data_source
stringclasses
9 values
question_number
stringlengths
14
17
problem
stringlengths
14
1.32k
answer
stringlengths
1
993
license
stringclasses
8 values
data_topic
stringclasses
7 values
solution
stringlengths
1
991
college_math.PRECALCULUS
exercise.6.1.55
Find the domain of the function: $f(x)=\frac{1}{3-\log _{5}(x)}$
$(0,125) \cup(125, \infty)$
Creative Commons License
college_math.precalculus
(0,125) \cup(125, \infty)
college_math.PRECALCULUS
exercise.2.1.31
A plumber charges $\$ 50$ for a service call plus $\$ 80$ per hour. If she spends no longer than 8 hours a day at any one site, find a linear function that represents her total daily charges $C$ (in dollars) as a function of time $t$ (in hours) spent at any one given location.
$C(t)=80 t+50,0 \leq t \leq 8$.
Creative Commons License
college_math.precalculus
C(t)=80 t+50,0 \leq t \leq 8$.
college_math.PRECALCULUS
exercise.6.5.8
How much money needs to be invested now to obtain $\$ 2000$ in 3 years if the interest rate in a savings account is $0.25 \%$, compounded continuously? Round your answer to the nearest cent.
$P=\frac{2000}{e^{0.0025 \cdot 3}} \approx \$ 1985.06$
Creative Commons License
college_math.precalculus
P=\frac{2000}{e^{0.0025 \cdot 3}} \approx \$ 1985.06
college_math.PRECALCULUS
exercise.10.2.64
If $\theta=37.5^{\circ}$ and the side opposite $\theta$ has length 306 , how long is the side adjacent to $\theta$ ?
The hypotenuse has length $c=\frac{306}{\sin \left(37.5^{\circ}\right)} \approx 502.660$, so the side adjacent to $\theta$ has length $\sqrt{c^{2}-306^{2}} \approx 398.797$.
Creative Commons License
college_math.precalculus
The hypotenuse has length $c=\frac{306}{\sin \left(37.5^{\circ}\right)} \approx 502.660$, so the side adjacent to $\theta$ has length $\sqrt{c^{2}-306^{2}} \approx 398.797$.
college_math.PRECALCULUS
exercise.4.3.6
Solve the rational equation: $\frac{-x^{3}+4 x}{x^{2}-9}=4 x$
$x=0, x= \pm 2 \sqrt{2}$
Creative Commons License
college_math.precalculus
x=0, x= \pm 2 \sqrt{2}
college_math.PRECALCULUS
exercise.8.2.21
Solve the following system of linear equations: $\left\{\begin{aligned} 2 x-y+z & =1 \\ 2 x+2 y-z & =1 \\ 3 x+6 y+4 z & =9\end{aligned}\right.$
$\left(\frac{1}{3}, \frac{2}{3}, 1\right)$
Creative Commons License
college_math.precalculus
\left(\frac{1}{3}, \frac{2}{3}, 1\right)
college_math.PRECALCULUS
exercise.11.7.78
Use a calculator to approximate the five fifth roots of 1.
$w_{0}=1$
Creative Commons License
college_math.precalculus
w_{0}=1
college_math.PRECALCULUS
exercise.8.2.7
Solve the following system of linear equations: $\left\{\begin{aligned}-5 x+y & =17 \\ x+y & =5\end{aligned}\right.$
$(-2,7)$
Creative Commons License
college_math.precalculus
(-2,7)
college_math.PRECALCULUS
exercise.4.3.15
Solve the rational inequality and express your answer using interval notation: $\frac{3 x-1}{x^{2}+1} \leq 1$
$(-\infty, 1] \cup[2, \infty)$
Creative Commons License
college_math.precalculus
(-\infty, 1] \cup[2, \infty)
college_math.PRECALCULUS
exercise.10.4.91
If $\tan (\theta)=\frac{x}{7}$ for $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, find an expression for $\sin (2 \theta)$ in terms of $x$.
$\frac{14 x}{x^{2}+49}$
Creative Commons License
college_math.precalculus
\frac{14 x}{x^{2}+49}
college_math.PRECALCULUS
exercise.9.1.4
Write out the first four terms of the given sequence: $\left\{\frac{n^{2}+1}{n+1}\right\}_{n=0}^{\infty}$
$1,1, \frac{5}{3}, \frac{5}{2}$
Creative Commons License
college_math.precalculus
1,1, \frac{5}{3}, \frac{5}{2}
college_math.PRECALCULUS
exercise.10.1.37
Convert the angle from radian measure into degree measure: $\pi$
$180^{\circ}$
Creative Commons License
college_math.precalculus
180^{\circ}
college_math.PRECALCULUS
exercise.6.3.11
Solve the equation analytically: $5^{x}=-2$
No solution.
Creative Commons License
college_math.precalculus
No solution.
college_math.PRECALCULUS
exercise.11.1.1
The sounds we hear are made up of mechanical waves. The note ' $A$ ' above the note 'middle $\mathrm{C}^{\prime}$ is a sound wave with ordinary frequency $f=440 \mathrm{Hertz}=440 \frac{\mathrm{cycles}}{\text { second }}$. Find a sinusoid which models this note, assuming that the amplitude is 1 and the phase shift is 0 .
$S(t)=\sin (880 \pi t)$
Creative Commons License
college_math.precalculus
S(t)=\sin (880 \pi t)
college_math.PRECALCULUS
exercise.1.3.38
Determine whether or not the equation represents $y$ as a function of $x$: $x=-6$
Not a function
Creative Commons License
college_math.precalculus
Not a function
college_math.PRECALCULUS
exercise.10.1.32
Convert the angle from degree measure into radian measure, giving the exact value in terms of $\pi$: $-270^{\circ}$
$-\frac{3 \pi}{2}$
Creative Commons License
college_math.precalculus
-\frac{3 \pi}{2}
college_math.PRECALCULUS
exercise.9.4.1
Simplify the expression: $(3 !)^{2}$
36
Creative Commons License
college_math.precalculus
36
college_math.PRECALCULUS
exercise.6.4.1
Solve the equation analytically: $\log (3 x-1)=\log (4-x)$
$x=\frac{5}{4}$
Creative Commons License
college_math.precalculus
x=\frac{5}{4}
college_math.PRECALCULUS
exercise.11.4.27
Convert the point from polar coordinates into rectangular coordinates: $(6, \arctan (2))$
$\left(\frac{6 \sqrt{5}}{5}, \frac{12 \sqrt{5}}{5}\right)$
Creative Commons License
college_math.precalculus
\left(\frac{6 \sqrt{5}}{5}, \frac{12 \sqrt{5}}{5}\right)
college_math.PRECALCULUS
exercise.6.1.53
Find the domain of the function: $f(x)=\log _{9}(|x+3|-4)$
$(-\infty,-7) \cup(1, \infty)$
Creative Commons License
college_math.precalculus
(-\infty,-7) \cup(1, \infty)
college_math.PRECALCULUS
exercise.10.7.83
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $-\pi \leq x \leq \pi$: $\sec (x) \leq 2$
$\left[-\frac{2 \pi}{3},-\frac{\pi}{3}\right) \cup\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$
Creative Commons License
college_math.precalculus
\left[-\frac{2 \pi}{3},-\frac{\pi}{3}\right) \cup\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)
college_math.PRECALCULUS
exercise.9.1.21
Determine if the given sequence is arithmetic, geometric or neither. If it is arithmetic, find the common difference $d$; if it is geometric, find the common ratio $r$: $a_{n}=\frac{n !}{2}, n \geq 0$
neither
Creative Commons License
college_math.precalculus
neither
college_math.PRECALCULUS
exercise.10.1.31
Convert the angle from degree measure into radian measure, giving the exact value in terms of $\pi$: $135^{\circ}$
$\frac{3 \pi}{4}$
Creative Commons License
college_math.precalculus
\frac{3 \pi}{4}
college_math.PRECALCULUS
exercise.10.1.30
Convert the angle from degree measure into radian measure, giving the exact value in terms of $\pi$: $240^{\circ}$
$\frac{4 \pi}{3}$
Creative Commons License
college_math.precalculus
\frac{4 \pi}{3}
college_math.PRECALCULUS
exercise.10.4.90
If $\sin (\theta)=\frac{x}{2}$ for $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, find an expression for $\cos (2 \theta)$ in terms of $x$.
$1-\frac{x^{2}}{2}$
Creative Commons License
college_math.precalculus
1-\frac{x^{2}}{2}
college_math.PRECALCULUS
exercise.11.4.20
Convert the point from polar coordinates into rectangular coordinates: $(-20,3 \pi)$
$(20,0)$
Creative Commons License
college_math.precalculus
(20,0)
college_math.PRECALCULUS
exercise.6.3.20
Solve the equation analytically: $\frac{5000}{1+2 e^{-3 t}}=2500$
$t=\frac{1}{3} \ln (2)$
Creative Commons License
college_math.precalculus
t=\frac{1}{3} \ln (2)
college_math.PRECALCULUS
exercise.10.7.26
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\cos (2 x)=5 \sin (x)-2$
$x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
Creative Commons License
college_math.precalculus
x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}
college_math.PRECALCULUS
exercise.2.2.1
Solve the equation: $|x|=6$
$x=-6$ or $x=6$
Creative Commons License
college_math.precalculus
x=-6$ or $x=6
college_math.PRECALCULUS
exercise.3.4.11
Simplify the quantity $\sqrt{-49}$
$7 i$
Creative Commons License
college_math.precalculus
7 i
college_math.PRECALCULUS
exercise.3.3.45
Solve the polynomial inequality $-2 x^{3}+19 x^{2}-49 x+20>0$ and state your answer using interval notation.
$(-\infty,-1) \cup(-1,0) \cup(2, \infty)$
Creative Commons License
college_math.precalculus
(-\infty,-1) \cup(-1,0) \cup(2, \infty)
college_math.PRECALCULUS
exercise.10.2.5
Find the exact value of the cosine and sine of the given angle: $\theta=\frac{2 \pi}{3}$
$\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}, \sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$
Creative Commons License
college_math.precalculus
\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}, \sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}
college_math.PRECALCULUS
exercise.6.3.12
Solve the equation analytically: $3^{(x-1)}=29$
$x=\frac{\ln (29)+\ln (3)}{\ln (3)}$
Creative Commons License
college_math.precalculus
x=\frac{\ln (29)+\ln (3)}{\ln (3)}
college_math.PRECALCULUS
exercise.10.7.11
Find all of the exact solutions of the equation and then list those solutions which are in the interval $[0,2 \pi)$: $\sin \left(2 x-\frac{\pi}{3}\right)=-\frac{1}{2}$
$x=\frac{3 \pi}{4}+\pi k$ or $x=\frac{13 \pi}{12}+\pi k ; x=\frac{\pi}{12}, \frac{3 \pi}{4}, \frac{13 \pi}{12}, \frac{7 \pi}{4}$
Creative Commons License
college_math.precalculus
x=\frac{3 \pi}{4}+\pi k$ or $x=\frac{13 \pi}{12}+\pi k ; x=\frac{\pi}{12}, \frac{3 \pi}{4}, \frac{13 \pi}{12}, \frac{7 \pi}{4}
college_math.PRECALCULUS
exercise.6.2.5
Expand the given logarithm and simplify: $\ln \left(\frac{\sqrt{z}}{x y}\right)$
$\frac{1}{2} \ln (z)-\ln (x)-\ln (y)$
Creative Commons License
college_math.precalculus
\frac{1}{2} \ln (z)-\ln (x)-\ln (y)
college_math.PRECALCULUS
exercise.9.4.12
Expand the binomial: $\left(\frac{1}{3} x+y^{2}\right)^{3}$
$\left(\frac{1}{3} x+y^{2}\right)^{3}=\frac{1}{27} x^{3}+\frac{1}{3} x^{2} y^{2}+x y^{4}+y^{6}$
Creative Commons License
college_math.precalculus
\left(\frac{1}{3} x+y^{2}\right)^{3}=\frac{1}{27} x^{3}+\frac{1}{3} x^{2} y^{2}+x y^{4}+y^{6}
college_math.PRECALCULUS
exercise.10.7.23
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\cos (2 x)=\cos (x)$
$x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
Creative Commons License
college_math.precalculus
x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}
college_math.PRECALCULUS
exercise.2.3.21
What is the largest rectangular area one can enclose with 14 inches of string?
The largest rectangle has area 12.25 square inches.
Creative Commons License
college_math.precalculus
The largest rectangle has area 12.25 square inches.
college_math.PRECALCULUS
exercise.6.1.24
Evaluate the expression: $\log _{36}(36)$
$\log _{36}(36)=1$
Creative Commons License
college_math.precalculus
\log _{36}(36)=1
college_math.PRECALCULUS
exercise.10.7.71
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $0 \leq x \leq 2 \pi$: $\sec ^{2}(x) \leq 4$
$\left(-\infty, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \frac{4 \pi}{3}\right] \cup\left[\frac{5 \pi}{3}, 2 \pi\right]$
Creative Commons License
college_math.precalculus
\left(-\infty, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \frac{4 \pi}{3}\right] \cup\left[\frac{5 \pi}{3}, 2 \pi\right]
college_math.PRECALCULUS
exercise.7.2.15
Find the standard equation of the circle which satisfies the given criteria: endpoints of a diameter: $(3,6)$ and $(-1,4)$
$(x-1)^{2}+(y-5)^{2}=5$
Creative Commons License
college_math.precalculus
(x-1)^{2}+(y-5)^{2}=5
college_math.PRECALCULUS
exercise.1.3.41
Determine whether or not the equation represents $y$ as a function of $x$: $x^{2}+y^{2}=4$
Not a function
Creative Commons License
college_math.precalculus
Not a function
college_math.PRECALCULUS
exercise.9.2.12
Rewrite the sum using summation notation: $1+2+4+\cdots+2^{29}$
$\sum_{k=1}^{30} 2^{k-1}$
Creative Commons License
college_math.precalculus
\sum_{k=1}^{30} 2^{k-1}
college_math.PRECALCULUS
exercise.9.4.6
Simplify the expression: $\frac{(k-1) !}{(k+2) !}, k \geq 1$.
$\frac{1}{k(k+1)(k+2)}$
Creative Commons License
college_math.precalculus
\frac{1}{k(k+1)(k+2)}
college_math.PRECALCULUS
exercise.4.3.13
Solve the rational inequality and express your answer using interval notation: $\frac{x^{3}+2 x^{2}+x}{x^{2}-x-2} \geq 0$
$(-1,0] \cup(2, \infty)$
Creative Commons License
college_math.precalculus
(-1,0] \cup(2, \infty)
college_math.PRECALCULUS
exercise.1.3.43
Determine whether or not the equation represents $y$ as a function of $x$: $x^{2}-y^{2}=4$
Not a function
Creative Commons License
college_math.precalculus
Not a function
college_math.PRECALCULUS
exercise.1.1.11
Write the set using interval notation: $\{x \mid x \neq 0,2\}$
$(-\infty, 0) \cup(0,2) \cup(2, \infty)$
Creative Commons License
college_math.precalculus
(-\infty, 0) \cup(0,2) \cup(2, \infty)
college_math.PRECALCULUS
exercise.6.4.8
Solve the equation analytically: $\log \left(x^{2}-3 x\right)=1$
$x=-2,5$
Creative Commons License
college_math.precalculus
x=-2,5
college_math.PRECALCULUS
exercise.6.1.30
Evaluate the expression: $\log _{13}(\sqrt{13})$
$\log _{13}(\sqrt{13})=\frac{1}{2}$
Creative Commons License
college_math.precalculus
\log _{13}(\sqrt{13})=\frac{1}{2}
college_math.PRECALCULUS
exercise.7.3.15
Find an equation for the parabola which fits the given criteria: Vertex $(7,0)$, focus $(0,0)$
$y^{2}=-28(x-7)$
Creative Commons License
college_math.precalculus
y^{2}=-28(x-7)
college_math.PRECALCULUS
exercise.6.3.30
Solve the equation analytically: $4^{x}+2^{x}=12$
$x=\frac{\ln (3)}{\ln (2)}$
Creative Commons License
college_math.precalculus
x=\frac{\ln (3)}{\ln (2)}
college_math.PRECALCULUS
exercise.3.4.17
Simplify the quantity $\sqrt{-(-9)}$
3
Creative Commons License
college_math.precalculus
3
college_math.PRECALCULUS
exercise.1.1.18
Write the set using interval notation: $\{x \mid x>2$ or $x= \pm 1\}$
$\{-1\} \cup\{1\} \cup(2, \infty)$
Creative Commons License
college_math.precalculus
\{-1\} \cup\{1\} \cup(2, \infty)
college_math.PRECALCULUS
exercise.10.7.75
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $0 \leq x \leq 2 \pi$: $\cot ^{2}(x) \geq \frac{1}{3}$
$\left(0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \pi\right) \cup\left(\pi, \frac{4 \pi}{3}\right] \cup\left[\frac{5 \pi}{3}, 2 \pi\right)$
Creative Commons License
college_math.precalculus
\left(0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \pi\right) \cup\left(\pi, \frac{4 \pi}{3}\right] \cup\left[\frac{5 \pi}{3}, 2 \pi\right)
college_math.PRECALCULUS
exercise.6.3.37
Solve the inequality analytically: $25\left(\frac{4}{5}\right)^{x} \geq 10$
$\left(-\infty, \frac{\ln \left(\frac{2}{5}\right)}{\ln \left(\frac{4}{5}\right)}\right]=\left(-\infty, \frac{\ln (2)-\ln (5)}{\ln (4)-\ln (5)}\right]$
Creative Commons License
college_math.precalculus
\left(-\infty, \frac{\ln \left(\frac{2}{5}\right)}{\ln \left(\frac{4}{5}\right)}\right]=\left(-\infty, \frac{\ln (2)-\ln (5)}{\ln (4)-\ln (5)}\right]
college_math.PRECALCULUS
exercise.10.7.17
Find all of the exact solutions of the equation and then list those solutions which are in the interval $[0,2 \pi)$: $\cos ^{2}(x)=\frac{1}{2}$
$x=\frac{\pi}{4}+\frac{\pi k}{2} ; x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{4}+\frac{\pi k}{2} ; x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
college_math.PRECALCULUS
exercise.6.4.20
Solve the equation analytically: $\log (x)-\log (2)=\log (x+8)-\log (x+2)$
$x=4$
Creative Commons License
college_math.precalculus
x=4
college_math.PRECALCULUS
exercise.10.1.43
Convert the angle from radian measure into degree measure: $-\frac{\pi}{6}$
$-30^{\circ}$
Creative Commons License
college_math.precalculus
-30^{\circ}
college_math.PRECALCULUS
exercise.11.8.58
A 600 pound Sasquatch statue is suspended by two cables from a gymnasium ceiling. If each cable makes a $60^{\circ}$ angle with the ceiling, find the tension on each cable. Round your answer to the nearest pound.
The resultant force is only about 296 pounds so the couch doesn't budge. Even if it did move, the stronger force on the third rope would have made the couch drift slightly to the south as it traveled down the street.
Creative Commons License
college_math.precalculus
The resultant force is only about 296 pounds so the couch doesn't budge. Even if it did move, the stronger force on the third rope would have made the couch drift slightly to the south as it traveled down the street.
college_math.PRECALCULUS
exercise.2.3.22
The height of an object dropped from the roof of an eight story building is modeled by $h(t)=-16 t^{2}+64,0 \leq t \leq 2$. Here, $h$ is the height of the object off the ground, in feet, $t$ seconds after the object is dropped. How long before the object hits the ground?
2 seconds.
Creative Commons License
college_math.precalculus
2 seconds.
college_math.PRECALCULUS
exercise.11.4.73
Convert the equation from polar coordinates into rectangular coordinates: $r=-\csc (\theta) \cot (\theta)$
$r=7 \sin (\theta)$
Creative Commons License
college_math.precalculus
r=7 \sin (\theta)
college_math.PRECALCULUS
exercise.6.2.26
Use the properties of logarithms to write the expression as a single logarithm: $\ln (x)+\frac{1}{2}$
$\ln (x \sqrt{e})$
Creative Commons License
college_math.precalculus
\ln (x \sqrt{e})
college_math.PRECALCULUS
exercise.5.3.26
Solve the equation or inequality: $5-(4-2 x)^{\frac{2}{3}}=1$
$x=-2,6$
Creative Commons License
college_math.precalculus
x=-2,6
college_math.PRECALCULUS
exercise.6.1.22
Evaluate the expression: $\log _{\frac{1}{5}}(625)$
$\log _{\frac{1}{5}}(625)=-4$
Creative Commons License
college_math.precalculus
\log _{\frac{1}{5}}(625)=-4
college_math.PRECALCULUS
exercise.6.4.10
Solve the equation analytically: $\log \left(\frac{x}{10^{-3}}\right)=4.7$
$x=10^{1.7}$
Creative Commons License
college_math.precalculus
x=10^{1.7}
college_math.PRECALCULUS
exercise.9.2.9
Rewrite the sum using summation notation: $8+11+14+17+20$
$\sum_{k=1}^{5}(3 k+5)$
Creative Commons License
college_math.precalculus
\sum_{k=1}^{5}(3 k+5)
college_math.PRECALCULUS
exercise.6.1.44
Find the domain of the function: $f(x)=\log _{7}(4 x+8)$
$(-2, \infty)$
Creative Commons License
college_math.precalculus
(-2, \infty)
college_math.PRECALCULUS
exercise.10.7.4
Find all of the exact solutions of the equation and then list those solutions which are in the interval $[0,2 \pi)$: $\tan (6 x)=1$
$x=\frac{\pi}{24}+\frac{\pi k}{6} ; x=\frac{\pi}{24}, \frac{5 \pi}{24}, \frac{3 \pi}{8}, \frac{13 \pi}{24}, \frac{17 \pi}{24}, \frac{7 \pi}{8}, \frac{25 \pi}{24}, \frac{29 \pi}{24}, \frac{11 \pi}{8}, \frac{37 \pi}{24}, \frac{41 \pi}{24}, \frac{15 \pi}{8}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{24}+\frac{\pi k}{6} ; x=\frac{\pi}{24}, \frac{5 \pi}{24}, \frac{3 \pi}{8}, \frac{13 \pi}{24}, \frac{17 \pi}{24}, \frac{7 \pi}{8}, \frac{25 \pi}{24}, \frac{29 \pi}{24}, \frac{11 \pi}{8}, \frac{37 \pi}{24}, \frac{41 \pi}{24}, \frac{15 \pi}{8}
college_math.PRECALCULUS
exercise.6.1.32
Evaluate the expression: $7^{\log _{7}(3)}$
$7^{\log _{7}(3)}=3$
Creative Commons License
college_math.precalculus
7^{\log _{7}(3)}=3
college_math.PRECALCULUS
exercise.6.2.23
Use the properties of logarithms to write the expression as a single logarithm: $\log _{5}(x)-3$
$\log _{5}\left(\frac{x}{125}\right)$
Creative Commons License
college_math.precalculus
\log _{5}\left(\frac{x}{125}\right)
college_math.PRECALCULUS
exercise.6.4.31
Solve the equation or inequality using your calculator: $\ln (x)=e^{-x}$
$x \approx 1.3098$
Creative Commons License
college_math.precalculus
x \approx 1.3098
college_math.PRECALCULUS
exercise.6.3.39
Solve the inequality analytically: $70+90 e^{-0.1 t} \leq 75$
$\left[\frac{\ln \left(\frac{1}{18}\right)}{-0.1}, \infty\right)=[10 \ln (18), \infty)$
Creative Commons License
college_math.precalculus
\left[\frac{\ln \left(\frac{1}{18}\right)}{-0.1}, \infty\right)=[10 \ln (18), \infty)
college_math.PRECALCULUS
exercise.3.4.26
Simplify the given power of $i$: $i^{304}$
$i^{304}=\left(i^{4}\right)^{76}=1^{76}=1$
Creative Commons License
college_math.precalculus
i^{304}=\left(i^{4}\right)^{76}=1^{76}=1
college_math.PRECALCULUS
exercise.6.3.32
Solve the equation analytically: $e^{x}+15 e^{-x}=8$
$x=\ln (3), \ln (5)$
Creative Commons License
college_math.precalculus
x=\ln (3), \ln (5)
college_math.PRECALCULUS
exercise.6.4.22
Solve the equation analytically: $\ln (\ln (x))=3$
$x=e^{e^{3}}$
Creative Commons License
college_math.precalculus
x=e^{e^{3}}
college_math.PRECALCULUS
exercise.10.2.51
Approximate the given value to three decimal places: $\sin (392.994)$
$\sin (392.994) \approx-0.291$
Creative Commons License
college_math.precalculus
\sin (392.994) \approx-0.291
college_math.PRECALCULUS
exercise.9.4.15
Simplify the power of a complex number: $(-1+i \sqrt{3})^{3}$
8
Creative Commons License
college_math.precalculus
8
college_math.PRECALCULUS
exercise.2.2.2
Solve the equation: $|3 x-1|=10$
$x=-3$ or $x=\frac{11}{3}$
Creative Commons License
college_math.precalculus
x=-3$ or $x=\frac{11}{3}
college_math.PRECALCULUS
exercise.6.1.16
Evaluate the expression: $\log _{3}(27)$
$\log _{3}(27)=3$
Creative Commons License
college_math.precalculus
\log _{3}(27)=3
college_math.PRECALCULUS
exercise.10.2.1
Find the exact value of the cosine and sine of the given angle: $\theta=0$
$\cos (0)=1, \sin (0)=0$
Creative Commons License
college_math.precalculus
\cos (0)=1, \sin (0)=0
college_math.PRECALCULUS
exercise.10.1.54
A rock got stuck in the tread of my tire and when I was driving 70 miles per hour, the rock came loose and hit the inside of the wheel well of the car. How fast, in miles per hour, was the rock traveling when it came out of the tread? (The tire has a diameter of 23 inches.)
70 miles per hour
Creative Commons License
college_math.precalculus
70 miles per hour
college_math.PRECALCULUS
exercise.2.3.35
Solve the quadratic equation $y^{2}-4 y=x^{2}-4$ for $y$.
$y=2 \pm x$
Creative Commons License
college_math.precalculus
y=2 \pm x
college_math.PRECALCULUS
exercise.1.3.42
Determine whether or not the equation represents $y$ as a function of $x$: $y=\sqrt{4-x^{2}}$
Function
Creative Commons License
college_math.precalculus
Function
college_math.PRECALCULUS
exercise.2.2.7
Solve the equation: $\frac{5-|x|}{2}=1$
$x=-3$ or $x=3$
Creative Commons License
college_math.precalculus
x=-3$ or $x=3
college_math.PRECALCULUS
exercise.6.1.50
Find the domain of the function: $f(x)=\ln (4 x-20)+\ln \left(x^{2}+9 x+18\right)$
$(5, \infty)$
Creative Commons License
college_math.precalculus
(5, \infty)
college_math.PRECALCULUS
exercise.10.1.4
Convert the angle into the DMS system and round the answer to the nearest second: $179.999^{\circ}$
$179^{\circ} 59^{\prime} 56^{\prime \prime}$
Creative Commons License
college_math.precalculus
179^{\circ} 59^{\prime} 56^{\prime \prime}
college_math.PRECALCULUS
exercise.1.3.47
Determine whether or not the equation represents $y$ as a function of $x$: $x^{2}=y^{2}$
Not a function
Creative Commons License
college_math.precalculus
Not a function
college_math.PRECALCULUS
exercise.6.4.36
Solve the equation analytically: $\ln (3-y)-\ln (y)=2 x+\ln (5)$ for $y$.
$y=\frac{3}{5 e^{2 x}+1}$
Creative Commons License
college_math.precalculus
y=\frac{3}{5 e^{2 x}+1}
college_math.PRECALCULUS
exercise.10.7.25
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $3 \cos (2 x)+\cos (x)+2=0$
$x=\frac{7 \pi}{6}, \frac{11 \pi}{6}, \arcsin \left(\frac{1}{3}\right), \pi-\arcsin \left(\frac{1}{3}\right)$
Creative Commons License
college_math.precalculus
x=\frac{7 \pi}{6}, \frac{11 \pi}{6}, \arcsin \left(\frac{1}{3}\right), \pi-\arcsin \left(\frac{1}{3}\right)
college_math.PRECALCULUS
exercise.1.3.36
Determine whether or not the equation represents $y$ as a function of $x$: $x^{2}-y^{2}=1$
Not a function
Creative Commons License
college_math.precalculus
Not a function
college_math.PRECALCULUS
exercise.10.7.24
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\cos (2 x)=2-5 \cos (x)$
$x=\frac{2 \pi}{3}, \frac{4 \pi}{3}, \arccos \left(\frac{1}{3}\right), 2 \pi-\arccos \left(\frac{1}{3}\right)$
Creative Commons License
college_math.precalculus
x=\frac{2 \pi}{3}, \frac{4 \pi}{3}, \arccos \left(\frac{1}{3}\right), 2 \pi-\arccos \left(\frac{1}{3}\right)
college_math.PRECALCULUS
exercise.10.7.59
Solve the equation: $\arccos (2 x)=\pi$
$x=-\frac{1}{2}$
Creative Commons License
college_math.precalculus
x=-\frac{1}{2}
college_math.PRECALCULUS
exercise.6.4.9
Solve the equation analytically: $\log _{125}\left(\frac{3 x-2}{2 x+3}\right)=\frac{1}{3}$
$x=-\frac{17}{7}$
Creative Commons License
college_math.precalculus
x=-\frac{17}{7}
college_math.PRECALCULUS
exercise.6.3.18
Solve the equation analytically: $30-6 e^{-0.1 x}=20$
$x=-10 \ln \left(\frac{5}{3}\right)=10 \ln \left(\frac{3}{5}\right)$
Creative Commons License
college_math.precalculus
x=-10 \ln \left(\frac{5}{3}\right)=10 \ln \left(\frac{3}{5}\right)
college_math.PRECALCULUS
exercise.1.1.17
Write the set using interval notation: $\{x \mid x \leq 5$ or $x=6\}$
$(-\infty, 5] \cup\{6\}$
Creative Commons License
college_math.precalculus
(-\infty, 5] \cup\{6\}
college_math.PRECALCULUS
exercise.8.2.27
At a local buffet, 22 diners (5 of whom were children) feasted for $\$162.25$, before taxes. If the kids buffet is $\$4.50$, the basic buffet is $\$7.50$, and the deluxe buffet (with crab legs) is $\$9.25$, find out how many diners chose the deluxe buffet.
This time, 7 diners chose the deluxe buffet.
Creative Commons License
college_math.precalculus
This time, 7 diners chose the deluxe buffet.
college_math.PRECALCULUS
exercise.10.7.67
Solve the equation: $8 \operatorname{arccot}^{2}(x)+3 \pi^{2}=10 \pi \operatorname{arccot}(x)$
$x=-1,0$
Creative Commons License
college_math.precalculus
x=-1,0
college_math.PRECALCULUS
exercise.3.4.22
Simplify the given power of $i$: $i^8$
$i^{8}=i^{4} \cdot i^{4}=\left(i^{4}\right)^{2}=(1)^{2}=1$
Creative Commons License
college_math.precalculus
i^{8}=i^{4} \cdot i^{4}=\left(i^{4}\right)^{2}=(1)^{2}=1
college_math.PRECALCULUS
exercise.1.1.8
Write the set using interval notation: $\{x \mid x \neq 5\}$
$(-\infty, 5) \cup(5, \infty)$
Creative Commons License
college_math.precalculus
(-\infty, 5) \cup(5, \infty)
college_math.PRECALCULUS
exercise.2.3.34
Solve the quadratic equation $y^{2}-3 y=4 x$ for $y$.
$y=\frac{3 \pm \sqrt{16 x+9}}{2}$
Creative Commons License
college_math.precalculus
y=\frac{3 \pm \sqrt{16 x+9}}{2}