hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
cc8932b22116c74df0ffdfb37de389a0ba38d6fa
10,821
agda
Agda
Cubical/HITs/Rationals/QuoQ/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/Rationals/QuoQ/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/Rationals/QuoQ/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Rationals.QuoQ.Properties where open import Cubical.Foundations.Everything hiding (_⁻¹) open import Cubical.Data.Int.MoreInts.QuoInt as ℤ using (ℤ; Sign; signed; pos; neg; posneg; sign) open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Relation.Nullary open import Cubical.HITs.Rationals.QuoQ.Base ℚ-cancelˡ : ∀ {a b} (c : ℕ₊₁) → [ ℕ₊₁→ℤ c ℤ.· a / c ·₊₁ b ] ≡ [ a / b ] ℚ-cancelˡ {a} {b} c = eq/ _ _ (cong (ℤ._· ℕ₊₁→ℤ b) (ℤ.·-comm (ℕ₊₁→ℤ c) a) ∙ sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b))) ℚ-cancelʳ : ∀ {a b} (c : ℕ₊₁) → [ a ℤ.· ℕ₊₁→ℤ c / b ·₊₁ c ] ≡ [ a / b ] ℚ-cancelʳ {a} {b} c = eq/ _ _ (sym (ℤ.·-assoc a (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b)) ∙ cong (a ℤ.·_) (ℤ.·-comm (ℕ₊₁→ℤ c) (ℕ₊₁→ℤ b))) -- useful functions for defining operations on ℚ onCommonDenom : (g : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ) (g-eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) ≡ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f))) (g-eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d) → ℚ → ℚ → ℚ onCommonDenom g g-eql g-eqr = SetQuotient.rec2 isSetℚ (λ { (a , b) (c , d) → [ g (a , b) (c , d) / b ·₊₁ d ] }) (λ { (a , b) (c , d) (e , f) p → eql (a , b) (c , d) (e , f) p }) (λ { (a , b) (c , d) (e , f) p → eqr (a , b) (c , d) (e , f) p }) where eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → [ g (a , b) (e , f) / b ·₊₁ f ] ≡ [ g (c , d) (e , f) / d ·₊₁ f ] eql (a , b) (c , d) (e , f) p = [ g (a , b) (e , f) / b ·₊₁ f ] ≡⟨ sym (ℚ-cancelˡ d) ⟩ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / d ·₊₁ (b ·₊₁ f) ] ≡[ i ]⟨ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / ·₊₁-assoc d b f i ] ⟩ [ ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) / (d ·₊₁ b) ·₊₁ f ] ≡[ i ]⟨ [ g-eql (a , b) (c , d) (e , f) p i / ·₊₁-comm d b i ·₊₁ f ] ⟩ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / (b ·₊₁ d) ·₊₁ f ] ≡[ i ]⟨ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / ·₊₁-assoc b d f (~ i) ] ⟩ [ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f)) / b ·₊₁ (d ·₊₁ f) ] ≡⟨ ℚ-cancelˡ b ⟩ [ g (c , d) (e , f) / d ·₊₁ f ] ∎ eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → [ g (a , b) (c , d) / b ·₊₁ d ] ≡ [ g (a , b) (e , f) / b ·₊₁ f ] eqr (a , b) (c , d) (e , f) p = [ g (a , b) (c , d) / b ·₊₁ d ] ≡⟨ sym (ℚ-cancelʳ f) ⟩ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / (b ·₊₁ d) ·₊₁ f ] ≡[ i ]⟨ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / ·₊₁-assoc b d f (~ i) ] ⟩ [ (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f / b ·₊₁ (d ·₊₁ f) ] ≡[ i ]⟨ [ g-eqr (a , b) (c , d) (e , f) p i / b ·₊₁ ·₊₁-comm d f i ] ⟩ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / b ·₊₁ (f ·₊₁ d) ] ≡[ i ]⟨ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / ·₊₁-assoc b f d i ] ⟩ [ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d / (b ·₊₁ f) ·₊₁ d ] ≡⟨ ℚ-cancelʳ d ⟩ [ g (a , b) (e , f) / b ·₊₁ f ] ∎ onCommonDenomSym : (g : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ) (g-sym : ∀ x y → g x y ≡ g y x) (g-eql : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : a ℤ.· ℕ₊₁→ℤ d ≡ c ℤ.· ℕ₊₁→ℤ b) → ℕ₊₁→ℤ d ℤ.· (g (a , b) (e , f)) ≡ ℕ₊₁→ℤ b ℤ.· (g (c , d) (e , f))) → ℚ → ℚ → ℚ onCommonDenomSym g g-sym g-eql = onCommonDenom g g-eql q-eqr where q-eqr : ∀ ((a , b) (c , d) (e , f) : ℤ × ℕ₊₁) (p : c ℤ.· ℕ₊₁→ℤ f ≡ e ℤ.· ℕ₊₁→ℤ d) → (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d q-eqr (a , b) (c , d) (e , f) p = (g (a , b) (c , d)) ℤ.· ℕ₊₁→ℤ f ≡[ i ]⟨ ℤ.·-comm (g-sym (a , b) (c , d) i) (ℕ₊₁→ℤ f) i ⟩ ℕ₊₁→ℤ f ℤ.· (g (c , d) (a , b)) ≡⟨ g-eql (c , d) (e , f) (a , b) p ⟩ ℕ₊₁→ℤ d ℤ.· (g (e , f) (a , b)) ≡[ i ]⟨ ℤ.·-comm (ℕ₊₁→ℤ d) (g-sym (e , f) (a , b) i) i ⟩ (g (a , b) (e , f)) ℤ.· ℕ₊₁→ℤ d ∎ onCommonDenomSym-comm : ∀ {g} g-sym {g-eql} (x y : ℚ) → onCommonDenomSym g g-sym g-eql x y ≡ onCommonDenomSym g g-sym g-eql y x onCommonDenomSym-comm g-sym = SetQuotient.elimProp2 (λ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) i → [ g-sym (a , b) (c , d) i / ·₊₁-comm b d i ] }) -- basic arithmetic operations on ℚ infixl 6 _+_ infixl 7 _·_ private lem₁ : ∀ a b c d e (p : a ℤ.· b ≡ c ℤ.· d) → b ℤ.· (a ℤ.· e) ≡ d ℤ.· (c ℤ.· e) lem₁ a b c d e p = ℤ.·-assoc b a e ∙ cong (ℤ._· e) (ℤ.·-comm b a ∙ p ∙ ℤ.·-comm c d) ∙ sym (ℤ.·-assoc d c e) lem₂ : ∀ a b c → a ℤ.· (b ℤ.· c) ≡ c ℤ.· (b ℤ.· a) lem₂ a b c = cong (a ℤ.·_) (ℤ.·-comm b c) ∙ ℤ.·-assoc a c b ∙ cong (ℤ._· b) (ℤ.·-comm a c) ∙ sym (ℤ.·-assoc c a b) ∙ cong (c ℤ.·_) (ℤ.·-comm a b) _+_ : ℚ → ℚ → ℚ _+_ = onCommonDenomSym (λ { (a , b) (c , d) → a ℤ.· (ℕ₊₁→ℤ d) ℤ.+ c ℤ.· (ℕ₊₁→ℤ b) }) (λ { (a , b) (c , d) → ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) }) (λ { (a , b) (c , d) (e , f) p → ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ b) ≡⟨ sym (ℤ.·-distribˡ (ℕ₊₁→ℤ d) (a ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ b)) ⟩ ℕ₊₁→ℤ d ℤ.· (a ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ d ℤ.· (e ℤ.· ℕ₊₁→ℤ b) ≡[ i ]⟨ lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) p i ℤ.+ lem₂ (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ b) i ⟩ ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ ℕ₊₁→ℤ b ℤ.· (e ℤ.· ℕ₊₁→ℤ d) ≡⟨ ℤ.·-distribˡ (ℕ₊₁→ℤ b) (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) ⟩ ℕ₊₁→ℤ b ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d) ∎ }) +-comm : ∀ x y → x + y ≡ y + x +-comm = onCommonDenomSym-comm (λ { (a , b) (c , d) → ℤ.+-comm (a ℤ.· (ℕ₊₁→ℤ d)) (c ℤ.· (ℕ₊₁→ℤ b)) }) +-identityˡ : ∀ x → 0 + x ≡ x +-identityˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityʳ a i / ·₊₁-identityˡ b i ] }) +-identityʳ : ∀ x → x + 0 ≡ x +-identityʳ x = +-comm x _ ∙ +-identityˡ x +-assoc : ∀ x y z → x + (y + z) ≡ (x + y) + z +-assoc = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) i → [ eq a (ℕ₊₁→ℤ b) c (ℕ₊₁→ℤ d) e (ℕ₊₁→ℤ f) i / ·₊₁-assoc b d f i ] }) where eq₁ : ∀ a b c → (a ℤ.· b) ℤ.· c ≡ a ℤ.· (c ℤ.· b) eq₁ a b c = sym (ℤ.·-assoc a b c) ∙ cong (a ℤ.·_) (ℤ.·-comm b c) eq₂ : ∀ a b c → (a ℤ.· b) ℤ.· c ≡ (a ℤ.· c) ℤ.· b eq₂ a b c = eq₁ a b c ∙ ℤ.·-assoc a c b eq : ∀ a b c d e f → Path ℤ _ _ eq a b c d e f = a ℤ.· (d ℤ.· f) ℤ.+ (c ℤ.· f ℤ.+ e ℤ.· d) ℤ.· b ≡[ i ]⟨ a ℤ.· (d ℤ.· f) ℤ.+ ℤ.·-distribʳ (c ℤ.· f) (e ℤ.· d) b (~ i) ⟩ a ℤ.· (d ℤ.· f) ℤ.+ ((c ℤ.· f) ℤ.· b ℤ.+ (e ℤ.· d) ℤ.· b) ≡[ i ]⟨ ℤ.+-assoc (ℤ.·-assoc a d f i) (eq₂ c f b i) (eq₁ e d b i) i ⟩ ((a ℤ.· d) ℤ.· f ℤ.+ (c ℤ.· b) ℤ.· f) ℤ.+ e ℤ.· (b ℤ.· d) ≡[ i ]⟨ ℤ.·-distribʳ (a ℤ.· d) (c ℤ.· b) f i ℤ.+ e ℤ.· (b ℤ.· d) ⟩ (a ℤ.· d ℤ.+ c ℤ.· b) ℤ.· f ℤ.+ e ℤ.· (b ℤ.· d) ∎ _·_ : ℚ → ℚ → ℚ _·_ = onCommonDenomSym (λ { (a , _) (c , _) → a ℤ.· c }) (λ { (a , _) (c , _) → ℤ.·-comm a c }) (λ { (a , b) (c , d) (e , _) p → lem₁ a (ℕ₊₁→ℤ d) c (ℕ₊₁→ℤ b) e p }) ·-comm : ∀ x y → x · y ≡ y · x ·-comm = onCommonDenomSym-comm (λ { (a , _) (c , _) → ℤ.·-comm a c }) ·-identityˡ : ∀ x → 1 · x ≡ x ·-identityˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityˡ a i / ·₊₁-identityˡ b i ] }) ·-identityʳ : ∀ x → x · 1 ≡ x ·-identityʳ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) i → [ ℤ.·-identityʳ a i / ·₊₁-identityʳ b i ] }) ·-zeroˡ : ∀ x → 0 · x ≡ 0 ·-zeroˡ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) → (λ i → [ p a b i / 1 ·₊₁ b ]) ∙ ℚ-cancelʳ b }) where p : ∀ a b → 0 ℤ.· a ≡ 0 ℤ.· ℕ₊₁→ℤ b p a b = ℤ.·-zeroˡ {ℤ.spos} a ∙ sym (ℤ.·-zeroˡ {ℤ.spos} (ℕ₊₁→ℤ b)) ·-zeroʳ : ∀ x → x · 0 ≡ 0 ·-zeroʳ = SetQuotient.elimProp (λ _ → isSetℚ _ _) (λ { (a , b) → (λ i → [ p a b i / b ·₊₁ 1 ]) ∙ ℚ-cancelˡ b }) where p : ∀ a b → a ℤ.· 0 ≡ ℕ₊₁→ℤ b ℤ.· 0 p a b = ℤ.·-zeroʳ {ℤ.spos} a ∙ sym (ℤ.·-zeroʳ {ℤ.spos} (ℕ₊₁→ℤ b)) ·-assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z ·-assoc = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) i → [ ℤ.·-assoc a c e i / ·₊₁-assoc b d f i ] }) ·-distribˡ : ∀ x y z → (x · y) + (x · z) ≡ x · (y + z) ·-distribˡ = SetQuotient.elimProp3 (λ _ _ _ → isSetℚ _ _) (λ { (a , b) (c , d) (e , f) → eq a b c d e f }) where lem : ∀ {ℓ} {A : Type ℓ} (_·_ : A → A → A) (·-comm : ∀ x y → x · y ≡ y · x) (·-assoc : ∀ x y z → x · (y · z) ≡ (x · y) · z) a c b d → (a · c) · (b · d) ≡ (a · (c · d)) · b lem _·_ ·-comm ·-assoc a c b d = (a · c) · (b · d) ≡[ i ]⟨ (a · c) · ·-comm b d i ⟩ (a · c) · (d · b) ≡⟨ ·-assoc (a · c) d b ⟩ ((a · c) · d) · b ≡[ i ]⟨ ·-assoc a c d (~ i) · b ⟩ (a · (c · d)) · b ∎ lemℤ = lem ℤ._·_ ℤ.·-comm ℤ.·-assoc lemℕ₊₁ = lem _·₊₁_ ·₊₁-comm ·₊₁-assoc eq : ∀ a b c d e f → [ (a ℤ.· c) ℤ.· ℕ₊₁→ℤ (b ·₊₁ f) ℤ.+ (a ℤ.· e) ℤ.· ℕ₊₁→ℤ (b ·₊₁ d) / (b ·₊₁ d) ·₊₁ (b ·₊₁ f) ] ≡ [ a ℤ.· (c ℤ.· ℕ₊₁→ℤ f ℤ.+ e ℤ.· ℕ₊₁→ℤ d) / b ·₊₁ (d ·₊₁ f) ] eq a b c d e f = (λ i → [ lemℤ a c (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ f) i ℤ.+ lemℤ a e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) i / lemℕ₊₁ b d b f i ]) ∙ (λ i → [ ℤ.·-distribʳ (a ℤ.· (c ℤ.· ℕ₊₁→ℤ f)) (a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)) (ℕ₊₁→ℤ b) i / (b ·₊₁ (d ·₊₁ f)) ·₊₁ b ]) ∙ ℚ-cancelʳ {a ℤ.· (c ℤ.· ℕ₊₁→ℤ f) ℤ.+ a ℤ.· (e ℤ.· ℕ₊₁→ℤ d)} {b ·₊₁ (d ·₊₁ f)} b ∙ (λ i → [ ℤ.·-distribˡ a (c ℤ.· ℕ₊₁→ℤ f) (e ℤ.· ℕ₊₁→ℤ d) i / b ·₊₁ (d ·₊₁ f) ]) ·-distribʳ : ∀ x y z → (x · z) + (y · z) ≡ (x + y) · z ·-distribʳ x y z = (λ i → ·-comm x z i + ·-comm y z i) ∙ ·-distribˡ z x y ∙ ·-comm z (x + y) -_ : ℚ → ℚ - x = -1 · x negate-invol : ∀ x → - - x ≡ x negate-invol x = ·-assoc -1 -1 x ∙ ·-identityˡ x negateEquiv : ℚ ≃ ℚ negateEquiv = isoToEquiv (iso -_ -_ negate-invol negate-invol) negateEq : ℚ ≡ ℚ negateEq = ua negateEquiv +-inverseˡ : ∀ x → (- x) + x ≡ 0 +-inverseˡ x = (λ i → (-1 · x) + ·-identityˡ x (~ i)) ∙ ·-distribʳ -1 1 x ∙ ·-zeroˡ x _-_ : ℚ → ℚ → ℚ x - y = x + (- y) +-inverseʳ : ∀ x → x - x ≡ 0 +-inverseʳ x = +-comm x (- x) ∙ +-inverseˡ x +-injˡ : ∀ x y z → x + y ≡ x + z → y ≡ z +-injˡ x y z p = sym (q y) ∙ cong ((- x) +_) p ∙ q z where q : ∀ y → (- x) + (x + y) ≡ y q y = +-assoc (- x) x y ∙ cong (_+ y) (+-inverseˡ x) ∙ +-identityˡ y +-injʳ : ∀ x y z → x + y ≡ z + y → x ≡ z +-injʳ x y z p = +-injˡ y x z (+-comm y x ∙ p ∙ +-comm z y)
43.987805
102
0.382312
7348f674adf728b4ee2e736ff8d039f43a4b7904
10,136
agda
Agda
src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockStore.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockStore.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockStore.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.BlockStorage.BlockStore import LibraBFT.Impl.Consensus.BlockStorage.BlockTree as BlockTree open import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.PersistentLivenessStorage as PersistentLivenessStorage open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.ByteString open import Util.Hash open import Util.KVMap as Map open import Util.PKCS open import Util.Prelude open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms open Invariants open RoundManagerTransProps open QCProps module LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockStore where module new (storage : PersistentLivenessStorage) (initialData : RecoveryData) (stateComp : StateComputer) (maxPrunedBlocksInMem : Usize) where -- TODO-2: May require refinement (additional requirements and/or properties, particularly regarding ECinfo) Contract : ECinfo → EitherD-Post ErrLog BlockStore Contract _ (Left _) = ⊤ Contract eci (Right bs) = BlockStoreInv (bs , eci) postulate contract : ∀ {eci} → Contract eci (new-e-abs storage initialData stateComp maxPrunedBlocksInMem) module executeBlockESpec (bs : BlockStore) (block : Block) where Ok : Set Ok = ∃[ eb ] (executeBlockE bs block ≡ Right eb) record ContractOk (eb : ExecutedBlock) : Set where constructor mkContractOk field ebBlock≡ : block ≡ eb ^∙ ebBlock postulate -- TODO: prove contract : (isOk : Ok) → ContractOk (proj₁ isOk) module executeAndInsertBlockESpec (bs0 : BlockStore) (vblock : ValidBlock) where block = vbBlock vblock block-c = vbValid vblock open executeAndInsertBlockE bs0 block open import LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockTree blockId = block ^∙ bId ------ These are used only outside this module. Ok : Set Ok = ∃₂ λ bs' eb → executeAndInsertBlockE bs0 block ≡ Right (bs' , eb) open Reqs block (bs0 ^∙ bsInner) record ContractOk (bs' : BlockStore) (eb : ExecutedBlock) : Set where constructor mkContractOk field ebBlock≈ : NoHC1 → eb ^∙ ebBlock ≈Block block bsInv : ∀ {eci} → Preserves BlockStoreInv (bs0 , eci) (bs' , eci) -- executeAndInsertBlockE does not modify BlockTree fields other than btIDToBlock bs≡x : bs0 ≡ (bs' & (bsInner ∙ btIdToBlock) ∙~ (bs0 ^∙ bsInner ∙ btIdToBlock)) Contract : EitherD-Post ErrLog (BlockStore × ExecutedBlock) Contract (Left x) = ⊤ Contract (Right (bs' , eb)) = ContractOk bs' eb -- TUTORIAL: This proof has some additional commentary helping to understand the structure of the -- proof, and showing an example of how using abstract variants of functions makes proofs more -- resilient to change, as explained in -- https://github.com/oracle/bft-consensus-agda/blob/main/docs/PeerHandlerContracts.org contract' : EitherD-weakestPre step₀ Contract -- step₀ is a maybeSD in context of EitherD. Therefore, via MonadMaybeD and EitherD-MonadMaybeD, -- this translates to EitherD-maybe. We first deal with the easy case, applying the NoHC1 -- function provided to ebBlock≈ to evidence eb≡ that eb is in btIdToBlock. proj₂ contract' eb eb≡ = mkContractOk (λ nohc → nohc eb≡ block-c) id refl proj₁ contract' getBlock≡nothing = contract₁ where -- step₁ is again a maybeSD; if bs0 ^∙ bsRoot ≡ nothing, the Contract is trivial contract₁ : EitherD-weakestPre step₁ Contract proj₁ contract₁ _ = tt -- otherwise, bs0 ^∙ bsRoot ≡ just bsr, and we have an ifD; in the true branch, step₁ returns a -- Left, so again it is trivial proj₁ (proj₂ contract₁ bsr bsr≡) _ = tt -- in the else branch, we call step₂ bsr proj₂ (proj₂ contract₁ bsr bsr≡) btr<br = contract₂ where contract₃ : ∀ eb → block ≡ (eb ^∙ ebBlock) → EitherD-weakestPre (step₃ eb) Contract module EB = executeBlockESpec bs0 block open EB.ContractOk contract₂ : EitherD-weakestPre (step₂ bsr) Contract proj₂ contract₂ eb eb≡ ._ executeBlockE≡Right@refl = let con = (EB.contract (eb , eb≡)) in contract₃ eb (EB.ContractOk.ebBlock≡ con) proj₁ contract₂ (ErrCBlockNotFound _) executeBlockE≡Left = tt proj₁ contract₂ (ErrVerify _) executeBlockE≡Left = tt proj₁ contract₂ (ErrInfo _) executeBlockE≡Left = tt -- if executeBlockE returns Left (ErrECCBlockNotFound parentBlockId), then we have two casesdue to -- eitherSD (pathFromRoot parentBlockId bs0) LeftD λ blocksToReexecute → -- in the first case, we have a Left, so it's easy proj₁ (proj₁ contract₂ (ErrECCBlockNotFound parentBlockId) executeBlockE≡Left) _ _ = tt -- in the second case, we have -- case⊎D (forM) blocksToReexecute (executeBlockE bs0 ∘ (_^∙ ebBlock)) of λ where -- and therefore two more cases; if the case⊎D returns Left, it's easy again proj₁ (proj₂ (proj₁ contract₂ (ErrECCBlockNotFound parentBlockId) executeBlockE≡Left) blocksToReexecute btr≡) _ _ = tt -- if the case⊎D returns a Right, we call executeBlockE₀ (the EitherD variant). We use executeBlockE≡ to handle case -- analysis on the result of calling the abstract executeBlockE variant, ensuring we must use the contract for -- executeBlockE because the proof cannot "look into" the implementation of executeBlockE, which makes the proof -- more resilient in case of changes in its implementation. -- TODO-2: clean this up by writing a general version of the contract for executeBlockE proj₂ (proj₂ (proj₁ contract₂ (ErrECCBlockNotFound parentBlockId) executeBlockE≡Left) blocksToReexecute btr≡) _ _ with executeBlockE bs0 block | inspect (executeBlockE bs0) block ... | Left x | [ R ] rewrite executeBlockE≡ R = tt ... | Right y | [ R ] rewrite executeBlockE≡ R = λ where c refl ._ refl → let con = EB.contract (c , R) in contract₃ c (ebBlock≡ con) _ refl contract₃ eb refl _ _ = contract₄ where contract₄ : EitherD-weakestPre (step₄ eb) Contract contract₄ with insertBlockESpec.contract eb (bs0 ^∙ bsInner) ...| con with BlockTree.insertBlockE.E eb (bs0 ^∙ bsInner) ...| Left _ = tt ...| Right (bt' , eb') = λ where ._ refl → mkContractOk IBE.blocks≈ btP bss≡x where module IBE = insertBlockESpec.ContractOk con open BlockStoreInv btP : ∀ {eci} → Preserves BlockStoreInv (bs0 , eci) ((bs0 & bsInner ∙~ bt') , eci) btP (mkBlockStoreInv bti) = mkBlockStoreInv (IBE.btiPres bti) bss≡x : bs0 ≡ (bs0 & bsInner ∙~ bt' & bsInner ∙ btIdToBlock ∙~ (bs0 ^∙ (bsInner ∙ btIdToBlock))) bss≡x rewrite sym IBE.bt≡x = refl contract : Contract (executeAndInsertBlockE bs0 block) contract = EitherD-contract (executeAndInsertBlockE.step₀ bs0 block) Contract contract' module executeAndInsertBlockMSpec (vb : ValidBlock) where b = vbBlock vb -- NOTE: This function returns any errors, rather than producing them as output. module _ (pre : RoundManager) where bs = pre ^∙ lBlockStore contract : ∀ Post → (∀ e → {- At the moment we do not need to know why it failed -} Post (Left e) pre []) → ((isOk : executeAndInsertBlockESpec.Ok bs vb) → let (bs' , eb , _) = isOk in executeAndInsertBlockESpec.ContractOk bs vb bs' eb → Post (Right eb) (pre & rmBlockStore ∙~ bs') []) → LBFT-weakestPre (executeAndInsertBlockM b) Post pre proj₁ (contract Post pfBail pfOk ._ refl) e ≡left = pfBail e proj₂ (contract Post pfBail pfOk ._ refl) (bs' , eb) ≡right ._ refl unit refl with executeAndInsertBlockESpec.contract bs vb ...| con rewrite ≡right = pfOk (bs' , eb , refl) con module insertSingleQuorumCertMSpec (qc : QuorumCert) where module _ (pre : RoundManager) where record Contract (r : Either ErrLog Unit) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field -- General invariants / properties rmInv : Preserves RoundManagerInv pre post noEpochChange : NoEpochChange pre post noMsgOuts : OutputProps.NoMsgs outs -- Voting noVote : VoteNotGenerated pre post true -- Signatures qcPost : ∈Post⇒∈PreOr (_≡ qc) pre post postulate -- TODO-2: prove contract' : LBFT-weakestPre (insertSingleQuorumCertM qc) Contract pre contract : ∀ Q → RWS-Post-⇒ Contract Q → LBFT-weakestPre (insertSingleQuorumCertM qc) Q pre contract Q pf = LBFT-⇒ (insertSingleQuorumCertM qc) pre contract' pf module syncInfoMSpec where syncInfo : RoundManager → SyncInfo syncInfo pre = SyncInfo∙new (pre ^∙ lBlockStore ∙ bsHighestQuorumCert) (pre ^∙ lBlockStore ∙ bsHighestCommitCert) (pre ^∙ lBlockStore ∙ bsHighestTimeoutCert) contract : ∀ pre Post → (Post (syncInfo pre) pre []) → LBFT-weakestPre syncInfoM Post pre contract pre Post pf ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl = pf
44.849558
124
0.67206
43a86909ce2ee8a26bee1c865bb65fd141ccec23
552
agda
Agda
test/Common/Product.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Common/Product.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Common/Product.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
1
2022-03-12T11:39:14.000Z
2022-03-12T11:39:14.000Z
module Common.Product where open import Common.Level infixr 4 _,_ _,′_ infixr 2 _×_ ------------------------------------------------------------------------ -- Definition record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public syntax Σ A (λ x → B) = Σ[ x ∶ A ] B ∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃ = Σ _ _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ[ x ∶ A ] B _,′_ : ∀ {a b} {A : Set a} {B : Set b} → A → B → A × B _,′_ = _,_
19.034483
72
0.42029
722e0fbd924dd8848b8801873e0d7440a0235004
1,150
agda
Agda
src/LibraBFT/Impl/IO/OBM/ObmNeedFetch.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
src/LibraBFT/Impl/IO/OBM/ObmNeedFetch.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
src/LibraBFT/Impl/IO/OBM/ObmNeedFetch.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Consensus.Types module LibraBFT.Impl.IO.OBM.ObmNeedFetch where {- The functions in this module are used when a node needs to catchup. TODO-3: model catchup request/response in Agda. In haskell, for each message received from the network (including messages to self), each message is processed in a single thread that completes the processing before then processing a subsequent message. However, a node detects that it needs to catchup "in the middle" of that processing. In Haskell we use unsafePerformIO to send a network request to other nodes asking for "catchup" data. The responses are received by a different thread that then feeds them to the waiting thread, which then proceeds. -} postulate -- TODO-3: writeRequestReadResponseUNSAFE writeRequestReadResponseUNSAFE : ObmNeedFetch → Author → Author → BlockRetrievalRequest → BlockRetrievalResponse
33.823529
111
0.791304
8b7c4b048c6a7e5f47f94f408bb505d086a2bbb0
13,143
agda
Agda
src/fot/FOTC/Data/Nat/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Nat/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Nat/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Arithmetic properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Data.Nat open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.TotalityI ------------------------------------------------------------------------------ -- Congruence properties +-leftCong : ∀ {m n o} → m ≡ n → m + o ≡ n + o +-leftCong refl = refl +-rightCong : ∀ {m n o} → n ≡ o → m + n ≡ m + o +-rightCong refl = refl ∸-leftCong : ∀ {m n o} → m ≡ n → m ∸ o ≡ n ∸ o ∸-leftCong refl = refl ∸-rightCong : ∀ {m n o} → n ≡ o → m ∸ n ≡ m ∸ o ∸-rightCong refl = refl *-leftCong : ∀ {m n o} → m ≡ n → m * o ≡ n * o *-leftCong refl = refl *-rightCong : ∀ {m n o} → n ≡ o → m * n ≡ m * o *-rightCong refl = refl ------------------------------------------------------------------------------ Sx≢x : ∀ {n} → N n → succ₁ n ≢ n Sx≢x nzero h = ⊥-elim (0≢S (sym h)) Sx≢x (nsucc Nn) h = ⊥-elim (Sx≢x Nn (succInjective h)) +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity = +-0x +-rightIdentity : ∀ {n} → N n → n + zero ≡ n +-rightIdentity nzero = +-leftIdentity zero +-rightIdentity (nsucc {n} Nn) = trans (+-Sx n zero) (succCong (+-rightIdentity Nn)) pred-N : ∀ {n} → N n → N (pred₁ n) pred-N nzero = subst N (sym pred-0) nzero pred-N (nsucc {n} Nn) = subst N (sym (pred-S n)) Nn +-N : ∀ {m n} → N m → N n → N (m + n) +-N {n = n} nzero Nn = subst N (sym (+-leftIdentity n)) Nn +-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (+-Sx m n)) (nsucc (+-N Nm Nn)) ∸-N : ∀ {m n} → N m → N n → N (m ∸ n) ∸-N {m} Nm nzero = subst N (sym (∸-x0 m)) Nm ∸-N {m} Nm (nsucc {n} Nn) = subst N (sym (∸-xS m n)) (pred-N (∸-N Nm Nn)) +-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o) +-assoc nzero n o = zero + n + o ≡⟨ +-leftCong (+-leftIdentity n) ⟩ n + o ≡⟨ sym (+-leftIdentity (n + o)) ⟩ zero + (n + o) ∎ +-assoc (nsucc {m} Nm) n o = succ₁ m + n + o ≡⟨ +-leftCong (+-Sx m n) ⟩ succ₁ (m + n) + o ≡⟨ +-Sx (m + n) o ⟩ succ₁ (m + n + o) ≡⟨ succCong (+-assoc Nm n o) ⟩ succ₁ (m + (n + o)) ≡⟨ sym (+-Sx m (n + o)) ⟩ succ₁ m + (n + o) ∎ x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n) x+Sy≡S[x+y] nzero n = zero + succ₁ n ≡⟨ +-leftIdentity (succ₁ n) ⟩ succ₁ n ≡⟨ succCong (sym (+-leftIdentity n)) ⟩ succ₁ (zero + n) ∎ x+Sy≡S[x+y] (nsucc {m} Nm) n = succ₁ m + succ₁ n ≡⟨ +-Sx m (succ₁ n) ⟩ succ₁ (m + succ₁ n) ≡⟨ succCong (x+Sy≡S[x+y] Nm n) ⟩ succ₁ (succ₁ (m + n)) ≡⟨ succCong (sym (+-Sx m n)) ⟩ succ₁ (succ₁ m + n) ∎ +-comm : ∀ {m n} → N m → N n → m + n ≡ n + m +-comm {n = n} nzero Nn = zero + n ≡⟨ +-leftIdentity n ⟩ n ≡⟨ sym (+-rightIdentity Nn) ⟩ n + zero ∎ +-comm {n = n} (nsucc {m} Nm) Nn = succ₁ m + n ≡⟨ +-Sx m n ⟩ succ₁ (m + n) ≡⟨ succCong (+-comm Nm Nn) ⟩ succ₁ (n + m) ≡⟨ sym (x+Sy≡S[x+y] Nn m) ⟩ n + succ₁ m ∎ 0∸x : ∀ {n} → N n → zero ∸ n ≡ zero 0∸x nzero = ∸-x0 zero 0∸x (nsucc {n} Nn) = zero ∸ succ₁ n ≡⟨ ∸-xS zero n ⟩ pred₁ (zero ∸ n) ≡⟨ predCong (0∸x Nn) ⟩ pred₁ zero ≡⟨ pred-0 ⟩ zero ∎ S∸S : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n ≡ m ∸ n S∸S {m} _ nzero = succ₁ m ∸ succ₁ zero ≡⟨ ∸-xS (succ₁ m) zero ⟩ pred₁ (succ₁ m ∸ zero) ≡⟨ predCong (∸-x0 (succ₁ m)) ⟩ pred₁ (succ₁ m) ≡⟨ pred-S m ⟩ m ≡⟨ sym (∸-x0 m) ⟩ m ∸ zero ∎ S∸S {m} Nm (nsucc {n} Nn) = succ₁ m ∸ succ₁ (succ₁ n) ≡⟨ ∸-xS (succ₁ m) (succ₁ n) ⟩ pred₁ (succ₁ m ∸ succ₁ n) ≡⟨ predCong (S∸S Nm Nn) ⟩ pred₁ (m ∸ n) ≡⟨ sym (∸-xS m n) ⟩ m ∸ succ₁ n ∎ x∸x≡0 : ∀ {n} → N n → n ∸ n ≡ zero x∸x≡0 nzero = ∸-x0 zero x∸x≡0 (nsucc Nn) = trans (S∸S Nn Nn) (x∸x≡0 Nn) Sx∸x≡1 : ∀ {n} → N n → succ₁ n ∸ n ≡ 1' Sx∸x≡1 nzero = ∸-x0 1' Sx∸x≡1 (nsucc Nn) = trans (S∸S (nsucc Nn) Nn) (Sx∸x≡1 Nn) [x+Sy]∸y≡Sx : ∀ {m n} → N m → N n → m + succ₁ n ∸ n ≡ succ₁ m [x+Sy]∸y≡Sx {n = n} nzero Nn = zero + succ₁ n ∸ n ≡⟨ ∸-leftCong (+-leftIdentity (succ₁ n)) ⟩ succ₁ n ∸ n ≡⟨ Sx∸x≡1 Nn ⟩ 1' ∎ [x+Sy]∸y≡Sx (nsucc {m} Nm) nzero = succ₁ m + 1' ∸ zero ≡⟨ ∸-leftCong (+-Sx m 1') ⟩ succ₁ (m + 1') ∸ zero ≡⟨ ∸-x0 (succ₁ (m + 1')) ⟩ succ₁ (m + 1') ≡⟨ succCong (+-comm Nm 1-N) ⟩ succ₁ (1' + m) ≡⟨ succCong (+-Sx zero m) ⟩ succ₁ (succ₁ (zero + m)) ≡⟨ succCong (succCong (+-leftIdentity m)) ⟩ succ₁ (succ₁ m) ∎ [x+Sy]∸y≡Sx (nsucc {m} Nm) (nsucc {n} Nn) = succ₁ m + succ₁ (succ₁ n) ∸ succ₁ n ≡⟨ ∸-leftCong (+-Sx m (succ₁ (succ₁ n))) ⟩ succ₁ (m + succ₁ (succ₁ n)) ∸ succ₁ n ≡⟨ S∸S (+-N Nm (nsucc (nsucc Nn))) Nn ⟩ m + succ₁ (succ₁ n) ∸ n ≡⟨ ∸-leftCong (x+Sy≡S[x+y] Nm (succ₁ n)) ⟩ succ₁ (m + succ₁ n) ∸ n ≡⟨ ∸-leftCong (sym (+-Sx m (succ₁ n))) ⟩ succ₁ m + succ₁ n ∸ n ≡⟨ [x+Sy]∸y≡Sx (nsucc Nm) Nn ⟩ succ₁ (succ₁ m) ∎ [x+y]∸[x+z]≡y∸z : ∀ {m n o} → N m → N n → N o → (m + n) ∸ (m + o) ≡ n ∸ o [x+y]∸[x+z]≡y∸z {n = n} {o} nzero _ _ = (zero + n) ∸ (zero + o) ≡⟨ ∸-leftCong (+-leftIdentity n) ⟩ n ∸ (zero + o) ≡⟨ ∸-rightCong (+-leftIdentity o) ⟩ n ∸ o ∎ [x+y]∸[x+z]≡y∸z {n = n} {o} (nsucc {m} Nm) Nn No = (succ₁ m + n) ∸ (succ₁ m + o) ≡⟨ ∸-leftCong (+-Sx m n) ⟩ succ₁ (m + n) ∸ (succ₁ m + o) ≡⟨ ∸-rightCong (+-Sx m o) ⟩ succ₁ (m + n) ∸ succ₁ (m + o) ≡⟨ S∸S (+-N Nm Nn) (+-N Nm No) ⟩ (m + n) ∸ (m + o) ≡⟨ [x+y]∸[x+z]≡y∸z Nm Nn No ⟩ n ∸ o ∎ *-leftZero : ∀ n → zero * n ≡ zero *-leftZero = *-0x *-rightZero : ∀ {n} → N n → n * zero ≡ zero *-rightZero nzero = *-leftZero zero *-rightZero (nsucc {n} Nn) = trans (*-Sx n zero) (trans (+-leftIdentity (n * zero)) (*-rightZero Nn)) *-N : ∀ {m n} → N m → N n → N (m * n) *-N {n = n} nzero Nn = subst N (sym (*-leftZero n)) nzero *-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (*-Sx m n)) (+-N Nn (*-N Nm Nn)) *-leftIdentity : ∀ {n} → N n → 1' * n ≡ n *-leftIdentity {n} Nn = 1' * n ≡⟨ *-Sx zero n ⟩ n + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩ n + zero ≡⟨ +-rightIdentity Nn ⟩ n ∎ x*Sy≡x+xy : ∀ {m n} → N m → N n → m * succ₁ n ≡ m + m * n x*Sy≡x+xy {n = n} nzero Nn = sym ( zero + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩ zero + zero ≡⟨ +-leftIdentity zero ⟩ zero ≡⟨ sym (*-leftZero (succ₁ n)) ⟩ zero * succ₁ n ∎ ) x*Sy≡x+xy {n = n} (nsucc {m} Nm) Nn = succ₁ m * succ₁ n ≡⟨ *-Sx m (succ₁ n) ⟩ succ₁ n + m * succ₁ n ≡⟨ +-rightCong (x*Sy≡x+xy Nm Nn) ⟩ succ₁ n + (m + m * n) ≡⟨ +-Sx n (m + m * n) ⟩ succ₁ (n + (m + m * n)) ≡⟨ succCong (sym (+-assoc Nn m (m * n))) ⟩ succ₁ (n + m + m * n) ≡⟨ succCong (+-leftCong (+-comm Nn Nm)) ⟩ succ₁ (m + n + m * n) ≡⟨ succCong (+-assoc Nm n (m * n)) ⟩ succ₁ (m + (n + m * n)) ≡⟨ sym (+-Sx m (n + m * n)) ⟩ succ₁ m + (n + m * n) ≡⟨ +-rightCong (sym (*-Sx m n)) ⟩ succ₁ m + succ₁ m * n ∎ *-comm : ∀ {m n} → N m → N n → m * n ≡ n * m *-comm {n = n} nzero Nn = trans (*-leftZero n) (sym (*-rightZero Nn)) *-comm {n = n} (nsucc {m} Nm) Nn = succ₁ m * n ≡⟨ *-Sx m n ⟩ n + m * n ≡⟨ +-rightCong (*-comm Nm Nn) ⟩ n + n * m ≡⟨ sym (x*Sy≡x+xy Nn Nm) ⟩ n * succ₁ m ∎ *-rightIdentity : ∀ {n} → N n → n * 1' ≡ n *-rightIdentity {n} Nn = trans (*-comm Nn (nsucc nzero)) (*-leftIdentity Nn) *∸-leftDistributive : ∀ {m n o} → N m → N n → N o → (m ∸ n) * o ≡ m * o ∸ n * o *∸-leftDistributive {m} {o = o} _ nzero _ = (m ∸ zero) * o ≡⟨ *-leftCong (∸-x0 m) ⟩ m * o ≡⟨ sym (∸-x0 (m * o)) ⟩ m * o ∸ zero ≡⟨ ∸-rightCong (sym (*-leftZero o)) ⟩ m * o ∸ zero * o ∎ *∸-leftDistributive {o = o} nzero (nsucc {n} Nn) No = (zero ∸ succ₁ n) * o ≡⟨ *-leftCong (0∸x (nsucc Nn)) ⟩ zero * o ≡⟨ *-leftZero o ⟩ zero ≡⟨ sym (0∸x (*-N (nsucc Nn) No)) ⟩ zero ∸ succ₁ n * o ≡⟨ ∸-leftCong (sym (*-leftZero o)) ⟩ zero * o ∸ succ₁ n * o ∎ *∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) nzero = (succ₁ m ∸ succ₁ n) * zero ≡⟨ *-comm (∸-N (nsucc Nm) (nsucc Nn)) nzero ⟩ zero * (succ₁ m ∸ succ₁ n) ≡⟨ *-leftZero (succ₁ m ∸ succ₁ n) ⟩ zero ≡⟨ sym (0∸x (*-N (nsucc Nn) nzero)) ⟩ zero ∸ succ₁ n * zero ≡⟨ ∸-leftCong (sym (*-leftZero (succ₁ m))) ⟩ zero * succ₁ m ∸ succ₁ n * zero ≡⟨ ∸-leftCong (*-comm nzero (nsucc Nm)) ⟩ succ₁ m * zero ∸ succ₁ n * zero ∎ *∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) = (succ₁ m ∸ succ₁ n) * succ₁ o ≡⟨ *-leftCong (S∸S Nm Nn) ⟩ (m ∸ n) * succ₁ o ≡⟨ *∸-leftDistributive Nm Nn (nsucc No) ⟩ m * succ₁ o ∸ n * succ₁ o ≡⟨ sym ([x+y]∸[x+z]≡y∸z (nsucc No) (*-N Nm (nsucc No)) (*-N Nn (nsucc No))) ⟩ (succ₁ o + m * succ₁ o) ∸ (succ₁ o + n * succ₁ o) ≡⟨ ∸-leftCong (sym (*-Sx m (succ₁ o))) ⟩ (succ₁ m * succ₁ o) ∸ (succ₁ o + n * succ₁ o) ≡⟨ ∸-rightCong (sym (*-Sx n (succ₁ o))) ⟩ (succ₁ m * succ₁ o) ∸ (succ₁ n * succ₁ o) ∎ *+-leftDistributive : ∀ {m n o} → N m → N n → N o → (m + n) * o ≡ m * o + n * o *+-leftDistributive {m} {n} Nm Nn nzero = (m + n) * zero ≡⟨ *-comm (+-N Nm Nn) nzero ⟩ zero * (m + n) ≡⟨ *-leftZero (m + n) ⟩ zero ≡⟨ sym (*-leftZero m) ⟩ zero * m ≡⟨ *-comm nzero Nm ⟩ m * zero ≡⟨ sym (+-rightIdentity (*-N Nm nzero)) ⟩ m * zero + zero ≡⟨ +-rightCong (trans (sym (*-leftZero n)) (*-comm nzero Nn)) ⟩ m * zero + n * zero ∎ *+-leftDistributive {n = n} nzero Nn (nsucc {o} No) = (zero + n) * succ₁ o ≡⟨ *-leftCong (+-leftIdentity n) ⟩ n * succ₁ o ≡⟨ sym (+-leftIdentity (n * succ₁ o)) ⟩ zero + n * succ₁ o ≡⟨ +-leftCong (sym (*-leftZero (succ₁ o))) ⟩ zero * succ₁ o + n * succ₁ o ∎ *+-leftDistributive (nsucc {m} Nm) nzero (nsucc {o} No) = (succ₁ m + zero) * succ₁ o ≡⟨ *-leftCong (+-rightIdentity (nsucc Nm)) ⟩ succ₁ m * succ₁ o ≡⟨ sym (+-rightIdentity (*-N (nsucc Nm) (nsucc No))) ⟩ succ₁ m * succ₁ o + zero ≡⟨ +-rightCong (sym (*-leftZero (succ₁ o))) ⟩ succ₁ m * succ₁ o + zero * succ₁ o ∎ *+-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) = (succ₁ m + succ₁ n) * succ₁ o ≡⟨ *-leftCong (+-Sx m (succ₁ n)) ⟩ succ₁ (m + succ₁ n) * succ₁ o ≡⟨ *-Sx (m + succ₁ n) (succ₁ o) ⟩ succ₁ o + (m + succ₁ n) * succ₁ o ≡⟨ +-rightCong (*+-leftDistributive Nm (nsucc Nn) (nsucc No)) ⟩ succ₁ o + (m * succ₁ o + succ₁ n * succ₁ o) ≡⟨ sym (+-assoc (nsucc No) (m * succ₁ o) (succ₁ n * succ₁ o)) ⟩ succ₁ o + m * succ₁ o + succ₁ n * succ₁ o ≡⟨ +-leftCong (sym (*-Sx m (succ₁ o))) ⟩ succ₁ m * succ₁ o + succ₁ n * succ₁ o ∎ xy≡0→x≡0∨y≡0 : ∀ {m n} → N m → N n → m * n ≡ zero → m ≡ zero ∨ n ≡ zero xy≡0→x≡0∨y≡0 nzero _ _ = inj₁ refl xy≡0→x≡0∨y≡0 (nsucc Nm) nzero _ = inj₂ refl xy≡0→x≡0∨y≡0 (nsucc {m} Nm) (nsucc {n} Nn) SmSn≡0 = ⊥-elim (0≢S prf) where prf : zero ≡ succ₁ (n + m * succ₁ n) prf = zero ≡⟨ sym SmSn≡0 ⟩ succ₁ m * succ₁ n ≡⟨ *-Sx m (succ₁ n) ⟩ succ₁ n + m * succ₁ n ≡⟨ +-Sx n (m * succ₁ n) ⟩ succ₁ (n + m * succ₁ n) ∎ xy≡1→x≡1 : ∀ {m n} → N m → N n → m * n ≡ 1' → m ≡ 1' xy≡1→x≡1 {n = n} nzero Nn h = ⊥-elim (0≢S (trans (sym (*-leftZero n)) h)) xy≡1→x≡1 (nsucc nzero) Nn h = refl xy≡1→x≡1 (nsucc (nsucc {m} Nm)) nzero h = ⊥-elim (0≢S (trans (sym (*-rightZero (nsucc (nsucc Nm)))) h)) xy≡1→x≡1 (nsucc (nsucc {m} Nm)) (nsucc {n} Nn) h = ⊥-elim (0≢S prf₂) where prf₁ : 1' ≡ succ₁ (succ₁ (m + n * succ₁ (succ₁ m))) prf₁ = 1' ≡⟨ sym h ⟩ succ₁ (succ₁ m) * succ₁ n ≡⟨ *-comm (nsucc (nsucc Nm)) (nsucc Nn) ⟩ succ₁ n * succ₁ (succ₁ m) ≡⟨ *-Sx n (succ₁ (succ₁ m)) ⟩ succ₁ (succ₁ m) + n * succ₁ (succ₁ m) ≡⟨ +-Sx (succ₁ m) (n * succ₁ (succ₁ m)) ⟩ succ₁ (succ₁ m + n * succ₁ (succ₁ m)) ≡⟨ succCong (+-Sx m (n * succ₁ (succ₁ m))) ⟩ succ₁ (succ₁ (m + n * succ₁ (succ₁ m))) ∎ prf₂ : zero ≡ succ₁ (m + n * succ₁ (succ₁ m)) prf₂ = succInjective prf₁ xy≡1→y≡1 : ∀ {m n} → N m → N n → m * n ≡ 1' → n ≡ 1' xy≡1→y≡1 Nm Nn h = xy≡1→x≡1 Nn Nm (trans (*-comm Nn Nm) h) -- Feferman's axiom as presented by (Beeson 1986, p. 74). succOnto : ∀ {n} → N n → n ≢ zero → succ₁ (pred₁ n) ≡ n succOnto nzero h = ⊥-elim (h refl) succOnto (nsucc {n} Nn) h = succCong (pred-S n) ------------------------------------------------------------------------------ -- References -- -- Beeson, M. J. (1986). Proving Programs and Programming Proofs. In: -- Logic, Methodology and Philosophy of Science VII (1983). Ed. by -- Barcan Marcus, Ruth, Dorn, George J. W. and Weingartner, -- Paul. Vol. 114. Studies in Logic and the Foundations of -- Mathematics. Elsevier, pp. 51–82.
35.811989
81
0.465647
37c5fcfc18d398e85bd315be37b6a9c5f13aea56
890
agda
Agda
src/Categories/Morphism/Normal.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Morphism/Normal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Morphism/Normal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core open import Categories.Object.Zero -- Normal Mono and Epimorphisms -- https://ncatlab.org/nlab/show/normal+monomorphism module Categories.Morphism.Normal {o ℓ e} (𝒞 : Category o ℓ e) (𝒞-Zero : Zero 𝒞) where open import Level open import Categories.Object.Kernel 𝒞-Zero open import Categories.Object.Kernel.Properties 𝒞-Zero open import Categories.Morphism 𝒞 open Category 𝒞 record IsNormalMonomorphism {A K : Obj} (k : K ⇒ A) : Set (o ⊔ ℓ ⊔ e) where field {B} : Obj arr : A ⇒ B isKernel : IsKernel k arr open IsKernel isKernel public mono : Mono k mono = Kernel-Mono (IsKernel⇒Kernel isKernel) record NormalMonomorphism (K A : Obj) : Set (o ⊔ ℓ ⊔ e) where field mor : K ⇒ A isNormalMonomorphism : IsNormalMonomorphism mor open IsNormalMonomorphism isNormalMonomorphism public
25.428571
86
0.720225
37a37ae8b114b21dc8224641ac0a2f364b082c2e
912
agda
Agda
Cubical/Data/Everything.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Everything.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Everything.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Everything where open import Cubical.Data.BinNat public open import Cubical.Data.Bool public open import Cubical.Data.Empty public open import Cubical.Data.Equality public open import Cubical.Data.Fin public open import Cubical.Data.Nat public open import Cubical.Data.Int public renaming (_+_ to _+Int_ ; +-assoc to +Int-assoc; +-comm to +Int-comm) open import Cubical.Data.Sum public open import Cubical.Data.Prod public open import Cubical.Data.Unit public open import Cubical.Data.Sigma public open import Cubical.Data.Universe public open import Cubical.Data.DiffInt public open import Cubical.Data.Group public hiding (_≃_) open import Cubical.Data.HomotopyGroup public open import Cubical.Data.List public open import Cubical.Data.Graph public open import Cubical.Data.InfNat public renaming (_*_ to _*ℕ+∞_; _+_ to _+ℕ+∞_; suc to ∞suc; zero to ∞zero)
41.454545
106
0.794956
655bd656dc4238f3435e01a727d0d63280ba0b9a
713
agda
Agda
test/Succeed/fol-theorems/VariableNamesClash.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/VariableNamesClash.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/VariableNamesClash.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Testing variable names clash ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module VariableNamesClash where postulate D : Set _≡_ : D → D → Set a b : D postulate a≡b : a ≡ b {-# ATP axiom a≡b #-} foo : (n : D) → a ≡ b foo n = prf n where -- The translation of this postulate must use two diferents -- quantified variables names e.g. ∀ x. ∀ y. a ≡ b. postulate prf : (n : D) → a ≡ b {-# ATP prove prf #-}
26.407407
78
0.42777
724035496d6b583d134d549f2c1c7aaa72f0322c
311
agda
Agda
test/epic/Prelude/Char.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/Prelude/Char.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/epic/Prelude/Char.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
module Prelude.Char where open import Prelude.Bool postulate Char : Set {-# BUILTIN CHAR Char #-} private primitive primCharEquality : (c c' : Char) -> Bool postulate eof : Char {-# COMPILED_EPIC eof () -> Int = foreign Int "eof" () #-} charEq : Char -> Char -> Bool charEq = primCharEquality
14.136364
58
0.655949
1ea56a263b5a1acd8c76378f831cfb3659b6b2c4
801
agda
Agda
src/Library.agda
gunpinyo/agda-cat
045f2ab8a40c1b87f578ef12c0d1e10d131b7da3
[ "BSD-3-Clause" ]
null
null
null
src/Library.agda
gunpinyo/agda-cat
045f2ab8a40c1b87f578ef12c0d1e10d131b7da3
[ "BSD-3-Clause" ]
null
null
null
src/Library.agda
gunpinyo/agda-cat
045f2ab8a40c1b87f578ef12c0d1e10d131b7da3
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module Library where open import Data.Product using ( Σ ; Σ-syntax ; _×_ ) public open import Function using () renaming ( id to λ-id ; _∘_ to λ-comp ; flip to λ-flip ) public open import Level using ( Level ) renaming ( zero to ℓ-zero ; suc to ℓ-suc ; _⊔_ to ℓ-max ) public open import Relation.Binary.Core using ( Rel ) public open import Relation.Unary using ( Pred ) public open import Relation.Binary.PropositionalEquality using ( _≡_ ; module ≡-Reasoning ) renaming ( refl to ≡-refl ; sym to ≡-sym ; trans to ≡-trans) public open ≡-Reasoning using ( _≡⟨_⟩_ ) renaming ( begin_ to ≡-proof_ ; _∎ to _≡-qed ) public
18.627907
49
0.565543
ed2a0959a153a61fbbc223f166af6963c92f0905
505
agda
Agda
agda/BBHeap/Subtyping.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/BBHeap/Subtyping.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/BBHeap/Subtyping.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module BBHeap.Subtyping {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Bound.Lower.Order.Properties _≤_ trans≤ subtyping : {b b' : Bound} → LeB b' b → BBHeap b → BBHeap b' subtyping _ leaf = leaf subtyping b'≤b (left b≤x l⋘r) = left (transLeB b'≤b b≤x) l⋘r subtyping b'≤b (right b≤x l⋙r) = right (transLeB b'≤b b≤x) l⋙r
31.5625
62
0.631683
3fa0df2c609d28711aade6ffd7d5050f2151a1ec
14,148
agda
Agda
Cubical/Homotopy/Connected.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Homotopy/Connected.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Homotopy/Connected.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Homotopy.Connected where open import Cubical.Core.Everything open import Cubical.Foundations.Everything open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Foundations.Univalence open import Cubical.Functions.Fibration open import Cubical.Data.Nat open import Cubical.Data.Prod hiding (map) open import Cubical.Data.Sigma hiding (_×_) open import Cubical.HITs.Nullification open import Cubical.HITs.Susp open import Cubical.HITs.SmashProduct open import Cubical.HITs.Truncation as Trunc open import Cubical.Homotopy.Loopspace open import Cubical.HITs.Pushout open import Cubical.HITs.Sn.Base open import Cubical.Data.Unit -- Note that relative to most sources, this notation is off by +2 isConnected : ∀ {ℓ} (n : HLevel) (A : Type ℓ) → Type ℓ isConnected n A = isContr (hLevelTrunc n A) isConnectedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isConnectedFun n f = ∀ b → isConnected n (fiber f b) isTruncatedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isTruncatedFun n f = ∀ b → isOfHLevel n (fiber f b) isConnectedSubtr : ∀ {ℓ} {A : Type ℓ} (n m : HLevel) → isConnected (m + n) A → isConnected n A isConnectedSubtr {A = A} n m iscon = transport (λ i → isContr (ua (truncOfTruncEq {A = A} n m) (~ i))) (∣ iscon .fst ∣ , Trunc.elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → cong ∣_∣ (iscon .snd a)) isConnectedFunSubtr : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : HLevel) (f : A → B) → isConnectedFun (m + n) f → isConnectedFun n f isConnectedFunSubtr n m f iscon b = isConnectedSubtr n m (iscon b) private typeToFiber : ∀ {ℓ} (A : Type ℓ) → A ≡ fiber (λ (x : A) → tt) tt typeToFiber A = isoToPath typeToFiberIso where typeToFiberIso : Iso A (fiber (λ (x : A) → tt) tt) Iso.fun typeToFiberIso x = x , refl Iso.inv typeToFiberIso = fst Iso.rightInv typeToFiberIso b i = fst b , (isOfHLevelSuc 1 (isPropUnit) tt tt (snd b) refl) i Iso.leftInv typeToFiberIso a = refl module elim {ℓ ℓ' : Level} {A : Type ℓ} {B : Type ℓ'} (f : A → B) (n : HLevel) where isIsoPrecompose : ∀ {ℓ'''} (P : B → TypeOfHLevel ℓ''' n) → isConnectedFun n f → Iso ((b : B) → P b .fst) ((a : A) → P (f a) .fst) isIsoPrecompose P fConn = (iso (_∘ f) (λ t b → inv t b (fConn b .fst)) (λ t → funExt λ a → cong (inv t (f a)) (fConn (f a) .snd ∣ a , refl ∣) ∙ substRefl {B = fst ∘ P} (t a)) (λ s → funExt λ b → Trunc.elim {B = λ d → inv (s ∘ f) b d ≡ s b} (λ _ → isOfHLevelPath n (P b .snd) _ _) (λ {(a , p) i → transp (λ j → P (p (j ∨ i)) .fst) i (s (p i))}) (fConn b .fst))) where inv : ((a : A) → P (f a) .fst) → (b : B) → hLevelTrunc n (fiber f b) → P b .fst inv t b = Trunc.rec (P b .snd) (λ {(a , p) → subst (fst ∘ P) p (t a)}) isEquivPrecompose : ∀ {ℓ'''} (P : B → TypeOfHLevel ℓ''' n) → isConnectedFun n f → isEquiv (λ(s : (b : B) → P b .fst) → s ∘ f) isEquivPrecompose P fConn = isoToIsEquiv (isIsoPrecompose P fConn) isConnectedPrecompose : ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') n) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → isConnectedFun n f isConnectedPrecompose P→sect b = c n P→sect b , λ y → sym (fun n P→sect b y) -- (c n P→sect b) , λ y → sym (fun n P→sect b y) where P : (n : HLevel) → ((P : B → TypeOfHLevel ℓ n) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → B → Type _ P n s b = hLevelTrunc n (fiber f b) c : (n : HLevel) → ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') n) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → (b : B) → hLevelTrunc n (fiber f b) c n s = (s λ b → (hLevelTrunc n (fiber f b) , isOfHLevelTrunc _)) .fst λ a → ∣ a , refl ∣ fun : (n : HLevel) (P→sect : ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') n) → hasSection λ(s : (b : B) → P b .fst) → s ∘ f)) → (b : B) (w : (hLevelTrunc n (fiber f b))) → w ≡ c n P→sect b fun zero P→sect b w = isOfHLevelSuc zero (isOfHLevelTrunc _) w (c zero P→sect b) fun (suc n) P→sect b = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) x (c (suc n) P→sect b)) λ a → transport eqtyp c* b (fst a) (snd a) where eqtyp : ((a : A) → ∣ (a , refl {x = f a}) ∣ ≡ c (suc n) P→sect (f a)) ≡ ((b : B) (a : A) (p : f (a) ≡ b) → ∣ (a , p) ∣ ≡ c (suc n) P→sect b) eqtyp = isoToPath (iso (λ g b a → J (λ b p → ∣ a , p ∣ ≡ c (suc n) P→sect b) (g a)) (λ g a → g (f a) a refl) (λ h i b a p → (J (λ b x → (J (λ b₂ p → ∣ a , p ∣ ≡ c (suc n) P→sect b₂) (h (f a) a (λ _ → f a)) x ≡ h b a x)) (JRefl (λ b₂ p → ∣ a , p ∣ ≡ c (suc n) P→sect b₂) (h (f a) a (λ _ → f a)))) p i) λ h i a p → JRefl (λ b₁ p → ∣ a , p ∣ ≡ c (suc n) P→sect b₁) (h a) i p) c* : ((a : A) → ∣ (a , refl {x = f a}) ∣ ≡ c (suc n) P→sect (f a)) c* a = sym (cong (λ x → x a) (P→sect (λ b → hLevelTrunc (suc n) (fiber f b) , isOfHLevelTrunc _) .snd λ a → ∣ a , refl ∣)) isOfHLevelPrecomposeConnected : ∀ {ℓ ℓ' ℓ''} (k : HLevel) (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (P : B → TypeOfHLevel ℓ'' (k + n)) (f : A → B) → isConnectedFun n f → isOfHLevelFun k (λ(s : (b : B) → P b .fst) → s ∘ f) isOfHLevelPrecomposeConnected zero n P f fConn = elim.isEquivPrecompose f n P fConn .equiv-proof isOfHLevelPrecomposeConnected (suc k) n P f fConn t = isOfHLevelPath'⁻ k (λ {(s₀ , p₀) (s₁ , p₁) → subst (isOfHLevel k) (sym (fiber≡ (s₀ , p₀) (s₁ , p₁))) (isOfHLevelRetract k (λ {(q , α) → (funExt⁻ q) , (cong funExt⁻ α)}) (λ {(h , β) → (funExt h) , (cong funExt β)}) (λ _ → refl) (isOfHLevelPrecomposeConnected k n (λ b → (s₀ b ≡ s₁ b) , isOfHLevelPath' (k + n) (P b .snd) _ _) f fConn (funExt⁻ (p₀ ∙∙ refl ∙∙ sym p₁))))}) indMapEquiv→conType : ∀ {ℓ} {A : Type ℓ} (n : HLevel) → ((B : TypeOfHLevel ℓ n) → isEquiv (λ (b : (fst B)) → λ (a : A) → b)) → isConnected n A indMapEquiv→conType {A = A} n BEq = transport (λ i → isContr (hLevelTrunc n (typeToFiber A (~ i)))) (elim.isConnectedPrecompose (λ _ → tt) n (λ P → isEquiv→hasSection ((compEquiv ((λ Q → Q tt) , isoToIsEquiv (helper P)) (_ , BEq (P tt)) .snd ))) tt) where helper : ∀ {ℓ'} (P : Unit → TypeOfHLevel ℓ' n) → Iso ((b : Unit) → fst (P b)) (fst (P tt)) Iso.fun (helper P) = λ Q → Q tt Iso.inv (helper P) = λ a _ → a Iso.rightInv (helper P) b = refl Iso.leftInv (helper P) b = refl isConnectedPath : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isConnected (suc n) A → (a₀ a₁ : A) → isConnected n (a₀ ≡ a₁) isConnectedPath n connA a₀ a₁ = subst isContr (PathIdTrunc _) (isContr→isContrPath connA _ _) isConnectedRetract : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isConnected n B → isConnected n A isConnectedRetract n f g h = isContrRetract (Trunc.map f) (Trunc.map g) (Trunc.elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) (λ a → cong ∣_∣ (h a))) isConnectedPoint : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isConnected (suc n) A → (a : A) → isConnectedFun n (λ(_ : Unit) → a) isConnectedPoint n connA a₀ a = isConnectedRetract n snd (_ ,_) (λ _ → refl) (isConnectedPath n connA a₀ a) isConnectedPoint2 : ∀ {ℓ} (n : HLevel) {A : Type ℓ} (a : A) → isConnectedFun n (λ(_ : Unit) → a) → isConnected (suc n) A isConnectedPoint2 n {A = A} a connMap = indMapEquiv→conType _ λ B → isoToIsEquiv (theIso B) where module _ {ℓ' : Level} (B : TypeOfHLevel ℓ' (suc n)) where helper : (f : A → fst B) → (a2 : A) → f a2 ≡ f a helper f = equiv-proof (elim.isEquivPrecompose (λ _ → a) n (λ a2 → (f a2 ≡ f a) , isOfHLevelPath' n (snd B) (f a2) (f a)) connMap) (λ _ → refl) .fst .fst theIso : Iso (fst B) (A → fst B) Iso.fun theIso b a = b Iso.inv theIso f = f a Iso.rightInv theIso f = funExt λ y → sym (helper f y) Iso.leftInv theIso _ = refl connectedTruncIso : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B) → isConnectedFun n f → Iso (hLevelTrunc n A) (hLevelTrunc n B) connectedTruncIso {A = A} {B = B} zero f con = g where g : Iso (hLevelTrunc zero A) (hLevelTrunc zero B) Iso.fun g = λ _ → fst (isOfHLevelTrunc 0) Iso.inv g = λ _ → fst (isOfHLevelTrunc 0) Iso.rightInv g = λ b → isOfHLevelTrunc 0 .snd b Iso.leftInv g = λ b → isOfHLevelTrunc 0 .snd b connectedTruncIso {A = A} {B = B} (suc n) f con = g where back : B → hLevelTrunc (suc n) A back y = map fst ((con y) .fst) backSection : (b : B) → Path (hLevelTrunc (suc n) B) (Trunc.rec (isOfHLevelTrunc (suc n)) (λ a → ∣ f a ∣) (Trunc.rec {n = suc n } {B = hLevelTrunc (suc n) A} (isOfHLevelTrunc (suc n)) back ∣ b ∣)) ∣ b ∣ backSection b = helper (λ p → map f p ≡ ∣ b ∣) (λ x → (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n))) (map f (map fst x)) ∣ b ∣) (λ a p → cong ∣_∣ p) (fst (con b)) where helper : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} (P : hLevelTrunc (suc n) A → Type ℓ'') → ((x : hLevelTrunc (suc n) (Σ A B)) → isOfHLevel (suc n) (P (map fst x))) → ((a : A) (b : B a) → P ∣ a ∣) → (p : hLevelTrunc (suc n) (Σ A B)) → P (map fst p) helper P hlev pf = Trunc.elim hlev λ pair → pf (fst pair) (snd pair) backRetract : (a : A) → map fst (con (f a) .fst) ≡ ∣ a ∣ backRetract a = cong (map fst) (con (f a) .snd ∣ a , refl ∣) g : Iso (hLevelTrunc (suc n) A) (hLevelTrunc (suc n) B) Iso.fun g = map f Iso.inv g = Trunc.rec (isOfHLevelTrunc _) back Iso.leftInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) λ a → cong (map fst) (con (f a) .snd ∣ a , refl ∣) Iso.rightInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) backSection connectedTruncIso2 : ∀ {ℓ} {A B : Type ℓ} (n m : HLevel) (f : A → B) → Σ[ x ∈ ℕ ] x + n ≡ m → isConnectedFun m f → Iso (hLevelTrunc n A) (hLevelTrunc n B) connectedTruncIso2 {A = A} {B = B} n m f (x , pf) con = connectedTruncIso n f (isConnectedFunSubtr n x f (transport (λ i → isConnectedFun (pf (~ i)) f) con)) connectedTruncEquiv : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B) → isConnectedFun n f → hLevelTrunc n A ≃ hLevelTrunc n B connectedTruncEquiv {A = A} {B = B} n f con = isoToEquiv (connectedTruncIso n f con) -- TODO : Reorganise the following proofs. inrConnected : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (n : HLevel) → (f : C → A) (g : C → B) → isConnectedFun n f → isConnectedFun n {A = B} {B = Pushout f g} inr inrConnected {A = A} {B = B} {C = C} n f g iscon = elim.isConnectedPrecompose inr n λ P → (λ l → k P l) , λ b → refl where module _ {ℓ : Level} (P : (Pushout f g) → TypeOfHLevel ℓ n) (h : (b : B) → typ (P (inr b))) where Q : A → TypeOfHLevel _ n Q a = (P (inl a)) fun : (c : C) → typ (Q (f c)) fun c = transport (λ i → typ (P (push c (~ i)))) (h (g c)) k : (d : Pushout f g) → typ (P d) k (inl x) = equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .fst x k (inr x) = h x k (push a i) = hcomp (λ k → λ { (i = i0) → equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i0 a ; (i = i1) → transportTransport⁻ (λ j → typ (P (push a j))) (h (g a)) k }) (transp (λ j → typ (P (push a (i ∧ j)))) (~ i) (equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i a)) sphereConnected : (n : HLevel) → isConnected (suc n) (S₊ n) sphereConnected zero = ∣ north ∣ , isOfHLevelTrunc 1 ∣ north ∣ sphereConnected (suc n) = transport (λ i → isConnected (2 + n) (PushoutSusp≡Susp {A = S₊ n} i)) (isConnectedPoint2 (suc n) {A = Pushout {A = S₊ n} (λ _ → tt) λ _ → tt} (inr tt) ((transport (λ i → isConnectedFun (suc n) (mapsAgree (~ i))) (inrConnected _ (λ _ → tt) (λ _ → tt) λ {tt → transport (λ i → isContr (hLevelTrunc (suc n) (fibId (S₊ n) (~ i)))) (sphereConnected n)})))) where mapsAgree : Path ((x : Unit) → Pushout {A = S₊ n} (λ x → tt) (λ x → tt)) (λ (x : Unit) → inr tt) inr mapsAgree = funExt λ _ → refl
45.057325
139
0.49484
1121769cc332fcc346ee07da001ba145571daa37
1,498
agda
Agda
src/fot/FOTC/Data/Nat/UnaryNumbers/TotalityATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Nat/UnaryNumbers/TotalityATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Nat/UnaryNumbers/TotalityATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The unary numbers are FOTC total natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.UnaryNumbers.TotalityATP where open import FOTC.Base open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ postulate 0-N : N 0' 1-N : N 1' 2-N : N 2' 3-N : N 3' 4-N : N 4' 5-N : N 5' {-# ATP prove 0-N #-} {-# ATP prove 1-N #-} {-# ATP prove 2-N #-} {-# ATP prove 3-N #-} {-# ATP prove 4-N #-} {-# ATP prove 5-N #-} postulate 10-N : N 10' 11-N : N 11' {-# ATP prove 10-N #-} {-# ATP prove 11-N #-} postulate 89-N : N 89' {-# ATP prove 89-N #-} postulate 90-N : N 90' 91-N : N 91' 92-N : N 92' 93-N : N 93' 94-N : N 94' 95-N : N 95' 96-N : N 96' 97-N : N 97' 98-N : N 98' 99-N : N 99' {-# ATP prove 90-N #-} {-# ATP prove 91-N #-} {-# ATP prove 92-N #-} {-# ATP prove 93-N #-} {-# ATP prove 94-N #-} {-# ATP prove 95-N #-} {-# ATP prove 96-N #-} {-# ATP prove 97-N #-} {-# ATP prove 98-N #-} {-# ATP prove 99-N #-} postulate 100-N : N 100' 101-N : N 101' {-# ATP prove 100-N #-} {-# ATP prove 101-N #-} postulate 111-N : N 111' {-# ATP prove 111-N #-}
21.098592
78
0.441255
3fea82ed9e64be606346565b0b135e0d08f49fa4
798
agda
Agda
Cubical/Algebra/RingSolver/RawRing.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/RingSolver/RawRing.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/RingSolver/RawRing.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.RawRing where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ) open import Cubical.Algebra.RingSolver.AlmostRing hiding (⟨_⟩) private variable ℓ : Level record RawRing ℓ : Type (ℓ-suc ℓ) where constructor rawring field Carrier : Type ℓ 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier infixl 8 _·_ infixl 7 -_ infixl 6 _+_ ⟨_⟩ : RawRing ℓ → Type ℓ ⟨_⟩ = RawRing.Carrier AlmostRing→RawRing : AlmostRing ℓ → RawRing ℓ AlmostRing→RawRing (almostring Carrier 0r 1r _+_ _·_ -_ isAlmostRing) = rawring Carrier 0r 1r _+_ _·_ -_
22.166667
71
0.660401
651eb44520f5e0a6b00974b668efe1cdb063af68
8,886
agda
Agda
formalization/agda/Spire/Examples/InferredPropositionalDesc.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
43
2015-05-28T23:25:33.000Z
2022-03-08T17:10:59.000Z
formalization/agda/Spire/Examples/InferredPropositionalDesc.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
null
null
null
formalization/agda/Spire/Examples/InferredPropositionalDesc.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
1
2015-08-17T21:00:07.000Z
2015-08-17T21:00:07.000Z
{-# OPTIONS --type-in-type #-} open import Data.Unit open import Data.Product open import Data.List hiding ( concat ) open import Data.String open import Relation.Binary.PropositionalEquality module Spire.Examples.InferredPropositionalDesc where ---------------------------------------------------------------------- elimEq : {A : Set} (x : A) (P : (y : A) → x ≡ y → Set) → P x refl → (y : A) (p : x ≡ y) → P y p elimEq .x P prefl x refl = prefl ---------------------------------------------------------------------- Label : Set Label = String Enum : Set Enum = List Label data Tag : Enum → Set where here : ∀{l E} → Tag (l ∷ E) there : ∀{l E} → Tag E → Tag (l ∷ E) Cases : {E : Enum} (P : Tag E → Set) → Set Cases {[]} P = ⊤ Cases {l ∷ E} P = P here × Cases λ t → P (there t) case : {E : Enum} (P : Tag E → Set) (cs : Cases P) (t : Tag E) → P t case {l ∷ E} P (c , cs) here = c case {l ∷ E} P (c , cs) (there t) = case (λ t → P (there t)) cs t ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where `End : (i : I) → Desc I `Rec : (i : I) (D : Desc I) → Desc I `Arg : (A : Set) (B : A → Desc I) → Desc I `RecFun : (A : Set) (B : A → I) (D : Desc I) → Desc I ISet : Set → Set₁ ISet I = I → Set El : {I : Set} (D : Desc I) (X : ISet I) → ISet I El (`End j) X i = j ≡ i El (`Rec j D) X i = X j × El D X i El (`Arg A B) X i = Σ A (λ a → El (B a) X i) El (`RecFun A B D) X i = ((a : A) → X (B a)) × El D X i data μ {I : Set} (D : Desc I) (i : I) : Set where con : El D (μ D) i → μ D i All : {I : Set} (D : Desc I) {X : ISet I} (P : (i : I) → X i → Set) (i : I) (xs : El D X i) → Set All (`End j) P i q = ⊤ All (`Rec j D) P i (x , xs) = P j x × All D P i xs All (`Arg A B) P i (a , b) = All (B a) P i b All (`RecFun A B D) P i (f , xs) = ((a : A) → P (B a) (f a)) × All D P i xs caseD : (E : Enum) (I : Set) (cs : Cases (λ _ → Desc I)) (t : Tag E) → Desc I caseD E I cs t = case (λ _ → Desc I) cs t ---------------------------------------------------------------------- ind : {I : Set} (D : Desc I) (P : (i : I) → μ D i → Set) (pcon : (i : I) (xs : El D (μ D) i) → All D P i xs → P i (con xs)) {i : I} (x : μ D i) → P i x hyps : {I : Set} (D₁ : Desc I) (P : (i : I) → μ D₁ i → Set) (pcon : (i : I) (xs : El D₁ (μ D₁) i) → All D₁ P i xs → P i (con xs)) (D₂ : Desc I) {i : I} (xs : El D₂ (μ D₁) i) → All D₂ P i xs ind D P pcon (con xs) = pcon _ xs (hyps D P pcon D xs) hyps D P pcon (`End j) q = tt hyps D P pcon (`Rec j A) (x , xs) = ind D P pcon x , hyps D P pcon A xs hyps D P pcon (`Arg A B) (a , b) = hyps D P pcon (B a) b hyps D P pcon (`RecFun A B E) (f , xs) = (λ a → ind D P pcon (f a)) , hyps D P pcon E xs ---------------------------------------------------------------------- module Desugared where ℕT : Enum ℕT = "zero" ∷ "suc" ∷ [] VecT : Enum VecT = "nil" ∷ "cons" ∷ [] ℕC : Tag ℕT → Desc ⊤ ℕC = caseD ℕT ⊤ ( `End tt , `Rec tt (`End tt) , tt ) ℕD : Desc ⊤ ℕD = `Arg (Tag ℕT) ℕC ℕ : ⊤ → Set ℕ = μ ℕD zero : ℕ tt zero = con (here , refl) suc : ℕ tt → ℕ tt suc n = con (there here , n , refl) VecC : (A : Set) → Tag VecT → Desc (ℕ tt) VecC A = caseD VecT (ℕ tt) ( `End zero , `Arg (ℕ tt) (λ n → `Arg A λ _ → `Rec n (`End (suc n))) , tt ) VecD : (A : Set) → Desc (ℕ tt) VecD A = `Arg (Tag VecT) (VecC A) Vec : (A : Set) (n : ℕ tt) → Set Vec A n = μ (VecD A) n nil : (A : Set) → Vec A zero nil A = con (here , refl) cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons A n x xs = con (there here , n , x , xs , refl) ---------------------------------------------------------------------- module Induction where add : ℕ tt → ℕ tt → ℕ tt add = ind ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : All ℕD (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → n) , (λ m,q ih,tt n → suc (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) mult : ℕ tt → ℕ tt → ℕ tt mult = ind ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : All ℕD (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → zero) , (λ m,q ih,tt n → add n (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A m = ind (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ m t,c → case (λ t → (c : El (VecC A t) (Vec A) m) (ih : All (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) m (t , c)) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) ) ( (λ q ih n ys → subst (λ m → Vec A (add m n)) q ys) , (λ m',x,xs,q ih,tt n ys → let m' = proj₁ m',x,xs,q x = proj₁ (proj₂ m',x,xs,q) q = proj₂ (proj₂ (proj₂ m',x,xs,q)) ih = proj₁ ih,tt in subst (λ m → Vec A (add m n)) q (cons A (add m' n) x (ih n ys)) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m n = ind (VecD (Vec A m)) (λ n xss → Vec A (mult n m)) (λ n t,c → case (λ t → (c : El (VecC (Vec A m) t) (Vec (Vec A m)) n) (ih : All (VecD (Vec A m)) (λ n xss → Vec A (mult n m)) n (t , c)) → Vec A (mult n m) ) ( (λ q ih → subst (λ n → Vec A (mult n m)) q (nil A)) , (λ n',xs,xss,q ih,tt → let n' = proj₁ n',xs,xss,q xs = proj₁ (proj₂ n',xs,xss,q) q = proj₂ (proj₂ (proj₂ n',xs,xss,q)) ih = proj₁ ih,tt in subst (λ n → Vec A (mult n m)) q (append A m xs (mult n' m) ih) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) ---------------------------------------------------------------------- module Eliminator where elimℕ : (P : (ℕ tt) → Set) (pzero : P zero) (psuc : (m : ℕ tt) → P m → P (suc m)) (n : ℕ tt) → P n elimℕ P pzero psuc = ind ℕD (λ u n → P n) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : All ℕD (λ u n → P n) u (t , c)) → P (con (t , c)) ) ( (λ q ih → elimEq tt (λ u q → P (con (here , q))) pzero u q ) , (λ n,q ih,tt → elimEq tt (λ u q → P (con (there here , proj₁ n,q , q))) (psuc (proj₁ n,q) (proj₁ ih,tt)) u (proj₂ n,q) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) elimVec : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (pnil : P zero (nil A)) (pcons : (n : ℕ tt) (a : A) (xs : Vec A n) → P n xs → P (suc n) (cons A n a xs)) (n : ℕ tt) (xs : Vec A n) → P n xs elimVec A P pnil pcons n = ind (VecD A) (λ n xs → P n xs) (λ n t,c → case (λ t → (c : El (VecC A t) (Vec A) n) (ih : All (VecD A) (λ n xs → P n xs) n (t , c)) → P n (con (t , c)) ) ( (λ q ih → elimEq zero (λ n q → P n (con (here , q))) pnil n q ) , (λ n',x,xs,q ih,tt → let n' = proj₁ n',x,xs,q x = proj₁ (proj₂ n',x,xs,q) xs = proj₁ (proj₂ (proj₂ n',x,xs,q)) q = proj₂ (proj₂ (proj₂ n',x,xs,q)) ih = proj₁ ih,tt in elimEq (suc n') (λ n q → P n (con (there here , n' , x , xs , q))) (pcons n' x xs ih ) n q ) , tt ) (proj₁ t,c) (proj₂ t,c) ) ---------------------------------------------------------------------- add : ℕ tt → ℕ tt → ℕ tt add = elimℕ (λ _ → ℕ tt → ℕ tt) (λ n → n) (λ m ih n → suc (ih n)) mult : ℕ tt → ℕ tt → ℕ tt mult = elimℕ (λ _ → ℕ tt → ℕ tt) (λ n → zero) (λ m ih n → add n (ih n)) append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = elimVec A (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ n ys → ys) (λ m x xs ih n ys → cons A (add m n) x (ih n ys)) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = elimVec (Vec A m) (λ n xss → Vec A (mult n m)) (nil A) (λ n xs xss ih → append A m xs (mult n m) ih) ----------------------------------------------------------------------
28.944625
99
0.381274
43858fda06af1dbd85accae6afff72b146d88105
31,349
agda
Agda
agda/paper/2021-03-Jesper_Cockx-Programming_and_Proving_in_Agda/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/paper/2021-03-Jesper_Cockx-Programming_and_Proving_in_Agda/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/paper/2021-03-Jesper_Cockx-Programming_and_Proving_in_Agda/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module z where ------------------------------------------------------------------------------ -- 1 intro -- data types data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} -------------------------------------------------- -- begin : from later - here to use in tests data Bool : Set where true : Bool false : Bool data IsTrue : Bool → Set where is-true : IsTrue true _=Nat_ : Nat → Nat → Bool zero =Nat zero = true (suc x) =Nat (suc y) = x =Nat y _ =Nat _ = false -- end : from later -------------------------------------------------- -- pattern matching _+_ : Nat → Nat → Nat zero + y = y (suc x) + y = suc (x + y) infixl 9 _+_ -- {-# BUILTIN NATPLUS _+_ #-} -- ex 1.1 halve : Nat → Nat halve zero = zero halve (suc zero) = zero halve (suc (suc n)) = suc (halve n) halve-0 : IsTrue (halve 0 =Nat 0) halve-0 = is-true halve-1 : IsTrue (halve 1 =Nat 0) halve-1 = is-true halve-2 : IsTrue (halve 2 =Nat 1) halve-2 = is-true halve-3 : IsTrue (halve 3 =Nat 1) halve-3 = is-true halve-4 : IsTrue (halve 4 =Nat 2) halve-4 = is-true halve-14 : IsTrue (halve 14 =Nat 7) halve-14 = is-true halve-15 : IsTrue (halve 15 =Nat 7) halve-15 = is-true halve-16 : IsTrue (halve 16 =Nat 8) halve-16 = is-true -- ex 1.2 _*_ : Nat → Nat → Nat zero * y = zero (suc x) * y = y + (x * y) 2*0 : IsTrue ((2 * 0) =Nat 0) 2*0 = is-true 2*1 : IsTrue ((2 * 1) =Nat 2) 2*1 = is-true 2*2 : IsTrue ((2 * 2) =Nat 4) 2*2 = is-true 3*3 : IsTrue ((3 * 3) =Nat 9) 3*3 = is-true 4*4 : IsTrue ((4 * 4) =Nat 16) 4*4 = is-true {- -- ex 1.3 data Bool : Set where true : Bool false : Bool -} not : Bool → Bool not true = false not false = true _&&_ : Bool → Bool → Bool _&&_ true y = y _&&_ false _ = false _||_ : Bool → Bool → Bool _||_ true _ = true _||_ false y = y -- types are 1st class -- equivalent to Haskell type alias : type MyNat = Nat MyNat : Set MyNat = Nat -- Set used to implement polymorphic functions idA : (A : Set) → A → A idA _ x = x -- implicit args id : {A : Set} → A → A id x = x -- polymorphic data types data List (A : Set) : Set where [] : List A _::_ : A → List A → List A infixr 5 _::_ -- ex 1.4 length : {A : Set} → List A → Nat length [] = zero length (_ :: xs) = 1 + length xs _++_ : {A : Set} → List A → List A → List A _++_ [] l2 = l2 _++_ (x :: xs) l2 = x :: xs ++ l2 map : { A B : Set } → (A → B) → List A → List B map _ [] = [] map f (x :: xs) = f x :: map f xs -- ex 1.5 data Maybe (A : Set) : Set where just : A → Maybe A nothing : Maybe A lookup : {A : Set} → List A → Nat → Maybe A lookup [] _ = nothing lookup (x :: _) zero = just x lookup (_ :: xs) (suc n) = lookup xs n _=List-Nat_ : List Nat → List Nat → Bool [] =List-Nat [] = true (x :: xs) =List-Nat (y :: ys) = (x =Nat y) && (xs =List-Nat ys) _ =List-Nat _ = false ex-xs : List Nat ex-xs = 0 :: 1 :: 2 :: 3 :: [] length++ : IsTrue ((length ex-xs + length ex-xs) =Nat (length (ex-xs ++ ex-xs))) length++ = is-true map2* : IsTrue (map (2 *_) ex-xs =List-Nat (0 :: 2 :: 4 :: 6 :: [])) map2* = is-true _=Maybe-Nat_ : Maybe Nat → Maybe Nat → Bool nothing =Maybe-Nat nothing = true (just x) =Maybe-Nat (just y) = x =Nat y _ =Maybe-Nat _ = false lookup[]0 : IsTrue (lookup [] 0 =Maybe-Nat nothing) lookup[]0 = is-true lookupex-xs0 : IsTrue (lookup ex-xs 0 =Maybe-Nat (just 0)) lookupex-xs0 = is-true lookupex-xs1 : IsTrue (lookup ex-xs 1 =Maybe-Nat (just 1)) lookupex-xs1 = is-true lookupex-xs9 : IsTrue (lookup ex-xs 9 =Maybe-Nat nothing) lookupex-xs9 = is-true data _×_ (A B : Set) : Set where _,_ : A → B → A × B infixr 4 _,_ fst : {A B : Set} → A × B → A fst (a , _) = a snd : {A B : Set} → A × B → B snd (_ , b) = b -- ex 1.6 -- NO. Regardless of the value of 'Nat', there is NO way to construct an A if given []. ------------------------------------------------------------------------------ -- 2 dependent types -- parameter : bound for ENTIRE def -- index : varies according to constructor -- v v data Vec (A : Set) : Nat → Set where -- Vec is dependent TYPE [] : Vec A 0 _::_ : {n : Nat} → A → Vec A n → Vec A (suc n) --infixr 5 _::_ -- dependent FUNCTION : return TYPE depends on inputs zeroes : (n : Nat) → Vec Nat n zeroes zero = [] zeroes (suc n) = 0 :: zeroes n -- ex 2.1 downFrom : (n : Nat) → Vec Nat n downFrom zero = [] downFrom (suc n) = n :: downFrom n _=Vec-Nat_ : {n : Nat} → Vec Nat n → Vec Nat n → Bool [] =Vec-Nat [] = true (x :: xs) =Vec-Nat (y :: ys) = (x =Nat y) && (xs =Vec-Nat ys) downFrom0 : IsTrue (downFrom 0 =Vec-Nat []) downFrom0 = is-true downFrom1 : IsTrue (downFrom 1 =Vec-Nat (0 :: [])) downFrom1 = is-true downFrom2 : IsTrue (downFrom 2 =Vec-Nat (1 :: 0 :: [])) downFrom2 = is-true downFrom3 : IsTrue (downFrom 3 =Vec-Nat (2 :: 1 :: 0 :: [])) downFrom3 = is-true downFrom7 : IsTrue (downFrom 7 =Vec-Nat (6 :: 5 :: 4 :: 3 :: 2 :: 1 :: 0 :: [])) downFrom7 = is-true -- ex 2.2 tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n tail (_ :: xs) = xs -- ex 2.3 dotProduct : {n : Nat} → Vec Nat n → Vec Nat n → Nat dotProduct [] [] = 0 dotProduct (x :: xs) (y :: ys) = (x * y) + dotProduct xs ys dotProduct32 : IsTrue (dotProduct (1 :: 2 :: 3 :: []) (1 :: 5 :: 7 :: []) =Nat 32) dotProduct32 = is-true -- finite type family data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} → Fin n → Fin (suc n) lookupVec : {A : Set} {n : Nat} → Vec A n → Fin n → A lookupVec [] () lookupVec (x :: _) zero = x lookupVec (_ :: xs) (suc i) = lookupVec xs i -- ex 2.4 putVec : {A : Set} {n : Nat} → Fin n → A → Vec A n → Vec A n putVec zero a (_ :: xs) = a :: xs putVec (suc i) a (x :: xs) = x :: putVec i a xs ex-vxs : Vec Nat 4 ex-vxs = 0 :: 1 :: 2 :: 3 :: [] lookupVecex-vxs0 : IsTrue (lookupVec ex-vxs zero =Nat 0) lookupVecex-vxs0 = is-true lookupVecex-vxs3 : IsTrue (lookupVec ex-vxs (suc (suc (suc zero))) =Nat 3) lookupVecex-vxs3 = is-true putVecex-vxs3 : IsTrue (putVec (suc (suc zero)) 22 ex-vxs =Vec-Nat (0 :: 1 :: 22 :: 3 :: [])) putVecex-vxs3 = is-true {- dependent pair type - aka Σ type aka Σ type because can be seen as sum (or disjoint union) of all the types B x - where 1st component is viewed as a label indicating which type of the family the 2nd belong to generalization of pair type A × B - where type of 2nd component can be different depending on value of 1st - e.g., Σ Nat (Vec Bool) (or equivalently, Σ Nat (λn → Vec Bool n)) contains elements 2 , (true :: false :: []) and 0 , [] but not 2 , [] (since [] does not have type Vec Bool 2). -} -- function -- v data Σ (A : Set) (B : A → Set) : Set where _,_ : (x : A) → B x → Σ A B -- see Σ as generalization of normal pair : normal pair ignores its input _×'_ : (A B : Set) → Set A ×' B = Σ A (λ _ → B) -- ex 2.5 ×-to-×' : {A B : Set} → (A × B) → (A ×' B) ×-to-×' (a , b) = a , b ×'-to-× : {A B : Set} → (A ×' B) → (A × B) ×'-to-× (a , b) = a , b -- Σ USE CASE : hide type info -- e.g., hide length of vector List' : (A : Set) → Set List' A = Σ Nat (Vec A) -- ex 2.6 list-to-vec : {A : Set} → (l : List A) → Vec A (length l) list-to-vec [] = [] list-to-vec (x :: xs) = x :: list-to-vec xs vec-to-list : {A : Set} {n : Nat} → Vec A n → List A vec-to-list [] = [] vec-to-list (x :: xs) = x :: vec-to-list xs list-to-list' : {A : Set} → List A → List' A list-to-list' l = length l , list-to-vec l list'-to-list : {A : Set} → List' A → List A list'-to-list (_ , v) = vec-to-list v -- if Nat relations existed at this point this function would be very different lookup-List' : {A : Set} → List' A -> Nat -> Maybe A lookup-List' (_ , []) _ = nothing lookup-List' (_ , (x :: _)) zero = just x lookup-List' (_ , (_ :: xs)) (suc n) = lookup-List' ((list-to-list' (vec-to-list xs))) n ex-l'xs : List' Nat ex-l'xs = (4 , 0 :: 1 :: 2 :: 3 :: []) lookup-List'[]0 : IsTrue (lookup-List' (0 , []) 0 =Maybe-Nat nothing) lookup-List'[]0 = is-true lookup-List'ex-l'xs0 : IsTrue (lookup-List' ex-l'xs 0 =Maybe-Nat (just 0)) lookup-List'ex-l'xs0 = is-true lookup-List'ex-l'xs1 : IsTrue (lookup-List' ex-l'xs 1 =Maybe-Nat (just 1)) lookup-List'ex-l'xs1 = is-true lookup-List'ex-l'xs9 : IsTrue (lookup-List' ex-l'xs 9 =Maybe-Nat nothing) lookup-List'ex-l'xs9 = is-true ------------------------------------------------------------------------------ -- 3 The Curry-Howard correspondence -- can interpret logical propositions — such as “P and Q”, “not P”, “P implies Q”, ... -- as types whose inhabitants are valid proofs of that proposition. -------------------------------------------------- -- PROPOSITIONAL LOGIC -- ex 3.1 data Either (A B : Set) : Set where left : A → Either A B right : B → Either A B cases : {A B C : Set} → Either A B → (A → C) → (B → C) → C cases (left a) fac _ = fac a cases (right b) _ fbc = fbc b cases-left : IsTrue (cases (left 3) (2 +_) (2 *_) =Nat 5) cases-left = is-true cases-right : IsTrue (cases (right 3) (2 +_) (2 *_) =Nat 6) cases-right = is-true {- ------------------------- TRUTH : true : the proposition that always holds no matter what. Proving it is straightforward: do not need to provide any assumptions. Assuming true in a proof does not provide any new information. 'true' corresponds to the unit type -} data ⊤ : Set where tt : ⊤ {- ------------------------- FALSITY. the proposition that is never true. There are no ways to prove it. Represented by empty type : datatype with no constructors -} data ⊥ : Set where {- given a proof p of “false” (which can't happen because no constructors) - “ex falso quodlibet” : “from falsity follows anything”) - can can get a proof of any proposition -} absurd : {A : Set} → ⊥ → A absurd () {- ------------------------- NEGATION : the type P → ⊥ EQUIVALENCE. “P is equivalent to Q” as (P → Q) × (Q → P) Propositional logic versus boolean logic. types ⊤ and ⊥ seem similar to booleans true and false - true and false are VALUES : can manipulate and return - ⊤ and and ⊥ are TYPES - not possible to check whether a given type ⊤ or ⊥ -} curryCompose : {P Q R : Set} → (P → Q) × (Q → R) -> (P → R) curryCompose (f , g) = λ x → g (f x) -- ex 3.2 if-A-then-B-implies-A : {A B : Set} → A → (B → A) if-A-then-B-implies-A a = λ _ → a if-A-and-true-then-A-or-false : {A : Set} → (A × ⊤) → Either A ⊥ if-A-and-true-then-A-or-false (a , ⊤) = left a uncurry : {A B C : Set} → (A → (B → C)) → (A × B) → C uncurry f = λ a×b → f (fst a×b) (snd a×b) ex32x : {A B C : Set} → (A × Either B C) → Either (A × B) (A × C) ex32x (a , left b) = left (a , b) ex32x (a , right c) = right (a , c) ex32y : {A B C D : Set} → ((A → C) × (B → D)) → (A × B) → (C × D) ex32y (ac , bd) (a , b) = ac a , bd b {- -------------------------------------------------- -- PREDICATE LOGIC to prove propositions that say something about a given VALUE or FUNCTION e.g., 6 is even length (map f xs) is equal to length xs for all xs there exists a number n such that n + n = 12 Curry-Howard : propositions are types can define new propositions by defining new data types e.g., -} -- index -- v data IsEven : Nat → Set where even-zero : IsEven zero even-suc2 : {n : Nat} → IsEven n → IsEven (suc (suc n)) 6-is-even : IsEven 6 6-is-even = even-suc2 (even-suc2 (even-suc2 even-zero)) 7-is-not-even : IsEven 7 → ⊥ 7-is-not-even (even-suc2 (even-suc2 (even-suc2 ()))) -- ^ -- absurb pattern as arg {- -- useful predicate -- states that a given Bool is true data IsTrue : Bool → Set where is-true : IsTrue true _=Nat_ : Nat → Nat → Bool zero =Nat zero = true (suc x) =Nat (suc y) = x =Nat y _ =Nat _ = false -} length-is-3 : IsTrue (length (1 :: 2 :: 3 :: []) =Nat 3) length-is-3 = is-true {- Defining properties as functions. Can define properties as - data types, or - functions that return a value of type Set e..g., -} IsTrue’ : Bool → Set IsTrue’ true = ⊤ IsTrue’ false = ⊥ {- Function approach often results in proofs that are shorter, but less readable. Also less general, as some types (e.g., identity type in next section) can only be defined as a data type. BEST PRACTICE: use data types (not functions) -------------------------------------------------- UNIVERSAL QUANTIFICATION : “∀ x of type A, P(x)” to prove : provide proof of P(v) for EVERY concrete value v : A. i.e., a function λv → P v in opposite direction assume a f of “∀ x of type A, P(x)” and given a concrete v : A then can the proof to the case of v to get a proof f v of P(v) under Curry-Howard, universal quantification corresponds to dependent function (x : A) → P x -} double : Nat → Nat double zero = zero double (suc n) = suc (suc (double n)) -- ∀ n : Nat, double n is an even number -- 'double-is-even' is a dependent function : return TYPE depends on input VALUE -- pattern matching here is "proof by cases" -- recursion here is "induction on n" double-is-even : (n : Nat) → IsEven (double n) double-is-even zero = even-zero double-is-even (suc m) = even-suc2 (double-is-even m) n-equals-n : (n : Nat) → IsTrue (n =Nat n) n-equals-n zero = is-true n-equals-n (suc m) = n-equals-n m {- -------------------------------------------------- EXISTENTIAL QUANTIFICATION : “∃ a x : A such that P( x )” to prove : provide a concrete v : A, and a proof that P(v) holds i.e. a pair (v : A, P v) in opposite direction given proof z of “∃ a x : A such that P( x )” then extract the witness fst z : A and the proof snd z : P (fst z) under Curry-Howard, existential quantification corresponds to the dependent pair type Σ A ( λ x → P x ). -} -- ∃ an n such that n + n = 12 half-a-dozen : Σ Nat (λ n → IsTrue ((n + n) =Nat 12)) half-a-dozen = 6 , is-true -- any number n is either 0 or the successor of another number m -- ∀ n, n is 0 -- or ∃ m such that n is suc m zero-or-suc : (n : Nat) → Either (IsTrue (n =Nat 0)) (Σ Nat (λ m → IsTrue (n =Nat (suc m)))) zero-or-suc zero = left is-true zero-or-suc (suc m) = right (m , n-equals-n m) {- -------------------------------------------------- Propositional logic Type System ------------------------------------------------------------ proposition P type proof of a proposition p : P program of a type conjunction P × Q pair type disjunction Either P Q either type implication P → Q function type truth ⊤ unit type falsity ⊥ empty type negation P → ⊥ function to ⊥ equivalence (P → Q) × (Q → P) pair of two functions ------------------------------------------------------------ Predicate log universal quantification (x : A) → P x dependent function type existential quantification Σ A (λ x → P x ) dependent pair type -------------------------------------------------- -- IDENTITY TYPE : EQUALITY at any type (to avoid =Nat, =Vec-Nat, ...) Martin-Löf introduced a new type x ≡ y, called the IDENTITY TYPE (NOT FUNCTION) if x and y are equal, then x ≡ y has a single inhabitant refl - behaves like the unit type ⊤ if x and y are distinct, then x ≡ y has no constructors - behaves like the empty type ⊥ -} data _≡_ {A : Set} : A → A → Set where -- ‘reflexivity’ refl : {x : A} → x ≡ x infix 4 _≡_ {-# BUILTIN EQUALITY _≡_ #-} one-plus-one-IsTrue : IsTrue ((1 + 1) =Nat 2) one-plus-one-IsTrue = is-true one-plus-one : 1 + 1 ≡ 2 one-plus-one = refl {- zero-not-one-not-IsTrue : IsTrue (0 =Nat 1) zero-not-one-not-IsTrue = {!!} -} zero-not-one : 0 ≡ 1 → ⊥ zero-not-one () -- prove facts about polymorphic types id-returns-input : {A : Set} → (x : A) → id x ≡ x id-returns-input _ = refl -- unit tests using identity type length-test1 : length (1 :: 2 :: []) ≡ 2 length-test1 = refl -- symmetry of equality sym : {A : Set} {x y : A} → x ≡ y → y ≡ x sym refl = refl -- transitivity of equality trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl -- congruence of equality cong : {A B : Set} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl {- If a and b can be unified by instantiating some of the variables, then can match on refl. If a and b are different (e.g. different constructors), then match on absurb pattern (). Agda canNOT always tell if they are different. -} ------------------------------------------------------------------------------ -- 4 EQUATIONAL REASONING begin_ : {A : Set} → {x y : A} → x ≡ y → x ≡ y begin p = p _end : {A : Set} → (x : A) → x ≡ x x end = refl _=⟨_⟩_ : {A : Set} → (x : A) → {y z : A} → x ≡ y → y ≡ z → x ≡ z x =⟨ p ⟩ q = trans p q _=⟨⟩_ : {A : Set} → (x : A) → {y : A} → x ≡ y → x ≡ y x =⟨⟩ q = x =⟨ refl ⟩ q infix 1 begin_ infix 3 _end infixr 2 _=⟨_⟩_ infixr 2 _=⟨⟩_ -- create singleton list [_] : {A : Set} → A → List A [ x ] = x :: [] reverse : {A : Set} → List A → List A reverse [] = [] reverse (x :: xs) = reverse xs ++ [ x ] -- reverse has no effect on singleton lists reverse-singleton : {A : Set} → (x : A) → reverse [ x ] ≡ [ x ] reverse-singleton x = begin reverse [ x ] =⟨⟩ -- definition of [_] reverse (x :: []) =⟨⟩ -- applying reverse (second clause) reverse [] ++ [ x ] =⟨⟩ -- applying reverse (first clause) [] ++ [ x ] =⟨⟩ -- applying _++_ [ x ] end -- proof by cases and induction not-not : (b : Bool) → not (not b) ≡ b not-not true = begin not (not true) =⟨⟩ not false =⟨⟩ -- apply inner not true -- apply not end not-not false = begin not (not false) =⟨⟩ not true =⟨⟩ false end -- prove fact about Nat by induction (i.e., recursion) add-n-zero : (n : Nat) → n + zero ≡ n add-n-zero zero = begin zero + zero =⟨⟩ zero =⟨⟩ zero end add-n-zero (suc n) = begin (suc n) + zero =⟨⟩ -- applying + suc (n + zero) =⟨ cong suc (add-n-zero n) ⟩ -- using induction hypothesis suc n end add-n-zero' : (n : Nat) → n + zero ≡ n add-n-zero' zero = refl add-n-zero' (suc n) = cong suc (add-n-zero' n) add-assoc : (x y z : Nat) → x + (y + z) ≡ (x + y) + z add-assoc zero y z = begin zero + (y + z) =⟨⟩ -- def of + y + z =⟨⟩ -- unapply + (zero + y) + z end add-assoc (suc x) y z = begin (suc x) + (y + z) =⟨⟩ -- def of + suc (x + (y + z)) =⟨ cong suc (add-assoc x y z) ⟩ -- inductive hypo suc ((x + y) + z) =⟨⟩ -- unapply outer add (suc (x + y)) + z =⟨⟩ -- unapply inner add ((suc x) + y) + z end -- ex 4.1 add-suc : (m n : Nat) → m + suc n ≡ suc (m + n) add-suc zero n = begin zero + suc n =⟨⟩ -- def of + suc n =⟨⟩ suc (zero + n) end add-suc (suc m) n = -- cong suc (add-suc m n) begin suc m + suc n =⟨⟩ -- def of + suc (m + suc n) =⟨ cong suc (add-suc m n) ⟩ suc (suc m + n) end --use add-suc and add-n-zero +-comm : (m n : Nat) → m + n ≡ n + m +-comm zero n = sym (add-n-zero n) +-comm (suc m) n rewrite -- suc m + n ≡ n + suc m -- suc (m + n) ≡ n + suc m +-comm m n -- suc (n + m) ≡ n + suc m | sym (add-suc n m) -- n + suc m ≡ n + suc m = refl +-comm' : (m n : Nat) → m + n ≡ n + m +-comm' zero n = begin zero + n =⟨⟩ -- def of + n =⟨ sym (add-n-zero n) ⟩ -- add zero to right n + zero end +-comm' (suc m) n = begin suc m + n =⟨⟩ -- def of + suc (m + n) =⟨ cong suc (+-comm m n) ⟩ suc (n + m) =⟨ sym (add-suc n m) ⟩ n + suc m end -------------------------------------------------- -- induction on lists -- ex 4.2 replicate : {A : Set} → Nat → A → List A replicate zero x = [] replicate (suc n) x = x :: replicate n x length-replicate : {A : Set} {a : A} → (n : Nat) → length (replicate n a) ≡ n length-replicate zero = refl length-replicate (suc n) = cong suc (length-replicate n) -- ex 4.3 append-[] : {A : Set} → (xs : List A) → xs ++ [] ≡ xs append-[] [] = refl append-[] (x :: xs) = cong (x ::_) (append-[] xs) append-assoc : {A : Set} → (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) append-assoc [] ys zs = refl append-assoc (x :: xs) ys zs -- (((x :: xs) ++ ys) ++ zs) ≡ ((x :: xs) ++ (ys ++ zs)) -- x :: ((xs ++ ys) ++ zs) ≡ x :: (xs ++ (ys ++ zs)) = cong (x ::_) (append-assoc xs ys zs) reverse-distributivity : {A : Set} → (xs ys : List A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-distributivity [] ys = sym (append-[] (reverse ys)) reverse-distributivity (x :: xs) ys -- reverse ((x :: xs) ++ ys) ≡ (reverse ys ++ reverse (x :: xs)) -- (reverse (xs ++ ys) ++ (x :: [])) ≡ (reverse ys ++ (reverse xs ++ (x :: []))) rewrite reverse-distributivity xs ys -- ((reverse ys ++ reverse xs) ++ (x :: [])) -- ≡ (reverse ys ++ (reverse xs ++ (x :: []))) | sym (append-assoc (reverse ys) (reverse xs) (x :: [])) = refl reverse-reverse : {A : Set} → (xs : List A) → reverse (reverse xs) ≡ xs reverse-reverse [] = refl reverse-reverse (x :: xs) -- reverse (reverse (x :: xs)) ≡ x :: xs -- reverse (reverse xs ++ (x :: [])) ≡ x :: xs rewrite -- NOTE -- v reverse-distributivity (reverse xs) [ x ] -- x :: reverse (reverse xs) ≡ x :: xs -- can rewrite here then refl --| reverse-reverse xs -- x :: xs ≡ x :: xs --= refl -- or use 'cong' on rightof '=' = cong (x ::_) (reverse-reverse xs) {- map satisfies functor laws: - identity : map id = id - composition : map (g . h) = map g . h -} map-id : {A : Set} → (xs : List A) → map id xs ≡ xs map-id [] = refl map-id (x :: xs) -- map id (x :: xs) ≡ x :: xs -- id x :: map id xs ≡ x :: xs = cong (x ::_) (map-id xs) _◦_ : {A B C : Set} → (B → C) → (A → B) → (A → C) g ◦ h = λ x → g (h x) map-compose : {A B C : Set} → (f : B → C) → (g : A → B) → (xs : List A) → map (f ◦ g) xs ≡ map f (map g xs) map-compose f g [] = refl map-compose f g (x :: xs) -- map (f ◦ g) (x :: xs) ≡ map f (map g (x :: xs)) -- (f ◦ g) x :: map (f ◦ g) xs ≡ f (g x) :: map f (map g xs) {- this rewrite sym (map-compose f g xs) -- f (g x) :: map (λ x₁ → f (g x₁)) xs ≡ f (g x) :: map (λ x₁ → f (g x₁)) xs = refl -} -- or this = cong (f (g x) ::_) (map-compose f g xs) -- ex 4.4 length-map : {A B : Set} {f : A → B} → (xs : List A) → length (map f xs) ≡ length xs length-map [] = refl length-map (x :: xs) -- length (map f (x :: xs)) ≡ length (x :: xs) -- suc (length (map f xs)) ≡ suc (length xs) = cong suc (length-map xs) -- ex 4.5 take : {A : Set} → List A → Nat → List A take _ zero = [] take [] (suc n) = [] take (x :: xs) (suc n) = x :: take xs n take-0 : take ex-xs 0 ≡ [] take-0 = refl take-1 : take ex-xs 1 ≡ 0 :: [] take-1 = refl take-2 : take ex-xs 2 ≡ 0 :: 1 :: [] take-2 = refl take-3 : take ex-xs 3 ≡ 0 :: 1 :: 2 :: [] take-3 = refl take-4 : take ex-xs 4 ≡ ex-xs take-4 = refl take-5 : take ex-xs 5 ≡ ex-xs take-5 = refl drop : {A : Set} → List A → Nat → List A drop xs zero = xs drop [] (suc x) = [] drop (_ :: xs) (suc n) = drop xs n drop-0 : drop ex-xs 0 ≡ ex-xs drop-0 = refl drop-1 : drop ex-xs 1 ≡ 1 :: 2 :: 3 :: [] drop-1 = refl drop-2 : drop ex-xs 2 ≡ 2 :: 3 :: [] drop-2 = refl drop-3 : drop ex-xs 3 ≡ 3 :: [] drop-3 = refl drop-4 : drop ex-xs 4 ≡ [] drop-4 = refl drop-5 : drop ex-xs 5 ≡ [] drop-5 = refl take-drop : {A : Set} → (xs : List A) → (n : Nat) → take xs n ++ drop xs n ≡ xs take-drop [] zero = refl take-drop [] (suc n) = refl take-drop (x :: xs) zero = refl take-drop (x :: xs) (suc n) -- (take (x :: xs) (suc n) ++ drop (x :: xs) (suc n)) ≡ x :: xs -- x :: (take xs n ++ drop xs n) ≡ x :: xs = cong (x ::_) (take-drop xs n) -------------------------------------------------- -- verifying optimizations -- list optimization reverse-acc : {A : Set} → List A → List A → List A reverse-acc [] ys = ys reverse-acc (x :: xs) ys = reverse-acc xs (x :: ys) reverse' : {A : Set} → List A → List A reverse' xs = reverse-acc xs [] reverse-acc-lemma : {A : Set} → (xs ys : List A) → reverse-acc xs ys ≡ reverse xs ++ ys reverse-acc-lemma [] _ = refl reverse-acc-lemma (x :: xs) ys -- reverse-acc (x :: xs) ys ≡ (reverse (x :: xs) ++ ys) -- reverse-acc xs (x :: ys) ≡ ((reverse xs ++ (x :: [])) ++ ys) rewrite append-assoc (reverse xs) [ x ] ys -- reverse-acc xs (x :: ys) ≡ (reverse xs ++ (x :: ys)) | reverse-acc-lemma xs (x :: ys) -- (reverse xs ++ (x :: ys)) ≡ (reverse xs ++ (x :: ys)) = refl reverse'-reverse : {A : Set} → (xs : List A) → reverse' xs ≡ reverse xs reverse'-reverse [] = refl reverse'-reverse (x :: xs) -- reverse' (x :: xs) ≡ reverse (x :: xs) -- reverse' (x :: xs) ≡ (reverse xs ++ (x :: [])) rewrite reverse-acc-lemma xs [ x ] -- (reverse xs ++ (x :: [])) ≡ (reverse xs ++ (x :: [])) = refl -- tree optimization data Tree (A : Set) : Set where leaf : A → Tree A node : Tree A → Tree A → Tree A flatten : {A : Set} → Tree A → List A flatten (leaf a) = [ a ] flatten (node t1 t2) = flatten t1 ++ flatten t2 flatten-acc : {A : Set} → Tree A → List A → List A flatten-acc (leaf x) xs = x :: xs flatten-acc (node t1 t2) xs = flatten-acc t1 (flatten-acc t2 xs) flatten' : {A : Set} → Tree A → List A flatten' t = flatten-acc t [] flatten-acc-lemma : {A : Set} → (t : Tree A) → (ys : List A) → flatten-acc t ys ≡ flatten t ++ ys flatten-acc-lemma (leaf x) _ = refl flatten-acc-lemma (node t1 t2) ys -- flatten-acc (node t1 t2) ys ≡ (flatten (node t1 t2) ++ ys) -- flatten-acc t1 (flatten-acc t2 ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) rewrite flatten-acc-lemma t1 (flatten-acc t2 ys) -- (flatten t1 ++ flatten-acc t2 ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) | flatten-acc-lemma t2 ys -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ ((flatten t1 ++ flatten t2) ++ ys) | append-assoc (flatten t1) (flatten t2) ys -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ (flatten t1 ++ (flatten t2 ++ ys)) = refl flatten-acc-flatten : {A : Set} → (t : Tree A) → (ys : List A) → flatten-acc t ys ≡ flatten t ++ ys flatten-acc-flatten (leaf x) ys = refl -- flatten-acc (leaf x) ys ≡ (flatten (leaf x) ++ ys) flatten-acc-flatten (node t1 t2) ys -- flatten-acc (node t1 t2) ys ≡ (flatten (node t1 t2) ++ ys) -- flatten-acc t1 (flatten-acc t2 ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) rewrite flatten-acc-lemma t2 ys -- flatten-acc t1 (flatten t2 ++ ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) | flatten-acc-lemma t1 (flatten t2 ++ ys) -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ ((flatten t1 ++ flatten t2) ++ ys) | append-assoc (flatten t1) (flatten t2) ys -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ (flatten t1 ++ (flatten t2 ++ ys)) = refl -- ex 4.6 flatten'-flatten : {A : Set} → (t : Tree A) → flatten' t ≡ flatten t flatten'-flatten (leaf x) = refl flatten'-flatten (node t1 t2) -- flatten' (node t1 t2) ≡ flatten (node t1 t2) -- flatten' (node t1 t2) ≡ (flatten t1 ++ flatten t2) rewrite sym (flatten-acc-flatten t1 (flatten t2)) -- flatten-acc t1 (flatten-acc t2 []) ≡ flatten-acc t1 (flatten t2) | flatten-acc-flatten t2 [] -- flatten-acc t1 (flatten t2 ++ []) ≡ flatten-acc t1 (flatten t2) | append-[] (flatten t2) -- flatten-acc t1 (flatten t2) ≡ flatten-acc t1 (flatten t2) = refl -------------------------------------------------- -- compiler correctness data Expr : Set where valE : Nat → Expr addE : Expr → Expr → Expr eval : Expr → Nat eval (valE x) = x eval (addE e1 e2) = eval e1 + eval e2 data Op : Set where PUSH : Nat → Op ADD : Op Stack = List Nat Code = List Op exec : Code → Stack → Stack exec [] s = s exec (PUSH x :: c) s = exec c (x :: s) exec (ADD :: c) (m :: n :: s) = exec c (n + m :: s) exec (ADD :: c) _ = [] compile' : Expr → Code → Code compile' (valE x) c = PUSH x :: c compile' (addE e1 e2) c = compile' e1 (compile' e2 (ADD :: c)) compile : Expr → Code compile e = compile' e [] compile'-exec-eval : (e : Expr) → (s : Stack) → (c : Code) → exec (compile' e c) s ≡ exec c (eval e :: s) compile'-exec-eval (valE _) _ _ = refl compile'-exec-eval (addE e1 e2) s c -- exec (compile' (addE e1 e2) c) s ≡ exec c (eval (addE e1 e2) :: s) -- exec (compile' e1 (compile' e2 (ADD :: c))) s ≡ exec c (eval e1 + eval e2 :: s) rewrite compile'-exec-eval e1 s (compile' e2 (ADD :: c)) -- exec (compile' e2 (ADD :: c)) (eval e1 :: s) ≡ exec c (eval e1 + eval e2 :: s) | compile'-exec-eval e2 (eval e1 :: s) (ADD :: c) -- exec c (eval e1 + eval e2 :: s) ≡ exec c (eval e1 + eval e2 :: s) = refl compile-exec-eval : (e : Expr) → exec (compile e) [] ≡ [ eval e ] compile-exec-eval e = compile'-exec-eval e [] []
29.714692
99
0.492424
37b7ddc91dcd3155516f58f98b67a45444a61ae3
1,972
agda
Agda
homotopy/3x3/ToFrom.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/3x3/ToFrom.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/3x3/ToFrom.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.ToFrom {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (A₀∙ to A∙₀; A₂∙ to A∙₂; A₄∙ to A∙₄; module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) open To d open From d open import homotopy.3x3.ToFromInit d open import homotopy.3x3.ToFrom2 d open import homotopy.3x3.ToFrom3 d to-from-g-g : (c : A₂₂) → (to-from-g-l (f₁₂ c) , ↓-='-out (apd (to-from-r ∘ f∙₃) (glue c)) , ↓-='-out (apd (ap to ∘ ap from ∘ glue) (glue c)) =□□ ↓-='-out (apd glue (glue c)) , ↓-='-out (apd (to-from-l ∘ f∙₁) (glue c)) , to-from-g-r (f₃₂ c)) to-from-g-g c = coh _ lemma1 lemma3 _ _ (↓-='-out (apd glue (glue c))) lemma2 where open M2 c open M3 c to-from-g-g' : (c : A₂₂) → to-from-g-l (f₁₂ c) == to-from-g-r (f₃₂ c) [ (λ c → (to-from-l (f∙₁ c) , glue c =□ ap to (ap from (glue c)) , to-from-r (f∙₃ c))) ↓ glue c ] to-from-g-g' c = ↓-=□-in (to-from-g-g c) module ToFromG = PushoutElim {d = span _ _ _ f₁₂ f₃₂} {P = λ c → (to-from-l (f∙₁ c) , glue c =□ ap to (ap from (glue c)) , to-from-r (f∙₃ c))} to-from-g-l to-from-g-r to-from-g-g' to-from-g : (c : A∙₂) → (to-from-l (f∙₁ c) , glue c =□ ap to (ap from (glue c)) , to-from-r (f∙₃ c)) to-from-g = ToFromG.f to-from-g' : (c : A∙₂) → to-from-l (f∙₁ c) == to-from-r (f∙₃ c) [ (λ z → to (from z) == z) ↓ glue c ] to-from-g' c = ↓-∘=idf-in to from (to-from-g c) to-from : (x : Pushout^2 (transpose d)) → to (from x) == x to-from = Pushout-elim to-from-l to-from-r to-from-g'
41.083333
167
0.535497
7226c4e90eb34d574b26630971ad15471e7d2480
622
agda
Agda
test/Succeed/Issue383b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue383b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue383b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2011-05-09 -- {-# OPTIONS -v tc.inj:40 -v tc.meta:30 #-} module Issue383b where postulate Σ : (A : Set) → (A → Set) → Set U : Set El : U → Set mutual data Ctxt : Set where _▻_ : (Γ : Ctxt) → (Env Γ → U) → Ctxt Env : Ctxt → Set Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (σ γ) postulate Δ : Ctxt σ : Env Δ → U δ : U → Env (Δ ▻ σ) data Foo : (Γ : Ctxt) → (U → Env Γ) → Set where foo : Foo _ δ -- WORKS NOW; OLD COMPLAINT: -- Agda does not solve or simplify the following constraint. Why? Env -- is constructor-headed. -- -- _40 := δ if [(Σ (Env Δ) (λ γ → El (σ γ))) =< (Env _39) : Set]
20.064516
69
0.53537
643f05a3bb85f0ca6989d2be0c6c24fa37ad843b
8,218
agda
Agda
agda/Pi.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
agda/Pi.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
agda/Pi.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --no-termination-check #-} module Pi where open import Data.Empty open import Data.Unit open import Data.Sum hiding (map) open import Data.Product hiding (map) open import Relation.Binary.PropositionalEquality hiding (sym; [_]) infixr 30 _⟷_ infixr 30 _⟺_ infixr 20 _◎_ ------------------------------------------------------------------------------ -- A universe of our value types data B : Set where ZERO : B ONE : B PLUS : B → B → B TIMES : B → B → B ⟦_⟧ : B → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS b1 b2 ⟧ = ⟦ b1 ⟧ ⊎ ⟦ b2 ⟧ ⟦ TIMES b1 b2 ⟧ = ⟦ b1 ⟧ × ⟦ b2 ⟧ ------------------------------------------------------------------------------ -- Primitive isomorphisms data _⟷_ : B → B → Set where -- (+,0) commutative monoid unite₊ : { b : B } → PLUS ZERO b ⟷ b uniti₊ : { b : B } → b ⟷ PLUS ZERO b swap₊ : { b₁ b₂ : B } → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) -- (*,1) commutative monoid unite⋆ : { b : B } → TIMES ONE b ⟷ b uniti⋆ : { b : B } → b ⟷ TIMES ONE b swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃ -- id id⟷ : { b : B } → b ⟷ b adjointP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) adjointP unite₊ = uniti₊ adjointP uniti₊ = unite₊ adjointP swap₊ = swap₊ adjointP assocl₊ = assocr₊ adjointP assocr₊ = assocl₊ adjointP unite⋆ = uniti⋆ adjointP uniti⋆ = unite⋆ adjointP swap⋆ = swap⋆ adjointP assocl⋆ = assocr⋆ adjointP assocr⋆ = assocl⋆ adjointP dist = factor adjointP factor = dist adjointP id⟷ = id⟷ evalP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧ evalP unite₊ (inj₁ ()) evalP unite₊ (inj₂ v) = v evalP uniti₊ v = inj₂ v evalP swap₊ (inj₁ v) = inj₂ v evalP swap₊ (inj₂ v) = inj₁ v evalP assocl₊ (inj₁ v) = inj₁ (inj₁ v) evalP assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) evalP assocl₊ (inj₂ (inj₂ v)) = inj₂ v evalP assocr₊ (inj₁ (inj₁ v)) = inj₁ v evalP assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) evalP assocr₊ (inj₂ v) = inj₂ (inj₂ v) evalP unite⋆ (tt , v) = v evalP uniti⋆ v = (tt , v) evalP swap⋆ (v₁ , v₂) = (v₂ , v₁) evalP assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) evalP assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) evalP dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) evalP dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) evalP factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) evalP factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) evalP id⟷ v = v -- Backwards evaluator bevalP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → ⟦ b₂ ⟧ → ⟦ b₁ ⟧ bevalP c v = evalP (adjointP c) v ------------------------------------------------------------------------------ -- Closure combinators data _⟺_ : B → B → Set where iso : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₁ ⟺ b₂) sym : { b₁ b₂ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁) _◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₃) → (b₁ ⟺ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (PLUS b₁ b₂ ⟺ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (TIMES b₁ b₂ ⟺ TIMES b₃ b₄) -- adjoint : { b₁ b₂ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁) adjoint (iso c) = iso (adjointP c) adjoint (sym c) = c adjoint (c₁ ◎ c₂) = adjoint c₂ ◎ adjoint c₁ adjoint (c₁ ⊕ c₂) = adjoint c₁ ⊕ adjoint c₂ adjoint (c₁ ⊗ c₂) = adjoint c₁ ⊗ adjoint c₂ -- -- (Context a b c d) represents a combinator (c <-> d) with a hole -- requiring something of type (a <-> b). When we use these contexts, -- it is always the case that the (c <-> a) part of the computation -- has ALREADY been done and that we are about to evaluate (a <-> b) -- using a given 'a'. The continuation takes the output 'b' and -- produces a 'd'. data Context : B → B → B → B → Set where emptyC : {a b : B} → Context a b a b seqC₁ : {a b c i o : B} → (b ⟺ c) → Context a c i o → Context a b i o seqC₂ : {a b c i o : B} → (a ⟺ b) → Context a c i o → Context b c i o leftC : {a b c d i o : B} → (c ⟺ d) → Context (PLUS a c) (PLUS b d) i o → Context a b i o rightC : {a b c d i o : B} → (a ⟺ b) → Context (PLUS a c) (PLUS b d) i o → Context c d i o -- the (i <-> a) part of the computation is completely done; so we must store -- the value of type [[ c ]] as part of the context fstC : {a b c d i o : B} → ⟦ c ⟧ → (c ⟺ d) → Context (TIMES a c) (TIMES b d) i o → Context a b i o -- the (i <-> c) part of the computation and the (a <-> b) part of -- the computation are completely done; so we must store the value -- of type [[ b ]] as part of the context sndC : {a b c d i o : B} → (a ⟺ b) → ⟦ b ⟧ → Context (TIMES a c) (TIMES b d) i o → Context c d i o -- Evaluation mutual -- The (c <-> a) part of the computation has been done. -- We have an 'a' and we are about to do the (a <-> b) computation. -- We get a 'b' and examine the context to get the 'd' eval_c : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ d ⟧ eval_c (iso f) v C = eval_k (iso f) (evalP f v) C eval_c (sym c) v C = eval_c (adjoint c) v C eval_c (f ◎ g) v C = eval_c f v (seqC₁ g C) eval_c (f ⊕ g) (inj₁ v) C = eval_c f v (leftC g C) eval_c (f ⊕ g) (inj₂ v) C = eval_c g v (rightC f C) eval_c (f ⊗ g) (v₁ , v₂) C = eval_c f v₁ (fstC v₂ g C) -- The (c <-> a) part of the computation has been done. -- The (a <-> b) part of the computation has been done. -- We need to examine the context to get the 'd'. -- We rebuild the combinator on the way out. eval_k : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ d ⟧ eval_k f v emptyC = v eval_k f v (seqC₁ g C) = eval_c g v (seqC₂ f C) eval_k g v (seqC₂ f C) = eval_k (f ◎ g) v C eval_k f v (leftC g C) = eval_k (f ⊕ g) (inj₁ v) C eval_k g v (rightC f C) = eval_k (f ⊕ g) (inj₂ v) C eval_k f v₁ (fstC v₂ g C) = eval_c g v₂ (sndC f v₁ C) eval_k g v₂ (sndC f v₁ C) = eval_k (f ⊗ g) (v₁ , v₂) C -- Backwards evaluator mutual -- The (d <-> b) part of the computation has been done. -- We have a 'b' and we are about to do the (a <-> b) computation backwards. -- We get an 'a' and examine the context to get the 'c' beval_c : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ c ⟧ beval_c (iso f) v C = beval_k (iso f) (bevalP f v) C beval_c (sym c) v C = beval_c (adjoint c) v C beval_c (f ◎ g) v C = beval_c g v (seqC₂ f C) beval_c (f ⊕ g) (inj₁ v) C = beval_c f v (leftC g C) beval_c (f ⊕ g) (inj₂ v) C = beval_c g v (rightC f C) beval_c (f ⊗ g) (v₁ , v₂) C = beval_c g v₂ (sndC f v₁ C) -- The (d <-> b) part of the computation has been done. -- The (a <-> b) backwards computation has been done. -- We have an 'a' and examine the context to get the 'c' beval_k : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ c ⟧ beval_k f v emptyC = v beval_k g v (seqC₂ f C) = beval_c f v (seqC₁ g C) beval_k f v (seqC₁ g C) = beval_k (f ◎ g) v C beval_k f v (leftC g C) = beval_k (f ⊕ g) (inj₁ v) C beval_k g v (rightC f C) = beval_k (f ⊕ g) (inj₂ v) C beval_k g v₂ (sndC f v₁ C) = beval_c f v₁ (fstC v₂ g C) beval_k f v₁ (fstC v₂ g C) = beval_k (f ⊗ g) (v₁ , v₂) C ------------------------------------------------------------------------------ -- Proposition 'Reversible' -- eval_c : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ d ⟧ -- eval_k : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ d ⟧ -- beval_c : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ c ⟧ -- beval_k : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ c ⟧ -- Prop. 2.2 {- logical-reversibility : {a b : B} {f : a ⟺ b} {va : ⟦ a ⟧} {vb : ⟦ b ⟧} → eval_c f va emptyC ≡ eval_k f vb emptyC → eval_c (adjoint f) vb emptyC ≡ eval_k (adjoint f) va emptyC logical-reversibility = λ fwd≡bwd → {!!} -} ------------------------------------------------------------------------------
37.697248
80
0.520321
73911edaa3f6823f38973634630504b8438082a1
60
agda
Agda
test/interaction/Imports/Issue5357-B.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Imports/Issue5357-B.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Imports/Issue5357-B.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Imports.Issue5357-B where import Imports.Issue5357-D
20
32
0.85
0df2ad0ce5f4c3258ce0068bfd7fbce8a4192b4a
19,277
agda
Agda
models/IDescTT.agda
dataronio/epigram2
17b7858f51a35b3becb8433028c3f1ba25fbba9a
[ "MIT" ]
48
2016-01-09T17:36:19.000Z
2022-02-11T01:55:28.000Z
models/IDescTT.agda
seanwallawalla-forks/Epigram
a2064e63786cc8004cfc9ac7a0c89c2936f0b797
[ "MIT" ]
null
null
null
models/IDescTT.agda
seanwallawalla-forks/Epigram
a2064e63786cc8004cfc9ac7a0c89c2936f0b797
[ "MIT" ]
12
2016-08-14T21:36:35.000Z
2022-02-11T01:57:40.000Z
{-# OPTIONS --type-in-type #-} module IDescTT where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A : Set)(B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where data Unit : Set where Void : Unit --**************** -- Sum and friends --**************** data _+_ (A : Set)(B : Set) : Set where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : forall {x y} -> x == y -> x -> y subst refl x = x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl postulate reflFun : {A B : Set}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g --**************** -- Meta-language --**************** -- Note that we could define Nat, Bool, and the related operations in -- IDesc. But it is awful to code with them, in Agda. data Nat : Set where ze : Nat su : Nat -> Nat data Bool : Set where true : Bool false : Bool plus : Nat -> Nat -> Nat plus ze n' = n' plus (su n) n' = su (plus n n') le : Nat -> Nat -> Bool le ze _ = true le (su _) ze = false le (su n) (su n') = le n n' --******************************************** -- Desc code --******************************************** data IDesc (I : Set) : Set where var : I -> IDesc I const : Set -> IDesc I prod : IDesc I -> IDesc I -> IDesc I sigma : (S : Set) -> (S -> IDesc I) -> IDesc I pi : (S : Set) -> (S -> IDesc I) -> IDesc I --******************************************** -- Desc interpretation --******************************************** [|_|] : {I : Set} -> IDesc I -> (I -> Set) -> Set [| var i |] P = P i [| const X |] P = X [| prod D D' |] P = [| D |] P * [| D' |] P [| sigma S T |] P = Sigma S (\s -> [| T s |] P) [| pi S T |] P = (s : S) -> [| T s |] P --******************************************** -- Fixpoint construction --******************************************** data IMu {I : Set}(R : I -> IDesc I)(i : I) : Set where con : [| R i |] (\j -> IMu R j) -> IMu R i --******************************************** -- Predicate: All --******************************************** All : {I : Set}(D : IDesc I)(P : I -> Set) -> [| D |] P -> IDesc (Sigma I P) All (var i) P x = var (i , x) All (const X) P x = const Unit All (prod D D') P (d , d') = prod (All D P d) (All D' P d') All (sigma S T) P (a , b) = All (T a) P b All (pi S T) P f = pi S (\s -> All (T s) P (f s)) all : {I : Set}(D : IDesc I)(X : I -> Set) (R : Sigma I X -> Set)(P : (x : Sigma I X) -> R x) -> (xs : [| D |] X) -> [| All D X xs |] R all (var i) X R P x = P (i , x) all (const K) X R P k = Void all (prod D D') X R P (x , y) = ( all D X R P x , all D' X R P y ) all (sigma S T) X R P (a , b) = all (T a) X R P b all (pi S T) X R P f = \a -> all (T a) X R P (f a) --******************************************** -- Elimination principle: induction --******************************************** -- One would like to write the following: {- indI : {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs)) -> (i : I)(x : IMu R i) -> P ( i , x ) indI {I} R P m i (con xs) = m i xs (all (R i) (IMu R) P induct xs) where induct : (x : Sigma I (IMu R)) -> P x induct (i , xs) = indI R P m i xs -} -- But the termination-checker complains, so here we go -- inductive-recursive: module Elim {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs )) where mutual indI : (i : I)(x : IMu R i) -> P (i , x) indI i (con xs) = m i xs (hyps (R i) xs) hyps : (D : IDesc I) -> (xs : [| D |] (IMu R)) -> [| All D (IMu R) xs |] P hyps (var i) x = indI i x hyps (const X) x = Void hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (pi S R) f = \ s -> hyps (R s) (f s) hyps (sigma S R) ( a , b ) = hyps (R a) b indI : {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs)) -> (i : I)(x : IMu R i) -> P ( i , x ) indI = Elim.indI --******************************************** -- Examples --******************************************** --**************** -- Nat --**************** data NatConst : Set where Ze : NatConst Su : NatConst natCases : NatConst -> IDesc Unit natCases Ze = const Unit natCases Suc = var Void NatD : Unit -> IDesc Unit NatD Void = sigma NatConst natCases Natd : Unit -> Set Natd x = IMu NatD x zed : Natd Void zed = con (Ze , Void) sud : Natd Void -> Natd Void sud n = con (Su , n) --**************** -- Desc --**************** data DescDConst : Set where lvar : DescDConst lconst : DescDConst lprod : DescDConst lpi : DescDConst lsigma : DescDConst descDChoice : Set -> DescDConst -> IDesc Unit descDChoice I lvar = const I descDChoice _ lconst = const Set descDChoice _ lprod = prod (var Void) (var Void) descDChoice _ lpi = sigma Set (\S -> pi S (\s -> var Void)) descDChoice _ lsigma = sigma Set (\S -> pi S (\s -> var Void)) descD : (I : Set) -> IDesc Unit descD I = sigma DescDConst (descDChoice I) IDescl0 : (I : Set) -> Unit -> Set IDescl0 I = IMu (\_ -> descD I) IDescl : (I : Set) -> Set IDescl I = IDescl0 I _ varl : {I : Set}(i : I) -> IDescl I varl i = con (lvar , i) constl : {I : Set}(X : Set) -> IDescl I constl X = con (lconst , X) prodl : {I : Set}(D D' : IDescl I) -> IDescl I prodl D D' = con (lprod , (D , D')) pil : {I : Set}(S : Set)(T : S -> IDescl I) -> IDescl I pil S T = con (lpi , ( S , T)) sigmal : {I : Set}(S : Set)(T : S -> IDescl I) -> IDescl I sigmal S T = con (lsigma , ( S , T)) --**************** -- Vec (constraints) --**************** data VecConst : Set where Vnil : VecConst Vcons : VecConst vecDChoice : Set -> Nat -> VecConst -> IDesc Nat vecDChoice X n Vnil = const (n == ze) vecDChoice X n Vcons = sigma Nat (\m -> prod (var m) (const (n == su m))) vecD : Set -> Nat -> IDesc Nat vecD X n = sigma VecConst (vecDChoice X n) vec : Set -> Nat -> Set vec X n = IMu (vecD X) n --**************** -- Vec (de-tagged, forced) --**************** data VecConst2 : Nat -> Set where Vnil : VecConst2 ze Vcons : {n : Nat} -> VecConst2 (su n) vecDChoice2 : Set -> (n : Nat) -> VecConst2 n -> IDesc Nat vecDChoice2 X ze Vnil = const Unit vecDChoice2 X (su n) Vcons = prod (const X) (var n) vecD2 : Set -> Nat -> IDesc Nat vecD2 X n = sigma (VecConst2 n) (vecDChoice2 X n) vec2 : Set -> Nat -> Set vec2 X n = IMu (vecD2 X) n --**************** -- Fin (de-tagged) --**************** data FinConst : Nat -> Set where Fz : {n : Nat} -> FinConst (su n) Fs : {n : Nat} -> FinConst (su n) finDChoice : (n : Nat) -> FinConst n -> IDesc Nat finDChoice ze () finDChoice (su n) Fz = const Unit finDChoice (su n) Fs = var n finD : Nat -> IDesc Nat finD n = sigma (FinConst n) (finDChoice n) fin : Nat -> Set fin n = IMu finD n --******************************************** -- Enumerations (hard-coded) --******************************************** -- Unlike in Desc.agda, we don't carry the levitation of finite sets -- here. We hard-code them and manipulate with standard Agda -- machinery. Both presentation are isomorph but, in Agda, the coded -- one quickly gets unusable. data EnumU : Set where nilE : EnumU consE : EnumU -> EnumU data EnumT : (e : EnumU) -> Set where EZe : {e : EnumU} -> EnumT (consE e) ESu : {e : EnumU} -> EnumT e -> EnumT (consE e) spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi nilE P = Unit spi (consE e) P = P EZe * spi e (\e -> P (ESu e)) switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nilE P b () switch (consE e) P b EZe = fst b switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n _++_ : EnumU -> EnumU -> EnumU nilE ++ e' = e' (consE e) ++ e' = consE (e ++ e') -- A special switch, for tagged descriptions. Switching on a -- concatenation of finite sets: sswitch : (e : EnumU)(e' : EnumU)(P : Set) (b : spi e (\_ -> P))(b' : spi e' (\_ -> P))(x : EnumT (e ++ e')) -> P sswitch nilE nilE P b b' () sswitch nilE (consE e') P b b' EZe = fst b' sswitch nilE (consE e') P b b' (ESu n) = sswitch nilE e' P b (snd b') n sswitch (consE e) e' P b b' EZe = fst b sswitch (consE e) e' P b b' (ESu n) = sswitch e e' P (snd b) b' n --******************************************** -- Tagged indexed description --******************************************** FixMenu : Set -> Set FixMenu I = Sigma EnumU (\e -> (i : I) -> spi e (\_ -> IDesc I)) SensitiveMenu : Set -> Set SensitiveMenu I = Sigma (I -> EnumU) (\F -> (i : I) -> spi (F i) (\_ -> IDesc I)) TagIDesc : Set -> Set TagIDesc I = FixMenu I * SensitiveMenu I toIDesc : (I : Set) -> TagIDesc I -> (I -> IDesc I) toIDesc I ((E , ED) , (F , FD)) i = sigma (EnumT (E ++ F i)) (\x -> sswitch E (F i) (IDesc I) (ED i) (FD i) x) --******************************************** -- Catamorphism --******************************************** cata : (I : Set) (R : I -> IDesc I) (T : I -> Set) -> ((i : I) -> [| R i |] T -> T i) -> (i : I) -> IMu R i -> T i cata I R T phi i x = indI R (\it -> T (fst it)) (\i xs ms -> phi i (replace (R i) T xs ms)) i x where replace : (D : IDesc I)(T : I -> Set) (xs : [| D |] (IMu R)) (ms : [| All D (IMu R) xs |] (\it -> T (fst it))) -> [| D |] T replace (var i) T x y = y replace (const Z) T z z' = z replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Hutton's razor --******************************************** --******************************** -- Types code --******************************** data Type : Set where nat : Type bool : Type pair : Type -> Type -> Type --******************************** -- Typed expressions --******************************** Val : Type -> Set Val nat = Nat Val bool = Bool Val (pair x y) = (Val x) * (Val y) -- Fix menu: exprFixMenu : FixMenu Type exprFixMenu = ( consE (consE nilE) , \ty -> (const (Val ty), -- Val t (prod (var bool) (prod (var ty) (var ty)), -- if b then t1 else t2 Void))) -- Indexed menu: choiceMenu : Type -> EnumU choiceMenu nat = consE nilE choiceMenu bool = consE nilE choiceMenu (pair x y) = nilE choiceDessert : (ty : Type) -> spi (choiceMenu ty) (\ _ -> IDesc Type) choiceDessert nat = (prod (var nat) (var nat) , Void) choiceDessert bool = (prod (var nat) (var nat) , Void ) choiceDessert (pair x y) = Void exprSensitiveMenu : SensitiveMenu Type exprSensitiveMenu = ( choiceMenu , choiceDessert ) -- Expression: expr : TagIDesc Type expr = exprFixMenu , exprSensitiveMenu exprIDesc : TagIDesc Type -> (Type -> IDesc Type) exprIDesc D = toIDesc Type D --******************************** -- Closed terms --******************************** closeTerm : Type -> IDesc Type closeTerm = exprIDesc expr --******************************** -- Closed term evaluation --******************************** eval : {ty : Type} -> IMu closeTerm ty -> Val ty eval {ty} term = cata Type closeTerm Val evalOneStep ty term where evalOneStep : (ty : Type) -> [| closeTerm ty |] Val -> Val ty evalOneStep _ (EZe , t) = t evalOneStep _ ((ESu EZe) , (true , ( x , _))) = x evalOneStep _ ((ESu EZe) , (false , ( _ , y ))) = y evalOneStep nat ((ESu (ESu EZe)) , (x , y)) = plus x y evalOneStep nat ((ESu (ESu (ESu ()))) , t) evalOneStep bool ((ESu (ESu EZe)) , (x , y) ) = le x y evalOneStep bool ((ESu (ESu (ESu ()))) , _) evalOneStep (pair x y) (ESu (ESu ()) , _) --******************************************** -- Free monad construction --******************************************** _**_ : {I : Set} (R : TagIDesc I)(X : I -> Set) -> TagIDesc I ((E , ED) , FFD) ** X = ((( consE E , \ i -> ( const (X i) , ED i ))) , FFD) --******************************************** -- Substitution --******************************************** apply : {I : Set} (R : TagIDesc I)(X Y : I -> Set) -> ((i : I) -> X i -> IMu (toIDesc I (R ** Y)) i) -> (i : I) -> [| toIDesc I (R ** X) i |] (IMu (toIDesc I (R ** Y))) -> IMu (toIDesc I (R ** Y)) i apply (( E , ED) , (F , FD)) X Y sig i (EZe , x) = sig i x apply (( E , ED) , (F , FD)) X Y sig i (ESu n , t) = con (ESu n , t) substI : {I : Set} (X Y : I -> Set)(R : TagIDesc I) (sigma : (i : I) -> X i -> IMu (toIDesc I (R ** Y)) i) (i : I)(D : IMu (toIDesc I (R ** X)) i) -> IMu (toIDesc I (R ** Y)) i substI {I} X Y R sig i term = cata I (toIDesc I (R ** X)) (IMu (toIDesc I (R ** Y))) (apply R X Y sig) i term --******************************************** -- Hutton's razor is free monad --******************************************** Empty : Type -> Set Empty _ = Zero closeTerm' : Type -> IDesc Type closeTerm' = toIDesc Type (expr ** Empty) update : {ty : Type} -> IMu closeTerm ty -> IMu closeTerm' ty update {ty} tm = cata Type closeTerm (IMu closeTerm') (\ _ tagTm -> con (ESu (fst tagTm) , (snd tagTm))) ty tm --******************************** -- Closed term' evaluation --******************************** eval' : {ty : Type} -> IMu closeTerm' ty -> Val ty eval' {ty} term = cata Type closeTerm' Val evalOneStep ty term where evalOneStep : (ty : Type) -> [| closeTerm' ty |] Val -> Val ty evalOneStep _ (EZe , ()) evalOneStep _ (ESu EZe , t) = t evalOneStep _ ((ESu (ESu EZe)) , (true , ( x , _))) = x evalOneStep _ ((ESu (ESu EZe)) , (false , ( _ , y ))) = y evalOneStep nat ((ESu (ESu (ESu EZe))) , (x , y)) = plus x y evalOneStep nat (((ESu (ESu (ESu (ESu ()))))) , t) evalOneStep bool ((ESu (ESu (ESu EZe))) , (x , y) ) = le x y evalOneStep bool ((ESu (ESu (ESu (ESu ())))) , _) evalOneStep (pair x y) (ESu (ESu (ESu ())) , _) --******************************** -- Open terms --******************************** -- A context is a snoc-list of types -- put otherwise, a context is a type telescope data Context : Set where [] : Context _,_ : Context -> Type -> Context -- The environment realizes the context, having a value for each type Env : Context -> Set Env [] = Unit Env (G , S) = Env G * Val S -- A typed-variable indexes into the context, obtaining a proof that -- what we get is what you want (WWGIWYW) Var : Context -> Type -> Set Var [] T = Zero Var (G , S) T = Var G T + (S == T) -- The lookup gets into the context to extract the value lookup : (G : Context) -> Env G -> (T : Type) -> Var G T -> Val T lookup [] _ T () lookup (G , .T) (g , t) T (r refl) = t lookup (G , S) (g , t) T (l x) = lookup G g T x -- Open term: holes are either values or variables in a context openTerm : Context -> Type -> IDesc Type openTerm c = toIDesc Type (expr ** (Var c)) --******************************** -- Evaluation of open terms --******************************** -- |discharge| is the local substitution expected by |substI|. It is -- just sugar around context lookup discharge : (context : Context) -> Env context -> (ty : Type) -> Var context ty -> IMu closeTerm' ty discharge ctxt env ty variable = con (ESu EZe , lookup ctxt env ty variable ) -- |substExpr| is the specialized |substI| to expressions. We get it -- generically from the free monad construction. substExpr : {ty : Type} (context : Context) (sigma : (ty : Type) -> Var context ty -> IMu closeTerm' ty) -> IMu (openTerm context) ty -> IMu closeTerm' ty substExpr {ty} c sig term = substI (Var c) Empty expr sig ty term -- By first doing substitution to close the term, we can use -- evaluation of closed terms, obtaining evaluation of open terms -- under a valid context. evalOpen : {ty : Type}(context : Context) -> Env context -> IMu (openTerm context) ty -> Val ty evalOpen ctxt env tm = eval' (substExpr ctxt (discharge ctxt env) tm) --******************************** -- Tests --******************************** -- Test context: -- V 0 :-> true, V 1 :-> 2, V 2 :-> ( false , 1 ) testContext : Context testContext = (([] , bool) , nat) , pair bool nat testEnv : Env testContext testEnv = ((Void , true ) , su (su ze)) , (false , su ze) -- V 1 test1 : IMu (openTerm testContext) nat test1 = con (EZe , ( l (r refl) ) ) testSubst1 : IMu closeTerm' nat testSubst1 = substExpr testContext (discharge testContext testEnv) test1 -- = 2 testEval1 : Val nat testEval1 = evalOpen testContext testEnv test1 -- add 1 (V 1) test2 : IMu (openTerm testContext) nat test2 = con (ESu (ESu (ESu EZe)) , (con (ESu EZe , su ze) , con ( EZe , l (r refl) )) ) testSubst2 : IMu closeTerm' nat testSubst2 = substExpr testContext (discharge testContext testEnv) test2 -- = 3 testEval2 : Val nat testEval2 = evalOpen testContext testEnv test2 -- if (V 0) then (V 1) else 0 test3 : IMu (openTerm testContext) nat test3 = con (ESu (ESu EZe) , (con (EZe , l (l (r refl))) , (con (EZe , l (r refl)) , con (ESu EZe , ze)))) testSubst3 : IMu closeTerm' nat testSubst3 = substExpr testContext (discharge testContext testEnv) test3 -- = 2 testEval3 : Val nat testEval3 = evalOpen testContext testEnv test3 -- V 2 test4 : IMu (openTerm testContext) (pair bool nat) test4 = con (EZe , r refl ) testSubst4 : IMu closeTerm' (pair bool nat) testSubst4 = substExpr testContext (discharge testContext testEnv) test4 -- = (false , 1) testEval4 : Val (pair bool nat) testEval4 = evalOpen testContext testEnv test4
29.296353
110
0.468797
9afc69a77fb744b70045de0c6a2fdc76c3d62265
1,205
agda
Agda
Structure/Setoid.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Setoid.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Setoid.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Setoid {ℓₑ ℓₒ} where import Lvl open import Functional.Dependent open import Lang.Instance open import Logic.Propositional open import Logic.Predicate open import Structure.Relator.Equivalence open import Syntax.Function import Type module _ where open Type -- An instance of `Equiv(T)` is that the type `T` has an equivalence relation which may be treated as a default one. -- Helps finding an instance of an equivalence relation for a type. record Equiv (T : Type{ℓₒ}) : Type{Lvl.𝐒(ℓₑ) Lvl.⊔ ℓₒ} where constructor intro infixl 15 _≡_ _≢_ field _≡_ : T → T → Type{ℓₑ} field instance ⦃ equivalence ⦄ : Equivalence(_≡_) _≢_ : T → T → Type{ℓₑ} a ≢ b = ¬(a ≡ b) open Equivalence(equivalence) public open Equiv ⦃ ... ⦄ using (_≡_ ; _≢_) renaming (equivalence to Equiv-equivalence) public {-# INLINE _≡_ #-} -- TODO: Not sure if this does anything {-# DISPLAY Equiv._≡_ a b = a ≡ b #-} -- TODO: Not sure about this either module _ where -- A set and an equivalence relation on it Setoid = ∃(Equiv) module Setoid(([∃]-intro T ⦃ equiv-T ⦄) : Setoid) where Type : Type.Type Type = T open Equiv(equiv-T) public
28.023256
118
0.66888
ed77f79a01c7f4f9379daea23e26a4d62fb47e0a
622
agda
Agda
agda-stdlib-0.9/src/Data/M.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/M.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/M.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- M-types (the dual of W-types) ------------------------------------------------------------------------ module Data.M where open import Level open import Coinduction -- The family of M-types. data M {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where inf : (x : A) (f : B x → ∞ (M A B)) → M A B -- Projections. head : ∀ {a b} {A : Set a} {B : A → Set b} → M A B → A head (inf x f) = x tail : ∀ {a b} {A : Set a} {B : A → Set b} → (x : M A B) → B (head x) → M A B tail (inf x f) b = ♭ (f b)
23.923077
72
0.382637
3ff9218173357d25042e1a4bde58bcfee17fddfd
1,716
agda
Agda
Cubical/Data/SumFin/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/SumFin/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/SumFin/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.SumFin.Properties where open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Empty as ⊥ import Cubical.Data.Fin as Fin open import Cubical.Data.Nat open import Cubical.Data.SumFin.Base as SumFin private variable ℓ : Level k : ℕ SumFin→Fin : Fin k → Fin.Fin k SumFin→Fin = SumFin.elim (λ {k} _ → Fin.Fin k) Fin.fzero Fin.fsuc Fin→SumFin : Fin.Fin k → Fin k Fin→SumFin = Fin.elim (λ {k} _ → Fin k) fzero fsuc Fin→SumFin-fsuc : (fk : Fin.Fin k) → Fin→SumFin (Fin.fsuc fk) ≡ fsuc (Fin→SumFin fk) Fin→SumFin-fsuc = Fin.elim-fsuc (λ {k} _ → Fin k) fzero fsuc SumFin→Fin→SumFin : (fk : Fin k) → Fin→SumFin (SumFin→Fin fk) ≡ fk SumFin→Fin→SumFin = SumFin.elim (λ fk → Fin→SumFin (SumFin→Fin fk) ≡ fk) refl λ {k} {fk} eq → Fin→SumFin (Fin.fsuc (SumFin→Fin fk)) ≡⟨ Fin→SumFin-fsuc (SumFin→Fin fk) ⟩ fsuc (Fin→SumFin (SumFin→Fin fk)) ≡⟨ cong fsuc eq ⟩ fsuc fk ∎ Fin→SumFin→Fin : (fk : Fin.Fin k) → SumFin→Fin (Fin→SumFin fk) ≡ fk Fin→SumFin→Fin = Fin.elim (λ fk → SumFin→Fin (Fin→SumFin fk) ≡ fk) refl λ {k} {fk} eq → SumFin→Fin (Fin→SumFin (Fin.fsuc fk)) ≡⟨ cong SumFin→Fin (Fin→SumFin-fsuc fk) ⟩ Fin.fsuc (SumFin→Fin (Fin→SumFin fk)) ≡⟨ cong Fin.fsuc eq ⟩ Fin.fsuc fk ∎ SumFin≃Fin : ∀ k → Fin k ≃ Fin.Fin k SumFin≃Fin _ = isoToEquiv (iso SumFin→Fin Fin→SumFin Fin→SumFin→Fin SumFin→Fin→SumFin) SumFin≡Fin : ∀ k → Fin k ≡ Fin.Fin k SumFin≡Fin k = ua (SumFin≃Fin k)
35.020408
84
0.635781
4d953052f9e68997876641a0b65923b0f10e2f91
1,719
agda
Agda
src/Categories/Category/Monoidal/Traced.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Monoidal/Traced.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Monoidal/Traced.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal module Categories.Category.Monoidal.Traced {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where open Category C open import Level open import Data.Product using (_,_) open import Categories.Category.Monoidal.Symmetric M private variable A B X Y : Obj f g : A ⇒ B ------------------------------------------------------------------------------ -- Def from http://ncatlab.org/nlab/show/traced+monoidal+category -- -- A symmetric monoidal category (C,⊗,1,b) (where b is the symmetry) is -- said to be traced if it is equipped with a natural family of functions -- -- TrXA,B:C(A⊗X,B⊗X)→C(A,B) -- satisfying three axioms: -- -- Vanishing: Tr1A,B(f)=f (for all f:A→B) and -- TrX⊗YA,B=TrXA,B(TrYA⊗X,B⊗X(f)) (for all f:A⊗X⊗Y→B⊗X⊗Y) -- -- Superposing: TrXC⊗A,C⊗B(idC⊗f)=idC⊗TrXA,B(f) (for all f:A⊗X→B⊗X) -- -- Yanking: TrXX,X(bX,X)=idX -- Traced monoidal category -- is a symmetric monoidal category with a trace operation -- -- note that the definition in this library is significantly easier than the previous one because -- we adopt a simpler definition of monoidal category to begin with. record Traced : Set (levelOfTerm M) where field symmetric : Symmetric open Symmetric symmetric public field trace : ∀ {X A B} → A ⊗₀ X ⇒ B ⊗₀ X → A ⇒ B vanishing₁ : trace {X = unit} (f ⊗₁ id) ≈ f vanishing₂ : trace {X = X} (trace {X = Y} (associator.to ∘ f ∘ associator.from)) ≈ trace {X = X ⊗₀ Y} f superposing : trace {X = X} (associator.to ∘ id {Y} ⊗₁ f ∘ associator.from) ≈ id {Y} ⊗₁ trace {X = X} f yanking : trace (braiding.⇒.η (X , X)) ≈ id
30.696429
107
0.622455
3faa37d347ba6c50d182a3919f1d3d98d886fab4
17
agda
Agda
test/Fail/Issue1389.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1389.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1389.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
unquoteDef x = ?
8.5
16
0.647059
37c122d4acc1bcf9fefbba2e876dfd7cd06f6ea0
16,934
agda
Agda
Cubical/Foundations/Prelude.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{- This file proves a variety of basic results about paths: - refl, sym, cong and composition of paths. This is used to set up equational reasoning. - Transport, subst and functional extensionality - J and its computation rule (up to a path) - Σ-types and contractibility of singletons - Converting PathP to and from a homogeneous path with transp - Direct definitions of lower h-levels - Export natural numbers - Export universe lifting -} {-# OPTIONS --safe #-} module Cubical.Foundations.Prelude where open import Cubical.Core.Primitives public infixr 30 _∙_ infixr 30 _∙₂_ infix 3 _∎ infixr 2 _≡⟨_⟩_ infixr 2.5 _≡⟨_⟩≡⟨_⟩_ -- Basic theory about paths. These proofs should typically be -- inlined. This module also makes equational reasoning work with -- (non-dependent) paths. private variable ℓ ℓ' ℓ'' : Level A : Type ℓ B : A → Type ℓ x y z w : A refl : x ≡ x refl {x = x} _ = x {-# INLINE refl #-} sym : x ≡ y → y ≡ x sym p i = p (~ i) {-# INLINE sym #-} symP : {A : I → Type ℓ} → {x : A i1} → {y : A i0} → (p : PathP (λ i → A (~ i)) x y) → PathP A y x symP p j = p (~ j) cong : (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p i = f (p i) {-# INLINE cong #-} congP : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ'} (f : (i : I) → (a : A i) → B i a) {x : A i0} {y : A i1} (p : PathP A x y) → PathP (λ i → B i (p i)) (f i0 x) (f i1 y) congP f p i = f i (p i) {-# INLINE congP #-} cong₂ : {C : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → C a b) → (p : x ≡ y) → {u : B x} {v : B y} (q : PathP (λ i → B (p i)) u v) → PathP (λ i → C (p i) (q i)) (f x u) (f y v) cong₂ f p q i = f (p i) (q i) {-# INLINE cong₂ #-} congP₂ : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ'} {C : (i : I) (a : A i) → B i a → Type ℓ''} (f : (i : I) → (a : A i) → (b : B i a) → C i a b) {x : A i0} {y : A i1} {u : B i0 x} {v : B i1 y} (p : PathP A x y) (q : PathP (λ i → B i (p i)) u v) → PathP (λ i → C i (p i) (q i)) (f i0 x u) (f i1 y v) congP₂ f p q i = f i (p i) (q i) {-# INLINE congP₂ #-} {- The most natural notion of homogenous path composition in a cubical setting is double composition: x ∙ ∙ ∙ > w ^ ^ p⁻¹ | | r ^ | | j | y — — — > z ∙ — > q i `p ∙∙ q ∙∙ r` gives the line at the top, `doubleCompPath-filler p q r` gives the whole square -} doubleComp-faces : {x y z w : A } (p : x ≡ y) (r : z ≡ w) → (i : I) (j : I) → Partial (i ∨ ~ i) A doubleComp-faces p r i j (i = i0) = p (~ j) doubleComp-faces p r i j (i = i1) = r j _∙∙_∙∙_ : w ≡ x → x ≡ y → y ≡ z → w ≡ z (p ∙∙ q ∙∙ r) i = hcomp (doubleComp-faces p r i) (q i) doubleCompPath-filler : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → PathP (λ j → p (~ j) ≡ r j) q (p ∙∙ q ∙∙ r) doubleCompPath-filler p q r j i = hfill (doubleComp-faces p r i) (inS (q i)) j -- any two definitions of double composition are equal compPath-unique : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → (α β : Σ[ s ∈ x ≡ w ] PathP (λ j → p (~ j) ≡ r j) q s) → α ≡ β compPath-unique p q r (α , α-filler) (β , β-filler) t = (λ i → cb i1 i) , (λ j i → cb j i) where cb : I → I → _ cb j i = hfill (λ j → λ { (t = i0) → α-filler j i ; (t = i1) → β-filler j i ; (i = i0) → p (~ j) ; (i = i1) → r j }) (inS (q i)) j {- For single homogenous path composition, we take `p = refl`: x ∙ ∙ ∙ > z ‖ ^ ‖ | r ^ ‖ | j | x — — — > y ∙ — > q i `q ∙ r` gives the line at the top, `compPath-filler q r` gives the whole square -} _∙_ : x ≡ y → y ≡ z → x ≡ z p ∙ q = refl ∙∙ p ∙∙ q compPath-filler : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → x ≡ q j) p (p ∙ q) compPath-filler p q = doubleCompPath-filler refl p q -- We could have also defined single composition by taking `r = refl`: _∙'_ : x ≡ y → y ≡ z → x ≡ z p ∙' q = p ∙∙ q ∙∙ refl compPath'-filler : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → p (~ j) ≡ z) q (p ∙' q) compPath'-filler p q = doubleCompPath-filler p q refl -- It's easy to show that `p ∙ q` also has such a filler: compPath-filler' : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → p (~ j) ≡ z) q (p ∙ q) compPath-filler' {z = z} p q j i = hcomp (λ k → λ { (i = i0) → p (~ j) ; (i = i1) → q k ; (j = i0) → q (i ∧ k) }) (p (i ∨ ~ j)) -- Note: We can omit a (j = i1) case here since when (j = i1), the whole expression is -- definitionally equal to `p ∙ q`. (Notice that `p ∙ q` is also an hcomp.) Nevertheless, -- we could have given `compPath-filler p q k i` as the (j = i1) case. -- From this, we can show that these two notions of composition are the same compPath≡compPath' : (p : x ≡ y) (q : y ≡ z) → p ∙ q ≡ p ∙' q compPath≡compPath' p q j = compPath-unique p q refl (p ∙ q , compPath-filler' p q) (p ∙' q , compPath'-filler p q) j .fst -- Double composition agrees with iterated single composition doubleCompPath≡compPath : {x y z w : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → p ∙∙ q ∙∙ r ≡ p ∙ q ∙ r doubleCompPath≡compPath p q r i j = hcomp (λ k → λ { (i = i1) → compPath-filler' p (q ∙ r) k j ; (j = i0) → p (~ k) ; (j = i1) → r (i ∨ k)}) (compPath-filler q r i j) -- Heterogeneous path composition and its filler: -- Composition in a family indexed by the interval compPathP : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1} → PathP A x y → PathP (λ i → B i) y z → PathP (λ j → ((λ i → A i) ∙ B) j) x z compPathP {A = A} {x = x} {B = B} p q i = comp (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (p i) -- Composition in a family indexed by a type compPathP' : {B : A → Type ℓ'} {x' : B x} {y' : B y} {z' : B z} {p : x ≡ y} {q : y ≡ z} (P : PathP (λ i → B (p i)) x' y') (Q : PathP (λ i → B (q i)) y' z') → PathP (λ i → B ((p ∙ q) i)) x' z' compPathP' {B = B} {x' = x'} {p = p} {q = q} P Q i = comp (λ j → B (compPath-filler p q j i)) (λ j → λ { (i = i0) → x' ; (i = i1) → Q j }) (P i) compPathP-filler : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : A i1 ≡ B_i1} {z : B i1} (p : PathP A x y) (q : PathP (λ i → B i) y z) → PathP (λ j → PathP (λ k → (compPath-filler (λ i → A i) B j k)) x (q j)) p (compPathP p q) compPathP-filler {A = A} {x = x} {B = B} p q j i = fill (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) j compPathP'-filler : {B : A → Type ℓ'} {x' : B x} {y' : B y} {z' : B z} {p : x ≡ y} {q : y ≡ z} (P : PathP (λ i → B (p i)) x' y') (Q : PathP (λ i → B (q i)) y' z') → PathP (λ j → PathP (λ i → B (compPath-filler p q j i)) x' (Q j)) P (compPathP' {B = B} P Q) compPathP'-filler {B = B} {x' = x'} {p = p} {q = q} P Q j i = fill (λ j → B (compPath-filler p q j i)) (λ j → λ { (i = i0) → x' ; (i = i1) → Q j }) (inS (P i)) j -- Syntax for chains of equational reasoning _≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z ≡⟨⟩-syntax : (x : A) → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 2 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y ≡⟨⟩⟨⟩-syntax : (x y : A) → x ≡ y → y ≡ z → z ≡ w → x ≡ w ≡⟨⟩⟨⟩-syntax x y p q r = p ∙∙ q ∙∙ r infixr 3 ≡⟨⟩⟨⟩-syntax syntax ≡⟨⟩⟨⟩-syntax x y B C = x ≡⟨ B ⟩≡ y ≡⟨ C ⟩≡ _≡⟨_⟩≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → z ≡ w → x ≡ w _ ≡⟨ x≡y ⟩≡⟨ y≡z ⟩ z≡w = x≡y ∙∙ y≡z ∙∙ z≡w _∎ : (x : A) → x ≡ x _ ∎ = refl -- Transport and subst -- transport is a special case of transp transport : {A B : Type ℓ} → A ≡ B → A → B transport p a = transp (λ i → p i) i0 a -- Transporting in a constant family is the identity function (up to a -- path). If we would have regularity this would be definitional. transportRefl : (x : A) → transport refl x ≡ x transportRefl {A = A} x i = transp (λ _ → A) i x transport-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : A) → PathP (λ i → p i) x (transport p x) transport-filler p x i = transp (λ j → p (i ∧ j)) (~ i) x -- We want B to be explicit in subst subst : (B : A → Type ℓ') (p : x ≡ y) → B x → B y subst B p pa = transport (λ i → B (p i)) pa subst2 : ∀ {ℓ' ℓ''} {B : Type ℓ'} {z w : B} (C : A → B → Type ℓ'') (p : x ≡ y) (q : z ≡ w) → C x z → C y w subst2 B p q b = transport (λ i → B (p i) (q i)) b substRefl : ∀ {B : A → Type ℓ} {x} → (px : B x) → subst B refl px ≡ px substRefl px = transportRefl px subst-filler : (B : A → Type ℓ') (p : x ≡ y) (b : B x) → PathP (λ i → B (p i)) b (subst B p b) subst-filler B p = transport-filler (cong B p) -- Function extensionality funExt : {B : A → I → Type ℓ'} {f : (x : A) → B x i0} {g : (x : A) → B x i1} → ((x : A) → PathP (B x) (f x) (g x)) → PathP (λ i → (x : A) → B x i) f g funExt p i x = p x i implicitFunExt : {B : A → I → Type ℓ'} {f : {x : A} → B x i0} {g : {x : A} → B x i1} → ({x : A} → PathP (B x) (f {x}) (g {x})) → PathP (λ i → {x : A} → B x i) f g implicitFunExt p i {x} = p {x} i -- the inverse to funExt (see Functions.FunExtEquiv), converting paths -- between functions to homotopies; `funExt⁻` is called `happly` and -- defined by path induction in the HoTT book (see function 2.9.2 in -- section 2.9) funExt⁻ : {B : A → I → Type ℓ'} {f : (x : A) → B x i0} {g : (x : A) → B x i1} → PathP (λ i → (x : A) → B x i) f g → ((x : A) → PathP (B x) (f x) (g x)) funExt⁻ eq x i = eq i x -- J for paths and its computation rule module _ (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where J : (p : x ≡ y) → P y p J p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d JRefl : J refl ≡ d JRefl = transportRefl d J-∙ : (p : x ≡ y) (q : y ≡ z) → J (p ∙ q) ≡ transport (λ i → P (q i) (λ j → compPath-filler p q i j)) (J p) J-∙ p q k = transp (λ i → P (q (i ∨ ~ k)) (λ j → compPath-filler p q (i ∨ ~ k) j)) (~ k) (J (λ j → compPath-filler p q (~ k) j)) -- Converting to and from a PathP module _ {A : I → Type ℓ} {x : A i0} {y : A i1} where toPathP : transport (λ i → A i) x ≡ y → PathP A x y toPathP p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) fromPathP : PathP A x y → transport (λ i → A i) x ≡ y fromPathP p i = transp (λ j → A (i ∨ j)) i (p i) -- Whiskering a dependent path by a path -- Double whiskering _◁_▷_ : ∀ {ℓ} {A : I → Type ℓ} {a₀ a₀' : A i0} {a₁ a₁' : A i1} → a₀ ≡ a₀' → PathP A a₀' a₁ → a₁ ≡ a₁' → PathP A a₀ a₁' (p ◁ P ▷ q) i = hcomp (λ j → λ {(i = i0) → p (~ j) ; (i = i1) → q j}) (P i) doubleWhiskFiller : ∀ {ℓ} {A : I → Type ℓ} {a₀ a₀' : A i0} {a₁ a₁' : A i1} → (p : a₀ ≡ a₀') (pq : PathP A a₀' a₁) (q : a₁ ≡ a₁') → PathP (λ i → PathP A (p (~ i)) (q i)) pq (p ◁ pq ▷ q) doubleWhiskFiller p pq q k i = hfill (λ j → λ {(i = i0) → p (~ j) ; (i = i1) → q j}) (inS (pq i)) k _◁_ : ∀ {ℓ} {A : I → Type ℓ} {a₀ a₀' : A i0} {a₁ : A i1} → a₀ ≡ a₀' → PathP A a₀' a₁ → PathP A a₀ a₁ (p ◁ q) = p ◁ q ▷ refl _▷_ : ∀ {ℓ} {A : I → Type ℓ} {a₀ : A i0} {a₁ a₁' : A i1} → PathP A a₀ a₁ → a₁ ≡ a₁' → PathP A a₀ a₁' p ▷ q = refl ◁ p ▷ q -- Direct definitions of lower h-levels isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) isGroupoid : Type ℓ → Type ℓ isGroupoid A = ∀ a b → isSet (Path A a b) is2Groupoid : Type ℓ → Type ℓ is2Groupoid A = ∀ a b → isGroupoid (Path A a b) -- Contractibility of singletons singlP : (A : I → Type ℓ) (a : A i0) → Type _ singlP A a = Σ[ x ∈ A i1 ] PathP A a x singl : (a : A) → Type _ singl {A = A} a = singlP (λ _ → A) a isContrSingl : (a : A) → isContr (singl a) isContrSingl a .fst = (a , refl) isContrSingl a .snd p i .fst = p .snd i isContrSingl a .snd p i .snd j = p .snd (i ∧ j) isContrSinglP : (A : I → Type ℓ) (a : A i0) → isContr (singlP A a) isContrSinglP A a .fst = _ , transport-filler (λ i → A i) a isContrSinglP A a .snd (x , p) i = _ , λ j → fill A (λ j → λ {(i = i0) → transport-filler (λ i → A i) a j; (i = i1) → p j}) (inS a) j -- Higher cube types SquareP : (A : I → I → Type ℓ) {a₀₀ : A i0 i0} {a₀₁ : A i0 i1} (a₀₋ : PathP (λ j → A i0 j) a₀₀ a₀₁) {a₁₀ : A i1 i0} {a₁₁ : A i1 i1} (a₁₋ : PathP (λ j → A i1 j) a₁₀ a₁₁) (a₋₀ : PathP (λ i → A i i0) a₀₀ a₁₀) (a₋₁ : PathP (λ i → A i i1) a₀₁ a₁₁) → Type ℓ SquareP A a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → PathP (λ j → A i j) (a₋₀ i) (a₋₁ i)) a₀₋ a₁₋ Square : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Type _ Square a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋ Cube : {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Type _ Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = PathP (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋ -- Vertical composition of squares _∙₂_ : {a₀₀ a₀₁ a₀₂ : A} {a₀₋ : a₀₀ ≡ a₀₁} {b₀₋ : a₀₁ ≡ a₀₂} {a₁₀ a₁₁ a₁₂ : A} {a₁₋ : a₁₀ ≡ a₁₁} {b₁₋ : a₁₁ ≡ a₁₂} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} {a₋₂ : a₀₂ ≡ a₁₂} (p : Square a₀₋ a₁₋ a₋₀ a₋₁) (q : Square b₀₋ b₁₋ a₋₁ a₋₂) → Square (a₀₋ ∙ b₀₋) (a₁₋ ∙ b₁₋) a₋₀ a₋₂ _∙₂_ = congP₂ (λ _ → _∙_) -- Alternative (equivalent) definitions of hlevel n that give fillers for n-cubes instead of n-globes isSet' : Type ℓ → Type ℓ isSet' A = {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ isSet→isSet' : isSet A → isSet' A isSet→isSet' Aset _ _ _ _ = toPathP (Aset _ _ _ _) isSet'→isSet : isSet' A → isSet A isSet'→isSet Aset' x y p q = Aset' p q refl refl isGroupoid' : Type ℓ → Type ℓ isGroupoid' A = {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ -- Essential properties of isProp and isContr isProp→PathP : ∀ {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → PathP B b0 b1 isProp→PathP hB b0 b1 = toPathP (hB _ _ _) isPropIsContr : isProp (isContr A) isPropIsContr (c0 , h0) (c1 , h1) j .fst = h0 c1 j isPropIsContr (c0 , h0) (c1 , h1) j .snd y i = hcomp (λ k → λ { (i = i0) → h0 (h0 c1 j) k; (i = i1) → h0 y k; (j = i0) → h0 (h0 y i) k; (j = i1) → h0 (h1 y i) k}) c0 isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b = sym (p a) ∙ p b isProp→isSet : isProp A → isSet A isProp→isSet h a b p q j i = hcomp (λ k → λ { (i = i0) → h a a k ; (i = i1) → h a b k ; (j = i0) → h a (p i) k ; (j = i1) → h a (q i) k }) a isProp→isSet' : isProp A → isSet' A isProp→isSet' h {a} p q r s i j = hcomp (λ k → λ { (i = i0) → h a (p j) k ; (i = i1) → h a (q j) k ; (j = i0) → h a (r i) k ; (j = i1) → h a (s i) k}) a isPropIsProp : isProp (isProp A) isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i isPropSingl : {a : A} → isProp (singl a) isPropSingl = isContr→isProp (isContrSingl _) isPropSinglP : {A : I → Type ℓ} {a : A i0} → isProp (singlP A a) isPropSinglP = isContr→isProp (isContrSinglP _ _) -- Universe lifting record Lift {i j} (A : Type i) : Type (ℓ-max i j) where constructor lift field lower : A open Lift public liftExt : ∀ {A : Type ℓ} {a b : Lift {ℓ} {ℓ'} A} → (lower a ≡ lower b) → a ≡ b liftExt x i = lift (x i)
32.754352
102
0.481812
edc9f943c6972d4a3da8b60f600f3166a8eb900c
3,064
agda
Agda
Numeral/Integer/Relation/Divisibility/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Integer/Relation/Divisibility/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Integer/Relation/Divisibility/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Integer.Relation.Divisibility.Proofs where open import Functional open import Logic.Propositional import Numeral.Natural.Relation.Divisibility as ℕ import Numeral.Natural.Relation.Divisibility.Proofs as ℕ open import Numeral.Natural using (ℕ) import Numeral.Natural.Oper as ℕ open import Numeral.Integer.Oper open import Numeral.Integer.Proofs open import Numeral.Integer.Relation.Divisibility open import Numeral.Integer open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function.Multi open import Structure.Operator.Properties open import Structure.Relator open import Structure.Relator.Properties open import Type instance [∣][−𝐒ₙ]-sub : ((_∣_) on₂ (−𝐒ₙ_)) ⊆₂ ((ℕ._∣_) on₂ ℕ.𝐒) [∣][−𝐒ₙ]-sub = intro id instance [∣][+ₙ]-sub : ((_∣_) on₂ (+ₙ_)) ⊆₂ (ℕ._∣_) [∣][+ₙ]-sub = intro id instance [∣][−ₙ]-sub : ((_∣_) on₂ (−ₙ_)) ⊆₂ (ℕ._∣_) _⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝟎} {ℕ.𝟎} p = p _⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝟎} {ℕ.𝐒 y} p = p _⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝐒 x} {ℕ.𝟎} p = p _⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝐒 x} {ℕ.𝐒 y} p = p instance [∣][−𝐒ₙ]-super : ((_∣_) on₂ (−𝐒ₙ_)) ⊇₂ ((ℕ._∣_) on₂ ℕ.𝐒) [∣][−𝐒ₙ]-super = intro id instance [∣][+ₙ]-super : ((_∣_) on₂ (+ₙ_)) ⊇₂ (ℕ._∣_) [∣][+ₙ]-super = intro id instance [∣][−ₙ]-super : ((_∣_) on₂ (−ₙ_)) ⊇₂ (ℕ._∣_) _⊆₂_.proof [∣][−ₙ]-super {ℕ.𝟎} {ℕ.𝟎} p = p _⊆₂_.proof [∣][−ₙ]-super {ℕ.𝟎} {ℕ.𝐒 y} p = p _⊆₂_.proof [∣][−ₙ]-super {ℕ.𝐒 x} {ℕ.𝟎} p = p _⊆₂_.proof [∣][−ₙ]-super {ℕ.𝐒 x} {ℕ.𝐒 y} p = p divides-with-[−ₙ] : ∀{a b c} → ((absₙ a) ℕ.∣ b) → ((absₙ a) ℕ.∣ c) → (a ∣ (b −ₙ c)) divides-with-[−ₙ] {a} ℕ.Div𝟎 ℕ.Div𝟎 = ℕ.Div𝟎 divides-with-[−ₙ] {a} (ℕ.Div𝐒 ab) ℕ.Div𝟎 = ℕ.Div𝐒 ab divides-with-[−ₙ] {a} ℕ.Div𝟎 (ℕ.Div𝐒 {x = x} ac) with p ← ℕ.divides-with-[+] (reflexivity(ℕ._∣_)) ((super₂((_∣_) on₂ (−ₙ_))(ℕ._∣_) ac)) rewrite absₙ-of-[−ₙ] {x} rewrite absₙ-of-[−ₙ] {absₙ a} rewrite [−ₙ]-antiidentityₗ {absₙ a ℕ.+ x} rewrite absₙ-of-[−ₙ] {absₙ(a) ℕ.+ x} = p divides-with-[−ₙ] {a} (ℕ.Div𝐒 {x = x} ab) (ℕ.Div𝐒 {x = y} ac) rewrite [−ₙ]-on-[+]ₗ-redundancy{absₙ a}{x}{y} = divides-with-[−ₙ] {a} ab ac divides-with-[+] : ∀{a b c} → (a ∣ b) → (a ∣ c) → (a ∣ (b + c)) divides-with-[+] {+ₙ a} {+ₙ b} {+ₙ c} ab ac = ℕ.divides-with-[+] ab ac divides-with-[+] {+ₙ a} {+ₙ b} {−𝐒ₙ c} ab ac = divides-with-[−ₙ] {+ₙ a} ab ac divides-with-[+] {+ₙ a} {−𝐒ₙ b} {+ₙ c} ab ac = divides-with-[−ₙ] {+ₙ a} ac ab divides-with-[+] {+ₙ a} {−𝐒ₙ b} {−𝐒ₙ c} ab ac = ℕ.divides-with-[+] ab ac divides-with-[+] {−𝐒ₙ a} {+ₙ b} {+ₙ c} ab ac = ℕ.divides-with-[+] ab ac divides-with-[+] {−𝐒ₙ a} {+ₙ b} {−𝐒ₙ c} ab ac = divides-with-[−ₙ] {−𝐒ₙ a} ab ac divides-with-[+] {−𝐒ₙ a} {−𝐒ₙ b} {+ₙ c} ab ac = divides-with-[−ₙ] {−𝐒ₙ a} ac ab divides-with-[+] {−𝐒ₙ a} {−𝐒ₙ b} {−𝐒ₙ c} ab ac = ℕ.divides-with-[+] ab ac divides-with-[⋅] : ∀{a b c} → ((a ∣ b) ∨ (a ∣ c)) → (a ∣ (b ⋅ c)) divides-with-[⋅] {a} {b} {c} p = substitute₂ᵣ(ℕ._∣_) {absₙ a} (symmetry(_≡_) (preserving₂(absₙ)(_⋅_)(ℕ._⋅_) {b}{c})) (ℕ.divides-with-[⋅] {absₙ a}{absₙ b}{absₙ c} p)
39.282051
164
0.563969
72ea0474c69abe1c522a64c00ad95e2d356f4678
3,020
agda
Agda
archive/agda-1/UnifyMguCorrectG.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/UnifyMguCorrectG.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/UnifyMguCorrectG.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Relation.Binary using (IsDecEquivalence) open import Agda.Builtin.Equality module UnifyMguCorrectG (FunctionName : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ (PredicateName VariableName : Set) where open import UnifyTermF FunctionName open import UnifyMguF FunctionName open import UnifyMguCorrectF FunctionName open import Data.Nat open import Data.Vec open import Function open import Data.Fin renaming (thin to thinF; thick to thickF) data Formula (n : ℕ) : Set where atomic : PredicateName → ∀ {t} → Vec (Term n) t → Formula n logical : Formula n → Formula n → Formula n quantified : Formula (suc n) → Formula n open import Relation.Binary.PropositionalEquality instance ThinFormula : Thin Formula Thin.thin ThinFormula x (atomic x₁ x₂) = atomic x₁ (thin x x₂) Thin.thin ThinFormula x (logical x₁ x₂) = logical (thin x x₁) (thin x x₂) Thin.thin ThinFormula x (quantified x₁) = quantified (thin zero x₁) Thin.thinfact1 ThinFormula f {atomic pn1 ts1} {atomic pn2 ts2} r = {!!} Thin.thinfact1 ThinFormula f {atomic x x₁} {logical y y₁} () Thin.thinfact1 ThinFormula f {atomic x x₁} {quantified y} () Thin.thinfact1 ThinFormula f {logical x x₁} {atomic x₂ x₃} () Thin.thinfact1 ThinFormula f {logical x x₁} {logical y y₁} x₂ = {!!} Thin.thinfact1 ThinFormula f {logical x x₁} {quantified y} () Thin.thinfact1 ThinFormula f {quantified x} {atomic x₁ x₂} () Thin.thinfact1 ThinFormula f {quantified x} {logical y y₁} () Thin.thinfact1 ThinFormula f {quantified x} {quantified y} x₁ = {!!} foo~ : ∀ {m₁ n₁} → (Fin m₁ → Term n₁) → Fin (suc m₁) → Term (suc n₁) foo~ f = (λ { zero → i zero ; (suc x) → thin zero (f x)}) foo~i≐i : ∀ {m} → foo~ {m} i ≐ i foo~i≐i zero = refl foo~i≐i (suc x) = refl instance SubstitutionFormula : Substitution Formula Substitution._◃_ SubstitutionFormula = _◃′_ where _◃′_ : ∀ {m n} -> (f : m ~> n) -> Formula m -> Formula n f ◃′ atomic 𝑃 τs = atomic 𝑃 (f ◃ τs) f ◃′ logical φ₁ φ₂ = logical (f ◃ φ₁) (f ◃ φ₂) f ◃′ quantified φ = quantified (foo~ f ◃ φ) instance SubstitutionExtensionalityFormula : SubstitutionExtensionality Formula SubstitutionExtensionality.◃ext SubstitutionExtensionalityFormula x (atomic x₁ x₂) = cong (atomic x₁) (◃ext x x₂) SubstitutionExtensionality.◃ext SubstitutionExtensionalityFormula x (logical t t₁) = cong₂ logical (◃ext x t) (◃ext x t₁) SubstitutionExtensionality.◃ext SubstitutionExtensionalityFormula x (quantified t) = cong quantified ((◃ext (λ { zero → refl ; (suc x₁) → cong (mapTerm suc) (x x₁)}) t)) -- instance SubFact1Formula : Sub.Fact1 Formula Sub.Fact1.fact1 SubFact1Formula (atomic x x₁) = cong (atomic x) (Sub.fact1 x₁) Sub.Fact1.fact1 SubFact1Formula (logical t t₁) = cong₂ logical (Sub.fact1 t) (Sub.fact1 t₁) Sub.Fact1.fact1 SubFact1Formula {n} (quantified φ) = cong quantified (trans (◃ext {Formula} {_} {_} {foo~ {_} i} {i} (foo~i≐i {_}) φ) (Sub.fact1 φ)) Unifies⋆F : ∀ {m} (s t : Formula m) -> Property⋆ m Unifies⋆F s t f = f ◃ s ≡ f ◃ t
44.411765
172
0.702318
0163526e04906f43f6c93fee7d33c9be4fc82794
229
agda
Agda
Cubical/HITs/Modulo.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Modulo.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Modulo.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Modulo where open import Cubical.HITs.Modulo.Base public open import Cubical.HITs.Modulo.Properties public open import Cubical.HITs.Modulo.FinEquiv public
25.444444
50
0.786026
0b440622a834ebc918e67e41b54c081d6039c72d
334
agda
Agda
test/Fail/Issue1606.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1606.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1606.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate C : Set anything : C record I : Set where constructor c field f : C data Wrap : (j : I) → Set where wrap : ∀ {j} → Wrap j -- The following should not pass. -- It did before the fix of #142. issue142 : ∀ {j} → Wrap j → C issue142 {c _} (wrap {c _}) with anything issue142 {c _} (wrap .{c anything}) | z = z
17.578947
43
0.595808
64a1362b3a46bd7f0ab0dd5101ddec104ddef54b
5,999
agda
Agda
Cubical/HITs/SetTruncation/Fibers.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/SetTruncation/Fibers.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/SetTruncation/Fibers.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This file contains: - Fibers of induced map between set truncations is the set truncation of fibers modulo a certain equivalence relation defined by π₁ of the base. -} {-# OPTIONS --safe #-} module Cubical.HITs.SetTruncation.Fibers where open import Cubical.HITs.SetTruncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetTruncation as Set open import Cubical.HITs.SetQuotients as SetQuot open import Cubical.Relation.Binary private variable ℓ ℓ' : Level module _ {X : Type ℓ } {Y : Type ℓ'} (f : X → Y) where private ∥f∥₂ : ∥ X ∥₂ → ∥ Y ∥₂ ∥f∥₂ = Set.map f module _ (y : Y) where open Iso isSetFiber∥∥₂ : isSet (fiber ∥f∥₂ ∣ y ∣₂) isSetFiber∥∥₂ = isOfHLevelΣ 2 squash₂ (λ _ → isProp→isSet (squash₂ _ _)) fiberRel : ∥ fiber f y ∥₂ → ∥ fiber f y ∥₂ → Type ℓ fiberRel a b = Set.map fst a ≡ Set.map fst b private proj : ∥ fiber f y ∥₂ / fiberRel → ∥ X ∥₂ proj = SetQuot.rec squash₂ (Set.map fst) (λ _ _ p → p) ∥fiber∥₂/R→fiber∥∥₂ : ∥ fiber f y ∥₂ / fiberRel → fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂/R→fiber∥∥₂ = SetQuot.rec isSetFiber∥∥₂ ∥fiber∥₂→fiber∥∥₂ feq where fiber→fiber∥∥₂ : fiber f y → fiber ∥f∥₂ ∣ y ∣₂ fiber→fiber∥∥₂ (x , p) = ∣ x ∣₂ , cong ∣_∣₂ p ∥fiber∥₂→fiber∥∥₂ : ∥ fiber f y ∥₂ → fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂→fiber∥∥₂ = Set.rec isSetFiber∥∥₂ fiber→fiber∥∥₂ feq : (a b : ∥ fiber f y ∥₂) (r : fiberRel a b) → ∥fiber∥₂→fiber∥∥₂ a ≡ ∥fiber∥₂→fiber∥∥₂ b feq = Set.elim2 (λ _ _ → isProp→isSet (isPropΠ (λ _ → isSetFiber∥∥₂ _ _))) λ _ _ p → ΣPathP (p , isSet→isSet' squash₂ _ _ _ _) mereFiber→∥fiber∥₂/R : (x : X) → ∥ f x ≡ y ∥₁ → ∥ fiber f y ∥₂ / fiberRel mereFiber→∥fiber∥₂/R x = Prop.rec→Set squash/ (λ p → [ ∣ _ , p ∣₂ ]) (λ _ _ → eq/ _ _ refl) fiber∥∥₂→∥fiber∥₂/R : fiber ∥f∥₂ ∣ y ∣₂ → ∥ fiber f y ∥₂ / fiberRel fiber∥∥₂→∥fiber∥₂/R = uncurry (Set.elim (λ _ → isSetΠ λ _ → squash/) λ x p → mereFiber→∥fiber∥₂/R x (PathIdTrunc₀Iso .fun p)) ∥fiber∥₂/R→fiber∥∥₂→fst : (q : ∥ fiber f y ∥₂ / fiberRel) → ∥fiber∥₂/R→fiber∥∥₂ q .fst ≡ proj q ∥fiber∥₂/R→fiber∥∥₂→fst = SetQuot.elimProp (λ _ → squash₂ _ _) (Set.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ _ → refl)) fiber∥∥₂→∥fiber∥₂/R→proj : (x : fiber ∥f∥₂ ∣ y ∣₂) → proj (fiber∥∥₂→∥fiber∥₂/R x) ≡ x .fst fiber∥∥₂→∥fiber∥₂/R→proj = uncurry (Set.elim (λ _ → isSetΠ λ _ → isProp→isSet (squash₂ _ _)) λ x p → Prop.elim {P = λ t → proj (mereFiber→∥fiber∥₂/R x t) ≡ ∣ x ∣₂} (λ _ → squash₂ _ _) (λ _ → refl) (PathIdTrunc₀Iso .fun p)) ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R : (x : ∥ fiber f y ∥₂ / fiberRel) → fiber∥∥₂→∥fiber∥₂/R (∥fiber∥₂/R→fiber∥∥₂ x) ≡ x ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R = SetQuot.elimProp (λ _ → squash/ _ _) (Set.elim (λ _ → isProp→isSet (squash/ _ _)) (λ _ → eq/ _ _ refl)) fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ : (x : fiber ∥f∥₂ ∣ y ∣₂) → ∥fiber∥₂/R→fiber∥∥₂ (fiber∥∥₂→∥fiber∥₂/R x) ≡ x fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ x = Σ≡Prop (λ _ → squash₂ _ _) (∥fiber∥₂/R→fiber∥∥₂→fst (fiber∥∥₂→∥fiber∥₂/R x) ∙ fiber∥∥₂→∥fiber∥₂/R→proj x) Iso-∥fiber∥₂/R-fiber∥∥₂ : Iso (∥ fiber f y ∥₂ / fiberRel) (fiber ∥f∥₂ ∣ y ∣₂) Iso-∥fiber∥₂/R-fiber∥∥₂ .fun = ∥fiber∥₂/R→fiber∥∥₂ Iso-∥fiber∥₂/R-fiber∥∥₂ .inv = fiber∥∥₂→∥fiber∥₂/R Iso-∥fiber∥₂/R-fiber∥∥₂ .leftInv = ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R Iso-∥fiber∥₂/R-fiber∥∥₂ .rightInv = fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ -- main results ∥fiber∥₂/R≃fiber∥∥₂ : ∥ fiber f y ∥₂ / fiberRel ≃ fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂/R≃fiber∥∥₂ = isoToEquiv Iso-∥fiber∥₂/R-fiber∥∥₂ -- the relation is an equivalence relation open BinaryRelation open isEquivRel isEquivRelFiberRel : isEquivRel fiberRel isEquivRelFiberRel .reflexive _ = refl isEquivRelFiberRel .symmetric _ _ = sym isEquivRelFiberRel .transitive _ _ _ = _∙_ -- alternative characterization of the relation in terms of equality in Y and fiber f y ∣transport∣ : ∥ y ≡ y ∥₂ → ∥ fiber f y ∥₂ → ∥ fiber f y ∥₂ ∣transport∣ = Set.rec2 squash₂ (λ s (x , q) → ∣ x , q ∙ s ∣₂) fiberRel2 : (x x' : ∥ fiber f y ∥₂) → Type (ℓ-max ℓ ℓ') fiberRel2 x x' = ∥ Σ[ s ∈ ∥ y ≡ y ∥₂ ] ∣transport∣ s x ≡ x' ∥₁ fiberRel2→1 : ∀ x x' → fiberRel2 x x' → fiberRel x x' fiberRel2→1 = Set.elim2 (λ _ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → Prop.rec (squash₂ _ _) (uncurry (Set.elim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ _ → cong (Set.map fst))) fiberRel1→2 : ∀ x x' → fiberRel x x' → fiberRel2 x x' fiberRel1→2 = Set.elim2 (λ _ _ → isSetΠ λ _ → isProp→isSet squash₁) λ a b p → Prop.rec squash₁ (λ q → let filler = doubleCompPath-filler (sym (a .snd)) (cong f q) (b .snd) in ∣ ∣ filler i1 ∣₂ , cong ∣_∣₂ (ΣPathP (q , adjustLemma (flipSquare filler))) ∣₁) (PathIdTrunc₀Iso .Iso.fun p) where adjustLemma : {x y z w : Y} {p : x ≡ y} {q : x ≡ z} {r : z ≡ w} {s : y ≡ w} → PathP (λ i → p i ≡ r i) q s → PathP (λ i → p i ≡ w) (q ∙ r) s adjustLemma {p = p} {q} {r} {s} α i j = hcomp (λ k → λ { (i = i0) → compPath-filler q r k j ; (i = i1) → s j ; (j = i0) → p i ; (j = i1) → r (i ∨ k)}) (α i j) fiberRel1≃2 : ∀ x x' → fiberRel x x' ≃ fiberRel2 x x' fiberRel1≃2 _ _ = propBiimpl→Equiv (squash₂ _ _) squash₁ (fiberRel1→2 _ _) (fiberRel2→1 _ _)
35.081871
99
0.564594
14dfaefee00e0e191606dbf861ef115e56b41283
21,327
agda
Agda
Cubical/ZCohomology/Groups/KleinBottle.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/ZCohomology/Groups/KleinBottle.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Groups/KleinBottle.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.KleinBottle where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Equiv open import Cubical.Data.Nat hiding (isEven) open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Int renaming (+Comm to +-commℤ ; _+_ to _+ℤ_) open import Cubical.Data.Sigma open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.Truncation as T open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.KleinBottle open import Cubical.Algebra.Group open import Cubical.Algebra.Group.DirProd open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Bool open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.Unit open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Loopspace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open IsGroupHom open Iso characFunSpace𝕂² : ∀ {ℓ} (A : Type ℓ) → Iso (KleinBottle → A) (Σ[ x ∈ A ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) fun (characFunSpace𝕂² A) f = (f point) , ((cong f line1) , (cong f line2 , fst (Square≃doubleComp (cong f line2) (cong f line2) (sym (cong f line1)) (cong f line1)) (λ i j → f (square i j)))) inv (characFunSpace𝕂² A) (x , p , q , sq) point = x inv (characFunSpace𝕂² A) (x , p , q , sq) (line1 i) = p i inv (characFunSpace𝕂² A) (x , p , q , sq) (line2 i) = q i inv (characFunSpace𝕂² A) (x , p , q , sq) (square i j) = invEq (Square≃doubleComp q q (sym p) p) sq i j rightInv (characFunSpace𝕂² A) (x , (p , (q , sq))) = ΣPathP (refl , (ΣPathP (refl , (ΣPathP (refl , secEq (Square≃doubleComp q q (sym p) p) sq))))) leftInv (characFunSpace𝕂² A) f _ point = f point leftInv (characFunSpace𝕂² A) f _ (line1 i) = f (line1 i) leftInv (characFunSpace𝕂² A) f _ (line2 i) = f (line2 i) leftInv (characFunSpace𝕂² A) f z (square i j) = retEq (Square≃doubleComp (cong f line2) (cong f line2) (sym (cong f line1)) (cong f line1)) (λ i j → f (square i j)) z i j private movePathLem : ∀ {ℓ} {A : Type ℓ} {x : A} (p q : x ≡ x) → isComm∙ (A , x) → (p ∙∙ q ∙∙ p ≡ q) ≡ ((p ∙ p) ∙ q ≡ q) movePathLem p q comm = cong (_≡ q) (doubleCompPath-elim' p q p ∙∙ cong (p ∙_) (comm q p) ∙∙ assoc _ _ _) movePathLem2 : ∀ {ℓ} {A : Type ℓ} {x : A} (p q : x ≡ x) → (((p ∙ p) ∙ q) ∙ sym q ≡ q ∙ sym q) ≡ (p ∙ p ≡ refl) movePathLem2 p q = cong₂ _≡_ (sym (assoc (p ∙ p) q (sym q)) ∙∙ cong ((p ∙ p) ∙_) (rCancel q) ∙∙ sym (rUnit (p ∙ p))) (rCancel q) movePathIso : ∀ {ℓ} {A : Type ℓ} {x : A} (p q : x ≡ x) → isComm∙ (A , x) → Iso (p ∙∙ q ∙∙ p ≡ q) (p ∙ p ≡ refl) movePathIso {x = x} p q comm = compIso (pathToIso (movePathLem p q comm)) (compIso (helper (p ∙ p)) (pathToIso (movePathLem2 p q))) where helper : (p : x ≡ x) → Iso (p ∙ q ≡ q) ((p ∙ q) ∙ sym q ≡ q ∙ sym q) helper p = congIso (equivToIso (_ , compPathr-isEquiv (sym q))) ------ H¹(𝕂²) ≅ 0 -------------- H⁰-𝕂² : GroupIso (coHomGr 0 KleinBottle) ℤGroup fun (fst H⁰-𝕂²) = ST.rec isSetℤ λ f → f point inv (fst H⁰-𝕂²) x = ∣ (λ _ → x) ∣₂ rightInv (fst H⁰-𝕂²) _ = refl leftInv (fst H⁰-𝕂²) = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ f → cong ∣_∣₂ (funExt (λ {point → refl ; (line1 i) j → isSetℤ (f point) (f point) refl (cong f line1) j i ; (line2 i) j → isSetℤ (f point) (f point) refl (cong f line2) j i ; (square i j) z → helper f i j z})) where helper : (f : KleinBottle → ℤ) → Cube (λ j z → isSetℤ (f point) (f point) refl (cong f line2) z j) (λ j z → isSetℤ (f point) (f point) refl (cong f line2) z j) (λ i z → isSetℤ (f point) (f point) refl (cong f line1) z (~ i)) (λ i z → isSetℤ (f point) (f point) refl (cong f line1) z i) refl λ i j → f (square i j) helper f = isGroupoid→isGroupoid' (isOfHLevelSuc 2 isSetℤ) _ _ _ _ _ _ snd H⁰-𝕂² = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 isSetℤ _ _) λ _ _ → refl) ------ H¹(𝕂¹) ≅ ℤ ------------ {- Step one : H¹(𝕂²) := ∥ 𝕂² → K₁ ∥₂ ≡ ∥ Σ[ x ∈ K₁ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] (p ∙∙ q ∙∙ p ≡ q) ∥₂ (characFunSpace𝕂²) ≡ ∥ Σ[ x ∈ K₁ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ (movePathIso, using commutativity of ΩK₂) ≡ ∥ Σ[ x ∈ K₁ ] (x ≡ x) ∥₂ (p ∙ p ≡ refl forces p ≡ refl. Also, p ∙ p ≡ refl is an hProp) -} nilpotent→≡0 : (x : ℤ) → x +ℤ x ≡ 0 → x ≡ 0 nilpotent→≡0 (pos zero) p = refl nilpotent→≡0 (pos (suc n)) p = ⊥.rec (negsucNotpos _ _ (sym (cong (_- 1) (cong sucℤ (sym (helper2 n)) ∙ p)))) where helper2 : (n : ℕ) → pos (suc n) +pos n ≡ pos (suc (n + n)) helper2 zero = refl helper2 (suc n) = cong sucℤ (sym (sucℤ+pos n (pos (suc n)))) ∙∙ cong (sucℤ ∘ sucℤ) (helper2 n) ∙∙ cong (pos ∘ suc ∘ suc) (sym (+-suc n n)) nilpotent→≡0 (negsuc n) p = ⊥.rec (negsucNotpos _ _ (helper2 n p)) where helper2 : (n : ℕ) → (negsuc n +negsuc n) ≡ pos 0 → negsuc n ≡ pos (suc n) helper2 n p = cong (negsuc n +ℤ_) (sym (helper3 n)) ∙ +Assoc (negsuc n) (negsuc n) (pos (suc n)) ∙∙ cong (_+ℤ (pos (suc n))) p ∙∙ cong sucℤ (+-commℤ (pos 0) (pos n)) where helper3 : (n : ℕ) → negsuc n +pos (suc n) ≡ 0 helper3 zero = refl helper3 (suc n) = cong sucℤ (sucℤ+pos n (negsuc (suc n))) ∙ helper3 n nilpotent→≡refl : (x : coHomK 1) (p : x ≡ x) → p ∙ p ≡ refl → p ≡ refl nilpotent→≡refl = T.elim (λ _ → isGroupoidΠ2 λ _ _ → isOfHLevelPlus {n = 1} 2 (isOfHLevelTrunc 3 _ _ _ _)) (toPropElim (λ _ → isPropΠ2 λ _ _ → isOfHLevelTrunc 3 _ _ _ _) λ p pId → sym (rightInv (Iso-Kn-ΩKn+1 0) p) ∙∙ cong (Kn→ΩKn+1 0) (nilpotent→≡0 (ΩKn+1→Kn 0 p) (sym (ΩKn+1→Kn-hom 0 p p) ∙ cong (ΩKn+1→Kn 0) pId)) ∙∙ Kn→ΩKn+10ₖ 0) Iso-H¹-𝕂²₁ : Iso (Σ[ x ∈ coHomK 1 ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl) (Σ[ x ∈ coHomK 1 ] x ≡ x) fun Iso-H¹-𝕂²₁ (x , (_ , (q , _))) = x , q inv Iso-H¹-𝕂²₁ (x , q) = x , (refl , (q , (sym (rUnit refl)))) rightInv Iso-H¹-𝕂²₁ _ = refl leftInv Iso-H¹-𝕂²₁ (x , (p , (q , P))) = ΣPathP (refl , (ΣPathP (sym (nilpotent→≡refl x p P) , toPathP (Σ≡Prop (λ _ → isOfHLevelTrunc 3 _ _ _ _) (transportRefl q))))) {- But this is precisely the type (minus set-truncation) of H¹(S¹) -} Iso-H¹-𝕂²₂ : Iso (Σ[ x ∈ coHomK 1 ] x ≡ x) (S¹ → coHomK 1) Iso-H¹-𝕂²₂ = invIso IsoFunSpaceS¹ H¹-𝕂²≅ℤ : GroupIso (coHomGr 1 KleinBottle) ℤGroup H¹-𝕂²≅ℤ = compGroupIso theGroupIso (Hⁿ-Sⁿ≅ℤ 0) where theIso : Iso (coHom 1 KleinBottle) (coHom 1 S¹) theIso = setTruncIso ( compIso (characFunSpace𝕂² (coHomK 1)) (compIso (Σ-cong-iso-snd (λ x → Σ-cong-iso-snd λ p → Σ-cong-iso-snd λ q → movePathIso p q (isCommΩK-based 1 x))) (compIso Iso-H¹-𝕂²₁ Iso-H¹-𝕂²₂))) is-hom : IsGroupHom (coHomGr 1 KleinBottle .snd) (fun theIso) (coHomGr 1 S¹ .snd) is-hom = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ f g → cong ∣_∣₂ (funExt λ {base → refl ; (loop i) → refl})) theGroupIso : GroupIso (coHomGr 1 KleinBottle) (coHomGr 1 S¹) theGroupIso = (theIso , is-hom) ------ H²(𝕂²) ≅ ℤ/2ℤ (represented here by BoolGroup) ------- -- It suffices to show that H²(Klein) is equivalent to Bool as types {- Step one : H²(𝕂²) := ∥ 𝕂² → K₂ ∥₂ ≡ ∥ Σ[ x ∈ K₂ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] (p ∙∙ q ∙∙ p ≡ q) ∥₂ (characFunSpace𝕂²) ≡ ∥ Σ[ x ∈ K₂ ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ (movePathIso, using commutativity of ΩK₂) ≡ ∥ Σ[ p ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ (connectedness of K₂) -} Iso-H²-𝕂²₁ : Iso ∥ Σ[ x ∈ coHomK 2 ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ ∥ Σ[ p ∈ 0ₖ 2 ≡ 0ₖ 2 ] p ∙ p ≡ refl ∥₂ fun Iso-H²-𝕂²₁ = ST.rec isSetSetTrunc (uncurry (T.elim (λ _ → is2GroupoidΠ λ _ → isOfHLevelPlus {n = 2} 2 isSetSetTrunc) (sphereElim _ (λ _ → isSetΠ λ _ → isSetSetTrunc) λ y → ∣ fst y , snd (snd y) ∣₂))) inv Iso-H²-𝕂²₁ = ST.map λ p → (0ₖ 2) , ((fst p) , (refl , (snd p))) rightInv Iso-H²-𝕂²₁ = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ p → refl leftInv Iso-H²-𝕂²₁ = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) (uncurry (T.elim (λ _ → is2GroupoidΠ λ _ → isOfHLevelPlus {n = 1} 3 (isSetSetTrunc _ _)) (sphereToPropElim _ (λ _ → isPropΠ λ _ → isSetSetTrunc _ _) λ {(p , (q , sq)) → T.rec (isSetSetTrunc _ _) (λ qid → cong ∣_∣₂ (ΣPathP (refl , (ΣPathP (refl , (ΣPathP (sym qid , refl))))))) (fun (PathIdTruncIso _) (isContr→isProp (isConnectedPathKn 1 (0ₖ 2) (0ₖ 2)) ∣ q ∣ ∣ refl ∣))}))) {- Step two : ∥ Σ[ p ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ ≡ ∥ Σ[ x ∈ K₁ ] x + x ≡ 0 ∥₂ -} Iso-H²-𝕂²₂ : Iso ∥ (Σ[ p ∈ 0ₖ 2 ≡ 0ₖ 2 ] p ∙ p ≡ refl) ∥₂ ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ Iso-H²-𝕂²₂ = setTruncIso (Σ-cong-iso {B' = λ x → x +ₖ x ≡ 0ₖ 1} (invIso (Iso-Kn-ΩKn+1 1)) λ p → compIso (congIso (invIso (Iso-Kn-ΩKn+1 1))) (pathToIso λ i → ΩKn+1→Kn-hom 1 p p i ≡ 0ₖ 1)) {- Step three : ∥ Σ[ x ∈ K₁ ] x + x ≡ 0 ∥₂ ≡ Bool We begin by defining the a map Σ[ x ∈ K₁ ] x + x ≡ 0 → Bool. For a point (0 , p) we map it to true if winding(p) is even and false if winding(p) is odd. We also have to show that this map respects the loop -} ΣKₙNilpot→Bool : Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 → Bool ΣKₙNilpot→Bool = uncurry (T.elim (λ _ → isGroupoidΠ λ _ → isOfHLevelSuc 2 isSetBool) λ {base p → isEven (ΩKn+1→Kn 0 p) ; (loop i) p → hcomp (λ k → λ { (i = i0) → respectsLoop p k ; (i = i1) → isEven (ΩKn+1→Kn 0 p)}) (isEven (ΩKn+1→Kn 0 (transp (λ j → ∣ (loop ∙ loop) (i ∨ j) ∣ ≡ 0ₖ 1) i p)))}) where isEven-2 : (x : ℤ) → isEven (-2 +ℤ x) ≡ isEven x isEven-2 (pos zero) = refl isEven-2 (pos (suc zero)) = refl isEven-2 (pos (suc (suc n))) = cong isEven (cong sucℤ (sucℤ+pos _ _) ∙∙ sucℤ+pos _ _ ∙∙ +-commℤ 0 (pos n)) ∙ lossy n where lossy : (n : ℕ) → isEven (pos n) ≡ isEven (pos n) lossy n = refl isEven-2 (negsuc zero) = refl isEven-2 (negsuc (suc n)) = cong isEven (predℤ+negsuc n _ ∙ +-commℤ -3 (negsuc n)) ∙ lossy2 n where lossy2 : (n : ℕ) → isEven (negsuc (suc (suc (suc n)))) ≡ isEven (pos n) lossy2 n = refl respectsLoop : (p : 0ₖ 1 ≡ 0ₖ 1) → isEven (ΩKn+1→Kn 0 (transport (λ i → ∣ (loop ∙ loop) i ∣ ≡ 0ₖ 1) p)) ≡ isEven (ΩKn+1→Kn 0 p) respectsLoop p = cong isEven (cong (ΩKn+1→Kn 0) (cong (transport (λ i → ∣ (loop ∙ loop) i ∣ ≡ 0ₖ 1)) (lUnit p))) ∙∙ cong isEven (cong (ΩKn+1→Kn 0) λ j → transp (λ i → ∣ (loop ∙ loop) (i ∨ j) ∣ ≡ 0ₖ 1) j ((λ i → ∣ (loop ∙ loop) (~ i ∧ j) ∣) ∙ p)) ∙∙ cong isEven (ΩKn+1→Kn-hom 0 (sym (cong ∣_∣ (loop ∙ loop))) p) ∙ isEven-2 (ΩKn+1→Kn 0 p) {- We show that for any x : ℤ we have ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ≡ ∣ (0ₖ 1 , refl) ∣₂ when x is even and ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ≡ ∣ (0ₖ 1 , cong ∣_∣ loop) ∣₂ when x is odd This is done by induction on x. For the inductive step we define a multiplication _*_ on ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ which is just ∣ (0 , p) ∣₂ * ∣ (0 , q) ∣₂ ≡ ∣ (0 , p ∙ q) ∣₂ when x is 0 -} private _*_ : ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ _*_ = ST.rec (isSetΠ (λ _ → isSetSetTrunc)) λ a → ST.rec isSetSetTrunc λ b → *' (fst a) (fst b) (snd a) (snd b) where *' : (x y : coHomK 1) (p : x +ₖ x ≡ 0ₖ 1) (q : y +ₖ y ≡ 0ₖ 1) → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ *' = T.elim2 (λ _ _ → isGroupoidΠ2 λ _ _ → isOfHLevelSuc 2 isSetSetTrunc) (wedgeconFun _ _ (λ _ _ → isSetΠ2 λ _ _ → isSetSetTrunc) (λ x p q → ∣ ∣ x ∣ , cong₂ _+ₖ_ p q ∣₂) (λ y p q → ∣ ∣ y ∣ , sym (rUnitₖ 1 (∣ y ∣ +ₖ ∣ y ∣)) ∙ cong₂ _+ₖ_ p q ∣₂) (funExt λ p → funExt λ q → cong ∣_∣₂ (ΣPathP (refl , (sym (lUnit _)))))) *=∙ : (p q : 0ₖ 1 ≡ 0ₖ 1) → ∣ 0ₖ 1 , p ∣₂ * ∣ 0ₖ 1 , q ∣₂ ≡ ∣ 0ₖ 1 , p ∙ q ∣₂ *=∙ p q = cong ∣_∣₂ (ΣPathP (refl , sym (∙≡+₁ p q))) isEvenNegsuc : (n : ℕ) → isEven (pos (suc n)) ≡ true → isEven (negsuc n) ≡ true isEvenNegsuc zero p = ⊥.rec (true≢false (sym p)) isEvenNegsuc (suc n) p = p ¬isEvenNegSuc : (n : ℕ) → isEven (pos (suc n)) ≡ false → isEven (negsuc n) ≡ false ¬isEvenNegSuc zero p = refl ¬isEvenNegSuc (suc n) p = p evenCharac : (x : ℤ) → isEven x ≡ true → Path ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ∣ (0ₖ 1 , refl) ∣₂ evenCharac (pos zero) isisEven i = ∣ (0ₖ 1) , (rUnit refl (~ i)) ∣₂ evenCharac (pos (suc zero)) isisEven = ⊥.rec (true≢false (sym isisEven)) evenCharac (pos (suc (suc zero))) isisEven = cong ∣_∣₂ ((λ i → 0ₖ 1 , rUnit (cong ∣_∣ ((lUnit loop (~ i)) ∙ loop)) (~ i)) ∙ (ΣPathP (cong ∣_∣ loop , λ i j → ∣ (loop ∙ loop) (i ∨ j) ∣))) evenCharac (pos (suc (suc (suc n)))) isisEven = (λ i → ∣ 0ₖ 1 , Kn→ΩKn+1-hom 0 (pos (suc n)) 2 i ∣₂) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (pos (suc n))) (Kn→ΩKn+1 0 (pos 2))) ∙∙ (cong₂ _*_ (evenCharac (pos (suc n)) isisEven) (evenCharac 2 refl)) evenCharac (negsuc zero) isisEven = ⊥.rec (true≢false (sym isisEven)) evenCharac (negsuc (suc zero)) isisEven = cong ∣_∣₂ ((λ i → 0ₖ 1 , λ i₁ → hfill (doubleComp-faces (λ i₂ → ∣ base ∣) (λ _ → ∣ base ∣) i₁) (inS ∣ compPath≡compPath' (sym loop) (sym loop) i i₁ ∣) (~ i)) ∙ ΣPathP ((cong ∣_∣ (sym loop)) , λ i j → ∣ (sym loop ∙' sym loop) (i ∨ j) ∣)) evenCharac (negsuc (suc (suc n))) isisEven = cong ∣_∣₂ (λ i → 0ₖ 1 , Kn→ΩKn+1-hom 0 (negsuc n) -2 i) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (negsuc n)) (Kn→ΩKn+1 0 -2)) ∙∙ cong₂ _*_ (evenCharac (negsuc n) (isEvenNegsuc n isisEven)) (evenCharac -2 refl) oddCharac : (x : ℤ) → isEven x ≡ false → Path ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ∣ (0ₖ 1 , cong ∣_∣ loop) ∣₂ oddCharac (pos zero) isOdd = ⊥.rec (true≢false isOdd) oddCharac (pos (suc zero)) isOdd i = ∣ (0ₖ 1 , λ j → hfill (doubleComp-faces (λ i₂ → ∣ base ∣) (λ _ → ∣ base ∣) j) (inS ∣ lUnit loop (~ i) j ∣) (~ i)) ∣₂ oddCharac (pos (suc (suc n))) isOdd = (λ i → ∣ 0ₖ 1 , Kn→ΩKn+1-hom 0 (pos n) 2 i ∣₂) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (pos n)) (Kn→ΩKn+1 0 2)) ∙∙ cong₂ _*_ (oddCharac (pos n) isOdd) (evenCharac 2 refl) oddCharac (negsuc zero) isOdd = cong ∣_∣₂ ((λ i → 0ₖ 1 , rUnit (sym (cong ∣_∣ loop)) (~ i)) ∙ ΣPathP (cong ∣_∣ (sym loop) , λ i j → ∣ hcomp (λ k → λ { (i = i0) → loop (~ j ∧ k) ; (i = i1) → loop j ; (j = i1) → base}) (loop (j ∨ ~ i)) ∣)) oddCharac (negsuc (suc zero)) isOdd = ⊥.rec (true≢false isOdd) oddCharac (negsuc (suc (suc n))) isOdd = cong ∣_∣₂ (λ i → 0ₖ 1 , Kn→ΩKn+1-hom 0 (negsuc n) -2 i) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (negsuc n)) (Kn→ΩKn+1 0 -2)) ∙∙ cong₂ _*_ (oddCharac (negsuc n) (¬isEvenNegSuc n isOdd)) (evenCharac (negsuc 1) refl) {- We now have all we need to establish the Iso -} Bool→ΣKₙNilpot : Bool → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ Bool→ΣKₙNilpot false = ∣ 0ₖ 1 , cong ∣_∣ loop ∣₂ Bool→ΣKₙNilpot true = ∣ 0ₖ 1 , refl ∣₂ testIso : Iso ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ Bool fun testIso = ST.rec isSetBool ΣKₙNilpot→Bool inv testIso = Bool→ΣKₙNilpot rightInv testIso false = refl rightInv testIso true = refl leftInv testIso = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) (uncurry (T.elim (λ _ → isGroupoidΠ λ _ → isOfHLevelPlus {n = 1} 2 (isSetSetTrunc _ _)) (toPropElim (λ _ → isPropΠ (λ _ → isSetSetTrunc _ _)) (λ p → path p (isEven (ΩKn+1→Kn 0 p)) refl)))) where path : (p : 0ₖ 1 ≡ 0ₖ 1) (b : Bool) → (isEven (ΩKn+1→Kn 0 p) ≡ b) → Bool→ΣKₙNilpot (ΣKₙNilpot→Bool (∣ base ∣ , p)) ≡ ∣ ∣ base ∣ , p ∣₂ path p false q = (cong Bool→ΣKₙNilpot q) ∙∙ sym (oddCharac (ΩKn+1→Kn 0 p) q) ∙∙ cong ∣_∣₂ λ i → 0ₖ 1 , rightInv (Iso-Kn-ΩKn+1 0) p i path p true q = cong Bool→ΣKₙNilpot q ∙∙ sym (evenCharac (ΩKn+1→Kn 0 p) q) ∙∙ cong ∣_∣₂ λ i → 0ₖ 1 , rightInv (Iso-Kn-ΩKn+1 0) p i H²-𝕂²≅Bool : GroupIso (coHomGr 2 KleinBottle) BoolGroup H²-𝕂²≅Bool = invGroupIso (≅Bool theIso) where theIso : Iso _ _ theIso = compIso (setTruncIso (compIso (characFunSpace𝕂² (coHomK 2)) (Σ-cong-iso-snd λ x → Σ-cong-iso-snd λ p → Σ-cong-iso-snd λ q → (movePathIso p q (isCommΩK-based 2 x))))) (compIso Iso-H²-𝕂²₁ (compIso Iso-H²-𝕂²₂ testIso)) ------ Hⁿ(𝕂²) ≅ 0 , n ≥ 3 ------ isContrHⁿ-𝕂² : (n : ℕ) → isContr (coHom (3 + n) KleinBottle) isContrHⁿ-𝕂² n = isOfHLevelRetractFromIso 0 (setTruncIso (characFunSpace𝕂² (coHomK _))) isContrΣ-help where helper : (x : coHomK (3 + n))(p : x ≡ x) → (refl ≡ p) → (q : x ≡ x) → (refl ≡ q) → (P : p ∙∙ q ∙∙ p ≡ q) → Path ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂ ∣ x , p , q , P ∣₂ ∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂ helper = T.elim (λ _ → isProp→isOfHLevelSuc (4 + n) (isPropΠ4 λ _ _ _ _ → isPropΠ λ _ → isSetSetTrunc _ _)) (sphereToPropElim _ (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ λ _ → isSetSetTrunc _ _) λ p → J (λ p _ → (q : 0ₖ _ ≡ 0ₖ _) → (refl ≡ q) → (P : p ∙∙ q ∙∙ p ≡ q) → Path ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂ ∣ 0ₖ _ , p , q , P ∣₂ ∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂) λ q → J (λ q _ → (P : refl ∙∙ q ∙∙ refl ≡ q) → Path ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂ ∣ 0ₖ _ , refl , q , P ∣₂ ∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂) λ P → T.rec (isProp→isOfHLevelSuc n (isSetSetTrunc _ _)) (λ P≡rUnitrefl i → ∣ 0ₖ (3 + n) , refl , refl , P≡rUnitrefl i ∣₂) (fun (PathIdTruncIso _) (isContr→isProp (isConnectedPath _ (isConnectedPathKn (2 + n) _ _) (refl ∙∙ refl ∙∙ refl) refl) ∣ P ∣ ∣ sym (rUnit refl) ∣))) isContrΣ-help : isContr ∥ (Σ[ x ∈ coHomK (3 + n) ] Σ[ p ∈ x ≡ x ] Σ[ q ∈ x ≡ x ] p ∙∙ q ∙∙ p ≡ q) ∥₂ fst isContrΣ-help = ∣ 0ₖ _ , refl , refl , sym (rUnit refl) ∣₂ snd isContrΣ-help = ST.elim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ {(x , p , q , P) → T.rec (isProp→isOfHLevelSuc (suc n) (isSetSetTrunc _ _)) (λ pId → T.rec (isProp→isOfHLevelSuc (suc n) (isSetSetTrunc _ _)) (λ qId → sym (helper x p pId q qId P)) (fun (PathIdTruncIso (2 + n)) (isContr→isProp (isConnectedPathKn (2 + n) _ _) ∣ refl ∣ ∣ q ∣))) (fun (PathIdTruncIso (2 + n)) (isContr→isProp (isConnectedPathKn (2 + n) _ _) ∣ refl ∣ ∣ p ∣))} Hⁿ⁺³-𝕂²≅0 : (n : ℕ) → GroupIso (coHomGr (3 + n) KleinBottle) UnitGroup₀ Hⁿ⁺³-𝕂²≅0 n = contrGroupIsoUnit (isContrHⁿ-𝕂² n)
46.565502
141
0.505416
7286d973d1701959c8d07edeb5ce8cda45fdf84d
13,426
agda
Agda
src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Monoidal open import Categories.Functor.Monoidal module Categories.NaturalTransformation.NaturalIsomorphism.Monoidal where open import Level open import Data.Product using (_,_) open import Relation.Binary using (IsEquivalence; Setoid) open import Categories.Category.Product import Categories.Category.Monoidal.Reasoning as MonoidalReasoning import Categories.Category.Monoidal.Utilities as MonoidalUtilities open import Categories.Functor hiding (id) open import Categories.Functor.Monoidal.Properties using () renaming ( idF-Monoidal to idFˡ ; idF-StrongMonoidal to idFˢ ; ∘-Monoidal to _∘Fˡ_ ; ∘-StrongMonoidal to _∘Fˢ_ ) import Categories.Morphism.Reasoning as MorphismReasoning import Categories.NaturalTransformation.Monoidal as NT open import Categories.NaturalTransformation.NaturalIsomorphism as NI using (NaturalIsomorphism) open NaturalIsomorphism using (F⇒G; F⇐G) -- Monoidal natural isomorphisms between lax monoidal functors. module Lax where open NT.Lax hiding (id) module _ {o ℓ e o′ ℓ′ e′} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} (F G : MonoidalFunctor C D) where private module C = MonoidalCategory C module D = MonoidalCategory D module F = MonoidalFunctor F renaming (F to U) module G = MonoidalFunctor G renaming (F to U) IsMonoidalNaturalIsomorphism : NaturalIsomorphism F.U G.U → Set (o ⊔ ℓ′ ⊔ e′) IsMonoidalNaturalIsomorphism α = IsMonoidalNaturalTransformation F G (F⇒G α) record MonoidalNaturalIsomorphism : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalIsomorphism F.U G.U F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism U open NaturalIsomorphism U public hiding (module ⇒; module ⇐) open IsMonoidalNaturalTransformation F⇒G-isMonoidal public open D using (module Equiv) open MorphismReasoning D.U using (switch-fromtoˡ; conjugate-from) open MonoidalUtilities D.monoidal using (_⊗ᵢ_) F⇐G-isMonoidal : IsMonoidalNaturalTransformation G F (F⇐G U) F⇐G-isMonoidal = record { ε-compat = Equiv.sym (switch-fromtoˡ FX≅GX ε-compat) ; ⊗-homo-compat = conjugate-from (FX≅GX ⊗ᵢ FX≅GX) FX≅GX (Equiv.sym ⊗-homo-compat) } F⇒G-monoidal : MonoidalNaturalTransformation F G F⇒G-monoidal = record { U = F⇒G U ; isMonoidal = F⇒G-isMonoidal } F⇐G-monoidal : MonoidalNaturalTransformation G F F⇐G-monoidal = record { U = F⇐G U ; isMonoidal = F⇐G-isMonoidal } module ⇒ = MonoidalNaturalTransformation F⇒G-monoidal module ⇐ = MonoidalNaturalTransformation F⇐G-monoidal infix 4 _≃_ _≃_ = MonoidalNaturalIsomorphism open MonoidalNaturalTransformation using (isMonoidal) open MonoidalNaturalIsomorphism -- Identity and compositions module _ {o ℓ e o′ ℓ′ e′} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} where infixr 9 _ⓘᵥ_ id : {F : MonoidalFunctor C D} → F ≃ F id = record { U = NI.refl ; F⇒G-isMonoidal = isMonoidal NT.Lax.id } _ⓘᵥ_ : {F G H : MonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H _ⓘᵥ_ α β = record { U = U α NI.ⓘᵥ U β ; F⇒G-isMonoidal = isMonoidal (F⇒G-monoidal α ∘ᵥ F⇒G-monoidal β) } isEquivalence : IsEquivalence _≃_ isEquivalence = record { refl = id ; sym = λ α → record { U = NI.sym (U α) ; F⇒G-isMonoidal = F⇐G-isMonoidal α } ; trans = λ α β → β ⓘᵥ α } module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} {E : MonoidalCategory o″ ℓ″ e″} where infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘₕ_ : {F G : MonoidalFunctor C D} {H I : MonoidalFunctor D E} → H ≃ I → F ≃ G → (H ∘Fˡ F) ≃ (I ∘Fˡ G) _ⓘₕ_ α β = record { U = U α NI.ⓘₕ U β ; F⇒G-isMonoidal = isMonoidal (F⇒G-monoidal α ∘ₕ F⇒G-monoidal β) } _ⓘˡ_ : {F G : MonoidalFunctor C D} (H : MonoidalFunctor D E) → F ≃ G → (H ∘Fˡ F) ≃ (H ∘Fˡ G) H ⓘˡ α = id {F = H} ⓘₕ α _ⓘʳ_ : {G H : MonoidalFunctor D E} → G ≃ H → (F : MonoidalFunctor C D) → (G ∘Fˡ F) ≃ (H ∘Fˡ F) α ⓘʳ F = α ⓘₕ id {F = F} -- Left and right unitors. module _ {o ℓ e o′ ℓ′ e′} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} {F : MonoidalFunctor C D} where private module C = MonoidalCategory C module D = MonoidalCategory D module F = MonoidalFunctor F open D hiding (U; id; unitorˡ; unitorʳ) open MorphismReasoning D.U using (id-comm-sym) open MonoidalReasoning D.monoidal unitorˡ : idFˡ D ∘Fˡ F ≃ F unitorˡ = record { U = NI.unitorˡ ; F⇒G-isMonoidal = record { ε-compat = identityˡ ○ identityʳ ; ⊗-homo-compat = λ {X Y} → begin D.id D.∘ F.⊗-homo.η (X , Y) D.∘ D.id ≈⟨ identityˡ ⟩ F.⊗-homo.η (X , Y) D.∘ D.id ≈˘⟨ refl⟩∘⟨ ⊗.identity ⟩ F.⊗-homo.η (X , Y) D.∘ D.id ⊗₁ D.id ∎ } } unitorʳ : F ∘Fˡ idFˡ C ≃ F unitorʳ = record { U = NI.unitorʳ ; F⇒G-isMonoidal = record { ε-compat = begin D.id ∘ F.₁ C.id ∘ F.ε ≈⟨ identityˡ ⟩ F.₁ C.id ∘ F.ε ≈⟨ F.identity ⟩∘⟨refl ⟩ D.id ∘ F.ε ≈⟨ identityˡ ⟩ F.ε ∎ ; ⊗-homo-compat = λ {X Y} → begin D.id D.∘ F.₁ C.id ∘ F.⊗-homo.η (X , Y) ≈⟨ identityˡ ⟩ F.₁ C.id ∘ F.⊗-homo.η (X , Y) ≈⟨ F.identity ⟩∘⟨refl ⟩ D.id ∘ F.⊗-homo.η (X , Y) ≈⟨ id-comm-sym ⟩ F.⊗-homo.η (X , Y) D.∘ D.id ≈˘⟨ refl⟩∘⟨ ⊗.identity ⟩ F.⊗-homo.η (X , Y) D.∘ D.id ⊗₁ D.id ∎ } } -- Associator. module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴} {B : MonoidalCategory o ℓ e} {C : MonoidalCategory o′ ℓ′ e′} {D : MonoidalCategory o″ ℓ″ e″} {E : MonoidalCategory o‴ ℓ‴ e‴} {F : MonoidalFunctor B C} {G : MonoidalFunctor C D} {H : MonoidalFunctor D E} where private module D = MonoidalCategory D module E = MonoidalCategory E module F = MonoidalFunctor F module G = MonoidalFunctor G module H = MonoidalFunctor H open E hiding (U; id; associator) open MorphismReasoning E.U open MonoidalReasoning E.monoidal associator : (H ∘Fˡ G) ∘Fˡ F ≃ H ∘Fˡ (G ∘Fˡ F) associator = record { U = NI.associator (F.F) (G.F) (H.F) ; F⇒G-isMonoidal = record { ε-compat = begin E.id ∘ H.₁ (G.₁ F.ε) ∘ H.₁ G.ε ∘ H.ε ≈⟨ identityˡ ⟩ H.₁ (G.₁ F.ε) ∘ H.₁ G.ε ∘ H.ε ≈˘⟨ pushˡ H.homomorphism ⟩ H.₁ (G.₁ F.ε D.∘ G.ε) ∘ H.ε ∎ ; ⊗-homo-compat = λ {X Y} → begin E.id ∘ H.₁ (G.₁ (F.⊗-homo.η (X , Y))) ∘ H.₁ (G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘ H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y)) ≈⟨ identityˡ ⟩ H.₁ (G.₁ (F.⊗-homo.η (X , Y))) ∘ H.₁ (G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘ H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y)) ≈˘⟨ pushˡ H.homomorphism ⟩ H.₁ (G.₁ (F.⊗-homo.η (X , Y)) D.∘ G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘ H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y)) ≈˘⟨ identityʳ ⟩ (H.₁ (G.₁ (F.⊗-homo.η (X , Y)) D.∘ G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘ H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y))) ∘ E.id ≈˘⟨ refl⟩∘⟨ ⊗.identity ⟩ (H.₁ (G.₁ (F.⊗-homo.η (X , Y)) D.∘ G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘ H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y))) ∘ E.id ⊗₁ E.id ∎ } } -- Monoidal natural isomorphisms between strong monoidal functors. module Strong where open NT.Strong hiding (id; strengthen) open StrongMonoidalFunctor renaming (F to UF; monoidalFunctor to laxF) module _ {o ℓ e o′ ℓ′ e′} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} (F G : StrongMonoidalFunctor C D) where IsMonoidalNaturalIsomorphism : NaturalIsomorphism (UF F) (UF G) → Set (o ⊔ ℓ′ ⊔ e′) IsMonoidalNaturalIsomorphism α = IsMonoidalNaturalTransformation F G (F⇒G α) -- NOTE. This record contains the same data as the lax version, -- but the type arguments are different. This helps type -- inference by providing the right constraints. record MonoidalNaturalIsomorphism : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalIsomorphism (UF F) (UF G) F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism U laxNI : Lax.MonoidalNaturalIsomorphism (laxF F) (laxF G) laxNI = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } open Lax.MonoidalNaturalIsomorphism laxNI public hiding (U; F⇒G-isMonoidal; F⇒G-monoidal; F⇐G-monoidal; module ⇒; module ⇐) F⇒G-monoidal : MonoidalNaturalTransformation F G F⇒G-monoidal = record { U = F⇒G U ; isMonoidal = F⇒G-isMonoidal } F⇐G-monoidal : MonoidalNaturalTransformation G F F⇐G-monoidal = record { U = F⇐G U ; isMonoidal = F⇐G-isMonoidal } module ⇒ = MonoidalNaturalTransformation F⇒G-monoidal module ⇐ = MonoidalNaturalTransformation F⇐G-monoidal infix 4 _≃_ _≃_ = MonoidalNaturalIsomorphism open MonoidalNaturalIsomorphism module _ {o ℓ e o′ ℓ′ e′} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} where infixr 9 _ⓘᵥ_ -- Since they contain the same data, we can strengthen a lax -- monoidal isomorphism to a strong one. strengthen : {F G : StrongMonoidalFunctor C D} → (laxF F) Lax.≃ (laxF G) → F ≃ G strengthen α = record { U = L.U ; F⇒G-isMonoidal = L.F⇒G-isMonoidal } where module L = Lax.MonoidalNaturalIsomorphism α -- Identity and compositions id : {F : StrongMonoidalFunctor C D} → F ≃ F id = strengthen Lax.id _ⓘᵥ_ : {F G H : StrongMonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H α ⓘᵥ β = strengthen (laxNI α Lax.ⓘᵥ laxNI β) isEquivalence : IsEquivalence _≃_ isEquivalence = record { refl = λ {F} → id {F} ; sym = λ α → record { U = NI.sym (U α) ; F⇒G-isMonoidal = F⇐G-isMonoidal α } ; trans = λ {F} {G} {H} α β → _ⓘᵥ_ {F} {G} {H} β α } module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} {E : MonoidalCategory o″ ℓ″ e″} where open Lax.MonoidalNaturalIsomorphism infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘₕ_ : {F G : StrongMonoidalFunctor C D} {H I : StrongMonoidalFunctor D E} → H ≃ I → F ≃ G → (H ∘Fˢ F) ≃ (I ∘Fˢ G) -- FIXME: this definition is clearly equivalent to -- -- α ⓘₕ β = strengthen (laxNI α Lax.ⓘₕ laxNI β) -- -- but the latter takes an unreasonably long time to typecheck, -- while the unfolded version typechecks almost immediately. α ⓘₕ β = record { U = L.U ; F⇒G-isMonoidal = record { ε-compat = L.ε-compat ; ⊗-homo-compat = L.⊗-homo-compat } } where module L = Lax.MonoidalNaturalIsomorphism (laxNI α Lax.ⓘₕ laxNI β) _ⓘˡ_ : {F G : StrongMonoidalFunctor C D} (H : StrongMonoidalFunctor D E) → F ≃ G → (H ∘Fˢ F) ≃ (H ∘Fˢ G) H ⓘˡ α = id {F = H} ⓘₕ α _ⓘʳ_ : {G H : StrongMonoidalFunctor D E} → G ≃ H → (F : StrongMonoidalFunctor C D) → (G ∘Fˢ F) ≃ (H ∘Fˢ F) α ⓘʳ F = α ⓘₕ id {F = F} -- Left and right unitors. module _ {o ℓ e o′ ℓ′ e′} {C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} {F : StrongMonoidalFunctor C D} where unitorˡ : idFˢ D ∘Fˢ F ≃ F -- FIXME: Again, this unfolded definition typechecks considerably -- faster than the equivalent -- -- strengthen (Lax.unitorʳ {F = laxF F}) unitorˡ = record { U = L.U ; F⇒G-isMonoidal = record { ε-compat = L.ε-compat ; ⊗-homo-compat = L.⊗-homo-compat } } where module L = Lax.MonoidalNaturalIsomorphism (Lax.unitorˡ {F = laxF F}) unitorʳ : F ∘Fˢ idFˢ C ≃ F -- FIXME: ... same here ... unitorʳ = record { U = L.U ; F⇒G-isMonoidal = record { ε-compat = L.ε-compat ; ⊗-homo-compat = L.⊗-homo-compat } } where module L = Lax.MonoidalNaturalIsomorphism (Lax.unitorʳ {F = laxF F}) -- Associator. module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴} {B : MonoidalCategory o ℓ e} {C : MonoidalCategory o′ ℓ′ e′} {D : MonoidalCategory o″ ℓ″ e″} {E : MonoidalCategory o‴ ℓ‴ e‴} {F : StrongMonoidalFunctor B C} {G : StrongMonoidalFunctor C D} {H : StrongMonoidalFunctor D E} where associator : (H ∘Fˢ G) ∘Fˢ F ≃ H ∘Fˢ (G ∘Fˢ F) -- FIXME: ... and here. Though, for this one, even the unfolded -- version takes a lot of time. associator = record { U = L.U ; F⇒G-isMonoidal = record { ε-compat = L.ε-compat ; ⊗-homo-compat = L.⊗-homo-compat } } where α = Lax.associator {F = laxF F} {laxF G} {laxF H} module L = Lax.MonoidalNaturalIsomorphism α
35.612732
81
0.555936
0178a67fd129f47ed17d7eba8efcc324ffd95217
1,375
agda
Agda
models/DescFix.agda
dataronio/epigram2
17b7858f51a35b3becb8433028c3f1ba25fbba9a
[ "MIT" ]
48
2016-01-09T17:36:19.000Z
2022-02-11T01:55:28.000Z
models/DescFix.agda
seanwallawalla-forks/Epigram
a2064e63786cc8004cfc9ac7a0c89c2936f0b797
[ "MIT" ]
null
null
null
models/DescFix.agda
seanwallawalla-forks/Epigram
a2064e63786cc8004cfc9ac7a0c89c2936f0b797
[ "MIT" ]
12
2016-08-14T21:36:35.000Z
2022-02-11T01:57:40.000Z
{-# OPTIONS --type-in-type #-} module DescFix where open import DescTT aux : (C : Desc)(D : Desc)(P : Mu C -> Set)(x : [| D |] (Mu C)) -> Set aux C id P (con y) = P (con y) * aux C C P y aux C (const K) P k = Unit aux C (prod D D') P (s , t) = aux C D P s * aux C D' P t aux C (sigma S T) P (s , t) = aux C (T s) P t aux C (pi S T) P f = (s : S) -> aux C (T s) P (f s) gen : (C : Desc)(D : Desc)(P : Mu C -> Set) (rec : (y : [| C |] Mu C) -> aux C C P y -> P (con y)) (x : [| D |] Mu C) -> aux C D P x gen C id P rec (con x) = rec x (gen C C P rec x) , gen C C P rec x gen C (const K) P rec k = Void gen C (prod D D') P rec (s , t) = gen C D P rec s , gen C D' P rec t gen C (sigma S T) P rec (s , t) = gen C (T s) P rec t gen C (pi S T) P rec f = \ s -> gen C (T s) P rec (f s) fix : (D : Desc)(P : Mu D -> Set) (rec : (y : [| D |] Mu D) -> aux D D P y -> P (con y)) (x : Mu D) -> P x fix D P rec (con x) = rec x (gen D D P rec x) plus : Nat -> Nat -> Nat plus (con (Ze , Void)) n = n plus (con (Suc , m)) n = suc (plus m n) fib : Nat -> Nat fib = fix NatD (\ _ -> Nat) help where help : (m : [| NatD |] Nat) -> aux NatD NatD (\ _ -> Nat) m -> Nat help (Ze , x) a = suc ze help (Suc , con (Ze , _)) a = suc ze help (Suc , con (Suc , con n)) (fib-n , (fib-sn , a)) = plus fib-n fib-sn
31.976744
77
0.464
72402de561f05694959156cb60ee9c2a50b883ac
8,158
agda
Agda
Groups/Cyclic/DefinitionLemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/Cyclic/DefinitionLemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/Cyclic/DefinitionLemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Numbers.Naturals.Semiring open import Numbers.Integers.Integers open import Numbers.Integers.Addition open import Groups.Lemmas open import Groups.Definition open import Groups.Cyclic.Definition open import Semirings.Definition module Groups.Cyclic.DefinitionLemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} (G : Group S _+_) where open Setoid S open Group G open Equivalence eq elementPowerCommutes : (x : A) (n : ℕ) → (x + positiveEltPower G x n) ∼ ((positiveEltPower G x n) + x) elementPowerCommutes x zero = transitive identRight (symmetric identLeft) elementPowerCommutes x (succ n) = transitive (+WellDefined reflexive (elementPowerCommutes x n)) +Associative elementPowerCollapse : (x : A) (i j : ℤ) → Setoid._∼_ S ((elementPower G x i) + (elementPower G x j)) (elementPower G x (i +Z j)) elementPowerCollapse x (nonneg a) (nonneg b) rewrite equalityCommutative (+Zinherits a b) = positiveEltPowerCollapse G x a b elementPowerCollapse x (nonneg zero) (negSucc b) = identLeft elementPowerCollapse x (nonneg (succ a)) (negSucc zero) = transitive (+WellDefined (elementPowerCommutes x a) reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (+WellDefined reflexive (invContravariant G)) (transitive (+WellDefined reflexive (transitive (+WellDefined (invIdent G) reflexive) identLeft)) invRight))) identRight)) elementPowerCollapse x (nonneg (succ a)) (negSucc (succ b)) = transitive (transitive (+WellDefined (elementPowerCommutes x a) reflexive) (transitive (symmetric +Associative) (+WellDefined reflexive (transitive (transitive (+WellDefined reflexive (inverseWellDefined G (transitive (+WellDefined reflexive (elementPowerCommutes x b)) +Associative))) (transitive (+WellDefined reflexive (invContravariant G)) (transitive +Associative (transitive (+WellDefined invRight (invContravariant G)) identLeft)))) (symmetric (invContravariant G)))))) (elementPowerCollapse x (nonneg a) (negSucc b)) elementPowerCollapse x (negSucc zero) (nonneg zero) = identRight elementPowerCollapse x (negSucc zero) (nonneg (succ b)) = transitive (transitive +Associative (+WellDefined (transitive (+WellDefined (inverseWellDefined G identRight) reflexive) invLeft) reflexive)) identLeft elementPowerCollapse x (negSucc (succ a)) (nonneg zero) = identRight elementPowerCollapse x (negSucc (succ a)) (nonneg (succ b)) = transitive (transitive +Associative (+WellDefined (transitive (+WellDefined (invContravariant G) reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight))) reflexive)) (elementPowerCollapse x (negSucc a) (nonneg b)) elementPowerCollapse x (negSucc a) (negSucc b) = transitive (+WellDefined reflexive (invContravariant G)) (transitive (transitive (transitive +Associative (+WellDefined (transitive (symmetric (invContravariant G)) (transitive (inverseWellDefined G +Associative) (transitive (inverseWellDefined G (+WellDefined (symmetric (elementPowerCommutes x b)) reflexive)) (transitive (inverseWellDefined G (symmetric +Associative)) (transitive (invContravariant G) (+WellDefined (inverseWellDefined G (transitive (positiveEltPowerCollapse G x b a) (identityOfIndiscernablesRight _∼_ reflexive (applyEquality (positiveEltPower G x) {b +N a} {a +N b} (Semiring.commutative ℕSemiring b a))))) reflexive)))))) reflexive)) (+WellDefined (symmetric (invContravariant G)) reflexive)) (symmetric (invContravariant G))) positiveEltPowerInverse : (m : ℕ) → (x : A) → (positiveEltPower G (inverse x) m) ∼ inverse (positiveEltPower G x m) positiveEltPowerInverse zero x = symmetric (invIdent G) positiveEltPowerInverse (succ m) x = transitive (+WellDefined reflexive (positiveEltPowerInverse m x)) (transitive (symmetric (invContravariant G)) (inverseWellDefined G (symmetric (elementPowerCommutes x m)))) positiveEltPowerMultiplies : (m n : ℕ) → (x : A) → (positiveEltPower G x (m *N n)) ∼ (positiveEltPower G (positiveEltPower G x n) m) positiveEltPowerMultiplies zero n x = reflexive positiveEltPowerMultiplies (succ m) n x = transitive (symmetric (positiveEltPowerCollapse G x n (m *N n))) (+WellDefined reflexive (positiveEltPowerMultiplies m n x)) powerZero : (m : ℕ) → positiveEltPower G 0G m ∼ 0G powerZero zero = reflexive powerZero (succ m) = transitive identLeft (powerZero m) elementPowerMultiplies : (m n : ℤ) → (x : A) → (elementPower G x (m *Z n)) ∼ (elementPower G (elementPower G x n) m) elementPowerMultiplies (nonneg m) (nonneg n) x = positiveEltPowerMultiplies m n x elementPowerMultiplies (nonneg zero) (negSucc n) x = reflexive elementPowerMultiplies (nonneg (succ m)) (negSucc n) x = transitive (transitive (inverseWellDefined G (transitive (transitive (elementPowerWellDefinedZ' G (nonneg (succ (n +N m *N n) +N m)) (nonneg (m *N succ n +N succ n)) (applyEquality nonneg (transitivity (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring n (m *N n) m)) (applyEquality (n +N_) (transitivity (transitivity (Semiring.commutative ℕSemiring _ m) (applyEquality (m +N_) (multiplicationNIsCommutative m n))) (multiplicationNIsCommutative (succ n) m))))) (Semiring.commutative ℕSemiring (succ n) _))) {x}) (symmetric (positiveEltPowerCollapse G x (m *N succ n) (succ n)))) (+WellDefined (positiveEltPowerMultiplies m (succ n) x) reflexive))) (invContravariant G)) (+WellDefined reflexive (symmetric (positiveEltPowerInverse m (x + positiveEltPower G x n)))) elementPowerMultiplies (negSucc m) (nonneg zero) r = transitive (symmetric (invIdent G)) (inverseWellDefined G (transitive (symmetric identLeft) (+WellDefined reflexive (symmetric (powerZero m))))) elementPowerMultiplies (negSucc m) (nonneg (succ n)) x = inverseWellDefined G (transitive (transitive (+WellDefined reflexive (transitive (elementPowerWellDefinedZ' G (nonneg ((m +N n *N m) +N n)) (nonneg (n +N m *N succ n)) (applyEquality nonneg (transitivity (Semiring.commutative ℕSemiring _ n) (applyEquality (n +N_) (multiplicationNIsCommutative _ m)))) {x}) (symmetric (positiveEltPowerCollapse G x n (m *N succ n))))) +Associative) (+WellDefined reflexive (positiveEltPowerMultiplies m (succ n) x))) elementPowerMultiplies (negSucc m) (negSucc n) r = transitive (transitive (transitive (transitive (elementPowerWellDefinedZ' G (nonneg (succ m *N succ n)) (nonneg (m *N succ n +N succ n)) (applyEquality nonneg (Semiring.commutative ℕSemiring (succ n) _)) {r}) (symmetric (positiveEltPowerCollapse G r (m *N succ n) (succ n)))) (transitive (elementPowerCollapse r (nonneg (m *N succ n)) (nonneg (succ n))) (transitive (transitive (elementPowerWellDefinedZ' G (nonneg (m *N succ n) +Z nonneg (succ n)) (nonneg (m *N succ n +N succ n)) (equalityCommutative (+Zinherits (m *N succ n) (succ n))) {r}) (symmetric (positiveEltPowerCollapse G r (m *N succ n) (succ n)))) (+WellDefined (positiveEltPowerMultiplies m (succ n) r) reflexive)))) (+WellDefined (transitive (symmetric (invTwice G _)) (inverseWellDefined G (symmetric (positiveEltPowerInverse m (r + positiveEltPower G r n))))) (symmetric (invTwice G _)))) (symmetric (invContravariant G)) positiveEltPowerHomAbelian : ({x y : A} → (x + y) ∼ (y + x)) → (x y : A) → (r : ℕ) → (positiveEltPower G (x + y) r) ∼ (positiveEltPower G x r + positiveEltPower G y r) positiveEltPowerHomAbelian ab x y zero = symmetric identRight positiveEltPowerHomAbelian ab x y (succ r) = transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (+WellDefined reflexive (positiveEltPowerHomAbelian ab x y r)) (transitive (+WellDefined reflexive ab) (transitive +Associative ab)))) +Associative) elementPowerHomAbelian : ({x y : A} → (x + y) ∼ (y + x)) → (x y : A) → (r : ℤ) → (elementPower G (x + y) r) ∼ (elementPower G x r + elementPower G y r) elementPowerHomAbelian ab x y (nonneg n) = positiveEltPowerHomAbelian ab x y n elementPowerHomAbelian ab x y (negSucc n) = transitive (transitive (inverseWellDefined G (positiveEltPowerHomAbelian ab x y (succ n))) (inverseWellDefined G ab)) (invContravariant G)
131.580645
940
0.75619
36fd86cda320dfbb18f88e2c488fec97d9a0d63d
1,707
agda
Agda
Cats/Category/Preorder/Facts/PreorderAsCategory.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Preorder/Facts/PreorderAsCategory.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Preorder/Facts/PreorderAsCategory.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Category.Preorder.Facts.PreorderAsCategory where open import Data.Bool using (true ; false) open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Relation.Binary using (Preorder) import Level open import Cats.Category open import Cats.Category.Preorder using (preorderAsCategory) module _ {lc l≈ l≤} (P : Preorder lc l≈ l≤) where C : Category _ _ _ C = preorderAsCategory P open module P = Preorder P using (_∼_) renaming (_≈_ to _≋_) open Category C _≈_⊔_ : Obj → Obj → Obj → Set l≤ lub ≈ x ⊔ y = x ∼ lub × y ∼ lub × (lub ∼ x ⊎ lub ∼ y) _≈_⊓_ : Obj → Obj → Obj → Set l≤ glb ≈ x ⊓ y = glb ∼ x × glb ∼ y × (x ∼ glb ⊎ y ∼ glb) IsMinimum : Obj → Set (lc Level.⊔ l≤) IsMinimum m = ∀ x → m ∼ x IsMaximum : Obj → Set (lc Level.⊔ l≤) IsMaximum m = ∀ x → x ∼ m initial : ∀ {x} → IsMinimum x → IsInitial x initial min y = ∃!-intro (min y) _ _ terminal : ∀ {x} → IsMaximum x → IsTerminal x terminal max y = ∃!-intro (max y) _ _ ⊓-isBinaryProduct : ∀ {glb x y} → (pl : glb ∼ x) → (pr : glb ∼ y) → (x ∼ glb ⊎ y ∼ glb) → IsBinaryProduct glb pl pr ⊓-isBinaryProduct pl pr (inj₁ x∼glb) xl xr = ∃!-intro (x∼glb ∘ xl) _ _ ⊓-isBinaryProduct pl pr (inj₂ y∼glb) xl xr = ∃!-intro (y∼glb ∘ xr) _ _ ⊓-to-BinaryProduct : ∀ {glb x y} → glb ≈ x ⊓ y → BinaryProduct x y ⊓-to-BinaryProduct {glb} (pl , pr , maximal) = mkBinaryProduct pl pr (⊓-isBinaryProduct pl pr maximal) mono : ∀ {x y} (f : x ⇒ y) → IsMono f mono = _ epi : ∀ {x y} (f : x ⇒ y) → IsEpi f epi = _ unique : ∀ {x y} (f : x ⇒ y) → IsUnique f unique = _
23.383562
72
0.582308
142959c56bdd92633f2463ff20ee39bc2ad8834d
13,198
agda
Agda
Cubical/Foundations/Univalence.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Foundations/Univalence.agda
seanwallawalla-forks/cubical
ccf7c01d6168a5e17c2aee89fd8f670585720b17
[ "MIT" ]
null
null
null
Cubical/Foundations/Univalence.agda
seanwallawalla-forks/cubical
ccf7c01d6168a5e17c2aee89fd8f670585720b17
[ "MIT" ]
null
null
null
{- Proof of the standard formulation of the univalence theorem and various consequences of univalence - Re-exports Glue types from Cubical.Core.Glue - The ua constant and its computation rule (up to a path) - Proof of univalence using that unglue is an equivalence ([EquivContr]) - Equivalence induction ([EquivJ], [elimEquiv]) - Univalence theorem ([univalence]) - The computation rule for ua ([uaβ]) - Isomorphism induction ([elimIso]) -} {-# OPTIONS --safe #-} module Cubical.Foundations.Univalence where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma.Base open import Cubical.Core.Glue public using ( Glue ; glue ; unglue ; lineToEquiv ) open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ' : Level -- The ua constant ua : ∀ {A B : Type ℓ} → A ≃ B → A ≡ B ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e) ; (i = i1) → (B , idEquiv B) }) uaIdEquiv : {A : Type ℓ} → ua (idEquiv A) ≡ refl uaIdEquiv {A = A} i j = Glue A {φ = i ∨ ~ j ∨ j} (λ _ → A , idEquiv A) -- Propositional extensionality hPropExt : {A B : Type ℓ} → isProp A → isProp B → (A → B) → (B → A) → A ≡ B hPropExt Aprop Bprop f g = ua (propBiimpl→Equiv Aprop Bprop f g) -- the unglue and glue primitives specialized to the case of ua ua-unglue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : ua e i) → B {- [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → x }) ] -} ua-unglue e i x = unglue (i ∨ ~ i) x ua-glue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : Partial (~ i) A) (y : B [ _ ↦ (λ { (i = i0) → e .fst (x 1=1) }) ]) → ua e i {- [ _ ↦ (λ { (i = i0) → x 1=1 ; (i = i1) → outS y }) ] -} ua-glue e i x y = glue {φ = i ∨ ~ i} (λ { (i = i0) → x 1=1 ; (i = i1) → outS y }) (outS y) module _ {A B : Type ℓ} (e : A ≃ B) {x : A} {y : B} where -- sometimes more useful are versions of these functions with the (i : I) factored in ua-ungluePath : PathP (λ i → ua e i) x y → e .fst x ≡ y ua-ungluePath p i = ua-unglue e i (p i) ua-gluePath : e .fst x ≡ y → PathP (λ i → ua e i) x y ua-gluePath p i = ua-glue e i (λ { (i = i0) → x }) (inS (p i)) -- ua-ungluePath and ua-gluePath are definitional inverses ua-ungluePath-Equiv : (PathP (λ i → ua e i) x y) ≃ (e .fst x ≡ y) unquoteDef ua-ungluePath-Equiv = defStrictEquiv ua-ungluePath-Equiv ua-ungluePath ua-gluePath -- ua-unglue and ua-glue are also definitional inverses, in a way -- strengthening the types of ua-unglue and ua-glue gives a nicer formulation of this, see below ua-unglue-glue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : Partial (~ i) A) (y : B [ _ ↦ _ ]) → ua-unglue e i (ua-glue e i x y) ≡ outS y ua-unglue-glue _ _ _ _ = refl ua-glue-unglue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : ua e i) → ua-glue e i (λ { (i = i0) → x }) (inS (ua-unglue e i x)) ≡ x ua-glue-unglue _ _ _ = refl -- mainly for documentation purposes, ua-unglue and ua-glue wrapped in cubical subtypes ua-unglueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) → ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ] → B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ] ua-unglueS e i x y s = inS (ua-unglue e i (outS s)) ua-glueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) → B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ] → ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ] ua-glueS e i x y s = inS (ua-glue e i (λ { (i = i0) → x }) (inS (outS s))) ua-unglueS-glueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) (s : B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ]) → outS (ua-unglueS e i x y (ua-glueS e i x y s)) ≡ outS s ua-unglueS-glueS _ _ _ _ _ = refl ua-glueS-unglueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) (s : ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ]) → outS (ua-glueS e i x y (ua-unglueS e i x y s)) ≡ outS s ua-glueS-unglueS _ _ _ _ _ = refl -- a version of ua-glue with a single endpoint, identical to `ua-gluePath e {x} refl i` ua-gluePt : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) → ua e i {- [ _ ↦ (λ { (i = i0) → x ; (i = i1) → e .fst x }) ] -} ua-gluePt e i x = ua-glue e i (λ { (i = i0) → x }) (inS (e .fst x)) -- Proof of univalence using that unglue is an equivalence: -- unglue is an equivalence unglueIsEquiv : ∀ (A : Type ℓ) (φ : I) (f : PartialP φ (λ o → Σ[ T ∈ Type ℓ ] T ≃ A)) → isEquiv {A = Glue A f} (unglue φ) equiv-proof (unglueIsEquiv A φ f) = λ (b : A) → let u : I → Partial φ A u i = λ{ (φ = i1) → equivCtr (f 1=1 .snd) b .snd (~ i) } ctr : fiber (unglue φ) b ctr = ( glue (λ { (φ = i1) → equivCtr (f 1=1 .snd) b .fst }) (hcomp u b) , λ j → hfill u (inS b) (~ j)) in ( ctr , λ (v : fiber (unglue φ) b) i → let u' : I → Partial (φ ∨ ~ i ∨ i) A u' j = λ { (φ = i1) → equivCtrPath (f 1=1 .snd) b v i .snd (~ j) ; (i = i0) → hfill u (inS b) j ; (i = i1) → v .snd (~ j) } in ( glue (λ { (φ = i1) → equivCtrPath (f 1=1 .snd) b v i .fst }) (hcomp u' b) , λ j → hfill u' (inS b) (~ j))) -- Any partial family of equivalences can be extended to a total one -- from Glue [ φ ↦ (T,f) ] A to A unglueEquiv : ∀ (A : Type ℓ) (φ : I) (f : PartialP φ (λ o → Σ[ T ∈ Type ℓ ] T ≃ A)) → (Glue A f) ≃ A unglueEquiv A φ f = ( unglue φ , unglueIsEquiv A φ f ) -- The following is a formulation of univalence proposed by Martín Escardó: -- https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ -- See also Theorem 5.8.4 of the HoTT Book. -- -- The reason we have this formulation in the core library and not the -- standard one is that this one is more direct to prove using that -- unglue is an equivalence. The standard formulation can be found in -- Cubical/Basics/Univalence. -- EquivContr : ∀ (A : Type ℓ) → ∃![ T ∈ Type ℓ ] (T ≃ A) EquivContr {ℓ = ℓ} A = ( (A , idEquiv A) , idEquiv≡ ) where idEquiv≡ : (y : Σ (Type ℓ) (λ T → T ≃ A)) → (A , idEquiv A) ≡ y idEquiv≡ w = \ { i .fst → Glue A (f i) ; i .snd .fst → unglueEquiv _ _ (f i) .fst ; i .snd .snd .equiv-proof → unglueEquiv _ _ (f i) .snd .equiv-proof } where f : ∀ i → PartialP (~ i ∨ i) (λ x → Σ[ T ∈ Type ℓ ] T ≃ A) f i = λ { (i = i0) → A , idEquiv A ; (i = i1) → w } contrSinglEquiv : {A B : Type ℓ} (e : A ≃ B) → (B , idEquiv B) ≡ (A , e) contrSinglEquiv {A = A} {B = B} e = isContr→isProp (EquivContr B) (B , idEquiv B) (A , e) -- Equivalence induction EquivJ : {A B : Type ℓ} (P : (A : Type ℓ) → (e : A ≃ B) → Type ℓ') → (r : P B (idEquiv B)) → (e : A ≃ B) → P A e EquivJ P r e = subst (λ x → P (x .fst) (x .snd)) (contrSinglEquiv e) r -- Assuming that we have an inverse to ua we can easily prove univalence module Univalence (au : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B) (aurefl : ∀ {ℓ} {A B : Type ℓ} → au refl ≡ idEquiv A) where ua-au : {A B : Type ℓ} (p : A ≡ B) → ua (au p) ≡ p ua-au {B = B} = J (λ _ p → ua (au p) ≡ p) (cong ua (aurefl {B = B}) ∙ uaIdEquiv) au-ua : {A B : Type ℓ} (e : A ≃ B) → au (ua e) ≡ e au-ua {B = B} = EquivJ (λ _ f → au (ua f) ≡ f) (subst (λ r → au r ≡ idEquiv _) (sym uaIdEquiv) (aurefl {B = B})) isoThm : ∀ {ℓ} {A B : Type ℓ} → Iso (A ≡ B) (A ≃ B) isoThm .Iso.fun = au isoThm .Iso.inv = ua isoThm .Iso.rightInv = au-ua isoThm .Iso.leftInv = ua-au thm : ∀ {ℓ} {A B : Type ℓ} → isEquiv au thm {A = A} {B = B} = isoToIsEquiv {B = A ≃ B} isoThm pathToEquiv : {A B : Type ℓ} → A ≡ B → A ≃ B pathToEquiv p = lineToEquiv (λ i → p i) pathToEquivRefl : {A : Type ℓ} → pathToEquiv refl ≡ idEquiv A pathToEquivRefl {A = A} = equivEq (λ i x → transp (λ _ → A) i x) pathToEquiv-ua : {A B : Type ℓ} (e : A ≃ B) → pathToEquiv (ua e) ≡ e pathToEquiv-ua = Univalence.au-ua pathToEquiv pathToEquivRefl ua-pathToEquiv : {A B : Type ℓ} (p : A ≡ B) → ua (pathToEquiv p) ≡ p ua-pathToEquiv = Univalence.ua-au pathToEquiv pathToEquivRefl -- Univalence univalenceIso : {A B : Type ℓ} → Iso (A ≡ B) (A ≃ B) univalenceIso = Univalence.isoThm pathToEquiv pathToEquivRefl univalence : {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B) univalence = ( pathToEquiv , Univalence.thm pathToEquiv pathToEquivRefl ) -- The original map from UniMath/Foundations eqweqmap : {A B : Type ℓ} → A ≡ B → A ≃ B eqweqmap {A = A} e = J (λ X _ → A ≃ X) (idEquiv A) e eqweqmapid : {A : Type ℓ} → eqweqmap refl ≡ idEquiv A eqweqmapid {A = A} = JRefl (λ X _ → A ≃ X) (idEquiv A) univalenceStatement : {A B : Type ℓ} → isEquiv (eqweqmap {ℓ} {A} {B}) univalenceStatement = Univalence.thm eqweqmap eqweqmapid univalenceUAH : {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B) univalenceUAH = ( _ , univalenceStatement ) univalencePath : {A B : Type ℓ} → (A ≡ B) ≡ Lift (A ≃ B) univalencePath = ua (compEquiv univalence LiftEquiv) -- The computation rule for ua. Because of "ghcomp" it is now very -- simple compared to cubicaltt: -- https://github.com/mortberg/cubicaltt/blob/master/examples/univalence.ctt#L202 uaβ : {A B : Type ℓ} (e : A ≃ B) (x : A) → transport (ua e) x ≡ equivFun e x uaβ e x = transportRefl (equivFun e x) uaη : ∀ {A B : Type ℓ} → (P : A ≡ B) → ua (pathToEquiv P) ≡ P uaη = J (λ _ q → ua (pathToEquiv q) ≡ q) (cong ua pathToEquivRefl ∙ uaIdEquiv) -- Lemmas for constructing and destructing dependent paths in a function type where the domain is ua. ua→ : ∀ {ℓ ℓ'} {A₀ A₁ : Type ℓ} {e : A₀ ≃ A₁} {B : (i : I) → Type ℓ'} {f₀ : A₀ → B i0} {f₁ : A₁ → B i1} → ((a : A₀) → PathP B (f₀ a) (f₁ (e .fst a))) → PathP (λ i → ua e i → B i) f₀ f₁ ua→ {e = e} {f₀ = f₀} {f₁} h i a = hcomp (λ j → λ { (i = i0) → f₀ a ; (i = i1) → f₁ (lem a j) }) (h (transp (λ j → ua e (~ j ∧ i)) (~ i) a) i) where lem : ∀ a₁ → e .fst (transport (sym (ua e)) a₁) ≡ a₁ lem a₁ = secEq e _ ∙ transportRefl _ ua→⁻ : ∀ {ℓ ℓ'} {A₀ A₁ : Type ℓ} {e : A₀ ≃ A₁} {B : (i : I) → Type ℓ'} {f₀ : A₀ → B i0} {f₁ : A₁ → B i1} → PathP (λ i → ua e i → B i) f₀ f₁ → ((a : A₀) → PathP B (f₀ a) (f₁ (e .fst a))) ua→⁻ {e = e} {f₀ = f₀} {f₁} p a i = hcomp (λ k → λ { (i = i0) → f₀ a ; (i = i1) → f₁ (uaβ e a k) }) (p i (transp (λ j → ua e (j ∧ i)) (~ i) a)) ua→2 : ∀ {ℓ ℓ' ℓ''} {A₀ A₁ : Type ℓ} {e₁ : A₀ ≃ A₁} {B₀ B₁ : Type ℓ'} {e₂ : B₀ ≃ B₁} {C : (i : I) → Type ℓ''} {f₀ : A₀ → B₀ → C i0} {f₁ : A₁ → B₁ → C i1} → (∀ a b → PathP C (f₀ a b) (f₁ (e₁ .fst a) (e₂ .fst b))) → PathP (λ i → ua e₁ i → ua e₂ i → C i) f₀ f₁ ua→2 h = ua→ (ua→ ∘ h) -- Useful lemma for unfolding a transported function over ua -- If we would have regularity this would be refl transportUAop₁ : ∀ {A B : Type ℓ} → (e : A ≃ B) (f : A → A) (x : B) → transport (λ i → ua e i → ua e i) f x ≡ equivFun e (f (invEq e x)) transportUAop₁ e f x i = transportRefl (equivFun e (f (invEq e (transportRefl x i)))) i -- Binary version transportUAop₂ : ∀ {ℓ} {A B : Type ℓ} → (e : A ≃ B) (f : A → A → A) (x y : B) → transport (λ i → ua e i → ua e i → ua e i) f x y ≡ equivFun e (f (invEq e x) (invEq e y)) transportUAop₂ e f x y i = transportRefl (equivFun e (f (invEq e (transportRefl x i)) (invEq e (transportRefl y i)))) i -- Alternative version of EquivJ that only requires a predicate on functions elimEquivFun : {A B : Type ℓ} (P : (A : Type ℓ) → (A → B) → Type ℓ') → (r : P B (idfun B)) → (e : A ≃ B) → P A (e .fst) elimEquivFun P r e = subst (λ x → P (x .fst) (x .snd .fst)) (contrSinglEquiv e) r -- Isomorphism induction elimIso : {B : Type ℓ} → (Q : {A : Type ℓ} → (A → B) → (B → A) → Type ℓ') → (h : Q (idfun B) (idfun B)) → {A : Type ℓ} → (f : A → B) → (g : B → A) → section f g → retract f g → Q f g elimIso {ℓ} {ℓ'} {B} Q h {A} f g sfg rfg = rem1 f g sfg rfg where P : (A : Type ℓ) → (f : A → B) → Type (ℓ-max ℓ' ℓ) P A f = (g : B → A) → section f g → retract f g → Q f g rem : P B (idfun B) rem g sfg rfg = subst (Q (idfun B)) (λ i b → (sfg b) (~ i)) h rem1 : {A : Type ℓ} → (f : A → B) → P A f rem1 f g sfg rfg = elimEquivFun P rem (f , isoToIsEquiv (iso f g sfg rfg)) g sfg rfg uaInvEquiv : ∀ {A B : Type ℓ} → (e : A ≃ B) → ua (invEquiv e) ≡ sym (ua e) uaInvEquiv {B = B} = EquivJ (λ _ e → ua (invEquiv e) ≡ sym (ua e)) (cong ua (invEquivIdEquiv B)) uaCompEquiv : ∀ {A B C : Type ℓ} → (e : A ≃ B) (f : B ≃ C) → ua (compEquiv e f) ≡ ua e ∙ ua f uaCompEquiv {B = B} {C} = EquivJ (λ _ e → (f : B ≃ C) → ua (compEquiv e f) ≡ ua e ∙ ua f) (λ f → cong ua (compEquivIdEquiv f) ∙ sym (cong (λ x → x ∙ ua f) uaIdEquiv ∙ sym (lUnit (ua f))))
41.503145
101
0.522125
738d12e5cce3f7f297099bf4486a08514a9af6fa
25,776
agda
Agda
Agda/06-universes.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
null
null
null
Agda/06-universes.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
null
null
null
Agda/06-universes.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split --safe #-} module 06-universes where import 05-identity-types open 05-identity-types public -------------------------------------------------------------------------------- -- Section 6.3 Observational equality on the natural numbers -- Definition 6.3.1 Eq-ℕ : ℕ → ℕ → UU lzero Eq-ℕ zero-ℕ zero-ℕ = 𝟙 Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘 Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘 Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n -- Lemma 6.3.2 refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n refl-Eq-ℕ zero-ℕ = star refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n -- Proposition 6.3.3 Eq-ℕ-eq : {x y : ℕ} → Id x y → Eq-ℕ x y Eq-ℕ-eq {x} {.x} refl = refl-Eq-ℕ x eq-Eq-ℕ : (x y : ℕ) → Eq-ℕ x y → Id x y eq-Eq-ℕ zero-ℕ zero-ℕ e = refl eq-Eq-ℕ (succ-ℕ x) (succ-ℕ y) e = ap succ-ℕ (eq-Eq-ℕ x y e) -------------------------------------------------------------------------------- -- Section 6.4 Peano's seventh and eighth axioms -- Theorem 6.4.1 is-injective-succ-ℕ : (x y : ℕ) → Id (succ-ℕ x) (succ-ℕ y) → Id x y is-injective-succ-ℕ x y e = eq-Eq-ℕ x y (Eq-ℕ-eq e) Peano-7 : (x y : ℕ) → ((Id x y) → (Id (succ-ℕ x) (succ-ℕ y))) × ((Id (succ-ℕ x) (succ-ℕ y)) → (Id x y)) Peano-7 x y = pair (ap succ-ℕ) (is-injective-succ-ℕ x y) -- Theorem 6.4.2 Peano-8 : (x : ℕ) → ¬ (Id zero-ℕ (succ-ℕ x)) Peano-8 x p = Eq-ℕ-eq p -------------------------------------------------------------------------------- -- Exercises -- Exercise 6.1 -- Exercise 6.1 (a) is-injective-add-ℕ : (k m n : ℕ) → Id (add-ℕ m k) (add-ℕ n k) → Id m n is-injective-add-ℕ zero-ℕ m n = id is-injective-add-ℕ (succ-ℕ k) m n p = is-injective-add-ℕ k m n (is-injective-succ-ℕ (add-ℕ m k) (add-ℕ n k) p) -- Exercise 6.1 (b) is-injective-mul-ℕ : (k m n : ℕ) → Id (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → Id m n is-injective-mul-ℕ k zero-ℕ zero-ℕ p = refl is-injective-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ ( is-injective-mul-ℕ k m n ( is-injective-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( ( inv (left-successor-law-mul-ℕ m (succ-ℕ k))) ∙ ( ( p) ∙ ( left-successor-law-mul-ℕ n (succ-ℕ k)))))) -- Exercise 6.1 (c) neq-add-ℕ : (m n : ℕ) → ¬ (Id m (add-ℕ m (succ-ℕ n))) neq-add-ℕ (succ-ℕ m) n p = neq-add-ℕ m n ( ( is-injective-succ-ℕ m (add-ℕ (succ-ℕ m) n) p) ∙ ( left-successor-law-add-ℕ m n)) -- Exercise 6.1 (d) neq-mul-ℕ : (m n : ℕ) → ¬ (Id (succ-ℕ m) (mul-ℕ (succ-ℕ m) (succ-ℕ (succ-ℕ n)))) neq-mul-ℕ m n p = neq-add-ℕ ( succ-ℕ m) ( add-ℕ (mul-ℕ m (succ-ℕ n)) n) ( ( p) ∙ ( ( right-successor-law-mul-ℕ (succ-ℕ m) (succ-ℕ n)) ∙ ( ap (add-ℕ (succ-ℕ m)) (left-successor-law-mul-ℕ m (succ-ℕ n))))) -- Exercise 6.2 -- Exercise 6.2 (a) Eq-𝟚 : bool → bool → UU lzero Eq-𝟚 true true = unit Eq-𝟚 true false = empty Eq-𝟚 false true = empty Eq-𝟚 false false = unit -- Exercise 6.2 (b) reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x reflexive-Eq-𝟚 true = star reflexive-Eq-𝟚 false = star Eq-eq-𝟚 : {x y : bool} → Id x y → Eq-𝟚 x y Eq-eq-𝟚 {x = x} refl = reflexive-Eq-𝟚 x eq-Eq-𝟚 : {x y : bool} → Eq-𝟚 x y → Id x y eq-Eq-𝟚 {true} {true} star = refl eq-Eq-𝟚 {false} {false} star = refl -- Exercise 6.2 (c) neq-neg-𝟚 : (b : bool) → ¬ (Id b (neg-𝟚 b)) neq-neg-𝟚 true = Eq-eq-𝟚 neq-neg-𝟚 false = Eq-eq-𝟚 neq-false-true-𝟚 : ¬ (Id false true) neq-false-true-𝟚 = Eq-eq-𝟚 -- Exercise 6.3 -- Exercise 6.3 (a) leq-ℕ : ℕ → ℕ → UU lzero leq-ℕ zero-ℕ m = unit leq-ℕ (succ-ℕ n) zero-ℕ = empty leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m _≤_ = leq-ℕ -- Some trivialities that will be useful later leq-zero-ℕ : (n : ℕ) → leq-ℕ zero-ℕ n leq-zero-ℕ n = star eq-leq-zero-ℕ : (x : ℕ) → leq-ℕ x zero-ℕ → Id zero-ℕ x eq-leq-zero-ℕ zero-ℕ star = refl succ-leq-ℕ : (n : ℕ) → leq-ℕ n (succ-ℕ n) succ-leq-ℕ zero-ℕ = star succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n concatenate-eq-leq-eq-ℕ : {x1 x2 x3 x4 : ℕ} → Id x1 x2 → leq-ℕ x2 x3 → Id x3 x4 → leq-ℕ x1 x4 concatenate-eq-leq-eq-ℕ refl H refl = H concatenate-leq-eq-ℕ : (m : ℕ) {n n' : ℕ} → leq-ℕ m n → Id n n' → leq-ℕ m n' concatenate-leq-eq-ℕ m H refl = H concatenate-eq-leq-ℕ : {m m' : ℕ} (n : ℕ) → Id m' m → leq-ℕ m n → leq-ℕ m' n concatenate-eq-leq-ℕ n refl H = H -- Exercise 6.3 (b) reflexive-leq-ℕ : (n : ℕ) → leq-ℕ n n reflexive-leq-ℕ zero-ℕ = star reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n leq-eq-ℕ : (m n : ℕ) → Id m n → leq-ℕ m n leq-eq-ℕ m .m refl = reflexive-leq-ℕ m transitive-leq-ℕ : (n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l) transitive-leq-ℕ zero-ℕ m l p q = star transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-leq-ℕ n m l p q preserves-leq-succ-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ m (succ-ℕ n) preserves-leq-succ-ℕ m n p = transitive-leq-ℕ m n (succ-ℕ n) p (succ-leq-ℕ n) anti-symmetric-leq-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ n m → Id m n anti-symmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl anti-symmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-leq-ℕ m n p q) -- Exercise 6.3 (c) decide-leq-ℕ : (m n : ℕ) → coprod (leq-ℕ m n) (leq-ℕ n m) decide-leq-ℕ zero-ℕ zero-ℕ = inl star decide-leq-ℕ zero-ℕ (succ-ℕ n) = inl star decide-leq-ℕ (succ-ℕ m) zero-ℕ = inr star decide-leq-ℕ (succ-ℕ m) (succ-ℕ n) = decide-leq-ℕ m n -- Exercise 6.3 (d) preserves-order-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) preserves-order-add-ℕ zero-ℕ m n = id preserves-order-add-ℕ (succ-ℕ k) m n = preserves-order-add-ℕ k m n reflects-order-add-ℕ : (k m n : ℕ) → leq-ℕ (add-ℕ m k) (add-ℕ n k) → leq-ℕ m n reflects-order-add-ℕ zero-ℕ m n = id reflects-order-add-ℕ (succ-ℕ k) m n = reflects-order-add-ℕ k m n -- Exercise 6.3 (e) preserves-order-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) preserves-order-mul-ℕ k zero-ℕ n p = star preserves-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = preserves-order-add-ℕ k ( mul-ℕ m k) ( mul-ℕ n k) ( preserves-order-mul-ℕ k m n p) reflects-order-mul-ℕ : (k m n : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → leq-ℕ m n reflects-order-mul-ℕ k zero-ℕ n p = star reflects-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = reflects-order-mul-ℕ k m n ( reflects-order-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( p)) -- Exercise 6.3 (f) leq-min-ℕ : (k m n : ℕ) → leq-ℕ k m → leq-ℕ k n → leq-ℕ k (min-ℕ m n) leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H K = star leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-min-ℕ k m n H K leq-left-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k m leq-left-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-left-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-min-ℕ k m n H leq-right-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k n leq-right-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-right-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-min-ℕ k m n H leq-max-ℕ : (k m n : ℕ) → leq-ℕ m k → leq-ℕ n k → leq-ℕ (max-ℕ m n) k leq-max-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ (succ-ℕ n) H K = K leq-max-ℕ (succ-ℕ k) (succ-ℕ m) zero-ℕ H K = H leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-max-ℕ k m n H K leq-left-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ m k leq-left-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-left-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = star leq-left-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = H leq-left-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-max-ℕ k m n H leq-right-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ n k leq-right-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-right-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = H leq-right-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = star leq-right-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-max-ℕ k m n H -- Exercise 6.4 -- Exercise 6.4 (a) -- We define a distance function on ℕ -- dist-ℕ : ℕ → ℕ → ℕ dist-ℕ zero-ℕ n = n dist-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m dist-ℕ (succ-ℕ m) (succ-ℕ n) = dist-ℕ m n dist-ℕ' : ℕ → ℕ → ℕ dist-ℕ' m n = dist-ℕ n m ap-dist-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (dist-ℕ m n) (dist-ℕ m' n') ap-dist-ℕ refl refl = refl {- We show that two natural numbers are equal if and only if their distance is zero. -} eq-dist-ℕ : (m n : ℕ) → Id zero-ℕ (dist-ℕ m n) → Id m n eq-dist-ℕ zero-ℕ zero-ℕ p = refl eq-dist-ℕ (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ (eq-dist-ℕ m n p) dist-eq-ℕ' : (n : ℕ) → Id zero-ℕ (dist-ℕ n n) dist-eq-ℕ' zero-ℕ = refl dist-eq-ℕ' (succ-ℕ n) = dist-eq-ℕ' n dist-eq-ℕ : (m n : ℕ) → Id m n → Id zero-ℕ (dist-ℕ m n) dist-eq-ℕ m .m refl = dist-eq-ℕ' m -- The distance function is symmetric -- symmetric-dist-ℕ : (m n : ℕ) → Id (dist-ℕ m n) (dist-ℕ n m) symmetric-dist-ℕ zero-ℕ zero-ℕ = refl symmetric-dist-ℕ zero-ℕ (succ-ℕ n) = refl symmetric-dist-ℕ (succ-ℕ m) zero-ℕ = refl symmetric-dist-ℕ (succ-ℕ m) (succ-ℕ n) = symmetric-dist-ℕ m n -- We compute the distance from zero -- left-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ zero-ℕ n) n left-zero-law-dist-ℕ zero-ℕ = refl left-zero-law-dist-ℕ (succ-ℕ n) = refl right-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ n zero-ℕ) n right-zero-law-dist-ℕ zero-ℕ = refl right-zero-law-dist-ℕ (succ-ℕ n) = refl -- We prove the triangle inequality -- ap-add-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (add-ℕ m n) (add-ℕ m' n') ap-add-ℕ refl refl = refl triangle-inequality-dist-ℕ : (m n k : ℕ) → leq-ℕ (dist-ℕ m n) (add-ℕ (dist-ℕ m k) (dist-ℕ k n)) triangle-inequality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = star triangle-inequality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = star triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = tr ( leq-ℕ (succ-ℕ n)) ( inv (left-unit-law-add-ℕ (succ-ℕ n))) ( reflexive-leq-ℕ (succ-ℕ n)) triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (left-zero-law-dist-ℕ n))) ( triangle-inequality-dist-ℕ zero-ℕ n k) ( ( ap (succ-ℕ ∘ (add-ℕ' (dist-ℕ k n))) (left-zero-law-dist-ℕ k)) ∙ ( inv (left-successor-law-add-ℕ k (dist-ℕ k n)))) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = reflexive-leq-ℕ (succ-ℕ m) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (right-zero-law-dist-ℕ m))) ( triangle-inequality-dist-ℕ m zero-ℕ k) ( ap (succ-ℕ ∘ (add-ℕ (dist-ℕ m k))) (right-zero-law-dist-ℕ k)) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = concatenate-leq-eq-ℕ ( dist-ℕ m n) ( transitive-leq-ℕ ( dist-ℕ m n) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( succ-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( transitive-leq-ℕ ( dist-ℕ m n) ( add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( triangle-inequality-dist-ℕ m n zero-ℕ) ( succ-leq-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( succ-leq-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))) ( ( ap (succ-ℕ ∘ succ-ℕ) ( ap-add-ℕ (right-zero-law-dist-ℕ m) (left-zero-law-dist-ℕ n))) ∙ ( inv (left-successor-law-add-ℕ m (succ-ℕ n)))) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = triangle-inequality-dist-ℕ m n k -- We show that dist-ℕ x y is a solution to a simple equation. leq-dist-ℕ : (x y : ℕ) → leq-ℕ x y → Id (add-ℕ x (dist-ℕ x y)) y leq-dist-ℕ zero-ℕ zero-ℕ H = refl leq-dist-ℕ zero-ℕ (succ-ℕ y) star = left-unit-law-add-ℕ (succ-ℕ y) leq-dist-ℕ (succ-ℕ x) (succ-ℕ y) H = ( left-successor-law-add-ℕ x (dist-ℕ x y)) ∙ ( ap succ-ℕ (leq-dist-ℕ x y H)) rewrite-left-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id x (dist-ℕ y z) rewrite-left-add-dist-ℕ zero-ℕ zero-ℕ .zero-ℕ refl = refl rewrite-left-add-dist-ℕ zero-ℕ (succ-ℕ y) .(succ-ℕ (add-ℕ zero-ℕ y)) refl = ( dist-eq-ℕ' y) ∙ ( inv (ap (dist-ℕ (succ-ℕ y)) (left-unit-law-add-ℕ (succ-ℕ y)))) rewrite-left-add-dist-ℕ (succ-ℕ x) zero-ℕ .(succ-ℕ x) refl = refl rewrite-left-add-dist-ℕ (succ-ℕ x) (succ-ℕ y) .(succ-ℕ (add-ℕ (succ-ℕ x) y)) refl = rewrite-left-add-dist-ℕ (succ-ℕ x) y (add-ℕ (succ-ℕ x) y) refl rewrite-left-dist-add-ℕ : (x y z : ℕ) → leq-ℕ y z → Id x (dist-ℕ y z) → Id (add-ℕ x y) z rewrite-left-dist-add-ℕ .(dist-ℕ y z) y z H refl = ( commutative-add-ℕ (dist-ℕ y z) y) ∙ ( leq-dist-ℕ y z H) rewrite-right-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id y (dist-ℕ x z) rewrite-right-add-dist-ℕ x y z p = rewrite-left-add-dist-ℕ y x z (commutative-add-ℕ y x ∙ p) rewrite-right-dist-add-ℕ : (x y z : ℕ) → leq-ℕ x z → Id y (dist-ℕ x z) → Id (add-ℕ x y) z rewrite-right-dist-add-ℕ x .(dist-ℕ x z) z H refl = leq-dist-ℕ x z H -- We show that dist-ℕ is translation invariant translation-invariant-dist-ℕ : (k m n : ℕ) → Id (dist-ℕ (add-ℕ k m) (add-ℕ k n)) (dist-ℕ m n) translation-invariant-dist-ℕ zero-ℕ m n = ap-dist-ℕ (left-unit-law-add-ℕ m) (left-unit-law-add-ℕ n) translation-invariant-dist-ℕ (succ-ℕ k) m n = ( ap-dist-ℕ (left-successor-law-add-ℕ k m) (left-successor-law-add-ℕ k n)) ∙ ( translation-invariant-dist-ℕ k m n) -- We show that dist-ℕ is linear with respect to scalar multiplication linear-dist-ℕ : (m n k : ℕ) → Id (dist-ℕ (mul-ℕ k m) (mul-ℕ k n)) (mul-ℕ k (dist-ℕ m n)) linear-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = refl linear-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = linear-dist-ℕ zero-ℕ zero-ℕ k linear-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = ap (dist-ℕ' (mul-ℕ (succ-ℕ k) (succ-ℕ n))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = ap (dist-ℕ (mul-ℕ (succ-ℕ k) (succ-ℕ m))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = ( ap-dist-ℕ ( right-successor-law-mul-ℕ (succ-ℕ k) m) ( right-successor-law-mul-ℕ (succ-ℕ k) n)) ∙ ( ( translation-invariant-dist-ℕ ( succ-ℕ k) ( mul-ℕ (succ-ℕ k) m) ( mul-ℕ (succ-ℕ k) n)) ∙ ( linear-dist-ℕ m n (succ-ℕ k))) -- Exercise 6.6 {- In this exercise we were asked to define the relations ≤ and < on the integers. As a criterion of correctness, we were then also asked to show that the type of all integers l satisfying k ≤ l satisfy the induction principle of the natural numbers. -} diff-ℤ : ℤ → ℤ → ℤ diff-ℤ k l = add-ℤ (neg-ℤ k) l is-non-negative-ℤ : ℤ → UU lzero is-non-negative-ℤ (inl x) = empty is-non-negative-ℤ (inr k) = unit leq-ℤ : ℤ → ℤ → UU lzero leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l) reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k reflexive-leq-ℤ k = tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star is-non-negative-succ-ℤ : (k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k) is-non-negative-succ-ℤ (inr (inl star)) p = star is-non-negative-succ-ℤ (inr (inr x)) p = star is-non-negative-add-ℤ : (k l : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l) is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inl star))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star) is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inr m))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star) triangle-diff-ℤ : (k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m) triangle-diff-ℤ k l m = ( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙ ( ap ( add-ℤ (neg-ℤ k)) ( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙ ( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙ ( left-unit-law-add-ℤ m)))) transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m transitive-leq-ℤ k l m p q = tr is-non-negative-ℤ ( triangle-diff-ℤ k l m) ( is-non-negative-add-ℤ ( add-ℤ (neg-ℤ k) l) ( add-ℤ (neg-ℤ l) m) ( p) ( q)) succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k) succ-leq-ℤ k = tr is-non-negative-ℤ ( inv ( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙ ( ap succ-ℤ (left-inverse-law-add-ℤ k)))) ( star) leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l) leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l) is-positive-ℤ : ℤ → UU lzero is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k) le-ℤ : ℤ → ℤ → UU lzero le-ℤ (inl zero-ℕ) (inl x) = empty le-ℤ (inl zero-ℕ) (inr y) = unit le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y) le-ℤ (inl (succ-ℕ x)) (inr y) = unit le-ℤ (inr x) (inl y) = empty le-ℤ (inr (inl star)) (inr (inl star)) = empty le-ℤ (inr (inl star)) (inr (inr x)) = unit le-ℤ (inr (inr x)) (inr (inl star)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) = le-ℤ (inr (inr x)) (inr (inr y)) -- Extra material -- We show that ℕ is an ordered semi-ring left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) left-law-leq-add-ℕ zero-ℕ m n = id left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n) right-law-leq-add-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ k m) ( left-law-leq-add-ℕ k m n H) ( commutative-add-ℕ n k) preserves-leq-add-ℕ : {m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n') preserves-leq-add-ℕ {m} {m'} {n} {n'} H K = transitive-leq-ℕ ( add-ℕ m n) ( add-ℕ m' n) ( add-ℕ m' n') ( left-law-leq-add-ℕ n m m' H) ( right-law-leq-add-ℕ m' n n' K) {- right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n) right-law-leq-mul-ℕ zero-ℕ m n H = star right-law-leq-mul-ℕ (succ-ℕ k) m n H = {!!} -} {- preserves-leq-add-ℕ { m = mul-ℕ k m} { m' = mul-ℕ k n} ( right-law-leq-mul-ℕ k m n H) H left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) left-law-leq-mul-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ k m) ( commutative-mul-ℕ k n) ( right-law-leq-mul-ℕ k m n H) -} -- We show that ℤ is an ordered ring {- leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l) leq-add-ℤ (inl zero-ℕ) k l H = {!!} leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!} leq-add-ℤ (inr m) k l H = {!!} -} -- Section 5.5 Identity systems succ-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) → (m n : ℕ) → Eq-ℕ m n → UU i succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e succ-refl-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) (ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → (n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n)) succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n) path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( m n : ℕ) (e : Eq-ℕ m n) → R m n e path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) m n e comp-path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n) comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) = comp-path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) n {- -- Graphs Gph : (i : Level) → UU (lsuc i) Gph i = Σ (UU i) (λ X → (X → X → (UU i))) -- Reflexive graphs rGph : (i : Level) → UU (lsuc i) rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x)) -} -- Exercise 3.7 {- With the construction of the divisibility relation we open the door to basic number theory. -} divides : (d n : ℕ) → UU lzero divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n) -- We prove some lemmas about inequalities -- leq-add-ℕ : (m n : ℕ) → leq-ℕ m (add-ℕ m n) leq-add-ℕ m zero-ℕ = reflexive-leq-ℕ m leq-add-ℕ m (succ-ℕ n) = transitive-leq-ℕ m (add-ℕ m n) (succ-ℕ (add-ℕ m n)) ( leq-add-ℕ m n) ( succ-leq-ℕ (add-ℕ m n)) leq-add-ℕ' : (m n : ℕ) → leq-ℕ m (add-ℕ n m) leq-add-ℕ' m n = concatenate-leq-eq-ℕ m (leq-add-ℕ m n) (commutative-add-ℕ m n) leq-leq-add-ℕ : (m n x : ℕ) → leq-ℕ (add-ℕ m x) (add-ℕ n x) → leq-ℕ m n leq-leq-add-ℕ m n zero-ℕ H = H leq-leq-add-ℕ m n (succ-ℕ x) H = leq-leq-add-ℕ m n x H leq-leq-add-ℕ' : (m n x : ℕ) → leq-ℕ (add-ℕ x m) (add-ℕ x n) → leq-ℕ m n leq-leq-add-ℕ' m n x H = leq-leq-add-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ m x) ( H) ( commutative-add-ℕ x n)) leq-leq-mul-ℕ : (m n x : ℕ) → leq-ℕ (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) → leq-ℕ m n leq-leq-mul-ℕ zero-ℕ zero-ℕ x H = star leq-leq-mul-ℕ zero-ℕ (succ-ℕ n) x H = star leq-leq-mul-ℕ (succ-ℕ m) zero-ℕ x H = ex-falso ( concatenate-leq-eq-ℕ ( mul-ℕ (succ-ℕ x) (succ-ℕ m)) ( H) ( right-zero-law-mul-ℕ (succ-ℕ x))) leq-leq-mul-ℕ (succ-ℕ m) (succ-ℕ n) x H = leq-leq-mul-ℕ m n x ( leq-leq-add-ℕ' (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) (succ-ℕ x) ( concatenate-eq-leq-eq-ℕ ( inv (right-successor-law-mul-ℕ (succ-ℕ x) m)) ( H) ( right-successor-law-mul-ℕ (succ-ℕ x) n))) leq-leq-mul-ℕ' : (m n x : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ x)) (mul-ℕ n (succ-ℕ x)) → leq-ℕ m n leq-leq-mul-ℕ' m n x H = leq-leq-mul-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ (succ-ℕ x) m) ( H) ( commutative-mul-ℕ n (succ-ℕ x))) {- succ-relation-ℕ : {i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n) succ-reflexivity-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (n : ℕ) → succ-relation-ℕ R n n succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n) {- In the book we suggest that first the order of the variables should be swapped, in order to make the inductive hypothesis stronger. Agda's pattern matching mechanism allows us to bypass this step and give a more direct construction. -} least-reflexive-Eq-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (m n : ℕ) → Eq-ℕ m n → R m n least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e -} -- The definition of < le-ℕ : ℕ → ℕ → UU lzero le-ℕ m zero-ℕ = empty le-ℕ zero-ℕ (succ-ℕ m) = unit le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m _<_ = le-ℕ anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n) anti-reflexive-le-ℕ zero-ℕ = ind-empty anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l) transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-le-ℕ n m l p q succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n) succ-le-ℕ zero-ℕ = star succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n anti-symmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → Id m n anti-symmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-le-ℕ m n p q) {- -------------------------------------------------------------------------------- data Fin-Tree : UU lzero where constr : (n : ℕ) → (Fin n → Fin-Tree) → Fin-Tree root-Fin-Tree : Fin-Tree root-Fin-Tree = constr zero-ℕ ex-falso succ-Fin-Tree : Fin-Tree → Fin-Tree succ-Fin-Tree t = constr one-ℕ (λ i → t) map-assoc-coprod : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} → coprod (coprod A B) C → coprod A (coprod B C) map-assoc-coprod (inl (inl x)) = inl x map-assoc-coprod (inl (inr x)) = inr (inl x) map-assoc-coprod (inr x) = inr (inr x) map-coprod-Fin : (m n : ℕ) → Fin (add-ℕ m n) → coprod (Fin m) (Fin n) map-coprod-Fin m zero-ℕ = inl map-coprod-Fin m (succ-ℕ n) = map-assoc-coprod ∘ (functor-coprod (map-coprod-Fin m n) (id {A = unit})) add-Fin-Tree : Fin-Tree → Fin-Tree → Fin-Tree add-Fin-Tree (constr n x) (constr m y) = constr (add-ℕ n m) ((ind-coprod (λ i → Fin-Tree) x y) ∘ (map-coprod-Fin n m)) -------------------------------------------------------------------------------- data labeled-Bin-Tree {l1 : Level} (A : UU l1) : UU l1 where leaf : A → labeled-Bin-Tree A constr : (bool → labeled-Bin-Tree A) → labeled-Bin-Tree A mul-leaves-labeled-Bin-Tree : {l1 : Level} {A : UU l1} (μ : A → (A → A)) → labeled-Bin-Tree A → A mul-leaves-labeled-Bin-Tree μ (leaf x) = x mul-leaves-labeled-Bin-Tree μ (constr f) = μ ( mul-leaves-labeled-Bin-Tree μ (f false)) ( mul-leaves-labeled-Bin-Tree μ (f true)) pick-list : {l1 : Level} {A : UU l1} → ℕ → list A → coprod A unit pick-list zero-ℕ nil = inr star pick-list zero-ℕ (cons a x) = inl a pick-list (succ-ℕ n) nil = inr star pick-list (succ-ℕ n) (cons a x) = pick-list n x -}
31.205811
80
0.568746
ed1b784d896b8230b60e9cde6bd43c5c93a9c5f5
1,705
agda
Agda
src/IO-monad.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/IO-monad.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/IO-monad.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- IO ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module IO-monad where open import Monad.Raw open import Prelude open import String ------------------------------------------------------------------------ -- The IO type former open import Agda.Builtin.IO public using (IO) ------------------------------------------------------------------------ -- The IO monad postulate returnIO : ∀ {a} {A : Type a} → A → IO A bindIO : ∀ {a b} {A : Type a} {B : Type b} → IO A → (A → IO B) → IO B {-# COMPILE GHC returnIO = \_ _ -> return #-} {-# COMPILE GHC bindIO = \_ _ _ _ -> (>>=) #-} instance io-monad : ∀ {ℓ} → Raw-monad (IO {a = ℓ}) Raw-monad.return io-monad = returnIO Raw-monad._>>=_ io-monad = bindIO ------------------------------------------------------------------------ -- Some IO primitives -- Note that some commands may raise exceptions when executed. postulate putStr : String → IO ⊤ putStrLn : String → IO ⊤ exitFailure : IO ⊤ getArgs : IO (List String) {-# FOREIGN GHC import qualified Data.Text import qualified Data.Text.IO import qualified System.Environment import qualified System.Exit #-} -- Note that the GHC code below ignores potential problems. For -- instance, putStr could raise an exception. {-# COMPILE GHC putStr = Data.Text.IO.putStr #-} {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-} {-# COMPILE GHC exitFailure = System.Exit.exitFailure #-} {-# COMPILE GHC getArgs = fmap (map Data.Text.pack) System.Environment.getArgs #-}
27.95082
72
0.491496
ed04f7d7b603627c11cc4f16b428cff10ac1f9f7
195
agda
Agda
test/Succeed/Issue3659.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3659.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3659.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical --allow-unsolved-metas #-} open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path module _ where data D {ℓ} (A : Set ℓ) : Set ℓ where c : PathP _ _ _
19.5
48
0.692308
3fb9ebb75f2f87bdb4eca2278cea4f9fed1ffa56
10,054
agda
Agda
agda-stdlib/src/Data/List/Relation/Binary/Sublist/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Binary/Sublist/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Binary/Sublist/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
----------------------------------------------------------------------- -- The Agda standard library -- -- Properties of the setoid sublist relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid; _⇒_; _Preserves_⟶_) module Data.List.Relation.Binary.Sublist.Setoid.Properties {c ℓ} (S : Setoid c ℓ) where open import Level open import Data.List.Base hiding (_∷ʳ_) import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality import Data.List.Relation.Binary.Sublist.Setoid as SetoidSublist import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties as HeteroProperties import Data.List.Membership.Setoid as SetoidMembership open import Data.List.Relation.Unary.Any using (Any) import Data.Maybe.Relation.Unary.All as Maybe open import Data.Nat.Base using (_≤_; _≥_; z≤n; s≤s) import Data.Nat.Properties as ℕₚ open import Data.Product using (∃; _,_; proj₂) open import Function.Base open import Function.Bijection using (_⤖_) open import Function.Equivalence using (_⇔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) open import Relation.Unary using (Pred; Decidable; Irrelevant) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (¬?) open Setoid S using (_≈_; trans) renaming (Carrier to A; refl to ≈-refl) open SetoidEquality S using (_≋_; ≋-refl) open SetoidSublist S hiding (map) open SetoidMembership S using (_∈_) ------------------------------------------------------------------------ -- Injectivity of constructors ------------------------------------------------------------------------ module _ {xs ys : List A} where ∷-injectiveˡ : ∀ {x y} {px qx : x ≈ y} {pxs qxs : xs ⊆ ys} → ((x ∷ xs) ⊆ (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → px ≡ qx ∷-injectiveˡ refl = refl ∷-injectiveʳ : ∀ {x y} {px qx : x ≈ y} {pxs qxs : xs ⊆ ys} → ((x ∷ xs) ⊆ (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → pxs ≡ qxs ∷-injectiveʳ refl = refl ∷ʳ-injective : ∀ {y} {pxs qxs : xs ⊆ ys} → y ∷ʳ pxs ≡ y ∷ʳ qxs → pxs ≡ qxs ∷ʳ-injective refl = refl ------------------------------------------------------------------------ -- Various functions' outputs are sublists ------------------------------------------------------------------------ tail-⊆ : ∀ xs → Maybe.All (_⊆ xs) (tail xs) tail-⊆ xs = HeteroProperties.tail-Sublist ⊆-refl take-⊆ : ∀ n xs → take n xs ⊆ xs take-⊆ n xs = HeteroProperties.take-Sublist n ⊆-refl drop-⊆ : ∀ n xs → drop n xs ⊆ xs drop-⊆ n xs = HeteroProperties.drop-Sublist n ⊆-refl module _ {p} {P : Pred A p} (P? : Decidable P) where takeWhile-⊆ : ∀ xs → takeWhile P? xs ⊆ xs takeWhile-⊆ xs = HeteroProperties.takeWhile-Sublist P? ⊆-refl dropWhile-⊆ : ∀ xs → dropWhile P? xs ⊆ xs dropWhile-⊆ xs = HeteroProperties.dropWhile-Sublist P? ⊆-refl filter-⊆ : ∀ xs → filter P? xs ⊆ xs filter-⊆ xs = HeteroProperties.filter-Sublist P? ⊆-refl module _ {p} {P : Pred A p} (P? : Decidable P) where takeWhile⊆filter : ∀ xs → takeWhile P? xs ⊆ filter P? xs takeWhile⊆filter xs = HeteroProperties.takeWhile-filter P? {xs} ≋-refl filter⊆dropWhile : ∀ xs → filter P? xs ⊆ dropWhile (¬? ∘ P?) xs filter⊆dropWhile xs = HeteroProperties.filter-dropWhile P? {xs} ≋-refl ------------------------------------------------------------------------ -- Various list functions are increasing wrt _⊆_ ------------------------------------------------------------------------ -- We write f⁺ for the proof that `xs ⊆ ys → f xs ⊆ f ys` -- and f⁻ for the one that `f xs ⊆ f ys → xs ⊆ ys`. module _ {as bs : List A} where ∷ˡ⁻ : ∀ {a} → a ∷ as ⊆ bs → as ⊆ bs ∷ˡ⁻ = HeteroProperties.∷ˡ⁻ ∷ʳ⁻ : ∀ {a b} → ¬ (a ≈ b) → a ∷ as ⊆ b ∷ bs → a ∷ as ⊆ bs ∷ʳ⁻ = HeteroProperties.∷ʳ⁻ ∷⁻ : ∀ {a b} → a ∷ as ⊆ b ∷ bs → as ⊆ bs ∷⁻ = HeteroProperties.∷⁻ ------------------------------------------------------------------------ -- map module _ {b ℓ} (R : Setoid b ℓ) where open Setoid R using () renaming (Carrier to B; _≈_ to _≈′_) open SetoidSublist R using () renaming (_⊆_ to _⊆′_) map⁺ : ∀ {as bs} {f : A → B} → f Preserves _≈_ ⟶ _≈′_ → as ⊆ bs → map f as ⊆′ map f bs map⁺ {f = f} f-resp as⊆bs = HeteroProperties.map⁺ f f (SetoidSublist.map S f-resp as⊆bs) ------------------------------------------------------------------------ -- _++_ module _ {as bs : List A} where ++⁺ˡ : ∀ cs → as ⊆ bs → as ⊆ cs ++ bs ++⁺ˡ = HeteroProperties.++ˡ ++⁺ʳ : ∀ cs → as ⊆ bs → as ⊆ bs ++ cs ++⁺ʳ = HeteroProperties.++ʳ ++⁺ : ∀ {cs ds} → as ⊆ bs → cs ⊆ ds → as ++ cs ⊆ bs ++ ds ++⁺ = HeteroProperties.++⁺ ++⁻ : ∀ {cs ds} → length as ≡ length bs → as ++ cs ⊆ bs ++ ds → cs ⊆ ds ++⁻ = HeteroProperties.++⁻ ------------------------------------------------------------------------ -- take module _ {m n} {xs} where take⁺ : m ≤ n → take m xs ⊆ take n xs take⁺ m≤n = HeteroProperties.take⁺ m≤n ≋-refl ------------------------------------------------------------------------ -- drop module _ {m n} {xs ys : List A} where drop⁺ : m ≥ n → xs ⊆ ys → drop m xs ⊆ drop n ys drop⁺ = HeteroProperties.drop⁺ module _ {m n} {xs : List A} where drop⁺-≥ : m ≥ n → drop m xs ⊆ drop n xs drop⁺-≥ m≥n = drop⁺ m≥n ⊆-refl module _ {xs ys : List A} where drop⁺-⊆ : ∀ n → xs ⊆ ys → drop n xs ⊆ drop n ys drop⁺-⊆ n xs⊆ys = drop⁺ {n} ℕₚ.≤-refl xs⊆ys ------------------------------------------------------------------------ -- takeWhile / dropWhile module _ {p q} {P : Pred A p} {Q : Pred A q} (P? : Decidable P) (Q? : Decidable Q) where takeWhile⁺ : ∀ {xs} → (∀ {a b} → a ≈ b → P a → Q b) → takeWhile P? xs ⊆ takeWhile Q? xs takeWhile⁺ {xs} P⇒Q = HeteroProperties.⊆-takeWhile-Sublist P? Q? {xs} P⇒Q ≋-refl dropWhile⁺ : ∀ {xs} → (∀ {a b} → a ≈ b → Q b → P a) → dropWhile P? xs ⊆ dropWhile Q? xs dropWhile⁺ {xs} P⇒Q = HeteroProperties.⊇-dropWhile-Sublist P? Q? {xs} P⇒Q ≋-refl ------------------------------------------------------------------------ -- filter module _ {p q} {P : Pred A p} {Q : Pred A q} (P? : Decidable P) (Q? : Decidable Q) where filter⁺ : ∀ {as bs} → (∀ {a b} → a ≈ b → P a → Q b) → as ⊆ bs → filter P? as ⊆ filter Q? bs filter⁺ = HeteroProperties.⊆-filter-Sublist P? Q? ------------------------------------------------------------------------ -- reverse module _ {as bs : List A} where reverseAcc⁺ : ∀ {cs ds} → as ⊆ bs → cs ⊆ ds → reverseAcc cs as ⊆ reverseAcc ds bs reverseAcc⁺ = HeteroProperties.reverseAcc⁺ ʳ++⁺ : ∀ {cs ds} → as ⊆ bs → cs ⊆ ds → as ʳ++ cs ⊆ bs ʳ++ ds ʳ++⁺ = reverseAcc⁺ reverse⁺ : as ⊆ bs → reverse as ⊆ reverse bs reverse⁺ = HeteroProperties.reverse⁺ reverse⁻ : reverse as ⊆ reverse bs → as ⊆ bs reverse⁻ = HeteroProperties.reverse⁻ ------------------------------------------------------------------------ -- Inversion lemmas ------------------------------------------------------------------------ module _ {a as b bs} where ∷⁻¹ : a ≈ b → as ⊆ bs ⇔ a ∷ as ⊆ b ∷ bs ∷⁻¹ = HeteroProperties.∷⁻¹ ∷ʳ⁻¹ : ¬ (a ≈ b) → a ∷ as ⊆ bs ⇔ a ∷ as ⊆ b ∷ bs ∷ʳ⁻¹ = HeteroProperties.∷ʳ⁻¹ ------------------------------------------------------------------------ -- Other ------------------------------------------------------------------------ module _ where length-mono-≤ : ∀ {as bs} → as ⊆ bs → length as ≤ length bs length-mono-≤ = HeteroProperties.length-mono-≤ ------------------------------------------------------------------------ -- Conversion to and from list equality to-≋ : ∀ {as bs} → length as ≡ length bs → as ⊆ bs → as ≋ bs to-≋ = HeteroProperties.toPointwise ------------------------------------------------------------------------ -- Irrelevant special case []⊆-irrelevant : Irrelevant ([] ⊆_) []⊆-irrelevant = HeteroProperties.Sublist-[]-irrelevant ------------------------------------------------------------------------ -- (to/from)∈ is a bijection module _ {x xs} where to∈-injective : ∀ {p q : [ x ] ⊆ xs} → to∈ p ≡ to∈ q → p ≡ q to∈-injective = HeteroProperties.toAny-injective from∈-injective : ∀ {p q : x ∈ xs} → from∈ p ≡ from∈ q → p ≡ q from∈-injective = HeteroProperties.fromAny-injective to∈∘from∈≗id : ∀ (p : x ∈ xs) → to∈ (from∈ p) ≡ p to∈∘from∈≗id = HeteroProperties.toAny∘fromAny≗id [x]⊆xs⤖x∈xs : ([ x ] ⊆ xs) ⤖ (x ∈ xs) [x]⊆xs⤖x∈xs = HeteroProperties.Sublist-[x]-bijection ------------------------------------------------------------------------ -- Properties of Disjoint(ness) and DisjointUnion open HeteroProperties.Disjointness {R = _≈_} public open HeteroProperties.DisjointnessMonotonicity {R = _≈_} {S = _≈_} {T = _≈_} trans public -- Shrinking one of two disjoint lists preserves disjointness. -- We would have liked to define shrinkDisjointˡ σ = shrinkDisjoint σ ⊆-refl -- but alas, this is only possible for groupoids, not setoids in general. shrinkDisjointˡ : ∀ {xs ys zs us} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} (σ : us ⊆ xs) → Disjoint τ₁ τ₂ → Disjoint (⊆-trans σ τ₁) τ₂ -- Not affected by σ: shrinkDisjointˡ σ (y ∷ₙ d) = y ∷ₙ shrinkDisjointˡ σ d shrinkDisjointˡ σ (y≈z ∷ᵣ d) = y≈z ∷ᵣ shrinkDisjointˡ σ d -- In σ: keep x. shrinkDisjointˡ (u≈x ∷ σ) (x≈z ∷ₗ d) = trans u≈x x≈z ∷ₗ shrinkDisjointˡ σ d -- Not in σ: drop x. shrinkDisjointˡ (x ∷ʳ σ) (x≈z ∷ₗ d) = _ ∷ₙ shrinkDisjointˡ σ d shrinkDisjointˡ [] [] = [] shrinkDisjointʳ : ∀ {xs ys zs vs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} (σ : vs ⊆ ys) → Disjoint τ₁ τ₂ → Disjoint τ₁ (⊆-trans σ τ₂) -- Not affected by σ: shrinkDisjointʳ σ (y ∷ₙ d) = y ∷ₙ shrinkDisjointʳ σ d shrinkDisjointʳ σ (x≈z ∷ₗ d) = x≈z ∷ₗ shrinkDisjointʳ σ d -- In σ: keep y. shrinkDisjointʳ (v≈y ∷ σ) (y≈z ∷ᵣ d) = trans v≈y y≈z ∷ᵣ shrinkDisjointʳ σ d -- Not in σ: drop y. shrinkDisjointʳ (y ∷ʳ σ) (y≈z ∷ᵣ d) = _ ∷ₙ shrinkDisjointʳ σ d shrinkDisjointʳ [] [] = []
34.197279
89
0.497016
65bba45d0a4466f9aada7393d98648dc075ab532
103
agda
Agda
test/Fail/ModuleArityMismatch.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ModuleArityMismatch.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ModuleArityMismatch.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module ModuleArityMismatch where module M (A : Set) where postulate A : Set module M′ = M A A
11.444444
32
0.669903
0106b41326f39ad5a47b8f6d4322f4ac6c43b424
671
agda
Agda
test/Succeed/Issue3544.agda
gallais/agda
e7f588d478bdd3c03088c49e009bcdf6a2a3310f
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue3544.agda
gallais/agda
e7f588d478bdd3c03088c49e009bcdf6a2a3310f
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue3544.agda
gallais/agda
e7f588d478bdd3c03088c49e009bcdf6a2a3310f
[ "BSD-3-Clause" ]
1
2021-04-01T18:30:09.000Z
2021-04-01T18:30:09.000Z
data Nat : Set where succ : Nat → Nat data Fin : Nat → Set where zero : (n : Nat) → Fin (succ n) data Tm (n : Nat) : Set where var : Fin n → Tm n piv : Fin (succ n) → Tm n data Cx : Nat → Set where succ : (n : Nat) → Tm n → Cx (succ n) data CxChk : ∀ n → Cx n → Set where succ : (n : Nat) (T : Tm n) → CxChk (succ n) (succ n T) data TmChk (n : Nat) : Cx n → Tm n → Set where vtyp : (g : Cx n) (v : Fin n) → CxChk n g → TmChk n g (var v) error : ∀ n g s → TmChk n g s → Set error n g s (vtyp g' (zero x) (succ n' (piv (zero y)))) = Nat -- Internal error here. error _ _ _ (vtyp g' (zero n) (succ n (var x))) = Nat -- This clause added to pass 2.5.3.
27.958333
89
0.546945
64698e358b17b671019d790407068aa81e3c5b17
278
agda
Agda
Data/Binary/Tests/Multiplication.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
1
2019-03-21T21:30:10.000Z
2019-03-21T21:30:10.000Z
Data/Binary/Tests/Multiplication.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
Data/Binary/Tests/Multiplication.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Data.Binary.Tests.Multiplication where import Data.Binary.Operations.Multiplication as 𝔹 open import Data.Binary.Tests.Helpers open import Relation.Binary.PropositionalEquality import Data.Nat as ℕ _ : 𝔹._*_ ≡⌈ 60 ⌉₂≡ ℕ._*_ _ = refl
23.166667
49
0.755396
6558be7eead49d96517ee0130805420543a67684
941
agda
Agda
test/epic/Prelude/String.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/epic/Prelude/String.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/epic/Prelude/String.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Prelude.String where open import Prelude.Bool open import Prelude.Char open import Prelude.List open import Prelude.Nat postulate String : Set nil : String primStringToNat : String → Nat charToString : Char -> String {-# BUILTIN STRING String #-} primitive primStringAppend : String → String → String primStringToList : String → List Char primStringFromList : List Char → String primStringEquality : String → String → Bool {-# COMPILED_EPIC nil () -> String = "" #-} {-# COMPILED_EPIC primStringToNat (s : String) -> BigInt = foreign BigInt "strToBigInt" (s : String) #-} -- {-# COMPILED_EPIC charToString (c : Int) -> String = charToString(c) #-} strEq : (x y : String) -> Bool strEq = primStringEquality infixr 30 _+S+_ _+S+_ : (x y : String) -> String _+S+_ = primStringAppend fromList : List Char -> String fromList = primStringFromList fromString : String -> List Char fromString = primStringToList
24.763158
104
0.706695
651a833ccddde738c4b377cbc7a3b22892f46b58
8,937
agda
Agda
Cubical/Algebra/Ring/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ring.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Reflection.StrictEquiv open Iso private variable ℓ ℓ' : Level record IsRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isring field +IsAbGroup : IsAbGroup 0r _+_ -_ ·IsMonoid : IsMonoid 1r _·_ dist : (x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z)) -- This is in the Agda stdlib, but it's redundant -- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r) open IsAbGroup +IsAbGroup public renaming ( assoc to +Assoc ; identity to +Identity ; lid to +Lid ; rid to +Rid ; inverse to +Inv ; invl to +Linv ; invr to +Rinv ; comm to +Comm ; isSemigroup to +IsSemigroup ; isMonoid to +IsMonoid ; isGroup to +IsGroup ) open IsMonoid ·IsMonoid public renaming ( assoc to ·Assoc ; identity to ·Identity ; lid to ·Lid ; rid to ·Rid ; isSemigroup to ·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this ·Rdist+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·Rdist+ x y z = dist x y z .fst ·Ldist+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) ·Ldist+ x y z = dist x y z .snd record RingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor ringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isRing : IsRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsRing isRing public Ring : Type (ℓ-suc ℓ) Ring = TypeWithStr _ RingStr isSetRing : (R : Ring {ℓ}) → isSet ⟨ R ⟩ isSetRing R = R .snd .RingStr.isRing .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (r+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → IsRing 0r 1r _+_ _·_ -_ makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = isring (makeIsAbGroup is-setR assoc +-rid +-rinv +-comm) (makeIsMonoid is-setR ·-assoc ·-rid ·-lid) λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z makeRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-lid : (x : R) → 1r · x ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) → Ring makeRing 0r 1r _+_ _·_ -_ is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ = _ , ringstr 0r 1r _+_ _·_ -_ (makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ ) record RingEquiv (R : Ring {ℓ}) (S : Ring {ℓ'}) (e : ⟨ R ⟩ ≃ ⟨ S ⟩) : Type (ℓ-max ℓ ℓ') where constructor ringequiv private module R = RingStr (snd R) module S = RingStr (snd S) field pres1 : equivFun e R.1r ≡ S.1r isHom+ : (x y : ⟨ R ⟩) → equivFun e (x R.+ y) ≡ equivFun e x S.+ equivFun e y isHom· : (x y : ⟨ R ⟩) → equivFun e (x R.· y) ≡ equivFun e x S.· equivFun e y record RingHom (R S : Ring {ℓ}) : Type ℓ where constructor ringhom private module R = RingStr (snd R) module S = RingStr (snd S) field f : ⟨ R ⟩ → ⟨ S ⟩ pres1 : f R.1r ≡ S.1r isHom+ : (x y : ⟨ R ⟩) → f (x R.+ y) ≡ f x S.+ f y isHom· : (x y : ⟨ R ⟩) → f (x R.· y) ≡ f x S.· f y _$_ : {R S : Ring {ℓ}} → (φ : RingHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩ φ $ x = RingHom.f φ x module RingΣTheory {ℓ} where RawRingStructure = λ (X : Type ℓ) → (X → X → X) × X × (X → X → X) RawRingEquivStr = AutoEquivStr RawRingStructure rawRingUnivalentStr : UnivalentStr _ RawRingEquivStr rawRingUnivalentStr = autoUnivalentStr RawRingStructure RingAxioms : (R : Type ℓ) (s : RawRingStructure R) → Type ℓ RingAxioms R (_+_ , 1r , _·_) = AbGroupΣTheory.AbGroupAxioms R _+_ × IsMonoid 1r _·_ × ((x y z : R) → (x · (y + z) ≡ (x · y) + (x · z)) × ((x + y) · z ≡ (x · z) + (y · z))) RingStructure : Type ℓ → Type ℓ RingStructure = AxiomsStructure RawRingStructure RingAxioms RingΣ : Type (ℓ-suc ℓ) RingΣ = TypeWithStr ℓ RingStructure RingEquivStr : StrEquiv RingStructure ℓ RingEquivStr = AxiomsEquivStr RawRingEquivStr RingAxioms isPropRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → isProp (RingAxioms R s) isPropRingAxioms R (_+_ , 1r , _·_) = isProp× (AbGroupΣTheory.isPropAbGroupAxioms R _+_) (isPropΣ (isPropIsMonoid 1r _·_) λ R → isPropΠ3 λ _ _ _ → isProp× (IsSemigroup.is-set (R .IsMonoid.isSemigroup) _ _) (IsSemigroup.is-set (R .IsMonoid.isSemigroup) _ _)) Ring→RingΣ : Ring → RingΣ Ring→RingΣ (R , ringstr 0r 1r _+_ _·_ -_ (isring +-isAbelianGroup ·-isMonoid dist)) = ( R , (_+_ , 1r , _·_) , AbGroupΣTheory.AbGroup→AbGroupΣ (_ , abgroupstr _ _ _ +-isAbelianGroup) .snd .snd , ·-isMonoid , dist ) RingΣ→Ring : RingΣ → Ring RingΣ→Ring (_ , (y1 , y2 , y3) , z , w1 , w2) = _ , ringstr _ y2 y1 y3 _ (isring (AbGroupΣTheory.AbGroupΣ→AbGroup (_ , _ , z ) .snd .AbGroupStr.isAbGroup) w1 w2) RingIsoRingΣ : Iso Ring RingΣ RingIsoRingΣ = iso Ring→RingΣ RingΣ→Ring (λ _ → refl) (λ _ → refl) ringUnivalentStr : UnivalentStr RingStructure RingEquivStr ringUnivalentStr = axiomsUnivalentStr _ isPropRingAxioms rawRingUnivalentStr RingΣPath : (R S : RingΣ) → (R ≃[ RingEquivStr ] S) ≃ (R ≡ S) RingΣPath = SIP ringUnivalentStr RingEquivΣ : (R S : Ring) → Type ℓ RingEquivΣ R S = Ring→RingΣ R ≃[ RingEquivStr ] Ring→RingΣ S RingIsoΣPath : {R S : Ring} → Iso (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e) (RingEquivΣ R S) fun RingIsoΣPath (e , ringequiv h1 h2 h3) = e , h2 , h1 , h3 inv RingIsoΣPath (e , h1 , h2 , h3) = e , ringequiv h2 h1 h3 rightInv RingIsoΣPath _ = refl leftInv RingIsoΣPath _ = refl RingPath : (R S : Ring) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e) ≃ (R ≡ S) RingPath R S = Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e ≃⟨ strictIsoToEquiv RingIsoΣPath ⟩ RingEquivΣ R S ≃⟨ RingΣPath _ _ ⟩ Ring→RingΣ R ≡ Ring→RingΣ S ≃⟨ isoToEquiv (invIso (congIso RingIsoRingΣ)) ⟩ R ≡ S ■ RingPath : (R S : Ring {ℓ}) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] RingEquiv R S e) ≃ (R ≡ S) RingPath = RingΣTheory.RingPath isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsRing 0r 1r _+_ _·_ -_) isPropIsRing 0r 1r _+_ _·_ -_ (isring RG RM RD) (isring SG SM SD) = λ i → isring (isPropIsAbGroup _ _ _ RG SG i) (isPropIsMonoid _ _ RM SM i) (isPropDistr RD SD i) where isSetR : isSet _ isSetR = RM .IsMonoid.isSemigroup .IsSemigroup.is-set isPropDistr : isProp ((x y z : _) → ((x · (y + z)) ≡ ((x · y) + (x · z))) × (((x + y) · z) ≡ ((x · z) + (y · z)))) isPropDistr = isPropΠ3 λ _ _ _ → isProp× (isSetR _ _) (isSetR _ _) -- Rings have an abelian group and a monoid Ring→AbGroup : Ring {ℓ} → AbGroup {ℓ} Ring→AbGroup (A , ringstr _ _ _ _ _ R) = A , abgroupstr _ _ _ (IsRing.+IsAbGroup R) Ring→Monoid : Ring {ℓ} → Monoid {ℓ} Ring→Monoid (A , ringstr _ _ _ _ _ R) = monoid _ _ _ (IsRing.·IsMonoid R)
34.505792
101
0.529037
edc80b7a7e7da673c8dc71d61935e62221d9ec8d
62
agda
Agda
test/Fail/Issue461.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue461.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue461.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue461 where data D : Set where data D : Set where
10.333333
21
0.725806
3f2b17d38ea526355b8a194e120887bcfedf2988
2,480
agda
Agda
src/Bisimilarity/Delay-monad.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Bisimilarity/Delay-monad.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Bisimilarity/Delay-monad.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some results related to strong bisimilarity for the delay monad ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Bisimilarity.Delay-monad {a} {A : Type a} where open import Delay-monad open import Delay-monad.Bisimilarity as D using (force) open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Function-universe equality-with-J hiding (id; _∘_) open import Labelled-transition-system open import Labelled-transition-system.Delay-monad A open import Bisimilarity delay-monad import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning ------------------------------------------------------------------------ -- The direct and the indirect definitions of strong bisimilarity are -- pointwise logically equivalent -- An emulation of the constructor D.later. later-cong : ∀ {i x y} → [ i ] force x ∼′ force y → [ i ] later x ∼ later y later-cong x∼′y = ⟨ (λ { later → _ , later , x∼′y }) , (λ { later → _ , later , x∼′y }) ⟩ -- The direct definition of strong bisimilarity is contained in the -- one obtained from the transition relation. direct→indirect : ∀ {i x y} → D.[ i ] x ∼ y → [ i ] x ∼ y direct→indirect D.now = reflexive direct→indirect (D.later p) = later-cong λ { .force → direct→indirect (force p) } -- The definition of strong bisimilarity obtained from the transition -- relation is contained in the direct one. indirect→direct : ∀ {i} x y → [ i ] x ∼ y → D.[ i ] x ∼ y indirect→direct (now x) (now y) nx∼ny with left-to-right nx∼ny now ... | _ , now , _ = D.now indirect→direct (later x) (later y) lx∼ly with left-to-right lx∼ly later ... | _ , later , x∼′y = D.later λ { .force → indirect→direct _ _ (force x∼′y) } indirect→direct (now x) (later y) nx∼ly with left-to-right nx∼ly now ... | _ , () , _ indirect→direct (later x) (now y) lx∼ny with left-to-right lx∼ny later ... | _ , () , _ -- The direct definition of strong bisimilarity is pointwise logically -- equivalent to the one obtained from the transition relation. -- -- TODO: Are the two definitions isomorphic? direct⇔indirect : ∀ {i x y} → D.[ i ] x ∼ y ⇔ [ i ] x ∼ y direct⇔indirect = record { to = direct→indirect ; from = indirect→direct _ _ }
31.794872
72
0.599194
72498ce93b22e000e786a162ff6c900dcdc08d0b
113
agda
Agda
test/fail/NoTerminationCheck1.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/NoTerminationCheck1.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/NoTerminationCheck1.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- 2012-03-08 Andreas module NoTerminationCheck1 where {-# NO_TERMINATION_CHECK #-} -- error: misplaced pragma
16.142857
32
0.752212
34c9b1ec61af6d818bff3c0ecf23627d9682e0dd
109
agda
Agda
agda/Everything.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
32
2017-05-22T14:33:27.000Z
2021-03-05T12:12:03.000Z
agda/Everything.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
2
2018-02-14T16:42:36.000Z
2018-02-20T14:54:18.000Z
agda/Everything.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
4
2017-11-10T16:44:52.000Z
2018-02-23T18:22:17.000Z
module Everything where import Library import Syntax import RenamingAndSubstitution import EquationalTheory
15.571429
30
0.889908
721d74ea6a633396368266a1be9ca03841d84b7d
12,488
agda
Agda
Cubical/HITs/SetQuotients/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{- Set quotients: -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.TypeQuotients as TypeQuot using (_/ₜ_ ; [_] ; eq/) open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥ ; ∣_∣ ; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂ ; ∣_∣₂ ; squash₂ ; setTruncIsSet) private variable ℓ ℓ' ℓ'' : Level A : Type ℓ R : A → A → Type ℓ B : A / R → Type ℓ C : A / R → A / R → Type ℓ D : A / R → A / R → A / R → Type ℓ elimEq/ : (Bprop : (x : A / R ) → isProp (B x)) {x y : A / R} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq/ {B = B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimProp : ((x : A / R ) → isProp (B x)) → ((a : A) → B ( [ a ])) → (x : A / R) → B x elimProp Bprop f [ x ] = f x elimProp Bprop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 (λ x → isProp→isSet (Bprop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimProp Bprop f elimProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i elimProp2 : ((x y : A / R ) → isProp (C x y)) → ((a b : A) → C [ a ] [ b ]) → (x y : A / R) → C x y elimProp2 Cprop f = elimProp (λ x → isPropΠ (λ y → Cprop x y)) (λ x → elimProp (λ y → Cprop [ x ] y) (f x)) elimProp3 : ((x y z : A / R ) → isProp (D x y z)) → ((a b c : A) → D [ a ] [ b ] [ c ]) → (x y z : A / R) → D x y z elimProp3 Dprop f = elimProp (λ x → isPropΠ2 (λ y z → Dprop x y z)) (λ x → elimProp2 (λ y z → Dprop [ x ] y z) (f x)) -- lemma 6.10.2 in hott book []surjective : (x : A / R) → ∃[ a ∈ A ] [ a ] ≡ x []surjective = elimProp (λ x → squash) (λ a → ∣ a , refl ∣) elim : {B : A / R → Type ℓ} → ((x : A / R) → isSet (B x)) → (f : (a : A) → (B [ a ])) → ((a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) → (x : A / R) → B x elim Bset f feq [ a ] = f a elim Bset f feq (eq/ a b r i) = feq a b r i elim Bset f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elim Bset f feq rec : {B : Type ℓ} (Bset : isSet B) (f : A → B) (feq : (a b : A) (r : R a b) → f a ≡ f b) → A / R → B rec Bset f feq [ a ] = f a rec Bset f feq (eq/ a b r i) = feq a b r i rec Bset f feq (squash/ x y p q i j) = Bset (g x) (g y) (cong g p) (cong g q) i j where g = rec Bset f feq rec2 : {B : Type ℓ} (Bset : isSet B) (f : A → A → B) (feql : (a b c : A) (r : R a b) → f a c ≡ f b c) (feqr : (a b c : A) (r : R b c) → f a b ≡ f a c) → A / R → A / R → B rec2 Bset f feql feqr = rec (isSetΠ (λ _ → Bset)) (λ a → rec Bset (f a) (feqr a)) (λ a b r → funExt (elimProp (λ _ → Bset _ _) (λ c → feql a b c r))) -- the recursor for maps into groupoids: -- i.e. for any type A with a binary relation R and groupoid B, -- we can construct a map A / R → B from a map A → B satisfying the conditions -- (i) ∀ (a b : A) → R a b → f a ≡ f b -- (ii) ∀ (a b : A) → isProp (f a ≡ f b) -- We start by proving that we can recover the set-quotient -- by set-truncating the (non-truncated type quotient) typeQuotSetTruncIso : Iso (A / R) ∥ A /ₜ R ∥₂ Iso.fun typeQuotSetTruncIso = rec setTruncIsSet (λ a → ∣ [ a ] ∣₂) λ a b r → cong ∣_∣₂ (eq/ a b r) Iso.inv typeQuotSetTruncIso = SetTrunc.rec squash/ (TypeQuot.rec [_] eq/) Iso.rightInv typeQuotSetTruncIso = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (TypeQuot.elimProp (λ _ → squash₂ _ _) λ _ → refl) Iso.leftInv typeQuotSetTruncIso = elimProp (λ _ → squash/ _ _) λ _ → refl module rec→Gpd {A : Type ℓ} {R : A → A → Type ℓ'} {B : Type ℓ''} (Bgpd : isGroupoid B) (f : A → B) (feq : ∀ (a b : A) → R a b → f a ≡ f b) (fprop : ∀ (a b : A) → isProp (f a ≡ f b)) where fun : A / R → B fun = f₁ ∘ f₂ where f₁ : ∥ A /ₜ R ∥₂ → B f₁ = SetTrunc.rec→Gpd.fun Bgpd f/ congF/Const where f/ : A /ₜ R → B f/ = TypeQuot.rec f feq congF/Const : (a b : A /ₜ R) (p q : a ≡ b) → cong f/ p ≡ cong f/ q congF/Const = TypeQuot.elimProp2 (λ _ _ → isPropΠ2 λ _ _ → Bgpd _ _ _ _) λ a b p q → fprop a b (cong f/ p) (cong f/ q) f₂ : A / R → ∥ A /ₜ R ∥₂ f₂ = Iso.fun typeQuotSetTruncIso setQuotUniversalIso : {B : Type ℓ} (Bset : isSet B) → Iso (A / R → B) (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) Iso.fun (setQuotUniversalIso Bset) g = (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) Iso.inv (setQuotUniversalIso Bset) h = elim (λ x → Bset) (fst h) (snd h) Iso.rightInv (setQuotUniversalIso Bset) h = refl Iso.leftInv (setQuotUniversalIso Bset) g = funExt (λ x → PropTrunc.elim (λ sur → Bset (out (intro g) x) (g x)) (λ sur → cong (out (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x)) where intro = Iso.fun (setQuotUniversalIso Bset) out = Iso.inv (setQuotUniversalIso Bset) setQuotUniversal : {B : Type ℓ} (Bset : isSet B) → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (setQuotUniversalIso Bset) open BinaryRelation -- characterisation of binary functions/operations on set-quotients setQuotUniversal2Iso : {B : Type ℓ} (Bset : isSet B) → isRefl R → Iso (A / R → A / R → B) (Σ[ _∗_ ∈ (A → A → B) ] ((a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b')) Iso.fun (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) _∗/_ = _∗_ , h where _∗_ = λ a b → [ a ] ∗/ [ b ] h : (a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b' h a a' b b' ra rb = cong (_∗/ [ b ]) (eq/ _ _ ra) ∙ cong ([ a' ] ∗/_) (eq/ _ _ rb) Iso.inv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) (_∗_ , h) = rec2 Bset _∗_ hleft hright where hleft : ∀ a b c → R a b → (a ∗ c) ≡ (b ∗ c) hleft _ _ c r = h _ _ _ _ r (isReflR c) hright : ∀ a b c → R b c → (a ∗ b) ≡ (a ∗ c) hright a _ _ r = h _ _ _ _ (isReflR a) r Iso.rightInv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) (_∗_ , h) = Σ≡Prop (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ2 λ _ _ → Bset _ _) refl Iso.leftInv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) _∗/_ = funExt₂ (elimProp2 (λ _ _ → Bset _ _) λ _ _ → refl) setQuotUniversal2 : {B : Type ℓ} (Bset : isSet B) → isRefl R → (A / R → A / R → B) ≃ (Σ[ _∗_ ∈ (A → A → B) ] ((a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b')) setQuotUniversal2 Bset isReflR = isoToEquiv (setQuotUniversal2Iso Bset isReflR) -- corollary for binary operations -- TODO: prove truncated inverse for effective relations setQuotBinOp : isRefl R → (_∗_ : A → A → A) → (∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b')) → (A / R → A / R → A / R) setQuotBinOp isReflR _∗_ h = Iso.inv (setQuotUniversal2Iso squash/ isReflR) ((λ a b → [ a ∗ b ]) , λ _ _ _ _ ra rb → eq/ _ _ (h _ _ _ _ ra rb)) setQuotSymmBinOp : isRefl R → isTrans R → (_∗_ : A → A → A) → (∀ a b → a ∗ b ≡ b ∗ a) → (∀ a a' b → R a a' → R (a ∗ b) (a' ∗ b)) → (A / R → A / R → A / R) setQuotSymmBinOp {A = A} {R = R} isReflR isTransR _∗_ ∗-symm h = setQuotBinOp isReflR _∗_ h' where h' : ∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b') h' a a' b b' ra rb = isTransR _ _ _ (h a a' b ra) (transport (λ i → R (∗-symm b a' i) (∗-symm b' a' i)) (h b b' a' rb)) effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (equivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp _ helper = rec isSetHProp (λ c → (R a c , Rprop a c)) (λ c d cd → Σ≡Prop (λ _ → isPropIsProp) (hPropExt (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd)))) aa≡ab : R a a ≡ R a b aa≡ab i = helper (p i) .fst isEquivRel→effectiveIso : isPropValued R → isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) (R a b) Iso.fun (isEquivRel→effectiveIso {R = R} Rprop Req a b) = effective Rprop Req a b Iso.inv (isEquivRel→effectiveIso {R = R} Rprop Req a b) = eq/ a b Iso.rightInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = Rprop a b _ _ Iso.leftInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = squash/ _ _ _ _ isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective Rprop Req a b = isoToIsEquiv (invIso (isEquivRel→effectiveIso Rprop Req a b)) discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elim (λ a₀ → isSetΠ (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁)))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elim (λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b) -- Quotienting by the truncated relation is equivalent to quotienting by untruncated relation truncRelIso : Iso (A / R) (A / (λ a b → ∥ R a b ∥)) Iso.fun truncRelIso = rec squash/ [_] λ _ _ r → eq/ _ _ ∣ r ∣ Iso.inv truncRelIso = rec squash/ [_] λ _ _ → PropTrunc.rec (squash/ _ _) λ r → eq/ _ _ r Iso.rightInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl Iso.leftInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl truncRelEquiv : A / R ≃ A / (λ a b → ∥ R a b ∥) truncRelEquiv = isoToEquiv truncRelIso -- Using this we can obtain a useful characterization of -- path-types for equivalence relations (not prop-valued) -- and their quotients isEquivRel→TruncIso : isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) ∥ R a b ∥ isEquivRel→TruncIso {A = A} {R = R} Req a b = compIso (isProp→Iso (squash/ _ _) (squash/ _ _) (cong (Iso.fun truncRelIso)) (cong (Iso.inv truncRelIso))) (isEquivRel→effectiveIso (λ _ _ → PropTrunc.propTruncIsProp) ∥R∥eq a b) where open isEquivRel ∥R∥eq : isEquivRel λ a b → ∥ R a b ∥ reflexive ∥R∥eq a = ∣ reflexive Req a ∣ symmetric ∥R∥eq a b = PropTrunc.map (symmetric Req a b) transitive ∥R∥eq a b c = PropTrunc.map2 (transitive Req a b c)
42.62116
121
0.521701
65fd10c7d9defdca94b6c56046c1073e05fe2817
322
agda
Agda
src/main/agda/lemmas.agda
hablapps/safeoptics
90fc9586f4c126ee83b8aa54ad417bb7a5325b1b
[ "Apache-2.0" ]
null
null
null
src/main/agda/lemmas.agda
hablapps/safeoptics
90fc9586f4c126ee83b8aa54ad417bb7a5325b1b
[ "Apache-2.0" ]
null
null
null
src/main/agda/lemmas.agda
hablapps/safeoptics
90fc9586f4c126ee83b8aa54ad417bb7a5325b1b
[ "Apache-2.0" ]
null
null
null
{-# OPTIONS --verbose=10 #-} module lemmas where open import Data.Nat import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst) +-suc : (n₁ n₂ : ℕ) -> (n₁ + (1 + n₂)) ≡ (1 + (n₁ + n₂)) +-suc zero n2 = refl +-suc (suc n1) n2 rewrite +-suc n1 n2 = refl
26.833333
62
0.60559
342e0dffa82548de24ce8323a588fc656b558816
519
agda
Agda
test/Succeed/Issue1944-1.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1944-1.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1944-1.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, AIM XXIII 2016-04-21 Overloaded projections -- Milestone 1: Check overloaded projections on rhs (without postponing). module _ (A : Set) (a : A) where module RecDefs where record R B : Set where field f : B open R public record S B : Set where field f : B open S public record T B : Set where field f : B → B open T public open RecDefs public r : R A R.f r = a s : S A S.f s = f r t : R A → S A S.f (t r) = f r u : _ u = f s v = f s w : ∀{A} → T A → A → A w t x = f t x
13.307692
73
0.585742
65d164ab9ffbc17b187a94b0cd57a39edf2c0364
517
agda
Agda
data/test-files/Prelude.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
data/test-files/Prelude.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
data/test-files/Prelude.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
module Prelude where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} data _==_ {A : Set} (x : A) : A → Set where refl : x == x data Vec (A : Set) : Nat -> Set where nil : Vec A 0 cons : forall {n} -> A -> Vec A n -> Vec A (suc n) data List (A : Set) : Set where nil : List A cons : A -> List A -> List A data Empty : Set where data Not (A : Set) : Set where is-absurd : (A -> Empty) -> Not A data Dec (A : Set) : Set where yes : A -> Dec A no : Not A -> Dec A
18.464286
52
0.545455
5e3e42383d855e4e0374f5852d11f4f42f08717f
398
agda
Agda
notes/papers/implicit/examples/IllTyped.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
notes/papers/implicit/examples/IllTyped.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
notes/papers/implicit/examples/IllTyped.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module IllTyped where data Nat : Set where zero : Nat suc : Nat -> Nat data Bool : Set where false : Bool true : Bool F : Nat -> Set F zero = Nat F (suc x) = Bool postulate D : (x:Nat)(y:F x) -> Set T : Nat -> Set f : {x:Nat -> Nat}{y:F (x zero)} -> (T (x zero) -> T (suc zero)) -> (D zero zero -> D (x zero) y) -> Nat test = f {?} (\x -> x) (\x -> x)
14.214286
38
0.479899
65ed183185df4f7de2708437f0f7fdc9e6239bbf
3,515
agda
Agda
prototyping/Luau/TypeCheck.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
1
2022-03-18T04:10:20.000Z
2022-03-18T04:10:20.000Z
prototyping/Luau/TypeCheck.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
null
null
null
prototyping/Luau/TypeCheck.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} open import Luau.Type using (Mode) module Luau.TypeCheck (m : Mode) where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (Maybe; just) open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··) open import Luau.Var using (Var) open import Luau.Addr using (Addr) open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ) open import Luau.Type using (Type; Mode; nil; none; number; boolean; string; _⇒_; tgt) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ) open import FFI.Data.Vector using (Vector) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Properties.Product using (_×_; _,_) src : Type → Type src = Luau.Type.src m orNone : Maybe Type → Type orNone nothing = none orNone (just T) = T tgtBinOp : BinaryOperator → Type tgtBinOp + = number tgtBinOp - = number tgtBinOp * = number tgtBinOp / = number tgtBinOp < = boolean tgtBinOp > = boolean tgtBinOp == = boolean tgtBinOp ~= = boolean tgtBinOp <= = boolean tgtBinOp >= = boolean tgtBinOp ·· = string data _⊢ᴮ_∈_ : VarCtxt → Block yes → Type → Set data _⊢ᴱ_∈_ : VarCtxt → Expr yes → Type → Set data _⊢ᴮ_∈_ where done : ∀ {Γ} → --------------- Γ ⊢ᴮ done ∈ nil return : ∀ {M B T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴮ B ∈ U → --------------------- Γ ⊢ᴮ return M ∙ B ∈ T local : ∀ {x M B T U V Γ} → Γ ⊢ᴱ M ∈ U → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → -------------------------------- Γ ⊢ᴮ local var x ∈ T ← M ∙ B ∈ V function : ∀ {f x B C T U V W Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V → (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W → ------------------------------------------------- Γ ⊢ᴮ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W data _⊢ᴱ_∈_ where nil : ∀ {Γ} → -------------------- Γ ⊢ᴱ (val nil) ∈ nil var : ∀ {x T Γ} → T ≡ orNone(Γ [ x ]ⱽ) → ---------------- Γ ⊢ᴱ (var x) ∈ T addr : ∀ {a Γ} T → ----------------- Γ ⊢ᴱ val(addr a) ∈ T number : ∀ {n Γ} → --------------------------- Γ ⊢ᴱ val(number n) ∈ number bool : ∀ {b Γ} → -------------------------- Γ ⊢ᴱ val(bool b) ∈ boolean string : ∀ {x Γ} → --------------------------- Γ ⊢ᴱ val(string x) ∈ string app : ∀ {M N T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴱ N ∈ U → ---------------------- Γ ⊢ᴱ (M $ N) ∈ (tgt T) function : ∀ {f x B T U V Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → ----------------------------------------------------- Γ ⊢ᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U) block : ∀ {b B T U Γ} → Γ ⊢ᴮ B ∈ U → ------------------------------------ Γ ⊢ᴱ (block var b ∈ T is B end) ∈ T binexp : ∀ {op Γ M N T U} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴱ N ∈ U → ---------------------------------- Γ ⊢ᴱ (binexp M op N) ∈ tgtBinOp op data ⊢ᴼ_ : Maybe(Object yes) → Set where nothing : --------- ⊢ᴼ nothing function : ∀ {f x T U V B} → (x ↦ T) ⊢ᴮ B ∈ V → ---------------------------------------------- ⊢ᴼ (just function f ⟨ var x ∈ T ⟩∈ U is B end) ⊢ᴴ_ : Heap yes → Set ⊢ᴴ H = ∀ a {O} → (H [ a ]ᴴ ≡ O) → (⊢ᴼ O) _⊢ᴴᴱ_▷_∈_ : VarCtxt → Heap yes → Expr yes → Type → Set (Γ ⊢ᴴᴱ H ▷ M ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴱ M ∈ T) _⊢ᴴᴮ_▷_∈_ : VarCtxt → Heap yes → Block yes → Type → Set (Γ ⊢ᴴᴮ H ▷ B ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴮ B ∈ T)
23.433333
246
0.455761
ccd82eab8df23d5e296cc6df41b362b5f618d3b7
11,768
agda
Agda
Examples/Lambda/Proofs.agda
LcicC/inference-systems-agda
b9043f99e4bf7211db4066a7a943401d127f0c8f
[ "MIT" ]
3
2022-03-10T15:53:47.000Z
2022-03-25T15:48:52.000Z
Examples/Lambda/Proofs.agda
LcicC/inference-systems-agda
b9043f99e4bf7211db4066a7a943401d127f0c8f
[ "MIT" ]
null
null
null
Examples/Lambda/Proofs.agda
LcicC/inference-systems-agda
b9043f99e4bf7211db4066a7a943401d127f0c8f
[ "MIT" ]
null
null
null
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types #-} open import Relation.Nullary open import Relation.Nullary.Decidable open import Data.Nat open import Data.Vec open import Data.Fin open import Data.Product open import Data.Sum open import Data.Bool open import Data.Unit open import Data.Empty open import Relation.Binary.PropositionalEquality open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Size open import Codata.Thunk open import Axiom.ExcludedMiddle open import Level renaming (zero to ∅ ; suc to ++) open import is-lib.SInfSys as IS open import Examples.Lambda.Lambda open import Examples.Lambda.BigStep renaming (U to BigStepU) open import Examples.Lambda.SmallStep module Examples.Lambda.Proofs where Spec : BigStepU → Set Spec (e , res x) = e ⇒* term x Spec (e , div) = ∀{i} → ⇒∞ e i {- Soundness -} Spec-val : BigStepU → Set Spec-val (e , v) = ∀{v'} → v ≡ res v' → Spec (e , v) Spec-closed : ISClosed (BigStepIS ∪ BigStepCOIS) Spec-val Spec-closed (inj₁ VAL) _ _ refl = ε Spec-closed (inj₁ APP) _ prem refl = let s-e1 = prem zero refl in let s-e2 = prem (suc zero) refl in let s-subst = prem (suc (suc zero)) refl in let subst = IS.fold (β , _ , refl , λ ()) in inj-l-app _ (prem zero refl) ◅◅ inj-r-app _ (prem (suc zero) refl) ◅◅ subst ◅ prem (suc (suc zero)) refl Spec-closed (inj₂ COA) s_ _ () ⇓ᵢ-to-⇒* : ∀{e v} → e ⇓ᵢ v → Spec-val (e , v) ⇓ᵢ-to-⇒* = ind[ BigStepIS ∪ BigStepCOIS ] Spec-val Spec-closed bs-sound-v : ∀{e v} → (∀{i} → (e ⇓ (res v)) i) → e ⇒* (term v) bs-sound-v r = ⇓ᵢ-to-⇒* (sfcoind-to-ind r) refl subject-red-⇓ : ∀{e e' v} → (∀{i} → (e ⇓ v) i) → e ⇒ e' → (∀{i} → (e' ⇓ v) i) subject-red-⇓ bs (fold (β , (e , v) , eq , _)) with bs subject-red-⇓ bs (fold (β , (e , v) , () , _)) | sfold (VAL , (lambda x , _) , refl , prem) subject-red-⇓ bs (fold (β , (e , lambda x) , refl , _)) | sfold (APP , ((.(lambda e) , _ , .(lambda x) , v , _) , _) , refl , prem) with val-⇓-≡ (prem zero .force) | val-⇓-≡ (prem (suc zero) .force) subject-red-⇓ bs (fold (β , (e , lambda x) , refl , _)) | sfold (APP , ((.(lambda e) , .e , .(lambda x) , .(lambda x) , _) , _) , refl , prem) | refl | refl = prem (suc (suc zero)) .force subject-red-⇓ bs (fold (β , (e , v) , refl , _)) | sfold (L-DIV , _ , refl , prem) = ⊥-elim (val-not-reduce⇓ (prem zero .force)) subject-red-⇓ bs (fold (β , (e , v) , refl , _)) | sfold (R-DIV , _ , refl , prem) = ⊥-elim (val-not-reduce⇓ (prem (suc zero) .force)) subject-red-⇓ bs (fold (L-APP , c , eq , _)) with bs subject-red-⇓ bs (fold (L-APP , _ , () , _)) | sfold (VAL , (lambda _ , _) , refl , _) subject-red-⇓ bs (fold (L-APP , (e1 , e1' , e2) , refl , pr)) | sfold (APP , ((.e1 , e1'' , .e2 , lambda _ , _) , ind) , refl , prem) = let rec = subject-red-⇓ (prem zero .force) (pr zero) in let prems = λ{zero → rec ; (suc zero) → prem (suc zero) .force ; (suc (suc zero)) → prem (suc (suc zero)) .force} in apply-sfcoind APP _ prems subject-red-⇓ bs (fold (L-APP , (e1 , e1' , e2) , refl , pr)) | sfold (L-DIV , ((.e1 , .e2) , ind) , refl , prem) = let rec = subject-red-⇓ (prem zero .force) (pr zero) in apply-sfcoind L-DIV _ λ{zero → rec} subject-red-⇓ bs (fold (L-APP , (e1 , e1' , e2) , refl , pr)) | sfold (R-DIV , ((.e1 , .e2 , lambda v) , ind) , refl , prem) = let rec = subject-red-⇓ (prem zero .force) (pr zero) in let prems = λ{zero → rec ; (suc zero) → prem (suc zero) .force} in apply-sfcoind R-DIV _ prems subject-red-⇓ bs (fold (R-APP , (lambda _ , e2 , e2') , eq , pr)) with bs subject-red-⇓ bs (fold (R-APP , (lambda _ , _ , _) , refl , _)) | sfold (VAL , (lambda _ , _) , () , _) subject-red-⇓ bs (fold (R-APP , (lambda e1 , e2 , e2') , refl , pr)) | sfold (APP , ((.(lambda _) , e1' , .e2 , lambda _ , _) , ind) , refl , prem) with val-⇓-≡ (prem zero .force) subject-red-⇓ bs (fold (R-APP , (lambda e1 , e2 , e2') , refl , pr)) | sfold (APP , ((.(lambda e1) , .e1 , .e2 , lambda _ , _) , ind) , refl , prem) | refl = let rec = subject-red-⇓ (prem (suc zero) .force) (pr zero) in let prems = λ{zero → prem zero .force ; (suc zero) → rec ; (suc (suc zero)) → prem (suc (suc zero)) .force} in apply-sfcoind APP _ prems subject-red-⇓ bs (fold (R-APP , (lambda _ , e2 , e2') , refl , _)) | sfold (L-DIV , ((.(lambda _) , .e2) , _) , refl , prem) = ⊥-elim (val-not-reduce⇓ (prem zero .force)) subject-red-⇓ bs (fold (R-APP , (lambda e , e2 , e2') , refl , pr)) | sfold (R-DIV , ((.(lambda e) , .e2 , v) , ind) , refl , prem) with val-⇓-≡ (prem zero .force) subject-red-⇓ bs (fold (R-APP , (lambda e , e2 , e2') , refl , pr)) | sfold (R-DIV , ((.(lambda e) , .e2 , .(lambda e)) , ind) , refl , prem) | refl = let rec = subject-red-⇓ (prem (suc zero) .force) (pr zero) in let prems = λ{zero → prem zero .force ; (suc zero) → rec} in apply-sfcoind R-DIV _ prems progress : ∀{e} →(∀{i} → (e ⇓ div) i) → Σ[ e' ∈ Term 0 ] (e ⇒ e') progress {e} bs with bs progress bs | sfold (APP , _ , refl , prem) with bs-sound-v (prem zero .force) progress bs | sfold (APP , ((_ , e1' , _ , _ , .div) , _) , refl , prem) | ε with bs-sound-v (prem (suc zero) .force) progress bs | sfold (APP , ((.(lambda e1') , e1' , _ , v , .div) , _) , refl , prem) | ε | ε = _ , apply-ind β _ λ () progress bs | sfold (APP , ((.(lambda e1') , e1' , e2 , _ , .div) , _) , refl , prem) | ε | x ◅ _ = app (lambda e1') _ , apply-ind R-APP _ λ{zero → x} progress bs | sfold (APP , ((e1 , _ , e2 , _ , .div) , _) , refl , prem) | x ◅ _ = app _ e2 , apply-ind L-APP _ λ{zero → x} progress bs | sfold (L-DIV , ((e1 , e2) , _) , refl , prem) = let e1' , e1⇒e1' = progress (prem zero .force) in app e1' e2 , apply-ind L-APP _ λ{zero → e1⇒e1'} progress bs | sfold (R-DIV , ((e1 , e2 , v) , _) , refl , prem) with bs-sound-v (prem zero .force) progress bs | sfold (R-DIV , ((.(term _) , e2 , (lambda e)) , _) , refl , prem) | ε = let e2' , e2⇒e2' = progress (prem (suc zero) .force) in app (lambda e) e2' , apply-ind R-APP _ λ{zero → e2⇒e2'} progress bs | sfold (R-DIV , ((e1 , e2 , (lambda e)) , _) , refl , prem) | x ◅ _ = app _ e2 , apply-ind L-APP _ λ{zero → x} bs-sound-∞ : ∀{e} → (∀{i} → (e ⇓ div) i) → (∀{i} → ⇒∞ e i) bs-sound-∞ bs with progress bs ... | e' , ss = step ss λ where .force → bs-sound-∞ (subject-red-⇓ bs ss) bs-sound : ∀{e v} → (∀{i} → (e ⇓ v) i) → Spec (e , v) bs-sound {_} {res _} = bs-sound-v bs-sound {_} {div} = bs-sound-∞ {- Completeness -} inv-app : ∀{e1 e2 v} → (app e1 e2) ⇓ᵢ (res v) → Σ[ e1' ∈ Term 1 ] Σ[ e2' ∈ Value ] (e1 ⇓ᵢ res (lambda e1')) × (e2 ⇓ᵢ (res e2')) × (subst-0 e1' (term e2') ⇓ᵢ res v) -- Using consistency of inductive interpretation inv-app bs with ind-postfix bs inv-app bs | inj₁ VAL , lambda _ , () , _ inv-app bs | inj₁ APP , _ , refl , pr = _ , _ , pr zero , pr (suc zero) , pr (suc (suc zero)) inv-app bs | inj₂ COA , _ , () , _ subject-exp : ∀{e e' v} → e ⇒ e' → e' ⇓ᵢ v → e ⇓ᵢ v subject-exp {.(app (lambda e1) (term v))} {_} {v'} (fold (β , (e1 , v) , refl , _)) bs = let prem-e1 = IS.fold (inj₁ VAL , lambda e1 , refl , λ ()) in let prem-e2 = IS.fold (inj₁ VAL , v , refl , λ ()) in let prems = λ{zero → prem-e1 ; (suc zero) → prem-e2 ; (suc (suc zero)) → bs} in apply-ind (inj₁ APP) _ prems subject-exp {.(app e1 e2)} {.(app e1' e2)} {res x} (fold (L-APP , (e1 , e1' , e2) , refl , pr)) bs = let e1'' , e2' , bs-e1' , bs-e2 , bs-subst = inv-app bs in let prems = λ{zero → subject-exp (pr zero) bs-e1' ; (suc zero) → bs-e2 ; (suc (suc zero)) → bs-subst} in apply-ind (inj₁ APP) _ prems subject-exp {.(app e1 e2)} {.(app e1' e2)} {div} (fold (L-APP , (e1 , e1' , e2) , refl , pr)) bs = apply-ind (inj₂ COA) _ λ () subject-exp {.(app (term v) e2)} {.(app (term v) e2')} {res x} (fold (R-APP , (v , e2 , e2') , refl , pr)) bs = let e1' , e2'' , bs-e1 , bs-e2' , bs-subst = inv-app bs in let prems = λ{zero → bs-e1 ; (suc zero) → subject-exp (pr zero) bs-e2' ; (suc (suc zero)) → bs-subst} in apply-ind (inj₁ APP) _ prems subject-exp {.(app (term v) e2)} {.(app (term v) e2')} {div} (fold (R-APP , (v , e2 , e2') , refl , _)) bs = apply-ind (inj₂ COA) _ λ () bounded-v : ∀{e v} → e ⇒* term v → e ⇓ᵢ res v bounded-v ε = apply-ind (inj₁ VAL) _ λ () bounded-v (x ◅ ss) = subject-exp x (bounded-v ss) bounded-∞ : ∀{e} → (∀{i} → ⇒∞ e i) → e ⇓ᵢ div bounded-∞ {e} ss = apply-ind (inj₂ COA) _ λ () bounded : ∀{e v} → Spec (e , v) → e ⇓ᵢ v bounded {_} {res _} = bounded-v bounded {_} {div} = bounded-∞ get-prem-cons : ∀{e1 e2 v} → app e1 e2 ⇒* (term v) → Σ[ e1' ∈ Term 1 ] Σ[ e2' ∈ Value ] (e1 ⇒* lambda e1') × (e2 ⇒* term e2') × (subst-0 e1' (term e2') ⇒* (term v)) get-prem-cons {.(lambda e1)} {.(term v)} {lambda _} (fold (β , (e1 , v) , refl , _) ◅ ss) = e1 , v , ε , ε , ss get-prem-cons {.e1} {.e2} {lambda _} (fold (L-APP , (e1 , e1' , e2) , refl , pr) ◅ ss) = let e1'' , e2' , rec-e1' , rec-e2 , rec-subst = get-prem-cons ss in e1'' , e2' , pr zero ◅ rec-e1' , rec-e2 , rec-subst get-prem-cons {.(term v)} {.e2} {lambda _} (fold (R-APP , (v , e2 , e2') , refl , pr) ◅ ss) = let e1' , e2'' , rec-e1 , rec-e2' , rec-subst = get-prem-cons ss in e1' , e2'' , rec-e1 , pr zero ◅ rec-e2' , rec-subst consistent-v : ∀{e v} → e ⇒* term v → IS.ISF[ BigStepIS ] Spec (e , res v) consistent-v {.(lambda _)} {lambda _} ε = VAL , _ , refl , λ () consistent-v {lambda _} {lambda _} (x ◅ ss) = ⊥-elim (val-not-reduce⇒ x) consistent-v {app e1 e2} {lambda _} (x ◅ ss) = let e1' , e2' , e1⇒* , e2⇒* , subst⇒* = get-prem-cons (x ◅ ss) in let prems = λ{zero → e1⇒* ; (suc zero) → e2⇒* ; (suc (suc zero)) → subst⇒*} in APP , (e1 , e1' , e2 , e2' , _) , refl , prems postulate excluded-middle : ExcludedMiddle ∅ lemma-divergence : ∀{e1 e2} → (∀{i} → ⇒∞ (app e1 e2) i) → (∀{i} → ⇒∞ e1 i) ⊎ e1 ConvergesSS × (∀{i} → ⇒∞ e2 i) ⊎ Σ[ t1 ∈ Term 1 ] Σ[ v ∈ Value ] (e1 ⇒* lambda t1) × (e2 ⇒* term v) × (∀{i} → ⇒∞ (subst-0 t1 (term v)) i) lemma-divergence {e1} {e2} ss with excluded-middle {e1 ConvergesSS} lemma-divergence {e1} {e2} ss | no ¬e1-conv = inj₁ (div-app-l-not-conv ss ¬e1-conv) lemma-divergence {e1} {e2} ss | yes e1-conv with excluded-middle {e2 ConvergesSS} lemma-divergence {e1} {e2} ss | yes e1-conv | no ¬e2-conv = inj₂ (inj₁ (e1-conv , div-app-r-not-conv ss (proj₂ e1-conv) ¬e2-conv)) lemma-divergence {e1} {e2} ss | yes (lambda _ , red-e1) | yes (_ , red-e2) = inj₂ (inj₂ (_ , _ , ( red-e1 , red-e2 , app-subst-⇒∞₁ red-e1 red-e2 ss))) consistent-∞ : ∀{e} → (∀{i} → ⇒∞ e i) → IS.ISF[ BigStepIS ] Spec (e , div) consistent-∞ {e} ss with ss consistent-∞ {lambda e} ss | step x _ = ⊥-elim (val-not-reduce⇒ x) consistent-∞ {app e₁ e₂} ss | step x x₁ with lemma-divergence (step x x₁) consistent-∞ {app e₁ e₂} ss | step x x₁ | inj₁ e1-div = L-DIV , _ , refl , λ{zero → e1-div} consistent-∞ {app e₁ e₂} ss | step x x₁ | inj₂ (inj₁ (e1-conv , e2-div)) = R-DIV , _ , refl , λ{zero → proj₂ e1-conv ; (suc zero) → e2-div} consistent-∞ {app e₁ e₂} ss | step x x₁ | inj₂ (inj₂ (_ , _ , red-e1 , red-e2 , subst-div)) = APP , _ , refl , λ{zero → red-e1 ; (suc zero) → red-e2 ; (suc (suc zero)) → subst-div} consistent : ∀{e v} → Spec (e , v) → IS.ISF[ BigStepIS ] Spec (e , v) consistent {_} {res _} = consistent-v consistent {_} {div} = consistent-∞ complete : ∀{e v} → Spec (e , v) → (∀{i} → (e ⇓ v) i) complete = bounded-scoind[ BigStepIS , BigStepCOIS ] Spec bounded consistent
54.990654
189
0.543168
018866b9818becc3dc626aa9a9f476b01d04e9dc
414
agda
Agda
archive/agda-3/src/Oscar/Class/Symmetrical/Symmetry.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Symmetrical/Symmetry.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Symmetrical/Symmetry.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class.Symmetry open import Oscar.Class.Symmetrical import Oscar.Data.Proposequality module Oscar.Class.Symmetrical.Symmetry where module _ {𝔬} {𝔒 : Ø 𝔬} {ℓ} {_∼_ : 𝔒 → 𝔒 → Ø ℓ} ⦃ _ : Symmetry.class _∼_ ⦄ where instance Symmetrical𝓢ymmetry : Symmetrical _∼_ (λ x∼y y∼x → x∼y → y∼x) Symmetrical𝓢ymmetry .𝓢ymmetrical.symmetrical _ _ = symmetry
21.789474
65
0.698068
196b6a1ae1e2f5626639ee16cfc3457b087d7ad9
1,712
agda
Agda
test/asset/agda-stdlib-1.0/Axiom/Extensionality/Propositional.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Axiom/Extensionality/Propositional.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Axiom/Extensionality/Propositional.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning function extensionality for propositional equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Axiom.Extensionality.Propositional where open import Function open import Level using (Level; _⊔_; suc; lift) open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality.Core ------------------------------------------------------------------------ -- Function extensionality states that if two functions are -- propositionally equal for every input, then the functions themselves -- must be propositionally equal. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g ------------------------------------------------------------------------ -- Properties -- If extensionality holds for a given universe level, then it also -- holds for lower ones. lower-extensionality : ∀ {a₁ b₁} a₂ b₂ → Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁ lower-extensionality a₂ b₂ ext f≡g = cong (λ h → Level.lower ∘ h ∘ lift) $ ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ Level.lower {ℓ = a₂}) -- Functional extensionality implies a form of extensionality for -- Π-types. ∀-extensionality : ∀ {a b} → Extensionality a (suc b) → {A : Set a} (B₁ B₂ : A → Set b) → (∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x) ∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂ ∀-extensionality ext B .B B₁≡B₂ | refl = refl
36.425532
74
0.521028
ed87c2d855d98deb56efdd1524456133d0e1996e
3,903
agda
Agda
lib/prelude.agda
siddharthist/hs2agda
4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c
[ "MIT" ]
17
2016-10-25T10:07:49.000Z
2016-10-25T19:54:48.000Z
lib/prelude.agda
siddharthist/CoverTranslator
4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c
[ "MIT" ]
6
2016-10-25T02:27:55.000Z
2016-10-25T17:50:18.000Z
lib/prelude.agda
siddharthist/CoverTranslator
4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c
[ "MIT" ]
null
null
null
-- BEGIN prelude.agda -- the Haskell $ and . ($) (A::Set) (B::Set) (f :: A -> B) (a :: A) :: B = f a compose (B,C,A::Set)(f :: B -> C)(g :: A -> B) :: A -> C = \ (x::A) -> f (g x) {- hardwired into Agda Integer :: Set = ? Bool :: Set = data True | False -} not (b::Bool) :: Bool = case b of { (True) -> False; -- Agda does not require @_ for built-in constructors (False) -> True;} (||) (b1::Bool)(b2::Bool) :: Bool = case b1 of { (True) -> True@_; (False) -> case b2 of { (True) -> True@_; (False) -> False@_;};} (&&) (b1::Bool)(b2::Bool) :: Bool = case b1 of { (True) -> case b2 of { (True) -> False@_; (False) -> True@_;}; (False) -> False@_;} Pair (a::Set)(b::Set) :: Set = data Pair (x::a) (y::b) Triple (a::Set)(b::Set)(c::Set) :: Set = data Triple (x::a) (y::b) (z::c) flip (a::Set)(b::Set)(c::Set)(f::a -> b -> c)(x::b)(y::a) :: c = f y x {- hardwired into Agda: List (a::Set) :: Set = data Nil | (:) (x::a) (xs::List a) -} foldl (a::Set)(b::Set)(f::a -> b -> a)(acc::a)(l::List b) :: a = case l of { (Nil) -> acc; (x:xs) -> foldl a b f (f acc x) xs;} reverse (a::Set)(l::List a) :: List a = foldl (List a) a (flip a (List a) (List a) (\(h::a) -> \(h'::List a) -> (:)@_ h h')) Nil@_ l append (a::Set)(l1::List a)(l2::List a) :: List a = case l1 of { (Nil) -> l2; (x:xs) -> x : (append a xs l2);} null (a::Set)(l::List a) :: Bool = case l of { (Nil) -> True@_; (x:xs) -> False@_;} map (a,b::Set)(f::a -> b)(l::List a) :: List b = case l of (Nil) -> Nil (x:xs) -> f x : map a b f xs Maybe (a::Set) :: Set = data Nothing | Just (x::a) -- Should not be here - temporary addition to provide an "interesting" type -- data Simple = A | B | C -gone -- Properties -- naive implementation of Property.hs -- from SET.alfa Rel (X::Set) :: Type = X -> X -> Set Id (X::Set) :: Rel X = idata ref (x::X) :: _ x x Zero :: Set = data whenZero (X::Set)(z::Zero) :: X = case z of { } Unit :: Set = data tt Sum (X::Set)(Y::X -> Set) :: Set = sig{fst :: X; snd :: Y fst;} Plus (X::Set)(Y::Set) :: Set = data inl (x::X) | inr (y::Y) package Property where Prop :: Type = Set (===) (A :: Set) (a :: A) (b :: A) :: Prop = Id A a b -- translate forAll into a dependent function type forAll (A :: Set) (f :: A -> Prop) :: Prop = (x :: A) -> f x exists (A :: Set) (f :: A -> Prop) :: Prop = sig { witness :: A; prop :: f witness; } (/\) (A,B :: Prop) :: Prop = Sum A (\(a::A) -> B) (\/) (A,B :: Prop) :: Prop = Plus A B (<=>) (A,B :: Prop) :: Prop = (A -> B) /\ (B -> A) (==>) (A,B :: Prop) :: Prop = (A -> B) true :: Prop = Unit false :: Prop = Zero nt (A :: Prop) :: Prop = A -> false -- cannot do the naive using because of universe conflict -- List cannot have a parameter which is not a set, and Prop is a type --using (L :: List Prop) (A :: Prop) :: Prop -- = A holds (b::Bool) :: Prop = if b then true else false holdsNot (b::Bool) :: Prop = if b then false else true -- Class of inhabited types class Inhabited (a::Set) :: Set exports arbitrary :: a error (a::Set)(|ia::Inhabited a)(msg::String) :: a = arbitrary -- Prelude types are inhabited instance iBool :: Inhabited Bool where arbitrary = True instance iString :: Inhabited String where arbitrary = "I AM ARBITRARY" instance iInteger :: Inhabited Integer where arbitrary = 123456789 {- Syntax error: instance iRational :: Inhabited Rational where arbitrary = 0.123456789 -} instance iList (|a::Set) :: Inhabited (List a) where arbitrary = Nil -- instance iList (a::Set)(ia::Inhabited a) :: Inhabited (List a) where -- END prelude.agda
20.542105
77
0.498078
7c66fe00a606a5a1430f63b1e16de93f127ae7c6
166
agda
Agda
Cubical/Relation/Nullary/DecidableEq.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Relation/Nullary/DecidableEq.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Relation/Nullary/DecidableEq.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Relation.Nullary.DecidableEq where open import Cubical.Relation.Nullary.Properties using (Dec→Stable; Discrete→isSet) public
27.666667
49
0.783133
cc6bb5c15810d884f172c90e26aa12c6c6e3588d
15,824
agda
Agda
prototyping/Properties/Subtyping.agda
EtiTheSpirit/luau
d37d0c857ba543ea47f0b8fce5678f7aadf5239e
[ "MIT" ]
null
null
null
prototyping/Properties/Subtyping.agda
EtiTheSpirit/luau
d37d0c857ba543ea47f0b8fce5678f7aadf5239e
[ "MIT" ]
null
null
null
prototyping/Properties/Subtyping.agda
EtiTheSpirit/luau
d37d0c857ba543ea47f0b8fce5678f7aadf5239e
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; strict; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; tgt) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) src = Luau.Type.src strict -- Language membership is decidable dec-language : ∀ T t → Either (¬Language T t) (Language T t) dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ())) dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ())) dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ())) dec-language nil (scalar nil) = Right (scalar nil) dec-language nil function = Left (scalar-function nil) dec-language nil (function-ok t) = Left (scalar-function-ok nil) dec-language nil (function-err t) = Right (scalar-function-err nil) dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ())) dec-language boolean (scalar boolean) = Right (scalar boolean) dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ())) dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ())) dec-language boolean function = Left (scalar-function boolean) dec-language boolean (function-ok t) = Left (scalar-function-ok boolean) dec-language boolean (function-err t) = Right (scalar-function-err boolean) dec-language number (scalar number) = Right (scalar number) dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ())) dec-language number (scalar string) = Left (scalar-scalar string number (λ ())) dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ())) dec-language number function = Left (scalar-function number) dec-language number (function-ok t) = Left (scalar-function-ok number) dec-language number (function-err t) = Right (scalar-function-err number) dec-language string (scalar number) = Left (scalar-scalar number string (λ ())) dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ())) dec-language string (scalar string) = Right (scalar string) dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ())) dec-language string function = Left (scalar-function string) dec-language string (function-ok t) = Left (scalar-function-ok string) dec-language string (function-err t) = Right (scalar-function-err string) dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s) dec-language (T₁ ⇒ T₂) function = Right function dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t) dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t)) dec-language never t = Left never dec-language unknown t = Right unknown dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t) dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t) -- ¬Language T is the complement of Language T language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t) language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q language-comp t (left p) (q₁ , q₂) = language-comp t p q₁ language-comp t (right p) (q₁ , q₂) = language-comp t p q₂ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function language-comp (scalar s) never (scalar ()) language-comp function (scalar-function ()) function language-comp (function-ok t) (scalar-function-ok ()) (function-ok q) language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p -- ≮: is the complement of <: ¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U) ¬≮:-impl-<: {T} {U} p t q with dec-language U t ¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r)) ¬≮:-impl-<: {T} {U} p t q | Right r = r <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p <:-refl : ∀ {T} → (T <: T) <:-refl = ¬≮:-impl-<: ≮:-refl -- transititivity ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans) -- Properties of scalars skalar = number ∪ (string ∪ (nil ∪ boolean)) function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U) function-≮:-scalar s = witness function function (scalar-function s) scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T)) scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s) unknown-≮:-scalar : ∀ {U} → (Scalar U) → (unknown ≮: U) unknown-≮:-scalar s = witness (function-ok (scalar s)) unknown (scalar-function-ok s) scalar-≮:-never : ∀ {U} → (Scalar U) → (U ≮: never) scalar-≮:-never s = witness (scalar s) (scalar s) never scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) -- Properties of tgt tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t) tgt-function-ok {T = nil} (scalar ()) tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p tgt-function-ok {T = never} (scalar ()) tgt-function-ok {T = unknown} p = unknown tgt-function-ok {T = boolean} (scalar ()) tgt-function-ok {T = number} (scalar ()) tgt-function-ok {T = string} (scalar ()) tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p) tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p) tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂) function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t) function-ok-tgt (function-ok p) = p function-ok-tgt (left p) = left (function-ok-tgt p) function-ok-tgt (right p) = right (function-ok-tgt p) function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂) function-ok-tgt unknown = unknown skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t)) skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) skalar-scalar number = left (scalar number) skalar-scalar boolean = right (right (right (scalar boolean))) skalar-scalar string = right (left (scalar string)) skalar-scalar nil = right (right (left (scalar nil))) tgt-never-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (never ⇒ U))) tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q) never-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (never ⇒ U))) → (tgt T ≮: U) never-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁)) never-tgt-≮: (witness function p (q₁ , scalar-function ())) never-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂ never-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ()))) -- Properties of src function-err-src : ∀ {T t} → (¬Language (src T) t) → Language T (function-err t) function-err-src {T = nil} never = scalar-function-err nil function-err-src {T = T₁ ⇒ T₂} p = function-err p function-err-src {T = never} (scalar-scalar number () p) function-err-src {T = never} (scalar-function-ok ()) function-err-src {T = unknown} never = unknown function-err-src {T = boolean} p = scalar-function-err boolean function-err-src {T = number} p = scalar-function-err number function-err-src {T = string} p = scalar-function-err string function-err-src {T = T₁ ∪ T₂} (left p) = left (function-err-src p) function-err-src {T = T₁ ∪ T₂} (right p) = right (function-err-src p) function-err-src {T = T₁ ∩ T₂} (p₁ , p₂) = function-err-src p₁ , function-err-src p₂ ¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t) ¬function-err-src {T = nil} (scalar ()) ¬function-err-src {T = T₁ ⇒ T₂} p = function-err p ¬function-err-src {T = never} unknown = never ¬function-err-src {T = unknown} (scalar ()) ¬function-err-src {T = boolean} (scalar ()) ¬function-err-src {T = number} (scalar ()) ¬function-err-src {T = string} (scalar ()) ¬function-err-src {T = T₁ ∪ T₂} (p₁ , p₂) = (¬function-err-src p₁ , ¬function-err-src p₂) ¬function-err-src {T = T₁ ∩ T₂} (left p) = left (¬function-err-src p) ¬function-err-src {T = T₁ ∩ T₂} (right p) = right (¬function-err-src p) src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t) src-¬function-err {T = nil} p = never src-¬function-err {T = T₁ ⇒ T₂} (function-err p) = p src-¬function-err {T = never} (scalar-function-err ()) src-¬function-err {T = unknown} p = never src-¬function-err {T = boolean} p = never src-¬function-err {T = number} p = never src-¬function-err {T = string} p = never src-¬function-err {T = T₁ ∪ T₂} (left p) = left (src-¬function-err p) src-¬function-err {T = T₁ ∪ T₂} (right p) = right (src-¬function-err p) src-¬function-err {T = T₁ ∩ T₂} (p₁ , p₂) = (src-¬function-err p₁ , src-¬function-err p₂) src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t) src-¬scalar number (scalar number) = never src-¬scalar boolean (scalar boolean) = never src-¬scalar string (scalar string) = never src-¬scalar nil (scalar nil) = never src-¬scalar s (left p) = left (src-¬scalar s p) src-¬scalar s (right p) = right (src-¬scalar s p) src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂) src-¬scalar s unknown = never src-unknown-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ unknown)) src-unknown-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p) unknown-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ unknown)) → (U ≮: src T) unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p) unknown-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q))) unknown-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ()))) unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p) -- Properties of unknown and never unknown-≮: : ∀ {T U} → (T ≮: U) → (unknown ≮: U) unknown-≮: (witness t p q) = witness t unknown q never-≮: : ∀ {T U} → (T ≮: U) → (T ≮: never) never-≮: (witness t p q) = witness t p never unknown-≮:-never : (unknown ≮: never) unknown-≮:-never = witness (scalar nil) unknown never function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, -- for example (never -> T) is equivalent to (never -> U) -- when types are interpreted as sets of syntactic values. _⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set (P ⊆ Q) = ∀ a → (P a) → (Q a) _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) (P ⊗ Q) (a , b) = (P a) × (Q b) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r ¬T₁u : ¬(Language T₁ u) ¬T₁u T₁u with p (function-ok u) (function-ok T₁u) ¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model -- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited -- in particular it's not true when T₁ is never, or T₂ is unknown. ∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ → -- This is the "only if" part of being a set-theoretic model (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where Q : (Tree × Tree) → Set Q (t , u) = Either (¬Language S₁ t) (Language T₁ u) q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function r (function-err t) (function-err ¬S₁t) with dec-language S₂ t r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂)) r (function-ok t) (function-ok T₁t) with dec-language T₂ t r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t -- A counterexample when the argument type is empty. set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Language number)) → Q ⊆ Comp((Language never) ⊗ Comp(Language string))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p) set-theoretic-counterexample-two : (never ⇒ number) ≮: (never ⇒ string) set-theoretic-counterexample-two = witness (function-ok (scalar number)) (function-ok (scalar number)) (function-ok (scalar-scalar number string (λ ()))) -- At some point we may deal with overloaded function resolution, which should fix this problem... -- The reason why this is connected to overloaded functions is that currently we have that the type of -- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U), -- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V) -- and tgt(never => T) should be unknown. For example -- -- tgt((number => string) & (string => bool))(number) -- is tgt(number => string)(number) & tgt(string => bool)(number) -- is tgt(number => string)(number) & tgt(string => bool)(number&unknown) -- is tgt(number => string)(number) & tgt(string&number => bool)(unknown) -- is tgt(number => string)(number) & tgt(never => bool)(unknown) -- is string & unknown -- is string -- -- there's some discussion of this in the Gentle Introduction paper.
50.717949
250
0.648509
a0cd97c142725e09ae2d31bbcae32e057a06271c
976
agda
Agda
test/Compiler/simple/Issue4169-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue4169-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue4169-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where import Agda.Builtin.Equality open import Agda.Builtin.Sigma open import Agda.Builtin.Unit open import Agda.Primitive open import Common.IO data ⊥ : Set where record R₁ a : Set (lsuc a) where field R : {A : Set a} → A → A → Set a r : {A : Set a} (x : A) → R x x P : Set a → Set a P A = (x y : A) → R x y record R₂ (r : ∀ ℓ → R₁ ℓ) : Set₁ where field f : {X Y : Σ Set (R₁.P (r lzero))} → R₁.R (r (lsuc lzero)) X Y → fst X → fst Y module M (r₁ : ∀ ℓ → R₁ ℓ) (r₂ : R₂ r₁) where open module R₁′ {ℓ} = R₁ (r₁ ℓ) public using (P) open module R₂′ = R₂ r₂ public ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () p : P ⊥ p x = ⊥-elim x open Agda.Builtin.Equality r₁ : ∀ ℓ → R₁ ℓ R₁.R (r₁ _) = _≡_ R₁.r (r₁ _) = λ _ → refl r₂ : R₂ r₁ R₂.f r₂ refl x = x open M r₁ r₂ data Unit : Set where unit : Unit g : Σ Unit λ _ → P (Σ Set P) → ⊥ g = unit , λ h → f (h (⊤ , λ _ _ → refl) (⊥ , p)) tt main : IO ⊤ main = return _
17.745455
52
0.533811
146c4481cca6ed72b6c3ffccfd8f34aa9210b565
5,928
agda
Agda
Cubical/Structures/Semigroup.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Semigroup.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Structures/Semigroup.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Semigroup where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open Iso private variable ℓ : Level -- Semigroups as a record, inspired by the Agda standard library: -- -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Bundles.agda#L48 -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Structures.agda#L50 -- -- Note that as we are using Path for all equations the IsMagma record -- would only contain isSet A if we had it. record IsSemigroup {A : Type ℓ} (_·_ : A → A → A) : Type ℓ where -- TODO: add no-eta-equality for efficiency? This breaks some proofs later constructor issemigroup field is-set : isSet A assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z record Semigroup : Type (ℓ-suc ℓ) where constructor semigroup field Carrier : Type ℓ _·_ : Carrier → Carrier → Carrier isSemigroup : IsSemigroup _·_ infixl 7 _·_ open IsSemigroup isSemigroup public -- Extractor for the carrier type ⟨_⟩ : Semigroup → Type ℓ ⟨_⟩ = Semigroup.Carrier record SemigroupEquiv (M N : Semigroup {ℓ}) : Type ℓ where constructor semigroupequiv -- Shorter qualified names private module M = Semigroup M module N = Semigroup N field e : ⟨ M ⟩ ≃ ⟨ N ⟩ isHom : (x y : ⟨ M ⟩) → equivFun e (x M.· y) ≡ equivFun e x N.· equivFun e y -- Develop some theory about Semigroups using various general results -- that are stated using Σ-types. For this we define Semigroup as a -- nested Σ-type, prove that it's equivalent to the above record -- definition and then transport results along this equivalence. module SemigroupΣTheory {ℓ} where RawSemigroupStructure : Type ℓ → Type ℓ RawSemigroupStructure X = X → X → X RawSemigroupEquivStr = AutoEquivStr RawSemigroupStructure rawSemigroupUnivalentStr : UnivalentStr _ RawSemigroupEquivStr rawSemigroupUnivalentStr = autoUnivalentStr RawSemigroupStructure SemigroupAxioms : (A : Type ℓ) → RawSemigroupStructure A → Type ℓ SemigroupAxioms A _·_ = isSet A × ((x y z : A) → x · (y · z) ≡ (x · y) · z) SemigroupStructure : Type ℓ → Type ℓ SemigroupStructure = AxiomsStructure RawSemigroupStructure SemigroupAxioms SemigroupΣ : Type (ℓ-suc ℓ) SemigroupΣ = TypeWithStr ℓ SemigroupStructure isPropSemigroupAxioms : (A : Type ℓ) (_·_ : RawSemigroupStructure A) → isProp (SemigroupAxioms A _·_) isPropSemigroupAxioms _ _ = isPropΣ isPropIsSet λ isSetA → isPropΠ3 λ _ _ _ → isSetA _ _ SemigroupEquivStr : StrEquiv SemigroupStructure ℓ SemigroupEquivStr = AxiomsEquivStr RawSemigroupEquivStr SemigroupAxioms SemigroupAxiomsIsoIsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A) → Iso (SemigroupAxioms A _·_) (IsSemigroup _·_) fun (SemigroupAxiomsIsoIsSemigroup s) (x , y) = issemigroup x y inv (SemigroupAxiomsIsoIsSemigroup s) (issemigroup x y) = (x , y) rightInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl leftInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl SemigroupAxioms≡IsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A) → SemigroupAxioms _ _·_ ≡ IsSemigroup _·_ SemigroupAxioms≡IsSemigroup s = isoToPath (SemigroupAxiomsIsoIsSemigroup s) Semigroup→SemigroupΣ : Semigroup → SemigroupΣ Semigroup→SemigroupΣ (semigroup A _·_ isSemigroup) = A , _·_ , SemigroupAxiomsIsoIsSemigroup _ .inv isSemigroup SemigroupΣ→Semigroup : SemigroupΣ → Semigroup SemigroupΣ→Semigroup (A , _·_ , isSemigroupΣ) = semigroup A _·_ (SemigroupAxiomsIsoIsSemigroup _ .fun isSemigroupΣ) SemigroupIsoSemigroupΣ : Iso Semigroup SemigroupΣ SemigroupIsoSemigroupΣ = iso Semigroup→SemigroupΣ SemigroupΣ→Semigroup (λ _ → refl) (λ _ → refl) semigroupUnivalentStr : UnivalentStr SemigroupStructure SemigroupEquivStr semigroupUnivalentStr = axiomsUnivalentStr _ isPropSemigroupAxioms rawSemigroupUnivalentStr SemigroupΣPath : (M N : SemigroupΣ) → (M ≃[ SemigroupEquivStr ] N) ≃ (M ≡ N) SemigroupΣPath = SIP semigroupUnivalentStr SemigroupEquivΣ : (M N : Semigroup) → Type ℓ SemigroupEquivΣ M N = Semigroup→SemigroupΣ M ≃[ SemigroupEquivStr ] Semigroup→SemigroupΣ N SemigroupIsoΣPath : {M N : Semigroup} → Iso (SemigroupEquiv M N) (SemigroupEquivΣ M N) fun SemigroupIsoΣPath (semigroupequiv e h) = (e , h) inv SemigroupIsoΣPath (e , h) = semigroupequiv e h rightInv SemigroupIsoΣPath _ = refl leftInv SemigroupIsoΣPath _ = refl SemigroupPath : (M N : Semigroup) → (SemigroupEquiv M N) ≃ (M ≡ N) SemigroupPath M N = SemigroupEquiv M N ≃⟨ isoToEquiv SemigroupIsoΣPath ⟩ SemigroupEquivΣ M N ≃⟨ SemigroupΣPath _ _ ⟩ Semigroup→SemigroupΣ M ≡ Semigroup→SemigroupΣ N ≃⟨ isoToEquiv (invIso (congIso SemigroupIsoSemigroupΣ)) ⟩ M ≡ N ■ -- We now extract the important results from the above module isPropIsSemigroup : {A : Type ℓ} (_·_ : A → A → A) → isProp (IsSemigroup _·_) isPropIsSemigroup _·_ = subst isProp (SemigroupΣTheory.SemigroupAxioms≡IsSemigroup _·_) (SemigroupΣTheory.isPropSemigroupAxioms _ _·_) SemigroupPath : (M N : Semigroup {ℓ}) → (SemigroupEquiv M N) ≃ (M ≡ N) SemigroupPath = SemigroupΣTheory.SemigroupPath -- To rename the fields when using a Semigroup use for example the following: -- -- open Semigroup M renaming ( Carrier to M ; _·_ to _·M_ )
36.592593
109
0.707996
0d235a3849a4ddc0efb40c1097c2729721a8e050
7,962
agda
Agda
src/Expansion/Delay-monad.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Expansion/Delay-monad.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Expansion/Delay-monad.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some results related to expansion for the delay monad ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Expansion.Delay-monad {a} {A : Type a} where open import Delay-monad open import Delay-monad.Bisimilarity as D using (force) import Delay-monad.Bisimilarity.Negative as DN open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Function-universe equality-with-J hiding (id; _∘_) open import Function-universe.Size equality-with-J import Bisimilarity.Delay-monad as SD open import Equational-reasoning import Expansion.Equational-reasoning-instances open import Labelled-transition-system.Delay-monad A open import Bisimilarity delay-monad using ([_]_∼_) open import Expansion delay-monad ------------------------------------------------------------------------ -- The direct and the indirect definitions of expansion are pointwise -- logically equivalent -- Emulations of the constructors D.later and D.laterˡ. later-cong : ∀ {i x y} → [ i ] force x ≳′ force y → [ i ] later x ≳ later y later-cong x≳′y = ⟨ (λ { later → _ , ⟶→⟶̂ later , x≳′y }) , (λ { later → _ , ⟶→[]⇒ later , x≳′y }) ⟩ laterˡ : ∀ {i x y} → [ i ] force x ≳ y → [ i ] later x ≳ y laterˡ x≳y = ⟨ (λ { later → _ , done _ , convert {a = a} x≳y }) , Σ-map id (Σ-map later[]⇒ id) ∘ right-to-left x≳y ⟩ -- The direct definition of expansion is contained in the one -- obtained from the transition relation. direct→indirect : ∀ {i x y} → D.[ i ] x ≳ y → [ i ] x ≳ y direct→indirect D.now = reflexive direct→indirect (D.later p) = later-cong λ { .force → direct→indirect (force p) } direct→indirect (D.laterˡ p) = laterˡ (direct→indirect p) -- If x makes a sequence of zero or more silent transitions to y, then -- x is an expansion of y. ⇒→≳ : ∀ {i x y} → x ⇒ y → D.[ i ] x ≳ y ⇒→≳ done = D.reflexive _ ⇒→≳ (step _ later tr) = D.laterˡ (⇒→≳ tr) ⇒→≳ (step () now tr) -- If x makes a non-silent transition with the label y, then x is an -- expansion of now y. [just]⟶→≳now : ∀ {i x x′ y} → x [ just y ]⟶ x′ → D.[ i ] x ≳ now y [just]⟶→≳now now = D.reflexive _ [just]⇒→≳now : ∀ {i x x′ y} → x [ just y ]⇒ x′ → D.[ i ] x ≳ now y [just]⇒→≳now (steps tr now _) = ⇒→≳ tr [just]⇒̂→≳now : ∀ {i x x′ y} → x [ just y ]⇒̂ x′ → D.[ i ] x ≳ now y [just]⇒̂→≳now (silent () _) [just]⇒̂→≳now (non-silent _ tr) = [just]⇒→≳now tr [just]⟶̂→≳now : ∀ {i x x′ y} → x [ just y ]⟶̂ x′ → D.[ i ] x ≳ now y [just]⟶̂→≳now (done ()) [just]⟶̂→≳now (step tr) = [just]⇒̂→≳now (⟶→⇒̂ tr) -- The definition of expansion obtained from the transition relation -- is contained in the direct one. indirect→direct : ∀ {i} x y → [ i ] x ≳ y → D.[ i ] x ≳ y indirect→direct {i} (now x) y = ([ i ] now x ≳ y) ↝⟨ (λ p → left-to-right p now) ⟩ (∃ λ y′ → y [ just x ]⟶̂ y′ × [ i ] now x ≳′ y′) ↝⟨ sym ∘ [just]⟶̂→≡now ∘ proj₁ ∘ proj₂ ⟩ now x ≡ y ↝⟨ (λ { refl → D.reflexive _ }) ⟩□ D.[ i ] now x ≳ y □ indirect→direct {i} x (now y) = [ i ] x ≳ now y ↝⟨ (λ p → right-to-left p now) ⟩ (∃ λ x′ → x [ just y ]⇒ x′ × [ i ] x′ ≳′ now y) ↝⟨ [just]⇒→≳now ∘ proj₁ ∘ proj₂ ⟩□ D.[ i ] x ≳ now y □ indirect→direct (later x) (later y) lx≳ly = case left-to-right lx≳ly later of λ where (_ , step later , x≳′y) → D.later λ { .force {j} → indirect→direct _ _ (force x≳′y {j = j}) } (_ , done _ , x≳′ly) → let x′ , lx⇒x′ , x′≳′y = right-to-left lx≳ly later in lemma x≳′ly ([]⇒→⇒ _ lx⇒x′) x′≳′y where indirect→direct′ : ∀ {i x x′ y} → x ⇒ x′ → [ i ] x′ ≳ y → D.[ i ] x ≳ y indirect→direct′ done p = indirect→direct _ _ p indirect→direct′ (step _ later tr) p = D.laterˡ (indirect→direct′ tr p) indirect→direct′ (step () now _) lemma : ∀ {i x x′} → [ i ] force x ≳′ later y → later x ⇒ x′ → [ i ] x′ ≳′ force y → D.[ i ] later x ≳ later y lemma x≳′ly done lx≳′y = D.later λ { .force → D.laterˡʳ⁻¹ (indirect→direct _ _ (force lx≳′y)) (indirect→direct _ _ (force x≳′ly)) } lemma x≳′ly (step _ later x⇒x′) x′≳′y = D.later λ { .force → indirect→direct′ x⇒x′ (force x′≳′y) } -- The direct definition of the expansion relation is logically -- equivalent to the one obtained from the transition relation. -- -- TODO: Are the two definitions isomorphic? direct⇔indirect : ∀ {i x y} → D.[ i ] x ≳ y ⇔ [ i ] x ≳ y direct⇔indirect = record { to = direct→indirect ; from = indirect→direct _ _ } ------------------------------------------------------------------------ -- Some non-existence results Now≳later-now = ∀ x → now x ≳ later (record { force = now x }) now≳later-now⇔uninhabited : Now≳later-now ⇔ ¬ A now≳later-now⇔uninhabited = Now≳later-now ↝⟨ inverse $ ∀-cong _ (λ _ → direct⇔indirect) ⟩ DN.Now≳later-now ↝⟨ DN.now≳later-now⇔uninhabited ⟩□ ¬ A □ Laterˡ⁻¹ = ∀ {x y} → later x ≳ y → force x ≳ y laterˡ⁻¹⇔uninhabited : Laterˡ⁻¹ ⇔ ¬ A laterˡ⁻¹⇔uninhabited = Laterˡ⁻¹ ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect direct⇔indirect ⟩ DN.Laterˡ⁻¹-≳ ↝⟨ DN.laterˡ⁻¹-≳⇔uninhabited ⟩□ ¬ A □ Laterʳ⁻¹-∼≳ = ∀ {i x} → [ i ] never ∼ later (record { force = now x }) → [ i ] never ≳ now x size-preserving-laterʳ⁻¹-∼≳⇔uninhabited : Laterʳ⁻¹-∼≳ ⇔ ¬ A size-preserving-laterʳ⁻¹-∼≳⇔uninhabited = Laterʳ⁻¹-∼≳ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ →-cong _ SD.direct⇔indirect direct⇔indirect ⟩ DN.Laterʳ⁻¹-∼≳ ↝⟨ DN.size-preserving-laterʳ⁻¹-∼≳⇔uninhabited ⟩□ ¬ A □ Laterʳ⁻¹ = ∀ {i x y} → [ i ] x ≳ later y → [ i ] x ≳ force y size-preserving-laterʳ⁻¹⇔uninhabited : Laterʳ⁻¹ ⇔ ¬ A size-preserving-laterʳ⁻¹⇔uninhabited = Laterʳ⁻¹ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect direct⇔indirect ⟩ DN.Laterʳ⁻¹-≳ ↝⟨ DN.size-preserving-laterʳ⁻¹-≳⇔uninhabited ⟩□ ¬ A □ Transitivity-∼≳ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ∼ y → y ≳ z → [ i ] x ≳ z size-preserving-transitivity-∼≳ˡ⇔uninhabited : Transitivity-∼≳ˡ ⇔ ¬ A size-preserving-transitivity-∼≳ˡ⇔uninhabited = Transitivity-∼≳ˡ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ SD.direct⇔indirect (→-cong _ direct⇔indirect direct⇔indirect) ⟩ DN.Transitivity-∼≳ˡ ↝⟨ DN.size-preserving-transitivity-∼≳ˡ⇔uninhabited ⟩□ ¬ A □ Transitivityˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → y ≳ z → [ i ] x ≳ z size-preserving-transitivityˡ⇔uninhabited : Transitivityˡ ⇔ ¬ A size-preserving-transitivityˡ⇔uninhabited = Transitivityˡ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect (→-cong _ direct⇔indirect direct⇔indirect) ⟩ DN.Transitivity-≳ˡ ↝⟨ DN.size-preserving-transitivity-≳ˡ⇔uninhabited ⟩□ ¬ A □ Transitivity = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → [ i ] y ≳ z → [ i ] x ≳ z size-preserving-transitivity⇔uninhabited : Transitivity ⇔ ¬ A size-preserving-transitivity⇔uninhabited = Transitivity ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect $ →-cong _ direct⇔indirect direct⇔indirect ⟩ DN.Transitivity-≳ ↝⟨ DN.size-preserving-transitivity-≳⇔uninhabited ⟩□ ¬ A □
38.095694
137
0.538935
649dde3e56d47d69aebae4d84d1bd0c31c72cc23
1,453
agda
Agda
LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Base.KVMap as Map open import LibraBFT.Base.PKCS import LibraBFT.Impl.OBM.Crypto as Crypto open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.Prelude open import Optics.All module LibraBFT.Impl.Types.LedgerInfoWithSignatures where obmNewNoSigs : LedgerInfo → LedgerInfoWithSignatures obmNewNoSigs li = LedgerInfoWithSignatures∙new li Map.empty -- HC-TODO : refactor this and TimeoutCertificate addSignature : AccountAddress → Signature → LedgerInfoWithSignatures → LedgerInfoWithSignatures addSignature validator sig liws = case Map.lookup validator (liws ^∙ liwsSignatures) of λ where (just _) → liws nothing → liws & liwsSignatures ∙~ Map.kvm-insert-Haskell validator sig (liws ^∙ liwsSignatures) verifySignatures : LedgerInfoWithSignatures → ValidatorVerifier → Either ErrLog Unit verifySignatures self validator = withErrCtx' ("LedgerInfoWithSignatures" ∷ "verify" ∷ []) (ValidatorVerifier.batchVerifyAggregatedSignatures validator (self ^∙ liwsLedgerInfo) (self ^∙ liwsSignatures))
41.514286
111
0.775637
7371735decbdbe265ec27680be37df2f19ae1fb6
654
agda
Agda
test/Succeed/UncurryMeta.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/succeed/UncurryMeta.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/UncurryMeta.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- It would be nice if this worked. The constraint we can't solve is -- P x y = ? (x, y) -- Solution: extend the notion of Miller patterns to include record -- constructions. -- -- Andreas, 2012-02-27 works now! (see issues 376 and 456) module UncurryMeta where data Unit : Set where unit : Unit record R : Set where field x : Unit y : Unit _,_ : Unit -> Unit -> R x , y = record {x = x; y = y} data P : Unit -> Unit -> Set where mkP : forall x y -> P x y data D : (R -> Set) -> Set1 where d : {F : R -> Set} -> (forall x y -> F (x , y)) -> D F unD : {F : R -> Set} -> D F -> Unit unD (d _) = unit test : Unit test = unD (d mkP)
21.096774
68
0.576453
11a127f6e447ee1efd60f99f4cc72a8d12d1a3af
5,973
agda
Agda
Cubical/Structures/Relational/Product.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Structures/Relational/Product.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Structures/Relational/Product.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- Product of structures S and T: X ↦ S X × T X -} {-# OPTIONS --safe #-} module Cubical.Structures.Relational.Product where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Foundations.SIP open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.HITs.SetQuotients open import Cubical.Structures.Product private variable ℓ ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓ₂' ℓ₂'' : Level -- Structured relations ProductRelStr : {S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') {S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') → StrRel (ProductStructure S₁ S₂) (ℓ-max ℓ₁' ℓ₂') ProductRelStr ρ₁ ρ₂ R (s₁ , s₂) (t₁ , t₂) = ρ₁ R s₁ t₁ × ρ₂ R s₂ t₂ productSuitableRel : {S₁ : Type ℓ → Type ℓ₁} {ρ₁ : StrRel S₁ ℓ₁'} {S₂ : Type ℓ → Type ℓ₂} {ρ₂ : StrRel S₂ ℓ₂'} → SuitableStrRel S₁ ρ₁ → SuitableStrRel S₂ ρ₂ → SuitableStrRel (ProductStructure S₁ S₂) (ProductRelStr ρ₁ ρ₂) productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .fst .fst = θ₁ .quo (X , s₁) R r₁ .fst .fst , θ₂ .quo (X , s₂) R r₂ .fst .fst productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .fst .snd = θ₁ .quo (X , s₁) R r₁ .fst .snd , θ₂ .quo (X , s₂) R r₂ .fst .snd productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .snd ((q₁ , q₂) , (c₁ , c₂)) i .fst = θ₁ .quo (X , s₁) R r₁ .snd (q₁ , c₁) i .fst , θ₂ .quo (X , s₂) R r₂ .snd (q₂ , c₂) i .fst productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .snd ((q₁ , q₂) , (c₁ , c₂)) i .snd = θ₁ .quo (X , s₁) R r₁ .snd (q₁ , c₁) i .snd , θ₂ .quo (X , s₂) R r₂ .snd (q₂ , c₂) i .snd productSuitableRel θ₁ θ₂ .symmetric R (r₁ , r₂) = θ₁ .symmetric R r₁ , θ₂ .symmetric R r₂ productSuitableRel θ₁ θ₂ .transitive R R' (r₁ , r₂) (r₁' , r₂') = θ₁ .transitive R R' r₁ r₁' , θ₂ .transitive R R' r₂ r₂' productSuitableRel θ₁ θ₂ .set setX = isSet× (θ₁ .set setX) (θ₂ .set setX) productSuitableRel θ₁ θ₂ .prop propR (s₁ , s₂) (t₁ , t₂) = isProp× (θ₁ .prop propR s₁ t₁) (θ₂ .prop propR s₂ t₂) productRelMatchesEquiv : {S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') {ι₁ : StrEquiv S₁ ℓ₁''} {S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') {ι₂ : StrEquiv S₂ ℓ₂''} → StrRelMatchesEquiv ρ₁ ι₁ → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (ProductEquivStr ι₁ ι₂) productRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ A B e = Σ-cong-equiv (μ₁ _ _ e) (λ _ → μ₂ _ _ e) productRelAction : {S₁ : Type ℓ → Type ℓ₁} {ρ₁ : StrRel S₁ ℓ₁'} (α₁ : StrRelAction ρ₁) {S₂ : Type ℓ → Type ℓ₂} {ρ₂ : StrRel S₂ ℓ₂'} (α₂ : StrRelAction ρ₂) → StrRelAction (ProductRelStr ρ₁ ρ₂) productRelAction α₁ α₂ .actStr f (s₁ , s₂) = α₁ .actStr f s₁ , α₂ .actStr f s₂ productRelAction α₁ α₂ .actStrId (s₁ , s₂) = ΣPathP (α₁ .actStrId s₁ , α₂ .actStrId s₂) productRelAction α₁ α₂ .actRel h _ _ (r₁ , r₂) = α₁ .actRel h _ _ r₁ , α₂ .actRel h _ _ r₂ productPositiveRel : {S₁ : Type ℓ → Type ℓ₁} {ρ₁ : StrRel S₁ ℓ₁'} {θ₁ : SuitableStrRel S₁ ρ₁} {S₂ : Type ℓ → Type ℓ₂} {ρ₂ : StrRel S₂ ℓ₂'} {θ₂ : SuitableStrRel S₂ ρ₂} → PositiveStrRel θ₁ → PositiveStrRel θ₂ → PositiveStrRel (productSuitableRel θ₁ θ₂) productPositiveRel σ₁ σ₂ .act = productRelAction (σ₁ .act) (σ₂ .act) productPositiveRel σ₁ σ₂ .reflexive (s₁ , s₂) = σ₁ .reflexive s₁ , σ₂ .reflexive s₂ productPositiveRel σ₁ σ₂ .detransitive R R' (rr'₁ , rr'₂) = Trunc.rec squash₁ (λ {(s₁ , r₁ , r₁') → Trunc.rec squash₁ (λ {(s₂ , r₂ , r₂') → ∣ (s₁ , s₂) , (r₁ , r₂) , (r₁' , r₂') ∣₁}) (σ₂ .detransitive R R' rr'₂)}) (σ₁ .detransitive R R' rr'₁) productPositiveRel {S₁ = S₁} {ρ₁} {θ₁} {S₂} {ρ₂} {θ₂} σ₁ σ₂ .quo {X} R = subst isEquiv (funExt (elimProp (λ _ → productSuitableRel θ₁ θ₂ .set squash/ _ _) (λ _ → refl))) (compEquiv (isoToEquiv isom) (Σ-cong-equiv (_ , σ₁ .quo R) (λ _ → _ , σ₂ .quo R)) .snd) where fwd : ProductStructure S₁ S₂ X / ProductRelStr ρ₁ ρ₂ (R .fst .fst) → (S₁ X / ρ₁ (R .fst .fst)) × (S₂ X / ρ₂ (R .fst .fst)) fwd [ s₁ , s₂ ] = [ s₁ ] , [ s₂ ] fwd (eq/ (s₁ , s₂) (t₁ , t₂) (r₁ , r₂) i) = eq/ s₁ t₁ r₁ i , eq/ s₂ t₂ r₂ i fwd (squash/ _ _ p q i j) = isSet× squash/ squash/ _ _ (cong fwd p) (cong fwd q) i j bwd[] : S₁ X → S₂ X / ρ₂ (R .fst .fst) → ProductStructure S₁ S₂ X / ProductRelStr ρ₁ ρ₂ (R .fst .fst) bwd[] s₁ [ s₂ ] = [ s₁ , s₂ ] bwd[] s₁ (eq/ s₂ t₂ r₂ i) = eq/ (s₁ , s₂) (s₁ , t₂) (posRelReflexive σ₁ R s₁ , r₂) i bwd[] s₁ (squash/ _ _ p q i j) = squash/ _ _ (λ j → bwd[] s₁ (p j)) (λ j → bwd[] s₁ (q j)) i j bwd : S₁ X / ρ₁ (R .fst .fst) → S₂ X / ρ₂ (R .fst .fst) → ProductStructure S₁ S₂ X / ProductRelStr ρ₁ ρ₂ (R .fst .fst) bwd [ s₁ ] u = bwd[] s₁ u bwd (eq/ s₁ t₁ r₁ i) u = path u i where path : ∀ u → bwd [ s₁ ] u ≡ bwd [ t₁ ] u path = elimProp (λ _ → squash/ _ _) (λ s₂ → eq/ (s₁ , s₂) (t₁ , s₂) (r₁ , posRelReflexive σ₂ R s₂)) bwd (squash/ _ _ p q i j) = isSetΠ (λ _ → squash/) _ _ (cong bwd p) (cong bwd q) i j open Iso isom : Iso _ _ isom .fun = fwd isom .inv = uncurry bwd isom .rightInv = uncurry (elimProp (λ _ → isPropΠ λ _ → isSet× squash/ squash/ _ _) (λ _ → elimProp (λ _ → isSet× squash/ squash/ _ _) (λ _ → refl))) isom .leftInv = elimProp (λ _ → squash/ _ _) (λ _ → refl) productRelMatchesTransp : {S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') (α₁ : EquivAction S₁) {S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') (α₂ : EquivAction S₂) → StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) → StrRelMatchesEquiv ρ₂ (EquivAction→StrEquiv α₂) → StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (EquivAction→StrEquiv (productEquivAction α₁ α₂)) productRelMatchesTransp _ _ _ _ μ₁ μ₂ _ _ e = compEquiv (Σ-cong-equiv (μ₁ _ _ e) (λ _ → μ₂ _ _ e)) ΣPath≃PathΣ
42.361702
103
0.624644
ed6b8b7d4924d7efc701a0258da98442d873bfc9
2,145
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the heterogeneous sublist relation -- This is a generalisation of what is commonly known as Order -- Preserving Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (REL) module Data.List.Relation.Binary.Sublist.Heterogeneous {a b r} {A : Set a} {B : Set b} {R : REL A B r} where open import Level using (_⊔_) open import Data.List.Base using (List; []; _∷_; [_]) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Function open import Relation.Unary using (Pred) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Re-export core definitions open import Data.List.Relation.Binary.Sublist.Heterogeneous.Core public ------------------------------------------------------------------------ -- Type and basic combinators module _ {s} {S : REL A B s} where map : R ⇒ S → Sublist R ⇒ Sublist S map f [] = [] map f (y ∷ʳ rs) = y ∷ʳ map f rs map f (r ∷ rs) = f r ∷ map f rs minimum : Min (Sublist R) [] minimum [] = [] minimum (x ∷ xs) = x ∷ʳ minimum xs ------------------------------------------------------------------------ -- Conversion to and from Any toAny : ∀ {a bs} → Sublist R [ a ] bs → Any (R a) bs toAny (y ∷ʳ rs) = there (toAny rs) toAny (r ∷ rs) = here r fromAny : ∀ {a bs} → Any (R a) bs → Sublist R [ a ] bs fromAny (here r) = r ∷ minimum _ fromAny (there p) = _ ∷ʳ fromAny p ------------------------------------------------------------------------ -- Generalised lookup based on a proof of Any module _ {p q} {P : Pred A p} {Q : Pred B q} (resp : P ⟶ Q Respects R) where lookup : ∀ {xs ys} → Sublist R xs ys → Any P xs → Any Q ys lookup [] () lookup (y ∷ʳ p) k = there (lookup p k) lookup (rxy ∷ p) (here px) = here (resp rxy px) lookup (rxy ∷ p) (there k) = there (lookup p k)
33
76
0.508625
cc58a49e996b1bb78803033713eeba785afb28c5
1,280
agda
Agda
test/Succeed/Issue1422.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1422.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1422.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue1422 where open import Common.Level public using (Level ; lzero ; lsuc) renaming (_⊔_ to _l⊔_) open import Common.Equality public -- # Relations relation : ∀ {ℓ} ℓ' → Set ℓ → Set (lsuc ℓ' l⊔ ℓ) relation ℓ' α = α → α → Set ℓ' reflexive : ∀ {ℓ ℓ'} {α : Set ℓ} → relation ℓ' α → Set (ℓ l⊔ ℓ') reflexive _R_ = ∀ {x} → x R x antisymmetric : ∀ {ℓ ℓ'} {α : Set ℓ} → relation ℓ' α → Set (ℓ l⊔ ℓ') antisymmetric _R_ = ∀ {x y} → x R y → y R x → x ≡ y _⇉_ : ∀ {ℓ₁ ℓ₁' ℓ₂ ℓ₂'} {α : Set ℓ₁} {β : Set ℓ₂} (_R₁_ : relation ℓ₁' α) (_R₂_ : relation ℓ₂' β) → relation (ℓ₁ l⊔ ℓ₁' l⊔ ℓ₂') (α → β) (_R₁_ ⇉ _R₂_) f g = ∀ {x y} → x R₁ y → f x R₂ g y proper : ∀ {ℓ ℓ'} {α : Set ℓ} (_R_ : relation ℓ' α) → α → Set ℓ' proper _R_ x = x R x -- # Dom record Dom {ℓ} ℓ' (D : Set ℓ) : Set (lsuc ℓ l⊔ lsuc ℓ') where field ⟦_⟧ : D → Set ℓ' open Dom {{...}} public -- # Partial Order record PartialOrder {ℓ} ℓ' (α : Set ℓ) : Set (ℓ l⊔ lsuc ℓ') where infix 4 _⊑_ field _⊑_ : relation ℓ' α ⊑-reflexivity : reflexive _⊑_ ⊑-antisymmetry : antisymmetric _⊑_ open PartialOrder {{...}} public monotonic : ∀ {ℓ₁ ℓ₁' ℓ₂ ℓ₂'} {α : Set ℓ₁} {{αPO : PartialOrder ℓ₁' α}} {β : Set ℓ₂} {{βPO : PartialOrder ℓ₂' β}} → (α → β) → Set (ℓ₁ l⊔ ℓ₁' l⊔ ℓ₂') monotonic = proper (_⊑_ ⇉ _⊑_)
29.767442
148
0.557031
64f46c8802fa7458833b6acdaebdefb1c3d1b156
6,495
agda
Agda
agda-stdlib/README/Text/Pretty.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/README/Text/Pretty.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/README/Text/Pretty.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples of pretty printing ------------------------------------------------------------------------ module README.Text.Pretty where open import Size open import Data.Bool.Base open import Data.List.Base as List open import Data.List.NonEmpty as List⁺ open import Data.Nat.Base open import Data.Product open import Data.String.Base hiding (parens; _<+>_) open import Data.Vec.Base as Vec open import Function.Base -- We import the pretty printer and pass 80 to say that we do not want to -- have lines longer than 80 characters open import Text.Pretty 80 open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- A small declarative programming language ------------------------------------------------------------------------ -- We define a small programming language where definitions are -- introduced by providing a non-empty list of equations with: -- * the same number of patterns on the LHS -- * a term on the RHS of each equation -- A pattern is either a variable or a constructor applied to a -- list of subpatterns data Pattern (i : Size) : Set where var : String → Pattern i con : ∀ {j : Size< i} → String → List (Pattern j) → Pattern i -- A term is either a (bound) variable, the application of a -- named definition / constructor to a list of arguments or a -- lambda abstraction data Term (i : Size) : Set where var : String → Term i app : ∀ {j : Size< i} → String → List (Term j) → Term i lam : ∀ {j : Size< i} → String → Term j → Term i -- As explained before, a definitions is given by a list of equations infix 1 _by_ record Def : Set where constructor _by_ field name : String {arity} : ℕ equations : List⁺ (Vec (Pattern _) arity × (Term _)) ------------------------------------------------------------------------ -- A pretty printer for this language ------------------------------------------------------------------------ -- First we print patterns. We only wrap a pattern in parentheses if it -- is compound: i.e. if it is a constructor applied to a non-empty list -- of subpatterns -- Lists of patterns are printed separated by a single space. prettyPattern : ∀ {i} → Pattern i → Doc prettyPatterns : ∀ {i} → List (Pattern i) → Doc prettyPattern (var v) = text v prettyPattern (con c []) = text c prettyPattern (con c ps) = parens $ text c <+> prettyPatterns ps prettyPatterns = hsep ∘ List.map prettyPattern -- Next we print terms. The Bool argument tells us whether we are on -- the RHS of an application (in which case it is sensible to wrap -- complex subterms in parentheses). prettyTerm : ∀ {i} → Bool → Term i → Doc prettyTerm l (var v) = text v prettyTerm l (app f []) = text f prettyTerm l (app f es) = if l then parens else id $ text f <+> sep (List.map (prettyTerm true) es) prettyTerm l (lam x b) = if l then parens else id $ text "λ" <+> text x <> text "." <+> prettyTerm false b -- We now have all the pieces to print definitions. -- We print the equations below each other by using vcat. -- -- The LHS is printed as follows: the name of the function followed by -- the space-separated list of patterns (if any) and then an equal sign. -- -- The RHS is printed as a term which is *not* on the RHS of an application. -- -- Finally we can layout the definition in two different manners: -- * either LHS followed by RHS -- * or LHS followed and the RHS as a relative block (indented by 2 spaces) -- on the next line prettyDef : Def → Doc prettyDef (fun by eqs) = vcat $ List⁺.toList $ flip List⁺.map eqs $ uncurry $ λ ps e → let lhs = text fun <+> (case ps of λ where [] → text "=" _ → prettyPatterns (Vec.toList ps) <+> text "=") rhs = prettyTerm false e in lhs <+> rhs <|> lhs $$ (spaces 2 <> rhs) -- The pretty printer is obtained by using the renderer. pretty : Def → String pretty = render ∘ prettyDef ------------------------------------------------------------------------ -- Some examples ------------------------------------------------------------------------ -- Our first example is the identity function defined as a λ-abstraction `id : Def `id = "id" by ([] , lam "x" (var "x")) ∷ [] _ : pretty `id ≡ "id = λ x. x" _ = refl -- If we were to assume that this definition also takes a level (a) and -- a Set at that level (A) as arguments, we can have a slightly more complex -- definition like so. `explicitid : Def `explicitid = "id" by (var "a" ∷ var "A" ∷ [] , lam "x" (var "x")) ∷ [] _ : pretty `explicitid ≡ "id a A = λ x. x" _ = refl -- A more complex example: boolFilter, a function that takes a boolean -- predicate and a list as arguments and returns a list containing only -- the values that satisfy the predicate. -- We use nil and con for [] and _∷_ as our little toy language does not -- support infix notations. `filter : Def `filter = "boolFilter" by ( var "P?" ∷ con "nil" [] ∷ [] , app "nil" [] ) ∷ ( var "P?" ∷ con "con" (var "x" ∷ var "xs" ∷ []) ∷ [] , let rec = app "filter" (var "P?" ∷ var "xs" ∷ []) in app "if" (app "P?" (var "x" ∷ []) ∷ app "con" (var "x" ∷ rec ∷ []) ∷ rec ∷ []) ) ∷ [] _ : pretty `filter ≡ "boolFilter P? nil = nil \ \boolFilter P? (con x xs) = if (P? x) (con x (filter P? xs)) (filter P? xs)" _ = refl -- We can once more revisit this example with its more complex counterpart: -- boolFilter taking its level and set arguments explicitly (idem for the -- list constructors nil and con). -- This time laying out the second equation on a single line would produce a -- string larger than 80 characters long. So the pretty printer decides to -- make the RHS a relative block indented by 2 spaces. `explicitfilter : Def `explicitfilter = "boolFilter" by ( var "a" ∷ var "A" ∷ var "P?" ∷ con "nil" [] ∷ [] , app "nil" (var "a" ∷ var "A" ∷ []) ) ∷ ( var "a" ∷ var "A" ∷ var "P?" ∷ con "con" (var "x" ∷ var "xs" ∷ []) ∷ [] , let rec = app "filter" (var "a" ∷ var "A" ∷ var "P?" ∷ var "xs" ∷ []) in app "if" (app "P?" (var "x" ∷ []) ∷ app "con" (var "a" ∷ var "A" ∷ var "x" ∷ rec ∷ []) ∷ rec ∷ []) ) ∷ [] _ : pretty `explicitfilter ≡ "boolFilter a A P? nil = nil a A \ \boolFilter a A P? (con x xs) = \ \ if (P? x) (con a A x (filter a A P? xs)) (filter a A P? xs)" _ = refl
34.184211
79
0.5806
ed2372efa54be6e63149cf2839d58b4a871df762
209
agda
Agda
test/Fail/Issue3090-lparen.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3090-lparen.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3090-lparen.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-05-27, issue #3090, reported by anka-213 -- Parser should not raise internal error for invalid symbol in name {-# BUILTIN NATURAL ( #-} -- Should fail with a parse error, not internal error
29.857143
68
0.722488
7cc89ed6484ab55ca8017d003bdbe999fb615889
932
agda
Agda
test/Succeed/Issue3989.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3989.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3989.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --warning ShadowingInTelescope --allow-unsolved-metas #-} open import Agda.Primitive -- warning here data _~_ {a a : Level} {A : Set a} (a : A) : A -> Set where refl : a ~ a module _ {a} {A : Set a} where -- nothing: the repetition is in separate telescopes data Eq (a : A) : (a : A) → Set where refl : Eq a a -- warning here f : ∀ (a : Level) → ∀ {A : Set a} A ~ A → Set → Set f a A ~ B = λ x → x -- nothing here: the repetition is in separate telescopes f' : ∀ a → Set a → Set a f' a = g a where g : ∀ a → Set a → Set a g a z = z -- nothing here: the variable {a} is not user-written h : ∀ {a} → Set a → Set a h = g _ where g : ∀ a → Set a → Set a g a z = z i : (Set → Set → Set) → (∀ _ _ → _) i f = f module Issue2284Examples where badλ : Set → Set → Set badλ = λ x x → x postulate bad₁ : (A A : Set) → Set bad₂ : (A : Set) (A : A) → Set ok : (A : Set) → (A : A) → Set
20.26087
69
0.541845
7c922d138dbb239ee8eb259ddb19346a20ea9ba2
1,849
agda
Agda
test/Succeed/PropTests.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/PropTests.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/PropTests.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --prop #-} open import Agda.Builtin.Nat -- You can define datatypes in Prop, even with multiple constructors. -- However, all constructors are considered (definitionally) equal. data TestProp : Prop where p₁ p₂ : TestProp -- Pattern matching on a datatype in Prop is disallowed unless the -- target type is a Prop: test-case : {P : Prop} (x₁ x₂ : P) → TestProp → P test-case x₁ x₂ p₁ = x₁ test-case x₁ x₂ p₂ = x₂ -- All elements of a Prop are definitionally equal: data _≡Prop_ {A : Prop} (x : A) : A → Set where refl : x ≡Prop x p₁≡p₂ : p₁ ≡Prop p₂ p₁≡p₂ = refl -- A special case are empty types in Prop: these can be eliminated to -- any other type. data ⊥ : Prop where absurd : {A : Set} → ⊥ → A absurd () -- We can also define record types in Prop, such as the unit: record ⊤ : Prop where constructor tt -- We have Prop : Set₀, so we can store predicates in a small datatype: data NatProp : Set₁ where c : (Nat → Prop) → NatProp -- To define more interesting predicates, we need to define them by pattern matching: _≤_ : Nat → Nat → Prop zero ≤ y = ⊤ suc x ≤ suc y = x ≤ y _ ≤ _ = ⊥ -- We can also define the induction principle for predicates defined in this way, -- using the fact that we can eliminate absurd propositions with a () pattern. ≤-ind : (P : (m n : Nat) → Set) → (pzy : (y : Nat) → P zero y) → (pss : (x y : Nat) → P x y → P (suc x) (suc y)) → (m n : Nat) → m ≤ n → P m n ≤-ind P pzy pss zero y pf = pzy y ≤-ind P pzy pss (suc x) (suc y) pf = pss x y (≤-ind P pzy pss x y pf) ≤-ind P pzy pss (suc _) zero () -- We can define equality as a Prop, but (currently) we cannot define -- the corresponding eliminator, so the equality is only useful for -- refuting impossible equations. data _≡P_ {A : Set} (x : A) : A → Prop where refl : x ≡P x 0≢1 : 0 ≡P 1 → ⊥ 0≢1 ()
29.822581
85
0.639264
72453728534c3986eabe4e2c1f1df889693eb4f1
4,214
agda
Agda
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.CommRingHornerForms where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool using (Bool; true; false; if_then_else_; _and_) open import Cubical.Algebra.RingSolver.RawRing open import Cubical.Algebra.RingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ₐ) open import Cubical.Algebra.RingSolver.AlmostRing renaming (⟨_⟩ to ⟨_⟩ᵣ) private variable ℓ ℓ′ : Level {- This defines the type of multivariate Polynomials over the RawRing R. The construction is based on the algebraic fact R[X₀][X₁]⋯[Xₙ] ≅ R[X₀,⋯,Xₙ] BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index in the definition of 'Variable' below. So if 'Variable n R k' is identified with 'Xₖ', then the RawRing we construct should rather be denoted with R[Xₙ][Xₙ₋₁]⋯[X₀] or, to be precise about the evaluation order: (⋯((R[Xₙ])[Xₙ₋₁])⋯)[X₀] -} data IteratedHornerForms (A : RawAlgebra ℤAsRawRing ℓ) : ℕ → Type ℓ where const : ℤ → IteratedHornerForms A ℕ.zero 0H : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) _·X+_ : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) module _ (A : RawAlgebra ℤAsRawRing ℓ′) where open RawRing ℤAsRawRing isZero : {n : ℕ} → IteratedHornerForms A n → Bool isZero (const (pos ℕ.zero)) = true isZero (const (pos (ℕ.suc _))) = false isZero (const (negsuc _)) = false isZero 0H = true isZero (P ·X+ P₁) = false eval : {A : RawAlgebra ℤAsRawRing ℓ′} (n : ℕ) (P : IteratedHornerForms A n) → Vec ⟨ A ⟩ₐ n → ⟨ A ⟩ₐ eval {A = A} ℕ.zero (const r) [] = RawAlgebra.scalar A r eval {A = A} .(ℕ.suc _) 0H (_ ∷ _) = RawAlgebra.0r A eval {A = A} (ℕ.suc n) (P ·X+ Q) (x ∷ xs) = let open RawAlgebra A P' = (eval (ℕ.suc n) P (x ∷ xs)) Q' = eval n Q xs in if (isZero A P) then Q' else P' · x + Q' module IteratedHornerOperations (A : RawAlgebra ℤAsRawRing ℓ) where open RawRing ℤAsRawRing private 1H' : (n : ℕ) → IteratedHornerForms A n 1H' ℕ.zero = const 1r 1H' (ℕ.suc n) = 0H ·X+ 1H' n 0H' : (n : ℕ) → IteratedHornerForms A n 0H' ℕ.zero = const 0r 0H' (ℕ.suc n) = 0H 1ₕ : {n : ℕ} → IteratedHornerForms A n 1ₕ {n = n} = 1H' n 0ₕ : {n : ℕ} → IteratedHornerForms A n 0ₕ {n = n} = 0H' n X : (n : ℕ) (k : Fin n) → IteratedHornerForms A n X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k _+ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n (const r) +ₕ (const s) = const (r + s) 0H +ₕ Q = Q (P ·X+ r) +ₕ 0H = P ·X+ r (P ·X+ r) +ₕ (Q ·X+ s) = let left = (P +ₕ Q) right = (r +ₕ s) in if ((isZero A left) and (isZero A right)) then 0ₕ else left ·X+ right -ₕ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n -ₕ (const x) = const (- x) -ₕ 0H = 0H -ₕ (P ·X+ Q) = (-ₕ P) ·X+ (-ₕ Q) _⋆_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A (ℕ.suc n) _·ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n r ⋆ 0H = 0H r ⋆ (P ·X+ Q) = if (isZero A r) then 0ₕ else (r ⋆ P) ·X+ (r ·ₕ Q) const x ·ₕ const y = const (x · y) 0H ·ₕ Q = 0H (P ·X+ Q) ·ₕ S = let z = (P ·ₕ S) in if (isZero A z) then (Q ⋆ S) else (z ·X+ 0ₕ) +ₕ (Q ⋆ S) asRawRing : (n : ℕ) → RawRing ℓ RawRing.Carrier (asRawRing n) = IteratedHornerForms A n RawRing.0r (asRawRing n) = 0ₕ RawRing.1r (asRawRing n) = 1ₕ RawRing._+_ (asRawRing n) = _+ₕ_ RawRing._·_ (asRawRing n) = _·ₕ_ RawRing.- (asRawRing n) = -ₕ Variable : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ′) (k : Fin n) → IteratedHornerForms R n Variable n R k = IteratedHornerOperations.X R n k Constant : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ′) (r : ℤ) → IteratedHornerForms R n Constant ℕ.zero R r = const r Constant (ℕ.suc n) R r = IteratedHornerOperations.0ₕ R ·X+ Constant n R r
30.536232
87
0.600617
65df98cdf67317e2408f450ef5e0858dae3975af
2,808
agda
Agda
soundness/StdLibStuff.agda
frelindb/agsyHOL
032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7
[ "MIT" ]
17
2015-09-04T14:38:28.000Z
2021-03-19T20:53:45.000Z
soundness/StdLibStuff.agda
frelindb/agsyHOL
032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7
[ "MIT" ]
null
null
null
soundness/StdLibStuff.agda
frelindb/agsyHOL
032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7
[ "MIT" ]
3
2016-05-17T20:28:10.000Z
2022-01-15T11:51:19.000Z
module StdLibStuff where {- -- Data.Empty data ⊥ : Set where -- Relation.Nullary.Core infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ data Dec (P : Set) : Set where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P -} -- Relation.Binary.Core infix 4 _≡_ -- _≢_ data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x {- _≢_ : ∀ {A : Set} → A → A → Set x ≢ y = ¬ x ≡ y Decidable : {A : Set} → Set Decidable {A} = (x y : A) → Dec (x ≡ y) -} -- equality properties sym : {A : Set} → {x y : A} → x ≡ y → y ≡ x sym refl = refl subst : {A : Set} → {x y : A} → (p : A → Set) → x ≡ y → p x → p y subst p refl h = h cong : {A B : Set} → {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl trans : {A : Set} → {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl h = h {- -- Data.List infixr 5 _∷_ data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A data List₁ (A : Set₁) : Set₁ where [] : List₁ A _∷_ : (x : A) (xs : List₁ A) → List₁ A -} -- Data.Bool infixr 5 _∨_ data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true _∨_ : Bool → Bool → Bool true ∨ b = true false ∨ b = b {- -- Data.Product infixr 4 _,_ _,′_ infixr 2 _×_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ record Σ₁ (A : Set₁) (B : A → Set) : Set₁ where constructor _,_ field proj₁ : A proj₂ : B proj₁ -- nondep product record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B open _×_ public _,′_ : {A B : Set} → A → B → A × B _,′_ = _,_ ∃ : ∀ {A : Set} → (A → Set) → Set ∃ = Σ _ ∃₁ : ∀ {A : Set₁} → (A → Set) → Set₁ ∃₁ = Σ₁ _ -} -- Data.Nat data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} -- Data.Fin data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) {- -- Data.Vec data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) data Vec₁ (A : Set₁) : ℕ → Set₁ where [] : Vec₁ A zero _∷_ : ∀ {n} (x : A) (xs : Vec₁ A n) → Vec₁ A (suc n) lookup : ∀ {n} {A : Set} → Fin n → Vec A n → A lookup zero (x ∷ xs) = x lookup (suc i) (x ∷ xs) = lookup i xs lookup₁ : ∀ {n} {A : Set₁} → Fin n → Vec₁ A n → A lookup₁ zero (x ∷ xs) = x lookup₁ (suc i) (x ∷ xs) = lookup₁ i xs -- Data.Sum infixr 1 _⊎_ data _⊎_ (A : Set) (B : Set) : Set where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B [_,_]′ : ∀ {A : Set} {B : Set} {C : Set} → (A → C) → (B → C) → (A ⊎ B → C) [_,_]′ h₁ h₂ (inj₁ x) = h₁ x [_,_]′ h₁ h₂ (inj₂ y) = h₂ y -- _↔_ : Set → Set → Set X ↔ Y = (X → Y) × (Y → X) -- Misc record ⊤ : Set where -}
15.687151
65
0.480057
cca6922337eb31e72676c7af54e043f909db754b
154
agda
Agda
proofs/AKS/Polynomial.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
1
2020-12-01T22:38:27.000Z
2020-12-01T22:38:27.000Z
proofs/AKS/Polynomial.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
proofs/AKS/Polynomial.agda
mckeankylej/thesis
ddad4c0d5f384a0219b2177461a68dae06952dde
[ "MIT" ]
null
null
null
open import Algebra using (CommutativeRing) module AKS.Polynomial {c ℓ} (R : CommutativeRing c ℓ) where open import AKS.Polynomial.Properties R public
22
59
0.785714
012c4595d4ee301d8a7e3df809d0b77d7540edcd
18,309
agda
Agda
core/lib/cubical/Square.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/cubical/Square.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/cubical/Square.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathGroupoid open import lib.PathOver module lib.cubical.Square where {- *--1--* | | 0 3 | | *--2--* -} data Square {i} {A : Type i} {a₀₀ : A} : {a₀₁ a₁₀ a₁₁ : A} → a₀₀ == a₀₁ → a₀₀ == a₁₀ → a₀₁ == a₁₁ → a₁₀ == a₁₁ → Type i where ids : Square idp idp idp idp hid-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ : A} {p : a₀₀ == a₀₁} → Square p idp idp p hid-square {p = idp} = ids vid-square : ∀ {i} {A : Type i} {a₀₀ a₁₀ : A} {p : a₀₀ == a₁₀} → Square idp p p idp vid-square {p = idp} = ids square-to-disc : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋ square-to-disc ids = idp disc-to-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋ disc-to-square {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = ids square-to-disc-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (α : p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋) → square-to-disc (disc-to-square {p₀₋ = p₀₋} {p₋₀ = p₋₀} α) == α square-to-disc-β {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = idp disc-to-square-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → disc-to-square (square-to-disc sq) == sq disc-to-square-β ids = idp ap-square : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square (ap f p₀₋) (ap f p₋₀) (ap f p₋₁) (ap f p₁₋) ap-square f ids = ids ap-square-hid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ : A} {p : a₀ == a₁} → ap-square f (hid-square {p = p}) == hid-square ap-square-hid {p = idp} = idp ap-square-vid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ : A} {p : a₀ == a₁} → ap-square f (vid-square {p = p}) == vid-square ap-square-vid {p = idp} = idp module _ {i} {A : Type i} where horiz-degen-square : {a a' : A} {p q : a == a'} → p == q → Square p idp idp q horiz-degen-square {p = idp} α = disc-to-square α horiz-degen-path : {a a' : A} {p q : a == a'} → Square p idp idp q → p == q horiz-degen-path {p = idp} sq = square-to-disc sq horiz-degen-path-β : {a a' : A} {p q : a == a'} (α : p == q) → horiz-degen-path (horiz-degen-square α) == α horiz-degen-path-β {p = idp} α = square-to-disc-β α horiz-degen-square-β : {a a' : A} {p q : a == a'} (sq : Square p idp idp q) → horiz-degen-square (horiz-degen-path sq) == sq horiz-degen-square-β {p = idp} sq = disc-to-square-β sq vert-degen-square : {a a' : A} {p q : a == a'} → p == q → Square idp p q idp vert-degen-square {p = idp} α = disc-to-square (! α) vert-degen-path : {a a' : A} {p q : a == a'} → Square idp p q idp → p == q vert-degen-path {p = idp} sq = ! (square-to-disc sq) vert-degen-path-β : {a a' : A} {p q : a == a'} (α : p == q) → vert-degen-path (vert-degen-square α) == α vert-degen-path-β {p = idp} α = ap ! (square-to-disc-β (! α)) ∙ !-! α vert-degen-square-β : {a a' : A} {p q : a == a'} (sq : Square idp p q idp) → vert-degen-square (vert-degen-path sq) == sq vert-degen-square-β {p = idp} sq = ap disc-to-square (!-! (square-to-disc sq)) ∙ disc-to-square-β sq horiz-degen-square-idp : {a a' : A} {p : a == a'} → horiz-degen-square (idp {a = p}) == hid-square horiz-degen-square-idp {p = idp} = idp vert-degen-square-idp : {a a' : A} {p : a == a'} → vert-degen-square (idp {a = p}) == vid-square vert-degen-square-idp {p = idp} = idp {- Flipping squares -} module _ {i} {A : Type i} where square-symmetry : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₋₀ p₀₋ p₁₋ p₋₁ square-symmetry ids = ids square-sym-inv : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → square-symmetry (square-symmetry sq) == sq square-sym-inv ids = idp ap-square-symmetry : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → ap-square f (square-symmetry sq) == square-symmetry (ap-square f sq) ap-square-symmetry f ids = idp {- Alternate induction principles -} square-left-J : ∀ {i j} {A : Type i} {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} (P : {a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P hid-square) {a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-left-J P r ids = r square-top-J : ∀ {i j} {A : Type i} {a₀₀ a₁₀ : A} {p₋₀ : a₀₀ == a₁₀} (P : {a₀₁ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P vid-square) {a₀₁ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-top-J P r ids = r square-bot-J : ∀ {i j} {A : Type i} {a₀₁ a₁₁ : A} {p₋₁ : a₀₁ == a₁₁} (P : {a₀₀ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P vid-square) {a₀₀ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-bot-J P r ids = r square-right-J : ∀ {i j} {A : Type i} {a₁₀ a₁₁ : A} {p₁₋ : a₁₀ == a₁₁} (P : {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P hid-square) {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-right-J P r ids = r module _ where private lemma : ∀ {i j} {A : Type i} {a₀ : A} (P : {a₁ : A} {p q : a₀ == a₁} → p == q → Type j) (r : P (idp {a = idp})) {a₁ : A} {p q : a₀ == a₁} (α : p == q) → P α lemma P r {p = idp} idp = r horiz-degen-J : ∀ {i j} {A : Type i} {a₀ : A} (P : {a₁ : A} {p q : a₀ == a₁} → Square p idp idp q → Type j) (r : P ids) {a₁ : A} {p q : a₀ == a₁} (sq : Square p idp idp q) → P sq horiz-degen-J P r sq = transport P (horiz-degen-square-β sq) (lemma (P ∘ horiz-degen-square) r (horiz-degen-path sq)) vert-degen-J : ∀ {i j} {A : Type i} {a₀ : A} (P : {a₁ : A} {p q : a₀ == a₁} → Square idp p q idp → Type j) (r : P ids) {a₁ : A} {p q : a₀ == a₁} (sq : Square idp p q idp) → P sq vert-degen-J P r sq = transport P (vert-degen-square-β sq) (lemma (P ∘ vert-degen-square) r (vert-degen-path sq)) {- Square filling -} module _ {i} {A : Type i} where fill-square-left : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₋₀ : a₀₀ == a₁₀) (p₋₁ : a₀₁ == a₁₁) (p₁₋ : a₁₀ == a₁₁) → Σ (a₀₀ == a₀₁) (λ p₀₋ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-left idp idp p = (p , hid-square) fill-square-top : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₀₋ : a₀₀ == a₀₁) (p₋₁ : a₀₁ == a₁₁) (p₁₋ : a₁₀ == a₁₁) → Σ (a₀₀ == a₁₀) (λ p₋₀ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-top idp p idp = (p , vid-square) fill-square-bot : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₀₋ : a₀₀ == a₀₁) (p₋₀ : a₀₀ == a₁₀) (p₁₋ : a₁₀ == a₁₁) → Σ (a₀₁ == a₁₁) (λ p₋₁ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-bot idp p idp = (p , vid-square) fill-square-right : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₀₋ : a₀₀ == a₀₁) (p₋₀ : a₀₀ == a₁₀) (p₋₁ : a₀₁ == a₁₁) → Σ (a₁₀ == a₁₁) (λ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-right p idp idp = (p , hid-square) module _ {i j} {A : Type i} {B : Type j} {f g : A → B} where ↓-='-to-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → u == v [ (λ z → f z == g z) ↓ p ] → Square u (ap f p) (ap g p) v ↓-='-to-square {p = idp} α = horiz-degen-square α ↓-='-from-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → Square u (ap f p) (ap g p) v → u == v [ (λ z → f z == g z) ↓ p ] ↓-='-from-square {p = idp} sq = horiz-degen-path sq module _ {i j} {A : Type i} {B : Type j} {f : A → B} {b : B} where ↓-cst=app-from-square : {x y : A} {p : x == y} {u : b == f x} {v : b == f y} → Square u idp (ap f p) v → u == v [ (λ z → b == f z) ↓ p ] ↓-cst=app-from-square {p = idp} sq = horiz-degen-path sq ↓-cst=app-to-square : {x y : A} {p : x == y} {u : b == f x} {v : b == f y} → u == v [ (λ z → b == f z) ↓ p ] → Square u idp (ap f p) v ↓-cst=app-to-square {p = idp} α = horiz-degen-square α ↓-app=cst-from-square : {x y : A} {p : x == y} {u : f x == b} {v : f y == b} → Square u (ap f p) idp v → u == v [ (λ z → f z == b) ↓ p ] ↓-app=cst-from-square {p = idp} sq = horiz-degen-path sq ↓-app=cst-to-square : {x y : A} {p : x == y} {u : f x == b} {v : f y == b} → u == v [ (λ z → f z == b) ↓ p ] → Square u (ap f p) idp v ↓-app=cst-to-square {p = idp} α = horiz-degen-square α module _ {i} {A : Type i} {f : A → A} where ↓-idf=app-from-square : {x y : A} {p : x == y} {u : x == f x} {v : y == f y} → Square u p (ap f p) v → u == v [ (λ z → z == f z) ↓ p ] ↓-idf=app-from-square {p = idp} sq = horiz-degen-path sq ↓-idf=app-to-square : {x y : A} {p : x == y} {u : x == f x} {v : y == f y} → u == v [ (λ z → z == f z) ↓ p ] → Square u p (ap f p) v ↓-idf=app-to-square {p = idp} α = horiz-degen-square α ↓-app=idf-from-square : {x y : A} {p : x == y} {u : f x == x} {v : f y == y} → Square u (ap f p) p v → u == v [ (λ z → f z == z) ↓ p ] ↓-app=idf-from-square {p = idp} sq = horiz-degen-path sq ↓-app=idf-to-square : {x y : A} {p : x == y} {u : f x == x} {v : f y == y} → u == v [ (λ z → f z == z) ↓ p ] → Square u (ap f p) p v ↓-app=idf-to-square {p = idp} α = horiz-degen-square α module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where ↓-∘=idf-from-square : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → Square u (ap g (ap f p)) p v → (u == v [ (λ z → g (f z) == z) ↓ p ]) ↓-∘=idf-from-square {p = idp} sq = horiz-degen-path sq ↓-∘=idf-to-square : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → (u == v [ (λ z → g (f z) == z) ↓ p ]) → Square u (ap g (ap f p)) p v ↓-∘=idf-to-square {p = idp} α = horiz-degen-square α module _ {i j} {A : Type i} {B : Type j} where natural-square : {f₁ f₂ : A → B} (p : ∀ a → f₁ a == f₂ a) {a₁ a₂ : A} (q : a₁ == a₂) → Square (p a₁) (ap f₁ q) (ap f₂ q) (p a₂) natural-square p idp = hid-square natural-square-idp : {f₁ : A → B} {a₁ a₂ : A} (q : a₁ == a₂) → natural-square {f₁ = f₁} (λ _ → idp) q == vid-square natural-square-idp idp = idp {- Used for getting square equivalents of glue-β terms -} natural-square-β : {f₁ f₂ : A → B} (p : (a : A) → f₁ a == f₂ a) {x y : A} (q : x == y) {sq : Square (p x) (ap f₁ q) (ap f₂ q) (p y)} → apd p q == ↓-='-from-square sq → natural-square p q == sq natural-square-β _ idp α = ! horiz-degen-square-idp ∙ ap horiz-degen-square α ∙ horiz-degen-square-β _ _⊡v_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₀₂ a₁₂ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₀₋ : a₀₁ == a₀₂} {q₋₂ : a₀₂ == a₁₂} {q₁₋ : a₁₁ == a₁₂} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square q₀₋ p₋₁ q₋₂ q₁₋ → Square (p₀₋ ∙ q₀₋) p₋₀ q₋₂ (p₁₋ ∙ q₁₋) ids ⊡v sq = sq _⊡v'_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₀₂ a₁₂ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₀₋ : a₀₁ == a₀₂} {q₋₂ : a₀₂ == a₁₂} {q₁₋ : a₁₁ == a₁₂} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square q₀₋ p₋₁ q₋₂ q₁₋ → Square (p₀₋ ∙' q₀₋) p₋₀ q₋₂ (p₁₋ ∙' q₁₋) sq ⊡v' ids = sq _∙v⊡_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ p₋₀' : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → p₋₀ == p₋₀' → Square p₀₋ p₋₀' p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋ idp ∙v⊡ sq = sq _⊡v∙_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₀₋ : a₀₀ == a₀₁} {p₋₁ p₋₁' : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → p₋₁ == p₋₁' → Square p₀₋ p₋₀ p₋₁' p₁₋ sq ⊡v∙ idp = sq _⊡h_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₂₀ a₂₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₋₀ : a₁₀ == a₂₀} {q₋₁ : a₁₁ == a₂₁} {q₂₋ : a₂₀ == a₂₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₁₋ q₋₀ q₋₁ q₂₋ → Square p₀₋ (p₋₀ ∙ q₋₀) (p₋₁ ∙ q₋₁) q₂₋ ids ⊡h sq = sq _⊡h'_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₂₀ a₂₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₋₀ : a₁₀ == a₂₀} {q₋₁ : a₁₁ == a₂₁} {q₂₋ : a₂₀ == a₂₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₁₋ q₋₀ q₋₁ q₂₋ → Square p₀₋ (p₋₀ ∙' q₋₀) (p₋₁ ∙' q₋₁) q₂₋ sq ⊡h' ids = sq _∙h⊡_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ p₀₋' : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → p₀₋ == p₀₋' → Square p₀₋' p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋ idp ∙h⊡ sq = sq _⊡h∙_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ p₁₋' : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → p₁₋ == p₁₋' → Square p₀₋ p₋₀ p₋₁ p₁₋' sq ⊡h∙ idp = sq infixr 80 _⊡v_ _⊡v'_ _⊡h_ _⊡h'_ infixr 80 _∙v⊡_ _∙h⊡_ infixl 85 _⊡v∙_ _⊡h∙_ module _ {i} {A : Type i} where !□h : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₁₋ (! p₋₀) (! p₋₁) p₀₋ !□h ids = ids !□v : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square (! p₀₋) p₋₁ p₋₀ (! p₁₋) !□v ids = ids module _ {i} {A : Type i} where {- TODO rest of these -} ⊡h-unit-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → hid-square ⊡h sq == sq ⊡h-unit-l ids = idp ⊡h-unit-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq ⊡h hid-square == ∙-unit-r _ ∙v⊡ (sq ⊡v∙ ! (∙-unit-r _)) ⊡h-unit-r ids = idp ⊡h'-unit-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → hid-square ⊡h' sq == ∙'-unit-l _ ∙v⊡ (sq ⊡v∙ ! (∙'-unit-l _)) ⊡h'-unit-l ids = idp ⊡h-unit-l-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq' : Square p₀₋ idp idp p₀₋) (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq' ⊡h sq == sq → sq' == hid-square ⊡h-unit-l-unique sq' ids p = ! (⊡h-unit-r sq') ∙ p module _ {i} {A : Type i} where !□h-inv-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → (!□h sq) ⊡h sq == !-inv-l p₋₀ ∙v⊡ (hid-square ⊡v∙ ! (!-inv-l p₋₁)) !□h-inv-l ids = idp !□h-inv-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq ⊡h (!□h sq) == !-inv-r p₋₀ ∙v⊡ (hid-square ⊡v∙ ! (!-inv-r p₋₁)) !□h-inv-r ids = idp !□v-inv-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → (!□v sq) ⊡v sq == !-inv-l p₀₋ ∙h⊡ (vid-square ⊡h∙ ! (!-inv-l p₁₋)) !□v-inv-l ids = idp !□v-inv-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq ⊡v (!□v sq) == !-inv-r p₀₋ ∙h⊡ (vid-square ⊡h∙ ! (!-inv-r p₁₋)) !□v-inv-r ids = idp module _ {i} {A : Type i} where square-left-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ p₀₋' : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋' p₋₀ p₋₁ p₁₋ → p₀₋ == p₀₋' square-left-unique {p₋₀ = idp} {p₋₁ = idp} sq₁ sq₂ = horiz-degen-path (sq₁ ⊡h (!□h sq₂)) square-top-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ p₋₀' : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀' p₋₁ p₁₋ → p₋₀ == p₋₀' square-top-unique {p₀₋ = idp} {p₁₋ = idp} sq₁ sq₂ = vert-degen-path (sq₁ ⊡v (!□v sq₂)) square-bot-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ p₋₁' : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁' p₁₋ → p₋₁ == p₋₁' square-bot-unique {p₀₋ = idp} {p₁₋ = idp} sq₁ sq₂ = vert-degen-path ((!□v sq₁) ⊡v sq₂) square-right-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ p₁₋' : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋' → p₁₋ == p₁₋' square-right-unique {p₋₀ = idp} {p₋₁ = idp} sq₁ sq₂ = horiz-degen-path ((!□h sq₁) ⊡h sq₂) module _ {i} {A : Type i} where {- XXX naminig -} connection : {a₀ a₁ : A} {q : a₀ == a₁} → Square idp idp q q connection {q = idp} = ids {- XXX naminig -} connection2 : {a₀ a₁ a₂ : A} {p : a₀ == a₁} {q : a₁ == a₂} → Square p p q q connection2 {p = idp} {q = idp} = ids lb-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square p idp (! p) idp lb-square idp = ids bl-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square (! p) idp p idp bl-square idp = ids br-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square idp idp p p br-square idp = ids rb-square = br-square rt-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square idp (! p) idp p rt-square idp = ids tr-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square idp p idp (! p) tr-square idp = ids lt-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square p p idp idp lt-square idp = ids tl-square = lt-square
33.842884
79
0.476487
edc266ed0854c41b8113f2d7aec2224f7b334dfc
1,088
agda
Agda
test/succeed/Issue458b.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue458b.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue458b.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- {-# OPTIONS -v tc.meta:100 #-} -- Andreas, 2011-09-21 (fix by Ulf) module Issue458b where data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a data Nat : Set where zero : Nat suc : Nat -> Nat data Pair (A B : Set) : Set where pair : A -> B -> Pair A B fst : {A B : Set} -> Pair A B -> A fst (pair a b) = a overzeal : let X : Nat -> Nat -> Nat X = _ Y : Pair Nat Nat -> Nat Y = _ in {C : Set} -> (({x y : Nat} -> X x x ≡ Y (pair x y)) -> ({z : Pair Nat Nat} -> Y z ≡ fst z) -> ({x y : Nat} -> X x y ≡ x) -> C) -> C overzeal k = k refl refl refl -- This should succeed. -- However, before Ulf's fix the first constraint would lead to -- a pruning of y from Y, since X does not depend on y -- This lost the solution Y = fst. {- ERROR was: Cannot instantiate the metavariable _59 to (fst .z) since it contains the variable .z which is not in scope of the metavariable when checking that the expression refl has type (_59 ≡ fst .z) -}
30.222222
70
0.523897
0d9aac63f5390ecb4c667447df66b59e59885ea6
242
agda
Agda
test/Fail/NonDependentConstructorType.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NonDependentConstructorType.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NonDependentConstructorType.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2010-10-01 Issue 342 module NonDependentConstructorType where data Wrap : Set1 where wrap : Set -> Wrap bla : Set bla = wrap -- 2010-10-01 error is printed as (_ : Set) -> Wrap !=< Set -- error should be printed as Set -> Wrap !=< Set
22
59
0.669421
72428a32eda14aed249431bf99be5bcf7ca51afd
108
agda
Agda
examples/examplesPaperJFP/triangleRightOperator.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/triangleRightOperator.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/triangleRightOperator.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module examplesPaperJFP.triangleRightOperator where _▹_ : ∀{A B : Set} → A → (A → B) → B a ▹ f = f a
21.6
51
0.583333
14c0828d6c39b543e1583c57fb63e1877f1c0d9e
2,656
agda
Agda
Monads/EM.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
Monads/EM.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
Monads/EM.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
open import Categories open import Monads module Monads.EM {a b}{C : Cat {a}{b}}(M : Monad C) where open import Library open import Functors open Cat C open Monad M record Alg : Set (a ⊔ b) where constructor alg field acar : Obj astr : ∀ Z → Hom Z acar → Hom (T Z) acar alaw1 : ∀ {Z}{f : Hom Z acar} → f ≅ comp (astr Z f) η alaw2 : ∀{Z}{W}{k : Hom Z (T W)}{f : Hom W acar} → astr Z (comp (astr W f) k) ≅ comp (astr W f) (bind k) open Alg AlgEq : {X Y : Alg} → acar X ≅ acar Y → (astr X ≅ astr Y) → X ≅ Y AlgEq {alg acar astr _ _} {alg ._ ._ _ _} refl refl = cong₂ (alg acar astr) (iext λ _ → iext λ _ → ir _ _) (iext λ _ → iext λ _ → iext λ _ → iext λ _ → ir _ _) record AlgMorph (A B : Alg) : Set (a ⊔ b) where constructor algmorph field amor : Hom (acar A) (acar B) ahom : ∀{Z}{f : Hom Z (acar A)} → comp amor (astr A Z f) ≅ astr B Z (comp amor f) open AlgMorph AlgMorphEq : {X Y : Alg}{f g : AlgMorph X Y} → amor f ≅ amor g → f ≅ g AlgMorphEq {f = algmorph amor _}{algmorph .amor _} refl = cong (algmorph amor) (iext λ _ → iext λ _ → ir _ _) AlgMorphEq' : {X X' Y Y' : Alg} {f : AlgMorph X Y}{g : AlgMorph X' Y'} → X ≅ X' → Y ≅ Y' → amor f ≅ amor g → f ≅ g AlgMorphEq' refl refl = AlgMorphEq IdMorph : {A : Alg} → AlgMorph A A IdMorph {A} = record { amor = iden; ahom = λ {Z} {f} → proof comp iden (astr A Z f) ≅⟨ idl ⟩ astr A Z f ≅⟨ cong (astr A Z) (sym idl) ⟩ astr A Z (comp iden f) ∎} CompMorph : {X Y Z : Alg} → AlgMorph Y Z → AlgMorph X Y → AlgMorph X Z CompMorph {X}{Y}{Z} f g = record { amor = comp (amor f) (amor g); ahom = λ{W}{h} → proof comp (comp (amor f) (amor g)) (astr X W h) ≅⟨ ass ⟩ comp (amor f) (comp (amor g) (astr X W h)) ≅⟨ cong (comp (amor f)) (ahom g) ⟩ comp (amor f) (astr Y W (comp (amor g) h)) ≅⟨ ahom f ⟩ astr Z W (comp (amor f) (comp (amor g) h)) ≅⟨ cong (astr Z W) (sym ass) ⟩ astr Z W (comp (comp (amor f) (amor g)) h) ∎} idlMorph : {X Y : Alg}{f : AlgMorph X Y} → CompMorph IdMorph f ≅ f idlMorph = AlgMorphEq idl idrMorph : {X Y : Alg}{f : AlgMorph X Y} → CompMorph f IdMorph ≅ f idrMorph = AlgMorphEq idr assMorph : {W X Y Z : Alg} {f : AlgMorph Y Z}{g : AlgMorph X Y}{h : AlgMorph W X} → CompMorph (CompMorph f g) h ≅ CompMorph f (CompMorph g h) assMorph = AlgMorphEq ass EM : Cat {a ⊔ b}{a ⊔ b} EM = record{ Obj = Alg; Hom = AlgMorph; iden = IdMorph; comp = CompMorph; idl = idlMorph; idr = idrMorph; ass = λ{_}{_}{_}{_}{f}{g}{h} → assMorph {f = f}{g}{h}} -- -}
28.55914
70
0.541416
37a13111faf1d338e7616a0c89196be4f8597ccc
1,801
agda
Agda
Definition/LogicalRelation/Substitution/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/LogicalRelation/Substitution/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/LogicalRelation/Substitution/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Reduction {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.Untyped using (Con ; Term) open import Tools.Nat open import Tools.Product private variable n : Nat Γ : Con Term n -- Weak head expansion of valid terms. redSubstTermᵛ : ∀ {A t u l} → ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ t ⇒ u ∷ A / [Γ] → ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ u ∷ A / [Γ] / [A] → Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] × Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] redSubstTermᵛ [Γ] t⇒u [A] [u] = (λ ⊢Δ [σ] → let [σA] = proj₁ ([A] ⊢Δ [σ]) [σt] , [σt≡σu] = redSubstTerm (t⇒u ⊢Δ [σ]) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ])) in [σt] , (λ [σ′] [σ≡σ′] → let [σ′A] = proj₁ ([A] ⊢Δ [σ′]) [σA≡σ′A] = proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′] [σ′t] , [σ′t≡σ′u] = redSubstTerm (t⇒u ⊢Δ [σ′]) (proj₁ ([A] ⊢Δ [σ′])) (proj₁ ([u] ⊢Δ [σ′])) in transEqTerm [σA] [σt≡σu] (transEqTerm [σA] ((proj₂ ([u] ⊢Δ [σ])) [σ′] [σ≡σ′]) (convEqTerm₂ [σA] [σ′A] [σA≡σ′A] (symEqTerm [σ′A] [σ′t≡σ′u]))))) , (λ ⊢Δ [σ] → proj₂ (redSubstTerm (t⇒u ⊢Δ [σ]) (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ]))))
37.520833
85
0.381455
654d316c057fbb9eda0bab8d5cb5ca99ded3c01e
5,617
agda
Agda
Cubical/Categories/NaturalTransformation/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/NaturalTransformation/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/NaturalTransformation/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.NaturalTransformation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism renaming (iso to iIso) open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.Morphism renaming (isIso to isIsoC) open import Cubical.Categories.NaturalTransformation.Base private variable ℓC ℓC' ℓD ℓD' : Level open isIsoC open NatIso open NatTrans open Precategory open Functor module _ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where private _⋆ᴰ_ : ∀ {x y z} (f : D [ x , y ]) (g : D [ y , z ]) → D [ x , z ] f ⋆ᴰ g = f ⋆⟨ D ⟩ g -- natural isomorphism is symmetric symNatIso : ∀ {F G : Functor C D} → F ≅ᶜ G → G ≅ᶜ F symNatIso η .trans .N-ob x = η .nIso x .inv symNatIso η .trans .N-hom _ = sqLL η symNatIso η .nIso x .inv = η .trans .N-ob x symNatIso η .nIso x .sec = η .nIso x .ret symNatIso η .nIso x .ret = η .nIso x .sec -- Properties -- path helpers module NatTransP where module _ {F G : Functor C D} where open Iso -- same as Sigma version NatTransΣ = Σ[ ob ∈ ((x : C .ob) → D [(F .F-ob x) , (G .F-ob x)]) ] ({x y : _ } (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (ob y) ≡ (ob x) ⋆ᴰ (G .F-hom f)) NatTransIsoΣ : Iso (NatTrans F G) NatTransΣ NatTransIsoΣ .fun (natTrans N-ob N-hom) = N-ob , N-hom NatTransIsoΣ .inv (N-ob , N-hom) = (natTrans N-ob N-hom) NatTransIsoΣ .rightInv _ = refl NatTransIsoΣ .leftInv _ = refl NatTrans≡Σ = ua (isoToEquiv NatTransIsoΣ) -- introducing paths NatTrans-≡-intro : ∀ {αo βo : N-ob-Type F G} {αh : N-hom-Type F G αo} {βh : N-hom-Type F G βo} → (p : αo ≡ βo) → PathP (λ i → ({x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (p i y) ≡ (p i x) ⋆ᴰ (G .F-hom f))) αh βh → natTrans {F = F} {G} αo αh ≡ natTrans βo βh NatTrans-≡-intro p q i = natTrans (p i) (q i) module _ {F G : Functor C D} {α β : NatTrans F G} where open Iso private αOb = α .N-ob βOb = β .N-ob αHom = α .N-hom βHom = β .N-hom -- path between natural transformations is the same as a pair of paths (between ob and hom) NTPathIsoPathΣ : Iso (α ≡ β) (Σ[ p ∈ (αOb ≡ βOb) ] (PathP (λ i → ({x y : _} (f : _) → F ⟪ f ⟫ ⋆ᴰ (p i y) ≡ (p i x) ⋆ᴰ G ⟪ f ⟫)) αHom βHom)) NTPathIsoPathΣ .fun p = (λ i → p i .N-ob) , (λ i → p i .N-hom) NTPathIsoPathΣ .inv (po , ph) i = record { N-ob = po i ; N-hom = ph i } NTPathIsoPathΣ .rightInv pσ = refl NTPathIsoPathΣ .leftInv p = refl NTPath≃PathΣ = isoToEquiv NTPathIsoPathΣ NTPath≡PathΣ = ua NTPath≃PathΣ module _ ⦃ isCatD : isCategory D ⦄ where open NatTransP -- if the target category has hom Sets, then any natural transformation is a set isSetNat : ∀ {F G : Functor C D} → isSet (NatTrans F G) isSetNat {F} {G} α β p1 p2 i = comp (λ i → NTPath≡PathΣ {F = F} {G} {α} {β} (~ i)) (λ j → λ {(i = i0) → transport-filler NTPath≡PathΣ p1 (~ j) ; (i = i1) → transport-filler NTPath≡PathΣ p2 (~ j)}) (p1Σ≡p2Σ i) where αOb = α .N-ob βOb = β .N-ob αHom = α .N-hom βHom = β .N-hom -- convert to sigmas so we can reason about constituent paths separately p1Σ : Σ[ p ∈ (αOb ≡ βOb) ] (PathP (λ i → ({x y : _} (f : _) → F ⟪ f ⟫ ⋆ᴰ (p i y) ≡ (p i x) ⋆ᴰ G ⟪ f ⟫)) αHom βHom) p1Σ = transport NTPath≡PathΣ p1 p2Σ : Σ[ p ∈ (αOb ≡ βOb) ] (PathP (λ i → ({x y : _} (f : _) → F ⟪ f ⟫ ⋆ᴰ (p i y) ≡ (p i x) ⋆ᴰ G ⟪ f ⟫)) αHom βHom) p2Σ = transport NTPath≡PathΣ p2 -- type aliases typeN-ob = (x : C .ob) → D [(F .F-ob x) , (G .F-ob x)] typeN-hom : typeN-ob → Type _ typeN-hom ϕ = {x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (ϕ y) ≡ (ϕ x) ⋆ᴰ (G .F-hom f) -- the Ob function is a set isSetN-ob : isSet ((x : C .ob) → D [(F .F-ob x) , (G .F-ob x)]) isSetN-ob = isOfHLevelΠ 2 λ _ → isCatD .isSetHom -- the Hom function is a set isSetN-hom : (ϕ : typeN-ob) → isSet (typeN-hom ϕ) isSetN-hom γ = isProp→isSet (isPropImplicitΠ λ x → isPropImplicitΠ λ y → isPropΠ λ f → isCatD .isSetHom _ _) -- in fact it's a dependent Set, which we need because N-hom depends on N-ob isSetN-homP : isOfHLevelDep 2 (λ γ → {x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (γ y) ≡ (γ x) ⋆ᴰ (G .F-hom f)) isSetN-homP = isOfHLevel→isOfHLevelDep 2 isSetN-hom -- components of the equality p1Ob≡p2Ob : fst p1Σ ≡ fst p2Σ p1Ob≡p2Ob = isSetN-ob _ _ (fst p1Σ) (fst p2Σ) p1Hom≡p2Hom : PathP (λ i → PathP (λ j → typeN-hom (p1Ob≡p2Ob i j)) αHom βHom) (snd p1Σ) (snd p2Σ) p1Hom≡p2Hom = isSetN-homP _ _ (snd p1Σ) (snd p2Σ) p1Ob≡p2Ob p1Σ≡p2Σ : p1Σ ≡ p2Σ p1Σ≡p2Σ = ΣPathP (p1Ob≡p2Ob , p1Hom≡p2Hom)
38.210884
130
0.510415
012e927e18ce60815dbacd4bca9fff2b257ee28c
17,662
agda
Agda
formalization/agda/Spire/Examples/PropositionalDesc.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
43
2015-05-28T23:25:33.000Z
2022-03-08T17:10:59.000Z
formalization/agda/Spire/Examples/PropositionalDesc.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
null
null
null
formalization/agda/Spire/Examples/PropositionalDesc.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
1
2015-08-17T21:00:07.000Z
2015-08-17T21:00:07.000Z
{-# OPTIONS --type-in-type #-} open import Data.Unit open import Data.Product hiding ( curry ; uncurry ) open import Data.List hiding ( concat ) open import Data.String open import Relation.Binary.PropositionalEquality module Spire.Examples.PropositionalDesc where ---------------------------------------------------------------------- elimEq : (A : Set) (x : A) (P : (y : A) → x ≡ y → Set) → P x refl → (y : A) (p : x ≡ y) → P y p elimEq A .x P prefl x refl = prefl ---------------------------------------------------------------------- Label : Set Label = String Enum : Set Enum = List Label data Tag : Enum → Set where here : ∀{l E} → Tag (l ∷ E) there : ∀{l E} → Tag E → Tag (l ∷ E) Cases : (E : Enum) (P : Tag E → Set) → Set Cases [] P = ⊤ Cases (l ∷ E) P = P here × Cases E λ t → P (there t) case : (E : Enum) (P : Tag E → Set) (cs : Cases E P) (t : Tag E) → P t case (l ∷ E) P (c , cs) here = c case (l ∷ E) P (c , cs) (there t) = case E (λ t → P (there t)) cs t UncurriedCases : (E : Enum) (P : Tag E → Set) (X : Set) → Set UncurriedCases E P X = Cases E P → X CurriedCases : (E : Enum) (P : Tag E → Set) (X : Set) → Set CurriedCases [] P X = X CurriedCases (l ∷ E) P X = P here → CurriedCases E (λ t → P (there t)) X curryCases : (E : Enum) (P : Tag E → Set) (X : Set) (f : UncurriedCases E P X) → CurriedCases E P X curryCases [] P X f = f tt curryCases (l ∷ E) P X f = λ c → curryCases E (λ t → P (there t)) X (λ cs → f (c , cs)) uncurryCases : (E : Enum) (P : Tag E → Set) (X : Set) (f : CurriedCases E P X) → UncurriedCases E P X uncurryCases [] P X x tt = x uncurryCases (l ∷ E) P X f (c , cs) = uncurryCases E (λ t → P (there t)) X (f c) cs ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where `End : (i : I) → Desc I `Rec : (i : I) (D : Desc I) → Desc I `Arg : (A : Set) (B : A → Desc I) → Desc I `RecFun : (A : Set) (B : A → I) (D : Desc I) → Desc I ISet : Set → Set₁ ISet I = I → Set El : (I : Set) (D : Desc I) (X : ISet I) → ISet I El I (`End j) X i = j ≡ i El I (`Rec j D) X i = X j × El I D X i El I (`Arg A B) X i = Σ A (λ a → El I (B a) X i) El I (`RecFun A B D) X i = ((a : A) → X (B a)) × El I D X i Hyps : (I : Set) (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (i : I) (xs : El I D X i) → Set Hyps I (`End j) X P i q = ⊤ Hyps I (`Rec j D) X P i (x , xs) = P j x × Hyps I D X P i xs Hyps I (`Arg A B) X P i (a , b) = Hyps I (B a) X P i b Hyps I (`RecFun A B D) X P i (f , xs) = ((a : A) → P (B a) (f a)) × Hyps I D X P i xs caseD : (E : Enum) (I : Set) (cs : Cases E (λ _ → Desc I)) (t : Tag E) → Desc I caseD E I cs t = case E (λ _ → Desc I) cs t ---------------------------------------------------------------------- TagDesc : (I : Set) → Set TagDesc I = Σ Enum (λ E → Cases E (λ _ → Desc I)) toCase : (I : Set) (E,cs : TagDesc I) → Tag (proj₁ E,cs) → Desc I toCase I (E , cs) = case E (λ _ → Desc I) cs toDesc : (I : Set) → TagDesc I → Desc I toDesc I (E , cs) = `Arg (Tag E) (toCase I (E , cs)) ---------------------------------------------------------------------- UncurriedEl : (I : Set) (D : Desc I) (X : ISet I) → Set UncurriedEl I D X = {i : I} → El I D X i → X i CurriedEl : (I : Set) (D : Desc I) (X : ISet I) → Set CurriedEl I (`End i) X = X i CurriedEl I (`Rec j D) X = (x : X j) → CurriedEl I D X CurriedEl I (`Arg A B) X = (a : A) → CurriedEl I (B a) X CurriedEl I (`RecFun A B D) X = ((a : A) → X (B a)) → CurriedEl I D X curryEl : (I : Set) (D : Desc I) (X : ISet I) (cn : UncurriedEl I D X) → CurriedEl I D X curryEl I (`End i) X cn = cn refl curryEl I (`Rec i D) X cn = λ x → curryEl I D X (λ xs → cn (x , xs)) curryEl I (`Arg A B) X cn = λ a → curryEl I (B a) X (λ xs → cn (a , xs)) curryEl I (`RecFun A B D) X cn = λ f → curryEl I D X (λ xs → cn (f , xs)) uncurryEl : (I : Set) (D : Desc I) (X : ISet I) (cn : CurriedEl I D X) → UncurriedEl I D X uncurryEl I (`End i) X cn refl = cn uncurryEl I (`Rec i D) X cn (x , xs) = uncurryEl I D X (cn x) xs uncurryEl I (`Arg A B) X cn (a , xs) = uncurryEl I (B a) X (cn a) xs uncurryEl I (`RecFun A B D) X cn (f , xs) = uncurryEl I D X (cn f) xs data μ (I : Set) (D : Desc I) : I → Set where con : UncurriedEl I D (μ I D) con2 : (I : Set) (D : Desc I) → CurriedEl I D (μ I D) con2 I D = curryEl I D (μ I D) con ---------------------------------------------------------------------- UncurriedHyps : (I : Set) (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl I D X) → Set UncurriedHyps I D X P cn = (i : I) (xs : El I D X i) → Hyps I D X P i xs → P i (cn xs) CurriedHyps : (I : Set) (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl I D X) → Set CurriedHyps I (`End i) X P cn = P i (cn refl) CurriedHyps I (`Rec i D) X P cn = (x : X i) → P i x → CurriedHyps I D X P (λ xs → cn (x , xs)) CurriedHyps I (`Arg A B) X P cn = (a : A) → CurriedHyps I (B a) X P (λ xs → cn (a , xs)) CurriedHyps I (`RecFun A B D) X P cn = (f : (a : A) → X (B a)) (ihf : (a : A) → P (B a) (f a)) → CurriedHyps I D X P (λ xs → cn (f , xs)) curryHyps : (I : Set) (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl I D X) (pf : UncurriedHyps I D X P cn) → CurriedHyps I D X P cn curryHyps I (`End i) X P cn pf = pf i refl tt curryHyps I (`Rec i D) X P cn pf = λ x ih → curryHyps I D X P (λ xs → cn (x , xs)) (λ i xs ihs → pf i (x , xs) (ih , ihs)) curryHyps I (`Arg A B) X P cn pf = λ a → curryHyps I (B a) X P (λ xs → cn (a , xs)) (λ i xs ihs → pf i (a , xs) ihs) curryHyps I (`RecFun A B D) X P cn pf = λ f ihf → curryHyps I D X P (λ xs → cn (f , xs)) (λ i xs ihs → pf i (f , xs) (ihf , ihs)) uncurryHyps : (I : Set) (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl I D X) (pf : CurriedHyps I D X P cn) → UncurriedHyps I D X P cn uncurryHyps I (`End .i) X P cn pf i refl tt = pf uncurryHyps I (`Rec j D) X P cn pf i (x , xs) (ih , ihs) = uncurryHyps I D X P (λ ys → cn (x , ys)) (pf x ih) i xs ihs uncurryHyps I (`Arg A B) X P cn pf i (a , xs) ihs = uncurryHyps I (B a) X P (λ ys → cn (a , ys)) (pf a) i xs ihs uncurryHyps I (`RecFun A B D) X P cn pf i (f , xs) (ihf , ihs) = uncurryHyps I D X P (λ ys → cn (f , ys)) (pf f ihf) i xs ihs ---------------------------------------------------------------------- ind : (I : Set) (D : Desc I) (P : (i : I) → μ I D i → Set) (pcon : UncurriedHyps I D (μ I D) P con) (i : I) (x : μ I D i) → P i x hyps : (I : Set) (D₁ : Desc I) (P : (i : I) → μ I D₁ i → Set) (pcon : UncurriedHyps I D₁ (μ I D₁) P con) (D₂ : Desc I) (i : I) (xs : El I D₂ (μ I D₁) i) → Hyps I D₂ (μ I D₁) P i xs ind I D P pcon i (con xs) = pcon i xs (hyps I D P pcon D i xs) hyps I D P pcon (`End j) i q = tt hyps I D P pcon (`Rec j A) i (x , xs) = ind I D P pcon j x , hyps I D P pcon A i xs hyps I D P pcon (`Arg A B) i (a , b) = hyps I D P pcon (B a) i b hyps I D P pcon (`RecFun A B E) i (f , xs) = (λ a → ind I D P pcon (B a) (f a)) , hyps I D P pcon E i xs ---------------------------------------------------------------------- ind2 : (I : Set) (D : Desc I) (P : (i : I) → μ I D i → Set) (pcon : CurriedHyps I D (μ I D) P con) (i : I) (x : μ I D i) → P i x ind2 I D P pcon i x = ind I D P (uncurryHyps I D (μ I D) P con pcon) i x elim : (I : Set) (TD : TagDesc I) → let D = toDesc I TD E = proj₁ TD Cs = toCase I TD in (P : (i : I) → μ I D i → Set) → let Q = λ t → CurriedHyps I (Cs t) (μ I D) P (λ xs → con (t , xs)) X = (i : I) (x : μ I D i) → P i x in UncurriedCases E Q X elim I TD P cs i x = let D = toDesc I TD E = proj₁ TD Cs = toCase I TD Q = λ t → CurriedHyps I (Cs t) (μ I D) P (λ xs → con (t , xs)) p = case E Q cs in ind2 I D P p i x elim2 : (I : Set) (TD : TagDesc I) → let D = toDesc I TD E = proj₁ TD Cs = toCase I TD in (P : (i : I) → μ I D i → Set) → let Q = λ t → CurriedHyps I (Cs t) (μ I D) P (λ xs → con (t , xs)) X = (i : I) (x : μ I D i) → P i x in CurriedCases E Q X elim2 I TD P = let D = toDesc I TD E = proj₁ TD Cs = toCase I TD Q = λ t → CurriedHyps I (Cs t) (μ I D) P (λ xs → con (t , xs)) X = (i : I) (x : μ I D i) → P i x in curryCases E Q X (elim I TD P) ---------------------------------------------------------------------- module Sugared where data ℕT : Set where `zero `suc : ℕT data VecT : Set where `nil `cons : VecT ℕD : Desc ⊤ ℕD = `Arg ℕT λ { `zero → `End tt ; `suc → `Rec tt (`End tt) } ℕ : ⊤ → Set ℕ = μ ⊤ ℕD zero : ℕ tt zero = con (`zero , refl) suc : ℕ tt → ℕ tt suc n = con (`suc , n , refl) VecD : (A : Set) → Desc (ℕ tt) VecD A = `Arg VecT λ { `nil → `End zero ; `cons → `Arg (ℕ tt) λ n → `Arg A λ _ → `Rec n (`End (suc n)) } Vec : (A : Set) (n : ℕ tt) → Set Vec A n = μ (ℕ tt) (VecD A) n nil : (A : Set) → Vec A zero nil A = con (`nil , refl) cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons A n x xs = con (`cons , n , x , xs , refl) ---------------------------------------------------------------------- add : ℕ tt → ℕ tt → ℕ tt add = ind ⊤ ℕD (λ _ _ → ℕ tt → ℕ tt) (λ { tt (`zero , q) tt n → n ; tt (`suc , m , q) (ih , tt) n → suc (ih n) } ) tt mult : ℕ tt → ℕ tt → ℕ tt mult = ind ⊤ ℕD (λ _ _ → ℕ tt → ℕ tt) (λ { tt (`zero , q) tt n → zero ; tt (`suc , m , q) (ih , tt) n → add n (ih n) } ) tt append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = ind (ℕ tt) (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ { .(con (`zero , refl)) (`nil , refl) ih n ys → ys ; .(con (`suc , m , refl)) (`cons , m , x , xs , refl) (ih , tt) n ys → cons A (add m n) x (ih n ys) } ) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = ind (ℕ tt) (VecD (Vec A m)) (λ n xss → Vec A (mult n m)) (λ { .(con (`zero , refl)) (`nil , refl) tt → nil A ; .(con (`suc , n , refl)) (`cons , n , xs , xss , refl) (ih , tt) → append A m xs (mult n m) ih } ) ---------------------------------------------------------------------- module Desugared where ℕT : Enum ℕT = "zero" ∷ "suc" ∷ [] VecT : Enum VecT = "nil" ∷ "cons" ∷ [] ℕTD : TagDesc ⊤ ℕTD = ℕT , `End tt , `Rec tt (`End tt) , tt ℕCs : Tag ℕT → Desc ⊤ ℕCs = toCase ⊤ ℕTD ℕD : Desc ⊤ ℕD = toDesc ⊤ ℕTD ℕ : ⊤ → Set ℕ = μ ⊤ ℕD zero : ℕ tt zero = con (here , refl) suc : ℕ tt → ℕ tt suc n = con (there here , n , refl) zero2 : ℕ tt zero2 = con2 ⊤ ℕD here suc2 : ℕ tt → ℕ tt suc2 = con2 ⊤ ℕD (there here) VecTD : (A : Set) → TagDesc (ℕ tt) VecTD A = VecT , `End zero , `Arg (ℕ tt) (λ n → `Arg A λ _ → `Rec n (`End (suc n))) , tt VecCs : (A : Set) → Tag VecT → Desc (ℕ tt) VecCs A = toCase (ℕ tt) (VecTD A) VecD : (A : Set) → Desc (ℕ tt) VecD A = toDesc (ℕ tt) (VecTD A) Vec : (A : Set) (n : ℕ tt) → Set Vec A n = μ (ℕ tt) (VecD A) n nil : (A : Set) → Vec A zero nil A = con (here , refl) cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons A n x xs = con (there here , n , x , xs , refl) nil2 : (A : Set) → Vec A zero nil2 A = con2 (ℕ tt) (VecD A) here cons2 : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons2 A = con2 (ℕ tt) (VecD A) (there here) ---------------------------------------------------------------------- module Induction where add : ℕ tt → ℕ tt → ℕ tt add = ind ⊤ ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case ℕT (λ t → (c : El ⊤ (ℕCs t) ℕ u) (ih : Hyps ⊤ ℕD ℕ (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → n) , (λ m,q ih,tt n → suc (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) tt mult : ℕ tt → ℕ tt → ℕ tt mult = ind ⊤ ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case ℕT (λ t → (c : El ⊤ (ℕCs t) ℕ u) (ih : Hyps ⊤ ℕD ℕ (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → zero) , (λ m,q ih,tt n → add n (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) tt append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = ind (ℕ tt) (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ m t,c → case VecT (λ t → (c : El (ℕ tt) (VecCs A t) (Vec A) m) (ih : Hyps (ℕ tt) (VecD A) (Vec A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) m (t , c)) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) ) ( (λ q ih n ys → subst (λ m → Vec A (add m n)) q ys) , (λ m',x,xs,q ih,tt n ys → let m' = proj₁ m',x,xs,q x = proj₁ (proj₂ m',x,xs,q) q = proj₂ (proj₂ (proj₂ m',x,xs,q)) ih = proj₁ ih,tt in subst (λ m → Vec A (add m n)) q (cons A (add m' n) x (ih n ys)) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = ind (ℕ tt) (VecD (Vec A m)) (λ n xss → Vec A (mult n m)) (λ n t,c → case VecT (λ t → (c : El (ℕ tt) (VecCs (Vec A m) t) (Vec (Vec A m)) n) (ih : Hyps (ℕ tt) (VecD (Vec A m)) (Vec (Vec A m)) (λ n xss → Vec A (mult n m)) n (t , c)) → Vec A (mult n m) ) ( (λ q ih → subst (λ n → Vec A (mult n m)) q (nil A)) , (λ n',xs,xss,q ih,tt → let n' = proj₁ n',xs,xss,q xs = proj₁ (proj₂ n',xs,xss,q) q = proj₂ (proj₂ (proj₂ n',xs,xss,q)) ih = proj₁ ih,tt in subst (λ n → Vec A (mult n m)) q (append A m xs (mult n' m) ih) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) ---------------------------------------------------------------------- module Eliminator where elimℕ : (P : (ℕ tt) → Set) (pzero : P zero) (psuc : (m : ℕ tt) → P m → P (suc m)) (n : ℕ tt) → P n elimℕ P pzero psuc = ind ⊤ ℕD (λ u n → P n) (λ u t,c → case ℕT (λ t → (c : El ⊤ (ℕCs t) ℕ u) (ih : Hyps ⊤ ℕD ℕ (λ u n → P n) u (t , c)) → P (con (t , c)) ) ( (λ q ih → elimEq ⊤ tt (λ u q → P (con (here , q))) pzero u q ) , (λ n,q ih,tt → elimEq ⊤ tt (λ u q → P (con (there here , proj₁ n,q , q))) (psuc (proj₁ n,q) (proj₁ ih,tt)) u (proj₂ n,q) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) tt elimVec : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (pnil : P zero (nil A)) (pcons : (n : ℕ tt) (a : A) (xs : Vec A n) → P n xs → P (suc n) (cons A n a xs)) (n : ℕ tt) (xs : Vec A n) → P n xs elimVec A P pnil pcons = ind (ℕ tt) (VecD A) (λ n xs → P n xs) (λ n t,c → case VecT (λ t → (c : El (ℕ tt) (VecCs A t) (Vec A) n) (ih : Hyps (ℕ tt) (VecD A) (Vec A) (λ n xs → P n xs) n (t , c)) → P n (con (t , c)) ) ( (λ q ih → elimEq (ℕ tt) zero (λ n q → P n (con (here , q))) pnil n q ) , (λ n',x,xs,q ih,tt → let n' = proj₁ n',x,xs,q x = proj₁ (proj₂ n',x,xs,q) xs = proj₁ (proj₂ (proj₂ n',x,xs,q)) q = proj₂ (proj₂ (proj₂ n',x,xs,q)) ih = proj₁ ih,tt in elimEq (ℕ tt) (suc n') (λ n q → P n (con (there here , n' , x , xs , q))) (pcons n' x xs ih ) n q ) , tt ) (proj₁ t,c) (proj₂ t,c) ) ---------------------------------------------------------------------- add : ℕ tt → ℕ tt → ℕ tt add = elimℕ (λ _ → ℕ tt → ℕ tt) (λ n → n) (λ m ih n → suc (ih n)) mult : ℕ tt → ℕ tt → ℕ tt mult = elimℕ (λ _ → ℕ tt → ℕ tt) (λ n → zero) (λ m ih n → add n (ih n)) append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = elimVec A (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ n ys → ys) (λ m x xs ih n ys → cons A (add m n) x (ih n ys)) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = elimVec (Vec A m) (λ n xss → Vec A (mult n m)) (nil A) (λ n xs xss ih → append A m xs (mult n m) ih) ---------------------------------------------------------------------- module GenericEliminator where add : ℕ tt → ℕ tt → ℕ tt add = elim2 ⊤ ℕTD _ (λ n → n) (λ m ih n → suc (ih n)) tt mult : ℕ tt → ℕ tt → ℕ tt mult = elim2 ⊤ ℕTD _ (λ n → zero) (λ m ih n → add n (ih n)) tt append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = elim2 (ℕ tt) (VecTD A) _ (λ n ys → ys) (λ m x xs ih n ys → cons A (add m n) x (ih n ys)) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = elim2 (ℕ tt) (VecTD (Vec A m)) _ (nil A) (λ n xs xss ih → append A m xs (mult n m) ih) ----------------------------------------------------------------------
30.088586
115
0.426566
645335b07a46477b413c37f4ae2679b1f4858446
2,597
agda
Agda
Cubical/Structures/Relational/Parametrized.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Structures/Relational/Parametrized.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Structures/Relational/Parametrized.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{- A parameterized family of structures S can be combined into a single structure: X ↦ (a : A) → S a X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Relational.Parameterized where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.HITs.SetQuotients open import Cubical.Structures.Parameterized private variable ℓ ℓ₀ ℓ₁ ℓ₁' ℓ₁'' : Level -- Structured relations module _ (A : Type ℓ₀) where ParamRelStr : {S : A → Type ℓ → Type ℓ₁} → (∀ a → StrRel (S a) ℓ₁') → StrRel (ParamStructure A S) (ℓ-max ℓ₀ ℓ₁') ParamRelStr ρ R s t = (a : A) → ρ a R (s a) (t a) paramSuitableRel : {S : A → Type ℓ → Type ℓ₁} {ρ : ∀ a → StrRel (S a) ℓ₁'} → (∀ a → SuitableStrRel (S a) (ρ a)) → SuitableStrRel (ParamStructure A S) (ParamRelStr ρ) paramSuitableRel {ρ = ρ} θ .quo (X , f) R r .fst .fst a = θ a .quo (X , f a) R (r a) .fst .fst paramSuitableRel {ρ = ρ} θ .quo (X , f) R r .fst .snd a = θ a .quo (X , f a) R (r a) .fst .snd paramSuitableRel {ρ = ρ} θ .quo (X , f) R r .snd (q , c) i .fst a = θ a .quo (X , f a) R (r a) .snd (q a , c a) i .fst paramSuitableRel {ρ = ρ} θ .quo (X , f) R r .snd (q , c) i .snd a = θ a .quo (X , f a) R (r a) .snd (q a , c a) i .snd paramSuitableRel {ρ = ρ} θ .symmetric R r a = θ a .symmetric R (r a) paramSuitableRel {ρ = ρ} θ .transitive R R' r r' a = θ a .transitive R R' (r a) (r' a) paramSuitableRel {ρ = ρ} θ .set setX = isSetΠ λ a → θ a .set setX paramSuitableRel {ρ = ρ} θ .prop propR s t = isPropΠ λ a → θ a .prop propR (s a) (t a) paramRelMatchesEquiv : {S : A → Type ℓ → Type ℓ₁} (ρ : ∀ a → StrRel (S a) ℓ₁') {ι : ∀ a → StrEquiv (S a) ℓ₁''} → (∀ a → StrRelMatchesEquiv (ρ a) (ι a)) → StrRelMatchesEquiv (ParamRelStr ρ) (ParamEquivStr A ι) paramRelMatchesEquiv ρ μ _ _ e = equivΠCod λ a → μ a _ _ e paramRelAction : {S : A → Type ℓ → Type ℓ₁} {ρ : ∀ a → StrRel (S a) ℓ₁'} → (∀ a → StrRelAction (ρ a)) → StrRelAction (ParamRelStr ρ) paramRelAction α .actStr f s a = α a .actStr f (s a) paramRelAction α .actStrId s = funExt λ a → α a .actStrId (s a) paramRelAction α .actRel h _ _ r a = α a .actRel h _ _ (r a) -- Detransitivity of ParamRelStr would depend on choice in general, so -- we don't get positivity
36.577465
79
0.627262
64ac2c543336cb0b84fa2db1b0daeefe4a9710ee
2,495
agda
Agda
Cubical/HITs/Ints/DeltaInt/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/Ints/DeltaInt/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/DeltaInt/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} {- This file defines deltaIntSec : ∀ b → toInt (fromInt b) ≡ b succPred : ∀ n → succ (pred n) ≡ n predSucc : ∀ n → pred (succ n) ≡ n and proved DeltaInt ≡ DeltaInt by the above functions succPredEq : DeltaInt ≡ DeltaInt along with some interval-relevant lemmas cancelDiamond : ∀ a b i → cancel a b i ≡ cancel (suc a) (suc b) i cancelTriangle : ∀ a b i → a ⊖ b ≡ cancel a b i we also have DeltaInt ≡ Int proof DeltaInt≡Int : DeltaInt ≡ Int and we transported some proofs from Int to DeltaInt discreteDeltaInt : Discrete DeltaInt isSetDeltaInt : isSet DeltaInt -} module Cubical.HITs.Ints.DeltaInt.Properties where open import Cubical.Foundations.Everything open import Cubical.Data.Nat hiding (zero) open import Cubical.Data.Int hiding (abs; sgn; _+_) open import Cubical.HITs.Ints.DeltaInt.Base open import Cubical.Relation.Nullary using (Discrete) deltaIntSec : ∀ b → toInt (fromInt b) ≡ b deltaIntSec (pos n) = refl deltaIntSec (negsuc n) = refl cancelDiamond : ∀ a b i → cancel a b i ≡ cancel (suc a) (suc b) i cancelDiamond a b i j = hcomp (λ k → λ { (i = i0) → cancel a b j ; (i = i1) → cancel (suc a) (suc b) (j ∧ k) ; (j = i0) → cancel a b i ; (j = i1) → cancel (suc a) (suc b) (i ∧ k) }) (cancel a b (i ∨ j)) cancelTriangle : ∀ a b i → a ⊖ b ≡ cancel a b i cancelTriangle a b i j = hcomp (λ k → λ { (i = i0) → a ⊖ b ; (j = i0) → a ⊖ b ; (j = i1) → cancel a b (i ∧ k) }) (a ⊖ b) deltaIntRet : ∀ a → fromInt (toInt a) ≡ a deltaIntRet (x ⊖ 0) = refl deltaIntRet (0 ⊖ suc y) = refl deltaIntRet (suc x ⊖ suc y) = deltaIntRet (x ⊖ y) ∙ cancel x y deltaIntRet (cancel a 0 i) = cancelTriangle a 0 i deltaIntRet (cancel 0 (suc b) i) = cancelTriangle 0 (suc b) i deltaIntRet (cancel (suc a) (suc b) i) = deltaIntRet (cancel a b i) ∙ cancelDiamond a b i DeltaInt≡Int : DeltaInt ≡ Int DeltaInt≡Int = isoToPath (iso toInt fromInt deltaIntSec deltaIntRet) discreteDeltaInt : Discrete DeltaInt discreteDeltaInt = subst Discrete (sym DeltaInt≡Int) discreteInt isSetDeltaInt : isSet DeltaInt isSetDeltaInt = subst isSet (sym DeltaInt≡Int) isSetInt succPred : ∀ n → succ (pred n) ≡ n succPred (x ⊖ y) i = cancel x y (~ i) -- cancel (suc a) (suc b) i ≡ cancel a b i succPred (cancel a b i) = sym (cancelDiamond a b i) predSucc : ∀ n → pred (succ n) ≡ n predSucc (x ⊖ y) = succPred (x ⊖ y) predSucc (cancel a b i) = succPred (cancel a b i) succPredEq : DeltaInt ≡ DeltaInt succPredEq = isoToPath (iso succ pred succPred predSucc)
28.678161
89
0.666533
36e195039e5ddf8356fe48e74448ea374cdd030f
76
agda
Agda
test/Fail/WrongHidingInLambda.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/WrongHidingInLambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/WrongHidingInLambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module WrongHidingInLambda where f : (A : Set) -> A -> A f = \{A} x -> x
10.857143
32
0.539474
5915c027213ad78ff6485cfd7eba73b8f2349382
2,317
agda
Agda
Numbers/Modulo/ZModule.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/Modulo/ZModule.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/Modulo/ZModule.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Groups.Abelian.Definition open import Groups.FiniteGroups.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Setoids.Setoids open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas open import Functions open import Semirings.Definition open import Numbers.Modulo.Definition open import Numbers.Modulo.Addition open import Orders.Total.Definition open import Numbers.Modulo.ModuloFunction open import Numbers.Integers.Definition open import Numbers.Modulo.Group open import Modules.Definition open import Numbers.Integers.RingStructure.Ring module Numbers.Modulo.ZModule {n : ℕ} (pr : 0 <N n) where timesNat : ℕ → ℤn n pr → ℤn n pr timesNat 0 b = record { x = 0 ; xLess = pr } timesNat (succ x) b = _+n_ pr b (timesNat x b) times : ℤ → ℤn n pr → ℤn n pr times (nonneg x) b = timesNat x b times (negSucc x) b = Group.inverse (ℤnGroup n pr) (timesNat (succ x) b) dotDistributesLeft : (r : ℤ) → (x y : ℤn n pr) → times r ((_ +n x) y) ≡ (_ +n times r x) (times r y) dotDistributesLeft (nonneg zero) x y = equalityCommutative (Group.identRight (ℤnGroup n pr)) dotDistributesLeft (nonneg (succ r)) x y rewrite dotDistributesLeft (nonneg r) x y = equalityZn (transitivity (equalityCommutative (modExtracts pr _ _)) (transitivity (applyEquality (mod n pr) (transitivity (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring (ℤn.x x) _ _)) (applyEquality (ℤn.x x +N_) (transitivity (Semiring.commutative ℕSemiring (ℤn.x y) _) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring _ (ℤn.x (timesNat r y)) (ℤn.x y))) (applyEquality (ℤn.x (timesNat r x) +N_) (Semiring.commutative ℕSemiring (ℤn.x (timesNat r y)) (ℤn.x y))))))) (Semiring.+Associative ℕSemiring (ℤn.x x) _ _))) (modExtracts pr _ _))) dotDistributesLeft (negSucc r) x y = {!!} ZnZModule : Module ℤRing (ℤnAbGroup n pr) times Module.dotWellDefined (ZnZModule) refl refl = refl Module.dotDistributesLeft (ZnZModule) {r} {x} {y} = dotDistributesLeft r x y Module.dotDistributesRight (ZnZModule) = {!!} Module.dotAssociative (ZnZModule) = {!!} Module.dotIdentity (ZnZModule) {record { x = x ; xLess = xLess }} = {!!}
51.488889
660
0.748382
36ed8dedd347f415a41c7373e13ae2c46c89c7d8
1,263
agda
Agda
src/Tactic/Monoid/Proofs.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Monoid/Proofs.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Monoid/Proofs.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Monoid.Proofs where open import Prelude open import Tactic.Monoid.Exp ⟦_⟧_ : ∀ {a} {A : Set a} {{_ : Monoid A}} → Exp → (Nat → A) → A ⟦ var x ⟧ ρ = ρ x ⟦ ε ⟧ ρ = mempty ⟦ e ⊕ e₁ ⟧ ρ = ⟦ e ⟧ ρ <> ⟦ e₁ ⟧ ρ ⟦_⟧n_ : ∀ {a} {A : Set a} {{_ : Monoid A}} → List Nat → (Nat → A) → A ⟦ xs ⟧n ρ = mconcat (map ρ xs) map/++ : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) (xs ys : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map/++ f [] ys = refl map/++ f (x ∷ xs) ys = f x ∷_ $≡ map/++ f xs ys module _ {a} {A : Set a} {{Mon : Monoid A}} {{Laws : Monoid/Laws A}} where mconcat/++ : (xs ys : List A) → mconcat (xs ++ ys) ≡ mconcat xs <> mconcat ys mconcat/++ [] ys = sym (left-identity _) mconcat/++ (x ∷ xs) ys = x <>_ $≡ mconcat/++ xs ys ⟨≡⟩ sym (monoid-assoc x _ _) sound : ∀ e (ρ : Nat → A) → ⟦ e ⟧ ρ ≡ ⟦ flatten e ⟧n ρ sound (var x) ρ = sym (right-identity (ρ x)) sound ε ρ = refl sound (e ⊕ e₁) ρ = _<>_ $≡ sound e ρ *≡ sound e₁ ρ ⟨≡⟩ʳ mconcat $≡ map/++ ρ (flatten e) (flatten e₁) ⟨≡⟩ mconcat/++ (map ρ (flatten e)) _ proof : ∀ e e₁ (ρ : Nat → A) → flatten e ≡ flatten e₁ → ⟦ e ⟧ ρ ≡ ⟦ e₁ ⟧ ρ proof e e₁ ρ nfeq = eraseEquality $ sound e ρ ⟨≡⟩ (⟦_⟧n ρ) $≡ nfeq ⟨≡⟩ʳ sound e₁ ρ
37.147059
111
0.489311
6501cea4d42f2d646fb913083a849552cfcf2962
385
agda
Agda
src/ConsoleLib.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
src/ConsoleLib.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
src/ConsoleLib.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module ConsoleLib where open import NativeIO public open import SizedIO.Console public hiding (main) renaming (translateIOConsole to run) open import Size open import SizedIO.Base open import Data.List WriteString : (s : String) → IOConsole ∞ Unit WriteString s = Exec (putStrLn s) GetLine : IOConsole ∞ String GetLine = Exec getLine ConsoleProg : Set ConsoleProg = NativeIO Unit
22.647059
86
0.784416
73343828fd85fd51d3d988887800e0fb074fa060
2,577
agda
Agda
Type/Cubical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Type/Cubical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Type/Cubical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} module Type.Cubical where import Lvl open import Type open import Agda.Primitive public using (SSet) open import Agda.Primitive.Cubical public using () renaming (I to Interval) -- _ : SSet(Lvl.𝟎). Inhabitants can be seen as points on a closed unit interval. module Interval where open Agda.Primitive.Cubical public using ( Partial ; -- _ : ∀{ℓ} → Interval → Type{ℓ} → SSet(ℓ) PartialP -- _ : ∀{ℓ} → (i : Interval) → (.(Is-𝟏 i) → Type{ℓ}) → SSet(ℓ) ) renaming ( i0 to 𝟎 ; -- _ : Interval. 0 (the initial point) in the interval. i1 to 𝟏 ; -- _ : Interval. 1 (the terminal point) in the interval. primIMin to min ; -- _ : Interval → Interval → Interval. Chooses the point nearest 𝟎. Also called: _∧_ (from lattice structure). primIMax to max ; -- _ : Interval → Interval → Interval. Chooses the point nearest 𝟏. Also called: _∨_ (from lattice structure). primINeg to flip ; -- _ : Interval → Interval. Flips a point in the interval around the point of symmetry (the middle). Essentially (p ↦ 𝟏 − p). IsOne to Is-𝟏 ; -- _ : Interval → SSet(Lvl.𝟎). The predicate stating that a point is 𝟏. itIsOne to 𝟏-is-𝟏 ; -- _ : Is-𝟏(𝟏). Proof of 𝟏 being 𝟏. primComp to comp ; -- _ : ∀{ℓ : Interval → Lvl.Level} → (P : (i : Interval) → Type{ℓ(i)}) → ∀{i : Interval} → ((j : Interval) → .(Is-𝟏 i) → P(j)) → (P(𝟎) → P(𝟏)) primHComp to hComp ; -- _ : ∀{ℓ}{A : Type{ℓ}}{i : Interval} → (Interval → .(Is-𝟏 i) → A) → (A → A) primTransp to transp -- _ : ∀{ℓ : Interval → Lvl.Level}(A : (i : Interval) → Type{ℓ(i)}) → Interval → A(𝟎)→ A(𝟏). ) -- The distance to the nearest boundary. nearBound : Interval → Interval nearBound x = min x (flip x) -- The distance to the furthest boundary. farBound : Interval → Interval farBound x = max x (flip x) -- Proof of maximum of 𝟏 being 𝟏. maxₗ-is-𝟏 : ∀{x y} → Is-𝟏(x) → Is-𝟏(max x y) maxₗ-is-𝟏 {x}{y} = Agda.Primitive.Cubical.IsOne1 x y -- Proof of maximum of 𝟏 being 𝟏. maxᵣ-is-𝟏 : ∀{x y} → Is-𝟏(y) → Is-𝟏(max x y) maxᵣ-is-𝟏 {x}{y} = Agda.Primitive.Cubical.IsOne2 x y -- The predicate stating that a point is 𝟎. Is-𝟎 : Interval → SSet(Lvl.𝟎) Is-𝟎 i = Is-𝟏(flip i) -- Proof of 𝟎 being 𝟎. 𝟎-is-𝟎 : Is-𝟎(𝟎) 𝟎-is-𝟎 = 𝟏-is-𝟏 -- Proof of minimum of 𝟎 being 𝟎. minₗ-is-𝟎 : ∀{x y} → Is-𝟎(x) → Is-𝟎(min x y) minₗ-is-𝟎 {x}{y} = maxₗ-is-𝟏 {flip x} {flip y} -- Proof of minimum of 𝟎 being 𝟎. minᵣ-is-𝟎 : ∀{x y} → Is-𝟎(y) → Is-𝟎(min x y) minᵣ-is-𝟎 {x}{y} = maxᵣ-is-𝟏 {flip x} {flip y}
39.646154
167
0.595654
37bd9a38cb41cc10fdac09dc59fcc0d9fd0649ba
1,501
agda
Agda
src/Polynomial/Homomorphism/Negation.agda
mckeankylej/agda-ring-solver
f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500
[ "MIT" ]
36
2019-01-25T16:40:52.000Z
2022-02-15T00:57:55.000Z
src/Polynomial/Homomorphism/Negation.agda
oisdk/agda-algebra
7e4ee048dab68ccb0a8673a6a663a37c1d1f4080
[ "MIT" ]
5
2019-04-17T20:48:48.000Z
2022-03-12T01:55:42.000Z
src/Polynomial/Homomorphism/Negation.agda
oisdk/agda-algebra
7e4ee048dab68ccb0a8673a6a663a37c1d1f4080
[ "MIT" ]
4
2019-04-16T02:23:16.000Z
2022-01-20T07:07:11.000Z
{-# OPTIONS --without-K --safe #-} open import Polynomial.Parameters module Polynomial.Homomorphism.Negation {c r₁ r₂ r₃} (homo : Homomorphism c r₁ r₂ r₃) where open import Data.Product using (_,_) open import Data.Vec using (Vec) open import Induction.WellFounded using (Acc; acc) open import Induction.Nat using (<′-wellFounded) open import Function open Homomorphism homo open import Polynomial.Homomorphism.Lemmas homo open import Polynomial.Reasoning ring open import Polynomial.NormalForm homo ⊟-step-hom : ∀ {n} (a : Acc _<′_ n) → (xs : Poly n) → ∀ ρ → ⟦ ⊟-step a xs ⟧ ρ ≈ - (⟦ xs ⟧ ρ) ⊟-step-hom (acc _ ) (Κ x Π i≤n) ρ = -‿homo x ⊟-step-hom (acc wf) (Σ xs Π i≤n) ρ′ = let (ρ , ρs) = drop-1 i≤n ρ′ neg-zero = begin 0# ≈⟨ sym (zeroʳ _) ⟩ - 0# * 0# ≈⟨ -‿*-distribˡ 0# 0# ⟩ - (0# * 0#) ≈⟨ -‿cong (zeroˡ 0#) ⟩ - 0# ∎ in begin ⟦ poly-map (⊟-step (wf _ i≤n)) xs Π↓ i≤n ⟧ ρ′ ≈⟨ Π↓-hom (poly-map (⊟-step (wf _ i≤n)) xs) i≤n ρ′ ⟩ Σ?⟦ poly-map (⊟-step (wf _ i≤n)) xs ⟧ (ρ , ρs) ≈⟨ poly-mapR ρ ρs (⊟-step (wf _ i≤n)) -_ (-‿cong) (λ x y → *-comm x (- y) ⟨ trans ⟩ -‿*-distribˡ y x ⟨ trans ⟩ -‿cong (*-comm _ _)) (λ x y → sym (-‿+-comm x y)) (flip (⊟-step-hom (wf _ i≤n)) ρs) (sym neg-zero ) xs ⟩ - Σ⟦ xs ⟧ (ρ , ρs) ∎ ⊟-hom : ∀ {n} → (xs : Poly n) → (Ρ : Vec Carrier n) → ⟦ ⊟ xs ⟧ Ρ ≈ - ⟦ xs ⟧ Ρ ⊟-hom = ⊟-step-hom (<′-wellFounded _)
30.02
217
0.515656
0d3710b7bbaa3b91729a65eb25da57631e035a7d
252
agda
Agda
test/Fail/InjectiveTypeConstructors.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/InjectiveTypeConstructors.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/InjectiveTypeConstructors.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Needs the --injective-type-constructors option enabled to type check. module InjectiveTypeConstructors where data D (A : Set) : Set where data _==_ (A : Set) : Set → Set where refl : A == A injD : ∀ {A B} → D A == D B → A == B injD refl = refl
22.909091
72
0.638889
646c08b4bb7d47f479519685835a90366be98ce2
2,857
agda
Agda
cohomology/Torus.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
cohomology/Torus.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
cohomology/Torus.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Theory {- Ordinary cohomology groups of the n-torus Tⁿ = (S¹)ⁿ. - We have Cᵏ(Tⁿ) == C⁰(S⁰)^(n choose' k) where _choose'_ defined as below. - This argument could give Cᵏ((Sᵐ)ⁿ) with a little more work. -} module cohomology.Torus {i} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cohomology.Sn OT open import cohomology.SphereProduct cohomology-theory open import cohomology.Unit cohomology-theory {- Almost n choose k, but with n choose' O = 0 for any n. -} _choose'_ : ℕ → ℤ → ℕ n choose' (neg _) = 0 n choose' O = 0 n choose' pos O = n O choose' (pos (S k)) = 0 S n choose' pos (S k) = (n choose' (pos (S k))) + (n choose' (pos k)) _-⊙Torus : ℕ → Ptd i O -⊙Torus = ⊙Lift ⊙Unit (S n) -⊙Torus = (⊙Sphere {i} 1) ⊙× (n -⊙Torus) C-nTorus : (k : ℤ) (n : ℕ) → C k (n -⊙Torus) == (C O (⊙Sphere 0)) ^ᴳ (n choose' k) C-nTorus (neg k) O = C-Unit (neg k) C-nTorus (neg k) (S n) = C-Sphere× (neg k) 1 (n -⊙Torus) ∙ ap (λ K → K ×ᴳ (C (neg k) (n -⊙Torus) ×ᴳ C (neg k) (⊙Susp^ 1 (n -⊙Torus)))) (C-Sphere-≠ (neg k) 1 (ℤ-neg≠pos _ _)) ∙ ×ᴳ-unit-l {G = C (neg k) (n -⊙Torus) ×ᴳ C (neg k) (⊙Susp (n -⊙Torus))} ∙ ap (λ K → K ×ᴳ C (neg k) (⊙Susp (n -⊙Torus))) (C-nTorus (neg k) n) ∙ ×ᴳ-unit-l {G = C (neg k) (⊙Susp (n -⊙Torus))} ∙ group-ua (C-Susp (neg (S k)) (n -⊙Torus)) ∙ C-nTorus (neg (S k)) n C-nTorus O O = C-Unit O C-nTorus O (S n) = C-Sphere× O 1 (n -⊙Torus) ∙ ap (λ K → K ×ᴳ (C O (n -⊙Torus) ×ᴳ C O (⊙Susp (n -⊙Torus)))) (C-Sphere-≠ O 1 (ℤ-O≠pos _)) ∙ ×ᴳ-unit-l {G = C O (n -⊙Torus) ×ᴳ C O (⊙Susp (n -⊙Torus))} ∙ ap (λ K → K ×ᴳ C O (⊙Susp (n -⊙Torus))) (C-nTorus O n) ∙ ×ᴳ-unit-l {G = C O (⊙Susp (n -⊙Torus))} ∙ group-ua (C-Susp (neg O) (n -⊙Torus)) ∙ C-nTorus (neg O) n C-nTorus (pos O) O = C-Unit (pos O) C-nTorus (pos O) (S n) = C-Sphere× (pos O) 1 (n -⊙Torus) ∙ ap (λ K → K ×ᴳ (C (pos O) (n -⊙Torus) ×ᴳ C (pos O) (⊙Susp (n -⊙Torus)))) (C-Sphere-diag 1) ∙ ap (λ K → C O (⊙Sphere O) ×ᴳ K) (ap2 _×ᴳ_ (C-nTorus (pos O) n) (group-ua (C-Susp O (n -⊙Torus)) ∙ C-nTorus O n) ∙ ×ᴳ-unit-r {G = C O (⊙Sphere 0) ^ᴳ (n choose' pos O)}) C-nTorus (pos (S k)) O = C-Unit (pos (S k)) C-nTorus (pos (S k)) (S n) = C-Sphere× (pos (S k)) 1 (n -⊙Torus) ∙ ap (λ K → K ×ᴳ (C (pos (S k)) (n -⊙Torus) ×ᴳ C (pos (S k)) (⊙Susp (n -⊙Torus)))) (C-Sphere-≠ (pos (S k)) 1 (ℕ-S≠O k ∘ pos-injective (S k) 0)) ∙ ×ᴳ-unit-l {G = (C (pos (S k)) (n -⊙Torus)) ×ᴳ (C (pos (S k)) (⊙Susp (n -⊙Torus)))} ∙ ap2 _×ᴳ_ (C-nTorus (pos (S k)) n) (group-ua (C-Susp (pos k) (n -⊙Torus)) ∙ C-nTorus (pos k) n) ∙ ^ᴳ-sum (C O (⊙Sphere 0)) (n choose' pos (S k)) (n choose' pos k)
32.465909
75
0.502275
1171bc539e3ebab02b7887326f81660393085963
891
agda
Agda
agda-stdlib-0.9/src/Relation/Binary/Properties/Poset.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Relation/Binary/Properties/Poset.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Relation/Binary/Properties/Poset.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by posets ------------------------------------------------------------------------ open import Relation.Binary module Relation.Binary.Properties.Poset {p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where open Relation.Binary.Poset P hiding (trans) import Relation.Binary.NonStrictToStrict as Conv open Conv _≈_ _≤_ ------------------------------------------------------------------------ -- Posets can be turned into strict partial orders strictPartialOrder : StrictPartialOrder _ _ _ strictPartialOrder = record { isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = irrefl ; trans = trans isPartialOrder ; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈ } } open StrictPartialOrder strictPartialOrder
29.7
72
0.535354
0d534d19fb062533309239df92afd9066cdfbef6
444
agda
Agda
test/interaction/Issue3578.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3578.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3578.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-02-23, issue #3578. -- Preserve types as much as possible during pattern matching. -- New unifier (from Agda 2.5.1) was normalizing too much. -- {-# OPTIONS -v tc.lhs.unify:45 #-} data Nat : Set where zero : Nat postulate MustNotBeNamed : Set A = MustNotBeNamed data P : Nat → Set where z : A → P zero test : ∀{n} → P n → Set test (z x) = {!x!} -- C-c C-, -- EXPECTED: -- -- Goal: Set -- —————————————— -- x : A
17.076923
62
0.583333
72e71509c12418dcbe76ac15850883d74d74da22
6,093
agda
Agda
agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/Programming_Language_Foundations_in_Agda/x09-747Decidable.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module 747Decidable where -- Library import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym) -- added sym open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _≤_; z≤n; s≤s) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using () renaming (contradiction to ¬¬-intro) open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) -- Copied from 747Isomorphism. record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ -- Copied from 747Relations. infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n -- Recall that the constructors for _≤_ are z≤n and s≤s. -- Here are a couple of examples to show how to prove inequalities -- (or their negations). 2≤4 : 2 ≤ 4 2≤4 = {!!} ¬4≤2 : ¬ (4 ≤ 2) ¬4≤2 = {!!} -- This should be familiar. data Bool : Set where true : Bool false : Bool -- We can define a Boolean comparison function. infix 4 _≤ᵇ_ _≤ᵇ_ : ℕ → ℕ → Bool m ≤ᵇ n = {!!} -- PLFA steps through these computations using equational reasoning. _ : (2 ≤ᵇ 4) ≡ true _ = refl _ : (4 ≤ᵇ 2) ≡ false _ = refl -- Relating evidence and computation. T : Bool → Set T true = ⊤ T false = ⊥ T→≡ : ∀ (b : Bool) → T b → b ≡ true T→≡ b t = {!!} ≡→T : ∀ {b : Bool} → b ≡ true → T b ≡→T e = {!!} ≤ᵇ→≤ : ∀ (m n : ℕ) → T (m ≤ᵇ n) → m ≤ n ≤ᵇ→≤ m n t = {!!} ≤→≤ᵇ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ n) ≤→≤ᵇ m≤n = {!!} -- Getting the best of both worlds! data Dec (A : Set) : Set where yes : A → Dec A no : ¬ A → Dec A -- Helpers for defining _≤?_ -- If you don't use these, the examples below won't normalize. ¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero) ¬s≤z = {!!} ¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n) ¬s≤s = {!!} -- Decidable ≤. _≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n) m ≤? n = {!!} _ : 2 ≤? 4 ≡ yes (s≤s (s≤s z≤n)) _ = refl _ : 4 ≤? 2 ≡ no (¬s≤s (¬s≤s ¬s≤z)) _ = refl -- We can also evaluate the LHS of these using C-c C-n. -- 747/PLFA exercise: DecLT (3 point) -- Decidable strict equality. -- You will need these helper functions as we did above. ¬z<z : ¬ (zero < zero) ¬z<z = {!!} ¬s<s : ∀ {m n : ℕ} → ¬ (m < n) → ¬ (suc m < suc n) ¬s<s = {!!} ¬s<z : ∀ {n : ℕ} → ¬ (suc n < zero) ¬s<z = {!!} _<?_ : ∀ (m n : ℕ) → Dec (m < n) m <? n = {!!} -- Some tests. _ : 2 <? 4 ≡ yes (s<s (s<s (z<s))) _ = refl _ : 4 <? 2 ≡ no (¬s<s (¬s<s ¬s<z)) _ = refl _ : 3 <? 3 ≡ no (¬s<s (¬s<s (¬s<s ¬z<z))) _ = refl -- 747/PLFA exercise: DecNatEq (3 points) -- Decidable equality for natural numbers. _≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n) -- split m,n m ≡ℕ? n = {!!} -- Reusing ≤ᵇ and proofs of equivalence with ≤ to decide ≤. _≤?′_ : ∀ (m n : ℕ) → Dec (m ≤ n) m ≤?′ n = {!!} -- Erasing Dec down to Bool (or "isYes"). ⌊_⌋ : ∀ {A : Set} → Dec A → Bool ⌊ yes x ⌋ = true ⌊ no x ⌋ = false _≤ᵇ′_ : ℕ → ℕ → Bool m ≤ᵇ′ n = ⌊ m ≤? n ⌋ -- If D is Dec A, then T ⌊ D ⌋ is inhabited exactly when A is inhabited. toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A toWitness t = {!!} fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋ fromWitness a = {!!} -- Similar ideas when it is the "no" witnesses we want to handle. isNo : ∀ {A : Set} → Dec A → Bool isNo (yes _) = false isNo (no _) = true toWitnessFalse : ∀ {A : Set} {D : Dec A} → T (isNo D) → ¬ A toWitnessFalse = {!!} fromWitnessFalse : ∀ {A : Set} {D : Dec A} → ¬ A → T (isNo D) fromWitnessFalse = {!!} -- Agda standard library definitions for use of these. True : ∀ {A : Set} → (D : Dec A) → Set True Q = T ⌊ Q ⌋ False : ∀ {A : Set} → (D : Dec A) → Set False Q = T (isNo Q) -- A concrete example. ≤ᵇ′→≤ : ∀ {m n : ℕ} → T (m ≤ᵇ′ n) → m ≤ n ≤ᵇ′→≤ = toWitness ≤→≤ᵇ′ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ′ n) ≤→≤ᵇ′ = fromWitness -- Conclusion: use Decidables instead of Booleans! -- Logical connectives for Decidables. infixr 6 _∧_ _∧_ : Bool → Bool → Bool true ∧ true = true true ∧ false = false false ∧ y = false infixr 6 _×-dec_ _×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B) da ×-dec db = {!!} infixr 5 _∨_ _∨_ : Bool → Bool → Bool true ∨ y = true false ∨ y = y infixr 5 _⊎-dec_ _⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B) da ⊎-dec db = {!!} not : Bool → Bool not true = false not false = true ¬? : ∀ {A : Set} → Dec A → Dec (¬ A) ¬? da = {!!} -- A Boolean version of implication. _⊃_ : Bool → Bool → Bool true ⊃ true = true true ⊃ false = false false ⊃ y = true _→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B) da →-dec db = {!!} -- 747/PLFA exercise: ErasBoolDec (3 points) -- Erasure relates boolean and decidable operations. ∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋ ∧-× da db = {!!} ∨-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∨ ⌊ y ⌋ ≡ ⌊ x ⊎-dec y ⌋ ∨-× da db = {!!} not-¬ : ∀ {A : Set} (x : Dec A) → not ⌊ x ⌋ ≡ ⌊ ¬? x ⌋ not-¬ da = {!!} -- 747/PLFA exercise: iff-erasure. _iff_ : Bool → Bool → Bool true iff true = true true iff false = false false iff true = false false iff false = true _⇔-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⇔ B) da ⇔-dec db = {!!} iff-⇔ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ iff ⌊ y ⌋ ≡ ⌊ x ⇔-dec y ⌋ iff-⇔ da db = {!!} -- Proof by reflection. -- Or, getting Agda to construct proofs at compile time. -- A guarded version of monus. minus : (m n : ℕ) (n≤m : n ≤ m) → ℕ minus m zero _ = m minus (suc m) (suc n) (s≤s m≤n) = minus m n m≤n -- But we have to provide proofs. _ : minus 5 3 (s≤s (s≤s (s≤s z≤n))) ≡ 2 _ = refl -- Agda will fill in an implicit record type if it can fill in all fields. -- Since ⊤ is defined as a record type with no fields... -- We can get Agda to compute a value of type True (n ≤? m). _-_ : (m n : ℕ) {n≤m : True (n ≤? m)} → ℕ _-_ m n {n≤m} = minus m n (toWitness n≤m) _ : 5 - 3 ≡ 2 _ = refl -- We will later use this to get Agda to compute parts of proofs -- that would be annoying for us to provide.
20.31
80
0.529952
ed7cc09c610ff4fa52a4e7137e6f27f937a6afb2
2,802
agda
Agda
agda-stdlib/src/Data/Fin/Subset.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Fin/Subset.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Fin/Subset.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Subsets of finite sets ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Subset where open import Algebra import Algebra.Properties.BooleanAlgebra as BoolAlgProp import Algebra.Properties.BooleanAlgebra.Expression as BAExpr open import Data.Bool using (not; _∧_; _∨_; _≟_) open import Data.Fin.Base using (Fin; zero; suc) open import Data.List.Base using (List; foldr; foldl) open import Data.Nat.Base using (ℕ) open import Data.Product using (∃; _×_) open import Data.Vec hiding (foldr; foldl) import Data.Vec.Relation.Binary.Pointwise.Extensional as Pointwise open import Relation.Nullary ------------------------------------------------------------------------ -- Definitions -- Sides. open import Data.Bool.Base public using () renaming (Bool to Side; true to inside; false to outside) -- Partitions a finite set into two parts, the inside and the outside. Subset : ℕ → Set Subset = Vec Side ------------------------------------------------------------------------ -- Special subsets -- The empty subset ⊥ : ∀ {n} → Subset n ⊥ = replicate outside -- The full subset ⊤ : ∀ {n} → Subset n ⊤ = replicate inside -- A singleton subset, containing just the given element. ⁅_⁆ : ∀ {n} → Fin n → Subset n ⁅ zero ⁆ = inside ∷ ⊥ ⁅ suc i ⁆ = outside ∷ ⁅ i ⁆ ------------------------------------------------------------------------ -- Membership and subset predicates infix 4 _∈_ _∉_ _⊆_ _⊈_ _⊂_ _⊄_ _∈_ : ∀ {n} → Fin n → Subset n → Set x ∈ p = p [ x ]= inside _∉_ : ∀ {n} → Fin n → Subset n → Set x ∉ p = ¬ (x ∈ p) _⊆_ : ∀ {n} → Subset n → Subset n → Set p ⊆ q = ∀ {x} → x ∈ p → x ∈ q _⊈_ : ∀ {n} → Subset n → Subset n → Set p ⊈ q = ¬ (p ⊆ q) _⊂_ : ∀ {n} → Subset n → Subset n → Set p ⊂ q = p ⊆ q × ∃ (λ x → x ∈ q × x ∉ p) _⊄_ : ∀ {n} → Subset n → Subset n → Set p ⊄ q = ¬ (p ⊂ q) ------------------------------------------------------------------------ -- Set operations infixr 7 _∩_ infixr 6 _∪_ -- Complement ∁ : ∀ {n} → Op₁ (Subset n) ∁ p = map not p -- Intersection _∩_ : ∀ {n} → Op₂ (Subset n) p ∩ q = zipWith _∧_ p q -- Union _∪_ : ∀ {n} → Op₂ (Subset n) p ∪ q = zipWith _∨_ p q -- N-ary union ⋃ : ∀ {n} → List (Subset n) → Subset n ⋃ = foldr _∪_ ⊥ -- N-ary intersection ⋂ : ∀ {n} → List (Subset n) → Subset n ⋂ = foldr _∩_ ⊤ -- Size ∣_∣ : ∀ {n} → Subset n → ℕ ∣ p ∣ = count (_≟ inside) p ------------------------------------------------------------------------ -- Properties Nonempty : ∀ {n} (p : Subset n) → Set Nonempty p = ∃ λ f → f ∈ p Empty : ∀ {n} (p : Subset n) → Set Empty p = ¬ Nonempty p Lift : ∀ {n ℓ} → (Fin n → Set ℓ) → (Subset n → Set ℓ) Lift P p = ∀ {x} → x ∈ p → P x
24.155172
72
0.48858