data_source
stringclasses
9 values
question_number
stringlengths
14
17
problem
stringlengths
14
1.32k
answer
stringlengths
1
993
license
stringclasses
8 values
data_topic
stringclasses
7 values
solution
stringlengths
1
991
college_math.Calculus
exercise.9.1.8
Find the area bounded by the curves: $y=\sqrt{x}$ and $y=\sqrt{x+1}, 0 \leq x \leq 4 $
$10 \sqrt{5} / 3-6$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
10 \sqrt{5} / 3-6
college_math.Calculus
exercise.8.2.3
Find the antiderivative: $\int \sin ^{4} x d x $
$3 x / 8-(\sin 2 x) / 4+(\sin 4 x) / 32+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
3 x / 8-(\sin 2 x) / 4+(\sin 4 x) / 32+C
college_math.Calculus
exercise.5.2.3
Find all critical points of the function $y=x^{3}-9 x^{2}+24 x $. Identify them as local maximum points, local minimum points, or neither.
$\max$ at $x=2$, min at $x=4$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\max$ at $x=2$, min at $x=4
college_math.Calculus
exercise.4.8.4
Compute the limit of $\lim _{x \rightarrow \infty} \frac{\ln x}{x} $.
0
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
0
college_math.Calculus
exercise.4.5.15
Find an equation for the tangent line to $\sin ^{2}(x)$ at $x=\pi / 3$.
$\sqrt{3} x / 2+3 / 4-\sqrt{3} \pi / 6$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\sqrt{3} x / 2+3 / 4-\sqrt{3} \pi / 6
college_math.Calculus
exercise.7.2.20
Find the derivative of the function: $G(x)=\int_{1}^{x^{2}} e^{t^{2}} d t $
$2 x e^{x^{4}}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
2 x e^{x^{4}}
college_math.Calculus
exercise.8.1.14
Find the antiderivative of the function: $\int \frac{\sin (\tan x)}{\cos ^{2} x} d x $
$-\cos (\tan x)+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-\cos (\tan x)+C
college_math.Calculus
exercise.10.8.5
Find the radius and interval of convergence for the series: $\sum_{n=1}^{\infty} \frac{(n !)^{2}}{n^{n}}(x-2)^{n} $
$R=0$, converges only when $x=2$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
R=0$, converges only when $x=2
college_math.Calculus
exercise.3.2.5
Find the derivative of the function: $(x+1)\left(x^{2}+2 x-3\right) $
$3 x^{2}+6 x-1$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
3 x^{2}+6 x-1
college_math.Calculus
exercise.4.8.7
The function $f(x)=\frac{x}{\sqrt{x^{2}+1}}$ has two horizontal asymptotes. Find them and give a rough sketch of $f$ with its horizontal asymptotes.
$y=1$ and $y=-1$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
y=1$ and $y=-1
college_math.Calculus
exercise.1.3.9
Find the domain of the function: $y=f(x)=1 / \sqrt{1-(3 x)^{2}} $
$\{x \mid-1 / 3<x<1 / 3\}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\{x \mid-1 / 3<x<1 / 3\}
college_math.Calculus
exercise.1.3.4
Find the domain of the function: $y=f(x)=\sqrt{-1 / x} $
$\{x \mid x<0\}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\{x \mid x<0\}
college_math.Calculus
exercise.4.7.5
Find the derivative of the function: $e^{\sin x} $
$\cos (x) e^{\sin x}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\cos (x) e^{\sin x}
college_math.Calculus
exercise.9.5.1
How much work is done in lifting a 100 kilogram weight from the surface of the earth to an orbit 35,786 kilometers above the surface of the earth?
$\approx 5,305,028,517 \mathrm{~N}-\mathrm{m}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\approx 5,305,028,517 \mathrm{~N}-\mathrm{m}
college_math.Calculus
exercise.3.1.6
Find the derivative of the function: $x^{-9 / 7} $
$-(9 / 7) x^{-16 / 7}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-(9 / 7) x^{-16 / 7}
college_math.Calculus
exercise.6.2.2
A cylindrical tank standing upright (with one circular base on the ground) has radius 1 meter. Find the rate at which the water level in the tank drops when the water is being drained at 3 liters per second.
$3 /(1000 \pi)$ meters $/$ second
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
3 /(1000 \pi)$ meters $/$ second
college_math.Calculus
exercise.3.4.5
Find an equation for the tangent line to $f(x)=\left(x^{2}-4\right) /(5-x)$ at $x=3$.
$y=17 x / 4-41 / 4$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
y=17 x / 4-41 / 4
college_math.Calculus
exercise.5.4.8
Describe the concavity of the function: $y=\sin x+\cos x $
concave down on $((8 n-1) \pi / 4,(8 n+$ $3) \pi / 4)$, concave up on $((8 n+$ $3) \pi / 4,(8 n+7) \pi / 4)$, for integer $n$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
concave down on $((8 n-1) \pi / 4,(8 n+$ $3) \pi / 4)$, concave up on $((8 n+$ $3) \pi / 4,(8 n+7) \pi / 4)$, for integer $n
college_math.Calculus
exercise.8.1.4
Find the antiderivative of the function: $\int \frac{1}{\sqrt[3]{1-5 t}} d t $
$-3(1-5 t)^{2 / 3} / 10+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-3(1-5 t)^{2 / 3} / 10+C
college_math.Calculus
exercise.8.5.7
Find the antiderivative: $\int \frac{x^{3}}{4+x^{2}} d x $
$x^{2} / 2-2 \ln \left(4+x^{2}\right)+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
x^{2} / 2-2 \ln \left(4+x^{2}\right)+C
college_math.Calculus
exercise.9.7.13
Determine whether the volume of the solid obtained by rotating the curve $y=1 / x$ around the x-axis, from $x=1$ to infinity, is finite or infinite. If it is finite, compute the volume.
$\pi$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\pi
college_math.Calculus
exercise.6.2.6
A baseball diamond is a square $90 \mathrm{ft}$ on a side. A player runs from first base to second base at a speed of $15 \mathrm{ft} / \mathrm{sec}$. At what rate is the player's distance from third base decreasing when she is halfway from first to second base?
$3 \sqrt{5} \mathrm{ft} / \mathrm{s}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
3 \sqrt{5} \mathrm{ft} / \mathrm{s}
college_math.Calculus
exercise.8.4.12
Find the antiderivative: $\int \sin (\sqrt{x}) d x $
$2 \sin (\sqrt{x})-2 \sqrt{x} \cos (\sqrt{x})+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
2 \sin (\sqrt{x})-2 \sqrt{x} \cos (\sqrt{x})+C
college_math.Calculus
exercise.2.4.2
Find the derivative of the function: $y=f(t)=80-4.9 t^{2}$.
$-9.8 t$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-9.8 t
college_math.Calculus
exercise.7.2.13
Compute the value of the integral: $\int_{1}^{10} \frac{1}{x} d x $
$\ln (10)$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\ln (10)
college_math.Calculus
exercise.8.4.13
Find the antiderivative: $\int \sec ^{2} x \csc ^{2} x d x $
$\sec x \csc x-2 \cot x+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\sec x \csc x-2 \cot x+C
college_math.Calculus
exercise.2.4.1
Find the derivative of the function: $y=f(x)=\sqrt{169-x^{2}}$.
$-x / \sqrt{169-x^{2}}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-x / \sqrt{169-x^{2}}
college_math.Calculus
exercise.4.7.20
Find the value of $a$ so that the tangent line to $y=\ln (x)$ at $x=a$ is a line through the origin. Sketch the resulting situation.
$e$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
e
college_math.Calculus
exercise.5.3.1
Find all local maximum and minimum points of the function: $y=x^{2}-x $
$\min$ at $x=1 / 2$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\min$ at $x=1 / 2
college_math.Calculus
exercise.7.1.7
Let $f(x)=x^{2}+3 x+2$. Approximate the area under the curve between $x=0$ and $x=2$ using 4 rectangles and also using 8 rectangles.
4 rectangles: $41 / 4=10.25$, 8 rectangles: $183 / 16=11.4375$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
4 rectangles: $41 / 4=10.25$, 8 rectangles: $183 / 16=11.4375
college_math.Calculus
exercise.3.5.24
Find the derivative of the function: $\frac{1}{1+1 / x} $
$1 /(x+1)^{2}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
1 /(x+1)^{2}
college_math.Calculus
exercise.5.4.12
Describe the concavity of the function: $y=6 x+\sin 3 x $
concave down on $(2 n \pi / 3,(2 n+$ 1) $\pi / 3)$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
concave down on $(2 n \pi / 3,(2 n+$ 1) $\pi / 3)
college_math.Calculus
exercise.10.10.6
Find the Maclaurin series or Taylor series centered at $a$ and the radius of convergence for the function: $1 / x^{2}, a=1 $
$\sum_{n=0}^{\infty}(-1)^{n}(n+1)(x-1)^{n}, R=1$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\sum_{n=0}^{\infty}(-1)^{n}(n+1)(x-1)^{n}, R=1
college_math.Calculus
exercise.8.3.2
Find the antiderivative: $\int \csc ^{3} x d x $
$-\csc x \cot x / 2-(1 / 2) \ln \mid \csc x+$ $\cot x \mid+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-\csc x \cot x / 2-(1 / 2) \ln \mid \csc x+$ $\cot x \mid+C
college_math.Calculus
exercise.3.4.9
If $f^{\prime}(4)=5, g^{\prime}(4)=12,(f g)(4)=f(4) g(4)=2$, and $g(4)=6$, compute $f(4)$ and $\frac{d}{d x} \frac{f}{g}$ at 4 .
$13 / 18$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
13 / 18
college_math.Calculus
exercise.3.5.37
Find an equation for the tangent line to $y=9 x^{-2}$ at $(3,1)$.
$y=3-2 x / 3$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
y=3-2 x / 3
college_math.Calculus
exercise.10.4.2
Determine whether the series $\sum_{n=4}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n-3}} $ converges or diverges.
converges
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
converges
college_math.Calculus
exercise.5.4.15
Describe the concavity of the function: $y=(x+5)^{1 / 4} $
concave down everywhere
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
concave down everywhere
college_math.Calculus
exercise.8.6.19
Evaluate the integral: $\int \frac{t^{3}}{\left(2-t^{2}\right)^{5 / 2}} d t $
$\frac{2}{3\left(2-t^{2}\right)^{3 / 2}}-\frac{1}{\left(2-t^{2}\right)^{1 / 2}}+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\frac{2}{3\left(2-t^{2}\right)^{3 / 2}}-\frac{1}{\left(2-t^{2}\right)^{1 / 2}}+C
college_math.Calculus
exercise.10.3.10
Find an $N$ such that $\sum_{n=0}^{\infty} \frac{1}{e^{n}}=\sum_{n=0}^{N} \frac{1}{e^{n}} \pm 10^{-4}$.
$N=10$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
N=10
college_math.Calculus
exercise.10.6.6
Determine whether the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{n}}{2^{n}+5^{n}} $ converges absolutely, converges conditionally, or diverges.
converges absolutely
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
converges absolutely
college_math.Calculus
exercise.10.2.5
Compute the value of the series $\sum_{n=0}^{\infty} \frac{3}{2^{n}}+\frac{4}{5^{n}}$.
11
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
11
college_math.Calculus
exercise.3.5.29
Find the derivative of the function: $\frac{x^{2}-1}{x^{2}+1} $
$4 x /\left(x^{2}+1\right)^{2}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
4 x /\left(x^{2}+1\right)^{2}
college_math.Calculus
exercise.9.7.10
Does the improper integral $\int_{-\infty}^{\infty} x d x$ converge or diverge? If it converges, find the value. Also, find the Cauchy Principal Value, if it exists.
diverges, 0
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
diverges, 0
college_math.Calculus
exercise.5.3.3
Find all local maximum and minimum points of the function: $y=x^{3}-9 x^{2}+24 x $
$\max$ at $x=2$, min at $x=4$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\max$ at $x=2$, min at $x=4
college_math.Calculus
exercise.3.5.12
Find the derivative of the function: $\sqrt{\frac{169}{x}-x} $
$\frac{1}{2}\left(\frac{-169}{x^{2}}-1\right) / \sqrt{\frac{169}{x}-x}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\frac{1}{2}\left(\frac{-169}{x^{2}}-1\right) / \sqrt{\frac{169}{x}-x}
college_math.Calculus
exercise.2.3.8
Compute the limit: $\lim _{x \rightarrow 4} 3 x^{3}-5 x $.
172
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
172
college_math.Calculus
exercise.4.5.16
Find an equation for the tangent line to $\sec ^{2} x$ at $x=\pi / 3$.
$8 \sqrt{3} x+4-8 \sqrt{3} \pi / 3$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
8 \sqrt{3} x+4-8 \sqrt{3} \pi / 3
college_math.Calculus
exercise.9.2.11
An object moves along a straight line with acceleration given by $a(t)=1-\sin (\pi t)$. Assume that when $t=0, s(t)=v(t)=0$. Find $s(t)$ and $v(t)$.
$s(t)=t^{2} / 2+\sin (\pi t) / \pi^{2}-t / \pi$, $v(t)=t+\cos (\pi t) / \pi-1 / \pi$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
s(t)=t^{2} / 2+\sin (\pi t) / \pi^{2}-t / \pi$, $v(t)=t+\cos (\pi t) / \pi-1 / \pi
college_math.Calculus
exercise.3.5.1
Find the derivative of the function: $x^{4}-3 x^{3}+(1 / 2) x^{2}+7 x-\pi $
$4 x^{3}-9 x^{2}+x+7$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
4 x^{3}-9 x^{2}+x+7
college_math.Calculus
exercise.4.7.7
Find the derivative of the function: $x^{3} e^{x} $
$3 x^{2} e^{x}+x^{3} e^{x}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
3 x^{2} e^{x}+x^{3} e^{x}
college_math.Calculus
exercise.3.5.17
Find the derivative of the function: $(x+8)^{5} $
$5(x+8)^{4}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
5(x+8)^{4}
college_math.Calculus
exercise.3.5.3
Find the derivative of the function: $\left(x^{2}+1\right)^{3} $
$6\left(x^{2}+1\right)^{2} x$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
6\left(x^{2}+1\right)^{2} x
college_math.Calculus
exercise.1.2.6
Find the standard equation of the circle passing through $(-2,1)$ and tangent to the line $3 x-2 y=6$ at the point $(4,3)$. Sketch. (Hint: The line through the center of the circle and the point of tangency is perpendicular to the tangent line.)
$(x+2 / 7)^{2}+(y-41 / 7)^{2}=1300 / 49$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
(x+2 / 7)^{2}+(y-41 / 7)^{2}=1300 / 49
college_math.Calculus
exercise.10.1.3
Determine whether the sequence $\{\sqrt{n+47}-\sqrt{n}\}_{n=0}^{\infty}$ converges or diverges. If it converges, compute the limit.
0
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
0
college_math.Calculus
exercise.3.5.13
Find the derivative of the function: $\sqrt{x^{3}-x^{2}-(1 / x)} $
$\frac{3 x^{2}-2 x+1 / x^{2}}{2 \sqrt{x^{3}-x^{2}-(1 / x)}}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\frac{3 x^{2}-2 x+1 / x^{2}}{2 \sqrt{x^{3}-x^{2}-(1 / x)}}
college_math.Calculus
exercise.5.4.6
Describe the concavity of the function: $y=\left(x^{2}-1\right) / x $
concave up when $x<0$, concave down when $x>0$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
concave up when $x<0$, concave down when $x>0
college_math.Calculus
exercise.10.4.3
Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{3 n-2} $ converges or diverges.
diverges
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
diverges
college_math.Calculus
exercise.8.4.2
Find the antiderivative: $\int x^{2} \cos x d x $
$x^{2} \sin x-2 \sin x+2 x \cos x+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
x^{2} \sin x-2 \sin x+2 x \cos x+C
college_math.Calculus
exercise.6.5.9
Describe all functions with derivative $\sin (2 x)$.
$-\cos (2 x) / 2+k$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-\cos (2 x) / 2+k
college_math.Calculus
exercise.6.1.30
If you fit the cone with the largest possible surface area (lateral area plus area of base) into a sphere, what percent of the volume of the sphere is occupied by the cone?
The ratio of the volume of the sphere to the volume of the cone is $1033 / 4096+33 / 4096 \sqrt{17} \approx 0.2854$, so the cone occupies approximately $28.54 \%$ of the sphere.
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
The ratio of the volume of the sphere to the volume of the cone is $1033 / 4096+33 / 4096 \sqrt{17} \approx 0.2854$, so the cone occupies approximately $28.54 \%$ of the sphere.
college_math.Calculus
exercise.9.6.10
A thin plate lies in the region contained by $\sqrt{x}+\sqrt{y}=1$ and the axes in the first quadrant. Find the centroid.
$\bar{x}=\bar{y}=1 / 5$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\bar{x}=\bar{y}=1 / 5
college_math.Calculus
exercise.6.3.2
Use Newton's Method to approximate the cube root of 10 to two decimal places.
2.15
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
2.15
college_math.Calculus
exercise.9.4.5
An object moves with velocity $v(t)=-t^{2}+1$ feet per second between $t=0$ and $t=2$. Find the average velocity and the average speed of the object between $t=0$ and $t=2 . $
$-1 / 3,1$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-1 / 3,1
college_math.Calculus
exercise.10.3.6
Determine whether the series converges or diverges: $\sum_{n=1}^{\infty} \frac{n}{e^{n}} $
converges
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
converges
college_math.Calculus
exercise.4.1.3
Use an angle sum identity to compute $\cos (\pi / 12)$.
$(\sqrt{2}+\sqrt{6}) / 2$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
(\sqrt{2}+\sqrt{6}) / 2
college_math.Calculus
exercise.2.4.3
Find the derivative of the function: $y=f(x)=x^{2}-(1 / x)$.
$2 x+1 / x^{2}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
2 x+1 / x^{2}
college_math.Calculus
exercise.3.2.2
Find the derivative of the function: $-4 x^{5}+3 x^{2}-5 / x^{2} $
$-20 x^{4}+6 x+10 / x^{3}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-20 x^{4}+6 x+10 / x^{3}
college_math.Calculus
exercise.9.2.4
For the velocity function $v=\sin (\pi t / 3)-t$, find both the net distance and the total distance traveled during the time interval $0 \leq t \leq 1$.
$(3-\pi) /(2 \pi),(18-12 \sqrt{3}+\pi) /(4 \pi)$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
(3-\pi) /(2 \pi),(18-12 \sqrt{3}+\pi) /(4 \pi)
college_math.Calculus
exercise.3.5.18
Find the derivative of the function: $(4-x)^{3} $
$-3(4-x)^{2}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-3(4-x)^{2}
college_math.Calculus
exercise.8.6.18
Evaluate the integral: $\int\left(t^{3 / 2}+47\right)^{3} \sqrt{t} d t $
$\frac{\left(t^{3 / 2}+47\right)^{4}}{6}+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\frac{\left(t^{3 / 2}+47\right)^{4}}{6}+C
college_math.Calculus
exercise.8.6.7
Evaluate the integral: $\int \frac{1}{t\left(t^{2}-4\right)} d t $
$\frac{1}{8} \ln \left|1-4 / t^{2}\right|+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\frac{1}{8} \ln \left|1-4 / t^{2}\right|+C
college_math.Calculus
exercise.3.5.5
Find the derivative of the function: $\left(x^{2}-4 x+5\right) \sqrt{25-x^{2}} $
$(2 x-4) \sqrt{25-x^{2}}-$ $\left(x^{2}-4 x+5\right) x / \sqrt{25-x^{2}}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
(2 x-4) \sqrt{25-x^{2}}-$ $\left(x^{2}-4 x+5\right) x / \sqrt{25-x^{2}}
college_math.Calculus
exercise.5.4.18
Describe the concavity of the function: $y=\sin ^{3} x $
inflection points at $n \pi$, $\pm \arcsin (\sqrt{2 / 3})+n \pi$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
inflection points at $n \pi$, $\pm \arcsin (\sqrt{2 / 3})+n \pi
college_math.Calculus
exercise.7.2.16
Compute the value of the integral: $\int_{1}^{2} x^{5} d x $
$2^{6} / 6-1 / 6$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
2^{6} / 6-1 / 6
college_math.Calculus
exercise.4.10.5
Find the derivative of $\arctan \left(e^{x}\right)$.
$\frac{e^{x}}{1+e^{2 x}}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\frac{e^{x}}{1+e^{2 x}}
college_math.Calculus
exercise.6.3.1
Approximate the fifth root of 7 , using $x_{0}=1.5$ as a first guess. Use Newton's method to find $x_{3}$ as your approximation.
$x_{3}=1.475773162$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
x_{3}=1.475773162
college_math.Calculus
exercise.3.2.3
Find the derivative of the function: $5\left(-3 x^{2}+5 x+1\right) $
$-30 x+25$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-30 x+25
college_math.Calculus
exercise.8.5.10
Find the antiderivative: $\int \frac{1}{x^{2}+3 x} d x $
$(1 / 3) \ln |x|-(1 / 3) \ln |x+3|+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
(1 / 3) \ln |x|-(1 / 3) \ln |x+3|+C
college_math.Calculus
exercise.10.8.1
Find the radius and interval of convergence for the series: $\sum_{n=0}^{\infty} n x^{n} $
$R=1, I=(-1,1)$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
R=1, I=(-1,1)
college_math.Calculus
exercise.7.2.5
Find the antiderivative of the function: $7 s^{-1} $
$7 \ln s+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
7 \ln s+C
college_math.Calculus
exercise.9.4.6
The observation deck on the 102nd floor of the Empire State Building is 1,224 feet above the ground. If a steel ball is dropped from the observation deck its velocity at time $t$ is approximately $v(t)=-32 t$ feet per second. Find the average speed between the time it is dropped and the time it hits the ground, and find its speed when it hits the ground.
$-4 \sqrt{1224} \mathrm{ft} / \mathrm{s} ;-8 \sqrt{1224} \mathrm{ft} / \mathrm{s}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-4 \sqrt{1224} \mathrm{ft} / \mathrm{s} ;-8 \sqrt{1224} \mathrm{ft} / \mathrm{s}
college_math.Calculus
exercise.3.5.31
Find the derivative of the function: $\frac{2 x^{-1}-x^{-2}}{3 x^{-1}-4 x^{-2}} $
$-5 /(3 x-4)^{2}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-5 /(3 x-4)^{2}
college_math.Calculus
exercise.7.1.8
Let $f(x)=x^{2}-2 x+3$. Approximate the area under the curve between $x=1$ and $x=3$ using 4 rectangles.
$23 / 4$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
23 / 4
college_math.Calculus
exercise.10.1.1
Compute the limit: $\lim _{x \rightarrow \infty} x^{1 / x} . $
1
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
1
college_math.Calculus
exercise.9.4.4
Find the average height of $\sqrt{1-x^{2}}$ over the interval $[-1,1] . $
$\pi / 4$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
\pi / 4
college_math.Calculus
exercise.10.1.5
Determine whether the sequence $\left\{\frac{n+47}{\sqrt{n^{2}+3 n}}\right\}_{n=1}^{\infty}$ converges or diverges. If it converges, compute the limit.
1
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
1
college_math.Calculus
exercise.2.3.15
Compute the limit: $\lim _{x \rightarrow 1}\left\{\begin{array}{ll}x-5 & x \neq 1, \\ 7 & x=1 .\end{array} \right.$. If a limit does not exist, explain why.
-4
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-4
college_math.Calculus
exercise.8.1.1
Find the antiderivative of the function: $\int(1-t)^{9} d t $
$-(1-t)^{10 / 10+C}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-(1-t)^{10 / 10+C}
college_math.Calculus
exercise.6.2.8
A boat is pulled in to a dock by a rope with one end attached to the front of the boat and the other end passing through a ring attached to the dock at a point $5 \mathrm{ft}$ higher than the front of the boat. The rope is being pulled through the ring at a rate of $0.6 \mathrm{ft} / \mathrm{sec}$. Find the rate at which the boat is approaching the dock when $13 \mathrm{ft}$ of rope are out.
$13 / 20 \mathrm{ft} / \mathrm{s}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
13 / 20 \mathrm{ft} / \mathrm{s}
college_math.Calculus
exercise.6.1.23
You are designing a poster to contain a fixed amount $A$ of printing (measured in square centimeters) and have margins of $a$ centimeters at the top and bottom and $b$ centimeters at the sides. Find the ratio of vertical dimension to horizontal dimension of the printed area on the poster if you want to minimize the amount of posterboard needed.
$a / b$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
a / b
college_math.Calculus
exercise.7.3.3
An object moves so that its velocity at time $t$ is $v(t)=1+2 \sin t \mathrm{~m} / \mathrm{s}$. Find the net distance traveled by the object between $t=0$ and $t=2 \pi$, and find the total distance traveled during the same period.
net: $2 \pi$, total: $2 \pi / 3+4 \sqrt{3}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
net: $2 \pi$, total: $2 \pi / 3+4 \sqrt{3}
college_math.Calculus
exercise.9.1.4
Find the area bounded by the curves: $x=3 y-y^{2}$ and $x+y=3 $
$4 / 3$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
4 / 3
college_math.Calculus
exercise.3.2.8
Find an equation for the tangent line to $f(x)=3 x^{2}-\pi^{3}$ at $x=4$.
$y=24 x-48-\pi^{3}$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
y=24 x-48-\pi^{3}
college_math.Calculus
exercise.4.7.15
Find the derivative of the function: $x^{\sin (x)} $
$x^{\sin (x)}(\cos (x) \ln (x)+\sin (x) / x)$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
x^{\sin (x)}(\cos (x) \ln (x)+\sin (x) / x)
college_math.Calculus
exercise.8.3.3
Find the antiderivative: $\int \sqrt{x^{2}-1} d x $
$x \sqrt{x^{2}-1} / 2-\ln \left|x+\sqrt{x^{2}-1}\right| / 2+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
x \sqrt{x^{2}-1} / 2-\ln \left|x+\sqrt{x^{2}-1}\right| / 2+C
college_math.Calculus
exercise.7.2.9
Find the antiderivative of the function: $\frac{2}{x \sqrt{x}} $
$-4 / \sqrt{x}+C$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
-4 / \sqrt{x}+C
college_math.Calculus
exercise.7.3.6
Evaluate the three integrals: $$ A=\int_{0}^{3}-x^{2}+9 d x \quad B=\int_{0}^{4}-x^{2}+9 d x \quad C=\int_{4}^{3}-x^{2}+9 d x, $$ and verify that $A=B+C$. $$
$A=18, B=44 / 3, C=10 / 3$
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
A=18, B=44 / 3, C=10 / 3
college_math.Calculus
exercise.6.1.10
Find the area of the largest rectangle that fits inside a semicircle of radius 10 (one side of the rectangle is along the diameter of the semicircle).
100
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
100
college_math.Calculus
exercise.9.7.4
Does the improper integral $\int_{1}^{\infty} 1 / \sqrt{x} d x$ converge or diverge? If it converges, find the value.
diverges
Creative Commons Attribution Non-Commercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
college_math.calculus
diverges