hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65dfc6f885b523a87a84eb64b19bbe406bedf12c
| 863
|
agda
|
Agda
|
src/data/lib/prim/Agda/Primitive.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
src/data/lib/prim/Agda/Primitive.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
src/data/lib/prim/Agda/Primitive.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
-- The Agda primitives (preloaded).
module Agda.Primitive where
------------------------------------------------------------------------
-- Universe levels
------------------------------------------------------------------------
infixl 6 _⊔_
-- Level is the first thing we need to define.
-- The other postulates can only be checked if built-in Level is known.
postulate
Level : Set
-- MAlonzo compiles Level to (). This should be safe, because it is
-- not possible to pattern match on levels.
{-# COMPILED_TYPE Level () #-}
{-# BUILTIN LEVEL Level #-}
postulate
lzero : Level
lsuc : (ℓ : Level) → Level
_⊔_ : (ℓ₁ ℓ₂ : Level) → Level
{-# COMPILED lzero () #-}
{-# COMPILED lsuc (\_ -> ()) #-}
{-# COMPILED _⊔_ (\_ _ -> ()) #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
| 24.657143
| 72
| 0.511008
|
7c122044cd7e023fc76b55c74e382d1d40d100ec
| 517
|
agda
|
Agda
|
agda/Path/Reasoning.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 4
|
2021-01-05T14:07:44.000Z
|
2021-01-05T15:32:14.000Z
|
agda/Path/Reasoning.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/Path/Reasoning.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 1
|
2021-01-05T14:05:30.000Z
|
2021-01-05T14:05:30.000Z
|
{-# OPTIONS --cubical --safe #-}
module Path.Reasoning where
open import Prelude
infixr 2 ≡˘⟨⟩-syntax _≡⟨⟩_ ≡⟨∙⟩-syntax
≡˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≡ z → y ≡ x → x ≡ z
≡˘⟨⟩-syntax _ y≡z y≡x = sym y≡x ; y≡z
syntax ≡˘⟨⟩-syntax x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
≡⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≡ z → x ≡ y → x ≡ z
≡⟨∙⟩-syntax _ y≡z x≡y = x≡y ; y≡z
syntax ≡⟨∙⟩-syntax x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
_≡⟨⟩_ : ∀ (x : A) {y} → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
infix 2.5 _∎
_∎ : ∀ {A : Type a} (x : A) → x ≡ x
_∎ x = refl
| 20.68
| 53
| 0.441006
|
586f964af4dd05843248cf5ec187a1796c182674
| 23,608
|
agda
|
Agda
|
src/meta-vars.agda
|
xoltar/cedille
|
acf691e37210607d028f4b19f98ec26c4353bfb5
|
[
"MIT"
] | null | null | null |
src/meta-vars.agda
|
xoltar/cedille
|
acf691e37210607d028f4b19f98ec26c4353bfb5
|
[
"MIT"
] | null | null | null |
src/meta-vars.agda
|
xoltar/cedille
|
acf691e37210607d028f4b19f98ec26c4353bfb5
|
[
"MIT"
] | null | null | null |
import cedille-options
open import general-util
module meta-vars (options : cedille-options.options) {mF : Set → Set} {{_ : monad mF}} where
open import lib
open import functions
open import cedille-types
open import constants
open import conversion
open import ctxt
open import is-free
open import rename
open import spans options {mF}
open import subst
open import syntax-util
open import to-string options
-- TODO propose adding these to the standard lib
module helpers where
-- src/spans.agda
_≫=spane_ : ∀ {A B : Set} → spanM (error-t A) → (A → spanM (error-t B)) → spanM (error-t B)
(s₁ ≫=spane f) = s₁ ≫=span
λ { (no-error x) → f x
; (yes-error x) → spanMr (yes-error x)}
-- sum.agda
is-inj₁ : ∀ {a b} {A : Set a} {B : Set b} → A ∨ B → 𝔹
is-inj₁ (inj₁ x) = tt
is-inj₁ (inj₂ y) = ff
open helpers
-- misc
----------------------------------------------------------------------
-- Meta-variables, prototypes, decorated types
-- ==================================================
record meta-var-sol (A : Set) : Set where
constructor mk-meta-var-sol
field
sol : A
src : checking-mode
data meta-var-sort : Set where
meta-var-tp : (k : kind) → (mtp : maybe $ meta-var-sol type) → meta-var-sort
meta-var-tm : (tp : type) → (mtm : maybe $ meta-var-sol term) → meta-var-sort
record meta-var : Set where
constructor meta-var-mk
field
name : string
sort : meta-var-sort
loc : span-location
open meta-var
pattern meta-var-mk-tp x k mtp l = meta-var-mk x (meta-var-tp k mtp) l
record meta-vars : Set where
constructor meta-vars-mk
field
order : 𝕃 var
varset : trie meta-var
open meta-vars
data prototype : Set where
proto-maybe : maybe type → prototype
proto-arrow : maybeErased → prototype → prototype
data decortype : Set where
decor-type : type → decortype
decor-arrow : maybeErased → type → decortype → decortype
decor-decor : maybeErased → posinfo → bvar → meta-var-sort → decortype → decortype
decor-stuck : type → prototype → decortype
decor-error : type → prototype → decortype
-- Simple definitions and accessors
-- --------------------------------------------------
meta-var-name : meta-var → var
meta-var-name X = meta-var.name X
meta-vars-get-varlist : meta-vars → 𝕃 var
meta-vars-get-varlist Xs = map (name ∘ snd) (trie-mappings (varset Xs))
meta-var-solved? : meta-var → 𝔹
meta-var-solved? (meta-var-mk n (meta-var-tp k nothing) _) = ff
meta-var-solved? (meta-var-mk n (meta-var-tp k (just _)) _) = tt
meta-var-solved? (meta-var-mk n (meta-var-tm tp nothing) _) = ff
meta-var-solved? (meta-var-mk n (meta-var-tm tp (just _)) _) = tt
meta-vars-empty : meta-vars
meta-vars-empty = meta-vars-mk [] empty-trie
meta-vars-empty? : meta-vars → 𝔹
meta-vars-empty? Xs = ~ (trie-nonempty (varset Xs ))
meta-vars-solved? : meta-vars → 𝔹
meta-vars-solved? Xs = trie-all meta-var-solved? (varset Xs)
meta-vars-filter : (meta-var → 𝔹) → meta-vars → meta-vars
meta-vars-filter f Xs =
meta-vars-mk or vs
where
vs = trie-filter f (varset Xs)
or = filter (trie-contains vs) (order Xs)
meta-var-sort-eq? : ctxt → (=S =T : meta-var-sort) → 𝔹
meta-var-sort-eq? Γ (meta-var-tp k₁ mtp₁) (meta-var-tp k₂ mtp₂)
with conv-kind Γ k₁ k₂
... | ff = ff
... | tt =
maybe-equal? sol-eq mtp₁ mtp₂
where
sol-eq : (sol₁ sol₂ : meta-var-sol type) → 𝔹
sol-eq (mk-meta-var-sol sol₁ src) (mk-meta-var-sol sol₂ src₁) =
conv-type Γ sol₁ sol₂
meta-var-sort-eq? _ _ _ = ff
-- TODO terms not supported
-- meta-var-sol-eq? (meta-var-tm tp mtm) (meta-var-tm tp₁ mtm₁) = {!!}
meta-var-equal? : ctxt → (X Y : meta-var) → 𝔹
meta-var-equal? Γ (meta-var-mk name₁ sol₁ _) (meta-var-mk name₂ sol₂ _) =
name₁ =string name₂ && meta-var-sort-eq? Γ sol₁ sol₂
meta-vars-equal? : ctxt → (Xs Ys : meta-vars) → 𝔹
meta-vars-equal? Γ Xs Ys =
trie-equal? (meta-var-equal? Γ) (meta-vars.varset Xs) (meta-vars.varset Ys)
meta-vars-lookup : meta-vars → var → maybe meta-var
meta-vars-lookup Xs x = trie-lookup (varset Xs) x
meta-vars-lookup-with-kind : meta-vars → var → maybe (meta-var × kind)
meta-vars-lookup-with-kind Xs x
with meta-vars-lookup Xs x
... | nothing = nothing
... | (just X@(meta-var-mk-tp _ k _ _)) = just $ X , k
... | (just X) = nothing
meta-var-set-src : meta-var → checking-mode → meta-var
meta-var-set-src (meta-var-mk-tp name₁ k (just sol) loc₁) m =
meta-var-mk-tp name₁ k (just (record sol { src = m })) loc₁
meta-var-set-src (meta-var-mk-tp name₁ k nothing loc₁) m =
meta-var-mk-tp name₁ k nothing loc₁
meta-var-set-src (meta-var-mk name₁ (meta-var-tm tp (just sol)) loc₁) m =
meta-var-mk name₁ (meta-var-tm tp (just (record sol { src = m }))) loc₁
meta-var-set-src (meta-var-mk name₁ (meta-var-tm tp nothing) loc₁) m
= meta-var-mk name₁ (meta-var-tm tp nothing) loc₁
meta-vars-lookup-kind : meta-vars → var → maybe kind
meta-vars-lookup-kind Xs x with meta-vars-lookup Xs x
... | nothing = nothing
... | (just (meta-var-mk-tp _ k _ _)) = just k
... | (just X) = nothing
-- conversion to types, terms, tks
-- --------------------------------------------------
meta-var-sort-to-tk : meta-var-sort → tk
meta-var-sort-to-tk (meta-var-tp k mtp) = Tkk k
meta-var-sort-to-tk (meta-var-tm tp mtm) = Tkt tp
meta-var-to-type : meta-var → maybe type
meta-var-to-type (meta-var-mk-tp x k (just tp) _) = just (meta-var-sol.sol tp)
meta-var-to-type (meta-var-mk-tp x k nothing _) = just (TpVar posinfo-gen x)
meta-var-to-type (meta-var-mk x (meta-var-tm tp mtm) _) = nothing
meta-var-to-term : meta-var → maybe term
meta-var-to-term (meta-var-mk-tp x k mtp _) = nothing
meta-var-to-term (meta-var-mk x (meta-var-tm tp (just tm)) _) = just (meta-var-sol.sol tm)
meta-var-to-term (meta-var-mk x (meta-var-tm tp nothing) _) = just (Var posinfo-gen x)
meta-var-to-type-unsafe : meta-var → type
meta-var-to-type-unsafe X
with meta-var-to-type X
... | just tp = tp
... | nothing = TpVar posinfo-gen (meta-var-name X)
meta-var-to-term-unsafe : meta-var → term
meta-var-to-term-unsafe X
with meta-var-to-term X
... | just tm = tm
... | nothing = Var posinfo-gen (meta-var-name X)
prototype-to-maybe : prototype → maybe type
prototype-to-maybe (proto-maybe mtp) = mtp
prototype-to-maybe (proto-arrow _ _) = nothing
prototype-to-checking : prototype → checking-mode
prototype-to-checking = maybe-to-checking ∘ prototype-to-maybe
decortype-to-type : decortype → type
decortype-to-type (decor-type tp) = tp
decortype-to-type (decor-arrow at tp dt) =
TpArrow tp at (decortype-to-type dt)
decortype-to-type (decor-decor b pi x sol dt) =
Abs pi b posinfo-gen x (meta-var-sort-to-tk sol) (decortype-to-type dt)
decortype-to-type (decor-stuck tp pt) = tp
decortype-to-type (decor-error tp pt) = tp
-- hnf for decortype
-- --------------------------------------------------
hnf-decortype : ctxt → unfolding → decortype → (is-head : 𝔹) → decortype
hnf-decortype Γ uf (decor-type tp) ish =
decor-type (hnf Γ uf tp ish)
hnf-decortype Γ uf (decor-arrow e? tp dt) ish =
decor-arrow e? (hnf Γ uf tp ff) (hnf-decortype Γ uf dt ff)
hnf-decortype Γ uf (decor-decor e? pi x sol dt) ish =
decor-decor e? pi x sol (hnf-decortype Γ uf dt ff)
hnf-decortype Γ uf dt@(decor-stuck _ _) ish = dt
hnf-decortype Γ uf (decor-error tp pt) ish =
decor-error (hnf Γ uf tp ff) pt
-- substitutions
-- --------------------------------------------------
substh-meta-var-sort : substh-ret-t meta-var-sort
substh-meta-var-sort Γ ρ σ (meta-var-tp k mtp) =
meta-var-tp (substh Γ ρ σ k) ((flip maybe-map) mtp λ sol →
record sol { sol = substh Γ ρ σ (meta-var-sol.sol sol) })
substh-meta-var-sort Γ ρ σ (meta-var-tm tp mtm) =
meta-var-tm (substh Γ ρ σ tp) (flip maybe-map mtm λ sol →
record sol { sol = substh Γ ρ σ (meta-var-sol.sol sol) })
subst-meta-var-sort : subst-ret-t meta-var-sort
subst-meta-var-sort Γ t x (meta-var-tp k mtp) =
meta-var-tp (subst Γ t x k) $ (flip maybe-map) mtp λ sol →
record sol { sol = subst Γ t x $ meta-var-sol.sol sol }
subst-meta-var-sort Γ t x (meta-var-tm tp mtm) =
meta-var-tm (subst Γ t x tp) $ (flip maybe-map) mtm λ where
(mk-meta-var-sol sol src) → mk-meta-var-sol (subst Γ t x sol) src
meta-vars-get-sub : meta-vars → trie type
meta-vars-get-sub Xs =
trie-catMaybe (trie-map meta-var-to-type (varset Xs))
meta-vars-subst-type' : (unfold : 𝔹) → ctxt → meta-vars → type → type
meta-vars-subst-type' u Γ Xs tp =
let tp' = substh Γ empty-renamectxt (meta-vars-get-sub Xs) tp in
if u then hnf Γ (unfolding-elab unfold-head) tp' tt else tp'
meta-vars-subst-type : ctxt → meta-vars → type → type
meta-vars-subst-type = meta-vars-subst-type' tt
meta-vars-subst-kind : ctxt → meta-vars → kind → kind
meta-vars-subst-kind Γ Xs k
= hnf Γ (unfolding-elab unfold-head)
(substh Γ empty-renamectxt (meta-vars-get-sub Xs) k)
tt
-- string and span helpers
-- --------------------------------------------------
meta-var-to-string : meta-var → strM
meta-var-to-string (meta-var-mk-tp name k nothing sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh k
meta-var-to-string (meta-var-mk-tp name k (just tp) sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh k
≫str strAdd " = " ≫str to-stringh (meta-var-sol.sol tp) -- tp
meta-var-to-string (meta-var-mk name (meta-var-tm tp nothing) sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh tp
meta-var-to-string (meta-var-mk name (meta-var-tm tp (just tm)) sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh tp
≫str strAdd " = " ≫str to-stringh (meta-var-sol.sol tm) -- tm
meta-vars-to-stringh : 𝕃 meta-var → strM
meta-vars-to-stringh []
= strEmpty
meta-vars-to-stringh (v :: [])
= meta-var-to-string v
meta-vars-to-stringh (v :: vs)
= meta-var-to-string v ≫str strAdd ", " ≫str meta-vars-to-stringh vs
meta-vars-to-string : meta-vars → strM
meta-vars-to-string Xs =
meta-vars-to-stringh
((flip map) (order Xs) λ x →
case trie-lookup (varset Xs) x of λ where
nothing →
meta-var-mk
(x ^ "-missing!") (meta-var-tp (Star posinfo-gen) nothing)
missing-span-location
(just X) → X)
prototype-to-string : prototype → strM
prototype-to-string (proto-maybe nothing) = strAdd "⁇"
prototype-to-string (proto-maybe (just tp)) = to-stringh tp
prototype-to-string (proto-arrow e? pt) =
strAdd "⁇" ≫str strAdd (arrowtype-to-string e?)
≫str prototype-to-string pt
decortype-to-string : decortype → strM
decortype-to-string (decor-type tp) =
strAdd "[" ≫str to-stringh tp ≫str strAdd "]"
decortype-to-string (decor-arrow e? tp dt) =
to-stringh tp
≫str strAdd (arrowtype-to-string e?)
≫str decortype-to-string dt
decortype-to-string (decor-decor e? pi x sol dt) =
strAdd (binder e? sol) ≫str meta-var-to-string (meta-var-mk x sol missing-span-location)
≫str strAdd " . " ≫str decortype-to-string dt
where
binder : maybeErased → meta-var-sort → string
binder Erased sol = "∀ "
binder Pi (meta-var-tm tp mtm) = "Π "
-- vv clause below "shouldn't" happen
binder Pi (meta-var-tp k mtp) = "∀ "
decortype-to-string (decor-stuck tp pt) =
strAdd "(" ≫str to-stringh tp ≫str strAdd " , " ≫str prototype-to-string pt ≫str strAdd ")"
decortype-to-string (decor-error tp pt) =
strAdd "([" ≫str (to-stringh tp) ≫str strAdd "] ‼ " ≫str prototype-to-string pt ≫str strAdd ")"
meta-vars-data-h : ctxt → string → kind ∨ (meta-var-sol type) → tagged-val
meta-vars-data-h Γ X (inj₁ k) =
strRunTag "meta-vars-intro" Γ
(strAdd (unqual-local X ^ " ") ≫str to-stringh k)
meta-vars-data-h Γ X (inj₂ sol) =
strRunTag "meta-vars-sol" Γ $
strAdd (unqual-local X ^ " ") ≫str
strAdd (checking-to-string (meta-var-sol.src sol) ^ " ") ≫str
(to-stringh ∘ meta-var-sol.sol $ sol)
meta-vars-data-all : ctxt → meta-vars → 𝕃 tagged-val
meta-vars-data-all Γ = foldr
(uncurry λ where
_ (meta-var-mk X (meta-var-tp kd nothing) loc) xs →
meta-vars-data-h Γ X (inj₁ kd) :: xs
_ (meta-var-mk X (meta-var-tp kd (just tp)) loc) xs →
meta-vars-data-h Γ X (inj₁ kd)
:: meta-vars-data-h Γ X (inj₂ tp) :: xs
_ _ xs → xs)
[] ∘ (trie-mappings ∘ meta-vars.varset)
meta-vars-intro-data : ctxt → meta-vars → 𝕃 tagged-val
meta-vars-intro-data Γ = map (h ∘ snd) ∘ (trie-mappings ∘ meta-vars.varset)
where
h : meta-var → tagged-val
h (meta-var-mk X (meta-var-tp kd mtp) loc) = meta-vars-data-h Γ X (inj₁ kd)
h (meta-var-mk X (meta-var-tm tp mtm) loc) =
meta-vars-data-h Γ X
(inj₂ (mk-meta-var-sol (TpVar posinfo-gen "unimplemented") untyped))
meta-vars-sol-data : ctxt → meta-vars → meta-vars → 𝕃 tagged-val
meta-vars-sol-data Γ Xsₒ Xsₙ = foldr (λ X xs → maybe-else xs (_:: xs) (h (snd X)))
[] (trie-mappings (meta-vars.varset Xsₙ))
where
h : meta-var → maybe tagged-val
h (meta-var-mk X (meta-var-tp kd (just tp)) loc) with trie-lookup (meta-vars.varset Xsₒ) X
...| just (meta-var-mk _ (meta-var-tp _ (just _)) _) = nothing
...| _ = just (meta-vars-data-h Γ X (inj₂ tp)
)
h (meta-var-mk X (meta-var-tp kd nothing) loc) = nothing
h (meta-var-mk X (meta-var-tm tp mtm) loc) =
just (meta-vars-data-h Γ X
(inj₂ (mk-meta-var-sol (TpVar posinfo-gen "unimplemented") untyped)))
meta-vars-check-type-mismatch : ctxt → string → type → meta-vars → type
→ 𝕃 tagged-val × err-m
meta-vars-check-type-mismatch Γ s tp Xs tp'
= (expected-type Γ tp :: [ type-data Γ tp'' ]) ,
(if conv-type Γ tp tp''
then nothing
else just ("The expected type does not match the "
^ s ^ " type."))
where tp'' = meta-vars-subst-type' ff Γ Xs tp'
meta-vars-check-type-mismatch-if : maybe type → ctxt → string → meta-vars
→ type → 𝕃 tagged-val × err-m
meta-vars-check-type-mismatch-if (just tp) Γ s Xs tp'
= meta-vars-check-type-mismatch Γ s tp Xs tp'
meta-vars-check-type-mismatch-if nothing Γ s Xs tp'
= [ type-data Γ tp″ ] , nothing
where
tp″ = meta-vars-subst-type' ff Γ Xs tp'
decortype-data : ctxt → decortype → tagged-val
decortype-data Γ dt = strRunTag "head decoration" Γ (decortype-to-string dt)
prototype-data : ctxt → prototype → tagged-val
prototype-data Γ pt = strRunTag "head prototype" Γ (prototype-to-string pt)
-- collecting, merging, matching
-- --------------------------------------------------
meta-var-fresh-t : (S : Set) → Set
meta-var-fresh-t S = meta-vars → var → span-location → S → meta-var
meta-var-fresh : meta-var-fresh-t meta-var-sort
meta-var-fresh Xs x sl sol
with rename-away-from (meta-var-pfx-str ^ x) (trie-contains (varset Xs)) empty-renamectxt
... | x' = meta-var-mk x' sol sl
meta-var-fresh-tp : meta-var-fresh-t (kind × maybe (meta-var-sol type))
meta-var-fresh-tp Xs x sl (k , msol) =
meta-var-fresh Xs x sl (meta-var-tp k msol)
meta-var-fresh-tm : meta-var-fresh-t (type × maybe (meta-var-sol term))
meta-var-fresh-tm Xs x sl (tp , mtm) = meta-var-fresh Xs x sl (meta-var-tm tp mtm)
private
meta-vars-set : meta-vars → meta-var → meta-vars
meta-vars-set Xs X = record Xs { varset = trie-insert (varset Xs) (name X) X }
-- add a meta-var
meta-vars-add : meta-vars → meta-var → meta-vars
meta-vars-add Xs X
= record (meta-vars-set Xs X) { order = (order Xs) ++ [ name X ] }
meta-vars-add* : meta-vars → 𝕃 meta-var → meta-vars
meta-vars-add* Xs [] = Xs
meta-vars-add* Xs (Y :: Ys) = meta-vars-add* (meta-vars-add Xs Y) Ys
meta-vars-from-list : 𝕃 meta-var → meta-vars
meta-vars-from-list Xs = meta-vars-add* meta-vars-empty Xs
meta-vars-remove : meta-vars → meta-var → meta-vars
meta-vars-remove (meta-vars-mk or vs) X =
let x = meta-var-name X
in meta-vars-mk (remove _=string_ x or) (trie-remove vs x)
meta-vars-in-type : meta-vars → type → meta-vars
meta-vars-in-type Xs tp =
(flip meta-vars-filter) Xs λ X →
are-free-in-type check-erased (trie-single (name X) triv) tp
meta-vars-unsolved : meta-vars → meta-vars
meta-vars-unsolved = meta-vars-filter λ where
(meta-var-mk x (meta-var-tp k mtp) _) → ~ isJust mtp
(meta-var-mk x (meta-var-tm tp mtm) _) → ~ isJust mtm
meta-vars-are-free-in-type : meta-vars → type → 𝔹
meta-vars-are-free-in-type Xs tp =
are-free-in-type check-erased (varset Xs) tp
-- Unfolding a type with meta-vars
-- ==================================================
-- ... in order to reveal a term or type application
-- "View" data structures
-- --------------------------------------------------
-- The decorated type is really an arrow
record is-tmabsd : Set where
constructor mk-tmabsd
field
is-tmabsd-dt : decortype
is-tmabsd-e? : maybeErased
is-tmabsd-var : var
is-tmabsd-dom : type
is-tmabsd-var-in-body : 𝔹
is-tmabsd-cod : decortype
open is-tmabsd public
is-tmabsd? = decortype ∨ is-tmabsd
pattern yes-tmabsd dt e? x dom occ cod = inj₂ (mk-tmabsd dt e? x dom occ cod)
pattern not-tmabsd tp = inj₁ tp
record is-tpabsd : Set where
constructor mk-tpabsd
field
is-tpabsd-dt : decortype
is-tpabsd-e? : maybeErased
is-tpabsd-var : var
is-tpabsd-kind : kind
is-tpabsd-sol : maybe type
is-tpabsd-body : decortype
open is-tpabsd public
is-tpabsd? = decortype ∨ is-tpabsd
pattern yes-tpabsd dt e? x k mtp dt' = inj₂ (mk-tpabsd dt e? x k mtp dt')
pattern not-tpabsd dt = inj₁ dt
{-# TERMINATING #-}
num-arrows-in-type : ctxt → type → ℕ
num-arrows-in-type Γ tp = nait Γ (hnf' Γ tp) 0 tt
where
hnf' : ctxt → type → type
hnf' Γ tp = hnf Γ (unfolding-elab unfold-head) tp tt
nait : ctxt → type → (acc : ℕ) → 𝔹 → ℕ
-- definitely another arrow
nait Γ (Abs _ _ _ _ (Tkk _) tp) acc uf = nait Γ tp acc ff
nait Γ (Abs _ _ _ _ (Tkt _) tp) acc uf = nait Γ tp (1 + acc) ff
nait Γ (TpArrow _ _ tp) acc uf = nait Γ tp (1 + acc) ff
-- definitely not another arrow
nait Γ (Iota _ _ _ _ _) acc uf = acc
nait Γ (Lft _ _ _ _ _) acc uf = acc
nait Γ (TpEq _ _ _ _) acc uf = acc
nait Γ (TpHole _) acc uf = acc
nait Γ (TpLambda _ _ _ _ _) acc uf = acc
nait Γ (TpVar x₁ x₂) acc tt = acc
nait Γ (TpApp tp₁ tp₂) acc tt = acc
nait Γ (TpAppt tp₁ x₁) acc tt = acc
-- not sure
nait Γ (NoSpans tp _) acc uf = nait Γ tp acc uf
nait Γ (TpLet _ (DefTerm _ x _ tm) tp) acc uf =
nait Γ (subst Γ tm x tp) acc uf
nait Γ (TpLet _ (DefType _ x _ tp-let) tp-in) acc uf =
nait Γ (subst Γ tp-let x tp-in) acc uf
nait Γ (TpParens _ tp _) acc uf = nait Γ tp acc uf
nait Γ tp acc ff = nait Γ (hnf' Γ tp) acc tt
-- Utilities for match-types in classify.agda
-- ==================================================
--
-- Match a type with meta-variables in it to one without
-- errors
-- --------------------------------------------------
match-error-data = string × 𝕃 tagged-val
match-error-t : ∀ {a} → Set a → Set a
match-error-t A = match-error-data ∨ A
pattern match-error e = inj₁ e
pattern match-ok a = inj₂ a
module meta-vars-match-errors where
-- boilerplate
match-error-msg = "Matching failed"
-- tagged values for error messages
match-lhs : {ed : exprd} → ctxt → ⟦ ed ⟧ → tagged-val
match-lhs = to-string-tag "expected lhs"
match-rhs : {ed : exprd} → ctxt → ⟦ ed ⟧ → tagged-val
match-rhs = to-string-tag "computed rhs"
the-meta-var : var → tagged-val
the-meta-var x = "the meta-var" , [[ x ]] , []
the-solution : ctxt → type → tagged-val
the-solution = to-string-tag "the solution"
fst-snd-sol : {ed : exprd} → ctxt → (t₁ t₂ : ⟦ ed ⟧) → 𝕃 tagged-val
fst-snd-sol Γ t₁ t₂ =
to-string-tag "first solution" Γ t₁ :: [ to-string-tag "second solution" Γ t₂ ]
lhs-rhs : {ed : exprd} → ctxt → (t₁ t₂ : ⟦ ed ⟧) → 𝕃 tagged-val
lhs-rhs Γ t₁ t₂ = match-lhs Γ t₁ :: [ match-rhs Γ t₂ ]
-- error-data
e-solution-ineq : ctxt → (tp₁ tp₂ : type) → var → match-error-data
e-solution-ineq Γ tp₁ tp₂ X =
match-error-msg ^ " because it produced two incovertible solutions for a meta-variable"
, the-meta-var X :: fst-snd-sol Γ tp₁ tp₂
e-match-failure : match-error-data
e-match-failure =
"The expected argument type is not a (first-order) match of the computed type"
, []
e-matchk-failure : match-error-data
e-matchk-failure =
"The expected argument kind is not a (first-order) match of the computed kind"
, []
e-meta-scope : ctxt → (X tp : type) → match-error-data
-- e-meta-scope : ctxt → (x : var) → (tp₁ tp₂ : type) → match-error-data
e-meta-scope Γ X tp =
match-error-msg ^ " because the solution contains a bound variable of the computed argument type"
, to-string-tag "the meta var" Γ X :: [ to-string-tag "the solution" Γ tp ]
e-bad-sol-kind : ctxt → (X : var) → (sol : type) → match-error-data
e-bad-sol-kind Γ X sol =
"The meta-variable was matched to a type whose kind does not match its own"
, the-meta-var X :: [ the-solution Γ sol ]
open meta-vars-match-errors
-- meta-vars-match auxiliaries
-- --------------------------------------------------
local-vars = stringset
meta-vars-solve-tp : ctxt → meta-vars → var → type → checking-mode → match-error-t meta-vars
meta-vars-solve-tp Γ Xs x tp m with trie-lookup (varset Xs) x
... | nothing
= match-error $ x ^ " is not a meta-var!" , []
... | just (meta-var-mk _ (meta-var-tm tp' mtm) _)
= match-error $ x ^ " is a term meta-var!" , []
... | just (meta-var-mk-tp _ k nothing sl)
= match-ok (meta-vars-set Xs (meta-var-mk-tp x k (just (mk-meta-var-sol tp m)) sl))
... | just (meta-var-mk-tp _ k (just sol) _) =
let mk-meta-var-sol tp' src = sol in
err⊎-guard (~ conv-type Γ tp tp') (e-solution-ineq Γ tp tp x)
≫⊎ match-ok Xs
-- update the kinds of HO meta-vars with
-- solutions
meta-vars-update-kinds : ctxt → (Xs Xsₖ : meta-vars) → meta-vars
meta-vars-update-kinds Γ Xs Xsₖ =
record Xs { varset = (flip trie-map) (varset Xs) λ where
(meta-var-mk-tp x k mtp sl) → meta-var-mk-tp x (meta-vars-subst-kind Γ Xsₖ k) mtp sl
sol → sol
}
hnf-elab-if : {ed : exprd} → 𝔹 → ctxt → ⟦ ed ⟧ → 𝔹 → ⟦ ed ⟧
hnf-elab-if b Γ t b' = if b then hnf Γ (unfolding-elab unfold-head) t b' else t
-- Legacy for elaboration.agda
-- ==================================================
-- TODO: remove dependency and delete code
meta-vars-add-from-tpabs : ctxt → span-location → meta-vars → is-tpabs → meta-var × meta-vars
meta-vars-add-from-tpabs Γ sl Xs (mk-tpabs e? x k tp) =
let Y = meta-var-fresh-tp Xs x sl (k , nothing)
Xs' = meta-vars-add Xs Y
tp' = subst Γ (meta-var-to-type-unsafe Y) x tp
in Y , Xs'
{-# TERMINATING #-} -- subst of a meta-var does not increase distance to arrow
meta-vars-peel : ctxt → span-location → meta-vars → type → (𝕃 meta-var) × type
meta-vars-peel Γ sl Xs (Abs pi e? pi' x tk@(Tkk k) tp)
with meta-vars-add-from-tpabs Γ sl Xs (mk-tpabs e? x k tp)
... | (Y , Xs')
with subst Γ (meta-var-to-type-unsafe Y) x tp
... | tp' =
let ret = meta-vars-peel Γ sl Xs' tp' ; Ys = fst ret ; rtp = snd ret
in (Y :: Ys , rtp)
meta-vars-peel Γ sl Xs (NoSpans tp _) =
meta-vars-peel Γ sl Xs tp
meta-vars-peel Γ sl Xs (TpParens _ tp _) =
meta-vars-peel Γ sl Xs tp
meta-vars-peel Γ sl Xs tp = [] , tp
meta-vars-unfold-tpapp : ctxt → meta-vars → type → is-tpabs?
meta-vars-unfold-tpapp Γ Xs tp
with meta-vars-subst-type Γ Xs tp
... | Abs _ b _ x (Tkk k) tp' = yes-tpabs b x k tp'
... | tp' = not-tpabs tp'
meta-vars-unfold-tmapp : ctxt → span-location → meta-vars → type → 𝕃 meta-var × is-tmabs?
meta-vars-unfold-tmapp Γ sl Xs tp
with meta-vars-peel Γ sl Xs (meta-vars-subst-type Γ Xs tp)
... | Ys , Abs _ b _ x (Tkt dom) cod =
Ys , yes-tmabs b x dom (is-free-in check-erased x cod) cod
... | Ys , TpArrow dom e? cod =
Ys , yes-tmabs e? "_" dom ff cod
... | Ys , tp' = Ys , not-tmabs tp'
| 35.715582
| 101
| 0.629617
|
d12e87376a5600992d99bd9e5c071cbd1b99cdd1
| 58
|
agda
|
Agda
|
test/Fail/WrongHidingInLHS.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/WrongHidingInLHS.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/WrongHidingInLHS.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module WrongHidingInLHS where
f : Set -> Set
f {x} = x
| 8.285714
| 29
| 0.637931
|
2e39fc626a82d8dac3141c46911332825172e90a
| 1,795
|
agda
|
Agda
|
test/Fail/MixingCoPatternsAndCoConstructors.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Fail/MixingCoPatternsAndCoConstructors.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/Fail/MixingCoPatternsAndCoConstructors.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
{-# OPTIONS --copatterns #-}
module MixingCoPatternsAndCoConstructors where
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
module MStream where
record Stream (A : Set) : Set where
coinductive
constructor _∷_
field
head : A
tail : Stream A
open Stream
weird : (n : ℕ) → Stream ℕ
head (weird zero) = zero
tail (weird zero) = weird zero
head (weird (suc n)) = n
tail (weird (suc n)) = tail (weird n)
weird' : (n : ℕ) → Stream ℕ
head (weird' zero) = zero
tail (weird' zero) = weird' zero
weird' (suc n) = n ∷ tail (weird' n)
-- BAD:
weird'' : (n : ℕ) → Stream ℕ
weird'' zero = zero ∷ weird'' zero
weird'' (suc n) = n ∷ tail (weird'' n)
-- productive, but not strongly normalizing,
-- should be rejected by termination checker:
repeat : {A : Set}(a : A) → Stream A
head (repeat a) = a
tail (repeat a) = a ∷ tail (repeat a)
module Coinduction where
import Common.Level
open import Common.Coinduction
record Stream (A : Set) : Set where
inductive
constructor _∷_
field
head : A
tail : ∞ (Stream A)
open Stream
weird'' : (n : ℕ) → Stream ℕ
weird'' zero = zero ∷ (♯ weird'' zero)
weird'' (suc n) = n ∷ tail (weird'' n)
module CoList where
mutual
data CoList (A : Set) : Set where
[] : CoList A
_∷_ : (x : A)(xs : CoList∞ A) → CoList A
record CoList∞ (A : Set) : Set where
coinductive
constructor delay
field
force : CoList A
open CoList∞
downFrom : (n : ℕ) → CoList ℕ
downFrom zero = []
downFrom (suc n) = n ∷ delay (downFrom n)
down : (n : ℕ) → CoList∞ ℕ
force (down zero) = []
force (down (suc n)) = n ∷ delay (force (down n))
-- weird detour: delay (force ... to test termination checker
| 21.117647
| 65
| 0.576045
|
65c711dbbe5a0da2d5bfa08a2c2245f2cdd68b1f
| 471
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/List/Relation/Subset/Setoid.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/List/Relation/Subset/Setoid.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/List/Relation/Subset/Setoid.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Subset.Setoid directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.List.Relation.Subset.Setoid
{c ℓ} (S : Setoid c ℓ) where
open import Data.List.Relation.Binary.Subset.Setoid S public
| 29.4375
| 72
| 0.507431
|
4d806423de6fe7056c442d578299ed911c8475b8
| 1,672
|
agda
|
Agda
|
Definition/LogicalRelation/Substitution/Weakening.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 30
|
2017-05-20T03:05:21.000Z
|
2022-03-30T18:01:07.000Z
|
Definition/LogicalRelation/Substitution/Weakening.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 4
|
2017-06-22T12:49:23.000Z
|
2021-02-22T10:37:24.000Z
|
Definition/LogicalRelation/Substitution/Weakening.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 8
|
2017-10-18T14:18:20.000Z
|
2021-11-27T15:58:33.000Z
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Weakening {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Substitution
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
private
variable
n : Nat
Γ : Con Term n
-- Weakening of valid types by one.
wk1ᵛ : ∀ {A F l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
→ Γ ∙ F ⊩ᵛ⟨ l ⟩ wk1 A / [Γ] ∙ [F]
wk1ᵛ {A = A} [Γ] [F] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ]))
[σA]′ = irrelevance′ (PE.sym (subst-wk A)) [σA]
in [σA]′
, (λ [σ′] [σ≡σ′] →
irrelevanceEq″ (PE.sym (subst-wk A))
(PE.sym (subst-wk A))
[σA] [σA]′
(proj₂ ([A] ⊢Δ (proj₁ [σ])) (proj₁ [σ′]) (proj₁ [σ≡σ′])))
-- Weakening of valid type equality by one.
wk1Eqᵛ : ∀ {A B F l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([A≡B] : Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A])
→ Γ ∙ F ⊩ᵛ⟨ l ⟩ wk1 A ≡ wk1 B / [Γ] ∙ [F] / wk1ᵛ {A = A} {F} [Γ] [F] [A]
wk1Eqᵛ {A = A} {B} [Γ] [F] [A] [A≡B] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ]))
[σA]′ = irrelevance′ (PE.sym (subst-wk A)) [σA]
in irrelevanceEq″ (PE.sym (subst-wk A))
(PE.sym (subst-wk B))
[σA] [σA]′
([A≡B] ⊢Δ (proj₁ [σ]))
| 31.54717
| 83
| 0.5
|
73eb3fa8b18ba92e392e1d0e2abe22d85e8845ab
| 6,171
|
agda
|
Agda
|
src/Categories/Object/Product/Core.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Object/Product/Core.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Object/Product/Core.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Object.Product.Core {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Function using (flip; _$_)
open import Categories.Morphism 𝒞
open import Categories.Morphism.Reasoning 𝒞
open Category 𝒞
open HomReasoning
private
variable
A B C D X Y Z : Obj
h i j : A ⇒ B
-- Borrowed from Dan Doel's definition of products
record Product (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where
infix 10 ⟨_,_⟩
field
A×B : Obj
π₁ : A×B ⇒ A
π₂ : A×B ⇒ B
⟨_,_⟩ : C ⇒ A → C ⇒ B → C ⇒ A×B
project₁ : π₁ ∘ ⟨ h , i ⟩ ≈ h
project₂ : π₂ ∘ ⟨ h , i ⟩ ≈ i
unique : π₁ ∘ h ≈ i → π₂ ∘ h ≈ j → ⟨ i , j ⟩ ≈ h
open Equiv
g-η : ⟨ π₁ ∘ h , π₂ ∘ h ⟩ ≈ h
g-η = unique refl refl
η : ⟨ π₁ , π₂ ⟩ ≈ id
η = unique identityʳ identityʳ
⟨⟩-cong₂ : ∀ {f f′ : C ⇒ A} {g g′ : C ⇒ B} → f ≈ f′ → g ≈ g′ → ⟨ f , g ⟩ ≈ ⟨ f′ , g′ ⟩
⟨⟩-cong₂ f≡f′ g≡g′ = unique (project₁ ○ ⟺ f≡f′) (project₂ ○ ⟺ g≡g′)
∘-distribʳ-⟨⟩ : ∀ {f : C ⇒ A} {g : C ⇒ B} {q : D ⇒ C} → ⟨ f , g ⟩ ∘ q ≈ ⟨ f ∘ q , g ∘ q ⟩
∘-distribʳ-⟨⟩ = ⟺ $ unique (pullˡ project₁) (pullˡ project₂)
unique′ : π₁ ∘ h ≈ π₁ ∘ i → π₂ ∘ h ≈ π₂ ∘ i → h ≈ i
unique′ eq₁ eq₂ = trans (sym (unique eq₁ eq₂)) g-η
module _ {A B : Obj} where
open Product {A} {B} renaming (⟨_,_⟩ to _⟨_,_⟩)
repack : (p₁ p₂ : Product A B) → A×B p₁ ⇒ A×B p₂
repack p₁ p₂ = p₂ ⟨ π₁ p₁ , π₂ p₁ ⟩
repack∘ : (p₁ p₂ p₃ : Product A B) → repack p₂ p₃ ∘ repack p₁ p₂ ≈ repack p₁ p₃
repack∘ p₁ p₂ p₃ = ⟺ $ unique p₃
(glueTrianglesʳ (project₁ p₃) (project₁ p₂))
(glueTrianglesʳ (project₂ p₃) (project₂ p₂))
repack≡id : (p : Product A B) → repack p p ≈ id
repack≡id = η
repack-cancel : (p₁ p₂ : Product A B) → repack p₁ p₂ ∘ repack p₂ p₁ ≈ id
repack-cancel p₁ p₂ = repack∘ p₂ p₁ p₂ ○ repack≡id p₂
up-to-iso : ∀ (p₁ p₂ : Product A B) → Product.A×B p₁ ≅ Product.A×B p₂
up-to-iso p₁ p₂ = record
{ from = repack p₁ p₂
; to = repack p₂ p₁
; iso = record
{ isoˡ = repack-cancel p₂ p₁
; isoʳ = repack-cancel p₁ p₂
}
}
transport-by-iso : ∀ (p : Product A B) → ∀ {X} → Product.A×B p ≅ X → Product A B
transport-by-iso p {X} p≅X = record
{ A×B = X
; π₁ = π₁ ∘ to
; π₂ = π₂ ∘ to
; ⟨_,_⟩ = λ h₁ h₂ → from ∘ ⟨ h₁ , h₂ ⟩
; project₁ = cancelInner isoˡ ○ project₁
; project₂ = cancelInner isoˡ ○ project₂
; unique = λ {_ i l r} pf₁ pf₂ → begin
from ∘ ⟨ l , r ⟩ ≈˘⟨ refl⟩∘⟨ ⟨⟩-cong₂ pf₁ pf₂ ⟩
from ∘ ⟨ (π₁ ∘ to) ∘ i , (π₂ ∘ to) ∘ i ⟩ ≈⟨ refl⟩∘⟨ unique sym-assoc sym-assoc ⟩
from ∘ to ∘ i ≈⟨ cancelˡ isoʳ ⟩
i ∎
}
where open Product p
open _≅_ p≅X
Reversible : (p : Product A B) → Product B A
Reversible p = record
{ A×B = A×B
; π₁ = π₂
; π₂ = π₁
; ⟨_,_⟩ = flip ⟨_,_⟩
; project₁ = project₂
; project₂ = project₁
; unique = flip unique
}
where open Product p
Commutative : (p₁ : Product A B) (p₂ : Product B A) → Product.A×B p₁ ≅ Product.A×B p₂
Commutative p₁ p₂ = up-to-iso p₁ (Reversible p₂)
Associable : ∀ (p₁ : Product X Y) (p₂ : Product Y Z) (p₃ : Product X (Product.A×B p₂)) → Product (Product.A×B p₁) Z
Associable p₁ p₂ p₃ = record
{ A×B = A×B p₃
; π₁ = p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩
; π₂ = π₂ p₂ ∘ π₂ p₃
; ⟨_,_⟩ = λ f g → p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩
; project₁ = λ {_ f g} → begin
p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ≈⟨ ∘-distribʳ-⟨⟩ p₁ ⟩
p₁ ⟨ π₁ p₃ ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩
, (π₁ p₂ ∘ π₂ p₃) ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₁ (project₁ p₃) (glueTrianglesˡ (project₁ p₂) (project₂ p₃)) ⟩
p₁ ⟨ π₁ p₁ ∘ f , π₂ p₁ ∘ f ⟩ ≈⟨ g-η p₁ ⟩
f ∎
; project₂ = λ {_ f g} → glueTrianglesˡ (project₂ p₂) (project₂ p₃)
; unique = λ {_ i f g} pf₁ pf₂ → begin
p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ (∘-resp-≈ʳ (sym pf₁))
(⟨⟩-cong₂ p₂ (∘-resp-≈ʳ (sym pf₁)) (sym pf₂)) ⟩
p₃ ⟨ π₁ p₁ ∘ p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ i
, p₂ ⟨ π₂ p₁ ∘ p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ i
, (π₂ p₂ ∘ π₂ p₃) ∘ i ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ (pullˡ (project₁ p₁))
(⟨⟩-cong₂ p₂ (trans (pullˡ (project₂ p₁)) assoc)
assoc) ⟩
p₃ ⟨ π₁ p₃ ∘ i
, p₂ ⟨ π₁ p₂ ∘ π₂ p₃ ∘ i , π₂ p₂ ∘ π₂ p₃ ∘ i ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ refl (g-η p₂) ⟩
p₃ ⟨ π₁ p₃ ∘ i , π₂ p₃ ∘ i ⟩ ≈⟨ g-η p₃ ⟩
i ∎
}
where
open Product renaming (⟨_,_⟩ to _⟨_,_⟩)
open Equiv
Associative : ∀ (p₁ : Product X Y) (p₂ : Product Y Z)
(p₃ : Product X (Product.A×B p₂)) (p₄ : Product (Product.A×B p₁) Z) →
(Product.A×B p₃) ≅ (Product.A×B p₄)
Associative p₁ p₂ p₃ p₄ = up-to-iso (Associable p₁ p₂ p₃) p₄
Mobile : ∀ {A₁ B₁ A₂ B₂} (p : Product A₁ B₁) → A₁ ≅ A₂ → B₁ ≅ B₂ → Product A₂ B₂
Mobile p A₁≅A₂ B₁≅B₂ = record
{ A×B = A×B
; π₁ = from A₁≅A₂ ∘ π₁
; π₂ = from B₁≅B₂ ∘ π₂
; ⟨_,_⟩ = λ h k → ⟨ to A₁≅A₂ ∘ h , to B₁≅B₂ ∘ k ⟩
; project₁ = begin
(from A₁≅A₂ ∘ π₁) ∘ ⟨ to A₁≅A₂ ∘ _ , to B₁≅B₂ ∘ _ ⟩ ≈⟨ pullʳ project₁ ⟩
from A₁≅A₂ ∘ (to A₁≅A₂ ∘ _) ≈⟨ cancelˡ (isoʳ A₁≅A₂) ⟩
_ ∎
; project₂ = begin
(from B₁≅B₂ ∘ π₂) ∘ ⟨ to A₁≅A₂ ∘ _ , to B₁≅B₂ ∘ _ ⟩ ≈⟨ pullʳ project₂ ⟩
from B₁≅B₂ ∘ (to B₁≅B₂ ∘ _) ≈⟨ cancelˡ (isoʳ B₁≅B₂) ⟩
_ ∎
; unique = λ pfˡ pfʳ → unique (switch-fromtoˡ A₁≅A₂ (sym-assoc ○ pfˡ))
(switch-fromtoˡ B₁≅B₂ (sym-assoc ○ pfʳ))
}
where open Product p
open _≅_
| 37.4
| 150
| 0.456814
|
ed6332e1b31ebcfb43c86d4e4dad168b2900ea7a
| 507
|
agda
|
Agda
|
test/Succeed/Issue259.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue259.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue259.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Eta contraction didn't consider hiding when contracting,
-- leading to the following module not type checking.
module Issue259 where
postulate
A : Set
B : A → Set
foo : (∀ x → B x) → A
q : ∀ {x} → B x
foo′ : (∀ {x} → B x) → A
bar : A
bar = foo (λ y → q {y})
Baz : B bar → Set → Set
Baz b C with C
Baz b C | _ = C
-- In fact you're not allowed to eta contract hidden lambdas at all.
bar′ : A
bar′ = foo′ (λ {y} → q {y})
Baz′ : B bar′ → Set → Set
Baz′ b C with C
Baz′ b C | _ = C
| 18.777778
| 68
| 0.56213
|
7c7cb8dff62919494147d3da1c92c307de1d6838
| 622
|
agda
|
Agda
|
Cubical/Data/Nat/Literals.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Data/Nat/Literals.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Data/Nat/Literals.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-
Importing and re-exporting this module allows for (constrained) natural number
and negative integer literals for any type (e.g. Int, ℕ₋₁, ℕ₋₂, ℕ₊₁).
-}
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Data.Nat.Literals where
open import Agda.Builtin.FromNat public
renaming (Number to HasFromNat)
open import Agda.Builtin.FromNeg public
renaming (Negative to HasFromNeg)
open import Cubical.Data.Unit.Base public
-- Natural number literals for ℕ
open import Agda.Builtin.Nat renaming (Nat to ℕ)
instance
fromNatℕ : HasFromNat ℕ
fromNatℕ = record { Constraint = λ _ → Unit ; fromNat = λ n → n }
| 27.043478
| 80
| 0.733119
|
36fb96893d39ece27e09ecf628f7697c9b421629
| 679
|
agda
|
Agda
|
test/Succeed/Issue1946-1.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1946-1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1946-1.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- This test case seems to be due to Andreas Abel, Andrea Vezzosi and
-- NAD. The code below should be rejected.
{-# OPTIONS --sized-types #-}
open import Agda.Builtin.Size
data SizeLt (i : Size) : Set where
size : (j : Size< i) → SizeLt i
-- Legal again in 2.5.1
getSize : ∀{i} → SizeLt i → Size
getSize (size j) = j
-- Structurally inductive (c), coinductive via sizes.
data U (i : Size) : Set where
c : ((s : SizeLt i) → U (getSize s)) → U i
data ⊥ : Set where
empty : U ∞ → ⊥
empty (c f) = empty (f (size ∞)) -- f x <= f < c f
-- If U is a data type this should not be possible:
inh : ∀ i → U i
inh i = c λ{ (size j) → inh j }
absurd : ⊥
absurd = empty (inh ∞)
| 22.633333
| 69
| 0.603829
|
65c8b6f964c584d78a262d36424f6060b4da37e0
| 1,528
|
agda
|
Agda
|
examples/outdated-and-incorrect/cbs/Interp.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/cbs/Interp.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/cbs/Interp.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Proc
module Interp (param : Param) where
import Hear
open import Basics
private
open module P = Process param
open module H = Hear param
open Tran
data Result {a : U}(p : Proc a) : Set where
speak : forall {w q} -> p -! w !-> q -> Result p
refuse : Silent p -> Result p
upR : {a b : U}{p : Proc b}(φ : Tran a b) -> Result p -> Result (φ /| p)
upR φ (speak s) = speak (tx-/| s)
upR φ (refuse s) = refuse (silent-/| s)
Oracle : Set
Oracle = Nat -> LR
prophecy : Oracle -> LR
prophecy ol = ol zero
nextOracle : Oracle -> Oracle
nextOracle ol = ol % suc
anyOracle : Oracle
anyOracle _ = left
ocons : LR -> Oracle -> Oracle
ocons l or zero = l
ocons l or (suc n) = or n
step : {a : U}{p : Proc a} -> Guard p -> Oracle -> Result p
step og _ = refuse silent-o
step (>g _) _ = refuse silent->
step (w !g p) _ = speak tx-!
step (w ! p +g f) _ = speak tx-+
step (defg x g) ol with step g ol
... | refuse s1 = refuse (silent-def s1)
... | speak s1 = speak (tx-def s1)
step (g1 ||g g2) ol with step g1 (nextOracle ol)
| step g2 (nextOracle ol)
| prophecy ol
... | refuse s1 | refuse s2 | _ = refuse (silent-|| s1 s2)
... | speak s1 | refuse s2 | _ = speak (tx-!| s1 (sound g2))
... | refuse s1 | speak s2 | _ = speak (tx-|! (sound g1) s2)
... | speak s1 | speak _ | left = speak (tx-!| s1 (sound g2))
... | speak _ | speak s2 | right = speak (tx-|! (sound g1) s2)
step (φ /|g g) ol = upR φ (step g ol)
| 27.781818
| 72
| 0.556283
|
64d2d2e343be30772bef3b710341b0e964b2d553
| 689
|
agda
|
Agda
|
LibraBFT/ImplShared/Base/Types.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 4
|
2020-12-16T19:43:41.000Z
|
2021-12-18T19:24:05.000Z
|
LibraBFT/ImplShared/Base/Types.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 72
|
2021-02-04T05:04:33.000Z
|
2022-03-25T05:36:11.000Z
|
LibraBFT/ImplShared/Base/Types.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 6
|
2020-12-16T19:43:52.000Z
|
2022-02-18T01:04:32.000Z
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module LibraBFT.ImplShared.Base.Types where
open import LibraBFT.Prelude
open import LibraBFT.Hash
NodeId : Set
NodeId = ℕ
_≟NodeId_ : (n1 n2 : NodeId) → Dec (n1 ≡ n2)
_≟NodeId_ = _≟ℕ_
UID : Set
UID = Hash
_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)
_≟UID_ = _≟Hash_
-- Just in case RoundManager is at a higher level in future
ℓ-RoundManager : Level
ℓ-RoundManager = 0ℓ
ℓ-VSFP : Level
ℓ-VSFP = 1ℓ ℓ⊔ ℓ-RoundManager
| 23.758621
| 111
| 0.689405
|
3f688f384bbed4e8ea1c1fa10a98678740095c96
| 4,080
|
agda
|
Agda
|
src/Data/List/Membership/Setoid/Distinct.agda
|
tizmd/agda-distinct-disjoint
|
d4cd2a3442a9b58e6139499d16a2b31268f27f80
|
[
"MIT"
] | null | null | null |
src/Data/List/Membership/Setoid/Distinct.agda
|
tizmd/agda-distinct-disjoint
|
d4cd2a3442a9b58e6139499d16a2b31268f27f80
|
[
"MIT"
] | null | null | null |
src/Data/List/Membership/Setoid/Distinct.agda
|
tizmd/agda-distinct-disjoint
|
d4cd2a3442a9b58e6139499d16a2b31268f27f80
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --without-K #-}
open import Relation.Binary
module Data.List.Membership.Setoid.Distinct where
open import Data.List as List using (List; []; _∷_; _++_)
open import Data.List.Any as Any hiding (map; head; tail)
open import Data.List.Any.Properties
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Function
open import Function.Equivalence using (_⇔_; equivalence)
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using ()
open import Function.Injection using (_↣_; Injection)
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
import Level as L
open import Data.Fin as Fin using (Fin)
open import Data.Nat as ℕ
module _ {a p} {S : Setoid a p} where
open Setoid S renaming (Carrier to A)
open import Data.List.Membership.Setoid (S)
open import Data.List.Membership.Setoid.Properties
open import Data.List.Membership.Setoid.Disjoint (S) renaming (Disjoint to _⋈_)
open import Data.List.Membership.Setoid.Trans (S)
open import Data.Empty
data Distinct : List A → Set (a L.⊔ p) where
distinct-[] : Distinct []
_distinct-∷_by_ : ∀ x {xs} → Distinct xs → x ∉ xs → Distinct (x ∷ xs)
head : ∀ {x}{xs : List A} → Distinct (x ∷ xs) → A
head (x distinct-∷ _ by _) = x
tail : ∀ {x}{xs : List A} → Distinct (x ∷ xs) → Distinct xs
tail (_ distinct-∷ dis by _) = dis
head∉tail : ∀ {x}{xs : List A} → Distinct (x ∷ xs) → x ∉ xs
head∉tail (_ distinct-∷ _ by x∉xs) = x∉xs
distinct-[_] : ∀ x → Distinct (List.[ x ])
distinct-[ x ] = x distinct-∷ distinct-[] by (λ ())
⋈-++ : ∀ (xs ys : List A) →
Distinct (xs ++ ys) ⇔ (Distinct xs × Distinct ys × xs ⋈ ys)
⋈-++ xs ys = equivalence to from
where
to : ∀ {xs ys : List A} → Distinct (xs ++ ys) → (Distinct xs × Distinct ys × xs ⋈ ys)
to {[]} dys = distinct-[] , dys , disjoint-[]ʳ
to {x ∷ xs} {ys} (.x distinct-∷ dis by x∉xsys) with to {xs = xs} dis
... | dxs , dys , xs⋈ys = x distinct-∷ dxs by (λ x∈xs → x∉xsys (++⁺ˡ x∈xs)) , dys ,
λ { (here px) ∈ys → x∉xsys (++⁺ʳ xs (≈-trans-∈ (sym px) ∈ys)) ; (there ∈xs) ∈ys → xs⋈ys ∈xs ∈ys}
from : ∀ {xs ys : List A} →
(Distinct xs × Distinct ys × xs ⋈ ys) → Distinct (xs ++ ys)
from (distinct-[] , dys , xs⋈ys) = dys
from {xs = .x ∷ xs} ((x distinct-∷ dxs by x∉xs) , dys , xxs⋈ys) with from (dxs , dys , xxs⋈ys ∘ there)
... | dxsys = x distinct-∷ dxsys by λ x∈xsys → case ++⁻ xs x∈xsys of λ { (inj₁ x∈xs) → x∉xs x∈xs
; (inj₂ x∈ys) → xxs⋈ys (here refl) x∈ys}
lookup-injective : {xs : List A}(dxs : Distinct xs) → ∀ {i j} → List.lookup xs i ≡ List.lookup xs j → i ≡ j
lookup-injective distinct-[] {()} {()} _
lookup-injective (x distinct-∷ dxs by x∉xs) {Fin.zero} {Fin.zero} _ = P.refl
lookup-injective (x distinct-∷ dxs by x∉xs) {Fin.suc i} {Fin.suc j} eq = P.cong Fin.suc (lookup-injective dxs eq)
lookup-injective {xs} (x distinct-∷ dxs by x∉xs) {Fin.zero} {Fin.suc j} eq rewrite eq = ⊥-elim (x∉xs (∈-lookup S _ j))
lookup-injective (x distinct-∷ dxs by x∉xs) {Fin.suc i} {Fin.zero} eq rewrite P.sym eq = ⊥-elim (x∉xs (∈-lookup S _ i))
module _ {a₁ a₂ p₁ p₂}{S₁ : Setoid a₁ p₁} {S₂ : Setoid a₂ p₂} where
open Setoid S₁ renaming (Carrier to A) using ()
open Setoid S₂ renaming (Carrier to B) using ()
open import Data.List.Membership.Setoid (S₂) renaming (_∉_ to _∉₂_) using ()
open import Data.List.Membership.Setoid.Properties
open import Data.List.Membership.Setoid.Trans (S₁)
map : (f : Injection S₁ S₂) → ∀ {xs : List A} → Distinct {S = S₁} xs → Distinct {S = S₂} (List.map (Injection.to f ⟨$⟩_) xs)
map f {[]} distinct-[] = distinct-[]
map f {.x ∷ xs} (x distinct-∷ dis by x∉xs) = fx distinct-∷ map f dis by lemma
where
fx = Injection.to f ⟨$⟩ x
lemma : fx ∉₂ List.map (Injection.to f ⟨$⟩_) xs
lemma p with ∈-map⁻ S₁ S₂ p
... | _ , y∈xs , fx≈fy = x∉xs (≈-trans-∈ (Injection.injective f fx≈fy) y∈xs)
| 48
| 136
| 0.596569
|
edbbf5ae73758795f3fe90df5701a7d6cf5dcb43
| 2,393
|
agda
|
Agda
|
src/Lemmachine/Resource/Universe.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 56
|
2015-01-20T02:11:42.000Z
|
2021-12-21T17:02:19.000Z
|
src/Lemmachine/Resource/Universe.agda
|
larrytheliquid/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 1
|
2022-03-12T12:17:51.000Z
|
2022-03-12T12:17:51.000Z
|
src/Lemmachine/Resource/Universe.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 3
|
2015-07-21T16:37:58.000Z
|
2022-03-12T11:54:10.000Z
|
module Lemmachine.Resource.Universe where
open import Lemmachine.Request
open import Lemmachine.Response
open import Data.Maybe
open import Data.List
open import Data.Product
open import Data.Bool
open import Data.String
AuthHead = Bool
MediaType = String
Handler = String
Charset = String
CharsetConverter = String
Encoding = String
Encoder = String
MovedURI = String
DateTime = String
ETag = String
data Code : Set where
resourceExists serviceAvailable isAuthorized : Code
forbidden allowMissingPost malformedRequest : Code
uriTooLong knownContentType validContentHeaders : Code
validEntityLength options allowedMethods : Code
knownMethods deleteResource deleteCompleted : Code
postIsCreate createPath processPost : Code
contentTypesProvided languageAvailable contentTypesAccepted : Code
charsetsProvided encodingsProvided variances : Code
isConflict multipleChoices previouslyExisted : Code
movedPermanently movedTemporarily lastModified : Code
expires generateETag finishRequest body : Code
El : Code → Set
El resourceExists = Request → Bool
El serviceAvailable = Request → Bool
El isAuthorized = Request → AuthHead
El forbidden = Request → Bool
El allowMissingPost = Request → Bool
El malformedRequest = Request → Bool
El uriTooLong = Request → Bool
El knownContentType = Request → Bool
El validContentHeaders = Request → Bool
El validEntityLength = Request → Bool
El options = Request → List ResponseHeader
El allowedMethods = Request → List Method
El knownMethods = Request → List Method
El deleteResource = Request → Bool
El deleteCompleted = Request → Bool
El postIsCreate = Request → Bool
El createPath = Request → Maybe Path
El processPost = Request → Bool
El contentTypesProvided = Request → List MediaType
El languageAvailable = Request → Bool
El contentTypesAccepted = Request → List (MediaType × Handler)
El charsetsProvided = Request → List (Charset × CharsetConverter)
El encodingsProvided = Request → List (Encoding × Encoder)
El variances = Request → List RequestHeader
El isConflict = Request → Bool
El multipleChoices = Request → Bool
El previouslyExisted = Request → Bool
El movedPermanently = Request → Maybe MovedURI
El movedTemporarily = Request → Maybe MovedURI
El lastModified = Request → Maybe DateTime
El expires = Request → Maybe DateTime
El generateETag = Request → Maybe ETag
El finishRequest = Request → Bool
El body = Status → String
| 34.681159
| 68
| 0.799833
|
143cb059bbc9916b7abdc0aa2f7f8cbdeaedd6a2
| 15,374
|
agda
|
Agda
|
dialectica-cats/DeDial2Sets.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
dialectica-cats/DeDial2Sets.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
dialectica-cats/DeDial2Sets.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
-----------------------------------------------------------------------
-- This file defines Degenerate Dial₂(Sets) and shows that it is a --
-- CCC. --
-----------------------------------------------------------------------
module DeDial2Sets where
open import prelude
data UnitType : Set₁ where
unit : UnitType
mod : UnitType
-- comp : UnitType → UnitType → UnitType
⟦_⟧ : UnitType → Set
⟦ unit ⟧ = ⊤
⟦ mod ⟧ = (⊤ *) × (⊤ *)
-- ⟦ comp t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
Obj⊤ : Set₁
Obj⊤ = Σ[ U ∈ Set ] (Σ[ X ∈ UnitType ](U → ⟦ X ⟧ → Set))
Hom⊤ : Obj⊤ → Obj⊤ → Set
Hom⊤ (U , X , α) (V , Y , β) =
Σ[ f ∈ (U → V) ]
(Σ[ F ∈ (⟦ Y ⟧ → ⟦ X ⟧) ] (∀{u : U}{y : ⟦ Y ⟧} → α u (F y) → β (f u) y))
comp⊤ : {A B C : Obj⊤} → Hom⊤ A B → Hom⊤ B C → Hom⊤ A C
comp⊤ {(U , X , α)} {(V , Y , β)} {(W , Z , γ)} (f , F , p₁) (g , G , p₂) =
(g ∘ f , F ∘ G , (λ {u z} p-α → p₂ (p₁ p-α)))
infixl 5 _○⊤_
_○⊤_ = comp⊤
-- The contravariant hom-functor:
Hom⊤ₐ : {A' A B B' : Obj⊤} → Hom⊤ A' A → Hom⊤ B B' → Hom⊤ A B → Hom⊤ A' B'
Hom⊤ₐ f h g = comp⊤ f (comp⊤ g h)
-- The identity function:
id⊤ : {A : Obj⊤} → Hom⊤ A A
id⊤ {(U , X , α)} = (id-set , id-set , id-set)
-- In this formalization we will only worry about proving that the
-- data of morphisms are equivalent, and not worry about the morphism
-- conditions. This will make proofs shorter and faster.
--
-- If we have parallel morphisms (f,F) and (g,G) in which we know that
-- f = g and F = G, then the condition for (f,F) will imply the
-- condition of (g,G) and vice versa. Thus, we can safly ignore it.
infix 4 _≡h⊤_
_≡h⊤_ : {A B : Obj⊤} → (f g : Hom⊤ A B) → Set
_≡h⊤_ {(U , X , α)}{(V , Y , β)} (f , F , p₁) (g , G , p₂) = f ≡ g × F ≡ G
≡h⊤-refl : {A B : Obj⊤}{f : Hom⊤ A B} → f ≡h⊤ f
≡h⊤-refl {U , X , α}{V , Y , β}{f , F , _} = refl , refl
≡h⊤-trans : ∀{A B}{f g h : Hom⊤ A B} → f ≡h⊤ g → g ≡h⊤ h → f ≡h⊤ h
≡h⊤-trans {U , X , α}{V , Y , β}{f , F , _}{g , G , _}{h , H , _} (p₁ , p₂) (p₃ , p₄) rewrite p₁ | p₂ | p₃ | p₄ = refl , refl
≡h⊤-sym : ∀{A B}{f g : Hom⊤ A B} → f ≡h⊤ g → g ≡h⊤ f
≡h⊤-sym {U , X , α}{V , Y , β}{f , F , _}{g , G , _} (p₁ , p₂) rewrite p₁ | p₂ = refl , refl
≡h⊤-subst-○ : ∀{A B C : Obj⊤}{f₁ f₂ : Hom⊤ A B}{g₁ g₂ : Hom⊤ B C}{j : Hom⊤ A C}
→ f₁ ≡h⊤ f₂
→ g₁ ≡h⊤ g₂
→ f₂ ○⊤ g₂ ≡h⊤ j
→ f₁ ○⊤ g₁ ≡h⊤ j
≡h⊤-subst-○ {U , X , α}
{V , Y , β}
{W , Z , γ}
{f₁ , F₁ , _}
{f₂ , F₂ , _}
{g₁ , G₁ , _}
{g₂ , G₂ , _}
{j , J , _}
(p₅ , p₆) (p₇ , p₈) (p₉ , p₁₀) rewrite p₅ | p₆ | p₇ | p₈ | p₉ | p₁₀ = refl , refl
○⊤-assoc : ∀{A B C D}{f : Hom⊤ A B}{g : Hom⊤ B C}{h : Hom⊤ C D}
→ f ○⊤ (g ○⊤ h) ≡h⊤ (f ○⊤ g) ○⊤ h
○⊤-assoc {U , X , α}{V , Y , β}{W , Z , γ}{S , T , ι}
{f , F , _}{g , G , _}{h , H , _} = refl , refl
○⊤-idl : ∀{A B}{f : Hom⊤ A B} → id⊤ ○⊤ f ≡h⊤ f
○⊤-idl {U , X , _}{V , Y , _}{f , F , _} = refl , refl
○⊤-idr : ∀{A B}{f : Hom⊤ A B} → f ○⊤ id⊤ ≡h⊤ f
○⊤-idr {U , X , _}{V , Y , _}{f , F , _} = refl , refl
_⊗ᵣ_ : ∀{U V : Set}{X Y : UnitType} → (α : U → ⟦ X ⟧ → Set) → (β : V → ⟦ Y ⟧ → Set) → Σ U (λ x → V) → Σ ⟦ X ⟧ (λ x → ⟦ Y ⟧) → Set
(α ⊗ᵣ β) (u , v) (l₁ , l₂) = (α u l₁) × (β v l₂)
_⊗ₒ_ : (A B : Obj⊤) → Obj⊤
(U , unit , α) ⊗ₒ (V , unit , β) = (U × V) , unit , (λ p t → (α (fst p) triv) × (β (snd p) triv))
(U , unit , α) ⊗ₒ (V , mod , β) = (U × V) , (mod , (λ p t → (α (fst p) triv) × (β (snd p) t)))
(U , mod , α) ⊗ₒ (V , unit , β) = (U × V) , (mod , (λ p t → (α (fst p) t) × (β (snd p) triv)))
(U , mod , α) ⊗ₒ (V , mod , β) = (U × V) , (mod , (λ p t → (α (fst p) t) × (β (snd p) t)))
-- F⊗ : ∀{S Z W T V X U Y : Set ℓ}{f : U → W}{F : Z → X}{g : V → S}{G : T → Y} → (S → Z) × (W → T) → (V → X) × (U → Y)
-- F⊗ {f = f}{F}{g}{G} (h₁ , h₂) = (λ v → F(h₁ (g v))) , (λ u → G(h₂ (f u)))
-- _⊗ₐ_ : {A B C D : Obj} → Hom A C → Hom B D → Hom (A ⊗ₒ B) (C ⊗ₒ D)
-- _⊗ₐ_ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)}{(S , T , δ)} (f , F , p₁) (g , G , p₂) = ⟨ f , g ⟩ , F⊗ {f = f}{F}{g}{G} , (λ {u y} → cond {u}{y})
-- where
-- cond : {u : Σ U (λ x → V)} {y : Σ (S → Z) (λ x → W → T)} →
-- ((α ⊗ᵣ β) u (F⊗ {f = f}{F}{g}{G} y)) ≤L ((γ ⊗ᵣ δ) (⟨ f , g ⟩ u) y)
-- cond {u , v}{h , j} = l-mul-funct {p = mproset l-pf} (p₁ {u}{h (g v)}) (p₂ {v}{j (f u)})
-- □ᵣ : {U : Set}{X : UnitType} → (U → ⟦ X ⟧ → Set) → U → 𝕃 ⟦ X ⟧ → Set
-- □ᵣ α u [] = ⊤
-- □ᵣ {U}{X} α u (x :: l) = (α u x) × (□ᵣ {U}{X} α u l)
-- □ₒ : Obj⊤ → Obj⊤
-- □ₒ (U , X , α) = U , seq X , □ᵣ {U}{X} α
-- □ₐ : {A B : Obj⊤} → Hom⊤ A B → Hom⊤ (□ₒ A) (□ₒ B)
-- □ₐ {U , n₁ , α}{V , n₂ , β} (f , F , p) = f , map F , {!!}
π₁ : {A B : Obj⊤} → Hom⊤ (A ⊗ₒ B) A
π₁ {U , unit , α} {V , unit , β} = fst , id-set , (λ {u y} → aux {u}{y})
where
aux : {u : Σ U (λ x → V)} {y : ⊤} → Σ (α (fst u) triv) (λ x → β (snd u) triv) → α (fst u) y
aux {u , v}{triv} = fst
π₁ {U , mod , α} {V , unit , β} = fst , id-set , (λ {u y} → aux {u}{y})
where
aux : {u : Σ U (λ x → V)} {y : Σ (𝕃 ⊤) (λ x → 𝕃 ⊤)} → Σ (α (fst u) y) (λ x → β (snd u) triv) → α (fst u) y
aux {u , v}{l₁ , l₂} = fst
π₁ {U , unit , α} {V , mod , β} = fst , (λ x → [ x ] , [ x ]) , (λ {u y} → aux {u}{y})
where
aux : {u : Σ U (λ x → V)} {y : ⊤} → Σ (α (fst u) triv) (λ x → β (snd u) (y :: [] , y :: [])) → α (fst u) y
aux {u , v}{triv} = fst
π₁ {U , mod , α} {V , mod , β} = fst , id-set , (λ {u y} → aux {u}{y})
where
aux : {u : Σ U (λ x → V)} {y : Σ (𝕃 ⊤) (λ x → 𝕃 ⊤)} → Σ (α (fst u) y) (λ x → β (snd u) y) → α (fst u) y
aux {u , v}{l} = fst
π₂ : {A B : Obj⊤} → Hom⊤ (A ⊗ₒ B) B
π₂ {U , unit , α} {V , unit , β} = snd , {!!} , {!!}
π₂ {U , mod , α} {V , unit , β} = snd , {!!} , {!!}
π₂ {U , unit , α} {V , mod , β} = snd , {!!} , {!!}
π₂ {U , mod , α} {V , mod , β} = snd , {!!} , {!!}
postulate rel-++ : ∀{W : Set}{w : W}{γ : W → 𝕃 (⊤ {lzero}) → Set}{l₁ l₂ : 𝕃 ⊤} → γ w (l₁ ++ l₂) → ((γ w l₁) × (γ w l₂))
cart-ar : {A B C : Obj⊤}
→ (f : Hom⊤ C A)
→ (g : Hom⊤ C B)
→ Hom⊤ C (A ⊗ₒ B)
cart-ar {U , unit , α} {V , unit , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , id-set , (λ {u y} → aux {u}{y})
where
aux : {u : W} {y : ⊤} → γ u y → Σ (α (f u) triv) (λ x → β (g u) triv)
aux {w}{triv} p with p₁ {w}{triv} | p₂ {w}{triv}
... | p₃ | p₄ with F triv | G triv
... | triv | triv = p₃ p , p₄ p
cart-ar {U , unit , α} {V , unit , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , (λ x → (fst (F x)) ++ (snd (F x)) , (fst (G x)) ++ (snd (G x))) , {!!}
cart-ar {U , unit , α} {V , mod , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!}
cart-ar {U , unit , α} {V , mod , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!}
cart-ar {U , mod , α} {V , unit , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!}
cart-ar {U , mod , α} {V , unit , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!}
cart-ar {U , mod , α} {V , mod , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!}
cart-ar {U , mod , α} {V , mod , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!}
cart-diag₁ : ∀{A B C : Obj⊤}
→ {f : Hom⊤ C A}
→ {g : Hom⊤ C B}
→ (cart-ar f g) ○⊤ π₁ ≡h⊤ f
cart-diag₁ {U , unit , α} {V , unit , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = refl , {!!}
cart-diag₁ {U , unit , α} {V , unit , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = refl , {!!}
cart-diag₁ {U , unit , α} {V , mod , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = {!!}
cart-diag₁ {U , unit , α} {V , mod , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = {!!}
cart-diag₁ {U , mod , α} {V , unit , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = {!!}
cart-diag₁ {U , mod , α} {V , unit , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = {!!}
cart-diag₁ {U , mod , α} {V , mod , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = {!!}
cart-diag₁ {U , mod , α} {V , mod , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = {!!}
-- cart-diag₂ : ∀{A B C : Obj⊤}
-- → {f : Hom (toObj C) (toObj A)}
-- → {g : Hom (toObj C) (toObj B)}
-- → (cart-ar f g) ○ π₂ ≡h g
-- cart-diag₂ {U , α}{V , β}{W , γ}{f , F , p₁}{g , G , p₂} = refl , ext-set ctr
-- where
-- ctr : {a : ⊤} → triv ≡ G a
-- ctr {triv} with G triv
-- ... | triv = refl
-- □ₒ-cond : ∀{U X : Set}
-- → (U → X → Set)
-- → U
-- → (X *)
-- → Set
-- □ₒ-cond {U} α u l = all-pred (α u) l
-- fromObj : (A : Obj) → Σ[ B ∈ Obj⊤ ]( A ≡ toObj(B)) → Obj⊤
-- fromObj _ ((a , b) , b₁) = a , b
-- □ₒ : Obj → Obj
-- □ₒ (U , X , α) = (U , X * , □ₒ-cond α)
-- □ₐ : {A B : Obj} → Hom A B → Hom (□ₒ A) (□ₒ B)
-- □ₐ {U , X , α}{V , Y , β} (f , F , p) = f , map F , cond
-- where
-- cond : {u : U} {y : 𝕃 Y} → all-pred (α u) (map F y) → all-pred (β (f u)) y
-- cond {y = []} x = triv
-- cond {y = x :: y} (a , b) = p a , cond b
-- □-ε : ∀{A : Obj} → Hom (□ₒ A) A
-- □-ε {U , X , α} = id-set , (λ x → [ x ] ) , aux
-- where
-- aux : {u : U} {y : X} → Σ (α u y) (λ x → ⊤) → α u y
-- aux (a , b) = a
-- □-δ : ∀{A : Obj} → Hom (□ₒ A) (□ₒ (□ₒ A))
-- □-δ {U , X , α} = id-set , (foldr _++_ []) , cond
-- where
-- cond : {u : U} {y : 𝕃 (𝕃 X)} → all-pred (α u) (foldr _++_ [] y) → all-pred (λ l → all-pred (α u) l) y
-- cond {y = []} p = triv
-- cond {u}{y = y :: y₁} p rewrite
-- (all-pred-append {X}{α u}{y}{foldr _++_ [] y₁} ∧-unit ∧-assoc)
-- with p
-- ... | p₁ , p₂ = p₁ , cond p₂
-- comonand-diag₁ : ∀{A : Obj}
-- → (□-δ {A}) ○ (□ₐ (□-δ {A})) ≡h (□-δ {A}) ○ (□-δ { □ₒ (A)})
-- comonand-diag₁ {U , X , α} = refl , ext-set (λ {a} → ctr {a})
-- where
-- ctr : {a : 𝕃 (𝕃 (𝕃 X))} → foldr _++_ [] (map (foldr _++_ []) a) ≡ foldr _++_ [] (foldr _++_ [] a)
-- ctr {[]} = refl
-- ctr {a :: a₁} rewrite sym (foldr-append {l₁ = a}{foldr _++_ [] a₁}) | ctr {a₁} = refl
-- comonand-diag₂ : ∀{A : Obj}
-- → (□-δ {A}) ○ (□-ε { □ₒ A}) ≡h (□-δ {A}) ○ (□ₐ (□-ε {A}))
-- comonand-diag₂ {U , X , α} = refl , ext-set (λ {a} → cond {a})
-- where
-- cond : {a : 𝕃 X} → a ++ [] ≡ foldr _++_ [] (map (λ x → x :: []) a)
-- cond {a} rewrite ++[] a = foldr-map
-- □-ctr : {U V : Set} → 𝕃 (Σ (V → ⊤) (λ x → U → ⊤)) → Σ (V → 𝕃 ⊤) (λ x → U → 𝕃 ⊤)
-- □-ctr [] = (λ x → [ triv ]) , (λ x → [ triv ])
-- □-ctr ((a , b) :: l) = (λ v → a v :: (fst (□-ctr l)) v) , (λ u → b u :: (snd (□-ctr l)) u)
-- □-m : {A B : Obj⊤} → Hom ((□ₒ (toObj A)) ⊗ₒ (□ₒ (toObj B))) (□ₒ ((toObj A) ⊗ₒ (toObj B)))
-- □-m {U , α}{V , β} = id-set , □-ctr , cond
-- where
-- cond : {u : Σ U (λ x → V)} {y : 𝕃 (Σ (V → ⊤) (λ x → U → ⊤))} →
-- ((λ u₁ l → all-pred (α u₁) l) ⊗ᵣ (λ u₁ l → all-pred (β u₁) l)) u
-- (□-ctr y) → all-pred ((α ⊗ᵣ β) u) y
-- cond {a , b} {[]} x = triv
-- cond {a , b} {(a₁ , b₁) :: y} ((a₂ , b₂) , a₃ , b₃) with cond {a , b}{y}
-- ... | IH with □-ctr y
-- ... | c , d = (a₂ , a₃) , IH (b₂ , b₃)
-- □-m-nat : ∀{A A' B B' : Obj⊤}
-- → (f : Hom (toObj A) (toObj A'))
-- → (g : Hom (toObj B) (toObj B'))
-- → ((□ₐ f) ⊗ₐ (□ₐ g)) ○ □-m ≡h □-m ○ (□ₐ (f ⊗ₐ g))
-- □-m-nat {U , α}{U' , α'}{V , β}{V' , β'} (f , F , p₁) (g , G , p₂) = refl , ext-set (λ {a} → aux {a})
-- where
-- aux : {a : 𝕃 (Σ (V' → ⊤) (λ x → U' → ⊤))} → F⊗ {V'}{𝕃 ⊤}{U'}{𝕃 ⊤}{V}{𝕃 ⊤}{U}{𝕃 ⊤}{f}{map F}{g}{map G} (□-ctr a) ≡ □-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) a)
-- aux {[]} with G triv | F triv
-- ... | triv | triv = refl
-- aux {(a , b) :: a₁} = eq-× (ext-set aux₁) (ext-set aux₄)
-- where
-- aux₂ : ∀{v}{l : 𝕃 (Σ (V' → ⊤) (λ x → U' → ⊤))} → map F (fst (□-ctr l) (g v)) ≡ fst (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) l)) v
-- aux₂ {_}{[]} with F triv
-- ... | triv = refl
-- aux₂ {v}{(a₂ , b₁) :: l} rewrite aux₂ {v}{l} = refl
-- aux₁ : {a₂ : V} → F (a (g a₂)) :: map F (fst (□-ctr a₁) (g a₂)) ≡ F (a (g a₂)) :: fst (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) a₁)) a₂
-- aux₁ {v} with F (a (g v))
-- ... | triv rewrite aux₂ {v}{a₁} = refl
-- aux₃ : ∀{u l} → map G (snd (□-ctr l) (f u)) ≡ snd (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) l)) u
-- aux₃ {u}{[]} with G triv
-- ... | triv = refl
-- aux₃ {u}{(a₂ , b₁) :: l} rewrite aux₃ {u}{l} = refl
-- aux₄ : {a₂ : U} → G (b (f a₂)) :: map G (snd (□-ctr a₁) (f a₂)) ≡ G (b (f a₂)) :: snd (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) a₁)) a₂
-- aux₄ {u} rewrite aux₃ {u}{a₁} = refl
-- □-m-I : Hom I (□ₒ I)
-- □-m-I = id-set , (λ _ → triv) , cond
-- where
-- cond : {u : ⊤} {y : 𝕃 ⊤} → ι u triv → all-pred (ι u) y
-- cond {triv} {[]} x = triv
-- cond {triv} {triv :: y} triv = triv , cond triv
-- π-□-ctr : {U V : Set} → 𝕃 ⊤ → Σ (V → 𝕃 ⊤) (λ _ → U → 𝕃 ⊤)
-- π-□-ctr [] = (λ x → [ triv ]) , (λ x → [ triv ])
-- π-□-ctr {U}{V} (triv :: l) = (λ v → triv :: fst (π-□-ctr {U}{V} l) v) , ((λ v → triv :: snd (π-□-ctr {U}{V} l) v))
-- π₁-□ : ∀{U α V β} → Hom ((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))) (□ₒ (U , ⊤ , α))
-- π₁-□ {U}{α}{V}{β} = fst , π-□-ctr , cond
-- where
-- cond : {u : Σ U (λ x → V)} {y : 𝕃 ⊤} →
-- ((λ u₁ l → all-pred (α u₁) l) ⊗ᵣ (λ u₁ l → all-pred (β u₁) l)) u
-- (π-□-ctr y) →
-- all-pred (α (fst u)) y
-- cond {a , b} {[]} x = triv
-- cond {a , b} {triv :: y} ((a₁ , b₁) , a₂ , b₂) with cond {a , b} {y}
-- ... | IH with π-□-ctr {U}{V} y
-- ... | c , d = a₁ , IH (b₁ , b₂)
-- □-prod₁ : ∀{U α V β} → _≡h_ {((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β)))}
-- {(□ₒ (U , ⊤ , α))}
-- (_○_ {(□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))}{□ₒ ((U , ⊤ , α) ⊗ₒ (V , ⊤ , β))}{□ₒ (U , ⊤ , α)} (□-m {U , α}{V , β}) (□ₐ {(U , ⊤ , α) ⊗ₒ (V , ⊤ , β)}{U , ⊤ , α} (π₁ {U , α}{V , β})))
-- (π₁-□ {U}{α}{V}{β})
-- □-prod₁ {U}{α}{V}{β} = refl , ext-set (λ {a} → aux {a})
-- where
-- aux : {a : 𝕃 ⊤} → □-ctr {U}{V} (map π-ctr a) ≡ π-□-ctr a
-- aux {[]} = refl
-- aux {triv :: a} rewrite aux {a} = refl
-- π₂-□ : ∀{U α V β} → Hom ((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))) (□ₒ (V , ⊤ , β))
-- π₂-□ {U}{α}{V}{β} = snd , π-□-ctr , cond
-- where
-- cond : {u : Σ U (λ x → V)} {y : 𝕃 ⊤} →
-- ((λ u₁ l → all-pred (α u₁) l) ⊗ᵣ (λ u₁ l → all-pred (β u₁) l)) u
-- (π-□-ctr y) →
-- all-pred (β (snd u)) y
-- cond {a , b} {[]} x = triv
-- cond {a , b} {triv :: y} ((a₁ , b₁) , a₂ , b₂) with cond {a , b}{y}
-- ... | IH with π-□-ctr {U}{V} y
-- ... | c , d = a₂ , (IH (b₁ , b₂))
-- □-prod₂ : ∀{U α V β} → _≡h_ {((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β)))}
-- {(□ₒ (V , ⊤ , β))}
-- (_○_ {(□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))}{□ₒ ((U , ⊤ , α) ⊗ₒ (V , ⊤ , β))}{□ₒ (V , ⊤ , β)} (□-m {U , α}{V , β}) (□ₐ {(U , ⊤ , α) ⊗ₒ (V , ⊤ , β)}{V , ⊤ , β} (π₂ {U , α}{V , β})))
-- (π₂-□ {U}{α}{V}{β})
-- □-prod₂ {U}{α}{V}{β} = refl , (ext-set (λ {a} → aux {a}))
-- where
-- aux : {a : 𝕃 ⊤} → □-ctr {U}{V} (map π-ctr a) ≡ π-□-ctr a
-- aux {[]} = refl
-- aux {triv :: a} rewrite aux {a} = refl
-- cart-ar-□ : {A B C : Obj⊤}
-- → (f : Hom (□ₒ (toObj C)) (□ₒ (toObj A)))
-- → (g : Hom (□ₒ (toObj C)) (□ₒ (toObj B)))
-- → Hom (□ₒ (toObj C)) ((□ₒ (toObj A)) ⊗ₒ (□ₒ (toObj B)))
-- cart-ar-□ {U , α}{V , β}{W , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!}
-- where
-- -}
| 43.064426
| 210
| 0.361194
|
3665ef34e52261fc1baf71b6d975baa479ca7441
| 800
|
agda
|
Agda
|
Common/Semantics.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
Common/Semantics.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
Common/Semantics.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
module Common.Semantics where
open import Common.Context public
-- Special products for glueing.
infix 5 _⅋_
record Glue (Syn : Set) (Sem : Set) : Set where
constructor _⅋_
field
syn : Syn
sem : Sem
open Glue public
-- Contexts as concrete worlds.
module ConcreteWorlds (U : Set) where
record World : Set where
constructor wrap
field
Γ : Cx U
unwrap : World → Cx U
unwrap (wrap Γ) = Γ
data _≤_ : World → World → Set where
wrap : ∀ {Γ Γ′} → Γ ⊆ Γ′ → wrap Γ ≤ wrap Γ′
unwrap≤ : ∀ {Γ Γ′} → wrap Γ ≤ wrap Γ′ → Γ ⊆ Γ′
unwrap≤ (wrap η) = η
refl≤ : ∀ {w} → w ≤ w
refl≤ = wrap refl⊆
trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″
trans≤ (wrap η) (wrap η′) = wrap (trans⊆ η η′)
weak≤ : ∀ {A w} → w ≤ wrap (unwrap w , A)
weak≤ = wrap weak⊆
| 18.604651
| 50
| 0.56
|
36f320262a1948d3ed37463ec44ce8ae371f2f3a
| 2,252
|
agda
|
Agda
|
Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2 where
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp renaming (toSusp to σ)
open import Cubical.HITs.Pushout
open import Cubical.HITs.Truncation renaming
(rec to trRec ; elim to trElim ; elim2 to trElim2 ; map to trMap)
open import Cubical.HITs.S2
≡→Pushout⋁↪fold⋁≡ : ∀ {ℓ} {A B : Pointed ℓ}
→ (A ≡ B) → Pushout⋁↪fold⋁∙ A ≡ Pushout⋁↪fold⋁∙ B
≡→Pushout⋁↪fold⋁≡ = cong Pushout⋁↪fold⋁∙
private
∙≃→π≅ : ∀ {ℓ} {A B : Pointed ℓ} (n : ℕ)
→ (e : typ A ≃ typ B)
→ fst e (pt A) ≡ pt B
→ GroupEquiv (πGr n A) (πGr n B)
∙≃→π≅ {A = A} {B = B} n e =
EquivJ (λ A e → (a : A) → fst e a ≡ pt B
→ GroupEquiv (πGr n (A , a)) (πGr n B))
(λ b p → J (λ b p → GroupEquiv (πGr n (typ B , b)) (πGr n B))
idGroupEquiv (sym p))
e (pt A)
{- π₄(S³) ≅ π₃((S² × S²) ⊔ᴬ S²)
where A = S² ∨ S² -}
π₄S³≅π₃PushS² :
GroupIso (πGr 3 (S₊∙ 3))
(πGr 2 (Pushout⋁↪fold⋁∙ (S₊∙ 2)))
π₄S³≅π₃PushS² =
compGroupIso
(GroupEquiv→GroupIso
(∙≃→π≅ 3 (compEquiv (isoToEquiv (invIso IsoS³S3)) S³≃SuspS²) refl))
(compGroupIso
(invGroupIso (GrIso-πΩ-π 2))
(compGroupIso
(πTruncGroupIso 2)
(compGroupIso
(GroupEquiv→GroupIso
(∙≃→π≅ {B = _ , ∣ inl (base , base) ∣ₕ}
2 (isoToEquiv IsoΩ∥SuspS²∥₅∥Pushout⋁↪fold⋁S²∥₅) encode∙))
(compGroupIso
(invGroupIso (πTruncGroupIso 2))
(GroupEquiv→GroupIso (invEq (GroupPath _ _)
(cong (πGr 2)
(cong Pushout⋁↪fold⋁∙ (ua∙ S²≃SuspS¹ refl)))))))))
where
encode∙ : encode ∣ north ∣ refl ≡ ∣ inl (base , base) ∣
encode∙ = transportRefl _
| 33.117647
| 72
| 0.632327
|
3fc68f6969f7c78fde520b171a850af9780998b6
| 14,091
|
agda
|
Agda
|
complexity/complexity-final/Pilot-WithFlatrec.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 2
|
2016-04-26T20:22:22.000Z
|
2019-08-08T12:27:18.000Z
|
complexity/complexity-final/Pilot-WithFlatrec.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 1
|
2020-03-23T08:39:04.000Z
|
2020-05-12T00:32:45.000Z
|
complexity/complexity-final/Pilot-WithFlatrec.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | null | null | null |
open import Preliminaries
module Pilot-WithFlatrec where
data CTp : Set where
unit : CTp
nat : CTp -- discrete natural numbers ♭nat, where we interpret ≤ as =
_->c_ : CTp → CTp → CTp
_×c_ : CTp → CTp → CTp
list : CTp → CTp
bool : CTp
C : CTp
rnat : CTp -- natural numbers with ≤ actually interpreted as ≤
data CTpM : CTp → Set where
runit : CTpM unit
rn : CTpM rnat
_×cm_ : ∀ {τ1 τ2} → CTpM τ1 → CTpM τ2 → CTpM (τ1 ×c τ2)
_->cm_ : ∀ {τ1 τ2} → CTpM τ2 → CTpM (τ1 ->c τ2)
-- represent a context as a list of types
Ctx = List CTp
-- de Bruijn indices (for free variables)
data _∈_ : CTp → Ctx → Set where
i0 : ∀ {Γ τ}
→ τ ∈ (τ :: Γ)
iS : ∀ {Γ τ τ1}
→ τ ∈ Γ
→ τ ∈ (τ1 :: Γ)
rctx : Ctx → Ctx → Set
rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ
r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ')
data _|-_ : Ctx → CTp → Set
sctx : Ctx → Ctx → Set
sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ
_∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C
_rs_ : ∀ {A B C} → rctx A B → sctx B C → sctx A C
ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ
subst : ∀ {Γ Γ' τ} → Γ' |- τ → sctx Γ Γ' → Γ |- τ
_ss_ : ∀ {A B C} → sctx A B → sctx B C → sctx A C
_sr_ : ∀ {A B C} → sctx A B → rctx B C → sctx A C
data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set
rename-var : ∀ {Γ Γ' τ} → rctx Γ Γ' → τ ∈ Γ' → τ ∈ Γ
idr : ∀ {Γ} → rctx Γ Γ
p∙ : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) Γ'
p : ∀ {Γ τ} → rctx (τ :: Γ) Γ
rename-var-ident : ∀ {Γ τ} → (x : τ ∈ Γ) → rename-var idr x == x
rename-var-∙ : ∀ {A B C τ} → (r1 : rctx A B) (r2 : rctx B C) (x : τ ∈ C) → rename-var r1 (rename-var r2 x) == rename-var (r1 ∙rr r2) x
∙rr-assoc : ∀ {A B C D} → (r1 : rctx A B) (r2 : rctx B C) (r3 : rctx C D) → _==_ {_} {rctx A D} (r1 ∙rr (r2 ∙rr r3)) ((r1 ∙rr r2) ∙rr r3)
extend-ren-comp-lemma : ∀ {Γ Γ' Γ'' τ τ'} → (x : τ ∈ τ' :: Γ'') (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') → Id {_} {_} ((r-extend ρ1 ∙rr r-extend ρ2) x) (r-extend (ρ1 ∙rr ρ2) x)
extend-ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → Id {_} {rctx (τ :: Γ) (τ :: Γ'')} (r-extend ρ1 ∙rr r-extend ρ2) (r-extend (ρ1 ∙rr ρ2))
wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2
s-extend : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ')
ids : ∀ {Γ} → sctx Γ Γ
q∙ : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) Γ'
lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ')
q : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ)
svar : ∀ {Γ1 Γ2 τ} → sctx Γ1 Γ2 → τ ∈ Γ2 → Γ1 |- τ
lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ'))
lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ))
lem5' : ∀ {Γ Γ' τ1 τ2 τ3} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ')))
lem5 : ∀ {Γ τ1 τ2 τ3} → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ)))
data _|-_ where
unit : ∀ {Γ} → Γ |- unit
0C : ∀ {Γ} → Γ |- C
1C : ∀ {Γ}→ Γ |- C
plusC : ∀ {Γ} → Γ |- C → Γ |- C → Γ |- C
var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ
z : ∀ {Γ} → Γ |- nat
s : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat
rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (τ :: Γ)) |- τ → Γ |- τ
lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->c τ)
app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->c τ1) → Γ |- τ2 → Γ |- τ1
rz : ∀ {Γ} → Γ |- rnat
rsuc : ∀ {Γ} → Γ |- rnat → Γ |- rnat
rrec : ∀ {Γ τ} → Γ |- rnat → (Z' : Γ |- τ) → (S' : Γ |- (rnat ->c (τ ->c τ))) → (P : Z' ≤s (app (app S' rz) Z')) → Γ |- τ
prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×c τ2)
l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ1
r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ2
nil : ∀ {Γ τ} → Γ |- list τ
_::c_ : ∀ {Γ τ} → Γ |- τ → Γ |- list τ → Γ |- list τ
listrec : ∀ {Γ τ τ'} → Γ |- list τ → Γ |- τ' → (τ :: (list τ :: (τ' :: Γ))) |- τ' → Γ |- τ'
true : ∀ {Γ} → Γ |- bool
false : ∀ {Γ} → Γ |- bool
max : ∀ {Γ τ} → CTpM τ → Γ |- τ → Γ |- τ → Γ |- τ
{-[ Θ ]s : Monotone [ Γ ] [ Γ' ]
[ ρ ]r : same
interpE ren e ρ k == interpE e (interpR ρ) k
interp commutes with renaming and substitution
equations that define ren and subst are true in the semantics-}
--also add axioms for max-l/r etc.
data _≤s_ where
refl-s : ∀ {Γ T} → {e : Γ |- T} → e ≤s e
trans-s : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e''
cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e'
+-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e
+-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e)
+-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e
+-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C)
+-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3)
+-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC (plusC e1 e2) e3) ≤s (plusC e1 (plusC e2 e3))
refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0)
cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1')
cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e')
cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e')
cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1)
ren-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {ρ : rctx Γ Γ'} → e1 ≤s e2 → (ren e1 ρ) ≤s (ren e2 ρ)
subst-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {Θ : sctx Γ Γ'} → e1 ≤s e2 → (subst e1 Θ) ≤s (subst e2 Θ)
subst-cong2 : ∀ {Γ Γ' τ} {Θ Θ' : sctx Γ Γ'} {e : Γ' |- τ} → (∀ τ → (x : τ ∈ Γ') → Θ x ≤s Θ' x) → subst e Θ ≤s subst e Θ'
cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ}
→ e ≤s e' → rec e e0 e1 ≤s rec e' e0 e1
cong-listrec : ∀ {Γ τ τ'} {e e' : Γ |- list τ} {e0 : Γ |- τ'} {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'}
→ e ≤s e' → listrec e e0 e1 ≤s listrec e' e0 e1
lam-s : ∀ {Γ T T'} → {e : (T :: Γ) |- T'} → {e2 : Γ |- T} → subst e (q e2) ≤s app (lam e) e2
l-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} {e2 : Γ |- T2} → e1 ≤s (l-proj (prod e1 e2))
r-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} → {e2 : Γ |- T2} → e2 ≤s (r-proj (prod e1 e2))
rec-steps-z : ∀ {Γ T} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → e0 ≤s (rec z e0 e1)
rec-steps-s : ∀ {Γ T} → {e : Γ |- nat} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → subst e1 (lem4 e (rec e e0 e1)) ≤s (rec (s e) e0 e1)
listrec-steps-nil : ∀ {Γ τ τ'} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'}
→ e0 ≤s (listrec nil e0 e1)
listrec-steps-cons : ∀ {Γ τ τ'} → {h : Γ |- τ} {t : Γ |- list τ}
→ {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'}
→ subst e1 (lem5 h t (listrec t e0 e1)) ≤s (listrec (h ::c t) e0 e1)
ren-comp-l : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) ≤s (ren e (ρ1 ∙rr ρ2))
ren-comp-r : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren e (ρ1 ∙rr ρ2)) ≤s (ren (ren e ρ2) ρ1)
subst-id-l : ∀ {Γ τ} → (e : Γ |- τ) → e ≤s subst e ids
subst-id-r : ∀ {Γ τ} → (e : Γ |- τ) → subst e ids ≤s e
subst-rs-l : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ)
→ ren (subst e Θ) ρ ≤s subst e (ρ rs Θ)
subst-rs-r : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ)
→ subst e (ρ rs Θ) ≤s ren (subst e Θ) ρ
subst-sr-l : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ)
→ (subst (ren e ρ) Θ) ≤s subst e (Θ sr ρ)
subst-sr-r : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ)
→ subst e (Θ sr ρ) ≤s (subst (ren e ρ) Θ)
subst-ss-l : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ)
→ subst e (Θ1 ss Θ2) ≤s subst (subst e Θ2) Θ1
subst-ss-r : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ)
→ subst (subst e Θ2) Θ1 ≤s subst e (Θ1 ss Θ2)
subst-compose-l : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) )
→ subst (subst e (s-extend Θ)) (q v) ≤s subst e (lem3' Θ v)
subst-compose-r : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) )
→ subst e (lem3' Θ v) ≤s subst (subst e (s-extend Θ)) (q v)
subst-compose2-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2)
→ subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) ≤s subst e1 (lem4' Θ v1 v2)
subst-compose2-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2)
→ subst e1 (lem4' Θ v1 v2) ≤s subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2)
subst-compose3-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2)
→ subst (subst e1 (lem4 v1 v2)) Θ ≤s subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ))
subst-compose3-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2)
→ subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) ≤s subst (subst e1 (lem4 v1 v2)) Θ
subst-compose4-l : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ)
→ subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) ≤s subst e2 (lem4' Θ v' r)
subst-compose4-r : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ)
→ subst e2 (lem4' Θ v' r) ≤s subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r)
subst-compose5-l : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3)
→ subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) ≤s subst e (lem5' Θ v1 v2 v3)
subst-compose5-r : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3)
→ subst e (lem5' Θ v1 v2 v3) ≤s subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3)
-- r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ')
r-extend ρ i0 = i0
r-extend ρ (iS x) = iS (ρ x)
-- _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C
ρ1 ∙rr ρ2 = ρ1 o ρ2
rename-var ρ a = ρ a
idr x = x
p∙ ρ = λ x → iS (ρ x)
p = p∙ idr
--free stuff
rename-var-ident _ = Refl
rename-var-∙ _ _ _ = Refl
∙rr-assoc r1 r2 r3 = Refl
ren unit ρ = unit
ren 0C ρ = 0C
ren 1C ρ = 1C
ren (plusC e e₁) ρ = plusC (ren e ρ) (ren e₁ ρ)
ren (var x) ρ = var (ρ x)
ren z ρ = z
ren (s e) ρ = s (ren e ρ)
ren (rec e e₁ e₂) ρ = rec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend ρ)))
ren (lam e) ρ = lam (ren e (r-extend ρ))
ren (app e e₁) ρ = app (ren e ρ) (ren e₁ ρ)
ren (prod e1 e2) ρ = prod (ren e1 ρ) (ren e2 ρ)
ren (l-proj e) ρ = l-proj (ren e ρ)
ren (r-proj e) ρ = r-proj (ren e ρ)
ren nil ρ = nil
ren (x ::c xs) ρ = ren x ρ ::c ren xs ρ
ren true ρ = true
ren false ρ = false
ren (listrec e e₁ e₂) ρ = listrec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend (r-extend ρ))))
ren rz ρ = rz
ren (rsuc e) ρ = rsuc (ren e ρ)
ren (rrec e e₁ e₂ p) ρ = rrec (ren e ρ) (ren e₁ ρ) (ren e₂ ρ) (ren-cong p)
ren (max τ e1 e2) ρ = max τ (ren e1 ρ) (ren e2 ρ)
extend-ren-comp-lemma i0 ρ1 ρ2 = Refl
extend-ren-comp-lemma (iS x) ρ1 ρ2 = Refl
extend-ren-comp ρ1 ρ2 = λ=i (λ τ → λ= (λ x → extend-ren-comp-lemma x ρ1 ρ2))
-- weakening a context
wkn e = ren e iS
-- parallel extension
s-extend Θ i0 = var i0
s-extend Θ (iS x) = wkn (Θ x)
-- identity substitution
ids x = var x
-- weakening with substitution
q∙ Θ = λ x → wkn (Θ x)
lem3' Θ e i0 = e
lem3' Θ e (iS i) = Θ i
--lem3
q e = lem3' ids e
-- subst-var
svar Θ i = q (Θ i) i0
lem4' Θ a b = lem3' (lem3' Θ b) a
lem4 e1 e2 = lem4' ids e1 e2
lem5' Θ a b c = lem3' (lem3' (lem3' Θ c) b) a
lem5 e1 e2 e3 = lem5' ids e1 e2 e3
subst unit Θ = unit
subst 0C Θ = 0C
subst 1C Θ = 1C
subst (plusC e e₁) Θ = plusC (subst e Θ) (subst e₁ Θ)
subst (var x) Θ = Θ x
subst z Θ = z
subst (s e) Θ = s (subst e Θ)
subst (rec e e₁ e₂) Θ = rec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend Θ)))
subst (lam e) Θ = lam (subst e (s-extend Θ))
subst (app e e₁) Θ = app (subst e Θ) (subst e₁ Θ)
subst (prod e1 e2) Θ = prod (subst e1 Θ) (subst e2 Θ)
subst (l-proj e) Θ = l-proj (subst e Θ)
subst (r-proj e) Θ = r-proj (subst e Θ)
subst nil Θ = nil
subst (x ::c xs) Θ = subst x Θ ::c subst xs Θ
subst true Θ = true
subst false Θ = false
subst (listrec e e₁ e₂) Θ = listrec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend (s-extend Θ))))
subst rz Θ = rz
subst (rsuc e) Θ = rsuc (subst e Θ)
subst (rrec e e₁ e₂ p) Θ = rrec (subst e Θ) (subst e₁ Θ) (subst e₂ Θ) (subst-cong p)
subst (max τ e1 e2) Θ = max τ (subst e1 Θ) (subst e2 Θ)
subst1 : ∀ {Γ τ τ1} → Γ |- τ1 → (τ1 :: Γ) |- τ → Γ |- τ
subst1 e e' = subst e' (q e)
_rs_ ρ Θ x = ren (subst (var x) Θ) ρ
_ss_ Θ1 Θ2 x = subst (subst (var x) Θ2) Θ1
_sr_ Θ ρ x = subst (ren (var x) ρ) Θ
extend-id-once-lemma : ∀ {Γ τ τ'} → (x : τ ∈ τ' :: Γ) → _==_ {_} {τ' :: Γ |- τ}
(ids {τ' :: Γ} {τ} x) (s-extend {Γ} {Γ} {τ'} (ids {Γ}) {τ} x)
extend-id-once-lemma i0 = Refl
extend-id-once-lemma (iS x) = Refl
extend-id-once : ∀ {Γ τ} → Id {_} {sctx (τ :: Γ) (τ :: Γ)} (ids {τ :: Γ}) (s-extend ids)
extend-id-once = λ=i (λ τ → λ= (λ x → extend-id-once-lemma x))
extend-id-twice : ∀ {Γ τ1 τ2} → Id {_} {sctx (τ1 :: τ2 :: Γ) (τ1 :: τ2 :: Γ)} (ids {τ1 :: τ2 :: Γ}) (s-extend (s-extend ids))
extend-id-twice = ap s-extend extend-id-once ∘ extend-id-once
_+C_ : ∀ {Γ τ} → Γ |- C → Γ |- (C ×c τ)→ Γ |- (C ×c τ)
c +C e = prod (plusC c (l-proj e)) (r-proj e)
_trans_ : ∀ {Γ T}
→ {e e' e'' : Γ |- T}
→ e ≤s e' → e' ≤s e''
→ e ≤s e''
_trans_ = trans-s
infixr 10 _trans_
| 49.616197
| 173
| 0.44312
|
0d7df635d46c8cce0d46316206a62f825ebff5f9
| 3,051
|
agda
|
Agda
|
src/LibraBFT/Impl/Consensus/ConsensusTypes/ProposalMsg.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/ConsensusTypes/ProposalMsg.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/ConsensusTypes/ProposalMsg.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block
import LibraBFT.Impl.Consensus.ConsensusTypes.TimeoutCertificate as TimeoutCertificate
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Hash
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.Consensus.ConsensusTypes.ProposalMsg where
verifyWellFormed : ProposalMsg → Either ErrLog Unit
verifyWellFormed self = do
lcheck (not (Block.isNilBlock (self ^∙ pmProposal)))
(here' ("Proposal for a NIL block" ∷ []))
withErrCtx' ("Failed to verify ProposalMsg's block" ∷ [])
(Block.verifyWellFormed (self ^∙ pmProposal))
lcheck (self ^∙ pmProposal ∙ bRound >? 0)
(here' ("Proposal for has round <= 0" ∷ []))
lcheck (self ^∙ pmProposal ∙ bEpoch == self ^∙ pmSyncInfo ∙ siEpoch)
(here' ("ProposalMsg has different epoch than SyncInfo" ∷ [])) -- lsSI (self ^∙ pmSyncInfo)
lcheck (self ^∙ pmProposal ∙ bParentId == self ^∙ pmSyncInfo ∙ siHighestQuorumCert ∙ qcCertifiedBlock ∙ biId)
(here' ( "Proposal SyncInfo HQC CertifiedBlock id not eq to block parent id" ∷ []))
-- lsSI (self ^∙ pmSyncInfo)
let previousRound = self ^∙ pmProposal ∙ bRound ∸ 1 -- NOTE: monus usage
let highestCertifiedRound =
max (self ^∙ pmProposal ∙ bQuorumCert ∙ qcCertifiedBlock ∙ biRound)
(maybe 0 (_^∙ tcRound) (self ^∙ pmSyncInfo ∙ siHighestTimeoutCert))
lcheck (previousRound == highestCertifiedRound)
(here' ("Proposal does not have a certified round" ∷ []))
-- lsMTC (self ^∙ pmSyncInfo ∙ siHighestTimeoutCert)
lcheck (is-just (self ^∙ pmProposal ∙ bAuthor))
(here' ("Proposal does not have an author" ∷ []))
-- LBFT-DIFF : this check used to live in EventProcessor ∙ processProposedBlockM
-- TODO: is it needed?
-- Safety invariant: For any valid proposed block
-- , its parent block == the block pointed to by its QC.
lcheck (self ^∙ pmProposal ∙ bParentId == self ^∙ pmProposal ∙ bQuorumCert ∙ qcCertifiedBlock ∙ biId)
(here' ("parent id /= qcCB" ∷ [])) -- show (self ^∙ pmProposal)
where
here' : List String → List String
here' t = "ProposalMsg" ∷ "verifyWellFormed" {-∷ lsPM self-} ∷ t
verify : ProposalMsg → ValidatorVerifier → Either ErrLog Unit
verify self validator = do
Block.validateSignature (self ^∙ pmProposal) validator
TimeoutCertificate.verify' (self ^∙ pmSyncInfo ∙ siHighestTimeoutCert) validator
verifyWellFormed self
| 50.016393
| 111
| 0.662406
|
72824ed3012a9753c24b91c107f5d6cf498905b1
| 4,163
|
agda
|
Agda
|
Agda/Ag02.agda
|
Brethland/LEARNING-STUFF
|
eb2cef0556efb9a4ce11783f8516789ea48cc344
|
[
"MIT"
] | 2
|
2020-02-03T05:05:52.000Z
|
2020-03-11T10:35:42.000Z
|
Agda/Ag02.agda
|
Brethland/LEARNING-STUFF
|
eb2cef0556efb9a4ce11783f8516789ea48cc344
|
[
"MIT"
] | null | null | null |
Agda/Ag02.agda
|
Brethland/LEARNING-STUFF
|
eb2cef0556efb9a4ce11783f8516789ea48cc344
|
[
"MIT"
] | 1
|
2019-12-13T04:50:46.000Z
|
2019-12-13T04:50:46.000Z
|
module Ag02 where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_)
+-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc zero n p =
begin
(zero + n) + p
≡⟨⟩
n + p
≡⟨⟩
zero + (n + p)
∎
+-assoc (suc m) n p =
begin
(suc m + n) + p
≡⟨⟩
suc (m + n) + p
≡⟨⟩
suc ((m + n) + p)
≡⟨ cong suc (+-assoc m n p) ⟩
suc (m + (n + p))
≡⟨⟩
suc m + (n + p)
∎
+-identityʳ : ∀ (m : ℕ) → m + 0 ≡ m
+-identityʳ zero =
begin
zero + 0
≡⟨⟩
zero
∎
+-identityʳ (suc m) =
begin
suc m + zero
≡⟨⟩
suc (m + zero)
≡⟨ cong suc (+-identityʳ m) ⟩
suc m
∎
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-suc zero n =
begin
zero + suc n
≡⟨⟩
suc n
≡⟨⟩
suc (zero + n)
∎
+-suc (suc m) n =
begin
suc m + suc n
≡⟨⟩
suc (m + suc n)
≡⟨ cong suc (+-suc m n) ⟩
suc (suc (m + n))
≡⟨⟩
suc (suc m + n)
∎
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero
≡⟨ +-identityʳ m ⟩
m
≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n
≡⟨ +-suc m n ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨⟩
suc n + m
∎
+-rearrange : ∀ (m n p q : ℕ) → (m + n) + (p + q) ≡ m + (n + p) + q
+-rearrange m n p q =
begin
(m + n) + (p + q)
≡⟨ +-assoc m n (p + q) ⟩
m + (n + (p + q))
≡⟨ cong (m +_) (sym (+-assoc n p q)) ⟩
m + ((n + p) + q)
≡⟨ sym (+-assoc m (n + p) q) ⟩
m + (n + p) + q
∎
+-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc′ zero n p = refl
+-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl
+-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p)
+-swap m n p rewrite sym (+-assoc m n p) | +-comm m n | +-assoc n m p = refl
*-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p
*-distrib-+ 0 n p = refl
*-distrib-+ (suc m) n p rewrite *-distrib-+ m n p | +-assoc p (m * p) (n * p) = refl
*-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p)
*-assoc 0 n p = refl
*-assoc (suc m) n p rewrite *-distrib-+ n (m * n) p | *-assoc m n p = refl
*-identityʳ : ∀ (n : ℕ) → n * 0 ≡ 0
*-identityʳ 0 = refl
*-identityʳ (suc n) rewrite *-identityʳ n = refl
*-suc : ∀ (m n : ℕ) → m * (suc n) ≡ m + m * n
*-suc 0 n = refl
*-suc (suc m) n rewrite *-suc m n | +-swap n m (m * n) = refl
*-comm : ∀ (m n : ℕ) → m * n ≡ n * m
*-comm 0 n rewrite *-identityʳ n = refl
*-comm (suc m) n rewrite *-comm m n | *-suc n m = refl
∸-n : ∀ (n : ℕ) → 0 ∸ n ≡ 0
∸-n zero = refl
∸-n (suc n) = refl
∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p)
∸-+-assoc zero n p rewrite ∸-n n | ∸-n p | ∸-n (n + p) = refl
∸-+-assoc (suc m) zero p = refl
∸-+-assoc (suc m) (suc n) p rewrite ∸-+-assoc m n p = refl
^-distrib-+ : ∀ (m n p : ℕ) → m ^ (n + p) ≡ (m ^ n) * (m ^ p)
^-distrib-+ m 0 p rewrite +-identityʳ (m ^ p) = refl
^-distrib-+ m (suc n) p rewrite ^-distrib-+ m n p | *-assoc m (m ^ n) (m ^ p) = refl
^-distrib-* : ∀ (m n p : ℕ) → (m * n) ^ p ≡ (m ^ p) * (n ^ p)
^-distrib-* m n zero = refl
^-distrib-* m n (suc p) rewrite ^-distrib-* m n p | sym (*-assoc (m * n) (m ^ p) (n ^ p))
| *-assoc m n (m ^ p) | *-comm n (m ^ p) | *-assoc m ((m ^ p) * n) (n ^ p) | *-assoc (m ^ p) n (n ^ p)
| *-assoc m (m ^ p) (n * (n ^ p)) = refl
^-identity : ∀ (p : ℕ) → 1 ^ p ≡ 1
^-identity zero = refl
^-identity (suc p) rewrite ^-identity p = refl
^-*-plus : ∀ (m n p : ℕ) → m ^ (n * p) ≡ (m ^ n) ^ p
^-*-plus m zero p rewrite ^-identity p = refl
^-*-plus m (suc n) p rewrite ^-distrib-+ m p (n * p) | ^-*-plus m n p | sym (^-distrib-* m (m ^ n) p) = refl
data Bin : Set where
nil : Bin
x0_ : Bin → Bin
x1_ : Bin → Bin
inc : Bin → Bin
inc nil = x1 nil
inc (x1 b) = x0 (inc b)
inc (x0 b) = x1 b
to : ℕ → Bin
to zero = nil
to (suc m) = inc (to m)
from : Bin → ℕ
from nil = zero
from (x1 b) = suc (2 * (from b))
from (x0 b) = 2 * (from b)
inc-suc : ∀ (x : Bin) → from (inc x) ≡ suc (from x)
inc-suc nil = refl
inc-suc (x0 x) = refl
inc-suc (x1 x) rewrite inc-suc x | +-suc (from x) (from x + 0) = refl
| 23.38764
| 108
| 0.444631
|
6539f2b8627983a0e3cd95ca0a1455502612e969
| 1,601
|
agda
|
Agda
|
TypeTheory/Nat/Mono/Structure.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | 3
|
2020-04-07T17:49:42.000Z
|
2020-04-21T00:03:43.000Z
|
TypeTheory/Nat/Mono/Structure.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
TypeTheory/Nat/Mono/Structure.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
module TypeTheory.Nat.Mono.Structure where
open import Level renaming (zero to lzero; suc to lsuc)
open import Data.Empty using (⊥)
open import Data.Product using (Σ; _×_; _,_)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (¬_)
record Nat : Set₁ where
field
N : Set
zero : N
suc : N → N
ind : (P : N → Set) → P zero → (∀ k → P k → P (suc k)) → ∀ n → P n
ind-zero : ∀ P P-zero P-suc → ind P P-zero P-suc zero ≡ P-zero
ind-suc : ∀ P P-zero P-suc n → ind P P-zero P-suc (suc n) ≡
P-suc n (ind P P-zero P-suc n)
s≢z : ∀ {n} → suc n ≢ zero
0N : N
0N = zero
1N : N
1N = suc zero
z≢s : ∀ {n} → zero ≢ suc n
z≢s = ≢-sym s≢z
rec : {A : Set} → A → (A → A) → N → A
rec {A} z s = ind (λ _ → A) z (λ _ → s)
rec-zero : ∀ {A} (z : A) s → rec z s zero ≡ z
rec-zero z s = ind-zero _ _ _
rec-suc : ∀ {A} (z : A) s n → rec z s (suc n) ≡ s (rec z s n)
rec-suc z s n = ind-suc _ _ _ _
infixl 6 _+_
infixl 7 _*_
infix 4 _≤_ _<_ _≥_ _>_ _≰_
-- Arithematic
-- Addition
_+_ : N → N → N
m + n = rec n suc m
-- Multiplication
_*_ : N → N → N
m * n = rec zero (n +_) m
-- Order
_≤_ : Rel N lzero
m ≤ n = Σ N λ o → m + o ≡ n
_<_ : Rel N lzero
m < n = suc m ≤ n
_≥_ : Rel N lzero
m ≥ n = n ≤ m
_>_ : Rel N lzero
m > n = n < m
_≰_ : Rel N lzero
m ≰ n = ¬ m ≤ n
_≮_ : Rel N lzero
m ≮ n = ¬ m < n
_≱_ : Rel N lzero
m ≱ n = ¬ m ≥ n
_≯_ : Rel N lzero
m ≯ n = ¬ m > n
| 21.065789
| 75
| 0.494691
|
fdad32d6a95835df3288059fb7f9a4f3d0921355
| 1,178
|
agda
|
Agda
|
prototyping/PrettyPrinter.agda
|
Tr4shh/Roblox-Luau
|
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
|
[
"MIT"
] | null | null | null |
prototyping/PrettyPrinter.agda
|
Tr4shh/Roblox-Luau
|
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
|
[
"MIT"
] | null | null | null |
prototyping/PrettyPrinter.agda
|
Tr4shh/Roblox-Luau
|
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
|
[
"MIT"
] | null | null | null |
module PrettyPrinter where
open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.Int using (pos)
open import Agda.Builtin.Unit using (⊤)
open import FFI.IO using (getContents; putStrLn; _>>=_; _>>_)
open import FFI.Data.Aeson using (Value; eitherDecode)
open import FFI.Data.Either using (Left; Right)
open import FFI.Data.String using (String; _++_)
open import FFI.Data.Text.Encoding using (encodeUtf8)
open import FFI.System.Exit using (exitWith; ExitFailure)
open import Luau.Syntax using (Block)
open import Luau.Syntax.FromJSON using (blockFromJSON)
open import Luau.Syntax.ToString using (blockToString)
runBlock : ∀ {a} → Block a → IO ⊤
runBlock block = putStrLn (blockToString block)
runJSON : Value → IO ⊤
runJSON value with blockFromJSON(value)
runJSON value | (Left err) = putStrLn ("Luau error: " ++ err) >> exitWith (ExitFailure (pos 1))
runJSON value | (Right block) = runBlock block
runString : String → IO ⊤
runString txt with eitherDecode (encodeUtf8 txt)
runString txt | (Left err) = putStrLn ("JSON error: " ++ err) >> exitWith (ExitFailure (pos 1))
runString txt | (Right value) = runJSON value
main : IO ⊤
main = getContents >>= runString
| 35.69697
| 95
| 0.741935
|
ed840e09574b9daa124f997fce42fb21af052da0
| 2,001
|
agda
|
Agda
|
src/fot/FOTC/Program/ABP/Fair/PropertiesATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
src/fot/FOTC/Program/ABP/Fair/PropertiesATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
src/fot/FOTC/Program/ABP/Fair/PropertiesATP.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
------------------------------------------------------------------------------
-- Fair properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.ABP.Fair.PropertiesATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the Fair
-- predicate is also a pre-fixed point of the functional FairF, i.e.
--
-- FairF Fair ≤ Fair (see FOTC.Program.ABP.Fair).
-- See Issue https://github.com/asr/apia/issues/81 .
Fair-inA : D → Set
Fair-inA os = ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os'
{-# ATP definition Fair-inA #-}
Fair-in : ∀ {os} → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' →
Fair os
Fair-in h = Fair-coind Fair-inA h' h
where
postulate
h' : ∀ {os} → Fair-inA os →
∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair-inA os'
{-# ATP prove h' #-}
head-tail-Fair : ∀ {os} → Fair os → os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
head-tail-Fair {os} Fos with Fair-out Fos
... | (.(T ∷ []) , os' , f*tnil , h , Fos') = prf
where
postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
{-# ATP prove prf #-}
... | (.(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos') = prf
where
postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
{-# ATP prove prf #-}
tail-Fair : ∀ {os} → Fair os → Fair (tail₁ os)
tail-Fair {os} Fos with Fair-out Fos
... | .(T ∷ []) , os' , f*tnil , h , Fos' = prf
where
postulate prf : Fair (tail₁ os)
{-# ATP prove prf #-}
... | .(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos' = prf
where
postulate prf : Fair (tail₁ os)
{-# ATP prove prf Fair-in #-}
| 33.35
| 78
| 0.497251
|
a0ba43fc2a436c95ec11f2ed18ca88bde8648b51
| 417
|
agda
|
Agda
|
test/Succeed/EtaAndMetas.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/EtaAndMetas.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/EtaAndMetas.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc:20 -v tc.pos.occ:20 -v tc.mod.apply:80 -v tc.signature:30 #-}
module EtaAndMetas where
record ⊤ : Set where
record Functor {_ : ⊤} : Set₁ where
field
F : Set → Set
eta : Functor → Functor
eta S = record { F = F }
where open Functor S
postulate
Π : (To : Functor) → Set
mkΠ : (B : Functor) → Π (eta B)
To : Functor
π : Π (eta To)
π = mkΠ _
| 18.954545
| 82
| 0.58753
|
64177b8ecb7bc25eb0dcbe46928347572cf1c308
| 8,271
|
agda
|
Agda
|
test/epic/tests/Cat.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
test/epic/tests/Cat.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
test/epic/tests/Cat.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
{- An adaptation of Edwin Brady and Kevin Hammond's paper Scrapping your inefficient engine ... -}
{-# OPTIONS --type-in-type #-}
module tests.Cat where
open import Prelude.Bool
open import Prelude.Bot
open import Prelude.IO
open import Prelude.Fin
open import Prelude.Eq
open import Prelude.Nat
open import Prelude.Product
open import Prelude.String
open import Prelude.Unit
open import Prelude.Vec
record Top : Set where
constructor tt
data Ty : Set where
TyUnit : Ty
TyBool : Ty
TyLift : Set -> Ty
TyHandle : Nat -> Ty
interpTy : Ty -> Set
interpTy TyUnit = Unit
interpTy TyBool = Bool
interpTy (TyLift A) = A
interpTy (TyHandle n) = Fin n
data Purpose : Set where
Reading : Purpose
Writing : Purpose
getMode : Purpose -> String
getMode Reading = "r"
getMode Writing = "w"
data FileState : Set where
Open : Purpose -> FileState
Closed : FileState
postulate
EpicFile : Set
static[_] : {A : Set} → A → A
static[ x ] = x
{-# STATIC static[_] #-}
FileVec : Nat -> Set
FileVec n = Vec FileState n
data FileHandle : FileState -> Set where
OpenFile : ∀{p} -> EpicFile -> FileHandle (Open p)
ClosedFile : FileHandle Closed
data Env : ∀{n} -> FileVec n -> Set where
Empty : Env []
Extend : {n : Nat}{T : FileState}{G : FileVec n} -> (res : FileHandle T) -> Env G -> Env (T :: G)
addEnd : ∀{n T}{G : FileVec n} -> Env G -> FileHandle T -> Env (snoc G T)
addEnd Empty fh = Extend fh Empty
addEnd (Extend x xs) fh = Extend x (addEnd xs fh)
updateEnv : ∀{n T}{G : FileVec n} -> Env G -> (i : Fin n) -> (fh : FileHandle T) -> Env (G [ i ]= T)
updateEnv (Extend x xs) fz e = Extend e xs
updateEnv (Extend x xs) (fs n) e = Extend x (updateEnv xs n e)
updateEnv Empty () e
bound : ∀{n : Nat} -> Fin (S n)
bound {Z} = fz
bound {S n} = fs (bound {n})
_==P_ : Purpose -> Purpose -> Set
Reading ==P Reading = Top
Reading ==P Writing = Bot
Writing ==P Reading = Bot
Writing ==P Writing = Top
OpenH : ∀{n} -> Fin n -> Purpose -> FileVec n -> Set
OpenH fz p (Open p' :: as) = p ==P p'
OpenH fz p (Closed :: as) = Bot
OpenH (fs i) p ( a :: as) = OpenH i p as
getFile : ∀{n}{i : Fin n}{p : Purpose}{ts : FileVec n}{ope : OpenH i p ts} -> Env ts -> EpicFile
getFile {Z} {()} env
getFile {S y} {fz} (Extend (OpenFile y') y0) = y'
getFile {S y} {fz} {ope = ()} (Extend ClosedFile y')
getFile {S y} {fs y'} {ope = ope} (Extend res y0) = getFile {y} {y'} {ope = ope} y0
getPurpose : {n : Nat} -> Fin n -> FileVec n -> Purpose
getPurpose f ts with ts ! f
... | Open p = p
... | Closed = Reading -- Should not happen right?
FilePath : Set
FilePath = String
data File : ∀{n n'} -> FileVec n -> FileVec n' -> Ty -> Set where
ACTION : ∀{a l}{ts : FileVec l} -> IO (interpTy a) -> File ts ts a
RETURN : ∀{a l}{ts : FileVec l} -> interpTy a -> File ts ts a
WHILE : ∀{l}{ts : FileVec l} -> File ts ts TyBool -> File ts ts TyUnit -> File ts ts TyUnit
IF : ∀{a l}{ts : FileVec l} -> Bool -> File ts ts a -> File ts ts a -> File ts ts a
BIND : ∀{a b l l' l''}{ts : FileVec l}{ts' : FileVec l'}{ts'' : FileVec l''}
-> File ts ts' a -> (interpTy a -> File ts' ts'' b) -> File ts ts'' b
OPEN : ∀{l}{ts : FileVec l}
-> (p : Purpose) -> (fd : FilePath) -> File ts (snoc ts (Open p)) (TyHandle (S l))
CLOSE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> {p : OpenH i (getPurpose i ts) ts} -> File ts (ts [ i ]= Closed) TyUnit
GETLINE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> {p : OpenH i Reading ts} -> File ts ts (TyLift String)
EOF : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> {p : OpenH i Reading ts} -> File ts ts TyBool
PUTLINE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> (str : String) -> {p : OpenH i Writing ts} -> File ts ts TyUnit
postulate
while : IO Bool -> IO Unit -> IO Unit
fopen : FilePath -> String -> IO EpicFile
fclose : EpicFile -> IO Unit
fread : EpicFile -> IO String
feof : EpicFile -> IO Bool
fwrite : EpicFile -> String -> IO Unit
{-# COMPILED_EPIC while (add : Any, body : Any, u : Unit) -> Any = %while (add(u), body(u)) #-}
{-# COMPILED_EPIC fopen (fp : Any, mode : Any, u : Unit) -> Ptr = foreign Ptr "fopen" (mkString(fp) : String, mkString(mode) : String) #-}
{-# COMPILED_EPIC fclose (file : Ptr, u : Unit) -> Unit = foreign Int "fclose" (file : Ptr); unit #-}
{-# COMPILED_EPIC fread (file : Ptr, u : Unit) -> Any = frString(foreign String "freadStrChunk" (file : Ptr)) #-}
{-# COMPILED_EPIC feof (file : Ptr, u : Unit) -> Bool = foreign Int "feof" (file : Ptr) #-}
{-# COMPILED_EPIC fwrite (file : Ptr, str : Any, u : Unit) -> Unit = foreign Unit "fputs" (mkString(str) : String, file : Ptr) #-}
fmap : {A B : Set} -> (A -> B) -> IO A -> IO B
fmap f io =
x <- io ,
return (f x)
data MIO (A : Set) : Set where
Return : A -> MIO A
ABind : {B : Set} -> IO B -> (B -> MIO A) -> MIO A
-- While : MIO Bool -> MIO Unit -> MIO Unit
MBind : {A B : Set} -> MIO A -> (A -> MIO B) -> MIO B
MBind (Return x) f = f x
MBind (ABind io k) f = ABind io (λ x -> MBind (k x) f)
-- MBind (While b u) f =
mmap : {A B : Set} -> (A -> B) -> MIO A -> MIO B
mmap f mio = MBind mio (λ x -> Return (f x))
runMIO : {A : Set} -> MIO A -> IO A
runMIO (Return x) = return x
runMIO (ABind io f) =
x <- io ,
runMIO (f x)
interp : ∀{n n' T}{ts : FileVec n}{ts' : FileVec n'} -> Env ts -> File ts ts' T -> MIO (Env ts' × interpTy T)
interp env (ACTION io) = ABind io (λ x -> Return (env , x))
interp env (RETURN val) = Return (env , val)
interp env (WHILE add body) =
ABind (while (runMIO (mmap snd (interp env add))) (runMIO (mmap snd (interp env body)))) (λ _ ->
Return (env , unit))
interp env (IF b t f) = if b then interp env t else interp env f
interp env (BIND code k) =
MBind (interp env code) (λ v ->
interp (fst v) (k (snd v)))
interp env (OPEN p fpath) =
ABind (fopen fpath (getMode p)) (λ fh ->
Return (addEnd env (OpenFile fh), bound))
interp env (CLOSE i {p = p}) =
ABind (fclose (getFile {_} {i} {ope = p} env)) (\ _ ->
Return (updateEnv env i ClosedFile , unit))
interp env (GETLINE i {p = p}) =
ABind (fread (getFile {_} {i} {ope = p} env)) (λ x -> Return (env , x))
interp env (EOF i {p = p}) =
ABind (feof (getFile {_} {i} {ope = p} env)) (\ e ->
Return (env , e))
interp env (PUTLINE i str {p = p}) =
ABind (fwrite (getFile {i = i} {ope = p} env) str) (λ _ ->
ABind (fwrite (getFile {i = i} {ope = p} env) "\n") (λ x ->
Return (env , unit)))
allClosed : (n : Nat) -> FileVec n
allClosed Z = []
allClosed (S n) = Closed :: allClosed n
syntax BIND e (\ x -> f) = x := e % f
infixl 0 BIND
_%%_ : ∀{a b l l' l''}{ts : FileVec l}{ts' : FileVec l'}{ts'' : FileVec l''}
-> File ts ts' a -> File ts' ts'' b -> File ts ts'' b
m %% k = BIND m (λ _ -> k)
infixr 0 _%%_
{-
cat : File [] (Closed :: []) TyUnit
cat = (
fz := OPEN Reading "tests/Cat.out" %
WHILE (b := EOF fz % RETURN (not b)) (
str := GETLINE fz %
ACTION (putStrLn str)
) %%
CLOSE fz
)
cont : Fin 1 -> File (Open Reading :: []) (Closed :: []) TyUnit
cont (fs ())
cont fz = BIND (WHILE (BIND (EOF fz) (\b -> RETURN (not b)))
(BIND (GETLINE fz)
(\str -> ACTION (putStrLn str))
)
)
(λ x → CLOSE fz)
cat : File [] (Closed :: []) TyUnit
cat = BIND (OPEN Reading "hej")
cont
-}
cont : Fin 1 -> File (Open Reading :: []) (Closed :: []) TyUnit
cont (fs ())
cont fz =
WHILE ( b := EOF fz % RETURN (not b)) (
str := GETLINE fz %
ACTION (putStr str)
) %%
CLOSE fz
cat : File [] (Closed :: []) TyUnit
cat = BIND (OPEN Reading "tests/Cat.out") cont
copy : File [] (Closed :: Closed :: []) TyUnit
copy =
BIND (OPEN Reading "copy/input") (λ _ →
BIND (OPEN Writing "copy/output") (λ _ →
BIND (WHILE (BIND (EOF fz) (λ b → RETURN (not b)))
(BIND (GETLINE fz) (λ str → PUTLINE (fs fz) str))) (λ _ →
BIND (CLOSE fz) (λ _ →
CLOSE (fs fz)))))
runProg : {n : Nat} -> File [] (allClosed n) TyUnit -> IO Unit
runProg p = runMIO (mmap snd (interp Empty p))
{-# STATIC runProg #-}
main : IO Unit
main = runProg cat -- static[ runProg cat ]
-- main = runProg cat
| 33.084
| 138
| 0.562689
|
730601879cdcea3fc4f14d1da9cfc27916e8520b
| 10,656
|
agda
|
Agda
|
src/Tactic/By/Id.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | 3
|
2020-05-21T22:58:50.000Z
|
2021-09-02T17:18:15.000Z
|
src/Tactic/By/Id.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
src/Tactic/By/Id.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Some tactics aimed at making equational reasoning proofs more
-- readable for the cubical identity type
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Tactic.By.Id where
import Agda.Builtin.Cubical.Id
open import Equality.Id
open import Prelude
open import List equality-with-J as L
open import Maybe equality-with-J
open import Monad equality-with-J
open import Tactic.By equality-with-J as TB
open import TC-monad equality-with-J as TC hiding (Type)
open TB public using (⟨_⟩)
private
-- Constructs the type of equalities between its two arguments.
equality : Term → Term → TC.Type
equality lhs rhs = def (quote _≡_) (varg lhs ∷ varg rhs ∷ [])
-- An illustration of what the cong functions constructed by
-- make-cong-called look like.
cong₃′ :
∀ {a b c d : Level}
{A : Type a} {B : Type b} {C : Type c} {D : Type d}
{x₁ y₁ x₂ y₂ x₃ y₃}
(f : A → B → C → D) →
x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ → f x₁ x₂ x₃ ≡ f y₁ y₂ y₃
cong₃′ f eq₁ eq₂ eq₃ =
trans (cong (λ x → f x _ _) eq₁)
(trans (cong (λ x → f _ x _) eq₂)
(trans (cong (λ x → f _ _ x) eq₃)
refl))
-- Constructs a "cong" function, with the given name, for functions
-- with the given number of arguments. Note that the size of the raw
-- code of the generated function is quadratic in the number.
make-cong-called : Name → ℕ → TC ⊤
make-cong-called name-of-cong n = do
declareDef (varg name-of-cong) (type-of-cong equality n)
defineFun name-of-cong (the-clause ∷ [])
where
body : ℕ → Term
body zero = def (quote refl) []
body (suc m) =
def (quote trans)
(varg (def (quote cong)
(varg (lam visible $ abs "x" $
var (1 + n) $
replicate (n ∸ suc m) (varg unknown) ++
varg (var 0 []) ∷
replicate m (varg unknown)) ∷
varg (var m []) ∷
[])) ∷
varg (body m) ∷
[])
the-clause = clause
(("f" , varg unknown) ∷ replicate n ("eq" , varg unknown))
(varg (var n) ∷ L.map (varg ∘ var) (nats-< n))
(body n)
unquoteDecl cong₃ = make-cong-called cong₃ 3
unquoteDecl cong₄ = make-cong-called cong₄ 4
unquoteDecl cong₅ = make-cong-called cong₅ 5
unquoteDecl cong₆ = make-cong-called cong₆ 6
unquoteDecl cong₇ = make-cong-called cong₇ 7
unquoteDecl cong₈ = make-cong-called cong₈ 8
unquoteDecl cong₉ = make-cong-called cong₉ 9
unquoteDecl cong₁₀ = make-cong-called cong₁₀ 10
-- Constructs a "cong" function (similar to cong and cong₂ in
-- Equality) for functions with the given number of arguments. The
-- name of the constructed function is returned (for 1 and 2 the
-- functions in Equality are returned). The cong functions for
-- functions with 3 up to 10 arguments are cached to avoid creating
-- lots of copies of the same functions.
make-cong : ℕ → TC Name
make-cong 1 = return (quote cong)
make-cong 2 = return (quote cong₂)
make-cong 3 = return (quote cong₃)
make-cong 4 = return (quote cong₄)
make-cong 5 = return (quote cong₅)
make-cong 6 = return (quote cong₆)
make-cong 7 = return (quote cong₇)
make-cong 8 = return (quote cong₈)
make-cong 9 = return (quote cong₉)
make-cong 10 = return (quote cong₁₀)
make-cong n = do
cong ← freshName "cong"
make-cong-called cong n
return cong
open Tactics
(λ where
(def (quote Agda.Builtin.Cubical.Id.Id)
(arg _ a ∷ arg _ A ∷ arg _ x ∷ arg _ y ∷ [])) →
return $ just (a , A , x , y)
_ → return nothing)
equality
(λ a A x → def (quote refl) (harg a ∷ harg A ∷ harg x ∷ []))
(λ p → def (quote sym) (varg p ∷ []))
(λ lhs rhs f p → def (quote cong)
(replicate 4 (harg unknown) ++
harg lhs ∷ harg rhs ∷ varg f ∷ varg p ∷ []))
false
make-cong
true
public
------------------------------------------------------------------------
-- Some unit tests
private
module Tests
(assumption : 48 ≡ 42)
(lemma : ∀ n → n + 8 ≡ n + 2)
(f : ℕ → ℕ → ℕ → ℕ)
where
g : ℕ → ℕ → ℕ → ℕ
g zero _ _ = 12
g (suc _) _ _ = 12
fst : ∀ {a b} {A : Type a} {B : A → Type b} →
Σ A B → A
fst = proj₁
{-# NOINLINE fst #-}
record R (F : Type → Type) : Type₁ where
field
p : {A : Type} {x : F A} → x ≡ x
open R ⦃ … ⦄ public
-- Tests for by.
module By-tests where
test₁ : 40 + 2 ≡ 42
test₁ = by definition
test₂ : 48 ≡ 42 → 42 ≡ 48
test₂ eq = by eq
test₃ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₃ f = by assumption
test₄ : (f : ℕ → ℕ) → f 48 ≡ f 42
test₄ f = by assumption
test₅ : (f : ℕ → ℕ → ℕ) → f 42 48 ≡ f 48 42
test₅ f = by assumption
test₆ : (f : ℕ → ℕ → ℕ → ℕ) → f 42 45 48 ≡ f 48 45 42
test₆ f = by assumption
test₇ : f 48 (f 42 45 48) 42 ≡ f 48 (f 48 45 42) 48
test₇ = by assumption
test₈ : ∀ n → g n (g n 45 48) 42 ≡ g n (g n 45 42) 48
test₈ n = by assumption
test₉ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₉ f = by (lemma 40)
test₁₀ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₁₀ f = by (λ (_ : ⊤) → assumption)
test₁₁ : (f : ℕ × ℕ → ℕ × ℕ) → (∀ x → ⟨ _≡_ ⟩ (f x) x) →
fst (f (12 , 73)) ≡ fst {B = λ _ → ℕ} (12 , 73)
test₁₁ _ hyp = by hyp
-- Two test cases for the extra check in try-refl.
-- test₁₂ : (h : ℕ → Maybe ℕ) →
-- ((xs : ℕ) → h xs ≡ just xs) →
-- (xs : ℕ) → suc ⟨$⟩ h xs ≡ suc ⟨$⟩ return xs
-- test₁₂ h hyp xs =
-- suc ⟨$⟩ h xs ≡⟨ by (hyp xs) ⟩∎
-- suc ⟨$⟩ return xs ∎
-- test₁₃ : (h : List ⊤ → Maybe (List ⊤)) →
-- ((xs : List ⊤) → h xs ≡ just xs) →
-- (x : ⊤) (xs : List ⊤) → _
-- test₁₃ h hyp x xs =
-- _∷_ ⟨$⟩ return x ⊛ h xs ≡⟨ by (hyp xs) ⟩∎
-- _∷_ ⟨$⟩ return x ⊛ return xs ∎
-- This test case fails if "refl a A lhs" is replaced by
-- "refl unknown unknown lhs" in try-refl.
test₁₅ :
(F : Type → Type → Type)
(G : Bool → Type → Type) →
((A : Type) → F (G false A) A ≡ G false (F A A)) →
(A : Type) →
G false (F (G false A) A) ≡
G false (G false (F A A))
test₁₅ F G hyp A =
G false (F (G false A) A) ≡⟨ by hyp ⟩∎
G false (G false (F A A)) ∎
-- test₁₇ :
-- (P : ℕ → Type)
-- (f : ∀ {n} → P n → P n)
-- (p : P 0) →
-- f (subst P refl p) ≡ f p
-- test₁₇ P _ _ = by (subst-refl P)
test₁₈ :
(subst′ :
∀ {a p} {A : Type a} {x y : A}
(P : A → Type p) → x ≡ y → P x → P y) →
(∀ {a p} {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst′ P refl p ≡ p) →
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f (subst′ P refl p) ≡ f p
test₁₈ _ subst′-refl P _ _ = by (subst′-refl P)
-- test₁₉ :
-- {F : Type → Type} ⦃ r : R F ⦄ {A : Type} {x₁ x₂ : F A}
-- (p₁ p₂ : x₁ ≡ x₂) (assumption : p₁ ≡ p₂) →
-- trans p p₁ ≡ trans p p₂
-- test₁₉ p₁ p₂ assumption =
-- trans p p₁ ≡⟨ by assumption ⟩∎
-- trans p p₂ ∎
-- Tests for ⟨by⟩.
module ⟨By⟩-tests where
test₁ : ⟨ 40 + 2 ⟩ ≡ 42
test₁ = ⟨by⟩ refl
test₂ : 48 ≡ 42 → ⟨ 42 ⟩ ≡ 48
test₂ eq = ⟨by⟩ eq
test₃ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₃ f = ⟨by⟩ assumption
test₄ : (f : ℕ → ℕ) → f ⟨ 48 ⟩ ≡ f 42
test₄ f = ⟨by⟩ assumption
test₅ : (f : ℕ → ℕ → ℕ) → f ⟨ 42 ⟩ ⟨ 42 ⟩ ≡ f 48 48
test₅ f = ⟨by⟩ assumption
test₆ : (f : ℕ → ℕ → ℕ → ℕ) → f ⟨ 48 ⟩ 45 ⟨ 48 ⟩ ≡ f 42 45 42
test₆ f = ⟨by⟩ assumption
test₇ : f ⟨ 48 ⟩ (f ⟨ 48 ⟩ 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ f 42 (f 42 45 42) 42
test₇ = ⟨by⟩ assumption
test₈ : ∀ n → g n (g n 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ g n (g n 45 42) 42
test₈ n = ⟨by⟩ assumption
test₉ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₉ f = ⟨by⟩ (lemma 40)
test₁₀ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₁₀ f = ⟨by⟩ (λ (_ : ⊤) → assumption)
test₁₁ : (f : ℕ × ℕ → ℕ × ℕ) → (∀ x → ⟨ _≡_ ⟩ (f x) x) →
fst ⟨ f (12 , 73) ⟩ ≡ fst {B = λ _ → ℕ} (12 , 73)
test₁₁ _ hyp = ⟨by⟩ hyp
test₁₂ : (h : ℕ → Maybe ℕ) →
((xs : ℕ) → h xs ≡ just xs) →
(xs : ℕ) → suc ⟨$⟩ h xs ≡ suc ⟨$⟩ return xs
test₁₂ h hyp xs =
suc ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
suc ⟨$⟩ return xs ∎
test₁₃ : (h : List ⊤ → Maybe (List ⊤)) →
((xs : List ⊤) → h xs ≡ just xs) →
(x : ⊤) (xs : List ⊤) → _
test₁₃ h hyp x xs =
_∷_ ⟨$⟩ return x ⊛ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return x ⊛ return xs ∎
test₁₄ : (h : List ℕ → Maybe (List ℕ)) →
((xs : List ℕ) → h xs ≡ just xs) →
(x : ℕ) (xs : List ℕ) → _
test₁₄ h hyp x xs =
_∷_ ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return xs ∎
test₁₅ :
(F : Type → Type → Type)
(G : Bool → Type → Type) →
((A : Type) → F (G false A) A ≡ G false (F A A)) →
(A : Type) →
G false (F (G false A) A) ≡
G false (G false (F A A))
test₁₅ F G hyp A =
G false ⟨ F (G false A) A ⟩ ≡⟨ ⟨by⟩ hyp ⟩∎
G false (G false (F A A)) ∎
test₁₆ : 48 ≡ 42 →
_≡_ {A = ℕ → ℕ} (λ x → x + ⟨ 42 ⟩) (λ x → x + 48)
test₁₆ hyp = ⟨by⟩ hyp
test₁₇ :
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst P refl p ⟩ ≡ f p
test₁₇ P _ _ = ⟨by⟩ (subst-refl P)
test₁₈ :
(subst′ :
∀ {a p} {A : Type a} {x y : A}
(P : A → Type p) → x ≡ y → P x → P y) →
(∀ {a p} {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst′ P refl p ≡ p) →
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst′ P refl p ⟩ ≡ f p
test₁₈ _ subst′-refl _ _ _ = ⟨by⟩ subst′-refl
test₁₉ :
{F : Type → Type} ⦃ r : R F ⦄ {A : Type} {x₁ x₂ : F A}
(p₁ p₂ : x₁ ≡ x₂) (assumption : p₁ ≡ p₂) →
trans p p₁ ≡ trans p p₂
test₁₉ p₁ p₂ assumption =
trans p p₁ ≡⟨⟩
trans p ⟨ p₁ ⟩ ≡⟨ ⟨by⟩ assumption ⟩∎
trans p p₂ ∎
| 30.797688
| 73
| 0.455518
|
119ee55e9a3ee14782778d4b7ff61ff975af10cb
| 532
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Relation/Binary/StrictPartialOrderReasoning.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/StrictPartialOrderReasoning.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/StrictPartialOrderReasoning.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.StrictPartialOrder module directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.StrictPartialOrderReasoning
{p₁ p₂ p₃} (S : StrictPartialOrder p₁ p₂ p₃) where
open import Relation.Binary.Reasoning.StrictPartialOrder S public
| 33.25
| 72
| 0.554511
|
fd2cb85734e977f589c421f3bb3bd74135151bf0
| 593
|
agda
|
Agda
|
empty.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
empty.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
empty.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
module empty where
open import level
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
data ⊥ {ℓ : Level} : Set ℓ where
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
----------------------------------------------------------------------
-- theorems
----------------------------------------------------------------------
⊥-elim : ∀{ℓ} → ⊥ {ℓ} → ∀{ℓ'}{P : Set ℓ'} → P
⊥-elim ()
| 28.238095
| 70
| 0.151771
|
4e524c411050875356a1117aac74c4616a6163ba
| 312
|
agda
|
Agda
|
test/epic/Prelude/Char.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/epic/Prelude/Char.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/epic/Prelude/Char.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module Prelude.Char where
open import Prelude.Bool
postulate
Char : Set
{-# BUILTIN CHAR Char #-}
private
primitive
primCharEquality : (c c' : Char) -> Bool
postulate
eof : Char
{-# COMPILED_EPIC eof () -> Int = foreign Int "eof" () #-}
charEq : Char -> Char -> Bool
charEq = primCharEquality
| 13.565217
| 58
| 0.653846
|
3fdf2f1dc6f041d30e8c77d9987ba33e9af58060
| 6,578
|
agda
|
Agda
|
Cubical/Foundations/Transport.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Foundations/Transport.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Foundations/Transport.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{- Basic theory about transport:
- transport is invertible
- transport is an equivalence ([transportEquiv])
-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.Transport where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function using (_∘_)
-- Direct definition of transport filler, note that we have to
-- explicitly tell Agda that the type is constant (like in CHM)
transpFill : ∀ {ℓ} {A : Type ℓ}
(φ : I)
(A : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ])
(u0 : outS (A i0))
→ --------------------------------------
PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0)
transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0
transport⁻ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A
transport⁻ p = transport (λ i → p (~ i))
subst⁻ : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} (B : A → Type ℓ') (p : x ≡ y) → B y → B x
subst⁻ B p pa = transport⁻ (λ i → B (p i)) pa
transport-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → A → p i) (λ x → x) (transport p)
transport-fillerExt p i x = transport-filler p x i
transport⁻-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → p i → A) (λ x → x) (transport⁻ p)
transport⁻-fillerExt p i x = transp (λ j → p (i ∧ ~ j)) (~ i) x
transport-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → p i → B) (transport p) (λ x → x)
transport-fillerExt⁻ p = symP (transport⁻-fillerExt (sym p))
transport⁻-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → B → p i) (transport⁻ p) (λ x → x)
transport⁻-fillerExt⁻ p = symP (transport-fillerExt (sym p))
transport⁻-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : B)
→ PathP (λ i → p (~ i)) x (transport⁻ p x)
transport⁻-filler p x = transport-filler (λ i → p (~ i)) x
transport⁻Transport : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (a : A) →
transport⁻ p (transport p a) ≡ a
transport⁻Transport p a j = transport⁻-fillerExt p (~ j) (transport-fillerExt p (~ j) a)
transportTransport⁻ : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (b : B) →
transport p (transport⁻ p b) ≡ b
transportTransport⁻ p b j = transport-fillerExt⁻ p j (transport⁻-fillerExt⁻ p j b)
-- Transport is an equivalence
isEquivTransport : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → isEquiv (transport p)
isEquivTransport {A = A} {B = B} p =
transport (λ i → isEquiv (transport-fillerExt p i)) (idIsEquiv A)
transportEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B
transportEquiv p = (transport p , isEquivTransport p)
substEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {a a' : A} (P : A → Type ℓ') (p : a ≡ a') → P a ≃ P a'
substEquiv P p = (subst P p , isEquivTransport (λ i → P (p i)))
liftEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (e : A ≃ B) → P A ≃ P B
liftEquiv P e = substEquiv P (ua e)
transpEquiv : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → ∀ i → p i ≃ B
transpEquiv P i .fst = transp (λ j → P (i ∨ j)) i
transpEquiv P i .snd
= transp (λ k → isEquiv (transp (λ j → P (i ∨ (j ∧ k))) (i ∨ ~ k)))
i (idIsEquiv (P i))
uaTransportη : ∀ {ℓ} {A B : Type ℓ} (P : A ≡ B) → ua (transportEquiv P) ≡ P
uaTransportη P i j
= Glue (P i1) λ where
(j = i0) → P i0 , transportEquiv P
(i = i1) → P j , transpEquiv P j
(j = i1) → P i1 , idEquiv (P i1)
pathToIso : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → Iso A B
Iso.fun (pathToIso x) = transport x
Iso.inv (pathToIso x) = transport⁻ x
Iso.rightInv (pathToIso x) = transportTransport⁻ x
Iso.leftInv (pathToIso x) = transport⁻Transport x
isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B}
→ transport p ≡ transport q → p ≡ q
isInjectiveTransport {p = p} {q} α i =
hcomp
(λ j → λ
{ (i = i0) → retEq univalence p j
; (i = i1) → retEq univalence q j
})
(invEq univalence ((λ a → α i a) , t i))
where
t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd)
t = isProp→PathP (λ i → isPropIsEquiv (λ a → α i a)) _ _
transportUaInv : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → transport (ua (invEquiv e)) ≡ transport (sym (ua e))
transportUaInv e = cong transport (uaInvEquiv e)
-- notice that transport (ua e) would reduce, thus an alternative definition using EquivJ can give
-- refl for the case of idEquiv:
-- transportUaInv e = EquivJ (λ _ e → transport (ua (invEquiv e)) ≡ transport (sym (ua e))) refl e
isSet-subst : ∀ {ℓ ℓ′} {A : Type ℓ} {B : A → Type ℓ′}
→ (isSet-A : isSet A)
→ ∀ {a : A}
→ (p : a ≡ a) → (x : B a) → subst B p x ≡ x
isSet-subst {B = B} isSet-A p x = subst (λ p′ → subst B p′ x ≡ x) (isSet-A _ _ refl p) (substRefl {B = B} x)
-- substituting along a composite path is equivalent to substituting twice
substComposite : ∀ {ℓ ℓ′} {A : Type ℓ} → (B : A → Type ℓ′)
→ {x y z : A} (p : x ≡ y) (q : y ≡ z) (u : B x)
→ subst B (p ∙ q) u ≡ subst B q (subst B p u)
substComposite B p q Bx i =
transport (cong B (compPath-filler' p q (~ i))) (transport-fillerExt (cong B p) i Bx)
-- substitution commutes with morphisms in slices
substCommSlice : ∀ {ℓ ℓ′} {A : Type ℓ}
→ (B C : A → Type ℓ′)
→ (F : ∀ i → B i → C i)
→ {x y : A} (p : x ≡ y) (u : B x)
→ subst C p (F x u) ≡ F y (subst B p u)
substCommSlice B C F p Bx i =
transport-fillerExt⁻ (cong C p) i (F _ (transport-fillerExt (cong B p) i Bx))
-- transporting over (λ i → B (p i) → C (p i)) divides the transport into
-- transports over (λ i → C (p i)) and (λ i → B (p (~ i)))
funTypeTransp : ∀ {ℓ ℓ'} {A : Type ℓ} (B C : A → Type ℓ') {x y : A} (p : x ≡ y) (f : B x → C x)
→ PathP (λ i → B (p i) → C (p i)) f (subst C p ∘ f ∘ subst B (sym p))
funTypeTransp B C {x = x} p f i b =
transp (λ j → C (p (j ∧ i))) (~ i) (f (transp (λ j → B (p (i ∧ ~ j))) (~ i) b))
-- transports between loop spaces preserve path composition
overPathFunct : ∀ {ℓ} {A : Type ℓ} {x y : A} (p q : x ≡ x) (P : x ≡ y)
→ transport (λ i → P i ≡ P i) (p ∙ q)
≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q
overPathFunct p q =
J (λ y P → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q)
(transportRefl (p ∙ q) ∙ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)))
| 43.853333
| 113
| 0.537853
|
734759d2f968b4a5979b2afdf98a9a67c83b3c33
| 1,485
|
agda
|
Agda
|
Parametric/Change/Derive.agda
|
inc-lc/ilc-agda
|
39bb081c6f192bdb87bd58b4a89291686d2d7d03
|
[
"MIT"
] | 10
|
2015-03-04T06:09:20.000Z
|
2019-07-19T07:06:59.000Z
|
Parametric/Change/Derive.agda
|
inc-lc/ilc-agda
|
39bb081c6f192bdb87bd58b4a89291686d2d7d03
|
[
"MIT"
] | 6
|
2015-07-01T18:09:31.000Z
|
2017-05-04T13:53:59.000Z
|
Parametric/Change/Derive.agda
|
inc-lc/ilc-agda
|
39bb081c6f192bdb87bd58b4a89291686d2d7d03
|
[
"MIT"
] | 1
|
2016-02-18T12:26:44.000Z
|
2016-02-18T12:26:44.000Z
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Incrementalization as term-to-term transformation (Fig. 4g).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Change.Type as ChangeType
module Parametric.Change.Derive
{Base : Type.Structure}
(Const : Term.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
open Type.Structure Base
open Term.Structure Base Const
open ChangeType.Structure Base ΔBase
-- Extension point: Incrementalization of primitives.
Structure : Set
Structure = ∀ {τ} →
Const τ →
Term ∅ (ΔType τ)
module Structure (derive-const : Structure) where
fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ
fit = weaken Γ≼ΔΓ
-- In the paper, we transform "x" to "dx". Here, we work with
-- de Bruijn indices, so we have to manipulate the indices to
-- account for a bigger context after transformation.
deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ)
deriveVar this = this
deriveVar (that x) = that (that (deriveVar x))
-- We provide: Incrementalization of arbitrary terms.
derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ)
derive (var x) = var (deriveVar x)
derive (app s t) = app (app (derive s) (fit t)) (derive t)
derive (abs t) = abs (abs (derive t))
derive {Γ = Γ} (const c) = weaken (∅≼Γ {ΔContext Γ}) (derive-const c)
| 33.75
| 72
| 0.620202
|
21dfa592547f27245eae7190bfa5312d343959a1
| 254
|
agda
|
Agda
|
test/Fail/Issue3314.agda
|
phadej/agda
|
2fa8ede09451d43647f918dbfb24ff7b27c52edc
|
[
"BSD-3-Clause"
] | null | null | null |
test/Fail/Issue3314.agda
|
phadej/agda
|
2fa8ede09451d43647f918dbfb24ff7b27c52edc
|
[
"BSD-3-Clause"
] | null | null | null |
test/Fail/Issue3314.agda
|
phadej/agda
|
2fa8ede09451d43647f918dbfb24ff7b27c52edc
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --cubical #-}
module _ where
open import Agda.Primitive.Cubical
open import Agda.Builtin.Cubical.Path
data S1 : Set where
base : S1
loop : base ≡ base
postulate
weird : S1 → I
bad : (x : S1) → I
bad base = {!!}
bad (loop x) = {!!}
| 14.111111
| 37
| 0.625984
|
1bd9c0893bd04a40d28d086b5ce3398444bef7ab
| 3,360
|
agda
|
Agda
|
lib/Haskell/Prim/Show.agda
|
JonathanBrouwer/agda2hs
|
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
|
[
"MIT"
] | 55
|
2020-10-20T13:36:25.000Z
|
2022-03-26T21:57:56.000Z
|
lib/Haskell/Prim/Show.agda
|
SNU-2D/agda2hs
|
160478a51bc78b0fdab07b968464420439f9fed6
|
[
"MIT"
] | 63
|
2020-10-22T05:19:27.000Z
|
2022-02-25T15:47:30.000Z
|
lib/Haskell/Prim/Show.agda
|
SNU-2D/agda2hs
|
160478a51bc78b0fdab07b968464420439f9fed6
|
[
"MIT"
] | 18
|
2020-10-21T22:19:09.000Z
|
2022-03-12T11:42:52.000Z
|
module Haskell.Prim.Show where
open import Agda.Builtin.Char
open import Agda.Builtin.Nat
import Agda.Builtin.String as Str
open import Haskell.Prim
open import Haskell.Prim.String
open import Haskell.Prim.List
open import Haskell.Prim.Word
open import Haskell.Prim.Double
open import Haskell.Prim.Maybe
open import Haskell.Prim.Eq
open import Haskell.Prim.Tuple
open import Haskell.Prim.Ord
open import Haskell.Prim.Either
open import Haskell.Prim.Integer
open import Haskell.Prim.Bool
open import Haskell.Prim.Int
open import Haskell.Prim.Foldable
--------------------------------------------------
-- Show
ShowS : Set
ShowS = String → String
showChar : Char → ShowS
showChar = _∷_
showString : String → ShowS
showString = _++_
showParen : Bool → ShowS → ShowS
showParen false s = s
showParen true s = showString "(" ∘ s ∘ showString ")"
record Show (a : Set) : Set where
field
showsPrec : Int → a → ShowS
showList : List a → ShowS
shows : a → ShowS
shows = showsPrec 0
show : a → String
show x = shows x ""
defaultShowList : (a → ShowS) → List a → ShowS
defaultShowList _ [] = showString "[]"
defaultShowList shows (x ∷ xs) = showString "[" ∘ foldl (λ s x → s ∘ showString "," ∘ shows x) (shows x) xs ∘ showString "]"
open Show ⦃ ... ⦄ public
{-# COMPILE AGDA2HS Show existing-class #-}
private
makeShow : (a → String) → Show a
makeShow sh .showsPrec _ = showString ∘ sh
makeShow sh .showList = defaultShowList (showString ∘ sh)
makeShowsPrec : (Int → a → ShowS) → Show a
makeShowsPrec shp .showsPrec = shp
makeShowsPrec shp .showList = defaultShowList (shp 0)
instance
iShowNat : Show Nat
iShowNat = makeShow (Str.primStringToList ∘ Str.primShowNat)
iShowInteger : Show Integer
iShowInteger = makeShow showInteger
iShowInt : Show Int
iShowInt = makeShow showInt
iShowWord : Show Word
iShowWord = makeShow showWord
iShowDouble : Show Double
iShowDouble = makeShow (Str.primStringToList ∘ primShowFloat)
iShowBool : Show Bool
iShowBool = makeShow λ where false → "False"; true → "True"
iShowChar : Show Char
iShowChar .showsPrec _ = showString ∘ Str.primStringToList ∘ Str.primShowChar
iShowChar .showList = showString ∘ Str.primStringToList ∘ Str.primShowString ∘ Str.primStringFromList
iShowList : ⦃ Show a ⦄ → Show (List a)
iShowList .showsPrec _ = showList
iShowList .showList = defaultShowList showList
private
showApp₁ : ⦃ Show a ⦄ → Int → String → a → ShowS
showApp₁ p tag x = showParen (p > 10) $ showString tag ∘ showString " " ∘ showsPrec 11 x
instance
iShowMaybe : ⦃ Show a ⦄ → Show (Maybe a)
iShowMaybe = makeShowsPrec λ where p Nothing → showString "Nothing"
p (Just x) → showApp₁ p "Just" x
iShowEither : ⦃ Show a ⦄ → ⦃ Show b ⦄ → Show (Either a b)
iShowEither = makeShowsPrec λ where p (Left x) → showApp₁ p "Left" x
p (Right y) → showApp₁ p "Right" y
private
-- Minus the parens
showTuple : ∀ {as} → ⦃ All Show as ⦄ → Tuple as → ShowS
showTuple [] = showString ""
showTuple ⦃ allCons ⦄ (x ∷ []) = shows x
showTuple ⦃ allCons ⦄ (x ∷ xs) = shows x ∘ showString "," ∘ showTuple xs
instance
iShowTuple : ∀ {as} → ⦃ All Show as ⦄ → Show (Tuple as)
iShowTuple = makeShowsPrec λ _ → showParen true ∘ showTuple
| 28.474576
| 124
| 0.666369
|
648531b7b483957c6a7874465d4ede21a7f0cbf7
| 2,289
|
agda
|
Agda
|
src/Numeric/Nat/Divide.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 111
|
2015-01-05T11:28:15.000Z
|
2022-02-12T23:29:26.000Z
|
src/Numeric/Nat/Divide.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 59
|
2016-02-09T05:36:44.000Z
|
2022-01-14T07:32:36.000Z
|
src/Numeric/Nat/Divide.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 24
|
2015-03-12T18:03:45.000Z
|
2021-04-22T06:10:41.000Z
|
module Numeric.Nat.Divide where
open import Prelude
open import Control.WellFounded
open import Numeric.Nat.Properties
open import Numeric.Nat.DivMod
open import Tactic.Nat
--- Divides predicate ---
data _Divides_ (a b : Nat) : Set where
factor : ∀ q (eq : q * a ≡ b) → a Divides b
pattern factor! q = factor q refl
get-factor : ∀ {a b} → a Divides b → Nat
get-factor (factor q _) = q
dividesToDivMod : ∀ {a b} {{_ : NonZero b}} → b Divides a → DivMod a b
dividesToDivMod {b = zero } {{}}
dividesToDivMod {b = suc b} (factor q eq) = qr q 0 auto (by eq)
mod-divides : ∀ {a b} {{_ : NonZero a}} → a Divides b → b mod a ≡ 0
mod-divides {zero} {{}}
mod-divides {suc a} {b} (factor q eq) =
rem-unique (b divmod suc a) (dividesToDivMod (factor q eq))
div-divides : ∀ {a b} {{_ : NonZero a}} → a Divides b → (b div a) * a ≡ b
div-divides {a} {b} a|b with divmod-sound a b
... | eq rewrite mod-divides a|b = by eq
private
safediv : Nat → Nat → Nat
safediv a 0 = 0
safediv a (suc b) = a div suc b
divides-safediv : ∀ {a b} → a Divides b → safediv b a * a ≡ b
divides-safediv {zero } (factor! _) = auto
divides-safediv {suc a} a|b = div-divides a|b
fast-divides : ∀ {a b} → a Divides b → a Divides b
fast-divides {a} {b} a|b = factor (safediv b a) (eraseEquality (divides-safediv a|b))
private
no-divides-suc-mod : ∀ {a b} q {r} → LessNat (suc r) a → q * a + suc r ≡ b → ¬ (a Divides b)
no-divides-suc-mod {zero} _ (diff _ ())
no-divides-suc-mod {suc a} q {r} lt eq (factor q′ eq′) =
refute (rem-unique
(dividesToDivMod (factor q′ eq′))
(qr q (suc r) lt eq))
no-divides-zero : ∀ {a} → ¬ (0 Divides suc a)
no-divides-zero {a} (factor q eq) = refute eq
_divides?_ : ∀ a b → Dec (a Divides b)
a divides? zero = yes (factor! 0)
zero divides? suc b = no no-divides-zero
suc a divides? suc b with suc b divmod suc a
suc a divides? suc b | qr q zero _ eq = yes (factor q (by eq))
suc a divides? suc b | qr q (suc r) lt eq₁ = no (no-divides-suc-mod q lt eq₁)
--- Instances ---
instance
SmashDivides : ∀ {a b} {{_ : NonZero a}} → Smashed (a Divides b)
SmashDivides {0} {{}}
smashed {{SmashDivides {a@(suc _)}}} {factor q eq} {factor q₁ refl} =
case mul-inj₁ q q₁ (suc _) eq of λ where refl → factor q $≡ smashed
| 32.7
| 94
| 0.615116
|
033d8650632c431ce06d438397872b50a0036999
| 478
|
agda
|
Agda
|
Cubical/HITs/SetTruncation/Base.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 1
|
2022-03-05T00:29:00.000Z
|
2022-03-05T00:29:00.000Z
|
Cubical/HITs/SetTruncation/Base.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
Cubical/HITs/SetTruncation/Base.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
{-
This file contains:
- Definition of set truncations
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.SetTruncation.Base where
open import Cubical.Core.Primitives
open import Cubical.Foundations.Pointed
-- set truncation as a higher inductive type:
data ∥_∥₂ {ℓ} (A : Type ℓ) : Type ℓ where
∣_∣₂ : A → ∥ A ∥₂
squash₂ : ∀ (x y : ∥ A ∥₂) (p q : x ≡ y) → p ≡ q
-- Pointed version
∥_∥₂∙ : ∀ {ℓ} (A : Pointed ℓ) → Pointed ℓ
fst ∥ A ∥₂∙ = ∥ fst A ∥₂
snd ∥ A ∥₂∙ = ∣ pt A ∣₂
| 19.916667
| 50
| 0.608787
|
738c5289fdd242c32bb63899de746e726e5631e1
| 2,332
|
agda
|
Agda
|
Data/RBTree.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Data/RBTree.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Data/RBTree.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
open import Prelude
open import Relation.Binary
module Data.RBTree {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where
open import Relation.Binary.Construct.Bounded totalOrder
open TotalOrder totalOrder using (_≤?_)
data Colour : Type where
red black : Colour
add-black : Colour → ℕ → ℕ
add-black red = λ n → n
add-black black = suc
private
variable
n : ℕ
data Tree (lb ub : [∙]) : ℕ → Type (e ℓ⊔ r₂) where
leaf : lb [≤] ub → Tree lb ub n
node : (x : E) → (c : Colour) → Tree lb [ x ] n → Tree [ x ] ub n → Tree lb ub (add-black c n)
private
variable
lb ub : [∙]
IsBlack : Tree lb ub n → Type
IsBlack (leaf x) = ⊤
IsBlack (node x red tr tr₁) = ⊥
IsBlack (node x black tr tr₁) = ⊤
Valid-rec : Tree lb ub n → Type
Valid-rec (leaf x) = ⊤
Valid-rec (node x red xs ys) = IsBlack xs × IsBlack ys × Valid-rec xs × Valid-rec ys
Valid-rec (node x black xs ys) = Valid-rec xs × Valid-rec ys
Valid : Tree lb ub n → Type
Valid tr = IsBlack tr × Valid-rec tr
-- insertWithin : (x : E) →
-- (lb [≤] [ x ]) →
-- ([ x ] [≤] ub) →
-- (tr : Tree lb ub n) →
-- Valid-rec tr →
-- ∃ c Σ (Tree lb ub (add-black c n)) Valid-rec
-- insertWithin x lb≤x x≤ub (leaf _) val = red , node x red (leaf lb≤x) (leaf x≤ub) , tt , tt , tt , tt
-- insertWithin x lb≤x x≤ub (node y c ls rs) val with x ≤? y
-- insertWithin x lb≤x x≤ub (node y red ls rs) val | inl x≤y with insertWithin x lb≤x x≤y ls (fst (snd (snd val)))
-- insertWithin x lb≤x x≤ub (node y red ls rs) val | inl x≤y | red , ls′ , val′ = black , node y black ls′ rs , val′ , snd (snd (snd val))
-- insertWithin x lb≤x x≤ub (node y red ls rs) val | inl x≤y | black , ls′ , val′ = {!{!!} , node y {!!} ls′ rs , {!!}!}
-- insertWithin x lb≤x x≤ub (node y black ls rs) val | inl x≤y with insertWithin x lb≤x x≤y ls (fst val)
-- insertWithin x lb≤x x≤ub (node y black ls rs) val | inl x≤y | res = {!!}
-- insertWithin x lb≤x x≤ub (node y c ls rs) val | inr y≤x = {!!}
-- -- insertWithin x lb≤x x≤ub (node y ls rs) with x ≤? y
-- -- insertWithin x lb≤x x≤ub (node y ls rs) | inl x≤y = node y (insertWithin x lb≤x x≤y ls) rs
-- -- insertWithin x lb≤x x≤ub (node y ls rs) | inr y≤x = node y ls (insertWithin x y≤x x≤ub rs)
| 37.015873
| 143
| 0.582762
|
1ead12ae2237f7f87bf9f5f966716193a23102c9
| 1,951
|
agda
|
Agda
|
Categories/Monad/Strong.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Monad/Strong.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Monad/Strong.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
-- Define Strong Monad; use the Wikipedia definition
-- https://en.wikipedia.org/wiki/Strong_monad
-- At the nLab, https://ncatlab.org/nlab/show/strong+monad
-- there are two further definitions; the 2-categorical version is too complicated
-- and the Moggi definition is a special case of the one here
module Categories.Monad.Strong where
open import Level
open import Data.Product using (_,_)
open import Categories.Category
open import Categories.Functor renaming (id to idF)
open import Categories.Category.Monoidal
open import Categories.Category.Product
open import Categories.NaturalTransformation hiding (id)
-- open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.Monad
private
variable
o ℓ e : Level
record Strength {C : Category o ℓ e} (V : Monoidal C) (m : Monad C) : Set (o ⊔ ℓ ⊔ e) where
open Category C
open Monoidal V
open Monad m using (F)
module M = Monad m
open NaturalTransformation M.η using (η)
open NaturalTransformation M.μ renaming (η to μ)
open Functor F
field
strengthen : NaturalTransformation (⊗ ∘F (idF ⁂ F)) (F ∘F ⊗)
private
module t = NaturalTransformation strengthen
field
-- strengthening with 1 is irrelevant
identityˡ : {A : Obj} → F₁ (unitorˡ.from) ∘ t.η (unit , A) ≈ unitorˡ.from
-- commutes with unit (of monad)
η-comm : {A B : Obj} → t.η (A , B) ∘ (id ⊗₁ η B) ≈ η (A ⊗₀ B)
-- strength commutes with multiplication
μ-η-comm : {A B : Obj} → μ (A ⊗₀ B) ∘ F₁ (t.η (A , B)) ∘ t.η (A , F₀ B)
≈ t.η (A , B) ∘ id ⊗₁ μ B
-- consecutive applications of strength commute (i.e. strength is associative)
strength-assoc : {A B C : Obj} → F₁ associator.from ∘ t.η (A ⊗₀ B , C)
≈ t.η (A , B ⊗₀ C) ∘ id ⊗₁ t.η (B , C) ∘ associator.from
record StrongMonad {C : Category o ℓ e} (V : Monoidal C) : Set (o ⊔ ℓ ⊔ e) where
field
m : Monad C
strength : Strength V m
| 34.839286
| 91
| 0.672476
|
355fe32b3e3966c725e6240995fe12e64864fc61
| 655
|
agda
|
Agda
|
notes/DataBase.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/DataBase.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/DataBase.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Nils' idea about databases in the Agda mailing list.
-- http://thread.gmane.org/gmane.comp.lang.agda/2911/focus=2917
module DataBase where
infixr 7 _,_ _,′_
infixr 5 _∧_
data _∧_ (A B : Set) : Set where
_,_ : A → B → A ∧ B
_,′_ : ∀ {A B} → A → B → A ∧ B
_,′_ = _,_
postulate
P Q R S : Set
h₁ : P → Q
h₂ : Q → R
h₃ : R → S
postulate thm₁ : P → S
{-# ATP prove thm₁ h₁ h₂ h₃ #-}
db = h₁ ,′ h₂ ,′ h₃
postulate thm₂ : P → S
{-# ATP prove thm₂ db #-}
| 19.848485
| 63
| 0.525191
|
ed3c45de4aabcb7200c9e5e9a66599f987477f90
| 32
|
agda
|
Agda
|
Categories/Comonad.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | 1
|
2018-12-29T21:51:57.000Z
|
2018-12-29T21:51:57.000Z
|
Categories/Comonad.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | null | null | null |
Categories/Comonad.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | null | null | null |
module Categories.Comonad where
| 16
| 31
| 0.875
|
52d85cc3c75d37e000c452cb324bffa98fc5f3cf
| 2,089
|
agda
|
Agda
|
test/Succeed/Issue2713.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue2713.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue2713.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --instance-search-depth=10 #-}
open import Agda.Primitive
it : ∀ {a} {A : Set a} {{x : A}} -> A
it {{x}} = x
infixr 5 _,_
postulate
Pair : ∀ {a} (A : Set a) {b} (B : Set b) -> Set (a ⊔ b)
_,_ : ∀ {a} {A : Set a} {b} {B : Set b} -> A -> B -> Pair A B
data Constraint {a} {A : Set a} (x : A) : Set where
mkConstraint : Constraint x
record Inner {l a} {A : Set a} (x : A) (_ : Constraint x) (C : Set l) : Set l where
field
value : C
Class : ∀ {l a} {A : Set a} (x : A) (C : Set l) -> Set l
Class x C = Inner x mkConstraint C
FunctionClass = λ
{a} (A : Set a)
-> Class A (A -> A)
DiagonalClass = λ
{i} {I : Set i}
{r} (R : I -> I -> Set r)
x
-> Class (R , x) (R x x)
DiagonalFunctionClass = λ
{i} {I : Set i}
{r} (R : I -> I -> Set r)
x
-> Class (R , x) (R x x -> R x x)
postulate
toDiagonalFunctionClass : ∀
{i} {I : Set i}
{r} {R : I -> I -> Set r}
{{iD : ∀ {x} -> DiagonalClass R x}}
-> ∀ {x} -> DiagonalFunctionClass R x
DiagonalPropertyType = λ
{i r p} {I : Set i}
(R : I -> I -> Set r)
(P : ∀ x -> R x x -> Set p)
-> ∀ x (d : R x x) -> P _ d
DiagonalPropertyClass = λ
{i r p} {I : Set i}
(R : I -> I -> Set r)
(P : ∀ x -> R x x -> Set p)
(C : FunctionClass I)
-> Class (R , P , C) (DiagonalPropertyType R P)
diagonalProperty : ∀
{i r p} {I : Set i}
{R : I -> I -> Set r}
{P : ∀ x -> R x x -> Set p}
{{C : FunctionClass I}}
{{iDP : DiagonalPropertyClass R P C}}
-> DiagonalPropertyType R P
diagonalProperty {{iDP = iDP}} = Inner.value iDP
-- works-1 works-2
fails : ∀
{r p} {I : Set}
{R : I -> I -> Set r}
{P : ∀ x -> R x x -> Set p}
(C : FunctionClass I)
{{iDP : DiagonalPropertyClass R P C}}
-> DiagonalPropertyType R P
-- works-1 C x d =
-- let instance iC = C
-- in diagonalProperty _ d
-- works-2 C x d =
-- let instance iC = C
-- iDF = toDiagonalFunctionClass
-- in diagonalProperty {{it}} _ d
fails C x d =
let instance iC = C
iDF = toDiagonalFunctionClass
in diagonalProperty _ d -- Instance search depth exhausted
| 22.956044
| 83
| 0.520345
|
cc542e207cef68ddb83a5880208e89db9acaa4bc
| 649
|
agda
|
Agda
|
core/lib/types/Empty.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
core/lib/types/Empty.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
core/lib/types/Empty.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import lib.Basics
module lib.types.Empty where
Empty-rec : ∀ {i} {A : Type i} → (Empty → A)
Empty-rec = Empty-elim
⊥-rec : ∀ {i} {A : Type i} → (⊥ → A)
⊥-rec = Empty-rec
Empty-is-prop : is-prop Empty
Empty-is-prop = Empty-elim
⊥-is-prop : is-prop ⊥
⊥-is-prop = Empty-is-prop
negated-equiv-Empty : ∀ {i} (A : Type i) → (¬ A) → (Empty ≃ A)
negated-equiv-Empty A notA = equiv Empty-elim
notA
(λ a → Empty-elim {P = λ _ → Empty-elim (notA a) == a} (notA a))
(Empty-elim {P = λ e → notA (Empty-elim e) == e})
| 27.041667
| 99
| 0.494607
|
ccbf2eb7d86a098b6f9810fa140f27acbf92be38
| 303
|
agda
|
Agda
|
Syntax/Type.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Syntax/Type.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Syntax/Type.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Syntax.Type where
open import Type
-- Assures that a value has a certain type
type-ascript : ∀{ℓ} → (T : Type{ℓ}) → T → T
type-ascript T x = x
{-# INLINE type-ascript #-}
_:-[_] = type-ascript
infixr 0.98 _:-[_]
{-# INLINE _:-[_] #-}
infixl 10 type-ascript
syntax type-ascript T x = x :of: T
| 18.9375
| 43
| 0.633663
|
72363726ec2492d8778d4ac18b3e139b1b830927
| 27,022
|
agda
|
Agda
|
Cubical/Homotopy/Group/LES.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Homotopy/Group/LES.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Homotopy/Group/LES.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
{-
This file contains:
1. The long exact sequence of loop spaces Ωⁿ (fib f) → Ωⁿ A → Ωⁿ B
2. The long exact sequence of homotopy groups πₙ(fib f) → πₙ A → πₙ B
3. Some lemmas relating the map in the sequence to maps using the
other definition of πₙ (maps from Sⁿ)
-}
module Cubical.Homotopy.Group.LES where
open import Cubical.Homotopy.Loopspace
open import Cubical.Homotopy.Group.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Pointed.Homogeneous
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc)
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
open Iso
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.HITs.SetTruncation
renaming (rec to sRec
; elim to sElim ; elim2 to sElim2
; map to sMap)
open import Cubical.HITs.PropositionalTruncation
renaming (rec to pRec)
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath
-- We will need an explicitly defined equivalence
-- (PathP (λ i → p i ≡ y) q q) ≃ (sym q ∙∙ p ∙∙ q ≡ refl)
-- This is given by →∙∙lCancel below
module _ {ℓ : Level} {A : Type ℓ} {x y : A} (p : x ≡ x) (q : x ≡ y) where
→∙∙lCancel-fill : PathP (λ i → p i ≡ y) q q → I → I → I → A
→∙∙lCancel-fill PP k i j =
hfill (λ k → λ {(i = i0) → doubleCompPath-filler (sym q) p q k j
; (i = i1) → y
; (j = i0) → q (i ∨ k)
; (j = i1) → q (i ∨ k)})
(inS (PP j i))
k
←∙∙lCancel-fill : sym q ∙∙ p ∙∙ q ≡ refl → I → I → I → A
←∙∙lCancel-fill PP k i j =
hfill (λ k → λ {(i = i0) → q (j ∨ ~ k)
; (i = i1) → q (j ∨ ~ k)
; (j = i0) → doubleCompPath-filler (sym q) p q (~ k) i
; (j = i1) → y})
(inS (PP j i))
k
→∙∙lCancel : PathP (λ i → p i ≡ y) q q → sym q ∙∙ p ∙∙ q ≡ refl
→∙∙lCancel PP i j = →∙∙lCancel-fill PP i1 i j
←∙∙lCancel : sym q ∙∙ p ∙∙ q ≡ refl → PathP (λ i → p i ≡ y) q q
←∙∙lCancel PP i j = ←∙∙lCancel-fill PP i1 i j
←∙∙lCancel→∙∙lCancel : (PP : PathP (λ i → p i ≡ y) q q)
→ ←∙∙lCancel (→∙∙lCancel PP) ≡ PP
←∙∙lCancel→∙∙lCancel PP r i j =
hcomp (λ k → λ {(r = i0) → ←∙∙lCancel-fill (→∙∙lCancel PP) k i j
; (r = i1) → PP i j
; (j = i0) → doubleCompPath-filler (sym q) p q (~ k ∧ ~ r) i
; (j = i1) → y
; (i = i0) → q (j ∨ ~ k ∧ ~ r)
; (i = i1) → q (j ∨ ~ k ∧ ~ r)})
(hcomp (λ k → λ {(r = i0) → →∙∙lCancel-fill PP k j i
; (r = i1) → PP i j
; (j = i0) → doubleCompPath-filler (sym q) p q (k ∧ ~ r) i
; (j = i1) → y
; (i = i0) → q (j ∨ k ∧ ~ r)
; (i = i1) → q (j ∨ k ∧ ~ r)})
(PP i j))
→∙∙lCancel←∙∙lCancel : (PP : sym q ∙∙ p ∙∙ q ≡ refl)
→ →∙∙lCancel (←∙∙lCancel PP) ≡ PP
→∙∙lCancel←∙∙lCancel PP r i j =
hcomp (λ k → λ {(r = i0) → →∙∙lCancel-fill (←∙∙lCancel PP) k i j
; (r = i1) → PP i j
; (j = i0) → q (i ∨ k ∨ r)
; (j = i1) → q (i ∨ k ∨ r)
; (i = i0) → doubleCompPath-filler (sym q) p q (r ∨ k) j
; (i = i1) → y})
(hcomp (λ k → λ {(r = i0) → ←∙∙lCancel-fill PP k j i
; (r = i1) → PP i j
; (j = i0) → q (i ∨ r ∨ ~ k)
; (j = i1) → q (i ∨ r ∨ ~ k)
; (i = i0) → doubleCompPath-filler (sym q) p q (r ∨ ~ k) j
; (i = i1) → y})
(PP i j))
←∙∙lCancel-refl-refl :
{ℓ : Level} {A : Type ℓ} {x : A} (p : refl {x = x} ≡ refl)
→ ←∙∙lCancel {x = x} {y = x} refl refl (sym (rUnit refl) ∙ p)
≡ flipSquare p
←∙∙lCancel-refl-refl p k i j =
hcomp (λ r → λ { (i = i0) → p i0 i0
; (i = i1) → p i0 i0
; (j = i0) → rUnit (λ _ → p i0 i0) (~ r) i
; (j = i1) → p i0 i0
; (k = i0) → ←∙∙lCancel-fill refl refl (sym (rUnit refl) ∙ p) r i j
; (k = i1) → compPath-filler' (sym (rUnit refl)) p (~ r) j i})
((sym (rUnit refl) ∙ p) j i)
{- We need an iso Ω(fib f) ≅ fib(Ω f) -}
ΩFibreIso : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B)
→ Iso (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f)))
(fiber (Ω→ f .fst) refl)
fun (ΩFibreIso f) p = (cong fst p) ,
→∙∙lCancel (cong (fst f) (cong fst p)) (snd f)
(cong snd p)
fst (inv (ΩFibreIso f) (p , q) i) = p i
snd (inv (ΩFibreIso f) (p , q) i) = ←∙∙lCancel (cong (fst f) p) (snd f) q i
rightInv (ΩFibreIso f) (p , q) = ΣPathP (refl , →∙∙lCancel←∙∙lCancel _ _ q)
fst (leftInv (ΩFibreIso f) p i j) = fst (p j)
snd (leftInv (ΩFibreIso f) p i j) k =
←∙∙lCancel→∙∙lCancel _ _ (cong snd p) i j k
{- Some homomorphism properties of the above iso -}
ΩFibreIsopres∙fst : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B)
→ (p q : (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f))))
→ fst (fun (ΩFibreIso f) (p ∙ q))
≡ fst (fun (ΩFibreIso f) p) ∙ fst (fun (ΩFibreIso f) q)
ΩFibreIsopres∙fst f p q = cong-∙ fst p q
ΩFibreIso⁻pres∙snd : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(f : A →∙ B) (p q : typ (Ω (Ω B)))
→ inv (ΩFibreIso f) (refl , (Ω→ f .snd ∙ p ∙ q))
≡ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ p)
∙ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ q)
ΩFibreIso⁻pres∙snd {A = A} {B = B}=
→∙J (λ b₀ f → (p q : typ (Ω (Ω (fst B , b₀))))
→ inv (ΩFibreIso f) (refl , (Ω→ f .snd ∙ p ∙ q))
≡ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ p)
∙ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ q))
ind
where
ind : (f : typ A → typ B) (p q : typ (Ω (Ω (fst B , f (pt A)))))
→ inv (ΩFibreIso (f , refl)) (refl , (sym (rUnit refl) ∙ p ∙ q))
≡ inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ p)
∙ inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q)
fst (ind f p q i j) =
(rUnit refl
∙ sym (cong-∙ fst
(inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ p))
(inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q)))) i j
snd (ind f p q i j) k =
hcomp (λ r
→ λ {(i = i0) → ←∙∙lCancel-refl-refl (p ∙ q) (~ r) j k --
; (i = i1) →
snd (compPath-filler
(inv (ΩFibreIso (f , refl))
(refl , sym (rUnit refl) ∙ p))
(inv (ΩFibreIso (f , refl))
(refl , sym (rUnit refl) ∙ q)) r j) k
; (j = i0) → f (snd A)
; (j = i1) → snd (inv (ΩFibreIso (f , refl))
(refl , sym (rUnit refl) ∙ q) (r ∨ ~ i)) k
; (k = i0) → main r i j
; (k = i1) → f (snd A)})
(hcomp (λ r → λ {(i = i0) → (p ∙ q) k j
; (i = i1) → ←∙∙lCancel-refl-refl p (~ r) j k
; (j = i0) → f (snd A)
; (j = i1) → ←∙∙lCancel-refl-refl q (~ r) (~ i) k
; (k = i0) → f (pt A)
; (k = i1) → f (snd A)})
(hcomp (λ r → λ {(i = i0) → (compPath-filler' p q r) k j
; (i = i1) → p (k ∨ ~ r) j
; (j = i0) → f (snd A)
; (j = i1) → q k (~ i)
; (k = i0) → p (k ∨ ~ r) j
; (k = i1) → f (snd A)})
(q k (~ i ∧ j))))
where
P = (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ p))
Q = (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q))
main : I → I → I → fst B
main r i j =
hcomp (λ k → λ {(i = i0) → f (snd A)
; (i = i1) → f (fst (compPath-filler P Q (r ∨ ~ k) j))
; (j = i0) → f (snd A)
; (j = i1) → f (snd A)
; (r = i0) → f (fst (compPath-filler P Q (i ∧ ~ k) j))
; (r = i1) → f ((rUnit refl ∙ sym (cong-∙ fst P Q)) i j)})
(hcomp (λ k → λ {(i = i0) → f (rUnit (λ _ → pt A) (~ k ∧ r) j)
; (i = i1) → f (fst ((P ∙ Q) j))
; (j = i0) → f (snd A)
; (j = i1) → f (snd A)
; (r = i0) → f (fst (compPath-filler P Q i j))
; (r = i1) → f ((compPath-filler' (rUnit refl)
(sym (cong-∙ fst P Q)) k) i j)})
(hcomp (λ k → λ {(i = i0) → f (rUnit (λ _ → pt A) (k ∧ r) j)
; (i = i1) → f (fst (compPath-filler P Q k j))
; (j = i0) → f (snd A)
; (j = i1) → f (snd A)
; (r = i0) → f (fst (compPath-filler P Q (i ∧ k) j))
; (r = i1) → f ((cong-∙∙-filler fst refl P Q) k (~ i) j)})
(f (snd A))))
ΩFibreIso∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B)
→ Iso.fun (ΩFibreIso f) refl ≡ (refl , (∙∙lCancel (snd f)))
ΩFibreIso∙ {A = A} {B = B} =
→∙J (λ b f → Iso.fun (ΩFibreIso f) refl ≡ (refl , (∙∙lCancel (snd f))))
λ f → ΣPathP (refl , help f)
where
help : (f : fst A → fst B) →
→∙∙lCancel (λ i → f (snd A)) refl (λ i → refl)
≡ ∙∙lCancel refl
help f i j r =
hcomp (λ k → λ {(i = i0) →
→∙∙lCancel-fill (λ _ → f (snd A)) refl refl k j r
; (i = i1) → ∙∙lCancel-fill (λ _ → f (snd A)) j r k
; (j = i0) → rUnit (λ _ → f (snd A)) k r
; (j = i1) → f (snd A)
; (r = i1) → f (snd A)
; (r = i0) → f (snd A)})
(f (snd A))
ΩFibreIso⁻∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B)
→ Iso.inv (ΩFibreIso f) (refl , (∙∙lCancel (snd f))) ≡ refl
ΩFibreIso⁻∙ f =
cong (Iso.inv (ΩFibreIso f)) (sym (ΩFibreIso∙ f)) ∙ leftInv (ΩFibreIso f) refl
{- Ωⁿ (fib f) ≃∙ fib (Ωⁿ f) -}
Ω^Fibre≃∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B)
→ ((Ω^ n) (fiber (fst f) (pt B) , (pt A) , snd f))
≃∙ ((fiber (Ω^→ n f .fst) (snd ((Ω^ n) B)))
, (snd ((Ω^ n) A)) , (Ω^→ n f .snd))
Ω^Fibre≃∙ zero f = (idEquiv _) , refl
Ω^Fibre≃∙ (suc n) f =
compEquiv∙
(Ω≃∙ (Ω^Fibre≃∙ n f))
((isoToEquiv (ΩFibreIso (Ω^→ n f))) , ΩFibreIso∙ (Ω^→ n f))
{- Its inverse iso directly defined -}
Ω^Fibre≃∙⁻ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(n : ℕ) (f : A →∙ B)
→ ((fiber (Ω^→ n f .fst) (snd ((Ω^ n) B)))
, (snd ((Ω^ n) A)) , (Ω^→ n f .snd))
≃∙ ((Ω^ n) (fiber (fst f) (pt B) , (pt A) , snd f))
Ω^Fibre≃∙⁻ zero f = (idEquiv _) , refl
Ω^Fibre≃∙⁻ (suc n) f =
compEquiv∙
((isoToEquiv (invIso (ΩFibreIso (Ω^→ n f))))
, (ΩFibreIso⁻∙ (Ω^→ n f)))
(Ω≃∙ (Ω^Fibre≃∙⁻ n f))
isHomogeneousΩ^→fib : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(n : ℕ) (f : A →∙ B)
→ isHomogeneous
((fiber (Ω^→ (suc n) f .fst) (snd ((Ω^ (suc n)) B)))
, (snd ((Ω^ (suc n)) A)) , (Ω^→ (suc n) f .snd))
isHomogeneousΩ^→fib n f =
subst isHomogeneous (ua∙ ((fst (Ω^Fibre≃∙ (suc n) f)))
(snd (Ω^Fibre≃∙ (suc n) f)))
(isHomogeneousPath _ _)
Ω^Fibre≃∙sect : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(n : ℕ) (f : A →∙ B)
→ (≃∙map (Ω^Fibre≃∙⁻ n f) ∘∙ ≃∙map (Ω^Fibre≃∙ n f))
≡ idfun∙ _
Ω^Fibre≃∙sect zero f = ΣPathP (refl , (sym (rUnit refl)))
Ω^Fibre≃∙sect (suc n) f =
→∙Homogeneous≡ (isHomogeneousPath _ _)
(funExt
λ p → cong (fst (fst (Ω≃∙ (Ω^Fibre≃∙⁻ n f))))
(leftInv (ΩFibreIso (Ω^→ n f))
((fst (fst (Ω≃∙ (Ω^Fibre≃∙ n f))) p)))
∙ sym (Ω→∘ (≃∙map (Ω^Fibre≃∙⁻ n f))
(≃∙map (Ω^Fibre≃∙ n f)) p)
∙ (λ i → (Ω→ (Ω^Fibre≃∙sect n f i)) .fst p)
∙ sym (rUnit p))
Ω^Fibre≃∙retr : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(n : ℕ) (f : A →∙ B)
→ (≃∙map (Ω^Fibre≃∙ n f) ∘∙ ≃∙map (Ω^Fibre≃∙⁻ n f))
≡ idfun∙ _
Ω^Fibre≃∙retr zero f = ΣPathP (refl , (sym (rUnit refl)))
Ω^Fibre≃∙retr (suc n) f =
→∙Homogeneous≡ (isHomogeneousΩ^→fib n f)
(funExt (λ p →
cong (fun (ΩFibreIso (Ω^→ n f)))
((sym (Ω→∘ (≃∙map (Ω^Fibre≃∙ n f))
(≃∙map (Ω^Fibre≃∙⁻ n f))
(inv (ΩFibreIso (Ω^→ n f)) p)))
∙ (λ i → Ω→ (Ω^Fibre≃∙retr n f i) .fst (inv (ΩFibreIso (Ω^→ n f)) p))
∙ sym (rUnit (inv (ΩFibreIso (Ω^→ n f)) p)))
∙ rightInv (ΩFibreIso (Ω^→ n f)) p))
Ω^Fibre≃∙' : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'}
(n : ℕ) (f : A →∙ B)
→ ((Ω^ n) (fiber (fst f) (pt B) , (pt A) , snd f))
≃∙ ((fiber (Ω^→ n f .fst) (snd ((Ω^ n) B)))
, (snd ((Ω^ n) A)) , (Ω^→ n f .snd))
Ω^Fibre≃∙' zero f = idEquiv _ , refl
Ω^Fibre≃∙' (suc zero) f =
(isoToEquiv (ΩFibreIso (Ω^→ zero f))) , ΩFibreIso∙ (Ω^→ zero f)
Ω^Fibre≃∙' (suc (suc n)) f =
compEquiv∙
(Ω≃∙ (Ω^Fibre≃∙ (suc n) f))
((isoToEquiv (ΩFibreIso (Ω^→ (suc n) f))) , ΩFibreIso∙ (Ω^→ (suc n) f))
-- The long exact sequence of loop spaces.
module ΩLES {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) where
{- Fibre of f -}
fibf : Pointed _
fibf = fiber (fst f) (pt B) , (pt A , snd f)
{- Fibre of Ωⁿ f -}
fibΩ^f : (n : ℕ) → Pointed _
fst (fibΩ^f n) = fiber (Ω^→ n f .fst) (snd ((Ω^ n) B))
snd (fibΩ^f n) = (snd ((Ω^ n) A)) , (Ω^→ n f .snd)
Ω^fibf : (n : ℕ) → Pointed _
Ω^fibf n = (Ω^ n) fibf
{- Helper function fib (Ωⁿ f) → Ωⁿ A -}
fibΩ^f→A : (n : ℕ) → fibΩ^f n →∙ (Ω^ n) A
fst (fibΩ^f→A n) = fst
snd (fibΩ^f→A n) = refl
{- The main function Ωⁿ(fib f) → Ωⁿ A, which is just the composition
Ωⁿ(fib f) ≃ fib (Ωⁿ f) → Ωⁿ A, where the last function is
fibΩ^f→A. Hence most proofs will concern fibΩ^f→A, since it is easier to
work with. -}
Ω^fibf→A : (n : ℕ) → Ω^fibf n →∙ (Ω^ n) A
Ω^fibf→A n = fibΩ^f→A n ∘∙ ≃∙map (Ω^Fibre≃∙ n f)
{- The function preserves path composition -}
Ω^fibf→A-pres∙ : (n : ℕ) → (p q : Ω^fibf (suc n) .fst)
→ Ω^fibf→A (suc n) .fst (p ∙ q)
≡ Ω^fibf→A (suc n) .fst p
∙ Ω^fibf→A (suc n) .fst q
Ω^fibf→A-pres∙ n p q =
cong (fst (fibΩ^f→A (suc n)))
(cong (fun (ΩFibreIso (Ω^→ n f)))
(Ω→pres∙ (≃∙map (Ω^Fibre≃∙ n f)) p q))
∙ ΩFibreIsopres∙fst (Ω^→ n f)
(fst (Ω→ (≃∙map (Ω^Fibre≃∙ n f))) p)
(fst (Ω→ (≃∙map (Ω^Fibre≃∙ n f))) q)
{- The function Ωⁿ A → Ωⁿ B -}
A→B : (n : ℕ) → (Ω^ n) A →∙ (Ω^ n) B
A→B n = Ω^→ n f
{- It preserves path composition -}
A→B-pres∙ : (n : ℕ) → (p q : typ ((Ω^ (suc n)) A))
→ fst (A→B (suc n)) (p ∙ q)
≡ fst (A→B (suc n)) p ∙ fst (A→B (suc n)) q
A→B-pres∙ n p q = Ω^→pres∙ f n p q
{- Helper function Ωⁿ⁺¹ B → fib (Ωⁿ f) -}
ΩB→fibΩ^f : (n : ℕ) → ((Ω^ (suc n)) B) →∙ fibΩ^f n
fst (ΩB→fibΩ^f n) x = (snd ((Ω^ n) A)) , (Ω^→ n f .snd ∙ x)
snd (ΩB→fibΩ^f n) = ΣPathP (refl , (sym (rUnit _)))
{- The main function Ωⁿ⁺¹ B → Ωⁿ (fib f),
factoring through the above function -}
ΩB→Ω^fibf : (n : ℕ) → (Ω^ (suc n)) B →∙ Ω^fibf n
ΩB→Ω^fibf n =
(≃∙map (Ω^Fibre≃∙⁻ n f))
∘∙ ΩB→fibΩ^f n
{- It preserves path composition -}
ΩB→Ω^fibf-pres∙ : (n : ℕ) → (p q : typ ((Ω^ (2 + n)) B))
→ fst (ΩB→Ω^fibf (suc n)) (p ∙ q)
≡ fst (ΩB→Ω^fibf (suc n)) p ∙ fst (ΩB→Ω^fibf (suc n)) q
ΩB→Ω^fibf-pres∙ n p q =
cong (fst (fst (Ω^Fibre≃∙⁻ (suc n) f)))
refl
∙ cong (fst (fst (Ω≃∙ (Ω^Fibre≃∙⁻ n f))))
(cong (fun (invIso (ΩFibreIso (Ω^→ n f))))
(λ _ → snd ((Ω^ suc n) A) , Ω^→ (suc n) f .snd ∙ p ∙ q))
∙ cong (fst (fst (Ω≃∙ (Ω^Fibre≃∙⁻ n f))))
(ΩFibreIso⁻pres∙snd (Ω^→ n f) p q)
∙ Ω≃∙pres∙ (Ω^Fibre≃∙⁻ n f)
(inv (ΩFibreIso (Ω^→ n f)) (refl , Ω→ (Ω^→ n f) .snd ∙ p))
(inv (ΩFibreIso (Ω^→ n f)) (refl , Ω→ (Ω^→ n f) .snd ∙ q))
{- Hence we have our sequence
... → Ωⁿ⁺¹B → Ωⁿ(fib f) → Ωⁿ A → Ωⁿ B → ... (*)
We first prove the exactness properties for the helper functions
ΩB→fibΩ^f and fibΩ^f→A, and then deduce exactness of the whole sequence
by noting that the functions in (*) are just ΩB→fibΩ^f, fibΩ^f→A but
composed with equivalences
-}
private
Im-fibΩ^f→A⊂Ker-A→B : (n : ℕ) (x : _)
→ isInIm∙ (fibΩ^f→A n) x
→ isInKer∙ (A→B n) x
Im-fibΩ^f→A⊂Ker-A→B n x =
uncurry λ p → J (λ x _ → isInKer∙ (A→B n) x)
(snd p)
Ker-fibΩ^f→A⊂Im-ΩB→fibΩ^f : (n : ℕ) (x : _)
→ isInKer∙ (fibΩ^f→A n) x
→ isInIm∙ (ΩB→fibΩ^f n) x
Ker-fibΩ^f→A⊂Im-ΩB→fibΩ^f n x ker =
(sym (Ω^→ n f .snd)
∙ cong (Ω^→ n f .fst) (sym ker) ∙ snd x) , ΣPathP ((sym ker) ,
((∙assoc (Ω^→ n f .snd)
(sym (Ω^→ n f .snd))
(sym (cong (Ω^→ n f .fst) ker) ∙ snd x)
∙∙ cong (_∙ (sym (cong (Ω^→ n f .fst) ker) ∙ snd x))
(rCancel (Ω^→ n f .snd))
∙∙ sym (lUnit (sym (cong (Ω^→ n f .fst) ker) ∙ snd x)))
◁ (λ i j → compPath-filler'
(cong (Ω^→ n f .fst) (sym ker)) (snd x) (~ i) j)))
Im-A→B⊂Ker-ΩB→fibΩ^f : (n : ℕ) (x : fst (((Ω^ (suc n)) B)))
→ isInIm∙ (A→B (suc n)) x
→ isInKer∙ (ΩB→fibΩ^f n) x
Im-A→B⊂Ker-ΩB→fibΩ^f n x =
uncurry λ p
→ J (λ x _ → isInKer∙ (ΩB→fibΩ^f n) x)
(ΣPathP (p , (((λ i → (λ j → Ω^→ n f .snd (j ∧ ~ i))
∙ ((λ j → Ω^→ n f .snd (~ j ∧ ~ i))
∙∙ cong (Ω^→ n f .fst) p
∙∙ Ω^→ n f .snd))
∙ sym (lUnit (cong (Ω^→ n f .fst) p ∙ Ω^→ n f .snd)))
◁ λ i j → compPath-filler'
(cong (Ω^→ n f .fst) p) (Ω^→ n f .snd) (~ i) j)))
Ker-ΩB→fibΩ^f⊂Im-A→B : (n : ℕ) (x : fst (((Ω^ (suc n)) B)))
→ isInKer∙ (ΩB→fibΩ^f n) x
→ isInIm∙ (A→B (suc n)) x
fst (Ker-ΩB→fibΩ^f⊂Im-A→B n x inker) = cong fst inker
snd (Ker-ΩB→fibΩ^f⊂Im-A→B n x inker) = lem
where
lem : fst (A→B (suc n)) (λ i → fst (inker i)) ≡ x
lem i j =
hcomp (λ k → λ { (i = i0) → doubleCompPath-filler
(sym (snd (Ω^→ n f)))
((λ i → Ω^→ n f .fst (fst (inker i))))
(snd (Ω^→ n f)) k j
; (i = i1) → compPath-filler' (Ω^→ n f .snd) x (~ k) j
; (j = i0) → snd (Ω^→ n f) k
; (j = i1) → snd (Ω^→ n f) (k ∨ i)})
(hcomp (λ k → λ { (i = i0) → (snd (inker j)) (~ k)
; (i = i1) → ((Ω^→ n f .snd) ∙ x) (j ∨ ~ k)
; (j = i0) → ((Ω^→ n f .snd) ∙ x) (~ k)
; (j = i1) → snd (Ω^→ n f) (i ∨ ~ k)})
(snd ((Ω^ n) B)))
{- Finally, we get exactness of the sequence
we are interested in -}
Im-Ω^fibf→A⊂Ker-A→B : (n : ℕ) (x : _)
→ isInIm∙ (Ω^fibf→A n) x
→ isInKer∙ (A→B n) x
Im-Ω^fibf→A⊂Ker-A→B n x x₁ =
Im-fibΩ^f→A⊂Ker-A→B n x
(((fst (fst (Ω^Fibre≃∙ n f))) (fst x₁))
, snd x₁)
Ker-A→B⊂Im-Ω^fibf→A : (n : ℕ) (x : _)
→ isInKer∙ (A→B n) x
→ isInIm∙ (Ω^fibf→A n) x
Ker-A→B⊂Im-Ω^fibf→A n x ker =
invEq (fst (Ω^Fibre≃∙ n f)) (x , ker)
, (cong fst (secEq (fst (Ω^Fibre≃∙ n f)) (x , ker)))
Ker-Ω^fibf→A⊂Im-ΩB→Ω^fibf : (n : ℕ) (x : _)
→ isInKer∙ (Ω^fibf→A n) x
→ isInIm∙ (ΩB→Ω^fibf n) x
Ker-Ω^fibf→A⊂Im-ΩB→Ω^fibf n x p =
fst r
, cong (fst ((fst (Ω^Fibre≃∙⁻ n f)))) (snd r)
∙ funExt⁻ (cong fst (Ω^Fibre≃∙sect n f)) x
where
r : isInIm∙ (ΩB→fibΩ^f n) (fst (fst (Ω^Fibre≃∙ n f)) x)
r = Ker-fibΩ^f→A⊂Im-ΩB→fibΩ^f n (fst (fst (Ω^Fibre≃∙ n f)) x) p
Im-ΩB→Ω^fibf⊂Ker-Ω^fibf→A : (n : ℕ) (x : _)
→ isInIm∙ (ΩB→Ω^fibf n) x
→ isInKer∙ (Ω^fibf→A n) x
Im-ΩB→Ω^fibf⊂Ker-Ω^fibf→A n x =
uncurry λ p →
J (λ x _ → isInKer∙ (Ω^fibf→A n) x)
(cong (fst (fibΩ^f→A n))
(funExt⁻ (cong fst (Ω^Fibre≃∙retr n f)) _))
Im-A→B⊂Ker-ΩB→Ω^fibf : (n : ℕ) (x : fst (((Ω^ (suc n)) B)))
→ isInIm∙ (A→B (suc n)) x
→ isInKer∙ (ΩB→Ω^fibf n) x
Im-A→B⊂Ker-ΩB→Ω^fibf n x p =
cong (fst ((fst (Ω^Fibre≃∙⁻ n f))))
(Im-A→B⊂Ker-ΩB→fibΩ^f n x p)
∙ snd (Ω^Fibre≃∙⁻ n f)
Ker-ΩB→Ω^fibf⊂Im-A→B : (n : ℕ) (x : fst (((Ω^ (suc n)) B)))
→ isInKer∙ (ΩB→Ω^fibf n) x
→ isInIm∙ (A→B (suc n)) x
Ker-ΩB→Ω^fibf⊂Im-A→B n x p =
Ker-ΩB→fibΩ^f⊂Im-A→B n x
(funExt⁻ (cong fst (sym (Ω^Fibre≃∙retr n f))) (ΩB→fibΩ^f n .fst x)
∙ cong (fst (fst (Ω^Fibre≃∙ n f))) p
∙ snd (Ω^Fibre≃∙ n f))
{- Some useful lemmas for converting the above sequence a
a sequence of homotopy groups -}
module setTruncLemmas {ℓ ℓ' ℓ'' : Level}
{A : Pointed ℓ} {B : Pointed ℓ'} {C : Pointed ℓ''}
(n m l : ℕ)
(f : (Ω ((Ω^ n) A)) →∙ (Ω ((Ω^ m) B)))
(g : (Ω ((Ω^ m) B)) →∙ (Ω ((Ω^ l) C)))
(e₁ : IsGroupHom (snd (πGr n A)) (sMap (fst f)) (snd (πGr m B)))
(e₂ : IsGroupHom (snd (πGr m B)) (sMap (fst g)) (snd (πGr l C))) where
ker⊂im : ((x : typ (Ω ((Ω^ m) B))) → isInKer∙ g x → isInIm∙ f x)
→ (x : π (suc m) B) → isInKer (_ , e₂) x → isInIm (_ , e₁) x
ker⊂im ind =
sElim (λ _ → isSetΠ λ _ → isProp→isSet squash₁)
λ p ker →
pRec squash₁
(λ ker∙ → ∣ ∣ ind p ker∙ .fst ∣₂ , cong ∣_∣₂ (ind p ker∙ .snd) ∣₁ )
(fun PathIdTrunc₀Iso ker)
im⊂ker : ((x : typ (Ω ((Ω^ m) B))) → isInIm∙ f x → isInKer∙ g x)
→ (x : π (suc m) B) → isInIm (_ , e₁) x → isInKer (_ , e₂) x
im⊂ker ind =
sElim (λ _ → isSetΠ λ _ → isSetPathImplicit)
λ p →
pRec (squash₂ _ _)
(uncurry (sElim (λ _ → isSetΠ λ _ → isSetPathImplicit)
λ a q → pRec (squash₂ _ _)
(λ q → cong ∣_∣₂ (ind p (a , q)))
(fun PathIdTrunc₀Iso q)))
{- The long exact sequence of homotopy groups -}
module πLES {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) where
module Ωs = ΩLES f
open Ωs renaming (A→B to A→B')
fib = fibf
fib→A : (n : ℕ) → GroupHom (πGr n fib) (πGr n A)
fst (fib→A n) = sMap (fst (Ω^fibf→A (suc n)))
snd (fib→A n) =
makeIsGroupHom
(sElim2 (λ _ _ → isSetPathImplicit)
λ p q → cong ∣_∣₂ (Ω^fibf→A-pres∙ n p q))
A→B : (n : ℕ) → GroupHom (πGr n A) (πGr n B)
fst (A→B n) = sMap (fst (A→B' (suc n)))
snd (A→B n) =
makeIsGroupHom
(sElim2 (λ _ _ → isSetPathImplicit)
λ g h → cong ∣_∣₂ (Ω^→pres∙ f n g h))
B→fib : (n : ℕ) → GroupHom (πGr (suc n) B) (πGr n fib)
fst (B→fib n) = sMap (fst (ΩB→Ω^fibf (suc n)))
snd (B→fib n) =
makeIsGroupHom
(sElim2
(λ _ _ → isSetPathImplicit)
λ p q → cong ∣_∣₂ (ΩB→Ω^fibf-pres∙ n p q))
Ker-A→B⊂Im-fib→A : (n : ℕ) (x : π (suc n) A)
→ isInKer (A→B n) x
→ isInIm (fib→A n) x
Ker-A→B⊂Im-fib→A n =
setTruncLemmas.ker⊂im n n n
(Ω^fibf→A (suc n)) (A→B' (suc n))
(snd (fib→A n)) (snd (A→B n))
(Ker-A→B⊂Im-Ω^fibf→A (suc n))
Im-fib→A⊂Ker-A→B : (n : ℕ) (x : π (suc n) A)
→ isInIm (fib→A n) x
→ isInKer (A→B n) x
Im-fib→A⊂Ker-A→B n =
setTruncLemmas.im⊂ker n n n
(Ω^fibf→A (suc n)) (A→B' (suc n))
(snd (fib→A n)) (snd (A→B n))
(Im-Ω^fibf→A⊂Ker-A→B (suc n))
Ker-fib→A⊂Im-B→fib : (n : ℕ) (x : π (suc n) fib)
→ isInKer (fib→A n) x
→ isInIm (B→fib n) x
Ker-fib→A⊂Im-B→fib n =
setTruncLemmas.ker⊂im (suc n) n n
(ΩB→Ω^fibf (suc n)) (Ω^fibf→A (suc n))
(snd (B→fib n)) (snd (fib→A n))
(Ker-Ω^fibf→A⊂Im-ΩB→Ω^fibf (suc n))
Im-B→fib⊂Ker-fib→A : (n : ℕ) (x : π (suc n) fib)
→ isInIm (B→fib n) x
→ isInKer (fib→A n) x
Im-B→fib⊂Ker-fib→A n =
setTruncLemmas.im⊂ker (suc n) n n
(ΩB→Ω^fibf (suc n)) (Ω^fibf→A (suc n))
(snd (B→fib n)) (snd (fib→A n))
(Im-ΩB→Ω^fibf⊂Ker-Ω^fibf→A (suc n))
Im-A→B⊂Ker-B→fib : (n : ℕ) (x : π (suc (suc n)) B)
→ isInIm (A→B (suc n)) x
→ isInKer (B→fib n) x
Im-A→B⊂Ker-B→fib n =
setTruncLemmas.im⊂ker (suc n) (suc n) n
(A→B' (suc (suc n))) (ΩB→Ω^fibf (suc n))
(snd (A→B (suc n))) (snd (B→fib n))
(Im-A→B⊂Ker-ΩB→Ω^fibf (suc n))
Ker-B→fib⊂Im-A→B : (n : ℕ) (x : π (suc (suc n)) B)
→ isInKer (B→fib n) x
→ isInIm (A→B (suc n)) x
Ker-B→fib⊂Im-A→B n =
setTruncLemmas.ker⊂im (suc n) (suc n) n
(A→B' (suc (suc n))) (ΩB→Ω^fibf (suc n))
(snd (A→B (suc n))) (snd (B→fib n))
(Ker-ΩB→Ω^fibf⊂Im-A→B (suc n))
{- We prove that the map Ωⁿ(fib f) → Ωⁿ A indeed is just the map
Ωⁿ fst -}
private
Ω^fibf→A-ind : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B)
→ ΩLES.Ω^fibf→A f (suc n) ≡ Ω→ (ΩLES.Ω^fibf→A f n)
Ω^fibf→A-ind {A = A} {B = B} n f =
(λ _ → πLES.Ωs.fibΩ^f→A f (suc n)
∘∙ ≃∙map (Ω^Fibre≃∙ (suc n) f))
∙ →∙Homogeneous≡ (isHomogeneousPath _ _)
(funExt λ p →
(λ j → cong fst (Ω→ (≃∙map (Ω^Fibre≃∙ n f)) .fst p))
∙ rUnit ((λ i → fst
(Ω→ (≃∙map (Ω^Fibre≃∙ n f)) .fst p i)))
∙ sym (Ω→∘ (πLES.Ωs.fibΩ^f→A f n) (≃∙map (Ω^Fibre≃∙ n f)) p))
Ω^fibf→A≡ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B)
→ ΩLES.Ω^fibf→A f n ≡ Ω^→ n (fst , refl)
Ω^fibf→A≡ zero f = ΣPathP (refl , (sym (lUnit refl)))
Ω^fibf→A≡ (suc n) f = Ω^fibf→A-ind n f ∙ cong Ω→ (Ω^fibf→A≡ n f)
{- We now get a nice characterisation of the functions in the induced LES
of homotopy groups defined using (Sⁿ →∙ A) -}
π∘∙A→B-PathP : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B)
→ PathP (λ i → GroupHomπ≅π'PathP A B n i)
(πLES.A→B f n)
(π'∘∙Hom n f)
π∘∙A→B-PathP n f =
toPathP (Σ≡Prop (λ _ → isPropIsGroupHom _ _) (π'∘∙Hom'≡π'∘∙fun n f))
π∘∙fib→A-PathP : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B)
→ PathP (λ i → GroupHomπ≅π'PathP (ΩLES.fibf f) A n i)
(πLES.fib→A f n)
(π'∘∙Hom n (fst , refl))
π∘∙fib→A-PathP {A = A} {B = B} n f =
toPathP (Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(cong (transport
(λ i → (fst (GroupPath _ _)
(GroupIso→GroupEquiv (π'Gr≅πGr n (ΩLES.fibf f))) (~ i)) .fst
→ (fst (GroupPath _ _)
(GroupIso→GroupEquiv (π'Gr≅πGr n A)) (~ i)) .fst))
lem
∙ π'∘∙Hom'≡π'∘∙fun n (fst , refl)))
where
lem : πLES.fib→A f n .fst ≡ sMap (Ω^→ (suc n) (fst , refl) .fst)
lem = cong sMap (cong fst (Ω^fibf→A≡ (suc n) f))
| 40.391629
| 80
| 0.443935
|
116cd6dc6f0ab1f471536f436245e03bff6cb612
| 4,824
|
agda
|
Agda
|
Relational Logic/RL.agda
|
andyfreeyy/agda_and_math
|
76b9ef64626b6d3bbb7ace4f1a16aeb447c54328
|
[
"MIT"
] | 2
|
2020-03-23T09:01:42.000Z
|
2020-05-24T10:56:36.000Z
|
Relational Logic/RL.agda
|
andyfreeyy/agda_and_math
|
76b9ef64626b6d3bbb7ace4f1a16aeb447c54328
|
[
"MIT"
] | null | null | null |
Relational Logic/RL.agda
|
andyfreeyy/agda_and_math
|
76b9ef64626b6d3bbb7ace4f1a16aeb447c54328
|
[
"MIT"
] | null | null | null |
-- ---------------------------------
-- this is the agda file implementing my own work on logic, viz. a relational
-- framework for logic.
-- These codes have been checked by Agda 2.6.0
-- ---------------------------------
module RL where
-- this file use agda standard library
open import Agda.Builtin.Equality
open import Relation.Nullary
open import Data.Empty
open import Data.Product
-- ---------------------------------
-- Logical Frame
-- ---------------------------------
record Frame : Set₁ where
field
Φ : Set -- the set of language
bot : Φ -- contradiction
top : Φ -- validity
_⇌_ : Φ → Φ → Set -- ⇌ is interpreted as consistency relation
symm : ∀ (x y : Φ) → x ⇌ y → y ⇌ x -- ⇌ is symmetric
alre : ∀ (x : Φ) → ¬ (x ≡ bot) → x ⇌ x -- except for ⊥, ⇌ is reflexive
⊥-contra : ∀ (x : Φ) → ¬ (x ⇌ bot) -- ⊥ is in-⇌ with any x∈Φ
⊤-validi : ∀ (x : Φ) → ¬ (x ≡ bot) → (x ⇌ top) -- ⊤ ⇌ everything e.x. ⊥
substitution : {A : Frame} (x y z : Frame.Φ A) -- ∀x,y,z∈Φ.(x≡y ∧ x⇌z → y⇌z)
→ x ≡ y → Frame._⇌_ A x z → Frame._⇌_ A y z
substitution {A} x y z p q rewrite p = q
cons→non-contra : {A : Frame} (x : Frame.Φ A) -- ∀x∈Φ.(∃y∈Φ.(x⇌y) → x≠⊥)
→ ∃[ y ] Frame._⇌_ A x y → ¬ (x ≡ Frame.bot A)
cons→non-contra {A} x (y , f) q = Frame.⊥-contra A y w
where
s : Frame._⇌_ A (Frame.bot A) y
s = substitution {A} x (Frame.bot A) y q f
w : Frame._⇌_ A y (Frame.bot A)
w = Frame.symm A (Frame.bot A) y s
module Example₁ where
data tf : Set where
𝟘x 𝟙x : tf
data _↔_ : tf → tf → Set where
t-t : 𝟙x ↔ 𝟙x
symm-tf : ∀ (x y : tf) → x ↔ y → y ↔ x
symm-tf 𝟙x 𝟙x t-t = t-t
alre-tf : ∀ (x : tf) → ¬ (x ≡ 𝟘x) → x ↔ x
alre-tf 𝟙x _ = t-t
alre-tf 𝟘x p = ⊥-elim (p refl)
𝟙x-validi : ∀ (x : tf) → ¬ (x ≡ 𝟘x) → (x ↔ 𝟙x)
𝟙x-validi 𝟙x _ = t-t
𝟙x-validi 𝟘x ¬p = ⊥-elim (¬p refl)
𝟘x-contra : ∀ (x : tf) → ¬ (x ↔ 𝟘x)
𝟘x-contra x ()
tfFrame : Frame -- the smallest possible normal frame
tfFrame = record { Φ = tf
; bot = 𝟘x
; top = 𝟙x
; _⇌_ = _↔_
; symm = symm-tf
; alre = alre-tf
; ⊥-contra = 𝟘x-contra
; ⊤-validi = 𝟙x-validi }
-- ---------------------------------
-- Logical Consequence
-- ---------------------------------
record _⊢_ {A : Frame} (a b : Frame.Φ A) : Set where -- logical consequence
field -- a⊢b ⇔ ∀x∈Φ.(x⇌a → x⇌b)
fromCons : ∀ (x : Frame.Φ A) → Frame._⇌_ A x a → Frame._⇌_ A x b
-- ---------------------------------
-- properties of ⊢
refl-⊢ : {A : Frame} (a : Frame.Φ A) → _⊢_ {A} a a -- reflexive
refl-⊢ {A} a = record { fromCons = p }
where
p : ∀ (x : Frame.Φ A) → Frame._⇌_ A x a → Frame._⇌_ A x a
p x q = q
trans-⊢ : {A : Frame} (a b c : Frame.Φ A) -- transitive
→ _⊢_ {A} a b → _⊢_ {A} b c → _⊢_ {A} a c
trans-⊢ {A} a b c p q = record { fromCons = f }
where
f : ∀ (x : Frame.Φ A) → Frame._⇌_ A x a → Frame._⇌_ A x c
f x h = _⊢_.fromCons q x (_⊢_.fromCons p x h)
-- ---------------------------------
-- ---------------------------------
-- ∀x∈Φ.(⊥⊢x)
bot-cons : {A : Frame} (x : Frame.Φ A) -- ∀x∈Φ.∀y∈Φ.(y⇌⊥ → y⇌x)
→ ∀ (y : Frame.Φ A) → Frame._⇌_ A y (Frame.bot A) → Frame._⇌_ A y x
bot-cons {A} x y p = ⊥-elim (Frame.⊥-contra A y p)
bot-to-every : {A : Frame} (x : Frame.Φ A) → _⊢_ {A} (Frame.bot A) x
bot-to-every {A} x = record { fromCons = bot-cons {A} x }
-- ---------------------------------
-- ---------------------------------
-- ∀x∈Φ.(x⊢⊤)
top-cons : {A : Frame} (y x : Frame.Φ A) -- ∀y∈Φ.∀x∈Φ.(x⇌y → x⇌⊤)
→ Frame._⇌_ A x y → Frame._⇌_ A x (Frame.top A)
top-cons {A} y x p = Frame.⊤-validi A x (cons→non-contra {A} x (y , p))
top-from-every : {A : Frame} (x : Frame.Φ A) → _⊢_ {A} x (Frame.top A)
top-from-every {A} x = record { fromCons = top-cons {A} x }
-- ---------------------------------
-- ---------------------------------
-- the criteria for a Reasoning frame
-- ---------------------------------
record Reasoning (A : Frame) : Set₁ where
field -- basically, reas says every consistent pair is testified
reas : ∀ (x y : Frame.Φ A) → Frame._⇌_ A x y
→ ∃[ z ] ((¬ (z ≡ Frame.bot A)) × ((_⊢_ {A} z x) × (_⊢_ {A} z y)))
module Example₂ where
open Example₁
𝟘x⊢𝟘x : _⊢_ {tfFrame} 𝟘x 𝟘x
𝟘x⊢𝟘x = refl-⊢ {tfFrame} 𝟘x
𝟘x⊢𝟙x : _⊢_ {tfFrame} 𝟘x 𝟙x
𝟘x⊢𝟙x = bot-to-every {tfFrame} 𝟙x
𝟙x⊢𝟙x : _⊢_ {tfFrame} 𝟙x 𝟙x
𝟙x⊢𝟙x = refl-⊢ {tfFrame} 𝟙x
reas-tf : ∀ (x y : tf) → (x ↔ y)
→ ∃[ z ] ((¬ (z ≡ 𝟘x)) × ((_⊢_ {tfFrame} z x) × (_⊢_ {tfFrame} z y)))
reas-tf 𝟘x _ ()
reas-tf 𝟙x 𝟙x _ = (𝟙x , (p , (𝟙x⊢𝟙x , 𝟙x⊢𝟙x)))
where
p : ¬ (𝟙x ≡ 𝟘x)
p ()
Reasoning-tf : Reasoning tfFrame
Reasoning-tf = record { reas = reas-tf }
| 32.375839
| 81
| 0.456053
|
0dde1de65ec7cbbb68beaab71131c3d3d77f6634
| 79
|
agda
|
Agda
|
test/Fail/Issue329b.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/fail/Issue329b.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/fail/Issue329b.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module Issue329b where
abstract
infixl 0 D Undeclared
data D : Set where
| 11.285714
| 23
| 0.746835
|
72020ee26d973f71fa125658fc6191aa994e5e28
| 2,042
|
agda
|
Agda
|
internal/modal-logic-lob-reduced.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 19
|
2015-07-17T17:53:30.000Z
|
2021-03-17T14:04:53.000Z
|
internal/modal-logic-lob-reduced.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 1
|
2015-07-17T20:20:43.000Z
|
2015-07-17T20:20:43.000Z
|
internal/modal-logic-lob-reduced.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 1
|
2015-07-17T18:53:37.000Z
|
2015-07-17T18:53:37.000Z
|
module modal-lob-reduced where
data TYP : Set where
ARR : TYP → TYP → TYP -- the type of implications, or function types
BOX : TYP → TYP -- the modal □ operator, denoted to TERM
LӦB-SENTENCE : TYP → TYP -- the Lӧbian sentence "If this sentence is provable, then A"
-- this is the modal fixpoint of λ Ψ. □ Ψ → A
data TERM : TYP → Set where
k : {A : TYP} → TERM A → TERM (BOX A) -- from A, we deduce □ A
distr : {A B : TYP} → TERM (ARR (BOX (ARR A B)) (ARR (BOX A) (BOX B))) -- we deduce □ (A → B) → □ A → □ B
s4 : {A : TYP} → TERM (ARR (BOX A) (BOX (BOX A))) -- we deduce □ A → □ □ A
app : {A B : TYP} → TERM (ARR A B) → TERM A → TERM B -- from A → B, and A, we deduce B
lӧb→ : {A : TYP} → TERM (ARR (LӦB-SENTENCE A) (ARR (BOX (LӦB-SENTENCE A)) A)) -- LӦB-SENTENCE A is Ψ such that Ψ → (□ Ψ → A)
lӧb← : {A : TYP} → TERM (ARR (ARR (BOX (LӦB-SENTENCE A)) A) (LӦB-SENTENCE A)) -- LӦB-SENTENCE A is Ψ such that (□ Ψ → A) → Ψ
compose : {A B C : TYP} → TERM (ARR A B) → TERM (ARR B C) → TERM (ARR A C) -- from A → B and B → C, we deduce A → C
compose2 : {A B C : TYP} → TERM (ARR A B) → TERM (ARR A (ARR B C)) → TERM (ARR A C) -- from A → B and A → B → C, we deduce A → C
⟦_⟧ᵀ : TYP → Set
⟦ ARR A B ⟧ᵀ = ⟦ A ⟧ᵀ → ⟦ B ⟧ᵀ
⟦ BOX T ⟧ᵀ = TERM T
⟦ LӦB-SENTENCE A ⟧ᵀ = TERM (LӦB-SENTENCE A) → ⟦ A ⟧ᵀ
⟦_⟧ᵗ : {T : TYP} → TERM T → ⟦ T ⟧ᵀ
⟦ k e ⟧ᵗ = e
⟦ distr ⟧ᵗ box-a-b box-a = app box-a-b box-a
⟦ s4 ⟧ᵗ = k
⟦ app f x ⟧ᵗ = ⟦ f ⟧ᵗ ⟦ x ⟧ᵗ
⟦ lӧb→ ⟧ᵗ = λ x → x -- this implication is true because on denotation, the two are judgmentally equal
⟦ lӧb← ⟧ᵗ = λ x → x -- this implication is true because on denotation, the two are judgmentally equal
⟦ compose f g ⟧ᵗ = λ x → ⟦ g ⟧ᵗ (⟦ f ⟧ᵗ x)
⟦ compose2 f g ⟧ᵗ = λ x → ⟦ g ⟧ᵗ x (⟦ f ⟧ᵗ x)
Lӧb′s-Theorem : {A : TYP} → TERM (ARR (BOX A) A) → TERM A -- from □ A → A, we deduce A
Lӧb′s-Theorem {A} interp = app prog (k (app lӧb← prog))
where prog : TERM (ARR (BOX (LӦB-SENTENCE A)) A)
prog = compose (compose2 s4 (compose (app distr (k lӧb→)) distr)) interp
| 55.189189
| 130
| 0.554358
|
721c8b1da69a44323bb281ff964a7bf03c368dfa
| 195
|
agda
|
Agda
|
Cubical/Data/NatMinusOne.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Data/NatMinusOne.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Data/NatMinusOne.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.NatMinusOne where
open import Cubical.Data.NatMinusOne.Base public
open import Cubical.Data.NatMinusOne.Properties public
| 27.857143
| 54
| 0.789744
|
14fbaa54b09c87bb8a8dc6b117b8cbb87a016eb4
| 3,609
|
agda
|
Agda
|
agda-stdlib/src/Relation/Binary/Reflection.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Relation/Binary/Reflection.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Relation/Binary/Reflection.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Helpers intended to ease the development of "tactics" which use
-- proof by reflection
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Data.Fin.Base
open import Data.Nat.Base
open import Data.Vec.Base as Vec
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
open import Level
open import Relation.Binary
import Relation.Binary.PropositionalEquality as P
-- Think of the parameters as follows:
--
-- * Expr: A representation of code.
-- * var: The Expr type should support a notion of variables.
-- * ⟦_⟧: Computes the semantics of an expression. Takes an
-- environment mapping variables to something.
-- * ⟦_⇓⟧: Computes the semantics of the normal form of the
-- expression.
-- * correct: Normalisation preserves the semantics.
--
-- Given these parameters two "tactics" are returned, prove and solve.
--
-- For an example of the use of this module, see Algebra.RingSolver.
module Relation.Binary.Reflection
{e a s}
{Expr : ℕ → Set e} {A : Set a}
(Sem : Setoid a s)
(var : ∀ {n} → Fin n → Expr n)
(⟦_⟧ ⟦_⇓⟧ : ∀ {n} → Expr n → Vec A n → Setoid.Carrier Sem)
(correct : ∀ {n} (e : Expr n) ρ →
⟦ e ⇓⟧ ρ ⟨ Setoid._≈_ Sem ⟩ ⟦ e ⟧ ρ)
where
open import Data.Vec.N-ary
open import Data.Product
import Relation.Binary.Reasoning.Setoid as Eq
open Setoid Sem
open Eq Sem
-- If two normalised expressions are semantically equal, then their
-- non-normalised forms are also equal.
prove : ∀ {n} (ρ : Vec A n) e₁ e₂ →
⟦ e₁ ⇓⟧ ρ ≈ ⟦ e₂ ⇓⟧ ρ →
⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ
prove ρ e₁ e₂ hyp = begin
⟦ e₁ ⟧ ρ ≈⟨ sym (correct e₁ ρ) ⟩
⟦ e₁ ⇓⟧ ρ ≈⟨ hyp ⟩
⟦ e₂ ⇓⟧ ρ ≈⟨ correct e₂ ρ ⟩
⟦ e₂ ⟧ ρ ∎
-- Applies the function to all possible "variables".
close : ∀ {A : Set e} n → N-ary n (Expr n) A → A
close n f = f $ⁿ Vec.map var (allFin n)
-- A variant of prove which should in many cases be easier to use,
-- because variables and environments are handled in a less explicit
-- way.
--
-- If the type signature of solve is a bit daunting, then it may be
-- helpful to instantiate n with a small natural number and normalise
-- the remainder of the type.
solve : ∀ n (f : N-ary n (Expr n) (Expr n × Expr n)) →
Eqʰ n _≈_ (curryⁿ ⟦ proj₁ (close n f) ⇓⟧) (curryⁿ ⟦ proj₂ (close n f) ⇓⟧) →
Eq n _≈_ (curryⁿ ⟦ proj₁ (close n f) ⟧) (curryⁿ ⟦ proj₂ (close n f) ⟧)
solve n f hyp =
curryⁿ-cong _≈_ ⟦ proj₁ (close n f) ⟧ ⟦ proj₂ (close n f) ⟧
(λ ρ → prove ρ (proj₁ (close n f)) (proj₂ (close n f))
(curryⁿ-cong⁻¹ _≈_
⟦ proj₁ (close n f) ⇓⟧ ⟦ proj₂ (close n f) ⇓⟧
(Eqʰ-to-Eq n _≈_ hyp) ρ))
-- A variant of solve which does not require that the normal form
-- equality is proved for an arbitrary environment.
solve₁ : ∀ n (f : N-ary n (Expr n) (Expr n × Expr n)) →
∀ⁿ n (curryⁿ λ ρ →
⟦ proj₁ (close n f) ⇓⟧ ρ ≈ ⟦ proj₂ (close n f) ⇓⟧ ρ →
⟦ proj₁ (close n f) ⟧ ρ ≈ ⟦ proj₂ (close n f) ⟧ ρ)
solve₁ n f =
Equivalence.from (uncurry-∀ⁿ n) ⟨$⟩ λ ρ →
P.subst id (P.sym (left-inverse (λ _ → _ ≈ _ → _ ≈ _) ρ))
(prove ρ (proj₁ (close n f)) (proj₂ (close n f)))
-- A variant of _,_ which is intended to make uses of solve and solve₁
-- look a bit nicer.
infix 4 _⊜_
_⊜_ : ∀ {n} → Expr n → Expr n → Expr n × Expr n
_⊜_ = _,_
| 34.371429
| 77
| 0.579385
|
1445b7642baa4f2c0e7c77f0d677d12cd66755d6
| 29,276
|
agda
|
Agda
|
Cubical/Algebra/Group/ZAction.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/ZAction.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/ZAction.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
-- Left ℤ-multiplication on groups and some of its properties
-- TODO: lots of the content here should be moved elsewhere
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Group.ZAction where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Data.Int
renaming
(_·_ to _*_ ; _+_ to _+ℤ_ ; _-_ to _-ℤ_ ; pos·pos to pos·) hiding (·Assoc)
open import Cubical.Data.Nat renaming (_·_ to _·ℕ_ ; _+_ to _+ℕ_)
open import Cubical.Data.Nat.Mod
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
open import Cubical.Data.Sum renaming (rec to ⊎-rec)
open import Cubical.Data.Unit
open import Cubical.Data.Fin hiding (_/_)
open import Cubical.Data.Fin.Arithmetic
open import Cubical.HITs.SetQuotients renaming (_/_ to _/s_ ; rec to sRec ; elim to sElim)
open import Cubical.HITs.PropositionalTruncation as Prop
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.Instances.Unit
open import Cubical.Algebra.Group.Instances.IntMod
open import Cubical.Algebra.Group.DirProd
open import Cubical.Algebra.Group.Subgroup
open import Cubical.Algebra.Group.GroupPath
open import Cubical.Algebra.Group.IsomorphismTheorems
open import Cubical.Algebra.Group.QuotientGroup
open import Cubical.Algebra.Group.Exact
open import Cubical.Relation.Nullary
private
variable
ℓ ℓ' : Level
open Iso
open GroupStr
open IsGroupHom
open Exact4
_ℤ[_]·_ : ℤ → (G : Group ℓ) → fst G → fst G
pos zero ℤ[ G' ]· g = 1g (snd G')
pos (suc n) ℤ[ G' ]· g = _·_ (snd G') g (pos n ℤ[ G' ]· g)
negsuc zero ℤ[ G' ]· g = inv (snd G') g
negsuc (suc n) ℤ[ G' ]· g =
_·_ (snd G') (inv (snd G') g) (negsuc n ℤ[ G' ]· g)
homPresℤ· : {G : Group ℓ} {H : Group ℓ'}
→ (ϕ : GroupHom G H)
→ (x : fst G) (z : ℤ)
→ fst ϕ (z ℤ[ G ]· x) ≡ (z ℤ[ H ]· fst ϕ x)
homPresℤ· (ϕ , ϕhom) x (pos zero) = pres1 ϕhom
homPresℤ· {H = H} (ϕ , ϕhom) x (pos (suc n)) =
pres· ϕhom _ _
∙ cong (_·_ (snd H) (ϕ x)) (homPresℤ· (ϕ , ϕhom) x (pos n))
homPresℤ· (ϕ , ϕhom) x (negsuc zero) = presinv ϕhom _
homPresℤ· {H = H} (ϕ , ϕhom) x (negsuc (suc n)) =
pres· ϕhom _ _
∙ cong₂ (_·_ (snd H)) (presinv ϕhom x)
(homPresℤ· (ϕ , ϕhom) x (negsuc n))
rUnitℤ· : (G : Group ℓ) (x : ℤ) → (x ℤ[ G ]· 1g (snd G)) ≡ 1g (snd G)
rUnitℤ· G (pos zero) = refl
rUnitℤ· G (pos (suc n)) =
cong (_·_ (snd G) (1g (snd G)))
(rUnitℤ· G (pos n))
∙ ·IdL (snd G) (1g (snd G))
rUnitℤ· G (negsuc zero) = GroupTheory.inv1g G
rUnitℤ· G (negsuc (suc n)) =
cong₂ (_·_ (snd G)) (GroupTheory.inv1g G) (rUnitℤ· G (negsuc n))
∙ ·IdL (snd G) (1g (snd G))
rUnitℤ·ℤ : (x : ℤ) → (x ℤ[ ℤGroup ]· 1) ≡ x
rUnitℤ·ℤ (pos zero) = refl
rUnitℤ·ℤ (pos (suc n)) = cong (pos 1 +ℤ_) (rUnitℤ·ℤ (pos n)) ∙ sym (pos+ 1 n)
rUnitℤ·ℤ (negsuc zero) = refl
rUnitℤ·ℤ (negsuc (suc n)) = cong (-1 +ℤ_) (rUnitℤ·ℤ (negsuc n))
∙ +Comm (negsuc 0) (negsuc n)
private
precommℤ : (G : Group ℓ) (g : fst G) (y : ℤ)
→ (snd G · (y ℤ[ G ]· g)) g ≡ (sucℤ y ℤ[ G ]· g)
precommℤ G g (pos zero) = ·IdL (snd G) g ∙ sym (·IdR (snd G) g)
precommℤ G g (pos (suc n)) =
sym (·Assoc (snd G) _ _ _)
∙ cong ((snd G · g)) (precommℤ G g (pos n))
precommℤ G g (negsuc zero) = ·InvL (snd G) g
precommℤ G g (negsuc (suc n)) =
sym (·Assoc (snd G) _ _ _)
∙ cong ((snd G · inv (snd G) g)) (precommℤ G g (negsuc n))
∙ negsucLem n
where
negsucLem : (n : ℕ) → (snd G · inv (snd G) g)
(sucℤ (negsuc n) ℤ[ G ]· g)
≡ (sucℤ (negsuc (suc n)) ℤ[ G ]· g)
negsucLem zero = (·IdR (snd G) _)
negsucLem (suc n) = refl
module _ (G : Group ℓ) (g : fst G) where
private
lem : (y : ℤ) → (predℤ y ℤ[ G ]· g)
≡ (snd G · inv (snd G) g) (y ℤ[ G ]· g)
lem (pos zero) = sym (·IdR (snd G) _)
lem (pos (suc n)) =
sym (·IdL (snd G) ((pos n ℤ[ G ]· g)))
∙∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g))
(sym (·InvL (snd G) g))
∙∙ sym (·Assoc (snd G) _ _ _)
lem (negsuc n) = refl
distrℤ· : (x y : ℤ) → ((x +ℤ y) ℤ[ G ]· g)
≡ _·_ (snd G) (x ℤ[ G ]· g) (y ℤ[ G ]· g)
distrℤ· (pos zero) y = cong (_ℤ[ G ]· g) (+Comm 0 y)
∙ sym (·IdL (snd G) _)
distrℤ· (pos (suc n)) (pos n₁) =
cong (_ℤ[ G ]· g) (sym (pos+ (suc n) n₁))
∙ cong (_·_ (snd G) g)
(cong (_ℤ[ G ]· g) (pos+ n n₁) ∙ distrℤ· (pos n) (pos n₁))
∙ ·Assoc (snd G) _ _ _
distrℤ· (pos (suc n)) (negsuc zero) =
distrℤ· (pos n) 0
∙ ((·IdR (snd G) (pos n ℤ[ G ]· g) ∙ sym (·IdL (snd G) (pos n ℤ[ G ]· g)))
∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g))
(sym (·InvL (snd G) g)) ∙ sym (·Assoc (snd G) _ _ _))
∙ (·Assoc (snd G) _ _ _)
∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g)) (·InvL (snd G) g)
∙ ·IdL (snd G) _
∙ sym (·IdR (snd G) _)
∙ (cong (_·_ (snd G) (pos n ℤ[ G ]· g)) (sym (·InvR (snd G) g))
∙ ·Assoc (snd G) _ _ _)
∙ cong (λ x → _·_ (snd G) x (inv (snd G) g))
(precommℤ G g (pos n))
distrℤ· (pos (suc n)) (negsuc (suc n₁)) =
cong (_ℤ[ G ]· g) (predℤ+negsuc n₁ (pos (suc n)))
∙∙ distrℤ· (pos n) (negsuc n₁)
∙∙ (cong (λ x → _·_ (snd G) x (negsuc n₁ ℤ[ G ]· g))
((sym (·IdR (snd G) (pos n ℤ[ G ]· g))
∙ cong (_·_ (snd G) (pos n ℤ[ G ]· g)) (sym (·InvR (snd G) g)))
∙∙ ·Assoc (snd G) _ _ _
∙∙ cong (λ x → _·_ (snd G) x (inv (snd G) g)) (precommℤ G g (pos n)))
∙ sym (·Assoc (snd G) _ _ _))
distrℤ· (negsuc zero) y =
cong (_ℤ[ G ]· g) (+Comm -1 y) ∙ lem y
distrℤ· (negsuc (suc n)) y =
cong (_ℤ[ G ]· g) (+Comm (negsuc (suc n)) y)
∙∙ lem (y +negsuc n)
∙∙ cong (snd G · inv (snd G) g)
(cong (_ℤ[ G ]· g) (+Comm y (negsuc n)) ∙ distrℤ· (negsuc n) y)
∙ (·Assoc (snd G) _ _ _)
GroupHomℤ→ℤpres- : (e : GroupHom ℤGroup ℤGroup) (a : ℤ)
→ fst e (- a) ≡ - fst e a
GroupHomℤ→ℤpres- e a = presinv (snd e) a
ℤ·≡· : (a b : ℤ) → a * b ≡ (a ℤ[ ℤGroup ]· b)
ℤ·≡· (pos zero) b = refl
ℤ·≡· (pos (suc n)) b = cong (b +ℤ_) (ℤ·≡· (pos n) b)
ℤ·≡· (negsuc zero) b = refl
ℤ·≡· (negsuc (suc n)) b = cong (λ X → - b +ℤ X) (ℤ·≡· (negsuc n) b)
GroupHomℤ→ℤPres· : (e : GroupHom ℤGroup ℤGroup) (a b : ℤ)
→ fst e (a * b) ≡ a * fst e b
GroupHomℤ→ℤPres· e a b =
cong (fst e) (ℤ·≡· a b) ∙∙ homPresℤ· e b a ∙∙ sym (ℤ·≡· a (fst e b))
-- Generators in terms of ℤ-multiplication
-- TODO : generalise and develop theory of cyclic groups
gen₁-by : (G : Group ℓ) → (g : fst G) → Type _
gen₁-by G g = (h : fst G)
→ Σ[ a ∈ ℤ ] h ≡ (a ℤ[ G ]· g)
gen₂-by : ∀ {ℓ} (G : Group ℓ) → (g₁ g₂ : fst G) → Type _
gen₂-by G g₁ g₂ =
(h : fst G) → Σ[ a ∈ ℤ × ℤ ] h ≡ _·_ (snd G) ((fst a) ℤ[ G ]· g₁) ((snd a) ℤ[ G ]· g₂)
Iso-pres-gen₁ : ∀ {ℓ ℓ'} (G : Group ℓ) (H : Group ℓ') (g : fst G)
→ gen₁-by G g → (e : GroupIso G H)
→ gen₁-by H (fun (fst e) g)
Iso-pres-gen₁ G H g genG is h =
(fst (genG (inv (fst is) h)))
, (sym (rightInv (fst is) h)
∙∙ cong (fun (fst is)) (snd (genG (inv (fst is) h)))
∙∙ (homPresℤ· (_ , snd is) g (fst (genG (inv (fst is) h)))))
Iso-pres-gen₂ : (G : Group ℓ) (H : Group ℓ') (g₁ g₂ : fst G)
→ gen₂-by G g₁ g₂ → (e : GroupIso G H)
→ gen₂-by H (fun (fst e) g₁) (fun (fst e) g₂)
fst (Iso-pres-gen₂ G H g₁ g₂ genG is h) = genG (inv (fst is) h) .fst
snd (Iso-pres-gen₂ G H g₁ g₂ genG is h) =
sym (rightInv (fst is) h)
∙∙ cong (fun (fst is)) (snd (genG (inv (fst is) h)))
∙∙ (pres· (snd is) _ _
∙ cong₂ (_·_ (snd H))
(homPresℤ· (_ , snd is) g₁ (fst (fst (genG (inv (fst is) h)))))
(homPresℤ· (_ , snd is) g₂ (snd (fst (genG (inv (fst is) h))))))
-- TODO: upstream and express using divisibility?
¬1=x·suc-suc : (n : ℕ) (x : ℤ) → ¬ pos 1 ≡ x * pos (suc (suc n))
¬1=x·suc-suc n (pos zero) p = snotz (injPos p)
¬1=x·suc-suc n (pos (suc n₁)) p =
snotz (injPos (sym (cong predℤ (snd (intLem₂ n n₁))) ∙ sym (cong predℤ p)))
where
intLem₂ : (n x : ℕ)
→ Σ[ a ∈ ℕ ] ((pos (suc x)) * pos (suc (suc n)) ≡ pos (suc (suc a)))
intLem₂ n zero = n , refl
intLem₂ n (suc x) = lem _ _ (intLem₂ n x)
where
lem : (x : ℤ) (n : ℕ) → Σ[ a ∈ ℕ ] (x ≡ pos (suc (suc a)))
→ Σ[ a ∈ ℕ ] pos n +ℤ x ≡ pos (suc (suc a))
lem x n (a , p) = n +ℕ a
, cong (pos n +ℤ_) p ∙ cong sucℤ (sucℤ+pos a (pos n))
∙ sucℤ+pos a (pos (suc n)) ∙ (sym (pos+ (suc (suc n)) a))
¬1=x·suc-suc n (negsuc n₁) p = posNotnegsuc _ _ (p ∙ intLem₁ _ _ .snd)
where
intLem₁ : (n m : ℕ) → Σ[ a ∈ ℕ ] (negsuc n * pos (suc m)) ≡ negsuc a
intLem₁ n zero = n , ·Comm (negsuc n) (pos 1)
intLem₁ n (suc m) = lem _ _ .fst ,
(·Comm (negsuc n) (pos (suc (suc m)))
∙∙ cong (negsuc n +ℤ_) (·Comm (pos (suc m)) (negsuc n) ∙ (intLem₁ n m .snd))
∙∙ lem _ _ .snd)
where
lem : (x y : ℕ) → Σ[ a ∈ ℕ ] negsuc x +ℤ negsuc y ≡ negsuc a
lem zero zero = 1 , refl
lem zero (suc y) = (suc (suc y)) , +Comm (negsuc zero) (negsuc (suc y))
lem (suc x) zero = (suc (suc x)) , refl
lem (suc x) (suc y) =
(lem (suc (suc x)) y .fst)
, (predℤ+negsuc y (negsuc (suc x)) ∙ snd ((lem (suc (suc x))) y))
GroupEquivℤ-pres1 : (e : GroupEquiv ℤGroup ℤGroup) (x : ℤ)
→ (fst (fst e) 1) ≡ x → abs (fst (fst e) 1) ≡ 1
GroupEquivℤ-pres1 e (pos zero) p =
⊥-rec (snotz (injPos (sym (retEq (fst e) 1)
∙∙ (cong (fst (fst (invGroupEquiv e))) p)
∙∙ pres1 (snd (invGroupEquiv e)))))
GroupEquivℤ-pres1 e (pos (suc zero)) p = cong abs p
GroupEquivℤ-pres1 e (pos (suc (suc n))) p =
⊥-rec (¬1=x·suc-suc _ _ (h3 ∙ ·Comm (pos (suc (suc n))) (invEq (fst e) 1)))
where
h3 : pos 1 ≡ _
h3 = sym (retEq (fst e) 1)
∙∙ cong (fst (fst (invGroupEquiv e)))
(p ∙ ·Comm 1 (pos (suc (suc n))))
∙∙ GroupHomℤ→ℤPres· (_ , snd (invGroupEquiv e)) (pos (suc (suc n))) 1
GroupEquivℤ-pres1 e (negsuc zero) p = cong abs p
GroupEquivℤ-pres1 e (negsuc (suc n)) p = ⊥-rec (¬1=x·suc-suc _ _ lem₂)
where
lem₁ : fst (fst e) (negsuc zero) ≡ pos (suc (suc n))
lem₁ = GroupHomℤ→ℤpres- (_ , snd e) (pos 1) ∙ cong -_ p
compGroup : GroupEquiv ℤGroup ℤGroup
fst compGroup = isoToEquiv (iso -_ -_ -Involutive -Involutive)
snd compGroup = makeIsGroupHom -Dist+
compHom : GroupEquiv ℤGroup ℤGroup
compHom = compGroupEquiv compGroup e
lem₂ : pos 1 ≡ invEq (fst compHom) (pos 1) * pos (suc (suc n))
lem₂ = sym (retEq (fst compHom) (pos 1))
∙∙ cong (invEq (fst compHom)) lem₁
∙∙ (cong (invEq (fst compHom)) (·Comm (pos 1) (pos (suc (suc n))))
∙ GroupHomℤ→ℤPres· (_ , (snd (invGroupEquiv compHom)))
(pos (suc (suc n))) (pos 1)
∙ ·Comm (pos (suc (suc n))) (invEq (fst compHom) (pos 1)))
groupEquivPresGen : ∀ {ℓ} (G : Group ℓ) (ϕ : GroupEquiv G ℤGroup) (x : fst G)
→ (fst (fst ϕ) x ≡ 1) ⊎ (fst (fst ϕ) x ≡ - 1)
→ (ψ : GroupEquiv G ℤGroup)
→ (fst (fst ψ) x ≡ 1) ⊎ (fst (fst ψ) x ≡ - 1)
groupEquivPresGen G (ϕeq , ϕhom) x (inl r) (ψeq , ψhom) =
abs→⊎ _ _ (cong abs (cong (fst ψeq) (sym (retEq ϕeq x)
∙ cong (invEq ϕeq) r))
∙ GroupEquivℤ-pres1 (compGroupEquiv
(invGroupEquiv (ϕeq , ϕhom)) (ψeq , ψhom)) _ refl)
groupEquivPresGen G (ϕeq , ϕhom) x (inr r) (ψeq , ψhom) =
abs→⊎ _ _
(cong abs (cong (fst ψeq) (sym (retEq ϕeq x) ∙ cong (invEq ϕeq) r))
∙ cong abs (presinv
(snd (compGroupEquiv (invGroupEquiv (ϕeq , ϕhom))
(ψeq , ψhom))) 1)
∙ absLem _ (GroupEquivℤ-pres1
(compGroupEquiv (invGroupEquiv (ϕeq , ϕhom)) (ψeq , ψhom))
_ refl))
where
absLem : ∀ x → abs x ≡ 1 → abs (- x) ≡ 1
absLem (pos zero) p = ⊥-rec (snotz (sym p))
absLem (pos (suc zero)) p = refl
absLem (pos (suc (suc n))) p = ⊥-rec (snotz (cong predℕ p))
absLem (negsuc zero) p = refl
absLem (negsuc (suc n)) p = ⊥-rec (snotz (cong predℕ p))
gen₂ℤ×ℤ : gen₂-by (DirProd ℤGroup ℤGroup) (1 , 0) (0 , 1)
fst (gen₂ℤ×ℤ (x , y)) = x , y
snd (gen₂ℤ×ℤ (x , y)) =
ΣPathP ((cong₂ _+ℤ_ ((·Comm 1 x) ∙ cong fst (sym (distrLem 1 0 x)))
((·Comm 0 y) ∙ cong fst (sym (distrLem 0 1 y))))
, +Comm y 0
∙ cong₂ _+ℤ_ (·Comm 0 x ∙ cong snd (sym (distrLem 1 0 x)))
(·Comm 1 y ∙ cong snd (sym (distrLem 0 1 y))))
where
ℤ×ℤ = DirProd ℤGroup ℤGroup
_+''_ = GroupStr._·_ (snd ℤ×ℤ)
distrLem : (x y : ℤ) (z : ℤ)
→ Path (ℤ × ℤ) (z ℤ[ ℤ×ℤ ]· (x , y)) (z * x , z * y)
distrLem x y (pos zero) = refl
distrLem x y (pos (suc n)) =
(cong ((x , y) +''_) (distrLem x y (pos n)))
distrLem x y (negsuc zero) = refl
distrLem x y (negsuc (suc n)) = cong₂ _+''_ refl ((distrLem x y (negsuc n)))
gen₁ℤGroup-⊎ : (g : ℤ) → gen₁-by ℤGroup g → (g ≡ 1) ⊎ (g ≡ -1)
gen₁ℤGroup-⊎ (pos zero) h = ⊥-rec (negsucNotpos 0 0 (h (negsuc 0) .snd ∙ rUnitℤ· ℤGroup _))
gen₁ℤGroup-⊎ (pos (suc zero)) h = inl refl
gen₁ℤGroup-⊎ (pos (suc (suc n))) h = ⊥-rec (¬1=x·suc-suc n _ (rem (pos 1)))
where
rem : (x : ℤ) → x ≡ fst (h x) * pos (suc (suc n))
rem x = h x .snd ∙ sym (ℤ·≡· (fst (h x)) (pos (suc (suc n))))
gen₁ℤGroup-⊎ (negsuc zero) h = inr refl
gen₁ℤGroup-⊎ (negsuc (suc n)) h = ⊥-rec (¬1=x·suc-suc n _ (rem (pos 1) ∙ ℤ·negsuc (fst (h (pos 1))) (suc n) ∙ -DistL· _ _))
where
rem : (x : ℤ) → x ≡ fst (h x) * negsuc (suc n)
rem x = h x .snd ∙ sym (ℤ·≡· (fst (h x)) (negsuc (suc n)))
-- Properties of homomorphisms of ℤ wrt generators (should be moved)
module _ (ϕ : GroupHom ℤGroup ℤGroup) where
ℤHomId : fst ϕ 1 ≡ 1 → fst ϕ ≡ idfun _
ℤHomId p = funExt rem
where
remPos : (x : ℕ) → fst ϕ (pos x) ≡ idfun ℤ (pos x)
remPos zero = pres1 (snd ϕ)
remPos (suc zero) = p
remPos (suc (suc n)) =
pres· (snd ϕ) (pos (suc n)) 1 ∙ cong₂ _+ℤ_ (remPos (suc n)) p
rem : (x : ℤ) → fst ϕ x ≡ idfun ℤ x
rem (pos n) = remPos n
rem (negsuc zero) =
presinv (snd ϕ) 1 ∙ cong -_ p
rem (negsuc (suc n)) =
presinv (snd ϕ) (pos (suc (suc n)))
∙ cong -_ (remPos (suc (suc n)))
ℤHomId- : fst ϕ -1 ≡ -1 → fst ϕ ≡ idfun _
ℤHomId- p = ℤHomId (presinv (snd ϕ) (negsuc 0) ∙ cong -_ p)
ℤHom1- : fst ϕ 1 ≡ -1 → fst ϕ ≡ -_
ℤHom1- p = funExt rem
where
rem-1 : fst ϕ (negsuc zero) ≡ pos 1
rem-1 = presinv (snd ϕ) (pos 1) ∙ cong -_ p
rem : (n : ℤ) → fst ϕ n ≡ - n
rem (pos zero) = pres1 (snd ϕ)
rem (pos (suc zero)) = p
rem (pos (suc (suc n))) = pres· (snd ϕ) (pos (suc n)) (pos 1) ∙ cong₂ _+ℤ_ (rem (pos (suc n))) p
rem (negsuc zero) = rem-1
rem (negsuc (suc n)) = pres· (snd ϕ) (negsuc n) -1 ∙ cong₂ _+ℤ_ (rem (negsuc n)) rem-1
ℤHom-1 : fst ϕ -1 ≡ 1 → fst ϕ ≡ -_
ℤHom-1 p = ℤHom1- (presinv (snd ϕ) -1 ∙ cong -_ p)
-- Properties of equivalences of ℤ wrt generators (should be moved)
module _ (ϕ : GroupEquiv ℤGroup ℤGroup) where
ℤEquiv1 : (groupEquivFun ϕ 1 ≡ 1) ⊎ (groupEquivFun ϕ 1 ≡ -1)
ℤEquiv1 =
groupEquivPresGen ℤGroup (compGroupEquiv ϕ (invGroupEquiv ϕ))
(pos 1) (inl (funExt⁻ (cong fst (invEquiv-is-rinv (ϕ .fst))) (pos 1))) ϕ
ℤEquivIsIdOr- : (g : ℤ) → (groupEquivFun ϕ g ≡ g) ⊎ (groupEquivFun ϕ g ≡ - g)
ℤEquivIsIdOr- g =
⊎-rec (λ h → inl (funExt⁻ (ℤHomId (_ , ϕ .snd) h) g))
(λ h → inr (funExt⁻ (ℤHom1- (_ , ϕ .snd) h) g))
ℤEquiv1
absℤEquiv : (g : ℤ) → abs g ≡ abs (fst (fst ϕ) g)
absℤEquiv g =
⊎-rec (λ h → sym (cong abs h))
(λ h → sym (abs- _) ∙ sym (cong abs h))
(ℤEquivIsIdOr- g)
-- A few consequences of the above lemmas
characℤ≅ℤ : (e : GroupEquiv ℤGroup ℤGroup)
→ (e ≡ idGroupEquiv) ⊎ (e ≡ negEquivℤ)
characℤ≅ℤ e =
⊎-rec
(λ p → inl (Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(Σ≡Prop (λ _ → isPropIsEquiv _)
(funExt λ x →
cong (e .fst .fst) (·Comm 1 x)
∙ GroupHomℤ→ℤPres· (fst (fst e) , snd e) x 1
∙ cong (x *_) p
∙ ·Comm x 1))))
(λ p → inr (Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(Σ≡Prop (λ _ → isPropIsEquiv _)
(funExt λ x →
cong (fst (fst e)) (sym (·Rid x))
∙ GroupHomℤ→ℤPres· ((fst (fst e)) , (snd e)) x 1
∙ cong (x *_) p
∙ ·Comm x -1 ))))
(ℤEquiv1 e)
absGroupEquivℤGroup : {G : Group₀} (ϕ ψ : GroupEquiv ℤGroup G) (g : fst G)
→ abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g)
absGroupEquivℤGroup =
GroupEquivJ (λ G ϕ → (ψ : GroupEquiv ℤGroup G) (g : fst G)
→ abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g))
(λ ψ → absℤEquiv (invGroupEquiv ψ))
GroupEquivℤ-isEquiv : {G : Group₀}
→ GroupEquiv ℤGroup G
→ (g : fst G)
→ gen₁-by G g
→ (ϕ : GroupHom G ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ)
GroupEquivℤ-isEquiv {G = G} =
GroupEquivJ
(λ G _ → (g : fst G)
→ gen₁-by G g
→ (ϕ : GroupHom G ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ))
rem
where
rem : (g : ℤ)
→ gen₁-by ℤGroup g
→ (ϕ : GroupHom ℤGroup ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ)
rem g gen ϕ (inl h₁) =
⊎-rec (λ h₂ → subst isEquiv (sym (ℤHomId ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) (idIsEquiv _))
(λ h₂ → subst isEquiv (sym (ℤHom-1 ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) isEquiv-)
(gen₁ℤGroup-⊎ g gen)
rem g gen ϕ (inr h₁) =
⊎-rec (λ h₂ → subst isEquiv (sym (ℤHom1- ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) isEquiv-)
(λ h₂ → subst isEquiv (sym (ℤHomId- ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) (idIsEquiv _))
(gen₁ℤGroup-⊎ g gen)
-- Characterisation of ℤ→ℤ
characGroupHomℤ : (e : GroupHom ℤGroup ℤGroup) → e ≡ ℤHom (fst e (pos 1))
characGroupHomℤ e =
Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt λ { (pos n) → lem n
; (negsuc n)
→ presinv (snd e) (pos (suc n))
∙ cong -_ (lem (suc n))
∙ sym (ℤ·negsuc (fst e 1) n) })
where
lem : (n : ℕ) → fst e (pos n) ≡ fst e 1 * (pos n)
lem zero = pres1 (snd e) ∙ ·Comm 0 (fst e 1)
lem (suc zero) = ·Comm 1 (fst e 1)
lem (suc (suc n)) =
pres· (snd e) (pos (suc n)) 1
∙ cong (_+ℤ fst e 1) (lem (suc n))
∙ cong (fst e (pos 1) * pos (suc n) +ℤ_) (·Comm 1 (fst e 1))
∙ sym (·DistR+ (fst e 1) (pos (suc n)) 1)
imℤHomSubGroup : (f : GroupHom ℤGroup ℤGroup) → NormalSubgroup ℤGroup
imℤHomSubGroup f = imNormalSubgroup f +Comm
-- Equivalence between ℤ/ (abs (f 1)) and ℤ/ (im f) using the two different
-- definitions of ℤ quotients. We start with the case f 1 ≥ 0.
module _ (f : GroupHom ℤGroup ℤGroup) where
trivHom→ℤ≅ℤ/im : fst f 1 ≡ 0
→ GroupIso ℤGroup (ℤGroup / imℤHomSubGroup f)
trivHom→ℤ≅ℤ/im q =
trivialRelIso
(imℤHomSubGroup f)
λ x y → Prop.rec (isSetℤ _ _)
λ {(c , p) →
GroupTheory.invUniqueL ℤGroup
{g = x} {h = (GroupStr.inv (snd ℤGroup) y)}
(sym p ∙ (funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom q)) c))
∙ GroupTheory.invInv ℤGroup y}
ℤHom→ℤ/im≅ℤ/im1 : (n : ℕ) → fst f 1 ≡ pos (suc n)
→ BijectionIso (ℤGroup / imℤHomSubGroup f) (ℤGroup/ (suc n))
fst (BijectionIso.fun (ℤHom→ℤ/im≅ℤ/im1 n p)) =
sRec isSetFin (ℤ→Fin n) λ a b
→ rec (isSetFin _ _) (uncurry λ x q
→ (cong (ℤ→Fin n) (cancel-lem a b _
(sym q ∙ funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom p)) x)))
∙ pres· (isHomℤ→Fin n) (pos (suc n) * x) b
∙ cong (_+ₘ ℤ→Fin n b) (lem x)
∙ GroupStr.·IdL (snd (ℤGroup/ (suc n))) (ℤ→Fin n b))
where
lem : (x : ℤ) → ℤ→Fin n (pos (suc n) * x) ≡ 0
lem (pos x) = cong (ℤ→Fin n) (sym (pos· (suc n) x))
∙ Σ≡Prop (λ _ → isProp≤)
(cong (_mod (suc n)) (·-comm (suc n) x)
∙ zero-charac-gen (suc n) x)
lem (negsuc x) =
cong (ℤ→Fin n) (pos·negsuc (suc n) x
∙ cong -_ (sym (pos· (suc n) (suc x))))
∙∙ cong -ₘ_ (Σ≡Prop (λ _ → isProp≤)
(cong (_mod (suc n)) (·-comm (suc n) (suc x))
∙ zero-charac-gen (suc n) (suc x)))
∙∙ GroupTheory.inv1g (ℤGroup/ (suc n))
cancel-lem : (a b x : ℤ) → a +ℤ (- b) ≡ x → a ≡ x +ℤ b
cancel-lem a b x p = sym (minusPlus b a) ∙ cong (_+ℤ b) p
snd (BijectionIso.fun (ℤHom→ℤ/im≅ℤ/im1 n p)) =
makeIsGroupHom (elimProp2 (λ _ _ → isSetFin _ _) (pres· (isHomℤ→Fin n)))
BijectionIso.inj (ℤHom→ℤ/im≅ℤ/im1 n p) =
elimProp (λ _ → isPropΠ λ _ → squash/ _ _)
(λ { (pos x) q → eq/ (pos x) 0
∣ (((pos (quotient x / (suc n)))) ,
(funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom p)) ((pos (quotient x / (suc n))))
∙ sym (pos· (suc n) (quotient x / (suc n)))
∙ cong pos ((λ i → q (~ i) .fst +ℕ suc n ·ℕ (quotient x / suc n)))
∙ cong pos (≡remainder+quotient (suc n) x))) ∣₁ ;
(negsuc x) q → eq/ (negsuc x) 0
∣ (((- pos (quotient suc x / (suc n)))) ,
presinv (snd f) (pos (quotient suc x / (suc n)))
∙ (cong -_ (funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom p))
(pos (quotient (suc x) / (suc n))))
∙∙ cong -_ (sym (pos· (suc n) (quotient suc x / (suc n)))
∙ (λ i → pos (fst ((sym (GroupTheory.invInv
(ℤGroup/ (suc n))
((suc x mod suc n) , mod< n (suc x)))
∙ cong -ₘ_ q
∙ GroupTheory.inv1g (ℤGroup/ (suc n))) (~ i))
+ℕ suc n ·ℕ quotient (suc x) / suc n)))
∙∙ cong -_ (cong pos (≡remainder+quotient (suc n) (suc x))))) ∣₁})
BijectionIso.surj (ℤHom→ℤ/im≅ℤ/im1 n p) x =
∣ [ pos (fst x) ]
, (Σ≡Prop (λ _ → isProp≤) (modIndBase n (fst x) (snd x))) ∣₁
-- main result
ℤ/imIso : (f : GroupHom ℤGroup ℤGroup)
→ GroupIso (ℤGroup / imℤHomSubGroup f) (ℤGroup/ abs (fst f 1))
ℤ/imIso f = helpIso _ refl
where
helpIso : (a : ℤ)
→ fst f 1 ≡ a → GroupIso (ℤGroup / imℤHomSubGroup f) (ℤGroup/ abs a)
helpIso (pos zero) p = invGroupIso (trivHom→ℤ≅ℤ/im f p)
helpIso (pos (suc n)) p = BijectionIso→GroupIso (ℤHom→ℤ/im≅ℤ/im1 f n p)
helpIso (negsuc n) p =
subst ((λ x → GroupIso (ℤGroup / x) (ℤGroup/ abs (negsuc n))))
(sym lem1)
(BijectionIso→GroupIso
(ℤHom→ℤ/im≅ℤ/im1 extendHom n (cong -_ p)))
where
extendHom : GroupHom ℤGroup ℤGroup
extendHom = compGroupHom f (fst (fst negEquivℤ) , snd negEquivℤ)
lem1 : imℤHomSubGroup f ≡ imℤHomSubGroup extendHom
lem1 = Σ≡Prop (λ _ → isPropIsNormal _)
(Σ≡Prop (λ _ → isPropIsSubgroup _ _)
(funExt λ x → Σ≡Prop (λ _ → isPropIsProp)
(isoToPath (iso
(Prop.map (λ { (x , q) → (- x) , cong -_ (presinv (snd f) x)
∙ GroupTheory.invInv ℤGroup (fst f x)
∙ q }))
(Prop.map (λ { (x , q) → (- x) , (presinv (snd f) x ∙ q) }))
((λ _ → squash₁ _ _))
(λ _ → squash₁ _ _)))))
-- Goal: given G -ᶠ→ H → L → Unit exact, with G ≅ H ≅ ℤ, we get
-- an iso ℤ/abs (f 1) ≅ H, where f 1 and 1 are viewed as integers
-- via the isomorphisms. We start with the case when G = H = ℤ
module _ (f : GroupHom ℤGroup ℤGroup) (G : Group₀)
(g : GroupHom ℤGroup G)
(ex : Exact4 ℤGroup ℤGroup G UnitGroup₀ f g (→UnitHom G)) where
private
imf≡kerg : imℤHomSubGroup f ≡ kerNormalSubgroup g
imf≡kerg =
Σ≡Prop (λ _ → isPropIsNormal _)
(Σ≡Prop (λ _ → isPropIsSubgroup _ _)
(funExt λ x → Σ≡Prop (λ _ → isPropIsProp)
(isoToPath
(isProp→Iso
(isPropIsInIm _ _)
(isPropIsInKer _ _)
(ImG→H⊂KerH→L ex x)
(KerH→L⊂ImG→H ex x)))))
ℤ/im≅ℤ/ker : GroupIso (ℤGroup / imℤHomSubGroup f) (ℤGroup / kerNormalSubgroup g)
ℤ/im≅ℤ/ker =
GroupEquiv→GroupIso (invEq (GroupPath _ _) (cong (ℤGroup /_) imf≡kerg))
GroupIsoℤ/abs : GroupIso (ℤGroup/ abs (fst f (pos 1))) G
GroupIsoℤ/abs =
compGroupIso
(invGroupIso (ℤ/imIso f))
(compGroupIso
ℤ/im≅ℤ/ker
(compGroupIso
(invGroupIso (isoThm1 g))
(surjImIso g λ a → KerL→R⊂ImH→L ex a refl)))
-- The general case
GroupEquivℤ/abs-gen : (G H L : Group₀)
→ (e : GroupEquiv ℤGroup G)
→ (r : GroupEquiv ℤGroup H)
→ (f : GroupHom G H) (g : GroupHom H L)
→ Exact4 G H L UnitGroup₀ f g (→UnitHom L)
→ GroupEquiv (ℤGroup/ abs (invEq (fst r) (fst f (fst (fst e) 1)))) L
GroupEquivℤ/abs-gen G H L =
GroupEquivJ (λ G e
→ (r : GroupEquiv ℤGroup H)
→ (f : GroupHom G H) (g : GroupHom H L)
→ Exact4 G H L UnitGroup₀ f g (→UnitHom L)
→ GroupEquiv (ℤGroup/ abs (invEq (fst r) (fst f (fst (fst e) 1)))) L)
(GroupEquivJ (λ H r
→ (f : GroupHom ℤGroup H) (g : GroupHom H L) →
Exact4 ℤGroup H L UnitGroup₀ f g (→UnitHom L) →
GroupEquiv
(ℤGroup/ abs (invEq (fst r) (fst f 1))) L)
λ f g ex → GroupIso→GroupEquiv (GroupIsoℤ/abs f L g ex))
-- for type checking reasons, let's also do it with an abstract type
abstract
abstractℤGroup/_ : ℕ → Group₀
abstractℤGroup/_ n = ℤGroup/ n
abstractℤ/≡ℤ : abstractℤGroup/_ ≡ ℤGroup/_
abstractℤ/≡ℤ = refl
abstractℤ/≅ℤ : (n : ℕ) → GroupEquiv (abstractℤGroup/_ n) (ℤGroup/ n)
abstractℤ/≅ℤ n = idGroupEquiv
GroupEquiv-abstractℤ/abs-gen : (G H L : Group₀)
→ (e : GroupEquiv ℤGroup G)
→ (r : GroupEquiv ℤGroup H)
→ (f : GroupHom G H) (g : GroupHom H L)
→ Exact4 G H L UnitGroup₀ f g (→UnitHom L)
→ (n : ℕ)
→ abs (invEq (fst r) (fst f (fst (fst e) 1))) ≡ n
→ GroupEquiv (abstractℤGroup/_ n) L
GroupEquiv-abstractℤ/abs-gen G H L e r f g ex n p = main
where
abstract
main : GroupEquiv (abstractℤGroup/_ n) L
main =
transport (λ i
→ GroupEquiv (abstractℤ/≡ℤ (~ i) (p i)) L)
(GroupEquivℤ/abs-gen G H L e r f g ex)
1∈Im→isEquivℤ : (h : GroupHom ℤGroup ℤGroup) → isInIm h (pos 1) → isEquiv (fst h)
1∈Im→isEquivℤ h = Prop.rec (isPropIsEquiv _)
λ p → GroupEquivℤ-isEquiv idGroupEquiv 1
(λ r → r , (·Comm 1 r ∙ ℤ·≡· r 1)) h (main p)
where
main : Σ[ x ∈ ℤ ] fst h x ≡ 1 → (fst h 1 ≡ 1) ⊎ (fst h 1 ≡ -1)
main (n , p) =
≡±1-id n
(fst h (pos 1))
h1-id
(λ q → snotz (injPos (sym p
∙∙ cong (fst h) q
∙∙ IsGroupHom.pres1 (snd h))))
λ q → snotz (injPos (sym p
∙∙ cong (fst h) (·Comm 1 n ∙ ℤ·≡· n 1)
∙∙ homPresℤ· h 1 n ∙ (cong (n ℤ[ ℤGroup ]·_) q)
∙∙ sym (ℤ·≡· n 0)
∙∙ ·Comm n 0))
where
h1-id : pos 1 ≡ n * fst h (pos 1)
h1-id =
sym p
∙ cong (fst h) (sym (ℤ·≡· 1 n)
∙∙ ·Comm 1 n ∙∙ ℤ·≡· n 1)
∙ (homPresℤ· h 1 n)
∙ sym (ℤ·≡· n (fst h 1))
≡±1-id : (a b : ℤ) → 1 ≡ a * b
→ ¬ (a ≡ 0) → ¬ (b ≡ 0)
→ (b ≡ 1) ⊎ (b ≡ -1)
≡±1-id a (pos zero) p a≠0 b≠0 = ⊥-rec (b≠0 refl)
≡±1-id a (pos (suc zero)) p a≠0 b≠0 = inl refl
≡±1-id (pos zero) (pos (suc (suc n))) p a≠0 b≠0 = ⊥-rec (a≠0 refl)
≡±1-id (pos (suc n₁)) (pos (suc (suc n))) p a≠0 b≠0 =
⊥-rec (snotz
(cong predℕ (injPos ((pos· (suc n₁) (suc (suc n)) ∙ sym p)))))
≡±1-id (negsuc n₁) (pos (suc (suc n))) p a≠0 b≠0 =
⊥-rec (snotz (sym (injNegsuc (cong (predℤ ∘ predℤ)
(p ∙ negsuc·pos n₁ (suc (suc n))
∙ cong (-_) (sym (pos· (suc n₁) (suc (suc n)))))))))
≡±1-id a (negsuc zero) p a≠0 b≠0 = inr refl
≡±1-id (pos zero) (negsuc (suc n)) p a≠0 b≠0 = ⊥-rec (a≠0 refl)
≡±1-id (pos (suc n₁)) (negsuc (suc n)) p a≠0 b≠0 =
⊥-rec (snotz (sym (injNegsuc
(cong (predℤ ∘ predℤ) (p ∙ pos·negsuc (suc n₁) (suc n)
∙ cong (-_) (sym (pos· (suc n₁) (suc (suc n)))))))))
≡±1-id (negsuc n₁) (negsuc (suc n)) p a≠0 b≠0 =
⊥-rec (snotz (injPos
(sym (cong predℤ (p ∙ negsuc·negsuc n₁ (suc n)
∙ sym (pos· (suc n₁) (suc (suc n))))))))
1∈Im→isEquiv : ∀ (G : Group₀) (e : GroupEquiv ℤGroup G)
→ (h : GroupHom G ℤGroup)
→ isInIm (_ , snd h) 1
→ isEquiv (fst h)
1∈Im→isEquiv G =
GroupEquivJ
(λ H _ → (h : GroupHom H ℤGroup)
→ isInIm (_ , snd h) 1
→ isEquiv (fst h))
1∈Im→isEquivℤ
| 40.548476
| 123
| 0.515576
|
1d2eb63e9e1ce07c28ca1d74a0564dd3f0d1aa3c
| 1,341
|
agda
|
Agda
|
test/succeed/Issue354.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T04:41:05.000Z
|
2019-11-27T04:41:05.000Z
|
test/succeed/Issue354.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/succeed/Issue354.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --universe-polymorphism #-}
module Issue354 where
------------------------------------------------------------------------
-- Preliminaries
postulate
Level : Set
zero : Level
suc : (i : Level) → Level
_⊔_ : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
_≗_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set (a ⊔ b)
f ≗ g = ∀ x → f x ≡ g x
------------------------------------------------------------------------
-- Example
postulate
a : Level
A : Set a
P : A → Set
x : A
f : ∀ {a} {A : Set a} → A → A
g : A → A
lemma : f ≗ g
p : f x ≡ g x
p with f x | lemma x
... | .(g x) | refl = refl
-- The code above fails to type check, even though lemma x has the
-- type f x ≡ g x. However, if A is given the type Set zero, then the
-- code checks.
-- Excerpt from agda -vtc.with:100 --show-implicit Bug.agda:
--
-- checkWithFunction
-- delta1 =
-- delta2 =
-- gamma =
-- as = [A, _≡_ {a} {A} (f {a ⊔ a} {A} x) (g x)]
-- vs = [f {a} {A} x, lemma x]
-- b = _≡_ {a} {A} (f {a} {A} x) (g x)
-- qs = []
-- perm = ->
--
-- Notice the occurrence of a ⊔ a.
| 22.728814
| 72
| 0.431767
|
5e4761a0e315cae09755e53eb733c864bab1cdaf
| 1,406
|
agda
|
Agda
|
nouse_CollatzProof.agda
|
righ1113/collatzProof
|
7e3f7a76b8cb0db264175392ff5e584a26930379
|
[
"MIT"
] | 1
|
2018-02-25T14:44:08.000Z
|
2018-02-25T14:44:08.000Z
|
nouse_CollatzProof.agda
|
righ1113/collatzProof
|
7e3f7a76b8cb0db264175392ff5e584a26930379
|
[
"MIT"
] | null | null | null |
nouse_CollatzProof.agda
|
righ1113/collatzProof
|
7e3f7a76b8cb0db264175392ff5e584a26930379
|
[
"MIT"
] | null | null | null |
module nouse_CollatzProof where
open import Data.Nat
-- 偽
data ⊥ : Set where
-- 真
record ⊤ : Set where
-- 選言
data _∨_ (P Q : Set) : Set where
∨Intro1 : P → P ∨ Q
∨Intro2 : Q → P ∨ Q
∨Elim : {P Q R : Set} → P ∨ Q → (P → R) → (Q → R) → R
∨Elim (∨Intro1 a) prfP _ = prfP a
∨Elim (∨Intro2 b) _ prfQ = prfQ b
-- 否定
¬ : Set → Set
¬ p = p → ⊥
⊥Elim : {P : Set} → ⊥ → P
⊥Elim ()
postulate
LEM : (P : Set) → (P ∨ ¬ P)
smaller : ℕ → Set
-- n:左端からの連続するビット1
-- k+2で小さくならない→k+1で小さくならない
lemma1-3 : (k : ℕ) → ¬ (smaller (suc (suc k))) → ¬ (smaller (suc k))
lemma2 : smaller 0 -- evenは小さくなる
lemma3 : smaller 1 -- 4x+1は小さくなる
-- 二重否定除去
DNE1 : {p : Set} → p → ¬ (¬ p)
DNE1 p q = q p
DNE2 : {p : Set} → ¬ (¬ p) → p
DNE2 {p0} p1 = ∨Elim (LEM p0) (λ y → y) (λ z → ⊥Elim (p1 z))
-- 対偶
contraposition : {A B : Set} → (A → B) → (¬ B → ¬ A)
contraposition = λ f g x → g (f x)
contraposition2 : {A B : Set} → (¬ B → ¬ A) → (A → B)
contraposition2 p a =
let t = (contraposition p) (DNE1 a) in DNE2 t
-- 本論
-- n:最下位からの連続するビット1
proof : (n : ℕ) → smaller n
proof zero = lemma2 -- even
proof (suc zero) = lemma3 -- 4x+1
proof (suc (suc n)) = part n (proof (suc n))
where
-- (k+2で小さくならない→k+1で小さくならない)→(k+1で小さくなる→k+2で小さくなる)
part : (k : ℕ) → smaller (suc k) → smaller (suc (suc k))
part k = contraposition2 (lemma1-3 k)
| 23.830508
| 71
| 0.510669
|
1139e52a1edf95efa105f3fcf0b7e2d5189a58c0
| 3,423
|
agda
|
Agda
|
Cubical/DStructures/Experiments.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/DStructures/Experiments.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/DStructures/Experiments.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-}
module Cubical.DStructures.Experiments where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Path
open import Cubical.Functions.FunExtEquiv
open import Cubical.Homotopy.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Data.Maybe
open import Cubical.Relation.Binary
open import Cubical.Structures.Subtype
open import Cubical.Structures.LeftAction
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Semidirect
-- this file also serves as Everything.agda
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
open import Cubical.DStructures.Meta.Isomorphism
open import Cubical.DStructures.Structures.Action
open import Cubical.DStructures.Structures.Category
open import Cubical.DStructures.Structures.Constant
open import Cubical.DStructures.Structures.Group
-- open import Cubical.DStructures.Structures.Higher
open import Cubical.DStructures.Structures.Nat
open import Cubical.DStructures.Structures.PeifferGraph
open import Cubical.DStructures.Structures.ReflGraph
open import Cubical.DStructures.Structures.SplitEpi
open import Cubical.DStructures.Structures.Strict2Group
open import Cubical.DStructures.Structures.Type
-- open import Cubical.DStructures.Structures.Universe
open import Cubical.DStructures.Structures.VertComp
open import Cubical.DStructures.Structures.XModule
open import Cubical.DStructures.Equivalences.GroupSplitEpiAction
open import Cubical.DStructures.Equivalences.PreXModReflGraph
open import Cubical.DStructures.Equivalences.XModPeifferGraph
open import Cubical.DStructures.Equivalences.PeifferGraphS2G
private
variable
ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' ℓ≅B' : Level
open Kernel
open GroupHom -- such .fun!
open GroupLemmas
open MorphismLemmas
{-
record Hom-𝒮 {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : URGStr A ℓ≅A)
{B : Type ℓB} {ℓ≅B : Level} (𝒮-B : URGStr B ℓ≅B)
: Type (ℓ-max (ℓ-max ℓA ℓB) (ℓ-max ℓ≅A ℓ≅B)) where
constructor hom-𝒮
open URGStr
field
fun : A → B
fun-≅ : {a a' : A} → (p : _≅_ 𝒮-A a a') → _≅_ 𝒮-B (fun a) (fun a')
fun-ρ : {a : A} → fun-≅ (ρ 𝒮-A a) ≡ ρ 𝒮-B (fun a)
∫𝒮ᴰ-π₁ : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A}
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
→ Hom-𝒮 (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B) 𝒮-A
Hom-𝒮.fun (∫𝒮ᴰ-π₁ 𝒮ᴰ-B) = fst
Hom-𝒮.fun-≅ (∫𝒮ᴰ-π₁ 𝒮ᴰ-B) = fst
Hom-𝒮.fun-ρ (∫𝒮ᴰ-π₁ 𝒮ᴰ-B) = refl
module _ {ℓ : Level} {A : Type ℓ} (𝒮-A : URGStr A ℓ) where
𝒮ᴰ-toHom : Iso (Σ[ B ∈ (A → Type ℓ) ] (URGStrᴰ 𝒮-A B ℓ)) (Σ[ B ∈ (Type ℓ) ] Σ[ 𝒮-B ∈ (URGStr B ℓ) ] (Hom-𝒮 𝒮-B 𝒮-A))
Iso.fun 𝒮ᴰ-toHom (B , 𝒮ᴰ-B) = (Σ[ a ∈ A ] B a) , {!!} , {!!}
Iso.inv 𝒮ᴰ-toHom (B , 𝒮ᴰ-B , F) = (λ a → Σ[ b ∈ B ] F .fun b ≡ a) , {!!}
where
open Hom-𝒮
Iso.leftInv 𝒮ᴰ-toHom (B , 𝒮ᴰ-B) = ΣPathP ((funExt (λ a → {!!})) , {!!})
Iso.rightInv 𝒮ᴰ-toHom (B , 𝒮ᴰ-B , F) = {!!}
-}
-- Older Experiments --
-- needs --guardedness flag
module _ where
record Hierarchy {A : Type ℓ} (𝒮-A : URGStr A ℓ) : Type (ℓ-suc ℓ) where
coinductive
field
B : A → Type ℓ
𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ
ℋ : Maybe (Hierarchy {A = Σ A B} (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B))
| 30.837838
| 118
| 0.695297
|
4329e05a97c083f895f3b4fc5569bd52b1e4396c
| 2,111
|
agda
|
Agda
|
Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 1
|
2022-03-05T00:28:39.000Z
|
2022-03-05T00:28:39.000Z
|
Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2 where
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Algebra.Group
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp renaming (toSusp to σ)
open import Cubical.HITs.Pushout
open import Cubical.HITs.Truncation renaming
(rec to trRec ; elim to trElim ; elim2 to trElim2 ; map to trMap)
open import Cubical.HITs.S2
≡→Pushout⋁↪fold⋁≡ : ∀ {ℓ} {A B : Pointed ℓ}
→ (A ≡ B) → Pushout⋁↪fold⋁∙ A ≡ Pushout⋁↪fold⋁∙ B
≡→Pushout⋁↪fold⋁≡ = cong Pushout⋁↪fold⋁∙
private
∙≃→π≅ : ∀ {ℓ} {A B : Pointed ℓ} (n : ℕ)
→ (e : typ A ≃ typ B)
→ fst e (pt A) ≡ pt B
→ GroupEquiv (πGr n A) (πGr n B)
∙≃→π≅ {A = A} {B = B} n e =
EquivJ (λ A e → (a : A) → fst e a ≡ pt B
→ GroupEquiv (πGr n (A , a)) (πGr n B))
(λ b p → J (λ b p → GroupEquiv (πGr n (typ B , b)) (πGr n B))
idGroupEquiv (sym p))
e (pt A)
{- π₄(S³) ≅ π₃((S² × S²) ⊔ᴬ S²)
where A = S² ∨ S² -}
π₄S³≅π₃PushS² :
GroupIso (πGr 3 (S₊∙ 3))
(πGr 2 (Pushout⋁↪fold⋁∙ (S₊∙ 2)))
π₄S³≅π₃PushS² =
compGroupIso
(GroupEquiv→GroupIso
(∙≃→π≅ 3 (compEquiv (isoToEquiv (invIso IsoS³S3)) S³≃SuspS²) refl))
(compGroupIso
(invGroupIso (GrIso-πΩ-π 2))
(compGroupIso
(πTruncGroupIso 2)
(compGroupIso
(GroupEquiv→GroupIso
(∙≃→π≅ {B = _ , ∣ inl (base , base) ∣ₕ}
2 (isoToEquiv IsoΩ∥SuspS²∥₅∥Pushout⋁↪fold⋁S²∥₅) encode∙))
(compGroupIso
(invGroupIso (πTruncGroupIso 2))
(GroupEquiv→GroupIso (invEq (GroupPath _ _)
(cong (πGr 2)
(cong Pushout⋁↪fold⋁∙ (ua∙ S²≃SuspS¹ refl)))))))))
where
encode∙ : encode ∣ north ∣ refl ≡ ∣ inl (base , base) ∣
encode∙ = transportRefl _
| 32.476923
| 72
| 0.616296
|
fd1d9bd2bf2a03c2d34ca05e7adea51ce8eef990
| 1,016
|
agda
|
Agda
|
examples/outdated-and-incorrect/StackLanguage.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/StackLanguage.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/StackLanguage.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-
A simple stack language example. Illustrating that one
wants dependent elimination of inductive families.
-}
module StackLanguage where
open import Lib.Nat
open import Lib.Vec
open import Lib.Id
data Prog (A : Set) : Nat -> Set where
init : Prog A 0
push : forall {n} -> A -> Prog A n -> Prog A (suc n)
pop : forall {n} -> Prog A (suc n) -> Prog A n
⟦_⟧ : forall {A n} -> Prog A n -> Vec A n
⟦ init ⟧ = ε
⟦ push x p ⟧ = x ► ⟦ p ⟧
⟦ pop p ⟧ with ⟦ p ⟧
... | x ► xs = xs
reify : forall {A n} -> Vec A n -> Prog A n
reify ε = init
reify (x ► xs) = push x (reify xs)
normalise : forall {A n} -> Prog A n -> Prog A n
normalise p = reify ⟦ p ⟧
_≅_ : forall {A n} -> Prog A n -> Prog A n -> Set
p₁ ≅ p₂ = ⟦ p₁ ⟧ == ⟦ p₂ ⟧
sound : forall {A n} -> (p : Prog A n) -> normalise p ≅ p
sound init = refl
sound (push x p) = cong (_►_ x) (sound p)
sound (pop p) with ⟦ p ⟧ | sound p
... | x ► xs | ih with ⟦ reify xs ⟧
sound (pop p) | x ► xs | refl | .xs = refl
| 25.4
| 57
| 0.542323
|
6529dc26ad80ee41a3c25fecc1bf8da8b905dcd7
| 10,010
|
agda
|
Agda
|
src/Tactic/By/Propositional.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | 3
|
2020-05-21T22:58:50.000Z
|
2021-09-02T17:18:15.000Z
|
src/Tactic/By/Propositional.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
src/Tactic/By/Propositional.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Some tactics aimed at making equational reasoning proofs more
-- readable for propositional equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Tactic.By.Propositional where
open import Equality.Propositional
open import Prelude
open import List equality-with-J
open import Maybe equality-with-J
open import Monad equality-with-J
open import Tactic.By equality-with-J as TB
open import TC-monad equality-with-J as TC hiding (Type)
open TB public using (⟨_⟩)
private
-- Constructs the type of equalities between its two arguments.
equality : Term → Term → TC.Type
equality lhs rhs = def (quote _≡_) (varg lhs ∷ varg rhs ∷ [])
-- An illustration of what the cong functions constructed by
-- make-cong-called look like.
cong₃′ :
∀ {a b c d : Level}
{A : Type a} {B : Type b} {C : Type c} {D : Type d}
{x₁ y₁ x₂ y₂ x₃ y₃}
(f : A → B → C → D) →
x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ → f x₁ x₂ x₃ ≡ f y₁ y₂ y₃
cong₃′ f refl refl refl = refl
-- Constructs a "cong" function (similar to cong and cong₂ in
-- Equality), with the given name, for functions with the given
-- number of arguments.
make-cong-called : Name → ℕ → TC ⊤
make-cong-called cong n = do
declareDef (varg cong) (type-of-cong equality n)
defineFun cong (the-clause ∷ [])
where
the-clause = clause
(("f" , varg unknown) ∷ [])
(varg (var 0) ∷ replicate n (varg (con (quote refl) [])))
(con (quote refl) [])
unquoteDecl cong₃ = make-cong-called cong₃ 3
unquoteDecl cong₄ = make-cong-called cong₄ 4
unquoteDecl cong₅ = make-cong-called cong₅ 5
unquoteDecl cong₆ = make-cong-called cong₆ 6
unquoteDecl cong₇ = make-cong-called cong₇ 7
unquoteDecl cong₈ = make-cong-called cong₈ 8
unquoteDecl cong₉ = make-cong-called cong₉ 9
unquoteDecl cong₁₀ = make-cong-called cong₁₀ 10
-- Constructs a "cong" function (similar to cong and cong₂ in
-- Equality) for functions with the given number of arguments. The
-- name of the constructed function is returned (for 1 and 2 the
-- functions in Equality are returned). The cong functions for
-- functions with 3 up to 10 arguments are cached to avoid creating
-- lots of copies of the same functions.
make-cong : ℕ → TC Name
make-cong 1 = return (quote cong)
make-cong 2 = return (quote cong₂)
make-cong 3 = return (quote cong₃)
make-cong 4 = return (quote cong₄)
make-cong 5 = return (quote cong₅)
make-cong 6 = return (quote cong₆)
make-cong 7 = return (quote cong₇)
make-cong 8 = return (quote cong₈)
make-cong 9 = return (quote cong₉)
make-cong 10 = return (quote cong₁₀)
make-cong n = do
cong ← freshName "cong"
make-cong-called cong n
return cong
open Tactics
(λ where
(def (quote _≡_) (arg _ a ∷ arg _ A ∷ arg _ x ∷ arg _ y ∷ [])) →
return $ just (a , A , x , y)
_ → return nothing)
equality
(λ a A x → con (quote refl) (harg a ∷ harg A ∷ harg x ∷ []))
(λ p → def (quote sym) (varg p ∷ []))
(λ lhs rhs f p → def (quote cong)
(replicate 4 (harg unknown) ++
harg lhs ∷ harg rhs ∷ varg f ∷ varg p ∷ []))
false
make-cong
true
public
------------------------------------------------------------------------
-- Some unit tests
private
module Tests
(assumption : 48 ≡ 42)
(lemma : ∀ n → n + 8 ≡ n + 2)
(f : ℕ → ℕ → ℕ → ℕ)
where
g : ℕ → ℕ → ℕ → ℕ
g zero _ _ = 12
g (suc _) _ _ = 12
fst : ∀ {a b} {A : Type a} {B : A → Type b} →
Σ A B → A
fst = proj₁
{-# NOINLINE fst #-}
record R (F : Type → Type) : Type₁ where
field
p : {A : Type} {x : F A} → x ≡ x
open R ⦃ … ⦄ public
-- Tests for by.
module By-tests where
test₁ : 40 + 2 ≡ 42
test₁ = by definition
test₂ : 48 ≡ 42 → 42 ≡ 48
test₂ eq = by eq
test₃ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₃ f = by assumption
test₄ : (f : ℕ → ℕ) → f 48 ≡ f 42
test₄ f = by assumption
test₅ : (f : ℕ → ℕ → ℕ) → f 42 48 ≡ f 48 42
test₅ f = by assumption
test₆ : (f : ℕ → ℕ → ℕ → ℕ) → f 42 45 48 ≡ f 48 45 42
test₆ f = by assumption
test₇ : f 48 (f 42 45 48) 42 ≡ f 48 (f 48 45 42) 48
test₇ = by assumption
test₈ : ∀ n → g n (g n 45 48) 42 ≡ g n (g n 45 42) 48
test₈ n = by assumption
test₉ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₉ f = by (lemma 40)
test₁₀ : (f : ℕ → ℕ) → f 42 ≡ f 48
test₁₀ f = by (λ (_ : ⊤) → assumption)
test₁₁ : (f : ℕ × ℕ → ℕ × ℕ) → (∀ x → ⟨ _≡_ ⟩ (f x) x) →
fst (f (12 , 73)) ≡ fst {B = λ _ → ℕ} (12 , 73)
test₁₁ _ hyp = by hyp
-- Two test cases for the extra check in try-refl.
-- test₁₂ : (h : ℕ → Maybe ℕ) →
-- ((xs : ℕ) → h xs ≡ just xs) →
-- (xs : ℕ) → suc ⟨$⟩ h xs ≡ suc ⟨$⟩ return xs
-- test₁₂ h hyp xs =
-- suc ⟨$⟩ h xs ≡⟨ by (hyp xs) ⟩∎
-- suc ⟨$⟩ return xs ∎
-- test₁₃ : (h : List ⊤ → Maybe (List ⊤)) →
-- ((xs : List ⊤) → h xs ≡ just xs) →
-- (x : ⊤) (xs : List ⊤) → _
-- test₁₃ h hyp x xs =
-- _∷_ ⟨$⟩ return x ⊛ h xs ≡⟨ by (hyp xs) ⟩∎
-- _∷_ ⟨$⟩ return x ⊛ return xs ∎
-- This test case fails if "refl a A lhs" is replaced by
-- "refl unknown unknown lhs" in try-refl.
test₁₅ :
(F : Type → Type → Type)
(G : Bool → Type → Type) →
((A : Type) → F (G false A) A ≡ G false (F A A)) →
(A : Type) →
G false (F (G false A) A) ≡
G false (G false (F A A))
test₁₅ F G hyp A =
G false (F (G false A) A) ≡⟨ by hyp ⟩∎
G false (G false (F A A)) ∎
-- test₁₇ :
-- (P : ℕ → Type)
-- (f : ∀ {n} → P n → P n)
-- (p : P 0) →
-- f (subst P refl p) ≡ f p
-- test₁₇ P _ _ = by (subst-refl P)
test₁₈ :
(subst′ :
∀ {a p} {A : Type a} {x y : A}
(P : A → Type p) → x ≡ y → P x → P y) →
(∀ {a p} {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst′ P refl p ≡ p) →
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f (subst′ P refl p) ≡ f p
test₁₈ _ subst′-refl P _ _ = by (subst′-refl P)
-- test₁₉ :
-- {F : Type → Type} ⦃ r : R F ⦄ {A : Type} {x₁ x₂ : F A}
-- (p₁ p₂ : x₁ ≡ x₂) (assumption : p₁ ≡ p₂) →
-- trans p p₁ ≡ trans p p₂
-- test₁₉ p₁ p₂ assumption =
-- trans p p₁ ≡⟨ by assumption ⟩∎
-- trans p p₂ ∎
-- Tests for ⟨by⟩.
module ⟨By⟩-tests where
-- At the time of writing the following test case works if the
-- "cong-with-lhs-and-rhs" argument is true, but then test₁₈
-- fails.
-- test₁ : ⟨ 40 + 2 ⟩ ≡ 42
-- test₁ = ⟨by⟩ refl
test₂ : 48 ≡ 42 → ⟨ 42 ⟩ ≡ 48
test₂ eq = ⟨by⟩ eq
test₃ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₃ f = ⟨by⟩ assumption
test₄ : (f : ℕ → ℕ) → f ⟨ 48 ⟩ ≡ f 42
test₄ f = ⟨by⟩ assumption
test₅ : (f : ℕ → ℕ → ℕ) → f ⟨ 42 ⟩ ⟨ 42 ⟩ ≡ f 48 48
test₅ f = ⟨by⟩ assumption
test₆ : (f : ℕ → ℕ → ℕ → ℕ) → f ⟨ 48 ⟩ 45 ⟨ 48 ⟩ ≡ f 42 45 42
test₆ f = ⟨by⟩ assumption
test₇ : f ⟨ 48 ⟩ (f ⟨ 48 ⟩ 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ f 42 (f 42 45 42) 42
test₇ = ⟨by⟩ assumption
test₈ : ∀ n → g n (g n 45 ⟨ 48 ⟩) ⟨ 48 ⟩ ≡ g n (g n 45 42) 42
test₈ n = ⟨by⟩ assumption
test₉ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₉ f = ⟨by⟩ (lemma 40)
test₁₀ : (f : ℕ → ℕ) → f ⟨ 42 ⟩ ≡ f 48
test₁₀ f = ⟨by⟩ (λ (_ : ⊤) → assumption)
test₁₁ : (f : ℕ × ℕ → ℕ × ℕ) → (∀ x → ⟨ _≡_ ⟩ (f x) x) →
fst ⟨ f (12 , 73) ⟩ ≡ fst {B = λ _ → ℕ} (12 , 73)
test₁₁ _ hyp = ⟨by⟩ hyp
test₁₂ : (h : ℕ → Maybe ℕ) →
((xs : ℕ) → h xs ≡ just xs) →
(xs : ℕ) → suc ⟨$⟩ h xs ≡ suc ⟨$⟩ return xs
test₁₂ h hyp xs =
suc ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
suc ⟨$⟩ return xs ∎
test₁₃ : (h : List ⊤ → Maybe (List ⊤)) →
((xs : List ⊤) → h xs ≡ just xs) →
(x : ⊤) (xs : List ⊤) → _
test₁₃ h hyp x xs =
_∷_ ⟨$⟩ return x ⊛ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return x ⊛ return xs ∎
test₁₄ : (h : List ℕ → Maybe (List ℕ)) →
((xs : List ℕ) → h xs ≡ just xs) →
(x : ℕ) (xs : List ℕ) → _
test₁₄ h hyp x xs =
_∷_ ⟨$⟩ ⟨ h xs ⟩ ≡⟨ ⟨by⟩ (hyp xs) ⟩∎
_∷_ ⟨$⟩ return xs ∎
test₁₅ :
(F : Type → Type → Type)
(G : Bool → Type → Type) →
((A : Type) → F (G false A) A ≡ G false (F A A)) →
(A : Type) →
G false (F (G false A) A) ≡
G false (G false (F A A))
test₁₅ F G hyp A =
G false ⟨ F (G false A) A ⟩ ≡⟨ ⟨by⟩ hyp ⟩∎
G false (G false (F A A)) ∎
test₁₆ : 48 ≡ 42 →
_≡_ {A = ℕ → ℕ} (λ x → x + ⟨ 42 ⟩) (λ x → x + 48)
test₁₆ hyp = ⟨by⟩ hyp
test₁₇ :
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst P refl p ⟩ ≡ f p
test₁₇ P _ _ = ⟨by⟩ (subst-refl P)
test₁₈ :
(subst′ :
∀ {a p} {A : Type a} {x y : A}
(P : A → Type p) → x ≡ y → P x → P y) →
(∀ {a p} {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst′ P refl p ≡ p) →
(P : ℕ → Type)
(f : ∀ {n} → P n → P n)
(p : P 0) →
f ⟨ subst′ P refl p ⟩ ≡ f p
test₁₈ _ subst′-refl _ _ _ = ⟨by⟩ subst′-refl
test₁₉ :
{F : Type → Type} ⦃ r : R F ⦄ {A : Type} {x₁ x₂ : F A}
(p₁ p₂ : x₁ ≡ x₂) (assumption : p₁ ≡ p₂) →
trans p p₁ ≡ trans p p₂
test₁₉ p₁ p₂ assumption =
trans p p₁ ≡⟨⟩
trans p ⟨ p₁ ⟩ ≡⟨ ⟨by⟩ assumption ⟩∎
trans p p₂ ∎
| 30.518293
| 73
| 0.463836
|
217ce689042fb6ba6ffc8fde87a5b16c8970f432
| 1,216
|
agda
|
Agda
|
src/Human/Nat.agda
|
MaisaMilena/JuiceMaker
|
b509eb4c4014605facfb4ee5c807cd07753d4477
|
[
"MIT"
] | 6
|
2019-03-29T17:35:20.000Z
|
2020-11-28T05:46:27.000Z
|
src/Human/Nat.agda
|
MaisaMilena/AgdaCalculator
|
e977a5f2a005682cee123568b49462dd7d7b11ad
|
[
"MIT"
] | null | null | null |
src/Human/Nat.agda
|
MaisaMilena/AgdaCalculator
|
e977a5f2a005682cee123568b49462dd7d7b11ad
|
[
"MIT"
] | null | null | null |
module Human.Nat where
open import Human.Bool
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
infix 4 _==_ _<_
infixl 6 _+_ _-_
infixl 7 _*_
-- add theses guys on infixl 7: _div_ _%_
_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_-_ : Nat → Nat → Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}
_*_ : Nat → Nat → Nat
zero * m = zero
suc n * m = m + n * m
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat → Nat → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}
_<_ : Nat → Nat → Bool
_ < zero = false
zero < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}
div-helper : (k m n j : Nat) → Nat
div-helper k m zero j = k
div-helper k m (suc n) zero = div-helper (suc k) m n m
div-helper k m (suc n) (suc j) = div-helper k m n j
{-# BUILTIN NATDIVSUCAUX div-helper #-}
mod-helper : (k m n j : Nat) → Nat
mod-helper k m zero j = k
mod-helper k m (suc n) zero = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
{-# BUILTIN NATMODSUCAUX mod-helper #-}
| 19.612903
| 57
| 0.550987
|
6470798e28e7750b6639dc66d62aab4a6052311f
| 448
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/ReflexiveClosure.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/ReflexiveClosure.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/ReflexiveClosure.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Reflexive closures
--
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Construct.Closure.Reflexive module directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.ReflexiveClosure where
open import Relation.Binary.Construct.Closure.Reflexive public
| 29.866667
| 72
| 0.515625
|
1a06f1ca47dc9b4943297b138f9ba956e2d743d1
| 3,469
|
agda
|
Agda
|
notes/thesis/report/LogicalFramework/Existential.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/thesis/report/LogicalFramework/Existential.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/thesis/report/LogicalFramework/Existential.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LogicalFramework.Existential where
module LF where
postulate
D : Set
-- Disjunction.
_∨_ : Set → Set → Set
inj₁ : {A B : Set} → A → A ∨ B
inj₂ : {A B : Set} → B → A ∨ B
case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C
-- The existential quantifier type on D.
∃ : (A : D → Set) → Set
_,_ : {A : D → Set}(t : D) → A t → ∃ A
∃-proj₁ : {A : D → Set} → ∃ A → D
∃-proj₂ : {A : D → Set}(h : ∃ A) → A (∃-proj₁ h)
∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B
syntax ∃ (λ x → e) = ∃[ x ] e
module FOL-Examples where
-- Using the projections.
∃∀₁ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y
∃∀₁ h y = ∃-proj₁ h , (∃-proj₂ h) y
∃∨₁ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x)
∃∨₁ h = case (λ Ax → inj₁ (∃-proj₁ h , Ax))
(λ Bx → inj₂ (∃-proj₁ h , Bx))
(∃-proj₂ h)
-- Using the elimination.
∃∀₂ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y
∃∀₂ h y = ∃-elim h (λ {x} ah → x , ah y)
∃∨₂ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x)
∃∨₂ h = ∃-elim h (λ {x} ah → case (λ Ax → inj₁ (x , Ax))
(λ Bx → inj₂ (x , Bx))
ah)
module NonFOL-Examples where
-- Using the projections.
non-FOL₁ : {A : D → Set} → ∃ A → D
non-FOL₁ h = ∃-proj₁ h
-- Using the elimination.
non-FOL₂ : {A : D → Set} → ∃ A → D
non-FOL₂ h = ∃-elim h (λ {x} _ → x)
module Inductive where
open import Common.FOL.FOL
-- The existential proyections.
∃-proj₁ : ∀ {A} → ∃ A → D
∃-proj₁ (x , _) = x
∃-proj₂ : ∀ {A} → (h : ∃ A) → A (∃-proj₁ h)
∃-proj₂ (_ , Ax) = Ax
-- The existential elimination.
∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B
∃-elim (_ , Ax) h = h Ax
module FOL-Examples where
-- Using the projections.
∃∀₁ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y
∃∀₁ h y = ∃-proj₁ h , (∃-proj₂ h) y
∃∨₁ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x)
∃∨₁ h = case (λ Ax → inj₁ (∃-proj₁ h , Ax))
(λ Bx → inj₂ (∃-proj₁ h , Bx))
(∃-proj₂ h)
-- Using the elimination.
∃∀₂ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y
∃∀₂ h y = ∃-elim h (λ {x} ah → x , ah y)
∃∨₂ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x)
∃∨₂ h = ∃-elim h (λ {x} ah → case (λ Ax → inj₁ (x , Ax))
(λ Bx → inj₂ (x , Bx))
ah)
-- Using pattern matching.
∃∀₃ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y
∃∀₃ (x , Ax) y = x , Ax y
∃∨₃ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x)
∃∨₃ (x , inj₁ Ax) = inj₁ (x , Ax)
∃∨₃ (x , inj₂ Bx) = inj₂ (x , Bx)
module NonFOL-Examples where
-- Using the projections.
non-FOL₁ : {A : D → Set} → ∃ A → D
non-FOL₁ h = ∃-proj₁ h
-- Using the elimination.
non-FOL₂ : {A : D → Set} → ∃ A → D
non-FOL₂ h = ∃-elim h (λ {x} _ → x)
-- Using the pattern matching.
non-FOL₃ : {A : D → Set} → ∃ A → D
non-FOL₃ (x , _) = x
| 31.252252
| 75
| 0.388873
|
4b1ea372ff07c0017da7c001c6fe12632a5e0342
| 662
|
agda
|
Agda
|
Source/ALL/Languages/FILL/TypeSyntax.agda
|
heades/Agda-LLS
|
c83f5d8201362b26a749138f6dbff2dd509f85b1
|
[
"BSD-3-Clause"
] | 3
|
2017-04-09T20:53:53.000Z
|
2019-08-02T23:41:23.000Z
|
Source/ALL/Languages/FILL/TypeSyntax.agda
|
heades/Agda-LLS
|
c83f5d8201362b26a749138f6dbff2dd509f85b1
|
[
"BSD-3-Clause"
] | 2
|
2017-03-27T14:52:46.000Z
|
2017-04-05T17:30:16.000Z
|
Source/ALL/Languages/FILL/TypeSyntax.agda
|
heades/Agda-LLS
|
c83f5d8201362b26a749138f6dbff2dd509f85b1
|
[
"BSD-3-Clause"
] | null | null | null |
module Languages.FILL.TypeSyntax where
open import Utils.HaskellTypes
{-# IMPORT Languages.FILL.TypeSyntax #-}
data Type : Set where
TVar : String → Type
Top : Type
Bottom : Type
Imp : Type → Type → Type
Tensor : Type → Type → Type
Par : Type → Type → Type
{-# COMPILED_DATA Type Languages.FILL.TypeSyntax.Type
Languages.FILL.TypeSyntax.TVar
Languages.FILL.TypeSyntax.Top
Languages.FILL.TypeSyntax.Bottom
Languages.FILL.TypeSyntax.Imp
Languages.FILL.TypeSyntax.Tensor
Languages.FILL.TypeSyntax.Par #-}
| 30.090909
| 56
| 0.592145
|
7221a9b014332cdf3c83b634b1595168480b2e3a
| 5,681
|
agda
|
Agda
|
Cubical/Data/FinSet/Constructors.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 1
|
2022-03-05T00:29:41.000Z
|
2022-03-05T00:29:41.000Z
|
Cubical/Data/FinSet/Constructors.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
Cubical/Data/FinSet/Constructors.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
{-
Closure properties of FinSet under several type constructors.
-}
{-# OPTIONS --safe #-}
module Cubical.Data.FinSet.Constructors where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.HITs.PropositionalTruncation renaming (rec to TruncRec)
open import Cubical.Data.Nat
open import Cubical.Data.Unit
open import Cubical.Data.Empty renaming (rec to EmptyRec)
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.Fin
open import Cubical.Data.SumFin renaming (Fin to SumFin) hiding (discreteFin)
open import Cubical.Data.FinSet.Base
open import Cubical.Data.FinSet.Properties
open import Cubical.Data.FinSet.FiniteChoice
open import Cubical.Relation.Nullary
open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
module _
(X : Type ℓ)(p : ≃Fin X) where
≃Fin∥∥ : ≃Fin ∥ X ∥
≃Fin∥∥ = ≃SumFin→Fin (_ , compEquiv (propTrunc≃ (≃Fin→SumFin p .snd)) (SumFin∥∥≃ _))
module _
(X : Type ℓ )(p : ≃Fin X)
(Y : Type ℓ')(q : ≃Fin Y) where
≃Fin⊎ : ≃Fin (X ⊎ Y)
≃Fin⊎ = ≃SumFin→Fin (_ , compEquiv (⊎-equiv (≃Fin→SumFin p .snd) (≃Fin→SumFin q .snd)) (SumFin⊎≃ _ _))
≃Fin× : ≃Fin (X × Y)
≃Fin× = ≃SumFin→Fin (_ , compEquiv (Σ-cong-equiv (≃Fin→SumFin p .snd) (λ _ → ≃Fin→SumFin q .snd)) (SumFin×≃ _ _))
module _
(X : Type ℓ )(p : ≃Fin X)
(Y : X → Type ℓ')(q : (x : X) → ≃Fin (Y x)) where
private
p' = ≃Fin→SumFin p
m = p' .fst
e = p' .snd
q' : (x : X) → ≃SumFin (Y x)
q' x = ≃Fin→SumFin (q x)
f : (x : X) → ℕ
f x = q' x .fst
≃SumFinΣ : ≃SumFin (Σ X Y)
≃SumFinΣ = _ ,
Σ-cong-equiv {B' = λ x → Y (invEq (p' .snd) x)} (p' .snd) (transpFamily p')
⋆ Σ-cong-equiv-snd (λ x → q' (invEq e x) .snd)
⋆ SumFinΣ≃ _ _
≃SumFinΠ : ≃SumFin ((x : X) → Y x)
≃SumFinΠ = _ ,
equivΠ {B' = λ x → Y (invEq (p' .snd) x)} (p' .snd) (transpFamily p')
⋆ equivΠCod (λ x → q' (invEq e x) .snd)
⋆ SumFinΠ≃ _ _
≃FinΣ : ≃Fin (Σ X Y)
≃FinΣ = ≃SumFin→Fin ≃SumFinΣ
≃FinΠ : ≃Fin ((x : X) → Y x)
≃FinΠ = ≃SumFin→Fin ≃SumFinΠ
module _
(X : FinSet ℓ)
(Y : X .fst → FinSet ℓ') where
isFinSetΣ : isFinSet (Σ (X .fst) (λ x → Y x .fst))
isFinSetΣ =
elim2 (λ _ _ → isPropIsFinSet {A = Σ (X .fst) (λ x → Y x .fst)})
(λ p q → ∣ ≃FinΣ (X .fst) p (λ x → Y x .fst) q ∣)
(X .snd) (choice X (λ x → ≃Fin (Y x .fst)) (λ x → Y x .snd))
isFinSetΠ : isFinSet ((x : X .fst) → Y x .fst)
isFinSetΠ =
elim2 (λ _ _ → isPropIsFinSet {A = ((x : X .fst) → Y x .fst)})
(λ p q → ∣ ≃FinΠ (X .fst) p (λ x → Y x .fst) q ∣)
(X .snd) (choice X (λ x → ≃Fin (Y x .fst)) (λ x → Y x .snd))
module _
(X : FinSet ℓ)
(Y : X .fst → FinSet ℓ')
(Z : (x : X .fst) → Y x .fst → FinSet ℓ'') where
isFinSetΠ2 : isFinSet ((x : X .fst) → (y : Y x .fst) → Z x y .fst)
isFinSetΠ2 = isFinSetΠ X (λ x → _ , isFinSetΠ (Y x) (Z x))
module _
(X : FinSet ℓ)
(Y : X .fst → FinSet ℓ')
(Z : (x : X .fst) → Y x .fst → FinSet ℓ'')
(W : (x : X .fst) → (y : Y x .fst) → Z x y .fst → FinSet ℓ''') where
isFinSetΠ3 : isFinSet ((x : X .fst) → (y : Y x .fst) → (z : Z x y .fst) → W x y z .fst)
isFinSetΠ3 = isFinSetΠ X (λ x → _ , isFinSetΠ2 (Y x) (Z x) (W x))
module _
(X : FinSet ℓ) where
isFinSet≡ : (a b : X .fst) → isFinSet (a ≡ b)
isFinSet≡ a b = isDecProp→isFinSet (isFinSet→isSet (X .snd) a b) (isFinSet→Discrete (X .snd) a b)
isFinSetIsContr : isFinSet (isContr (X .fst))
isFinSetIsContr = isFinSetΣ X (λ x → _ , (isFinSetΠ X (λ y → _ , isFinSet≡ x y)))
isFinSet∥∥ : isFinSet ∥ X .fst ∥
isFinSet∥∥ = TruncRec isPropIsFinSet (λ p → ∣ ≃Fin∥∥ (X .fst) p ∣) (X .snd)
module _
(X : FinSet ℓ )
(Y : FinSet ℓ')
(f : X .fst → Y .fst) where
isFinSetFiber : (y : Y .fst) → isFinSet (fiber f y)
isFinSetFiber y = isFinSetΣ X (λ x → _ , isFinSet≡ Y (f x) y)
isFinSetIsEquiv : isFinSet (isEquiv f)
isFinSetIsEquiv =
EquivPresIsFinSet
(invEquiv (isEquiv≃isEquiv' f))
(isFinSetΠ Y (λ y → _ , isFinSetIsContr (_ , isFinSetFiber y)))
module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where
isFinSet⊎ : isFinSet (X .fst ⊎ Y .fst)
isFinSet⊎ = elim2 (λ _ _ → isPropIsFinSet) (λ p q → ∣ ≃Fin⊎ (X .fst) p (Y .fst) q ∣) (X .snd) (Y .snd)
isFinSet× : isFinSet (X .fst × Y .fst)
isFinSet× = elim2 (λ _ _ → isPropIsFinSet) (λ p q → ∣ ≃Fin× (X .fst) p (Y .fst) q ∣) (X .snd) (Y .snd)
isFinSet→ : isFinSet (X .fst → Y .fst)
isFinSet→ = isFinSetΠ X (λ _ → Y)
isFinSet≃ : isFinSet (X .fst ≃ Y .fst)
isFinSet≃ = isFinSetΣ (_ , isFinSet→) (λ f → _ , isFinSetIsEquiv X Y f)
module _
(X : FinSet ℓ) where
isFinSet¬ : isFinSet (¬ (X .fst))
isFinSet¬ = isFinSet→ X (⊥ , ∣ 0 , uninhabEquiv (λ x → x) ¬Fin0 ∣)
module _
(X : FinSet ℓ) where
isFinSetNonEmpty : isFinSet (NonEmpty (X .fst))
isFinSetNonEmpty = isFinSet¬ (_ , isFinSet¬ X)
module _
(X : FinSet ℓ )
(Y : FinSet ℓ')
(f : X .fst → Y .fst) where
isFinSetIsEmbedding : isFinSet (isEmbedding f)
isFinSetIsEmbedding =
isFinSetΠ2 X (λ _ → X)
(λ a b → _ , isFinSetIsEquiv (_ , isFinSet≡ X a b) (_ , isFinSet≡ Y (f a) (f b)) (cong f))
isFinSetIsSurjection : isFinSet (isSurjection f)
isFinSetIsSurjection =
isFinSetΠ Y (λ y → _ , isFinSet∥∥ (_ , isFinSetFiber X Y f y))
module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where
isFinSet↪ : isFinSet (X .fst ↪ Y .fst)
isFinSet↪ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsEmbedding X Y f)
isFinSet↠ : isFinSet (X .fst ↠ Y .fst)
isFinSet↠ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsSurjection X Y f)
| 28.837563
| 115
| 0.582644
|
65018fec56aa8bd1bee8a54723d6169cd91e062b
| 2,043
|
agda
|
Agda
|
Test01.agda
|
righ1113/Agda
|
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
|
[
"MIT"
] | null | null | null |
Test01.agda
|
righ1113/Agda
|
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
|
[
"MIT"
] | null | null | null |
Test01.agda
|
righ1113/Agda
|
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
|
[
"MIT"
] | null | null | null |
module Test01 where
hoge : {A : Set} → A → A
hoge x = x
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; subst)
open import Function using (id)
lemma1 : {X Y : Set} → (X ≡ (X → Y)) → X
lemma1 p rewrite p = (λ x → let f = subst id p x in f x)
curry : {X Y : Set} → (X ≡ (X → Y)) → Y
curry p = (let f = subst id p (lemma1 p) in f (lemma1 p))
open import Data.Bool
open import Data.Nat
open import Data.Empty
postulate
First : ℕ → Set
All : ℕ → Set
fToA : ((n : ℕ) → First n) → ((n : ℕ) → All n)
fToA2 : (z : ℕ) → (First z → All z)
tekito : (z : ℕ) → ((All z → ⊥) → (First z → ⊥)) → First (suc z)
contra : (z : ℕ) → ((All z → ⊥) → (First z → ⊥)) → (First z → All z)
mutual
-- 失敗
contraFirstToAll : (z : ℕ) → ((All z → ⊥) → (First z → ⊥))
-- contraFirstToAll z allToVoid _ = let foo = (contra z (contraFirstToAll z)) (limitedDivSeq z) in allToVoid foo
contraFirstToAll z allToVoid _ = let foo = fToA (λ k → limitedDivSeq k) in allToVoid (foo z)
limitedDivSeq : (n : ℕ) → First n
limitedDivSeq zero = {! !}
limitedDivSeq (suc n) = let bar = contraFirstToAll n in tekito n bar
-- Idris
{-
postulate foo : (t : Nat) -> LT' t (S t)
contraFirstToAll :
(z : Nat) -> (((AllLimited . B.allDivSeq) z -> Void) -> ((FirstLimited . B.allDivSeq) z -> Void))
contraFirstToAll Z allToVoid _ = allToVoid IsAllLimited00
contraFirstToAll (S z) _ _ = wfInd {P=(\z=>Void)} {rel=LT'} step (S z) where
step : (x : Nat) -> ((y : Nat) -> LT' y x -> Void) -> Void
step Z _ = believe_me "ここには来ない"
step (S x) rs = rs x (foo x)
-- ?rhs1 が書けない!!
contraFirstToAll :
(z : Nat) -> (((AllLimited . B.allDivSeq) z -> Void) -> ((FirstLimited . B.allDivSeq) z -> Void))
contraFirstToAll Z allToVoid _ = allToVoid IsAllLimited00
contraFirstToAll (S z) _ _ = step (S z) SIsNotZ (wellFounded {rel=LT'} (S z)) where
step : (x : Nat) -> Not (x = Z) -> Accessible LT' x -> Void
step Z p _ = void (p Refl)
step (S x) p (Access rs) = step x ?rhs1 (rs x (foo x))
-}
| 37.145455
| 115
| 0.582477
|
651dec7e6c5f0bff8fac0b2aa7a73bedb86c63b2
| 315
|
agda
|
Agda
|
test/Succeed/Issue3109.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 1
|
2021-07-07T10:49:57.000Z
|
2021-07-07T10:49:57.000Z
|
test/Succeed/Issue3109.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/Issue3109.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --allow-unsolved-metas #-}
postulate
Nat : Set
Fin : Nat → Set
Foo : (n : Nat) → Fin n → Set
Bar : ∀ {n m} → Foo n m → Set
variable
n : Nat
m : Fin _
k : Foo _ m
l : Foo n m
open import Agda.Builtin.Equality
postulate
goal-type-error : Bar k
foo : Bar _
foo = goal-type-error _ _
| 14.318182
| 38
| 0.587302
|
ccac0d822a4460c969100d433711a4f3d659f49b
| 2,366
|
agda
|
Agda
|
src/Data/Maybe/Instance.agda
|
banacorn/FAM
|
e5e562e4cde2face1f3f5b6d0486c8c56a47b435
|
[
"MIT"
] | null | null | null |
src/Data/Maybe/Instance.agda
|
banacorn/FAM
|
e5e562e4cde2face1f3f5b6d0486c8c56a47b435
|
[
"MIT"
] | null | null | null |
src/Data/Maybe/Instance.agda
|
banacorn/FAM
|
e5e562e4cde2face1f3f5b6d0486c8c56a47b435
|
[
"MIT"
] | null | null | null |
module Data.Maybe.Instance where
open import Category.FAM
open import Data.Maybe
open import Function using (_∘_; id)
open import Relation.Binary.PropositionalEquality
instance
MaybeFunctor : ∀ {ℓ} → Functor {ℓ} Maybe
MaybeFunctor {ℓ} = record
{ _<$>_ = map
; isFunctor = record
{ identity = identity
; homo = homo
}
}
where
identity : ∀ {A : Set ℓ} (a : Maybe A) → map id a ≡ a
identity (just x) = refl
identity nothing = refl
homo : ∀ {A B C : Set ℓ} (f : B → C) (g : A → B)
(a : Maybe A) → map (f ∘ g) a ≡ map f (map g a)
homo _ _ (just x) = refl
homo _ _ nothing = refl
MaybeApplicative : ∀ {ℓ} → Applicative {ℓ} Maybe
MaybeApplicative {ℓ} = record
{ pure = just
; _⊛_ = ap
; isApplicative = record
{ identity = identity
; compose = compose
; homo = λ _ _ → refl
; interchange = interchange
}
}
where
open ≡-Reasoning
open import Function
ap : {A B : Set ℓ} → Maybe (A → B) → Maybe A → Maybe B
ap (just f) x = map f x
ap nothing x = nothing
identity : {A : Set ℓ} (x : Maybe A) → map id x ≡ x
identity (just x) = refl
identity nothing = refl
compose : {A B C : Set ℓ} (fs : Maybe (B → C)) (gs : Maybe (A → B))
→ (xs : Maybe A)
→ ap (ap (map _∘′_ fs) gs) xs ≡ ap fs (ap gs xs)
compose {A} {B} {C} (just fs) (just gs) (just xs) = refl
compose {A} {B} {C} (just fs) (just gs) nothing = refl
compose {A} {B} {C} (just fs) nothing (just xs) = refl
compose {A} {B} {C} (just fs) nothing nothing = refl
compose {A} {B} {C} nothing (just gs) (just xs) = refl
compose {A} {B} {C} nothing (just gs) nothing = refl
compose {A} {B} {C} nothing nothing (just xs) = refl
compose {A} {B} {C} nothing nothing nothing = refl
interchange : {A B : Set ℓ} (fs : Maybe (A → B)) (x : A) → ap fs (just x) ≡ ap (just (λ f → f x)) fs
interchange {A} {B} (just f) x = refl
interchange {A} {B} nothing x = refl
| 35.848485
| 112
| 0.470414
|
4e920f84871f3e8832a094fb38fd3045fb1ce2bc
| 1,709
|
agda
|
Agda
|
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Nat.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T04:41:05.000Z
|
2019-11-27T04:41:05.000Z
|
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Nat.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Nat.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
module Data.Nat where
import Prelude
import Data.Bool as Bool
open Prelude
open Bool
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN SUC suc #-}
{-# BUILTIN ZERO zero #-}
infix 40 _==_ _<_ _≤_ _>_ _≥_
infixl 60 _+_ _-_
infixl 70 _*_
infixr 80 _^_
infix 100 _!
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
_-_ : Nat -> Nat -> Nat
zero - m = zero
suc n - zero = suc n
suc n - suc m = n - m
_*_ : Nat -> Nat -> Nat
zero * m = zero
suc n * m = m + n * m
_^_ : Nat -> Nat -> Nat
n ^ zero = 1
n ^ suc m = n * n ^ m
_! : Nat -> Nat
zero ! = 1
suc n ! = suc n * n !
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATMINUS _-_ #-}
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat -> Nat -> Bool
zero == zero = true
zero == suc _ = false
suc _ == zero = false
suc n == suc m = n == m
_<_ : Nat -> Nat -> Bool
n < zero = false
zero < suc m = true
suc n < suc m = n < m
_≤_ : Nat -> Nat -> Bool
n ≤ m = n < suc m
_>_ = flip _<_
_≥_ = flip _≤_
{-# BUILTIN NATEQUALS _==_ #-}
{-# BUILTIN NATLESS _<_ #-}
divSuc : Nat -> Nat -> Nat
divSuc zero _ = zero
divSuc (suc n) m = 1 + divSuc (n - m) m
modSuc : Nat -> Nat -> Nat
modSuc zero _ = zero
modSuc (suc n) m =
! n ≤ m => suc n
! otherwise modSuc (n - m) m
{-# BUILTIN NATDIVSUC divSuc #-}
-- {-# BUILTIN NATMODSUC modSuc #-}
div : Nat -> Nat -> Nat
div n zero = zero
div n (suc m) = divSuc n m
mod : Nat -> Nat -> Nat
mod n zero = zero
mod n (suc m) = modSuc n m
gcd : Nat -> Nat -> Nat
gcd a 0 = a
gcd a b = gcd b (mod a b)
lcm : Nat -> Nat -> Nat
lcm a b = div (a * b) (gcd a b)
even : Nat -> Bool
even n = mod n 2 == 0
odd : Nat -> Bool
odd n = mod n 2 == 1
| 16.592233
| 39
| 0.53306
|
6510b9a955a5169d447aef69bc848e4a7c7ab6a8
| 2,271
|
agda
|
Agda
|
out/STLC/Model.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | 39
|
2021-11-09T20:39:55.000Z
|
2022-03-19T17:33:12.000Z
|
out/STLC/Model.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | 1
|
2021-11-21T12:19:32.000Z
|
2021-11-21T12:19:32.000Z
|
out/STLC/Model.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | 4
|
2021-11-09T20:39:59.000Z
|
2022-01-24T12:49:17.000Z
|
-- Environment model of the STLC
module STLC.Model where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import SOAS.Abstract.Monoid
open import SOAS.Coalgebraic.Lift
open import STLC.Signature
open import STLC.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution Λ:Syn
open import SOAS.Metatheory.SecondOrder.Equality Λ:Syn
open import SOAS.Metatheory.FreeMonoid Λ:Syn
open import SOAS.Syntax.Arguments
open import Data.Nat
private
variable
α β γ τ : ΛT
Γ Δ Π : Ctx
𝔛 : Familyₛ
Λᴳ : Familyₛ
Λᴳ = Λ Ø
-- Interpretation of types and contexts
⟦_⟧ : ΛT → Set
⟦ N ⟧ = ℕ
⟦ α ↣ β ⟧ = ⟦ α ⟧ → ⟦ β ⟧
⟦_⟧ᶜ : Ctx → Set
⟦ Γ ⟧ᶜ = {α : ΛT} → ℐ α Γ → ⟦ α ⟧
_⁺_ : ⟦ α ⟧ → ⟦ Γ ⟧ᶜ → ⟦ α ∙ Γ ⟧ᶜ
_⁺_ x γ new = x
_⁺_ x γ (old v) = γ v
infixr 10 _⁺_
-- Environment model
Env : Familyₛ
Env α Γ = ⟦ Γ ⟧ᶜ → ⟦ α ⟧
ΣEnvᴹ : ΣMon Env
ΣEnvᴹ = record
{ ᵐ = record
{ η = λ v γ → γ v ; μ = λ t σ δ → t (λ v → σ v δ)
; lunit = refl ; runit = refl ; assoc = refl }
; 𝑎𝑙𝑔 = λ{ (appₒ ⋮ f , a) γ → f γ (a γ)
; (lamₒ ⋮ b) γ → λ a → b (a ⁺ γ) }
; μ⟨𝑎𝑙𝑔⟩ = λ{ (appₒ ⋮ _) → refl
; (lamₒ ⋮ b) → ext² λ δ a → cong b (dext
(λ { new → refl ; (old y) → refl })) } }
module Env = FΣM Ø ΣEnvᴹ (λ ())
eval : Λ Ø ⇾̣ Env
eval = Env.𝕖𝕩𝕥
evalᶜ : Λ Ø α ∅ → ⟦ α ⟧
evalᶜ t = eval t (λ ())
_ : evalᶜ {N ↣ N ↣ N} (ƛ ƛ x₁) ≡ λ x y → x
_ = refl
open Theory Ø
-- Operational semantics of the STLC
data Value : Λᴳ α Γ → Set where
lamⱽ : {b : Λᴳ β (α ∙ Γ)} →
Value (ƛ b)
data _⟿_ : Λᴳ α Γ → Λᴳ α Γ → Set where
ζ-$₁ : {f g : Λᴳ (α ↣ β) Γ}{a : Λᴳ α Γ} →
f ⟿ g → f $ a ⟿ g $ a
ζ-$₂ : {f : Λᴳ (α ↣ β) Γ}{a b : Λᴳ α Γ} →
Value f → a ⟿ b → f $ a ⟿ f $ b
β-ƛ : {b : Λᴳ β (α ∙ Γ)}{t : Λᴳ α Γ} →
Value t → ((ƛ b) $ t) ⟿ [ t /] b
infix 2 _⟿_
-- Evaluation preserves the meaning of terms
sound : {t s : Λᴳ α Γ} → t ⟿ s → (γ : ⟦ Γ ⟧ᶜ) → eval t γ ≡ eval s γ
sound (ζ-$₁ r) γ rewrite sound r γ = refl
sound (ζ-$₂ _ r) γ rewrite sound r γ = refl
sound (β-ƛ {b = b}{t} x) γ rewrite Env.𝕖𝕩𝕥ᵐ⇒.sub-lemma t b =
cong (eval b) (dext λ{ new → refl ; (old v) → refl })
| 24.159574
| 68
| 0.55218
|
72b2382f7bb7a41f02d8d7408a6158ca80113e0c
| 524
|
agda
|
Agda
|
test/Fail/TerminationCheckUnquoteDecl.agda
|
vlopezj/agda
|
ff4d89e75970cf27599fb9f572bd43c9455cbb56
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Fail/TerminationCheckUnquoteDecl.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Fail/TerminationCheckUnquoteDecl.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
-- Check that unquoted functions are termination checked.
module _ where
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
`⊥ : Type
`⊥ = def (quote ⊥) []
{-
Generate
aux : ⊥
aux = aux
loop : ⊥
loop = aux
-}
makeLoop : QName → TC ⊤
makeLoop loop =
freshName "aux" >>= λ aux →
declareDef (vArg aux) `⊥ >>= λ _ →
defineFun aux (clause [] (def aux []) ∷ []) >>= λ _ →
declareDef (vArg loop) `⊥ >>= λ _ →
defineFun loop (clause [] (def aux []) ∷ [])
unquoteDecl loop = makeLoop loop
| 19.407407
| 57
| 0.603053
|
3702b53373e38bd4a593c2701e84b83ac841e0cf
| 3,273
|
agda
|
Agda
|
Definition/LogicalRelation/Substitution/Introductions/Application.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 30
|
2017-05-20T03:05:21.000Z
|
2022-03-30T18:01:07.000Z
|
Definition/LogicalRelation/Substitution/Introductions/Application.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 4
|
2017-06-22T12:49:23.000Z
|
2021-02-22T10:37:24.000Z
|
Definition/LogicalRelation/Substitution/Introductions/Application.agda
|
fhlkfy/logrel-mltt
|
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
|
[
"MIT"
] | 8
|
2017-10-18T14:18:20.000Z
|
2021-11-27T15:58:33.000Z
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Application {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped hiding (_∷_)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
private
variable
n : Nat
Γ : Con Term n
-- Application of valid terms.
appᵛ : ∀ {F G t u l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ▹ G / [Γ])
([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ Π F ▹ G / [Γ] / [ΠFG])
([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ F / [Γ] / [F])
→ Γ ⊩ᵛ⟨ l ⟩ t ∘ u ∷ G [ u ] / [Γ] / substSΠ {F = F} {G} {u} BΠ [Γ] [F] [ΠFG] [u]
appᵛ {F = F} {G} {t} {u} [Γ] [F] [ΠFG] [t] [u] {σ = σ} ⊢Δ [σ] =
let [G[u]] = substSΠ {F = F} {G} {u} BΠ [Γ] [F] [ΠFG] [u]
[σF] = proj₁ ([F] ⊢Δ [σ])
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
[σt] = proj₁ ([t] ⊢Δ [σ])
[σu] = proj₁ ([u] ⊢Δ [σ])
[σG[u]] = proj₁ ([G[u]] ⊢Δ [σ])
[σG[u]]′ = irrelevance′ (singleSubstLift G u) [σG[u]]
in irrelevanceTerm′ (PE.sym (singleSubstLift G u))
[σG[u]]′ [σG[u]]
(appTerm [σF] [σG[u]]′ [σΠFG] [σt] [σu])
, (λ [σ′] [σ≡σ′] →
let [σu′] = convTerm₂ [σF] (proj₁ ([F] ⊢Δ [σ′]))
(proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([u] ⊢Δ [σ′]))
in irrelevanceEqTerm′ (PE.sym (singleSubstLift G u))
[σG[u]]′ [σG[u]]
(app-congTerm [σF] [σG[u]]′ [σΠFG]
(proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
[σu] [σu′]
(proj₂ ([u] ⊢Δ [σ]) [σ′] [σ≡σ′])))
-- Application congruence of valid terms.
app-congᵛ : ∀ {F G t u a b l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ▹ G / [Γ])
([t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ Π F ▹ G / [Γ] / [ΠFG])
([a] : Γ ⊩ᵛ⟨ l ⟩ a ∷ F / [Γ] / [F])
([b] : Γ ⊩ᵛ⟨ l ⟩ b ∷ F / [Γ] / [F])
([a≡b] : Γ ⊩ᵛ⟨ l ⟩ a ≡ b ∷ F / [Γ] / [F])
→ Γ ⊩ᵛ⟨ l ⟩ t ∘ a ≡ u ∘ b ∷ G [ a ] / [Γ]
/ substSΠ {F = F} {G} {a} BΠ [Γ] [F] [ΠFG] [a]
app-congᵛ {F = F} {G} {a = a} [Γ] [F] [ΠFG] [t≡u] [a] [b] [a≡b] ⊢Δ [σ] =
let [σF] = proj₁ ([F] ⊢Δ [σ])
[G[a]] = proj₁ (substSΠ {F = F} {G} {a} BΠ [Γ] [F] [ΠFG] [a] ⊢Δ [σ])
[G[a]]′ = irrelevance′ (singleSubstLift G a) [G[a]]
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
[σa] = proj₁ ([a] ⊢Δ [σ])
[σb] = proj₁ ([b] ⊢Δ [σ])
in irrelevanceEqTerm′ (PE.sym (singleSubstLift G a)) [G[a]]′ [G[a]]
(app-congTerm [σF] [G[a]]′ [σΠFG] ([t≡u] ⊢Δ [σ])
[σa] [σb] ([a≡b] ⊢Δ [σ]))
| 41.961538
| 99
| 0.436908
|
22568721623b7f733ff899ee8e0dd1ea178578f5
| 20,476
|
agda
|
Agda
|
src/Generics/Reflection.agda
|
flupe/generics
|
db764f858d908aa39ea4901669a6bbce1525f757
|
[
"MIT"
] | 11
|
2021-04-08T15:10:20.000Z
|
2022-02-05T09:35:17.000Z
|
src/Generics/Reflection.agda
|
flupe/generics
|
db764f858d908aa39ea4901669a6bbce1525f757
|
[
"MIT"
] | 4
|
2021-09-13T07:33:50.000Z
|
2022-01-14T10:48:30.000Z
|
src/Generics/Reflection.agda
|
flupe/generics
|
db764f858d908aa39ea4901669a6bbce1525f757
|
[
"MIT"
] | 3
|
2021-04-08T08:32:42.000Z
|
2022-01-14T10:35:16.000Z
|
{-# OPTIONS --safe #-}
module Generics.Reflection where
open import Function.Base
import Data.Unit as ⊤
import Data.Product as Product
import Relation.Binary.PropositionalEquality as Eq
open import Data.Nat.Base hiding (_⊔_)
open import Data.List.Base as List hiding (_++_)
import Data.Vec.Base as Vec
open import Data.String as S using (String; _++_)
open import Data.Bool.Base
open import Data.Maybe.Base using (Maybe; just; nothing; maybe)
open import Agda.Builtin.Reflection renaming ( primQNameEquality to _Name≈_
)
open import Reflection.Abstraction using (unAbs)
open import Reflection.Argument using (_⟨∷⟩_; _⟅∷⟆_)
open import Reflection.Term hiding (Telescope; var)
open import Relation.Nullary using (yes; no)
open import Category.Monad as Monad
import Data.List.Categorical as List
import Data.Nat.Induction as Nat
import Data.Char as C
open import Reflection.TypeChecking.Monad.Instances using (tcMonad)
open import Reflection.Traversal hiding (_,_)
open import Generics.Prelude
open import Generics.Telescope
open import Generics.Desc renaming (_,_ to _,ω_)
import Generics.Accessibility as Accessibility
open import Generics.HasDesc
import Function.Identity.Categorical as Identity
open List.TraversableM ⦃...⦄
open Monad.RawMonad ⦃...⦄
tErr : Term → TC ⊤
tErr = typeError ∘ [_] ∘ termErr
sErr : String → TC ⊤
sErr = typeError ∘ [_] ∘ strErr
open Actions
-- `liftN n f` maps numbers 0..(n-1) to themselves, and numbers
-- `n + k` to `n + (f k)`
liftN : ℕ → (ℕ → ℕ) → (ℕ → ℕ)
liftN zero f k = f k
liftN (suc n) f zero = zero
liftN (suc n) f (suc k) = suc (liftN n f k)
mapVars : (ℕ → ℕ) → Term → Term
mapVars f = traverseTerm Identity.applicative actions (0 Reflection.Traversal., [])
where
actions : Actions Identity.applicative
actions .onVar ctx = liftN (ctx .Cxt.len) f
actions .onMeta _ = id
actions .onCon _ = id
actions .onDef _ = id
prettyName : Name → String
prettyName f = maybe id "" (List.last (S.wordsBy ('.' C.≟_) (showName f)))
{-
When converting types to telescopes
variables are converted to context lookups:
Given K := [(oₒ : Oₒ) ⋯ (o₁ : O₁)] "forced" arguments (reversed)
P := [A₁ ⋯ Aₙ] parameters
I := [B₁ ⋯ Bₘ] indices,
we want to replace a term in context (Γ , O₁ , ⋯ , Oₒ , A₁ , ⋯ , Aₙ , B₁ , ⋯ , Bₘ , C₁ , ⋯ , Cₚ)
into a term in context (Γ , Σ P I , C₁ , ⋯ , Cₚ)
A term (var k) should be replaced by:
- (var k) if k < p
- (proj₂ (proj₂ (var p))) if p <= k < p + m (inside I)
(proj₂ (proj₁ (proj₂ (var p)))) ...
(proj₂ (proj₁ (proj₁ (proj₂ (var p))))) ...
- (proj₂ (proj₁ (var p)) if p + m <= k < p + m + n (inside P)
- (proj₂ (proj₁ (proj₁ (var p))) ...
- (proj₂ (proj₁ (proj₁ (proj₁ (var p)))) ...
- K[k - (n + m + p)] if p + m + n <= k < p + m + n + o
- var (k + 1 - n - m - o) if p + m + n + o <= k
-}
-- o: position of (PI : Σ P I) in the context
-- (i.e number of locally bound variables)
mkVar : (o k : ℕ) → Name → List (Arg Term) → Term
mkVar o k t args = def (quote proj₂) (aux o k ⟨∷⟩ args)
where
aux : (o k : ℕ) → Term
aux o zero = def t (var o [] ⟨∷⟩ [])
aux o (suc k) = def (quote proj₁) (aux o k ⟨∷⟩ [])
mkPVar : (o k : ℕ) → List (Arg Term) → Term
mkPVar o k = mkVar o k (quote proj₁)
mkIVar : (o k : ℕ) → List (Arg Term) → Term
mkIVar o k = mkVar o k (quote proj₂)
-- TODO: telescopize should account for forced arguments
module _ (fargs : List Term) (nP nI : ℕ) where
telescopize : ℕ → Term → Term
telescopizeSort : ℕ → Sort → Sort
telescopizeArgs : ℕ → List (Arg Term) → List (Arg Term)
telescopizeTel : ℕ → List (String × Arg Type) → List (String × Arg Type)
telescopizeClause : ℕ → List Clause → List Clause
lookupForced : List Term → ℕ → ℕ → List (Arg Term) → Term
lookupForced [] n o = var (suc (n + o))
-- WARN: we ignore args, this should go alright
-- ALSO, we might/should lift everything up, probably
lookupForced (x ∷ xs) zero o = const (mapVars (λ n → n + suc o) x)
lookupForced (x ∷ xs) (suc n) o = lookupForced xs n o
telescopize o (var k args) =
let args′ = telescopizeArgs o args in
if k <ᵇ o then var k args′
else if k ∸ o <ᵇ nI then mkIVar o (k ∸ o ) args′
else if k ∸ o <ᵇ nI + nP then mkPVar o (k ∸ o ∸ nI) args′
else lookupForced fargs (k ∸ (nI + nP + o)) o args
-- else var (k ∸ pred (nP + nI)) args′
telescopize o (con c args) = con c (telescopizeArgs o args)
telescopize o (def f args) = def f (telescopizeArgs o args)
telescopize o (lam v (abs s t)) = lam v (abs s (telescopize (suc o) t))
telescopize o (pat-lam cs args) = pat-lam (telescopizeClause o cs) (telescopizeArgs o args)
telescopize o (Π[ s ∶ arg i a ] b) = Π[ s ∶ arg i (telescopize o a) ] telescopize (suc o) b
telescopize o (sort s) = sort (telescopizeSort o s)
telescopize o (lit l) = lit l
telescopize o (meta x args) = meta x (telescopizeArgs o args)
telescopize o unknown = unknown
telescopizeSort o (set t) = set (telescopize o t)
telescopizeSort o (prop t) = prop (telescopize o t)
telescopizeSort o x = x
telescopizeArgs o [] = []
telescopizeArgs o (arg i x ∷ xs) = arg i (telescopize o x) ∷ telescopizeArgs o xs
telescopizeTel o [] = []
telescopizeTel o ((s , arg i t) ∷ xs) = (s , arg i (telescopize o t))
∷ telescopizeTel (suc o) xs
telescopizeClause o [] = []
telescopizeClause o (clause tel ps t ∷ xs)
-- careful: telescopes bring (length tel) variables in scope
= clause (telescopizeTel o tel) ps (telescopize (o + length tel) t)
∷ telescopizeClause o xs
telescopizeClause o (absurd-clause tel ps ∷ xs) =
absurd-clause (telescopizeTel o tel) ps ∷ telescopizeClause o xs
-- sanity check
private
module TelescopizeTests where
t : Term
t = var 4 []
-- locally bound variable
t₁ : Term
t₁ = telescopize [] 0 0 5 t
t₁-ok : t₁ ≡ var 4 []
t₁-ok = refl
-- retrieving var in index telescope, 4 variable locally-bound
t₂ : Term
t₂ = telescopize [] 2 1 4 t
t₂-ok : t₂ ≡ def (quote proj₂) (def (quote proj₂) (var 4 [] ⟨∷⟩ []) ⟨∷⟩ [])
t₂-ok = refl
-- retrieving var in parameter telescope, 2 variable locally-bound
t₃ : Term
t₃ = telescopize [] 1 2 2 t
t₃-ok : t₃ ≡ def (quote proj₂) (def (quote proj₁) (var 2 [] ⟨∷⟩ []) ⟨∷⟩ [])
t₃-ok = refl
-- retrieving var outside parameter & index telescope
t₄ : Term
t₄ = telescopize [] 1 1 2 t
t₄-ok : t₄ ≡ var 3 []
t₄-ok = refl
-- retrieving 4th var in index telescope
t₅ : Term
t₅ = telescopize [] 0 5 1 t
t₅-ok : t₅ ≡ def (quote proj₂)
(def (quote proj₁)
(def (quote proj₁)
(def (quote proj₁) (def (quote proj₂) (var 1 [] ⟨∷⟩ []) ⟨∷⟩ []) ⟨∷⟩
[])
⟨∷⟩ [])
⟨∷⟩ [])
t₅-ok = refl
-----------------------------
-- Deriving telescopes
getIndexTel : List Term → ℕ → Type → TC Term
getIndexTel fargs nP ty = aux ty 0 (con (quote ε) [])
where aux : Type → ℕ → Term → TC Term
aux (agda-sort s) n I = return I
aux (Π[ s ∶ arg i a ] b) n I = do
i′ ← quoteTC i >>= normalise
aux b (suc n) (con (quote _⊢<_>_)
(I ⟨∷⟩ con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PI" (telescopize fargs nP n 0 a)
⟨∷⟩ []))
aux _ _ _ = typeError [ strErr "ill-formed type signature when deriving index telescope" ]
getTels : List Term → ℕ → Type → TC (Term × Term)
getTels fargs nP ty = aux nP ty 0 (quoteTerm (ε {A = ⊤}))
where aux : ℕ → Type → ℕ → Term → TC (Term × Term)
aux zero ty _ P = (P ,_) <$> getIndexTel fargs nP ty
aux (suc nP) (Π[ s ∶ arg i a ] b) n P = do
i′ ← quoteTC i >>= normalise
aux nP b (suc n) (con (quote _⊢<_>_)
(P ⟨∷⟩ con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PI" (telescopize fargs 0 n 0 a)
⟨∷⟩ []))
aux _ _ _ _ = typeError [ strErr "ill-formed type signature when deriving parameter telescope" ]
-----------------------------
-- Deriving descriptions
-- we cannot unquote things in Setω directly
-- so we can't unquote Terms of type Telescope directly
-- instead we produce skeletons to ease code generation
data Skel : Set where
Cκ : Skel
Cπ : ArgInfo → Skel → Skel
_C⊗_ : Skel → Skel → Skel
dropPis : ℕ → Type → Type
dropPis (suc n) (pi a (abs _ b)) = dropPis n b
dropPis _ t = t
module _ (fargs : List Term) (dt : Name) (nP : ℕ) where
toIndex : ℕ → List (Arg Term) → Term
toIndex nV xs = vLam "PV" $ foldl cons (quoteTerm ⊤.tt) (drop (nP + List.length fargs) xs)
where cons : Term → Arg Term → Term
cons x (arg _ y) =
con (quote Product._,_) ( x
⟨∷⟩ telescopize fargs nP nV 0 y
⟨∷⟩ [])
getRecDesc : ℕ → Type → TC (Maybe (Term × Skel))
getRecDesc n (def nm args) = do
if nm Name≈ dt
then return (just (con (quote ConDesc.var) (toIndex n args ⟨∷⟩ []) , Cκ))
else return nothing
getRecDesc n (Π[ s ∶ arg i a ] b) = do
getRecDesc (suc n) b >>= λ where
(just (right , skright)) → do
i′ ← quoteTC i >>= normalise
return $ just ( con (quote ConDesc.π) (con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PV" (telescopize fargs nP n 0 a) ⟨∷⟩ right ⟨∷⟩ [])
, Cπ i skright
)
nothing → return nothing
getRecDesc n ty = return nothing
getDesc : (ℕ → ℕ) → ℕ → Type → TC (Term × Skel)
getDesc f n (def nm args) =
-- we're gonna assume nm == dt
-- TODO: why does this work???
-- surely args contain parameters
return (con (quote ConDesc.var) (toIndex n (List.map (Arg.map (mapVars f)) args) ⟨∷⟩ []) , Cκ)
getDesc f n (Π[ s ∶ arg i a ] b) =
getRecDesc n (mapVars f a) >>= λ where
-- (possibly higher order) inductive argument
(just (left , skleft)) → do
-- we cannot depend on inductive argument (for now)
-- note: inductive arguments are relevant (for now)
-- /!\ inductive arguments to not bind a variable, so we strengthen the term
(right , skright) ← getDesc ((_- 1) ∘ f) n b
return (con (quote ConDesc._⊗_) (left ⟨∷⟩ right ⟨∷⟩ []) , (skleft C⊗ skright))
-- plain old argument
nothing → do
(right , skright) ← getDesc (liftN 1 f) (suc n) b
i′ ← quoteTC i >>= normalise
return ( con (quote ConDesc.π) (con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PV" (telescopize fargs nP n 0 a)
⟨∷⟩ right
⟨∷⟩ [])
, Cπ i skright
)
getDesc _ _ _ = typeError [ strErr "ill-formed constructor type" ]
-- TODO: the reason we do this is that I've failed to make the PI arguments
-- implicit in the reflection code
record HD {P} {I : ExTele P} {ℓ} (A : Indexed P I ℓ) : Setω where
constructor mkHD
A′ : ⟦ P , I ⟧xtel → Set ℓ
A′ = uncurry P I A
field
{n} : ℕ
D : DataDesc P I n
names : Vec String n
constr : ∀ pi → ⟦ D ⟧Data A′ pi → A′ pi
split : ∀ pi → A′ pi → ⟦ D ⟧Data A′ pi
split∘constr : ∀ pi → (x : ⟦ D ⟧Data A′ pi) → split pi (constr pi x) ≡ω x
constr∘split : ∀ pi → (x : A′ pi ) → constr pi (split pi x) ≡ x
open Accessibility A D (λ {pi} → split pi)
field wf : ∀ pi (x : A′ pi) → Acc x
badconvert : ∀ {P} {I : ExTele P} {ℓ} {A : Indexed P I ℓ}
→ HD {P} {I} {ℓ} A → HasDesc {P} {I} {ℓ} A
badconvert d = record
{ D = HD.D d
; names = HD.names d
; constr = λ {PI} → HD.constr d PI
; split = λ {PI} → HD.split d PI
; split∘constr = λ {PI} → HD.split∘constr d PI
; constr∘split = λ {PI} → HD.constr∘split d PI
; wf = λ {PI} → HD.wf d PI
}
withAI : ArgInfo → Term → Term
withAI i t with relevance i
... | relevant = t
... | irrelevant = con (quote irrv) [ vArg t ]
patAI : ArgInfo → Pattern → Pattern
patAI i t with relevance i
... | relevant = t
... | irrelevant = con (quote irrv) [ vArg t ]
deriveThings : (gargs : List (Arg Term)) (nP : ℕ)
(qconstr qsplit qsplitconstr qconstrsplit qwf : Name)
(cons : List (Name × Skel))
→ TC ⊤
deriveThings gargs nP qconstr qsplit qsplitconstr qconstrsplit qwf cons = do
let clauses = deriveDef cons
-- TODO: use some n-ary magic
let (constr_cls , rest ) = unzip clauses
let (split_cls , rest ) = unzip rest
let (splitconstr_cls , rest ) = unzip rest
let (constrsplit_cls , wf_cls) = unzip rest
defineFun qconstr constr_cls
defineFun qsplit split_cls
defineFun qsplitconstr splitconstr_cls
defineFun qconstrsplit constrsplit_cls
defineFun qwf wf_cls
where
deriveIndArg : Skel → ℕ × List (String × Arg Type) × List (Arg Pattern) × List (Arg Term)
deriveIndArg Cκ = 0 , [] , [] , []
deriveIndArg (Cπ ia C) =
let (o , tel , pat , args) = deriveIndArg C
in suc o
, ("x" , vArg unknown) ∷ tel
, arg ia (var o) ∷ pat
, arg ia (var o []) ∷ args
-- WARNING: intentionally wrong, never used when deriving descriptions
deriveIndArg (A C⊗ B) = 0 , [] , [] , []
deriveCon : Skel → ℕ × List (String × Arg Type) -- variable types
× Pattern -- pattern for ⟦_⟧Data
× List (Arg Pattern) -- pattern for arguments of A′ cons
× List (Arg Term) -- arguments for constructor
× Term -- return value for split
× Term -- body of wf
deriveCon Cκ
= 0 , [] -- we bind zero vars
, con (quote Eq.refl) []
, []
, []
, con (quote Eq.refl) []
, def (quote ttω) []
deriveCon (Cπ ia C) =
let (o , vars , datapat , apat , cargs , sval , wfval) = deriveCon C
in suc o
, ("s" , arg ia unknown) ∷ vars -- TODO: unsure about ia here
, con (quote Product._,_) (patAI ia (var o) ⟨∷⟩ datapat ⟨∷⟩ [])
, arg ia (var o) ∷ apat
, arg ia (var o []) ∷ cargs
, con (quote Product._,_) (withAI ia (var o []) ⟨∷⟩ sval ⟨∷⟩ [])
, wfval
deriveCon (A C⊗ B) =
let (ro , rtel , rpat , rargs) = deriveIndArg A in
let (o , vars , datapat , apat , cargs , sval , wfval) = deriveCon B
in suc o
, ("x" , vArg unknown) ∷ vars -- we only support visible relevant inductive args
, con (quote Product._,_) (var o ⟨∷⟩ datapat ⟨∷⟩ [])
, var o ⟨∷⟩ apat
, var o [] ⟨∷⟩ cargs
, con (quote Product._,_) (var o [] ⟨∷⟩ sval ⟨∷⟩ [])
, def (quote _ω,ω_)
(pat-lam [ clause rtel rpat
(def qwf (unknown -- PI of inductive argument
⟨∷⟩ var (o + ro) rargs
⟨∷⟩ []))
] []
⟨∷⟩ wfval ⟨∷⟩ []) -- TODOOOO
deriveClause : Pattern → Term → Name × Skel
→ Clause × Clause × Clause × Clause × Clause
deriveClause kp kt (consname , shape) =
let (o , vars , datapat , apat , cargs , sval , wfval) = deriveCon shape
in clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con (quote _,ω_) (kp ⟨∷⟩ datapat ⟨∷⟩ []) ⟨∷⟩ [])
(con consname (nP ⋯⟅∷⟆ cargs)) -- TODO: maybe forced args go here
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con consname apat ⟨∷⟩ [])
(con (quote _,ω_) (kt ⟨∷⟩ sval ⟨∷⟩ []))
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con (quote _,ω_) (kp ⟨∷⟩ datapat ⟨∷⟩ []) ⟨∷⟩ [])
(def (quote reflω) [])
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con consname apat ⟨∷⟩ [])
(con (quote Eq.refl) [])
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con consname apat ⟨∷⟩ [])
(con (quote Accessibility.Acc.acc) (wfval ⟨∷⟩ []))
deriveClauses : Pattern -- pattern for index of constructor
→ Term -- term for index constructor
→ List (Name × Skel)
→ List (Clause × Clause × Clause × Clause × Clause)
deriveClauses _ _ [] = []
deriveClauses kp kt (x ∷ xs)
= deriveClause kp kt x
∷ deriveClauses (con (quote Fin.suc) (kp ⟨∷⟩ []))
(con (quote Fin.suc) (kt ⟨∷⟩ []))
xs
deriveDef : List (Name × Skel) → List (Clause × Clause × Clause × Clause × Clause)
deriveDef [] = [ cls , cls , cls , cls , cls ]
where cls = absurd-clause (("PI" , hArg unknown) ∷ ("x" , vArg unknown) ∷ [])
(var 1 ⟨∷⟩ absurd 0 ⟨∷⟩ [] )
deriveDef xs = deriveClauses (con (quote Fin.zero) [])
(con (quote Fin.zero) [])
xs
macro
deriveDesc : Term → Term → TC ⊤
deriveDesc t hole = do
-- Arguments are used for enabling universe-polymorphic defintions
-- these arguments should be prepended to every use of nm as a type
def nm gargs ← return t
where _ → typeError [ strErr "Expected name with arguments." ]
let fargs = reverse (List.map Arg.unArg gargs)
data-type nP cs ← getDefinition nm
where _ → typeError [ strErr "Name given is not a datatype." ]
let nCons = List.length cs
let nArgs = List.length gargs
names ← quoteTC (Vec.fromList (List.map prettyName cs))
-- we get the type of the family, with the provided arguments removed
ty ← getType nm >>= normalise <&> dropPis nArgs >>= normalise
-- (nP - nArgs) is the amount of actual parameters we consider in our encoding
-- the remaining Pi types are indices
(P , I) ← getTels fargs (nP - nArgs) ty
descs&skels ← forM cs λ cn → do
-- get the type of current constructor, with explicit arguments and parameters stripped
conTyp ← getType cn >>= normalise <&> dropPis nP
(desc , skel) ← getDesc fargs nm (nP - nArgs) id 0 conTyp
return $ (cn , skel) , desc
let descs = List.map proj₂ descs&skels
let skels = List.map proj₁ descs&skels
let D = foldr (λ C D → con (quote DataDesc._∷_) (C ⟨∷⟩ D ⟨∷⟩ []))
(con (quote DataDesc.[]) [])
descs
qconstr ← freshName "constr"
qsplit ← freshName "split"
qsplitconstr ← freshName "split∘constr"
qconstrsplit ← freshName "constr∘split"
qwf ← freshName "wf"
declareDef (vArg qconstr)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qsplit)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qconstrsplit)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qsplitconstr)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qwf)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
deriveThings gargs (nP - nArgs) qconstr qsplit qsplitconstr qconstrsplit qwf skels
unify hole (def (quote badconvert) ((con (quote mkHD)
( P -- P
⟅∷⟆ I -- I
⟅∷⟆ unknown -- ℓ
⟅∷⟆ def nm gargs -- A
⟅∷⟆ lit (nat nCons) -- n
⟅∷⟆ D -- D
⟨∷⟩ names -- names
⟨∷⟩ def qconstr []
⟨∷⟩ def qsplit []
⟨∷⟩ def qsplitconstr []
⟨∷⟩ def qconstrsplit []
⟨∷⟩ def qwf []
⟨∷⟩ [])) ⟨∷⟩ []))
| 37.988868
| 104
| 0.535261
|
64a3a4b47f13193529bcb0aad8526a5a891a1d17
| 15,290
|
agda
|
Agda
|
src/Fragment/Extensions/CSemigroup/Monomial.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 18
|
2021-06-15T15:45:39.000Z
|
2022-01-17T17:26:09.000Z
|
src/Fragment/Extensions/CSemigroup/Monomial.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 1
|
2021-06-16T09:44:31.000Z
|
2021-06-16T10:24:15.000Z
|
src/Fragment/Extensions/CSemigroup/Monomial.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 3
|
2021-06-15T15:34:50.000Z
|
2021-06-16T08:04:31.000Z
|
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Extensions.CSemigroup.Monomial where
open import Fragment.Equational.Theory.Bundles
open import Fragment.Algebra.Signature
open import Fragment.Algebra.Free Σ-magma hiding (_~_)
open import Fragment.Algebra.Homomorphism Σ-magma
open import Fragment.Algebra.Algebra Σ-magma
using (Algebra; IsAlgebra; Interpretation; Congruence)
open import Fragment.Equational.Model Θ-csemigroup
open import Fragment.Setoid.Morphism using (_↝_)
open import Fragment.Extensions.CSemigroup.Nat
open import Data.Nat using (ℕ; zero; suc; _≟_)
open import Data.Fin using (Fin; #_; zero; suc; toℕ; fromℕ)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_)
open import Relation.Nullary using (yes ; no)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
open import Relation.Binary using (Setoid; IsEquivalence)
import Relation.Binary.Reasoning.Setoid as Reasoning
data Monomial : ℕ → Set where
leaf : ∀ {n} → ℕ⁺ → Monomial (suc n)
skip : ∀ {n} → Monomial n → Monomial (suc n)
cons : ∀ {n} → ℕ⁺ → Monomial n → Monomial (suc n)
lift : ∀ {n} → Monomial n → Monomial (suc n)
lift (leaf x) = leaf x
lift (skip x) = skip (lift x)
lift (cons x xs) = cons x (lift xs)
_⊗_ : ∀ {n} → Monomial n → Monomial n → Monomial n
leaf x ⊗ leaf y = leaf (x + y)
leaf x ⊗ skip y = cons x y
leaf x ⊗ cons y ys = cons (x + y) ys
skip x ⊗ leaf y = cons y x
skip x ⊗ skip y = skip (x ⊗ y)
skip x ⊗ cons y ys = cons y (x ⊗ ys)
cons x xs ⊗ leaf y = cons (x + y) xs
cons x xs ⊗ skip y = cons x (xs ⊗ y)
cons x xs ⊗ cons y ys = cons (x + y) (xs ⊗ ys)
⊗-cong : ∀ {n} {x y z w : Monomial n}
→ x ≡ y → z ≡ w → x ⊗ z ≡ y ⊗ w
⊗-cong = PE.cong₂ _⊗_
⊗-comm : ∀ {n} (x y : Monomial n) → x ⊗ y ≡ y ⊗ x
⊗-comm (leaf x) (leaf y) = PE.cong leaf (+-comm x y)
⊗-comm (leaf x) (skip y) = PE.refl
⊗-comm (leaf x) (cons y ys) = PE.cong₂ cons (+-comm x y) PE.refl
⊗-comm (skip x) (leaf y) = PE.refl
⊗-comm (skip x) (skip y) = PE.cong skip (⊗-comm x y)
⊗-comm (skip x) (cons y ys) = PE.cong (cons y) (⊗-comm x ys)
⊗-comm (cons x xs) (leaf y) = PE.cong₂ cons (+-comm x y) PE.refl
⊗-comm (cons x xs) (skip y) = PE.cong (cons x) (⊗-comm xs y)
⊗-comm (cons x xs) (cons y ys) = PE.cong₂ cons (+-comm x y) (⊗-comm xs ys)
⊗-assoc : ∀ {n} (x y z : Monomial n) → (x ⊗ y) ⊗ z ≡ x ⊗ (y ⊗ z)
⊗-assoc (leaf x) (leaf y) (leaf z) = PE.cong leaf (+-assoc x y z)
⊗-assoc (leaf x) (leaf y) (skip z) = PE.refl
⊗-assoc (leaf x) (leaf y) (cons z zs) = PE.cong₂ cons (+-assoc x y z) PE.refl
⊗-assoc (leaf x) (skip y) (leaf z) = PE.refl
⊗-assoc (leaf x) (skip y) (skip z) = PE.refl
⊗-assoc (leaf x) (skip y) (cons z zs) = PE.refl
⊗-assoc (leaf x) (cons y ys) (leaf z) = PE.cong₂ cons (+-assoc x y z) PE.refl
⊗-assoc (leaf x) (cons y ys) (skip z) = PE.refl
⊗-assoc (leaf x) (cons y ys) (cons z zs) = PE.cong₂ cons (+-assoc x y z) PE.refl
⊗-assoc (skip x) (leaf y) (leaf z) = PE.refl
⊗-assoc (skip x) (leaf y) (skip z) = PE.refl
⊗-assoc (skip x) (leaf y) (cons z zs) = PE.refl
⊗-assoc (skip x) (skip y) (leaf z) = PE.refl
⊗-assoc (skip x) (skip y) (skip z) = PE.cong skip (⊗-assoc x y z)
⊗-assoc (skip x) (skip y) (cons z zs) = PE.cong (cons z) (⊗-assoc x y zs)
⊗-assoc (skip x) (cons y ys) (leaf z) = PE.refl
⊗-assoc (skip x) (cons y ys) (skip z) = PE.cong (cons y) (⊗-assoc x ys z)
⊗-assoc (skip x) (cons y ys) (cons z zs) = PE.cong (cons (y + z)) (⊗-assoc x ys zs)
⊗-assoc (cons x xs) (leaf y) (leaf z) = PE.cong₂ cons (+-assoc x y z) PE.refl
⊗-assoc (cons x xs) (leaf y) (skip z) = PE.refl
⊗-assoc (cons x xs) (leaf y) (cons z zs) = PE.cong₂ cons (+-assoc x y z) PE.refl
⊗-assoc (cons x xs) (skip y) (leaf z) = PE.refl
⊗-assoc (cons x xs) (skip y) (skip z) = PE.cong (cons x) (⊗-assoc xs y z)
⊗-assoc (cons x xs) (skip y) (cons z zs) = PE.cong (cons (x + z)) (⊗-assoc xs y zs)
⊗-assoc (cons x xs) (cons y ys) (leaf z) = PE.cong₂ cons (+-assoc x y z) PE.refl
⊗-assoc (cons x xs) (cons y ys) (skip z) = PE.cong (cons (x + y)) (⊗-assoc xs ys z)
⊗-assoc (cons x xs) (cons y ys) (cons z zs) = PE.cong₂ cons (+-assoc x y z) (⊗-assoc xs ys zs)
module _ (n : ℕ) where
private
Monomial/≡ : Setoid _ _
Monomial/≡ = PE.setoid (Monomial n)
Monomial⟦_⟧ : Interpretation Monomial/≡
Monomial⟦ • ⟧ (x ∷ y ∷ []) = x ⊗ y
Monomial⟦_⟧-cong : Congruence Monomial/≡ Monomial⟦_⟧
Monomial⟦ • ⟧-cong (p ∷ q ∷ []) = PE.cong₂ _⊗_ p q
Monomial/≡-isAlgebra : IsAlgebra (Monomial/≡)
Monomial/≡-isAlgebra = record { ⟦_⟧ = Monomial⟦_⟧
; ⟦⟧-cong = Monomial⟦_⟧-cong
}
Monomial/≡-algebra : Algebra
Monomial/≡-algebra =
record { ∥_∥/≈ = Monomial/≡
; ∥_∥/≈-isAlgebra = Monomial/≡-isAlgebra
}
Monomial/≡-models : Models Monomial/≡-algebra
Monomial/≡-models comm θ = ⊗-comm (θ (# 0)) (θ (# 1))
Monomial/≡-models assoc θ = ⊗-assoc (θ (# 0)) (θ (# 1)) (θ (# 2))
Monomial/≡-isModel : IsModel Monomial/≡
Monomial/≡-isModel =
record { isAlgebra = Monomial/≡-isAlgebra
; models = Monomial/≡-models
}
J' : Model
J' = record { ∥_∥/≈ = Monomial/≡
; isModel = Monomial/≡-isModel
}
private
module _ {n : ℕ} where
open Setoid ∥ J n ∥/≈ using (_≈_)
_·_ : ∥ J n ∥ → ∥ J n ∥ → ∥ J n ∥
x · y = term • (x ∷ y ∷ [])
·-cong : ∀ {x y z w} → x ≈ y → z ≈ w → x · z ≈ y · w
·-cong p q = cong • (p ∷ q ∷ [])
·-comm : ∀ x y → x · y ≈ y · x
·-comm x y = axiom comm (env {A = ∥ J n ∥ₐ} (x ∷ y ∷ []))
·-assoc : ∀ x y z → (x · y) · z ≈ x · (y · z)
·-assoc x y z = axiom assoc (env {A = ∥ J n ∥ₐ} (x ∷ y ∷ z ∷ []))
module _ (n : ℕ) where
open Setoid ∥ J (suc n) ∥/≈ using (_≈_)
exp : ℕ⁺ → ∥ J (suc n) ∥
exp one = atomise n
exp (suc k) = atomise n · exp k
exp-hom : ∀ {j k} → exp j · exp k ≈ exp (j + k)
exp-hom {one} {k} = refl
exp-hom {suc j} {k} = begin
(atomise n · exp j) · exp k
≈⟨ ·-assoc (atomise n) (exp j) (exp k) ⟩
atomise n · (exp j · exp k)
≈⟨ ·-cong refl exp-hom ⟩
atomise n · exp (j + k)
∎
where open Reasoning ∥ J (suc n) ∥/≈
∣syn∣ : ∀ {n} → ∥ J' n ∥ → ∥ J n ∥
∣syn∣ {suc n} (leaf k) = exp n k
∣syn∣ {suc n} (skip x) = ∣ raise ∣ (∣syn∣ x)
∣syn∣ {suc n} (cons k xs) = exp n k · ∣ raise ∣ (∣syn∣ xs)
∣syn∣-cong : ∀ {n} → Congruent _≡_ ≈[ J n ] ∣syn∣
∣syn∣-cong {n} p = Setoid.reflexive ∥ J n ∥/≈ (PE.cong ∣syn∣ p)
∣syn∣⃗ : ∀ {n} → ∥ J' n ∥/≈ ↝ ∥ J n ∥/≈
∣syn∣⃗ {n} = record { ∣_∣ = ∣syn∣ {n}
; ∣_∣-cong = ∣syn∣-cong {n}
}
∣syn∣-hom : ∀ {n} → Homomorphic ∥ J' n ∥ₐ ∥ J n ∥ₐ ∣syn∣
∣syn∣-hom {suc n} • (leaf x ∷ leaf y ∷ []) = exp-hom n
∣syn∣-hom {suc n} • (leaf x ∷ skip y ∷ []) = refl
∣syn∣-hom {suc n} • (leaf x ∷ cons y ys ∷ []) = begin
exp n x · (exp n y · ∣ raise ∣ (∣syn∣ ys))
≈⟨ sym (·-assoc (exp n x) (exp n y) _) ⟩
(exp n x · exp n y) · ∣ raise ∣ (∣syn∣ ys)
≈⟨ ·-cong (exp-hom n) refl ⟩
exp n (x + y) · ∣ raise ∣ (∣syn∣ ys)
∎
where open Reasoning ∥ J (suc n) ∥/≈
∣syn∣-hom {suc n} • (skip x ∷ leaf y ∷ []) = ·-comm _ (exp n y)
∣syn∣-hom {suc n} • (skip x ∷ skip y ∷ []) = begin
∣ raise ∣ (∣syn∣ x) · ∣ raise ∣ (∣syn∣ y)
≈⟨ ∣ raise ∣-hom • (∣syn∣ x ∷ ∣syn∣ y ∷ []) ⟩
∣ raise ∣ (∣syn∣ x · ∣syn∣ y)
≈⟨ ∣ raise ∣-cong (∣syn∣-hom • (x ∷ y ∷ [])) ⟩
∣ raise ∣ (∣syn∣ (x ⊗ y))
∎
where open Reasoning ∥ J (suc n) ∥/≈
∣syn∣-hom {suc n} • (skip x ∷ cons y ys ∷ []) = begin
∣ raise ∣ (∣syn∣ x) · (exp n y · ∣ raise ∣ (∣syn∣ ys))
≈⟨ sym (·-assoc _ (exp n y) _) ⟩
(∣ raise ∣ (∣syn∣ x) · exp n y) · ∣ raise ∣ (∣syn∣ ys)
≈⟨ ·-cong (·-comm _ (exp n y)) refl ⟩
(exp n y · ∣ raise ∣ (∣syn∣ x)) · ∣ raise ∣ (∣syn∣ ys)
≈⟨ ·-assoc (exp n y) _ _ ⟩
exp n y · (∣ raise ∣ (∣syn∣ x) · ∣ raise ∣ (∣syn∣ ys))
≈⟨ ·-cong refl (∣ raise ∣-hom • (∣syn∣ x ∷ ∣syn∣ ys ∷ [])) ⟩
exp n y · ∣ raise ∣ (∣syn∣ x · ∣syn∣ ys)
≈⟨ ·-cong refl (∣ raise ∣-cong (∣syn∣-hom • (x ∷ ys ∷ []))) ⟩
exp n y · ∣ raise ∣ (∣syn∣ (x ⊗ ys))
∎
where open Reasoning ∥ J (suc n) ∥/≈
∣syn∣-hom {suc n} • (cons x xs ∷ leaf y ∷ []) = begin
(exp n x · ∣ raise ∣ (∣syn∣ xs)) · exp n y
≈⟨ ·-assoc (exp n x) _ (exp n y) ⟩
exp n x · (∣ raise ∣ (∣syn∣ xs) · exp n y)
≈⟨ ·-cong refl (·-comm _ (exp n y)) ⟩
exp n x · (exp n y · ∣ raise ∣ (∣syn∣ xs))
≈⟨ sym (·-assoc (exp n x) (exp n y) _) ⟩
(exp n x · exp n y) · ∣ raise ∣ (∣syn∣ xs)
≈⟨ ·-cong (exp-hom n) refl ⟩
exp n (x + y) · ∣ raise ∣ (∣syn∣ xs)
∎
where open Reasoning ∥ J (suc n) ∥/≈
∣syn∣-hom {suc n} • (cons x xs ∷ skip y ∷ []) = begin
(exp n x · ∣ raise ∣ (∣syn∣ xs)) · ∣ raise ∣ (∣syn∣ y)
≈⟨ ·-assoc (exp n x) _ _ ⟩
exp n x · (∣ raise ∣ (∣syn∣ xs) · ∣ raise ∣ (∣syn∣ y))
≈⟨ ·-cong refl (∣ raise ∣-hom • (∣syn∣ xs ∷ ∣syn∣ y ∷ [])) ⟩
exp n x · ∣ raise ∣ (∣syn∣ xs · ∣syn∣ y)
≈⟨ ·-cong refl (∣ raise ∣-cong (∣syn∣-hom • (xs ∷ y ∷ []))) ⟩
exp n x · ∣ raise ∣ (∣syn∣ (xs ⊗ y))
∎
where open Reasoning ∥ J (suc n) ∥/≈
∣syn∣-hom {suc n} • (cons x xs ∷ cons y ys ∷ []) = begin
(exp n x · ∣ raise ∣ (∣syn∣ xs)) · (exp n y · ∣ raise ∣ (∣syn∣ ys))
≈⟨ ·-assoc (exp n x) _ _ ⟩
exp n x · (∣ raise ∣ (∣syn∣ xs) · (exp n y · ∣ raise ∣ (∣syn∣ ys)))
≈⟨ ·-cong refl (sym (·-assoc _ (exp n y) _)) ⟩
exp n x · ((∣ raise ∣ (∣syn∣ xs) · exp n y) · ∣ raise ∣ (∣syn∣ ys))
≈⟨ ·-cong refl (·-cong (·-comm (∣ raise ∣ (∣syn∣ xs)) _) refl) ⟩
exp n x · ((exp n y · ∣ raise ∣ (∣syn∣ xs)) · ∣ raise ∣ (∣syn∣ ys))
≈⟨ ·-cong refl (·-assoc (exp n y) _ _) ⟩
exp n x · (exp n y · (∣ raise ∣ (∣syn∣ xs) · ∣ raise ∣ (∣syn∣ ys)))
≈⟨ sym (·-assoc (exp n x) (exp n y) _) ⟩
(exp n x · exp n y) · (∣ raise ∣ (∣syn∣ xs) · ∣ raise ∣ (∣syn∣ ys))
≈⟨ ·-cong (exp-hom n) (∣ raise ∣-hom • (∣syn∣ xs ∷ ∣syn∣ ys ∷ [])) ⟩
exp n (x + y) · ∣ raise ∣ (∣syn∣ xs · ∣syn∣ ys)
≈⟨ ·-cong refl (∣ raise ∣-cong (∣syn∣-hom • (xs ∷ ys ∷ []))) ⟩
exp n (x + y) · ∣ raise ∣ (∣syn∣ (xs ⊗ ys))
∎
where open Reasoning ∥ J (suc n) ∥/≈
syn : ∀ {n} → ∥ J' n ∥ₐ ⟿ ∥ J n ∥ₐ
syn = record { ∣_∣⃗ = ∣syn∣⃗
; ∣_∣-hom = ∣syn∣-hom
}
private
tab : ∀ {n} → Fin n → ∥ J' n ∥
tab {suc zero} zero = leaf one
tab {suc (suc n)} zero = skip (tab {suc n} zero)
tab {suc (suc n)} (suc k) = lift (tab {suc n} k)
norm : ∀ {n} → ∥ J n ∥ₐ ⟿ ∥ J' n ∥ₐ
norm {n} = interp (J' n) tab
private
step-exp : ∀ {n} → (k : ℕ⁺)
→ ≈[ J (suc (suc n)) ] (exp (suc n) k)
(∣ step ∣ (exp n k))
step-exp one = refl
step-exp (suc k) = ·-cong refl (step-exp k)
step-lift : ∀ {n} → (x : ∥ J' n ∥)
→ ≈[ J (suc n) ] (∣ syn ∣ (lift x))
(∣ step ∣ (∣ syn ∣ x))
step-lift {suc n} (leaf x) = step-exp x
step-lift {suc n} (skip x) = begin
∣ raise ∣ (∣ syn ∣ (lift x))
≈⟨ ∣ raise ∣-cong (step-lift x) ⟩
∣ raise ∣ (∣ step ∣ (∣ syn ∣ x))
≈⟨ sym (step-raise {x = ∣ syn ∣ x}) ⟩
∣ step ∣ (∣ raise ∣ (∣ syn ∣ x))
∎
where open Reasoning ∥ J (suc (suc n)) ∥/≈
step-lift {suc n} (cons x xs) = begin
exp (suc n) x · ∣ raise ∣ (∣ syn ∣ (lift xs))
≈⟨ ·-cong refl (∣ raise ∣-cong (step-lift xs)) ⟩
exp (suc n) x · ∣ raise ∣ (∣ step ∣ (∣ syn ∣ xs))
≈⟨ ·-cong (step-exp x) (sym (step-raise {x = ∣ syn ∣ xs})) ⟩
∣ step ∣ (exp n x) · ∣ step ∣ (∣ raise ∣ (∣ syn ∣ xs))
≈⟨ ∣ step ∣-hom • (exp n x ∷ (∣ raise ∣ (∣ syn ∣ xs)) ∷ []) ⟩
∣ step ∣ (exp n x · ∣ raise ∣ (∣ syn ∣ xs))
∎
where open Reasoning ∥ J (suc (suc n)) ∥/≈
syn-tab : ∀ {n} → (k : Fin n)
→ ≈[ J n ] (∣ syn ∣ (tab k)) (atom (dyn k))
syn-tab {suc zero} zero = refl
syn-tab {suc (suc n)} zero = ∣ raise ∣-cong (syn-tab zero)
syn-tab {suc (suc n)} (suc k) = begin
∣ syn ∣ (lift (tab {suc n} k))
≈⟨ step-lift (tab {suc n} k) ⟩
∣ step ∣ (∣ syn ∣ (tab {suc n} k))
≈⟨ ∣ step ∣-cong (syn-tab k) ⟩
∣ step ∣ (atom (dyn k))
∎
where open Reasoning ∥ J (suc (suc n)) ∥/≈
syn⊙norm≗id : ∀ {n} → syn {n} ⊙ norm {n} ≗ id
syn⊙norm≗id {n} {atom (dyn k)} = syn-tab k
syn⊙norm≗id {n} {term • (x ∷ y ∷ [])} = begin
∣ syn ∣ (∣ norm ∣ x ⊗ ∣ norm ∣ y)
≈⟨ sym (∣ syn ∣-hom • (∣ norm ∣ x ∷ ∣ norm ∣ y ∷ [])) ⟩
∣ syn ∣ (∣ norm ∣ x) · ∣ syn ∣ (∣ norm ∣ y)
≈⟨ ·-cong syn⊙norm≗id syn⊙norm≗id ⟩
x · y
∎
where open Reasoning ∥ J n ∥/≈
private
tab-diag : ∀ n → tab {suc n} (fromℕ n) ≡ leaf one
tab-diag zero = PE.refl
tab-diag (suc n) = PE.cong lift (tab-diag n)
norm-exp : ∀ {n} (k : ℕ⁺) → ∣ norm ∣ (exp n k) ≡ leaf k
norm-exp {n} one = tab-diag n
norm-exp {n} (suc k) = begin
∣ norm ∣ (atomise n · exp n k)
≈⟨ PE.sym (∣ norm ∣-hom • (atomise n ∷ exp n k ∷ [])) ⟩
∣ norm ∣ (atomise n) ⊗ ∣ norm ∣ (exp n k)
≈⟨ ⊗-cong (tab-diag n) (norm-exp k) ⟩
leaf one ⊗ leaf k
∎
where open Reasoning ∥ J' (suc n) ∥/≈
tab-skip : ∀ {n} → (k : Fin n) → tab {suc n} (up k) ≡ skip (tab {n} k)
tab-skip {suc zero} zero = PE.refl
tab-skip {suc (suc n)} zero = PE.refl
tab-skip {suc (suc n)} (suc k) = PE.cong lift (tab-skip k)
norm-raise : ∀ {n x} → ∣ norm {suc n} ∣ (∣ raise ∣ x) ≡ skip (∣ norm {n} ∣ x)
norm-raise {n} {atom (dyn k)} = tab-skip k
norm-raise {n} {term • (x ∷ y ∷ [])} = begin
∣ norm ∣ (∣ raise ∣ (x · y))
≡⟨ ∣ norm ∣-cong (sym (∣ raise ∣-hom • (x ∷ y ∷ []))) ⟩
∣ norm ∣ (∣ raise ∣ x · ∣ raise ∣ y)
≡⟨ PE.sym (∣ norm ∣-hom • (∣ raise ∣ x ∷ ∣ raise ∣ y ∷ [])) ⟩
∣ norm ∣ (∣ raise ∣ x) ⊗ ∣ norm ∣ (∣ raise ∣ y)
≡⟨ ⊗-cong (norm-raise {x = x}) (norm-raise {x = y}) ⟩
skip (∣ norm ∣ x ⊗ ∣ norm ∣ y)
≡⟨ PE.cong skip (∣ norm ∣-hom • (x ∷ y ∷ [])) ⟩
skip (∣ norm ∣ (x · y))
∎
where open PE.≡-Reasoning
norm⊙syn≗id : ∀ {n} → norm {n} ⊙ syn {n} ≗ id
norm⊙syn≗id {suc n} {leaf x} = norm-exp x
norm⊙syn≗id {suc n} {skip x} = begin
∣ norm ∣ (∣ raise ∣ (∣ syn ∣ x))
≈⟨ norm-raise {x = ∣ syn ∣ x} ⟩
skip (∣ norm ∣ (∣ syn ∣ x))
≈⟨ PE.cong skip norm⊙syn≗id ⟩
skip x
∎
where open Reasoning ∥ J' (suc n) ∥/≈
norm⊙syn≗id {suc n} {cons x xs} = begin
∣ norm ∣ (exp n x · ∣ raise ∣ (∣ syn ∣ xs))
≈⟨ PE.sym (∣ norm ∣-hom • (exp n x ∷ ∣ raise ∣ (∣ syn ∣ xs) ∷ [])) ⟩
∣ norm ∣ (exp n x) ⊗ ∣ norm ∣ (∣ raise ∣ (∣ syn ∣ xs))
≈⟨ ⊗-cong (norm-exp x) (norm-raise {x = ∣ syn ∣ xs}) ⟩
leaf x ⊗ skip (∣ norm ∣ (∣ syn ∣ xs))
≈⟨ ⊗-cong (PE.refl {x = leaf x}) (PE.cong skip (norm⊙syn≗id {x = xs})) ⟩
leaf x ⊗ skip xs
∎
where open Reasoning ∥ J' (suc n) ∥/≈
iso : ∀ {n} → ∥ J n ∥ₐ ≃ ∥ J' n ∥ₐ
iso = record { _⃗ = norm
; _⃖ = syn
; invˡ = norm⊙syn≗id
; invʳ = syn⊙norm≗id
}
| 39.104859
| 94
| 0.47155
|
72e65171c96d464e4972b1d0a1610811bb04aa77
| 43
|
agda
|
Agda
|
test/Fail/Issue2788a.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue2788a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue2788a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
{-# BUILTIN INTERVAL I #-}
| 10.75
| 26
| 0.651163
|
cc26ed971332ade95bb015b4ce26fd937b3fddd8
| 556
|
agda
|
Agda
|
examples/outdated-and-incorrect/Subset.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/Subset.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/Subset.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Proof irrelevance is nice when you want to work with subsets.
module Subset where
data True : Prop where
tt : True
data False : Prop where
data (|) (A:Set)(P:A -> Prop) : Set where
sub : (x:A) -> P x -> A | P
data Nat : Set where
zero : Nat
suc : Nat -> Nat
mutual
IsEven : Nat -> Prop
IsEven zero = True
IsEven (suc n) = IsOdd n
IsOdd : Nat -> Prop
IsOdd zero = False
IsOdd (suc n) = IsEven n
Even : Set
Even = Nat | IsEven
Odd : Set
Odd = Nat | IsOdd
(+) : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
| 15.444444
| 64
| 0.580935
|
7c82ca7cad697d39801ef1db38f70342528ad083
| 581
|
agda
|
Agda
|
test/Succeed/Issue1345.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1345.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1345.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS -v reify:80 #-}
open import Common.Prelude
open import Common.Reflection
open import Common.Equality
open import Agda.Builtin.Sigma
module Issue1345 (A : Set) where
-- Andreas, 2016-07-17
-- Also test correct handling of abstract
abstract
unquoteDecl idNat = define (vArg idNat)
(funDef (pi (vArg (def (quote Nat) [])) (abs "" (def (quote Nat) [])))
(clause (("", vArg unknown) ∷ []) (vArg (var 0) ∷ []) (var 0 []) ∷ []))
-- This raised the UselessAbstract error in error.
-- Should work.
abstract
thm : ∀ n → idNat n ≡ n
thm n = refl
| 25.26087
| 83
| 0.633391
|
14c43ec6324f32324896b3dd088e9a0df53ff340
| 278
|
agda
|
Agda
|
test/Succeed/Issue1652-2.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/Issue1652-2.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/Issue1652-2.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | null | null | null |
{- Example by Andreas (2015-09-18) -}
{-# OPTIONS --rewriting --local-confluence-check #-}
open import Common.Prelude
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
module _ (A : Set) where
postulate
plus0p : ∀{x} → (x + zero) ≡ x
{-# REWRITE plus0p #-}
| 17.375
| 52
| 0.625899
|
0d35553d0482701a9edefe10d648a7c06d7373df
| 8,151
|
agda
|
Agda
|
agda/DsubReduced.agda
|
HuStmpHrrr/popl20-artifact
|
48214a55ebb484fd06307df4320813d4a002535b
|
[
"MIT"
] | 1
|
2021-09-23T08:40:28.000Z
|
2021-09-23T08:40:28.000Z
|
agda/DsubReduced.agda
|
HuStmpHrrr/popl20-artifact
|
48214a55ebb484fd06307df4320813d4a002535b
|
[
"MIT"
] | null | null | null |
agda/DsubReduced.agda
|
HuStmpHrrr/popl20-artifact
|
48214a55ebb484fd06307df4320813d4a002535b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
-- This module defines an intermediate calculus that is set up in the D<: universe
-- which bridges F<:- and D<:. The goal here is purely technical - to simply reduce
-- duplication.
module DsubReduced where
open import Data.List as List
open import Data.List.All as All
open import Data.Nat as ℕ
open import Data.Maybe as Maybe
open import Data.Product
open import Function
open import Data.Maybe.Properties as Maybeₚ
open import Data.Nat.Properties as ℕₚ
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as ≡
open import DsubDef
open import FsubMinus
open import FsubMinus2
open import Utils
-- D<: Reduced
--
-- This judgment for contexts and types in D<: defines a corresponding calculus after
-- interpreting F<:⁻ into D<:. That is, D<: reduced is the image derivation of
-- interpreting F<:⁻ in D<:.
infix 4 _⊢ᵣ_<:_
data _⊢ᵣ_<:_ : Env → Typ → Typ → Set where
drtop : ∀ {Γ T} → Covar T → Γ ⊢ᵣ T <: ⊤
drrefl : ∀ {Γ T} → Covar T → Γ ⊢ᵣ T <: T
drall : ∀ {Γ S U S′ U′} →
Covar S → Covar U → Covar S′ → Covar U′ →
(S′<:S : Γ ⊢ᵣ S′ <: S) →
(U<:U′ : ⟨A: ⊥ ⋯ S′ ⟩ ∷ Γ ⊢ᵣ U <: U′) →
Γ ⊢ᵣ Π ⟨A: ⊥ ⋯ S ⟩ ∙ U <: Π ⟨A: ⊥ ⋯ S′ ⟩ ∙ U′
drsel : ∀ {Γ n U U′} →
(T∈Γ : env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ U ⟩) →
Covar U →
Γ ⊢ᵣ U <: U′ →
Γ ⊢ᵣ n ∙A <: U′
module FsubMinusToDsubR where
open FsubMinus.FsubMinus renaming (Env to Env′ ; _↑_ to _⇑_) hiding (env-lookup)
infix 5 ⟦_⟧ ⟪_⟫
⟦_⟧ : Ftyp → Typ
⟦ ⊤ ⟧ = ⊤
⟦ var x ⟧ = x ∙A
⟦ Π<: S ∙ U ⟧ = Π ⟨A: ⊥ ⋯ ⟦ S ⟧ ⟩ ∙ ⟦ U ⟧
⟪_⟫ : Env′ → Env
⟪ [] ⟫ = []
⟪ T ∷ Γ ⟫ = ⟨A: ⊥ ⋯ ⟦ T ⟧ ⟩ ∷ ⟪ Γ ⟫
module ⟦⟧-Bijective where
open import Function.Bijection
open import Function.Surjection
open import Function.Equality
CovTyp : Set
CovTyp = ∃ λ T → Covar T
⟦⟧-covar : ∀ T → Covar ⟦ T ⟧
⟦⟧-covar ⊤ = cv⊤
⟦⟧-covar (var x) = cv∙A _
⟦⟧-covar (Π<: S ∙ U) = cvΠ (⟦⟧-covar S) (⟦⟧-covar U)
⟦⟧-func : ≡.setoid Ftyp ⟶ ≡.setoid CovTyp
⟦⟧-func = record
{ _⟨$⟩_ = < ⟦_⟧ , ⟦⟧-covar >
; cong = ≡.cong < ⟦_⟧ , ⟦⟧-covar >
}
⟦⟧-injective : ∀ {S U} → ⟦ S ⟧ ≡ ⟦ U ⟧ → S ≡ U
⟦⟧-injective {⊤} {⊤} eq = refl
⟦⟧-injective {⊤} {var x} ()
⟦⟧-injective {⊤} {Π<: _ ∙ _} ()
⟦⟧-injective {var x} {⊤} ()
⟦⟧-injective {var x} {var .x} refl = refl
⟦⟧-injective {var x} {Π<: _ ∙ _} ()
⟦⟧-injective {Π<: _ ∙ _} {⊤} ()
⟦⟧-injective {Π<: _ ∙ _} {var x} ()
⟦⟧-injective {Π<: S₁ ∙ U₁} {Π<: S₂ ∙ U₂} eq
with ⟦ S₁ ⟧ | ⟦ S₂ ⟧ | ⟦ U₁ ⟧ | ⟦ U₂ ⟧
| ⟦⟧-injective {S₁} {S₂} | ⟦⟧-injective {U₁} {U₂}
⟦⟧-injective {Π<: S₁ ∙ U₁} {Π<: S₂ ∙ U₂} refl
| _ | _ | _ | _ | rec₁ | rec₂ = ≡.cong₂ Π<:_∙_ (rec₁ refl) (rec₂ refl)
⟦⟧-func-injective : ∀ {S U} → (CovTyp ∋ (⟦ S ⟧ , ⟦⟧-covar S)) ≡ (⟦ U ⟧ , ⟦⟧-covar U) → S ≡ U
⟦⟧-func-injective {S} {U} eq
with ⟦ S ⟧ | ⟦⟧-covar S | ⟦ U ⟧ | ⟦⟧-covar U
| ⟦⟧-injective {S} {U}
⟦⟧-func-injective {S} {U} refl
| _ | _ | _ | _ | inj = inj refl
infix 5 ⟦_⟧⁻¹
⟦_⟧⁻¹ : CovTyp → Ftyp
⟦ _ , cv⊤ ⟧⁻¹ = ⊤
⟦ _ , cv∙A x ⟧⁻¹ = var x
⟦ _ , cvΠ S U ⟧⁻¹ = Π<: ⟦ -, S ⟧⁻¹ ∙ ⟦ -, U ⟧⁻¹
⟦⟧-func-inv : ≡.setoid CovTyp ⟶ ≡.setoid Ftyp
⟦⟧-func-inv = record
{ _⟨$⟩_ = ⟦_⟧⁻¹
; cong = ≡.cong ⟦_⟧⁻¹
}
⟦⟧-left-inverse-⟦⟧⁻¹ : ∀ {T} (cT : Covar T) → (⟦ ⟦ -, cT ⟧⁻¹ ⟧ , ⟦⟧-covar ⟦ -, cT ⟧⁻¹) ≡ (CovTyp ∋ (-, cT))
⟦⟧-left-inverse-⟦⟧⁻¹ cv⊤ = refl
⟦⟧-left-inverse-⟦⟧⁻¹ (cv∙A n) = refl
⟦⟧-left-inverse-⟦⟧⁻¹ (cvΠ S U)
with ⟦ ⟦ -, S ⟧⁻¹ ⟧ | ⟦ ⟦ -, U ⟧⁻¹ ⟧
| ⟦⟧-covar ⟦ -, S ⟧⁻¹ | ⟦⟧-covar ⟦ -, U ⟧⁻¹
| ⟦⟧-left-inverse-⟦⟧⁻¹ S | ⟦⟧-left-inverse-⟦⟧⁻¹ U
... | _ | _ | _ | _ | refl | refl = refl
⟦⟧-bijective : Bijective ⟦⟧-func
⟦⟧-bijective = record
{ injective = ⟦⟧-func-injective
; surjective = record
{ from = ⟦⟧-func-inv
; right-inverse-of = λ { (_ , T) → ⟦⟧-left-inverse-⟦⟧⁻¹ T }
}
}
open ⟦⟧-Bijective using (⟦⟧-covar ; ⟦⟧-injective) public
⟪⟫-contraEnv : ∀ Γ → ContraEnv ⟪ Γ ⟫
⟪⟫-contraEnv [] = []
⟪⟫-contraEnv (T ∷ Γ) = ctt (⟦⟧-covar T) ∷ ⟪⟫-contraEnv Γ
⟦⟧-↑-comm : ∀ T n → ⟦ T ⟧ ↑ n ≡ ⟦ T ⇑ n ⟧
⟦⟧-↑-comm ⊤ n = refl
⟦⟧-↑-comm (var x) n with n ≤? x
... | yes n≤x = refl
... | no n>x = refl
⟦⟧-↑-comm (Π<: S ∙ U) n
rewrite ⟦⟧-↑-comm S n | ⟦⟧-↑-comm U (suc n)
= refl
<:∈⇒env-lookup : ∀ {n T Γ} → n <: T ∈ Γ → env-lookup ⟪ Γ ⟫ n ≡ just ⟨A: ⊥ ⋯ ⟦ T ⟧ ⟩
<:∈⇒env-lookup {_} {_} {T ∷ ._} hd
rewrite ⟦⟧-↑-comm T 0 = refl
<:∈⇒env-lookup {suc n} {_} {._ ∷ Γ} (tl {_} {T} T∈Γ)
with lookupOpt ⟪ Γ ⟫ n | <:∈⇒env-lookup T∈Γ
... | nothing | ()
... | just _ | eq
rewrite sym $ ⟦⟧-↑-comm T 0 = cong (just ∘ (_↑ 0)) (just-injective eq)
F<:⇒D<:ᵣ : ∀ {Γ S U} → Γ ⊢F S <: U → ⟪ Γ ⟫ ⊢ᵣ ⟦ S ⟧ <: ⟦ U ⟧
F<:⇒D<:ᵣ ftop = drtop (⟦⟧-covar _)
F<:⇒D<:ᵣ fvrefl = drrefl (cv∙A _)
F<:⇒D<:ᵣ (fbinds T∈Γ T<:U) = drsel (<:∈⇒env-lookup T∈Γ) (⟦⟧-covar _) (F<:⇒D<:ᵣ T<:U)
F<:⇒D<:ᵣ (fall S′<:S U<:U′) = drall (⟦⟧-covar _) (⟦⟧-covar _) (⟦⟧-covar _) (⟦⟧-covar _)
(F<:⇒D<:ᵣ S′<:S) (F<:⇒D<:ᵣ U<:U′)
env-lookup⇒<:∈ : ∀ {n T Γ} → env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ T ⟩ →
∀ {Γ′} → Γ ≡ ⟪ Γ′ ⟫ →
∃ λ T′ → T ≡ ⟦ T′ ⟧ × n <: T′ ∈ Γ′
env-lookup⇒<:∈ T∈Γ eqΓ = aux (lookup⇒↦∈ T∈Γ) refl eqΓ
where aux : ∀ {n T Γ} → n ↦ T ∈ Γ →
∀ {U Γ′} → T ≡ ⟨A: ⊥ ⋯ U ⟩ → Γ ≡ ⟪ Γ′ ⟫ →
∃ λ U′ → U ≡ ⟦ U′ ⟧ × n <: U′ ∈ Γ′
aux hd {_} {[]} eqT ()
aux hd {_} {T ∷ Γ′} refl refl
rewrite ⟦⟧-↑-comm T 0 = T ⇑ zero , refl , hd
aux (tl T∈Γ) {_} {[]} eqT ()
aux (tl {T = ⊤} T∈Γ) {_} {_ ∷ Γ′} () refl
aux (tl {T = ⊥} T∈Γ) {_} {_ ∷ Γ′} () refl
aux (tl {T = n ∙A} T∈Γ) {_} {_ ∷ Γ′} () refl
aux (tl {T = Π S ∙ U} T∈Γ) {_} {_ ∷ Γ′} () refl
aux (tl {T = ⟨A: ⊤ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl
aux (tl {T = ⟨A: ⊥ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} refl refl
with aux T∈Γ refl refl
... | U′ , refl , U′∈Γ′
rewrite ⟦⟧-↑-comm U′ 0 = U′ ⇑ zero , refl , tl U′∈Γ′
aux (tl {T = ⟨A: _ ∙A ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl
aux (tl {T = ⟨A: Π _ ∙ _ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl
aux (tl {T = ⟨A: ⟨A: _ ⋯ _ ⟩ ⋯ U ⟩} T∈Γ) {_} {_ ∷ Γ′} () refl
D<:ᵣ⇒F<: : ∀ {Γ′ S′ U′} → Γ′ ⊢ᵣ S′ <: U′ →
∀ {Γ S U} →
Γ′ ≡ ⟪ Γ ⟫ → S′ ≡ ⟦ S ⟧ → U′ ≡ ⟦ U ⟧ →
Γ ⊢F S <: U
D<:ᵣ⇒F<: (drtop S′) {Γ} {S} {⊤} eqΓ eqS refl = ftop
D<:ᵣ⇒F<: (drtop S′) {Γ} {S} {var x} eqΓ eqS ()
D<:ᵣ⇒F<: (drtop S′) {Γ} {S} {Π<: U ∙ U₁} eqΓ eqS ()
D<:ᵣ⇒F<: (drrefl S′) {Γ} {S} {U} eqΓ eqS eqU
rewrite ⟦⟧-injective (≡.trans (sym eqS) eqU) = <:-refl Γ U
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {⊤} {⊤} eqΓ () eqU
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {⊤} {var x} eqΓ () eqU
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {⊤} {Π<: U ∙ U₁} eqΓ () eqU
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {var _} {⊤} eqΓ () eqU
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {var _} {var _} eqΓ () eqU
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {var _} {Π<: _ ∙ _} eqΓ () eqU
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {Π<: _ ∙ _} {⊤} eqΓ refl ()
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {Π<: _ ∙ _} {var _} eqΓ refl ()
D<:ᵣ⇒F<: (drall cS cU cS′ cU′ S′<:S U<:U′) {Γ} {Π<: S ∙ U} {Π<: S′ ∙ U′} eqΓ refl refl
= fall (D<:ᵣ⇒F<: S′<:S eqΓ refl refl)
(D<:ᵣ⇒F<: U<:U′ (cong (⟨A: ⊥ ⋯ ⟦ S′ ⟧ ⟩ ∷_) eqΓ) refl refl)
D<:ᵣ⇒F<: (drsel T∈Γ cT S<:U) {Γ} {⊤} {U} eqΓ () eqU
D<:ᵣ⇒F<: (drsel T∈Γ cT S<:U) {Γ} {var x} {U} eqΓ refl eqU
with env-lookup⇒<:∈ T∈Γ eqΓ
... | U′ , eqU′ , T′∈Γ = fbinds T′∈Γ (D<:ᵣ⇒F<: S<:U eqΓ eqU′ eqU)
D<:ᵣ⇒F<: (drsel T∈Γ cT S<:U) {Γ} {Π<: _ ∙ _} {U} eqΓ () eqU
| 38.814286
| 111
| 0.419212
|
11e9e7da84e9afb1d156ffbd2c0f879dc8369363
| 1,430
|
agda
|
Agda
|
test/Fail/Issue585.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Fail/Issue585.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | null | null | null |
test/Fail/Issue585.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | null | null | null |
-- {-# OPTIONS -v tc.conv:50 -v tc.reduce:100 -v tc:50 -v tc.term.expr.coind:15 -v tc.meta:20 #-}
-- 2012-03-15, reported by Nisse
module Issue585 where
open import Common.Coinduction
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
data Fin : ℕ → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
infixr 5 _∷_
data Vec (A : Set) : ℕ → Set where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
lookup : ∀ {n A} → Fin n → Vec A n → A
lookup zero (x ∷ xs) = x
lookup (suc i) (x ∷ xs) = lookup i xs
infixl 9 _·_
data Tm (n : ℕ) : Set where
var : Fin n → Tm n
ƛ : Tm (suc n) → Tm n
_·_ : Tm n → Tm n → Tm n
infixr 8 _⇾_
data Ty : Set where
_⇾_ : ∞ Ty → ∞ Ty → Ty
Ctxt : ℕ → Set
Ctxt n = Vec Ty n
infix 4 _⊢_∈_
data _⊢_∈_ {n} (Γ : Ctxt n) : Tm n → Ty → Set where
var : ∀ {x} → Γ ⊢ var x ∈ lookup x Γ
ƛ : ∀ {t σ τ} → ♭ σ ∷ Γ ⊢ t ∈ ♭ τ → Γ ⊢ ƛ t ∈ σ ⇾ τ
_·_ : ∀ {t₁ t₂ σ τ} → Γ ⊢ t₁ ∈ σ ⇾ τ → Γ ⊢ t₂ ∈ ♭ σ →
Γ ⊢ t₁ · t₂ ∈ ♭ τ
Ω : Tm zero
Ω = ω · ω
where ω = ƛ (var zero · var zero)
Ω-has-any-type : ∀ τ → [] ⊢ Ω ∈ τ
Ω-has-any-type τ =
_·_ {σ = σ} {τ = ♯ _} (ƛ (var · var)) (ƛ (var · var))
where
σ : ∞ Ty
σ = ♯ (σ ⇾ ♯ _) -- τ)
-- If the last
-- underscore is replaced by τ, then the code checks successfully.
-- WAS: Agda seems to loop when checking Ω-has-any-type.
-- NOW: this should leave metas unsolved.
| 22
| 97
| 0.504196
|
cc86d24c2f084a59c3581f72f86a0283b0f429f3
| 15,815
|
agda
|
Agda
|
src/Tactic/Deriving/Eq.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
src/Tactic/Deriving/Eq.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
src/Tactic/Deriving/Eq.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
open import Prelude hiding (abs)
open import Prelude.Variables
open import Container.Traversable
open import Tactic.Reflection hiding (substArgs) renaming (unify to unifyTC)
open import Tactic.Reflection.Equality
open import Tactic.Deriving
module Tactic.Deriving.Eq where
_∋_ : ∀ {a} (A : Set a) → A → A
A ∋ x = x
private
-- Pattern synonyms --
infix 5 _`≡_
pattern _`≡_ x y = def₂ (quote _≡_) x y
pattern `subst x y z = def₃ (quote transport) x y z
pattern `refl = con (quote refl) []
pattern `Eq a = def (quote Eq) (vArg a ∷ [])
pattern vLam s t = lam visible (abs s t)
-- Helper functions --
nLam : Telescope → Term → Term
nLam [] t = t
nLam ((x , arg (arg-info v _) s) ∷ tel) t = lam v (abs x (nLam tel t))
nPi : Telescope → Term → Term
nPi [] t = t
nPi ((x , arg i _) ∷ tel) t = pi (arg i unknown) (abs x (nPi tel t))
newVars' : (Nat → A) → List (Arg B) → List (Arg A)
newVars' {A = A} {B = B} mkVar tel = newArgsFrom (length tel) tel
where
newArgsFrom : Nat → List (Arg B) → List (Arg A)
newArgsFrom (suc n) (arg i _ ∷ tel) = arg i (mkVar n) ∷ newArgsFrom n tel
newArgsFrom _ _ = []
newVars : List (Arg A) → List (Arg Term)
newVars = newVars' (λ x → var x [])
newPatVars : List (Arg A) → List (Arg Pattern)
newPatVars = newVars' var
hideTel : Telescope → Telescope
hideTel [] = []
hideTel ((x , arg (arg-info _ r) t) ∷ tel) = (x , arg (arg-info hidden r) t) ∷ hideTel tel
weakenTelFrom : (from n : Nat) → Telescope → Telescope
weakenTelFrom from n [] = []
weakenTelFrom from n (t ∷ tel) = weakenFrom from n t ∷ weakenTelFrom (suc from) n tel
weakenTel : (n : Nat) → Telescope → Telescope
weakenTel 0 = id
weakenTel n = weakenTelFrom 0 n
#pars : (d : Name) → TC Nat
#pars = getParameters
argsTel : (c : Name) → TC Telescope
argsTel c = caseM telView <$> getType c of λ
{ (tel , def d ixs) → flip drop tel <$> #pars d
; (tel , _ ) → pure tel
}
#args : (c : Name) → TC Nat
#args c = length <$> argsTel c
params : (c : Name) → TC Telescope
params c = telView <$> getType c >>= λ
{ (tel , def d ixs) → flip take tel <$> #pars d
; _ → pure []
}
-- Parallel substitution --
Substitution : Set
Substitution = List (Nat × Term)
underLambda : Substitution → Substitution
underLambda = map (λ { (i , t) → suc i , weaken 1 t })
{-# TERMINATING #-}
subst : Substitution → Term → Term
apply : Term → List (Arg Term) → Term
substArgs : Substitution → List (Arg Term) → List (Arg Term)
subst sub (var x args) = case (lookup sub x) of λ
{ (just s) → apply s (substArgs sub args)
; nothing → var x (substArgs sub args)
}
subst sub (con c args) = con c (substArgs sub args)
subst sub (def f args) = def f (substArgs sub args)
subst sub (lam v t) = lam v (fmap (subst (underLambda sub)) t)
subst sub (lit l) = lit l
subst sub _ = unknown -- TODO
apply f [] = f
apply (var x args) xs = var x (args ++ xs)
apply (con c args) xs = con c (args ++ xs)
apply (def f args) xs = def f (args ++ xs)
apply (lam _ (abs _ t)) (arg _ x ∷ xs) = case (strengthen 1 (subst ((0 , weaken 1 x) ∷ []) t)) of λ
{ (just f) → apply f xs
; nothing → unknown
}
apply _ _ = unknown -- TODO
substArgs sub = map (fmap (subst sub))
-- Unification of datatype indices --
data Unify : Set where
positive : List (Nat × Term) → Unify
negative : Unify
failure : ∀ {a} {A : Set a} → String → TC A
failure s = typeErrorS ("Unification error when deriving Eq: " & s)
_&U_ : Unify → Unify → Unify
(positive xs) &U (positive ys) = positive (xs ++ ys)
(positive _) &U negative = negative
negative &U (positive _) = negative
negative &U negative = negative
{-# TERMINATING #-}
unify : Term → Term → TC Unify
unifyArgs : List (Arg Term) → List (Arg Term) → TC Unify
unify s t with s == t
unify s t | yes _ = pure (positive [])
unify (var x []) (var y []) | no _ =
if (x <? y) -- In var-var case, instantiate the one that is bound the closest to us.
then pure (positive ((x , var y []) ∷ []))
else pure (positive ((y , var x []) ∷ []))
unify (var x []) t | no _ =
if (elem x (freeVars t))
then failure "cyclic occurrence" -- We don't currently know if the occurrence is rigid or not
else pure (positive ((x , t) ∷ []))
unify t (var x []) | no _ =
if (elem x (freeVars t))
then failure "cyclic occurrence"
else pure (positive ((x , t) ∷ []))
unify (con c₁ xs₁) (con c₂ xs₂) | no _ =
if (isYes (c₁ == c₂))
then unifyArgs xs₁ xs₂
else pure negative
unify _ _ | no _ = failure "not a constructor or a variable"
unifyArgs [] [] = pure (positive [])
unifyArgs [] (_ ∷ _) = failure "panic: different number of arguments"
unifyArgs (_ ∷ _) [] = failure "panic: different number of arguments"
unifyArgs (arg v₁ x ∷ xs) (arg v₂ y ∷ ys) =
if isYes (_==_ {{EqArgInfo}} v₁ v₂)
then (unify x y >>= λ
{ (positive sub) → (positive sub &U_) <$> unifyArgs (substArgs sub xs) (substArgs sub ys)
; negative → pure negative
})
else failure "panic: hiding mismatch"
unifyIndices : (c₁ c₂ : Name) → TC Unify
unifyIndices c₁ c₂ = do
let panic = failure "panic: constructor type doesn't end in a def"
tel₁ , def d₁ xs₁ ← telView <$> getType c₁ where _ → panic
tel₂ , def d₂ xs₂ ← telView <$> getType c₂ where _ → panic
n₁ ← #pars d₁
n₂ ← #pars d₂
let ixs₁ = drop n₁ xs₁
ixs₂ = drop n₂ xs₂
unifyArgs (weaken (length tel₂ - n₂) ixs₁)
-- weaken all variables of first constructor by number of arguments of second constructor
(weakenFrom (length tel₂ - n₂) (length tel₁ - n₁) ixs₂)
-- weaken parameters of second constructor by number of arguments of first constructor
-- Analysing constructor types --
forcedArgs : (c : Name) → TC (List Nat)
forcedArgs c = caseM (unifyIndices c c) of λ
{ (positive xs) → pure (map fst xs)
; _ → pure []
}
data Forced : Set where forced free : Forced
instance
DeBruijnForced : DeBruijn Forced
strengthenFrom {{DeBruijnForced}} _ _ = just
weakenFrom {{DeBruijnForced}} _ _ = id
RemainingArgs : Nat → Set
RemainingArgs = Vec (Arg (Forced × Term × Term))
leftArgs : ∀ {n} → RemainingArgs n → List (Arg Term)
leftArgs = map (fmap (fst ∘ snd)) ∘ vecToList
rightArgs : ∀ {n} → RemainingArgs n → List (Arg Term)
rightArgs = map (fmap (snd ∘ snd)) ∘ vecToList
classifyArgs : (c : Name) → TC (Σ Nat RemainingArgs)
classifyArgs c = do
#argsc ← #args c
forcedc ← forcedArgs c
let #freec = #argsc - length forcedc
_,_ _ ∘ classify #freec forcedc (#argsc - 1) (#freec - 1) <$> argsTel c
-- The final argument should be (weakenTel (#argsc + #freec) (argsTel c)),
-- but we don't really care about the types of the arguments anyway.
where
classify : Nat → List Nat → (m n : Nat) (tel : Telescope) → RemainingArgs (length tel)
classify _ _ m n [] = []
classify #freec forcedc m n ((_ , arg i ty) ∷ tel) =
if (elem m forcedc)
then arg i (forced , var (#freec + m) [] , var (#freec + m) []) ∷
classify #freec forcedc (m - 1) n tel
else arg i (free , var (#freec + m) [] , var n []) ∷
classify #freec forcedc (m - 1) (n - 1) tel
rightArgsFree : ∀ {n} → RemainingArgs n → List (Arg Term)
rightArgsFree [] = []
rightArgsFree (arg _ (forced , _ , _) ∷ xs) = rightArgsFree xs
rightArgsFree (arg i (free , _ , x) ∷ xs) = arg i x ∷ rightArgsFree xs
countFree : ∀ {n} → RemainingArgs n → Nat
countFree xs = length (rightArgsFree xs)
refreshArgs : ∀ {n} → RemainingArgs n → RemainingArgs n
refreshArgs xs = refresh (nfree - 1) xs
where
nfree = countFree xs
refresh : ∀ {n} → Nat → RemainingArgs n → RemainingArgs n
refresh n [] = []
refresh n (arg i (forced , x , y) ∷ xs) = arg i (forced , x , y) ∷ refresh n xs
refresh n (arg i (free , x , y) ∷ xs) = arg i (free , x , var n []) ∷ refresh (n - 1) xs
-- Matching constructor case --
caseDec : ∀ {a b} {A : Set a} {B : Set b} → Dec A → (A → B) → (¬ A → B) → B
caseDec (yes x) y n = y x
caseDec (no x) y n = n x
checkEqArgs : ∀ {n} (c : Name) (xs : List (Arg Term)) (ys : RemainingArgs n) → Term
checkEqArgs c xs (arg i (forced , y , z) ∷ args) =
checkEqArgs c (xs ++ [ arg i y ]) args
checkEqArgs {suc remainingArgs} c xs (arg i (free , y , z) ∷ args) =
def₃ (quote caseDec)
(def₂ (quote _==_) y z)
(vLam "x≡y" checkEqArgsYes)
(vLam "x≢y" checkEqArgsNo)
where
remainingFree = countFree args
wk : {A : Set} {{_ : DeBruijn A}} → Nat → A → A
wk k = weaken (k + remainingFree)
checkEqArgsYes : Term
checkEqArgsYes =
def (quote transport) (
(vArg (vLam "x" (nPi (map ("x" ,_) (rightArgsFree args)) (def₁ (quote Dec)
(wk 2
(con c (xs ++ arg i y ∷ (leftArgs args)))
`≡
con c (wk 2 xs ++
arg i (var remainingFree []) ∷
rightArgs (refreshArgs (wk 2 args)))))))) ∷
(vArg (var 0 [])) ∷
(vArg (nLam (map ("x" ,_) (rightArgsFree args))
(checkEqArgs c
(wk 1 (xs ++ [ arg i y ]))
(refreshArgs (wk 1 args))))) ∷
weaken 1 (rightArgsFree args))
checkEqArgsNo : Term
checkEqArgsNo =
con₁ (quote no) (vLam "eq" (var 1 (vArg (def₃ (quote _∋_)
(nPi (hideTel (("_" , arg i z) ∷ map ("_" ,_) (rightArgsFree args)))
(weaken (3 + remainingFree) (con c (xs ++ arg i y ∷ leftArgs args))
`≡ con c (wk 3 xs ++
arg i (var remainingFree []) ∷
rightArgs (refreshArgs (wk 3 args)))
`→
wk 4 y `≡ var (1 + remainingFree) []))
(pat-lam (clause
[]
(replicate (1 + remainingFree) (hArg (dot unknown)) ++ vArg `refl ∷ [])
`refl ∷ []) [])
(var 0 [])) ∷ [])))
checkEqArgs _ _ _ = con₁ (quote yes) (con₀ (quote refl))
matchingClause : (c : Name) → TC Clause
matchingClause c = do
_ , args ← classifyArgs c
let #cargs-total = length (vecToList args)
#cargs-free = countFree args
paramTel ← hideTel <$> params c
let paramPats = weaken (#cargs-total + #cargs-free) $ newPatVars $ map snd paramTel
let paramArgs = weaken (#cargs-total + #cargs-free) $ newVars $ map snd paramTel
pure (clause (paramTel ++ ctel-total args ++ ctel-free args)
(paramPats ++
vArg (con c (makeLeftPattern args (#cargs-total + #cargs-free))) ∷
vArg (con c (makeRightPattern args #cargs-free)) ∷ [])
(checkEqArgs c paramArgs args))
where
ctel-total : RemainingArgs n → Telescope
ctel-total [] = []
ctel-total (arg i _ ∷ args) = ("_" , arg i unknown) ∷ ctel-total args
ctel-free : RemainingArgs n → Telescope
ctel-free [] = []
ctel-free (arg i (forced , _) ∷ args) = ctel-free args
ctel-free (arg i (free , _) ∷ args) = ("_" , arg i unknown) ∷ ctel-free args
makeLeftPattern : ∀ {n} → RemainingArgs n → Nat → List (Arg Pattern)
makeLeftPattern (arg i x ∷ xs) (suc n) = arg i (var n) ∷ makeLeftPattern xs n
makeLeftPattern _ _ = []
makeRightPattern : ∀ {n} → RemainingArgs n → Nat → List (Arg Pattern)
makeRightPattern (arg i (forced , _ , _) ∷ xs) n = arg i (dot unknown) ∷ makeRightPattern xs n
makeRightPattern (arg i (free , _ , _) ∷ xs) (suc n) = arg i (var n) ∷ makeRightPattern xs n
makeRightPattern _ _ = []
-- Mismatching constructor case --
mismatchingClause : (c₁ c₂ : Name) (fs : List Nat) → TC Clause
mismatchingClause c₁ c₂ fs = do
tel₁ ← argsTel c₁
tel₂ ← argsTel c₂
let #args₁ = length tel₁
#args₂ = length tel₂
free-tel₁ = makeFreeTel (#args₁ + #args₂) tel₁
free-tel₂ = makeFreeTel #args₂ tel₂
#free-args₁ = length free-tel₁
#free-args₂ = length free-tel₂
pure (clause (free-tel₁ ++ free-tel₂)
(vArg (con c₁ (makePattern (#args₁ + #args₂) (#free-args₁ + #free-args₂) tel₁)) ∷
vArg (con c₂ (makePattern #args₂ #free-args₂ tel₂)) ∷ [])
(con (quote no) ([ vArg (pat-lam ([ absurd-clause [ "()" , vArg unknown ] ([ vArg absurd ]) ]) []) ])))
where
makeFreeTel : (k : Nat) → Telescope → Telescope
makeFreeTel (suc k) ((x , a) ∷ xs) = if (elem k fs) then [] else [ x , (unknown <$ a) ] ++ makeFreeTel k xs
makeFreeTel _ _ = []
makePattern : (k : Nat) (n : Nat) (tel : Telescope) → List (Arg Pattern)
makePattern (suc k) n ((_ , arg i _) ∷ args) =
if (elem k fs)
then arg i (dot unknown) ∷ makePattern k n args
else arg i (var (n - 1)) ∷ makePattern k (n - 1) args
makePattern k n _ = []
-- Clauses --
makeClause : (c₁ c₂ : Name) → TC (List Clause)
makeClause c₁ c₂ = case (c₁ == c₂) of λ
{ (yes _) → _∷ [] <$> matchingClause c₁
; (no _) → caseM (unifyIndices c₁ c₂) of λ
{ (positive fs) → _∷ [] <$> mismatchingClause c₁ c₂ (map fst fs)
; _ → pure []
}
}
constructorPairs : (d : Name) → TC (List (Name × Name))
constructorPairs d = caseM getDefinition d of λ
{ (data-type _ cs) → pure $ concat (map (λ c₁ → map (_,_ c₁) cs) cs)
; _ → pure []
}
eqDefinition : (d : Name) → TC (List Clause)
eqDefinition d = concat <$> (mapM (uncurry makeClause) =<< constructorPairs d)
makeArgs : Nat → List (Arg Nat) → List (Arg Term)
makeArgs n xs = reverse $ map (fmap (λ i → var (n - i - 1) [])) xs
computeInstanceType : Nat → List (Arg Nat) → Type → Maybe Term
computeInstanceType n xs (agda-sort _) =
just (`Eq (var n (makeArgs n xs)))
computeInstanceType n xs (pi a (abs s b)) =
pi (hArg (unArg a)) ∘ abs s <$> computeInstanceType (suc n) ((n <$ a) ∷ xs) b
computeInstanceType _ _ _ = nothing
computeType : Name → Nat → List (Arg Nat) → Telescope → Telescope → Term
computeType d n xs is [] =
telPi (reverse is) $
def d (makeArgs (n + k) xs) `→ def d (makeArgs (n + k + 1) xs) `→
def₁ (quote Dec) (var 1 [] `≡ var 0 [])
where k = length is
computeType d n xs is ((x , a) ∷ tel) =
unArg a `→ʰ
(case computeInstanceType 0 [] (weaken 1 $ unArg a) of
λ { (just i) → computeType d (1 + n) ((n <$ a) ∷ xs) ((x , iArg (weaken (length is) i)) ∷ weaken 1 is) tel
; nothing → computeType d (1 + n) ((n <$ a) ∷ xs) (weaken 1 is) tel })
eqType : Name → TC Type
eqType d = computeType d 0 [] [] ∘ fst ∘ telView <$> getType d
macro
deriveEqType : Name → Tactic
deriveEqType d hole = unifyTC hole =<< (computeType d 0 [] [] ∘ fst ∘ telView <$> getType d)
deriveEqDef : Name → Name → TC ⊤
deriveEqDef i d = defineFun i =<< eqDefinition d
declareEqInstance : Name → Name → TC ⊤
declareEqInstance iname d =
declareDef (iArg iname) =<< instanceType d (quote Eq)
defineEqInstance : Name → Name → TC ⊤
defineEqInstance iname d = do
fname ← freshName ("_==[" & show d & "]_")
declareDef (vArg fname) =<< eqType d
dictCon ← recordConstructor (quote Eq)
defineFun iname (clause [] [] (con₁ dictCon (def₀ fname)) ∷ [])
defineFun fname =<< eqDefinition d
return _
deriveEq : Name → Name → TC ⊤
deriveEq iname d =
declareEqInstance iname d >>
defineEqInstance iname d
| 37.476303
| 122
| 0.565729
|
3fcb9609604ec2f0702fc707b05187d0de9edd31
| 14,847
|
agda
|
Agda
|
src/syntax-util.agda
|
zmthy/cedille
|
9df4b85b55b57f97466242fdbb499adbd3bca893
|
[
"MIT"
] | null | null | null |
src/syntax-util.agda
|
zmthy/cedille
|
9df4b85b55b57f97466242fdbb499adbd3bca893
|
[
"MIT"
] | null | null | null |
src/syntax-util.agda
|
zmthy/cedille
|
9df4b85b55b57f97466242fdbb499adbd3bca893
|
[
"MIT"
] | null | null | null |
module syntax-util where
open import cedille-types
open import general-util
open import constants
open import json
posinfo-gen : posinfo
posinfo-gen = "generated"
pi-gen = posinfo-gen
first-position : posinfo
first-position = "1"
dummy-var : var
dummy-var = "_dummy"
id-term : term
id-term = Lam ff "x" nothing (Var "x")
tt-term = Lam ff "t" nothing (Lam ff "f" nothing (Var "t"))
ff-term = Lam ff "t" nothing (Lam ff "f" nothing (Var "f"))
compileFailType : type
compileFailType = TpAbs tt "X" (Tkk KdStar) (TpVar "X")
qualif-info : Set
qualif-info = var × args
qualif : Set
qualif = trie qualif-info
tag : Set
tag = string × json
tagged-val : Set
tagged-val = string × rope × 𝕃 tag
tags-to-json : 𝕃 tag → 𝕃 json
tags-to-json [] = []
tags-to-json ts = [ json-object ts ]
tagged-val-to-json : tagged-val → string × json
tagged-val-to-json (t , v , tags) = t , json-array (json-rope v :: tags-to-json tags)
tagged-vals-to-json : 𝕃 tagged-val → json
tagged-vals-to-json = json-object ∘ map tagged-val-to-json
make-tag : (name : string) → (values : 𝕃 tag) → (start : ℕ) → (end : ℕ) → tag
make-tag name vs start end = name , json-object (("start" , json-nat start) :: ("end" , json-nat end) :: vs)
posinfo-to-ℕ : posinfo → ℕ
posinfo-to-ℕ pi with string-to-ℕ pi
posinfo-to-ℕ pi | just n = n
posinfo-to-ℕ pi | nothing = 0 -- should not happen
posinfo-plus : posinfo → ℕ → posinfo
posinfo-plus pi n = ℕ-to-string (posinfo-to-ℕ pi + n)
posinfo-plus-str : posinfo → string → posinfo
posinfo-plus-str pi s = posinfo-plus pi (string-length s)
-- qualify variable by module name
_#_ : string → string → string
fn # v = fn ^ qual-global-str ^ v
_%_ : posinfo → var → string
pi % v = pi ^ qual-local-str ^ v
compileFail : var
compileFail = "compileFail"
compileFail-qual = "" % compileFail
tk-is-type : tpkd → 𝔹
tk-is-type = either-else (const tt) (const ff)
tT-is-term : tmtp → 𝔹
tT-is-term = either-else (const tt) (const ff)
tk-start-pos : ex-tk → posinfo
term-start-pos : ex-tm → posinfo
type-start-pos : ex-tp → posinfo
kind-start-pos : ex-kd → posinfo
term-start-pos (ExApp t x t₁) = term-start-pos t
term-start-pos (ExAppTp t tp) = term-start-pos t
term-start-pos (ExHole pi) = pi
term-start-pos (ExLam pi x _ x₁ x₂ t) = pi
term-start-pos (ExLet pi _ _ _) = pi
term-start-pos (ExOpen pi _ _ _ _) = pi
term-start-pos (ExParens pi t pi') = pi
term-start-pos (ExVar pi x₁) = pi
term-start-pos (ExBeta pi _ _) = pi
term-start-pos (ExIotaPair pi _ _ _ _) = pi
term-start-pos (ExIotaProj t _ _) = term-start-pos t
term-start-pos (ExEpsilon pi _ _ _) = pi
term-start-pos (ExPhi pi _ _ _ _) = pi
term-start-pos (ExRho pi _ _ _ _ _) = pi
term-start-pos (ExChi pi _ _) = pi
term-start-pos (ExDelta pi _ _) = pi
term-start-pos (ExSigma pi _) = pi
term-start-pos (ExTheta pi _ _ _) = pi
term-start-pos (ExMu pi _ _ _ _ _ _) = pi
type-start-pos (ExTpAbs pi _ _ _ _ _) = pi
type-start-pos (ExTpLam pi _ _ _ _) = pi
type-start-pos (ExTpIota pi _ _ _ _) = pi
type-start-pos (ExTpApp t t₁) = type-start-pos t
type-start-pos (ExTpAppt t x) = type-start-pos t
type-start-pos (ExTpArrow t _ t₁) = type-start-pos t
type-start-pos (ExTpEq pi _ _ pi') = pi
type-start-pos (ExTpParens pi _ pi') = pi
type-start-pos (ExTpVar pi x₁) = pi
type-start-pos (ExTpNoSpans t _) = type-start-pos t -- we are not expecting this on input
type-start-pos (ExTpHole pi) = pi --ACG
type-start-pos (ExTpLet pi _ _) = pi
kind-start-pos (ExKdAbs pi _ x x₁ k) = pi
kind-start-pos (ExKdArrow atk k₁) = tk-start-pos atk
kind-start-pos (ExKdHole pi) = pi
kind-start-pos (ExKdParens pi k pi') = pi
kind-start-pos (ExKdVar pi x₁ _) = pi
kind-start-pos (ExKdStar pi) = pi
tk-start-pos (ExTkt t) = type-start-pos t
tk-start-pos (ExTkk k) = kind-start-pos k
term-end-pos : ex-tm → posinfo
type-end-pos : ex-tp → posinfo
kind-end-pos : ex-kd → posinfo
tk-end-pos : ex-tk → posinfo
lterms-end-pos : posinfo → 𝕃 lterm → posinfo
args-end-pos : posinfo → ex-args → posinfo
arg-end-pos : ex-arg → posinfo
kvar-end-pos : posinfo → var → ex-args → posinfo
params-end-pos : posinfo → ex-params → posinfo
param-end-pos : ex-param → posinfo
term-end-pos (ExApp t x t') = term-end-pos t'
term-end-pos (ExAppTp t tp) = type-end-pos tp
term-end-pos (ExHole pi) = posinfo-plus pi 1
term-end-pos (ExLam pi x _ x₁ x₂ t) = term-end-pos t
term-end-pos (ExLet _ _ _ t) = term-end-pos t
term-end-pos (ExOpen pi _ _ _ t) = term-end-pos t
term-end-pos (ExParens pi t pi') = pi'
term-end-pos (ExVar pi x) = posinfo-plus-str pi x
term-end-pos (ExBeta pi _ (just (PosTm t pi'))) = pi'
term-end-pos (ExBeta pi (just (PosTm t pi')) nothing) = pi'
term-end-pos (ExBeta pi nothing nothing) = posinfo-plus pi 1
term-end-pos (ExIotaPair _ _ _ _ pi) = pi
term-end-pos (ExIotaProj _ _ pi) = pi
term-end-pos (ExEpsilon pi _ _ t) = term-end-pos t
term-end-pos (ExPhi _ _ _ _ pi) = pi
term-end-pos (ExRho pi _ _ _ t t') = term-end-pos t'
term-end-pos (ExChi pi T t') = term-end-pos t'
term-end-pos (ExDelta pi oT t) = term-end-pos t
term-end-pos (ExSigma pi t) = term-end-pos t
term-end-pos (ExTheta _ _ t ls) = lterms-end-pos (term-end-pos t) ls
term-end-pos (ExMu _ _ _ _ _ _ pi) = pi
type-end-pos (ExTpAbs pi _ _ _ _ t) = type-end-pos t
type-end-pos (ExTpLam _ _ _ _ t) = type-end-pos t
type-end-pos (ExTpIota _ _ _ _ tp) = type-end-pos tp
type-end-pos (ExTpApp t t') = type-end-pos t'
type-end-pos (ExTpAppt t x) = term-end-pos x
type-end-pos (ExTpArrow t _ t') = type-end-pos t'
type-end-pos (ExTpEq pi _ _ pi') = pi'
type-end-pos (ExTpParens pi _ pi') = pi'
type-end-pos (ExTpVar pi x) = posinfo-plus-str pi x
type-end-pos (ExTpHole pi) = posinfo-plus pi 1
type-end-pos (ExTpNoSpans t pi) = pi
type-end-pos (ExTpLet _ _ t) = type-end-pos t
kind-end-pos (ExKdAbs pi _ x x₁ k) = kind-end-pos k
kind-end-pos (ExKdArrow atk k) = kind-end-pos k
kind-end-pos (ExKdHole pi) = posinfo-plus pi 1
kind-end-pos (ExKdParens pi k pi') = pi'
kind-end-pos (ExKdVar pi x ys) = args-end-pos (posinfo-plus-str pi x) ys
kind-end-pos (ExKdStar pi) = posinfo-plus pi 1
tk-end-pos (ExTkt T) = type-end-pos T
tk-end-pos (ExTkk k) = kind-end-pos k
args-end-pos pi (x :: ys) = args-end-pos (arg-end-pos x) ys
args-end-pos pi [] = pi
arg-end-pos (ExTmArg me t) = term-end-pos t
arg-end-pos (ExTpArg T) = type-end-pos T
kvar-end-pos pi v = args-end-pos (posinfo-plus-str pi v)
params-end-pos pi [] = pi
params-end-pos pi (p :: ps) = params-end-pos (param-end-pos p) ps
param-end-pos (ExParam pi me pi' x atk pi'') = pi''
lterms-end-pos pi [] = pi
lterms-end-pos pi (Lterm _ t :: ls) = lterms-end-pos (term-end-pos t) ls
{- return the end position of the given term if it is there, otherwise
the given posinfo -}
optTerm-end-pos : posinfo → maybe pos-tm → posinfo
optTerm-end-pos pi nothing = pi
optTerm-end-pos pi (just (PosTm x x₁)) = x₁
optTerm-end-pos-beta : posinfo → maybe pos-tm → maybe pos-tm → posinfo
optTerm-end-pos-beta pi _ (just (PosTm x pi')) = pi'
optTerm-end-pos-beta pi (just (PosTm x pi')) nothing = pi'
optTerm-end-pos-beta pi nothing nothing = posinfo-plus pi 1
optAs-or : maybe import-as → posinfo → var → posinfo × var
optAs-or nothing pi x = pi , x
optAs-or (just (ImportAs pi x)) _ _ = pi , x
TpApp-tk : type → var → tpkd → type
TpApp-tk tp x (Tkk _) = TpAppTp tp (TpVar x)
TpApp-tk tp x (Tkt _) = TpAppTm tp (Var x)
-- checking-sythesizing enum
data checking-mode : Set where
checking : checking-mode
synthesizing : checking-mode
untyped : checking-mode
maybe-to-checking : {A : Set} → maybe A → checking-mode
maybe-to-checking (just _) = checking
maybe-to-checking nothing = synthesizing
eq-checking-mode : (m₁ m₂ : checking-mode) → 𝔹
eq-checking-mode checking checking = tt
eq-checking-mode synthesizing synthesizing = tt
eq-checking-mode untyped untyped = tt
eq-checking-mode _ _ = ff
------------------------------------------------------
-- functions intended for building terms for testing
------------------------------------------------------
mlam : var → term → term
mlam x t = Lam ff x nothing t
mall : var → tpkd → type → type
mall = TpAbs tt
mpi : var → tpkd → type → type
mpi = TpAbs ff
imps-to-cmds : imports → cmds
imps-to-cmds = map CmdImport
cmds-to-imps : cmds → imports
cmds-to-imps [] = []
cmds-to-imps (CmdImport i :: cs) = i :: cmds-to-imps cs
cmds-to-imps (_ :: cs) = cmds-to-imps cs
ex-cmds-to-imps : ex-cmds → ex-imports
ex-cmds-to-imps [] = []
ex-cmds-to-imps (ExCmdImport i :: cs) = i :: ex-cmds-to-imps cs
ex-cmds-to-imps (_ :: cs) = ex-cmds-to-imps cs
split-var-h : 𝕃 char → 𝕃 char × 𝕃 char
split-var-h [] = [] , []
split-var-h (qual-global-chr :: xs) = [] , xs
split-var-h (x :: xs) with split-var-h xs
... | xs' , ys = (x :: xs') , ys
split-var : var → var × var
split-var v with split-var-h (reverse (string-to-𝕃char v))
... | xs , ys = 𝕃char-to-string (reverse ys) , 𝕃char-to-string (reverse xs)
var-suffix : var → maybe var
var-suffix v with split-var v
... | "" , _ = nothing
... | _ , sfx = just sfx
-- unique qualif domain prefixes
qual-pfxs : qualif → 𝕃 var
qual-pfxs q = uniq (prefixes (trie-strings q))
where
uniq : 𝕃 var → 𝕃 var
uniq vs = stringset-strings (stringset-insert* empty-stringset vs)
prefixes : 𝕃 var → 𝕃 var
prefixes [] = []
prefixes (v :: vs) with split-var v
... | "" , sfx = vs
... | pfx , sfx = pfx :: prefixes vs
unqual-prefix : qualif → 𝕃 var → var → var → var
unqual-prefix q [] sfx v = v
unqual-prefix q (pfx :: pfxs) sfx v
with trie-lookup q (pfx # sfx)
... | just (v' , _) = if v =string v' then pfx # sfx else v
... | nothing = v
unqual-bare : qualif → var → var → var
unqual-bare q sfx v with trie-lookup q sfx
... | just (v' , _) = if v =string v' then sfx else v
... | nothing = v
unqual-local : var → var
unqual-local v = f' (string-to-𝕃char v) where
f : 𝕃 char → maybe (𝕃 char)
f [] = nothing
f ('@' :: t) = f t maybe-or just t
f (h :: t) = f t
f' : 𝕃 char → string
f' (meta-var-pfx :: t) = maybe-else' (f t) v (𝕃char-to-string ∘ _::_ meta-var-pfx)
f' t = maybe-else' (f t) v 𝕃char-to-string
unqual-all : qualif → var → string
unqual-all q v with var-suffix v
... | nothing = v
... | just sfx = unqual-bare q sfx (unqual-prefix q (qual-pfxs q) sfx v)
-- Given a qualified variable and a function that renames it,
-- we strip away the qualification prefix, call the function,
-- then prepend the prefix to the result
reprefix : (var → var) → var → var
reprefix f x =
maybe-else' (pfx (string-to-𝕃char x) [])
(f x) $ uncurry λ p s → p ^ f s where
ret : 𝕃 char → 𝕃 char → maybe (var × var)
ret pfx sfx = just (𝕃char-to-string (reverse pfx) , 𝕃char-to-string sfx)
pfx : 𝕃 char → 𝕃 char → maybe (var × var)
pfx (qual-global-chr :: xs) acc =
pfx xs (qual-global-chr :: acc) maybe-or ret (qual-global-chr :: acc) xs
pfx (qual-local-chr :: xs) acc =
pfx xs (qual-local-chr :: acc) maybe-or ret (qual-local-chr :: acc) xs
pfx (x :: xs) acc = pfx xs (x :: acc)
pfx [] pfx = nothing
data-to/ = reprefix ("to/" ^_)
data-Is/ = reprefix ("Is/" ^_)
data-is/ = reprefix ("is/" ^_)
mu-Type/ = reprefix ("Type/" ^_)
mu-isType/ = reprefix ("isType/" ^_)
mu-isType/' = reprefix ("is" ^_)
-- Generated during elaboration
data-TypeF/ = reprefix ("F/" ^_)
data-IndF/ = reprefix ("IndF/" ^_)
data-fmap/ = reprefix ("fmap/" ^_)
--
num-gt : num → ℕ → 𝕃 string
num-gt n n' = maybe-else [] (λ n'' → if n'' > n' then [ n ] else []) (string-to-ℕ n)
nums-gt : 𝕃 num → ℕ → 𝕃 string
nums-gt [] n' = []
nums-gt (n :: ns) n' =
maybe-else [] (λ n'' → if n'' > n' || iszero n'' then [ n ] else []) (string-to-ℕ n)
++ nums-gt ns n'
nums-to-stringset : 𝕃 num → stringset × 𝕃 string {- Repeated numbers -}
nums-to-stringset [] = empty-stringset , []
nums-to-stringset (n :: ns) with nums-to-stringset ns
...| ss , rs = if stringset-contains ss n
then ss , n :: rs
else stringset-insert ss n , rs
optNums-to-stringset : maybe (𝕃 num) → maybe stringset × (ℕ → maybe string)
optNums-to-stringset nothing = nothing , λ _ → nothing
optNums-to-stringset (just ns) with nums-to-stringset ns
...| ss , [] = just ss , λ n → case nums-gt ns n of λ where
[] → nothing
ns-g → just ("Occurrences not found: " ^ 𝕃-to-string id ", " ns-g ^ " (total occurrences: " ^ ℕ-to-string n ^ ")")
...| ss , rs = just ss , λ n →
just ("The list of occurrences contains the following repeats: " ^ 𝕃-to-string id ", " rs)
def-var : ex-def → var
def-var (ExDefTerm _ x _ _) = x
def-var (ExDefType _ x _ _) = x
-- expression descriptor
data exprd : Set where
TERM : exprd
TYPE : exprd
KIND : exprd
-- TPKD : exprd
⟦_⟧ : exprd → Set
⟦ TERM ⟧ = term
⟦ TYPE ⟧ = type
⟦ KIND ⟧ = kind
--⟦ TPKD ⟧ = tpkd
⟦_⟧' : exprd → Set
⟦ TERM ⟧' = ex-tm
⟦ TYPE ⟧' = ex-tp
⟦ KIND ⟧' = ex-kd
--⟦ TPKD ⟧' = ex-tk
exprd-name : exprd → string
exprd-name TERM = "term"
exprd-name TYPE = "type"
exprd-name KIND = "kind"
infixl 12 _-tk_ _-tk'_ _-tT_ _-tT'_ _-arg_ _-arg'_
_-tk_ : (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → tpkd → tpkd
f -tk Tkt T = Tkt (f T)
f -tk Tkk k = Tkk (f k)
_-tk'_ : ∀ {X : Set} → (∀ {ed : exprd} → ⟦ ed ⟧ → X) → tpkd → X
f -tk' Tkt T = f T
f -tk' Tkk k = f k
_-tT_ : (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → tmtp → tmtp
f -tT Ttm t = Ttm (f t)
f -tT Ttp T = Ttp (f T)
_-tT'_ : ∀ {X : Set} → (∀ {ed : exprd} → ⟦ ed ⟧ → X) → tmtp → X
f -tT' Ttm t = f t
f -tT' Ttp T = f T
_-arg_ : (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → arg → arg
f -arg Arg t = Arg (f t)
f -arg ArgE tT = ArgE (f -tT tT)
_-arg'_ : ∀ {X : Set} → (∀ {ed : exprd} → ⟦ ed ⟧ → X) → arg → X
f -arg' Arg t = f t
f -arg' ArgE tT = f -tT' tT
pos-tm-to-tm : pos-tm → ex-tm
pos-tm-to-tm (PosTm t pi) = t
ex-case-arg-erased : ex-case-arg-sym → erased?
ex-case-arg-erased ExCaseArgTm = ff
ex-case-arg-erased _ = tt
ex-case-ctr : ex-case → var
ex-case-ctr (ExCase pi x cas t) = x
start-modname : ex-file → string
start-modname (ExModule _ _ _ mn _ _ _) = mn
{-
traverse-internal : ∀ {ed} {X} → (∀ {ed} → X → ⟦ ed ⟧ → X × ⟦ ed ⟧) → X → ⟦ ed ⟧ → ⟦ ed ⟧
traverse-internal {_} {X} f = h (fr ff) where
fr : ∀ {ed} → 𝔹 → (X → ⟦ ed ⟧ → ⟦ ed ⟧)
fr tt = f
fr ff = λ x t → t
h : ∀ {ed} → (∀ {ed} → X → ⟦ ed ⟧ → X × ⟦ ed ⟧) → X → ⟦ ed ⟧ → ⟦ ed ⟧
h {TERM} f (App t t') = ?
h {TERM} f (AppE t tT) = ?
h {TERM} f (Beta t t') = ?
h {TERM} f (Delta T t) = ?
h {TERM} f (Hole pi) = ?
h {TERM} f (Internal r t) = ?
h {TERM} f (IotaPair t t' x T) =?
h {TERM} f (IotaProj t n) = ?
h {TERM} f (Lam me x tk t) = ?
h {TERM} f (LetTm me x T? t t') = ?
h {TERM} f (LetTp x k T t) = ?
h {TERM} f (Phi tₑ t₁ t₂) = ?
h {TERM} f (Rho t x T t') = ?
h {TERM} f (Sigma t) = ?
h {TERM} f (Mu μ t T t~ cs) = ?
h {TERM} f (Var x) = ?
h {TYPE} f (TpAbs me x tk T) = ?
h {TYPE} f (TpIota x T₁ T₂) = ?
h {TYPE} f (TpApp T tT) = ?
h {TYPE} f (TpEq t₁ t₂) = ?
h {TYPE} f (TpHole pi) = ?
h {TYPE} f (TpLam x tk T) = ?
h {TYPE} f (TpVar x) = ?
h {KIND} f KdStar = ?
h {KIND} f (KdHole pi) = ?
h {KIND} f (KdAbs x tk k) = ?
-}
| 31.256842
| 116
| 0.619048
|
72b4328ffd0b744c5fc6de93eb65a2c067ada08d
| 321
|
agda
|
Agda
|
test/interaction/Issue642.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/interaction/Issue642.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/interaction/Issue642.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
module Issue642 where
module M₁ (X : Set) where
postulate F : X → Set
module M₂ (X : Set) where
open M₁ X public
postulate
A : Set
x : A
open M₂ A
foo : F x
foo = {!!}
-- The goal was displayed as M₁.F A x rather than F x. If "open M₂ A"
-- is replaced by "open M₁ A", then the goal is displayed correctly.
| 16.05
| 69
| 0.64486
|
346183f569ea537c782232a9cbf131fb26993c46
| 4,341
|
agda
|
Agda
|
Relation/Binary/Construct/Symmetrize.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Relation/Binary/Construct/Symmetrize.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Relation/Binary/Construct/Symmetrize.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
-- Take a relation that is already reflexive and transitive
-- and make it symmetric.
-- (Borrowed from Categories/Support/ZigZag from copumpkin's Categories library
module Relation.Binary.Construct.Symmetrize where
open import Level
open import Relation.Binary
open import Relation.Binary.Construct.On using () renaming (isEquivalence to on-preserves-equivalence)
data Direction : Set where
↘ ↗ : Direction
rotate : Direction → Direction
rotate ↘ = ↗
rotate ↗ = ↘
private
variable
c ℓ₁ ℓ₂ : Level
Carrier : Set c
data ZigZag′ (_∼_ : Rel Carrier ℓ₂) : (x y : Carrier) (begin end : Direction) → Set (levelOfTerm x ⊔ ℓ₂) where
zig : ∀ {x y z e} (first : x ∼ y) (rest : ZigZag′ _∼_ y z ↗ e) → ZigZag′ _∼_ x z ↘ e
zag : ∀ {x y z e} (first : y ∼ x) (rest : ZigZag′ _∼_ y z ↘ e) → ZigZag′ _∼_ x z ↗ e
slish : ∀ {x y} (last : x ∼ y) → ZigZag′ _∼_ x y ↘ ↘
slash : ∀ {x y} (last : y ∼ x) → ZigZag′ _∼_ x y ↗ ↗
data Alternating′ (_∼_ : Carrier -> Carrier -> Set ℓ₂) (x y : Carrier) : Set (levelOfTerm x ⊔ ℓ₂) where
disorient : ∀ {begin end} (zz : ZigZag′ _∼_ x y begin end) → Alternating′ _∼_ x y
module _ (Base : Preorder c ℓ₁ ℓ₂) where
ZigZag : (x y : Preorder.Carrier Base) (begin end : Direction) → Set (c ⊔ ℓ₂)
ZigZag = ZigZag′ (Preorder._∼_ Base)
private
sym′ : {x y z : Preorder.Carrier Base} {begin middle end : Direction} → ZigZag y z middle end →
ZigZag y x middle begin → ZigZag z x (rotate end) begin
sym′ (zig first rest) accum = sym′ rest (zag first accum)
sym′ (zag first rest) accum = sym′ rest (zig first accum)
sym′ (slish last) accum = zag last accum
sym′ (slash last) accum = zig last accum
sym : ∀ {x y begin end} → ZigZag x y begin end → ZigZag y x (rotate end) (rotate begin)
sym (zig first rest) = sym′ rest (slash first)
sym (zag first rest) = sym′ rest (slish first)
sym (slish last) = slash last
sym (slash last) = slish last
trans : ∀ {x y z begin end begin′ end′} → ZigZag x y begin end → ZigZag y z begin′ end′ → ZigZag x z begin end′
trans (zig first rest) yz = zig first (trans rest yz)
trans (zag first rest) yz = zag first (trans rest yz)
trans (slish last) (zig first rest) = zig (Preorder.trans Base last first) rest
trans (slish last) (zag first rest) = zig last (zag first rest)
trans (slish last) (slish only) = slish (Preorder.trans Base last only)
trans (slish last) (slash only) = zig last (slash only)
trans (slash last) (zig first rest) = zag last (zig first rest)
trans (slash last) (zag first rest) = zag (Preorder.trans Base first last) rest
trans (slash last) (slish only) = zag last (slish only)
trans (slash last) (slash only) = slash (Preorder.trans Base only last)
Alternating : (x y : Preorder.Carrier Base) → Set (c ⊔ ℓ₂)
Alternating = Alternating′ (Preorder._∼_ Base)
private
is-equivalence : IsEquivalence Alternating
is-equivalence = record
{ refl = disorient (slash (Preorder.refl Base))
; sym = λ where (disorient zz) → disorient (sym zz)
; trans = λ where (disorient ij) (disorient jk) → disorient (trans ij jk)
}
setoid : Setoid c (c ⊔ ℓ₂)
setoid = record
{ Carrier = Preorder.Carrier Base
; _≈_ = Alternating
; isEquivalence = is-equivalence
}
-- the main eliminators for Alternating -- they prove that any equivalence that
-- respects the base preorder also respects its Alternating completion.
locally-minimal : ∀ {ℓ′} {_≈_ : Rel (Preorder.Carrier Base) ℓ′} (≈-isEquivalence : IsEquivalence _≈_) →
(Preorder._∼_ Base ⇒ _≈_) → (Alternating ⇒ _≈_)
locally-minimal {_} {_≋_} isEq inj (disorient zz) = impl zz
where
open IsEquivalence isEq renaming (sym to >sym; trans to _>trans>_)
impl : {i j : Preorder.Carrier Base} {b e : Direction} → ZigZag i j b e → i ≋ j
impl (zig first rest) = inj first >trans> impl rest
impl (zag first rest) = >sym (inj first) >trans> impl rest
impl (slish last) = inj last
impl (slash last) = >sym (inj last)
minimal : ∀ {c′ ℓ′} (Dest : Setoid c′ ℓ′) (f : Preorder.Carrier Base → Setoid.Carrier Dest) →
(Preorder._∼_ Base =[ f ]⇒ Setoid._≈_ Dest) → (Alternating =[ f ]⇒ Setoid._≈_ Dest)
minimal Dest f inj = locally-minimal (on-preserves-equivalence f (Setoid.isEquivalence Dest)) inj
| 43.848485
| 113
| 0.648929
|
9a9c934212d8506ec51a8035dd9a4322496d5bb8
| 201
|
agda
|
Agda
|
Cubical/HITs/SmashProduct.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/HITs/SmashProduct.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/HITs/SmashProduct.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.SmashProduct where
open import Cubical.HITs.SmashProduct.Base public
-- open import Cubical.HITs.SmashProduct.Properties public
| 28.714286
| 58
| 0.781095
|
ccb97f26d9d336da3ab4e6f754f2d68813c79d02
| 313
|
agda
|
Agda
|
src/Generic/Lib/Data/Nat.agda
|
iblech/Generic
|
380554b20e0991290d1864ddf81f0587ec1647ed
|
[
"MIT"
] | 30
|
2016-07-19T21:10:54.000Z
|
2022-02-05T10:19:38.000Z
|
src/Generic/Lib/Data/Nat.agda
|
iblech/Generic
|
380554b20e0991290d1864ddf81f0587ec1647ed
|
[
"MIT"
] | 9
|
2017-04-06T18:58:09.000Z
|
2022-01-04T15:43:14.000Z
|
src/Generic/Lib/Data/Nat.agda
|
iblech/Generic
|
380554b20e0991290d1864ddf81f0587ec1647ed
|
[
"MIT"
] | 4
|
2017-07-17T07:23:39.000Z
|
2021-01-27T12:57:09.000Z
|
module Generic.Lib.Data.Nat where
open import Data.Nat.Base hiding (_⊔_; _^_) public
open import Generic.Lib.Decidable
instance
ℕEq : Eq ℕ
ℕEq = viaBase Nat._≟_ where
import Data.Nat as Nat
foldℕ : ∀ {α} {A : Set α} -> (A -> A) -> A -> ℕ -> A
foldℕ f x 0 = x
foldℕ f x (suc n) = f (foldℕ f x n)
| 20.866667
| 52
| 0.610224
|
73d54c80009cf9a3bfc8ba809ca1473612b93874
| 619
|
agda
|
Agda
|
old/Homotopy/PullbackIsPullback.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
old/Homotopy/PullbackIsPullback.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
old/Homotopy/PullbackIsPullback.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.PullbackDef
module Homotopy.PullbackIsPullback {i} (d : pullback-diag i) where
open pullback-diag d
import Homotopy.PullbackUP as PullbackUP
open PullbackUP d (λ _ → unit)
pullback-cone : cone (pullback d)
pullback-cone = (pullback.a d , pullback.b d , pullback.h d)
factor-pullback : (E : Set i) → (cone E → (E → pullback d))
factor-pullback E (top→A , top→B , h) x = (top→A x , top→B x , h x)
pullback-is-pullback : is-pullback (pullback d) pullback-cone
pullback-is-pullback E = iso-is-eq _
(factor-pullback E)
(λ y → refl)
(λ f → refl)
| 25.791667
| 67
| 0.686591
|
302b52143b713e8a731fb0447e838c45d21708d8
| 990
|
agda
|
Agda
|
test/Compiler/simple/Coind.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 4
|
2017-02-24T16:53:22.000Z
|
2019-12-23T04:56:23.000Z
|
test/Compiler/simple/Coind.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 6
|
2017-02-24T19:27:31.000Z
|
2017-02-24T19:38:17.000Z
|
test/Compiler/simple/Coind.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
{-# OPTIONS --universe-polymorphism #-}
module Coind where
open import Common.IO
open import Common.Level
open import Common.Nat
open import Common.Unit
open import Common.Coinduction renaming (♯_ to sharp; ♭ to flat)
{-
infix 1000 sharp_
postulate
Infinity : ∀ {a} (A : Set a) → Set a
sharp_ : ∀ {a} {A : Set a} → A → Infinity A
flat : ∀ {a} {A : Set a} → Infinity A → A
{-# BUILTIN INFINITY Infinity #-}
{-# BUILTIN SHARP sharp_ #-}
{-# BUILTIN FLAT flat #-}
-}
data Stream (A : Set) : Set where
_::_ : (x : A) (xs : ∞ (Stream A)) → Stream A
ones : Stream Nat
ones = 1 :: (sharp ones)
twos : Stream Nat
twos = 2 :: (sharp twos)
incr : Nat -> Stream Nat
incr n = n :: (sharp (incr (n + 1)))
printStream : Nat -> Stream Nat -> IO Unit
printStream zero _ = putStrLn ""
printStream (suc steps) (n :: ns) =
printNat n ,,
printStream steps (flat ns)
main : IO Unit
main =
printStream 10 twos ,,
printStream 10 ones ,,
printStream 10 (incr zero)
| 21.521739
| 64
| 0.620202
|
2e9bb0b89120a95609ce5cacc69f08263c93b676
| 10,731
|
agda
|
Agda
|
nicolai/pseudotruncations/LoopsAndSpheres.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | 1
|
2021-06-30T00:17:55.000Z
|
2021-06-30T00:17:55.000Z
|
nicolai/pseudotruncations/LoopsAndSpheres.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | null | null | null |
nicolai/pseudotruncations/LoopsAndSpheres.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NType2
open import lib.PathGroupoid
open import lib.types.Bool
open import lib.types.IteratedSuspension
open import lib.types.Lift
open import lib.types.LoopSpace
open import lib.types.Nat
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Pointed
open import lib.types.Sigma
open import lib.types.Suspension
open import lib.types.TLevel
open import lib.types.Unit
open SuspensionRec public using () renaming (f to Susp-rec)
open import nicolai.pseudotruncations.Preliminary-definitions
open import nicolai.pseudotruncations.Liblemmas
open import nicolai.pseudotruncations.pointed-O-Sphere
module nicolai.pseudotruncations.LoopsAndSpheres where
{- We greatly benefit from Evan Cavallo's code - thank you! -}
open import homotopy.PtdAdjoint
open import homotopy.SuspAdjointLoop
isNull : ∀ {i j} {A : Type i} {B : Type j} (b : B) (f : A → B) → Type _
isNull {A = A} b f = (a : A) → f a == b
module null {i} {j} {Â : Ptd i} {B̂ : Ptd j} (ĝ : Â →̇ B̂) where
A = fst Â
a₀ = snd Â
B = fst B̂
b₀ = snd B̂
g = fst ĝ
p = snd ĝ
-- derived isNull
isNulld = (a : fst Â) → g a == b₀
-- pointed isNull; we state it in the equivalence form (slightly easier to handle)
isNull∙' = Σ ((a : A) → g a == b₀) λ pr → pr a₀ == p
-- the 'real' pointed isNull
isNull∙ = ĝ == ((λ _ → b₀) , idp)
{- The two versions are equivalent -}
isNull-equiv : isNull∙ ≃ isNull∙'
isNull-equiv =
ĝ == ((λ _ → b₀) , idp)
≃⟨ (=Σ-eqv _ _) ⁻¹ ⟩
=Σ ĝ ((λ _ → b₀) , idp)
≃⟨ equiv-Σ' {A₀ = g == λ _ → b₀}
app=-equiv
(λ h → (p == idp [ (λ f → f a₀ == b₀) ↓ h ])
≃⟨ to-transp-equiv _ _ ⟩
(transport (λ f → f a₀ == b₀) h p) == idp
≃⟨ coe-equiv
(ap (λ x → x == idp)
(trans-ap₁ (λ f → f a₀)
b₀ h p)) ⟩
(! (app= h a₀) ∙ p) == idp
≃⟨ adhoc-=-eqv (app= h a₀) p ⟩
(app= h a₀ == p)
≃∎) ⟩
(Σ ((a : A) → g a == b₀) λ pr → pr a₀ == p)
≃∎
-- Lemma 4.4: pointed and non-pointed 'nullness' are logically equivalent;
-- First, one direction:
null-lequiv : isNulld → isNull∙'
null-lequiv isnull = (λ a → isnull a ∙ ! (isnull a₀) ∙ p) , (
isnull a₀ ∙ ! (isnull a₀) ∙ p
=⟨ ! (∙-assoc (isnull a₀) _ _) ⟩
(isnull a₀ ∙ ! (isnull a₀)) ∙ p
=⟨ ap (λ t → t ∙ p) (!-inv-r (isnull a₀)) ⟩
p
∎)
-- The other direction is very easy; we do it using the non-prime variant:
null-lequiv-easy : isNull∙ → isNulld
null-lequiv-easy isn = app= (ap fst isn)
-- uncomment this if you want to wait forever for typechecking...
-- Σ⊣Ω-unitCounit : CounitUnitAdjoint Σ⊣Ω.SuspFunctor Σ⊣Ω.LoopFunctor
Σ⊣Ω-unitCounit = Σ⊣Ω.adj
Σ⊣Ω-homset : ∀ {i} → HomAdjoint {i} {i} Σ⊣Ω.SuspFunctor Σ⊣Ω.LoopFunctor
Σ⊣Ω-homset = counit-unit-to-hom Σ⊣Ω-unitCounit
module hom-adjoint {i} (Â : Ptd i) (B̂ : Ptd i) where
A = fst Â
B = fst B̂
a₀ = snd Â
b₀ = snd B̂
Φeq : (⊙Susp  →̇ B̂) ≃ ( →̇ ⊙Ω B̂)
Φeq = HomAdjoint.eq Σ⊣Ω-homset  B̂
{- This is Lemma 4.1 -}
Φ : (⊙Susp  →̇ B̂) → ( →̇ ⊙Ω B̂)
Φ = –> Φeq
Φ⁻¹ : ( →̇ ⊙Ω B̂) → (⊙Susp  →̇ B̂)
Φ⁻¹ = <– Φeq
open PtdFunctor
open Σ⊣Ω
open CounitUnitAdjoint
{- Some lemmas which are easy on paper and thus not explicitly
mentioned in the paper. It still takes some effort to
formalize them. -}
module simplify where
simpl-⊙ap : (⊙ap {X = obj SuspFunctor Â} ((λ _ → b₀) , idp))
==
((λ _ → idp) , idp)
simpl-⊙ap = →̇-maps-to
⊙ap ((λ _ → b₀) , idp)
((λ _ → idp) , idp)
(λ= (λ _ → ap-cst b₀ _))
((app= (λ= (λ _ → ap-cst b₀ _)) _) ∙ idp
=⟨ ∙-unit-r _ ⟩
app= (λ= (λ _ → ap-cst b₀ _)) _
=⟨ app=-β _ _ ⟩
ap-cst b₀ (idp {a = snd B̂})
=⟨ idp ⟩ -- !
idp
=⟨ idp ⟩ -- !
snd (⊙ap {X = obj SuspFunctor Â} ((λ _ → b₀) , idp))
∎ )
simpl-comp : ((λ (_ : Ω (⊙Susp Â)) → idp {a = b₀}) , idp)
⊙∘ (⊙η Â)
==
(λ _ → idp) , idp
simpl-comp = pair= idp ((ap-cst idp (snd (⊙η Â))) ∙ᵣ idp)
open simplify
{- Lemma 4.2 -}
Φ-is-pointed-map : Φ ((λ _ → b₀) , idp) == ((λ _ → idp) , idp)
Φ-is-pointed-map = Φ ((λ _ → b₀) , idp)
=⟨ idp ⟩
( arr LoopFunctor ((λ _ → b₀) , idp)
⊙∘ (CounitUnitAdjoint.η adj Â))
=⟨ idp ⟩
( (⊙ap {X = obj SuspFunctor Â} ((λ _ → b₀) , idp)
⊙∘ (⊙η Â)))
=⟨ ap (λ f → f ⊙∘ (⊙η Â)) simpl-⊙ap ⟩
((λ _ → idp) , idp) ⊙∘ (⊙η Â)
=⟨ simpl-comp ⟩
(λ _ → idp) , idp
∎
-- fix i
module _ {i} where
open hom-adjoint
open HomAdjoint
open null
-- Lemma 4.3
Φ-snd-nat : { B̂ Ĉ : Ptd i} (f : ⊙Susp  →̇ B̂) (g : B̂ →̇ Ĉ)
→ Φ Â Ĉ (g ⊙∘ f) == ⊙ap g ⊙∘ Φ Â B̂ f
Φ-snd-nat {Â} {B̂} {Ĉ} f g = ! (nat-cod Σ⊣Ω-homset  {B̂} {Ĉ} g f)
-- Lemma 4.4 is above (before 4.2).
-- Lemma 4.5
isnull-Φ : { B̂ : Ptd i} (g : ⊙Susp  →̇ B̂) → (isNull∙ g) ≃ isNull∙ (Φ Â B̂ g)
isnull-Φ {Â} {B̂} g =
isNull∙ g
≃⟨ equiv-ap (Φeq  B̂) _ _ ⟩
(Φ Â B̂ g) == Φ Â B̂ ((λ _ → snd B̂) , idp)
≃⟨ coe-equiv
{A = (Φ Â B̂ g) == Φ Â B̂ ((λ _ → snd B̂) , idp)}
{B = (Φ Â B̂ g) == (λ _ → idp) , idp}
(ap (λ q → (Φ Â B̂ g == q)) (Φ-is-pointed-map _ _ )) ⟩
(Φ Â B̂ g) == (λ _ → idp) , idp
≃∎
-- combination of 4.3 and 4.5
combine-isnull-nat : { B̂ Ĉ : Ptd i} (f : ⊙Susp  →̇ B̂) (g : B̂ →̇ Ĉ)
→ (isNull∙ (g ⊙∘ f)) ≃ (isNull∙ (⊙ap g ⊙∘ Φ Â B̂ f)) --
combine-isnull-nat {Â} {B̂} {Ĉ} f g =
isNull∙ (g ⊙∘ f)
≃⟨ isnull-Φ _ ⟩
isNull∙ (Φ Â Ĉ (g ⊙∘ f))
≃⟨ coe-equiv (ap (λ q → isNull∙ q) (Φ-snd-nat f g)) ⟩
isNull∙ (⊙ap g ⊙∘ Φ Â B̂ f)
≃∎
combine-isnull-nat' : {Â B̂ Ĉ : Ptd i} (f : Â →̇ ⊙Ω B̂) (g : B̂ →̇ Ĉ)
→ (isNull∙ (g ⊙∘ (Φ⁻¹ Â B̂ f))) ≃ (isNull∙ (⊙ap g ⊙∘ f))
combine-isnull-nat' {Â} {B̂} {Ĉ} f g =
isNull∙ (g ⊙∘ (Φ⁻¹ Â B̂ f))
≃⟨ combine-isnull-nat (Φ⁻¹ Â B̂ f) g ⟩
isNull∙ (⊙ap g ⊙∘ (Φ Â B̂ (Φ⁻¹ Â B̂ f)))
≃⟨ coe-equiv (ap (λ h → isNull∙ (⊙ap g ⊙∘ h)) (<–-inv-r (Φeq  B̂) f)) ⟩
isNull∙ (⊙ap g ⊙∘ f)
≃∎
module _ {i} where
open hom-adjoint
-- This was tricky (todo: could explain why)
Φ-iter : (Â B̂ : Ptd i) (n : Nat)
→ ((⊙Susp-iter' n Â) →̇ B̂)
→ (Â →̇ (⊙Ω^ n B̂))
Φ-iter  B̂ O f = f
Φ-iter  B̂ (S n) f = Φ Â (⊙Ω^ n B̂) (Φ-iter (⊙Susp Â) B̂ n f)
Φ-iter-equiv : ( B̂ : Ptd i) (n : Nat) → is-equiv (Φ-iter  B̂ n)
Φ-iter-equiv  B̂ O = snd (ide _)
Φ-iter-equiv  B̂ (S n) =
snd ((Φeq  (⊙Ω^ n B̂)) ∘e ((Φ-iter (⊙Susp Â) B̂ n) , Φ-iter-equiv (⊙Susp Â) B̂ n) )
module _ {i} where
open null
open hom-adjoint
-- Lemma 4.7 -- generalized, because we need to do it for Susp first before it works for Sphere!
isNull-Φ-many : (m : Nat)
→ (Â B̂ Ĉ : Ptd i)
→ (f : ⊙Susp-iter' m  →̇ B̂) (g : B̂ →̇ Ĉ)
→ isNull∙ (g ⊙∘ f)
≃
isNull∙ ((ap^ m g) ⊙∘ Φ-iter  B̂ m f)
isNull-Φ-many O Â B̂ Ĉ f g = ide _
isNull-Φ-many (S m) Â B̂ Ĉ f g =
isNull∙ (g ⊙∘ f)
≃⟨ isNull-Φ-many m (⊙Susp Â) B̂ Ĉ f g ⟩
isNull∙ ((ap^ m g) ⊙∘ Φ-iter (⊙Susp Â) B̂ m f)
≃⟨ combine-isnull-nat (Φ-iter (⊙Susp Â) B̂ m f) (ap^ m g) ⟩
(isNull∙
(⊙ap (ap^ m g) ⊙∘
Φ Â (⊙Ω^ m B̂)
(Φ-iter (⊙Susp Â) B̂ m f)))
≃∎
-- Lemma 4.7 (special with k = 0)
module _ {B̂ Ĉ : Ptd i} (m : Nat)
(f : ⊙Sphere' {i} m →̇ B̂) (g : B̂ →̇ Ĉ) where
isNull-Φ-Sphere : isNull∙ (g ⊙∘ f)
≃
isNull∙ ((ap^ m g) ⊙∘ Φ-iter (⊙Sphere' {i} O) B̂ m f)
isNull-Φ-Sphere = isNull-Φ-many m _ _ _ f g
open bool-neutral
module _ {B̂ Ĉ : Ptd i} (m : Nat)
(g : B̂ →̇ Ĉ) where
c₀ = snd (⊙Ω^ m Ĉ)
{- Lemma 4.8 -}
null-on-pspaces :
((f : (⊙Sphere' {i} m) →̇ B̂) → isNull∙ (g ⊙∘ f))
≃
isNulld (ap^ m g)
null-on-pspaces = -- {!equiv-Π-l!}
((f : (⊙Sphere' {i} m) →̇ B̂) → isNull∙ (g ⊙∘ f))
≃⟨ equiv-Π-r (λ f → isNull-Φ-Sphere m f g) ⟩
((f : (⊙Sphere' {i} m) →̇ B̂) → isNull∙ ((ap^ m g) ⊙∘ Φ-iter (⊙Sphere' {i} O) B̂ m f))
≃⟨ equiv-Π-l
{A = (⊙Sphere' {i} m) →̇ B̂}
{B = (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)}
(λ f' → isNull∙ ((ap^ m g) ⊙∘ f'))
{h = Φ-iter (⊙Sphere' {i} O) B̂ m}
(Φ-iter-equiv _ _ m)
⟩
((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → isNull∙ ((ap^ m g) ⊙∘ f'))
≃⟨ equiv-Π-r {A = ⊙Sphere' {i} O →̇ (⊙Ω^ m B̂)} (λ _ → isNull-equiv _) ⟩
((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → isNull∙' ((ap^ m g) ⊙∘ f'))
≃⟨ ide _ ⟩
((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → Σ ((x : bool) → fst ((ap^ m g) ⊙∘ f') x == _) λ h → h tt₀ == _)
≃⟨ equiv-Π-r {A = ⊙Sphere' {i} O →̇ (⊙Ω^ m B̂)}
(λ fp → reduction (λ b → fst (ap^ m g ⊙∘ fp) b == null.b₀ (ap^ m g ⊙∘ fp)) _) ⟩
((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → fst ((ap^ m g) ⊙∘ f') ff₀ == _)
≃⟨ ide _ ⟩
((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → fst (ap^ m g) (fst f' ff₀) == _)
≃⟨ equiv-Π-l {A = (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)}
{B = fst (⊙Ω^ m B̂)}
_
(snd (reduction (λ _ → fst (⊙Ω^ m B̂)) _)) ⟩
((x : fst (⊙Ω^ m B̂)) → fst (ap^ m g) x == c₀)
≃⟨ ide _ ⟩
isNulld (ap^ m g)
≃∎
| 31.285714
| 110
| 0.406952
|
21bf38678c83efeff1e9340db8e84f4239ab967b
| 44
|
agda
|
Agda
|
test/interaction/Issue2592/C.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue2592/C.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue2592/C.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- also importing warnings from A
import A
| 11
| 33
| 0.75
|
7c5dbe7ecc603c9d74a30aa96135e0440177f4d6
| 1,453
|
agda
|
Agda
|
test/Fail/Issue5706.agda
|
thiagofelicissimo/agda
|
a0b3eea0c19c47ffbe2be525316311f5795d760d
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue5706.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue5706.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2021-12-22, issue #5706 reported by Trebor-Huang
-- In Agda <= 2.6.2.1, Int overflow can be exploited.
-- Basically just a modified version of Russell's paradox found at
-- http://liamoc.net/posts/2015-09-10-girards-paradox.html.
-- -- This 64bit Int overflow got us Set:Set.
-- WTF : Set₀
-- WTF = Set₁₈₄₄₆₇₄₄₀₇₃₇₀₉₅₅₁₆₁₅
-- -- 18446744073709551615 = 2^64 - 1
-- Some preliminaries, just to avoid any library imports:
data _≡_ {ℓ : _} {A : Set ℓ} : A → A → Set where
refl : ∀ {a} → a ≡ a
record ∃ {A : Set} (P : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : P proj₁
open ∃
data ⊥ : Set where
-- The rest follows the linked development of Russell's paradox.
-- Naive sets (tree representation), accepted with --type-in-type.
data SET : Set where
set : (X : Set₁₈₄₄₆₇₄₄₀₇₃₇₀₉₅₅₁₆₁₅) → (X → SET) → SET
-- Elementhood
_∈_ : SET → SET → Set
a ∈ set X f = ∃ λ x → a ≡ f x
_∉_ : SET → SET → Set
a ∉ b = (a ∈ b) → ⊥
-- The set Δ of sets that do not contain themselves.
Δ : SET
Δ = set (∃ λ s → s ∉ s) proj₁
-- Any member of Δ does not contain itself.
x∈Δ→x∉x : ∀ {X} → X ∈ Δ → X ∉ X
x∈Δ→x∉x ((Y , Y∉Y) , refl) = Y∉Y
-- Δ does not contain itself.
Δ∉Δ : Δ ∉ Δ
Δ∉Δ Δ∈Δ = x∈Δ→x∉x Δ∈Δ Δ∈Δ
-- Any set that does not contain itself lives in Δ.
x∉x→x∈Δ : ∀ {X} → X ∉ X → X ∈ Δ
x∉x→x∈Δ {X} X∉X = (X , X∉X) , refl
-- So Δ must live in Δ, which is absurd.
falso : ⊥
falso = Δ∉Δ (x∉x→x∈Δ Δ∉Δ)
| 22.353846
| 66
| 0.594632
|
0d783bfaa635673e2c6bcaaba1b4d217caae6c77
| 1,303
|
agda
|
Agda
|
agda-stdlib/src/Algebra/Operations/Ring.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Algebra/Operations/Ring.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Algebra/Operations/Ring.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some defined operations over Rings
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module gives the definition of _^_ which is used throughout
-- the library. It's a little different from the normal definition:
--
-- x ^ zero = 1#
-- x ^ suc i = x * x ^ i
--
-- This is for two reasons. First, we want to avoid unnecessarily
-- multiplying by 1# if possible:
--
-- Standard definition: x ^ 2 = x * x * 1#
-- Our definition: x ^ 2 = x * x
--
-- This speeds up typechecking and makes for much more readable
-- proofs.
--
-- Secondly, we want to associate to the left:
--
-- Standard definition: x ^ 3 = x * (x * (x * 1#))
-- Our definition: x ^ 2 = (x * x) * x
--
-- As counterintuitive as it may seem, this also speeds up
-- typechecking.
open import Algebra
module Algebra.Operations.Ring
{ℓ₁ ℓ₂} (ring : RawRing ℓ₁ ℓ₂)
where
open import Data.Nat.Base as ℕ using (ℕ; suc; zero)
open RawRing ring
infixr 8 _^_+1
_^_+1 : Carrier → ℕ → Carrier
x ^ zero +1 = x
x ^ suc n +1 = (x ^ n +1) * x
infixr 8 _^_
_^_ : Carrier → ℕ → Carrier
x ^ zero = 1#
x ^ suc i = x ^ i +1
{-# INLINE _^_ #-}
| 25.057692
| 72
| 0.542594
|
30815210922d4a2b1b421dc5aa6e29a390116cea
| 736
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/Char/Core.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/Char/Core.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/Char/Core.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Core definitions for Characters
------------------------------------------------------------------------
module Data.Char.Core where
open import Data.Nat using (ℕ)
open import Data.Bool using (Bool; true; false)
------------------------------------------------------------------------
-- The type
postulate
Char : Set
{-# BUILTIN CHAR Char #-}
{-# COMPILED_TYPE Char Char #-}
------------------------------------------------------------------------
-- Primitive operations
primitive
primCharToNat : Char → ℕ
primCharEquality : Char → Char → Bool
-- primShowChar is in Data.String.Core for break an import cycle.
| 26.285714
| 72
| 0.429348
|
65e3585c36767889a9acbb33114c166212fc67bd
| 12,551
|
agda
|
Agda
|
Cubical/HITs/CumulativeHierarchy/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/HITs/CumulativeHierarchy/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/HITs/CumulativeHierarchy/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
{-
Builds bismulation for the cumulative hierarchy and shows that it
is equivalent to equality though it lives in a lower universe.
-}
module Cubical.HITs.CumulativeHierarchy.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Functions.Embedding
open import Cubical.Functions.Logic as L
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation as P hiding (elim; elim2)
open import Cubical.HITs.SetQuotients as Q using (_/_; setQuotUniversal; eq/; squash/)
open import Cubical.HITs.CumulativeHierarchy.Base
renaming (elim to elimInternal)
import Cubical.HITs.PropositionalTruncation.Monad as PropMonad
private
variable
ℓ ℓ' : Level
X Y : Type ℓ
a b : V ℓ
infix 4 _≊_
infix 7 _∈ₛ_ _⊆_ _⊆ₛ_
------------
-- "bisimulation"
-----------
-- bisimulation is needed to define a quotient in the correct universe when
-- implementing the map : V ℓ → Σ[ X : Type ℓ ] (X → V ℓ)
-- Quotienting by Path (V ℓ) or via eqImage would lead to X : Type (ℓ-suc ℓ)
_∼_ : (s t : V ℓ) → hProp ℓ
_∼_ = elim2 eliminator where
goalProp : (X : Type ℓ) (ix : X → V ℓ)
→ (Y : Type ℓ) (iy : Y → V ℓ)
→ (rec : X → Y → hProp ℓ)
→ hProp ℓ
goalProp X ix Y iy rec = (∀[ a ∶ X ] ∃[ b ∶ Y ] rec a b) ⊓ (∀[ b ∶ Y ] ∃[ a ∶ X ] rec a b)
⇔-swap : X ⊓′ Y → Y ⊓′ X
⇔-swap (p , q) = (q , p)
open PropMonad
lemma : {X₁ X₂ Y : Type ℓ} {ix₁ : X₁ → V ℓ} {ix₂ : X₂ → V ℓ} (iy : Y → V ℓ)
→ {rec₁ : X₁ → Y → hProp ℓ} {rec₂ : X₂ → Y → hProp ℓ}
→ (rec₁→₂ : (x₁ : X₁) → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] rec₂ x₂ ≡ rec₁ x₁)
→ (rec₂→₁ : (x₂ : X₂) → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] rec₁ x₁ ≡ rec₂ x₂)
→ ⟨ goalProp X₁ ix₁ Y iy rec₁ ⇒ goalProp X₂ ix₂ Y iy rec₂ ⟩
lemma _ rec₁→₂ rec₂→₁ (X₁→Y , Y→X₁) =
(λ x₂ → do ((x₁ , c_) , xr₁) ← rec₂→₁ x₂
(y , yr) ← X₁→Y x₁
∣ y , subst fst (λ i → xr₁ i y) yr ∣₁
) ,
(λ y → do (x₁ , xr₁) ← Y→X₁ y
((x₂ , _) , xr₂) ← rec₁→₂ x₁
∣ x₂ , subst fst (λ i → xr₂ (~ i) y) xr₁ ∣₁
)
open Elim2Set
eliminator : Elim2Set (λ _ _ → isSetHProp)
ElimSett2 eliminator = goalProp
ElimEqSnd eliminator X ix Y₁ Y₂ iy₁ iy₂ eq rec₁ rec₂ rec₁→₂ rec₂→₁ =
⇔toPath (⇔-swap ∘ lemma ix rec₁→₂ rec₂→₁ ∘ ⇔-swap)
(⇔-swap ∘ lemma ix rec₂→₁ rec₁→₂ ∘ ⇔-swap)
ElimEqFst eliminator X₁ X₂ ix₁ ix₂ eq Y iy rec₁ rec₂ rec₁→₂ rec₂→₁ =
⇔toPath (lemma iy rec₁→₂ rec₂→₁)
(lemma iy rec₂→₁ rec₁→₂)
_≊_ : (s t : V ℓ) → Type ℓ
s ≊ t = ⟨ s ∼ t ⟩
∼refl : (a : V ℓ) → a ≊ a
∼refl = elimProp (λ a → isProp⟨⟩ (a ∼ a))
(λ X ix rec → (λ x → ∣ x , rec x ∣₁) , (λ x → ∣ x , rec x ∣₁))
-- keep in mind that the left and right side here live in different universes
identityPrinciple : (a ≊ b) ≃ (a ≡ b)
identityPrinciple {a = a} {b = b} =
isoToEquiv (iso from into (λ _ → setIsSet _ _ _ _) (λ _ → isProp⟨⟩ (a ∼ b) _ _))
where
open PropMonad
eqImageXY : {X Y : Type ℓ} {ix : X → V ℓ} {iy : Y → V ℓ} → (∀ x y → ⟨ ix x ∼ iy y ⟩ → ix x ≡ iy y)
→ ⟨ sett X ix ∼ sett Y iy ⟩ → eqImage ix iy
eqImageXY rec rel = (λ x → do (y , y∼x) ← fst rel x ; ∣ y , sym (rec _ _ y∼x) ∣₁)
, (λ y → do (x , x∼y) ← snd rel y ; ∣ x , rec _ _ x∼y ∣₁)
from : a ≊ b → a ≡ b
from = elimProp propB eliminator a b where
prop∼ : {a : V ℓ} → ∀ b → isProp (a ≊ b → a ≡ b)
prop∼ {a = a} b = isPropΠ λ _ → setIsSet a b
propB : (a : V ℓ) → isProp (∀ b → a ≊ b → a ≡ b)
propB a = isPropΠ prop∼
eliminator :
∀ (X : Type _) (ix : X → V _)
→ ((x : X) (b₁ : V _) → ix x ≊ b₁ → ix x ≡ b₁)
→ (b₁ : V _) → sett X ix ≊ b₁ → sett X ix ≡ b₁
eliminator X ix rec =
elimProp prop∼ λ Y iy _ → seteq X Y ix iy ∘ eqImageXY (λ x y → rec x (iy y))
into : a ≡ b → a ≊ b
into = J (λ b _ → a ≊ b) (∼refl a)
------------
-- Monic presentation of sets
-----------
-- like fiber, but in a lower universe
repFiber : (f : X → V ℓ) (b : V ℓ) → Type _
repFiber f b = Σ[ a ∈ _ ] f a ≊ b
repFiber≃fiber : (f : X → V ℓ) (b : V ℓ) → repFiber f b ≃ fiber f b
repFiber≃fiber f b = Σ-cong-equiv (idEquiv _) (λ _ → identityPrinciple)
-- projecting out a representing type together with the embedding
MonicPresentation : (a : V ℓ) → Type (ℓ-suc ℓ)
MonicPresentation {ℓ} a = Σ[ (X , ix , _) ∈ Embedding (V ℓ) ℓ ] (a ≡ sett X ix)
isPropMonicPresentation : (a : V ℓ) → isProp (MonicPresentation a)
isPropMonicPresentation a ((X₁ , ix₁ , isEmb₁) , p) ((X₂ , ix₂ , isEmb₂) , q) =
ΣPathP ( equivFun (EmbeddingIP _ _) (fiberwise1 , fiberwise2)
, isProp→PathP (λ i → setIsSet a _) p q)
where
open PropMonad
fiberwise1 : ∀ b → fiber ix₁ b → fiber ix₂ b
fiberwise1 b fbx₁ =
proof (_ , isEmbedding→hasPropFibers isEmb₂ b)
by subst (λ A → ⟨ b ∈ A ⟩) (sym p ∙ q) ∣ fbx₁ ∣₁
fiberwise2 : ∀ b → fiber ix₂ b → fiber ix₁ b
fiberwise2 b fbx₂ =
proof (_ , isEmbedding→hasPropFibers isEmb₁ b)
by subst (λ A → ⟨ b ∈ A ⟩) (sym q ∙ p) ∣ fbx₂ ∣₁
sett-repr : (X : Type ℓ) (ix : X → V ℓ) → MonicPresentation (sett X ix)
sett-repr {ℓ} X ix = (Rep , ixRep , isEmbIxRep) , seteq X Rep ix ixRep eqImIxRep where
Kernel : X → X → Type ℓ
Kernel x y = ix x ≊ ix y
Rep : Type ℓ
Rep = X / Kernel
ixRep : Rep → V ℓ
ixRep = invEq (setQuotUniversal setIsSet) (ix , λ _ _ → equivFun identityPrinciple)
isEmbIxRep : isEmbedding ixRep
isEmbIxRep = hasPropFibers→isEmbedding propFibers where
propFibers : ∀ y → (a b : Σ[ p ∈ Rep ] (ixRep p ≡ y)) → a ≡ b
propFibers y (p₁ , m) (p₂ , n) =
ΣPathP {B = λ _ p → ixRep p ≡ y} (goal , isProp→PathP (λ _ → setIsSet _ _) _ _)
where
lemma : ∀ {p₁ p₂} → (p : ixRep Q.[ p₁ ] ≡ y) (q : ixRep Q.[ p₂ ] ≡ y) → Kernel p₁ p₂
lemma m n = invEquiv identityPrinciple .fst (m ∙ sym n)
prop₁ : ∀ p₁ → isProp ((ixRep p₁ ≡ y) → p₁ ≡ p₂)
prop₁ p₁ = isPropΠ λ eq → squash/ p₁ p₂
prop₂ : ∀ {p₁} p₂ → isProp ((ixRep p₂ ≡ y) → Q.[ p₁ ] ≡ p₂)
prop₂ {p₁} p₂ = isPropΠ λ eq → squash/ Q.[ p₁ ] p₂
goal : p₁ ≡ p₂
goal = Q.elimProp prop₁ (λ p₁ m → Q.elimProp prop₂ (λ p₂ n → eq/ p₁ p₂ (lemma m n)) p₂ n) p₁ m
eqImIxRep : eqImage ix ixRep
eqImIxRep = (λ x → ∣ Q.[ x ] , refl ∣₁) , Q.elimProp (λ _ → P.squash₁) (λ b → ∣ b , refl ∣₁)
data DeepMonicPresentation (a : V ℓ) : Type (ℓ-suc ℓ) where
dmp : (mp@((_ , ix , _) , _) : MonicPresentation a)
→ (rec : ∀ x → DeepMonicPresentation (ix x))
→ DeepMonicPresentation a
isPropDeepMonicPresentation : (a : V ℓ) → isProp (DeepMonicPresentation a)
isPropDeepMonicPresentation a (dmp mx rx) (dmp my ry) i = dmp (mx≡my i) (recprop i) where
mx≡my : mx ≡ my
mx≡my = isPropMonicPresentation a mx my
recprop : PathP (λ i → (x : mx≡my i .fst .fst) → DeepMonicPresentation (mx≡my i .fst .snd .fst x)) rx ry
recprop = toPathP (funExt λ x → isPropDeepMonicPresentation _ _ _)
V-deeprepr : (a : V ℓ) → DeepMonicPresentation a
V-deeprepr = elimProp isPropDeepMonicPresentation λ X ix rec → dmp (sett-repr X ix) (Q.elimProp (λ _ → isPropDeepMonicPresentation _) rec)
V-repr : (a : V ℓ) → MonicPresentation a
-- "Cannot eliminate fibrant type DeepMonicPresentation a
-- unless target type is also fibrant"
-- V-repr = let (dmp mp _) = (V-deeprepr a) in mp
V-repr a = case (V-deeprepr a) return (λ _ → MonicPresentation a) of λ { (dmp mp _) → mp }
private
MonicDataF : Type (ℓ-suc ℓ) → Type (ℓ-suc ℓ)
MonicDataF {ℓ} T = Embedding T ℓ
V-fixpoint : V ℓ ≃ MonicDataF (V ℓ)
V-fixpoint {ℓ} =
V ℓ ≃⟨ invEquiv (Σ-contractSnd λ a → inhProp→isContr (V-repr a) (isPropMonicPresentation a)) ⟩
(Σ[ a ∈ V ℓ ] MonicPresentation a) ≃⟨ boringswap ⟩
(Σ[ (X , ix , _) ∈ MonicDataF (V ℓ) ] singl (sett X ix)) ≃⟨ Σ-contractSnd (λ _ → isContrSingl _) ⟩
MonicDataF (V ℓ) ■ where
boringswap : (Σ[ a ∈ V ℓ ] MonicPresentation a) ≃ (Σ[ (X , ix , _) ∈ MonicDataF (V ℓ) ] singl (sett X ix))
boringswap = isoToEquiv (iso
(λ (a , (X , ix , emb) , p) → (X , ix , emb) , a , sym p)
(λ ((X , ix , emb) , a , p) → a , (X , ix , emb) , sym p)
(λ _ → refl)
λ _ → refl)
-- note the problem of making this a datatype directly: MonicDataF is *not* strictly positive!
-- an elimination principle based on the monic presentation
elim : (B : V ℓ → Type ℓ')
→ ((X : Type ℓ) (ix : X → V ℓ) (emb : isEmbedding ix) (rec : ∀ x → B (ix x)) → B (sett X ix))
→ (a : V ℓ) → B a
elim B alg = elimDMP ∘ V-deeprepr where
elimDMP : ∀ {a} → DeepMonicPresentation a → B a
elimDMP (dmp ((X , ix , emb) , p) rec) = subst B (sym p) (alg X ix emb (λ x → elimDMP (rec x)))
⟪_⟫ : (s : V ℓ) → Type ℓ
⟪ X ⟫ = V-repr X .fst .fst
⟪_⟫↪ : (s : V ℓ) → ⟪ s ⟫ → V ℓ
⟪ X ⟫↪ = V-repr X .fst .snd .fst
isEmb⟪_⟫↪ : (s : V ℓ) → isEmbedding ⟪ s ⟫↪
isEmb⟪ X ⟫↪ = V-repr X .fst .snd .snd
⟪_⟫-represents : (s : V ℓ) → s ≡ sett ⟪ s ⟫ ⟪ s ⟫↪
⟪ X ⟫-represents = V-repr X .snd
isPropRepFiber : (a b : V ℓ) → isProp (repFiber ⟪ a ⟫↪ b)
isPropRepFiber a b =
Embedding-into-isProp→isProp
(Equiv→Embedding (repFiber≃fiber ⟪ a ⟫↪ b))
(isEmbedding→hasPropFibers isEmb⟪ a ⟫↪ b)
-- while ∈ is hProp (ℓ-suc ℓ), ∈ₛ is in ℓ
_∈ₛ_ : (a b : V ℓ) → hProp ℓ
a ∈ₛ b = repFiber ⟪ b ⟫↪ a , isPropRepFiber b a
∈-asFiber : {a b : V ℓ} → ⟨ a ∈ b ⟩ → fiber ⟪ b ⟫↪ a
∈-asFiber {a = a} {b = b} =
subst (λ br → ⟨ a ∈ br ⟩ → fiber ⟪ b ⟫↪ a) (sym ⟪ b ⟫-represents) asRep
where
asRep : ⟨ a ∈ sett ⟪ b ⟫ ⟪ b ⟫↪ ⟩ → fiber ⟪ b ⟫↪ a
asRep = P.propTruncIdempotent≃ (isEmbedding→hasPropFibers isEmb⟪ b ⟫↪ a) .fst
∈-fromFiber : {a b : V ℓ} → fiber ⟪ b ⟫↪ a → ⟨ a ∈ b ⟩
∈-fromFiber {a = a} {b = b} = subst (λ br → ⟨ a ∈ br ⟩) (sym ⟪ b ⟫-represents) ∘ ∣_∣₁
∈∈ₛ : {a b : V ℓ} → ⟨ a ∈ b ⇔ a ∈ₛ b ⟩
∈∈ₛ {a = a} {b = b} = leftToRight , rightToLeft where
repEquiv : repFiber ⟪ b ⟫↪ a ≃ fiber ⟪ b ⟫↪ a
repEquiv = repFiber≃fiber ⟪ b ⟫↪ a
leftToRight : ⟨ (a ∈ b) ⇒ a ∈ₛ b ⟩
leftToRight a∈b = invEq repEquiv (∈-asFiber {b = b} a∈b)
rightToLeft : ⟨ a ∈ₛ b ⇒ (a ∈ b) ⟩
rightToLeft a∈ₛb = ∈-fromFiber {b = b} (equivFun repEquiv a∈ₛb)
ix∈ₛ : {X : Type ℓ} {ix : X → V ℓ}
→ (x : X) → ⟨ ix x ∈ₛ sett X ix ⟩
ix∈ₛ {X = X} {ix = ix} x = ∈∈ₛ {a = ix x} {b = sett X ix} .fst ∣ x , refl ∣₁
∈ₛ⟪_⟫↪_ : (a : V ℓ) (ix : ⟪ a ⟫) → ⟨ ⟪ a ⟫↪ ix ∈ₛ a ⟩
∈ₛ⟪ a ⟫↪ ix = ix , ∼refl (⟪ a ⟫↪ ix)
-- also here, the left side is in level (ℓ-suc ℓ) while the right is in ℓ
presentation : (a : V ℓ) → (Σ[ v ∈ V ℓ ] ⟨ v ∈ₛ a ⟩) ≃ ⟪ a ⟫
presentation a = isoToEquiv (iso into from (λ _ → refl) retr) where
into : Σ[ v ∈ V _ ] ⟨ v ∈ₛ a ⟩ → ⟪ a ⟫
into = fst ∘ snd
from : ⟪ a ⟫ → Σ[ v ∈ V _ ] ⟨ v ∈ₛ a ⟩
from ⟪a⟫ = ⟪ a ⟫↪ ⟪a⟫ , ∈ₛ⟪ a ⟫↪ ⟪a⟫
retr : retract into from
retr s = Σ≡Prop (λ v → (v ∈ₛ a) .snd) (equivFun identityPrinciple (s .snd .snd))
-- subset relation, once in level (ℓ-suc ℓ) and once in ℓ
_⊆_ : (a b : V ℓ) → hProp (ℓ-suc ℓ)
a ⊆ b = ∀[ x ] x ∈ₛ a ⇒ x ∈ₛ b
⊆-refl : (a : V ℓ) → ⟨ a ⊆ a ⟩
⊆-refl a = λ _ xa → xa
_⊆ₛ_ : (a b : V ℓ) → hProp ℓ
a ⊆ₛ b = ∀[ x ] ⟪ a ⟫↪ x ∈ₛ b
⊆⇔⊆ₛ : (a b : V ℓ) → ⟨ a ⊆ b ⇔ a ⊆ₛ b ⟩
⊆⇔⊆ₛ a b =
(λ s → invEq curryEquiv s ∘ invEq (presentation a))
, (λ s x xa → subst (λ x → ⟨ x ∈ₛ b ⟩) (equivFun identityPrinciple (xa .snd)) (s (xa .fst)))
-- the homotopy definition of equality as an hProp, we know this is equivalent to bisimulation
infix 4 _≡ₕ_
_≡ₕ_ : (a b : V ℓ) → hProp (ℓ-suc ℓ)
_≡ₕ_ a b = (a ≡ b) , setIsSet a b
-- extensionality
extensionality : ⟨ ∀[ a ∶ V ℓ ] ∀[ b ] (a ⊆ b) ⊓ (b ⊆ a) ⇒ (a ≡ₕ b) ⟩
extensionality {ℓ = ℓ} a b imeq = ⟪ a ⟫-represents ∙∙ settab ∙∙ sym ⟪ b ⟫-represents where
abpth : Path (Embedding _ _) (⟪ a ⟫ , ⟪ a ⟫↪ , isEmb⟪ a ⟫↪) (⟪ b ⟫ , ⟪ b ⟫↪ , isEmb⟪ b ⟫↪)
abpth = equivFun (EmbeddingIP _ _)
( (λ p → equivFun (repFiber≃fiber ⟪ b ⟫↪ p) ∘ imeq .fst p ∘ invEq (repFiber≃fiber ⟪ a ⟫↪ p))
, (λ p → equivFun (repFiber≃fiber ⟪ a ⟫↪ p) ∘ imeq .snd p ∘ invEq (repFiber≃fiber ⟪ b ⟫↪ p))
)
settab : sett ⟪ a ⟫ ⟪ a ⟫↪ ≡ sett ⟪ b ⟫ ⟪ b ⟫↪
settab i = sett (abpth i .fst) (abpth i .snd .fst)
extInverse : ⟨ ∀[ a ∶ V ℓ ] ∀[ b ] (a ≡ₕ b) ⇒ (a ⊆ b) ⊓ (b ⊆ a) ⟩
extInverse a b a≡b = subst (λ b → ⟨ (a ⊆ b) ⊓ (b ⊆ a) ⟩) a≡b (⊆-refl a , ⊆-refl a)
set≡-characterization : {a b : V ℓ} → (a ≡ₕ b) ≡ (a ⊆ b) ⊓ (b ⊆ a)
set≡-characterization = ⇔toPath (extInverse _ _) (extensionality _ _)
| 39.971338
| 138
| 0.560832
|
527a8dba4a5959d36dd305257d63926252050d77
| 237
|
agda
|
Agda
|
test/Fail/Issue142.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue142.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue142.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Agda.Builtin.Nat
data Sing : Nat → Set where
i : (k : Nat) → Sing k
toSing : (n : Nat) → Sing n
toSing n = i n
fun : (n : Nat) → Nat
fun n with toSing n
fun .n | i n with toSing n
fun .(n + n) | i .n | i n = {!!}
| 16.928571
| 32
| 0.540084
|
2ecbfe82fc6d1a52646995066d65f7af709df2c8
| 1,726
|
agda
|
Agda
|
src/Injection.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | 3
|
2020-05-21T22:58:50.000Z
|
2021-09-02T17:18:15.000Z
|
src/Injection.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
src/Injection.agda
|
nad/equality
|
402b20615cfe9ca944662380d7b2d69b0f175200
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Injections
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Injection
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
------------------------------------------------------------------------
-- Injections
-- The property of being injective.
Injective : ∀ {a b} {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b)
Injective f = ∀ {x y} → f x ≡ f y → x ≡ y
infix 0 _↣_
-- Injections.
record _↣_ {f t} (From : Type f) (To : Type t) : Type (f ⊔ t) where
field
to : From → To
injective : Injective to
------------------------------------------------------------------------
-- Preorder
-- _↣_ is a preorder.
id : ∀ {a} {A : Type a} → A ↣ A
id = record
{ to = P.id
; injective = P.id
}
infixr 9 _∘_
_∘_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} →
B ↣ C → A ↣ B → A ↣ C
f ∘ g = record
{ to = to′
; injective = injective′
}
where
open _↣_
to′ = to f ⊚ to g
injective′ : Injective to′
injective′ = injective g ⊚ injective f
-- "Equational" reasoning combinators.
infix -1 finally-↣
infixr -2 step-↣
-- For an explanation of why step-↣ is defined in this way, see
-- Equality.step-≡.
step-↣ : ∀ {a b c} (A : Type a) {B : Type b} {C : Type c} →
B ↣ C → A ↣ B → A ↣ C
step-↣ _ = _∘_
syntax step-↣ A B↣C A↣B = A ↣⟨ A↣B ⟩ B↣C
finally-↣ : ∀ {a b} (A : Type a) (B : Type b) → A ↣ B → A ↣ B
finally-↣ _ _ A↣B = A↣B
syntax finally-↣ A B A↣B = A ↣⟨ A↣B ⟩□ B □
| 22.415584
| 72
| 0.451333
|
7c16e42dbdbf8ec6ab3b525255a2909bb993784a
| 293
|
agda
|
Agda
|
test/Succeed/Issue107.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue107.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue107.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS -v tc.inj.check:30 #-}
{-# OPTIONS --allow-unsolved-metas #-}
module Issue107 where
data Bool : Set where
true : Bool
false : Bool
data False : Set where
record True : Set where
T : Bool -> Set
T false = False
T _ = True
foo : ((a : Bool) -> T a) -> True
foo f = f _
| 14.65
| 38
| 0.604096
|
643af521b909cdbabe11f817f8cf1c1eb8de7ba1
| 1,088
|
agda
|
Agda
|
Cubical/HITs/Truncation/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/HITs/Truncation/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/HITs/Truncation/Base.agda
|
barrettj12/cubical
|
7b41b9171f90473efc98487cb2ea7a4d02320cb2
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-
A simpler definition of truncation ∥ A ∥ n from n ≥ -1
Note that this uses the HoTT book's indexing, so it will be off
from `∥_∥_` in HITs.Truncation.Base by -2
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.Truncation.Base where
open import Cubical.Data.NatMinusOne
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.HITs.Sn.Base
open import Cubical.Data.Nat.Base
open import Cubical.Data.Unit.Base
open import Cubical.Data.Empty
-- this definition is off by one. Use hLevelTrunc or ∥_∥ for truncations
-- (off by 2 w.r.t. the HoTT-book)
data HubAndSpoke {ℓ} (A : Type ℓ) (n : ℕ) : Type ℓ where
∣_∣ : A → HubAndSpoke A n
hub : (f : S₊ n → HubAndSpoke A n) → HubAndSpoke A n
spoke : (f : S₊ n → HubAndSpoke A n) (x : S₊ n) → hub f ≡ f x
hLevelTrunc : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Type ℓ
hLevelTrunc zero A = Unit*
hLevelTrunc (suc n) A = HubAndSpoke A n
∥_∥_ : ∀ {ℓ} (A : Type ℓ) (n : ℕ) → Type ℓ
∥ A ∥ n = hLevelTrunc n A
∣_∣ₕ : ∀ {ℓ} {A : Type ℓ} {n : ℕ} → A → ∥ A ∥ n
∣_∣ₕ {n = zero} a = tt*
∣_∣ₕ {n = suc n} a = ∣ a ∣
| 29.405405
| 72
| 0.642463
|
14aff16bba66fe3f1cd237ce89cfdedac4fa4e36
| 2,416
|
agda
|
Agda
|
Data/Fin/Properties.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Data/Fin/Properties.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Data/Fin/Properties.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.Fin.Properties where
open import Prelude
open import Data.Fin.Base
import Data.Nat.Properties as ℕ
open import Data.Nat.Properties using (+-comm)
open import Data.Nat
open import Function.Injective
open import Agda.Builtin.Nat renaming (_<_ to _<ᵇ_)
private
variable
n m : ℕ
suc-natfin : Σ[ m ⦂ ℕ ] × (m ℕ.< n) → Σ[ m ⦂ ℕ ] × (m ℕ.< suc n)
suc-natfin (m , p) = suc m , p
Fin-to-Nat-lt : Fin n → Σ[ m ⦂ ℕ ] × (m ℕ.< n)
Fin-to-Nat-lt {n = suc n} f0 = zero , tt
Fin-to-Nat-lt {n = suc n} (fs x) = suc-natfin (Fin-to-Nat-lt x)
Fin-from-Nat-lt : ∀ m → m ℕ.< n → Fin n
Fin-from-Nat-lt {n = suc n} zero p = f0
Fin-from-Nat-lt {n = suc n} (suc m) p = fs (Fin-from-Nat-lt m p)
Fin-Nat-lt-rightInv : ∀ m → (p : m ℕ.< n) → Fin-to-Nat-lt {n = n} (Fin-from-Nat-lt m p) ≡ (m , p)
Fin-Nat-lt-rightInv {n = suc n} zero p = refl
Fin-Nat-lt-rightInv {n = suc n} (suc m) p = cong (suc-natfin {n = n}) (Fin-Nat-lt-rightInv {n = n} m p)
Fin-Nat-lt-leftInv : (x : Fin n) → uncurry Fin-from-Nat-lt (Fin-to-Nat-lt x) ≡ x
Fin-Nat-lt-leftInv {n = suc n} f0 = refl
Fin-Nat-lt-leftInv {n = suc n} (fs x) = cong fs (Fin-Nat-lt-leftInv x)
Fin-Nat-lt : Fin n ⇔ Σ[ m ⦂ ℕ ] × (m ℕ.< n)
Fin-Nat-lt .fun = Fin-to-Nat-lt
Fin-Nat-lt .inv = uncurry Fin-from-Nat-lt
Fin-Nat-lt .rightInv = uncurry Fin-Nat-lt-rightInv
Fin-Nat-lt .leftInv = Fin-Nat-lt-leftInv
FinToℕ : Fin n → ℕ
FinToℕ {n = suc n} f0 = zero
FinToℕ {n = suc n} (fs x) = suc (FinToℕ x)
FinToℕ-injective : ∀ {k} {m n : Fin k} → FinToℕ m ≡ FinToℕ n → m ≡ n
FinToℕ-injective {suc k} {f0} {f0} _ = refl
FinToℕ-injective {suc k} {f0} {fs x} p = ⊥-elim (ℕ.znots p)
FinToℕ-injective {suc k} {fs m} {f0} p = ⊥-elim (ℕ.snotz p)
FinToℕ-injective {suc k} {fs m} {fs x} p = cong fs (FinToℕ-injective (ℕ.injSuc p))
pred : Fin (suc n) → Fin (suc (ℕ.pred n))
pred f0 = f0
pred {n = suc n} (fs m) = m
discreteFin : ∀ {k} → Discrete (Fin k)
discreteFin {k = suc _} f0 f0 = yes refl
discreteFin {k = suc _} f0 (fs fk) = no (ℕ.znots ∘ cong FinToℕ)
discreteFin {k = suc _} (fs fj) f0 = no (ℕ.snotz ∘ cong FinToℕ)
discreteFin {k = suc _} (fs fj) (fs fk) =
iff-dec (cong fs iff cong (λ { f0 → fk ; (fs x) → x})) (discreteFin fj fk)
isSetFin : isSet (Fin n)
isSetFin = Discrete→isSet discreteFin
FinFromℕ : (n m : ℕ) → T (n <ᵇ m) → Fin m
FinFromℕ zero (suc m) p = f0
FinFromℕ (suc n) (suc m) p = fs (FinFromℕ n m p)
| 35.014493
| 103
| 0.609272
|
14cf98350b17391ac9e6f5899e35a3064856ef3f
| 9,865
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/Graph/Acyclic.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Graph/Acyclic.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/Graph/Acyclic.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Directed acyclic multigraphs
------------------------------------------------------------------------
-- A representation of DAGs, based on the idea underlying Martin
-- Erwig's FGL. Note that this representation does not aim to be
-- efficient.
{-# OPTIONS --without-K --safe #-}
module Data.Graph.Acyclic where
open import Level using (_⊔_)
open import Data.Nat.Base as Nat using (ℕ; zero; suc; _<′_)
import Data.Nat.Properties as Nat
open import Data.Fin as Fin
using (Fin; Fin′; zero; suc; #_; toℕ; _≟_) renaming (_ℕ-ℕ_ to _-_)
import Data.Fin.Properties as FP
import Data.Fin.Permutation.Components as PC
open import Data.Product as Prod using (∃; _×_; _,_)
open import Data.Maybe.Base using (Maybe; nothing; just)
open import Data.Empty
open import Data.Unit.Base using (⊤; tt)
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.List.Base as List using (List; []; _∷_)
open import Function
open import Induction.Nat using (<′-rec; <′-Rec)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- A lemma
private
lemma : ∀ n (i : Fin n) → n - suc i <′ n
lemma zero ()
lemma (suc n) i = Nat.≤⇒≤′ $ Nat.s≤s $ FP.nℕ-ℕi≤n n i
------------------------------------------------------------------------
-- Node contexts
record Context {ℓ e} (Node : Set ℓ) (Edge : Set e) (n : ℕ) : Set (ℓ ⊔ e) where
constructor context
field
label : Node
successors : List (Edge × Fin n)
open Context public
-- Map for contexts.
module _ {ℓ₁ e₁} {N₁ : Set ℓ₁} {E₁ : Set e₁}
{ℓ₂ e₂} {N₂ : Set ℓ₂} {E₂ : Set e₂} where
cmap : ∀ {n} → (N₁ → N₂) → (List (E₁ × Fin n) → List (E₂ × Fin n)) →
Context N₁ E₁ n → Context N₂ E₂ n
cmap f g c = context (f (label c)) (g (successors c))
------------------------------------------------------------------------
-- Graphs
infixr 3 _&_
-- The DAGs are indexed on the number of nodes.
data Graph {ℓ e} (Node : Set ℓ) (Edge : Set e) : ℕ → Set (ℓ ⊔ e) where
∅ : Graph Node Edge 0
_&_ : ∀ {n} (c : Context Node Edge n) (g : Graph Node Edge n) →
Graph Node Edge (suc n)
private
example : Graph ℕ ℕ 5
example = context 0 [] &
context 1 ((10 , # 1) ∷ (11 , # 1) ∷ []) &
context 2 ((12 , # 0) ∷ []) &
context 3 [] &
context 4 [] &
∅
------------------------------------------------------------------------
-- Higher-order functions
module _ {ℓ e} {N : Set ℓ} {E : Set e} {t} where
-- "Fold right".
foldr : (T : ℕ → Set t) →
(∀ {n} → Context N E n → T n → T (suc n)) →
T 0 →
∀ {m} → Graph N E m → T m
foldr T _∙_ x ∅ = x
foldr T _∙_ x (c & g) = c ∙ foldr T _∙_ x g
-- "Fold left".
foldl : ∀ {n} (T : ℕ → Set t) →
((i : Fin n) → T (toℕ i) → Context N E (n - suc i) →
T (suc (toℕ i))) →
T 0 →
Graph N E n → T n
foldl T f x ∅ = x
foldl T f x (c & g) = foldl (T ∘′ suc) (f ∘ suc) (f zero x c) g
module _ {ℓ₁ e₁} {N₁ : Set ℓ₁} {E₁ : Set e₁}
{ℓ₂ e₂} {N₂ : Set ℓ₂} {E₂ : Set e₂} where
-- Maps over node contexts.
map : (∀ {n} → Context N₁ E₁ n → Context N₂ E₂ n) →
∀ {n} → Graph N₁ E₁ n → Graph N₂ E₂ n
map f = foldr _ (λ c → f c &_) ∅
-- Maps over node labels.
nmap : ∀ {ℓ₁ ℓ₂ e} {N₁ : Set ℓ₁} {N₂ : Set ℓ₂} {E : Set e} →
∀ {n} → (N₁ → N₂) → Graph N₁ E n → Graph N₂ E n
nmap f = map (cmap f id)
-- Maps over edge labels.
emap : ∀ {ℓ e₁ e₂} {N : Set ℓ} {E₁ : Set e₁} {E₂ : Set e₂} →
∀ {n} → (E₁ → E₂) → Graph N E₁ n → Graph N E₂ n
emap f = map (cmap id (List.map (Prod.map f id)))
-- Zips two graphs with the same number of nodes. Note that one of the
-- graphs has a type which restricts it to be completely disconnected.
zipWith : ∀ {ℓ₁ ℓ₂ ℓ e} {N₁ : Set ℓ₁} {N₂ : Set ℓ₂} {N : Set ℓ} {E : Set e} →
∀ {n} → (N₁ → N₂ → N) → Graph N₁ ⊥ n → Graph N₂ E n → Graph N E n
zipWith _∙_ ∅ ∅ = ∅
zipWith _∙_ (c₁ & g₁) (c₂ & g₂) =
context (label c₁ ∙ label c₂) (successors c₂) & zipWith _∙_ g₁ g₂
------------------------------------------------------------------------
-- Specific graphs
-- A completeley disconnected graph.
disconnected : ∀ n → Graph ⊤ ⊥ n
disconnected zero = ∅
disconnected (suc n) = context tt [] & disconnected n
-- A complete graph.
complete : ∀ n → Graph ⊤ ⊤ n
complete zero = ∅
complete (suc n) =
context tt (List.map (tt ,_) $ Vec.toList (Vec.allFin n)) &
complete n
------------------------------------------------------------------------
-- Queries
module _ {ℓ e} {N : Set ℓ} {E : Set e} where
-- The top-most context.
head : ∀ {n} → Graph N E (suc n) → Context N E n
head (c & g) = c
-- The remaining graph.
tail : ∀ {n} → Graph N E (suc n) → Graph N E n
tail (c & g) = g
-- Finds the context and remaining graph corresponding to a given node
-- index.
_[_] : ∀ {n} → Graph N E n → (i : Fin n) → Graph N E (suc (n - suc i))
∅ [ () ]
(c & g) [ zero ] = c & g
(c & g) [ suc i ] = g [ i ]
-- The nodes of the graph (node number relative to "topmost" node ×
-- node label).
nodes : ∀ {n} → Graph N E n → Vec (Fin n × N) n
nodes = Vec.zip (Vec.allFin _) ∘
foldr (Vec N) (λ c → label c ∷_) []
private
test-nodes : nodes example ≡ (# 0 , 0) ∷ (# 1 , 1) ∷ (# 2 , 2) ∷
(# 3 , 3) ∷ (# 4 , 4) ∷ []
test-nodes = P.refl
module _ {ℓ e} {N : Set ℓ} {E : Set e} where
-- Topological sort. Gives a vector where earlier nodes are never
-- successors of later nodes.
topSort : ∀ {n} → Graph N E n → Vec (Fin n × N) n
topSort = nodes
-- The edges of the graph (predecessor × edge label × successor).
--
-- The predecessor is a node number relative to the "topmost" node in
-- the graph, and the successor is a node number relative to the
-- predecessor.
edges : ∀ {n} → Graph N E n → List (∃ λ i → E × Fin (n - suc i))
edges {n} =
foldl (λ _ → List (∃ λ i → E × Fin (n - suc i)))
(λ i es c → es List.++ List.map (i ,_) (successors c))
[]
private
test-edges : edges example ≡ (# 1 , 10 , # 1) ∷ (# 1 , 11 , # 1) ∷
(# 2 , 12 , # 0) ∷ []
test-edges = P.refl
-- The successors of a given node i (edge label × node number relative
-- to i).
sucs : ∀ {ℓ e} {N : Set ℓ} {E : Set e} →
∀ {n} → Graph N E n → (i : Fin n) → List (E × Fin (n - suc i))
sucs g i = successors $ head (g [ i ])
private
test-sucs : sucs example (# 1) ≡ (10 , # 1) ∷ (11 , # 1) ∷ []
test-sucs = P.refl
-- The predecessors of a given node i (node number relative to i ×
-- edge label).
preds : ∀ {ℓ e} {N : Set ℓ} {E : Set e} →
∀ {n} → Graph N E n → (i : Fin n) → List (Fin′ i × E)
preds g zero = []
preds (c & g) (suc i) =
List._++_ (List.mapMaybe (p i) $ successors c)
(List.map (Prod.map suc id) $ preds g i)
where
p : ∀ {e} {E : Set e} {n} (i : Fin n) → E × Fin n → Maybe (Fin′ (suc i) × E)
p i (e , j) with i ≟ j
p i (e , .i) | yes P.refl = just (zero , e)
p i (e , j) | no _ = nothing
private
test-preds : preds example (# 3) ≡
(# 1 , 10) ∷ (# 1 , 11) ∷ (# 2 , 12) ∷ []
test-preds = P.refl
------------------------------------------------------------------------
-- Operations
-- Weakens a node label.
weaken : ∀ {n} {i : Fin n} → Fin (n - suc i) → Fin n
weaken {n} {i} j = Fin.inject≤ j (FP.nℕ-ℕi≤n n (suc i))
-- Labels each node with its node number.
number : ∀ {ℓ e} {N : Set ℓ} {E : Set e} →
∀ {n} → Graph N E n → Graph (Fin n × N) E n
number {N = N} {E} =
foldr (λ n → Graph (Fin n × N) E n)
(λ c g → cmap (zero ,_) id c & nmap (Prod.map suc id) g)
∅
private
test-number : number example ≡
(context (# 0 , 0) [] &
context (# 1 , 1) ((10 , # 1) ∷ (11 , # 1) ∷ []) &
context (# 2 , 2) ((12 , # 0) ∷ []) &
context (# 3 , 3) [] &
context (# 4 , 4) [] &
∅)
test-number = P.refl
-- Reverses all the edges in the graph.
reverse : ∀ {ℓ e} {N : Set ℓ} {E : Set e} →
∀ {n} → Graph N E n → Graph N E n
reverse {N = N} {E} g =
foldl (Graph N E)
(λ i g' c →
context (label c)
(List.map (Prod.swap ∘ Prod.map PC.reverse id) $
preds g i)
& g')
∅ g
private
test-reverse : reverse (reverse example) ≡ example
test-reverse = P.refl
------------------------------------------------------------------------
-- Views
-- Expands the subgraph induced by a given node into a tree (thus
-- losing all sharing).
data Tree {ℓ e} (N : Set ℓ) (E : Set e) : Set (ℓ ⊔ e) where
node : (label : N) (successors : List (E × Tree N E)) → Tree N E
module _ {ℓ e} {N : Set ℓ} {E : Set e} where
toTree : ∀ {n} → Graph N E n → Fin n → Tree N E
toTree g i = <′-rec Pred expand _ (g [ i ])
where
Pred = λ n → Graph N E (suc n) → Tree N E
expand : (n : ℕ) → <′-Rec Pred n → Pred n
expand n rec (c & g) =
node (label c)
(List.map
(Prod.map id (λ i → rec (n - suc i) (lemma n i) (g [ i ])))
(successors c))
-- Performs the toTree expansion once for each node.
toForest : ∀ {n} → Graph N E n → Vec (Tree N E) n
toForest g = Vec.map (toTree g) (Vec.allFin _)
private
test-toForest : toForest example ≡
let n3 = node 3 [] in
node 0 [] ∷
node 1 ((10 , n3) ∷ (11 , n3) ∷ []) ∷
node 2 ((12 , n3) ∷ []) ∷
node 3 [] ∷
node 4 [] ∷
[]
test-toForest = P.refl
| 29.272997
| 78
| 0.477141
|
6473dc10d7f3fe3f5adcf9282776a3897fd66623
| 4,425
|
agda
|
Agda
|
function/isomorphism/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 27
|
2015-04-14T15:47:03.000Z
|
2022-01-09T07:26:57.000Z
|
function/isomorphism/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 2
|
2015-02-11T11:14:59.000Z
|
2015-02-11T15:20:34.000Z
|
function/isomorphism/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 4
|
2015-04-11T17:19:12.000Z
|
2019-02-26T06:17:38.000Z
|
{-# OPTIONS --without-K #-}
module function.isomorphism.core where
open import level using (_⊔_)
open import equality.core
open import equality.groupoid
open import equality.reasoning
open import function.core
open import function.overloading
open import sum
open import function.extensionality.core
open import overloading.core
-- isomorphisms
record _≅_ {i j}(X : Set i)(Y : Set j) : Set (i ⊔ j) where
constructor iso
field
to : X → Y
from : Y → X
iso₁ : (x : X) → from (to x) ≡ x
iso₂ : (y : Y) → to (from y) ≡ y
infix 5 _≅_
≅-struct-iso : ∀ {i j}{X : Set i}{Y : Set j}
→ (X ≅ Y)
≅ ( Σ (X → Y) λ f
→ Σ (Y → X) λ g
→ ((x : X) → g (f x) ≡ x)
× ((y : Y) → f (g y) ≡ y) )
≅-struct-iso = record
{ to = λ { (iso f g α β) → f , g , α , β }
; from = λ { (f , g , α , β) → iso f g α β }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
refl≅ : ∀ {i}{X : Set i} → X ≅ X
refl≅ = iso id id (λ _ → refl) (λ _ → refl)
≡⇒≅ : ∀ {i}{X Y : Set i} → X ≡ Y → X ≅ Y
≡⇒≅ refl = refl≅
sym≅ : ∀ {i j}{X : Set i}{Y : Set j} → X ≅ Y → Y ≅ X
sym≅ (iso f g H K) = iso g f K H
trans≅ : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k}
→ X ≅ Y → Y ≅ Z → X ≅ Z
trans≅ {X = X}{Z = Z} (iso f g H K) (iso f' g' H' K') = record
{ to = f' ∘ f
; from = g ∘ g'
; iso₁ = iso₁
; iso₂ = iso₂ }
where
abstract
iso₁ : (x : X) → g (g' (f' (f x))) ≡ x
iso₁ x = ap g (H' (f x)) · H x
iso₂ : (z : Z) → f' (f (g (g' z))) ≡ z
iso₂ y = ap f' (K (g' y)) · K' y
_·≅_ : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k}
→ X ≅ Y → Y ≅ Z → X ≅ Z
_·≅_ = trans≅
infixl 9 _·≅_
module ≅-Reasoning where
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≅⟨_⟩_
infixr 2 _≡⟨_⟩_
infix 1 begin_
data _IsRelatedTo_ {i j}(x : Set i)(y : Set j) : Set (i ⊔ j) where
relTo : x ≅ y → x IsRelatedTo y
begin_ : ∀ {i j}{X : Set i}{Y : Set j} → X IsRelatedTo Y → X ≅ Y
begin relTo p = p
_≅⟨_⟩_ : ∀ {i j k} (X : Set i) {Y : Set j}{Z : Set k}
→ X ≅ Y → Y IsRelatedTo Z → X IsRelatedTo Z
_ ≅⟨ p ⟩ relTo q = relTo (trans≅ p q)
_≡⟨_⟩_ : ∀ {i j} (X : Set i) {Y : Set i} {Z : Set j}
→ X ≡ Y → Y IsRelatedTo Z → X IsRelatedTo Z
_ ≡⟨ p ⟩ relTo q = relTo (trans≅ (≡⇒≅ p) q)
_∎ : ∀ {i} (X : Set i) → X IsRelatedTo X
_∎ _ = relTo refl≅
injective : ∀ {i j}{X : Set i}{Y : Set j}
→ (f : X → Y) → Set _
injective f = ∀ {x x'} → f x ≡ f x' → x ≡ x'
retraction : ∀ {i j}{X : Set i}{Y : Set j}
→ (f : X → Y) → Set _
retraction {X = X}{Y = Y} f = (y : Y) → Σ X λ x → f x ≡ y
_↣_ : ∀ {i j} → Set i → Set j → Set _
A ↣ B = Σ (A → B) injective
-- composition of injections:
_∘i_ : ∀ {i j k}{A : Set i}{B : Set j}{C : Set k}
→ (B ↣ C) → (A ↣ B) → (A ↣ C)
(g , p) ∘i (f , q) = g ∘ f , q ∘ p
_↠_ : ∀ {i j} → Set i → Set j → Set _
A ↠ B = Σ (A → B) retraction
private
module properties {i j}{X : Set i}{Y : Set j} where
apply≅ : (X ≅ Y) → X → Y
apply≅ = _≅_.to
invert≅ : (X ≅ Y) → Y → X
invert≅ = _≅_.from
instance
iso-is-fun : Coercion (X ≅ Y) (X → Y)
iso-is-fun = record
{ coerce = _≅_.to }
iso-is-iso : Coercion (X ≅ Y) (X ≅ Y)
iso-is-iso = coerce-self _
inj-is-fun : Coercion (X ↣ Y) (X → Y)
inj-is-fun = record
{ coerce = proj₁ }
srj-is-fun : Coercion (X ↠ Y) (X → Y)
srj-is-fun = record
{ coerce = proj₁ }
private
module iso-methods {k}{Source : Set k}
⦃ c : Coercion Source (X ≅ Y) ⦄ where
private
module with-source (source : Source) where
private target = coerce c source
open _≅_ target public using ()
renaming (from to invert)
open with-source public
open iso-methods public
iso⇒inj : (iso : X ≅ Y) → injective (apply iso)
iso⇒inj f {x}{x'} q = (iso₁ x) ⁻¹ · ap from q · iso₁ x'
where
open _≅_ f
iso⇒retr : (iso : X ≅ Y) → retraction (apply iso)
iso⇒retr f y = from y , iso₂ y
where
open _≅_ f
inj+retr⇒iso : (f : X → Y) → injective f → retraction f → X ≅ Y
inj+retr⇒iso f inj-f retr-f = iso f g H K
where
g : Y → X
g y = proj₁ (retr-f y)
H : (x : X) → g (f x) ≡ x
H x = inj-f (proj₂ (retr-f (f x)))
K : (y : Y) → f (g y) ≡ y
K y = proj₂ (retr-f y)
open properties public
| 26.656627
| 68
| 0.470056
|
524fe7df459cd260e60b9488a79df9a437225883
| 25
|
agda
|
Agda
|
test/interaction/Issue2447/M.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue2447/M.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue2447/M.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue2447.M where
| 12.5
| 24
| 0.84
|
14f2dc07d69c2735f88f25c992d2fe9491527fba
| 323
|
agda
|
Agda
|
test/Fail/Issue4586LetPatternAbsurd.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue4586LetPatternAbsurd.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue4586LetPatternAbsurd.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2020-04-15, issue #4586
-- Better error for invalid let pattern.
test : Set₁
test = let () = Set
in Set
-- WAS:
-- Set₁ should be empty, but that's not obvious to me
-- when checking that the pattern () has type Set₁
-- EXPECTED:
-- Not a valid let pattern
-- when scope checking let () = Set in Set
| 21.533333
| 53
| 0.656347
|
6440fe6a3c8ddcd9b69e8fcc6b5f1724f929e9c7
| 90
|
agda
|
Agda
|
archive/agda-2/Oscar/Data/List.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-2/Oscar/Data/List.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-2/Oscar/Data/List.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
module Oscar.Data.List where
open import Agda.Builtin.List public using (List; []; _∷_)
| 18
| 58
| 0.733333
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.