ transport (PathP≡Path gluePath _ _) (λ i → ∣ a , (λ j k → rCancel-filler' (merid a) i j k) ∣) where gluePath : I → Type _ gluePath i = hLevelTrunc 2n+2 (fiber (interpolate a i) (λ j → merid a (i ∧ j))) lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → (p ∙ q ⁻¹) ∙ q ≡ p lem p q = assoc p (q ⁻¹) q ⁻¹ ∙∙ cong (p ∙_) (lCancel q) ∙∙ rUnit p ⁻¹ contractCodeSouth : (p : north ≡ south) (c : Code south p) → encode south p ≡ c contractCodeSouth p = Trunc.elim (λ _ → isOfHLevelPath 2n+2 (isOfHLevelTrunc 2n+2) _ _) (uncurry λ a → J (λ p r → encode south p ≡ ∣ a , r ∣) (encodeMerid a)) isConnectedMerid : isConnectedFun 2n+2 (merid {A = typ A}) isConnectedMerid p = encode south p , contractCodeSouth p isConnectedσ : isConnectedFun 2n+2 σ isConnectedσ = transport (λ i → isConnectedFun 2n+2 (interpolate (pt A) (~ i))) isConnectedMerid isConn→isConnSusp : ∀ {ℓ} {A : Pointed ℓ} → isConnected 2 (typ A) → isConnected 2 (Susp (typ A)) isConn→isConnSusp {A = A} iscon = ∣ north ∣ , trElim (λ _ → isOfHLevelSuc 1 (isOfHLevelTrunc 2 _ _)) (suspToPropElim (pt A) (λ _ → isOfHLevelTrunc 2 _ _) refl) FreudenthalEquiv : ∀ {ℓ} (n : HLevel) (A : Pointed ℓ) → isConnected (2 + n) (typ A) → hLevelTrunc ((suc n) + (suc n)) (typ A) ≃ hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north))) FreudenthalEquiv n A iscon = connectedTruncEquiv _ (σ n {A = A} iscon) (isConnectedσ _ iscon) FreudenthalIso : ∀ {ℓ} (n : HLevel) (A : Pointed ℓ) → isConnected (2 + n) (typ A) → Iso (hLevelTrunc ((suc n) + (suc n)) (typ A)) (hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north)))) FreudenthalIso n A iscon = connectedTruncIso _ (σ n {A = A} iscon) (isConnectedσ _ iscon)
39.079137
103
0.547496
4371a7ea2f0a5d85b59dca5b39a7e86745127f4a
1,540
agda
Agda
Cubical/HITs/TypeQuotients/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/TypeQuotients/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/TypeQuotients/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- Type quotients: -} {-# OPTIONS --safe #-} module Cubical.HITs.TypeQuotients.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.HITs.TypeQuotients.Base private variable ℓ ℓ' ℓ'' : Level A : Type ℓ R : A → A → Type ℓ' B : A /ₜ R → Type ℓ'' C : A /ₜ R → A /ₜ R → Type ℓ'' elim : (f : (a : A) → (B [ a ])) → ((a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) ------------------------------------------------------------------------ → (x : A /ₜ R) → B x elim f feq [ a ] = f a elim f feq (eq/ a b r i) = feq a b r i rec : {X : Type ℓ''} → (f : A → X) → (∀ (a b : A) → R a b → f a ≡ f b) ------------------------------------- → A /ₜ R → X rec f feq [ a ] = f a rec f feq (eq/ a b r i) = feq a b r i elimProp : ((x : A /ₜ R ) → isProp (B x)) → ((a : A) → B ( [ a ])) --------------------------------- → (x : A /ₜ R) → B x elimProp Bprop f [ a ] = f a elimProp Bprop f (eq/ a b r i) = isOfHLevel→isOfHLevelDep 1 Bprop (f a) (f b) (eq/ a b r) i elimProp2 : ((x y : A /ₜ R ) → isProp (C x y)) → ((a b : A) → C [ a ] [ b ]) -------------------------------------- → (x y : A /ₜ R) → C x y elimProp2 Cprop f = elimProp (λ x → isPropΠ (λ y → Cprop x y)) (λ x → elimProp (λ y → Cprop [ x ] y) (f x))
28
91
0.438961
038e8f8610511ff21833c44e873ebe595b4c7979
7,919
agda
Agda
Cubical/Structures/Group.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/Group.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/Group.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.Group where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.FunExtEquiv open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_) open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.Monoid private variable ℓ ℓ' : Level group-axiom : (X : Type ℓ) → monoid-structure X → Type ℓ group-axiom G ((e , _·_) , _) = ((x : G) → Σ G (λ x' → (x · x' ≡ e) × (x' · x ≡ e))) group-structure : Type ℓ → Type ℓ group-structure = add-to-structure (monoid-structure) group-axiom Groups : Type (ℓ-suc ℓ) Groups {ℓ} = TypeWithStr ℓ group-structure -- Extracting components of a group ⟨_⟩ : Groups {ℓ} → Type ℓ ⟨ (G , _) ⟩ = G id : (G : Groups {ℓ}) → ⟨ G ⟩ id (_ , ((e , _) , _) , _) = e group-operation : (G : Groups {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ group-operation (_ , ((_ , f) , _) , _) = f infixl 20 group-operation syntax group-operation G x y = x ·⟨ G ⟩ y group-is-set : (G : Groups {ℓ}) → isSet ⟨ G ⟩ group-is-set (_ , (_ , (P , _)) , _) = P group-assoc : (G : Groups {ℓ}) → (x y z : ⟨ G ⟩) → (x ·⟨ G ⟩ (y ·⟨ G ⟩ z)) ≡ ((x ·⟨ G ⟩ y) ·⟨ G ⟩ z) group-assoc (_ , (_ , (_ , P , _)) , _) = P group-runit : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → x ·⟨ G ⟩ (id G) ≡ x group-runit (_ , (_ , (_ , _ , P , _)) , _) = P group-lunit : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → (id G) ·⟨ G ⟩ x ≡ x group-lunit (_ , (_ , (_ , _ , _ , P)) , _) = P group-Σinv : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → Σ (⟨ G ⟩) (λ x' → (x ·⟨ G ⟩ x' ≡ (id G)) × (x' ·⟨ G ⟩ x ≡ (id G))) group-Σinv (_ , _ , P) = P -- Defining the inverse function inv : (G : Groups {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ inv (_ , _ , P) x = fst (P x) group-rinv : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → x ·⟨ G ⟩ (inv G x) ≡ id G group-rinv (_ , _ , P) x = fst (snd (P x)) group-linv : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → (inv G x) ·⟨ G ⟩ x ≡ id G group-linv (_ , _ , P) x = snd (snd (P x)) -- Iso for groups are those for monoids group-iso : StrIso group-structure ℓ group-iso = add-to-iso monoid-structure monoid-iso group-axiom -- Auxiliary lemmas for subtypes (taken from Escardo) to-Σ-≡ : {X : Type ℓ} {A : X → Type ℓ'} {σ τ : Σ X A} → (Σ (fst σ ≡ fst τ) λ p → PathP (λ i → A (p i)) (snd σ) (snd τ)) → σ ≡ τ to-Σ-≡ (eq , p) = λ i → eq i , p i to-subtype-≡ : {X : Type ℓ} {A : X → Type ℓ'} {x y : X} {a : A x} {b : A y} → ((x : X) → isProp (A x)) → x ≡ y → Path (Σ X (λ x → A x)) (x , a) (y , b) to-subtype-≡ {x = x} {y} {a} {b} f eq = to-Σ-≡ (eq , toPathP (f y _ b)) -- TODO: this proof without toPathP? -- Group axiom isProp group-axiom-isProp : (X : Type ℓ) → (s : monoid-structure X) → isProp (group-axiom X s) group-axiom-isProp X (((e , _·_) , s@(isSet , assoc , rid , lid))) = isPropPi γ where γ : (x : X) → isProp (Σ X (λ x' → (x · x' ≡ e) × (x' · x ≡ e))) γ x (y , a , q) (z , p , b) = to-subtype-≡ u t where t : y ≡ z t = inv-lemma X e _·_ s x y z q p u : (x' : X) → isProp ((x · x' ≡ e) × (x' · x ≡ e)) u x' = isPropΣ (isSet _ _) (λ _ → isSet _ _) -- Group paths equivalent to equality group-is-SNS : SNS {ℓ} group-structure group-iso group-is-SNS = add-axioms-SNS monoid-structure monoid-iso group-axiom group-axiom-isProp monoid-is-SNS GroupPath : (M N : Groups {ℓ}) → (M ≃[ group-iso ] N) ≃ (M ≡ N) GroupPath M N = SIP group-structure group-iso group-is-SNS M N -- Trying to improve isomorphisms to only have to preserve -- _·_ group-iso' : StrIso group-structure ℓ group-iso' G S f = (x y : ⟨ G ⟩) → equivFun f (x ·⟨ G ⟩ y) ≡ equivFun f x ·⟨ S ⟩ equivFun f y -- Trying to reduce isomorphisms to simpler ones -- First we prove that both notions of group-iso are equal -- since both are props and there is are functions from -- one to the other -- Functions group-iso→group-iso' : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → group-iso G S f → group-iso' G S f group-iso→group-iso' G S f γ = snd γ group-iso'→group-iso : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → group-iso' G S f → group-iso G S f group-iso'→group-iso G S f γ = η , γ where g : ⟨ G ⟩ → ⟨ S ⟩ g = equivFun f e : ⟨ G ⟩ e = id G d : ⟨ S ⟩ d = id S δ : g e ≡ g e ·⟨ S ⟩ g e δ = g e ≡⟨ cong g (sym (group-lunit G _)) ⟩ g (e ·⟨ G ⟩ e) ≡⟨ γ e e ⟩ g e ·⟨ S ⟩ g e ∎ η : g e ≡ d η = g e ≡⟨ sym (group-runit S _) ⟩ g e ·⟨ S ⟩ d ≡⟨ cong (λ - → g e ·⟨ S ⟩ -) (sym (group-rinv S _)) ⟩ g e ·⟨ S ⟩ (g e ·⟨ S ⟩ (inv S (g e))) ≡⟨ group-assoc S _ _ _ ⟩ (g e ·⟨ S ⟩ g e) ·⟨ S ⟩ (inv S (g e)) ≡⟨ cong (λ - → group-operation S - (inv S (g e))) (sym δ) ⟩ g e ·⟨ S ⟩ (inv S (g e)) ≡⟨ group-rinv S _ ⟩ d ∎ -- Both are Props isProp-Iso : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → isProp (group-iso G S f) isProp-Iso G S f = isPropΣ (group-is-set S _ _) (λ _ → isPropPi (λ x → isPropPi λ y → group-is-set S _ _)) isProp-Iso' : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → isProp (group-iso' G S f) isProp-Iso' G S f = isPropPi (λ x → isPropPi λ y → group-is-set S _ _) -- Propositional equality to-Prop-≡ : {X Y : Type ℓ} (f : X → Y) (g : Y → X) → isProp X → isProp Y → X ≡ Y to-Prop-≡ {ℓ} {X} {Y} f g p q = isoToPath (iso f g aux₂ aux₁) where aux₁ : (x : X) → g (f x) ≡ x aux₁ x = p _ _ aux₂ : (y : Y) → f (g y) ≡ y aux₂ y = q _ _ -- Finally both are equal group-iso'≡group-iso : group-iso' {ℓ} ≡ group-iso group-iso'≡group-iso = funExt₃ γ where γ : ∀ (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → group-iso' G S f ≡ group-iso G S f γ G S f = to-Prop-≡ (group-iso'→group-iso G S f) (group-iso→group-iso' G S f) (isProp-Iso' G S f) (isProp-Iso G S f) -- And Finally we have what we wanted group-is-SNS' : SNS {ℓ} group-structure group-iso' group-is-SNS' = transport γ group-is-SNS where γ : SNS {ℓ} group-structure group-iso ≡ SNS {ℓ} group-structure group-iso' γ = cong (SNS group-structure) (sym group-iso'≡group-iso) GroupPath' : (M N : Groups {ℓ}) → (M ≃[ group-iso' ] N) ≃ (M ≡ N) GroupPath' M N = SIP group-structure group-iso' group-is-SNS' M N --------------------------------------------------------------------- -- Abelians group (just add one axiom and prove that it is a hProp) --------------------------------------------------------------------- abelian-group-axiom : (X : Type ℓ) → group-structure X → Type ℓ abelian-group-axiom G (((_ , _·_), _), _) = (x y : G) → x · y ≡ y · x abelian-group-structure : Type ℓ → Type ℓ abelian-group-structure = add-to-structure (group-structure) abelian-group-axiom AbGroups : Type (ℓ-suc ℓ) AbGroups {ℓ} = TypeWithStr ℓ abelian-group-structure abelian-group-iso : StrIso abelian-group-structure ℓ abelian-group-iso = add-to-iso group-structure group-iso abelian-group-axiom abelian-group-axiom-isProp : (X : Type ℓ) → (s : group-structure X) → isProp (abelian-group-axiom X s) abelian-group-axiom-isProp X ((_ , (group-isSet , _)) , _) = isPropPi (λ x → isPropPi λ y → group-isSet _ _) abelian-group-is-SNS : SNS {ℓ} abelian-group-structure abelian-group-iso abelian-group-is-SNS = add-axioms-SNS group-structure group-iso abelian-group-axiom abelian-group-axiom-isProp group-is-SNS AbGroupPath : (M N : AbGroups {ℓ}) → (M ≃[ abelian-group-iso ] N) ≃ (M ≡ N) AbGroupPath M N = SIP abelian-group-structure abelian-group-iso abelian-group-is-SNS M N
33.133891
103
0.519636
222304ad04ae5ba648d6f7bc0a355fc4e17cf0d2
12,068
agda
Agda
src/Implicits/Substitutions/Lemmas.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Substitutions/Lemmas.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Substitutions/Lemmas.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude module Implicits.Substitutions.Lemmas where open import Implicits.Syntax.Type open import Implicits.Syntax.Term hiding (var) open import Implicits.Syntax.Context open import Implicits.WellTyped open import Implicits.Substitutions open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Vec.Properties open import Extensions.Substitution import Category.Applicative.Indexed as Applicative open Applicative.Morphism using (op-<$>) module TypeLemmas where open import Implicits.Substitutions.Lemmas.Type public open import Implicits.Substitutions.Lemmas.MetaType public {- module SubstLemmas (_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set) where open TypingRules _⊢ᵣ_ private ⊢subst : ∀ {m n} {Γ₁ Γ₂ : Ktx n m} {t₁ t₂ : Term n m} {a₁ a₂ : Type n} → Γ₁ ≡ Γ₂ → t₁ ≡ t₂ → a₁ ≡ a₂ → Γ₁ ⊢ t₁ ∈ a₁ → Γ₂ ⊢ t₂ ∈ a₂ ⊢subst refl refl refl hyp = hyp ⊢substCtx : ∀ {m n} {Γ₁ Γ₂ : Ktx n m} {t : Term n m} {a : Type n} → Γ₁ ≡ Γ₂ → Γ₁ ⊢ t ∈ a → Γ₂ ⊢ t ∈ a ⊢substCtx refl hyp = hyp ⊢substTp : ∀ {m n} {Γ : Ktx n m} {t : Term n m} {a₁ a₂ : Type n} → a₁ ≡ a₂ → Γ ⊢ t ∈ a₁ → Γ ⊢ t ∈ a₂ ⊢substTp refl hyp = hyp module WtTermLemmas where weaken : ∀ {ν n} {K : Ktx ν n} {t : Term ν n} {a b : Type ν} → K ⊢ t ∈ a → b ∷Γ K ⊢ tmtm-weaken t ∈ a -- weaken {Γ = Γ} {b = b} ⊢t = Var.wk /Var ⊢substCtx (C.wkVar-/Var-∷ Γ b) ⊢t module TermTypeLemmas where open TermTypeSubst private module T = TypeLemmas private module TS = TypeSubst private module V = VarLemmas /-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} → let open TS.Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/tp₁_) open Lifted lift₁ using () renaming (_/_ to _/₁_) open TS.Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/tp₂_) open Lifted lift₂ using () renaming (_/_ to _/₂_) in ∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) → (∀ i x → tvar x /tp₁ ρ₁ ↑⋆₁ i ≡ tvar x /tp₂ ρ₂ ↑⋆₂ i) → ∀ i {m} (t : Term (i N+ n) m) → t /₁ ρ₁ ↑⋆₁ i ≡ t /₂ ρ₂ ↑⋆₂ i /-↑⋆ ρ₁ ρ₂ hyp i (new x) = refl /-↑⋆ ρ₁ ρ₂ hyp i (var x) = refl /-↑⋆ ρ₁ ρ₂ hyp i (Λ t) = cong Λ (/-↑⋆ ρ₁ ρ₂ hyp (1 N+ i) t) /-↑⋆ ρ₁ ρ₂ hyp i (λ' a t) = cong₂ λ' (T./-↑⋆ ρ₁ ρ₂ hyp i a) (/-↑⋆ ρ₁ ρ₂ hyp i t) /-↑⋆ ρ₁ ρ₂ hyp i (t [ b ]) = cong₂ _[_] (/-↑⋆ ρ₁ ρ₂ hyp i t) (T./-↑⋆ ρ₁ ρ₂ hyp i b) /-↑⋆ ρ₁ ρ₂ hyp i (s · t) = cong₂ _·_ (/-↑⋆ ρ₁ ρ₂ hyp i s) (/-↑⋆ ρ₁ ρ₂ hyp i t) /-↑⋆ ρ₁ ρ₂ hyp i (x) = {!!} /-wk : ∀ {m n} (t : Term m n) → t / TypeSubst.wk ≡ weaken t /-wk t = /-↑⋆ TypeSubst.wk VarSubst.wk (λ k x → begin tvar x T./ T.wk T.↑⋆ k ≡⟨ T.var-/-wk-↑⋆ k x ⟩ tvar (finlift k suc x) ≡⟨ cong tvar (sym (V.var-/-wk-↑⋆ k x)) ⟩ tvar (lookup x (V.wk V.↑⋆ k)) ≡⟨ refl ⟩ tvar x TS./Var V.wk V.↑⋆ k ∎) 0 t module KtxLemmas where open KtxSubst hiding (ktx-map) private module Tp = TypeLemmas private module Var = VarSubst ktx-map-cong : ∀ {ν μ n} {f g : Type ν → Type μ} → f ≗ g → _≗_ {A = Ktx ν n} (ktx-map f) (ktx-map g) ktx-map-cong K = ? -- Term variable substitution (renaming) commutes with type -- substitution. {- /Var-/ : ∀ {m ν n l} (ρ : Sub Fin m n) (Γ : Ktx ν n) (σ : Sub Type ν l) → (Γ /Var ρ) / σ ≡ Γ /Var (ρ / σ) /Var-/ ρ Γ σ = begin (ρ /Var Γ) / σ ≡⟨ sym (map-∘ _ _ ρ) ⟩ map (λ x → (lookup x Γ) Tp./ σ) ρ ≡⟨ map-cong (λ x → sym (Tp.lookup-⊙ x)) ρ ⟩ map (λ x → lookup x (Γ / σ)) ρ ∎ -- Term variable substitution (renaming) commutes with weakening of -- typing contexts with an additional type variable. /Var-weaken : ∀ {m n k} (ρ : Sub Fin m k) (Γ : Ctx n k) → weaken (ρ /Var Γ) ≡ ρ /Var (weaken Γ) /Var-weaken ρ Γ = begin (ρ /Var Γ) / Tp.wk ≡⟨ ? ⟩ --/Var-/ ρ Γ Tp.wk ρ /Var (weaken Γ) ∎ -} -- Term variable substitution (renaming) commutes with term variable -- lookup in typing context. {- /Var-lookup : ∀ {m n k} (x : Fin m) (ρ : Sub Fin m k) (Γ : Ctx n k) → lookup x (ρ /Var Γ) ≡ lookup (lookup x ρ) Γ /Var-lookup x ρ Γ = op-<$> (lookup-morphism x) _ _ -- Term variable substitution (renaming) commutes with weakening of -- typing contexts with an additional term variable. /Var-∷ : ∀ {m n k} (a : Type n) (ρ : Sub Fin m k) (Γ : Ctx n k) → a ∷ (ρ /Var Γ) ≡ (ρ Var.↑) /Var (a ∷ Γ) /Var-∷ a [] Γ = refl /Var-∷ a (x ∷ ρ) Γ = cong (_∷_ a) (cong (_∷_ (lookup x Γ)) (begin map (λ x → lookup x Γ) ρ ≡⟨ refl ⟩ map (λ x → lookup (suc x) (a ∷ Γ)) ρ ≡⟨ map-∘ _ _ ρ ⟩ map (λ x → lookup x (a ∷ Γ)) (map suc ρ) ∎)) -- Invariants of term variable substitution (renaming) idVar-/Var : ∀ {m n} (Γ : Ctx n m) → Γ ≡ (Var.id /Var Γ) wkVar-/Var-∷ : ∀ {m n} (Γ : Ctx n m) (a : Type n) → Γ ≡ (Var.wk /Var (a ∷ Γ)) idVar-/Var [] = refl idVar-/Var (a ∷ Γ) = cong (_∷_ a) (wkVar-/Var-∷ Γ a) wkVar-/Var-∷ Γ a = begin Γ ≡⟨ idVar-/Var Γ ⟩ Var.id /Var Γ ≡⟨ map-∘ _ _ VarSubst.id ⟩ Var.wk /Var (a ∷ Γ) ∎ ctx-weaken-sub-vanishes : ∀ {ν n} {Γ : Ktx ν n} {a} → (ktx-weaken Γ) / (Tp.sub a) ≡ Γ ctx-weaken-sub-vanishes {Γ = Γ} {a} = begin (Γ / Tp.wk) / (Tp.sub a) ≡⟨ sym $ map-∘ (λ s → s tp/tp Tp.sub a) (λ s → s tp/tp Tp.wk) Γ ⟩ (map (λ s → s tp/tp Tp.wk tp/tp (Tp.sub a)) Γ) ≡⟨ map-cong (TypeLemmas.wk-sub-vanishes) Γ ⟩ (map (λ s → s) Γ) ≡⟨ map-id Γ ⟩ Γ ∎ -} module WtTypeLemmas where open TypeLemmas hiding (_/_; weaken) private module Tp = TypeLemmas module TmTp = TermTypeLemmas module C = KtxLemmas infixl 8 _/_ -- Type substitutions lifted to well-typed terms _/_ : ∀ {m n k} {Γ : Ktx n m} {t : Term n m} {a : Type n} → Γ ⊢ t ∈ a → (σ : Sub Type n k) → Γ ktx/ σ ⊢ t tm/tp σ ∈ a Tp./ σ new c / σ = new c var x / σ = ⊢substTp (lookup-⊙ x) (var x) _/_ {Γ = Γ} (Λ ⊢t) σ = Λ (⊢substCtx eq (⊢t / σ ↑)) where eq : (ktx-weaken Γ) ktx/ (σ Tp.↑) ≡ ktx-weaken (Γ ktx/ σ) {- eq = begin (ktx-map (λ s → s tp/tp Tp.wk) Γ) ktx/ (σ Tp.↑) ≡⟨ KtxLemmas.ktx-map-cong (λ a → a ktx/ (σ Tp.↑)) (KtxLemmas.ktx-map-cong (λ a → Tp./-wk {t = a}) Γ) ⟩ (ktx-map Tp.weaken Γ) ⊙ (σ Tp.↑) ≡⟨ sym $ map-weaken-⊙ Γ σ ⟩ map Tp.weaken (Γ ⊙ σ) ≡⟨ (map-cong (λ a → sym $ Tp./-wk {t = a}) (Γ ⊙ σ)) ⟩ ktx-weaken (Γ ktx/ σ) ∎ -} λ' a ⊢t / σ = λ' (a Tp./ σ) (⊢t / σ) _[_] {a = a} ⊢t b / σ = ⊢substTp (sym (sub-commutes a)) ((⊢t / σ) [ b Tp./ σ ]) ⊢s · ⊢t / σ = (⊢s / σ) · (⊢t / σ) x / σ = ? -- Weakening of terms with additional type variables lifted to -- well-typed terms. weaken : ∀ {m n} {Γ : Ktx n m} {t : Term n m} {a : Type n} → Γ ⊢ t ∈ a → ktx-weaken Γ ⊢ tm-weaken t ∈ Tp.weaken a weaken {t = t} {a = a} ⊢t = ⊢subst refl (TmTp./-wk t) (/-wk {t = a}) (⊢t / wk) -- Weakening of terms with additional type variables lifted to -- collections of well-typed terms. weakenAll : ∀ {m n k} {Γ : Ktx n m} {ts : Vec (Term n m) k} {as : Vec (Type n) k} → Γ ⊢ⁿ ts ∈ as → ktx-weaken Γ ⊢ⁿ map tm-weaken ts ∈ map Tp.weaken as weakenAll {ts = []} {[]} [] = [] weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts -- Shorthand for single-variable type substitutions in well-typed -- terms. _[/_] : ∀ {m n} {Γ : Ktx (1 N+ n) m} {t a} → Γ ⊢ t ∈ a → (b : Type n) → Γ ktx/ sub b ⊢ t tm/tp sub b ∈ a Tp./ sub b ⊢t [/ b ] = ⊢t / sub b {- tm[/tp]-preserves : ∀ {ν n} {Γ : Ctx ν n} {t τ} → Γ ⊢ Λ t ∈ ∀' τ → ∀ a → Γ ⊢ (t tm[/tp a ]) ∈ τ tp[/tp a ] tm[/tp]-preserves {Γ = Γ} {t} {τ} (Λ p) a = ctx-subst C.ctx-weaken-sub-vanishes (p / (Tp.sub a)) where ctx-subst = Prelude.subst (λ c → c ⊢ t tm[/tp a ] ∈ τ tp[/tp a ]) -} module WtTermLemmas where private module Tp = TypeLemmas module TmTp = TermTypeLemmas module TmTm = TermTermSubst module Var = VarSubst module C = KtxLemmas TmSub = TmTm.TermSub Term infix 4 _⇒_⊢_ -- Well-typed term substitutions are collections of well-typed terms. _⇒_⊢_ : ∀ {ν m k} → Ktx ν m → Ktx ν k → TmSub ν m k → Set Γ ⇒ Δ ⊢ s = Δ ⊢ⁿ s ∈ (proj₁ Γ) infixl 8 _/_ _/Var_ infix 10 _↑ -- Application of term variable substitutions (renaming) lifted to -- well-typed terms. _/Var_ : ∀ {ν m n} {K : Ktx ν n} {t : Term ν m} {a : Type ν} (s : Sub Fin m n) → s ktx/Var K ⊢ t ∈ a → K ⊢ t TmTm./Var s ∈ a _/Var_ {K = K} s (new c) = new c _/Var_ {K = K} s (var x) = ? -- ⊢substTp (sym (ktx/Var-lookup x ρ Γ)) (var (lookup x ρ)) _/Var_ {K = K} s (Λ ⊢t) = ? -- Λ (ρ /Var ⊢substCtx (ktx/Var-weaken ρ Γ) ⊢t) _/Var_ {K = K} s (λ' a ⊢t) = ? -- λ' a (ρ Var.↑ /Var ⊢substCtx (ktx/Var-∷ a ρ Γ) ⊢t) s /Var (⊢t [ b ]) = (s /Var ⊢t) [ b ] s /Var (⊢s · ⊢t) = (s /Var ⊢s) · (s /Var ⊢t) s /Var (x) = ? -- Weakening of terms with additional term variables lifted to -- well-typed terms. weaken : ∀ {ν n} {K : Ktx ν n} {t : Term ν n} {a b : Type ν} → K ⊢ t ∈ a → b ∷Γ K ⊢ TmTm.weaken t ∈ a weaken {K = K} {b = b} ⊢t = ? -- Var.wk /Var ⊢substCtx (C.wkVar-/Var-∷ Γ b) ⊢t -- Weakening of terms with additional term variables lifted to -- collections of well-typed terms. weakenAll : ∀ {ν n k} {K : Ktx ν n} {ts : Vec (Term ν n) k} {as : Vec (Type ν) k} {b : Type ν} → K ⊢ⁿ ts ∈ as → (b ∷Γ K) ⊢ⁿ map TmTm.weaken ts ∈ as weakenAll {ts = []} {[]} [] = [] weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts -- Lifting of well-typed term substitutions. _↑ : ∀ {ν n} {Γ : Ktx ν n} {Δ : Ktx ν n} {ρ b} → Γ ⇒ Δ ⊢ ρ → b ∷Γ Γ ⇒ b ∷Γ Δ ⊢ ρ TmTm.↑ ⊢ρ ↑ = var zero ∷ weakenAll ⊢ρ -- The well-typed identity substitution. id : ∀ {ν n} {K : Ktx ν n} → K ⇒ K ⊢ TmTm.id id {K = K} = ? -- id {zero} {._} {K = [] , _} = [] -- id {suc _} {._} {K = a ∷ Γ , _} = id ↑ -- Well-typed weakening (as a substitution). wk : ∀ {m n} {Γ : Ktx n m} {a} → Γ ⇒ a ∷Γ Γ ⊢ TmTm.wk wk = weakenAll id -- A well-typed substitution which only replaces the first variable. sub : ∀ {ν n} {K : Ktx ν n} {t a} → K ⊢ t ∈ a → a ∷Γ K ⇒ K ⊢ TmTm.sub t sub ⊢t = ⊢t ∷ id -- Application of term substitutions lifted to well-typed terms _/_ : ∀ {ν n} {K : Ktx ν n} {Δ : Ktx ν n} {t a s} → K ⊢ t ∈ a → K ⇒ Δ ⊢ s → Δ ⊢ t TmTm./ s ∈ a new c / ⊢ρ = new c var x / ⊢ρ = lookup-⊢ x ⊢ρ _/_ {K = K} {Δ = Δ} {s = s} (Λ ⊢t) ⊢ρ = Λ (⊢t / weaken-⊢p) where weaken-⊢p : ktx-weaken K ⇒ ktx-weaken Δ ⊢ map tm-weaken s weaken-⊢p = (WtTypeLemmas.weakenAll ⊢ρ) λ' a ⊢t / ⊢ρ = λ' a (⊢t / ⊢ρ ↑) (⊢t [ a ]) / ⊢ρ = (⊢t / ⊢ρ) [ a ] (⊢s · ⊢t) / ⊢ρ = (⊢s / ⊢ρ) · (⊢t / ⊢ρ) -- Shorthand for well-typed single-variable term substitutions. _[/_] : ∀ {m n} {Γ : Ctx n m} {s t a b} → b ∷ Γ ⊢ s ∈ a → Γ ⊢ t ∈ b → Γ ⊢ s TmTm./ TmTm.sub t ∈ a ⊢s [/ ⊢t ] = ⊢s / sub ⊢t tm[/tm]-preserves : ∀ {ν n} {Γ : Ctx ν n} {t u a b} → b ∷ Γ ⊢ t ∈ a → Γ ⊢ u ∈ b → Γ ⊢ (t tm[/tm u ]) ∈ a tm[/tm]-preserves ⊢s ⊢t = ⊢s / sub ⊢t open WtTypeLemmas public using () renaming (weaken to ⊢tp-weaken) open WtTermLemmas public using () renaming (_/_ to _⊢/tp_; _[/_] to _⊢[/_]; weaken to ⊢weaken) -}
39.567213
110
0.481936
350c260bace00e0f4d23b468abe033840940f151
1,481
agda
Agda
test/Succeed/DataRecordInductive.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/DataRecordInductive.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/DataRecordInductive.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module DataRecordInductive where module NotMutual where record Nil (A : Set) : Set where constructor [] record Cons (A X : Set) : Set where constructor _∷_ field head : A tail : X open Cons data List (A : Set) : Set where nil : Nil A → List A cons : Cons A (List A) → List A -- works module Constr where map : {A B : Set} → (A → B) → List A → List B map f (nil []) = nil [] map f (cons (x ∷ xs)) = cons (f x ∷ map f xs) -- works, since projections are size preserving module Proj where map : {A B : Set} → (A → B) → List A → List B map f (nil _) = nil [] map f (cons p) = cons (f (head p) ∷ map f (tail p)) module Mutual where mutual data List (A : Set) : Set where nil : Nil A → List A cons : Cons A → List A record Nil (A : Set) : Set where constructor [] -- since Cons is inductive, we are not creating colists record Cons (A : Set) : Set where inductive constructor _∷_ field head : A tail : List A open Cons -- works module Constr where map : {A B : Set} → (A → B) → List A → List B map f (nil []) = nil [] map f (cons (x ∷ xs)) = cons (f x ∷ map f xs) -- works, since projections of an inductive record are size-preserving module Proj where map : {A B : Set} → (A → B) → List A → List B map f (nil _) = nil [] map f (cons p) = cons (f (head p) ∷ map f (tail p))
22.439394
72
0.540176
43d973e1752627e585df4a6379fa6ecae73e0798
292
agda
Agda
test/Succeed/Issue708.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue708.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue708.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate String : Set {-# BUILTIN STRING String #-} record ⊤ : Set where constructor tt data Bool : Set where true false : Bool nonEmpty : String → Set nonEmpty "" = Bool nonEmpty _ = ⊤ foo : ∀ s → nonEmpty s → Bool foo "" true = true foo "" false = false foo s p = false
13.904762
29
0.623288
19688adbc28545d38471f0549a3b9e22f21ccb26
517
agda
Agda
test/Fail/Issue1974.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue1974.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1974.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x record R₁ (F : Set → Set) : Set₁ where constructor mkR₁ field f₁ : ∀ {A} → A → F A open R₁ {{...}} record R₂ (F : Set → Set) : Set₁ where constructor mkR₂ field instance r₁ : R₁ F record R₃ (_ : Set) : Set where constructor mkR₃ postulate instance r₃ : R₂ R₃ A : Set a : A record R₄ : Set where constructor c field f₂ : A postulate F : (r₄ : R₄) → c a ≡ r₄ → Set G : Set → Set G _ = F _ (refl {x = f₁ a})
13.605263
42
0.541586
343c645c216a8355e3e7ea3a9575893f95772fac
832
agda
Agda
test/Fail/Issue503.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue503.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue503.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- div shouldn't termination check, but it also shouldn't make the termination -- checker loop. module Issue503 where data Bool : Set where true : Bool false : Bool if_then_else_ : {C : Set} -> Bool -> C -> C -> C if true then a else b = a if false then a else b = b data Nat : Set where zero : Nat succ : Nat -> Nat pred : Nat -> Nat pred zero = zero pred (succ n) = n _+_ : Nat -> Nat -> Nat zero + b = b succ a + b = succ (a + b) _*_ : Nat -> Nat -> Nat zero * _ = zero succ a * b = (a * b) + b {-# BUILTIN NATURAL Nat #-} {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-} _-_ : Nat -> Nat -> Nat a - zero = a a - succ b = pred (a - b) _<_ : Nat -> Nat -> Bool a < zero = false zero < succ b = true succ a < succ b = a < b div : Nat -> Nat -> Nat div m n = if (m < n) then zero else succ (div (m - n) n)
18.909091
78
0.570913
34fc866f73b8900a2e1d80e718a797433fc14ed6
1,203
agda
Agda
test/bugs/SizedTypesMergeSort.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/bugs/SizedTypesMergeSort.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/bugs/SizedTypesMergeSort.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --sized-types #-} module SizedTypesMergeSort where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} -- sized lists data List (A : Set) : {_ : Size} -> Set where [] : {size : Size} -> List A {size ^} _::_ : {size : Size} -> A -> List A {size} -> List A {size ^} -- CPS split split : {A : Set}{i : Size} -> List A {i} -> {C : Set} -> (List A {i} -> List A {i} -> C) -> C split [] k = k [] [] split (x :: xs) k = split xs (\ l r -> k (x :: r) l) module Sort (A : Set) (compare : A -> A -> {B : Set} -> B -> B -> B) where {- merge is currently rejected by the termination checker it would be nice if it worked see test/succeed/SizedTypesMergeSort.agda -} merge : List A -> List A -> List A merge [] ys = ys merge xs [] = xs merge (x :: xs) (y :: ys) = compare x y (x :: merge xs (y :: ys)) (y :: merge (x :: xs) ys) sort : {i : Size} -> List A {i} -> List A sort [] = [] sort (x :: []) = x :: [] sort (x :: (y :: xs)) = split xs (\ l r -> merge (sort (x :: l)) (sort (y :: r)))
26.152174
74
0.467165
345e1cf559045dd78cfed971f643962d3afdde6a
248
agda
Agda
test/Fail/Issue3810a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3810a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3810a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite postulate A : Set a b : A f : A → A rew₁ : f a ≡ b rew₂ : f ≡ λ _ → a {-# REWRITE rew₁ #-} {-# REWRITE rew₂ #-}
16.533333
46
0.612903
04e6bbd610bb29a7d72dda52fb06c38ec16bac54
533
agda
Agda
agda-stdlib/src/Data/Vec/All/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/All/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/All/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Unary.All.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.All.Properties where open import Data.Vec.Relation.Unary.All.Properties public {-# WARNING_ON_IMPORT "Data.Vec.All.Properties was deprecated in v1.0. Use Data.Vec.Relation.Unary.All.Properties instead." #-}
29.611111
72
0.545966
c7b55ecd6bacf1fb6d27a0ad1291b4dc1337b30c
363
agda
Agda
test/Fail/Issue5294.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue5294.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue5294.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where module M₁ (_ : Set) where postulate A : Set record R : Set₁ where field A : Set module M₂ (r : R) where open M₁ (R.A r) public module Unused (A : Set) (_ : Set) where open M₁ A public postulate r : R open M₂ r postulate P : A → Set data D : Set where c : D F : D → Set F c = A _ : ∀ x → F x → Set _ = λ _ r → P r
10.083333
39
0.559229
5e30bc20cf17ed2db0399c26a9291d5dc1445cf6
768
agda
Agda
src/fot/Common/FOL/FOL-Eq.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/Common/FOL/FOL-Eq.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/Common/FOL/FOL-Eq.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- First-order logic with equality ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module exported all the logical constants and the -- propositional equality. This module is re-exported by the "base" -- modules whose theories are defined on first-order logic + equality. module Common.FOL.FOL-Eq where -- First-order logic (without equality). open import Common.FOL.FOL public -- Propositional equality. open import Common.FOL.Relation.Binary.PropositionalEquality public
36.571429
78
0.552083
34df05fcfee1e8b7b0114d0d49b56de9dba58593
2,729
agda
Agda
src/Optics/Example.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Optics/Example.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Optics/Example.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Data.Nat open import Data.Maybe open import Data.Char open import Data.String open import Data.List hiding (product) open import Relation.Binary.PropositionalEquality import Relation.Binary.PropositionalEquality as PE using (_≡_; refl) import Relation.Binary.Definitions as BD import Relation.Binary as RB ------------------------------------------------------------------------------ open import Function open import Optics.All module Optics.Example where infixl 1 _&_ _&_ = Function._|>_ -- First we declare a record; which must be EXACTLY -- like the record 'Person' below. -- that is; must contain a constructor and -- a number of /simple/ fields (of type Set; no proofs please!) record Person : Set where constructor person field pName : String pAge : ℕ -- Then, we do some template agda: -- Yes,I know it looks weird; but it says: -- Put 'pName' and 'pAge' into scope as -- new identifiers; and run the metacomputation mkLens -- passing this newly created identifiers; the mkLens -- will then bind these identifiers to their respective -- generated lenses for the record Person -- -- IMPORTANT: Note how I did NOT /open Person/; otherwise, we'd -- have to give different names to the lenses. -- -- IMPORTANT: the list of names passed to unquoteDecl must come -- in the same order as the fields of Person. unquoteDecl pName pAge = mkLens (quote Person) (pName ∷ pAge ∷ []) -- Ok; lets do more recors for fun record Store : Set where constructor store field sId : ℕ sManager : Person unquoteDecl sId sManager = mkLens (quote Store) (sId ∷ sManager ∷ []) record Product : Set where constructor product field pId : ℕ pTag : String pStore : Store unquoteDecl pId pTag pStore = mkLens (quote Product) (pId ∷ pTag ∷ pStore ∷ []) -- Let's now do a simple example: mary : Person mary = person "Mary" 41 compilers-from-mary : Store compilers-from-mary = store 0 mary ghc : Product ghc = product 13 "v8.0.0" compilers-from-mary -- Now say mary turns 42 years old; ghc-from-older-mary : Product ghc-from-older-mary = ghc & pStore ∙ sManager ∙ pAge ∙~ 42 same-ghc-from-mary : Product same-ghc-from-mary = ghc & pStore ∙ sManager ∙ pAge %~ suc all-is-fine : ghc-from-older-mary ≡ same-ghc-from-mary all-is-fine = refl mary's-age-was-updated : ghc-from-older-mary ^∙ pStore ∙ sManager ∙ pAge ≡ 42 mary's-age-was-updated = refl
28.427083
111
0.679736
4172c9d030e847a9349a32e38ab33174d2718228
44,796
agda
Agda
Agda/08-fundamental-theorem.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/08-fundamental-theorem.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/08-fundamental-theorem.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 08-fundamental-theorem where import 07-contractible-types open 07-contractible-types public -- Section 8.1 Families of equivalences {- Any family of maps induces a map on the total spaces. -} tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → ( Σ A B → Σ A C) tot f t = pair (pr1 t) (f (pr1 t) (pr2 t)) {- We show that for any family of maps, the fiber of the induced map on total spaces are equivalent to the fibers of the maps in the family. -} fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (tot f) t → fib (f (pr1 t)) (pr2 t) fib-ftr-fib-tot f .(pair x (f x y)) (pair (pair x y) refl) = pair y refl fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (f (pr1 t)) (pr2 t) → fib (tot f) t fib-tot-fib-ftr F (pair a .(F a y)) (pair y refl) = pair (pair a y) refl issec-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-ftr-fib-tot f t) ∘ (fib-tot-fib-ftr f t)) ~ id issec-fib-tot-fib-ftr f (pair x .(f x y)) (pair y refl) = refl isretr-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-tot-fib-ftr f t) ∘ (fib-ftr-fib-tot f t)) ~ id isretr-fib-tot-fib-ftr f .(pair x (f x y)) (pair (pair x y) refl) = refl abstract is-equiv-fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-ftr-fib-tot f t) is-equiv-fib-ftr-fib-tot f t = is-equiv-has-inverse ( fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) ( isretr-fib-tot-fib-ftr f t) abstract is-equiv-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-tot-fib-ftr f t) is-equiv-fib-tot-fib-ftr f t = is-equiv-has-inverse ( fib-ftr-fib-tot f t) ( isretr-fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) {- Now that we have shown that the fibers of the induced map on total spaces are equivalent to the fibers of the maps in the family, it follows that the induced map on total spaces is an equivalence if and only if each map in the family is an equivalence. -} is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → UU (i ⊔ (j ⊔ k)) is-fiberwise-equiv f = (x : _) → is-equiv (f x) abstract is-equiv-tot-is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → {f : (x : A) → B x → C x} → is-fiberwise-equiv f → is-equiv (tot f ) is-equiv-tot-is-fiberwise-equiv {f = f} H = is-equiv-is-contr-map ( λ t → is-contr-is-equiv _ ( fib-ftr-fib-tot f t) ( is-equiv-fib-ftr-fib-tot f t) ( is-contr-map-is-equiv (H _) (pr2 t))) abstract is-fiberwise-equiv-is-equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → is-equiv (tot f) → is-fiberwise-equiv f is-fiberwise-equiv-is-equiv-tot {A = A} {B} {C} f is-equiv-tot-f x = is-equiv-is-contr-map ( λ z → is-contr-is-equiv' ( fib (tot f) (pair x z)) ( fib-ftr-fib-tot f (pair x z)) ( is-equiv-fib-ftr-fib-tot f (pair x z)) ( is-contr-map-is-equiv is-equiv-tot-f (pair x z))) equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x ≃ C x) → (Σ A B) ≃ (Σ A C) equiv-tot e = pair ( tot (λ x → map-equiv (e x))) ( is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-map-equiv (e x))) {- In the second part of this section we show that any equivalence f on base types also induces an equivalence on total spaces. -} Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → Σ A (λ x → C (f x)) → Σ B C Σ-map-base-map f C s = pair (f (pr1 s)) (pr2 s) {- The proof is similar to the previous part: we show that the fibers of f and Σ-kap-base-map f C are equivalent. -} fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib f (pr1 t) → fib (Σ-map-base-map f C) t fib-Σ-map-base-map-fib f C (pair .(f x) z) (pair x refl) = pair (pair x z) refl fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib (Σ-map-base-map f C) t → fib f (pr1 t) fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = pair x refl issec-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-Σ-map-base-map-fib f C t) ∘ (fib-fib-Σ-map-base-map f C t)) ~ id issec-fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = refl isretr-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-fib-Σ-map-base-map f C t) ∘ (fib-Σ-map-base-map-fib f C t)) ~ id isretr-fib-fib-Σ-map-base-map f C (pair .(f x) z) (pair x refl) = refl abstract is-equiv-fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → is-equiv (fib-Σ-map-base-map-fib f C t) is-equiv-fib-Σ-map-base-map-fib f C t = is-equiv-has-inverse ( fib-fib-Σ-map-base-map f C t) ( issec-fib-fib-Σ-map-base-map f C t) ( isretr-fib-fib-Σ-map-base-map f C t) abstract is-contr-map-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-contr-map f → is-contr-map (Σ-map-base-map f C) is-contr-map-Σ-map-base-map C f is-contr-f (pair y z) = is-contr-is-equiv' ( fib f y) ( fib-Σ-map-base-map-fib f C (pair y z)) ( is-equiv-fib-Σ-map-base-map-fib f C (pair y z)) ( is-contr-f y) abstract is-equiv-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-equiv f → is-equiv (Σ-map-base-map f C) is-equiv-Σ-map-base-map C f is-equiv-f = is-equiv-is-contr-map ( is-contr-map-Σ-map-base-map C f (is-contr-map-is-equiv is-equiv-f)) {- Now we combine the two parts of this section. -} toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → Σ A C → Σ B D toto D f g t = pair (f (pr1 t)) (g (pr1 t) (pr2 t)) triangle-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → (toto D f g) ~ ((Σ-map-base-map f D) ∘ (tot g)) triangle-toto D f g t = refl abstract is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → (is-fiberwise-equiv g) → is-equiv (toto D f g) is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D f g is-equiv-f is-fiberwise-equiv-g = is-equiv-comp ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-g) ( is-equiv-Σ-map-base-map D f is-equiv-f) equiv-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (e : A ≃ B) (g : (x : A) → C x ≃ D (map-equiv e x)) → Σ A C ≃ Σ B D equiv-toto D e g = pair ( toto D (map-equiv e) (λ x → map-equiv (g x))) ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D ( map-equiv e) ( λ x → map-equiv (g x)) ( is-equiv-map-equiv e) ( λ x → is-equiv-map-equiv (g x))) abstract is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → is-equiv (toto D f g) → is-fiberwise-equiv g is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map D f g is-equiv-f is-equiv-toto-fg = is-fiberwise-equiv-is-equiv-tot g ( is-equiv-right-factor ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-Σ-map-base-map D f is-equiv-f) ( is-equiv-toto-fg)) -- Section 8.2 The fundamental theorem -- The general form of the fundamental theorem of identity types abstract fundamental-theorem-id : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f fundamental-theorem-id {A = A} a b is-contr-AB f = is-fiberwise-equiv-is-equiv-tot f ( is-equiv-is-contr (tot f) (is-contr-total-path a) is-contr-AB) abstract fundamental-theorem-id' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f → is-contr (Σ A B) fundamental-theorem-id' {A = A} {B = B} a b f is-fiberwise-equiv-f = is-contr-is-equiv' ( Σ A (Id a)) ( tot f) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-f) ( is-contr-total-path a) -- The canonical form of the fundamental theorem of identity types abstract fundamental-theorem-id-J : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → is-fiberwise-equiv (ind-Id a (λ x p → B x) b) fundamental-theorem-id-J {i} {j} {A} {B} a b is-contr-AB = fundamental-theorem-id a b is-contr-AB (ind-Id a (λ x p → B x) b) -- The converse of the fundamental theorem of identity types abstract fundamental-theorem-id-J' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-fiberwise-equiv (ind-Id a (λ x p → B x) b)) → is-contr (Σ A B) fundamental-theorem-id-J' {i} {j} {A} {B} a b H = is-contr-is-equiv' ( Σ A (Id a)) ( tot (ind-Id a (λ x p → B x) b)) ( is-equiv-tot-is-fiberwise-equiv H) ( is-contr-total-path a) -- As an application we show that equivalences are embeddings. is-emb : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-emb f = (x y : _) → is-equiv (ap f {x} {y}) _↪_ : {i j : Level} → UU i → UU j → UU (i ⊔ j) A ↪ B = Σ (A → B) is-emb map-emb : {i j : Level} {A : UU i} {B : UU j} → A ↪ B → A → B map-emb f = pr1 f is-emb-map-emb : { i j : Level} {A : UU i} {B : UU j} (f : A ↪ B) → is-emb (map-emb f) is-emb-map-emb f = pr2 f abstract is-emb-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-equiv f → is-emb f is-emb-is-equiv {i} {j} {A} {B} f is-equiv-f x = fundamental-theorem-id x refl ( is-contr-equiv ( fib f (f x)) ( equiv-tot (λ y → equiv-inv (f x) (f y))) ( is-contr-map-is-equiv is-equiv-f (f x))) ( λ y p → ap f p) equiv-ap : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x y : A) → (Id x y) ≃ (Id (map-equiv e x) (map-equiv e y)) equiv-ap e x y = pair ( ap (map-equiv e) {x} {y}) ( is-emb-is-equiv (map-equiv e) (is-equiv-map-equiv e) x y) -- Section 7.3 Identity systems IND-identity-system : {i j : Level} (k : Level) {A : UU i} (B : A → UU j) (a : A) (b : B a) → UU _ IND-identity-system k {A} B a b = ( P : (x : A) (y : B x) → UU k) → sec (λ (h : (x : A) (y : B x) → P x y) → h a b) fam-Σ : {i j k : Level} {A : UU i} {B : A → UU j} (C : (x : A) → B x → UU k) → Σ A B → UU k fam-Σ C (pair x y) = C x y abstract ind-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) (P : (x : A) → B x → UU k) → P a b → (x : A) (y : B x) → P x y ind-identity-system a b is-contr-AB P p x y = tr ( fam-Σ P) ( is-prop-is-contr' is-contr-AB (pair a b) (pair x y)) ( p) comp-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → (P : (x : A) → B x → UU k) (p : P a b) → Id (ind-identity-system a b is-contr-AB P p a b) p comp-identity-system a b is-contr-AB P p = ap ( λ t → tr (fam-Σ P) t p) ( is-prop-is-contr' ( is-prop-is-contr is-contr-AB (pair a b) (pair a b)) ( is-prop-is-contr' is-contr-AB (pair a b) (pair a b)) ( refl)) Ind-identity-system : {i j : Level} (k : Level) {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → IND-identity-system k B a b Ind-identity-system k a b is-contr-AB P = pair ( ind-identity-system a b is-contr-AB P) ( comp-identity-system a b is-contr-AB P) contraction-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (t : Σ A B) → Id (pair a b) t contraction-total-space-IND-identity-system a b ind (pair x y) = pr1 (ind (λ x' y' → Id (pair a b) (pair x' y'))) refl x y abstract is-contr-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → is-contr (Σ A B) is-contr-total-space-IND-identity-system a b ind = pair ( pair a b) ( contraction-total-space-IND-identity-system a b ind) abstract fundamental-theorem-id-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (f : (x : A) → Id a x → B x) → (x : A) → is-equiv (f x) fundamental-theorem-id-IND-identity-system a b ind f = fundamental-theorem-id a b (is-contr-total-space-IND-identity-system a b ind) f -- Section 7.4 Disjointness of coproducts -- Raising universe levels postulate Raise : {l1 : Level} (l2 : Level) → (A : UU l1) → Σ (UU (l1 ⊔ l2)) (λ X → A ≃ X) abstract raise : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ l2) raise l2 A = pr1 (Raise l2 A) equiv-raise : {l1 : Level} (l2 : Level) (A : UU l1) → A ≃ raise l2 A equiv-raise l2 A = pr2 (Raise l2 A) map-raise : {l1 : Level} (l2 : Level) (A : UU l1) → A → raise l2 A map-raise l2 A = map-equiv (equiv-raise l2 A) is-equiv-map-raise : {l1 : Level} (l2 : Level) (A : UU l1) → is-equiv (map-raise l2 A) is-equiv-map-raise l2 A = is-equiv-map-equiv (equiv-raise l2 A) -- Lemmas about coproducts left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) left-distributive-coprod-Σ-map A B C (pair (inl x) z) = inl (pair x z) left-distributive-coprod-Σ-map A B C (pair (inr y) z) = inr (pair y z) inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) → Σ (coprod A B) C inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = pair (inl x) z inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = pair (inr y) z issec-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (left-distributive-coprod-Σ-map A B C) ∘ (inv-left-distributive-coprod-Σ-map A B C)) ~ id issec-inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = refl issec-inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = refl isretr-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (inv-left-distributive-coprod-Σ-map A B C) ∘ (left-distributive-coprod-Σ-map A B C)) ~ id isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inl x) z) = refl isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inr y) z) = refl abstract is-equiv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → is-equiv (left-distributive-coprod-Σ-map A B C) is-equiv-left-distributive-coprod-Σ-map A B C = is-equiv-has-inverse ( inv-left-distributive-coprod-Σ-map A B C) ( issec-inv-left-distributive-coprod-Σ-map A B C) ( isretr-inv-left-distributive-coprod-Σ-map A B C) equiv-left-distributive-coprod-Σ : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C ≃ coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) equiv-left-distributive-coprod-Σ A B C = pair ( left-distributive-coprod-Σ-map A B C) ( is-equiv-left-distributive-coprod-Σ-map A B C) abstract is-equiv-map-to-empty : {l : Level} {A : UU l} (f : A → empty) → is-equiv f is-equiv-map-to-empty f = is-equiv-has-inverse ind-empty ind-empty ( λ x → ind-empty {P = λ t → Id (ind-empty (f x)) x} (f x)) map-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) → empty map-Σ-empty-fam A (pair x ()) abstract is-equiv-map-Σ-empty-fam : {l : Level} (A : UU l) → is-equiv (map-Σ-empty-fam A) is-equiv-map-Σ-empty-fam A = is-equiv-map-to-empty (map-Σ-empty-fam A) equiv-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) ≃ empty equiv-Σ-empty-fam A = pair (map-Σ-empty-fam A) (is-equiv-map-Σ-empty-fam A) inv-inl-coprod-empty : {l : Level} (A : UU l) → coprod A empty → A inv-inl-coprod-empty A (inl x) = x inv-inl-coprod-empty A (inr ()) issec-inv-inl-coprod-empty : {l : Level} (A : UU l) → (inl ∘ (inv-inl-coprod-empty A)) ~ id issec-inv-inl-coprod-empty A (inl x) = refl issec-inv-inl-coprod-empty A (inr ()) abstract is-equiv-inl-coprod-empty : {l : Level} (A : UU l) → is-equiv (inl {A = A} {B = empty}) is-equiv-inl-coprod-empty A = is-equiv-has-inverse ( inv-inl-coprod-empty A) ( issec-inv-inl-coprod-empty A) ( λ x → refl) equiv-inl : {l : Level} (A : UU l) → A ≃ coprod A empty equiv-inl A = pair inl (is-equiv-inl-coprod-empty A) inv-inr-coprod-empty : {l : Level} (B : UU l) → coprod empty B → B inv-inr-coprod-empty B (inl ()) inv-inr-coprod-empty B (inr x) = x issec-inv-inr-coprod-empty : {l : Level} (B : UU l) → (inr ∘ (inv-inr-coprod-empty B)) ~ id issec-inv-inr-coprod-empty B (inl ()) issec-inv-inr-coprod-empty B (inr x) = refl abstract is-equiv-inr-coprod-empty : {l : Level} (B : UU l) → is-equiv (inr {A = empty} {B = B}) is-equiv-inr-coprod-empty B = is-equiv-has-inverse ( inv-inr-coprod-empty B) ( issec-inv-inr-coprod-empty B) ( λ x → refl) equiv-inr : {l : Level} (B : UU l) → B ≃ coprod empty B equiv-inr B = pair inr (is-equiv-inr-coprod-empty B) -- The identity types of coproducts Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → coprod A B → coprod A B → UU (l1 ⊔ l2) Eq-coprod {l1} {l2} A B (inl x) (inl y) = raise (l1 ⊔ l2) (Id x y) Eq-coprod {l1} {l2} A B (inl x) (inr y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inl y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inr y) = raise (l1 ⊔ l2) (Id x y) reflexive-Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (t : coprod A B) → Eq-coprod A B t t reflexive-Eq-coprod {l1} {l2} A B (inl x) = map-raise (l1 ⊔ l2) (Id x x) refl reflexive-Eq-coprod {l1} {l2} A B (inr x) = map-raise (l1 ⊔ l2) (Id x x) refl Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (s t : coprod A B) → Id s t → Eq-coprod A B s t Eq-coprod-eq A B s .s refl = reflexive-Eq-coprod A B s abstract is-contr-total-Eq-coprod-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-contr (Σ (coprod A B) (Eq-coprod A B (inl x))) is-contr-total-Eq-coprod-inl A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inl x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inl x))) ( is-contr-equiv' ( coprod ( Σ A (Id x)) ( Σ B (λ y → empty))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( equiv-tot (λ y → equiv-raise _ empty))) ( is-contr-equiv ( coprod (Σ A (Id x)) empty) ( equiv-functor-coprod ( equiv-id (Σ A (Id x))) ( equiv-Σ-empty-fam B)) ( is-contr-equiv' ( Σ A (Id x)) ( equiv-inl (Σ A (Id x))) ( is-contr-total-path x)))) abstract is-contr-total-Eq-coprod-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-contr (Σ (coprod A B) (Eq-coprod A B (inr x))) is-contr-total-Eq-coprod-inr A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inr x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inr x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inr x))) ( is-contr-equiv' ( coprod (Σ A (λ y → empty)) (Σ B (Id x))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ empty)) ( equiv-tot (λ y → equiv-raise _ (Id x y)))) ( is-contr-equiv ( coprod empty (Σ B (Id x))) ( equiv-functor-coprod ( equiv-Σ-empty-fam A) ( equiv-id (Σ B (Id x)))) ( is-contr-equiv' ( Σ B (Id x)) ( equiv-inr (Σ B (Id x))) ( is-contr-total-path x)))) abstract is-equiv-Eq-coprod-eq-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-fiberwise-equiv (Eq-coprod-eq A B (inl x)) is-equiv-Eq-coprod-eq-inl A B x = fundamental-theorem-id ( inl x) ( reflexive-Eq-coprod A B (inl x)) ( is-contr-total-Eq-coprod-inl A B x) ( Eq-coprod-eq A B (inl x)) abstract is-equiv-Eq-coprod-eq-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-fiberwise-equiv (Eq-coprod-eq A B (inr x)) is-equiv-Eq-coprod-eq-inr A B x = fundamental-theorem-id ( inr x) ( reflexive-Eq-coprod A B (inr x)) ( is-contr-total-Eq-coprod-inr A B x) ( Eq-coprod-eq A B (inr x)) abstract is-equiv-Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) (s : coprod A B) → is-fiberwise-equiv (Eq-coprod-eq A B s) is-equiv-Eq-coprod-eq A B (inl x) = is-equiv-Eq-coprod-eq-inl A B x is-equiv-Eq-coprod-eq A B (inr x) = is-equiv-Eq-coprod-eq-inr A B x map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → Id (inl {B = B} x) (inl {B = B} x') → Id x x' map-compute-eq-coprod-inl-inl x x' = ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ∘ ( Eq-coprod-eq _ _ (inl x) (inl x')) abstract is-equiv-map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → is-equiv (map-compute-eq-coprod-inl-inl {B = B} x x') is-equiv-map-compute-eq-coprod-inl-inl x x' = is-equiv-comp ( map-compute-eq-coprod-inl-inl x x') ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ( Eq-coprod-eq _ _ (inl x) (inl x')) ( htpy-refl) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id x x'))) compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → (Id (inl {B = B} x) (inl x')) ≃ (Id x x') compute-eq-coprod-inl-inl x x' = pair ( map-compute-eq-coprod-inl-inl x x') ( is-equiv-map-compute-eq-coprod-inl-inl x x') map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → Id (inl x) (inr y') → empty map-compute-eq-coprod-inl-inr x y' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inl x) (inr y')) abstract is-equiv-map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → is-equiv (map-compute-eq-coprod-inl-inr x y') is-equiv-map-compute-eq-coprod-inl-inr x y' = is-equiv-comp ( map-compute-eq-coprod-inl-inr x y') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inl x) (inr y')) ( htpy-refl) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → (Id (inl x) (inr y')) ≃ empty compute-eq-coprod-inl-inr x y' = pair ( map-compute-eq-coprod-inl-inr x y') ( is-equiv-map-compute-eq-coprod-inl-inr x y') map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr {A = A} y) (inl x')) → empty map-compute-eq-coprod-inr-inl y x' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inr y) (inl x')) abstract is-equiv-map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → is-equiv (map-compute-eq-coprod-inr-inl y x') is-equiv-map-compute-eq-coprod-inr-inl y x' = is-equiv-comp ( map-compute-eq-coprod-inr-inl y x') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inr y) (inl x')) ( htpy-refl) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr y) (inl x')) ≃ empty compute-eq-coprod-inr-inl y x' = pair ( map-compute-eq-coprod-inr-inl y x') ( is-equiv-map-compute-eq-coprod-inr-inl y x') map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) → Id y y' map-compute-eq-coprod-inr-inr y y' = ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ∘ ( Eq-coprod-eq _ _ (inr y) (inr y')) abstract is-equiv-map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → is-equiv (map-compute-eq-coprod-inr-inr {A = A} y y') is-equiv-map-compute-eq-coprod-inr-inr y y' = is-equiv-comp ( map-compute-eq-coprod-inr-inr y y') ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ( Eq-coprod-eq _ _ (inr y) (inr y')) ( htpy-refl) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id y y'))) compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) ≃ (Id y y') compute-eq-coprod-inr-inr y y' = pair ( map-compute-eq-coprod-inr-inr y y') ( is-equiv-map-compute-eq-coprod-inr-inr y y') -- Exercises -- Exercise 7.1 abstract is-emb-empty : {i : Level} (A : UU i) → is-emb (ind-empty {P = λ x → A}) is-emb-empty A = ind-empty -- Exercise 7.2 path-adjointness-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x : A) (y : B) → (Id (map-equiv e x) y) ≃ (Id x (inv-map-equiv e y)) path-adjointness-equiv e x y = ( inv-equiv (equiv-ap e x (inv-map-equiv e y))) ∘e ( equiv-concat' ( map-equiv e x) ( inv (issec-inv-is-equiv (is-equiv-map-equiv e) y))) -- Exercise 7.3 abstract is-equiv-top-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → is-equiv i → is-equiv f → is-equiv g → is-equiv h is-equiv-top-is-equiv-left-square f g h i H Ei Ef Eg = is-equiv-right-factor (i ∘ f) g h H Eg ( is-equiv-comp (i ∘ f) i f htpy-refl Ef Ei) abstract is-emb-htpy : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb g → is-emb f is-emb-htpy f g H is-emb-g x y = is-equiv-top-is-equiv-left-square ( ap g) ( concat' (f x) (H y)) ( ap f) ( concat (H x) (g y)) ( htpy-nat H) ( is-equiv-concat (H x) (g y)) ( is-emb-g x y) ( is-equiv-concat' (f x) (H y)) abstract is-emb-htpy' : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb f → is-emb g is-emb-htpy' f g H is-emb-f = is-emb-htpy g f (htpy-inv H) is-emb-f -- Exercise 7.4 abstract is-emb-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb h → is-emb f is-emb-comp f g h H is-emb-g is-emb-h = is-emb-htpy f (g ∘ h) H ( λ x y → is-equiv-comp (ap (g ∘ h)) (ap g) (ap h) (ap-comp g h) ( is-emb-h x y) ( is-emb-g (h x) (h y))) abstract is-emb-right-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb f → is-emb h is-emb-right-factor f g h H is-emb-g is-emb-f x y = is-equiv-right-factor ( ap (g ∘ h)) ( ap g) ( ap h) ( ap-comp g h) ( is-emb-g (h x) (h y)) ( is-emb-htpy (g ∘ h) f (htpy-inv H) is-emb-f x y) abstract is-emb-triangle-is-equiv : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb g → is-emb f is-emb-triangle-is-equiv f g e H is-equiv-e is-emb-g = is-emb-comp f g e H is-emb-g (is-emb-is-equiv e is-equiv-e) abstract is-emb-triangle-is-equiv' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb f → is-emb g is-emb-triangle-is-equiv' f g e H is-equiv-e is-emb-f = is-emb-triangle-is-equiv g f ( inv-is-equiv is-equiv-e) ( triangle-section f g e H ( pair ( inv-is-equiv is-equiv-e) ( issec-inv-is-equiv is-equiv-e))) ( is-equiv-inv-is-equiv is-equiv-e) ( is-emb-f) -- Exercise 7.5 abstract is-emb-inl : {i j : Level} (A : UU i) (B : UU j) → is-emb (inl {A = A} {B = B}) is-emb-inl A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( tot (λ y → Eq-coprod-eq A B (inl x) (inl y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inl x) (inl y))) ( is-contr-equiv' ( Σ A (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inl) abstract is-emb-inr : {i j : Level} (A : UU i) (B : UU j) → is-emb (inr {A = A} {B = B}) is-emb-inr A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ B (λ y → Eq-coprod A B (inr x) (inr y))) ( tot (λ y → Eq-coprod-eq A B (inr x) (inr y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inr x) (inr y))) ( is-contr-equiv' ( Σ B (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inr) -- Exercise 7.6 -- Exercise 7.7 tot-htpy : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} {f g : (x : A) → B x → C x} → (H : (x : A) → f x ~ g x) → tot f ~ tot g tot-htpy H (pair x y) = eq-pair refl (H x y) tot-id : {i j : Level} {A : UU i} (B : A → UU j) → (tot (λ x (y : B x) → y)) ~ id tot-id B (pair x y) = refl tot-comp : {i j j' j'' : Level} {A : UU i} {B : A → UU j} {B' : A → UU j'} {B'' : A → UU j''} (f : (x : A) → B x → B' x) (g : (x : A) → B' x → B'' x) → tot (λ x → (g x) ∘ (f x)) ~ ((tot g) ∘ (tot f)) tot-comp f g (pair x y) = refl -- Exercise 7.8 abstract fundamental-theorem-id-retr : {i j : Level} {A : UU i} {B : A → UU j} (a : A) → (i : (x : A) → B x → Id a x) → (R : (x : A) → retr (i x)) → is-fiberwise-equiv i fundamental-theorem-id-retr {_} {_} {A} {B} a i R = is-fiberwise-equiv-is-equiv-tot i ( is-equiv-is-contr (tot i) ( is-contr-retract-of (Σ _ (λ y → Id a y)) ( pair (tot i) ( pair (tot λ x → pr1 (R x)) ( ( htpy-inv (tot-comp i (λ x → pr1 (R x)))) ∙h ( ( tot-htpy λ x → pr2 (R x)) ∙h (tot-id B))))) ( is-contr-total-path a)) ( is-contr-total-path a)) abstract is-equiv-sec-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (sec-f : sec f) → is-equiv (pr1 sec-f) → is-equiv f is-equiv-sec-is-equiv {A = A} {B = B} f (pair g issec-g) is-equiv-sec-f = let h : A → B h = inv-is-equiv is-equiv-sec-f in is-equiv-htpy h ( ( htpy-left-whisk f (htpy-inv (issec-inv-is-equiv is-equiv-sec-f))) ∙h ( htpy-right-whisk issec-g h)) ( is-equiv-inv-is-equiv is-equiv-sec-f) abstract fundamental-theorem-id-sec : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (f : (x : A) → Id a x → B x) → ((x : A) → sec (f x)) → is-fiberwise-equiv f fundamental-theorem-id-sec {A = A} {B = B} a f sec-f x = let i : (x : A) → B x → Id a x i = λ x → pr1 (sec-f x) retr-i : (x : A) → retr (i x) retr-i = λ x → pair (f x) (pr2 (sec-f x)) is-fiberwise-equiv-i : is-fiberwise-equiv i is-fiberwise-equiv-i = fundamental-theorem-id-retr a i retr-i in is-equiv-sec-is-equiv (f x) (sec-f x) (is-fiberwise-equiv-i x) -- Exercise 7.9 abstract is-emb-sec-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → ((x y : A) → sec (ap f {x = x} {y = y})) → is-emb f is-emb-sec-ap f sec-ap-f x = fundamental-theorem-id-sec x (λ y → ap f {y = y}) (sec-ap-f x) -- Exercise 7.10 coherence-is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (g : B → A) (G : (f ∘ g) ~ id) (H : (g ∘ f) ~ id) → UU (l1 ⊔ l2) coherence-is-half-adjoint-equivalence f g G H = ( htpy-right-whisk G f) ~ (htpy-left-whisk f H) is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-half-adjoint-equivalence {A = A} {B = B} f = Σ (B → A) ( λ g → Σ ((f ∘ g) ~ id) ( λ G → Σ ((g ∘ f) ~ id) (coherence-is-half-adjoint-equivalence f g G))) is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-path-split {A = A} {B = B} f = sec f × ((x y : A) → sec (ap f {x = x} {y = y})) abstract is-path-split-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-path-split f is-path-split-is-equiv f is-equiv-f = pair (pr1 is-equiv-f) (λ x y → pr1 (is-emb-is-equiv f is-equiv-f x y)) abstract is-half-adjoint-equivalence-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-path-split {A = A} {B = B} f ( pair (pair g issec-g) sec-ap-f) = let φ : ((x : A) → fib (ap f) (issec-g (f x))) → Σ ((g ∘ f) ~ id) ( λ H → (htpy-right-whisk issec-g f) ~ (htpy-left-whisk f H)) φ = ( tot (λ H' → htpy-inv)) ∘ ( λ s → pair (λ x → pr1 (s x)) (λ x → pr2 (s x))) in pair g ( pair issec-g ( φ (λ x → pair ( pr1 (sec-ap-f (g (f x)) x) (issec-g (f x))) ( pr2 (sec-ap-f (g (f x)) x) (issec-g (f x)))))) abstract is-equiv-is-half-adjoint-equivalence : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-half-adjoint-equivalence f → is-equiv f is-equiv-is-half-adjoint-equivalence f (pair g (pair G (pair H K))) = is-equiv-has-inverse g G H abstract is-equiv-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-equiv f is-equiv-is-path-split f = ( is-equiv-is-half-adjoint-equivalence f) ∘ ( is-half-adjoint-equivalence-is-path-split f) abstract is-half-adjoint-equivalence-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-equiv f = ( is-half-adjoint-equivalence-is-path-split f) ∘ (is-path-split-is-equiv f) -- Exercise 7.11 abstract is-equiv-top-is-equiv-bottom-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv i) → (is-equiv h) is-equiv-top-is-equiv-bottom-square f g h i H is-equiv-f is-equiv-g is-equiv-i = is-equiv-right-factor (i ∘ f) g h H is-equiv-g ( is-equiv-comp' i f is-equiv-f is-equiv-i) abstract is-equiv-bottom-is-equiv-top-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv h) → (is-equiv i) is-equiv-bottom-is-equiv-top-square f g h i H is-equiv-f is-equiv-g is-equiv-h = is-equiv-left-factor' i f ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) is-equiv-f abstract is-equiv-left-is-equiv-right-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv g) → (is-equiv f) is-equiv-left-is-equiv-right-square f g h i H is-equiv-h is-equiv-i is-equiv-g = is-equiv-right-factor' i f is-equiv-i ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) abstract is-equiv-right-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv f) → (is-equiv g) is-equiv-right-is-equiv-left-square f g h i H is-equiv-h is-equiv-i is-equiv-f = is-equiv-left-factor (i ∘ f) g h H ( is-equiv-comp' i f is-equiv-f is-equiv-i) ( is-equiv-h) fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (x : X) → (fib f x) → (fib g x) fib-triangle f g h H .(f a) (pair a refl) = pair (h a) (inv (H a)) square-tot-fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (h ∘ (Σ-fib-to-domain f)) ~ ((Σ-fib-to-domain g) ∘ (tot (fib-triangle f g h H))) square-tot-fib-triangle f g h H (pair .(f a) (pair a refl)) = refl abstract is-fiberwise-equiv-is-equiv-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-equiv h) → is-fiberwise-equiv (fib-triangle f g h H) is-fiberwise-equiv-is-equiv-triangle f g h H E = is-fiberwise-equiv-is-equiv-tot ( fib-triangle f g h H) ( is-equiv-top-is-equiv-bottom-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( E)) abstract is-equiv-triangle-is-fiberwise-equiv : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-fiberwise-equiv (fib-triangle f g h H)) → is-equiv h is-equiv-triangle-is-fiberwise-equiv f g h H E = is-equiv-bottom-is-equiv-top-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( is-equiv-tot-is-fiberwise-equiv E) -- Extra material {- In order to show that the total space of htpy-cone is contractible, we give a general construction that helps us characterize the identity type of a structure. This construction is called is-contr-total-Eq-structure. We first give some definitions that help us with the construction of is-contr-total-Eq-structure. -} swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t))) → Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = pair (pair a c) (pair b d) htpy-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → ( ( swap-total-Eq-structure B C D) ∘ ( swap-total-Eq-structure C B (λ x z y → D x y z))) ~ id htpy-swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = refl abstract is-equiv-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → is-equiv (swap-total-Eq-structure B C D) is-equiv-swap-total-Eq-structure B C D = is-equiv-has-inverse ( swap-total-Eq-structure C B (λ x z y → D x y z)) ( htpy-swap-total-Eq-structure B C D) ( htpy-swap-total-Eq-structure C B (λ x z y → D x y z)) abstract is-contr-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → ((x : A) → is-contr (B x)) → is-contr (Σ A B) is-contr-Σ {A = A} {B = B} is-contr-A is-contr-B = is-contr-equiv' ( B (center is-contr-A)) ( left-unit-law-Σ B is-contr-A) ( is-contr-B (center is-contr-A)) abstract is-contr-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → (a : A) → is-contr (B a) → is-contr (Σ A B) is-contr-Σ' {A = A} {B} is-contr-A a is-contr-B = is-contr-is-equiv' ( B a) ( left-unit-law-Σ-map-gen B is-contr-A a) ( is-equiv-left-unit-law-Σ-map-gen B is-contr-A a) ( is-contr-B) abstract is-contr-total-Eq-structure : { l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {C : A → UU l3} ( D : (x : A) → B x → C x → UU l4) → ( is-contr-AC : is-contr (Σ A C)) → ( t : Σ A C) → is-contr (Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) → is-contr (Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t)))) is-contr-total-Eq-structure {A = A} {B = B} {C = C} D is-contr-AC t is-contr-BD = is-contr-is-equiv ( Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t)))) ( swap-total-Eq-structure B C D) ( is-equiv-swap-total-Eq-structure B C D) ( is-contr-Σ' is-contr-AC t is-contr-BD) -- Characterizing the identity type of a fiber as the fiber of the action on -- paths fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) (p : Id (pr1 s) (pr1 t)) → (Id (tr (λ (a : A) → Id (f a) b) p (pr2 s)) (pr2 t)) → (Id (ap f p) ((pr2 s) ∙ (inv (pr2 t)))) fib-ap-eq-fib-fiberwise f (pair .x' p) (pair x' refl) refl = inv ∘ (concat right-unit refl) abstract is-fiberwise-equiv-fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-fiberwise-equiv (fib-ap-eq-fib-fiberwise f s t) is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f (pair x y) (pair .x refl) refl = is-equiv-comp ( fib-ap-eq-fib-fiberwise f (pair x y) (pair x refl) refl) ( inv) ( concat right-unit refl) ( htpy-refl) ( is-equiv-concat right-unit refl) ( is-equiv-inv (y ∙ refl) refl) fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → Id s t → fib (ap f {x = pr1 s} {y = pr1 t}) ((pr2 s) ∙ (inv (pr2 t))) fib-ap-eq-fib f s .s refl = pair refl (inv (right-inv (pr2 s))) triangle-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → (fib-ap-eq-fib f s t) ~ ((tot (fib-ap-eq-fib-fiberwise f s t)) ∘ (pair-eq {s = s} {t})) triangle-fib-ap-eq-fib f (pair x refl) .(pair x refl) refl = refl abstract is-equiv-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-equiv (fib-ap-eq-fib f s t) is-equiv-fib-ap-eq-fib f s t = is-equiv-comp ( fib-ap-eq-fib f s t) ( tot (fib-ap-eq-fib-fiberwise f s t)) ( pair-eq {s = s} {t}) ( triangle-fib-ap-eq-fib f s t) ( is-equiv-pair-eq s t) ( is-equiv-tot-is-fiberwise-equiv ( is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f s t)) eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → Id (pair x q) (pair y (refl {x = f y})) → fib (ap f {x = x} {y = y}) q eq-fib-fib-ap f x y q = (tr (fib (ap f)) right-unit) ∘ (fib-ap-eq-fib f (pair x q) (pair y refl)) abstract is-equiv-eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → is-equiv (eq-fib-fib-ap f x y q) is-equiv-eq-fib-fib-ap f x y q = is-equiv-comp ( eq-fib-fib-ap f x y q) ( tr (fib (ap f)) right-unit) ( fib-ap-eq-fib f (pair x q) (pair y refl)) ( htpy-refl) ( is-equiv-fib-ap-eq-fib f (pair x q) (pair y refl)) ( is-equiv-tr (fib (ap f)) right-unit) -- Comparing fib and fib' fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → fib f y → fib' f y fib'-fib f y t = tot (λ x → inv) t abstract is-equiv-fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-fiberwise-equiv (fib'-fib f) is-equiv-fib'-fib f y = is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-inv (f x) y)
35.439873
97
0.532012
30e13c94b33f428d3665b174bb4922c25b436e06
89
agda
Agda
archive/agda-2/Oscar/Data/Nat.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data/Nat.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data/Nat.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Data.Nat where open import Agda.Builtin.Nat public using (Nat; zero; suc)
17.8
58
0.764045
5269c19790ef64c337477691ad2cfa2f59901444
494
agda
Agda
Chapter2/#4.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter2/#4.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter2/#4.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
module #4 where open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Nat {- Exercise 2.4. Define, by induction on n, a general notion of n-dimensional path in a type A, simultaneously with the type of boundaries for such paths. -} -- We need pointed sets for this part Set• : ∀ i → Set _ Set• i = Σ (Set i) λ X → X Ω₁ : ∀ {i} → Set• i → Set• i Ω₁ (X , x) = ((x ≡ x) , refl) Ωⁿ : ∀ {i} → ℕ → Set• i → Set• _ Ωⁿ 0 x = x Ωⁿ (suc n) x = Ωⁿ n (Ω₁ x)
22.454545
87
0.633603
21050c3085cd46965965f74b57c7b22f0a118a45
165
agda
Agda
test/Succeed/Issue3618.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3618.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3618.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --prop --allow-unsolved-metas #-} postulate A : Set P : A → Prop a : A c : P a Q : Prop x : Q x = _ where b : A b = a d : P b d = c
9.705882
45
0.460606
34ca2514ca0168f9cd4cfe8fa7da4cd71698856f
1,967
agda
Agda
examples/AIM6/HelloAgda/Basics.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/HelloAgda/Basics.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/HelloAgda/Basics.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- Agda Implementors' Meeting VI Göteborg May 24 - 30, 2007 Hello Agda! Ulf Norell -} {- Getting your hands on Agda http://www.cs.chalmers.se/~ulfn/Agda darcs get --partial http://www.cs.chalmers.se/~ulfn/darcs/Agda2 -} -- Each Agda file contains a top-level module, whose -- name corresponds to the file name. module Basics where {- Expressions (types and terms) -} -- The expression language of Agda is your favorite dependently -- typed λ-calculus. -- For instance: id₁ : (A : Set) -> A -> A id₁ = \ A x -> x id₂ : (A : Set) -> A -> A id₂ = \ A x -> id₁ A (id₁ A x) -- Note: Agda likes white space. This is not correct: -- id:(A:Set)->A->A -- Why not? In Agda the following strings are valid identifiers: -- id: -- A:Set -- ->A->A -- Another useful function, featuring telescopes -- and typed λs. compose : (A B C : Set)(f : B -> C)(g : A -> B) -> A -> C compose = \(A B C : Set) -> \ f g x -> f (g x) {- Implicit arguments -} -- Writing down type arguments explicitly soon gets old. -- Enter implicit arguments. -- Note the curlies in the telescope. And A mysteriously disappeared -- in the definition. id₃ : {A : Set} -> A -> A id₃ = \ x -> x -- And it's not there when applying the function. id₄ : {A : Set} -> A -> A id₄ = \ x -> (id₃ (id₃ x)) -- You can give implicit arguments explicitly. id₅ : {A : Set} -> A -> A id₅ {A} x = id₄ {A} x -- If you want to give a particular implicit argument, you can refer -- to it by name. const : {A B : Set} -> A -> B -> A const = \ x y -> x const' : (A : Set) -> A -> A -> A const' = \ A -> const {B = A} -- It also works the other way around. If you think the type checker -- should figure out the value of something explicit, you write _. id₆ : {A : Set} -> A -> A id₆ x = id₁ _ x -- Interesting though it is, eventually you'll get bored -- with the λ-calculus... -- Move on to: Datatypes.agda
20.278351
68
0.594814
43d3323c1840b8a8f2c247c4dd5998ba48b3e904
6,452
agda
Agda
agda-rr/cast-cic.agda
CoqHott/exceptional-tt
c93256a11d59038998f09a01c5b42f6ffe42d5c4
[ "WTFPL" ]
14
2017-10-13T01:31:56.000Z
2021-03-23T12:45:05.000Z
agda-rr/cast-cic.agda
CoqHott/exceptional-tt
c93256a11d59038998f09a01c5b42f6ffe42d5c4
[ "WTFPL" ]
1
2019-02-28T16:35:41.000Z
2019-02-28T18:28:53.000Z
agda-rr/cast-cic.agda
CoqHott/exceptional-tt
c93256a11d59038998f09a01c5b42f6ffe42d5c4
[ "WTFPL" ]
3
2018-04-23T17:34:44.000Z
2021-01-06T13:36:28.000Z
{-# OPTIONS --rewriting --prop --confluence-check --cumulativity #-} open import Agda.Primitive open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.List open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite open import Agda.Builtin.Sigma open import Agda.Builtin.Unit open import Data.Vec.Base open import Data.Bool open import Data.Sum open import Data.Product using (_×_) open import ett-rr {- Axiomatisation of the Cast calculus -} {- diagonal cases -} postulate cast : (A : Set ℓ) (B : Set ℓ₁) → A → B postulate cast-set : (A : Set ℓ) → cast (Set ℓ) (Set ℓ) A ≡ A {-# REWRITE cast-set #-} postulate cast-prop : (A : Prop ℓ) → cast (Prop ℓ) (Prop ℓ) A ≡ A {-# REWRITE cast-prop #-} postulate cast-Pi : (A : Set ℓ) (B : A → Set ℓ₁) (A' : Set ℓ₂) (B' : A' → Set ℓ₃) (f : (a : A) → B a) → cast ((a : A) → B a) ((a' : A') → B' a') f ≡ λ (a' : A') → cast _ _ (f (cast A' A a')) {-# REWRITE cast-Pi #-} postulate cast-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) (A' : Set ℓ₂) (B' : A' → Set ℓ₃) (p : Σ {a = ℓ} {b = ℓ₁} A B) → cast (Σ A B) (Σ A' B') p ≡ (cast {ℓ = ℓ} {ℓ₁ = ℓ₂} A A' (p .fst) , cast (B (p .fst)) (B' (cast A A' (p .fst))) (p .snd)) {-# REWRITE cast-Sigma #-} postulate cast-Sum-inj₁ : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) → cast (A ⊎ B) (A' ⊎ B') (inj₁ a) ≡ inj₁ (cast A A' a) postulate cast-Sum-inj₂ : (A A' : Set ℓ) (B B' : Set ℓ₁) (b : B) → cast (A ⊎ B) (A' ⊎ B') (inj₂ b) ≡ inj₂ (cast B B' b) postulate cast-Sum-raise : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) → cast (A ⊎ B) (A' ⊎ B') (raise _) ≡ raise _ postulate cast-Sum-unk : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) → cast (A ⊎ B) (A' ⊎ B') (unk _) ≡ unk _ {-# REWRITE cast-Sum-inj₁ #-} {-# REWRITE cast-Sum-inj₂ cast-Sum-raise cast-Sum-unk #-} postulate cast-List-nil : (A A' : Set ℓ) → cast (List A) (List A') [] ≡ [] postulate cast-List-cons : (A A' : Set ℓ) (a : A) (l : List {a = ℓ} A) → cast (List A) (List {a = ℓ} A') (a ∷ l) ≡ cast A A' a ∷ cast (List A) (List A') l postulate cast-List-raise : (A A' : Set ℓ) → cast (List A) (List A') (raise (List _)) ≡ raise (List _) postulate cast-List-unk : (A A' : Set ℓ) → cast (List A) (List A') (unk (List _)) ≡ unk (List _) {-# REWRITE cast-List-nil #-} {-# REWRITE cast-List-cons cast-List-raise cast-List-unk #-} postulate cast-Nat-zero : cast Nat Nat 0 ≡ 0 postulate cast-Nat-suc : (n : Nat ) → cast Nat Nat (suc n) ≡ suc (cast _ _ n) postulate cast-Nat-raise : cast Nat Nat (raise Nat) ≡ raise Nat postulate cast-Nat-unk : cast Nat Nat (unk Nat) ≡ unk Nat {-# REWRITE cast-Nat-zero cast-Nat-suc cast-Nat-raise cast-Nat-unk #-} postulate cast-Bool-true : cast Bool Bool true ≡ true postulate cast-Bool-false : cast Bool Bool false ≡ false postulate cast-Bool-raise : cast Bool Bool (raise Bool) ≡ raise Bool postulate cast-Bool-unk : cast Bool Bool (unk Bool) ≡ unk Bool {-# REWRITE cast-Bool-true cast-Bool-false cast-Bool-raise cast-Bool-unk #-} postulate cast-Unit : cast ⊤ ⊤ tt ≡ tt {- Beware that raise ⊤ ≡ tt ≡ unk ⊤ because of definitional singleton -} postulate cast-Unit-raise : cast ⊤ ⊤ (raise ⊤) ≡ raise ⊤ postulate cast-Unit-unk : cast ⊤ ⊤ (unk ⊤) ≡ unk ⊤ {-# REWRITE cast-Unit cast-Unit-raise cast-Unit-unk #-} {- non-diagonal cases -} postulate cast-Set-bad : (A : Set (lsuc ℓ)) → cast (Set (lsuc ℓ)) (Set ℓ) A ≡ raise _ {-# REWRITE cast-Set-bad #-} postulate cast-raise : ∀ ℓ ℓ₁ → (x : raise {ℓ = lsuc ℓ} (Set ℓ)) (A : Set ℓ₁) → cast (raise {ℓ = lsuc ℓ} (Set ℓ)) A x ≡ raise _ {-# REWRITE cast-raise #-} postulate cast-Pi-Sigma : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) (f : (a : A) → B a) → cast ((a : A) → B a) (Σ {a = ℓ} {b = ℓ₁} A' B') f ≡ raise (Σ A' B') {-# REWRITE cast-Pi-Sigma #-} postulate cast-Pi-Nat : (A : Set ℓ) (B : A → Set ℓ₁) (f : (a : A) → B a) → cast ((a : A) → B a) Nat f ≡ raise Nat {-# REWRITE cast-Pi-Nat #-} -- missing many conflict rules {- Rules specific to Unk -} {- unk-cast ℓ A a is just a copy of cast A (Unk ℓ) a but we need to split it off for rewriting. Making it private so that the only closed values we can create in Unk ℓ come from cast -} private postulate unk-cast : ∀ (A : Set ℓ) → A → Unk (lsuc ℓ) postulate cast-Unk : (A : Set ℓ) (B : Set ℓ₁) (f : A) → cast (Unk (lsuc ℓ)) B (unk-cast A f) ≡ cast A B f {-# REWRITE cast-Unk #-} postulate cast-Unk-raise : ∀ ℓ → (B : Set ℓ₁) → cast (Unk ℓ) B (raise _) ≡ raise _ {-# REWRITE cast-Unk-raise #-} postulate cast-Pi-Unk : (A : Set ℓ) (B : A → Set ℓ₁) (f : (a : A) → B a) → cast ((a : A) → B a) (Unk (lsuc (ℓ ⊔ ℓ₁))) f ≡ unk-cast (Unk ℓ → Unk ℓ₁) (cast ((a : A) → B a) (Unk ℓ → Unk ℓ₁) f) {-# REWRITE cast-Pi-Unk #-} postulate cast-Pi-Unk-bad : (f : Unk ℓ → Unk ℓ₁) → cast (Unk ℓ → Unk ℓ₁) (Unk (ℓ ⊔ ℓ₁)) f ≡ raise _ {-# REWRITE cast-Pi-Unk-bad #-} postulate cast-Sigma-Unk : (A : Set ℓ) (B : A → Set ℓ₁) (x : Σ {a = ℓ} {b = ℓ₁} A B) → cast (Σ A B) (Unk (lsuc (ℓ ⊔ ℓ₁))) x ≡ unk-cast (_×_ {a = ℓ} {b = ℓ₁} (Unk ℓ) (Unk ℓ₁)) (cast (Σ A B) (Unk ℓ × Unk ℓ₁) x) {-# REWRITE cast-Sigma-Unk #-} delta : Unk ℓ → Unk ℓ delta {ℓ} x = cast (Unk ℓ) (Unk ℓ → Unk ℓ) x x omega : Unk ℓ omega {ℓ} = delta {ℓ = ℓ} (cast (Unk ℓ → Unk ℓ) (Unk ℓ) (delta {ℓ = ℓ})) foo : Unk (lsuc lzero) foo = cast (Nat → Nat → Nat) (Unk _) _+_ postulate cast-Nat-Unk : (n : Nat) → cast Nat (Unk (lsuc lzero)) n ≡ unk-cast Nat n record i (A : Set ℓ) : Set (ℓ ⊔ ℓ₁) where constructor inj field uninj : A open i public postulate cast-Nat-Unk' : (n : Nat) → cast (i {ℓ = ℓ} {ℓ₁ = ℓ₁} Nat) (Unk (lsuc ℓ)) (inj n) ≡ unk-cast Nat n postulate cast-Nat-iNat : (n : Nat) → cast Nat (i {ℓ = ℓ} {ℓ₁ = ℓ₁} Nat) n ≡ inj n {-# REWRITE cast-Nat-Unk cast-Nat-Unk' cast-Nat-iNat #-} retr : (A : Set ℓ) (a : A) → A retr {ℓ} A a = cast (Unk (lsuc ℓ)) A (cast A (Unk (lsuc ℓ)) a) retr-0 : retr {lzero} Nat 0 ≡ 0 retr-0 = refl retr-arr : (A : Set ℓ) (a : A) → A retr-arr {ℓ} A = retr (A → A) (λ a → a) zero' : Nat zero' = uninj (retr-arr {lsuc lzero} (i {ℓ₁ = lsuc lzero} Nat) (inj 0))
33.430052
145
0.537818
9ab0868e26bdf8f8fd1d8dce6021539d79603225
388
agda
Agda
prototyping/FFI/Data/HaskellInt.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/FFI/Data/HaskellInt.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/FFI/Data/HaskellInt.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module FFI.Data.HaskellInt where open import Agda.Builtin.Int using (Int) {-# FOREIGN GHC import qualified Data.Int #-} postulate HaskellInt : Set {-# COMPILE GHC HaskellInt = type Data.Int.Int #-} postulate intToHaskellInt : Int → HaskellInt haskellIntToInt : HaskellInt → Int {-# COMPILE GHC intToHaskellInt = fromIntegral #-} {-# COMPILE GHC haskellIntToInt = fromIntegral #-}
25.866667
50
0.739691
9a32aaf5298accb372e877ab928ae334d8e43719
4,200
agda
Agda
Cubical/Algebra/CommAlgebra/Properties.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Properties.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Properties.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommAlgebra.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Reflection.StrictEquiv open import Cubical.Structures.Axioms open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommAlgebra.Base private variable ℓ ℓ′ : Level -- An R-algebra is the same as a CommRing A with a CommRingHom φ : R → A module CommAlgChar (R : CommRing ℓ) where open Iso open IsRingHom open CommRingTheory CommRingWithHom : Type (ℓ-suc ℓ) CommRingWithHom = Σ[ A ∈ CommRing ℓ ] CommRingHom R A toCommAlg : CommRingWithHom → CommAlgebra R ℓ toCommAlg (A , φ , φIsHom) = ⟨ A ⟩ , ACommAlgStr where open CommRingStr (snd A) ACommAlgStr : CommAlgebraStr R ⟨ A ⟩ CommAlgebraStr.0a ACommAlgStr = 0r CommAlgebraStr.1a ACommAlgStr = 1r CommAlgebraStr._+_ ACommAlgStr = _+_ CommAlgebraStr._·_ ACommAlgStr = _·_ CommAlgebraStr.- ACommAlgStr = -_ CommAlgebraStr._⋆_ ACommAlgStr r a = (φ r) · a CommAlgebraStr.isCommAlgebra ACommAlgStr = makeIsCommAlgebra is-set +Assoc +Rid +Rinv +Comm ·Assoc ·Lid ·Ldist+ ·-comm (λ _ _ x → cong (λ y → y · x) (pres· φIsHom _ _) ∙ sym (·Assoc _ _ _)) (λ _ _ x → cong (λ y → y · x) (pres+ φIsHom _ _) ∙ ·Ldist+ _ _ _) (λ _ _ _ → ·Rdist+ _ _ _) (λ x → cong (λ y → y · x) (pres1 φIsHom) ∙ ·Lid x) (λ _ _ _ → sym (·Assoc _ _ _)) fromCommAlg : CommAlgebra R ℓ → CommRingWithHom fromCommAlg A = (CommAlgebra→CommRing A) , φ , φIsHom where open CommRingStr (snd R) renaming (_·_ to _·r_) hiding (·Lid) open CommAlgebraStr (snd A) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) φ : ⟨ R ⟩ → ⟨ A ⟩ φ r = r ⋆ 1a φIsHom : IsRingHom (CommRing→Ring R .snd) φ (CommRing→Ring (CommAlgebra→CommRing A) .snd) φIsHom = makeIsRingHom (⋆-lid _) (λ _ _ → ⋆-ldist _ _ _) λ x y → cong (λ a → (x ·r y) ⋆ a) (sym (·Lid _)) ∙ ⋆Dist· _ _ _ _ CommRingWithHomRoundTrip : (Aφ : CommRingWithHom) → fromCommAlg (toCommAlg Aφ) ≡ Aφ CommRingWithHomRoundTrip (A , φ) = ΣPathP (APath , φPathP) where open CommRingStr -- note that the proofs of the axioms might differ! APath : fst (fromCommAlg (toCommAlg (A , φ))) ≡ A fst (APath i) = ⟨ A ⟩ 0r (snd (APath i)) = 0r (snd A) 1r (snd (APath i)) = 1r (snd A) _+_ (snd (APath i)) = _+_ (snd A) _·_ (snd (APath i)) = _·_ (snd A) -_ (snd (APath i)) = -_ (snd A) isCommRing (snd (APath i)) = isProp→PathP (λ i → isPropIsCommRing _ _ _ _ _ ) (isCommRing (snd (fst (fromCommAlg (toCommAlg (A , φ)))))) (isCommRing (snd A)) i -- this only works because fst (APath i) = fst A definitionally! φPathP : PathP (λ i → CommRingHom R (APath i)) (snd (fromCommAlg (toCommAlg (A , φ)))) φ φPathP = RingHomPathP _ _ _ _ _ _ λ i x → ·Rid (snd A) (fst φ x) i CommAlgRoundTrip : (A : CommAlgebra R ℓ) → toCommAlg (fromCommAlg A) ≡ A CommAlgRoundTrip A = ΣPathP (refl , AlgStrPathP) where open CommAlgebraStr ⦃...⦄ instance _ = snd A AlgStrPathP : PathP (λ i → CommAlgebraStr R ⟨ A ⟩) (snd (toCommAlg (fromCommAlg A))) (snd A) CommAlgebraStr.0a (AlgStrPathP i) = 0a CommAlgebraStr.1a (AlgStrPathP i) = 1a CommAlgebraStr._+_ (AlgStrPathP i) = _+_ CommAlgebraStr._·_ (AlgStrPathP i) = _·_ CommAlgebraStr.-_ (AlgStrPathP i) = -_ CommAlgebraStr._⋆_ (AlgStrPathP i) r x = (⋆-lassoc r 1a x ∙ cong (r ⋆_) (·Lid x)) i CommAlgebraStr.isCommAlgebra (AlgStrPathP i) = isProp→PathP (λ i → isPropIsCommAlgebra _ _ _ _ _ _ (CommAlgebraStr._⋆_ (AlgStrPathP i))) (CommAlgebraStr.isCommAlgebra (snd (toCommAlg (fromCommAlg A)))) isCommAlgebra i CommAlgIso : Iso (CommAlgebra R ℓ) CommRingWithHom fun CommAlgIso = fromCommAlg inv CommAlgIso = toCommAlg rightInv CommAlgIso = CommRingWithHomRoundTrip leftInv CommAlgIso = CommAlgRoundTrip
36.842105
94
0.689048
57fbc30c2c7d3c1add8e6208facfeda228164ca3
24
agda
Agda
test/Fail/InvalidNamePartEquals.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/InvalidNamePartEquals.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/InvalidNamePartEquals.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
test = forall _=_ → Set
12
23
0.625
13f263883784ee76b20546ac1c515de61d1168c6
1,741
agda
Agda
src/Categories/Diagram/Coend.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Diagram/Coend.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Diagram/Coend.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor.Bifunctor module Categories.Diagram.Coend {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where private module C = Category C module D = Category D open D open HomReasoning variable A B : Obj f g : A ⇒ B open import Level open import Data.Product using (Σ; _,_) open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation.Dinatural open import Categories.Morphism.Reasoning D open Functor F record Cowedge : Set (levelOfTerm F) where field E : Obj dinatural : DinaturalTransformation F (const E) module dinatural = DinaturalTransformation dinatural Cowedge-∘ : (W : Cowedge) → Cowedge.E W ⇒ A → Cowedge Cowedge-∘ {A = A} W f = record { E = A ; dinatural = extranaturalˡ (λ X → f ∘ dinatural.α X) (assoc ○ ∘-resp-≈ʳ (extranatural-commˡ dinatural) ○ sym-assoc) } where open Cowedge W record Coend : Set (levelOfTerm F) where field cowedge : Cowedge module cowedge = Cowedge cowedge open cowedge public open Cowedge field factor : (W : Cowedge) → cowedge.E ⇒ E W universal : ∀ {W : Cowedge} {A} → factor W ∘ cowedge.dinatural.α A ≈ dinatural.α W A unique : ∀ {W : Cowedge} {g : cowedge.E ⇒ E W} → (∀ {A} → g ∘ cowedge.dinatural.α A ≈ dinatural.α W A) → factor W ≈ g η-id : factor cowedge ≈ D.id η-id = unique identityˡ unique′ :(∀ {A} → f ∘ cowedge.dinatural.α A ≈ g ∘ cowedge.dinatural.α A) → f ≈ g unique′ {f = f} {g = g} eq = ⟺ (unique {W = Cowedge-∘ cowedge f} refl) ○ unique (⟺ eq)
28.540984
124
0.645606
1e9fde3f285516d4a9c0f6459fec836b8b544ec5
7,846
agda
Agda
Nat.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
1
2019-12-19T23:42:31.000Z
2019-12-19T23:42:31.000Z
Nat.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
Nat.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
open import Prelude module Nat where -- definitions data Nat : Set where Z : Nat 1+ : Nat → Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat Z + m = m 1+ n + m = 1+ (n + m) infixl 60 _+_ data _≤_ : Nat → Nat → Set where ≤refl : ∀{n} → n ≤ n ≤1+ : ∀{n m} → n ≤ m → n ≤ 1+ m infix 40 _≤_ _<_ : Nat → Nat → Set n < m = n ≤ m ∧ n ≠ m infix 40 _<_ difference : ∀{n m} → n ≤ m → Nat difference {n} {.n} ≤refl = Z difference {n} {.(1+ _)} (≤1+ n≤m-1) = 1+ (difference n≤m-1) -- basic theorems -- the succ operation is injective 1+inj : ∀{n m} → 1+ n == 1+ m → n == m 1+inj refl = refl 1+ap : ∀{n m} → n == m → 1+ n == 1+ m 1+ap {n} {.n} refl = refl 1+ap-cp : ∀{n m} → 1+ n ≠ 1+ m → n ≠ m 1+ap-cp h1 h2 = h1 (1+ap h2) 1+inj-cp : ∀{n m} → n ≠ m → 1+ n ≠ 1+ m 1+inj-cp h1 h2 = h1 (1+inj h2) -- equality of naturals is decidable. we represent this as computing a -- choice of units, with inl <> meaning that the naturals are indeed the -- same and inr <> that they are not. natEQ : (x y : Nat) → ((x == y) ∨ ((x == y) → ⊥)) natEQ Z Z = Inl refl natEQ Z (1+ y) = Inr (λ ()) natEQ (1+ x) Z = Inr (λ ()) natEQ (1+ x) (1+ y) with natEQ x y natEQ (1+ x) (1+ .x) | Inl refl = Inl refl ... | Inr b = Inr (λ x₁ → b (1+inj x₁)) 0≠1+n : ∀{n} → 0 ≠ 1+ n 0≠1+n = λ () -- _+_ theorems n+Z==n : ∀{n} → n + Z == n n+Z==n {Z} = refl n+Z==n {1+ n} = 1+ap n+Z==n n+1+m==1+n+m : ∀{n m} → n + 1+ m == 1+ (n + m) n+1+m==1+n+m {Z} = refl n+1+m==1+n+m {1+ n} = 1+ap n+1+m==1+n+m n≠n+1+m : ∀{n m} → n ≠ n + 1+ m n≠n+1+m {Z} {m} () n≠n+1+m {1+ n} {m} h = 1+inj-cp n≠n+1+m h +comm : ∀{a b} → a + b == b + a +comm {Z} {b} = ! n+Z==n +comm {1+ a} {Z} = 1+ap n+Z==n +comm {1+ a} {1+ b} with a + 1+ b | b + 1+ a | n+1+m==1+n+m {a} {b} | n+1+m==1+n+m {b} {a} +comm {1+ a} {1+ b} | _ | _ | refl | refl = 1+ap (1+ap (+comm {a})) +assc : ∀{a b c} → (a + b) + c == a + (b + c) +assc {Z} = refl +assc {1+ a} = 1+ap (+assc {a}) a+n==a+m→n==m : ∀{a n m} → a + n == a + m → n == m a+n==a+m→n==m {Z} refl = refl a+n==a+m→n==m {1+ a} a+n==a+m = a+n==a+m→n==m (1+inj a+n==a+m) n+a==m+a→n==m : ∀{n m a} → n + a == m + a → n == m n+a==m+a→n==m {n} {m} {a} n+a==m+a rewrite +comm {n} {a} | +comm {m} {a} = a+n==a+m→n==m n+a==m+a -- _≤_ theorems 0≤n : ∀{n} → Z ≤ n 0≤n {Z} = ≤refl 0≤n {1+ n} = ≤1+ 0≤n 1+n≰0 : ∀{n} → 1+ n ≤ Z → ⊥ 1+n≰0 = λ () n≤m→1+n≤1+m : ∀{n m} → n ≤ m → 1+ n ≤ 1+ m n≤m→1+n≤1+m {n} {.n} ≤refl = ≤refl n≤m→1+n≤1+m {n} {.(1+ _)} (≤1+ h) = ≤1+ (n≤m→1+n≤1+m h) 1+n≤1+m→n≤m : ∀{n m} → 1+ n ≤ 1+ m → n ≤ m 1+n≤1+m→n≤m {n} {.n} ≤refl = ≤refl 1+n≤1+m→n≤m {n} {Z} (≤1+ h) = abort (1+n≰0 h) 1+n≤1+m→n≤m {n} {1+ m} (≤1+ h) = ≤1+ (1+n≤1+m→n≤m h) n+s≤m+s→n≤m : ∀{n m s} → n + s ≤ m + s → n ≤ m n+s≤m+s→n≤m {n} {m} {s = Z} n+s≤m+s rewrite n+Z==n {n} | n+Z==n {m} = n+s≤m+s n+s≤m+s→n≤m {n} {m} {s = 1+ s} n+s≤m+s rewrite n+1+m==1+n+m {n} {s} | n+1+m==1+n+m {m} {s} = n+s≤m+s→n≤m (1+n≤1+m→n≤m n+s≤m+s) 1+n≰n : ∀{n} → 1+ n ≤ n → ⊥ 1+n≰n {Z} h = abort (1+n≰0 h) 1+n≰n {1+ n} h = 1+n≰n (1+n≤1+m→n≤m h) ≤total : ∀{n m} → n ≤ m ∨ m ≤ n ≤total {Z} {m} = Inl 0≤n ≤total {1+ n} {Z} = Inr (≤1+ 0≤n) ≤total {1+ n} {1+ m} with ≤total {n} {m} ≤total {1+ n} {1+ m} | Inl h = Inl (n≤m→1+n≤1+m h) ≤total {1+ n} {1+ m} | Inr h = Inr (n≤m→1+n≤1+m h) ≤trans : ∀{a b c} → a ≤ b → b ≤ c → a ≤ c ≤trans ≤refl b≤c = b≤c ≤trans (≤1+ a≤b) ≤refl = ≤1+ a≤b ≤trans (≤1+ a≤b) (≤1+ b≤c) = ≤1+ (≤trans (≤1+ a≤b) b≤c) ≤antisym : ∀{n m} → n ≤ m → m ≤ n → n == m ≤antisym {n} {.n} ≤refl m≤n = refl ≤antisym {n} {.(1+ _)} (≤1+ h1) h2 = abort (1+n≰n (≤trans h2 h1)) n≤n+m : ∀{n m} → n ≤ n + m n≤n+m {n} {Z} with n + Z | n+Z==n {n} n≤n+m {_} {Z} | _ | refl = ≤refl n≤n+m {n} {1+ m} with n + 1+ m | ! (n+1+m==1+n+m {n} {m}) n≤n+m {n} {1+ m} | _ | refl = ≤trans n≤n+m (≤1+ ≤refl) n≤m+n : ∀{n m} → n ≤ m + n n≤m+n {n} {m} rewrite +comm {m} {n} = n≤n+m -- _<_ theorems n≮0 : ∀{n} → n < Z → ⊥ n≮0 {Z} (π3 , π4) = π4 refl n≮0 {1+ n} (π3 , π4) = 1+n≰0 π3 n<1+n : ∀{n} → n < 1+ n π1 n<1+n = ≤1+ ≤refl π2 n<1+n () 1+n<1+m→n<m : ∀{n m} → 1+ n < 1+ m → n < m π1 (1+n<1+m→n<m (π3 , π4)) = 1+n≤1+m→n≤m π3 π2 (1+n<1+m→n<m (π3 , π4)) = 1+ap-cp π4 <trans : ∀{a b c} → a < b → b < c → a < c π1 (<trans (π3 , π4) (π5 , π6)) = ≤trans π3 π5 π2 (<trans (π3 , π4) (≤refl , π6)) = abort (π6 refl) π2 (<trans (π3 , π4) (≤1+ π5 , π6)) refl = 1+n≰n (≤trans π3 π5) <antisym : ∀{n m} → n < m → m < n → ⊥ <antisym (n≤m , n≠m) (m≤n , _) = n≠m (≤antisym n≤m m≤n) <antirefl : ∀{n} → n < n → ⊥ <antirefl (_ , ne) = abort (ne refl) n<m→n<s+m : ∀{n m s} → n < m → n < s + m n<m→n<s+m {s = Z} n<m = n<m n<m→n<s+m {s = 1+ s} n<m = <trans (n<m→n<s+m {s = s} n<m) n<1+n n<m→1+n<1+m : ∀{n m} → n < m → 1+ n < 1+ m n<m→1+n<1+m (π3 , π4) = n≤m→1+n≤1+m π3 , 1+inj-cp π4 0<1+n : ∀{n} → 0 < 1+ n 0<1+n {Z} = ≤1+ ≤refl , (λ ()) 0<1+n {1+ n} = 0≤n , (λ ()) 1+n≤m→n<m : ∀{n m} → 1+ n ≤ m → n < m 1+n≤m→n<m ≤refl = n<1+n 1+n≤m→n<m (≤1+ 1+n≤m) = <trans (1+n≤m→n<m 1+n≤m) n<1+n n≤m→n<1+m : ∀{n m} → n ≤ m → n < 1+ m n≤m→n<1+m {Z} n≤m = 0<1+n n≤m→n<1+m {1+ n} n≤m = n<m→1+n<1+m (1+n≤m→n<m n≤m) n<m→1+n≤m : ∀{n m} → n < m → 1+ n ≤ m n<m→1+n≤m (≤refl , ne) = abort (ne refl) n<m→1+n≤m (≤1+ n≤m , _) = n≤m→1+n≤1+m n≤m n<m→n≤m : ∀{n m} → n < m → n ≤ m n<m→n≤m n<m = 1+n≤1+m→n≤m (≤1+ (n<m→1+n≤m n<m)) <dec : (n m : Nat) → n < m ∨ n == m ∨ m < n <dec n m with natEQ n m ... | Inl refl = Inr (Inl refl) ... | Inr ne with ≤total {n} {m} ... | Inl ≤refl = abort (ne refl) ... | Inl (≤1+ n≤m) = Inl (n≤m→n<1+m n≤m) ... | Inr ≤refl = abort (ne refl) ... | Inr (≤1+ m≤n) = Inr (Inr (n≤m→n<1+m m≤n)) <dec-refl : (n : Nat) → <dec n n == Inr (Inl refl) <dec-refl n with <dec n n <dec-refl n | Inl (_ , ne) = abort (ne refl) <dec-refl n | Inr (Inl refl) = refl <dec-refl n | Inr (Inr (_ , ne)) = abort (ne refl) -- difference theorems m-n+n==m : ∀{n m} → (n≤m : n ≤ m) → difference n≤m + n == m m-n+n==m ≤refl = refl m-n+n==m (≤1+ n≤m) = 1+ap (m-n+n==m n≤m) n+m-n==m : ∀{n m} → (n≤n+m : n ≤ n + m) → difference n≤n+m == m n+m-n==m {n} n≤n+m = n+a==m+a→n==m (m-n+n==m n≤n+m · +comm {n}) a+b==c→a==c-b : ∀{a b c} → a + b == c → (b≤c : b ≤ c) → a == difference b≤c a+b==c→a==c-b a+b==c b≤c = n+a==m+a→n==m (a+b==c · ! (m-n+n==m b≤c)) diff-proof-irrelevance : ∀{n m} → (n≤m1 n≤m2 : n ≤ m) → difference n≤m1 == difference n≤m2 diff-proof-irrelevance ≤refl ≤refl = refl diff-proof-irrelevance ≤refl (≤1+ n≤m2) = abort (1+n≰n n≤m2) diff-proof-irrelevance (≤1+ n≤m1) ≤refl = abort (1+n≰n n≤m1) diff-proof-irrelevance (≤1+ n≤m1) (≤1+ n≤m2) = 1+ap (diff-proof-irrelevance n≤m1 n≤m2) m-n==1+m-1+n : ∀{n m} → (n≤m : n ≤ m) → (1+n≤1+m : 1+ n ≤ 1+ m) → difference n≤m == difference 1+n≤1+m m-n==1+m-1+n {n} {.n} ≤refl ≤refl = refl m-n==1+m-1+n {n} {.n} ≤refl (≤1+ 1+n≤n) = abort (1+n≰n 1+n≤n) m-n==1+m-1+n {.(1+ _)} {.(1+ _)} (≤1+ 1+m≤m) ≤refl = abort (1+n≰n 1+m≤m) m-n==1+m-1+n {n} {.(1+ _)} (≤1+ n≤m) (≤1+ 1+n≤1+m) = 1+ap (m-n==1+m-1+n n≤m 1+n≤1+m) m-n==m+s-n+s : ∀{n m s} → (n≤m : n ≤ m) → (n+s≤m+s : n + s ≤ m + s) → difference n≤m == difference n+s≤m+s m-n==m+s-n+s {n} {m} {s = Z} n≤m n+s≤m+s rewrite n+Z==n {n} | n+Z==n {m} = diff-proof-irrelevance n≤m n+s≤m+s m-n==m+s-n+s {n} {m} {s = 1+ s} n≤m n+s≤m+s rewrite n+1+m==1+n+m {n} {s} | n+1+m==1+n+m {m} {s} = (m-n==m+s-n+s n≤m (1+n≤1+m→n≤m n+s≤m+s)) · (m-n==1+m-1+n (1+n≤1+m→n≤m n+s≤m+s) n+s≤m+s)
30.768627
99
0.410273
13dcc442cf818e82bf901114ab71cf52694cdf16
9,397
agda
Agda
src/Algebra/Graph/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
60
2017-12-27T14:57:04.000Z
2022-03-22T23:05:29.000Z
src/Algebra/Graph/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
3
2018-04-12T16:25:13.000Z
2018-06-23T13:54:02.000Z
src/Algebra/Graph/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
6
2017-12-17T20:48:20.000Z
2019-05-09T23:53:28.000Z
module Algebra.Graph.Theorems where open import Algebra.Graph open import Algebra.Graph.Reasoning +pre-idempotence : ∀ {A} {x : Graph A} -> x + x + ε ≡ x +pre-idempotence {_} {x} = begin (x + x) + ε ≡⟨ L (L (symmetry *right-identity)) ⟩ (x * ε + x) + ε ≡⟨ L (R (symmetry *right-identity)) ⟩ (x * ε + x * ε) + ε ≡⟨ R (symmetry *right-identity) ⟩ (x * ε + x * ε) + ε * ε ≡⟨ symmetry decomposition ⟩ (x * ε) * ε ≡⟨ *right-identity ⟩ x * ε ≡⟨ *right-identity ⟩ x ∎ +identity : ∀ {A} {x : Graph A} -> x + ε ≡ x +identity {_} {x} = begin x + ε ≡⟨ symmetry +pre-idempotence ⟩ ((x + ε) + (x + ε)) + ε ≡⟨ L +associativity ⟩ (((x + ε) + x) + ε) + ε ≡⟨ L (L (symmetry +associativity)) ⟩ ((x + (ε + x)) + ε) + ε ≡⟨ L (L (R +commutativity)) ⟩ ((x + (x + ε)) + ε) + ε ≡⟨ L (L +associativity) ⟩ (((x + x) + ε) + ε) + ε ≡⟨ L (symmetry +associativity) ⟩ ((x + x) + (ε + ε)) + ε ≡⟨ symmetry +associativity ⟩ (x + x) + ((ε + ε) + ε) ≡⟨ R +pre-idempotence ⟩ (x + x) + ε ≡⟨ +pre-idempotence ⟩ x ∎ +idempotence : ∀ {A} {x : Graph A} -> x + x ≡ x +idempotence = transitivity (symmetry +identity) +pre-idempotence saturation : ∀ {A} {x : Graph A} -> x * x * x ≡ x * x saturation {_} {x} = begin (x * x) * x ≡⟨ decomposition ⟩ (x * x + x * x) + x * x ≡⟨ L +idempotence ⟩ x * x + x * x ≡⟨ +idempotence ⟩ x * x ∎ absorption : ∀ {A} {x y : Graph A} -> x * y + x + y ≡ x * y absorption {_} {x} {y} = begin (x * y + x) + y ≡⟨ L (R (symmetry *right-identity)) ⟩ (x * y + x * ε) + y ≡⟨ R (symmetry *right-identity) ⟩ (x * y + x * ε) + y * ε ≡⟨ symmetry decomposition ⟩ (x * y) * ε ≡⟨ *right-identity ⟩ x * y ∎ -- Subgraph relation ⊆reflexivity : ∀ {A} {x : Graph A} -> x ⊆ x ⊆reflexivity = +idempotence ⊆antisymmetry : ∀ {A} {x y : Graph A} -> x ⊆ y -> y ⊆ x -> x ≡ y ⊆antisymmetry p q = symmetry q -- x = y + x >> +commutativity -- y + x = x + y >> p -- x + y = y ⊆transitivity : ∀ {A} {x y z : Graph A} -> x ⊆ y -> y ⊆ z -> x ⊆ z ⊆transitivity p q = symmetry (symmetry q -- z = y + z >> L (symmetry p) -- y + z = (x + y) + z >> symmetry +associativity -- (x + y) + z = x + (y + z) >> R q) -- x + (y + z) = x + z ⊆least-element : ∀ {A} {x : Graph A} -> ε ⊆ x ⊆least-element = +commutativity >> +identity ⊆overlay : ∀ {A} {x y : Graph A} -> x ⊆ (x + y) ⊆overlay = +associativity >> L +idempotence ⊆connect : ∀ {A} {x y : Graph A} -> (x + y) ⊆ (x * y) ⊆connect = +commutativity >> +associativity >> absorption ⊆left-overlay-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (x + z) ⊆ (y + z) ⊆left-overlay-monotony {_} {x} {y} {z} p = begin (x + z) + (y + z) ≡⟨ symmetry +associativity ⟩ x + (z + (y + z)) ≡⟨ R +commutativity ⟩ x + ((y + z) + z) ≡⟨ R (symmetry +associativity) ⟩ x + (y + (z + z)) ≡⟨ R (R +idempotence) ⟩ x + (y + z) ≡⟨ +associativity ⟩ (x + y) + z ≡⟨ L p ⟩ y + z ∎ ⊆right-overlay-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (z + x) ⊆ (z + y) ⊆right-overlay-monotony {_} {x} {y} {z} p = begin (z + x) + (z + y) ≡⟨ +associativity ⟩ ((z + x) + z) + y ≡⟨ L +commutativity ⟩ (z + (z + x)) + y ≡⟨ L +associativity ⟩ ((z + z) + x) + y ≡⟨ L (L +idempotence) ⟩ (z + x) + y ≡⟨ symmetry +associativity ⟩ z + (x + y) ≡⟨ R p ⟩ z + y ∎ ⊆left-connect-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (x * z) ⊆ (y * z) ⊆left-connect-monotony {_} {x} {y} {z} p = begin (x * z) + (y * z) ≡⟨ symmetry right-distributivity ⟩ (x + y) * z ≡⟨ L p ⟩ y * z ∎ ⊆right-connect-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (z * x) ⊆ (z * y) ⊆right-connect-monotony {_} {x} {y} {z} p = begin (z * x) + (z * y) ≡⟨ symmetry left-distributivity ⟩ z * (x + y) ≡⟨ R p ⟩ z * y ∎ ⊆left-monotony : ∀ {A} {op : BinaryOperator} {x y z : Graph A} -> x ⊆ y -> apply op x z ⊆ apply op y z ⊆left-monotony {_} {+op} {x} {y} {z} p = ⊆left-overlay-monotony p ⊆left-monotony {_} {*op} {x} {y} {z} p = ⊆left-connect-monotony p ⊆right-monotony : ∀ {A} {op : BinaryOperator} {x y z : Graph A} -> x ⊆ y -> apply op z x ⊆ apply op z y ⊆right-monotony {_} {+op} {x} {y} {z} p = ⊆right-overlay-monotony p ⊆right-monotony {_} {*op} {x} {y} {z} p = ⊆right-connect-monotony p -- | Helper theorems flip-end : ∀ {A} {x y z : Graph A} -> (x + y + z) ≡ (x + z + y) flip-end = symmetry +associativity >> R +commutativity >> +associativity *+ltriple : ∀ {A} {x y z : Graph A} -> (x * (y + z)) ≡ (x * y) + (x * z) + (y + z) *+ltriple {_} {x} {y} {z} = begin (x * (y + z)) ≡⟨ left-distributivity ⟩ (x * y + x * z) ≡⟨ L (symmetry absorption) ⟩ (x * y + x + y + x * z) ≡⟨ R (symmetry absorption) ⟩ ((x * y + x + y) + (x * z + x + z)) ≡⟨ symmetry +associativity ⟩ ((x * y + x) + (y + (x * z + x + z))) ≡⟨ R +commutativity ⟩ ((x * y + x) + ((x * z + x + z) + y)) ≡⟨ symmetry +associativity ⟩ (x * y + (x + (x * z + x + z + y))) ≡⟨ R +commutativity ⟩ (x * y + (x * z + x + z + y + x)) ≡⟨ R flip-end ⟩ (x * y + (x * z + x + z + x + y)) ≡⟨ R (L flip-end) ⟩ (x * y + (x * z + x + x + z + y)) ≡⟨ R (L (L (symmetry +associativity >> R +idempotence))) ⟩ (x * y + (x * z + x + z + y)) ≡⟨ R (L (L (L (symmetry absorption)))) ⟩ (x * y + (x * z + x + z + x + z + y)) ≡⟨ R (L (L flip-end)) ⟩ (x * y + (x * z + x + x + z + z + y)) ≡⟨ R (L (L (L (symmetry +associativity >> R +idempotence)))) ⟩ (x * y + (x * z + x + z + z + y)) ≡⟨ R (L (L absorption)) ⟩ (x * y + (x * z + z + y)) ≡⟨ R (symmetry +associativity) ⟩ (x * y + (x * z + (z + y))) ≡⟨ +associativity ⟩ (x * y + (x * z) + (z + y)) ≡⟨ +right-congruence +commutativity ⟩ (x * y) + (x * z) + (y + z) ∎ +*ltriple : ∀ {A} {x y z : Graph A} -> (x + (y * z)) ≡ (x + y) + (x + z) + (y * z) +*ltriple {_} {x} {y} {z} = begin (x + (y * z)) ≡⟨ R (symmetry absorption) ⟩ (x + (y * z + y + z)) ≡⟨ R (symmetry +associativity >> +commutativity) ⟩ (x + (y + z + y * z)) ≡⟨ L (symmetry +idempotence) ⟩ (x + x + (y + z + y * z)) ≡⟨ +associativity ⟩ (x + x + (y + z) + y * z) ≡⟨ L (+associativity) ⟩ (x + x + y + z + y * z) ≡⟨ L (L flip-end) ⟩ (x + y + x + z + y * z) ≡⟨ L (symmetry +associativity) ⟩ (x + y + (x + z) + (y * z)) ∎ ++ltriple : ∀ {A} {x y z : Graph A} -> (x + (y + z)) ≡ (x + y) + (x + z) + (y + z) ++ltriple {_} {x} {y} {z} = begin (x + (y + z)) ≡⟨ +associativity ⟩ (x + y + z) ≡⟨ L (symmetry +idempotence) ⟩ (x + y + (x + y) + z) ≡⟨ symmetry +associativity ⟩ (x + y + (x + y + z)) ≡⟨ R flip-end ⟩ (x + y + (x + z + y)) ≡⟨ R (L (R (symmetry +idempotence))) ⟩ (x + y + (x + (z + z) + y)) ≡⟨ R (L (+associativity)) ⟩ (x + y + (x + z + z + y)) ≡⟨ R (symmetry +associativity) ⟩ (x + y + ((x + z) + (z + y))) ≡⟨ +associativity ⟩ (x + y + (x + z) + (z + y)) ≡⟨ R (+commutativity) ⟩ (x + y + (x + z) + (y + z)) ∎ *+rtriple : ∀ {A} {x y z : Graph A} -> ((x * y) + z) ≡ (x * y) + (x + z) + (y + z) *+rtriple {_} {x} {y} {z} = begin (x * y + z) ≡⟨ L (symmetry absorption) ⟩ (x * y + x + y + z) ≡⟨ R (symmetry +idempotence) ⟩ (x * y + x + y + (z + z)) ≡⟨ +associativity ⟩ (x * y + x + y + z + z) ≡⟨ L flip-end ⟩ (x * y + x + z + y + z) ≡⟨ symmetry +associativity ⟩ (x * y + x + z + (y + z)) ≡⟨ L (symmetry +associativity) ⟩ (x * y + (x + z) + (y + z)) ∎ +*rtriple : ∀ {A} {x y z : Graph A} -> ((x + y) * z) ≡ (x + y) + (x * z) + (y * z) +*rtriple {_} {x} {y} {z} = begin ((x + y) * z) ≡⟨ right-distributivity ⟩ (x * z + y * z) ≡⟨ L (symmetry absorption) ⟩ (x * z + x + z + y * z) ≡⟨ R (symmetry absorption) ⟩ (x * z + x + z + (y * z + y + z)) ≡⟨ symmetry (R +associativity) ⟩ (x * z + x + z + (y * z + (y + z))) ≡⟨ R +commutativity ⟩ (x * z + x + z + (y + z + y * z)) ≡⟨ +associativity ⟩ (x * z + x + z + (y + z) + y * z) ≡⟨ L +associativity ⟩ (x * z + x + z + y + z + y * z) ≡⟨ L flip-end ⟩ (x * z + x + z + z + y + y * z) ≡⟨ L (L (symmetry +associativity)) ⟩ (x * z + x + (z + z) + y + y * z) ≡⟨ L (L (R +idempotence)) ⟩ (x * z + x + z + y + y * z) ≡⟨ L (L (L (R (symmetry +idempotence)))) ⟩ (x * z + (x + x) + z + y + y * z) ≡⟨ L (L (L +associativity)) ⟩ (x * z + x + x + z + y + y * z) ≡⟨ L (L (symmetry +associativity)) ⟩ (x * z + x + (x + z) + y + y * z) ≡⟨ L (L (R +commutativity)) ⟩ (x * z + x + (z + x) + y + y * z) ≡⟨ L (L +associativity)⟩ (x * z + x + z + x + y + y * z) ≡⟨ L (L (L absorption)) ⟩ (x * z + x + y + y * z) ≡⟨ symmetry (L +associativity) ⟩ (x * z + (x + y) + y * z) ≡⟨ L +commutativity ⟩ (x + y + (x * z) + (y * z)) ∎ ++rtriple : ∀ {A} {x y z : Graph A} -> ((x + y) + z) ≡ (x + y) + (x + z) + (y + z) ++rtriple {_} {x} {y} {z} = symmetry +associativity >> ++ltriple
42.139013
104
0.406832
30f1a10312ebfa0b0952ddf4c085616489747915
2,010
agda
Agda
lib/Haskell/Prim/Foldable.agda
JonathanBrouwer/agda2hs
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
lib/Haskell/Prim/Foldable.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
lib/Haskell/Prim/Foldable.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Haskell.Prim.Foldable where open import Haskell.Prim open import Haskell.Prim.Num open import Haskell.Prim.Eq open import Haskell.Prim.List open import Haskell.Prim.Int open import Haskell.Prim.Bool open import Haskell.Prim.Maybe open import Haskell.Prim.Either open import Haskell.Prim.Tuple open import Haskell.Prim.Monoid -------------------------------------------------- -- Foldable record Foldable (t : Set → Set) : Set₁ where field foldMap : ⦃ Monoid b ⦄ → (a → b) → t a → b foldr : (a → b → b) → b → t a → b foldr f z t = foldMap ⦃ MonoidEndo ⦄ f t z foldl : (b → a → b) → b → t a → b foldl f z t = foldMap ⦃ MonoidEndoᵒᵖ ⦄ (flip f) t z any : (a → Bool) → t a → Bool any = foldMap ⦃ MonoidDisj ⦄ all : (a → Bool) → t a → Bool all = foldMap ⦃ MonoidConj ⦄ and : t Bool → Bool and = all id or : t Bool → Bool or = any id null : t a → Bool null = all (const false) concat : t (List a) → List a concat = foldMap id concatMap : (a → List b) → t a → List b concatMap = foldMap elem : ⦃ Eq a ⦄ → a → t a → Bool elem x = foldMap ⦃ MonoidDisj ⦄ (x ==_) notElem : ⦃ Eq a ⦄ → a → t a → Bool notElem x t = not (elem x t) toList : t a → List a toList = foldr _∷_ [] sum : ⦃ iNum : Num a ⦄ → t a → a sum = foldMap ⦃ MonoidSum ⦄ id product : ⦃ iNum : Num a ⦄ → t a → a product = foldMap ⦃ MonoidProduct ⦄ id length : t a → Int length = foldMap ⦃ MonoidSum ⦄ (const 1) open Foldable ⦃ ... ⦄ public {-# COMPILE AGDA2HS Foldable existing-class #-} instance iFoldableList : Foldable List iFoldableList .foldMap f [] = mempty iFoldableList .foldMap f (x ∷ xs) = f x <> foldMap f xs iFoldableMaybe : Foldable Maybe iFoldableMaybe .foldMap _ Nothing = mempty iFoldableMaybe .foldMap f (Just x) = f x iFoldableEither : Foldable (Either a) iFoldableEither .foldMap _ (Left _) = mempty iFoldableEither .foldMap f (Right x) = f x iFoldablePair : Foldable (a ×_) iFoldablePair .foldMap f (_ , x) = f x
23.372093
57
0.612935
ade92643573af00d4c2d664d70cd380c9d93fa03
961
agda
Agda
examples/outdated-and-incorrect/cat/Terminal.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/cat/Terminal.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/cat/Terminal.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Terminal where open import Base open import Category open import Unique open import Dual import Iso module Term (ℂ : Cat) where private ℂ' = η-Cat ℂ private open module C = Cat ℂ' private open module U = Uniq ℂ' private open module I = Iso ℂ' Terminal : (A : Obj) -> Set1 Terminal A = (B : Obj) -> ∃! \(f : B ─→ A) -> True toTerminal : {A B : Obj} -> Terminal A -> B ─→ A toTerminal term = getWitness (term _) terminalIso : {A B : Obj} -> Terminal A -> Terminal B -> A ≅ B terminalIso tA tB = iso (toTerminal tB) (toTerminal tA) p q where p : toTerminal tB ∘ toTerminal tA == id p = witnessEqual (tB _) tt tt q : toTerminal tA ∘ toTerminal tB == id q = witnessEqual (tA _) tt tt module Init (ℂ : Cat) = Term (η-Cat ℂ op) renaming ( Terminal to Initial ; toTerminal to fromInitial ; terminalIso to initialIso )
23.439024
64
0.577523
5ec7c02e47dc7dc040ab8ab4430fb9e4f77c4924
2,115
agda
Agda
agda/hott/core/univalence.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
agda/hott/core/univalence.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
agda/hott/core/univalence.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module hott.core.univalence where open import hott.core.universe open import hott.functions open import hott.core.equality open import hott.core.sigma -- The core idea of univalence is to "identify" isomorphic types as -- equal. Of course the normal definition of isomorphism is that there -- should be a map from A to B that is witnesses the equivalence of the -- two type. This is captured by the following record. record _≃_ {a b : Level}(A : Type a)(B : Type b) : Type (a ⊔ b) where constructor IdentifyTypesVia field equiv : (A → B) -- The equivalence left-inv : (B → A) -- its left inverse right-inv : (B → A) -- and its right inverse -- The proofs of the fact that the left and right inverses are actually -- left and right inverses. left-inv∘equiv~idA : left-inv ∘ equiv ~ id iso∘right-equiv~idB : equiv ∘ right-inv ~ id -- Of course a type should be equivalent to itself via identity. A≃A : {ℓ : Level}{A : Type ℓ} → A ≃ A A≃A {ℓ} {A} = IdentifyTypesVia id id id (λ _ → refl) (λ _ → refl) -- Equal types are equivalent. ≡→≃ : {ℓ : Level}{A B : Type ℓ} → A ≡ B → A ≃ B ≡→≃ refl = A≃A -- For the converse we need the univalence. However Univalence says -- something. Not only can we infer A ≡ B from A ≃ B via the postulate -- ua, this map together with ≡→≃ gives an equivalence of types. module Univalence {ℓ : Level}{A B : Type ℓ} where -- The main axiom is to identify A ≃ B with A ≡ B postulate ua : A ≃ B → A ≡ B -- Now we are ready for the univalence axiom. UnivalenceAxiom : (A ≃ B) ≃ (A ≡ B) UnivalenceAxiom = IdentifyTypesVia ua ≡→≃ ≡→≃ linv-prf rinv-prf where postulate rinv-prf : ua ∘ ≡→≃ ~ id postulate linv-prf : ≡→≃ ∘ ua ~ id -- The next function helps in clean use of the univalence -- axioms in equational reasoning. -- -- -- begin ... -- ≡ B by univalence -- ... -- -- provided an appropriate instance of A ≃ B is available in the -- vicinity. -- univalence : ⦃ a≃b : A ≃ B ⦄ → A ≡ B univalence ⦃ a≃b ⦄ = ua a≃b open Univalence public
32.045455
75
0.636879
433b401bf47f86ccaba69c64dd0df87b177299bf
5,519
agda
Agda
RevNoRepeat.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
RevNoRepeat.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
RevNoRepeat.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
import Level as L open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Empty open import Data.Nat open import Data.Nat.Properties open import RevMachine module RevNoRepeat {ℓ} (M : RevMachine {ℓ}) where infix 99 _ᵣₑᵥ infixr 10 _∷_ infixr 10 _++↦_ open RevMachine.RevMachine M is-stuck : State → Set _ is-stuck st = ∄[ st' ] (st ↦ st') is-initial : State → Set _ is-initial st = ∄[ st' ] (st' ↦ st) data _↦ᵣₑᵥ_ : State → State → Set (L.suc ℓ) where _ᵣₑᵥ : ∀ {st₁ st₂} → st₁ ↦ st₂ → st₂ ↦ᵣₑᵥ st₁ data _↦*_ : State → State → Set (L.suc ℓ) where ◾ : {st : State} → st ↦* st _∷_ : {st₁ st₂ st₃ : State} → st₁ ↦ st₂ → st₂ ↦* st₃ → st₁ ↦* st₃ _++↦_ : {st₁ st₂ st₃ : State} → st₁ ↦* st₂ → st₂ ↦* st₃ → st₁ ↦* st₃ ◾ ++↦ st₁↦*st₂ = st₁↦*st₂ (st₁↦st₁' ∷ st₁'↦*st₂) ++↦ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ st₂'↦*st₃) len↦ : ∀ {st st'} → st ↦* st' → ℕ len↦ ◾ = 0 len↦ (_ ∷ r) = 1 + len↦ r data _↦ᵣₑᵥ*_ : State → State → Set (L.suc ℓ) where ◾ : ∀ {st} → st ↦ᵣₑᵥ* st _∷_ : ∀ {st₁ st₂ st₃} → st₁ ↦ᵣₑᵥ st₂ → st₂ ↦ᵣₑᵥ* st₃ → st₁ ↦ᵣₑᵥ* st₃ _++↦ᵣₑᵥ_ : ∀ {st₁ st₂ st₃} → st₁ ↦ᵣₑᵥ* st₂ → st₂ ↦ᵣₑᵥ* st₃ → st₁ ↦ᵣₑᵥ* st₃ ◾ ++↦ᵣₑᵥ st₁↦ᵣₑᵥ*st₂ = st₁↦ᵣₑᵥ*st₂ (st₁↦ᵣₑᵥst₁' ∷ st₁'↦ᵣₑᵥ*st₂) ++↦ᵣₑᵥ st₂'↦ᵣₑᵥ*st₃ = st₁↦ᵣₑᵥst₁' ∷ (st₁'↦ᵣₑᵥ*st₂ ++↦ᵣₑᵥ st₂'↦ᵣₑᵥ*st₃) Rev↦ : ∀ {st₁ st₂} → st₁ ↦* st₂ → st₂ ↦ᵣₑᵥ* st₁ Rev↦ ◾ = ◾ Rev↦ (r ∷ rs) = Rev↦ rs ++↦ᵣₑᵥ ((r ᵣₑᵥ) ∷ ◾) Rev↦ᵣₑᵥ : ∀ {st₁ st₂} → st₁ ↦ᵣₑᵥ* st₂ → st₂ ↦* st₁ Rev↦ᵣₑᵥ ◾ = ◾ Rev↦ᵣₑᵥ ((r ᵣₑᵥ) ∷ rs) = Rev↦ᵣₑᵥ rs ++↦ (r ∷ ◾) deterministic* : ∀ {st st₁ st₂} → st ↦* st₁ → st ↦* st₂ → is-stuck st₁ → is-stuck st₂ → st₁ ≡ st₂ deterministic* ◾ ◾ stuck₁ stuck₂ = refl deterministic* ◾ (r ∷ ↦*₂) stuck₁ stuck₂ = ⊥-elim (stuck₁ (_ , r)) deterministic* (r ∷ ↦*₁) ◾ stuck₁ stuck₂ = ⊥-elim (stuck₂ (_ , r)) deterministic* (r₁ ∷ ↦*₁) (r₂ ∷ ↦*₂) stuck₁ stuck₂ with deterministic r₁ r₂ ... | refl = deterministic* ↦*₁ ↦*₂ stuck₁ stuck₂ deterministic*' : ∀ {st st₁ st'} → (rs₁ : st ↦* st₁) → (rs : st ↦* st') → is-stuck st' → Σ[ rs' ∈ st₁ ↦* st' ] (len↦ rs ≡ len↦ rs₁ + len↦ rs') deterministic*' ◾ rs stuck = rs , refl deterministic*' (r ∷ rs₁) ◾ stuck = ⊥-elim (stuck (_ , r)) deterministic*' (r ∷ rs₁) (r' ∷ rs) stuck with deterministic r r' ... | refl with deterministic*' rs₁ rs stuck ... | (rs' , eq) = rs' , cong suc eq deterministicᵣₑᵥ* : ∀ {st st₁ st₂} → st ↦ᵣₑᵥ* st₁ → st ↦ᵣₑᵥ* st₂ → is-initial st₁ → is-initial st₂ → st₁ ≡ st₂ deterministicᵣₑᵥ* ◾ ◾ initial₁ initial₂ = refl deterministicᵣₑᵥ* ◾ (r ᵣₑᵥ ∷ ↦ᵣₑᵥ*₂) initial₁ initial₂ = ⊥-elim (initial₁ (_ , r)) deterministicᵣₑᵥ* (r ᵣₑᵥ ∷ ↦ᵣₑᵥ*₁) ◾ initial₁ initial₂ = ⊥-elim (initial₂ (_ , r)) deterministicᵣₑᵥ* (r₁ ᵣₑᵥ ∷ ↦ᵣₑᵥ*₁) (r₂ ᵣₑᵥ ∷ ↦ᵣₑᵥ*₂) initial₁ initial₂ with deterministicᵣₑᵥ r₁ r₂ ... | refl = deterministicᵣₑᵥ* ↦ᵣₑᵥ*₁ ↦ᵣₑᵥ*₂ initial₁ initial₂ data _↦[_]_ : State → ℕ → State → Set (L.suc ℓ) where ◾ : ∀ {st} → st ↦[ 0 ] st _∷_ : ∀ {st₁ st₂ st₃ n} → st₁ ↦ st₂ → st₂ ↦[ n ] st₃ → st₁ ↦[ suc n ] st₃ _++↦ⁿ_ : ∀ {st₁ st₂ st₃ n m} → st₁ ↦[ n ] st₂ → st₂ ↦[ m ] st₃ → st₁ ↦[ n + m ] st₃ ◾ ++↦ⁿ st₁↦*st₂ = st₁↦*st₂ (st₁↦st₁' ∷ st₁'↦*st₂) ++↦ⁿ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ⁿ st₂'↦*st₃) data _↦ᵣₑᵥ[_]_ : State → ℕ → State → Set (L.suc ℓ) where ◾ : ∀ {st} → st ↦ᵣₑᵥ[ 0 ] st _∷_ : ∀ {st₁ st₂ st₃ n} → st₁ ↦ᵣₑᵥ st₂ → st₂ ↦ᵣₑᵥ[ n ] st₃ → st₁ ↦ᵣₑᵥ[ suc n ] st₃ _++↦ᵣₑᵥⁿ_ : ∀ {st₁ st₂ st₃ n m} → st₁ ↦ᵣₑᵥ[ n ] st₂ → st₂ ↦ᵣₑᵥ[ m ] st₃ → st₁ ↦ᵣₑᵥ[ n + m ] st₃ ◾ ++↦ᵣₑᵥⁿ st₁↦*st₂ = st₁↦*st₂ (st₁↦st₁' ∷ st₁'↦*st₂) ++↦ᵣₑᵥⁿ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ᵣₑᵥⁿ st₂'↦*st₃) deterministicⁿ : ∀ {st st₁ st₂ n} → st ↦[ n ] st₁ → st ↦[ n ] st₂ → st₁ ≡ st₂ deterministicⁿ ◾ ◾ = refl deterministicⁿ (r₁ ∷ rs₁) (r₂ ∷ rs₂) with deterministic r₁ r₂ ... | refl = deterministicⁿ rs₁ rs₂ deterministicᵣₑᵥⁿ : ∀ {st st₁ st₂ n} → st ↦ᵣₑᵥ[ n ] st₁ → st ↦ᵣₑᵥ[ n ] st₂ → st₁ ≡ st₂ deterministicᵣₑᵥⁿ ◾ ◾ = refl deterministicᵣₑᵥⁿ (r₁ ᵣₑᵥ ∷ rs₁) (r₂ ᵣₑᵥ ∷ rs₂) with deterministicᵣₑᵥ r₁ r₂ ... | refl = deterministicᵣₑᵥⁿ rs₁ rs₂ private split↦ⁿ : ∀ {st st'' n m} → st ↦ᵣₑᵥ[ n + m ] st'' → ∃[ st' ] (st ↦ᵣₑᵥ[ n ] st' × st' ↦ᵣₑᵥ[ m ] st'') split↦ⁿ {n = 0} {m} rs = _ , ◾ , rs split↦ⁿ {n = suc n} {m} (r ∷ rs) with split↦ⁿ {n = n} {m} rs ... | st' , st↦ⁿst' , st'↦ᵐst'' = st' , (r ∷ st↦ⁿst') , st'↦ᵐst'' diff : ∀ {n m} → n < m → ∃[ k ] (0 < k × n + k ≡ m) diff {0} {(suc m)} (s≤s z≤n) = suc m , s≤s z≤n , refl diff {(suc n)} {(suc (suc m))} (s≤s (s≤s n≤m)) with diff {n} {suc m} (s≤s n≤m) ... | k , 0<k , eq = k , 0<k , cong suc eq Revⁿ : ∀ {st st' n} → st ↦[ n ] st' → st' ↦ᵣₑᵥ[ n ] st Revⁿ {n = 0} ◾ = ◾ Revⁿ {n = suc n} (r ∷ rs) rewrite +-comm 1 n = Revⁿ rs ++↦ᵣₑᵥⁿ (r ᵣₑᵥ ∷ ◾) NoRepeat : ∀ {st₀ stₙ stₘ n m} → is-initial st₀ → n < m → st₀ ↦[ n ] stₙ → st₀ ↦[ m ] stₘ → stₙ ≢ stₘ NoRepeat {stₙ = st} {_} {m} st₀-is-init n<m st₀↦ᵐst st₀↦ᵐ⁺ᵏ⁺¹st refl with diff n<m ... | suc k , 0<k , refl with (Revⁿ st₀↦ᵐst , Revⁿ st₀↦ᵐ⁺ᵏ⁺¹st) ... | st'↦ᵐst₀' , st'↦ᵐ⁺ᵏ⁺¹st₀' with split↦ⁿ {n = m} {suc k} st'↦ᵐ⁺ᵏ⁺¹st₀' ... | st′ , st'↦ᵐst′ , st′↦ᵏ⁺¹st₀' with deterministicᵣₑᵥⁿ st'↦ᵐst₀' st'↦ᵐst′ ... | refl with st′↦ᵏ⁺¹st₀' ... | r ᵣₑᵥ ∷ rs = ⊥-elim (st₀-is-init (_ , r))
40.284672
101
0.517485
1d9ff406bca8a54a2d9fbb71f5b642bef7f6e66c
256
agda
Agda
test/fail/BadTermination.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/BadTermination.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/BadTermination.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- {-# OPTIONS -v term:20 #-} module BadTermination where data N : Set where zero : N suc : N -> N postulate inf : N data D : N -> Set where d₁ : D (suc inf) d₂ : D inf f : (n : N) -> D n -> N f .inf d₂ = zero f .(suc inf) d₁ = f inf d₂
15.058824
29
0.527344
2262c612d0307ae31beef48227b9266395f6af13
10,894
agda
Agda
src/Categories/Functor/Power.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Functor/Power.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
null
null
null
src/Categories/Functor/Power.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Power Functors, Exponentials over a Category C -- Mainly categories where the objects are functions (Fin n -> Obj) considered pointwise -- and then upgraded to Functors. module Categories.Functor.Power {o ℓ e} (C : Category o ℓ e) where open Category C open HomReasoning open Equiv open import Level using (Level; _⊔_) open import Data.Nat.Base using (ℕ; _+_; zero; suc; _<_) open import Data.Product using (_,_) open import Data.Fin.Base using (Fin; inject+; raise; zero; suc; fromℕ<) open import Data.Sum using (_⊎_; inj₁; inj₂; map) renaming ([_,_] to ⟦_,_⟧; [_,_]′ to ⟦_,_⟧′) open import Data.Vec.N-ary hiding (curryⁿ) open import Function.Base as Fun using (flip; _$_) renaming (_∘_ to _∙_; id to idf) open import Categories.Category.Product using (Product; _⁂_) open import Categories.Functor hiding (id) open import Categories.Functor.Bifunctor using (Bifunctor; overlap-×) private variable i j k : Level I I′ J J′ : Set i D E : Category i j k n n′ m m′ : ℕ Exp : Set i → Category _ _ _ Exp I = record { Obj = I → Obj ; _⇒_ = λ x y → ∀ i → x i ⇒ y i ; _≈_ = λ f g → ∀ i → f i ≈ g i ; id = λ _ → id ; _∘_ = λ f g i → f i ∘ g i ; assoc = λ _ → assoc ; sym-assoc = λ _ → sym-assoc ; identityˡ = λ _ → identityˡ ; identityʳ = λ _ → identityʳ ; identity² = λ _ → identity² ; equiv = record { refl = λ _ → refl ; sym = λ eq i → sym $ eq i ; trans = λ eq₁ eq₂ i → trans (eq₁ i) (eq₂ i) } ; ∘-resp-≈ = λ eq₁ eq₂ i → ∘-resp-≈ (eq₁ i) (eq₂ i) } Power : (n : ℕ) → Category o ℓ e Power n = Exp (Fin n) -- Convention: the ′ version is for a general index set, unprimed for a ℕ -- representing Fin n. So Powerfunctor D n is Exp C (Fin n) ⇒ D, i.e. -- essentially C ^ n ⇒ D. Powerfunctor′ : (D : Category o ℓ e) (I : Set i) → Set (i ⊔ e ⊔ ℓ ⊔ o) Powerfunctor′ D I = Functor (Exp I) D Powerfunctor : (D : Category o ℓ e) (n : ℕ) → Set (e ⊔ ℓ ⊔ o) Powerfunctor D n = Powerfunctor′ D (Fin n) -- With C = D, so Powerendo n is C ^ n => C Powerendo′ : (I : Set i) → Set (i ⊔ e ⊔ ℓ ⊔ o) Powerendo′ I = Powerfunctor′ C I Powerendo : (n : ℕ) → Set (e ⊔ ℓ ⊔ o) Powerendo n = Powerfunctor C n -- Hyperendo n m is C ^ n ⇒ C ^ m Hyperendo : (n m : ℕ) → Set (e ⊔ ℓ ⊔ o) Hyperendo n m = Functor (Power n) (Power m) -- Hyperendo′ I J is C ^ I → C ^ J Hyperendo′ : (I : Set i) (J : Set j) → Set (i ⊔ j ⊔ e ⊔ ℓ ⊔ o) Hyperendo′ I J = Functor (Exp I) (Exp J) -- Parallel composition of Hyperendo′ (via disjoint union of index sets) infixr 9 _par_ _par_ : (F : Hyperendo′ I I′) (G : Hyperendo′ J J′) → Hyperendo′ (I ⊎ J) (I′ ⊎ J′) F par G = record { F₀ = λ xs → ⟦ F.F₀ (xs ∙ inj₁) , G.F₀ (xs ∙ inj₂) ⟧′ ; F₁ = λ fs → ⟦ F.F₁ (fs ∙ inj₁) , G.F₁ (fs ∙ inj₂) ⟧ ; identity = ⟦ F.identity , G.identity ⟧ ; homomorphism = ⟦ F.homomorphism , G.homomorphism ⟧ ; F-resp-≈ = λ fs≈gs → ⟦ F.F-resp-≈ (fs≈gs ∙ inj₁) , G.F-resp-≈ (fs≈gs ∙ inj₂) ⟧ } where module F = Functor F module G = Functor G -- "flattening" means going from a general disjoint union of Fin to a single Fin, -- which has the effect of doing from Powerfunctor′ to Powerfunctor flattenP : (F : Powerfunctor′ D (Fin n ⊎ Fin m)) → Powerfunctor D (n + m) flattenP {n = n} {m = m} F = record { F₀ = λ As → F₀ (As ∙ pack) ; F₁ = λ fs → F₁ (fs ∙ pack) ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = λ fs≈gs → F-resp-≈ (fs≈gs ∙ pack) } where open Functor F pack = ⟦ inject+ m , raise n ⟧′ -- TODO unpackFun (and pack above) should be in stdlib private unpackFin : ∀ n → Fin (n + m) → Fin n ⊎ Fin m unpackFin zero f = inj₂ f unpackFin (suc n) zero = inj₁ zero unpackFin (suc n) (suc f) = map suc idf (unpackFin n f) -- needs a better name? unflattenP : Powerfunctor D (n + m) → Powerfunctor′ D (Fin n ⊎ Fin m) unflattenP {n = n} {m = m} F = record { F₀ = λ As → F₀ (As ∙ unpackFin _) ; F₁ = λ fs → F₁ (fs ∙ unpackFin _) ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = λ fs≈gs → F-resp-≈ (fs≈gs ∙ unpackFin _) } where open Functor F -- flatten a Hyperendo′ "on the right" when over a union of Fin flattenHʳ : (F : Hyperendo′ I (Fin n ⊎ Fin m)) → Hyperendo′ I (Fin (n + m)) flattenHʳ {n = n} {m = m} F = record { F₀ = λ As → F₀ As ∙ unpackFin n ; F₁ = λ fs → F₁ fs ∙ unpackFin n ; identity = identity ∙ unpackFin n ; homomorphism = homomorphism ∙ unpackFin n ; F-resp-≈ = λ fs≈gs → F-resp-≈ fs≈gs ∙ unpackFin n } where open Functor F -- flatten on both sides. flattenH : (F : Hyperendo′ (Fin n ⊎ Fin m) (Fin n′ ⊎ Fin m′)) → Hyperendo (n + m) (n′ + m′) flattenH = flattenHʳ ∙ flattenP -- Pretty syntax for flattening of parallel composition of Hyperendo infixr 9 _∥_ _∥_ : (F : Hyperendo n n′) (G : Hyperendo m m′) → Hyperendo (n + m) (n′ + m′) F ∥ G = flattenH (F par G) -- split is C ^ (I ⊎ J) to C ^ I × C ^ J, as a Functor split : Functor (Exp (I ⊎ J)) (Product (Exp I) (Exp J)) split = record { F₀ = λ As → As ∙ inj₁ , As ∙ inj₂ ; F₁ = λ fs → fs ∙ inj₁ , fs ∙ inj₂ ; identity = (λ _ → refl) , λ _ → refl ; homomorphism = (λ _ → refl) , λ _ → refl ; F-resp-≈ = λ eq → (λ i → eq (inj₁ i)) , λ i → eq (inj₂ i) } reduce′ : (H : Bifunctor C C C) (F : Powerendo′ I) (G : Powerendo′ J) → Powerendo′ (I ⊎ J) reduce′ H F G = H ∘F (F ⁂ G) ∘F split reduce : ∀ (H : Bifunctor C C C) {n m} (F : Powerendo n) (G : Powerendo m) → Powerendo (n + m) reduce H F G = flattenP $ reduce′ H F G flattenP-assocʳ : ∀ {n₁ n₂ n₃} (F : Powerendo′ (Fin n₁ ⊎ Fin n₂ ⊎ Fin n₃)) → Powerendo (n₁ + n₂ + n₃) flattenP-assocʳ {n₁} {n₂} {n₃} F = record { F₀ = λ As → F.F₀ (As ∙ pack) ; F₁ = λ fs → F.F₁ (fs ∙ pack) ; identity = F.identity ; homomorphism = F.homomorphism ; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs ∙ pack) } where module F = Functor F pack = ⟦ inject+ n₃ ∙ inject+ n₂ , ⟦ inject+ n₃ ∙ raise n₁ , raise (n₁ + n₂) ⟧′ ⟧′ reduce2ʳ : ∀ (G : Bifunctor C C C) {n₁ n₂ n₃} (F₁ : Powerendo n₁) (F₂ : Powerendo n₂) (F₃ : Powerendo n₃) → Powerendo ((n₁ + n₂) + n₃) reduce2ʳ G F₁ F₂ F₃ = flattenP-assocʳ $ reduce′ G F₁ $ reduce′ G F₂ F₃ overlaps : (H : Bifunctor D D E) (F G : Powerfunctor′ D I) → Powerfunctor′ E I overlaps = overlap-× overlap2ʳ : (G : Bifunctor C C C) (F₁ F₂ F₃ : Powerendo n) → Powerendo n overlap2ʳ G F₁ F₂ F₃ = overlaps G F₁ (overlaps G F₂ F₃) -- select′ i always evaluates at i select′ : (i : I) → Powerendo′ I select′ i = record { F₀ = _$ i ; F₁ = _$ i ; identity = refl ; homomorphism = refl ; F-resp-≈ = _$ i } -- select (m < n) is really select′ (Fin n), but only for m < n select : m < n → Powerendo n select m<n = select′ (fromℕ< m<n) triv : (n : ℕ) → Hyperendo n n triv n = record { F₀ = idf ; F₁ = idf ; identity = λ _ → refl ; homomorphism = λ _ → refl ; F-resp-≈ = idf } -- pad a Hyperendo on the left and right by trivial (i.e. identity) endofunctors pad : ∀ (l r : ℕ) (F : Hyperendo n m) → Hyperendo ((l + n) + r) ((l + m) + r) pad l r F = (triv l ∥ F) ∥ triv r padˡ : ∀ (l : ℕ) (F : Hyperendo n m) → Hyperendo (l + n) (l + m) padˡ l F = triv l ∥ F padʳ : ∀ (r : ℕ) (F : Hyperendo n m) → Hyperendo (n + r) (m + r) padʳ r F = F ∥ triv r unary : Endofunctor C → Powerendo 1 unary F = record { F₀ = λ As → F.F₀ (As zero) ; F₁ = λ fs → F.F₁ (fs zero) ; identity = F.identity ; homomorphism = F.homomorphism ; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs zero) } where module F = Functor F unaryH : Endofunctor C → Hyperendo 1 1 unaryH F = record { F₀ = λ As → F.F₀ ∙ As ; F₁ = λ fs → F.F₁ ∙ fs ; identity = λ _ → F.identity ; homomorphism = λ _ → F.homomorphism ; F-resp-≈ = λ fs≈gs → F.F-resp-≈ ∙ fs≈gs } where module F = Functor F -- "constant" nullary : Obj → Powerendo 0 nullary X = record { F₀ = λ _ → X ; F₁ = λ _ → id ; identity = refl ; homomorphism = sym identity² ; F-resp-≈ = λ _ → refl } nullaryH : Obj → Hyperendo 0 1 nullaryH X = record { F₀ = λ _ _ → X ; F₁ = λ _ _ → id ; identity = λ _ → refl ; homomorphism = λ _ → sym identity² ; F-resp-≈ = λ _ _ → refl } binary : Bifunctor C C C → Powerendo 2 binary F = record { F₀ = λ As → F.F₀ (As zero , As (suc zero)) ; F₁ = λ fs → F.F₁ (fs zero , fs (suc zero)) ; identity = F.identity ; homomorphism = F.homomorphism ; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs zero , fs≈gs (suc zero)) } where module F = Functor F binaryH : Bifunctor C C C → Hyperendo 2 1 binaryH F = record { F₀ = λ As _ → F.F₀ (As zero , As (suc zero)) ; F₁ = λ fs _ → F.F₁ (fs zero , fs (suc zero)) ; identity = λ _ → F.identity ; homomorphism = λ _ → F.homomorphism ; F-resp-≈ = λ fs≈gs _ → F.F-resp-≈ (fs≈gs zero , fs≈gs (suc zero)) } where module F = Functor F hyp : Powerendo n → Hyperendo n 1 hyp F = record { F₀ = λ As _ → F.F₀ As ; F₁ = λ fs _ → F.F₁ fs ; identity = λ _ → F.identity ; homomorphism = λ _ → F.homomorphism ; F-resp-≈ = λ fs≈gs _ → F.F-resp-≈ fs≈gs } where module F = Functor F private curryⁿ : ∀ n {a b} {A : Set a} {B : Set b} → ((Fin n → A) → B) → N-ary n A B curryⁿ zero f = f (λ ()) curryⁿ (suc n) {A = A} f = λ x → curryⁿ n (f ∙ addon x) where addon : A → (Fin n → A) → Fin (suc n) → A addon x _ zero = x addon _ g (suc i) = g i plex′ : (J → Powerendo′ I) → Hyperendo′ I J plex′ Fs = record { F₀ = flip (Functor.F₀ ∙ Fs) ; F₁ = flip (λ j → Functor.F₁ (Fs j)) ; identity = λ j → Functor.identity (Fs j) ; homomorphism = λ j → Functor.homomorphism (Fs j) ; F-resp-≈ = flip (λ j → Functor.F-resp-≈ (Fs j)) } plex : N-ary n (Powerendo′ I) (Hyperendo′ I (Fin n)) plex {n = n} = curryⁿ n plex′ -- like pad, but for Powerendo -- on left or right. widenˡ : ∀ (l : ℕ) (F : Powerendo n) → Powerendo (l + n) widenˡ l F = record { F₀ = λ As → F.F₀ (As ∙ pack) ; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack) ; identity = F.identity ; homomorphism = F.homomorphism ; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs ∙ pack) } where module F = Functor F pack = raise l widenʳ : ∀ (r : ℕ) (F : Powerendo n) → Powerendo (n + r) widenʳ r F = record { F₀ = λ As → F.F₀ (As ∙ pack) ; F₁ = λ fs → F.F₁ (fs ∙ pack) ; identity = F.identity ; homomorphism = F.homomorphism ; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs ∙ pack) } where module F = Functor F pack = inject+ r
33.314985
134
0.549385
52a3a5be7c5817829116a51d64007826a5723da6
272
agda
Agda
test/Fail/Issue4784b.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Fail/Issue4784b.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Fail/Issue4784b.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} open import Agda.Builtin.Equality postulate A : Set B : A → Set data H (@0 A : Set) : Set where con : (@0 x : A) → H A data G : Set where con : (@0 x : A) → (@0 b : B x) → G data D : Set where con : (@0 x : A) → B x → D
17
37
0.525735
35f3bad3b78ba194f63d74659a285901b54fa365
604
agda
Agda
test/succeed/Issue106.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/succeed/Issue106.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/succeed/Issue106.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
module Issue106 where data ℕ : Set where zero : ℕ suc : ℕ -> ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} _+_ : ℕ -> ℕ -> ℕ zero + m = m suc n + m = suc (n + m) record ⊤ : Set where data C : ℕ -> Set where c : C 0 data D : Set where d : forall s (x : C s) (xs : D) -> D f : D -> ℕ -> ⊤ f (d zero c x) (suc n) = f (d 0 c x) n f (d .zero c x) n = f x (suc n) g : D -> ℕ -> ⊤ g (d .zero c x) (suc n) = g (d zero c x) n g (d .zero c x) n = g x (suc n) h : D -> ℕ -> ⊤ h (d .zero c x) (suc n) = h (d 0 c x) n h (d .zero c x) n = h x (suc n)
17.764706
42
0.456954
52be8ad8641c446700fa31128360b73bb006f442
14,009
agda
Agda
src/Delay-monad/Sized/Partial-order.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Sized/Partial-order.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Sized/Partial-order.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A partial order ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude open import Prelude.Size module Delay-monad.Sized.Partial-order {a} {A : Size → Type a} where open import Equality.Propositional as E open import Logical-equivalence using (_⇔_) open import Bijection equality-with-J using (_↔_) open import Double-negation equality-with-J open import Excluded-middle equality-with-J open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Monad equality-with-J open import Delay-monad.Sized open import Delay-monad.Sized.Bisimilarity as B hiding (reflexive; symmetric; laterˡ⁻¹; laterʳ⁻¹) open import Delay-monad.Sized.Bisimilarity.Alternative open import Delay-monad.Sized.Bisimilarity.Negative import Delay-monad.Sized.Termination as T -- An ordering relation. -- -- Capretta defines a logically equivalent relation in "General -- Recursion via Coinductive Types". -- -- Benton, Kennedy and Varming define a relation that is perhaps -- logically equivalent in "Some Domain Theory and Denotational -- Semantics in Coq". infix 4 [_]_⊑_ [_]_⊑′_ _⊑_ _⊑′_ mutual data [_]_⊑_ (i : Size) : Delay A ∞ → Delay A ∞ → Type a where now : ∀ {x} → [ i ] now x ⊑ now x laterʳ : ∀ {x y} → [ i ] x ⊑ force y → [ i ] x ⊑ later y laterˡ : ∀ {x y} → [ i ] force x ⊑′ y → [ i ] later x ⊑ y record [_]_⊑′_ (i : Size) (x y : Delay A ∞) : Type a where coinductive field force : {j : Size< i} → [ j ] x ⊑ y open [_]_⊑′_ public _⊑_ : Delay A ∞ → Delay A ∞ → Type a _⊑_ = [ ∞ ]_⊑_ _⊑′_ : Delay A ∞ → Delay A ∞ → Type a _⊑′_ = [ ∞ ]_⊑′_ -- A derived "constructor". later-cong : ∀ {i x y} → [ i ] force x ⊑′ force y → [ i ] later x ⊑ later y later-cong p = laterʳ (laterˡ p) -- Termination predicates. Terminates : Size → Delay A ∞ → A ∞ → Type a Terminates i x y = [ i ] now y ⊑ x _⇓_ : Delay A ∞ → A ∞ → Type a _⇓_ = Terminates ∞ -- If x terminates with the values y and z, then y is equal to z. ⇓→⇓→≡ : ∀ {i x y z} → Terminates i x y → Terminates i x z → y ≡ z ⇓→⇓→≡ now now = refl ⇓→⇓→≡ (laterʳ p) (laterʳ q) = ⇓→⇓→≡ p q -- If x is smaller than or equal to now y, and x terminates, then -- x terminates with the value y. ⊑now→⇓→⇓ : ∀ {i x} {y z : A ∞} → x ⊑ now y → Terminates i x z → Terminates i x y ⊑now→⇓→⇓ now now = now ⊑now→⇓→⇓ (laterˡ p) (laterʳ q) = laterʳ (⊑now→⇓→⇓ (force p) q) -- The notion of termination defined here is pointwise isomorphic to -- the one defined in Delay-monad.Sized.Weak-bisimilarity. ⇓↔⇓ : ∀ {i x y} → Terminates i x y ↔ T.Terminates i x y ⇓↔⇓ = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where to : ∀ {i x y} → Terminates i x y → T.Terminates i x y to now = now to (laterʳ p) = laterʳ (to p) from : ∀ {i x y} → T.Terminates i x y → Terminates i x y from now = now from (laterʳ p) = laterʳ (from p) from∘to : ∀ {i x y} (p : Terminates i x y) → from (to p) ≡ p from∘to now = refl from∘to (laterʳ p) = cong laterʳ (from∘to p) to∘from : ∀ {i x y} (p : T.Terminates i x y) → to (from p) ≡ p to∘from now = refl to∘from (laterʳ p) = cong laterʳ (to∘from p) -- Terminates i is pointwise isomorphic to Terminates ∞. Terminates↔⇓ : ∀ {i x y} → Terminates i x y ↔ x ⇓ y Terminates↔⇓ {i} {x} {y} = Terminates i x y ↝⟨ ⇓↔⇓ ⟩ T.Terminates i x y ↝⟨ T.Terminates↔⇓ ⟩ x T.⇓ y ↝⟨ inverse ⇓↔⇓ ⟩□ x ⇓ y □ -- The computation never is smaller than or equal to all other -- computations. never⊑ : ∀ {i} x → [ i ] never ⊑ x never⊑ (now x) = laterˡ λ { .force → never⊑ (now x) } never⊑ (later x) = later-cong λ { .force → never⊑ (force x) } -- The computation never does not terminate. now⋢never : ∀ {i x} → ¬ Terminates i never x now⋢never (laterʳ p) = now⋢never p -- One can remove later constructors. laterˡ⁻¹ : ∀ {i} {j : Size< i} {x y} → [ i ] later x ⊑ y → [ j ] force x ⊑ y laterˡ⁻¹ (laterʳ p) = laterʳ (laterˡ⁻¹ p) laterˡ⁻¹ (laterˡ p) = force p laterʳ⁻¹ : ∀ {i x y} → [ i ] x ⊑ later y → [ i ] x ⊑ force y laterʳ⁻¹ (laterʳ p) = p laterʳ⁻¹ (laterˡ p) = laterˡ λ { .force → laterʳ⁻¹ (force p) } later-cong⁻¹ : ∀ {i} {j : Size< i} {x y} → [ i ] later x ⊑ later y → [ j ] force x ⊑ force y later-cong⁻¹ p = laterʳ⁻¹ (laterˡ⁻¹ p) -- Weak bisimilarity is contained in the ordering relation. ≈→⊑ : ∀ {i x y} → [ i ] x ≈ y → [ i ] x ⊑ y ≈→⊑ now = now ≈→⊑ (later p) = later-cong λ { .force → ≈→⊑ (force p) } ≈→⊑ (laterˡ p) = laterˡ λ { .force → ≈→⊑ p } ≈→⊑ (laterʳ p) = laterʳ (≈→⊑ p) -- The ordering relation is antisymmetric (with respect to weak -- bisimilarity). antisymmetric : ∀ {i x y} → [ i ] x ⊑ y → [ i ] y ⊑ x → [ i ] x ≈ y antisymmetric {x = now x} {y = now .x} now _ = now antisymmetric {x = now x} {y = later y} (laterʳ p) q = laterʳ (_↔_.to ⇓↔⇓ p) antisymmetric {x = later x} {y = now y} p (laterʳ q) = laterˡ (B.symmetric (_↔_.to ⇓↔⇓ q)) antisymmetric {x = later x} {y = later y} p q = later λ { .force → antisymmetric (later-cong⁻¹ p) (later-cong⁻¹ q) } -- An alternative characterisation of weak bisimilarity. ≈⇔⊑×⊒ : ∀ {i x y} → [ i ] x ≈ y ⇔ ([ i ] x ⊑ y × [ i ] y ⊑ x) ≈⇔⊑×⊒ = record { to = λ p → ≈→⊑ p , ≈→⊑ (B.symmetric p) ; from = uncurry antisymmetric } -- The ordering relation is reflexive. reflexive : ∀ {i} x → [ i ] x ⊑ x reflexive (now x) = now reflexive (later x) = later-cong λ { .force → reflexive (force x) } -- Certain instances of symmetry also hold. symmetric : ∀ {i} {x : A ∞} {y} → Terminates i y x → [ i ] y ⊑ now x symmetric now = now symmetric (laterʳ p) = laterˡ λ { .force → symmetric p } -- The ordering relation is transitive. transitive : ∀ {i} {x y z : Delay A ∞} → [ i ] x ⊑ y → y ⊑ z → [ i ] x ⊑ z transitive p now = p transitive p (laterʳ q) = laterʳ (transitive p q) transitive (laterʳ p) (laterˡ q) = transitive p (force q) transitive (laterˡ p) q = laterˡ λ { .force → transitive (force p) q } -- The termination relation respects weak bisimilarity. ⇓-respects-≈ : ∀ {i x y z} → Terminates i x z → x ≈ y → Terminates i y z ⇓-respects-≈ now q = ≈→⊑ q ⇓-respects-≈ (laterʳ p) q = ⇓-respects-≈ p (B.laterˡ⁻¹ q) -- The ordering relation respects weak bisimilarity. transitive-≈⊑ : ∀ {i x y z} → [ i ] x ≈ y → y ⊑ z → [ i ] x ⊑ z transitive-≈⊑ p q = transitive (≈→⊑ p) q transitive-⊑≈ : ∀ {i x y z} → [ i ] x ⊑ y → y ≈ z → [ i ] x ⊑ z transitive-⊑≈ p now = p transitive-⊑≈ (laterʳ p) (later q) = laterʳ (transitive-⊑≈ p (force q)) transitive-⊑≈ (laterˡ p) q = laterˡ λ { .force → transitive-⊑≈ (force p) q } transitive-⊑≈ (laterʳ p) (laterˡ q) = transitive-⊑≈ p q transitive-⊑≈ p (laterʳ q) = laterʳ (transitive-⊑≈ p q) -- If there is a transitivity-like function that produces an ordering -- proof from one weak bisimilarity proof and one ordering proof, in -- such a way that the size of the ordering proof is preserved, then -- ∀ i → A i is uninhabited. Transitivity-≈⊑ʳ = ∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ⊑ z → [ i ] x ⊑ z size-preserving-transitivity-≈⊑ʳ→uninhabited : Transitivity-≈⊑ʳ → ¬ (∀ i → A i) size-preserving-transitivity-≈⊑ʳ→uninhabited = Transitivity-≈⊑ʳ ↝⟨ (λ trans {i} x → [ i ] later (record { force = λ {j} → now (x j) }) ∼ never ↝⟨ ≈→⊑ ∘ ∼→ ⟩ [ i ] later (record { force = λ {j} → now (x j) }) ⊑ never ↝⟨ trans (laterʳ now) ⟩ [ i ] now (x ∞) ⊑ never ↝⟨ _↔_.to ⇓↔⇓ ⟩□ [ i ] now (x ∞) ≈ never □) ⟩ Laterˡ⁻¹-∼≈′ ↝⟨ _⇔_.from size-preserving-laterˡ⁻¹-∼≈⇔size-preserving-laterˡ⁻¹-∼≈′ ⟩ Laterˡ⁻¹-∼≈ ↝⟨ size-preserving-laterˡ⁻¹-∼≈→uninhabited ⟩ ¬ (∀ i → A i) □ -- If A ∞ is uninhabited, then there is a transitivity proof of the -- kind discussed above (Transitivity-≈⊑ʳ). uninhabited→size-preserving-transitivity-≈⊑ʳ : ¬ A ∞ → Transitivity-≈⊑ʳ uninhabited→size-preserving-transitivity-≈⊑ʳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial _ _ → ≈→⊑ (trivial _ _)) ⟩ (∀ x y → x ⊑ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈⊑ʳ □ -- If transitivity can be made size-preserving in the second argument, -- then ∀ i → A i is uninhabited. Transitivityʳ = ∀ {i} {x y z : Delay A ∞} → x ⊑ y → [ i ] y ⊑ z → [ i ] x ⊑ z size-preserving-transitivityʳ→uninhabited : Transitivityʳ → ¬ (∀ i → A i) size-preserving-transitivityʳ→uninhabited = Transitivityʳ ↝⟨ _∘ ≈→⊑ ⟩ Transitivity-≈⊑ʳ ↝⟨ size-preserving-transitivity-≈⊑ʳ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If A ∞ is uninhabited, then transitivity can be made -- size-preserving in the second argument. uninhabited→size-preserving-transitivityʳ : ¬ A ∞ → Transitivityʳ uninhabited→size-preserving-transitivityʳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial _ _ → ≈→⊑ (trivial _ _)) ⟩ (∀ x y → x ⊑ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivityʳ □ -- If there is a transitivity-like function that produces an ordering -- proof from one ordering proof and one weak bisimilarity proof, in -- such a way that the size of the weak bisimilarity proof is -- preserved, then ∀ i → A i is uninhabited. Transitivity-⊑≈ʳ = ∀ {i} {x y z : Delay A ∞} → x ⊑ y → [ i ] y ≈ z → [ i ] x ⊑ z size-preserving-transitivity-⊑≈ʳ→uninhabited : Transitivity-⊑≈ʳ → ¬ (∀ i → A i) size-preserving-transitivity-⊑≈ʳ→uninhabited = Transitivity-⊑≈ʳ ↝⟨ (λ trans {i} x → [ i ] later (record { force = λ {j} → now (x j) }) ∼ never ↝⟨ ∼→ ⟩ [ i ] later (record { force = λ {j} → now (x j) }) ≈ never ↝⟨ trans (laterʳ now) ⟩ [ i ] now (x ∞) ⊑ never ↝⟨ _↔_.to ⇓↔⇓ ⟩□ [ i ] now (x ∞) ≈ never □) ⟩ Laterˡ⁻¹-∼≈′ ↝⟨ _⇔_.from size-preserving-laterˡ⁻¹-∼≈⇔size-preserving-laterˡ⁻¹-∼≈′ ⟩ Laterˡ⁻¹-∼≈ ↝⟨ size-preserving-laterˡ⁻¹-∼≈→uninhabited ⟩ ¬ (∀ i → A i) □ -- If A ∞ is uninhabited, then there is a transitivity-like function of the -- kind discussed above (Transitivity-⊑≈ʳ). uninhabited→size-preserving-transitivity-⊑≈ʳ : ¬ A ∞ → Transitivity-⊑≈ʳ uninhabited→size-preserving-transitivity-⊑≈ʳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial _ _ → ≈→⊑ (trivial _ _)) ⟩ (∀ x y → x ⊑ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-⊑≈ʳ □ -- An alternative characterisation of the ordering relation. -- -- Capretta proves a similar result in "General Recursion via -- Coinductive Types". -- -- One might wonder if the equivalence can be made size-preserving in -- some way. However, note that x ⇓ y is in bijective correspondence -- with Terminates i x y for any size i (see Terminates↔⇓). ⊑⇔⇓→⇓ : ∀ {x y} → x ⊑ y ⇔ (∀ z → x ⇓ z → y ⇓ z) ⊑⇔⇓→⇓ = record { to = to ; from = from _ } where to : ∀ {x y} → x ⊑ y → ∀ z → x ⇓ z → y ⇓ z to p z now = p to (laterʳ p) z q = laterʳ (to p z q) to (laterˡ p) z (laterʳ q) = to (force p) z q from : ∀ {i} x {y} → (∀ z → x ⇓ z → y ⇓ z) → [ i ] x ⊑ y from (now x) p = p x now from (later x) p = laterˡ λ { .force → from (force x) (λ z q → p z (laterʳ q)) } -- An alternative characterisation of weak bisimilarity. -- -- Capretta proves a similar result in "General Recursion via -- Coinductive Types". ≈⇔≈₂ : {x y : Delay A ∞} → x ≈ y ⇔ x ≈₂ y ≈⇔≈₂ {x} {y} = x ≈ y ↝⟨ ≈⇔⊑×⊒ ⟩ x ⊑ y × y ⊑ x ↝⟨ ⊑⇔⇓→⇓ ×-cong ⊑⇔⇓→⇓ ⟩ (∀ z → x ⇓ z → y ⇓ z) × (∀ z → y ⇓ z → x ⇓ z) ↝⟨ ∀-cong _ (λ _ → →-cong _ (from-bijection ⇓↔⇓) (from-bijection ⇓↔⇓)) ×-cong ∀-cong _ (λ _ → →-cong _ (from-bijection ⇓↔⇓) (from-bijection ⇓↔⇓)) ⟩ (∀ z → x T.⇓ z → y T.⇓ z) × (∀ z → y T.⇓ z → x T.⇓ z) ↝⟨ record { to = uncurry λ to from z → record { to = to z; from = from z } ; from = λ hyp → _⇔_.to ∘ hyp , _⇔_.from ∘ hyp } ⟩□ (∀ z → x T.⇓ z ⇔ y T.⇓ z) □ -- If A ∞ is a set, then every computation is weakly bisimilar to -- never or now something (assuming excluded middle and -- extensionality). ⇑⊎⇓ : Excluded-middle a → E.Extensionality a a → Is-set (A ∞) → (x : Delay A ∞) → never ≈ x ⊎ ∃ λ y → x T.⇓ y ⇑⊎⇓ em ext A-set x = ⊎-map (_⇔_.from ≈⇔≈₂) id $ Excluded-middle→Double-negation-elimination em (⊎-closure-propositional (λ { x⇑ (y , x⇓y) → now≉never (now y ≈⟨ x⇓y ⟩ x ≈⟨ B.symmetric (_⇔_.from ≈⇔≈₂ x⇑) ⟩∎ never ∎) }) (≈₂-propositional ext A-set) (T.∃-Terminates-propositional A-set)) (⊎-map (_⇔_.to ≈⇔≈₂) id ⟨$⟩ T.¬¬[⇑⊎⇓] x)
36.865789
136
0.515312
43de6de64cae4e1e8a3e680018640649b4d1dd58
4,561
agda
Agda
Cubical/Algebra/Group/GroupPath.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/Group/GroupPath.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/Group/GroupPath.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
-- The SIP applied to groups {-# OPTIONS --safe #-} module Cubical.Algebra.Group.GroupPath where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Sigma open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties private variable ℓ ℓ' ℓ'' : Level open Iso open GroupStr open IsGroupHom 𝒮ᴰ-Group : DUARel (𝒮-Univ ℓ) GroupStr ℓ 𝒮ᴰ-Group = 𝒮ᴰ-Record (𝒮-Univ _) IsGroupEquiv (fields: data[ _·_ ∣ autoDUARel _ _ ∣ pres· ] data[ 1g ∣ autoDUARel _ _ ∣ pres1 ] data[ inv ∣ autoDUARel _ _ ∣ presinv ] prop[ isGroup ∣ (λ _ _ → isPropIsGroup _ _ _) ]) where open GroupStr open IsGroupHom GroupPath : (M N : Group ℓ) → GroupEquiv M N ≃ (M ≡ N) GroupPath = ∫ 𝒮ᴰ-Group .UARel.ua -- TODO: Induced structure results are temporarily inconvenient while we transition between algebra -- representations module _ (G : Group ℓ) {A : Type ℓ} (m : A → A → A) (e : ⟨ G ⟩ ≃ A) (p· : ∀ x y → e .fst (G .snd ._·_ x y) ≡ m (e .fst x) (e .fst y)) where private module G = GroupStr (G .snd) FamilyΣ : Σ[ B ∈ Type ℓ ] (B → B → B) → Type ℓ FamilyΣ (B , n) = Σ[ e ∈ B ] Σ[ i ∈ (B → B) ] IsGroup e n i inducedΣ : FamilyΣ (A , m) inducedΣ = subst FamilyΣ (UARel.≅→≡ (autoUARel (Σ[ B ∈ Type ℓ ] (B → B → B))) (e , p·)) (G.1g , G.inv , G.isGroup) InducedGroup : Group ℓ InducedGroup .fst = A InducedGroup .snd ._·_ = m InducedGroup .snd .1g = inducedΣ .fst InducedGroup .snd .inv = inducedΣ .snd .fst InducedGroup .snd .isGroup = inducedΣ .snd .snd InducedGroupPath : G ≡ InducedGroup InducedGroupPath = GroupPath _ _ .fst (e , makeIsGroupHom p·) uaGroup : {G H : Group ℓ} → GroupEquiv G H → G ≡ H uaGroup {G = G} {H = H} = equivFun (GroupPath G H) -- Group-ua functoriality Group≡ : (G H : Group ℓ) → ( Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ] Σ[ q ∈ PathP (λ i → p i) (1g (snd G)) (1g (snd H)) ] Σ[ r ∈ PathP (λ i → p i → p i → p i) (_·_ (snd G)) (_·_ (snd H)) ] Σ[ s ∈ PathP (λ i → p i → p i) (inv (snd G)) (inv (snd H)) ] PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup (snd G)) (isGroup (snd H))) ≃ (G ≡ H) Group≡ G H = isoToEquiv theIso where theIso : Iso _ _ fun theIso (p , q , r , s , t) i = p i , groupstr (q i) (r i) (s i) (t i) inv theIso x = cong ⟨_⟩ x , cong (1g ∘ snd) x , cong (_·_ ∘ snd) x , cong (inv ∘ snd) x , cong (isGroup ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracGroup≡ : {G H : Group ℓ} (p q : G ≡ H) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracGroup≡ {G = G} {H = H} p q P = sym (transportTransport⁻ (ua (Group≡ G H)) p) ∙∙ cong (transport (ua (Group≡ G H))) helper ∙∙ transportTransport⁻ (ua (Group≡ G H)) q where helper : transport (sym (ua (Group≡ G H))) p ≡ transport (sym (ua (Group≡ G H))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd H)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaGroupId : (G : Group ℓ) → uaGroup (idGroupEquiv {G = G}) ≡ refl uaGroupId G = caracGroup≡ _ _ uaIdEquiv uaCompGroupEquiv : {F G H : Group ℓ} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong ⟨_⟩ (uaGroup (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ cong ⟨_⟩ (uaGroup f) ∙ cong ⟨_⟩ (uaGroup g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) ⟩ cong ⟨_⟩ (uaGroup f ∙ uaGroup g) ∎)
35.084615
114
0.607761
38ed2e84eb287722a86f03b1e6feb7c4359e5281
775
agda
Agda
src/Categories/Category/Cartesian/Bundle.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Cartesian/Bundle.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Cartesian/Bundle.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} -- Bundled version of a Cartesian Category module Categories.Category.Cartesian.Bundle where open import Level open import Categories.Category.Core using (Category) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal) open import Categories.Category.Monoidal using (MonoidalCategory) record CartesianCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e -- U for underlying cartesian : Cartesian U open Category U public open Cartesian cartesian public monoidalCategory : MonoidalCategory o ℓ e monoidalCategory = record { U = U ; monoidal = CartesianMonoidal.monoidal cartesian }
29.807692
83
0.743226
0375270be769013c641492cb27474c5ee3189a69
4,151
agda
Agda
agda/MoreLogic/Reasoning.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/MoreLogic/Reasoning.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/MoreLogic/Reasoning.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module MoreLogic.Reasoning where -- hProp logic open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_) -- "implicational" reaoning -- infix 3 _◼ᵖ -- infixr 2 _⇒ᵖ⟨_⟩_ -- -- _⇒ᵖ⟨_⟩_ : ∀{ℓ ℓ' ℓ''} {Q : hProp ℓ'} {R : hProp ℓ''} → (P : hProp ℓ) → [ P ⇒ Q ] → [ Q ⇒ R ] → [ P ⇒ R ] -- _ ⇒ᵖ⟨ pq ⟩ qr = qr ∘ pq -- -- _◼ᵖ : ∀{ℓ} (A : hProp ℓ) → [ A ] → [ A ] -- _ ◼ᵖ = λ x → x infix 3 _◼ infixr 2 _⇒⟨_⟩_ infix 3 _◼ᵖ infixr 2 ⇒ᵖ⟨⟩-syntax -- _⇒ᵖ⟨_⟩_ infix 3 _∎ᵖ infixr 2 ⇔⟨⟩-syntax -- _⇔⟨_⟩_ ⇔⟨⟩-syntax : ∀{ℓ ℓ' ℓ''} → (P : hProp ℓ'') → (((Q , R) , _) : Σ[ (Q , R) ∈ hProp ℓ' × hProp ℓ ] [ Q ⇔ R ]) → [ P ⇔ Q ] → Σ[ (P , R) ∈ hProp ℓ'' × hProp ℓ ] [ P ⇔ R ] ⇔⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .fst = P , R -- x⇔y ∙ y⇔z ⇔⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .snd .fst = fst q⇔r ∘ fst p⇔q ⇔⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .snd .snd = snd p⇔q ∘ snd q⇔r syntax ⇔⟨⟩-syntax P QRq⇔r p⇔q = P ⇔⟨ p⇔q ⟩ QRq⇔r _∎ᵖ : ∀{ℓ} → (P : hProp ℓ) → Σ[ (Q , R) ∈ hProp ℓ × hProp ℓ ] [ Q ⇔ R ] _∎ᵖ P .fst = P , P _∎ᵖ P .snd .fst x = x _∎ᵖ P .snd .snd x = x ⇒ᵖ⟨⟩-syntax : ∀{ℓ ℓ' ℓ''} → (P : hProp ℓ'') → (((Q , R) , _) : Σ[ (Q , R) ∈ hProp ℓ' × hProp ℓ ] [ Q ⇒ R ]) → [ P ⇒ Q ] → Σ[ (P , R) ∈ hProp ℓ'' × hProp ℓ ] [ P ⇒ R ] ⇒ᵖ⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .fst = P , R -- x⇔y ∙ y⇔z ⇒ᵖ⟨⟩-syntax P ((Q , R) , q⇒r) p⇒q .snd = q⇒r ∘ p⇒q _◼ᵖ : ∀{ℓ} → (P : hProp ℓ) → Σ[ (Q , R) ∈ hProp ℓ × hProp ℓ ] [ Q ⇒ R ] _◼ᵖ P .fst = P , P _◼ᵖ P .snd x = x syntax ⇒ᵖ⟨⟩-syntax P QRq⇒r p⇒q = P ⇒ᵖ⟨ p⇒q ⟩ QRq⇒r _⇒⟨_⟩_ : ∀{ℓ ℓ' ℓ''} {Q : Type ℓ'} {R : Type ℓ''} → (P : Type ℓ) → (P → Q) → (Q → R) → (P → R) _ ⇒⟨ p⇒q ⟩ q⇒r = q⇒r ∘ p⇒q _◼ : ∀{ℓ} (A : Type ℓ) → A → A _ ◼ = λ x → x -- ⊎⇒⊔ : ∀ {ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → [ P ] ⊎ [ Q ] → [ P ⊔ Q ] -- ⊎⇒⊔ P Q (inl x) = inlᵖ x -- ⊎⇒⊔ P Q (inr x) = inrᵖ x -- -- case[_⊔_]_return_of_ : ∀ {ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') -- → (z : [ P ⊔ Q ]) -- → (R : [ P ⊔ Q ] → hProp ℓ'') -- → (S : (x : [ P ] ⊎ [ Q ]) → [ R (⊎⇒⊔ P Q x) ] ) -- → [ R z ] -- case[_⊔_]_return_of_ P Q z R S = ⊔-elim P Q R (λ p → S (inl p)) (λ q → S (inr q)) z {- NOTE: in the CHANGELOG.md of the v1.3 non-cubical standard library, it is explained: * Previously all equational reasoning combinators (e.g. `_≈⟨_⟩_`, `_≡⟨_⟩_`, `_≤⟨_⟩_`) were defined in the following style: ```agda infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ x {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z ``` The type checker therefore infers the RHS of the equational step from the LHS + the type of the proof. For example for `x ≈⟨ x≈y ⟩ y ∎` it is inferred that `y ∎` must have type `y IsRelatedTo y` from `x : A` and `x≈y : x ≈ y`. * There are two problems with this. Firstly, it means that the reasoning combinators are not compatible with macros (i.e. tactics) that attempt to automatically generate proofs for `x≈y`. This is because the reflection machinary does not have access to the type of RHS as it cannot be inferred. In practice this meant that the new reflective solvers `Tactic.RingSolver` and `Tactic.MonoidSolver` could not be used inside the equational reasoning. Secondly the inference procedure itself is slower as described in this [exchange](https://lists.chalmers.se/pipermail/agda/2016/009090.html) on the Agda mailing list. * Therefore, as suggested on the mailing list, the order of arguments to the combinators have been reversed so that instead the type of the proof is inferred from the LHS + RHS. ```agda infixr -2 step-≡ step-≡ : ∀ x {y z : A} → y ≡ z → x ≡ y → x ≡ z step-≡ y≡z x≡y = trans x≡y y≡z syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z ``` where the `syntax` declaration is then used to recover the original order of the arguments. This change enables the use of macros and anecdotally speeds up type checking by a factor of 5. -} -- TODO: that might be "correct" the way to implement these reasoning operators
38.794393
166
0.540834
2113997fefcd048c8de5076e6473db414d916367
2,539
agda
Agda
Cubical/Data/Prod/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/Prod/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/Prod/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Prod.Properties where open import Cubical.Core.Everything open import Cubical.Data.Prod.Base open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' -- Swapping is an equivalence swap : A × B → B × A swap (x , y) = (y , x) swap-invol : (xy : A × B) → swap (swap xy) ≡ xy swap-invol (_ , _) = refl isEquivSwap : (A : Type ℓ) (B : Type ℓ') → isEquiv (λ (xy : A × B) → swap xy) isEquivSwap A B = isoToIsEquiv (iso swap swap swap-invol swap-invol) swapEquiv : (A : Type ℓ) (B : Type ℓ') → A × B ≃ B × A swapEquiv A B = (swap , isEquivSwap A B) swapEq : (A : Type ℓ) (B : Type ℓ') → A × B ≡ B × A swapEq A B = ua (swapEquiv A B) private open import Cubical.Data.Nat -- As × is defined as a datatype this computes as expected -- (i.e. "C-c C-n test1" reduces to (2 , 1)). If × is implemented -- using Sigma this would be "transp (λ i → swapEq ℕ ℕ i) i0 (1 , 2)" test : ℕ × ℕ test = transp (λ i → swapEq ℕ ℕ i) i0 (1 , 2) testrefl : test ≡ (2 , 1) testrefl = refl -- equivalence between the sigma-based definition and the inductive one A×B≃A×ΣB : A × B ≃ A ×Σ B A×B≃A×ΣB = isoToEquiv (iso (λ { (a , b) → (a , b)}) (λ { (a , b) → (a , b)}) (λ _ → refl) (λ { (a , b) → refl })) A×B≡A×ΣB : A × B ≡ A ×Σ B A×B≡A×ΣB = ua A×B≃A×ΣB swapΣEquiv : (A : Type ℓ) (B : Type ℓ') → A ×Σ B ≃ B ×Σ A swapΣEquiv A B = compEquiv (compEquiv (invEquiv A×B≃A×ΣB) (swapEquiv A B)) A×B≃A×ΣB -- truncation for products isOfHLevelProd : (n : ℕ) → isOfHLevel n A → isOfHLevel n B → isOfHLevel n (A × B) isOfHLevelProd {A = A} {B = B} n h1 h2 = let h : isOfHLevel n (A ×Σ B) h = isOfHLevelΣ n h1 (λ _ → h2) in transport (λ i → isOfHLevel n (A×B≡A×ΣB {A = A} {B = B} (~ i))) h ×-≃ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Type ℓ₁} {B : Type ℓ₂} {C : Type ℓ₃} {D : Type ℓ₄} → A ≃ C → B ≃ D → A × B ≃ C × D ×-≃ {A = A} {B = B} {C = C} {D = D} f g = isoToEquiv (iso φ ψ η ε) where φ : A × B → C × D φ (a , b) = equivFun f a , equivFun g b ψ : C × D → A × B ψ (c , d) = equivFun (invEquiv f) c , equivFun (invEquiv g) d η : section φ ψ η (c , d) i = retEq f c i , retEq g d i ε : retract φ ψ ε (a , b) i = secEq f a i , secEq g b i
29.523256
83
0.563608
38627a8a9d1de54c8a32babc90199589403e1452
671
agda
Agda
src/Pi-calculus.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
2
2021-03-12T18:31:14.000Z
2021-05-04T09:35:36.000Z
src/Pi-calculus.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
src/Pi-calculus.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
module Pi-Calculus where -- Local modules --------------------------------------------------------------- open import Common using (Id) -- π-process definition -------------------------------------------------------- data π-process : Set where recv_from_∙_ : Id → Id → π-process → π-process -- Receive send_to_∙_ : Id → Id → π-process → π-process -- Send _||_ : π-process → π-process → π-process -- Composition ν_∙_ : Id → π-process → π-process -- Restriction !_ : π-process → π-process -- Repetition Zero : π-process -- Inactivity
39.470588
80
0.421759
a01f8262bef18a8364c9200e12475c734d1f74d5
2,124
agda
Agda
test/Compiler/simple/Issue2918.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue2918.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue2918.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- A memoised implementation of the Fibonacci sequence, following -- Hinze's "Memo functions, polytypically!". module Issue2918 where open import Agda.Builtin.IO open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Agda.Builtin.Size open import Agda.Builtin.Unit record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B open _×_ public mutual data Nat (i : Size) : Set where zero : Nat i suc : Nat′ i → Nat i data Nat′ (i : Size) : Set where [_] : {j : Size< i} → Nat j → Nat′ i mutual ℕ→Nat : ℕ → Nat ∞ ℕ→Nat zero = zero ℕ→Nat (suc n) = suc (ℕ→Nat′ n) ℕ→Nat′ : ℕ → Nat′ ∞ ℕ→Nat′ n = [ ℕ→Nat n ] mutual Nat′[_]→ : Size → Set → Set Nat′[ i ]→ A = A × Nat′[ i ]→′ A record Nat′[_]→′ (i : Size) (A : Set) : Set where coinductive field force : {j : Size< i} → Nat′[ j ]→ A open Nat′[_]→′ public tabulate : ∀ {i} {A : Set} → (Nat′ i → A) → Nat′[ i ]→′ A force (tabulate f) = f [ zero ] , tabulate (λ n → f [ suc n ]) lookup : ∀ {i} {A : Set} → Nat′[ i ]→′ A → Nat′ i → A lookup t [ zero ] = proj₁ (force t) lookup t [ suc n ] = lookup (proj₂ (force t)) n memo-fix : {A : Set} → (∀ {i} → (Nat′ i → A) → (Nat i → A)) → ∀ {i} → Nat′ i → A memo-fix f = wrapper λ { [ n ] → f (lookup (tabulate (memo-fix f))) n } where wrapper : ∀ {i} {A : Set} → (Nat′ i → A) → (Nat′ i → A) wrapper f [ n ] = f [ n ] fib-step : ∀ {i} → (Nat′ i → ℕ) → (Nat i → ℕ) fib-step fib zero = 0 fib-step fib (suc [ zero ]) = 1 fib-step fib (suc [ suc n ]) = fib n + fib [ suc n ] fib : ℕ → ℕ fib n = memo-fix fib-step [ ℕ→Nat n ] postulate crash-after-ten-seconds : ℕ → IO ⊤ {-# FOREIGN GHC import qualified Control.Exception import qualified System.Timeout crashAfterTenSeconds c = do r <- System.Timeout.timeout (10 * 10^6) (Control.Exception.evaluate c) case r of Nothing -> error "The computation timed out" Just _ -> return () #-} {-# COMPILE GHC crash-after-ten-seconds = crashAfterTenSeconds #-} main : IO ⊤ main = crash-after-ten-seconds (fib 300)
22.83871
66
0.555556
5e6184b6c52e76ec77da9c82e2c70a9ff3642129
290
agda
Agda
test/Fail/Issue1976-constraints3.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1976-constraints3.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1976-constraints3.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-12-31, re issue #1976 -- Allow projection pattern disambiguation by parameters postulate A B : Set module M (_ : Set) where record R : Set₂ where field F : Set₁ open R public module ShouldFail where open M _ open M _ test : M.R B F test = Set
13.809524
56
0.651724
d176a37a0cede51d183024573a2d2d325622b15c
345
agda
Agda
test/Succeed/WithoutKDisjointSum.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/WithoutKDisjointSum.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/WithoutKDisjointSum.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} -- Issue raised by Martin Escardo 2012-12-13 -- on the Agda list "no longer type checks" module WithoutKDisjointSum where open import Common.Equality data ⊥ : Set where data _⊎_ (A B : Set) : Set where inl : A → A ⊎ B inr : B → A ⊎ B distinct : {A B : Set} (a : A) (b : B) → inl a ≡ inr b → ⊥ distinct a b ()
21.5625
58
0.614493
3453d6f46cdcce3cd50269890b104d1c85237e09
13,946
agda
Agda
HoTT/Exercises/Chapter2.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Exercises/Chapter2.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/Exercises/Chapter2.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
{-# OPTIONS --without-K #-} module HoTT.Exercises.Chapter2 where open import HoTT.Base module Exercise1 {i} {A : 𝒰 i} where module _ {x y z : A} (p : x == y) (q : y == z) where -- Induction over p _∙₁_ : x == z _∙₁_ = =-ind D d p z q where D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → x == z d : (x : A) → D x x refl d x z q = q -- Induction over q _∙₂_ : x == z _∙₂_ = =-ind D d q x p where D : (y z : A) → y == z → 𝒰 i D y z q = (x : A) → (p : x == y) → x == z d : (y : A) → D y y refl d y x p = p -- Induction over p then q _∙₃_ : x == z _∙₃_ = =-ind D d p z q where E : (x z : A) → (q : x == z) → 𝒰 i E x z q = x == z e : (x : A) → E x x refl e x = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → x == z d : (x : A) → D x x refl d x z q = =-ind E e q module _ {x y z : A} (p : x == y) (q : y == z) where prop₁₌₂ : p ∙₁ q == p ∙₂ q prop₁₌₂ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₁ q == refl ∙₂ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₁ q == p ∙₂ q d : (x : A) → D x x refl d x z q = =-ind E e q prop₂₌₃ : p ∙₂ q == p ∙₃ q prop₂₌₃ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₂ q == refl ∙₃ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₂ q == p ∙₃ q d : (x : A) → D x x refl d x z q = =-ind E e q prop₁₌₃ : p ∙₁ q == p ∙₃ q prop₁₌₃ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₁ q == refl ∙₃ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₁ q == p ∙₃ q d : (x : A) → D x x refl d x z q = =-ind E e q module Exercise2 {i} {A : 𝒰 i} {x y z : A} {p : x == y} {q : y == z} where open Exercise1 _ : prop₁₌₂ p q ∙ prop₂₌₃ p q == prop₁₌₃ p q _ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = prop₁₌₂ refl q ∙ prop₂₌₃ refl q == prop₁₌₃ refl q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → prop₁₌₂ p q ∙ prop₂₌₃ p q == prop₁₌₃ p q d : (x : A) → D x x refl d x z q = =-ind E e q module Exercise3 {i} {A : 𝒰 i} where open Exercise1 using (_∙₁_) -- Induction over q then p _∙₄_ : {x y z : A} → x == y → y == z → x == z _∙₄_ {x} {y} {z} p q = =-ind D d q x p where E : (x y : A) → (p : x == y) → 𝒰 i E x y _ = x == y e : (x : A) → E x x refl e x = refl D : (y z : A) → y == z → 𝒰 i D y z q = (x : A) → (p : x == y) → x == z d : (y : A) → D y y refl d y x p = =-ind E e p prop₁₌₄ : {x y z : A} (p : x == y) (q : y == z) → p ∙₁ q == p ∙₄ q prop₁₌₄ {x} {y} {z} p q = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₁ q == refl ∙₄ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₁ q == p ∙₄ q d : (x : A) → D x x refl d x z q = =-ind E e q module Exercise4 {i} (A : 𝒰 i) where n-path : ℕ → 𝒰 i n-path = ℕ-rec A (λ n P → Σ[ x ∶ P ] (Σ[ y ∶ P ] (x == y))) module Exercise5 {i} {A B : 𝒰 i} {x y : A} {p : x == y} {f : A → B} where open import HoTT.Identity open import HoTT.Equivalence _ : f x == f y ≃ transport _ p (f x) == f y _ = g , qinv→isequiv (h , η , ε) where -- 2.3.6 g : f x == f y → transport _ p (f x) == f y g = transportconst p (f x) ∙_ -- 2.3.7 h : transport _ p (f x) == f y → f x == f y h = transportconst p (f x) ⁻¹ ∙_ η : (h ∘ g) ~ id η q = assoc ∙ (invₗ ∙ᵣ q ∙ unitₗ ⁻¹) ε : (g ∘ h) ~ id ε q = assoc ∙ (invᵣ ∙ᵣ q ∙ unitₗ ⁻¹) module Exercise6 {i} {A : 𝒰 i} {x y z : A} {p : x == y} where open import HoTT.Equivalence open import HoTT.Identity _ : y == z ≃ x == z _ = f , qinv→isequiv (g , η , ε) where f = p ∙_ g = p ⁻¹ ∙_ η : g ∘ f ~ id η q = assoc ∙ (invₗ ∙ᵣ q ∙ unitₗ ⁻¹) ε : f ∘ g ~ id ε q = assoc ∙ (invᵣ ∙ᵣ q ∙ unitₗ ⁻¹) module Exercise7 {i j k l} {A : 𝒰 i} {A' : 𝒰 j} {B : A → 𝒰 k} {B' : A' → 𝒰 l} {g : A → A'} {h : {x : A} → B x → B' (g x)} where open import HoTT.Identity open import HoTT.Identity.Sigma prop : {x y : Σ A B} (p : pr₁ x == pr₁ y) (q : transport B p (pr₂ x) == (pr₂ y)) → ap (λ x → g (pr₁ x) , h (pr₂ x)) (pair⁼ {x = x} {y} (p , q)) == pair⁼ (ap g p , transport-ap B' g p (h (pr₂ x)) ∙ transport-∘ h p (pr₂ x) ∙ ap h q) prop {x = _ , _} {_ , _} refl refl = refl module Exercise8 {i j k l} {A : 𝒰 i} {B : 𝒰 j} {A' : 𝒰 k} {B' : 𝒰 l} {g : A → A'} {h : B → B'} where open import HoTT.Identity.Coproduct private variable x y : A + B f : A + B → A' + B' f = +-rec (inl ∘ g) (inr ∘ h) ap-gh : (p : x =+ y) → f x =+ f y ap-gh {inl _} {inl _} (lift p) = lift (ap g p) ap-gh {inl _} {inr _} () ap-gh {inr _} {inl _} () ap-gh {inr _} {inr _} (lift p) = lift (ap h p) prop : (p : x =+ y) → ap f (=+-intro p) == =+-intro (ap-gh p) prop {inl _} {inl _} (lift refl) = refl prop {inl _} {inr _} () prop {inr _} {inl _} () prop {inr _} {inr _} (lift refl) = refl module Exercise9 {i j k} {A : 𝒰 i} {B : 𝒰 j} where open import HoTT.Equivalence open import HoTT.Identity.Pi prop₁ : {X : 𝒰 k} → (A + B → X) ≃ (A → X) × (B → X) prop₁ {X} = f , qinv→isequiv (g , β , α) where f : (A + B → X) → (A → X) × (B → X) f h = h ∘ inl , h ∘ inr g : (A → X) × (B → X) → (A + B → X) g (h , _) (inl a) = h a g (_ , h) (inr b) = h b α : f ∘ g ~ id α (_ , _) = refl β : g ∘ f ~ id β _ = funext λ{(inl _) → refl ; (inr _) → refl} prop₂ : {P : A + B → 𝒰 k} → ((x : A + B) → P x) ≃ ((a : A) → P (inl a)) × ((b : B) → P (inr b)) prop₂ {P} = f , qinv→isequiv (g , β , α) where f : ((x : A + B) → P x) → ((a : A) → P (inl a)) × ((b : B) → P (inr b)) f h = (h ∘ inl) , h ∘ inr g : ((a : A) → P (inl a)) × ((b : B) → P (inr b)) → ((x : A + B) → P x) g (h , _) (inl a) = h a g (_ , h) (inr b) = h b α : f ∘ g ~ id α (_ , _) = refl β : g ∘ f ~ id β _ = funext λ{(inl _) → refl ; (inr _) → refl} module Exercise10 {i j k} {A : 𝒰 i} {B : A → 𝒰 j} {C : Σ A B → 𝒰 k} where open import HoTT.Equivalence _ : Σ[ x ∶ A ] Σ[ y ∶ B x ] C (x , y) ≃ Σ[ p ∶ Σ A B ] C p _ = f , qinv→isequiv (g , η , ε) where f : Σ[ x ∶ A ] Σ[ y ∶ B x ] C (x , y) → Σ[ p ∶ Σ A B ] C p f (x , y , z) = (x , y) , z g : Σ[ p ∶ Σ A B ] C p → Σ[ x ∶ A ] Σ[ y ∶ B x ] C (x , y) g ((x , y) , z) = x , y , z η : g ∘ f ~ id η (_ , _ , _) = refl ε : f ∘ g ~ id ε ((_ , _) , _) = refl import HoTT.Exercises.Chapter2.Exercise11 import HoTT.Exercises.Chapter2.Exercise12 module Exercise13 where open import HoTT.Equivalence open import HoTT.Equivalence.Proposition open import HoTT.Identity.Pi open import HoTT.Identity.Sigma not : 𝟐 → 𝟐 not = 𝟐-rec 1₂ 0₂ -- There are two possibilities for 𝟐 ≃ 𝟐, id and not. In our -- equivalence (𝟐 ≃ 𝟐) ≃ 𝟐, we associate `id` with 0₂, and `not` -- with 1₂. For some f : 𝟐 ≃ 𝟐, we have f 0₂ = 0₂ when f is id, -- and f 0₂ = 1₂ when f is not, so we can use f 0₂ in the forward -- direction. _ : (𝟐 ≃ 𝟐) ≃ 𝟐 _ = to , qinv→isequiv (from , β , α) where to : 𝟐 ≃ 𝟐 → 𝟐 to (f , _) = f 0₂ from : 𝟐 → 𝟐 ≃ 𝟐 from 0₂ = id , qinv→isequiv (id , (λ _ → refl) , λ _ → refl) from 1₂ = not , qinv→isequiv (not , 𝟐-ind _ refl refl , 𝟐-ind _ refl refl) -- The first homotopy is easy, we just do 𝟐-induction on the -- input to determine whether we have `id` or `not`. Once we -- know that, it is just a matter of showing 0₂ = 0₂ or 1₂ = 1₂, -- both of which are true by reflection. α : to ∘ from ~ id α = 𝟐-ind _ refl refl -- The second homotopy is much trickier since we have to show -- that these two complex structures are the same. The approach -- we use is to induct on the four possibilities for f 0₂ and -- f 1₂ (0₂ 0₂, 0₂ 1₂, 1₂ 0₂, or 1₂ 1₂). In the induction goals, -- we require proofs that the boolean we induct on is equal -- to f 0₂ or f 1₂ respectively. These proofs can be used -- directly for the case where f = id or f = not. The other two -- cases are impossible unless 0₂ = 1₂, and we can use the -- proofs together with the equivalence inverse function and -- homotopy to show the desired behavior of f. β : from ∘ to ~ id β (f , e) = pair⁼ (𝟐-ind (λ x → x == f 0₂ → pr₁ (from x) == f) (λ p → 𝟐-ind (λ x → x == f 1₂ → id == f) (λ q → funext (𝟐-ind _ p (η 1₂ ⁻¹ ∙ ap g (q ⁻¹ ∙ p) ∙ η 0₂ ∙ q))) (λ q → funext (𝟐-ind _ p q)) (f 1₂) refl) (λ p → 𝟐-ind (λ x → x == f 1₂ → not == f) (λ q → funext (𝟐-ind _ p q)) (λ q → funext (𝟐-ind _ p (η 0₂ ⁻¹ ∙ ap g (p ⁻¹ ∙ q) ∙ η 1₂ ∙ q))) (f 1₂) refl) (f 0₂) refl , isequiv-prop _ _) where open qinv (isequiv→qinv e) module Exercise14 {i} {A : 𝒰 i} {x : A} where -- In chapter 1 exercise 14, we showed that we couldn't use path -- induction to prove (x : A) → (p : x = x) → p = reflₓ since, -- given q : x = y, q = reflₓ is not well-typed (reflₓ : x = x, -- while q : x = y). However, using the equality reflection rule -- we have x ≡ y, so we can say reflₓ : x = y. Therefore, we can -- define -- -- C : (x s : A) → x = y → 𝒰 -- C x y q :≡ q = reflₓ -- -- c : (x : A) → C x x reflₓ -- c x :≡ refl {reflₓ} -- -- Using path induction we have ind₌ C c x x p : p = reflₓ. By -- applying the equality reflection rule again, we arrive at the -- desired definitional equality, p ≡ reflₓ. module Exercise15 {i j} {A : 𝒰 i} {B : A → 𝒰 j} {x y : A} {p : x == y} {u : B x} where _ : transport _ p == transport id (ap B p) _ = =-ind (λ _ _ p → transport _ p == transport id (ap B p)) (λ _ → refl) p module Exercise16 {i} {j} {A : 𝒰 i} {B : A → 𝒰 j} (f g : Π A B) where open import HoTT.Identity open import HoTT.Identity.Sigma open import HoTT.Identity.Pi using (funext) open import HoTT.Equivalence =Π-equiv : f == g ≃ f ~ g =Π-equiv = happly , qinv→isequiv (funext' , η , ε) where -- Define funext' in such a way that funext (happly refl) ≡ -- funext (λ x. refl) can cancel. funext' : {g : Π A B} → f ~ g → f == g funext' α = funext α ∙ funext (λ _ → refl) ⁻¹ η : funext' ∘ happly ~ id η refl = invᵣ ε : happly ∘ funext' ~ id ε α = transport P p (ap happly invᵣ) where P : Π[ x ∶ A ] Σ[ y ∶ B x ] f x == y → 𝒰 _ P h = let α = pr₂ ∘ h in happly (funext' α) == α -- The trick here is to use funext to simultaneously show -- that λ x. (f x , refl) = λ x. (g x , α x). Then, we can -- transport a path made by canceling the funext with its -- inverse to get the desired equality. p : (λ x → f x , refl) == (λ x → g x , α x) p = funext λ x → pair⁼ (α x , =-ind (λ _ _ p → transport _ p refl == p) (λ _ → refl) (α x)) module Exercise17 {i} where open import HoTT.Equivalence open import HoTT.Equivalence.Proposition open import HoTT.Identity.Product open import HoTT.Identity.Sigma open import HoTT.Identity.Universe open import HoTT.Identity.Pi variable A A' B B' : 𝒰 i P : A → 𝒰 i P' : A' → 𝒰 i prop : (_◆_ : 𝒰 i → 𝒰 i → 𝒰 i) → A == A' → B == B' → (A ◆ B) ≃ (A' ◆ B') prop {A} {A'} {B} {B'} (_◆_) p q = transport (λ{ (A' , B') → A ◆ B ≃ A' ◆ B' }) (×-pair⁼ {x = A , B} {y = A' , B'} (p , q)) reflₑ module _ (e₁ : A ≃ A') (e₂ : B ≃ B') where open Iso (eqv→iso e₁) renaming (f to f₁ ; g to g₁ ; η to η₁ ; ε to ε₁) open Iso (eqv→iso e₂) renaming (f to f₂ ; g to g₂ ; η to η₂ ; ε to ε₂) -- (i) Proof without using univalence prop-×' : A × B ≃ A' × B' prop-×' = let open Iso in iso→eqv λ where .f (a , b) → f₁ a , f₂ b .g (a' , b') → g₁ a' , g₂ b' .η (a , b) → ×-pair⁼ (η₁ a , η₂ b) .ε (a' , b') → ×-pair⁼ (ε₁ a' , ε₂ b') -- (ii) Proof using univalence (for general operator) prop-× = prop _×_ (ua e₁) (ua e₂) -- (iii) Proof for non-dependent type formers (→, +) prop-→ = prop (λ A B → A → B) (ua e₁) (ua e₂) prop-+ = prop _+_ (ua e₁) (ua e₂) -- Proof that (i) and (ii) are equal propᵢ₌ᵢᵢ : (e₁ : A ≃ A') (e₂ : B ≃ B') → prop-×' e₁ e₂ == prop-× e₁ e₂ propᵢ₌ᵢᵢ e₁ e₂ = ap² prop-×' (=𝒰-β e₁ ⁻¹) (=𝒰-β e₂ ⁻¹) ∙ lemma where lemma : prop-×' (idtoeqv (ua e₁)) (idtoeqv (ua e₂)) == prop-× e₁ e₂ lemma rewrite ua e₁ rewrite ua e₂ = pair⁼ (funext (λ{ (a , b) → refl }) , isequiv-prop _ _) module _ (e₁ : A ≃ A') (e₂ : (x : A') → transport (λ A' → A' → 𝒰 i) (ua e₁) P x ≃ P' x) where prop-dep : (_◆_ : (A : 𝒰 i) → (A → 𝒰 i) → 𝒰 i) → (A ◆ P) ≃ (A' ◆ P') prop-dep _◆_ = transport (λ{ (A' , P') → A ◆ P ≃ A' ◆ P' }) (pair⁼ {x = A , P} {y = A' , P'} (ua e₁ , funext (ua ∘ e₂))) reflₑ -- (iii) Proof for dependent type formers (Σ, Π) prop-Σ = prop-dep Σ prop-Π = prop-dep Π module Exercise18 {i} {A : 𝒰 i} {B : A → 𝒰 i} {f g : Π A B} {H : f ~ g} {x y : A} {p : x == y} where -- We first induct on p, changing our goal to -- -- ap (transport refl) (H x) ∙ apd g refl = apd f refl ∙ H y -- -- This reduces to -- -- ap id (H x) ∙ refl = refl ∙ H x -- -- Now, we just need one final induction on H x, after which our goal -- reduces to refl : refl = refl. _ : ap (transport _ p) (H x) ∙ apd g p == apd f p ∙ H y _ = =-ind' (λ y p → ap (transport _ p) (H x) ∙ apd g p == apd f p ∙ H y) (=-ind' (λ _ Hₓ → ap id Hₓ ∙ refl == refl ∙ Hₓ) refl (H x)) p
34.434568
97
0.467661
031826651a3dab05451847119f7848589dd85a38
4,548
agda
Agda
Cubical/Codata/Conat/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Codata/Conat/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Codata/Conat/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{- Conatural number properties (Tesla Ice Zhang et al., Feb. 2019) This file defines operations and properties on conatural numbers: - Infinity (∞). - Proof that ∞ + 1 is equivalent to ∞. - Proof that conatural is an hSet. - Bisimulation on conatural - Proof that bisimulation is equivalent to equivalence (Coinductive Proof Principle). - Proof that this bisimulation is prop valued The standard library also defines bisimulation on conaturals: https://github.com/agda/agda-stdlib/blob/master/src/Codata/Conat/Bisimilarity.agda -} {-# OPTIONS --cubical --safe --guardedness #-} module Cubical.Codata.Conat.Properties where open import Cubical.Data.Unit open import Cubical.Data.Sum open import Cubical.Data.Empty open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq open import Cubical.Codata.Conat.Base Unwrap-prev : Conat′ → Type₀ Unwrap-prev zero = Unit Unwrap-prev (suc _) = Conat unwrap-prev : (n : Conat′) -> Unwrap-prev n unwrap-prev zero = _ unwrap-prev (suc x) = x private -- tests 𝟘 = conat zero 𝟙 = succ 𝟘 𝟚 = succ 𝟙 succ𝟙≡𝟚 : succ 𝟙 ≡ 𝟚 succ𝟙≡𝟚 i = 𝟚 pred𝟚≡𝟙 : unwrap-prev (force 𝟚) ≡ 𝟙 pred𝟚≡𝟙 i = 𝟙 ∞ : Conat force ∞ = suc ∞ ∞+1≡∞ : succ ∞ ≡ ∞ force (∞+1≡∞ _) = suc ∞ ∞+2≡∞ : succ (succ ∞) ≡ ∞ ∞+2≡∞ = (cong succ ∞+1≡∞) ∙ ∞+1≡∞ _+_ : Conat → Conat → Conat _+′_ : Conat′ → Conat → Conat′ force (x + y) = force x +′ y zero +′ y = force y suc x +′ y = suc (x + y) n+∞≡∞ : ∀ n → n + ∞ ≡ ∞ n+′∞≡∞′ : ∀ n → n +′ ∞ ≡ suc ∞ force (n+∞≡∞ n i) = n+′∞≡∞′ (force n) i n+′∞≡∞′ zero = refl n+′∞≡∞′ (suc n) = λ i → suc (n+∞≡∞ n i) ∞+∞≡∞ : ∞ + ∞ ≡ ∞ force (∞+∞≡∞ i) = suc (∞+∞≡∞ i) conat-absurd : ∀ {y : Conat} {ℓ} {Whatever : Type ℓ} → zero ≡ suc y → Whatever conat-absurd eq = ⊥-elim (transport (cong diag eq) tt) where diag : Conat′ → Type₀ diag zero = Unit diag (suc _) = ⊥ module IsSet where ≡-stable : {x y : Conat} → Stable (x ≡ y) ≡′-stable : {x y : Conat′} → Stable (x ≡ y) force (≡-stable ¬¬p i) = ≡′-stable (λ ¬p → ¬¬p (λ p → ¬p (cong force p))) i ≡′-stable {zero} {zero} ¬¬p′ = refl ≡′-stable {suc x} {suc y} ¬¬p′ = cong′ suc (≡-stable λ ¬p → ¬¬p′ λ p → ¬p (cong pred′′ p)) ≡′-stable {zero} {suc y} ¬¬p′ = ⊥-elim (¬¬p′ conat-absurd) ≡′-stable {suc x} {zero} ¬¬p′ = ⊥-elim (¬¬p′ λ p → conat-absurd (sym p)) isSetConat : isSet Conat isSetConat _ _ = Stable≡→isSet (λ _ _ → ≡-stable) _ _ isSetConat′ : isSet Conat′ isSetConat′ m n p′ q′ = cong (cong force) (isSetConat (conat m) (conat n) p q) where p = λ where i .force → p′ i q = λ where i .force → q′ i module Bisimulation where open IsSet using (isSetConat) record _≈_ (x y : Conat) : Type₀ data _≈′_ (x y : Conat′) : Type₀ _≈′′_ : Conat′ → Conat′ → Type₀ zero ≈′′ zero = Unit suc x ≈′′ suc y = x ≈ y -- So impossible proofs are preserved x ≈′′ y = ⊥ record _≈_ x y where coinductive field prove : force x ≈′ force y data _≈′_ x y where con : x ≈′′ y → x ≈′ y open _≈_ public bisim : ∀ {x y} → x ≈ y → x ≡ y bisim′ : ∀ {x y} → x ≈′ y → x ≡ y bisim′ {zero} {zero} (con tt) = refl bisim′ {zero} {suc x} (con ()) bisim′ {suc x} {zero} (con ()) bisim′ {suc x} {suc y} (con eq) i = suc (bisim eq i) force (bisim eq i) = bisim′ (prove eq) i misib : ∀ {x y} → x ≡ y → x ≈ y misib′ : ∀ {x y} → x ≡ y → x ≈′ y misib′ {zero} {zero} _ = con tt misib′ {zero} {suc x} = conat-absurd misib′ {suc x} {zero} p = conat-absurd (sym p) -- misib′ {suc x} {suc y} p = con λ where .prove → misib′ (cong pred′ p) misib′ {suc x} {suc y} p = con (misib (cong pred′′ p)) prove (misib x≡y) = misib′ (cong force x≡y) iso″ : ∀ {x y} → (p : x ≈ y) → misib (bisim p) ≡ p iso′ : ∀ {x y} → (p : x ≈′ y) → misib′ (bisim′ p) ≡ p iso′ {zero} {zero} (con p) = refl iso′ {zero} {suc x} (con ()) iso′ {suc x} {zero} (con ()) iso′ {suc x} {suc y} (con p) = cong con (iso″ p) prove (iso″ p i) = iso′ (prove p) i osi : ∀ {x y} → (p : x ≡ y) → bisim (misib p) ≡ p osi p = isSetConat _ _ _ p path≃bisim : ∀ {x y} → (x ≡ y) ≃ (x ≈ y) path≃bisim = isoToEquiv (iso misib bisim iso″ osi) path≡bisim : ∀ {x y} → (x ≡ y) ≡ (x ≈ y) path≡bisim = ua path≃bisim isProp≈ : ∀ {x y} → isProp (x ≈ y) isProp≈ = subst isProp path≡bisim (isSetConat _ _)
26.44186
82
0.578276
2114942395d512788d0d8892a8f1d3f5df9315c9
11,698
agda
Agda
Cubical/Structures/Poset.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Poset.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Poset.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Poset where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Logic open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv renaming (_■ to _QED) open import Cubical.Foundations.SIP open import Cubical.Functions.FunExtEquiv open import Cubical.Foundations.Function open import Cubical.Core.Primitives open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Sigma.Properties open import Cubical.Structures.Axioms -- We will adopt the convention of denoting the level of the carrier -- set by ℓ₀ and the level of the relation result by ℓ₁. private variable ℓ ℓ₀ ℓ₁ ℓ₀′ ℓ₁′ ℓ₀′′ ℓ₁′′ : Level Order : (ℓ₁ : Level) → Type ℓ₀ → Type (ℓ-max ℓ₀ (ℓ-suc ℓ₁)) Order ℓ₁ A = A → A → hProp ℓ₁ isSetOrder : (ℓ₁ : Level) (A : Type ℓ₀) → isSet (Order ℓ₁ A) isSetOrder ℓ₁ A = isSetΠ2 λ _ _ → isSetHProp -- We first start by defining what it means a for a function to be -- order-preserving. The name "monotonic" is reserved for partial orders. isOrderPreserving : (M : TypeWithStr ℓ₀ (Order ℓ₁)) (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) → (fst M → fst N) → Type _ isOrderPreserving (A , _⊑₀_) (B , _⊑₁_) f = (x y : A) → [ x ⊑₀ y ] → [ f x ⊑₁ f y ] isPropIsOrderPreserving : (M : TypeWithStr ℓ₀ (Order ℓ₁)) (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) → (f : fst M → fst N) → isProp (isOrderPreserving M N f) isPropIsOrderPreserving M (_ , _⊑₁_) f = isPropΠ3 λ x y p → snd (f x ⊑₁ f y) -- We then define what it means for an equivalence to order-preserving which is -- nothing but the property that both directions of the equivalence are -- order-preserving. isAnOrderPreservingEqv : (M : TypeWithStr ℓ₀ (Order ℓ₁)) (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) → fst M ≃ fst N → Type _ isAnOrderPreservingEqv M N e@(f , _) = isOrderPreserving M N f × isOrderPreserving N M g where g = equivFun (invEquiv e) orderUnivalentStr : SNS {ℓ} (Order ℓ₁) isAnOrderPreservingEqv orderUnivalentStr {ℓ = ℓ} {ℓ₁ = ℓ₁} {X = X} _⊑₀_ _⊑₁_ = f , record { equiv-proof = f-equiv } where f : isAnOrderPreservingEqv (X , _⊑₀_) (X , _⊑₁_) (idEquiv X) → _⊑₀_ ≡ _⊑₁_ f e@(φ , ψ) = funExt₂ λ x y → ⇔toPath (φ x y) (ψ x y) g : _⊑₀_ ≡ _⊑₁_ → isAnOrderPreservingEqv (X , _⊑₀_) (X , _⊑₁_) (idEquiv X) g p = subst (λ _⊑_ → isAnOrderPreservingEqv (X , _⊑₀_) (X , _⊑_) (idEquiv X)) p ((λ _ _ x⊑₁y → x⊑₁y) , λ _ _ x⊑₁y → x⊑₁y) ret-f-g : retract f g ret-f-g (φ , ψ) = isPropΣ (isPropIsOrderPreserving (X , _⊑₀_) (X , _⊑₁_) (idfun X)) (λ _ → isPropIsOrderPreserving (X , _⊑₁_) (X , _⊑₀_) (idfun X)) (g (f (φ , ψ))) (φ , ψ) f-equiv : (p : _⊑₀_ ≡ _⊑₁_) → isContr (fiber f p) f-equiv p = ((to , from) , eq) , NTS where to : isOrderPreserving (X , _⊑₀_) (X , _⊑₁_) (idfun _) to x y = subst (λ _⊑_ → [ x ⊑₀ y ] → [ x ⊑ y ]) p (idfun _) from : isOrderPreserving (X , _⊑₁_) (X , _⊑₀_) (idfun _) from x y = subst (λ _⊑_ → [ x ⊑ y ] → [ x ⊑₀ y ]) p (idfun _) eq : f (to , from) ≡ p eq = isSetOrder ℓ₁ X _⊑₀_ _⊑₁_ (f (to , from)) p NTS : (fib : fiber f p) → ((to , from) , eq) ≡ fib NTS ((φ , ψ) , eq) = Σ≡Prop (λ i′ → isOfHLevelSuc 2 (isSetOrder ℓ₁ X) _⊑₀_ _⊑₁_ (f i′) p) (Σ≡Prop (λ _ → isPropIsOrderPreserving (X , _⊑₁_) (X , _⊑₀_) (idfun _)) (isPropIsOrderPreserving (X , _⊑₀_) (X , _⊑₁_) (idfun _) to φ)) -- We now write down the axioms for a partial order and define posets on top of -- raw ordered structures. isReflexive : {A : Type ℓ₀} → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁) isReflexive {A = X} _⊑_ = ((x : X) → [ x ⊑ x ]) , isPropΠ λ x → snd (x ⊑ x) isTransitive : {A : Type ℓ₀} → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁) isTransitive {ℓ₀ = ℓ₀} {ℓ₁ = ℓ₁} {A = X} _⊑_ = φ , φ-prop where φ : Type (ℓ-max ℓ₀ ℓ₁) φ = ((x y z : X) → [ x ⊑ y ⇒ y ⊑ z ⇒ x ⊑ z ]) φ-prop : isProp φ φ-prop = isPropΠ3 λ x y z → snd (x ⊑ y ⇒ y ⊑ z ⇒ x ⊑ z) isAntisym : {A : Type ℓ₀} → isSet A → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁) isAntisym {ℓ₀ = ℓ₀} {ℓ₁ = ℓ₁} {A = X} A-set _⊑_ = φ , φ-prop where φ : Type (ℓ-max ℓ₀ ℓ₁) φ = ((x y : X) → [ x ⊑ y ] → [ y ⊑ x ] → x ≡ y) φ-prop : isProp φ φ-prop = isPropΠ3 λ x y z → isPropΠ λ _ → A-set x y -- The predicate expressing that a given order satisfies the partial order -- axioms. satPosetAx : (ℓ₁ : Level) (A : Type ℓ₀) → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁) satPosetAx {ℓ₀ = ℓ₀} ℓ₁ A _⊑_ = φ , φ-prop where isPartial : isSet A → hProp (ℓ-max ℓ₀ ℓ₁) isPartial A-set = isReflexive _⊑_ ⊓ isTransitive _⊑_ ⊓ isAntisym A-set _⊑_ φ = Σ[ A-set ∈ isSet A ] [ isPartial A-set ] φ-prop = isOfHLevelΣ 1 isPropIsSet (λ x → snd (isPartial x)) -- The poset structure. PosetStructure : (ℓ₁ : Level) → Type ℓ₀ → Type (ℓ-max ℓ₀ (ℓ-suc ℓ₁)) PosetStructure ℓ₁ = AxiomsStructure (Order ℓ₁) λ A _⊑_ → [ satPosetAx ℓ₁ A _⊑_ ] isSetPosetStructure : (ℓ₁ : Level) (A : Type ℓ₀) → isSet (PosetStructure ℓ₁ A) isSetPosetStructure ℓ₁ A = isSetΣ (isSetΠ2 λ _ _ → isSetHProp) λ _⊑_ → isProp→isSet (snd (satPosetAx ℓ₁ A _⊑_)) Poset : (ℓ₀ ℓ₁ : Level) → Type (ℓ-max (ℓ-suc ℓ₀) (ℓ-suc ℓ₁)) Poset ℓ₀ ℓ₁ = TypeWithStr ℓ₀ (PosetStructure ℓ₁) -- Some projections for syntactic convenience. -- Carrier set of a poset. ∣_∣ₚ : Poset ℓ₀ ℓ₁ → Type ℓ₀ ∣ X , _ ∣ₚ = X strₚ : (P : Poset ℓ₀ ℓ₁) → PosetStructure ℓ₁ ∣ P ∣ₚ strₚ (_ , s) = s rel : (P : Poset ℓ₀ ℓ₁) → ∣ P ∣ₚ → ∣ P ∣ₚ → hProp ℓ₁ rel (_ , _⊑_ , _) = _⊑_ syntax rel P x y = x ⊑[ P ] y ⊑[_]-refl : (P : Poset ℓ₀ ℓ₁) → (x : ∣ P ∣ₚ) → [ x ⊑[ P ] x ] ⊑[_]-refl (_ , _ , _ , ⊑-refl , _) = ⊑-refl ⊑[_]-trans : (P : Poset ℓ₀ ℓ₁) (x y z : ∣ P ∣ₚ) → [ x ⊑[ P ] y ] → [ y ⊑[ P ] z ] → [ x ⊑[ P ] z ] ⊑[_]-trans (_ , _ , _ , _ , ⊑-trans , _) = ⊑-trans ⊑[_]-antisym : (P : Poset ℓ₀ ℓ₁) (x y : ∣ P ∣ₚ) → [ x ⊑[ P ] y ] → [ y ⊑[ P ] x ] → x ≡ y ⊑[_]-antisym (_ , _ , _ , _ , _ , ⊑-antisym) = ⊑-antisym carrier-is-set : (P : Poset ℓ₀ ℓ₁) → isSet ∣ P ∣ₚ carrier-is-set (_ , _ , is-set , _) = is-set -- Definition of a monotonic map amounts to forgetting the partial order axioms. isMonotonic : (P : Poset ℓ₀ ℓ₁) (Q : Poset ℓ₀′ ℓ₁′) → (∣ P ∣ₚ → ∣ Q ∣ₚ) → Type _ isMonotonic (A , (_⊑₀_ , _)) (B , (_⊑₁_ , _)) = isOrderPreserving (A , _⊑₀_) (B , _⊑₁_) isPropIsMonotonic : (P : Poset ℓ₀ ℓ₁) (Q : Poset ℓ₀′ ℓ₁′) → (f : ∣ P ∣ₚ → ∣ Q ∣ₚ) → isProp (isMonotonic P Q f) isPropIsMonotonic (A , (_⊑₀_ , _)) (B , (_⊑₁_ , _)) f = isPropIsOrderPreserving (A , _⊑₀_) (B , _⊑₁_) f -- We collect the type of monotonic maps between two posets in the following -- type. _─m→_ : Poset ℓ₀ ℓ₁ → Poset ℓ₀′ ℓ₁′ → Type _ _─m→_ P Q = Σ[ f ∈ (∣ P ∣ₚ → ∣ Q ∣ₚ) ] (isMonotonic P Q f) -- The identity monotonic map and composition of monotonic maps. 𝟏m : (P : Poset ℓ₀ ℓ₁) → P ─m→ P 𝟏m P = idfun ∣ P ∣ₚ , (λ x y x⊑y → x⊑y) _∘m_ : {P : Poset ℓ₀ ℓ₁} {Q : Poset ℓ₀′ ℓ₁′} {R : Poset ℓ₀′′ ℓ₁′′} → (Q ─m→ R) → (P ─m→ Q) → (P ─m→ R) (g , pg) ∘m (f , pf) = g ∘ f , λ x y p → pg (f x) (f y) (pf x y p) forget-mono : (P : Poset ℓ₀ ℓ₁) (Q : Poset ℓ₀′ ℓ₁′) ((f , f-mono) (g , g-mono) : P ─m→ Q) → f ≡ g → (f , f-mono) ≡ (g , g-mono) forget-mono P Q (f , f-mono) (g , g-mono) = Σ≡Prop (λ f → isPropΠ3 λ x y x⊑y → snd (f x ⊑[ Q ] f y)) module PosetReasoning (P : Poset ℓ₀ ℓ₁) where _⊑⟨_⟩_ : (x : ∣ P ∣ₚ) {y z : ∣ P ∣ₚ} → [ x ⊑[ P ] y ] → [ y ⊑[ P ] z ] → [ x ⊑[ P ] z ] _ ⊑⟨ p ⟩ q = ⊑[ P ]-trans _ _ _ p q _■ : (x : ∣ P ∣ₚ) → [ x ⊑[ P ] x ] _■ = ⊑[ P ]-refl infixr 0 _⊑⟨_⟩_ infix 1 _■ -- Univalence for posets. isAMonotonicEqv : (P : Poset ℓ₀ ℓ₁) (Q : Poset ℓ₀′ ℓ₁′) → ∣ P ∣ₚ ≃ ∣ Q ∣ₚ → Type _ isAMonotonicEqv (A , (_⊑₀_ , _)) (B , (_⊑₁_ , _)) = isAnOrderPreservingEqv (A , _⊑₀_) (B , _⊑₁_) isPropIsAMonotonicEqv : (P : Poset ℓ₀ ℓ₁) (Q : Poset ℓ₀ ℓ₁′) → (eqv : ∣ P ∣ₚ ≃ ∣ Q ∣ₚ) → isProp (isAMonotonicEqv P Q eqv) isPropIsAMonotonicEqv P Q e@(f , _) = isPropΣ (isPropIsMonotonic P Q f) λ _ → isPropIsMonotonic Q P g where g = equivFun (invEquiv e) -- We denote by `_≃ₚ_` the type of monotonic poset equivalences. _≃ₚ_ : Poset ℓ₀ ℓ₁ → Poset ℓ₀ ℓ₁ → Type _ _≃ₚ_ P Q = Σ[ i ∈ ∣ P ∣ₚ ≃ ∣ Q ∣ₚ ] isAMonotonicEqv P Q i -- From this, we can already establish that posets form an SNS and prove that -- the category of posets is univalent. posetUnivalentStr : SNS {ℓ} (PosetStructure ℓ₁) isAMonotonicEqv posetUnivalentStr {ℓ₁ = ℓ₁} = UnivalentStr→SNS (PosetStructure ℓ₁) isAMonotonicEqv (axiomsUnivalentStr _ NTS (SNS→UnivalentStr isAnOrderPreservingEqv orderUnivalentStr)) where NTS : (A : Type ℓ) (_⊑_ : Order ℓ₁ A) → isProp [ satPosetAx ℓ₁ A _⊑_ ] NTS A _⊑_ = snd (satPosetAx ℓ₁ A _⊑_) poset-univ₀ : (P Q : Poset ℓ₀ ℓ₁) → (P ≃ₚ Q) ≃ (P ≡ Q) poset-univ₀ = SIP (SNS→UnivalentStr isAMonotonicEqv posetUnivalentStr) -- This result is almost what we want but it is better talk directly about poset -- _isomorphisms_ rather than equivalences. In the case when types `A` and `B` -- are sets, the type of isomorphisms between `A` and `B` is equivalent to the -- type of equivalences betwee them. -- Let us start by writing down what a poset isomorphisms is. isPosetIso : (P Q : Poset ℓ₀ ℓ₁) → (P ─m→ Q) → Type _ isPosetIso P Q (f , _) = Σ[ (g , _) ∈ (Q ─m→ P) ] section f g × retract f g isPosetIso-prop : (P Q : Poset ℓ₀ ℓ₁) (f : P ─m→ Q) → isProp (isPosetIso P Q f) isPosetIso-prop P Q (f , f-mono) (g₀ , sec₀ , ret₀) (g₁ , sec₁ , ret₁) = Σ≡Prop NTS g₀=g₁ where NTS : ((g , _) : Q ─m→ P) → isProp (section f g × retract f g) NTS (g , g-mono) = isPropΣ (isPropΠ λ x → carrier-is-set Q (f (g x)) x) λ _ → isPropΠ λ x → carrier-is-set P (g (f x)) x g₀=g₁ : g₀ ≡ g₁ g₀=g₁ = forget-mono Q P g₀ g₁ (funExt λ x → fst g₀ x ≡⟨ sym (cong (λ - → fst g₀ -) (sec₁ x)) ⟩ fst g₀ (f (fst g₁ x)) ≡⟨ ret₀ (fst g₁ x) ⟩ fst g₁ x ∎) -- We will denote by `P ≅ₚ Q` the type of isomorphisms between posets `P` and -- `Q`. _≅ₚ_ : Poset ℓ₀ ℓ₁ → Poset ℓ₀ ℓ₁ → Type _ P ≅ₚ Q = Σ[ f ∈ P ─m→ Q ] isPosetIso P Q f -- ≅ₚ is equivalent to ≃ₚ. ≃ₚ≃≅ₚ : (P Q : Poset ℓ₀ ℓ₁) → (P ≅ₚ Q) ≃ (P ≃ₚ Q) ≃ₚ≃≅ₚ P Q = isoToEquiv (iso from to ret sec) where to : P ≃ₚ Q → P ≅ₚ Q to (e@(f , _) , (f-mono , g-mono)) = (f , f-mono) , (g , g-mono) , sec-f-g , ret-f-g where is = equivToIso e g = equivFun (invEquiv e) sec-f-g : section f g sec-f-g = Iso.rightInv (equivToIso e) ret-f-g : retract f g ret-f-g = Iso.leftInv (equivToIso e) from : P ≅ₚ Q → P ≃ₚ Q from ((f , f-mono) , ((g , g-mono) , sec , ret)) = isoToEquiv is , f-mono , g-mono where is : Iso ∣ P ∣ₚ ∣ Q ∣ₚ is = iso f g sec ret sec : section to from sec (f , _) = Σ≡Prop (isPosetIso-prop P Q) refl ret : retract to from ret (e , _) = Σ≡Prop (isPropIsAMonotonicEqv P Q) (Σ≡Prop isPropIsEquiv refl) -- Once we have this equivalence, the main result is then: the type of poset -- isomorphisms between `P` and `Q` is equivalent to the type of identity proofs -- between `P` and `Q` poset-univ : (P Q : Poset ℓ₀ ℓ₁) → (P ≅ₚ Q) ≃ (P ≡ Q) poset-univ P Q = P ≅ₚ Q ≃⟨ ≃ₚ≃≅ₚ P Q ⟩ P ≃ₚ Q ≃⟨ poset-univ₀ P Q ⟩ P ≡ Q QED
36.329193
90
0.55642
3401ef5d5334a83bd2f34862e3383abe1a2ebdbc
6,605
agda
Agda
src/Ambient.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
2
2021-03-12T18:31:14.000Z
2021-05-04T09:35:36.000Z
src/Ambient.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
src/Ambient.agda
d-plaindoux/colca
a81447af3ab2ba898bb7d57be71369abbba12d81
[ "MIT" ]
null
null
null
module Ambient where open import Relation.Nullary using (yes; no) open import Data.String using (String; _≟_) open import Data.Bool using (Bool; true; false) open import Relation.Binary.PropositionalEquality using (_≢_; refl) renaming (_≡_ to _≡≡_) open import Data.List using (List; []; _∷_; _++_; filter) -- Local modules --------------------------------------------------------------- open import Common using (Id) open import Capability using (Capability; `_; In; Out; Open; ε; _∙_) renaming (_[_/_] to _[_/_]-capa; freeVar to freeVar-capa) -- Process Definition ---------------------------------------------------------- infix 40 _[_/_] infixr 30 Λ_∙_ infix 20 _[_] infixr 10 _||_ data Process : Set where ν_∙_ : Id → Process → Process -- Restriction Zero : Process -- Inactivity _||_ : Process → Process → Process -- Composition !_ : Process → Process -- Replication _[_] : Capability → Process → Process -- Ambient _∙_ : Capability → Process → Process -- Action Λ_∙_ : Id → Process → Process -- Input Action <_> : Capability → Process -- Message -- Free variable --------------------------------------------------------------- _-_ : List Id → Id → List Id [] - _ = [] (x ∷ xs) - y with x ≟ y ... | yes _ = xs - y ... | no _ = x ∷ (xs - y) freeVar : Process → List Id freeVar (ν x ∙ P) = freeVar P freeVar Zero = [] freeVar (P || Q) = (freeVar P) ++ (freeVar Q) freeVar (! P) = freeVar P freeVar (M [ P ]) = (freeVar-capa M) ++ (freeVar P) freeVar (M ∙ P) = (freeVar-capa M) ++ (freeVar P) freeVar (Λ x ∙ P) = (freeVar P) - x freeVar (< M >) = freeVar-capa M _∉_ : Id → List Id → Set y ∉ l = member y l ≡≡ false where member : Id → List Id → Bool -- Should propably use the List filter instead! member y [] = false member y (x ∷ xs) with x ≟ y ... | yes _ = true ... | no _ = member y xs -- Process substitution -------------------------------------------------------- _[_/_] : Process → Id → Capability → Process Zero [ _ / _ ] = Zero (P || Q) [ x / M ] = P [ x / M ] || Q [ x / M ] (! P) [ x / M ] = ! (P [ x / M ]) (x [ P ]) [ y / M ] = (x [ y / M ]-capa) [ P [ y / M ] ] (ν x ∙ P) [ y / M ] with x ≟ y ... | yes _ = ν x ∙ P ... | no _ = ν x ∙ (P [ y / M ]) < N > [ x / M ] = < N [ x / M ]-capa > (Λ x ∙ P) [ y / M ] with x ≟ y ... | yes _ = Λ x ∙ P ... | no _ = Λ x ∙ (P [ y / M ]) ( N ∙ P) [ x / M ] = (N [ x / M ]-capa) ∙ (P [ x / M ]) module Test where a = "a" b = "b" ------------------------------------------------------------------------------ _ : (` a [ < ` b > ]) [ b / Open a ] ≡≡ ` a [ < Open a > ] _ = refl _ : (< ` a > || < ` b >) [ b / Open a ] ≡≡ < ` a > || < Open a > _ = refl -- Congruence ------------------------------------------------------------------ infix 5 _≡_ data _≡_ : Process → Process → Set where Struct-Refl : ∀ {P} ----- → P ≡ P Struct-Symm : ∀ {P Q} → P ≡ Q ----- → Q ≡ P Struct-Trans : ∀ {P Q R} → P ≡ Q → Q ≡ R ------------- → P ≡ R Struct-Res : ∀ {n P Q} → P ≡ Q ----------------- → ν n ∙ P ≡ ν n ∙ Q Struct-Par : ∀ {P Q R} → P ≡ Q --------------- → P || R ≡ Q || R Struct-Repl : ∀ {P Q} → P ≡ Q --------- → ! P ≡ ! Q Struct-Amb : ∀ {M P Q} → P ≡ Q ----------------- → M [ P ] ≡ M [ Q ] Struct-Action : ∀ {M P Q} → P ≡ Q ------------- → M ∙ P ≡ M ∙ Q Struct-Input : ∀ {x P Q} → P ≡ Q --------------------- → Λ x ∙ P ≡ Λ x ∙ Q Struct-Comm : ∀ {P Q} → P ≡ Q ----- → Q ≡ P Struct-Assoc : ∀ {P Q R} ----------------------------- → (P || Q) || R ≡ P || (Q || R) Struct-ResRes : ∀ {n m P} → n ≢ m ----------------------------- → ν n ∙ ν m ∙ P ≡ ν m ∙ ν n ∙ P Struct-ResPar : ∀ {n P Q} → n ∉ freeVar(P) ----------------------------- → ν n ∙ (P || Q) ≡ P || ν n ∙ Q Struct-ResAmb : ∀ {n m P} → n ≢ m ----------------------------------- → ν n ∙ (` m [ P ]) ≡ ` m [ ν n ∙ P ] Struct-ZeroPar : ∀ {P} ------------- → P || Zero ≡ P Struct-ZeroRes : ∀ {n} ----------------- → ν n ∙ Zero ≡ Zero Struct-ZeroRep : ! Zero ≡ Zero Struct-ε : --------------- ε ∙ Zero ≡ Zero Struct-∙ : ∀ {M M' P} --------------------------- → (M ∙ M') ∙ P ≡ M ∙ (M' ∙ P) -- Reduction rules ------------------------------------------------------------- infix 5 _~>_ data _~>_ : Process → Process → Set where Red-In : ∀ {m n P Q R} ----------------------------------------------------------------- → ` m [ In n ∙ P || Q ] || ` n [ R ] ~> ` n [ ` m [ P || Q ] || R ] Red-Out : ∀ {m n P Q R} ------------------------------------------------------------------ → ` m [ ` n [ Out m ∙ P || R ] || Q ] ~> ` m [ Q ] || ` n [ P || R ] Red-Open : ∀ {m P Q} --------------------------------- → ` m [ P ] || Open m ∙ Q ~> P || Q Red-I/O : ∀ {M x P} --------------------------------- → < M > || Λ x ∙ P ~> P [ x / M ] Red-Par : ∀ {P Q R} → P ~> Q ------------------ → P || R ~> Q || R Red-Res : ∀ {n P Q} → P ~> Q -------------------- → ν n ∙ P ~> ν n ∙ Q Red-Amb : ∀ {M P Q} → P ~> Q -------------------- → M [ P ] ~> M [ Q ] Red-≡ : ∀ {P P' Q Q'} → P' ≡ P → P ~> Q → Q ≡ Q' ------------------------- → P' ~> Q' --------------------------------------------------------------------------------
28.469828
87
0.284481
c7f95b8d6369cf7773decba0c5528f399ffbe2c2
1,129
agda
Agda
archive/agda-3/src/Test/SurjidentityI.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Test/SurjidentityI.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Test/SurjidentityI.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Everything module Test.SurjidentityI where module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼₂2_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) {𝔯₂'} (_∼₂'_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂') {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (_∼̇₂'_ : ∀ {x y} → x ∼₂' y → x ∼₂' y → Ø ℓ₂) (_∼̇₂2_ : ∀ {x y} → x ∼₂2 y → x ∼₂2 y → Ø ℓ₂) where postulate instance `𝓢urjection : Surjection.class 𝔒₁ 𝔒₂ instance `𝓢urjectivity : Smap!.class _∼₁_ _∼₂_ instance `𝓢urjectextensivity : Smap!.class _∼₁_ _∼₂'_ instance `𝓢urjectivity2 : Smap!.class _∼₁_ _∼₂2_ instance `𝓡eflexivity₁ : Reflexivity.class _∼₁_ instance `𝓡eflexivity₂ : Reflexivity.class _∼₂_ instance `𝓡eflexivity₂' : Reflexivity.class _∼₂'_ instance `𝓡eflexivity₂2 : Reflexivity.class _∼₂2_ instance `𝒮urjidentity : Surjidentity!.class _∼₁_ _∼₂_ _∼̇₂_ instance `𝒮urjidentity' : Surjidentity!.class _∼₁_ _∼₂'_ _∼̇₂'_ instance `𝒮urjidentity2 : Surjidentity!.class _∼₁_ _∼₂2_ _∼̇₂2_ test-surj : Surjidentity!.type _∼₁_ _∼₂_ _∼̇₂_ test-surj = surjidentity
35.28125
67
0.601417
417646a62200e62f40fbd3c72ff634435e46395a
4,312
agda
Agda
Cubical/Categories/Category/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Categories/Category/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Categories/Category/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Category.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Powerset private variable ℓ ℓ' : Level -- Categories with hom-sets record Category ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where -- no-eta-equality ; NOTE: need eta equality for `opop` field ob : Type ℓ Hom[_,_] : ob → ob → Type ℓ' id : ∀ {x} → Hom[ x , x ] _⋆_ : ∀ {x y z} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → Hom[ x , z ] ⋆IdL : ∀ {x y} (f : Hom[ x , y ]) → id ⋆ f ≡ f ⋆IdR : ∀ {x y} (f : Hom[ x , y ]) → f ⋆ id ≡ f ⋆Assoc : ∀ {x y z w} (f : Hom[ x , y ]) (g : Hom[ y , z ]) (h : Hom[ z , w ]) → (f ⋆ g) ⋆ h ≡ f ⋆ (g ⋆ h) isSetHom : ∀ {x y} → isSet Hom[ x , y ] -- composition: alternative to diagramatic order _∘_ : ∀ {x y z} (g : Hom[ y , z ]) (f : Hom[ x , y ]) → Hom[ x , z ] g ∘ f = f ⋆ g infixr 9 _⋆_ infixr 9 _∘_ open Category -- Helpful syntax/notation _[_,_] : (C : Category ℓ ℓ') → (x y : C .ob) → Type ℓ' _[_,_] = Hom[_,_] -- Needed to define this in order to be able to make the subsequence syntax declaration seq' : ∀ (C : Category ℓ ℓ') {x y z} (f : C [ x , y ]) (g : C [ y , z ]) → C [ x , z ] seq' = _⋆_ infixl 15 seq' syntax seq' C f g = f ⋆⟨ C ⟩ g -- composition comp' : ∀ (C : Category ℓ ℓ') {x y z} (g : C [ y , z ]) (f : C [ x , y ]) → C [ x , z ] comp' = _∘_ infixr 16 comp' syntax comp' C g f = g ∘⟨ C ⟩ f -- Isomorphisms and paths in categories record CatIso (C : Category ℓ ℓ') (x y : C .ob) : Type ℓ' where constructor catiso field mor : C [ x , y ] inv : C [ y , x ] sec : inv ⋆⟨ C ⟩ mor ≡ C .id ret : mor ⋆⟨ C ⟩ inv ≡ C .id idCatIso : {C : Category ℓ ℓ'} {x : C .ob} → CatIso C x x idCatIso {C = C} = (catiso (C .id) (C .id) (C .⋆IdL (C .id)) (C .⋆IdL (C .id))) isSet-CatIso : {C : Category ℓ ℓ'} → ∀ x y → isSet (CatIso C x y) isSet-CatIso {C = C} x y F G p q = w where w : _ CatIso.mor (w i j) = isSetHom C _ _ (cong CatIso.mor p) (cong CatIso.mor q) i j CatIso.inv (w i j) = isSetHom C _ _ (cong CatIso.inv p) (cong CatIso.inv q) i j CatIso.sec (w i j) = isSet→SquareP (λ i j → isProp→isSet {A = CatIso.inv (w i j) ⋆⟨ C ⟩ CatIso.mor (w i j) ≡ C .id} (isSetHom C _ _)) (cong CatIso.sec p) (cong CatIso.sec q) (λ _ → CatIso.sec F) (λ _ → CatIso.sec G) i j CatIso.ret (w i j) = isSet→SquareP (λ i j → isProp→isSet {A = CatIso.mor (w i j) ⋆⟨ C ⟩ CatIso.inv (w i j) ≡ C .id} (isSetHom C _ _)) (cong CatIso.ret p) (cong CatIso.ret q) (λ _ → CatIso.ret F) (λ _ → CatIso.ret G) i j pathToIso : {C : Category ℓ ℓ'} {x y : C .ob} (p : x ≡ y) → CatIso C x y pathToIso {C = C} p = J (λ z _ → CatIso _ _ z) idCatIso p pathToIso-refl : {C : Category ℓ ℓ'} {x : C .ob} → pathToIso {C = C} {x} refl ≡ idCatIso pathToIso-refl {C = C} {x} = JRefl (λ z _ → CatIso C x z) (idCatIso) -- Univalent Categories record isUnivalent (C : Category ℓ ℓ') : Type (ℓ-max ℓ ℓ') where field univ : (x y : C .ob) → isEquiv (pathToIso {C = C} {x = x} {y = y}) -- package up the univalence equivalence univEquiv : ∀ (x y : C .ob) → (x ≡ y) ≃ (CatIso _ x y) univEquiv x y = pathToIso , univ x y -- The function extracting paths from category-theoretic isomorphisms. CatIsoToPath : {x y : C .ob} (p : CatIso _ x y) → x ≡ y CatIsoToPath {x = x} {y = y} p = equivFun (invEquiv (univEquiv x y)) p isGroupoid-ob : isGroupoid (C .ob) isGroupoid-ob = isOfHLevelPath'⁻ 2 (λ _ _ → isOfHLevelRespectEquiv 2 (invEquiv (univEquiv _ _)) (isSet-CatIso _ _)) -- Opposite category _^op : Category ℓ ℓ' → Category ℓ ℓ' ob (C ^op) = ob C Hom[_,_] (C ^op) x y = C [ y , x ] id (C ^op) = id C _⋆_ (C ^op) f g = g ⋆⟨ C ⟩ f ⋆IdL (C ^op) = C .⋆IdR ⋆IdR (C ^op) = C .⋆IdL ⋆Assoc (C ^op) f g h = sym (C .⋆Assoc _ _ _) isSetHom (C ^op) = C .isSetHom ΣPropCat : (C : Category ℓ ℓ') (P : ℙ (ob C)) → Category ℓ ℓ' ob (ΣPropCat C P) = Σ[ x ∈ ob C ] x ∈ P Hom[_,_] (ΣPropCat C P) x y = C [ fst x , fst y ] id (ΣPropCat C P) = id C _⋆_ (ΣPropCat C P) = _⋆_ C ⋆IdL (ΣPropCat C P) = ⋆IdL C ⋆IdR (ΣPropCat C P) = ⋆IdR C ⋆Assoc (ΣPropCat C P) = ⋆Assoc C isSetHom (ΣPropCat C P) = isSetHom C
34.222222
117
0.545455
216f60bbd1a7101ed4cb8b2929bc018a37186d85
494
agda
Agda
test/Fail/Issue2429.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue2429.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue2429.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2017-01-24, issue #2429 -- ..-annotation in lambdas should be taken seriously -- A ≤ ..A ≤ .A -- (.A → B) ≤ (..A → B) ≤ A → B should-fail : ∀{A B : Set} → (.A → B) → (.A → B) should-fail f = λ ..a → f a -- Expected error: -- Found a non-strict lambda where a irrelevant lambda was expected -- when checking that the expression λ ..a → f a has type ..A → .B -- Note: Since A and B are not in scope, they are printed as .A and .B -- This makes this error message super confusing.
30.875
70
0.615385
43075093a52f23019d612733aca65ed8cde74ab5
12,051
agda
Agda
core/lib/types/Truncation.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Truncation.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Truncation.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.TLevel open import lib.types.Pi open import lib.types.Sigma open import lib.NType2 module lib.types.Truncation where module _ {i} where postulate -- HIT Trunc : (n : ℕ₋₂) (A : Type i) → Type i [_] : {n : ℕ₋₂} {A : Type i} → A → Trunc n A Trunc-level : {n : ℕ₋₂} {A : Type i} → has-level n (Trunc n A) module TruncElim {n : ℕ₋₂} {A : Type i} {j} {P : Trunc n A → Type j} (p : (x : Trunc n A) → has-level n (P x)) (d : (a : A) → P [ a ]) where postulate -- HIT f : Π (Trunc n A) P [_]-β : ∀ a → f [ a ] ↦ d a {-# REWRITE [_]-β #-} open TruncElim public renaming (f to Trunc-elim) module TruncRec {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} (p : has-level n B) (d : A → B) where private module M = TruncElim (λ x → p) d f : Trunc n A → B f = M.f open TruncRec public renaming (f to Trunc-rec) module TruncRecType {i j} {n : ℕ₋₂} {A : Type i} (d : A → n -Type j) where open TruncRec (n -Type-level j) d public flattening-Trunc : Σ (Trunc (S n) A) (fst ∘ f) ≃ Trunc (S n) (Σ A (fst ∘ d)) flattening-Trunc = equiv to from to-from from-to where to-aux : (x : Trunc (S n) A) → (fst (f x) → Trunc (S n) (Σ A (fst ∘ d))) to-aux = Trunc-elim (λ _ → →-level Trunc-level) (λ a b → [ (a , b) ]) to : Σ (Trunc (S n) A) (fst ∘ f) → Trunc (S n) (Σ A (fst ∘ d)) to (x , y) = to-aux x y from-aux : Σ A (fst ∘ d) → Σ (Trunc (S n) A) (fst ∘ f) from-aux (a , b) = ([ a ] , b) from : Trunc (S n) (Σ A (fst ∘ d)) → Σ (Trunc (S n) A) (fst ∘ f) from = Trunc-rec (Σ-level Trunc-level (λ x → raise-level _ (snd (f x)))) from-aux to-from : (x : Trunc (S n) (Σ A (fst ∘ d))) → to (from x) == x to-from = Trunc-elim (λ _ → =-preserves-level Trunc-level) (λ _ → idp) from-to-aux : (a : Trunc (S n) A) (b : fst (f a)) → from (to-aux a b) == (a , b) from-to-aux = Trunc-elim (λ _ → Π-level (λ _ → =-preserves-level (Σ-level Trunc-level (λ x → raise-level _ (snd (f x)))))) (λ a b → idp) from-to : (x : Σ (Trunc (S n) A) (fst ∘ f)) → from (to x) == x from-to (a , b) = from-to-aux a b ⊙Trunc : ∀ {i} → ℕ₋₂ → Ptd i → Ptd i ⊙Trunc n ⊙[ A , a ] = ⊙[ Trunc n A , [ a ] ] module _ {i} {n : ℕ₋₂} {A : Type i} where Trunc= : (a b : Trunc (S n) A) → n -Type i Trunc= = Trunc-elim (λ _ → →-level (n -Type-level i)) (λ a → Trunc-elim (λ _ → n -Type-level i) ((λ b → (Trunc n (a == b) , Trunc-level)))) Trunc=-equiv : (a b : Trunc (S n) A) → (a == b) ≃ fst (Trunc= a b) Trunc=-equiv a b = equiv (to a b) (from a b) (to-from a b) (from-to a b) where to-aux : (a : Trunc (S n) A) → fst (Trunc= a a) to-aux = Trunc-elim (λ x → raise-level _ (snd (Trunc= x x))) (λ a → [ idp ]) to : (a b : Trunc (S n) A) → (a == b → fst (Trunc= a b)) to a .a idp = to-aux a from-aux : (a b : A) → a == b → [ a ] == [ b ] :> Trunc (S n) A from-aux a .a idp = idp from : (a b : Trunc (S n) A) → (fst (Trunc= a b) → a == b) from = Trunc-elim (λ _ → Π-level (λ _ → →-level (=-preserves-level Trunc-level))) (λ a → Trunc-elim (λ _ → →-level (=-preserves-level Trunc-level)) (λ b → Trunc-rec (Trunc-level {n = S n} _ _) (from-aux a b))) to-from-aux : (a b : A) → (p : a == b) → to _ _ (from-aux a b p) == [ p ] to-from-aux a .a idp = idp to-from : (a b : Trunc (S n) A) (x : fst (Trunc= a b)) → to a b (from a b x) == x to-from = Trunc-elim (λ x → Π-level (λ y → Π-level (λ _ → =-preserves-level (raise-level _ (snd (Trunc= x y)))))) (λ a → Trunc-elim (λ x → Π-level (λ _ → raise-level _ (=-preserves-level (snd (Trunc= [ a ] x))))) (λ b → Trunc-elim (λ _ → =-preserves-level Trunc-level) (to-from-aux a b))) from-to-aux : (a : Trunc (S n) A) → from a a (to-aux a) == idp from-to-aux = Trunc-elim (λ x → =-preserves-level (=-preserves-level Trunc-level)) (λ _ → idp) from-to : (a b : Trunc (S n) A) (p : a == b) → from a b (to a b p) == p from-to a .a idp = from-to-aux a Trunc=-path : (a b : Trunc (S n) A) → (a == b) == fst (Trunc= a b) Trunc=-path a b = ua (Trunc=-equiv a b) {- Universal property -} abstract Trunc-rec-is-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) (p : has-level n B) → is-equiv (Trunc-rec p :> ((A → B) → (Trunc n A → B))) Trunc-rec-is-equiv n A B p = is-eq _ (λ f → f ∘ [_]) (λ f → λ= (Trunc-elim (λ _ → =-preserves-level p) (λ a → idp))) (λ f → idp) Trunc-preserves-level : ∀ {i} {A : Type i} {n : ℕ₋₂} (m : ℕ₋₂) → has-level n A → has-level n (Trunc m A) Trunc-preserves-level {n = ⟨-2⟩} _ (a₀ , p) = ([ a₀ ] , Trunc-elim (λ _ → =-preserves-level Trunc-level) (λ a → ap [_] (p a))) Trunc-preserves-level ⟨-2⟩ _ = contr-has-level Trunc-level Trunc-preserves-level {n = (S n)} (S m) c = λ t₁ t₂ → Trunc-elim (λ s₁ → prop-has-level-S {A = has-level n (s₁ == t₂)} has-level-is-prop) (λ a₁ → Trunc-elim (λ s₂ → prop-has-level-S {A = has-level n ([ a₁ ] == s₂)} has-level-is-prop) (λ a₂ → equiv-preserves-level ((Trunc=-equiv [ a₁ ] [ a₂ ])⁻¹) (Trunc-preserves-level {n = n} m (c a₁ a₂))) t₂) t₁ {- an n-type is equivalent to its n-truncation -} unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (A : Type i) → has-level n A → Trunc n A ≃ A unTrunc-equiv A nA = equiv f [_] (λ _ → idp) g-f where f = Trunc-rec nA (idf _) g-f = Trunc-elim (λ _ → =-preserves-level Trunc-level) (λ _ → idp) ⊙unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (X : Ptd i) → has-level n (de⊙ X) → ⊙Trunc n X ⊙≃ X ⊙unTrunc-equiv {n = n} X nX = ≃-to-⊙≃ (unTrunc-equiv (de⊙ X) nX) idp -- Equivalence associated to the universal property Trunc-extend-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) (p : has-level n B) → (A → B) ≃ (Trunc n A → B) Trunc-extend-equiv n A B p = (Trunc-rec p , Trunc-rec-is-equiv n A B p) Trunc-fmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → ((A → B) → (Trunc n A → Trunc n B)) Trunc-fmap f = Trunc-rec Trunc-level ([_] ∘ f) Trunc-fmap2 : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} → ((A → B → C) → (Trunc n A → Trunc n B → Trunc n C)) Trunc-fmap2 f = Trunc-rec (Π-level (λ _ → Trunc-level)) (λ a → Trunc-fmap (f a)) -- XXX What is the naming convention? Trunc-fpmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} {f g : A → B} (h : (a : A) → f a == g a) → ((a : Trunc n A) → Trunc-fmap f a == Trunc-fmap g a) Trunc-fpmap h = Trunc-elim (λ _ → =-preserves-level Trunc-level) (ap [_] ∘ h) Trunc-fmap-idf : ∀ {i} {n : ℕ₋₂} {A : Type i} → ∀ x → Trunc-fmap {n = n} (idf A) x == x Trunc-fmap-idf = Trunc-elim (λ _ → =-preserves-level Trunc-level) (λ _ → idp) Trunc-fmap-∘ : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} → (g : B → C) → (f : A → B) → ∀ x → Trunc-fmap {n = n} g (Trunc-fmap f x) == Trunc-fmap (g ∘ f) x Trunc-fmap-∘ g f = Trunc-elim (λ _ → =-preserves-level Trunc-level) (λ _ → idp) {- Pushing concatentation through Trunc= -} module _ {i} {n : ℕ₋₂} {A : Type i} where {- concatenation in Trunc= -} Trunc=-∙ : {ta tb tc : Trunc (S n) A} → fst (Trunc= ta tb) → fst (Trunc= tb tc) → fst (Trunc= ta tc) Trunc=-∙ {ta = ta} {tb = tb} {tc = tc} = Trunc-elim {P = λ ta → C ta tb tc} (λ ta → level ta tb tc) (λ a → Trunc-elim {P = λ tb → C [ a ] tb tc} (λ tb → level [ a ] tb tc) (λ b → Trunc-elim {P = λ tc → C [ a ] [ b ] tc} (λ tc → level [ a ] [ b ] tc) (λ c → Trunc-fmap2 _∙_) tc) tb) ta where C : (ta tb tc : Trunc (S n) A) → Type i C ta tb tc = fst (Trunc= ta tb) → fst (Trunc= tb tc) → fst (Trunc= ta tc) level : (ta tb tc : Trunc (S n) A) → has-level (S n) (C ta tb tc) level ta tb tc = raise-level _ $ Π-level (λ _ → Π-level (λ _ → snd (Trunc= ta tc))) Trunc=-∙-comm : {x y z : Trunc (S n) A } (p : x == y) (q : y == z) → –> (Trunc=-equiv x z) (p ∙ q) == Trunc=-∙ {ta = x} (–> (Trunc=-equiv x y) p) (–> (Trunc=-equiv y z) q) Trunc=-∙-comm {x = x} idp idp = Trunc-elim {P = λ x → –> (Trunc=-equiv x x) idp == Trunc=-∙ {ta = x} (–> (Trunc=-equiv x x) idp) (–> (Trunc=-equiv x x) idp)} (λ x → raise-level _ $ =-preserves-level (snd (Trunc= x x))) (λ a → idp) x {- Truncation preserves equivalences - more convenient than univalence+ap - when we need to know the forward or backward function explicitly -} module _ {i j} (n : ℕ₋₂) {A : Type i} {B : Type j} where Trunc-isemap : {f : A → B} → is-equiv f → is-equiv (Trunc-fmap {n = n} f) Trunc-isemap {f-orig} ie = is-eq f g f-g g-f where f = Trunc-fmap f-orig g = Trunc-fmap (is-equiv.g ie) f-g : ∀ tb → f (g tb) == tb f-g = Trunc-elim (λ _ → =-preserves-level Trunc-level) (ap [_] ∘ is-equiv.f-g ie) g-f : ∀ ta → g (f ta) == ta g-f = Trunc-elim (λ _ → =-preserves-level Trunc-level) (ap [_] ∘ is-equiv.g-f ie) Trunc-emap : A ≃ B → Trunc n A ≃ Trunc n B Trunc-emap (f , f-ie) = Trunc-fmap f , Trunc-isemap f-ie transport-Trunc : ∀ {i j} {A : Type i} {n : ℕ₋₂} (P : A → Type j) {x y : A} (p : x == y) (b : P x) → transport (Trunc n ∘ P) p [ b ] == [ transport P p b ] transport-Trunc _ idp _ = idp Trunc-fuse : ∀ {i} (A : Type i) (m n : ℕ₋₂) → Trunc m (Trunc n A) ≃ Trunc (minT m n) A Trunc-fuse A m n = equiv (Trunc-rec (raise-level-≤T (minT≤l m n) Trunc-level) (Trunc-rec (raise-level-≤T (minT≤r m n) Trunc-level) [_])) (Trunc-rec l ([_] ∘ [_])) (Trunc-elim (λ _ → =-preserves-level Trunc-level) (λ _ → idp)) (Trunc-elim (λ _ → =-preserves-level Trunc-level) (Trunc-elim (λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)) (λ _ → idp))) where l : has-level (minT m n) (Trunc m (Trunc n A)) l with (minT-out m n) l | inl p = transport (λ k → has-level k (Trunc m (Trunc n A))) (! p) Trunc-level l | inr q = Trunc-preserves-level _ (transport (λ k → has-level k (Trunc n A)) (! q) Trunc-level) Trunc-fuse-≤ : ∀ {i} (A : Type i) {m n : ℕ₋₂} (m≤n : m ≤T n) → Trunc m (Trunc n A) ≃ Trunc m A Trunc-fuse-≤ A m≤n = equiv (Trunc-rec Trunc-level (Trunc-rec (raise-level-≤T m≤n Trunc-level) [_])) (Trunc-rec Trunc-level ([_] ∘ [_])) (Trunc-elim (λ _ → =-preserves-level Trunc-level) (λ _ → idp)) (Trunc-elim (λ _ → =-preserves-level Trunc-level) (Trunc-elim (λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)) (λ _ → idp))) {- Truncating a binary product is equivalent to truncating its components -} Trunc-×-econv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) ≃ Trunc n A × Trunc n B Trunc-×-econv n A B = equiv f g f-g g-f where f : Trunc n (A × B) → Trunc n A × Trunc n B f = Trunc-rec (×-level Trunc-level Trunc-level) (λ {(a , b) → [ a ] , [ b ]}) g : Trunc n A × Trunc n B → Trunc n (A × B) g (ta , tb) = Trunc-rec Trunc-level (λ a → Trunc-rec Trunc-level (λ b → [ a , b ]) tb) ta f-g : ∀ p → f (g p) == p f-g (ta , tb) = Trunc-elim {P = λ ta → f (g (ta , tb)) == (ta , tb)} (λ _ → =-preserves-level (×-level Trunc-level Trunc-level)) (λ a → Trunc-elim {P = λ tb → f (g ([ a ] , tb)) == ([ a ] , tb)} (λ _ → =-preserves-level (×-level Trunc-level Trunc-level)) (λ b → idp) tb) ta g-f : ∀ tab → g (f tab) == tab g-f = Trunc-elim {P = λ tab → g (f tab) == tab} (λ _ → =-preserves-level Trunc-level) (λ ab → idp) Trunc-×-conv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) == Trunc n A × Trunc n B Trunc-×-conv n A B = ua (Trunc-×-econv n A B)
37.896226
126
0.500871
43db40ef6eeb5f41661d64e1d30cc93583b6fd0d
5,891
agda
Agda
homotopy/JoinAssoc.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
homotopy/JoinAssoc.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
homotopy/JoinAssoc.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT -- Associativity of the join (work in progress) module homotopy.JoinAssoc {i j k} (A : Type i) (B : Type j) (C : Type k) where {- First map -} to : (A * B) * C → A * (B * C) to = To.f module ToM where to-left-glue : (ab : A × B) → left (fst ab) == right (left (snd ab)) :> A * (B * C) to-left-glue (a , b) = glue (a , left b) {- (to∘inl)(inl(a)) :≡ inl(a) (to∘inl)(inr(b)) :≡ inr(inl(b)) ap (to∘inl) (glue(a,b)) := glue(a,inl(b)) -} module ToLeft = PushoutRec left (right ∘ left) to-left-glue to-left : A * B → A * (B * C) to-left = ToLeft.f to-glue-left : (c : C) (a : A) → to-left (left a) == right (right c) to-glue-left c a = glue (a , right c) to-glue-right : (c : C) (b : B) → to-left (right b) == right (right c) to-glue-right c b = ap right (glue (b , c)) to-glue-glue : (c : C) (ab : A × B) → to-glue-left c (fst ab) == to-glue-right c (snd ab) [ (λ x → to-left x == right (right c)) ↓ glue ab ] to-glue-glue c (a , b) = ↓-swap to-left right _ idp (ToLeft.glue-β (a , b) ◃ apd (λ x → glue (a , x)) (glue (b , c))) module ToGlue (c : C) = PushoutElim (to-glue-left c) (to-glue-right c) (to-glue-glue c) to-glue : (ab-c : (A * B) × C) → to-left (fst ab-c) == right (right (snd ab-c)) to-glue (ab , c) = M.f ab where module M = ToGlue c {- to(inr(c)) :≡ inr(inr(c)) ap to (glue(inl(a),c)) := glue(a,inr(c)) ap to (glue(inr(b),c)) := ap inr (glue(b,c)) -} module To = PushoutRec {d = *-span (A * B) C} to-left (right ∘ right) to-glue {- Second map -} from : A * (B * C) → (A * B) * C from = From.f module MM where from-right-glue : (bc : B × C) → left (right (fst bc)) == right (snd bc) from-right-glue (b , c) = glue (right b , c) {- (from∘inr)(inl(b)) :≡ inl(inr(b)) (from∘inr)(inr(c)) :≡ inr(c) ap (from∘inr) (glue(b,c)) := glue(lnr(b),c) -} module FromRight = PushoutRec (left ∘ right) right from-right-glue from-right : B * C → (A * B) * C from-right = FromRight.f from-glue-left : (a : A) (b : B) → left (left a) == from-right (left b) from-glue-left a b = ap left (glue (a , b)) from-glue-right : (a : A) (c : C) → left (left a) == from-right (right c) from-glue-right a c = glue (left a , c) from-glue-glue : (a : A) (bc : B × C) → from-glue-left a (fst bc) == from-glue-right a (snd bc) [ (λ x → left (left a) == from-right x) ↓ glue bc ] from-glue-glue a (b , c) = ↓-swap! left from-right _ idp (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) module FromGlue (a : A) = PushoutElim (from-glue-left a) (from-glue-right a) (from-glue-glue a) from-glue : (a-bc : A × (B * C)) → left (left (fst a-bc)) == from-right (snd a-bc) from-glue (a , bc) = M.f bc where module M = FromGlue a {- (from∘inl)(a) :≡ inl(inl(a)) ap from (glue(a,inr(c)) := glue(inl(a),c) ap from (glue(a,inl(b)) := ap inl (glue(a,b)) -} module From = PushoutRec {d = *-span A (B * C)} (left ∘ left) from-right from-glue open MM public {- First composite -} to-from-right-glue' : (b : B) (c : C) → ap (to ∘ from-right) (glue (b , c)) =-= ap right (glue (b , c)) to-from-right-glue' b c = ap (λ z → to (from-right z)) (glue (b , c)) =⟪ ap-∘ to from-right (glue (b , c)) ⟫ ap to (ap from-right (glue (b , c))) =⟪ FromRight.glue-β (b , c) |in-ctx ap to ⟫ ap to (glue ((right b , c) :> ((A * B) × C))) =⟪ To.glue-β (right b , c)⟫ ap right (glue (b , c)) ∎∎ to-from-right-glue : (bc : B × C) → idp == idp [ (λ x → to (from (right x)) == right x) ↓ glue bc ] to-from-right-glue (b , c) = ↓-='-in (! (↯ to-from-right-glue' b c)) module ToFromRight = PushoutElim (λ _ → idp) (λ _ → idp) to-from-right-glue to-from-right : (bc : B * C) → to (from (right bc)) == right bc to-from-right = ToFromRight.f to-from-glue-left' : (a : A) (b : B) → ap to (ap from (glue (a , left b))) =-= glue (a , left b) to-from-glue-left' a b = ap to (ap from (glue (a , left b))) =⟪ From.glue-β (a , left b) |in-ctx ap to ⟫ ap to (ap left (glue (a , b))) =⟪ ∘-ap to left (glue (a , b)) ⟫ ap ToM.to-left (glue (a , b)) =⟪ ToM.ToLeft.glue-β (a , b) ⟫ glue (a , left b) ∎∎ to-from-glue-left : (a : A) (b : B) → idp == to-from-right (left b) [ (λ x → to (from x) == x) ↓ glue (a , left b) ] to-from-glue-left a b = ↓-∘=idf-in to from (↯ to-from-glue-left' a b) to-from-glue-right' : (a : A) (c : C) → ap to (ap from (glue (a , right c))) =-= glue (a , right c) to-from-glue-right' a c = ap to (ap from (glue (a , right c))) =⟪ From.glue-β (a , right c) |in-ctx ap to ⟫ ap to (glue (left a , c)) =⟪ ToM.To.glue-β (left a , c) ⟫ glue (a , right c) ∎∎ to-from-glue-right : (a : A) (c : C) → idp == to-from-right (right c) [ (λ x → to (from x) == x) ↓ glue (a , right c) ] to-from-glue-right a c = ↓-∘=idf-in to from (↯ to-from-glue-right' a c) {- to-from-left-glue' : (a : A) → ap (to ∘ from-left) a =-= ap right (a) to-from-left-glue' a = ap (λ z → to (from-right z)) (glue (b , c)) =⟪ ap-∘ to from-right (glue (b , c)) ⟫ ap to (ap from-right (glue (b , c))) =⟪ FromRight.glue-β (b , c) |in-ctx ap to ⟫ ap to (glue ((right b , c) :> (A * B) × C)) =⟪ ToM.To.glue-β (right b , c) ⟫ ap right (glue (b , c)) ∎∎ to-from-left-glue : (a : A) → idp == idp [ (λ x → to (from (left x)) == left x) ↓ glue a ] to-from-left-glue (a) = ↓-='-in (! (↯ to-from-right-glue' b c)) module ToFromLeft = PushoutElim (λ _ → idp) (λ _ → idp) to-from-left-glue -} postulate -- Not proved yet. Some of it is being worked on at JoinAssoc2 *-assoc : ((A * B) * C) ≃ (A * (B * C))
40.07483
151
0.504838
216d7fafe9199139129adfb3fc91e50eeda15f63
200
agda
Agda
test/Fail/BuiltinMustBeConstructor.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/BuiltinMustBeConstructor.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/BuiltinMustBeConstructor.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module BuiltinMustBeConstructor where data Bool : Set where true : Bool other : Bool false : Bool false = true {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-}
14.285714
37
0.665
c7f9f404c7d6ad394e8c10391f94aa9aa444e723
2,209
agda
Agda
vendor/stdlib/src/Relation/Binary/FunctionSetoid.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Binary/FunctionSetoid.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Binary/FunctionSetoid.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Function setoids and related constructions ------------------------------------------------------------------------ module Relation.Binary.FunctionSetoid where open import Data.Function open import Relation.Binary infixr 0 _↝_ _⟶_ _⇨_ _≡⇨_ -- A logical relation (i.e. a relation which relates functions which -- map related things to related things). _↝_ : ∀ {A B} → (∼₁ : Rel A) (∼₂ : Rel B) → Rel (A → B) _∼₁_ ↝ _∼₂_ = λ f g → ∀ {x y} → x ∼₁ y → f x ∼₂ g y -- Functions which preserve equality. record _⟶_ (From To : Setoid) : Set where open Setoid infixl 5 _⟨$⟩_ field _⟨$⟩_ : carrier From → carrier To pres : _⟨$⟩_ Preserves _≈_ From ⟶ _≈_ To open _⟶_ public ↝-isEquivalence : ∀ {A B C} {∼₁ : Rel A} {∼₂ : Rel B} (fun : C → (A → B)) → (∀ f → fun f Preserves ∼₁ ⟶ ∼₂) → IsEquivalence ∼₁ → IsEquivalence ∼₂ → IsEquivalence ((∼₁ ↝ ∼₂) on₁ fun) ↝-isEquivalence _ pres eq₁ eq₂ = record { refl = λ {f} x∼₁y → pres f x∼₁y ; sym = λ f∼g x∼y → sym eq₂ (f∼g (sym eq₁ x∼y)) ; trans = λ f∼g g∼h x∼y → trans eq₂ (f∼g (refl eq₁)) (g∼h x∼y) } where open IsEquivalence -- Function setoids. _⇨_ : Setoid → Setoid → Setoid S₁ ⇨ S₂ = record { carrier = S₁ ⟶ S₂ ; _≈_ = (_≈_ S₁ ↝ _≈_ S₂) on₁ _⟨$⟩_ ; isEquivalence = ↝-isEquivalence _⟨$⟩_ pres (isEquivalence S₁) (isEquivalence S₂) } where open Setoid; open _⟶_ -- A generalised variant of (_↝_ _≡_). ≡↝ : ∀ {A} {B : A → Set} → (∀ x → Rel (B x)) → Rel ((x : A) → B x) ≡↝ R = λ f g → ∀ x → R x (f x) (g x) ≡↝-isEquivalence : {A : Set} {B : A → Set} {R : ∀ x → Rel (B x)} → (∀ x → IsEquivalence (R x)) → IsEquivalence (≡↝ R) ≡↝-isEquivalence eq = record { refl = λ _ → refl ; sym = λ f∼g x → sym (f∼g x) ; trans = λ f∼g g∼h x → trans (f∼g x) (g∼h x) } where open module Eq {x} = IsEquivalence (eq x) _≡⇨_ : (A : Set) → (A → Setoid) → Setoid A ≡⇨ S = record { carrier = (x : A) → carrier (S x) ; _≈_ = ≡↝ (λ x → _≈_ (S x)) ; isEquivalence = ≡↝-isEquivalence (λ x → isEquivalence (S x)) } where open Setoid
32.014493
72
0.499321
fd370a13e943a9841621f3b290f567ca18ac8965
6,573
agda
Agda
Cubical/Foundations/Equiv.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Foundations/Equiv.agda
rei1024/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv.agda
rei1024/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{- Theory about equivalences Definitions are in Core/Glue.agda but re-exported by this module - isEquiv is a proposition ([isPropIsEquiv]) - Any isomorphism is an equivalence ([isoToEquiv]) There are more statements about equivalences in Equiv/Properties.agda: - if f is an equivalence then (cong f) is an equivalence - if f is an equivalence then precomposition with f is an equivalence - if f is an equivalence then postcomposition with f is an equivalence -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Equiv where open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv.Base public private variable ℓ ℓ' ℓ'' : Level A B C : Type ℓ fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y equivIsEquiv : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) → isEquiv (equivFun e) equivIsEquiv e = snd e equivCtr : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) (y : B) → fiber (equivFun e) y equivCtr e y = e .snd .equiv-proof y .fst equivCtrPath : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) (y : B) → (v : fiber (equivFun e) y) → Path _ (equivCtr e y) v equivCtrPath e y = e .snd .equiv-proof y .snd -- Proof using isPropIsContr. This is slow and the direct proof below is better isPropIsEquiv' : (f : A → B) → isProp (isEquiv f) equiv-proof (isPropIsEquiv' f u0 u1 i) y = isPropIsContr (u0 .equiv-proof y) (u1 .equiv-proof y) i -- Direct proof that computes quite ok (can be optimized further if -- necessary, see: -- https://github.com/mortberg/cubicaltt/blob/pi4s3_dimclosures/examples/brunerie2.ctt#L562 isPropIsEquiv : (f : A → B) → isProp (isEquiv f) equiv-proof (isPropIsEquiv f p q i) y = let p2 = p .equiv-proof y .snd q2 = q .equiv-proof y .snd in p2 (q .equiv-proof y .fst) i , λ w j → hcomp (λ k → λ { (i = i0) → p2 w j ; (i = i1) → q2 w (j ∨ ~ k) ; (j = i0) → p2 (q2 w (~ k)) i ; (j = i1) → w }) (p2 w (i ∨ j)) equivEq : (e f : A ≃ B) → (h : e .fst ≡ f .fst) → e ≡ f equivEq e f h = λ i → (h i) , isProp→PathP (λ i → isPropIsEquiv (h i)) (e .snd) (f .snd) i module _ (w : A ≃ B) where invEq : B → A invEq y = fst (fst (snd w .equiv-proof y)) secEq : section invEq (w .fst) secEq x = λ i → fst (snd (snd w .equiv-proof (fst w x)) (x , (λ j → fst w x)) i) retEq : retract invEq (w .fst) retEq y = λ i → snd (fst (snd w .equiv-proof y)) i equivToIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → Iso A B equivToIso {A = A} {B = B} e = iso (e .fst) (invEq e ) (retEq e) (secEq e) invEquiv : A ≃ B → B ≃ A invEquiv f = isoToEquiv (iso (invEq f) (fst f) (secEq f) (retEq f)) invEquivIdEquiv : (A : Type ℓ) → invEquiv (idEquiv A) ≡ idEquiv A invEquivIdEquiv _ = equivEq _ _ refl compEquiv : A ≃ B → B ≃ C → A ≃ C compEquiv f g = isoToEquiv (iso (λ x → g .fst (f .fst x)) (λ x → invEq f (invEq g x)) (λ y → (cong (g .fst) (retEq f (invEq g y))) ∙ (retEq g y)) (λ y → (cong (invEq f) (secEq g (f .fst y))) ∙ (secEq f y))) compEquivIdEquiv : {A B : Type ℓ} (e : A ≃ B) → compEquiv (idEquiv A) e ≡ e compEquivIdEquiv e = equivEq _ _ refl compEquivEquivId : {A B : Type ℓ} (e : A ≃ B) → compEquiv e (idEquiv B) ≡ e compEquivEquivId e = equivEq _ _ refl invEquiv-is-rinv : {A B : Type ℓ} (e : A ≃ B) → compEquiv e (invEquiv e) ≡ idEquiv A invEquiv-is-rinv e = equivEq _ _ (funExt (secEq e)) invEquiv-is-linv : {A B : Type ℓ} (e : A ≃ B) → compEquiv (invEquiv e) e ≡ idEquiv B invEquiv-is-linv e = equivEq _ _ (funExt (retEq e)) compEquiv-assoc : {A B C D : Type ℓ} (f : A ≃ B) (g : B ≃ C) (h : C ≃ D) → compEquiv f (compEquiv g h) ≡ compEquiv (compEquiv f g) h compEquiv-assoc f g h = equivEq _ _ refl LiftEquiv : {A : Type ℓ} → A ≃ Lift {i = ℓ} {j = ℓ'} A LiftEquiv = isoToEquiv (iso lift lower (λ _ → refl) (λ _ → refl)) -- module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where -- invEquivInvol : (f : A ≃ B) → invEquiv (invEquiv f) ≡ f -- invEquivInvol f i .fst = fst f -- invEquivInvol f i .snd = propIsEquiv (fst f) (snd (invEquiv (invEquiv f))) (snd f) i Contr→Equiv : isContr A → isContr B → A ≃ B Contr→Equiv Actr Bctr = isoToEquiv (iso (λ _ → fst Bctr) (λ _ → fst Actr) (snd Bctr) (snd Actr)) PropEquiv→Equiv : (Aprop : isProp A) (Bprop : isProp B) (f : A → B) (g : B → A) → (A ≃ B) PropEquiv→Equiv Aprop Bprop f g = isoToEquiv (iso f g (λ b → Bprop (f (g b)) b) λ a → Aprop (g (f a)) a) homotopyNatural : {f g : A → B} (H : ∀ a → f a ≡ g a) {x y : A} (p : x ≡ y) → H x ∙ cong g p ≡ cong f p ∙ H y homotopyNatural {f = f} {g = g} H {x} {y} p i j = hcomp (λ k → λ { (i = i0) → compPath-filler (H x) (cong g p) k j ; (i = i1) → compPath-filler' (cong f p) (H y) k j ; (j = i0) → cong f p (i ∧ (~ k)) ; (j = i1) → cong g p (i ∨ k) }) (H (p i) j) Hfa≡fHa : ∀ {A : Type ℓ} (f : A → A) → (H : ∀ a → f a ≡ a) → ∀ a → H (f a) ≡ cong f (H a) Hfa≡fHa {A = A} f H a = H (f a) ≡⟨ rUnit (H (f a)) ⟩ H (f a) ∙ refl ≡⟨ cong (_∙_ (H (f a))) (sym (rCancel (H a))) ⟩ H (f a) ∙ H a ∙ sym (H a) ≡⟨ assoc _ _ _ ⟩ (H (f a) ∙ H a) ∙ sym (H a) ≡⟨ cong (λ x → x ∙ (sym (H a))) (homotopyNatural H (H a)) ⟩ (cong f (H a) ∙ H a) ∙ sym (H a) ≡⟨ sym (assoc _ _ _) ⟩ cong f (H a) ∙ H a ∙ sym (H a) ≡⟨ cong (_∙_ (cong f (H a))) (rCancel _) ⟩ cong f (H a) ∙ refl ≡⟨ sym (rUnit _) ⟩ cong f (H a) ∎ invEq≡→equivFun≡ : ∀ (e : A ≃ B) {x y} → invEq e x ≡ y → equivFun e y ≡ x invEq≡→equivFun≡ e {x} p = cong (equivFun e) (sym p) ∙ retEq e x equivPi : ∀{F : A → Set ℓ} {G : A → Set ℓ'} → ((x : A) → F x ≃ G x) → (((x : A) → F x) ≃ ((x : A) → G x)) equivPi k .fst f x = k x .fst (f x) equivPi k .snd .equiv-proof f .fst .fst x = equivCtr (k x) (f x) .fst equivPi k .snd .equiv-proof f .fst .snd i x = equivCtr (k x) (f x) .snd i equivPi k .snd .equiv-proof f .snd (g , p) i .fst x = equivCtrPath (k x) (f x) (g x , λ j → p j x) i .fst equivPi k .snd .equiv-proof f .snd (g , p) i .snd j x = equivCtrPath (k x) (f x) (g x , λ k → p k x) i .snd j -- Some helpful notation: _≃⟨_⟩_ : (X : Type ℓ) → (X ≃ B) → (B ≃ C) → (X ≃ C) _ ≃⟨ f ⟩ g = compEquiv f g _■ : (X : Type ℓ) → (X ≃ X) _■ = idEquiv infixr 0 _≃⟨_⟩_ infix 1 _■
38.438596
104
0.544348