data_source
stringclasses
9 values
question_number
stringlengths
14
17
problem
stringlengths
14
1.32k
answer
stringlengths
1
993
license
stringclasses
8 values
data_topic
stringclasses
7 values
solution
stringlengths
1
991
college_math.PRECALCULUS
exercise.6.2.20
Use the properties of logarithms to write the expression as a single logarithm: $2 \ln (x)-3 \ln (y)-4 \ln (z)$
$\ln \left(\frac{x^{2}}{y^{3} z^{4}}\right)$
Creative Commons License
college_math.precalculus
\ln \left(\frac{x^{2}}{y^{3} z^{4}}\right)
college_math.PRECALCULUS
exercise.8.2.25
Solve the following system of linear equations: $\left\{\begin{aligned} 2 x-3 y+z & =-1 \\ 4 x-4 y+4 z & =-13 \\ 6 x-5 y+7 z & =-25\end{aligned}\right.$
$\left(-2 t-\frac{35}{4},-t-\frac{11}{2}, t\right)$ for all real numbers $t$
Creative Commons License
college_math.precalculus
\left(-2 t-\frac{35}{4},-t-\frac{11}{2}, t\right)$ for all real numbers $t
college_math.PRECALCULUS
exercise.10.2.49
Approximate the given value to three decimal places: $\sin \left(78.95^{\circ}\right)$
$\sin \left(78.95^{\circ}\right) \approx 0.981$
Creative Commons License
college_math.precalculus
\sin \left(78.95^{\circ}\right) \approx 0.981
college_math.PRECALCULUS
exercise.6.3.8
Solve the equation analytically: $9 \cdot 3^{7 x}=\left(\frac{1}{9}\right)^{2 x}$
$x=-\frac{2}{11}$
Creative Commons License
college_math.precalculus
x=-\frac{2}{11}
college_math.PRECALCULUS
exercise.10.7.93
Solve the given inequality: $\arcsin (2 x)>0$
$\left(0, \frac{1}{2}\right]$
Creative Commons License
college_math.precalculus
\left(0, \frac{1}{2}\right]
college_math.PRECALCULUS
exercise.6.3.44
Use your calculator to help you solve the inequality: $3^{(x-1)}<2^{x}$
$\approx(-\infty, 2.7095)$
Creative Commons License
college_math.precalculus
\approx(-\infty, 2.7095)
college_math.PRECALCULUS
exercise.10.7.3
Find all of the exact solutions of the equation and then list those solutions which are in the interval $[0,2 \pi)$: $\sin (-2 x)=\frac{\sqrt{3}}{2}$
$x=\frac{2 \pi}{3}+\pi k$ or $x=\frac{5 \pi}{6}+\pi k ; x=\frac{2 \pi}{3}, \frac{5 \pi}{6}, \frac{5 \pi}{3}, \frac{11 \pi}{6}$
Creative Commons License
college_math.precalculus
x=\frac{2 \pi}{3}+\pi k$ or $x=\frac{5 \pi}{6}+\pi k ; x=\frac{2 \pi}{3}, \frac{5 \pi}{6}, \frac{5 \pi}{3}, \frac{11 \pi}{6}
college_math.PRECALCULUS
exercise.3.4.49
Create a polynomial $f$ with real number coefficients that has the following characteristics: - The zeros of $f$ are $c=\pm 1$ and $c=\pm i$ - The leading term of $f(x)$ is $42x^4$
$f(x)=42(x-1)(x+1)(x-i)(x+i)$
Creative Commons License
college_math.precalculus
f(x)=42(x-1)(x+1)(x-i)(x+i)
college_math.PRECALCULUS
exercise.6.3.6
Solve the equation analytically: $2^{\left(x^{3}-x\right)}=1$
$x=-1,0,1$
Creative Commons License
college_math.precalculus
x=-1,0,1
college_math.PRECALCULUS
exercise.8.2.20
Solve the following system of linear equations: $\left\{\begin{aligned} 2 x-4 y+z & =-7 \\ x-2 y+2 z & =-2 \\ -x+4 y-2 z & =3\end{aligned}\right.$
$\left(-3, \frac{1}{2}, 1\right)$
Creative Commons License
college_math.precalculus
\left(-3, \frac{1}{2}, 1\right)
college_math.PRECALCULUS
exercise.10.7.54
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\cos (4 x)=\cos (2 x)$
$x=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
Creative Commons License
college_math.precalculus
x=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}
college_math.PRECALCULUS
exercise.4.3.7
Solve the rational inequality and express your answer using interval notation: $\frac{1}{x+2} \geq 0$
$(-2, \infty)$
Creative Commons License
college_math.precalculus
(-2, \infty)
college_math.PRECALCULUS
exercise.10.1.36
Convert the angle from degree measure into radian measure, giving the exact value in terms of $\pi$: $-225^{\circ}$
$-\frac{5 \pi}{4}$
Creative Commons License
college_math.precalculus
-\frac{5 \pi}{4}
college_math.PRECALCULUS
exercise.2.2.21
Solve the equation: $3|x-1|=2|x+1|$
$x=\frac{1}{5}$ or $x=5$
Creative Commons License
college_math.precalculus
x=\frac{1}{5}$ or $x=5
college_math.PRECALCULUS
exercise.10.2.62
If $\theta=5^{\circ}$ and the hypotenuse has length 10 , how long is the side opposite $\theta$ ?
The side opposite $\theta$ has length $10 \sin \left(5^{\circ}\right) \approx 0.872$.
Creative Commons License
college_math.precalculus
The side opposite $\theta$ has length $10 \sin \left(5^{\circ}\right) \approx 0.872$.
college_math.PRECALCULUS
exercise.6.2.12
Expand the given logarithm and simplify: $\log _{6}\left(\frac{216}{x^{3} y}\right)^{4}$
$12-12 \log _{6}(x)-4 \log _{6}(y)$
Creative Commons License
college_math.precalculus
12-12 \log _{6}(x)-4 \log _{6}(y)
college_math.PRECALCULUS
exercise.2.2.15
Solve the equation: $\left|x^{2}-1\right|=3$
$x=-2$ or $x=2$
Creative Commons License
college_math.precalculus
x=-2$ or $x=2
college_math.PRECALCULUS
exercise.6.4.26
Solve the inequality analytically: $x \ln (x)-x>0$
$(e, \infty)$
Creative Commons License
college_math.precalculus
(e, \infty)
college_math.PRECALCULUS
exercise.6.1.47
Find the domain of the function: $f(x)=\log \left(\frac{x+2}{x^{2}-1}\right)$
$(-2,-1) \cup(1, \infty)$
Creative Commons License
college_math.precalculus
(-2,-1) \cup(1, \infty)
college_math.PRECALCULUS
exercise.6.3.27
Solve the equation analytically: $7^{3+7 x}=3^{4-2 x}$
$x=\frac{4 \ln (3)-3 \ln (7)}{7 \ln (7)+2 \ln (3)}$
Creative Commons License
college_math.precalculus
x=\frac{4 \ln (3)-3 \ln (7)}{7 \ln (7)+2 \ln (3)}
college_math.PRECALCULUS
exercise.1.1.9
Write the set using interval notation: $\{x \mid x \neq-1\}$
$(-\infty,-1) \cup(-1, \infty)$
Creative Commons License
college_math.precalculus
(-\infty,-1) \cup(-1, \infty)
college_math.PRECALCULUS
exercise.11.9.21
Find the work done pushing a 200 pound barrel 10 feet up a $12.5^{\circ}$ incline. Ignore all forces acting on the barrel except gravity, which acts downwards. Round your answer to two decimal places. HINT: Since you are working to overcome gravity only, the force being applied acts directly upwards. This means that the angle between the applied force in this case and the motion of the object is not the $12.5^{\circ}$ of the incline!
(1500 pounds) $\left(300\right.$ feet) $\cos \left(0^{\circ}\right)=450,000$ foot-pounds
Creative Commons License
college_math.precalculus
(1500 pounds) $\left(300\right.$ feet) $\cos \left(0^{\circ}\right)=450,000$ foot-pounds
college_math.PRECALCULUS
exercise.9.1.2
Write out the first four terms of the given sequence: $d_{j}=(-1)^{\frac{j(j+1)}{2}}, j \geq 1$
$-1,-1,1,1$
Creative Commons License
college_math.precalculus
-1,-1,1,1
college_math.PRECALCULUS
exercise.11.4.66
Convert the equation from polar coordinates into rectangular coordinates: $r=3 \sin (\theta)$
$r=\frac{19}{4 \cos (\theta)-\sin (\theta)}$
Creative Commons License
college_math.precalculus
r=\frac{19}{4 \cos (\theta)-\sin (\theta)}
college_math.PRECALCULUS
exercise.10.7.52
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $3 \sqrt{3} \sin (3 x)-3 \cos (3 x)=3 \sqrt{3}$
$x=\frac{\pi}{6}, \frac{5 \pi}{18}, \frac{5 \pi}{6}, \frac{17 \pi}{18}, \frac{3 \pi}{2}, \frac{29 \pi}{18}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{6}, \frac{5 \pi}{18}, \frac{5 \pi}{6}, \frac{17 \pi}{18}, \frac{3 \pi}{2}, \frac{29 \pi}{18}
college_math.PRECALCULUS
exercise.10.1.39
Convert the angle from radian measure into degree measure: $\frac{7 \pi}{6}$
$210^{\circ}$
Creative Commons License
college_math.precalculus
210^{\circ}
college_math.PRECALCULUS
exercise.10.7.76
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $0 \leq x \leq 2 \pi$: $2 \cos (x) \geq 1$
$\left[0, \frac{\pi}{2}\right) \cup\left(\frac{11 \pi}{6}, 2 \pi\right]$
Creative Commons License
college_math.precalculus
\left[0, \frac{\pi}{2}\right) \cup\left(\frac{11 \pi}{6}, 2 \pi\right]
college_math.PRECALCULUS
exercise.4.3.24
A faucet can fill a sink in 5 minutes while a drain will empty the same sink in 8 minutes. If the faucet is turned on and the drain is left open, how long will it take to fill the sink?
$\frac{40}{3} \approx 13.33$ minutes
Creative Commons License
college_math.precalculus
\frac{40}{3} \approx 13.33$ minutes
college_math.PRECALCULUS
exercise.7.3.21
A parabolic arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle. Find the height of the arch exactly 1 foot in from the base of the arch.
The arch can be modeled by $x^{2}=-(y-9)$ or $y=9-x^{2}$. One foot in from the base of the arch corresponds to either $x= \pm 2$, so the height is $y=9-( \pm 2)^{2}=5$ feet.
Creative Commons License
college_math.precalculus
The arch can be modeled by $x^{2}=-(y-9)$ or $y=9-x^{2}$. One foot in from the base of the arch corresponds to either $x= \pm 2$, so the height is $y=9-( \pm 2)^{2}=5$ feet.
college_math.PRECALCULUS
exercise.10.7.38
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\cos ^{3}(x)=-\cos (x)$
$x=\frac{\pi}{2}, \frac{3 \pi}{2}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{2}, \frac{3 \pi}{2}
college_math.PRECALCULUS
exercise.6.2.6
Expand the given logarithm and simplify: $\log _{5}\left(x^{2}-25\right)$
$\log _{5}(x-5)+\log _{5}(x+5)$
Creative Commons License
college_math.precalculus
\log _{5}(x-5)+\log _{5}(x+5)
college_math.PRECALCULUS
exercise.2.4.15
The International Silver Strings Submarine Band holds a bake sale each year to fund their trip to the National Sasquatch Convention. It has been determined that the cost in dollars of baking $x$ cookies is $C(x)=0.1 x+25$ and that the demand function for their cookies is $p=10-.01 x$. How many cookies should they bake in order to maximize their profit?
$\left(1, \frac{5}{3}\right)$
Creative Commons License
college_math.precalculus
\left(1, \frac{5}{3}\right)
college_math.PRECALCULUS
exercise.6.1.28
Evaluate the expression: $\log _{4}(8)$
$\log _{4}(8)=\frac{3}{2}$
Creative Commons License
college_math.precalculus
\log _{4}(8)=\frac{3}{2}
college_math.PRECALCULUS
exercise.10.1.40
Convert the angle from radian measure into degree measure: $\frac{11 \pi}{6}$
$330^{\circ}$
Creative Commons License
college_math.precalculus
330^{\circ}
college_math.PRECALCULUS
exercise.6.1.49
Find the domain of the function: $f(x)=\ln (7-x)+\ln (x-4)$
$(4,7)$
Creative Commons License
college_math.precalculus
(4,7)
college_math.PRECALCULUS
exercise.6.3.40
Use your calculator to help you solve the equation: $2^{x}=x^{2}$
$x \approx-0.76666, x=2, x=4$
Creative Commons License
college_math.precalculus
x \approx-0.76666, x=2, x=4
college_math.PRECALCULUS
exercise.1.1.13
Write the set using interval notation: $\{x \mid x \neq 0, \pm 4\}$
$(-\infty,-4) \cup(-4,0) \cup(0,4) \cup(4, \infty)$
Creative Commons License
college_math.precalculus
(-\infty,-4) \cup(-4,0) \cup(0,4) \cup(4, \infty)
college_math.PRECALCULUS
exercise.3.3.36
Find the real solutions of the polynomial equation $9 x^{2}+5 x^{3}=6 x^{4}$.
$x=0, \frac{5 \pm \sqrt{241}}{12}$
Creative Commons License
college_math.precalculus
x=0, \frac{5 \pm \sqrt{241}}{12}
college_math.PRECALCULUS
exercise.10.7.30
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\cot ^{2}(x)=3 \csc (x)-3$
$x=\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6}
college_math.PRECALCULUS
exercise.9.1.7
Write out the first four terms of the given sequence: $a_{1}=3, a_{n+1}=a_{n}-1, n \geq 1$
$3,2,1,0$
Creative Commons License
college_math.precalculus
3,2,1,0
college_math.PRECALCULUS
exercise.2.1.34
The Topology Taxi Company charges $\$ 2.50$ for the first fifth of a mile and $\$ 0.45$ for each additional fifth of a mile. Find a linear function which models the taxi fare $F$ as a function of the number of miles driven, $m$. Interpret the slope of the linear function and find and interpret $F(0)$.
$F(m)=2.25 m+2.05$ The slope 2.25 means it costs an additional $\$ 2.25$ for each mile beyond the first 0.2 miles. $F(0)=2.05$, so according to the model, it would cost $\$ 2.05$ for a trip of 0 miles. Would this ever really happen? Depends on the driver and the passenger, we suppose.
Creative Commons License
college_math.precalculus
F(m)=2.25 m+2.05$ The slope 2.25 means it costs an additional $\$ 2.25$ for each mile beyond the first 0.2 miles. $F(0)=2.05$, so according to the model, it would cost $\$ 2.05$ for a trip of 0 miles. Would this ever really happen? Depends on the driver and the passenger, we suppose.
college_math.PRECALCULUS
exercise.6.3.38
Solve the inequality analytically: $\frac{150}{1+29 e^{-0.8 t}} \leq 130$
$\left(-\infty, \frac{\ln \left(\frac{2}{377}\right)}{-0.8}\right]=\left(-\infty, \frac{5}{4} \ln \left(\frac{377}{2}\right)\right]$
Creative Commons License
college_math.precalculus
\left(-\infty, \frac{\ln \left(\frac{2}{377}\right)}{-0.8}\right]=\left(-\infty, \frac{5}{4} \ln \left(\frac{377}{2}\right)\right]
college_math.PRECALCULUS
exercise.10.7.97
Solve the given inequality: $2 \arcsin (x)^{2}>\pi \arcsin (x)$
$[-1,0)$
Creative Commons License
college_math.precalculus
[-1,0)
college_math.PRECALCULUS
exercise.10.7.99
Express the domain of the function using the extended interval notation: $f(x)=\frac{1}{\cos (x)-1}$
$\bigcup_{k=-\infty}^{\infty}(2 k \pi,(2 k+2) \pi)$
Creative Commons License
college_math.precalculus
\bigcup_{k=-\infty}^{\infty}(2 k \pi,(2 k+2) \pi)
college_math.PRECALCULUS
exercise.9.4.7
Evaluate: $\left(\begin{array}{l}8 \\ 3\end{array}\right)$
56
Creative Commons License
college_math.precalculus
56
college_math.PRECALCULUS
exercise.3.4.21
Simplify the given power of $i$: $i^7$
$i^{7}=i^{4} \cdot i^{3}=1 \cdot(-i)=-i$
Creative Commons License
college_math.precalculus
i^{7}=i^{4} \cdot i^{3}=1 \cdot(-i)=-i
college_math.PRECALCULUS
exercise.11.4.50
Convert the equation from rectangular coordinates into polar coordinates: $x^{2}+y^{2}-2 y=0$
$(20, \pi-\arctan (3))$
Creative Commons License
college_math.precalculus
(20, \pi-\arctan (3))
college_math.PRECALCULUS
exercise.9.2.11
Rewrite the sum using summation notation: $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}$
$\sum_{k=1}^{4}(-1)^{k-1} \frac{x^{2 k-1}}{2 k-1}$
Creative Commons License
college_math.precalculus
\sum_{k=1}^{4}(-1)^{k-1} \frac{x^{2 k-1}}{2 k-1}
college_math.PRECALCULUS
exercise.6.2.27
Use the properties of logarithms to write the expression as a single logarithm: $\log _{2}(x)+\log _{4}(x)$
$\log _{2}\left(x^{3 / 2}\right)$
Creative Commons License
college_math.precalculus
\log _{2}\left(x^{3 / 2}\right)
college_math.PRECALCULUS
exercise.8.5.18
Find the inverse of the given matrix: $F=\left[\begin{array}{rrr}4 & 6 & -3 \\ 3 & 4 & -3 \\ 1 & 2 & 6\end{array}\right]$
$F^{-1}=\left[\begin{array}{rrr}-\frac{5}{2} & \frac{7}{2} & \frac{1}{2} \\ \frac{7}{4} & -\frac{9}{4} & -\frac{1}{4} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6}\end{array}\right]$
Creative Commons License
college_math.precalculus
F^{-1}=\left[\begin{array}{rrr}-\frac{5}{2} & \frac{7}{2} & \frac{1}{2} \\ \frac{7}{4} & -\frac{9}{4} & -\frac{1}{4} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6}\end{array}\right]
college_math.PRECALCULUS
exercise.4.3.9
Solve the rational inequality and express your answer using interval notation: $\frac{x}{x^{2}-1}>0$
$(-1,0) \cup(1, \infty)$
Creative Commons License
college_math.precalculus
(-1,0) \cup(1, \infty)
college_math.PRECALCULUS
exercise.10.2.43
Solve the equation for $t$: $\sin (t)=-\frac{1}{2}$
$\sin (t)=-\frac{1}{2}$ when $t=\frac{7 \pi}{6}+2 \pi k$ or $t=\frac{11 \pi}{6}+2 \pi k$ for any integer $k$.
Creative Commons License
college_math.precalculus
\sin (t)=-\frac{1}{2}$ when $t=\frac{7 \pi}{6}+2 \pi k$ or $t=\frac{11 \pi}{6}+2 \pi k$ for any integer $k$.
college_math.PRECALCULUS
exercise.10.1.38
Convert the angle from radian measure into degree measure: $-\frac{2 \pi}{3}$
$-120^{\circ}$
Creative Commons License
college_math.precalculus
-120^{\circ}
college_math.PRECALCULUS
exercise.6.3.33
Solve the equation analytically: $3^{x}+25 \cdot 3^{-x}=10$
$x=\frac{\ln (5)}{\ln (3)}$
Creative Commons License
college_math.precalculus
x=\frac{\ln (5)}{\ln (3)}
college_math.PRECALCULUS
exercise.1.3.5
Determine whether or not the relation represents $y$ as a function of $x$ and find the domain and range of those relations which are functions: $\{(x, y) \mid x$ is an odd integer, and $y$ is an even integer $\}$
Not a function
Creative Commons License
college_math.precalculus
Not a function
college_math.PRECALCULUS
exercise.6.2.8
Expand the given logarithm and simplify: $\log _{\frac{1}{3}}\left(9 x\left(y^{3}-8\right)\right)$
$-2+\log _{\frac{1}{3}}(x)+\log _{\frac{1}{3}}(y-2)+\log _{\frac{1}{3}}\left(y^{2}+2 y+4\right)$
Creative Commons License
college_math.precalculus
-2+\log _{\frac{1}{3}}(x)+\log _{\frac{1}{3}}(y-2)+\log _{\frac{1}{3}}\left(y^{2}+2 y+4\right)
college_math.PRECALCULUS
exercise.8.7.16
A certain bacteria culture follows the Law of Uninbited Growth, Equation 6.4. After 10 minutes, there are 10,000 bacteria. Five minutes later, there are 14,000 bacteria. How many bacteria were present initially? How long before there are 50,000 bacteria?
Initially, there are $\frac{250000}{49} \approx 5102$ bacteria. It will take $\frac{5 \ln (49 / 5)}{\ln (7 / 5)} \approx 33.92$ minutes for the colony to grow to 50,000 bacteria.
Creative Commons License
college_math.precalculus
Initially, there are $\frac{250000}{49} \approx 5102$ bacteria. It will take $\frac{5 \ln (49 / 5)}{\ln (7 / 5)} \approx 33.92$ minutes for the colony to grow to 50,000 bacteria.
college_math.PRECALCULUS
exercise.2.2.11
Solve the equation: $4-|x|=2 x+1$
$x=1$
Creative Commons License
college_math.precalculus
x=1
college_math.PRECALCULUS
exercise.2.3.15
The International Silver Strings Submarine Band holds a bake sale each year to fund their trip to the National Sasquatch Convention. It has been determined that the cost in dollars of baking $x$ cookies is $C(x)=0.1 x+25$ and that the demand function for their cookies is $p=10-.01 x$. How many cookies should they bake in order to maximize their profit?
495 cookies
Creative Commons License
college_math.precalculus
495 cookies
college_math.PRECALCULUS
exercise.10.2.11
Find the exact value of the cosine and sine of the given angle: $\theta=\frac{3 \pi}{2}$
$\cos \left(\frac{3 \pi}{2}\right)=0, \sin \left(\frac{3 \pi}{2}\right)=-1$
Creative Commons License
college_math.precalculus
\cos \left(\frac{3 \pi}{2}\right)=0, \sin \left(\frac{3 \pi}{2}\right)=-1
college_math.PRECALCULUS
exercise.8.2.10
Solve the following system of linear equations: $\left\{\begin{aligned} x-2 y+3 z & =7 \\ -3 x+y+2 z & =-5 \\ 2 x+2 y+z & =3\end{aligned}\right.$
Inconsistent
Creative Commons License
college_math.precalculus
Inconsistent
college_math.PRECALCULUS
exercise.10.7.87
Solve the inequality. Express the exact answer in interval notation, restricting your attention to $-2 \pi \leq x \leq 2 \pi$: $\csc (x)>1$
$\left(-2 \pi,-\frac{3 \pi}{2}\right) \cup\left(-\frac{3 \pi}{2},-\pi\right) \cup\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right)$
Creative Commons License
college_math.precalculus
\left(-2 \pi,-\frac{3 \pi}{2}\right) \cup\left(-\frac{3 \pi}{2},-\pi\right) \cup\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right)
college_math.PRECALCULUS
exercise.10.7.106
Express the domain of the function using the extended interval notation: $f(x)=\ln (|\cos (x)|)$
$\bigcup_{k=-\infty}^{\infty}\left(\frac{(2 k-1) \pi}{2}, \frac{(2 k+1) \pi}{2}\right)$
Creative Commons License
college_math.precalculus
\bigcup_{k=-\infty}^{\infty}\left(\frac{(2 k-1) \pi}{2}, \frac{(2 k+1) \pi}{2}\right)
college_math.PRECALCULUS
exercise.3.4.14
Simplify the quantity $\sqrt{(-25)(-4)}$
10
Creative Commons License
college_math.precalculus
10
college_math.PRECALCULUS
exercise.9.2.31
Express the repeating decimal as a fraction of integers: $10 . \overline{159}$
$\frac{3383}{333}$
Creative Commons License
college_math.precalculus
\frac{3383}{333}
college_math.PRECALCULUS
exercise.11.4.56
Convert the equation from rectangular coordinates into polar coordinates: $4 x^{2}+4\left(y-\frac{1}{2}\right)^{2}=1$
$(\sqrt{13}, \pi-\arctan (2))$
Creative Commons License
college_math.precalculus
(\sqrt{13}, \pi-\arctan (2))
college_math.PRECALCULUS
exercise.3.4.15
Simplify the quantity $\sqrt{-9}\sqrt{-16}$
-12
Creative Commons License
college_math.precalculus
-12
college_math.PRECALCULUS
exercise.6.2.4
Expand the given logarithm and simplify: $\log \left(1.23 \times 10^{37}\right)$
$\log (1.23)+37$
Creative Commons License
college_math.precalculus
\log (1.23)+37
college_math.PRECALCULUS
exercise.10.7.36
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\tan ^{3}(x)=3 \tan (x)$
$x=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
Creative Commons License
college_math.precalculus
x=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}
college_math.PRECALCULUS
exercise.2.4.17
The temperature $T$, in degrees Fahrenheit, $t$ hours after $6 \mathrm{AM}$ is given by $T(t)=-\frac{1}{2} t^{2}+8 t+32, \quad 0 \leq t \leq 12$. What is the warmest temperature of the day? When does this happen?
$(-\infty,-3] \cup[1, \infty)$
Creative Commons License
college_math.precalculus
(-\infty,-3] \cup[1, \infty)
college_math.PRECALCULUS
exercise.3.3.40
Find the real solutions of the polynomial equation $2 x^{3}=19 x^{2}-49 x+20$.
$x=\frac{1}{2}, 4,5$
Creative Commons License
college_math.precalculus
x=\frac{1}{2}, 4,5
college_math.PRECALCULUS
exercise.6.2.3
Expand the given logarithm and simplify: $\log _{5}\left(\frac{z}{25}\right)^{3}$
$3 \log _{5}(z)-6$
Creative Commons License
college_math.precalculus
3 \log _{5}(z)-6
college_math.PRECALCULUS
exercise.10.7.28
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $2 \sec ^{2}(x)=3-\tan (x)$
$x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{2}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{2}
college_math.PRECALCULUS
exercise.8.7.19
Solve the system of nonlinear equations after making the appropriate substitutions: $\left\{\begin{array}{l}4 \ln (x)+3 y^{2}=1 \\ 3 \ln (x)+2 y^{2}=-1\end{array}\right.$
$\left(e^{-5}, \pm \sqrt{7}\right)$
Creative Commons License
college_math.precalculus
\left(e^{-5}, \pm \sqrt{7}\right)
college_math.PRECALCULUS
exercise.10.7.37
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\tan ^{2}(x)=\frac{3}{2} \sec (x)$
$x=\frac{\pi}{2}, \frac{3 \pi}{2}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{2}, \frac{3 \pi}{2}
college_math.PRECALCULUS
exercise.9.4.2
Simplify the expression: $\frac{10 !}{7 !}$
720
Creative Commons License
college_math.precalculus
720
college_math.PRECALCULUS
exercise.2.1.28
Jeff can walk comfortably at 3 miles per hour. Find a linear function $d$ that represents the total distance Jeff can walk in $t$ hours, assuming he doesn't take any breaks.
$d(t)=3 t, t \geq 0$.
Creative Commons License
college_math.precalculus
d(t)=3 t, t \geq 0$.
college_math.PRECALCULUS
exercise.5.3.17
Solve the equation or inequality: $x+1=\sqrt{3 x+7}$
$x=3$
Creative Commons License
college_math.precalculus
x=3
college_math.PRECALCULUS
exercise.6.4.16
Solve the equation analytically: $\log _{5}(2 x+1)+\log _{5}(x+2)=1$
$x=\frac{1}{2}$
Creative Commons License
college_math.precalculus
x=\frac{1}{2}
college_math.PRECALCULUS
exercise.6.3.45
Use your calculator to help you solve the inequality: $e^{x}<x^{3}-x$
$\approx(2.3217,4.3717)$
Creative Commons License
college_math.precalculus
\approx(2.3217,4.3717)
college_math.PRECALCULUS
exercise.10.7.104
Express the domain of the function using the extended interval notation: $f(x)=\frac{\sin (x)}{2+\cos (x)}$
$(-\infty, \infty)$
Creative Commons License
college_math.precalculus
(-\infty, \infty)
college_math.PRECALCULUS
exercise.2.2.14
Solve the equation: $|x|=12-x^{2}$
$x=-3$ or $x=3$
Creative Commons License
college_math.precalculus
x=-3$ or $x=3
college_math.PRECALCULUS
exercise.5.3.40
The period of a pendulum in seconds is given by $$ T=2 \pi \sqrt{\frac{L}{g}} $$ (for small displacements) where $L$ is the length of the pendulum in meters and $g=9.8$ meters per second per second is the acceleration due to gravity. My Seth-Thomas antique schoolhouse clock needs $T=\frac{1}{2}$ second and I can adjust the length of the pendulum via a small dial on the bottom of the bob. At what length should I set the pendulum?
$9.8\left(\frac{1}{4 \pi}\right)^{2} \approx 0.062$ meters or 6.2 centimeters
Creative Commons License
college_math.precalculus
9.8\left(\frac{1}{4 \pi}\right)^{2} \approx 0.062$ meters or 6.2 centimeters
college_math.PRECALCULUS
exercise.6.5.12
A finance company offers a promotion on $\$ 5000$ loans. The borrower does not have to make any payments for the first three years, however interest will continue to be charged to the loan at $29.9 \%$ compounded continuously. What amount will be due at the end of the three-year period, assuming no payments are made? If the promotion is extended an additional three years, and no payments are made, what amount would be due?
$A(3)=5000 e^{0.299 \cdot 3} \approx \$ 12,226.18, A(6)=5000 e^{0.299 \cdot 6} \approx \$ 30,067.29$
Creative Commons License
college_math.precalculus
A(3)=5000 e^{0.299 \cdot 3} \approx \$ 12,226.18, A(6)=5000 e^{0.299 \cdot 6} \approx \$ 30,067.29
college_math.PRECALCULUS
exercise.7.2.13
Find the standard equation of the circle which satisfies the given criteria: center $(3,5)$, passes through $(-1,-2)$
$(x-3)^{2}+(y-5)^{2}=65$
Creative Commons License
college_math.precalculus
(x-3)^{2}+(y-5)^{2}=65
college_math.PRECALCULUS
exercise.9.1.9
Write out the first four terms of the given sequence: $b_{1}=2, b_{k+1}=3 b_{k}+1, k \geq 1$
$2,7,22,67$
Creative Commons License
college_math.precalculus
2,7,22,67
college_math.PRECALCULUS
exercise.6.3.41
Use your calculator to help you solve the equation: $e^{x}=\ln (x)+5$
$x \approx 0.01866, x \approx 1.7115$
Creative Commons License
college_math.precalculus
x \approx 0.01866, x \approx 1.7115
college_math.PRECALCULUS
exercise.3.3.43
Find the real solutions of the polynomial equation $14 x^{2}+5=3 x^{4}$.
$\{-2\} \cup[1,3]$
Creative Commons License
college_math.precalculus
\{-2\} \cup[1,3]
college_math.PRECALCULUS
exercise.6.4.30
Solve the inequality analytically: $\ln \left(x^{2}\right) \leq(\ln (x))^{2}$
$(0,1] \cup\left[e^{2}, \infty\right)$
Creative Commons License
college_math.precalculus
(0,1] \cup\left[e^{2}, \infty\right)
college_math.PRECALCULUS
exercise.6.4.15
Solve the equation analytically: $\log _{3}(x-4)+\log _{3}(x+4)=2$
$x=5$
Creative Commons License
college_math.precalculus
x=5
college_math.PRECALCULUS
exercise.10.7.10
Find all of the exact solutions of the equation and then list those solutions which are in the interval $[0,2 \pi)$: $\cos \left(x+\frac{5 \pi}{6}\right)=0$
$x=-\frac{\pi}{3}+\pi k ; x=\frac{2 \pi}{3}, \frac{5 \pi}{3}$
Creative Commons License
college_math.precalculus
x=-\frac{\pi}{3}+\pi k ; x=\frac{2 \pi}{3}, \frac{5 \pi}{3}
college_math.PRECALCULUS
exercise.1.3.40
Determine whether or not the equation represents $y$ as a function of $x$: $y=x^{2}+4$
Function
Creative Commons License
college_math.precalculus
Function
college_math.PRECALCULUS
exercise.10.7.39
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\tan (2 x)-2 \cos (x)=0$
$x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}
college_math.PRECALCULUS
exercise.10.7.107
Express the domain of the function using the extended interval notation: $f(x)=\arcsin (\tan (x))$
$\bigcup_{k=-\infty}^{\infty}\left[\frac{(4 k-1) \pi}{4}, \frac{(4 k+1) \pi}{4}\right]$
Creative Commons License
college_math.precalculus
\bigcup_{k=-\infty}^{\infty}\left[\frac{(4 k-1) \pi}{4}, \frac{(4 k+1) \pi}{4}\right]
college_math.PRECALCULUS
exercise.10.7.63
Solve the equation: $4 \operatorname{arcsec}\left(\frac{x}{2}\right)=\pi$
$x=2 \sqrt{2}$
Creative Commons License
college_math.precalculus
x=2 \sqrt{2}
college_math.PRECALCULUS
exercise.6.3.5
Solve the equation analytically: $8^{x}=\frac{1}{128}$
$x=-\frac{7}{3}$
Creative Commons License
college_math.precalculus
x=-\frac{7}{3}
college_math.PRECALCULUS
exercise.1.1.23
Find the distance $d$ between the points and the midpoint $M$ of the line segment which connects them: $(3,-10),(-1,2)$
$d=4 \sqrt{10}, M=(1,-4)$
Creative Commons License
college_math.precalculus
d=4 \sqrt{10}, M=(1,-4)
college_math.PRECALCULUS
exercise.6.3.13
Solve the equation analytically: $(1.005)^{12 x}=3$
$x=\frac{\ln (3)}{12 \ln (1.005)}$
Creative Commons License
college_math.precalculus
x=\frac{\ln (3)}{12 \ln (1.005)}
college_math.PRECALCULUS
exercise.10.7.19
Solve the equation, giving the exact solutions which lie in $[0,2 \pi)$: $\sin (x)=\cos (x)$
$x=\frac{\pi}{4}, \frac{5 \pi}{4}$
Creative Commons License
college_math.precalculus
x=\frac{\pi}{4}, \frac{5 \pi}{4}
college_math.PRECALCULUS
exercise.1.3.35
Determine whether or not the equation represents $y$ as a function of $x$: $x^{3} y=-4$
Function
Creative Commons License
college_math.precalculus
Function