repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/qiskit-community/prototype-qrao
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2020, 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Quantum Random Access Optimizer.""" from typing import Union, List, Tuple, Optional import time import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms.minimum_eigensolvers import ( MinimumEigensolver, MinimumEigensolverResult, NumPyMinimumEigensolver, ) from qiskit.algorithms.minimum_eigen_solvers import ( MinimumEigensolver as LegacyMinimumEigensolver, MinimumEigensolverResult as LegacyMinimumEigensolverResult, NumPyMinimumEigensolver as LegacyNumPyMinimumEigensolver, ) from qiskit_optimization.algorithms import ( OptimizationAlgorithm, OptimizationResult, OptimizationResultStatus, SolutionSample, ) from qiskit_optimization.problems import QuadraticProgram, Variable from .encoding import QuantumRandomAccessEncoding from .rounding_common import RoundingScheme, RoundingContext, RoundingResult from .semideterministic_rounding import SemideterministicRounding def _get_aux_operators_evaluated(relaxed_results): try: # Must be using the new "minimum_eigensolvers" # https://github.com/Qiskit/qiskit-terra/blob/main/releasenotes/notes/0.22/add-eigensolvers-with-primitives-8b3a9f55f5fd285f.yaml return relaxed_results.aux_operators_evaluated except AttributeError: # Must be using the old (deprecated) "minimum_eigen_solvers" return relaxed_results.aux_operator_eigenvalues class QuantumRandomAccessOptimizationResult(OptimizationResult): """Result of Quantum Random Access Optimization procedure.""" def __init__( self, *, x: Optional[Union[List[float], np.ndarray]], fval: Optional[float], variables: List[Variable], status: OptimizationResultStatus, samples: Optional[List[SolutionSample]], relaxed_results: Union[ MinimumEigensolverResult, LegacyMinimumEigensolverResult ], rounding_results: RoundingResult, relaxed_results_offset: float, sense: int, ) -> None: """ Args: x: the optimal value found by ``MinimumEigensolver``. fval: the optimal function value. variables: the list of variables of the optimization problem. status: the termination status of the optimization algorithm. min_eigen_solver_result: the result obtained from the underlying algorithm. samples: the x values of the QUBO, the objective function value of the QUBO, and the probability, and the status of sampling. """ super().__init__( x=x, fval=fval, variables=variables, status=status, raw_results=None, samples=samples, ) self._relaxed_results = relaxed_results self._rounding_results = rounding_results self._relaxed_results_offset = relaxed_results_offset assert sense in (-1, 1) self._sense = sense @property def relaxed_results( self, ) -> Union[MinimumEigensolverResult, LegacyMinimumEigensolverResult]: """Variationally obtained ground state of the relaxed Hamiltonian""" return self._relaxed_results @property def rounding_results(self) -> RoundingResult: """Rounding results""" return self._rounding_results @property def trace_values(self): """List of expectation values, one corresponding to each decision variable""" trace_values = [ v[0] for v in _get_aux_operators_evaluated(self._relaxed_results) ] return trace_values @property def relaxed_fval(self) -> float: """Relaxed function value, in the conventions of the original ``QuadraticProgram`` Restoring convertions may be necessary, for instance, if the provided ``QuadraticProgram`` represents a maximization problem, as it will be converted to a minimization problem when phrased as a Hamiltonian. """ return self._sense * ( self._relaxed_results_offset + self.relaxed_results.eigenvalue.real ) def __repr__(self) -> str: lines = ( "QRAO Result", "-----------", f"relaxed function value: {self.relaxed_fval}", super().__repr__(), ) return "\n".join(lines) class QuantumRandomAccessOptimizer(OptimizationAlgorithm): """Quantum Random Access Optimizer.""" def __init__( self, min_eigen_solver: Union[MinimumEigensolver, LegacyMinimumEigensolver], encoding: QuantumRandomAccessEncoding, rounding_scheme: Optional[RoundingScheme] = None, ): """ Args: min_eigen_solver: The minimum eigensolver to use for solving the relaxed problem (typically an instance of ``VQE`` or ``QAOA``). encoding: The ``QuantumRandomAccessEncoding``, which must have already been ``encode()``ed with a ``QuadraticProgram``. rounding_scheme: The rounding scheme. If ``None`` is provided, ``SemideterministicRounding()`` will be used. """ self.min_eigen_solver = min_eigen_solver self.encoding = encoding if rounding_scheme is None: rounding_scheme = SemideterministicRounding() self.rounding_scheme = rounding_scheme @property def min_eigen_solver(self) -> Union[MinimumEigensolver, LegacyMinimumEigensolver]: """The minimum eigensolver.""" return self._min_eigen_solver @min_eigen_solver.setter def min_eigen_solver( self, min_eigen_solver: Union[MinimumEigensolver, LegacyMinimumEigensolver] ) -> None: """Set the minimum eigensolver.""" if not min_eigen_solver.supports_aux_operators(): raise TypeError( f"The provided MinimumEigensolver ({type(min_eigen_solver)}) " "does not support auxiliary operators." ) self._min_eigen_solver = min_eigen_solver @property def encoding(self) -> QuantumRandomAccessEncoding: """The encoding.""" return self._encoding @encoding.setter def encoding(self, encoding: QuantumRandomAccessEncoding) -> None: """Set the encoding""" if encoding.num_qubits == 0: raise ValueError( "The passed encoder has no variables associated with it; you probably " "need to call `encode()` to encode it with a `QuadraticProgram`." ) # Instead of copying, we "freeze" the encoding to ensure it is not # modified going forward. encoding.freeze() self._encoding = encoding def get_compatibility_msg(self, problem: QuadraticProgram) -> str: if problem != self.encoding.problem: return ( "The problem passed does not match the problem used " "to construct the QuantumRandomAccessEncoding." ) return "" def solve_relaxed( self, ) -> Tuple[ Union[MinimumEigensolverResult, LegacyMinimumEigensolverResult], RoundingContext ]: """Solve the relaxed Hamiltonian given the ``encoding`` provided to the constructor.""" # Get the ordered list of operators that correspond to each decision # variable. This line assumes the variables are numbered consecutively # starting with 0. Note that under this assumption, the following # range is equivalent to `sorted(self.encoding.var2op.keys())`. See # encoding.py for more commentary on this assumption, which always # holds when starting from a `QuadraticProgram`. variable_ops = [self.encoding.term2op(i) for i in range(self.encoding.num_vars)] # solve relaxed problem start_time_relaxed = time.time() relaxed_results = self.min_eigen_solver.compute_minimum_eigenvalue( self.encoding.qubit_op, aux_operators=variable_ops ) stop_time_relaxed = time.time() relaxed_results.time_taken = stop_time_relaxed - start_time_relaxed trace_values = [v[0] for v in _get_aux_operators_evaluated(relaxed_results)] # Collect inputs for rounding # double check later that there's no funny business with the # parameter ordering. # If the relaxed solution can be expressed as an explicit circuit # then always express it that way - even if a statevector simulator # was used and the actual wavefunction could be used. The only exception # is the numpy eigensolver. If you wish to round the an explicit statevector, # you must do so by manually rounding and passing in a QuantumCircuit # initialized to the desired state. if hasattr(self.min_eigen_solver, "ansatz"): circuit = self.min_eigen_solver.ansatz.bind_parameters( relaxed_results.optimal_point ) elif isinstance( self.min_eigen_solver, (NumPyMinimumEigensolver, LegacyNumPyMinimumEigensolver), ): statevector = relaxed_results.eigenstate if isinstance(self.min_eigen_solver, LegacyNumPyMinimumEigensolver): # statevector is a StateFn in this case, so we must convert it # to a Statevector statevector = statevector.primitive circuit = QuantumCircuit(self.encoding.num_qubits) circuit.initialize(statevector) else: circuit = None rounding_context = RoundingContext( encoding=self.encoding, trace_values=trace_values, circuit=circuit, ) return relaxed_results, rounding_context def solve(self, problem: Optional[QuadraticProgram] = None) -> OptimizationResult: if problem is None: problem = self.encoding.problem else: if problem != self.encoding.problem: raise ValueError( "The problem given must exactly match the problem " "used to generate the encoded operator. Alternatively, " "the argument to `solve` can be left blank." ) # Solve relaxed problem # ============================ (relaxed_results, rounding_context) = self.solve_relaxed() # Round relaxed solution # ============================ rounding_results = self.rounding_scheme.round(rounding_context) # Process rounding results # ============================ # The rounding classes don't have enough information to evaluate the # objective function, so they return a RoundingSolutionSample, which # contains only part of the information in the SolutionSample. Here we # fill in the rest. samples: List[SolutionSample] = [] for sample in rounding_results.samples: samples.append( SolutionSample( x=sample.x, fval=problem.objective.evaluate(sample.x), probability=sample.probability, status=self._get_feasibility_status(problem, sample.x), ) ) # TODO: rewrite this logic once the converters are integrated. # we need to be very careful about ensuring that the problem # sense is taken into account in the relaxed solution and the rounding # this is likely only a temporary patch while we are sticking to a # maximization problem. fsense = {"MINIMIZE": min, "MAXIMIZE": max}[problem.objective.sense.name] best_sample = fsense(samples, key=lambda x: x.fval) return QuantumRandomAccessOptimizationResult( samples=samples, x=best_sample.x, fval=best_sample.fval, variables=problem.variables, status=OptimizationResultStatus.SUCCESS, relaxed_results=relaxed_results, rounding_results=rounding_results, relaxed_results_offset=self.encoding.offset, sense=problem.objective.sense.value, )
https://github.com/qiskit-community/prototype-qrao
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test QRAO steps on various hardware and simulator backends""" import pytest from docplex.mp.model import Model from qiskit.utils import QuantumInstance from qiskit.algorithms.minimum_eigen_solvers import VQE from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import SPSA from qiskit import BasicAer from qiskit_aer import Aer from qiskit_optimization.algorithms import OptimizationResultStatus from qiskit_optimization.translators import from_docplex_mp from qiskit_ibm_provider import IBMProvider, least_busy, IBMAccountError from qrao import ( QuantumRandomAccessOptimizer, QuantumRandomAccessEncoding, MagicRounding, ) # pylint: disable=redefined-outer-name # TODO: # - update these tests to include solution checking once behavior can be made # - deterministic. # - This might just require us to set seeds in the QuantumInstance and # - remove that as an argument altogether. backends = [ (BasicAer.get_backend, "qasm_simulator"), (Aer.get_backend, "qasm_simulator"), (Aer.get_backend, "statevector_simulator"), (Aer.get_backend, "aer_simulator"), (Aer.get_backend, "aer_simulator_statevector"), (Aer.get_backend, "aer_simulator_density_matrix"), (Aer.get_backend, "aer_simulator_matrix_product_state"), # The following takes forever, haven't yet waited long enough to know the # real timescale # (Aer.get_backend, "aer_simulator_extended_stabilizer"), ] @pytest.fixture(scope="module") def my_encoding(): """Fixture to construct ``my_encoding`` for use in this file""" # Load small reference problem elist = [(0, 1), (0, 4), (0, 3), (1, 2), (1, 5), (2, 3), (2, 4), (4, 5), (5, 3)] num_nodes = 6 mod = Model("maxcut") nodes = list(range(num_nodes)) var = [mod.binary_var(name="x" + str(i)) for i in nodes] mod.maximize(mod.sum((var[i] + var[j] - 2 * var[i] * var[j]) for i, j in elist)) problem = from_docplex_mp(mod) encoding = QuantumRandomAccessEncoding(max_vars_per_qubit=3) encoding.encode(problem) return encoding @pytest.fixture(scope="module") def my_ansatz(my_encoding): """Fixture to construct ``my_ansatz`` for use in this file""" return RealAmplitudes(my_encoding.num_qubits) @pytest.mark.parametrize("relaxed_backend", backends) @pytest.mark.parametrize("rounding_backend", backends) @pytest.mark.filterwarnings("ignore::PendingDeprecationWarning") @pytest.mark.filterwarnings( "ignore:.*statevector_simulator.*:UserWarning" ) # ignore magic rounding's UserWarning when using statevector_simulator @pytest.mark.backend def test_backend(relaxed_backend, rounding_backend, my_encoding, my_ansatz, shots=3): """Smoke test of each backend combination""" def cb(f, *args): "Construct backend" return f(*args) relaxed_qi = QuantumInstance(backend=cb(*relaxed_backend), shots=shots) rounding_qi = QuantumInstance(backend=cb(*rounding_backend), shots=shots) vqe = VQE( ansatz=my_ansatz, optimizer=SPSA(maxiter=1, learning_rate=0.01, perturbation=0.1), quantum_instance=relaxed_qi, ) rounding_scheme = MagicRounding(rounding_qi) qrao = QuantumRandomAccessOptimizer( encoding=my_encoding, min_eigen_solver=vqe, rounding_scheme=rounding_scheme ) result = qrao.solve() assert result.status == OptimizationResultStatus.SUCCESS @pytest.mark.backend def test_magic_rounding_on_hardware_backend(my_encoding, my_ansatz): """Test *magic rounding* on a hardware backend, if available.""" try: provider = IBMProvider() except IBMAccountError: pytest.skip("No hardware backend available") print(f"Encoding requires {my_encoding.num_qubits} qubits") backend = least_busy( provider.backends( min_num_qubits=my_encoding.num_qubits, simulator=False, operational=True, ) ) print(f"Using backend: {backend}") relaxed_qi = QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=100) rounding_qi = QuantumInstance(backend=backend, shots=32) vqe = VQE( ansatz=my_ansatz, optimizer=SPSA(maxiter=1, learning_rate=0.01, perturbation=0.1), quantum_instance=relaxed_qi, ) rounding_scheme = MagicRounding(quantum_instance=rounding_qi) qrao = QuantumRandomAccessOptimizer( encoding=my_encoding, min_eigen_solver=vqe, rounding_scheme=rounding_scheme ) result = qrao.solve() assert result.status == OptimizationResultStatus.SUCCESS
https://github.com/qiskit-community/prototype-qrao
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2021, 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for MagicRounding.""" import itertools import unittest import pytest import numpy as np from docplex.mp.model import Model from qiskit import QuantumCircuit from qiskit.utils import QuantumInstance from qiskit.opflow import ( StateFn, X, Y, Z, ) from qiskit_aer import Aer, noise from qiskit_optimization.translators import from_docplex_mp from qrao import ( QuantumRandomAccessEncoding, RoundingContext, MagicRounding, ) from qrao.encoding import qrac_state_prep_1q, q2vars_from_var2op # pylint: disable=protected-access class TestMagicRounding(unittest.TestCase): """Test MagicRounding Class""" def setUp(self): # load problem, define encoding etc # instantiate MagicRounding # things here don't change (often) super().setUp() self.gate_circ = QuantumCircuit(2) self.gate_circ.h(0) self.gate_circ.h(1) self.gate_circ.z(1) self.gate_circ.cx(0, 1) self.gate_circ.s(0) self.gate_circ.save_statevector() self.deterministic_trace_vals = [ [1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, -1], ] elist = [(0, 1), (0, 4), (0, 3), (1, 2), (1, 5), (2, 3), (2, 4), (4, 5), (5, 3)] num_nodes = 6 mod = Model("maxcut") nodes = list(range(num_nodes)) var = [mod.binary_var(name="x" + str(i)) for i in nodes] mod.maximize(mod.sum((var[i] + var[j] - 2 * var[i] * var[j]) for i, j in elist)) self.problem = from_docplex_mp(mod) self.rounding_qi = QuantumInstance( backend=Aer.get_backend("aer_simulator"), shots=10 ) # Start test cases in order of increasing complexity # toy problems # harder problems w/ minimal inputs # harder problems w/ more inputs # negative test cases def test_round_on_gate_and_sv_circs(self): """Test MagicRounding""" ops = [X, Y, Z] var2op = {i: (i // 3, ops[i % 3]) for i in range(3)} qi = QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=1000) magic = MagicRounding( quantum_instance=qi, basis_sampling="weighted", ) # subtest for gate based and sv based etc with self.subTest("Gate Based Magic Uniform Rounding"): for m in itertools.product((0, 1), repeat=3): qrac_gate_circ = qrac_state_prep_1q(*m).to_circuit() magic_basis = 2 * (m[1] ^ m[2]) + (m[0] ^ m[2]) tv = self.deterministic_trace_vals[magic_basis] rounding_context = RoundingContext( trace_values=tv, circuit=qrac_gate_circ, var2op=var2op, _vars_per_qubit=3, ) rounding_res = magic.round(rounding_context) self.assertEqual(rounding_res.samples[0].x.tolist(), list(m)) self.assertEqual(rounding_res.samples[0].probability, 1) with self.subTest("SV Based Magic Uniform Rounding"): for m in itertools.product((0, 1), repeat=3): qrac_gate_circ = qrac_state_prep_1q(*m).to_circuit() sv = StateFn(qrac_gate_circ).eval().primitive qrac_sv_circ = QuantumCircuit(1) qrac_sv_circ.initialize(sv) magic_basis = 2 * (m[1] ^ m[2]) + (m[0] ^ m[2]) tv = self.deterministic_trace_vals[magic_basis] rounding_context = RoundingContext( trace_values=tv, circuit=qrac_sv_circ, var2op=var2op, _vars_per_qubit=3, ) rounding_res = magic.round(rounding_context) self.assertEqual(rounding_res.samples[0].x.tolist(), list(m)) self.assertEqual(rounding_res.samples[0].probability, 1) def test_evaluate_magic_bases(self): qi = QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=1000) magic = MagicRounding( quantum_instance=qi, basis_sampling="weighted", ) for m in itertools.product((0, 1), repeat=3): qrac_state = qrac_state_prep_1q(*m).to_circuit() bases = [[2 * (m[1] ^ m[2]) + (m[0] ^ m[2])]] basis_counts = magic._evaluate_magic_bases( qrac_state, bases=bases, basis_shots=[10], vars_per_qubit=3 ) self.assertEqual(len(basis_counts), 1) self.assertEqual(int(list(basis_counts[0].keys())[0]), m[0] ^ m[1] ^ m[2]) def test_dv_counts(self): """ Checks that the dv_counts method unpacks these measurement outcomes properly. This also effectively tests `unpack_measurement_outcome`. """ ops = [X, Y, Z] var2op = {i: (i // 3, ops[i % 3]) for i in range(6)} magic = MagicRounding(self.rounding_qi) compute_dv_counts = magic._compute_dv_counts solns = [] for b0 in range(4): for b1 in range(4): for outcome in range(4): bases = [[b0, b1]] basis_counts = [{f"{outcome:02b}": 1}] dv_counts = compute_dv_counts(basis_counts, bases, var2op, 3) solns.append(list(dv_counts.keys())[0]) ref = [ "000000", "000111", "111000", "111111", "000011", "000100", "111011", "111100", "000101", "000010", "111101", "111010", "000110", "000001", "111110", "111001", "011000", "011111", "100000", "100111", "011011", "011100", "100011", "100100", "011101", "011010", "100101", "100010", "011110", "011001", "100110", "100001", "101000", "101111", "010000", "010111", "101011", "101100", "010011", "010100", "101101", "101010", "010101", "010010", "101110", "101001", "010110", "010001", "110000", "110111", "001000", "001111", "110011", "110100", "001011", "001100", "110101", "110010", "001101", "001010", "110110", "110001", "001110", "001001", ] self.assertTrue(np.all(np.array(ref) == np.array(solns))) def test_sample_bases_weighted(self): # pylint: disable=too-many-locals """ There are a few settings of the trace values which cause the magic basis sampling probabilities to be deterministic. I pass these through (for a 2 qubit, 6 var example) and verify that the outputs are correctly shaped and are deterministic. Note that these input trace values are non-physical """ shots = 10 num_nodes = 6 num_qubits = 2 rounding_qi = QuantumInstance( backend=Aer.get_backend("aer_simulator"), shots=shots ) ops = [X, Y, Z] var2op = {i: (i // 3, ops[i % 3]) for i in range(num_nodes)} q2vars = q2vars_from_var2op(var2op) magic = MagicRounding(quantum_instance=rounding_qi, basis_sampling="weighted") sample_bases_weighted = magic._sample_bases_weighted for b0, tv0 in enumerate(self.deterministic_trace_vals): for b1, tv1 in enumerate(self.deterministic_trace_vals): tv = tv0 + tv1 bases, basis_shots = sample_bases_weighted(q2vars, tv, 3) self.assertTrue(np.all(np.array([b0, b1]) == bases)) self.assertEqual(basis_shots, (shots,)) self.assertEqual(bases.shape, (1, num_qubits)) # 1 == deterministic # Both trace values and a circuit must be provided with self.assertRaises(NotImplementedError): magic.round( RoundingContext(trace_values=[1.0], var2op=var2op, _vars_per_qubit=3) ) with self.assertRaises(NotImplementedError): magic.round( RoundingContext( circuit=self.gate_circ, var2op=var2op, _vars_per_qubit=3 ) ) def test_sample_bases_uniform(self): """ Verify that the outputs of uniform sampling are correctly shaped. """ num_nodes = 3 num_qubits = 1 ops = [X, Y, Z] var2op = {i: (i // 3, ops[i % 3]) for i in range(num_nodes)} q2vars = q2vars_from_var2op(var2op) shots = 1000 # set high enough to "always" have four distinct results qi = QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=shots) magic = MagicRounding( quantum_instance=qi, basis_sampling="uniform", ) bases, basis_shots = magic._sample_bases_uniform(q2vars, 3) self.assertEqual(basis_shots.shape, (4,)) self.assertEqual(np.sum(basis_shots), shots) self.assertEqual(bases.shape, (4, num_qubits)) # A circuit must be provided, but trace values need not be circuit = QuantumCircuit(1) circuit.h(0) magic.round(RoundingContext(circuit=circuit, var2op=var2op, _vars_per_qubit=3)) with self.assertRaises(NotImplementedError): magic.round(RoundingContext(var2op=var2op, _vars_per_qubit=3)) def test_unsupported_backend(): qi = QuantumInstance(Aer.get_backend("aer_simulator_unitary"), shots=100) with pytest.raises(ValueError): MagicRounding(quantum_instance=qi) def test_unsupported_basis_sampling_method(): qi = QuantumInstance(Aer.get_backend("aer_simulator"), shots=100) with pytest.raises(ValueError): MagicRounding(quantum_instance=qi, basis_sampling="foo") @pytest.mark.filterwarnings("ignore::PendingDeprecationWarning") def test_magic_rounding_statevector_simulator(): """Test magic rounding on the statevector simulator ... which behaves unlike the others, as the "counts" are probabilities, not integers, and so special care is required. """ qi = QuantumInstance(Aer.get_backend("statevector_simulator"), shots=10) ops = [X, Y, Z] var2op = {i: (i // 3, ops[i % 3]) for i in range(3)} with pytest.warns(UserWarning): magic = MagicRounding( quantum_instance=qi, basis_sampling="weighted", ) circ = QuantumCircuit(2) circ.h(0) circ.h(1) circ.cx(0, 1) ctx = RoundingContext( circuit=circ, trace_values=[1, 1, 1], var2op=var2op, _vars_per_qubit=3 ) res = magic.round(ctx) assert sum(s.probability for s in res.samples) == pytest.approx(1) def test_noisy_quantuminstance(): """Smoke test using a QuantumInstance with noise""" noise_model = noise.NoiseModel() # 1-qubit gates noise_model.add_all_qubit_quantum_error( noise.depolarizing_error(0.001, 1), ["rz", "sx", "x"] ) # 2-qubit gate noise_model.add_all_qubit_quantum_error(noise.depolarizing_error(0.01, 2), ["cx"]) backend = Aer.get_backend("aer_simulator") qi = QuantumInstance(backend=backend, noise_model=noise_model, shots=100) magic = MagicRounding(quantum_instance=qi) ops = [X, Y, Z] var2op = {i: (i // 3, ops[i % 3]) for i in range(3)} circuit = qrac_state_prep_1q(0, 1, 0).to_circuit() magic.round( RoundingContext( trace_values=[1, 1, 1], var2op=var2op, circuit=circuit, _vars_per_qubit=3 ) ) def test_magic_rounding_statistical(): """Statistical test for magic rounding to make sure each deterministic case rounds consistently """ shots = 1024 mr = MagicRounding( QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=shots) ) test_cases = ( # 3 variables encoded as a (3,1,p) QRAC ((0, 0, 0), 0, 0), ((1, 1, 1), 0, 1), ((0, 1, 1), 1, 0), ((1, 0, 0), 1, 1), ((1, 0, 1), 2, 0), ((0, 1, 0), 2, 1), ((1, 1, 0), 3, 0), ((0, 0, 1), 3, 1), # 2 variables encoded as a (2,1,p) QRAC ((0, 0), 0, 0), ((1, 1), 0, 1), ((0, 1), 1, 0), ((1, 0), 1, 1), # 1 variable encoded as a (1,1,1) QRAC ((0,), 0, 0), ((1,), 0, 1), ) for (m, basis, expected) in test_cases: encoding = QuantumRandomAccessEncoding(len(m)) encoding._add_variables(list(range(len(m)))) circuit = encoding.state_prep(m).to_circuit() result = mr.round(RoundingContext(encoding=encoding, circuit=circuit)) deterministic_dict = result.basis_counts[basis] assert set(deterministic_dict) == set([str(expected)]) if __name__ == "__main__": import sys sys.exit(pytest.main([__file__]))
https://github.com/quantastica/qiskit-toaster
quantastica
from qiskit import Aer, QuantumCircuit, execute from qiskit.compiler import transpile, assemble from quantastica.qiskit_toaster import ToasterBackend import time import logging import os backend = ToasterBackend.get_backend("qasm_simulator") # backend = Aer.get_backend("qasm_simulator") default_options = { # "method": "statevector", # Force dense statevector method for benchmarks # "truncate_enable": False, # Disable unused qubit truncation for benchmarks # "max_parallel_threads": 1, # Disable OpenMP parallelization for benchmarks "toaster_optimization": 3 # optimization for qubit-toaster } # def _execute(circuit, backend_options=None): # experiment = transpile(circuit, backend) # qobj = assemble(experiment, shots=1) # qobj_aer = backend._format_qobj(qobj, backend_options, None) # return backend._controller(qobj_aer) def _execute(circuit, backend): job = execute(circuit, backend=backend) # job.result is needed in order to wait for results job.result() def native_execute(benchmark, circuit, backend_options=None): # experiment = transpile(circuit, backend) # qobj = assemble(experiment, shots=1) # qobj_aer = backend._format_qobj(qobj, backend_options, None) # benchmark(backend._controller, qobj_aer) benchmark(_execute, circuit, backend) def run_bench(benchmark, nqubits, gate, locs=(1,)): qc = QuantumCircuit(nqubits) getattr(qc, gate)(*locs) native_execute(benchmark, qc, default_options) def first_rotation(circuit, nqubits): circuit.rx(1.0, range(nqubits)) circuit.rz(1.0, range(nqubits)) return circuit def mid_rotation(circuit, nqubits): circuit.rz(1.0, range(nqubits)) circuit.rx(1.0, range(nqubits)) circuit.rz(1.0, range(nqubits)) return circuit def last_rotation(circuit, nqubits): circuit.rz(1.0, range(nqubits)) circuit.rx(1.0, range(nqubits)) return circuit def entangler(circuit, pairs): for a, b in pairs: circuit.cx(a, b) return circuit def generate_qcbm_circuit(nqubits, depth, pairs): circuit = QuantumCircuit(nqubits) first_rotation(circuit, nqubits) entangler(circuit, pairs) for k in range(depth - 1): mid_rotation(circuit, nqubits) entangler(circuit, pairs) last_rotation(circuit, nqubits) # circuit.measure_all() return circuit def test_qcbm(name, backend, nqubits, optimization_level=None): pairs = [(i, (i + 1) % nqubits) for i in range(nqubits)] circuit = generate_qcbm_circuit(nqubits, 9, pairs) with open("circuit.qasm", "w") as f: f.write(circuit.qasm()) t1 = time.time() # test = transpile(circuit, optimization_level=0) # qobj = assemble(circuit) # job = backend.run(qobj, backend_options=default_options) job = execute( circuit, backend=backend, backend_options=default_options, optimization_level=optimization_level, ) # job.result is needed in order to wait for results result = job.result() t2 = time.time() # print(result) # counts = result.get_counts(circuit) # print("Counts size: %d" % len(counts)) print(" %s time: %f" % (name, t2 - t1)) if __name__ == "__main__": logging.basicConfig( format="%(levelname)s %(asctime)s %(pathname)s - %(message)s", level=os.environ.get("LOGLEVEL", "CRITICAL"), ) N = int(os.environ.get("N", 20)) LOOPS = int(os.environ.get("LOOPS", 10)) for i in range(0, LOOPS): print("Iteration #%d (of %d)" % (i, LOOPS)) test_qcbm("AER", Aer.get_backend("qasm_simulator"), N, 0) test_qcbm( "TOASTER", ToasterBackend.get_backend("qasm_simulator"), N, 0 )
https://github.com/quantastica/qiskit-toaster
quantastica
import unittest from qiskit import QuantumRegister from qiskit import QuantumCircuit, execute from qiskit.providers.aer import AerSimulator import numpy as np import logging import os try: from . import common except Exception: import common @unittest.skipUnless( os.getenv("SLOW") == "1", "Skipping this test (environment variable SLOW must be set to 1)", ) class TestSpeed(common.TestToasterBase): def test_qft25_toaster(self): logging.info("======= Starting our function =======") qc = self.get_qft25_qc() stats = self.execute_and_get_stats( self.toaster_backend(), # Aer.get_backend("qasm_simulator"), qc, 1, ) print("QFT25 toaster:", stats) logging.info("======= Ending our function =======") def test_qft25_aer(self): logging.info("======= Starting our function =======") qc = self.get_qft25_qc() qc.save_state() stats = self.execute_and_get_stats( AerSimulator(method="statevector"), qc, 1, ) print("QFT25 toaster:", stats) logging.info("======= Ending our function =======") @classmethod def execute_and_get_stats(cls, backend, qc, shots): job = execute( qc, optimization_level=0, backend=backend, shots=shots, seed_simulator=1, ) job_result = job.result() counts = job_result.get_counts(qc) total_counts = 0 for c in counts: total_counts += counts[c] ret = dict() ret["counts"] = counts ret["totalcounts"] = total_counts return ret @staticmethod def get_qft25_qc(): qc = QuantumCircuit() q = QuantumRegister(25, "q") qc.add_register(q) qc.h(q[24]) qc.crz(np.pi / 2, q[23], q[24]) qc.h(q[23]) qc.crz(np.pi / 4, q[22], q[24]) qc.crz(np.pi / 2, q[22], q[23]) qc.h(q[22]) qc.crz(np.pi / 8, q[21], q[24]) qc.crz(np.pi / 4, q[21], q[23]) qc.crz(np.pi / 2, q[21], q[22]) qc.h(q[21]) qc.crz(np.pi / 16, q[20], q[24]) qc.crz(np.pi / 8, q[20], q[23]) qc.crz(np.pi / 4, q[20], q[22]) qc.crz(np.pi / 2, q[20], q[21]) qc.h(q[20]) qc.crz(np.pi / 32, q[19], q[24]) qc.crz(np.pi / 16, q[19], q[23]) qc.crz(np.pi / 8, q[19], q[22]) qc.crz(np.pi / 4, q[19], q[21]) qc.crz(np.pi / 2, q[19], q[20]) qc.h(q[19]) qc.crz(np.pi / 64, q[18], q[24]) qc.crz(np.pi / 32, q[18], q[23]) qc.crz(np.pi / 16, q[18], q[22]) qc.crz(np.pi / 8, q[18], q[21]) qc.crz(np.pi / 4, q[18], q[20]) qc.crz(np.pi / 2, q[18], q[19]) qc.h(q[18]) qc.crz(np.pi / 128, q[17], q[24]) qc.crz(np.pi / 64, q[17], q[23]) qc.crz(np.pi / 32, q[17], q[22]) qc.crz(np.pi / 16, q[17], q[21]) qc.crz(np.pi / 8, q[17], q[20]) qc.crz(np.pi / 4, q[17], q[19]) qc.crz(np.pi / 2, q[17], q[18]) qc.h(q[17]) qc.crz(np.pi / 256, q[16], q[24]) qc.crz(np.pi / 128, q[16], q[23]) qc.crz(np.pi / 64, q[16], q[22]) qc.crz(np.pi / 32, q[16], q[21]) qc.crz(np.pi / 16, q[16], q[20]) qc.crz(np.pi / 8, q[16], q[19]) qc.crz(np.pi / 4, q[16], q[18]) qc.crz(np.pi / 2, q[16], q[17]) qc.h(q[16]) qc.crz(np.pi / 512, q[15], q[24]) qc.crz(np.pi / 256, q[15], q[23]) qc.crz(np.pi / 128, q[15], q[22]) qc.crz(np.pi / 64, q[15], q[21]) qc.crz(np.pi / 32, q[15], q[20]) qc.crz(np.pi / 16, q[15], q[19]) qc.crz(np.pi / 8, q[15], q[18]) qc.crz(np.pi / 4, q[15], q[17]) qc.crz(np.pi / 2, q[15], q[16]) qc.h(q[15]) qc.crz(np.pi / 1024, q[14], q[24]) qc.crz(np.pi / 512, q[14], q[23]) qc.crz(np.pi / 256, q[14], q[22]) qc.crz(np.pi / 128, q[14], q[21]) qc.crz(np.pi / 64, q[14], q[20]) qc.crz(np.pi / 32, q[14], q[19]) qc.crz(np.pi / 16, q[14], q[18]) qc.crz(np.pi / 8, q[14], q[17]) qc.crz(np.pi / 4, q[14], q[16]) qc.crz(np.pi / 2, q[14], q[15]) qc.h(q[14]) qc.crz(np.pi / 2048, q[13], q[24]) qc.crz(np.pi / 1024, q[13], q[23]) qc.crz(np.pi / 512, q[13], q[22]) qc.crz(np.pi / 256, q[13], q[21]) qc.crz(np.pi / 128, q[13], q[20]) qc.crz(np.pi / 64, q[13], q[19]) qc.crz(np.pi / 32, q[13], q[18]) qc.crz(np.pi / 16, q[13], q[17]) qc.crz(np.pi / 8, q[13], q[16]) qc.crz(np.pi / 4, q[13], q[15]) qc.crz(np.pi / 2, q[13], q[14]) qc.h(q[13]) qc.crz(np.pi / 4096, q[12], q[24]) qc.crz(np.pi / 2048, q[12], q[23]) qc.crz(np.pi / 1024, q[12], q[22]) qc.crz(np.pi / 512, q[12], q[21]) qc.crz(np.pi / 256, q[12], q[20]) qc.crz(np.pi / 128, q[12], q[19]) qc.crz(np.pi / 64, q[12], q[18]) qc.crz(np.pi / 32, q[12], q[17]) qc.crz(np.pi / 16, q[12], q[16]) qc.crz(np.pi / 8, q[12], q[15]) qc.crz(np.pi / 4, q[12], q[14]) qc.crz(np.pi / 2, q[12], q[13]) qc.h(q[12]) qc.crz(np.pi / 8192, q[11], q[24]) qc.crz(np.pi / 4096, q[11], q[23]) qc.crz(np.pi / 2048, q[11], q[22]) qc.crz(np.pi / 1024, q[11], q[21]) qc.crz(np.pi / 512, q[11], q[20]) qc.crz(np.pi / 256, q[11], q[19]) qc.crz(np.pi / 128, q[11], q[18]) qc.crz(np.pi / 64, q[11], q[17]) qc.crz(np.pi / 32, q[11], q[16]) qc.crz(np.pi / 16, q[11], q[15]) qc.crz(np.pi / 8, q[11], q[14]) qc.crz(np.pi / 4, q[11], q[13]) qc.crz(np.pi / 2, q[11], q[12]) qc.h(q[11]) qc.crz(np.pi / 16384, q[10], q[24]) qc.crz(np.pi / 8192, q[10], q[23]) qc.crz(np.pi / 4096, q[10], q[22]) qc.crz(np.pi / 2048, q[10], q[21]) qc.crz(np.pi / 1024, q[10], q[20]) qc.crz(np.pi / 512, q[10], q[19]) qc.crz(np.pi / 256, q[10], q[18]) qc.crz(np.pi / 128, q[10], q[17]) qc.crz(np.pi / 64, q[10], q[16]) qc.crz(np.pi / 32, q[10], q[15]) qc.crz(np.pi / 16, q[10], q[14]) qc.crz(np.pi / 8, q[10], q[13]) qc.crz(np.pi / 4, q[10], q[12]) qc.crz(np.pi / 2, q[10], q[11]) qc.h(q[10]) qc.crz(np.pi / 32768, q[9], q[24]) qc.crz(np.pi / 16384, q[9], q[23]) qc.crz(np.pi / 8192, q[9], q[22]) qc.crz(np.pi / 4096, q[9], q[21]) qc.crz(np.pi / 2048, q[9], q[20]) qc.crz(np.pi / 1024, q[9], q[19]) qc.crz(np.pi / 512, q[9], q[18]) qc.crz(np.pi / 256, q[9], q[17]) qc.crz(np.pi / 128, q[9], q[16]) qc.crz(np.pi / 64, q[9], q[15]) qc.crz(np.pi / 32, q[9], q[14]) qc.crz(np.pi / 16, q[9], q[13]) qc.crz(np.pi / 8, q[9], q[12]) qc.crz(np.pi / 4, q[9], q[11]) qc.crz(np.pi / 2, q[9], q[10]) qc.h(q[9]) qc.crz(np.pi / 65536, q[8], q[24]) qc.crz(np.pi / 32768, q[8], q[23]) qc.crz(np.pi / 16384, q[8], q[22]) qc.crz(np.pi / 8192, q[8], q[21]) qc.crz(np.pi / 4096, q[8], q[20]) qc.crz(np.pi / 2048, q[8], q[19]) qc.crz(np.pi / 1024, q[8], q[18]) qc.crz(np.pi / 512, q[8], q[17]) qc.crz(np.pi / 256, q[8], q[16]) qc.crz(np.pi / 128, q[8], q[15]) qc.crz(np.pi / 64, q[8], q[14]) qc.crz(np.pi / 32, q[8], q[13]) qc.crz(np.pi / 16, q[8], q[12]) qc.crz(np.pi / 8, q[8], q[11]) qc.crz(np.pi / 4, q[8], q[10]) qc.crz(np.pi / 2, q[8], q[9]) qc.h(q[8]) qc.crz(np.pi / 1.31072e5, q[7], q[24]) qc.crz(np.pi / 65536, q[7], q[23]) qc.crz(np.pi / 32768, q[7], q[22]) qc.crz(np.pi / 16384, q[7], q[21]) qc.crz(np.pi / 8192, q[7], q[20]) qc.crz(np.pi / 4096, q[7], q[19]) qc.crz(np.pi / 2048, q[7], q[18]) qc.crz(np.pi / 1024, q[7], q[17]) qc.crz(np.pi / 512, q[7], q[16]) qc.crz(np.pi / 256, q[7], q[15]) qc.crz(np.pi / 128, q[7], q[14]) qc.crz(np.pi / 64, q[7], q[13]) qc.crz(np.pi / 32, q[7], q[12]) qc.crz(np.pi / 16, q[7], q[11]) qc.crz(np.pi / 8, q[7], q[10]) qc.crz(np.pi / 4, q[7], q[9]) qc.crz(np.pi / 2, q[7], q[8]) qc.h(q[7]) qc.crz(np.pi / 2.62144e5, q[6], q[24]) qc.crz(np.pi / 1.31072e5, q[6], q[23]) qc.crz(np.pi / 65536, q[6], q[22]) qc.crz(np.pi / 32768, q[6], q[21]) qc.crz(np.pi / 16384, q[6], q[20]) qc.crz(np.pi / 8192, q[6], q[19]) qc.crz(np.pi / 4096, q[6], q[18]) qc.crz(np.pi / 2048, q[6], q[17]) qc.crz(np.pi / 1024, q[6], q[16]) qc.crz(np.pi / 512, q[6], q[15]) qc.crz(np.pi / 256, q[6], q[14]) qc.crz(np.pi / 128, q[6], q[13]) qc.crz(np.pi / 64, q[6], q[12]) qc.crz(np.pi / 32, q[6], q[11]) qc.crz(np.pi / 16, q[6], q[10]) qc.crz(np.pi / 8, q[6], q[9]) qc.crz(np.pi / 4, q[6], q[8]) qc.crz(np.pi / 2, q[6], q[7]) qc.h(q[6]) qc.crz(np.pi / 5.24288e5, q[5], q[24]) qc.crz(np.pi / 2.62144e5, q[5], q[23]) qc.crz(np.pi / 1.31072e5, q[5], q[22]) qc.crz(np.pi / 65536, q[5], q[21]) qc.crz(np.pi / 32768, q[5], q[20]) qc.crz(np.pi / 16384, q[5], q[19]) qc.crz(np.pi / 8192, q[5], q[18]) qc.crz(np.pi / 4096, q[5], q[17]) qc.crz(np.pi / 2048, q[5], q[16]) qc.crz(np.pi / 1024, q[5], q[15]) qc.crz(np.pi / 512, q[5], q[14]) qc.crz(np.pi / 256, q[5], q[13]) qc.crz(np.pi / 128, q[5], q[12]) qc.crz(np.pi / 64, q[5], q[11]) qc.crz(np.pi / 32, q[5], q[10]) qc.crz(np.pi / 16, q[5], q[9]) qc.crz(np.pi / 8, q[5], q[8]) qc.crz(np.pi / 4, q[5], q[7]) qc.crz(np.pi / 2, q[5], q[6]) qc.h(q[5]) qc.crz(np.pi / 1.048576e6, q[4], q[24]) qc.crz(np.pi / 5.24288e5, q[4], q[23]) qc.crz(np.pi / 2.62144e5, q[4], q[22]) qc.crz(np.pi / 1.31072e5, q[4], q[21]) qc.crz(np.pi / 65536, q[4], q[20]) qc.crz(np.pi / 32768, q[4], q[19]) qc.crz(np.pi / 16384, q[4], q[18]) qc.crz(np.pi / 8192, q[4], q[17]) qc.crz(np.pi / 4096, q[4], q[16]) qc.crz(np.pi / 2048, q[4], q[15]) qc.crz(np.pi / 1024, q[4], q[14]) qc.crz(np.pi / 512, q[4], q[13]) qc.crz(np.pi / 256, q[4], q[12]) qc.crz(np.pi / 128, q[4], q[11]) qc.crz(np.pi / 64, q[4], q[10]) qc.crz(np.pi / 32, q[4], q[9]) qc.crz(np.pi / 16, q[4], q[8]) qc.crz(np.pi / 8, q[4], q[7]) qc.crz(np.pi / 4, q[4], q[6]) qc.crz(np.pi / 2, q[4], q[5]) qc.h(q[4]) qc.crz(np.pi / 2.097152e6, q[3], q[24]) qc.crz(np.pi / 1.048576e6, q[3], q[23]) qc.crz(np.pi / 5.24288e5, q[3], q[22]) qc.crz(np.pi / 2.62144e5, q[3], q[21]) qc.crz(np.pi / 1.31072e5, q[3], q[20]) qc.crz(np.pi / 65536, q[3], q[19]) qc.crz(np.pi / 32768, q[3], q[18]) qc.crz(np.pi / 16384, q[3], q[17]) qc.crz(np.pi / 8192, q[3], q[16]) qc.crz(np.pi / 4096, q[3], q[15]) qc.crz(np.pi / 2048, q[3], q[14]) qc.crz(np.pi / 1024, q[3], q[13]) qc.crz(np.pi / 512, q[3], q[12]) qc.crz(np.pi / 256, q[3], q[11]) qc.crz(np.pi / 128, q[3], q[10]) qc.crz(np.pi / 64, q[3], q[9]) qc.crz(np.pi / 32, q[3], q[8]) qc.crz(np.pi / 16, q[3], q[7]) qc.crz(np.pi / 8, q[3], q[6]) qc.crz(np.pi / 4, q[3], q[5]) qc.crz(np.pi / 2, q[3], q[4]) qc.h(q[3]) qc.crz(np.pi / 4.194304e6, q[2], q[24]) qc.crz(np.pi / 2.097152e6, q[2], q[23]) qc.crz(np.pi / 1.048576e6, q[2], q[22]) qc.crz(np.pi / 5.24288e5, q[2], q[21]) qc.crz(np.pi / 2.62144e5, q[2], q[20]) qc.crz(np.pi / 1.31072e5, q[2], q[19]) qc.crz(np.pi / 65536, q[2], q[18]) qc.crz(np.pi / 32768, q[2], q[17]) qc.crz(np.pi / 16384, q[2], q[16]) qc.crz(np.pi / 8192, q[2], q[15]) qc.crz(np.pi / 4096, q[2], q[14]) qc.crz(np.pi / 2048, q[2], q[13]) qc.crz(np.pi / 1024, q[2], q[12]) qc.crz(np.pi / 512, q[2], q[11]) qc.crz(np.pi / 256, q[2], q[10]) qc.crz(np.pi / 128, q[2], q[9]) qc.crz(np.pi / 64, q[2], q[8]) qc.crz(np.pi / 32, q[2], q[7]) qc.crz(np.pi / 16, q[2], q[6]) qc.crz(np.pi / 8, q[2], q[5]) qc.crz(np.pi / 4, q[2], q[4]) qc.crz(np.pi / 2, q[2], q[3]) qc.h(q[2]) qc.crz(np.pi / 8.388608e6, q[1], q[24]) qc.crz(np.pi / 4.194304e6, q[1], q[23]) qc.crz(np.pi / 2.097152e6, q[1], q[22]) qc.crz(np.pi / 1.048576e6, q[1], q[21]) qc.crz(np.pi / 5.24288e5, q[1], q[20]) qc.crz(np.pi / 2.62144e5, q[1], q[19]) qc.crz(np.pi / 1.31072e5, q[1], q[18]) qc.crz(np.pi / 65536, q[1], q[17]) qc.crz(np.pi / 32768, q[1], q[16]) qc.crz(np.pi / 16384, q[1], q[15]) qc.crz(np.pi / 8192, q[1], q[14]) qc.crz(np.pi / 4096, q[1], q[13]) qc.crz(np.pi / 2048, q[1], q[12]) qc.crz(np.pi / 1024, q[1], q[11]) qc.crz(np.pi / 512, q[1], q[10]) qc.crz(np.pi / 256, q[1], q[9]) qc.crz(np.pi / 128, q[1], q[8]) qc.crz(np.pi / 64, q[1], q[7]) qc.crz(np.pi / 32, q[1], q[6]) qc.crz(np.pi / 16, q[1], q[5]) qc.crz(np.pi / 8, q[1], q[4]) qc.crz(np.pi / 4, q[1], q[3]) qc.crz(np.pi / 2, q[1], q[2]) qc.h(q[1]) qc.crz(np.pi / 1.6777216e7, q[0], q[24]) qc.crz(np.pi / 8.388608e6, q[0], q[23]) qc.crz(np.pi / 4.194304e6, q[0], q[22]) qc.crz(np.pi / 2.097152e6, q[0], q[21]) qc.crz(np.pi / 1.048576e6, q[0], q[20]) qc.crz(np.pi / 5.24288e5, q[0], q[19]) qc.crz(np.pi / 2.62144e5, q[0], q[18]) qc.crz(np.pi / 1.31072e5, q[0], q[17]) qc.crz(np.pi / 65536, q[0], q[16]) qc.crz(np.pi / 32768, q[0], q[15]) qc.crz(np.pi / 16384, q[0], q[14]) qc.crz(np.pi / 8192, q[0], q[13]) qc.crz(np.pi / 4096, q[0], q[12]) qc.crz(np.pi / 2048, q[0], q[11]) qc.crz(np.pi / 1024, q[0], q[10]) qc.crz(np.pi / 512, q[0], q[9]) qc.crz(np.pi / 256, q[0], q[8]) qc.crz(np.pi / 128, q[0], q[7]) qc.crz(np.pi / 64, q[0], q[6]) qc.crz(np.pi / 32, q[0], q[5]) qc.crz(np.pi / 16, q[0], q[4]) qc.crz(np.pi / 8, q[0], q[3]) qc.crz(np.pi / 4, q[0], q[2]) qc.crz(np.pi / 2, q[0], q[1]) qc.h(q[0]) qc.swap(q[0], q[24]) qc.swap(q[1], q[23]) qc.swap(q[2], q[22]) qc.swap(q[3], q[21]) qc.swap(q[4], q[20]) qc.swap(q[5], q[19]) qc.swap(q[6], q[18]) qc.swap(q[7], q[17]) qc.swap(q[8], q[16]) qc.swap(q[9], q[15]) qc.swap(q[10], q[14]) qc.swap(q[11], q[13]) qc.measure_all() return qc if __name__ == "__main__": unittest.main()
https://github.com/quantastica/qiskit-toaster
quantastica
import unittest from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute from qiskit.providers.aer import AerSimulator from math import pi try: from . import common except Exception: import common class TestToasterBackend(common.TestToasterBase): def test_bell_counts(self): shots = 256 qc = TestToasterBackend.get_bell_qc() stats = TestToasterBackend.execute_and_get_stats( self.toaster_backend(), qc, shots ) self.assertTrue(stats["statevector"] is None) self.assertEqual(len(stats["counts"]), 2) self.assertEqual(stats["totalcounts"], shots) def test_bell_counts_with_seed(self): shots = 1024 qc = TestToasterBackend.get_bell_qc() stats1 = TestToasterBackend.execute_and_get_stats( self.toaster_backend(), qc, shots, seed=1 ) stats2 = TestToasterBackend.execute_and_get_stats( self.toaster_backend(), qc, shots, seed=1 ) stats3 = TestToasterBackend.execute_and_get_stats( self.toaster_backend(), qc, shots, seed=2 ) self.assertTrue(stats1["statevector"] is None) self.assertEqual(len(stats1["counts"]), 2) self.assertEqual(stats1["totalcounts"], shots) self.assertEqual(stats1["counts"], stats2["counts"]) self.assertNotEqual(stats1["counts"], stats3["counts"]) def test_teleport_counts(self): shots = 256 qc = TestToasterBackend.get_teleport_qc() stats = TestToasterBackend.execute_and_get_stats( self.toaster_backend(), qc, shots ) self.assertTrue(stats["statevector"] is None) self.assertEqual(stats["totalcounts"], shots) self.assertEqual(len(stats["counts"]), 4) def test_bell_state_vector(self): """ This is test for statevector which means that even with shots > 1 it should execute only one shot """ shots = 256 qc = TestToasterBackend.get_bell_qc() stats = TestToasterBackend.execute_and_get_stats( self.toaster_backend(backend_name="statevector_simulator"), qc, shots, ) self.assertEqual(len(stats["statevector"]), 4) self.assertEqual(len(stats["counts"]), 1) self.assertEqual(stats["totalcounts"], 1) def test_teleport_state_vector(self): """ This is test for statevector which means that even with shots > 1 it should execute only one shot """ shots = 256 qc = TestToasterBackend.get_teleport_qc() """ Let's first run the aer simulation to get statevector and counts so we can compare those results against forest's """ qc_for_aer = qc.copy() qc_for_aer.save_state() stats_aer = TestToasterBackend.execute_and_get_stats( AerSimulator(method="statevector"), qc_for_aer, shots ) """ Now execute toaster backend """ stats = TestToasterBackend.execute_and_get_stats( self.toaster_backend(backend_name="statevector_simulator"), qc, shots, ) self.assertEqual(len(stats["counts"]), 1) self.assertEqual(stats["totalcounts"], 1) self.assertEqual( len(stats["statevector"]), len(stats_aer["statevector"]) ) """ Let's verify that tests are working as expected by running fail case """ stats = TestToasterBackend.execute_and_get_stats( self.toaster_backend(), qc, shots ) self.assertTrue(stats["statevector"] is None) def test_multiple_jobs(self): qc = self.get_bell_qc() backend = self.toaster_backend() jobs = [] for i in range(1, 50): jobs.append(execute(qc, backend=backend, shots=1)) for job in jobs: result = job.result() counts = result.get_counts(qc) self.assertEqual(len(counts), 1) def test_multiple_experiments(self): backend = self.toaster_backend() qc_list = [self.get_bell_qc(), self.get_teleport_qc()] job_info = backend.run(qc_list) bell_counts = job_info.result().get_counts("Bell") tel_counts = job_info.result().get_counts("Teleport") self.assertEqual(len(bell_counts), 2) self.assertEqual(len(tel_counts), 4) def test_too_many_qubits(self): qc = QuantumCircuit(name="TooManyQubits") q = QuantumRegister(100, "q") qc.add_register(q) with self.assertRaises(RuntimeError): TestToasterBackend.execute_and_get_stats( self.toaster_backend(), qc, 1 ) def test_larger_circuit_statevector(self): n = 19 qc = QuantumCircuit() q = QuantumRegister(n, 'q') #c = ClassicalRegister(n, 'c') qc.add_register(q) #qc.add_register(c) for i in range(n): qc.h(i) TestToasterBackend.execute_and_get_stats( self.toaster_backend('statevector_simulator'), qc, 1 ) @classmethod def execute_and_get_stats(cls, backend, qc, shots, seed=None): job = execute(qc, backend=backend, shots=shots, seed_simulator=seed) job_result = job.result() counts = job_result.get_counts(qc) total_counts = 0 for c in counts: total_counts += counts[c] try: state_vector = job_result.get_statevector(qc) except Exception: state_vector = None ret = dict() ret["counts"] = counts ret["statevector"] = state_vector ret["totalcounts"] = total_counts return ret @staticmethod def get_bell_qc(): qc = QuantumCircuit(name="Bell") q = QuantumRegister(2, "q") c = ClassicalRegister(2, "c") qc.add_register(q) qc.add_register(c) qc.h(q[0]) qc.cx(q[0], q[1]) qc.measure(q[0], c[0]) qc.measure(q[1], c[1]) return qc @staticmethod def get_teleport_qc(): qc = QuantumCircuit(name="Teleport") q = QuantumRegister(3, "q") c0 = ClassicalRegister(1, "c0") c1 = ClassicalRegister(1, "c1") qc.add_register(q) qc.add_register(c0) qc.add_register(c1) qc.rx(pi / 4, q[0]) qc.h(q[1]) qc.cx(q[1], q[2]) qc.cx(q[0], q[1]) qc.h(q[0]) qc.measure(q[1], c1[0]) qc.x(q[2]).c_if(c1, 1) qc.measure(q[0], c0[0]) qc.z(q[2]).c_if(c0, 1) return qc if __name__ == "__main__": unittest.main()
https://github.com/quantastica/qiskit-toaster
quantastica
# This code is part of Qiskit. # # (C) Copyright IBM 2022, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the QAOA algorithm.""" import unittest from functools import partial from test.python.algorithms import QiskitAlgorithmsTestCase import numpy as np import rustworkx as rx from ddt import ddt, idata, unpack from scipy.optimize import minimize as scipy_minimize from qiskit import QuantumCircuit from qiskit_algorithms.minimum_eigensolvers import QAOA from qiskit_algorithms.optimizers import COBYLA, NELDER_MEAD from qiskit.circuit import Parameter from qiskit.primitives import Sampler from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.result import QuasiDistribution from qiskit.utils import algorithm_globals W1 = np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) P1 = 1 M1 = SparsePauliOp.from_list( [ ("IIIX", 1), ("IIXI", 1), ("IXII", 1), ("XIII", 1), ] ) S1 = {"0101", "1010"} W2 = np.array( [ [0.0, 8.0, -9.0, 0.0], [8.0, 0.0, 7.0, 9.0], [-9.0, 7.0, 0.0, -8.0], [0.0, 9.0, -8.0, 0.0], ] ) P2 = 1 M2 = None S2 = {"1011", "0100"} CUSTOM_SUPERPOSITION = [1 / np.sqrt(15)] * 15 + [0] @ddt class TestQAOA(QiskitAlgorithmsTestCase): """Test QAOA with MaxCut.""" def setUp(self): super().setUp() self.seed = 10598 algorithm_globals.random_seed = self.seed self.sampler = Sampler() @idata( [ [W1, P1, M1, S1], [W2, P2, M2, S2], ] ) @unpack def test_qaoa(self, w, reps, mixer, solutions): """QAOA test""" self.log.debug("Testing %s-step QAOA with MaxCut on graph\n%s", reps, w) qubit_op, _ = self._get_operator(w) qaoa = QAOA(self.sampler, COBYLA(), reps=reps, mixer=mixer) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) self.assertIn(graph_solution, solutions) @idata( [ [W1, P1, S1], [W2, P2, S2], ] ) @unpack def test_qaoa_qc_mixer(self, w, prob, solutions): """QAOA test with a mixer as a parameterized circuit""" self.log.debug( "Testing %s-step QAOA with MaxCut on graph with a mixer as a parameterized circuit\n%s", prob, w, ) optimizer = COBYLA() qubit_op, _ = self._get_operator(w) num_qubits = qubit_op.num_qubits mixer = QuantumCircuit(num_qubits) theta = Parameter("θ") mixer.rx(theta, range(num_qubits)) qaoa = QAOA(self.sampler, optimizer, reps=prob, mixer=mixer) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) self.assertIn(graph_solution, solutions) def test_qaoa_qc_mixer_many_parameters(self): """QAOA test with a mixer as a parameterized circuit with the num of parameters > 1.""" optimizer = COBYLA() qubit_op, _ = self._get_operator(W1) num_qubits = qubit_op.num_qubits mixer = QuantumCircuit(num_qubits) for i in range(num_qubits): theta = Parameter("θ" + str(i)) mixer.rx(theta, range(num_qubits)) qaoa = QAOA(self.sampler, optimizer, reps=2, mixer=mixer) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) self.log.debug(x) graph_solution = self._get_graph_solution(x) self.assertIn(graph_solution, S1) def test_qaoa_qc_mixer_no_parameters(self): """QAOA test with a mixer as a parameterized circuit with zero parameters.""" qubit_op, _ = self._get_operator(W1) num_qubits = qubit_op.num_qubits mixer = QuantumCircuit(num_qubits) # just arbitrary circuit mixer.rx(np.pi / 2, range(num_qubits)) qaoa = QAOA(self.sampler, COBYLA(), reps=1, mixer=mixer) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) # we just assert that we get a result, it is not meaningful. self.assertIsNotNone(result.eigenstate) def test_change_operator_size(self): """QAOA change operator size test""" qubit_op, _ = self._get_operator( np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) ) qaoa = QAOA(self.sampler, COBYLA(), reps=1) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) with self.subTest(msg="QAOA 4x4"): self.assertIn(graph_solution, {"0101", "1010"}) qubit_op, _ = self._get_operator( np.array( [ [0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0], ] ) ) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) with self.subTest(msg="QAOA 6x6"): self.assertIn(graph_solution, {"010101", "101010"}) @idata([[W2, S2, None], [W2, S2, [0.0, 0.0]], [W2, S2, [1.0, 0.8]]]) @unpack def test_qaoa_initial_point(self, w, solutions, init_pt): """Check first parameter value used is initial point as expected""" qubit_op, _ = self._get_operator(w) first_pt = [] def cb_callback(eval_count, parameters, mean, metadata): nonlocal first_pt if eval_count == 1: first_pt = list(parameters) qaoa = QAOA( self.sampler, COBYLA(), initial_point=init_pt, callback=cb_callback, ) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) x = self._sample_most_likely(result.eigenstate) graph_solution = self._get_graph_solution(x) with self.subTest("Initial Point"): # If None the preferred random initial point of QAOA variational form if init_pt is None: self.assertLess(result.eigenvalue, -0.97) else: self.assertListEqual(init_pt, first_pt) with self.subTest("Solution"): self.assertIn(graph_solution, solutions) def test_qaoa_random_initial_point(self): """QAOA random initial point""" w = rx.adjacency_matrix( rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed) ) qubit_op, _ = self._get_operator(w) qaoa = QAOA(self.sampler, NELDER_MEAD(disp=True), reps=2) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) self.assertLess(result.eigenvalue, -0.97) def test_optimizer_scipy_callable(self): """Test passing a SciPy optimizer directly as callable.""" w = rx.adjacency_matrix( rx.undirected_gnp_random_graph(5, 0.5, seed=algorithm_globals.random_seed) ) qubit_op, _ = self._get_operator(w) qaoa = QAOA( self.sampler, partial(scipy_minimize, method="Nelder-Mead", options={"maxiter": 2}), ) result = qaoa.compute_minimum_eigenvalue(qubit_op) self.assertEqual(result.cost_function_evals, 5) def _get_operator(self, weight_matrix): """Generate Hamiltonian for the max-cut problem of a graph. Args: weight_matrix (numpy.ndarray) : adjacency matrix. Returns: PauliSumOp: operator for the Hamiltonian float: a constant shift for the obj function. """ num_nodes = weight_matrix.shape[0] pauli_list = [] shift = 0 for i in range(num_nodes): for j in range(i): if weight_matrix[i, j] != 0: x_p = np.zeros(num_nodes, dtype=bool) z_p = np.zeros(num_nodes, dtype=bool) z_p[i] = True z_p[j] = True pauli_list.append([0.5 * weight_matrix[i, j], Pauli((z_p, x_p))]) shift -= 0.5 * weight_matrix[i, j] lst = [(pauli[1].to_label(), pauli[0]) for pauli in pauli_list] return SparsePauliOp.from_list(lst), shift def _get_graph_solution(self, x: np.ndarray) -> str: """Get graph solution from binary string. Args: x : binary string as numpy array. Returns: a graph solution as string. """ return "".join([str(int(i)) for i in 1 - x]) def _sample_most_likely(self, state_vector: QuasiDistribution) -> np.ndarray: """Compute the most likely binary string from state vector. Args: state_vector: Quasi-distribution. Returns: Binary string as numpy.ndarray of ints. """ values = list(state_vector.values()) n = int(np.log2(len(values))) k = np.argmax(np.abs(values)) x = np.zeros(n) for i in range(n): x[i] = k % 2 k >>= 1 return x if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-toqm
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import qiskit from qiskit.transpiler import TranspilerError import qiskit_toqm.native as toqm from itertools import chain def _calc_swap_durations(coupling_map, instruction_durations, basis_gates, backend_properties, target): """Calculates the durations of swap gates between each coupling on the target.""" # Filter for couplings that don't already have a native swap. couplings = [ c for c in coupling_map.get_edges() if ("swap", c) not in instruction_durations.duration_by_name_qubits ] if not couplings: return backend_aware = target is not None or (basis_gates is not None and backend_properties is not None) if not backend_aware: raise TranspilerError( "`target` must be specified, or both 'basis_gates' and 'backend_properties' must be specified unless" "'instruction_durations' has durations for all swap gates." ) def gen_swap_circuit(s, t): # Generates a circuit with a single swap gate between src and tgt c = qiskit.QuantumCircuit(coupling_map.size()) c.swap(s, t) return c # Batch transpile generated swap circuits swap_circuits = qiskit.transpile( [gen_swap_circuit(*pair) for pair in couplings], basis_gates=basis_gates, coupling_map=coupling_map, backend_properties=backend_properties if target is None else None, instruction_durations=instruction_durations, target=target, optimization_level=0, layout_method="trivial", scheduling_method="asap" ) for (src, tgt), qc in zip(couplings, swap_circuits): if instruction_durations.dt is None and qc.unit == "dt": # TODO: should be able to convert by looking up an op in both raise TranspilerError("Incompatible units.") duration = qc.qubit_duration(src, tgt) yield src, tgt, duration def latencies_from_target( coupling_map=None, instruction_durations=None, basis_gates=None, backend_properties=None, target=None, normalize_scale=2 ): """ Generate a list of native ``LatencyDescription`` objects for the specified target device. Args: coupling_map (Optional[CouplingMap]): CouplingMap of the target backend. Required unless ``target`` is specified. instruction_durations (Optional[InstructionDurations]): Durations for gates in the target's basis. Must include durations for all gates that appear in input DAGs other than ``swap`` (for which durations are calculated through decomposition if not supplied). Required unless ``target`` is specified. basis_gates (Optional[List[str]]): The list of basis gates for the target. Required unless ``instruction_durations`` contains durations for all swap gates or ``target`` is specified. backend_properties (Optional[BackendProperties]): The backend properties of the target. Required unless ``instruction_durations`` contains durations for all swap gates or ``target`` is specified. target (Optional[Target]): The backend transpiler target. If specified, overrides ``coupling_map``, ``instruction_durations``, ``basis_gates``, and ``backend_properties``. All gates that appear in input DAG other than ``swap`` must be supported by the target and have duration information available therein. normalize_scale (int): Multiple by this factor when converting relative durations to cycle count. The conversion is: cycles = ceil(duration * NORMALIZE_SCALE / min_duration) where min_duration is the length of the fastest non-zero duration instruction on the target. """ if target is not None: coupling_map = target.build_coupling_map() instruction_durations = target.durations() basis_gates = target.operation_names unit = "dt" if instruction_durations.dt else "s" swap_durations = list(_calc_swap_durations(coupling_map, instruction_durations, basis_gates, backend_properties, target)) default_op_durations = [ (op_name, instruction_durations.get(op_name, [], unit)) for op_name in instruction_durations.duration_by_name ] op_durations = [ (op_name, bits, instruction_durations.get(op_name, bits, unit)) for (op_name, bits) in instruction_durations.duration_by_name_qubits ] non_zero_durations = [d for d in chain( (d for (_, d) in default_op_durations), (d for (_, _, d) in op_durations), (d for (_, _, d) in swap_durations) ) if d > 0] if not non_zero_durations: raise TranspilerError("Durations must be specified for the target.") min_duration = min(non_zero_durations) def normalize(d): return round(d * normalize_scale / min_duration) # Yield latency descriptions with durations interpolated to cycles. for op_name, duration in default_op_durations: # We don't know if the instruction is for 1 or 2 qubits, so emit # defaults for both. yield toqm.LatencyDescription(1, op_name, normalize(duration)) yield toqm.LatencyDescription(2, op_name, normalize(duration)) for op_name, qubits, duration in op_durations: yield toqm.LatencyDescription(op_name, *qubits, normalize(duration)) for src, tgt, duration in swap_durations: yield toqm.LatencyDescription("swap", src, tgt, normalize(duration)) def latencies_from_simple(one_qubit_cycles, two_qubit_cycles, swap_cycles): """ Generate a list of native ``LatencyDescription`` objects for the specified hard-coded cycle counts. The resulting latency descriptions describe a circuit in which all 1Q, 2Q, and SWAP gates execute in the corresponding number of cycles, irrespective of which qubits they execute on. Args: one_qubit_cycles (int): The number of cycles for all 1Q gates. two_qubit_cycles (int): The number of cycles for all 2Q gates. swap_cycles (int): The number of cycles for all swap gates. """ return [ toqm.LatencyDescription(1, one_qubit_cycles), toqm.LatencyDescription(2, two_qubit_cycles), toqm.LatencyDescription(2, "swap", swap_cycles) ]
https://github.com/qiskit-community/qiskit-toqm
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import qiskit_toqm.native as toqm class ToqmHeuristicStrategy: def __init__(self, latency_descriptions, top_k, queue_target, queue_max, retain_popped=1): """ Constructs a TOQM strategy that aims to minimize overall circuit duration. The priority queue used in the A* is configured to drop the worst nodes whenever it reaches the queue size limit. Node expansion is also limited to exploring the best ``K`` children. Args: latency_descriptions (List[toqm.LatencyDescription]): The latency descriptions for all gates that will appear in the circuit, including swaps. top_k (int): The maximum number of best child nodes that can be pushed to the queue during expansion of any given node. queue_target (int): When the priority queue reaches capacity, nodes are dropped until the size reaches this value. queue_max (int): The priority queue capacity. retain_popped (int): Final nodes to retain. Raises: RuntimeError: No routing was found. """ # The following defaults are based on: # https://github.com/time-optimal-qmapper/TOQM/blob/main/code/README.txt self.mapper = toqm.ToqmMapper( toqm.TrimSlowNodes(queue_max, queue_target), toqm.GreedyTopK(top_k), toqm.CXFrontier(), toqm.Table(list(latency_descriptions)), [toqm.GreedyMapper()], [], 0 ) self.mapper.setRetainPopped(retain_popped) def __call__(self, gates, num_qubits, coupling_map): """ Run native ToqmMapper and return the native result. Args: gates (List[toqm.GateOp]): The topologically ordered list of gate operations. num_qubits (int): The number of virtual qubits used in the circuit. coupling_map (toqm.CouplingMap): The coupling map of the target. Returns: toqm.ToqmResult: The native result. """ return self.mapper.run(gates, num_qubits, coupling_map) class ToqmOptimalStrategy: def __init__(self, latency_descriptions, perform_layout=True, no_swaps=False): """ Constructs a TOQM strategy that finds an optimal (minimal) routing in terms of overall circuit duration. Args: latency_descriptions (List[toqm.LatencyDescription]): The latency descriptions for all gates that will appear in the circuit, including swaps. perform_layout (Boolean): If true, permutes the initial layout rather than inserting swap gates at the start of the circuit. no_swaps (Boolean): If true, attempts to find a routing without inserting swaps. Raises: RuntimeError: No routing was found. """ # The following defaults are based on: # https://github.com/time-optimal-qmapper/TOQM/blob/main/code/README.txt self.mapper = toqm.ToqmMapper( toqm.DefaultQueue(), toqm.NoSwaps() if no_swaps else toqm.DefaultExpander(), toqm.CXFrontier(), toqm.Table(latency_descriptions), [], [toqm.HashFilter(), toqm.HashFilter2()], -1 if perform_layout else 0 ) def __call__(self, gates, num_qubits, coupling_map): """ Run native ToqmMapper and return the native result. Args: gates (List[toqm.GateOp]): The topologically ordered list of gate operations. num_qubits (int): The number of virtual qubits used in the circuit. coupling_map (toqm.CouplingMap): The coupling map of the target. Returns: toqm.ToqmResult: The native result. """ return self.mapper.run(gates, num_qubits, coupling_map)
https://github.com/qiskit-community/qiskit-toqm
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging import qiskit_toqm.native as toqm from qiskit.circuit.library.standard_gates import SwapGate from qiskit.dagcircuit import DAGCircuit from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler.exceptions import TranspilerError logger = logging.getLogger(__name__) class ToqmSwap(TransformationPass): r"""Map input circuit onto a backend topology via insertion of SWAPs. Implementation of the SWAP-based approach from Time-Optimal Qubit Mapping paper [1]. **References:** [1] Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang. 2021. Time-Optimal Qubit Mapping. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA, 14 pages. `<https://doi.org/10.1145/3445814.3446706>`_ """ def __init__( self, coupling_map, strategy): """ ToqmSwap initializer. Args: coupling_map (CouplingMap): CouplingMap of the target backend. strategy (typing.Callable[[List[toqm.GateOp], int, toqm.CouplingMap], toqm.ToqmResult]): A callable responsible for running the native ``ToqmMapper`` and returning a native ``ToqmResult``. """ super().__init__() if coupling_map is None: # We cannot construct a proper TOQM mapper without a coupling map, # but we gracefully handle construction without one, and then # assert that `run` is never called on this instance. return if coupling_map.size() > 127: raise TranspilerError("ToqmSwap currently supports a max of 127 qubits.") self.coupling_map = coupling_map self.toqm_strategy = strategy self.toqm_result = None def run(self, dag: DAGCircuit): """Run the ToqmSwap pass on `dag`. Args: dag (DAGCircuit): the directed acyclic graph to be mapped. Returns: DAGCircuit: A dag mapped to be compatible with the coupling_map. Raises: TranspilerError: if the coupling map or the layout are not compatible with the DAG """ if self.coupling_map is None: raise TranspilerError("TOQM swap not properly initialized.") if len(dag.qregs) != 1 or dag.qregs.get("q", None) is None: raise TranspilerError("TOQM swap runs on physical circuits only.") if len(dag.qubits) > self.coupling_map.size(): raise TranspilerError("More virtual qubits exist than physical.") reg = dag.qregs["q"] # Generate UIDs for each gate node from the original circuit so we can # look them up later when rebuilding the circuit. # Note: this is still sorted by topological order from above. uid_to_op_node = {uid: op for uid, op in enumerate(dag.topological_op_nodes())} # Create TOQM topological gate list def gates(): for uid, node in uid_to_op_node.items(): if len(node.qargs) == 2: yield toqm.GateOp(uid, node.op.name, reg.index(node.qargs[0]), reg.index(node.qargs[1])) elif len(node.qargs) == 1: yield toqm.GateOp(uid, node.op.name, reg.index(node.qargs[0])) else: raise TranspilerError(f"ToqmSwap only works with 1q and 2q gates! " f"Bad gate: {node.op.name} {node.qargs}") gate_ops = list(gates()) edges = {e for e in self.coupling_map.get_edges()} couplings = toqm.CouplingMap(self.coupling_map.size(), edges) self.toqm_result = self.toqm_strategy(gate_ops, dag.num_qubits(), couplings) # Preserve input DAG's name, regs, wire_map, etc. but replace the graph. mapped_dag = dag.copy_empty_like() for g in self.toqm_result.scheduledGates: if g.gateOp.type.lower() == "swap": mapped_dag.apply_operation_back(SwapGate(), qargs=[reg[g.physicalControl], reg[g.physicalTarget]]) continue original_op = uid_to_op_node[g.gateOp.uid] if g.physicalControl >= 0: mapped_dag.apply_operation_back(original_op.op, cargs=original_op.cargs, qargs=[ reg[g.physicalControl], reg[g.physicalTarget] ]) else: mapped_dag.apply_operation_back(original_op.op, cargs=original_op.cargs, qargs=[ reg[g.physicalTarget] ]) self._update_layout() return mapped_dag def _update_layout(self): layout = self.property_set['layout'] # Need to copy this mapping since layout updates # might overwrite original vbits we need to read! p2v = layout.get_physical_bits().copy() # Update the layout if TOQM made changes. ancilla_vbits = [] for vidx in range(self.toqm_result.numPhysicalQubits): pidx = self.toqm_result.inferredLaq[vidx] if pidx == -1: # bit is not mapped to physical qubit ancilla_vbits.append(p2v[vidx]) continue if pidx != vidx: # Bit was remapped! # First, we need to get the original virtual bit from the layout. vbit = p2v[vidx] # Then, map updated pidx from TOQM to original virtual bit. layout[pidx] = vbit # Map any unmapped physical bits to ancilla. for pidx, vidx in enumerate(self.toqm_result.inferredQal): if vidx < 0: # Current physical bit isn't mapped. Map it to an ancilla. layout[pidx] = ancilla_vbits.pop(0)
https://github.com/qiskit-community/qiskit-toqm
qiskit-community
import unittest import qiskit_toqm.native as toqm class TestTOQM(unittest.TestCase): def test_version(self): self.assertEqual(toqm.__version__, "0.1.0") def test_basic(self): num_q = 4 gates = [ toqm.GateOp(0, "cx", 0, 1), toqm.GateOp(1, "cx", 0, 2), toqm.GateOp(2, "cx", 0, 3), toqm.GateOp(3, "cx", 1, 2), toqm.GateOp(4, "cx", 1, 3), toqm.GateOp(5, "cx", 2, 3) ] coupling = toqm.CouplingMap(5, {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4)}) q = toqm.DefaultQueue() exp = toqm.DefaultExpander() cf = toqm.CXFrontier() lat = toqm.Latency_1_2_6() fs = [toqm.HashFilter(), toqm.HashFilter2()] nms = [] mapper = toqm.ToqmMapper(q, exp, cf, lat, nms, fs, -1) mapper.setRetainPopped(0) result = mapper.run(gates, num_q, coupling) # Print result for g in result.scheduledGates: print(f"{g.gateOp.type} ", end='') if g.physicalControl >= 0: print(f"q[{g.physicalControl}],", end='') print(f"q[{g.physicalTarget}]; ", end='') print(f"//cycle: {g.cycle}", end='') if (g.gateOp.type.lower() != "swap"): print(f" //{g.gateOp.type} ", end='') if g.gateOp.control >= 0: print(f"q[{g.gateOp.control}],", end='') print(f"q[{g.gateOp.target}]; ", end='') print()
https://github.com/jatin-47/QGSS-2021
jatin-47
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ, execute from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram from qiskit_textbook.problems import dj_problem_oracle def lab1_ex1(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.x(0) return qc state = Statevector.from_instruction(lab1_ex1()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex1 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex1(lab1_ex1()) def lab1_ex2(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.h(0) return qc state = Statevector.from_instruction(lab1_ex2()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex2 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex2(lab1_ex2()) def lab1_ex3(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.x(0) qc.h(0) return qc state = Statevector.from_instruction(lab1_ex3()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex3 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex3(lab1_ex3()) def lab1_ex4(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.sdg(0) return qc state = Statevector.from_instruction(lab1_ex4()) plot_bloch_multivector(state) from qc_grader import grade_lab1_ex4 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex4(lab1_ex4()) def lab1_ex5(): qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also two classical bits for the measurement # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.cx(0,1) qc.x(0) return qc qc = lab1_ex5() qc.draw() # we draw the circuit from qc_grader import grade_lab1_ex5 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex5(lab1_ex5()) qc.measure(0, 0) # we perform a measurement on qubit q_0 and store the information on the classical bit c_0 qc.measure(1, 1) # we perform a measurement on qubit q_1 and store the information on the classical bit c_1 backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities def lab1_ex6(): # # # FILL YOUR CODE IN HERE # # qc = QuantumCircuit(3,3) qc.h(0) qc.cx(0,1) qc.cx(1,2) qc.y(1) return qc qc = lab1_ex6() qc.draw() # we draw the circuit from qc_grader import grade_lab1_ex6 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex6(lab1_ex6()) oraclenr = 4 # determines the oracle (can range from 1 to 5) oracle = dj_problem_oracle(oraclenr) # gives one out of 5 oracles oracle.name = "DJ-Oracle" def dj_classical(n, input_str): # build a quantum circuit with n qubits and 1 classical readout bit dj_circuit = QuantumCircuit(n+1,1) # Prepare the initial state corresponding to your input bit string for i in range(n): if input_str[i] == '1': dj_circuit.x(i) # append oracle dj_circuit.append(oracle, range(n+1)) # measure the fourth qubit dj_circuit.measure(n,0) return dj_circuit n = 4 # number of qubits input_str = '1111' dj_circuit = dj_classical(n, input_str) dj_circuit.draw() # draw the circuit input_str = '1111' dj_circuit = dj_classical(n, input_str) qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit, qasm_sim) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def lab1_ex7(): min_nr_inputs = 2 max_nr_inputs = 9 return [min_nr_inputs, max_nr_inputs] from qc_grader import grade_lab1_ex7 # Note that the grading function is expecting a list of two integers grade_lab1_ex7(lab1_ex7()) n=4 def psi_0(n): qc = QuantumCircuit(n+1,n) # Build the state (|00000> - |10000>)/sqrt(2) # # # FILL YOUR CODE IN HERE # # qc.x(4) qc.h(4) return qc dj_circuit = psi_0(n) dj_circuit.draw() def psi_1(n): # obtain the |psi_0> = |00001> state qc = psi_0(n) # create the superposition state |psi_1> # # qc.h(0) qc.h(1) qc.h(2) qc.h(3) # # qc.barrier() return qc dj_circuit = psi_1(n) dj_circuit.draw() def psi_2(oracle,n): # circuit to obtain psi_1 qc = psi_1(n) # append the oracle qc.append(oracle, range(n+1)) return qc dj_circuit = psi_2(oracle, n) dj_circuit.draw() def lab1_ex8(oracle, n): # note that this exercise also depends on the code in the functions psi_0 (In [24]) and psi_1 (In [25]) qc = psi_2(oracle, n) # apply n-fold hadamard gate # # # FILL YOUR CODE IN HERE # # qc.h(0) qc.h(1) qc.h(2) qc.h(3) # add the measurement by connecting qubits to classical bits # # qc.measure(0,0) qc.measure(1,1) qc.measure(2,2) qc.measure(3,3) # # return qc dj_circuit = lab1_ex8(oracle, n) dj_circuit.draw() from qc_grader import grade_lab1_ex8 # Note that the grading function is expecting a quantum circuit with measurements grade_lab1_ex8(lab1_ex8(dj_problem_oracle(4),n)) qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/jatin-47/QGSS-2021
jatin-47
import networkx as nx import numpy as np import plotly.graph_objects as go import matplotlib as mpl import pandas as pd from IPython.display import clear_output from plotly.subplots import make_subplots from matplotlib import pyplot as plt from qiskit import Aer from qiskit import QuantumCircuit from qiskit.visualization import plot_state_city from qiskit.algorithms.optimizers import COBYLA, SLSQP, ADAM from time import time from copy import copy from typing import List from qc_grader.graph_util import display_maxcut_widget, QAOA_widget, graphs mpl.rcParams['figure.dpi'] = 300 from qiskit.circuit import Parameter, ParameterVector #Parameters are initialized with a simple string identifier parameter_0 = Parameter('θ[0]') parameter_1 = Parameter('θ[1]') circuit = QuantumCircuit(1) #We can then pass the initialized parameters as the rotation angle argument to the Rx and Ry gates circuit.ry(theta = parameter_0, qubit = 0) circuit.rx(theta = parameter_1, qubit = 0) circuit.draw('mpl') parameter = Parameter('θ') circuit = QuantumCircuit(1) circuit.ry(theta = parameter, qubit = 0) circuit.rx(theta = parameter, qubit = 0) circuit.draw('mpl') #Set the number of layers and qubits n=3 num_layers = 2 #ParameterVectors are initialized with a string identifier and an integer specifying the vector length parameters = ParameterVector('θ', n*(num_layers+1)) circuit = QuantumCircuit(n, n) for layer in range(num_layers): #Appending the parameterized Ry gates using parameters from the vector constructed above for i in range(n): circuit.ry(parameters[n*layer+i], i) circuit.barrier() #Appending the entangling CNOT gates for i in range(n): for j in range(i): circuit.cx(j,i) circuit.barrier() #Appending one additional layer of parameterized Ry gates for i in range(n): circuit.ry(parameters[n*num_layers+i], i) circuit.barrier() circuit.draw('mpl') print(circuit.parameters) #Create parameter dictionary with random values to bind param_dict = {parameter: np.random.random() for parameter in parameters} print(param_dict) #Assign parameters using the assign_parameters method bound_circuit = circuit.assign_parameters(parameters = param_dict) bound_circuit.draw('mpl') new_parameters = ParameterVector('Ψ',9) new_circuit = circuit.assign_parameters(parameters = [k*new_parameters[i] for k in range(9)]) new_circuit.draw('mpl') #Run the circuit with assigned parameters on Aer's statevector simulator simulator = Aer.get_backend('statevector_simulator') result = simulator.run(bound_circuit).result() statevector = result.get_statevector(bound_circuit) plot_state_city(statevector) #The following line produces an error when run because 'circuit' still contains non-assigned parameters #result = simulator.run(circuit).result() for key in graphs.keys(): print(key) graph = nx.Graph() #Add nodes and edges graph.add_nodes_from(np.arange(0,6,1)) edges = [(0,1,2.0),(0,2,3.0),(0,3,2.0),(0,4,4.0),(0,5,1.0),(1,2,4.0),(1,3,1.0),(1,4,1.0),(1,5,3.0),(2,4,2.0),(2,5,3.0),(3,4,5.0),(3,5,1.0)] graph.add_weighted_edges_from(edges) graphs['custom'] = graph #Display widget display_maxcut_widget(graphs['custom']) def maxcut_cost_fn(graph: nx.Graph, bitstring: List[int]) -> float: """ Computes the maxcut cost function value for a given graph and cut represented by some bitstring Args: graph: The graph to compute cut values for bitstring: A list of integer values '0' or '1' specifying a cut of the graph Returns: The value of the cut """ #Get the weight matrix of the graph weight_matrix = nx.adjacency_matrix(graph).toarray() size = weight_matrix.shape[0] value = 0. #INSERT YOUR CODE TO COMPUTE THE CUT VALUE HERE for i in range(size): for j in range(size): value+= weight_matrix[i,j]*bitstring[i]*(1-bitstring[j]) return value def plot_maxcut_histogram(graph: nx.Graph) -> None: """ Plots a bar diagram with the values for all possible cuts of a given graph. Args: graph: The graph to compute cut values for """ num_vars = graph.number_of_nodes() #Create list of bitstrings and corresponding cut values bitstrings = ['{:b}'.format(i).rjust(num_vars, '0')[::-1] for i in range(2**num_vars)] values = [maxcut_cost_fn(graph = graph, bitstring = [int(x) for x in bitstring]) for bitstring in bitstrings] #Sort both lists by largest cut value values, bitstrings = zip(*sorted(zip(values, bitstrings))) #Plot bar diagram bar_plot = go.Bar(x = bitstrings, y = values, marker=dict(color=values, colorscale = 'plasma', colorbar=dict(title='Cut Value'))) fig = go.Figure(data=bar_plot, layout = dict(xaxis=dict(type = 'category'), width = 1500, height = 600)) fig.show() plot_maxcut_histogram(graph = graphs['custom']) from qc_grader import grade_lab2_ex1 bitstring = [1, 0, 1, 1, 0, 0] #DEFINE THE CORRECT MAXCUT BITSTRING HERE # Note that the grading function is expecting a list of integers '0' and '1' grade_lab2_ex1(bitstring) from qiskit_optimization import QuadraticProgram quadratic_program = QuadraticProgram('sample_problem') print(quadratic_program.export_as_lp_string()) quadratic_program.binary_var(name = 'x_0') quadratic_program.integer_var(name = 'x_1') quadratic_program.continuous_var(name = 'x_2', lowerbound = -2.5, upperbound = 1.8) quadratic = [[0,1,2],[3,4,5],[0,1,2]] linear = [10,20,30] quadratic_program.minimize(quadratic = quadratic, linear = linear, constant = -5) print(quadratic_program.export_as_lp_string()) def quadratic_program_from_graph(graph: nx.Graph) -> QuadraticProgram: """Constructs a quadratic program from a given graph for a MaxCut problem instance. Args: graph: Underlying graph of the problem. Returns: QuadraticProgram """ #Get weight matrix of graph weight_matrix = nx.adjacency_matrix(graph) shape = weight_matrix.shape size = shape[0] #Build qubo matrix Q from weight matrix W qubo_matrix = np.zeros((size, size)) qubo_vector = np.zeros(size) for i in range(size): for j in range(size): qubo_matrix[i, j] -= weight_matrix[i, j] for i in range(size): for j in range(size): qubo_vector[i] += weight_matrix[i,j] #INSERT YOUR CODE HERE quadratic_program=QuadraticProgram('sample_problem') for i in range(size): quadratic_program.binary_var(name='x_{}'.format(i)) quadratic_program.maximize(quadratic =qubo_matrix, linear = qubo_vector) return quadratic_program quadratic_program = quadratic_program_from_graph(graphs['custom']) print(quadratic_program.export_as_lp_string()) from qc_grader import grade_lab2_ex2 # Note that the grading function is expecting a quadratic program grade_lab2_ex2(quadratic_program) def qaoa_circuit(qubo: QuadraticProgram, p: int = 1): """ Given a QUBO instance and the number of layers p, constructs the corresponding parameterized QAOA circuit with p layers. Args: qubo: The quadratic program instance p: The number of layers in the QAOA circuit Returns: The parameterized QAOA circuit """ size = len(qubo.variables) qubo_matrix = qubo.objective.quadratic.to_array(symmetric=True) qubo_linearity = qubo.objective.linear.to_array() #Prepare the quantum and classical registers qaoa_circuit = QuantumCircuit(size,size) #Apply the initial layer of Hadamard gates to all qubits qaoa_circuit.h(range(size)) #Create the parameters to be used in the circuit gammas = ParameterVector('gamma', p) betas = ParameterVector('beta', p) #Outer loop to create each layer for i in range(p): #Apply R_Z rotational gates from cost layer #INSERT YOUR CODE HERE for j in range(size): qubo_matrix_sum_of_col = 0 for k in range(size): qubo_matrix_sum_of_col+= qubo_matrix[j][k] qaoa_circuit.rz(gammas[i]*(qubo_linearity[j]+qubo_matrix_sum_of_col),j) #Apply R_ZZ rotational gates for entangled qubit rotations from cost layer #INSERT YOUR CODE HERE for j in range(size): for k in range(size): if j!=k: qaoa_circuit.rzz(gammas[i]*qubo_matrix[j][k]*0.5,j,k) # Apply single qubit X - rotations with angle 2*beta_i to all qubits #INSERT YOUR CODE HERE for j in range(size): qaoa_circuit.rx(2*betas[i],j) return qaoa_circuit quadratic_program = quadratic_program_from_graph(graphs['custom']) custom_circuit = qaoa_circuit(qubo = quadratic_program) test = custom_circuit.assign_parameters(parameters=[1.0]*len(custom_circuit.parameters)) from qc_grader import grade_lab2_ex3 # Note that the grading function is expecting a quantum circuit grade_lab2_ex3(test) from qiskit.algorithms import QAOA from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = Aer.get_backend('statevector_simulator') qaoa = QAOA(optimizer = ADAM(), quantum_instance = backend, reps=1, initial_point = [0.1,0.1]) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) quadratic_program = quadratic_program_from_graph(graphs['custom']) result = eigen_optimizer.solve(quadratic_program) print(result) def plot_samples(samples): """ Plots a bar diagram for the samples of a quantum algorithm Args: samples """ #Sort samples by probability samples = sorted(samples, key = lambda x: x.probability) #Get list of probabilities, function values and bitstrings probabilities = [sample.probability for sample in samples] values = [sample.fval for sample in samples] bitstrings = [''.join([str(int(i)) for i in sample.x]) for sample in samples] #Plot bar diagram sample_plot = go.Bar(x = bitstrings, y = probabilities, marker=dict(color=values, colorscale = 'plasma',colorbar=dict(title='Function Value'))) fig = go.Figure( data=sample_plot, layout = dict( xaxis=dict( type = 'category' ) ) ) fig.show() plot_samples(result.samples) graph_name = 'custom' quadratic_program = quadratic_program_from_graph(graph=graphs[graph_name]) trajectory={'beta_0':[], 'gamma_0':[], 'energy':[]} offset = 1/4*quadratic_program.objective.quadratic.to_array(symmetric = True).sum() + 1/2*quadratic_program.objective.linear.to_array().sum() def callback(eval_count, params, mean, std_dev): trajectory['beta_0'].append(params[1]) trajectory['gamma_0'].append(params[0]) trajectory['energy'].append(-mean + offset) optimizers = { 'cobyla': COBYLA(), 'slsqp': SLSQP(), 'adam': ADAM() } qaoa = QAOA(optimizer = optimizers['cobyla'], quantum_instance = backend, reps=1, initial_point = [6.2,1.8],callback = callback) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) result = eigen_optimizer.solve(quadratic_program) fig = QAOA_widget(landscape_file=f'./resources/energy_landscapes/{graph_name}.csv', trajectory = trajectory, samples = result.samples) fig.show() graph_name = 'custom' quadratic_program = quadratic_program_from_graph(graphs[graph_name]) #Create callback to record total number of evaluations max_evals = 0 def callback(eval_count, params, mean, std_dev): global max_evals max_evals = eval_count #Create empty lists to track values energies = [] runtimes = [] num_evals=[] #Run QAOA for different values of p for p in range(1,10): print(f'Evaluating for p = {p}...') qaoa = QAOA(optimizer = optimizers['cobyla'], quantum_instance = backend, reps=p, callback=callback) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) start = time() result = eigen_optimizer.solve(quadratic_program) runtimes.append(time()-start) num_evals.append(max_evals) #Calculate energy of final state from samples avg_value = 0. for sample in result.samples: avg_value += sample.probability*sample.fval energies.append(avg_value) #Create and display plots energy_plot = go.Scatter(x = list(range(1,10)), y =energies, marker=dict(color=energies, colorscale = 'plasma')) runtime_plot = go.Scatter(x = list(range(1,10)), y =runtimes, marker=dict(color=runtimes, colorscale = 'plasma')) num_evals_plot = go.Scatter(x = list(range(1,10)), y =num_evals, marker=dict(color=num_evals, colorscale = 'plasma')) fig = make_subplots(rows = 1, cols = 3, subplot_titles = ['Energy value', 'Runtime', 'Number of evaluations']) fig.update_layout(width=1800,height=600, showlegend=False) fig.add_trace(energy_plot, row=1, col=1) fig.add_trace(runtime_plot, row=1, col=2) fig.add_trace(num_evals_plot, row=1, col=3) clear_output() fig.show() def plot_qaoa_energy_landscape(graph: nx.Graph, cvar: float = None): num_shots = 1000 seed = 42 simulator = Aer.get_backend('qasm_simulator') simulator.set_options(seed_simulator = 42) #Generate circuit circuit = qaoa_circuit(qubo = quadratic_program_from_graph(graph), p=1) circuit.measure(range(graph.number_of_nodes()),range(graph.number_of_nodes())) #Create dictionary with precomputed cut values for all bitstrings cut_values = {} size = graph.number_of_nodes() for i in range(2**size): bitstr = '{:b}'.format(i).rjust(size, '0')[::-1] x = [int(bit) for bit in bitstr] cut_values[bitstr] = maxcut_cost_fn(graph, x) #Perform grid search over all parameters data_points = [] max_energy = None for beta in np.linspace(0,np.pi, 50): for gamma in np.linspace(0, 4*np.pi, 50): bound_circuit = circuit.assign_parameters([beta, gamma]) result = simulator.run(bound_circuit, shots = num_shots).result() statevector = result.get_counts(bound_circuit) energy = 0 measured_cuts = [] for bitstring, count in statevector.items(): measured_cuts = measured_cuts + [cut_values[bitstring]]*count if cvar is None: #Calculate the mean of all cut values energy = sum(measured_cuts)/num_shots else: #raise NotImplementedError() #INSERT YOUR CODE HERE measured_cuts = sorted(measured_cuts, reverse = True) for w in range(int(cvar*num_shots)): energy += measured_cuts[w]/int((cvar*num_shots)) #Update optimal parameters if max_energy is None or energy > max_energy: max_energy = energy optimum = {'beta': beta, 'gamma': gamma, 'energy': energy} #Update data data_points.append({'beta': beta, 'gamma': gamma, 'energy': energy}) #Create and display surface plot from data_points df = pd.DataFrame(data_points) df = df.pivot(index='beta', columns='gamma', values='energy') matrix = df.to_numpy() beta_values = df.index.tolist() gamma_values = df.columns.tolist() surface_plot = go.Surface( x=gamma_values, y=beta_values, z=matrix, coloraxis = 'coloraxis' ) fig = go.Figure(data = surface_plot) fig.show() #Return optimum return optimum graph = graphs['custom'] optimal_parameters = plot_qaoa_energy_landscape(graph = graph) print('Optimal parameters:') print(optimal_parameters) optimal_parameters = plot_qaoa_energy_landscape(graph = graph, cvar = 0.2) print(optimal_parameters) from qc_grader import grade_lab2_ex4 # Note that the grading function is expecting a python dictionary # with the entries 'beta', 'gamma' and 'energy' grade_lab2_ex4(optimal_parameters)
https://github.com/jatin-47/QGSS-2021
jatin-47
# General Imports import numpy as np # Visualisation Imports import matplotlib.pyplot as plt # Scikit Imports from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler, MinMaxScaler # Qiskit Imports from qiskit import Aer, execute from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector from qiskit.circuit.library import PauliFeatureMap, ZFeatureMap, ZZFeatureMap from qiskit.circuit.library import TwoLocal, NLocal, RealAmplitudes, EfficientSU2 from qiskit.circuit.library import HGate, RXGate, RYGate, RZGate, CXGate, CRXGate, CRZGate from qiskit_machine_learning.kernels import QuantumKernel # Load digits dataset digits = datasets.load_digits(n_class=2) # Plot example '0' and '1' fig, axs = plt.subplots(1, 2, figsize=(6,3)) axs[0].set_axis_off() axs[0].imshow(digits.images[0], cmap=plt.cm.gray_r, interpolation='nearest') axs[1].set_axis_off() axs[1].imshow(digits.images[1], cmap=plt.cm.gray_r, interpolation='nearest') plt.show() # Split dataset sample_train, sample_test, label_train, label_test = train_test_split( digits.data, digits.target, test_size=0.2, random_state=22) # Reduce dimensions n_dim = 4 pca = PCA(n_components=n_dim).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Normalise std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Scale samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Select train_size = 100 sample_train = sample_train[:train_size] label_train = label_train[:train_size] test_size = 20 sample_test = sample_test[:test_size] label_test = label_test[:test_size] print(sample_train[0], label_train[0]) print(sample_test[0], label_test[0]) # 3 features, depth 2 map_z = ZFeatureMap(feature_dimension=3, reps=2) map_z.draw('mpl') # 3 features, depth 1 map_zz = ZZFeatureMap(feature_dimension=3, reps=1) map_zz.draw('mpl') # 3 features, depth 1, linear entanglement map_zz = ZZFeatureMap(feature_dimension=3, reps=1, entanglement='linear') map_zz.draw('mpl') # 3 features, depth 1, circular entanglement map_zz = ZZFeatureMap(feature_dimension=3, reps=1, entanglement='circular') map_zz.draw('mpl') # 3 features, depth 1 map_pauli = PauliFeatureMap(feature_dimension=3, reps=1, paulis = ['X', 'Y', 'ZZ']) map_pauli.draw('mpl') def custom_data_map_func(x): coeff = x[0] if len(x) == 1 else reduce(lambda m, n: m * n, np.sin(np.pi - x)) return coeff map_customdatamap = PauliFeatureMap(feature_dimension=3, reps=1, paulis=['Z','ZZ'], data_map_func=custom_data_map_func) #map_customdatamap.draw() # qiskit isn't able to draw the circuit with np.sin in the custom data map twolocal = TwoLocal(num_qubits=3, reps=2, rotation_blocks=['ry','rz'], entanglement_blocks='cx', entanglement='circular', insert_barriers=True) twolocal.draw('mpl') twolocaln = NLocal(num_qubits=3, reps=2, rotation_blocks=[RYGate(Parameter('a')), RZGate(Parameter('a'))], entanglement_blocks=CXGate(), entanglement='circular', insert_barriers=True) twolocaln.draw('mpl') # rotation block: rot = QuantumCircuit(2) params = ParameterVector('r', 2) rot.ry(params[0], 0) rot.rz(params[1], 1) # entanglement block: ent = QuantumCircuit(4) params = ParameterVector('e', 3) ent.crx(params[0], 0, 1) ent.crx(params[1], 1, 2) ent.crx(params[2], 2, 3) nlocal = NLocal(num_qubits=6, rotation_blocks=rot, entanglement_blocks=ent, entanglement='linear', insert_barriers=True) nlocal.draw('mpl') qubits = 3 repeats = 2 x = ParameterVector('x', length=qubits) var_custom = QuantumCircuit(qubits) for _ in range(repeats): for i in range(qubits): var_custom.rx(x[i], i) for i in range(qubits): for j in range(i + 1, qubits): var_custom.cx(i, j) var_custom.p(x[i] * x[j], j) var_custom.cx(i, j) var_custom.barrier() var_custom.draw('mpl') print(sample_train[0]) encode_map = ZZFeatureMap(feature_dimension=4, reps=2, entanglement='linear', insert_barriers=True) encode_circuit = encode_map.bind_parameters(sample_train[0]) encode_circuit.draw(output='mpl') x = [-0.1,0.2] # YOUR CODE HERE encode_map_x =ZZFeatureMap(feature_dimension=2, reps=4) ex1_circuit =encode_map_x.bind_parameters(x) ex1_circuit.draw(output='mpl') from qc_grader import grade_lab3_ex1 # Note that the grading function is expecting a quantum circuit grade_lab3_ex1(ex1_circuit) zz_map = ZZFeatureMap(feature_dimension=4, reps=2, entanglement='linear', insert_barriers=True) zz_kernel = QuantumKernel(feature_map=zz_map, quantum_instance=Aer.get_backend('statevector_simulator')) print(sample_train[0]) print(sample_train[1]) zz_circuit = zz_kernel.construct_circuit(sample_train[0], sample_train[1]) zz_circuit.decompose().decompose().draw(output='mpl') backend = Aer.get_backend('qasm_simulator') job = execute(zz_circuit, backend, shots=8192, seed_simulator=1024, seed_transpiler=1024) counts = job.result().get_counts(zz_circuit) counts['0000']/sum(counts.values()) matrix_train = zz_kernel.evaluate(x_vec=sample_train) matrix_test = zz_kernel.evaluate(x_vec=sample_test, y_vec=sample_train) fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow(np.asmatrix(matrix_train), interpolation='nearest', origin='upper', cmap='Blues') axs[0].set_title("training kernel matrix") axs[1].imshow(np.asmatrix(matrix_test), interpolation='nearest', origin='upper', cmap='Reds') axs[1].set_title("testing kernel matrix") plt.show() x = [-0.1,0.2] y = [0.4,-0.6] # YOUR CODE HERE encode_map_x2 = ZZFeatureMap(feature_dimension=2, reps=4) zz_kernel_x2 =QuantumKernel(feature_map=encode_map_x2,quantum_instance=Aer.get_backend('statevector_simulator')) zz_circuit_x2 =zz_kernel_x2.construct_circuit(x,y) backend =Aer.get_backend('qasm_simulator') job = execute(zz_circuit_x2,backend,shots=8192, seed_simulator=1024, seed_transpiler=1024) counts_x2 = job.result().get_counts(zz_circuit_x2) amplitude= counts_x2['00']/sum(counts_x2.values()) from qc_grader import grade_lab3_ex2 # Note that the grading function is expecting a floating point number grade_lab3_ex2(amplitude) zzpc_svc = SVC(kernel='precomputed') zzpc_svc.fit(matrix_train, label_train) zzpc_score = zzpc_svc.score(matrix_test, label_test) print(f'Precomputed kernel classification test score: {zzpc_score}') zzcb_svc = SVC(kernel=zz_kernel.evaluate) zzcb_svc.fit(sample_train, label_train) zzcb_score = zzcb_svc.score(sample_test, label_test) print(f'Callable kernel classification test score: {zzcb_score}') classical_kernels = ['linear', 'poly', 'rbf', 'sigmoid'] for kernel in classical_kernels: classical_svc = SVC(kernel=kernel) classical_svc.fit(sample_train, label_train) classical_score = classical_svc.score(sample_test, label_test) print('%s kernel classification test score: %0.2f' % (kernel, classical_score))
https://github.com/jatin-47/QGSS-2021
jatin-47
from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=2, reps=1, entanglement='linear') ansatz.draw('mpl', style='iqx') from qiskit.opflow import Z, I hamiltonian = Z ^ Z from qiskit.opflow import StateFn expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) import numpy as np point = np.random.random(ansatz.num_parameters) index = 2 from qiskit import Aer from qiskit.utils import QuantumInstance backend = Aer.get_backend('qasm_simulator') q_instance = QuantumInstance(backend, shots = 8192, seed_simulator = 2718, seed_transpiler = 2718) from qiskit.circuit import QuantumCircuit from qiskit.opflow import Z, X H = X ^ X U = QuantumCircuit(2) U.h(0) U.cx(0, 1) # YOUR CODE HERE expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(U) matmult_result =expectation.eval() from qc_grader import grade_lab4_ex1 # Note that the grading function is expecting a complex number grade_lab4_ex1(matmult_result) from qiskit.opflow import CircuitSampler, PauliExpectation sampler = CircuitSampler(q_instance) # YOUR CODE HERE sampler = CircuitSampler(q_instance) # q_instance is the QuantumInstance from the beginning of the notebook expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(U) in_pauli_basis = PauliExpectation().convert(expectation) shots_result = sampler.convert(in_pauli_basis).eval() from qc_grader import grade_lab4_ex2 # Note that the grading function is expecting a complex number grade_lab4_ex2(shots_result) from qiskit.opflow import PauliExpectation, CircuitSampler expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) in_pauli_basis = PauliExpectation().convert(expectation) sampler = CircuitSampler(q_instance) def evaluate_expectation(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(in_pauli_basis, params=value_dict).eval() return np.real(result) eps = 0.2 e_i = np.identity(point.size)[:, index] # identity vector with a 1 at index ``index``, otherwise 0 plus = point + eps * e_i minus = point - eps * e_i finite_difference = (evaluate_expectation(plus) - evaluate_expectation(minus)) / (2 * eps) print(finite_difference) from qiskit.opflow import Gradient expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient('fin_diff', analytic=False, epsilon=eps) grad = shifter.convert(expectation, params=ansatz.parameters[index]) print(grad) value_dict = dict(zip(ansatz.parameters, point)) sampler.convert(grad, value_dict).eval().real eps = np.pi / 2 e_i = np.identity(point.size)[:, index] # identity vector with a 1 at index ``index``, otherwise 0 plus = point + eps * e_i minus = point - eps * e_i finite_difference = (evaluate_expectation(plus) - evaluate_expectation(minus)) / 2 print(finite_difference) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient() # parameter-shift rule is the default grad = shifter.convert(expectation, params=ansatz.parameters[index]) sampler.convert(grad, value_dict).eval().real expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) shifter = Gradient('lin_comb') # parameter-shift rule is the default grad = shifter.convert(expectation, params=ansatz.parameters[index]) sampler.convert(grad, value_dict).eval().real # initial_point = np.random.random(ansatz.num_parameters) initial_point = np.array([0.43253681, 0.09507794, 0.42805949, 0.34210341]) expectation = StateFn(hamiltonian, is_measurement=True).compose(StateFn(ansatz)) gradient = Gradient().convert(expectation) gradient_in_pauli_basis = PauliExpectation().convert(gradient) sampler = CircuitSampler(q_instance) def evaluate_gradient(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(gradient_in_pauli_basis, params=value_dict).eval() # add parameters in here! return np.real(result) # Note: The GradientDescent class will be released with Qiskit 0.28.0 and can then be imported as: # from qiskit.algorithms.optimizers import GradientDescent from qc_grader.gradient_descent import GradientDescent gd_loss = [] def gd_callback(nfevs, x, fx, stepsize): gd_loss.append(fx) gd = GradientDescent(maxiter=300, learning_rate=0.01, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize(initial_point.size, # number of parameters evaluate_expectation, # function to minimize gradient_function=evaluate_gradient, # function to evaluate the gradient initial_point=initial_point) # initial point import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.size'] = 14 plt.figure(figsize=(12, 6)) plt.plot(gd_loss, label='vanilla gradient descent') plt.axhline(-1, ls='--', c='tab:red', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend(); from qiskit.opflow import NaturalGradient expectation = StateFn(hamiltonian, is_measurement=True).compose(StateFn(ansatz)) natural_gradient = NaturalGradient(regularization='ridge').convert(expectation) natural_gradient_in_pauli_basis = PauliExpectation().convert(natural_gradient) sampler = CircuitSampler(q_instance, caching="all") def evaluate_natural_gradient(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(natural_gradient, params=value_dict).eval() return np.real(result) print('Vanilla gradient:', evaluate_gradient(initial_point)) print('Natural gradient:', evaluate_natural_gradient(initial_point)) qng_loss = [] def qng_callback(nfevs, x, fx, stepsize): qng_loss.append(fx) qng = GradientDescent(maxiter=300, learning_rate=0.01, callback=qng_callback) x_opt, fx_opt, nfevs = qng.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_natural_gradient, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() from qc_grader.spsa import SPSA spsa_loss = [] def spsa_callback(nfev, x, fx, stepsize, accepted): spsa_loss.append(fx) spsa = SPSA(maxiter=300, learning_rate=0.01, perturbation=0.01, callback=spsa_callback) x_opt, fx_opt, nfevs = spsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() # Note: The QNSPSA class will be released with Qiskit 0.28.0 and can then be imported as: # from qiskit.algorithms.optimizers import QNSPSA from qc_grader.qnspsa import QNSPSA qnspsa_loss = [] def qnspsa_callback(nfev, x, fx, stepsize, accepted): qnspsa_loss.append(fx) fidelity = QNSPSA.get_fidelity(ansatz, q_instance, expectation=PauliExpectation()) qnspsa = QNSPSA(fidelity, maxiter=300, learning_rate=0.01, perturbation=0.01, callback=qnspsa_callback) x_opt, fx_opt, nfevs = qnspsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.plot(qnspsa_loss, 'tab:green', ls='--', label='QN-SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() autospsa_loss = [] def autospsa_callback(nfev, x, fx, stepsize, accepted): autospsa_loss.append(fx) autospsa = SPSA(maxiter=300, learning_rate=None, perturbation=None, callback=autospsa_callback) x_opt, fx_opt, nfevs = autospsa.optimize(initial_point.size, evaluate_expectation, initial_point=initial_point) def plot_loss(): plt.figure(figsize=(12, 6)) plt.plot(gd_loss, 'tab:blue', label='vanilla gradient descent') plt.plot(qng_loss, 'tab:green', label='quantum natural gradient') plt.plot(spsa_loss, 'tab:blue', ls='--', label='SPSA') plt.plot(qnspsa_loss, 'tab:green', ls='--', label='QN-SPSA') plt.plot(autospsa_loss, 'tab:red', label='Powerlaw SPSA') plt.axhline(-1, c='tab:red', ls='--', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plot_loss() H_tfi = -(Z^Z^I)-(I^Z^Z)-(X^I^I)-(I^X^I)-(I^I^X) from qc_grader import grade_lab4_ex3 # Note that the grading function is expecting a Hamiltonian grade_lab4_ex3(H_tfi) from qiskit.circuit.library import EfficientSU2 efficient_su2 = EfficientSU2(3, entanglement="linear", reps=2) tfi_sampler = CircuitSampler(q_instance) def evaluate_tfi(parameters): exp = StateFn(H_tfi, is_measurement=True).compose(StateFn(efficient_su2)) value_dict = dict(zip(efficient_su2.parameters, parameters)) result = tfi_sampler.convert(PauliExpectation().convert(exp), params=value_dict).eval() return np.real(result) # target energy tfi_target = -3.4939592074349326 # initial point for reproducibility tfi_init = np.array([0.95667807, 0.06192812, 0.47615196, 0.83809827, 0.89022282, 0.27140831, 0.9540853 , 0.41374024, 0.92595507, 0.76150126, 0.8701938 , 0.05096063, 0.25476016, 0.71807858, 0.85661325, 0.48311132, 0.43623886, 0.6371297 ]) tfi_result = SPSA(maxiter=300, learning_rate=None, perturbation=None) tfi_result = tfi_result.optimize(tfi_init.size, evaluate_tfi, initial_point=tfi_init) tfi_minimum = tfi_result[1] print("Error:", np.abs(tfi_result[1] - tfi_target)) from qc_grader import grade_lab4_ex4 # Note that the grading function is expecting a floating point number grade_lab4_ex4(tfi_minimum) from qiskit_machine_learning.datasets import ad_hoc_data training_features, training_labels, test_features, test_labels = ad_hoc_data( training_size=20, test_size=10, n=2, one_hot=False, gap=0.5 ) # the training labels are in {0, 1} but we'll use {-1, 1} as class labels! training_labels = 2 * training_labels - 1 test_labels = 2 * test_labels - 1 def plot_sampled_data(): from matplotlib.patches import Patch from matplotlib.lines import Line2D import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) for feature, label in zip(training_features, training_labels): marker = 'o' color = 'tab:green' if label == -1 else 'tab:blue' plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) for feature, label in zip(test_features, test_labels): marker = 's' plt.scatter(feature[0], feature[1], marker=marker, s=100, facecolor='none', edgecolor='k') legend_elements = [ Line2D([0], [0], marker='o', c='w', mfc='tab:green', label='A', ms=15), Line2D([0], [0], marker='o', c='w', mfc='tab:blue', label='B', ms=15), Line2D([0], [0], marker='s', c='w', mfc='none', mec='k', label='test features', ms=10) ] plt.legend(handles=legend_elements, bbox_to_anchor=(1, 0.6)) plt.title('Training & test data') plt.xlabel('$x$') plt.ylabel('$y$') plot_sampled_data() from qiskit.circuit.library import ZZFeatureMap dim = 2 feature_map = ZZFeatureMap(dim, reps=1) # let's keep it simple! feature_map.draw('mpl', style='iqx') ansatz = RealAmplitudes(num_qubits=dim, entanglement='linear', reps=1) # also simple here! ansatz.draw('mpl', style='iqx') circuit = feature_map.compose(ansatz) circuit.draw('mpl', style='iqx') hamiltonian = Z ^ Z # global Z operators gd_qnn_loss = [] def gd_qnn_callback(*args): gd_qnn_loss.append(args[2]) gd = GradientDescent(maxiter=100, learning_rate=0.01, callback=gd_qnn_callback) from qiskit_machine_learning.neural_networks import OpflowQNN qnn_expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) qnn = OpflowQNN(qnn_expectation, input_params=list(feature_map.parameters), weight_params=list(ansatz.parameters), exp_val=PauliExpectation(), gradient=Gradient(), # <-- Parameter-Shift gradients quantum_instance=q_instance) from qiskit_machine_learning.algorithms import NeuralNetworkClassifier #initial_point = np.array([0.2, 0.1, 0.3, 0.4]) classifier = NeuralNetworkClassifier(qnn, optimizer=gd) classifier.fit(training_features, training_labels); predicted = classifier.predict(test_features) def plot_predicted(): from matplotlib.lines import Line2D plt.figure(figsize=(12, 6)) for feature, label in zip(training_features, training_labels): marker = 'o' color = 'tab:green' if label == -1 else 'tab:blue' plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) for feature, label, pred in zip(test_features, test_labels, predicted): marker = 's' color = 'tab:green' if pred == -1 else 'tab:blue' if label != pred: # mark wrongly classified plt.scatter(feature[0], feature[1], marker='o', s=500, linewidths=2.5, facecolor='none', edgecolor='tab:red') plt.scatter(feature[0], feature[1], marker=marker, s=100, color=color) legend_elements = [ Line2D([0], [0], marker='o', c='w', mfc='tab:green', label='A', ms=15), Line2D([0], [0], marker='o', c='w', mfc='tab:blue', label='B', ms=15), Line2D([0], [0], marker='s', c='w', mfc='tab:green', label='predict A', ms=10), Line2D([0], [0], marker='s', c='w', mfc='tab:blue', label='predict B', ms=10), Line2D([0], [0], marker='o', c='w', mfc='none', mec='tab:red', label='wrongly classified', mew=2, ms=15) ] plt.legend(handles=legend_elements, bbox_to_anchor=(1, 0.7)) plt.title('Training & test data') plt.xlabel('$x$') plt.ylabel('$y$') plot_predicted() qng_qnn_loss = [] def qng_qnn_callback(*args): qng_qnn_loss.append(args[2]) gd = GradientDescent(maxiter=100, learning_rate=0.01, callback=qng_qnn_callback) qnn = OpflowQNN(qnn_expectation, input_params=list(feature_map.parameters), weight_params=list(ansatz.parameters), gradient=NaturalGradient(regularization='ridge'), # <-- using Natural Gradients! quantum_instance=q_instance) classifier = NeuralNetworkClassifier(qnn, optimizer=gd)#, initial_point=initial_point) classifier.fit(training_features, training_labels); def plot_losses(): plt.figure(figsize=(12, 6)) plt.plot(gd_qnn_loss, 'tab:blue', marker='o', label='vanilla gradients') plt.plot(qng_qnn_loss, 'tab:green', marker='o', label='natural gradients') plt.xlabel('iterations') plt.ylabel('loss') plt.legend(loc='best') plot_losses() from qiskit.opflow import I def sample_gradients(num_qubits, reps, local=False): """Sample the gradient of our model for ``num_qubits`` qubits and ``reps`` repetitions. We sample 100 times for random parameters and compute the gradient of the first RY rotation gate. """ index = num_qubits - 1 # you can also exchange this for a local operator and observe the same! if local: operator = Z ^ Z ^ (I ^ (num_qubits - 2)) else: operator = Z ^ num_qubits # real amplitudes ansatz ansatz = RealAmplitudes(num_qubits, entanglement='linear', reps=reps) # construct Gradient we want to evaluate for different values expectation = StateFn(operator, is_measurement=True).compose(StateFn(ansatz)) grad = Gradient().convert(expectation, params=ansatz.parameters[index]) # evaluate for 100 different, random parameter values num_points = 100 grads = [] for _ in range(num_points): # points are uniformly chosen from [0, pi] point = np.random.uniform(0, np.pi, ansatz.num_parameters) value_dict = dict(zip(ansatz.parameters, point)) grads.append(sampler.convert(grad, value_dict).eval()) return grads num_qubits = list(range(2, 13)) reps = num_qubits # number of layers = numbers of qubits gradients = [sample_gradients(n, r) for n, r in zip(num_qubits, reps)] fit = np.polyfit(num_qubits, np.log(np.var(gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='measured variance') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); from qiskit.opflow import NaturalGradient def sample_natural_gradients(num_qubits, reps): index = num_qubits - 1 operator = Z ^ num_qubits ansatz = RealAmplitudes(num_qubits, entanglement='linear', reps=reps) expectation = StateFn(operator, is_measurement=True).compose(StateFn(ansatz)) grad = # TODO: ``grad`` should be the natural gradient for the parameter at index ``index``. # Hint: Check the ``sample_gradients`` function, this one is almost the same. grad = NaturalGradient().convert(expectation, params=ansatz.parameters[index]) num_points = 100 grads = [] for _ in range(num_points): point = np.random.uniform(0, np.pi, ansatz.num_parameters) value_dict = dict(zip(ansatz.parameters, point)) grads.append(sampler.convert(grad, value_dict).eval()) return grads num_qubits = list(range(2, 13)) reps = num_qubits # number of layers = numbers of qubits natural_gradients = [sample_natural_gradients(n, r) for n, r in zip(num_qubits, reps)] fit = np.polyfit(num_qubits, np.log(np.var(natural_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='vanilla gradients') plt.semilogy(num_qubits, np.var(natural_gradients, axis=1), 's-', label='natural gradients') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {float(fit[0]):.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) fixed_depth_global_gradients = [sample_gradients(n, 1) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(fixed_depth_global_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) linear_depth_local_gradients = [sample_gradients(n, n, local=True) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(linear_depth_local_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(num_qubits, np.var(linear_depth_local_gradients, axis=1), 'o-', label='local cost, linear depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = list(range(2, 13)) fixed_depth_local_gradients = [sample_gradients(n, 1, local=True) for n in num_qubits] fit = np.polyfit(num_qubits, np.log(np.var(fixed_depth_local_gradients, axis=1)), deg=1) x = np.linspace(num_qubits[0], num_qubits[-1], 200) plt.figure(figsize=(12, 6)) plt.semilogy(num_qubits, np.var(gradients, axis=1), 'o-', label='global cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_global_gradients, axis=1), 'o-', label='global cost, constant depth') plt.semilogy(num_qubits, np.var(linear_depth_local_gradients, axis=1), 'o-', label='local cost, linear depth') plt.semilogy(num_qubits, np.var(fixed_depth_local_gradients, axis=1), 'o-', label='local cost, constant depth') plt.semilogy(x, np.exp(fit[0] * x + fit[1]), 'r--', label=f'exponential fit w/ {fit[0]:.2f}') plt.xlabel('number of qubits') plt.ylabel(r'$\mathrm{Var}[\partial_{\theta 1} \langle E(\theta) \rangle]$') plt.legend(loc='best'); num_qubits = 6 operator = Z ^ Z ^ (I ^ (num_qubits - 4)) def minimize(circuit, optimizer): initial_point = np.random.random(circuit.num_parameters) exp = StateFn(operator, is_measurement=True) @ StateFn(circuit) grad = Gradient().convert(exp) # pauli basis exp = PauliExpectation().convert(exp) grad = PauliExpectation().convert(grad) sampler = CircuitSampler(q_instance, caching="all") def loss(x): values_dict = dict(zip(circuit.parameters, x)) return np.real(sampler.convert(exp, values_dict).eval()) def gradient(x): values_dict = dict(zip(circuit.parameters, x)) return np.real(sampler.convert(grad, values_dict).eval()) return optimizer.optimize(circuit.num_parameters, loss, gradient, initial_point=initial_point) circuit = RealAmplitudes(4, reps=1, entanglement='linear') circuit.draw('mpl', style='iqx') circuit.reps = 5 circuit.draw('mpl', style='iqx') def layerwise_training(ansatz, max_num_layers, optimizer): optimal_parameters = [] fopt = None for reps in range(1, max_num_layers): ansatz.reps = reps # bind already optimized parameters values_dict = dict(zip(ansatz.parameters, optimal_parameters)) partially_bound = ansatz.bind_parameters(values_dict) xopt, fopt, _ = minimize(partially_bound, optimizer) print('Circuit depth:', ansatz.depth(), 'best value:', fopt) optimal_parameters += list(xopt) return fopt, optimal_parameters ansatz = RealAmplitudes(4, entanglement='linear') optimizer = GradientDescent(maxiter=50) np.random.seed(12) fopt, optimal_parameters = layerwise_training(ansatz, 4, optimizer)
https://github.com/jatin-47/QGSS-2021
jatin-47
# General tools import numpy as np import matplotlib.pyplot as plt # Qiskit Circuit Functions from qiskit import execute,QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile import qiskit.quantum_info as qi # Tomography functions from qiskit.ignis.verification.tomography import process_tomography_circuits, ProcessTomographyFitter from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter import warnings warnings.filterwarnings('ignore') target = QuantumCircuit(2) #target = # YOUR CODE HERE target.h(0) target.h(1) target.rx(np.pi/2,0) target.rx(np.pi/2,1) target.cx(0,1) target.p(np.pi,1) target.cx(0,1) target_unitary = qi.Operator(target) target.draw('mpl') from qc_grader import grade_lab5_ex1 # Note that the grading function is expecting a quantum circuit with no measurements grade_lab5_ex1(target) simulator = Aer.get_backend('qasm_simulator') qpt_circs = process_tomography_circuits(target,measured_qubits=[0,1])# YOUR CODE HERE qpt_job = execute(qpt_circs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192) qpt_result = qpt_job.result() # YOUR CODE HERE qpt_tomo= ProcessTomographyFitter(qpt_result,qpt_circs) Choi_qpt= qpt_tomo.fit(method='lstsq') fidelity = qi.average_gate_fidelity(Choi_qpt,target_unitary) from qc_grader import grade_lab5_ex2 # Note that the grading function is expecting a floating point number grade_lab5_ex2(fidelity) # T1 and T2 values for qubits 0-3 T1s = [15000, 19000, 22000, 14000] T2s = [30000, 25000, 18000, 28000] # Instruction times (in nanoseconds) time_u1 = 0 # virtual gate time_u2 = 50 # (single X90 pulse) time_u3 = 100 # (two X90 pulses) time_cx = 300 time_reset = 1000 # 1 microsecond time_measure = 1000 # 1 microsecond from qiskit.providers.aer.noise import thermal_relaxation_error from qiskit.providers.aer.noise import NoiseModel # QuantumError objects errors_reset = [thermal_relaxation_error(t1, t2, time_reset) for t1, t2 in zip(T1s, T2s)] errors_measure = [thermal_relaxation_error(t1, t2, time_measure) for t1, t2 in zip(T1s, T2s)] errors_u1 = [thermal_relaxation_error(t1, t2, time_u1) for t1, t2 in zip(T1s, T2s)] errors_u2 = [thermal_relaxation_error(t1, t2, time_u2) for t1, t2 in zip(T1s, T2s)] errors_u3 = [thermal_relaxation_error(t1, t2, time_u3) for t1, t2 in zip(T1s, T2s)] errors_cx = [[thermal_relaxation_error(t1a, t2a, time_cx).expand( thermal_relaxation_error(t1b, t2b, time_cx)) for t1a, t2a in zip(T1s, T2s)] for t1b, t2b in zip(T1s, T2s)] # Add errors to noise model noise_thermal = NoiseModel() for j in range(4): noise_thermal.add_quantum_error(errors_measure[j],'measure',[j]) noise_thermal.add_quantum_error(errors_reset[j],'reset',[j]) noise_thermal.add_quantum_error(errors_u3[j],'u3',[j]) noise_thermal.add_quantum_error(errors_u2[j],'u2',[j]) noise_thermal.add_quantum_error(errors_u1[j],'u1',[j]) for k in range(4): noise_thermal.add_quantum_error(errors_cx[j][k],'cx',[j,k]) # YOUR CODE HERE from qc_grader import grade_lab5_ex3 # Note that the grading function is expecting a NoiseModel grade_lab5_ex3(noise_thermal) np.random.seed(0) noise_qpt_circs = process_tomography_circuits(target,measured_qubits=[0,1])# YOUR CODE HERE noise_qpt_job = execute(noise_qpt_circs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192,noise_model=noise_thermal) noise_qpt_result = noise_qpt_job.result() # YOUR CODE HERE noise_qpt_tomo= ProcessTomographyFitter(noise_qpt_result,noise_qpt_circs) noise_Choi_qpt= noise_qpt_tomo.fit(method='lstsq') fidelity = qi.average_gate_fidelity(noise_Choi_qpt,target_unitary) from qc_grader import grade_lab5_ex4 # Note that the grading function is expecting a floating point number grade_lab5_ex4(fidelity) np.random.seed(0) # YOUR CODE HERE #qr = QuantumRegister(2) qubit_list = [0,1] meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list) meas_calibs_job = execute(meas_calibs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192,noise_model=noise_thermal) cal_results = meas_calibs_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, qubit_list=qubit_list) Cal_result = meas_fitter.filter.apply(noise_qpt_result) # YOUR CODE HERE Cal_qpt_tomo= ProcessTomographyFitter(Cal_result,noise_qpt_circs) Cal_Choi_qpt= Cal_qpt_tomo.fit(method='lstsq') fidelity = qi.average_gate_fidelity(Cal_Choi_qpt,target_unitary) from qc_grader import grade_lab5_ex5 # Note that the grading function is expecting a floating point number grade_lab5_ex5(fidelity)
https://github.com/The-Singularity-Research/QISKit-Surface-Codes
The-Singularity-Research
from collections import Counter from typing import Tuple, List import numpy as np from networkx import MultiGraph from networkx import nx from sympy.combinatorics import Permutation import matplotlib.pyplot as plt # from SurfaceCodes.utilites import permlist_to_tuple class SurfaceCodeGraph(MultiGraph): def __init__(self, sigma: Tuple[Tuple[int]], alpha: Tuple[Tuple[int]]): super().__init__() self.sigma = sigma # should include singletons corresponding to fixed points self.alpha = alpha # should include singletons corresponding to fixed points f = self.compute_phi() self.phi = self.permlist_to_tuple(f) self.node_info = self.build_node_info() # print dictionary for [sigma, alpha, phi] self.code_graph = nx.MultiGraph() # Create black nodes for each cycle in sigma along with white nodes # representing "half edges" around the black nodes for cycle in self.sigma: self.code_graph.add_node(cycle, bipartite=1) for node in cycle: self.code_graph.add_node(node, bipartite=0) self.code_graph.add_edge(cycle, node) # Create black nodes for each cycle in phi along with white nodes # representing "half edges" around the black nodes for cycle in self.phi: self.code_graph.add_node(cycle, bipartite=1) for node in cycle: self.code_graph.add_edge(cycle, node) # Create nodes for each cycle in alpha then # glue the nodes corresponding to a the pairs for pair in self.alpha: self.code_graph.add_node(pair) self.code_graph = nx.contracted_nodes(self.code_graph, pair[0], pair[1], self_loops=True) # Now contract pair with pair[0] to make sure edges (white nodes) are labeled # by the pairs in alpha to keep track of the gluing from the previous step self.code_graph = nx.contracted_nodes(self.code_graph, pair, pair[0], self_loops=True) def permlist_to_tuple(self, perms): """ convert list of lists to tuple of tuples in order to have two level iterables that are hashable for the dictionaries used later """ return tuple(tuple(perm) for perm in perms) def compute_phi(self): """compute the list of lists full cyclic form of phi (faces of dessin [sigma, alpha, phi])""" s = Permutation(self.sigma) a = Permutation(self.alpha) f = ~(a * s) f = f.full_cyclic_form # prints permutation as a list of lists including all singletons (fixed points) return f def build_node_info(self): count = -1 self.sigma_dict = dict() for count, cycle in enumerate(self.sigma): self.sigma_dict[cycle] = count self.phi_dict = dict() for count, cycle in enumerate(self.phi, start=count + 1): self.phi_dict[cycle] = count self.alpha_dict = dict() for count, pair in enumerate(self.alpha, start=count + 1): self.alpha_dict[pair] = count return tuple([self.sigma_dict, self.alpha_dict, self.phi_dict]) def boundary_1(self, edge): """ compute boundary of a single edge given by a white node (cycle in alpha) """ # if len(self.code_graph.neighbors(edge)) < 2: # boundary1 = [] # else: boundary1 = Counter([x[1] for x in self.code_graph.edges(edge) if x[1] in self.sigma_dict]) odd_boundaries = [x for x in boundary1 if boundary1[x] % 2] # [node for node in self.code_graph.neighbors(edge) if node in self.sigma_dict] return odd_boundaries def del_1(self, edges: List[Tuple[int]]): """ boundary of a list of edges, i.e. an arbitrary 1-chain over Z/2Z """ boundary_list = [self.boundary_1(edge) for edge in edges] a = Counter([y for x in boundary_list for y in x]) boundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return boundary_list def boundary_2(self, face): """ compute boundary of a single face node """ # boundary2 = [node for node in self.code_graph.neighbors(face) if node in self.alpha_dict] boundary2 = Counter([x[1] for x in self.code_graph.edges(face) if x[1] in self.alpha_dict]) odd_boundaries = [x for x in boundary2 if boundary2[x] % 2] return odd_boundaries def del_2(self, faces: List[Tuple[int]]): """ boundary of a list of faces, i.e. an arbitrary 2-chain over Z/2Z """ boundary_list = [self.boundary_2(face) for face in faces] a = Counter([y for x in boundary_list for y in x]) boundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return boundary_list def coboundary_1(self, star): """ compute coboundary of a single star """ # coboundary = self.code_graph.neighbors(star) coboundary1 = Counter([x[1] for x in self.code_graph.edges(star)]) odd_coboundaries = [x for x in coboundary1 if coboundary1[x] % 2] return odd_coboundaries def delta_1(self, stars: List[Tuple[int]]): """ coboundary of a list of stars, i.e. an arbitrary 0-cochain over Z/2Z """ coboundary_list = [self.coboundary_1(star) for star in stars] a = Counter([y for x in coboundary_list for y in x]) coboundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return coboundary_list def coboundary_2(self, edge): """ compute coboundary of a single edge given by a white node (cycle in alpha) """ # coboundary2 = [node for node in self.code_graph.neighbors(edge) if node in self.phi_dict] coboundary2 = Counter([x[1] for x in self.code_graph.edges(edge) if x[1] in self.phi_dict]) odd_coboundaries = [x for x in coboundary2 if coboundary2[x] % 2] return odd_coboundaries def delta_2(self, edges: List[Tuple[int]]): """ coboundary of a list of edges, i.e. an arbitrary 1-cochain over Z/2Z given by a list of cycles in alpha """ coboundary_list = [self.coboundary_2(edge) for edge in edges] a = Counter([y for x in coboundary_list for y in x]) coboundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return coboundary_list def vertex_basis(self): self.v_basis_dict = dict() self.v_dict = dict() A = np.eye(len(self.sigma), dtype=np.uint8) for count, cycle in enumerate(self.sigma): self.v_dict[cycle] = count self.v_basis_dict[cycle] = A[count, :].T return (self.v_basis_dict) def edge_basis(self): self.e_basis_dict = dict() self.e_dict = dict() B = np.eye(len(self.alpha), dtype=np.uint8) for count, cycle in enumerate(self.alpha): self.e_dict[cycle] = count self.e_basis_dict[cycle] = B[count, :].T return (self.e_basis_dict) def face_basis(self): self.f_basis_dict = dict() self.f_dict = dict() C = np.eye(len(self.phi), dtype=np.uint8) for count, cycle in enumerate(self.phi): self.f_dict[cycle] = count self.f_basis_dict[cycle] = C[count, :].T return (self.f_basis_dict) def d_2(self): self.D2 = np.zeros(len(self.e_dict), dtype=np.uint8) for cycle in self.phi: bd = self.boundary_2(cycle) if bd != []: image = sum([self.e_basis_dict[edge] for edge in bd]) else: image = np.zeros(len(self.e_dict)) self.D2 = np.vstack((self.D2, image)) self.D2 = np.array(self.D2[1:, :]).T return self.D2, self.D2.shape def d_1(self): self.D1 = np.zeros(len(self.v_dict), dtype=np.uint8) for cycle in self.alpha: bd = self.boundary_1(cycle) if bd != []: image = sum([self.v_basis_dict[vertex] for vertex in bd]) else: bd = np.zeros(len(self.e_dict)) self.D1 = np.vstack((self.D1, image)) self.D1 = np.array(self.D1[1:, :]).T return self.D1, self.D1.shape def euler_characteristic(self): """ Compute the Euler characteristic of the surface in which the graph is embedded """ chi = len(self.phi) - len(self.alpha) + len(self.sigma) return (chi) def genus(self): """ Compute the genus of the surface in which the graph is embedded """ g = int(-(len(self.phi) - len(self.alpha) + len(self.sigma) - 2) / 2) return (g) def draw(self, node_type='', layout=''): """ Draw graph with vertices, edges, and faces labeled by colored nodes and their integer indices corresponding to the qubit indices for the surface code """ if node_type not in ['cycles', 'dict']: raise ValueError('node_type can be "cycles" or "dict"') elif layout == 'spring': pos = nx.spring_layout(self.code_graph) elif layout == 'spectral': pos = nx.spectral_layout(self.code_graph) elif layout == 'planar': pos = nx.planar_layout(self.code_graph) elif layout == 'shell': pos = nx.shell_layout(self.code_graph) elif layout == 'circular': pos = nx.circular_layout(self.code_graph) elif layout == 'spiral': pos = nx.spiral_layout(self.code_graph) elif layout == 'random': pos = nx.random_layout(self.code_graph) else: raise ValueError( "no layout defined: try one of these: " + "['spring','spectral','planar','shell','circular','spiral','random']") # white nodes nx.draw_networkx_nodes(self.code_graph, pos, nodelist=list(self.alpha), node_color='c', node_size=500, alpha=0.3) # vertex nodes nx.draw_networkx_nodes(self.code_graph, pos, nodelist=list(self.sigma), node_color='b', node_size=500, alpha=0.6) # face nodes nx.draw_networkx_nodes(self.code_graph, pos, nodelist=list(self.phi), node_color='r', node_size=500, alpha=0.6) # edges nx.draw_networkx_edges(self.code_graph, pos, width=1.0, alpha=0.5) labels = {} if node_type == 'cycles': ''' label nodes the cycles of sigma, alpha, and phi ''' for node in self.alpha_dict: # stuff = self.alpha_dict[node] labels[node] = f'$e$({node})' for node in self.sigma_dict: # something = self.sigma_dict[node] labels[node] = f'$v$({node})' for node in self.phi_dict: # something2 = self.phi_dict[node] labels[node] = f'$f$({node})' nx.draw_networkx_labels(self.code_graph, pos, labels, font_size=12) if node_type == 'dict': ''' label nodes with v, e, f and indices given by node_dict corresponding to qubit indices of surface code ''' for node in self.alpha_dict: # stuff = self.alpha_dict[node] labels[node] = f'$e$({self.alpha_dict[node]})' for node in self.sigma_dict: # something = self.sigma_dict[node] labels[node] = f'$v$({self.sigma_dict[node]})' for node in self.phi_dict: # something2 = self.phi_dict[node] labels[node] = f'$f$({self.phi_dict[node]})' nx.draw_networkx_labels(self.code_graph, pos, labels, font_size=12) # plt.axis('off') # plt.savefig("labels_and_colors.png") # save as png plt.show() # display sigma = ((0,1,2), (3,4,5), (6,7,8,9)) alpha = ((0,3),(1,4),(2,6),(5,7),(8,9)) SCG = SurfaceCodeGraph(sigma, alpha) SCG.draw('dict', layout = 'spring') SCG.draw('cycles', layout = 'spring') SCG.node_info SCG.genus() SCG.face_basis() SCG.vertex_basis() SCG.edge_basis() SCG.del_1([(0,3)]) SCG.boundary_1((0,3)) SCG.del_1([(1,4)]) SCG.boundary_1((1,4)) SCG.del_1([(2,6)]) SCG.boundary_1((2,6)) SCG.del_1([(5,7)]) SCG.boundary_1((5,7)) SCG.del_1([(8,9)]) SCG.boundary_1((8,9)) SCG.d_1() SCG.d_2() SCG.D1 SCG.D2 def rowSwap(A, i, j): temp = np.copy(A[i, :]) A[i, :] = A[j, :] A[j, :] = temp def colSwap(A, i, j): temp = np.copy(A[:, i]) A[:, i] = A[:, j] A[:, j] = temp def scaleCol(A, i, c): A[:, i] *= int(c) * np.ones(A.shape[0], dtype=np.int64) def scaleRow(A, i, c): A[i, :] = np.array(A[i, :], dtype=np.float64) * c * np.ones(A.shape[1], dtype=np.float64) def colCombine(A, addTo, scaleCol, scaleAmt): A[:, addTo] += scaleAmt * A[:, scaleCol] def rowCombine(A, addTo, scaleRow, scaleAmt): A[addTo, :] += scaleAmt * A[scaleRow, :] def simultaneousReduce(A, B): if A.shape[1] != B.shape[0]: raise Exception("Matrices have the wrong shape.") numRows, numCols = A.shape i, j = 0, 0 while True: if i >= numRows or j >= numCols: break if A[i, j] == 0: nonzeroCol = j while nonzeroCol < numCols and A[i, nonzeroCol] == 0: nonzeroCol += 1 if nonzeroCol == numCols: i += 1 continue colSwap(A, j, nonzeroCol) rowSwap(B, j, nonzeroCol) pivot = A[i, j] scaleCol(A, j, 1.0 / pivot) scaleRow(B, j, 1.0 / pivot) for otherCol in range(0, numCols): if otherCol == j: continue if A[i, otherCol] != 0: scaleAmt = -A[i, otherCol] colCombine(A, otherCol, j, scaleAmt) rowCombine(B, j, otherCol, -scaleAmt) i += 1; j += 1 return A%2, B%2 def finishRowReducing(B): numRows, numCols = B.shape i, j = 0, 0 while True: if i >= numRows or j >= numCols: break if B[i, j] == 0: nonzeroRow = i while nonzeroRow < numRows and B[nonzeroRow, j] == 0: nonzeroRow += 1 if nonzeroRow == numRows: j += 1 continue rowSwap(B, i, nonzeroRow) pivot = B[i, j] scaleRow(B, i, 1.0 / pivot) for otherRow in range(0, numRows): if otherRow == i: continue if B[otherRow, j] != 0: scaleAmt = -B[otherRow, j] rowCombine(B, otherRow, i, scaleAmt) i += 1; j += 1 return B%2 def numPivotCols(A): z = np.zeros(A.shape[0]) return [np.all(A[:, j] == z) for j in range(A.shape[1])].count(False) def numPivotRows(A): z = np.zeros(A.shape[1]) return [np.all(A[i, :] == z) for i in range(A.shape[0])].count(False) def bettiNumber(d_k, d_kplus1): A, B = np.copy(d_k), np.copy(d_kplus1) simultaneousReduce(A, B) finishRowReducing(B) dimKChains = A.shape[1] print("dim 1-chains:",dimKChains) kernelDim = dimKChains - numPivotCols(A) print("dim ker d_1:",kernelDim) imageDim = numPivotRows(B) print("dim im d_2:",imageDim) return "dim homology:",kernelDim - imageDim simultaneousReduce(SCG.D1.astype('float64'), SCG.D2.astype('float64')) finishRowReducing(SCG.D2.astype('float64')) numPivotCols(SCG.D2.astype('float64')) numPivotRows(SCG.D2.astype('float64')) bettiNumber(SCG.D1.astype('float64'), SCG.D2.astype('float64'))
https://github.com/The-Singularity-Research/QISKit-Surface-Codes
The-Singularity-Research
from collections import Counter from typing import Tuple, List from networkx import MultiGraph from networkx import nx from networkx.algorithms import bipartite from sympy.combinatorics import Permutation import matplotlib.pyplot as plt # from SurfaceCodes.utilites import permlist_to_tuple class SurfaceCodeGraph(MultiGraph): def __init__(self, sigma: Tuple[Tuple[int]], alpha: Tuple[Tuple[int]]): super().__init__() self.sigma = sigma # should include singletons corresponding to fixed points self.alpha = alpha # should include singletons corresponding to fixed points f = self.compute_phi() self.phi = self.permlist_to_tuple(f) self.build_node_info() # print dictionary for [sigma, alpha, phi] self.node_dict = self.sigma_dict, self.alpha_dict, self.phi_dict self.node_info = ["sigma:", self.sigma_dict, "alpha:", self.alpha_dict, "phi:", self.phi_dict] self.code_graph = nx.MultiGraph() # Create black nodes for each cycle in sigma along with white nodes # representing "half edges" around the black nodes for cycle in self.sigma: self.code_graph.add_node(cycle, bipartite=1) for node in cycle: self.code_graph.add_node(node, bipartite=0) self.code_graph.add_edge(cycle, node) # Create black nodes for each cycle in phi along with white nodes # representing "half edges" around the black nodes for cycle in self.phi: self.code_graph.add_node(cycle, bipartite=1) for node in cycle: self.code_graph.add_edge(cycle, node) # Create nodes for each cycle in alpha then # glue the nodes corresponding to a the pairs for pair in self.alpha: self.code_graph.add_node(pair) self.code_graph = nx.contracted_nodes(self.code_graph, pair[0], pair[1], self_loops=True) # Now contract pair with pair[0] to make sure edges (white nodes) are labeled # by the pairs in alpha to keep track of the gluing from the previous step self.code_graph = nx.contracted_nodes(self.code_graph, pair, pair[0], self_loops=True) # Define the white and black nodes. White correspond to edges labeled by # cycles in alpha. Black correspond to nodes labeled by cycles in sigma # (vertices) and phi (faces) self.black_nodes, self.white_nodes = bipartite.sets(self.code_graph) def permlist_to_tuple(self, perms): """ convert list of lists to tuple of tuples in order to have two level iterables that are hashable for the dictionaries used later """ return tuple(tuple(perm) for perm in perms) def compute_phi(self): """compute the list of lists full cyclic form of phi (faces of dessin [sigma, alpha, phi])""" s = Permutation(self.sigma) a = Permutation(self.alpha) f = ~(a * s) f = f.full_cyclic_form # prints permutation as a list of lists including all singletons (fixed points) return f def build_node_info(self): count = -1 self.sigma_dict = dict() for count, cycle in enumerate(self.sigma): self.sigma_dict[cycle] = count self.phi_dict = dict() for count, cycle in enumerate(self.phi, start=count + 1): self.phi_dict[cycle] = count self.alpha_dict = dict() for count, pair in enumerate(self.alpha, start=count + 1): self.alpha_dict[pair] = count return tuple([self.sigma_dict, self.alpha_dict, self.phi_dict]) def boundary_1(self, edge): """ compute boundary of a single edge given by a white node (cycle in alpha) """ boundary1 = [node for node in self.code_graph.neighbors(edge) if node in self.sigma_dict] return boundary1 def del_1(self, edges: List[Tuple[int]]): """ boundary of a list of edges, i.e. an arbitrary 1-chain over Z/2Z """ boundary_list = [self.boundary_1(edge) for edge in edges] a = Counter([y for x in boundary_list for y in x]) boundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return boundary_list def boundary_2(self, face): """ compute boundary of a single face """ boundary = self.code_graph.neighbors(face) return boundary def del_2(self, faces: List[Tuple[int]]): """ boundary of a list of faces, i.e. an arbitrary 2-chain over Z/2Z """ boundary_list = [self.boundary_2(face) for face in faces] a = Counter([y for x in boundary_list for y in x]) boundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return boundary_list def coboundary_1(self, star): """ compute coboundary of a single star """ coboundary = self.code_graph.neighbors(star) return coboundary def delta_1(self, stars: List[Tuple[int]]): """ coboundary of a list of stars, i.e. an arbitrary 0-cochain over Z/2Z """ coboundary_list = [self.coboundary_1(star) for star in stars] a = Counter([y for x in coboundary_list for y in x]) coboundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return coboundary_list def coboundary_2(self, edge): """ compute coboundary of a single edge given by a white node (cycle in alpha) """ coboundary2 = [node for node in self.code_graph.neighbors(edge) if node in self.phi_dict] return coboundary2 def delta_2(self, edges: List[Tuple[int]]): """ coboundary of a list of edges, i.e. an arbitrary 1-cochain over Z/2Z given by a list of cycles in alpha """ coboundary_list = [self.coboundary_2(edge) for edge in edges] a = Counter([y for x in coboundary_list for y in x]) coboundary_list = [x[0] for x in a.items() if x[1] % 2 == 1] return coboundary_list def euler_characteristic(self): """ Compute the Euler characteristic of the surface in which the graph is embedded """ chi = len(self.phi) - len(self.alpha) + len(self.sigma) return (chi) def genus(self): """ Compute the genus of the surface in which the graph is embedded """ g = int(-(len(self.phi) - len(self.alpha) + len(self.sigma) - 2) / 2) return (g) def draw(self, node_type='', layout = ''): """ Draw graph with vertices, edges, and faces labeled by colored nodes and their integer indices corresponding to the qubit indices for the surface code """ if not node_type in ['cycles', 'dict']: raise ValueError('node_type can be "cycles" or "dict"') if layout == 'spring': pos=nx.spring_layout(self.code_graph) if layout == 'spectral': pos=nx.spectral_layout(self.code_graph) if layout == 'planar': pos=nx.planar_layout(self.code_graph) if layout == 'shell': pos=nx.shell_layout(self.code_graph) if layout == 'circular': pos=nx.circular_layout(self.code_graph) if layout == 'spiral': pos=nx.spiral_layout(self.code_graph) if layout == 'random': pos=nx.random_layout(self.code_graph) # white nodes nx.draw_networkx_nodes(self.code_graph, pos, nodelist=list(self.alpha), node_color='c', node_size=500, alpha=0.3) # vertex nodes nx.draw_networkx_nodes(self.code_graph, pos, nodelist=list(self.sigma), node_color='b', node_size=500, alpha=0.6) # face nodes nx.draw_networkx_nodes(self.code_graph, pos, nodelist=list(self.phi), node_color='r', node_size=500, alpha=0.6) # edges nx.draw_networkx_edges(self.code_graph, pos, width=1.0, alpha=0.5) labels={} if node_type == 'cycles': ''' label nodes the cycles of sigma, alpha, and phi ''' for node in self.alpha_dict: # stuff = self.alpha_dict[node] labels[node]=f'$e$({node})' for node in self.sigma_dict: # something = self.sigma_dict[node] labels[node]=f'$v$({node})' for node in self.phi_dict: # something2 = self.phi_dict[node] labels[node]=f'$f$({node})' nx.draw_networkx_labels(self.code_graph, pos, labels, font_size=12) if node_type == 'dict': ''' label nodes with v, e, f and indices given by node_dict corresponding to qubit indices of surface code ''' for node in self.alpha_dict: # stuff = self.alpha_dict[node] labels[node]=f'$e$({self.alpha_dict[node]})' for node in self.sigma_dict: # something = self.sigma_dict[node] labels[node]=f'$v$({self.sigma_dict[node]})' for node in self.phi_dict: # something2 = self.phi_dict[node] labels[node]=f'$f$({self.phi_dict[node]})' nx.draw_networkx_labels(self.code_graph, pos, labels, font_size=12) # plt.axis('off') # plt.savefig("labels_and_colors.png") # save as png plt.show() # display sigma = ((0,1,2),(3,4,5),(6,7)) alpha = ((0,3),(1,6),(2,4),(5,7)) SCG = SurfaceCodeGraph(sigma, alpha) SCG SCG.draw('cycles', 'spring') SCG.phi SCG.node_info SCG.code_graph.nodes bipartite.sets(SCG.code_graph) SCG.white_nodes SCG.black_nodes SCG.draw('dict', 'spring') SCG.euler_characteristic() SCG.genus() SCG.del_2([(1,3,7)]) SCG.del_2([(0, 4), (1,3,7)]) SCG.delta_1([(0,1,2)]) SCG.delta_1([(0,1,2), (3,4,5)]) SCG.boundary_1((0,3)) SCG.boundary_1((1,6)) SCG.del_1([(0,3), (1,6)]) SCG.coboundary_2((0,3)) SCG.coboundary_2((1,6)) SCG.delta_2([(0,3), (1,6)]) from typing import Tuple from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister # from SurfaceCodes.surface_code_class import SurfaceCodeGraph # from SurfaceCodes.utilites import permlist_to_tuple class SurfaceCodeCircuit(QuantumCircuit): def __init__(self, sigma: Tuple[Tuple[int]], alpha: Tuple[Tuple[int]]): super().__init__() self.sigma = sigma self.alpha = alpha self.scgraph = SurfaceCodeGraph(self.sigma, self.alpha) ''' Compute the permutation corresponding to phi and create a 'surface code circuit' based on a (multi)graph 'surface_code_graph' given by sigma, alpha, and phi Create quantum and classical registers based on the number of nodes in G ''' # f = self.scgraph.compute_phi() self.phi = self.scgraph.phi self.qr = QuantumRegister(len(self.scgraph.code_graph.nodes)) self.cr = ClassicalRegister(len(self.scgraph.code_graph.nodes)) self.circ = QuantumCircuit(self.qr, self.cr) self.node_info = self.scgraph.node_dict self.sigma_dict, self.alpha_dict, self.phi_dict = self.node_info for cycle in self.sigma: self.circ.h(self.sigma_dict[cycle]) for cycle in self.phi: self.circ.h(self.phi_dict[cycle]) def x_measurement(self, qubit: int, cbit: int): """Measure 'qubit' in the X-basis, and store the result in 'cbit' :param qubit, cbit: :return None """ # circuit.measure = measure # fix a bug in qiskit.circuit.measure self.circ.h(qubit) self.circ.measure(qubit, cbit) self.circ.h(qubit) def star_syndrome_measure(self, vertex: Tuple[int]): """ Applies CX gates to surrounding qubits of a star then measures star qubit in X-basis :param vertex: :return: self.circ, self.scgraph, self.node_info """ for node in self.scgraph.code_graph.neighbors(vertex): self.circ.cx(self.sigma_dict[vertex], self.alpha_dict[node]) self.circ.barrier() self.x_measurement(self.sigma_dict[vertex], self.sigma_dict[vertex]) self.circ.barrier() return self.circ, self.scgraph, self.node_info def face_syndrome_measure(self, vertex: Tuple[int]): """ Applies CZ gates to surrounding qubits of a face then measures face qubit in X-basis :param vertex: :return: """ for node in self.scgraph.code_graph.neighbors(vertex): self.circ.cz(self.phi_dict[vertex], self.alpha_dict[node]) self.circ.barrier() self.x_measurement(self.phi_dict[vertex], self.phi_dict[vertex]) self.circ.barrier() return self.circ, self.scgraph, self.node_info def product_Z(self, faces): """ Pauli product Z operator for arbitrary 2-chain boundary """ boundary_nodes = self.scgraph.del_2(faces) for node in boundary_nodes: self.circ.z(self.alpha_dict[node]) def product_X(self, stars): """ Pauli product X operator for arbitrary 0-cochain coboundary """ coboundary_nodes = self.scgraph.delta_1(stars) for node in coboundary_nodes: self.circ.x(self.alpha_dict[node]) def draw_graph(self, node_type='', layout = ''): if layout == 'spring': pos=nx.spring_layout(self.scgraph.code_graph) if layout == 'spectral': pos=nx.spectral_layout(self.scgraph.code_graph) if layout == 'planar': pos=nx.planar_layout(self.scgraph.code_graph) if layout == 'shell': pos=nx.shell_layout(self.scgraph.code_graph) if layout == 'circular': pos=nx.circular_layout(self.scgraph.code_graph) if layout == 'spiral': pos=nx.spiral_layout(self.scgraph.code_graph) if layout == 'random': pos=nx.random_layout(self.scgraph.code_graph) if node_type == 'cycles': self.scgraph.draw('cycles', layout) if node_type == 'dict': self.scgraph.draw('dict', layout) SCC = SurfaceCodeCircuit(sigma, alpha) SCC.circ.draw('mpl') nx.draw(SCC.scgraph.code_graph, with_labels = True) SCC.draw_graph('cycles', 'spring') SCC.draw_graph('dict', 'spring') SCC.node_info SCC.sigma SCC.alpha SCC.phi SCC.scgraph.code_graph.nodes SCC.star_syndrome_measure(((0,1,2))) SCC.circ.draw('mpl') SCC.face_syndrome_measure(((2, 6, 5))) SCC.circ.draw('mpl') SCC.product_Z([(0, 4), (2, 6, 5)]) SCC.circ.draw('mpl') SCC.product_X([(3, 4, 5), (6, 7)]) SCC.circ.draw('mpl') sigma = ((0,1),(2,3,4),(5,6,7),(8,9),(10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23),(24,25,26),(27,28,29,30),(31,32,33,34),(35,36,37),(38,39),(40,41,42),(43,44,45),(46,47)) alpha = ((0,2),(1,10),(3,5),(4,14),(6,8),(7,18),(9,22),(11,13),(12,24),(15,17),(16,28),(19,21),(20,32),(23,36),(25,27),(26,38),(29,31),(30,41),(33,35),(34,44),(37,47),(39,40),(42,43),(45,46)) SCG = SurfaceCodeGraph(sigma, alpha) SCG.genus() SCG.draw('dict', 'planar') SCG.draw('dict', 'spectral') len(SCG.code_graph.nodes()) len(SCG.sigma) len(SCG.alpha) len(SCG.phi) SCG.phi SCG.code_graph.nodes() SCG.code_graph.remove_node((0, 10, 24, 38, 40, 43, 46, 37, 23, 9, 6, 3)) len(SCG.code_graph.nodes()) nx.draw_spectral(SCG.code_graph, with_labels = False) G = nx.Graph() pos = dict() for x in range(7): for y in range(7): G.add_node((x,y)) pos[(x,y)] = (x,y) if x>0: G.add_edge((x-1,y),(x,y)) if y>0: G.add_edge((x,y),(x,y-1)) nx.draw(G, pos=pos, with_labels = True) nx.is_isomorphic(SCG.code_graph, G) G1, G2 = SCG.code_graph, G GM = nx.isomorphism.GraphMatcher(G1,G2) GM.is_isomorphic() GM.mapping node_color = {(x[0], x[1]): 1-((x[0]+x[1])%2)/2 for x in G.nodes()} for y in range(1,7,2): for z in range(1,7,2): node_color[(y,z)] = .2 node_color = [node_color[x] for x in sorted(node_color.keys())] nx.draw(G, pos = pos, node_color = node_color)
https://github.com/0sophy1/Qiskit-Dev-Cert-lectures
0sophy1
a = 2 + 3j b = 5 - 2j print("a + b=", a+b) print("a * b=", a*b) a = 2 + 3j a_bar = 2 - 3j print("a + a_bar = ", a + a_bar) print("a * a_bar = ", a * a_bar) import matplotlib.pyplot as plt import numpy as np import math z1 = 3 + 4j x_min = 0 x_max = 5.0 y_min = 0 y_max = 5.0 def plot_complex_number_geometric_representation(z,x_min,x_max,y_min,y_max): fig = plt.figure() ax = plt.gca() a = [0.0,0.0] b = [z.real,z.imag] head_length = 0.2 dx = b[0] - a[0] dy = b[1] - a[1] vec_ab = [dx,dy] vec_ab_magnitude = math.sqrt(dx**2+dy**2) dx = dx / vec_ab_magnitude dy = dy / vec_ab_magnitude vec_ab_magnitude = vec_ab_magnitude - head_length ax.arrow(a[0], a[1], vec_ab_magnitude*dx, vec_ab_magnitude*dy, head_width=head_length, head_length=head_length, fc='black', ec='black') plt.xlim(x_min,x_max) plt.ylim(y_min,y_max) plt.grid(True,linestyle='-') plt.show() plot_complex_number_geometric_representation(z1,x_min,x_max,y_min,y_max) import numpy as np A = np.array([[1,2,3]]) B = np.array([[7], [10], [9]]) A+B A = np.array([[7], [10], [9]]) B = np.array([[1,2,3]]) C = np.array([[1, 2, 3], [5, 6, 7], [8,9,10]]) print("AB = ", np.matmul(A,B)) print("BA = ", np.matmul(B,A)) print("CA = ", np.matmul(C, A)) print("AC = ", np.matmul(A, C)) A = np.array([[1, 2], [3,4]]) B = np.array([[5, 6], [7,8]]) print("AB = \n", np.matmul(A,B)) print("BA = \n", np.matmul(B,A)) from scipy.linalg import orth from numpy import linalg as LA A = np.array([[1 + 3j, 2 - 1j], [3, 4 - 2j]]) data =orth(A) x, y = data[:, 0], data[:, 1] print("norm of x = %f" % LA.norm(x)) print("norm of y = %f" % LA.norm(y)) print("x dot y = ", np.vdot(x,y))
https://github.com/0sophy1/Qiskit-Dev-Cert-lectures
0sophy1
a = 2 + 3j b = 5 - 2j print("a + b=", a+b) print("a * b=", a*b) a = 2 + 3j a_bar = 2 - 3j print("a + a_bar = ", a + a_bar) print("a * a_bar = ", a * a_bar) import matplotlib.pyplot as plt import numpy as np import math z1 = 3 + 4j x_min = 0 x_max = 5.0 y_min = 0 y_max = 5.0 def plot_complex_number_geometric_representation(z,x_min,x_max,y_min,y_max): fig = plt.figure() ax = plt.gca() a = [0.0,0.0] b = [z.real,z.imag] head_length = 0.2 dx = b[0] - a[0] dy = b[1] - a[1] vec_ab = [dx,dy] vec_ab_magnitude = math.sqrt(dx**2+dy**2) dx = dx / vec_ab_magnitude dy = dy / vec_ab_magnitude vec_ab_magnitude = vec_ab_magnitude - head_length ax.arrow(a[0], a[1], vec_ab_magnitude*dx, vec_ab_magnitude*dy, head_width=head_length, head_length=head_length, fc='black', ec='black') plt.xlim(x_min,x_max) plt.ylim(y_min,y_max) plt.grid(True,linestyle='-') plt.show() plot_complex_number_geometric_representation(z1,x_min,x_max,y_min,y_max) import numpy as np A = np.array([[1,2,3]]) B = np.array([[7], [10], [9]]) A+B A = np.array([[7], [10], [9]]) B = np.array([[1,2,3]]) C = np.array([[1, 2, 3], [5, 6, 7], [8,9,10]]) print("AB = ", np.matmul(A,B)) print("BA = ", np.matmul(B,A)) print("CA = ", np.matmul(C, A)) print("AC = ", np.matmul(A, C)) A = np.array([[1, 2], [3,4]]) B = np.array([[5, 6], [7,8]]) print("AB = \n", np.matmul(A,B)) print("BA = \n", np.matmul(B,A)) from scipy.linalg import orth from numpy import linalg as LA A = np.array([[1 + 3j, 2 - 1j], [3, 4 - 2j]]) data =orth(A) x, y = data[:, 0], data[:, 1] print("norm of x = %f" % LA.norm(x)) print("norm of y = %f" % LA.norm(y)) print("x dot y = ", np.vdot(x,y))
https://github.com/0sophy1/Qiskit-Dev-Cert-lectures
0sophy1
import numpy as np from math import sqrt #define 0, 1, +, - state zero = np.array([[1],[0]]) one = np.array([[0],[1]]) plus = np.array([[1/sqrt(2)],[1/sqrt(2)]]) minus = np.array([[1/sqrt(2)],[ -1/sqrt(2)]]) #define H operation H = np.array([[1/sqrt(2), 1/sqrt(2)], [1/sqrt(2), -1/sqrt(2)]]) np.matmul(H,zero) #=plus np.matmul(H, one) #=minus np.matmul(H, plus) #=zero np.matmul(H, minus) #=one
https://github.com/0sophy1/Qiskit-Dev-Cert-lectures
0sophy1
a = 2 + 3j b = 5 - 2j print("a + b=", a+b) print("a * b=", a*b) a = 2 + 3j a_bar = 2 - 3j print("a + a_bar = ", a + a_bar) print("a * a_bar = ", a * a_bar) import matplotlib.pyplot as plt import numpy as np import math z1 = 3 + 4j x_min = 0 x_max = 5.0 y_min = 0 y_max = 5.0 def plot_complex_number_geometric_representation(z,x_min,x_max,y_min,y_max): fig = plt.figure() ax = plt.gca() a = [0.0,0.0] b = [z.real,z.imag] head_length = 0.2 dx = b[0] - a[0] dy = b[1] - a[1] vec_ab = [dx,dy] vec_ab_magnitude = math.sqrt(dx**2+dy**2) dx = dx / vec_ab_magnitude dy = dy / vec_ab_magnitude vec_ab_magnitude = vec_ab_magnitude - head_length ax.arrow(a[0], a[1], vec_ab_magnitude*dx, vec_ab_magnitude*dy, head_width=head_length, head_length=head_length, fc='black', ec='black') plt.xlim(x_min,x_max) plt.ylim(y_min,y_max) plt.grid(True,linestyle='-') plt.show() plot_complex_number_geometric_representation(z1,x_min,x_max,y_min,y_max) import numpy as np A = np.array([[1,2,3]]) B = np.array([[7], [10], [9]]) A+B A = np.array([[7], [10], [9]]) B = np.array([[1,2,3]]) C = np.array([[1, 2, 3], [5, 6, 7], [8,9,10]]) print("AB = ", np.matmul(A,B)) print("BA = ", np.matmul(B,A)) print("CA = ", np.matmul(C, A)) print("AC = ", np.matmul(A, C)) A = np.array([[1, 2], [3,4]]) B = np.array([[5, 6], [7,8]]) print("AB = \n", np.matmul(A,B)) print("BA = \n", np.matmul(B,A)) from scipy.linalg import orth from numpy import linalg as LA A = np.array([[1 + 3j, 2 - 1j], [3, 4 - 2j]]) data =orth(A) x, y = data[:, 0], data[:, 1] print("norm of x = %f" % LA.norm(x)) print("norm of y = %f" % LA.norm(y)) print("x dot y = ", np.vdot(x,y))
https://github.com/sorin-bolos/QiskitCampAsia2019
sorin-bolos
# useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram from qiskit.aqua import run_algorithm from qiskit.aqua.input import EnergyInput from qiskit.aqua.translators.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua.components.variational_forms import RY from qiskit.aqua import QuantumInstance from qiskit.quantum_info import Pauli from qiskit.aqua.operators import WeightedPauliOperator from collections import OrderedDict import math # setup aqua logging import logging from qiskit.aqua import set_qiskit_aqua_logging def get_knapsack_operator(values, weights, max_weight): if len(values) != len(weights): raise ValueError("The values and weights must have the same length") if any(v < 0 for v in values) or any(w < 0 for w in weights): raise ValueError("The values and weights cannot be negative") if all(v == 0 for v in values): raise ValueError("The values cannot all be 0") if max_weight < 0: raise ValueError("max_weight cannot be negative") y_size = int(math.log(max_weight, 2)) + 1 if max_weight > 0 else 1 print(y_size) n = len(values) num_values = n + y_size pauli_list = [] shift = 0 M = 2000000 #10 * np.sum(values) # term for sum(x_i*w_i)**2 for i in range(n): for j in range(n): coefficient = -1 * 0.25 * weights[i] * weights[j] * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[j] = not zp[j] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient coefficient = -1 * coefficient xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] zp[j] = not zp[j] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient # term for sum(2**j*y_j)**2 for i in range(y_size): for j in range(y_size): coefficient = -1 * 0.25 * (2 ** i) * (2 ** j) * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n + j] = not zp[n + j] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n + i] = not zp[n + i] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient coefficient = -1 * coefficient xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n + i] = not zp[n + i] zp[n + j] = not zp[n + j] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient # term for -2*W_max*sum(x_i*w_i) for i in range(n): coefficient = max_weight * weights[i] * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient # term for -2*W_max*sum(2**j*y_j) for j in range(y_size): coefficient = max_weight * (2 ** j) * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n + j] = not zp[n + j] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient for i in range(n): for j in range(y_size): coefficient = -1 * 0.5 * weights[i] * (2 ** j) * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n + j] = not zp[n + j] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient coefficient = -1 * coefficient xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] zp[n + j] = not zp[n + j] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient # term for sum(x_i*v_i) for i in range(n): coefficient = 0.5 * values[i] xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] pauli_list.append([coefficient, Pauli(zp, xp)]) shift -= coefficient return WeightedPauliOperator(paulis=pauli_list), shift def get_solution(x, values): return x[:len(values)] def knapsack_value_weight(solution, values, weights): value = np.sum(solution * values) weight = np.sum(solution * weights) return value, weight def sample_most_likely(state_vector): if isinstance(state_vector, dict) or isinstance(state_vector, OrderedDict): # get the binary string with the largest count binary_string = sorted(state_vector.items(), key=lambda kv: kv[1])[-1][0] x = np.asarray([int(y) for y in reversed(list(binary_string))]) return x else: n = int(np.log2(state_vector.shape[0])) k = np.argmax(np.abs(state_vector)) x = np.zeros(n) for i in range(n): x[i] = k % 2 k >>= 1 return x # values = [680, 120, 590, 178] # weights = [13, 6, 15, 9] # w_max = 32 values = [8, 2] weights = [3, 1] w_max = 3 qubitOp, offset = get_knapsack_operator(values, weights, w_max) algo_input = EnergyInput(qubitOp) ee = ExactEigensolver(qubitOp, k=1) result = ee.run() most_lightly = result['eigvecs'][0] x = sample_most_likely(most_lightly) print(x) print('result=' + str(x[:len(values)])) seed = 10598 spsa = SPSA(max_trials=10000) ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa) backend = BasicAer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) result_statevector = vqe.run(quantum_instance) most_lightly_sv = result_statevector['eigvecs'][0] x_statevector = sample_most_likely(most_lightly_sv) print(x_statevector) print('result usig statevector_simulator =' + str(x_statevector[:len(values)])) # run quantum algorithm with shots seed = 10598 spsa = SPSA(max_trials=1000) ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=seed, seed_transpiler=seed) result_shots = vqe.run(quantum_instance) most_lightly_shots = result_shots['eigvecs'][0] x_shots = sample_most_likely(most_lightly_shots) print(x_shots) print('result usig qasm_simulator =' + str(x_shots[:len(values)])) math.log(8, 2)
https://github.com/sorin-bolos/QiskitCampAsia2019
sorin-bolos
# useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram from qiskit.aqua import run_algorithm from qiskit.aqua.input import EnergyInput from qiskit.aqua.translators.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua.components.variational_forms import RY from qiskit.aqua import QuantumInstance from qiskit.quantum_info import Pauli from qiskit.aqua.operators import WeightedPauliOperator from collections import OrderedDict # setup aqua logging import logging from qiskit.aqua import set_qiskit_aqua_logging # set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log def get_values_qubitops(values): num_values = len(values) pauli_list = [] shift = 0 for i in range(num_values): xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = True pauli_list.append([0.5 * values[i], Pauli(zp, xp)]) shift -= 0.5 * values[i] return WeightedPauliOperator(paulis=pauli_list), shift values = [3, 6, -4, 8] qubitOp, offset = get_values_qubitops(values) algo_input = EnergyInput(qubitOp) ee = ExactEigensolver(qubitOp, k=1) result = ee.run() def sample_most_likely(state_vector): if isinstance(state_vector, dict) or isinstance(state_vector, OrderedDict): # get the binary string with the largest count binary_string = sorted(state_vector.items(), key=lambda kv: kv[1])[-1][0] x = np.asarray([int(y) for y in reversed(list(binary_string))]) return x else: n = int(np.log2(state_vector.shape[0])) k = np.argmax(np.abs(state_vector)) x = np.zeros(n) for i in range(n): x[i] = k % 2 k >>= 1 return x most_lightly = result['eigvecs'][0] x = sample_most_likely(most_lightly) x seed = 10598 spsa = SPSA(max_trials=300) ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa) backend = BasicAer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) result_statevector = vqe.run(quantum_instance) most_lightly = result_statevector['eigvecs'][0] x_statevector = sample_most_likely(most_lightly) x_statevector # run quantum algorithm with shots seed = 10598 spsa = SPSA(max_trials=300) ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=seed, seed_transpiler=seed) result_shots = vqe.run(quantum_instance) most_lightly_shots = result_shots['eigvecs'][0] x_shots = sample_most_likely(most_lightly_shots) x_shots
https://github.com/sorin-bolos/QiskitCampAsia2019
sorin-bolos
# useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram from qiskit.aqua import run_algorithm from qiskit.aqua.input import EnergyInput from qiskit.aqua.translators.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua.components.variational_forms import RY from qiskit.aqua import QuantumInstance from qiskit.quantum_info import Pauli from qiskit.aqua.operators import WeightedPauliOperator from collections import OrderedDict import math # setup aqua logging import logging from qiskit.aqua import set_qiskit_aqua_logging # set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log def sample_most_likely(state_vector): if isinstance(state_vector, dict) or isinstance(state_vector, OrderedDict): # get the binary string with the largest count binary_string = sorted(state_vector.items(), key=lambda kv: kv[1])[-1][0] x = np.asarray([int(y) for y in reversed(list(binary_string))]) return x else: n = int(np.log2(state_vector.shape[0])) k = np.argmax(np.abs(state_vector)) x = np.zeros(n) for i in range(n): x[i] = k % 2 k >>= 1 return x def get_knapsack_qubitops(values, weights, w_max, M): ysize = int(math.log(w_max + 1, 2)) n = len(values) num_values = n + ysize; pauli_list = [] shift = 0 #term for sum(x_i*w_i)^2 for i in range(n): for j in range(n): coef = -1 * 0.25 * weights[i] * weights[j] * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[j] = not zp[j] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef coef = -1 * coef xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] zp[j] = not zp[j] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef #term for sum(2^j*y_j)^2 for i in range(ysize): for j in range(ysize): coef = -1 * 0.25 * (2^i) * (2^j) * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n+j] = not zp[n+j] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n+i] = not zp[n+i] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef coef = -1 * coef xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n+i] = not zp[n+i] zp[n+j] = not zp[n+j] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef #term for -2*W_max*sum(x_i*w_i) for i in range(n): xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] coef = w_max * weights[i] * M pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef #term for -2*W_max*sum(2^j*y_j) for j in range(ysize): xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n+j] = not zp[n+j] coef = w_max * (2^j) * M pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef for i in range(n): for j in range(ysize): coef = -0.5 * weights[i] * (2^j) * M xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[n+j] = not zp[n+j] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef coef = -1 * coef xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] zp[n+j] = not zp[n+j] pauli_list.append([coef, Pauli(zp, xp)]) shift -= coef #term for sum(x_i*v_i) for i in range(n): xp = np.zeros(num_values, dtype=np.bool) zp = np.zeros(num_values, dtype=np.bool) zp[i] = not zp[i] pauli_list.append([0.5 * values[i], Pauli(zp, xp)]) shift -= 0.5 * values[i] return WeightedPauliOperator(paulis=pauli_list), shift values = [680, 120, 57, 178] weights = [3, 6, 5, 9] w_max = 15 M = 2000000 qubitOp, offset = get_knapsack_qubitops(values, weights, w_max, M) algo_input = EnergyInput(qubitOp) ee = ExactEigensolver(qubitOp, k=1) result = ee.run() most_lightly = result['eigvecs'][0] x = sample_most_likely(most_lightly) print('result=' + str(x[:len(values)])) seed = 10598 spsa = SPSA(max_trials=300) ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa) backend = BasicAer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) result_statevector = vqe.run(quantum_instance) most_lightly_sv = result_statevector['eigvecs'][0] x_statevector = sample_most_likely(most_lightly_sv) print('result usig statevector_simulator =' + str(x_statevector[:len(values)])) # run quantum algorithm with shots seed = 10598 spsa = SPSA(max_trials=300) ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=seed, seed_transpiler=seed) result_shots = vqe.run(quantum_instance) most_lightly_shots = result_shots['eigvecs'][0] x_shots = sample_most_likely(most_lightly_shots) print('result usig qasm_simulator =' + str(x_shots[:len(values)]))
https://github.com/YPadawan/qiskit-hackathon
YPadawan
import numpy as np import matplotlib.pyplot as plt import torch from torchvision import datasets, transforms n_samples = 100 #transforms.compose receive all the types of transformation that can be done on an image #in our case the only transformation that we do is to transform the image into a tensor, it is #why between hook [] we just have transforms.ToTensor() X_train = datasets.MNIST(root='./data' , train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only 8 and 9 #We select two numbers to make the classification #I try to take characters that are alike to put the model a little in difficulty idx = np.append(np.where(X_train.targets == 8)[0][:n_samples], np.where(X_train.targets == 9)[0][:n_samples]) X_train.data = X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 5 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows = 1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 #Half of the data is used for validation n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 5)[0][:n_samples], np.where(X_test.targets == 6)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True)
https://github.com/YPadawan/qiskit-hackathon
YPadawan
import numpy as np # Importing necessary quantum computing library (QISKIT) import qiskit from qiskit import QuantumCircuit, QuantumRegister from qiskit.visualization import * # Source:https://www.tensorflow.org/quantum/tutorials/qcnn def cluster_state(qr): """Returns a cluster state of the qubits in the quantum register `qr` Parameters ---------- qr: (QuantumRegister) Qiskit quantum register Returns ------- qc: (QuantumCircuit) Qiskit quantum circuit with the cluster state """ qc = QuantumCircuit(qr) # Creating a QuantumRegister # Applying a Hadamard gate to qubits for i, _ in enumerate(qr): qc.h(i) for this_bit, next_bit in zip(qr, qr[1:] + [qr[0]]): c = this_bit.index t = next_bit.index qc.cz(c, t) return qc qc_cs = cluster_state(QuantumRegister(4)) qc_cs.draw('mpl') # https://www.tensorflow.org/quantum/tutorials/qcnn # This function is a readaptation of the tensorflow tutorial using qiskit and pytorch instead # WARNING: I believe the function is working, but it looks like it is not possible to convert quantum gates # and quantum circuits to pytorch tensors. # I don't think there is an equivalent of tfq.convert_to_tensor yet. # For the moment the function only returns a tuple of lists for train and test excitations. def generate_data(qubits): """Generate training and testing data. Parameters ---------- qubits: (Qiskit QuantumRegister) Quantum register containing qubits to pass to the Quantum circuit Returns -------- train_excitations: (list) list of excited qubits for training train_labels: (array) numpy array containing the labels corresponding to the train set test_excitations: (list) list of excited qubits to use as a testing set test_labels: (array) numpy array containing the labels of the test set N.B. train_excitations and test_excitations should be a PyTorch tensor """ n_rounds = 20 # Produces n_rounds * n_qubits datapoints. excitations = [] labels = [] for n in range(n_rounds): for bit in qubits: rng = np.random.uniform(-np.pi, np.pi) # Creating a quantum circuit with qiskit excitations.append(QuantumCircuit(bit.register).rx(rng, bit.register)) #excitations.append(cirq.Circuit(cirq.rx(rng)(bit))) / cirq to check if it's correct labels.append(1 if (-np.pi / 2) <= rng <= (np.pi / 2) else -1) split_ind = int(len(excitations) * 0.7) train_excitations = excitations[:split_ind] test_excitations = excitations[split_ind:] train_labels = labels[:split_ind] test_labels = labels[split_ind:] return train_excitations, np.array(train_labels), \ test_excitations, np.array(test_labels) qr = QuantumRegister(2) train_excitations, train_labels, test_excitations, test_labels = generate_data(qr) # Source of the function: https://www.tensorflow.org/quantum/tutorials/qcnn # The function has been re-adapted for qiskit use from qiskit.circuit import Parameter def one_qubit_unitary(bit, rotation=('1', '2', '3')): """Make a circuit enacting a rotation of the bloch sphere about the X, Y and Z axis, that depends on the values in `symbols`. Parameters ----------- bit: (QuantumRegister (qubit)) qubit to rotate rotation: (tuple) tuple containing the three rotation values of rotation operators for respectively, x, y and z Returns ------- Rotated qubit, one qubit unitary matrix """ x, y, z = rotation qc = QuantumCircuit(bit) qc.rx(Parameter(x), 0) qc.ry(Parameter(y), 0) qc.rz(Parameter(z), 0) return qc one_qubit_unitary(1, ("e1", "e2", "e3")).draw() # Function still needs some rechecking but it might be correct. # replace symbols later, still having an issue with symbols def two_qubit_unitary(bits, rotations={"q1": ("x1", "y1", "z1"), "q2": ('x2', 'y2', 'z2'), "rzyx":("t1", "t2", "t3")}): """Make a qiskit circuit that creates an arbitrary two qubit unitary. Parameters ---------- bits: (QuantumRegister) Qiskit quantum register which we want to pass to the circuit rotations: (dictionary) dictionary containing the rotation parameters for both qubits and x, y, z axis Returns ------- big_qc: (QuantumCircuit) Qiskit quantum circuit representing two-qubit unitary matrix (to be confirmed) """ rot1 = rotations["q1"] rot2 = rotations["q2"] sub_circ1 = one_qubit_unitary(1, rot1) sub_circ2 = one_qubit_unitary(1, rot2) qr = bits big_qc = QuantumCircuit(qr) big_qc.append(sub_circ1.to_instruction(), [qr[0]]) big_qc.append(sub_circ2.to_instruction(), [qr[1]]) zz, yy, xx = rotations["rzyx"] big_qc.rzz(Parameter(zz), 0, 1) big_qc.ryy(Parameter(yy), 0, 1) big_qc.rxx(Parameter(xx), 0, 1) big_qc.append(sub_circ1.to_instruction(), [qr[0]]) big_qc.append(sub_circ2.to_instruction(), [qr[1]]) return big_qc two_qubit_unitary(QuantumRegister(2)).decompose().draw('mpl') # source: https://www.tensorflow.org/quantum/tutorials/qcnn def two_qubit_pool(source_qubit, sink_qubit, rotations={"q1":("x1", "y1", "z1"), "q2": ("x2", "y2", "z2"), "invq":("-x2", "-y2", "-z2")}): # add symbols later """Make a Qiskit circuit to do a parameterized 'pooling' operation, which attempts to reduce entanglement down from two qubits to just one. Parameters --------- source_qubit: (QuantumRegister) source qubit that will be the control qubit before sinking sink_qubit: (QuantumRegister) sink_qubit that will be the target qubit of the CNOT gate and that is supposed to be inversed Returns ------ pool_circuit: (QuantumCircuit) Qiskit quantum circuit making the pooling operation """ rot1 = rotations["q1"] rot2 = rotations["q2"] sink_basis_selector = one_qubit_unitary(sink_qubit, rot1) source_basis_selector = one_qubit_unitary(source_qubit, rot2) qr = QuantumRegister(2) pool_circuit = QuantumCircuit(qr) pool_circuit.append(sink_basis_selector.to_instruction(), [qr[0]]) pool_circuit.append(source_basis_selector.to_instruction(), [qr[1]]) pool_circuit.cnot(control_qubit=0, target_qubit=1) # add sink_basis selector I don't know what is being done inv_rot = rotations["invq"] inv_sink_basis_selector = one_qubit_unitary(source_qubit, inv_rot) pool_circuit.append(inv_sink_basis_selector.to_instruction(), [qr[1]]) return pool_circuit two_qubit_pool(QuantumRegister(1), QuantumRegister(1)).decompose().draw('mpl') def quantum_conv_circuit(bits): # Take care of rotations later """Quantum Convolution Layer Parameters ---------- bits: (QuantumRegister) Qiskit quantum register that will be used in the quantum circuit Returns ------- qc: (QuantumCircuit) Qiskit circuit with the cascade of `two_qubit_unitary` applied to all pairs of qubits in `bits` """ qc = QuantumCircuit(bits) # The xyz variable below is meant as a workaround to parameter implementation and replacement xyz = ("x", "y", "z") k = 0 # variable to increment in order for first, second in zip(bits[0::2], bits[1::2]): i = first.index j = second.index ### Creating parameters to avoid duplicate names because they raises a Circuit Error ### k+=1 q1_val = tuple([r + str(k) for r in xyz]) q2_val = tuple([r + str(k + 1) for r in xyz]) rzyx = tuple([t + str(k) for t in ("theta", "beta", "gamma")]) k+=1 rotations = {"q1": q1_val, "q2":q2_val, "rzyx":rzyx} qc.append(two_qubit_unitary(QuantumRegister(2), rotations).to_instruction(), [bits[i], bits[j]]) ### Second loop for the second two_qubit unitary abc = ("a", "b", "c") p = 0 for first, second in zip(bits[1::2], bits[2::2] + [bits[0]]): i = first.index j = second.index ### Creating parameters to avoid duplicate names because they raises a Circuit Error ### p+=1 q1_val = tuple([r + str(p) for r in abc]) q2_val = tuple([r + str(p + 1) for r in abc]) rzyx = tuple([t + str(p) for t in ("mu", "nu", "eps")]) p+=1 rotations = {"q1": q1_val, "q2":q2_val, "rzyx":rzyx} qc.append(two_qubit_unitary(QuantumRegister(2), rotations).to_instruction(), [bits[i], bits[j]]) return qc quantum_conv_circuit(QuantumRegister(8)).decompose().draw('mpl') def quantum_pool_circuit(bits): """A layer that specifies a quantum pooling operation. A Quantum pool tries to learn to pool the relevant information from two qubits onto 1. Parameters ---------- bits: (QuantumRegister) Qiskit quantum register Returns ------- circuit: (QuantumCircuit) Qiskit quantum circuit with the pooled qubits """ circuit = QuantumCircuit(bits) # instantiating of the quantum circuit # The xyz variable below is mean't as a workaround to parameter implementation and replacement xyz = ("x", "y", "z") k = 0 # variable to increment in order assert len(bits) % 2==0, "The number of qubits in the register should be even" split = len(bits) // 2 # taking half of the quantum register's length for source, sink in zip(bits[:split], bits[split:]): i = source.index # getting source qubit index j = sink.index # sink qubit index ### Creating parameters to avoid duplicate names because they raises a Circuit Error ### k+=1 q1_val = tuple([r + str(k) for r in xyz]) invq_val = tuple(["-" + r + str(k) for r in xyz]) q2_val = tuple([r + str(k + 1) for r in xyz]) k+=1 # k is incremented twice because q2_val takes the value (k + 1) at k round tqb = two_qubit_pool(QuantumRegister(1), QuantumRegister(1), {"q1": q1_val, "q2":q2_val, "invq":invq_val}) circuit.append(tqb.to_instruction(), [bits[i], bits[j]]) return circuit test_bits = QuantumRegister(8) quantum_pool_circuit(test_bits).decompose().draw('mpl')
https://github.com/stfnmangini/VQE_from_scratch
stfnmangini
import qiskit as qk qc = qk.QuantumCircuit(2,1) qc.barrier() qc.cx(0,1) qc.measure(1,0) print("Measurement in the ZZ basis") qc.draw(output="mpl") qc = qk.QuantumCircuit(2,1) qc.barrier() qc.h(0) qc.h(1) qc.cx(0,1) qc.measure(1,0) print("Measurement in the XX basis") qc.draw(output="mpl") qc = qk.QuantumCircuit(2,1) qc.barrier() qc.sdg(0) qc.sdg(1) qc.h(0) qc.h(1) qc.cx(0,1) qc.measure(1,0) print("Measurement in the YY basis") qc.draw(output="mpl") from qiskit import Aer import numpy as np from scipy.optimize import minimize_scalar, minimize from numpy import pi sim_bknd = qk.Aer.get_backend('qasm_simulator') def ansatz(qc, qr, theta): """ Builds the trial state using the ansatz: (RX I) CX (H I)|00> Arguments ----------- qc: is a QuantumCircuit object from Qiskit qr: is a QuantumRegister object used in the quantum circuit qc theta (real): is the parameter parametrizing the trial state Return --------- qc: returns the input quantum circuit added with the gates creating the trial state """ qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.rx(theta, qr[0]) return qc def measurements(qc, qr, cr, op): """ Implements the quantum measurements in different basis: XX, YY and ZZ. Arguments ----------- qc: is a QuantumCircuit object from Qiskit qr: is a QuantumRegister object used in the quantum circuit qc cr: is a ClassicalRegister object used in the quantum circuit qc op (str): is a string with possible values: XX, YY and ZZ. Return --------- qc: returns the input quantum circuit added with the appropriate gates to measure in the selected basis. """ if op == "XX": # Change of basis, since X = HZH qc.h(qr[0]) qc.h(qr[1]) # CNOT used to measure ZZ operator qc.cx(qr[0],qr[1]) # Measurement of qubit 1 on classical register 0 qc.measure(qr[1],cr[0]) elif op == "YY": # Change of basis, since Y = (HS†)Z(HS†) qc.sdg(qr[0]) qc.sdg(qr[1]) qc.h(qr[0]) qc.h(qr[1]) # CNOT used to measure ZZ operator qc.cx(qr[0],qr[1]) # Measurement of qubit 1 on classical register 0 qc.measure(qr[1],cr[0]) elif op == "ZZ": # CNOT used to measure ZZ operator qc.cx(qr[0],qr[1]) # Measurement of qubit 1 on classical register 0 qc.measure(qr[1],cr[0]) else: print(f"WARNING: Measurement on the {op} basis not supported") return return qc def hamiltonian(params): """ Evaulates the Energy of the trial state using the mean values of the operators XX, YY and ZZ. Arguments ----------- params (dict): is an dictionary containing the mean values form the measurements of the operators XX, YY, ZZ; Return --------- en (real): energy of the system """ # H = 1/2 * (Id + ZZ - XX - YY) en = (1 + params['ZZ'] - params['XX'] - params['YY']) / 2 return en def vqe_step(theta, verbose = True): """ Executes the VQE algorithm. Creates and executes three quantum circuits (one for each of the observables XX, YY and ZZ), then evaluates the energy. Arguments ----------- theta (real): is the parameter parametrizing the trial state Return -------- energy (real): the energy of the system qc_list (dict): a dictionary containing the three quantum circuits for the observables XX, YY and ZZ """ # Number of executions for each quantum circuit shots=8192 vqe_res = dict() qc_list = dict() for op in ["XX", "YY", "ZZ"]: qr = qk.QuantumRegister(2, "qr") cr = qk.ClassicalRegister(1, "cr") qc = qk.QuantumCircuit(qr, cr) # Implementation of the ansatz qc = ansatz(qc, qr, theta) # Just for plotting purposes qc.barrier() # Measurements in the appropriate basis (XX, YY, ZZ) are implemented qc = measurements(qc, qr, cr, op) # Get the measurements results counts = qk.execute(qc, sim_bknd, shots=shots).result().get_counts() # Check the results, and evaluate the mean value dividing by the number of shots if len(counts) == 1: try: counts['0'] mean_val = 1 except: mean_val = -1 else: # Evaluates the mean value of Z operator, as the difference in the number of # 0s and 1s in the measurement outcomes mean_val = (counts['0']-counts['1'])/shots vqe_res[op] = mean_val qc_list[op] = qc energy = hamiltonian(vqe_res) if verbose: print("Mean values from measurement results:\n", vqe_res) print(f"\n{'Theta':<10} {'Energy':<10} {'<XX>':<10} {'<YY>':<10} {'<ZZ>':<10}") print(f"{theta:<10f} {energy:<10f} {vqe_res['XX']:<10f} {vqe_res['YY']:<10f} {vqe_res['ZZ']:<10f}") return energy, qc_list else: return energy # Set the value of theta theta = 0.2 # Run the VQE step to evaluate the energy (eigenvalue of the Hamiltonian) of the state with given theta energy, qc_list = vqe_step(theta) # Plot the circuit used for the measurement of YY op = 'YY' print(f"\nQuantum circuit for the measurement of {op}") qc_list[op].draw(output="mpl") minimize_scalar(vqe_step, args=(False), bounds = (0, pi), method = "bounded") lowest, _ = vqe_step(pi) # Definition of one qubit Pauli matrices I = np.array([[1,0],[0,1]]) X = np.array([[0,1],[1,0]]) Y = np.array([[0,-1j],[1j,0]]) Z = np.array([[1,0],[0,-1]]) # Evaluation of two qubit Pauli matrices II = np.kron(I,I) XX = np.kron(X,X) YY = np.kron(Y,Y) ZZ = np.kron(Z,Z) # Calculation of the Hamiltonian H = (1/2) * (II+ZZ) - (1/2) * (XX+YY) print("Desired Hamiltionian H = \n", H) import scipy # Calculate eigenvalues and eigenvectors of H eigenvalues, eigenvectors = scipy.linalg.eig(H) print("Eigenvalues:", eigenvalues)
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utils for using with Qiskit unit tests.""" import logging import os import unittest from enum import Enum from qiskit import __path__ as qiskit_path class Path(Enum): """Helper with paths commonly used during the tests.""" # Main SDK path: qiskit/ SDK = qiskit_path[0] # test.python path: qiskit/test/python/ TEST = os.path.normpath(os.path.join(SDK, '..', 'test', 'python')) # Examples path: examples/ EXAMPLES = os.path.normpath(os.path.join(SDK, '..', 'examples')) # Schemas path: qiskit/schemas SCHEMAS = os.path.normpath(os.path.join(SDK, 'schemas')) # VCR cassettes path: qiskit/test/cassettes/ CASSETTES = os.path.normpath(os.path.join(TEST, '..', 'cassettes')) # Sample QASMs path: qiskit/test/python/qasm QASMS = os.path.normpath(os.path.join(TEST, 'qasm')) def setup_test_logging(logger, log_level, filename): """Set logging to file and stdout for a logger. Args: logger (Logger): logger object to be updated. log_level (str): logging level. filename (str): name of the output file. """ # Set up formatter. log_fmt = ('{}.%(funcName)s:%(levelname)s:%(asctime)s:' ' %(message)s'.format(logger.name)) formatter = logging.Formatter(log_fmt) # Set up the file handler. file_handler = logging.FileHandler(filename) file_handler.setFormatter(formatter) logger.addHandler(file_handler) # Set the logging level from the environment variable, defaulting # to INFO if it is not a valid level. level = logging._nameToLevel.get(log_level, logging.INFO) logger.setLevel(level) class _AssertNoLogsContext(unittest.case._AssertLogsContext): """A context manager used to implement TestCase.assertNoLogs().""" # pylint: disable=inconsistent-return-statements def __exit__(self, exc_type, exc_value, tb): """ This is a modified version of TestCase._AssertLogsContext.__exit__(...) """ self.logger.handlers = self.old_handlers self.logger.propagate = self.old_propagate self.logger.setLevel(self.old_level) if exc_type is not None: # let unexpected exceptions pass through return False if self.watcher.records: msg = 'logs of level {} or higher triggered on {}:\n'.format( logging.getLevelName(self.level), self.logger.name) for record in self.watcher.records: msg += 'logger %s %s:%i: %s\n' % (record.name, record.pathname, record.lineno, record.getMessage()) self._raiseFailure(msg)
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
from qiskit import Aer, IBMQ, execute from qiskit import transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from qiskit.visualization import plot_histogram, plot_state_city """ Qiskit backends to execute the quantum circuit """ def simulator(qc): """ Run on local simulator :param qc: quantum circuit :return: """ backend = Aer.get_backend("qasm_simulator") shots = 2048 tqc = transpile(qc, backend) qobj = assemble(tqc, shots=shots) job_sim = backend.run(qobj) qc_results = job_sim.result() return qc_results, shots def simulator_state_vector(qc): """ Select the StatevectorSimulator from the Aer provider :param qc: quantum circuit :return: statevector """ simulator = Aer.get_backend('statevector_simulator') # Execute and get counts result = execute(qc, simulator).result() state_vector = result.get_statevector(qc) return state_vector def real_quantum_device(qc): """ Use the IBMQ essex device :param qc: quantum circuit :return: """ provider = IBMQ.load_account() backend = provider.get_backend('ibmq_santiago') shots = 2048 TQC = transpile(qc, backend) qobj = assemble(TQC, shots=shots) job_exp = backend.run(qobj) job_monitor(job_exp) QC_results = job_exp.result() return QC_results, shots def counts(qc_results): """ Get counts representing the wave-function amplitudes :param qc_results: :return: dict keys are bit_strings and their counting values """ return qc_results.get_counts() def plot_results(qc_results): """ Visualizing wave-function amplitudes in a histogram :param qc_results: quantum circuit :return: """ plt.show(plot_histogram(qc_results.get_counts(), figsize=(8, 6), bar_labels=False)) def plot_state_vector(state_vector): """Visualizing state vector in the density matrix representation""" plt.show(plot_state_city(state_vector))
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ import hashlib from typing import Dict, Iterable, List, NamedTuple, Sequence, Tuple, Union import numpy as np import qiskit import sympy from orquestra.quantum.circuits import ( _builtin_gates, _circuit, _gates, _operations, _wavefunction_operations, ) from orquestra.quantum.circuits.symbolic.sympy_expressions import ( SYMPY_DIALECT, expression_from_sympy, ) from orquestra.quantum.circuits.symbolic.translations import translate_expression from ._qiskit_expressions import QISKIT_DIALECT, expression_from_qiskit QiskitTriplet = Tuple[ qiskit.circuit.Instruction, List[qiskit.circuit.Qubit], List[qiskit.circuit.Clbit] ] def _import_qiskit_qubit(qubit: qiskit.circuit.Qubit) -> int: return qubit._index def _qiskit_expr_from_orquestra(expr): intermediate = expression_from_sympy(expr) return translate_expression(intermediate, QISKIT_DIALECT) def _orquestra_expr_from_qiskit(expr): intermediate = expression_from_qiskit(expr) return translate_expression(intermediate, SYMPY_DIALECT) ORQUESTRA_QISKIT_GATE_MAP = { _builtin_gates.X: qiskit.circuit.library.XGate, _builtin_gates.Y: qiskit.circuit.library.YGate, _builtin_gates.Z: qiskit.circuit.library.ZGate, _builtin_gates.S: qiskit.circuit.library.SGate, _builtin_gates.SX: qiskit.circuit.library.SXGate, _builtin_gates.T: qiskit.circuit.library.TGate, _builtin_gates.H: qiskit.circuit.library.HGate, _builtin_gates.I: qiskit.circuit.library.IGate, _builtin_gates.CNOT: qiskit.circuit.library.CXGate, _builtin_gates.CZ: qiskit.circuit.library.CZGate, _builtin_gates.SWAP: qiskit.circuit.library.SwapGate, _builtin_gates.ISWAP: qiskit.circuit.library.iSwapGate, _builtin_gates.RX: qiskit.circuit.library.RXGate, _builtin_gates.RY: qiskit.circuit.library.RYGate, _builtin_gates.RZ: qiskit.circuit.library.RZGate, _builtin_gates.PHASE: qiskit.circuit.library.PhaseGate, _builtin_gates.CPHASE: qiskit.circuit.library.CPhaseGate, _builtin_gates.XX: qiskit.circuit.library.RXXGate, _builtin_gates.YY: qiskit.circuit.library.RYYGate, _builtin_gates.ZZ: qiskit.circuit.library.RZZGate, _builtin_gates.U3: qiskit.circuit.library.U3Gate, _builtin_gates.Delay: qiskit.circuit.Delay, } def _make_gate_instance(gate_ref, gate_params) -> _gates.Gate: """Returns a gate instance that's applicable to qubits. For non-parametric gate refs like X, returns just the `X` For parametric gate factories like `RX`, returns the produced gate, like `RX(0.2)` """ if _gates.gate_is_parametric(gate_ref, gate_params): return gate_ref(*gate_params) else: return gate_ref def _make_controlled_gate_prototype(wrapped_gate_ref, num_control_qubits=1): def _factory(*gate_params): return _gates.ControlledGate( _make_gate_instance(wrapped_gate_ref, gate_params), num_control_qubits ) return _factory QISKIT_ORQUESTRA_GATE_MAP = { **{q_cls: z_ref for z_ref, q_cls in ORQUESTRA_QISKIT_GATE_MAP.items()}, qiskit.extensions.SXdgGate: _builtin_gates.SX.dagger, qiskit.extensions.SdgGate: _builtin_gates.S.dagger, qiskit.extensions.TdgGate: _builtin_gates.T.dagger, qiskit.circuit.library.CSwapGate: _builtin_gates.SWAP.controlled(1), qiskit.circuit.library.CRXGate: _make_controlled_gate_prototype(_builtin_gates.RX), qiskit.circuit.library.CRYGate: _make_controlled_gate_prototype(_builtin_gates.RY), qiskit.circuit.library.CRZGate: _make_controlled_gate_prototype(_builtin_gates.RZ), } def export_to_qiskit(circuit: _circuit.Circuit) -> qiskit.QuantumCircuit: q_circuit = qiskit.QuantumCircuit(circuit.n_qubits) q_register = qiskit.circuit.QuantumRegister(circuit.n_qubits, "q") gate_op_only_circuit = _circuit.Circuit( [op for op in circuit.operations if isinstance(op, _gates.GateOperation)] ) custom_names = { gate_def.gate_name for gate_def in gate_op_only_circuit.collect_custom_gate_definitions() } q_triplets = [] for gate_op in circuit.operations: if isinstance(gate_op, _gates.GateOperation): q_triplet = _export_gate_to_qiskit( gate_op.gate, applied_qubit_indices=gate_op.qubit_indices, q_register=q_register, custom_names=custom_names, ) elif isinstance(gate_op, _wavefunction_operations.ResetOperation): q_triplet = ( qiskit.circuit.library.Reset(), [q_register[gate_op.qubit_indices[0]]], [], ) q_triplets.append(q_triplet) for q_gate, q_qubits, q_clbits in q_triplets: q_circuit.append(q_gate, q_qubits, q_clbits) return q_circuit def _export_gate_to_qiskit(gate, applied_qubit_indices, q_register, custom_names): try: return _export_gate_via_mapping( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass try: return _export_dagger_gate( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass try: return _export_controlled_gate( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass try: return _export_custom_gate( gate, applied_qubit_indices, q_register, custom_names ) except ValueError: pass raise NotImplementedError(f"Exporting gate {gate} to Qiskit is unsupported") def _export_gate_via_mapping(gate, applied_qubit_indices, q_register, custom_names): try: qiskit_cls = ORQUESTRA_QISKIT_GATE_MAP[ _builtin_gates.builtin_gate_by_name(gate.name) ] except KeyError: raise ValueError(f"Can't export gate {gate} to Qiskit via mapping") qiskit_params = [_qiskit_expr_from_orquestra(param) for param in gate.params] qiskit_qubits = [q_register[index] for index in applied_qubit_indices] return qiskit_cls(*qiskit_params), qiskit_qubits, [] def _export_dagger_gate( gate: _gates.Dagger, applied_qubit_indices, q_register, custom_names, ): if not isinstance(gate, _gates.Dagger): # Raising an exception here is redundant to the type hint, but it allows us # to handle exporting all gates in the same way, regardless of type raise ValueError(f"Can't export gate {gate} as a dagger gate") target_gate, qiskit_qubits, qiskit_clbits = _export_gate_to_qiskit( gate.wrapped_gate, applied_qubit_indices=applied_qubit_indices, q_register=q_register, custom_names=custom_names, ) return target_gate.inverse(), qiskit_qubits, qiskit_clbits def _export_controlled_gate( gate: _gates.ControlledGate, applied_qubit_indices, q_register, custom_names, ): if not isinstance(gate, _gates.ControlledGate): # Raising an exception here is redundant to the type hint, but it allows us # to handle exporting all gates in the same way, regardless of type raise ValueError(f"Can't export gate {gate} as a controlled gate") target_indices = applied_qubit_indices[gate.num_control_qubits :] target_gate, _, _ = _export_gate_to_qiskit( gate.wrapped_gate, applied_qubit_indices=target_indices, q_register=q_register, custom_names=custom_names, ) controlled_gate = target_gate.control(gate.num_control_qubits) qiskit_qubits = [q_register[index] for index in applied_qubit_indices] return controlled_gate, qiskit_qubits, [] def _export_custom_gate( gate: _gates.MatrixFactoryGate, applied_qubit_indices, q_register, custom_names, ): if gate.name not in custom_names: raise ValueError( f"Can't export gate {gate} as a custom gate, the circuit is missing its " "definition" ) if gate.params: raise ValueError( f"Can't export parametrized gate {gate}, Qiskit doesn't support " "parametrized custom gates" ) # At that time of writing it Qiskit doesn't support parametrized gates defined with # a symbolic matrix. # See https://github.com/Qiskit/qiskit-terra/issues/4751 for more info. qiskit_qubits = [q_register[index] for index in applied_qubit_indices] qiskit_matrix = np.array(gate.matrix) return ( qiskit.extensions.UnitaryGate(qiskit_matrix, label=gate.name), qiskit_qubits, [], ) class AnonGateOperation(NamedTuple): gate_name: str matrix: sympy.Matrix qubit_indices: Tuple[int, ...] ImportedOperation = Union[_operations.Operation, AnonGateOperation] def _apply_custom_gate( anon_op: AnonGateOperation, custom_defs_map: Dict[str, _gates.CustomGateDefinition] ) -> _gates.GateOperation: gate_def = custom_defs_map[anon_op.gate_name] # Qiskit doesn't support custom gates with parametrized matrices # so we can assume empty params list. gate_params: Tuple[sympy.Symbol, ...] = tuple() gate = gate_def(*gate_params) return gate(*anon_op.qubit_indices) def import_from_qiskit(circuit: qiskit.QuantumCircuit) -> _circuit.Circuit: q_ops = [_import_qiskit_triplet(triplet) for triplet in circuit.data] anon_ops = [op for op in q_ops if isinstance(op, AnonGateOperation)] # Qiskit doesn't support custom gates with parametrized matrices # so we can assume empty params list. params_ordering: Tuple[sympy.Symbol, ...] = tuple() custom_defs = { anon_op.gate_name: _gates.CustomGateDefinition( gate_name=anon_op.gate_name, matrix=anon_op.matrix, params_ordering=params_ordering, ) for anon_op in anon_ops } imported_ops = [ _apply_custom_gate(op, custom_defs) if isinstance(op, AnonGateOperation) else op for op in q_ops ] return _circuit.Circuit( operations=imported_ops, n_qubits=circuit.num_qubits, ) def _import_qiskit_triplet(qiskit_triplet: QiskitTriplet) -> ImportedOperation: qiskit_op, qiskit_qubits, _ = qiskit_triplet return _import_qiskit_op(qiskit_op, qiskit_qubits) def _import_qiskit_op(qiskit_op, qiskit_qubits) -> ImportedOperation: # We always wanna try importing via mapping to handle complex gate structures # represented by a single class, like CNOT (Control + X) or CSwap (Control + Swap). try: return _import_qiskit_op_via_mapping(qiskit_op, qiskit_qubits) except ValueError: pass try: return _import_controlled_qiskit_op(qiskit_op, qiskit_qubits) except ValueError: pass try: return _import_custom_qiskit_gate(qiskit_op, qiskit_qubits) except AttributeError: raise ValueError(f"Conversion of {qiskit_op.name} from Qiskit is unsupported.") def _import_qiskit_op_via_mapping( qiskit_gate: qiskit.circuit.Instruction, qiskit_qubits: Iterable[qiskit.circuit.Qubit], ) -> _operations.Operation: qubit_indices = [_import_qiskit_qubit(qubit) for qubit in qiskit_qubits] if isinstance(qiskit_gate, qiskit.circuit.library.Reset): return _wavefunction_operations.ResetOperation(qubit_indices[0]) try: gate_ref = QISKIT_ORQUESTRA_GATE_MAP[type(qiskit_gate)] except KeyError: raise ValueError(f"Conversion of {qiskit_gate} from Qiskit is unsupported.") # values to consider: # - gate matrix parameters (only parametric gates) # - gate application indices (all gates) orquestra_params = [ _orquestra_expr_from_qiskit(param) for param in qiskit_gate.params ] gate = _make_gate_instance(gate_ref, orquestra_params) return _gates.GateOperation(gate=gate, qubit_indices=tuple(qubit_indices)) def _import_controlled_qiskit_op( qiskit_gate: qiskit.circuit.ControlledGate, qiskit_qubits: Sequence[qiskit.circuit.Qubit], ) -> _gates.GateOperation: if not isinstance(qiskit_gate, qiskit.circuit.ControlledGate): # Raising an exception here is redundant to the type hint, but it allows us # to handle exporting all gates in the same way, regardless of type raise ValueError(f"Can't import gate {qiskit_gate} as a controlled gate") wrapped_qubits = qiskit_qubits[qiskit_gate.num_ctrl_qubits :] wrapped_op = _import_qiskit_op(qiskit_gate.base_gate, wrapped_qubits) qubit_indices = map(_import_qiskit_qubit, qiskit_qubits) if isinstance(wrapped_op, _gates.GateOperation): return wrapped_op.gate.controlled(qiskit_gate.num_ctrl_qubits)(*qubit_indices) else: raise NotImplementedError( "Importing of controlled anonymous gates not yet supported." ) def _hash_hex(bytes_): return hashlib.sha256(bytes_).hexdigest() def _custom_qiskit_gate_name(gate_label: str, gate_name: str, matrix: np.ndarray): matrix_hash = _hash_hex(matrix.tobytes()) target_name = gate_label or gate_name return f"{target_name}.{matrix_hash}" def _import_custom_qiskit_gate( qiskit_op: qiskit.circuit.Gate, qiskit_qubits: Iterable[qiskit.circuit.Qubit] ) -> AnonGateOperation: value_matrix = qiskit_op.to_matrix() return AnonGateOperation( gate_name=_custom_qiskit_gate_name( qiskit_op.label, qiskit_op.name, value_matrix ), matrix=sympy.Matrix(value_matrix), qubit_indices=tuple(_import_qiskit_qubit(qubit) for qubit in qiskit_qubits), )
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ """Translations between Qiskit parameter expressions and intermediate expression trees. """ import operator from functools import lru_cache, reduce, singledispatch from numbers import Number import qiskit from orquestra.quantum.circuits.symbolic.expressions import ExpressionDialect, reduction from orquestra.quantum.circuits.symbolic.sympy_expressions import expression_from_sympy from ._symengine_expressions import expression_from_symengine @singledispatch def expression_from_qiskit(expression): """Parse Qiskit expression into intermediate expression tree.""" raise NotImplementedError( f"Expression {expression} of type {type(expression)} is currently not supported" ) @expression_from_qiskit.register def _number_identity(number: Number): return number @expression_from_qiskit.register def _expr_from_qiskit_param_expr( qiskit_expr: qiskit.circuit.parameterexpression.ParameterExpression, ): # At the moment of writing this the qiskit version that we use (0.23.2) as well # as the newest version 0.23.5) does not provide a better way to access symbolic # expression wrapped by ParameterExpression. inner_expr = qiskit_expr._symbol_expr try: return expression_from_symengine(inner_expr) except NotImplementedError: return expression_from_sympy(inner_expr) def integer_pow(base, exponent: int): """Exponentiation to the power of an integer exponent.""" if not isinstance(exponent, int): raise ValueError( f"Cannot convert expression {base} ** {exponent} to Qiskit. " "Only powers with integral exponent are convertible." ) if exponent < 0: if base != 0: base = 1 / base exponent = -exponent else: raise ValueError( f"Invalid power: cannot raise 0 to exponent {exponent} < 0." ) return reduce(operator.mul, exponent * [base], 1) @lru_cache(maxsize=None) def _qiskit_param_from_name(name): return qiskit.circuit.Parameter(name) QISKIT_DIALECT = ExpressionDialect( symbol_factory=lambda symbol: _qiskit_param_from_name(symbol.name), number_factory=lambda number: number, known_functions={ "add": reduction(operator.add), "mul": reduction(operator.mul), "div": operator.truediv, "sub": operator.sub, "pow": integer_pow, }, ) """Mapping from the intermediate expression tree into Qiskit symbolic expression atoms. Allows translating an expression into the Qiskit dialect. Can be used with `orquestra.quantum.circuits.symbolic.translations.translate_expression`. """
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2020-2022 Zapata Computing Inc. ################################################################################ from typing import Dict, Optional, Tuple import numpy as np import qiskit.providers.aer.noise as AerNoise from qiskit.providers.aer.noise import ( NoiseModel, amplitude_damping_error, pauli_error, phase_amplitude_damping_error, phase_damping_error, ) from qiskit.quantum_info import Kraus from qiskit.transpiler import CouplingMap from .._get_provider import get_provider def get_qiskit_noise_model( device_name: str, hub: str = "ibm-q", group: str = "open", project: str = "main", api_token: Optional[str] = None, ) -> Tuple[NoiseModel, list]: """Get a qiskit noise model to use noisy simulations with a qiskit simulator Args: device_name: The name of the device trying to be emulated hub: The ibmq hub (see qiskit documentation) group: The ibmq group (see qiskit documentation) project: The ibmq project (see qiskit documentation) api_token: The ibmq api token (see qiskit documentation) """ # Get qiskit noise model from qiskit provider = get_provider(api_token=api_token, hub=hub, group=group, project=project) noisy_device = provider.get_backend(device_name) noise_model = AerNoise.NoiseModel.from_backend(noisy_device) return noise_model, noisy_device.configuration().coupling_map def create_amplitude_damping_noise(T_1: float, t_step: float = 10e-9) -> NoiseModel: """Creates an amplitude damping noise model Args: T_1: Relaxation time (seconds) t_step: Discretized time step over which the relaxation occurs over (seconds) """ gamma = 1 - pow(np.e, -1 / T_1 * t_step) error = amplitude_damping_error(gamma) gate_error = error.tensor(error) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error, ["id", "u3"]) noise_model.add_all_qubit_quantum_error(gate_error, ["cx"]) return noise_model def create_phase_damping_noise(T_2: float, t_step: float = 10e-9) -> NoiseModel: """Creates a dephasing noise model Args: T_2: dephasing time (seconds) t_step: Discretized time step over which the relaxation occurs over (seconds) """ gamma = 1 - pow(np.e, -1 / T_2 * t_step) error = phase_damping_error(gamma) gate_error = error.tensor(error) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error, ["id", "u3"]) noise_model.add_all_qubit_quantum_error(gate_error, ["cx"]) return noise_model def create_phase_and_amplitude_damping_error( T_1: float, T_2: float, t_step: float = 10e-9 ) -> NoiseModel: """Creates a noise model that does both phase and amplitude damping Args: T_1: Relaxation time (seconds) T_2: dephasing time (seonds) t_step: Discretized time step over which the relaxation occurs over (seconds) """ param_amp = 1 - pow(np.e, -1 / T_1 * t_step) param_phase = 1 - pow(np.e, -1 / T_2 * t_step) error = phase_amplitude_damping_error(param_amp, param_phase) gate_error = error.tensor(error) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error, ["id", "u3"]) noise_model.add_all_qubit_quantum_error(gate_error, ["cx"]) return noise_model def create_pta_channel(T_1: float, T_2: float, t_step: float = 10e-9) -> NoiseModel: """Creates a noise model that does both phase and amplitude damping but in the Pauli Twirling Approximation discussed the following reference https://arxiv.org/pdf/1305.2021.pdf Args: T_1: Relaxation time (seconds) T_2: dephasing time (seconds) t_step: Discretized time step over which the relaxation occurs over (seconds) """ p_x = 0.25 * (1 - pow(np.e, -t_step / T_1)) p_y = 0.25 * (1 - pow(np.e, -t_step / T_1)) exp_1 = pow(np.e, -t_step / (2 * T_1)) exp_2 = pow(np.e, -t_step / T_2) p_z = 0.5 - p_x - 0.5 * exp_1 * exp_2 p_i = 1 - p_x - p_y - p_z errors = [("X", p_x), ("Y", p_y), ("Z", p_z), ("I", p_i)] pta_error = pauli_error(errors) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(pta_error, ["id", "u3"]) gate_error = pta_error.tensor(pta_error) noise_model.add_all_qubit_quantum_error(gate_error, ["cx"]) return noise_model def get_kraus_matrices_from_ibm_noise_model(noise_model: NoiseModel) -> Dict: """Gets the kraus operators from a pre defined noise model Args: noise_model: Noise model for circuit Return dict_of_kraus_operators: A dictionary labelled by keys which are the basis gates and values are the list of kraus operators """ retrieved_quantum_error_dict = noise_model._default_quantum_errors dict_of_kraus_operators = { gate: Kraus(retrieved_quantum_error_dict[gate]).data for gate in retrieved_quantum_error_dict } return dict_of_kraus_operators
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram # simulate in statevector_simulator def simulateStatevector(circuit): backend = Aer.get_backend('statevector_simulator') result = execute(circuit.remove_final_measurements(inplace=False), backend, shots=1).result() counts = result.get_counts() return result.get_statevector(circuit) # return plot_histogram(counts, color='midnightblue', title="StateVector Histogram") # simulate in qasm_simulator def simulateQasm(circuit, count=1024): backend = Aer.get_backend('qasm_simulator') result = execute(circuit, backend, shots=count).result() counts = result.get_counts() return plot_histogram(counts, color='midnightblue', title="Qasm Histogram")
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021 Zapata Computing Inc. ################################################################################ import json import os import subprocess import unittest import numpy as np import qiskit.providers.aer.noise as AerNoise from qeqiskit.noise.basic import ( create_amplitude_damping_noise, get_kraus_matrices_from_ibm_noise_model, ) from qeqiskit.utils import ( load_qiskit_noise_model, save_kraus_operators, save_qiskit_noise_model, ) from zquantum.core.utils import load_noise_model, save_noise_model class TestQiskitUtils(unittest.TestCase): def setUp(self): self.T_1 = 10e-7 self.t_step = 10e-9 def test_save_qiskit_noise_model(self): # Given noise_model = AerNoise.NoiseModel() coherent_error = np.asarray( [ np.asarray( [0.87758256 - 0.47942554j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j] ), np.asarray( [0.0 + 0.0j, 0.87758256 + 0.47942554j, 0.0 + 0.0j, 0.0 + 0.0j] ), np.asarray( [0.0 + 0.0j, 0.0 + 0.0j, 0.87758256 + 0.47942554j, 0.0 + 0.0j] ), np.asarray( [0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.87758256 - 0.47942554j] ), ] ) noise_model.add_quantum_error( AerNoise.coherent_unitary_error(coherent_error), ["cx"], [0, 1] ) filename = "noise_model.json" # When save_qiskit_noise_model(noise_model, filename) # Then with open("noise_model.json", "r") as f: data = json.loads(f.read()) self.assertEqual(data["module_name"], "qeqiskit.utils") self.assertEqual(data["function_name"], "load_qiskit_noise_model") self.assertIsInstance(data["data"], dict) # Cleanup subprocess.run(["rm", "noise_model.json"]) def test_noise_model_io_using_core_functions(self): # Given noise_model = AerNoise.NoiseModel() coherent_error = np.asarray( [ np.asarray( [0.87758256 - 0.47942554j, 0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j] ), np.asarray( [0.0 + 0.0j, 0.87758256 + 0.47942554j, 0.0 + 0.0j, 0.0 + 0.0j] ), np.asarray( [0.0 + 0.0j, 0.0 + 0.0j, 0.87758256 + 0.47942554j, 0.0 + 0.0j] ), np.asarray( [0.0 + 0.0j, 0.0 + 0.0j, 0.0 + 0.0j, 0.87758256 - 0.47942554j] ), ] ) noise_model.add_quantum_error( AerNoise.coherent_unitary_error(coherent_error), ["cx"], [0, 1] ) noise_model_data = noise_model.to_dict(serializable=True) module_name = "qeqiskit.utils" function_name = "load_qiskit_noise_model" filename = "noise_model.json" # When save_noise_model(noise_model_data, module_name, function_name, filename) new_noise_model = load_noise_model(filename) # Then self.assertEqual( noise_model.to_dict(serializable=True), new_noise_model.to_dict(serializable=True), ) # Cleanup subprocess.run(["rm", "noise_model.json"]) def test_save_kraus_operators(self): noise_model = create_amplitude_damping_noise(self.T_1, self.t_step) kraus_dict = get_kraus_matrices_from_ibm_noise_model(noise_model) save_kraus_operators(kraus_dict, "kraus_operators.json") # Cleanup os.remove("kraus_operators.json")
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ import math import os from copy import deepcopy import pytest import qiskit from qeqiskit.backend import QiskitBackend from qeqiskit.conversions import export_to_qiskit from qiskit.providers.exceptions import QiskitBackendNotFoundError from zquantum.core.circuits import CNOT, Circuit, X from zquantum.core.interfaces.backend_test import QuantumBackendTests from zquantum.core.measurement import Measurements @pytest.fixture( params=[ { "device_name": "ibmq_qasm_simulator", "api_token": os.getenv("ZAPATA_IBMQ_API_TOKEN"), "retry_delay_seconds": 1, }, ] ) def backend(request): return QiskitBackend(**request.param) @pytest.fixture( params=[ { "device_name": "ibmq_qasm_simulator", "api_token": os.getenv("ZAPATA_IBMQ_API_TOKEN"), "readout_correction": True, "n_samples_for_readout_calibration": 1, "retry_delay_seconds": 1, }, { "device_name": "ibmq_qasm_simulator", "api_token": os.getenv("ZAPATA_IBMQ_API_TOKEN"), "readout_correction": True, "n_samples_for_readout_calibration": 1, "retry_delay_seconds": 1, "noise_inversion_method": "pseudo_inverse", }, ], ) def backend_with_readout_correction(request): return QiskitBackend(**request.param) class TestQiskitBackend(QuantumBackendTests): def x_cnot_circuit(self): return Circuit([X(0), CNOT(1, 2)]) def x_circuit(self): return Circuit([X(0)]) def test_transform_circuitset_to_ibmq_experiments(self, backend): circuit = self.x_cnot_circuit() circuitset = (circuit,) * 2 n_samples = [backend.max_shots + 1] * 2 ( experiments, n_samples_for_experiments, multiplicities, ) = backend.transform_circuitset_to_ibmq_experiments(circuitset, n_samples) assert multiplicities == [2, 2] assert n_samples_for_experiments == [ backend.max_shots, 1, backend.max_shots, 1, ] assert len(set([circuit.name for circuit in experiments])) == 4 def test_batch_experiments(self, backend): circuit = self.x_cnot_circuit() n_circuits = backend.batch_size + 1 experiments = (export_to_qiskit(circuit),) * n_circuits n_samples_for_ibmq_circuits = (10,) * n_circuits batches, n_samples_for_batches = backend.batch_experiments( experiments, n_samples_for_ibmq_circuits ) assert len(batches) == 2 assert len(batches[0]) == backend.batch_size assert len(batches[1]) == 1 assert n_samples_for_batches == [10, 10] def test_aggregate_measurements(self, backend): multiplicities = [3, 1] circuit = export_to_qiskit(self.x_cnot_circuit()) circuit.barrier(range(3)) circuit.add_register(qiskit.ClassicalRegister(3)) circuit.measure(range(3), range(3)) batches = [ [circuit.copy("circuit1"), circuit.copy("circuit2")], [circuit.copy("circuit3"), circuit.copy("circuit4")], ] jobs = [ backend.execute_with_retries( batch, 10, ) for batch in batches ] measurements_set = backend.aggregate_measurements( jobs, batches, multiplicities, ) assert ( measurements_set[0].bitstrings == [ (1, 0, 0), ] * 30 ) assert ( measurements_set[1].bitstrings == [ (1, 0, 0), ] * 10 ) assert len(measurements_set) == 2 def test_run_circuitset_and_measure(self, backend): # Given num_circuits = 10 circuit = self.x_circuit() n_samples = 100 # When measurements_set = backend.run_circuitset_and_measure( [circuit] * num_circuits, [n_samples] * num_circuits ) # Then assert len(measurements_set) == num_circuits for measurements in measurements_set: assert len(measurements.bitstrings) == n_samples counts = measurements.get_counts() assert max(counts, key=counts.get) == "1" def test_execute_with_retries(self, backend): # This test has a race condition where the IBMQ server might finish # executing the first job before the last one is submitted. The test # will still pass in the case, but will not actually perform a retry. # We can address in the future by using a mock provider. # Given circuit = export_to_qiskit(self.x_circuit()) n_samples = 10 num_jobs = backend.device.job_limit().maximum_jobs + 1 # When jobs = [ backend.execute_with_retries([circuit], n_samples) for _ in range(num_jobs) ] # Then # The correct number of jobs were submitted assert len(jobs) == num_jobs # Each job has a unique ID assert len(set([job.job_id() for job in jobs])) == num_jobs def test_execute_with_retries_timeout(self, backend): # This test has a race condition where the IBMQ server might finish # executing the first job before the last one is submitted, causing the # test to fail. We can address this in the future using a mock provider. # Given circuit = export_to_qiskit(self.x_cnot_circuit()) n_samples = 10 backend.retry_timeout_seconds = 0 # need large number here as + 1 was not enough num_jobs = backend.device.job_limit().maximum_jobs + int(10e20) # Then with pytest.raises(RuntimeError): # When for _ in range(num_jobs): backend.execute_with_retries([circuit], n_samples) @pytest.mark.skip(reason="test will always succeed.") def test_run_circuitset_and_measure_readout_correction_retries( self, backend_with_readout_correction ): # This test has a race condition where the IBMQ server might finish # executing the first job before the last one is submitted. The test # will still pass in the case, but will not actually perform a retry. # We can address in the future by using a mock provider. # Given circuit = self.x_cnot_circuit() n_samples = 10 num_circuits = ( backend_with_readout_correction.batch_size * backend_with_readout_correction.device.job_limit().maximum_jobs + 1 ) # When measurements_set = backend_with_readout_correction.run_circuitset_and_measure( [circuit] * num_circuits, [n_samples] * num_circuits ) # Then assert len(measurements_set) == num_circuits def test_run_circuitset_and_measure_split_circuits_and_jobs(self, backend): # Given num_circuits = 2 # Minimum number of circuits to require batching circuit = self.x_cnot_circuit() n_samples = backend.max_shots + 1 backend.batch_size = 2 # Verify that we are actually going to need multiple batches assert ( num_circuits * math.ceil(n_samples / backend.max_shots) > backend.batch_size ) # When measurements_set = backend.run_circuitset_and_measure( [circuit] * num_circuits, [n_samples] * num_circuits ) # Then assert len(measurements_set) == num_circuits for measurements in measurements_set: assert len(measurements.bitstrings) == n_samples or len( measurements.bitstrings ) == backend.max_shots * math.ceil(n_samples / backend.max_shots) # Then (since SPAM error could result in unexpected bitstrings, we make sure # the most common bitstring is the one we expect) counts = measurements.get_counts() assert max(counts, key=counts.get) == "100" def test_readout_correction_works_run_circuit_and_measure( self, backend_with_readout_correction ): # Given circuit = self.x_cnot_circuit() # When backend_with_readout_correction.run_circuit_and_measure(circuit, n_samples=1) # Then assert backend_with_readout_correction.readout_correction assert backend_with_readout_correction.readout_correction_filters is not None def test_readout_correction_for_distributed_circuit( self, backend_with_readout_correction ): # Given num_circuits = 10 circuit = self.x_circuit() + X(5) n_samples = 100 # When measurements_set = backend_with_readout_correction.run_circuitset_and_measure( [circuit] * num_circuits, [n_samples] * num_circuits ) # Then assert backend_with_readout_correction.readout_correction assert ( backend_with_readout_correction.readout_correction_filters.get(str([0, 5])) is not None ) assert len(measurements_set) == num_circuits for measurements in measurements_set: assert len(measurements.bitstrings) == n_samples counts = measurements.get_counts() assert max(counts, key=counts.get) == "11" @pytest.mark.parametrize( "counts, active_qubits", [ ({"100000000000000000001": 10}, [0, 20]), ({"100000000000000000100": 10}, [0, 18, 20]), ({"001000000000000000001": 10}, [2, 20]), ], ) def test_subset_readout_correction( self, counts, active_qubits, backend_with_readout_correction ): # Given copied_counts = deepcopy(counts) # When mitigated_counts = backend_with_readout_correction._apply_readout_correction( copied_counts, active_qubits ) # Then assert backend_with_readout_correction.readout_correction assert backend_with_readout_correction.readout_correction_filters.get( str(active_qubits) ) assert copied_counts == pytest.approx(mitigated_counts, 10e-5) def test_subset_readout_correction_with_unspecified_active_qubits( self, backend_with_readout_correction ): # Given counts = {"11": 10} # When mitigated_counts = backend_with_readout_correction._apply_readout_correction( counts ) # Then assert backend_with_readout_correction.readout_correction assert backend_with_readout_correction.readout_correction_filters.get( str([0, 1]) ) assert counts == pytest.approx(mitigated_counts, 10e-5) def test_must_define_n_samples_for_readout_calibration_for_readout_correction( self, backend_with_readout_correction ): # Given counts, active_qubits = ({"11": 10}, None) backend_with_readout_correction.n_samples_for_readout_calibration = None # When/Then with pytest.raises(TypeError): backend_with_readout_correction._apply_readout_correction( counts, active_qubits ) def test_subset_readout_correction_for_multiple_subsets( self, backend_with_readout_correction ): # Given counts_1, active_qubits_1 = ({"100000000000000000001": 10}, [0, 20]) counts_2, active_qubits_2 = ({"001000000000000000001": 10}, [2, 20]) # When mitigated_counts_1 = backend_with_readout_correction._apply_readout_correction( counts_1, active_qubits_1 ) mitigated_counts_2 = backend_with_readout_correction._apply_readout_correction( counts_2, active_qubits_2 ) # Then assert backend_with_readout_correction.readout_correction assert backend_with_readout_correction.readout_correction_filters.get( str(active_qubits_1) ) assert backend_with_readout_correction.readout_correction_filters.get( str(active_qubits_2) ) assert counts_1 == pytest.approx(mitigated_counts_1, 10e-5) assert counts_2 == pytest.approx(mitigated_counts_2, 10e-5) def test_device_that_does_not_exist(self): # Given/When/Then with pytest.raises(QiskitBackendNotFoundError): QiskitBackend("DEVICE DOES NOT EXIST") def test_run_circuitset_and_measure_n_samples(self, backend): # We override the base test because the qiskit integration may return # more samples than requested due to the fact that each circuit in a # batch must have the same number of measurements. # Given backend.number_of_circuits_run = 0 backend.number_of_jobs_run = 0 first_circuit = Circuit( [ X(0), X(0), X(1), X(1), X(2), ] ) second_circuit = Circuit( [ X(0), X(1), X(2), ] ) n_samples = [2, 3] # When measurements_set = backend.run_circuitset_and_measure( [first_circuit, second_circuit], n_samples ) counts = measurements_set[0].get_counts() assert max(counts, key=counts.get) == "001" counts = measurements_set[1].get_counts() assert max(counts, key=counts.get) == "111" assert len(measurements_set[0].bitstrings) >= n_samples[0] assert len(measurements_set[1].bitstrings) >= n_samples[1] assert backend.number_of_circuits_run == 2 @pytest.mark.parametrize("n_samples", [1, 2, 10]) def test_run_circuit_and_measure_correct_num_measurements_attribute( self, backend, n_samples ): # Overriding to reduce number of samples required # Given backend.number_of_circuits_run = 0 backend.number_of_jobs_run = 0 circuit = self.x_cnot_circuit() # When measurements = backend.run_circuit_and_measure(circuit, n_samples) # Then assert isinstance(measurements, Measurements) assert len(measurements.bitstrings) == n_samples assert backend.number_of_circuits_run == 1 assert backend.number_of_jobs_run == 1 def test_run_circuit_and_measure_correct_indexing(self, backend): # Overriding to reduce number of samples required # Given backend.number_of_circuits_run = 0 backend.number_of_jobs_run = 0 circuit = self.x_cnot_circuit() n_samples = 2 # qiskit only runs simulators, so we can use low n_samples measurements = backend.run_circuit_and_measure(circuit, n_samples) counts = measurements.get_counts() assert max(counts, key=counts.get) == "100" assert backend.number_of_circuits_run == 1 assert backend.number_of_jobs_run == 1
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ import numpy as np import pytest import qiskit import qiskit.circuit.random import sympy from orquestra.quantum.circuits import ( _builtin_gates, _circuit, _gates, _wavefunction_operations, ) from orquestra.integrations.qiskit.conversions import ( export_to_qiskit, import_from_qiskit, ) # --------- gates --------- EQUIVALENT_NON_PARAMETRIC_GATES = [ (_builtin_gates.X, qiskit.circuit.library.XGate()), (_builtin_gates.Y, qiskit.circuit.library.YGate()), (_builtin_gates.Z, qiskit.circuit.library.ZGate()), (_builtin_gates.H, qiskit.circuit.library.HGate()), (_builtin_gates.I, qiskit.circuit.library.IGate()), (_builtin_gates.S, qiskit.circuit.library.SGate()), (_builtin_gates.SX, qiskit.circuit.library.SXGate()), (_builtin_gates.T, qiskit.circuit.library.TGate()), (_builtin_gates.CNOT, qiskit.circuit.library.CXGate()), (_builtin_gates.CZ, qiskit.circuit.library.CZGate()), (_builtin_gates.SWAP, qiskit.circuit.library.SwapGate()), (_builtin_gates.ISWAP, qiskit.circuit.library.iSwapGate()), (_builtin_gates.S.dagger, qiskit.circuit.library.SdgGate()), (_builtin_gates.T.dagger, qiskit.circuit.library.TdgGate()), ] EQUIVALENT_PARAMETRIC_GATES = [ (orquestra_cls(theta), qiskit_cls(theta)) for orquestra_cls, qiskit_cls in [ (_builtin_gates.RX, qiskit.circuit.library.RXGate), (_builtin_gates.RY, qiskit.circuit.library.RYGate), (_builtin_gates.RZ, qiskit.circuit.library.RZGate), (_builtin_gates.PHASE, qiskit.circuit.library.PhaseGate), (_builtin_gates.CPHASE, qiskit.circuit.library.CPhaseGate), (_builtin_gates.XX, qiskit.circuit.library.RXXGate), (_builtin_gates.YY, qiskit.circuit.library.RYYGate), (_builtin_gates.ZZ, qiskit.circuit.library.RZZGate), ] for theta in [0, -1, np.pi / 5, 2 * np.pi] ] TWO_QUBIT_SWAP_MATRIX = np.array( [ [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1], ] ) def _fix_qubit_ordering(qiskit_matrix): """Import qiskit matrix to Orquestra matrix convention. Qiskit uses different qubit ordering than we do. It causes multi-qubit matrices to look different on first sight.""" if len(qiskit_matrix) == 2: return qiskit_matrix if len(qiskit_matrix) == 4: return TWO_QUBIT_SWAP_MATRIX @ qiskit_matrix @ TWO_QUBIT_SWAP_MATRIX else: raise ValueError(f"Unsupported matrix size: {len(qiskit_matrix)}") class TestGateConversion: @pytest.mark.parametrize( "orquestra_gate,qiskit_gate", [ *EQUIVALENT_NON_PARAMETRIC_GATES, *EQUIVALENT_PARAMETRIC_GATES, ], ) def test_matrices_are_equal(self, orquestra_gate, qiskit_gate): orquestra_matrix = np.array(orquestra_gate.matrix).astype(np.complex128) qiskit_matrix = _fix_qubit_ordering(qiskit_gate.to_matrix()) np.testing.assert_allclose(orquestra_matrix, qiskit_matrix) class TestU3GateConversion: @pytest.mark.parametrize( "theta, phi, lambda_", [ (0, 0, 0), (0, np.pi / 5, 0), (np.pi / 3, 0, 0), (0, 0, np.pi / 7), (42, -20, 30), ], ) def test_matrices_are_equal_up_to_phase_factor(self, theta, phi, lambda_): orquestra_matrix = np.array( _builtin_gates.U3(theta, phi, lambda_).matrix ).astype(np.complex128) qiskit_matrix = qiskit.circuit.library.U3Gate(theta, phi, lambda_).to_matrix() np.testing.assert_allclose(orquestra_matrix, qiskit_matrix, atol=1e-7) class TestCU3GateConversion: @pytest.mark.parametrize( "theta, phi, lambda_", [ (0, 0, 0), (0, np.pi / 5, 0), (np.pi / 3, 0, 0), (0, 0, np.pi / 7), (42, -20, 30), ], ) def test_matrices_are_equal_up_to_phase_factor(self, theta, phi, lambda_): orquestra_matrix = np.array( _builtin_gates.U3(theta, phi, lambda_).controlled(1)(0, 1).lifted_matrix(2) ).astype(np.complex128) qiskit_matrix = ( qiskit.circuit.library.U3Gate(theta, phi, lambda_).control(1).to_matrix() ) # Rearrange the qiskit matrix, such that it matches the endianness of orquestra qiskit_matrix_reversed_control = _fix_qubit_ordering(qiskit_matrix) np.testing.assert_allclose( orquestra_matrix, qiskit_matrix_reversed_control, atol=1e-7 ) # --------- circuits --------- # NOTE: In Qiskit, 0 is the most significant qubit, # whereas in Orquestra, 0 is the least significant qubit. # Thus, we need to flip the indices. # # See more at # https://qiskit.org/documentation/tutorials/circuits/1_getting_started_with_qiskit.html#Visualize-Circuit def _make_qiskit_circuit(n_qubits, commands, n_cbits=0): qc = qiskit.QuantumCircuit(n_qubits, n_cbits) for method_name, method_args in commands: method = getattr(qc, method_name) method(*method_args) return qc SYMPY_THETA = sympy.Symbol("theta") SYMPY_GAMMA = sympy.Symbol("gamma") SYMPY_LAMBDA = sympy.Symbol("lambda_") SYMPY_PARAMETER_VECTOR = [sympy.Symbol("p[0]"), sympy.Symbol("p[1]")] QISKIT_THETA = qiskit.circuit.Parameter("theta") QISKIT_GAMMA = qiskit.circuit.Parameter("gamma") QISKIT_LAMBDA = qiskit.circuit.Parameter("lambda_") QISKIT_PARAMETER_VECTOR = qiskit.circuit.ParameterVector("p", 2) EXAMPLE_PARAM_VALUES = { "gamma": 0.3, "theta": -5, "lambda_": np.pi / 5, "p[0]": -5, "p[1]": 0.3, } EQUIVALENT_NON_PARAMETRIZED_CIRCUITS = [ ( _circuit.Circuit([], 3), _make_qiskit_circuit(3, []), ), ( _circuit.Circuit( [ _builtin_gates.X(0), _builtin_gates.Z(2), ], 6, ), _make_qiskit_circuit( 6, [ ("x", (0,)), ("z", (2,)), ], ), ), ( _circuit.Circuit( [ _builtin_gates.T.dagger(0), ], 6, ), _make_qiskit_circuit( 6, [ ("tdg", (0,)), ], ), ), ( _circuit.Circuit( [ _wavefunction_operations.ResetOperation(0), ], 6, ), _make_qiskit_circuit( 6, [ ("reset", (0,)), ], ), ), ( _circuit.Circuit( [ _builtin_gates.X(0), _wavefunction_operations.ResetOperation(0), ], 6, ), _make_qiskit_circuit( 6, [ ("x", (0,)), ("reset", (0,)), ], ), ), ( _circuit.Circuit( [ _builtin_gates.CNOT(0, 1), ], 4, ), _make_qiskit_circuit( 4, [ ("cnot", (0, 1)), ], ), ), ( _circuit.Circuit( [ _builtin_gates.RX(np.pi)(1), ], 4, ), _make_qiskit_circuit( 4, [ ("rx", (np.pi, 1)), ], ), ), ( _circuit.Circuit( [_builtin_gates.SWAP.controlled(1)(2, 0, 3)], 5, ), _make_qiskit_circuit( 5, [ ("append", (qiskit.circuit.library.SwapGate().control(1), [2, 0, 3])), ], ), ), ( _circuit.Circuit( [_builtin_gates.Y.controlled(2)(4, 5, 2)], 6, ), _make_qiskit_circuit( 6, [ ("append", (qiskit.circuit.library.YGate().control(2), [4, 5, 2])), ], ), ), ( _circuit.Circuit([_builtin_gates.U3(np.pi / 5, np.pi / 2, np.pi / 4)(2)]), _make_qiskit_circuit( 3, [ ( "append", ( qiskit.circuit.library.U3Gate(np.pi / 5, np.pi / 2, np.pi / 4), [2], ), ) ], ), ), ( _circuit.Circuit( [_builtin_gates.U3(np.pi / 5, np.pi / 2, np.pi / 4).controlled(1)(1, 2)] ), _make_qiskit_circuit( 3, [ ( "append", ( qiskit.circuit.library.U3Gate( np.pi / 5, np.pi / 2, np.pi / 4 ).control(1), [1, 2], ), ) ], ), ), ( _circuit.Circuit([_builtin_gates.Delay(1)(0)]), _make_qiskit_circuit(1, [("delay", (1, 0))]), ), ] EQUIVALENT_PARAMETRIZED_CIRCUITS = [ ( _circuit.Circuit( [ _builtin_gates.RX(SYMPY_THETA)(1), ], 4, ), _make_qiskit_circuit( 4, [ ("rx", (QISKIT_THETA, 1)), ], ), ), ( _circuit.Circuit( [ _builtin_gates.RX(SYMPY_THETA * SYMPY_GAMMA)(1), ], 4, ), _make_qiskit_circuit( 4, [ ("rx", (QISKIT_THETA * QISKIT_GAMMA, 1)), ], ), ), ( _circuit.Circuit( [_builtin_gates.U3(SYMPY_THETA, SYMPY_GAMMA, SYMPY_LAMBDA)(3)] ), _make_qiskit_circuit( 4, [ ( "append", ( qiskit.circuit.library.U3Gate( QISKIT_THETA, QISKIT_GAMMA, QISKIT_LAMBDA ), [3], ), ) ], ), ), ( _circuit.Circuit( [ _builtin_gates.U3(SYMPY_THETA, SYMPY_GAMMA, SYMPY_LAMBDA).controlled(1)( 2, 3 ) ] ), _make_qiskit_circuit( 4, [ ( "append", ( qiskit.circuit.library.U3Gate( QISKIT_THETA, QISKIT_GAMMA, QISKIT_LAMBDA ).control(1), [2, 3], ), ) ], ), ), ( _circuit.Circuit( [ _builtin_gates.RX( SYMPY_PARAMETER_VECTOR[0] * SYMPY_PARAMETER_VECTOR[1] )(1), ], 4, ), _make_qiskit_circuit( 4, [ ("rx", (QISKIT_PARAMETER_VECTOR[0] * QISKIT_PARAMETER_VECTOR[1], 1)), ], ), ), ] UNITARY_GATE_DEF = _gates.CustomGateDefinition( "unitary.33c11b461fe67e717e37ac34a568cd1c27a89013703bf5b84194f0732a33a26d", sympy.Matrix([[0, 1], [1, 0]]), tuple(), ) CUSTOM_A2_GATE_DEF = _gates.CustomGateDefinition( "custom.A2.33c11b461fe67e717e37ac34a568cd1c27a89013703bf5b84194f0732a33a26d", sympy.Matrix([[0, 1], [1, 0]]), tuple(), ) EQUIVALENT_CUSTOM_GATE_CIRCUITS = [ ( _circuit.Circuit( operations=[UNITARY_GATE_DEF()(1)], n_qubits=4, ), _make_qiskit_circuit( 4, [ ("unitary", (np.array([[0, 1], [1, 0]]), 1)), ], ), ), ( _circuit.Circuit( operations=[CUSTOM_A2_GATE_DEF()(3)], n_qubits=5, ), _make_qiskit_circuit( 5, [ ("unitary", (np.array([[0, 1], [1, 0]]), 3, "custom.A2")), ], ), ), ( _circuit.Circuit( operations=[UNITARY_GATE_DEF()(1), UNITARY_GATE_DEF()(1)], n_qubits=4, ), _make_qiskit_circuit( 4, [ ("unitary", (np.array([[0, 1], [1, 0]]), 1)), ("unitary", (np.array([[0, 1], [1, 0]]), 1)), ], ), ), ( _circuit.Circuit( operations=[ UNITARY_GATE_DEF()(1), CUSTOM_A2_GATE_DEF()(1), UNITARY_GATE_DEF()(0), ], n_qubits=4, ), _make_qiskit_circuit( 4, [ ("unitary", (np.array([[0, 1], [1, 0]]), 1)), ("unitary", (np.array([[0, 1], [1, 0]]), 1, "custom.A2")), ("unitary", (np.array([[0, 1], [1, 0]]), 0)), ], ), ), ] UNSUPPORTED_CIRCUITS = [ _make_qiskit_circuit(1, [("measure", (0, 0))], n_cbits=1), _make_qiskit_circuit(1, [("break_loop", ())]), ] def _draw_qiskit_circuit(circuit): return qiskit.visualization.circuit_drawer(circuit, output="text") class TestExportingToQiskit: @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_NON_PARAMETRIZED_CIRCUITS ) def test_exporting_circuit_gives_equivalent_circuit( self, orquestra_circuit, qiskit_circuit ): converted = export_to_qiskit(orquestra_circuit) assert converted == qiskit_circuit, ( f"Converted circuit:\n{_draw_qiskit_circuit(converted)}\n isn't equal " f"to\n{_draw_qiskit_circuit(qiskit_circuit)}" ) @pytest.mark.parametrize( "orquestra_circuit", [ orquestra_circuit for orquestra_circuit, _ in EQUIVALENT_PARAMETRIZED_CIRCUITS ], ) def test_exporting_parametrized_circuit_doesnt_change_symbol_names( self, orquestra_circuit ): converted = export_to_qiskit(orquestra_circuit) converted_names = sorted(map(str, converted.parameters)) initial_names = sorted(map(str, orquestra_circuit.free_symbols)) assert converted_names == initial_names @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_PARAMETRIZED_CIRCUITS ) def test_exporting_and_binding_parametrized_circuit_results_in_equivalent_circuit( self, orquestra_circuit, qiskit_circuit ): # 1. Export converted = export_to_qiskit(orquestra_circuit) # 2. Bind params converted_bound = converted.bind_parameters( {param: EXAMPLE_PARAM_VALUES[str(param)] for param in converted.parameters} ) # 3. Bind the ref ref_bound = qiskit_circuit.bind_parameters( { param: EXAMPLE_PARAM_VALUES[str(param)] for param in qiskit_circuit.parameters } ) assert converted_bound == ref_bound, ( f"Converted circuit:\n{_draw_qiskit_circuit(converted_bound)}\n isn't " f"equal to\n{_draw_qiskit_circuit(ref_bound)}" ) @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_PARAMETRIZED_CIRCUITS ) def test_binding_and_exporting_parametrized_circuit_results_in_equivalent_circuit( self, orquestra_circuit, qiskit_circuit ): # 1. Bind params bound = orquestra_circuit.bind( { symbol: EXAMPLE_PARAM_VALUES[str(symbol)] for symbol in orquestra_circuit.free_symbols } ) # 2. Export bound_converted = export_to_qiskit(bound) # 3. Bind the ref ref_bound = qiskit_circuit.bind_parameters( { param: EXAMPLE_PARAM_VALUES[str(param)] for param in qiskit_circuit.parameters } ) assert bound_converted == ref_bound, ( f"Converted circuit:\n{_draw_qiskit_circuit(bound_converted)}\n isn't " f"equal to\n{_draw_qiskit_circuit(ref_bound)}" ) @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_CUSTOM_GATE_CIRCUITS ) def test_exporting_circuit_with_custom_gates_gives_equivalent_operator( self, orquestra_circuit, qiskit_circuit ): exported = export_to_qiskit(orquestra_circuit) # We can't compare the circuits directly, because the gate names can differ. # Qiskit allows multiple gate operations with the same label. Orquestra doesn't # allow that, so we append a matrix hash to the name. assert qiskit.quantum_info.Operator(exported) == qiskit.quantum_info.Operator( qiskit_circuit ) class TestImportingFromQiskit: @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_NON_PARAMETRIZED_CIRCUITS ) def test_importing_circuit_gives_equivalent_circuit( self, orquestra_circuit, qiskit_circuit ): imported = import_from_qiskit(qiskit_circuit) assert imported == orquestra_circuit @pytest.mark.parametrize( "qiskit_circuit", [q_circuit for _, q_circuit in EQUIVALENT_PARAMETRIZED_CIRCUITS], ) def test_importing_parametrized_circuit_doesnt_change_symbol_names( self, qiskit_circuit ): imported = import_from_qiskit(qiskit_circuit) assert sorted(map(str, imported.free_symbols)) == sorted( map(str, qiskit_circuit.parameters) ) @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_PARAMETRIZED_CIRCUITS ) def test_importing_and_binding_parametrized_circuit_results_in_equivalent_circuit( self, orquestra_circuit, qiskit_circuit ): # 1. Import imported = import_from_qiskit(qiskit_circuit) symbols_map = { symbol: EXAMPLE_PARAM_VALUES[str(symbol)] for symbol in imported.free_symbols } # 2. Bind params imported_bound = imported.bind(symbols_map) # 3. Bind the ref ref_bound = orquestra_circuit.bind(symbols_map) assert imported_bound == ref_bound @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_PARAMETRIZED_CIRCUITS ) def test_binding_and_importing_parametrized_circuit_results_in_equivalent_circuit( self, orquestra_circuit, qiskit_circuit ): # 1. Bind params bound = qiskit_circuit.bind_parameters( { param: EXAMPLE_PARAM_VALUES[str(param)] for param in qiskit_circuit.parameters } ) # 2. Import bound_imported = import_from_qiskit(bound) # 3. Bind the ref ref_bound = orquestra_circuit.bind( { symbol: EXAMPLE_PARAM_VALUES[str(symbol)] for symbol in orquestra_circuit.free_symbols } ) assert bound_imported == ref_bound @pytest.mark.parametrize( "orquestra_circuit, qiskit_circuit", EQUIVALENT_CUSTOM_GATE_CIRCUITS ) def test_importing_circuit_with_custom_gates_gives_equivalent_circuit( self, orquestra_circuit, qiskit_circuit ): imported = import_from_qiskit(qiskit_circuit) assert imported == orquestra_circuit @pytest.mark.parametrize("unsupported_circuit", UNSUPPORTED_CIRCUITS) def test_operation_not_implemented(self, unsupported_circuit): with pytest.raises(ValueError): import_from_qiskit(unsupported_circuit)
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ ############################################################################ # Copyright 2017 Rigetti Computing, Inc. # Modified by Zapata Computing 2020 to work for qiskit's SummedOp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################ import numpy as np import pytest from qeqiskit.conversions import qiskitpauli_to_qubitop, qubitop_to_qiskitpauli from qiskit.opflow import PauliOp, SummedOp from qiskit.quantum_info import Pauli from zquantum.core.openfermion.ops import ( FermionOperator, InteractionOperator, InteractionRDM, QubitOperator, ) from zquantum.core.openfermion.transforms import jordan_wigner from zquantum.core.openfermion.utils import hermitian_conjugated def test_translation_type_enforcement(): """ Make sure type check works """ create_one = FermionOperator("1^") empty_one_body = np.zeros((2, 2)) empty_two_body = np.zeros((2, 2, 2, 2)) interact_one = InteractionOperator(1, empty_one_body, empty_two_body) interact_rdm = InteractionRDM(empty_one_body, empty_two_body) with pytest.raises(TypeError): qubitop_to_qiskitpauli(create_one) with pytest.raises(TypeError): qubitop_to_qiskitpauli(interact_one) with pytest.raises(TypeError): qubitop_to_qiskitpauli(interact_rdm) def test_qubitop_to_qiskitpauli(): """ Conversion of QubitOperator; accuracy test """ hop_term = FermionOperator(((2, 1), (0, 0))) term = hop_term + hermitian_conjugated(hop_term) pauli_term = jordan_wigner(term) qiskit_op = qubitop_to_qiskitpauli(pauli_term) ground_truth = ( PauliOp(Pauli.from_label("XZX"), 0.5) + PauliOp(Pauli.from_label("YZY"), 0.5) ).to_pauli_op() assert ground_truth == qiskit_op def test_qubitop_to_qiskitpauli_zero(): zero_term = QubitOperator() qiskit_term = qubitop_to_qiskitpauli(zero_term) ground_truth = SummedOp([]) assert ground_truth == qiskit_term def test_qiskitpauli_to_qubitop(): qiskit_term = SummedOp([PauliOp(Pauli.from_label("XIIIIY"), coeff=1)]) op_fermion_term = QubitOperator(((0, "X"), (5, "Y"))) test_op_fermion_term = qiskitpauli_to_qubitop(qiskit_term) assert test_op_fermion_term.isclose(op_fermion_term) def test_qiskitpauli_to_qubitop_type_enforced(): """Enforce the appropriate type""" create_one = FermionOperator("1^") empty_one_body = np.zeros((2, 2)) empty_two_body = np.zeros((2, 2, 2, 2)) interact_one = InteractionOperator(1, empty_one_body, empty_two_body) interact_rdm = InteractionRDM(empty_one_body, empty_two_body) with pytest.raises(TypeError): qiskitpauli_to_qubitop(create_one) with pytest.raises(TypeError): qiskitpauli_to_qubitop(interact_one) with pytest.raises(TypeError): qiskitpauli_to_qubitop(interact_rdm)
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ import pytest import qiskit from orquestra.quantum.circuits.symbolic.expressions import FunctionCall, Symbol from orquestra.quantum.circuits.symbolic.translations import translate_expression from orquestra.integrations.qiskit.conversions._qiskit_expressions import ( QISKIT_DIALECT, expression_from_qiskit, integer_pow, ) THETA = qiskit.circuit.Parameter("theta") PHI = qiskit.circuit.Parameter("phi") EQUIVALENT_EXPRESSIONS = [ ( FunctionCall( name="add", args=(1, FunctionCall(name="mul", args=(2, Symbol(name="theta")))), ), THETA * 2 + 1, ), ( FunctionCall( name="add", args=(1, FunctionCall(name="pow", args=(Symbol(name="theta"), 2))), ), THETA * THETA + 1, ), ( FunctionCall( name="sub", args=( 2, FunctionCall( name="mul", args=(Symbol(name="phi"), Symbol(name="theta")) ), ), ), 2 - THETA * PHI, ), ] INTERMEDIATE_EXPRESSIONS = [expr for expr, _ in EQUIVALENT_EXPRESSIONS] class TestParsingQiskitExpressions: @pytest.mark.parametrize("intermediate_expr, qiskit_expr", EQUIVALENT_EXPRESSIONS) def test_parsed_intermediate_expression_matches_equivalent_expression( self, intermediate_expr, qiskit_expr ): parsed_expr = expression_from_qiskit(qiskit_expr) assert parsed_expr == intermediate_expr @pytest.mark.parametrize("expr", INTERMEDIATE_EXPRESSIONS) def test_translate_parse_identity(self, expr): # NOTE: the other way round (Qiskit -> intermediate -> Qiskit) can't be done # directly, because Qiskit expressions don't implement equality checks. qiskit_expr = translate_expression(expr, QISKIT_DIALECT) parsed_expr = expression_from_qiskit(qiskit_expr) assert parsed_expr == expr class TestIntegerPower: def test_only_integer_exponents_are_valid(self): with pytest.raises(ValueError): integer_pow(2, 2.5) @pytest.mark.parametrize("base", [10, THETA]) def test_with_exponent_0_is_equal_to_one(self, base): assert integer_pow(base, 0) == 1 @pytest.mark.parametrize( "base, exponent, expected_result", [(2.5, 3, 2.5**3), (THETA, 2, THETA * THETA)], ) def test_with_positive_exponent_is_converted_to_repeated_multiplication( self, base, exponent, expected_result ): assert integer_pow(base, exponent) == expected_result def test_negative_exponent_cannot_be_used_if_base_is_zero(self): with pytest.raises(ValueError): integer_pow(0, -10) @pytest.mark.parametrize( "base, exponent, expected_result", [(2.0, -4, 0.5**4), (THETA, -3, (1 / THETA) * (1 / THETA) * (1 / THETA))], ) def test_with_neg_exponent_is_converted_to_repeated_multiplication_of_reciprocals( self, base, exponent, expected_result ): assert integer_pow(base, exponent) == expected_result
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ import os import unittest import qiskit.providers.aer.noise as AerNoise from orquestra.quantum.circuits.layouts import CircuitConnectivity from qiskit.providers.exceptions import QiskitBackendNotFoundError from orquestra.integrations.qiskit.noise.basic import ( create_amplitude_damping_noise, create_phase_and_amplitude_damping_error, create_phase_damping_noise, create_pta_channel, get_kraus_matrices_from_ibm_noise_model, get_qiskit_noise_model, ) class TestBasic(unittest.TestCase): def setUp(self): self.ibmq_api_token = os.getenv("ZAPATA_IBMQ_API_TOKEN") self.all_devices = ["ibm_kyoto"] self.T_1 = 10e-7 self.T_2 = 30e-7 self.t_step = 10e-9 self.t_1_t_2_models = [ create_phase_and_amplitude_damping_error, create_pta_channel, ] def test_get_qiskit_noise_model(self): # Given for device in self.all_devices: # When noise_model, coupling_map = get_qiskit_noise_model( device, api_token=self.ibmq_api_token ) # Then self.assertIsInstance(noise_model, AerNoise.NoiseModel) self.assertIsInstance(coupling_map, list) def test_get_qiskit_noise_model_no_device(self): # Given not_real_devices = ["THIS IS NOT A REAL DEVICE", "qasm_simulator"] for device in not_real_devices: # When/then self.assertRaises( QiskitBackendNotFoundError, lambda: get_qiskit_noise_model(device, api_token=self.ibmq_api_token), ) def test_t_1_t_2_noise_models(self): for noise in self.t_1_t_2_models: self.assertIsInstance( noise(self.T_1, self.T_2, self.t_step), AerNoise.NoiseModel ) def test_amplitude_damping_model(self): self.assertIsInstance( create_amplitude_damping_noise(self.T_1, self.t_step), AerNoise.NoiseModel ) def test_phase_damping_noise(self): self.assertIsInstance( create_phase_damping_noise(self.T_2, self.t_step), AerNoise.NoiseModel ) def test_getting_kraus_matrices_from_noise_model(self): noise_model = create_amplitude_damping_noise(self.T_1, self.t_step) kraus_dict = get_kraus_matrices_from_ibm_noise_model(noise_model) # Test to see if basis gates are in self.assertEqual("id" in kraus_dict, True) self.assertEqual("u3" in kraus_dict, True) self.assertEqual("cx" in kraus_dict, True) # Test to see if the number of kraus operators is right for a basis gate self.assertEqual(len(kraus_dict["id"]), 2) self.assertEqual(len(kraus_dict["u3"]), 2) self.assertEqual(len(kraus_dict["cx"]), 4)
https://github.com/zapatacomputing/qe-qiskit
zapatacomputing
################################################################################ # © Copyright 2021-2022 Zapata Computing Inc. ################################################################################ import os import pytest import qiskit.providers.aer.noise as AerNoise from qeqiskit.noise import get_qiskit_noise_model from qeqiskit.simulator import QiskitSimulator from zquantum.core.circuits import CNOT, Circuit, X from zquantum.core.estimation import estimate_expectation_values_by_averaging from zquantum.core.interfaces.backend_test import ( QuantumSimulatorGatesTest, QuantumSimulatorTests, ) from zquantum.core.interfaces.estimation import EstimationTask from zquantum.core.measurement import ExpectationValues from zquantum.core.openfermion.ops import QubitOperator @pytest.fixture( params=[ { "device_name": "aer_simulator", "api_token": os.getenv("ZAPATA_IBMQ_API_TOKEN"), }, ] ) def backend(request): return QiskitSimulator(**request.param) @pytest.fixture( params=[ { "device_name": "aer_simulator_statevector", }, ] ) def wf_simulator(request): return QiskitSimulator(**request.param) @pytest.fixture( params=[ { "device_name": "aer_simulator", }, { "device_name": "aer_simulator_statevector", }, ] ) def sampling_simulator(request): return QiskitSimulator(**request.param) @pytest.fixture( params=[ {"device_name": "aer_simulator", "optimization_level": 0}, ] ) def noisy_simulator(request): ibmq_api_token = os.getenv("ZAPATA_IBMQ_API_TOKEN") noise_model, connectivity = get_qiskit_noise_model( "ibm_nairobi", api_token=ibmq_api_token ) return QiskitSimulator( **request.param, noise_model=noise_model, device_connectivity=connectivity ) class TestQiskitSimulator(QuantumSimulatorTests): def test_run_circuitset_and_measure(self, sampling_simulator): # Given circuit = Circuit([X(0), CNOT(1, 2)]) # When measurements_set = sampling_simulator.run_circuitset_and_measure( [circuit], [100] ) # Then assert len(measurements_set) == 1 for measurements in measurements_set: assert len(measurements.bitstrings) == 100 assert all(bitstring == (1, 0, 0) for bitstring in measurements.bitstrings) # When n_circuits = 50 n_samples = 100 measurements_set = sampling_simulator.run_circuitset_and_measure( [circuit] * n_circuits, [n_samples] * n_circuits ) # Then assert len(measurements_set) == n_circuits for measurements in measurements_set: assert len(measurements.bitstrings) == n_samples assert all(bitstring == (1, 0, 0) for bitstring in measurements.bitstrings) def test_setup_basic_simulators(self): simulator = QiskitSimulator("aer_simulator") assert isinstance(simulator, QiskitSimulator) assert simulator.device_name == "aer_simulator" assert simulator.noise_model is None assert simulator.device_connectivity is None assert simulator.basis_gates is None simulator = QiskitSimulator("aer_simulator_statevector") assert isinstance(simulator, QiskitSimulator) assert simulator.device_name == "aer_simulator_statevector" assert simulator.noise_model is None assert simulator.device_connectivity is None assert simulator.basis_gates is None def test_simulator_that_does_not_exist(self): # Given/When/Then with pytest.raises(RuntimeError): QiskitSimulator("DEVICE DOES NOT EXIST") def test_expectation_value_with_noisy_simulator(self, noisy_simulator): # Given # Initialize in |1> state circuit = Circuit([X(0)]) # Flip qubit an even number of times to remain in the |1> state, but allow # decoherence to take effect circuit += Circuit([X(0) for i in range(10)]) qubit_operator = QubitOperator("Z0") n_samples = 8192 # When estimation_tasks = [EstimationTask(qubit_operator, circuit, n_samples)] expectation_values_10_gates = estimate_expectation_values_by_averaging( noisy_simulator, estimation_tasks )[0] # Then assert isinstance(expectation_values_10_gates, ExpectationValues) assert len(expectation_values_10_gates.values) == 1 assert expectation_values_10_gates.values[0] > -1 assert expectation_values_10_gates.values[0] < 0.0 assert isinstance(noisy_simulator, QiskitSimulator) assert noisy_simulator.device_name == "aer_simulator" assert isinstance(noisy_simulator.noise_model, AerNoise.NoiseModel) assert noisy_simulator.device_connectivity is not None assert noisy_simulator.basis_gates is not None # Given # Initialize in |1> state circuit = Circuit([X(0)]) # Flip qubit an even number of times to remain in the |1> state, but allow # decoherence to take effect circuit += Circuit([X(0) for i in range(50)]) qubit_operator = QubitOperator("Z0") # When estimation_tasks = [EstimationTask(qubit_operator, circuit, n_samples)] expectation_values_50_gates = estimate_expectation_values_by_averaging( noisy_simulator, estimation_tasks )[0] # Then assert isinstance(expectation_values_50_gates, ExpectationValues) assert len(expectation_values_50_gates.values) == 1 assert expectation_values_50_gates.values[0] > -1 assert expectation_values_50_gates.values[0] < 0.0 assert ( expectation_values_50_gates.values[0] > expectation_values_10_gates.values[0] ) assert isinstance(noisy_simulator, QiskitSimulator) assert noisy_simulator.device_name == "aer_simulator" assert isinstance(noisy_simulator.noise_model, AerNoise.NoiseModel) assert noisy_simulator.device_connectivity is not None assert noisy_simulator.basis_gates is not None def test_optimization_level_of_transpiler(self): # Given noise_model, connectivity = get_qiskit_noise_model( "ibm_nairobi", api_token=os.getenv("ZAPATA_IBMQ_API_TOKEN") ) n_samples = 8192 simulator = QiskitSimulator( "aer_simulator", noise_model=noise_model, device_connectivity=connectivity, optimization_level=0, ) qubit_operator = QubitOperator("Z0") # Initialize in |1> state circuit = Circuit([X(0)]) # Flip qubit an even number of times to remain in the |1> state, but allow # decoherence to take effect circuit += Circuit([X(0) for i in range(50)]) # When estimation_tasks = [EstimationTask(qubit_operator, circuit, n_samples)] expectation_values_no_compilation = estimate_expectation_values_by_averaging( simulator, estimation_tasks ) simulator.optimization_level = 3 expectation_values_full_compilation = estimate_expectation_values_by_averaging( simulator, estimation_tasks ) # Then assert ( expectation_values_full_compilation[0].values[0] < expectation_values_no_compilation[0].values[0] ) def test_run_circuit_and_measure_seed(self): # Given circuit = Circuit([X(0), CNOT(1, 2)]) n_samples = 100 simulator1 = QiskitSimulator("aer_simulator", seed=643) simulator2 = QiskitSimulator("aer_simulator", seed=643) # When measurements1 = simulator1.run_circuit_and_measure(circuit, n_samples) measurements2 = simulator2.run_circuit_and_measure(circuit, n_samples) # Then for (meas1, meas2) in zip(measurements1.bitstrings, measurements2.bitstrings): assert meas1 == meas2 def test_get_wavefunction_seed(self): # Given circuit = Circuit([X(0), CNOT(1, 2)]) simulator1 = QiskitSimulator("aer_simulator_statevector", seed=643) simulator2 = QiskitSimulator("aer_simulator_statevector", seed=643) # When wavefunction1 = simulator1.get_wavefunction(circuit) wavefunction2 = simulator2.get_wavefunction(circuit) # Then for (ampl1, ampl2) in zip(wavefunction1.amplitudes, wavefunction2.amplitudes): assert ampl1 == ampl2 class TestQiskitSimulatorGates(QuantumSimulatorGatesTest): gates_to_exclude = ["RH", "XY"] pass
https://github.com/dkp-quantum/Tutorials
dkp-quantum
# If you already have saved IBM credentials with previous version, # update your credentials that is stored in disk IBMQ.update_account() # import from qiskit import * import numpy as np from qiskit.visualization import plot_histogram, plot_state_city, plot_state_paulivec from qiskit.quantum_info import Pauli, state_fidelity, basis_state, process_fidelity from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor # Create a quantum register with 3 qubits q = QuantumRegister(3,'q') # Form a quantum circuit # Note that the circuit name is optional qc = QuantumCircuit(q,name="first_qc") # Display the quantum circuit qc.draw() # Create a classical register with 3 bits c = ClassicalRegister(3,'c') meas = QuantumCircuit(q,c,name="first_m") meas.barrier(q) meas.measure(q[0], c[0]) meas.measure(q[1], c[1]) meas.measure(q[2], c[2]) #meas.measure(q[3], c[3]) #meas.measure(q[4], c[4]) meas.draw() # Add a x gate on qubit 0. qc.x(0) # Add a Hadamard gate on qubit 1, putting this in superposition. qc.h(1) # Add a CX (CNOT) gate on control qubit 1 # and target qubit 2 to create an entangled state. qc.cx(1, 2) qc.draw() # Quantum circuits can be added with + operations # Add two pre-defined circuits qc_comp=qc+meas qc_comp.draw() # Draw the quantum circuit in a different (slightly better) format qc_comp.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is default. job_sim1 = execute(qc_comp, backend_q, shots=1024) job_sim1.status() # Grab the results from the job. result_sim1 = job_sim1.result() result_sim1 result_sim1.get_counts(qc_comp) plot_histogram(result_sim1.get_counts(qc_comp)) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the circuit on the statevector simulator. job_sim2 = execute(qc, backend_sv) # Grab the results from the job. result_sim2 = job_sim2.result() # Output the entire result job_sim2.result() # See output state as a vector outputstate = result_sim2.get_statevector(qc, decimals=5) print(outputstate) # Visualize density matrix plot_state_city(outputstate) # Examine state fidelity, compare with a basis state |111> sf1=state_fidelity(basis_state('111', 3), outputstate) # Examine state fidelity w.r.t the desired state desired_state=[0,1,0,0,0,0,0,1]/np.sqrt(2) sf2=state_fidelity(desired_state, outputstate) print(sf1) print(sf2) # Create a simple quantum register with 2 qubit # to examine unitary simulator qu2 = QuantumRegister(2,'qu') # Form a quantum circuit # Note that the circuit name is optional qu = QuantumCircuit(qu2,name="unitary_qc") # Add a single qubit rotation qu.z(0) qu.z(1) # Display the quantum circuit qu.draw(output='mpl') # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Execute the circuit on the unitary simulator. job_usim = execute(qu, backend_u) # Grab the results from the job. result_usim = job_usim.result() result_usim # Output the unitary matrix unitary = result_usim.get_unitary(qu) print('%s\n' % unitary) # Check process fidelity pf1=process_fidelity(Pauli(label='IX').to_matrix(), unitary) pf2=process_fidelity(Pauli(label='ZZ').to_matrix(), unitary) print('%s\n' % pf1) print('%s\n' % pf2) # Measure an expectation value of a Pauli observable Z = np.array([[1, 0], [0, -1]]) X = np.array([[0, 1], [1, 0]]) Y = np.array([[0, -1j], [1j, 0]]) ZZ=np.kron(Z,Z) XX=np.kron(X,X) # Or use qiskit's built-in function to define Pauli matrices ZI = Pauli(label='ZI').to_matrix() XI = Pauli(label='XI').to_matrix() YI = Pauli(label='YI').to_matrix() # Create some functions for measuring expectation values # For pure states def expectation_state(state, Operator): return np.dot(state.conj(), np.dot(Operator, state)) # For density matrices def expectation_density(density, Operator): return np.trace(Operator @ density) IBMQ.enable_account('YOUR_TOKERN') print(IBMQ.stored_account()) print(IBMQ.active_account()) my_provider=IBMQ.get_provider() my_provider.backends() # Retrieve IBM Quantum device information backend_overview() # Retrieve a specific IBM Quantum device information # ibmq_16_melbourne as an example backend_mel = my_provider.get_backend('ibmq_16_melbourne') backend_monitor(backend_mel) # Create a 3-qubit GHZ state ghz3 = QuantumRegister(3,'q') qc= QuantumCircuit(ghz3) qc.h(0) qc.cx(0,1) qc.cx(0,2) qghz3=qc+meas qghz3.draw(output='mpl') # Define backend as one of the real devices (5-qubit systems for now) backend_qx2 = my_provider.get_backend('ibmqx2') backend_qx4 = my_provider.get_backend('ibmqx4') # There is a new 5-qubit backend backend_ou = my_provider.get_backend('ibmq_ourense') # Run 3-qubit GHZ experiment on a 5-qubit device (try ourense) job_exp = execute(qghz3, backend=backend_ou) job_monitor(job_exp) # Grab experimental results result_ou = job_exp.result() counts_ou = result_exp.get_counts(qghz3) plot_histogram(counts_ou) # Run the same experiment on the other 5-qubit device as well. job_exp2 = execute(qghz3, backend=backend_qx4) job_monitor(job_exp2) # Grab experimental results result_exp2 = job_exp2.result() counts_exp2 = result_exp2.get_counts(qghz3) # Finally, run the same experiment on the 14-qubit device. job_exp3 = execute(qghz3, backend=backend_mel) job_monitor(job_exp3) # Grab experimental results result_mel = job_exp3.result() counts_mel = result_mel.get_counts(qghz3) plot_histogram(counts_mel) # Now, compare to theory by running it on qasm_simulator job_qasm = execute(qghz3,backend=backend_q) result_qasm = job_qasm.result() counts_qasm = result_qasm.get_counts(qghz3) # Plot both experimental and ideal results plot_histogram([counts_qasm,counts_ou,counts_mel], color=['black','green','blue'], legend=['QASM','Ourense','Melbourne']) # Create a quantum register with 3 qubits q = QuantumRegister(3,'q') # Form a quantum circuit qent = QuantumCircuit(q) qent.initialize([1, 0, 0, 0, 0, 0, 0, 1] / np.sqrt(2), [q[0], q[1], q[2]]) # Display the quantum circuit qent.draw(output='mpl') # Use Aer's state vector simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute and plot output state output_ent = execute(qent, backend_sv).result().get_statevector(0, decimals=3) plot_state_city(output_ent) # Build a sub-circuit # sub_ghz(n,c,t) creates a quantum circuit for creating an n-qubit GHZ state. # n is the total number of qubits, c is an index for a control qubit, t is a vector of indices for target qubits. def sub_ghz(n,c,t): sub_q = QuantumRegister(n) sub_circ = QuantumCircuit(sub_q, name='sub_ghz') sub_circ.h(c) for i in t: sub_circ.cx(c,i) return sub_circ # Create a sub-circuit for 3-qubit GHZ state prep. sub_ghz3 = sub_ghz(3,0,[1,2]) sub_inst3 = sub_ghz3.to_instruction() # Create a sub-circuit consisting of T gate and cnot. sub_tcnot = QuantumCircuit(QuantumRegister(2),name='t+cnot') sub_tcnot.t(0) sub_tcnot.cx(0,1) q = QuantumRegister(5, 'q') circ = QuantumCircuit(q) # Now create a quantum circuit using sub-circuits. # Apply Hadamard on all gates. for i in range(5): circ.h(i) # circ.barrier() # Appy 2-qubit GHZ preparation on qubits 0 and 1, and on qubits 3 and 4. circ.append(sub_tcnot, [q[0],q[1]]) circ.append(sub_tcnot, [q[3], q[4]]) # circ.barrier() # Apply 3-qubit GHZ preparation on all 3 neighbouring qubits. for i in range(3): circ.append(sub_inst3, [q[i], q[i+1],q[i+2]]) circ.draw(output='mpl') # We can also decompose the circuit that is constructed using sub-circuits. circ.decompose().draw(output='mpl') from qiskit.circuit import Parameter # Define two parameters, t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') # Build a 5-qubit circuit qc = QuantumCircuit(5, 1) # First parameter, t1, is used for a single qubit rotation of a controlled qubit qc.ry(theta1,0) for i in range(5-1): qc.cx(i, i+1) qc.barrier() # Second parameter, t2, is used here qc.rz(theta2,range(5)) qc.barrier() for i in reversed(range(5-1)): qc.cx(i, i+1) qc.ry(theta1,0) qc.measure(0, 0) qc.draw(output='mpl') theta1_range = np.linspace(0, np.pi/2, 2) theta2_range = np.linspace(0, 2 * np.pi, 64) circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val1 in theta1_range for theta_val2 in theta2_range ] # Visualize several circuits to check that correct circuits are generated correctly. circuits[0].draw(output='mpl') # circuits[1].draw(output='mpl') # circuits[64].draw(output='mpl') # theta1_range = np.linspace(0, np.pi/2, 2) # theta2_range = np.linspace(0, 2 * np.pi, 64) # circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) # for theta_val1 in theta1_range for theta_val2 in theta2_range ] # Visualize several circuits to check that correct circuits are generated correctly. # circuits[0].draw(output='mpl') circuits[1].draw(output='mpl') # circuits[64].draw(output='mpl') # theta1_range = np.linspace(0, np.pi/2, 2) # theta2_range = np.linspace(0, 2 * np.pi, 64) # circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) # for theta_val1 in theta1_range for theta_val2 in theta2_range ] # Visualize several circuits to check that correct circuits are generated correctly. # circuits[0].draw(output='mpl') # circuits[1].draw(output='mpl') circuits[64].draw(output='mpl') # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val1 in theta1_range for theta_val2 in theta2_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Plot to visualize the result import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/1024,counts))) plt.show() # Reset operation forces the target qubit to go to |0> q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.reset(q[0]) # qc.x(q) qc.measure(q, c) qc.draw(output='mpl') # Test the result job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1024) job.result().get_counts(qc) # Controlled qubit operation, controlled by classical bits # This could be useful for designing a post-selection scheme of a quantum algorithm q2 = QuantumRegister(2,'q') cont = ClassicalRegister(1,'cont') qc = QuantumCircuit(q2,cont) qc.x(0) qc.swap(q2[0],q2[1]).c_if(cont, 1) qc.measure(q2[0],cont) qc.draw(output='mpl') job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1024) job.result().get_counts(qc) import random as r qr = QuantumRegister(3) cr1 = ClassicalRegister(1) # Define a separate classical register for classically-controlled gate cr2 = ClassicalRegister(1) qtel = QuantumCircuit(qr,cr1,cr2) # Make a reference circuit to compare qref = QuantumCircuit(1,1) # Prepare a 2-qubit bell state qtel.h(1) qtel.cx(1,2) qtel.barrier() # Prepare a random 1-qubit state a1 = r.random()*np.pi a2 = r.random()*np.pi a3= r.random()*np.pi qtel.u3(a1,a2,a3,0) # Design a reference circuit for comparing to teleportation result qref.u3(a1,a2,a3,0) qref.measure(0,0) print('Reference circuit:') display(qref.draw(output='mpl')) # Apply bell measurement on qubit 0 and 1 qtel.cx(0,1) qtel.h(0) qtel.barrier() qtel.measure([0, 1],[0, 1]) qtel.z(2).c_if(cr1,1) qtel.x(2).c_if(cr2,1) qtel.measure(2,1) print('Quantum teleportation circuit:') display(qtel.draw(output='mpl')) # n is the number of shots n=10000 job_qtel = execute(qtel, backend_q, shots=n) job_ref = execute(qref, backend_q, shots=n) display(plot_histogram(job_ref.result().get_counts(qref))) qtel_c = job_qtel.result().get_counts(qtel) # Need some post-processing print(qtel_c) p1 = (qtel_c['1 0']+qtel_c['1 1'])/n p0 = (qtel_c['0 0']+qtel_c['0 1'])/n print('Prob. 1 from QT = %s' % p1) print('Prob. 0 from QT = %s' % p0) from qiskit.compiler import transpile from qiskit.transpiler import PassManager, Layout from qiskit.tools.visualization import plot_gate_map # Let's take a look at the layout of physical devices with the gate directions display(plot_gate_map(backend_qx4,plot_directed=True)) display(plot_gate_map(backend_ou,plot_directed=True)) display(plot_gate_map(backend_mel,plot_directed=True)) # Create a dummy circuit for default transpiler demonstration qr = QuantumRegister(3) cr = ClassicalRegister(3) qc = QuantumCircuit(qr,cr) qc.h(0) qc.swap(0,1) qc.cx(1,0) qc.s(2) qc.x(2) qc.h(2) qc.measure(qr[2],cr[2]) qc.h(0) qc.cx(0,1) qc.cx(0,1) qc.h(0) qc.measure(qr[0],cr[0]) qc.measure(qr[1],cr[1]) print('Original circuit') display(qc.draw(output='mpl')) # Transpile the circuit to run on ibmqx4 qt_qx4 = transpile(qc,backend_qx4) print('Transpiled circuit for ibmqx4') display(qt_qx4.draw(output='mpl')) # Transpile the circuit to run on ibmq_Ourense qt_ou = transpile(qc,backend_ou) print('Transpiled circuit for ibmqx_Oursense') display(qt_ou.draw(output='mpl')) qr = QuantumRegister(3,'q') qc = QuantumCircuit(qr) qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.draw(output='mpl') qc_t = transpile(qc, basis_gates=['u1','u2','u3','cx']) # Display transpiled circuit display(qc_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Number of qubits print("Number of qubits = %s" % qc_t.width()) # Breakdown of operations by type print("Operations: %s" % qc_t.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits = %s" % qc_t.num_tensor_factors()) # Map it onto 5 qubit backend ibmqx2 qc_qx2 = transpile(qc, backend_qx2, basis_gates=['u1','u2','u3','cx']) display(qc_qx2.draw(output='mpl')) display(plot_gate_map(backend_qx2,plot_directed=True)) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_qx2.size()) # Circuit depth print("Circuit depth = %s" % qc_qx2.depth()) # Map it onto 5 qubit backend ibmqx4 qc_qx4 = transpile(qc, backend_qx4,basis_gates=['u1','u2','u3','cx']) display(qc_qx4.draw(output='mpl')) display(plot_gate_map(backend_qx4,plot_directed=True)) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_qx4.size()) # Circuit depth print("Circuit depth = %s" % qc_qx4.depth()) # Customize the layout layout = Layout({qr[0]: 3, qr[1]: 4, qr[2]: 2}) # Map it onto 5 qubit backend ibmqx4 qc_qx4_new = transpile(qc, backend_qx4,initial_layout=layout,basis_gates=['u1','u2','u3','cx']) display(qc_qx4_new.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_qx4_new.size()) # Circuit depth print("Circuit depth = %s" % qc_qx4_new.depth()) # Test transpilation with Toffoli gate qr = QuantumRegister(3,'q') qccx = QuantumCircuit(qr) qccx.ccx(0,1,2) qccx.draw(output='mpl') qccx_t = transpile(qccx, basis_gates=['u3','cx']) # Display transpiled circuit display(qccx_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qccx_t.size()) # Circuit depth print("Circuit depth = %s" % qccx_t.depth()) # Number of qubits print("Number of qubits = %s" % qccx_t.width()) # Breakdown of operations by type print("Operations: %s" % qccx_t.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits = %s" % qccx_t.num_tensor_factors()) # Map it onto 5 qubit backend ibmqx2 qccx_qx2 = transpile(qccx, backend_qx2) display(qccx_qx2.draw(output='mpl')) display(plot_gate_map(backend_qx2,plot_directed=True)) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qccx_qx2.size()) # Circuit depth print("Circuit depth = %s" % qccx_qx2.depth()) # Number of cx gates print("Number of cx operations = %s" % qccx_qx2.count_ops()['cx']) # Map it onto 5 qubit backend ibmqx4 qccx_qx4 = transpile(qccx, backend_qx4) display(qccx_qx4.draw(output='mpl')) display(plot_gate_map(backend_qx4,plot_directed=True)) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qccx_qx4.size()) # Circuit depth print("Circuit depth = %s" % qccx_qx4.depth()) # Number of cx gates print("Number of cx operations = %s" % qccx_qx4.count_ops()['cx']) # Customize the layout layout = Layout({qr[0]: 3, qr[1]: 4, qr[2]: 2}) # Map it onto 5 qubit backend ibmqx4 qccx_qx4_new = transpile(qccx, backend_qx4,initial_layout=layout) display(qccx_qx4_new.draw(output='mpl')) display(plot_gate_map(backend_qx4,plot_directed=True)) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qccx_qx4_new.size()) # Circuit depth print("Circuit depth = %s" % qccx_qx4_new.depth()) # Number of cx gates print("Number of cx operations = %s" % qccx_qx4.count_ops()['cx']) # The device information such as gate error and T1 and T2 also should be considered # when customizing the layout. backend_monitor(backend_qx2) display(plot_gate_map(backend_ou,plot_directed=True)) # Customize the layout IBMQ Ourense layout_ou = Layout({qr[0]: 2, qr[1]: 3, qr[2]: 1}) # Map it onto 5 qubit backend ibmqx4 qccx_ou = transpile(qccx, backend_ou,initial_layout=layout_ou) display(qccx_ou.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qccx_ou.size()) # Circuit depth print("Circuit depth = %s" % qccx_ou.depth()) # Number of cx gates print("Number of cx operations = %s" % qccx_ou.count_ops()['cx']) # Apply Toffoli among 5 qubits qr = QuantumRegister(5,'q') toff = QuantumCircuit(qr) for i in range(5): toff.h(i) toff.ccx(0,1,2) toff.ccx(1,2,3) toff.ccx(2,3,4) display(toff.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % toff.size()) # Count different types of operations print("Operation counts = %s" % toff.count_ops()) # Circuit depth print("Circuit depth = %s" % toff.depth()) toff_t = transpile(toff, backend_mel) display(toff_t.draw(output='latex')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % toff_t.size()) # Count different types of operations print("Operation counts = %s" % toff_t.count_ops()) # Circuit depth print("Circuit depth = %s" % toff_t.depth()) # Transpile many times (100 times in this example) and pick the best one tcircs0 = transpile([toff]*100, backend_mel,optimization_level=0) tcircs1 = transpile([toff]*100, backend_mel,optimization_level=1) tcircs2 = transpile([toff]*100, backend_mel,optimization_level=2) tcircs3 = transpile([toff]*100, backend_mel,optimization_level=3) num_cx0 = [c.count_ops()['cx'] for c in tcircs0] num_cx1 = [c.count_ops()['cx'] for c in tcircs1] num_cx2 = [c.count_ops()['cx'] for c in tcircs2] num_cx3 = [c.count_ops()['cx'] for c in tcircs3] num_tot0 = [c.size() for c in tcircs0] num_tot1 = [c.size() for c in tcircs1] num_tot2 = [c.size() for c in tcircs2] num_tot3 = [c.size() for c in tcircs3] num_depth0 = [c.depth() for c in tcircs0] num_depth1 = [c.depth() for c in tcircs1] num_depth2 = [c.depth() for c in tcircs2] num_depth3 = [c.depth() for c in tcircs3] plt.rcParams.update({'font.size': 16}) # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of cx gates') plt.show() # Plot total number of gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_tot0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_tot1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_tot2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_tot3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of total gates') plt.show() # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_depth0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_depth1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_depth2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_depth3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('Circuit depth') plt.show() print('Opt0: Minimum # of cx gates = %s' % min(num_cx0)) print('Opt0: The best circuit is the circut %s' % num_cx0.index(min(num_cx0))) print('Opt1: Minimum # of cx gates = %s' % min(num_cx1)) print('Opt1: The best circuit is the circut %s' % num_cx1.index(min(num_cx1))) print('Opt2: Minimum # of cx gates = %s' % min(num_cx2)) print('Opt2: The best circuit is the circut %s' % num_cx2.index(min(num_cx2))) print('Opt3: Minimum # of cx gates = %s' % min(num_cx3)) print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3))) # Create a 10-qubit GHZ state qr = QuantumRegister(10,'q') ghz = QuantumCircuit(qr) ghz.h(0) for i in range(9): ghz.cx(i,i+1) display(ghz.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % ghz.size()) # Count different types of operations print("Operation counts = %s" % ghz.count_ops()) # Circuit depth print("Circuit depth = %s" % ghz.depth()) ghz_t = transpile(ghz, backend_mel) ghz_t.draw(output='latex') # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % ghz_t.size()) # Count different types of operations print("Operation counts = %s" % ghz_t.count_ops()) # Circuit depth print("Circuit depth = %s" % ghz_t.depth()) # Transpile 100 times and pick the best one circs = transpile([ghz]*100, backend_mel) num_cx = [c.count_ops()['cx'] for c in circs] # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx)),num_cx) plt.show() print('Minimum # of cx gates = %s' % min(num_cx)) print('The best circuit is the circut %s' % num_cx.index(min(num_cx)))
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Create a quantum register with 2 qubits q = QuantumRegister(2,'q') # Form a quantum circuit # Note that the circuit name is optional qc = QuantumCircuit(q,name="first_qc") # Display the quantum circuit qc.draw() # Add a Hadamard gate on qubit 0, putting this in superposition. qc.h(0) # Add a CX (CNOT) gate on control qubit 0 # and target qubit 1 to create an entangled state. qc.cx(0, 1) qc.draw() # Create a classical register with 2 bits c = ClassicalRegister(2,'c') meas = QuantumCircuit(q,c,name="first_m") meas.barrier(q) meas.measure(q, c) meas.draw() # Quantum circuits can be added with + operations # Add two pre-defined circuits qc_all=qc+meas qc_all.draw() # Draw the quantum circuit in a different (slightly better) format qc_all.draw(output='mpl') # Create the quantum circuit with the measurement in one go. qc_all = QuantumCircuit(q,c,name="2q_all") qc_all.h(0) qc_all.cx(0,1) qc_all.barrier() qc_all.measure(0,0) qc_all.measure(1,1) qc_all.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_sim1 = execute(qc_all, backend_q, shots=4096) job_sim1.status() # Grab the results from the job. result_sim1 = job_sim1.result() result_sim1 result_sim1.get_counts(qc_all) plot_histogram(result_sim1.get_counts(qc_all)) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim2 = execute(qc, backend_sv) # Grab the results from the job. result_sim2 = job_sim2.result() # Output the entire result result_sim2 # See output state as a vector outputstate = result_sim2.get_statevector(qc, decimals=5) print(outputstate) # Visualize density matrix plot_state_city(outputstate) # Create the quantum circuit with the measurement in one go. qc_3 = QuantumCircuit(3,3,name="qc_bloch") qc_3.x(1) qc_3.h(2) qc_3.barrier() qc_3.draw(output='mpl') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim_bloch = execute(qc_3, backend_sv) # Grab the results from the job. result_sim_bloch = job_sim_bloch.result() # See output state as a vector output_bloch = result_sim_bloch.get_statevector(qc_3, decimals=5) # Draw on the Bloch sphere plot_bloch_multivector(output_bloch) # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Execute the circuit on the unitary simulator. job_usim = execute(qc, backend_u) # Grab the results from the job. result_usim = job_usim.result() result_usim # Output the unitary matrix unitary = result_usim.get_unitary(qc) print('%s\n' % unitary) # Create the quantum circuit with the measurement in one go. qc_ex1 = QuantumCircuit(q,c,name="ex1") # Put the first qubit in equal superposition qc_ex1.h(0) # Rest of the circuit qc_ex1.x(1) qc_ex1.cx(0,1) qc_ex1.barrier() qc_ex1.measure(0,0) qc_ex1.measure(1,1) qc_ex1.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex1 = execute(qc_ex1, backend_q, shots=4096) job_ex1.status() # Grab the results from the job. result_ex1 = job_ex1.result() result_ex1.get_counts(qc_ex1) plot_histogram(result_ex1.get_counts(qc_ex1)) # Or get the histogram in one go plot_histogram(job_ex1.result().get_counts(qc_ex1)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit with the measurement in one go. qc_ex2 = QuantumCircuit(q3,c3,name="ex1") qc_ex2.ry(2*np.pi/3,0) qc_ex2.cx(0,1) qc_ex2.cx(1,2) qc_ex2.barrier() qc_ex2.measure(q3,c3) qc_ex2.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex2 = execute(qc_ex2, backend_q, shots=4096) # Grab the results from the job. result_ex2 = job_ex2.result() plot_histogram(result_ex2.get_counts(qc_ex2)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit without a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.ccx(1,2,0) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) from qiskit import IBMQ # first save your Token to disk IBMQ.save_account('<Your Token>') #IBMQ.load_account() # Load account from disk from qiskit import IBMQ # first save your Token to disk # IBMQ.disable_account() IBMQ.enable_account('<Your Token>') IBMQ.providers() open_provider = IBMQ.get_provider(hub='ibm-q', group='open') # default_provider = IBMQ.get_provider(hub='ibm-q-kaist', group='internal', project='default') open_provider.backends() default_provider.backends() from qiskit.tools.monitor import backend_overview, backend_monitor backend_overview() # Open access backend = open_provider.get_backend('ibmq_ourense') # select a number of premium devices backend_manhattan = default_provider.get_backend('ibmq_manhattan') backend_toronto = default_provider.get_backend('ibmq_toronto') backend_casablanca = default_provider.get_backend('ibmq_casablanca') backend_monitor(default_provider.get_backend('ibmq_ourense')) from qiskit.tools.jupyter import * backend from qiskit import Aer, QuantumCircuit, QuantumRegister, ClassicalRegister, execute from qiskit.tools.visualization import plot_histogram # Load account #IBMQ.load_account() # Select a backend backend_local = Aer.get_backend('qasm_simulator') backend_real = open_provider.get_backend('ibmq_ourense') #Simulator print(backend_local) print(backend_real) # number of qubits n = 2 # Define the Quantum and Classical Registers q = QuantumRegister(n) c = ClassicalRegister(n) # Build the circuit generalcircuit = QuantumCircuit(q, c) generalcircuit.h(q[0]) generalcircuit.cx(q[0],q[1]) generalcircuit.measure(q, c) generalcircuit.draw(output='mpl') # Execute the circuit job_local = execute(generalcircuit, backend_local, shots=8192) job_local.status() result=job_local.result() print(result) # Print the result plot_histogram(result.get_counts()) # Execute the circuit job_real = execute(generalcircuit, backend_real, shots=8192) job_real.status() # Print the result plot_histogram(job_real.result().get_counts()) import numpy as np from numpy import pi # importing Qiskit from qiskit import * from qiskit.visualization import * from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map qftc = QuantumCircuit(3) qftc.h(0) qftc.draw(output='mpl') qftc.cu1(2*pi/(2**2), 1, 0) # CROT from qubit 1 to qubit 0 qftc.draw(output='mpl') qftc.cu1(2*pi/(2**3), 2, 0) # CROT from qubit 1 to qubit 0 qftc.draw(output='mpl') qftc.h(1) qftc.cu1(2*pi/(2**2), 2, 1) # CROT from qubit 2 to qubit 1 qftc.h(2) qftc.draw(output='mpl') # Complete the QFT circuit by reordering qubits (by exchanging qubit 1 and 3) qftc.swap(0,2) qftc.draw(output='mpl') def qft_rotations(circuit, n): if n == 0: # Exit function if circuit is empty print("The number of qubits must be greater than 0") return circuit index = 0 circuit.h(index) # Apply the H-gate to the most significant qubit index += 1 n -= 1 for qubit in range(n): # Apply the controlled rotations conditioned on n-1 qubits # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cu1(2*pi/2**(2+qubit), index + qubit, 0) qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw(output = 'mpl') def qft_rotations(circuit, n, start): if n == 0: # Exit function if circuit is empty return circuit circuit.h(start) # Apply the H-gate to the most significant qubit if start == n-1: return circuit for qubit in range(n-1-start): # Apply the controlled rotations conditioned on n-1 qubits # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cu1(2*pi/2**(2+qubit), start + 1 + qubit, start) start += 1 circuit.barrier() # Apply QFT recursively qft_rotations(circuit, n, start) qc = QuantumCircuit(5) qft_rotations(qc,5,0) qc.draw(output = 'mpl') %matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * from qiskit.circuit import Parameter # Simple example # Define two parameters, t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') # Build a 1-qubit circuit qc = QuantumCircuit(1, 1) # First parameter, t1, is used for a single qubit rotation of a controlled qubit qc.ry(theta1,0) qc.rz(theta2,0) qc.barrier() qc.measure(0, 0) qc.draw(output='mpl') theta1_range = np.linspace(0, 2 * np.pi, 20) theta2_range = np.linspace(0, np.pi, 2) circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val2 in theta2_range for theta_val1 in theta1_range ] # Visualize several circuits to check that correct circuits are generated correctly. display(circuits[0].draw(output='mpl')) display(circuits[1].draw(output='mpl')) display(circuits[20].draw(output='mpl')) # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts))) plt.show() # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Execute multiple circuits job_exp = execute(qc, backend=provider.get_backend('ibmq_essex'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Monitor job status job_monitor(job_exp) # Store all counts counts_exp = [job_exp.result().get_counts(i) for i in range(len(job_exp.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.rcParams.update({'font.size': 16}) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts)),'r',label='Simulation') plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts_exp: (counts_exp.get('0',0)-counts_exp.get('1',1))/8192,counts_exp)), 'b',label='Experiment') plt.legend(loc='best') plt.show() from qiskit.compiler import transpile from qiskit.transpiler import PassManager, Layout display(plot_error_map(provider.get_backend('ibmqx2'))) display(plot_error_map(provider.get_backend('ibmq_burlington'))) # Create a dummy circuit for default transpiler demonstration qc = QuantumCircuit(4) qc.h(0) qc.swap(0,1) qc.cx(1,0) qc.s(3) qc.x(3) qc.h(3) qc.h(0) qc.cx(0,2) qc.ccx(0,1,2) qc.h(0) print('Original circuit') display(qc.draw(output='mpl')) # Transpile the circuit to run on ibmqx2 qt_qx2 = transpile(qc,provider.get_backend('ibmqx2')) print('Transpiled circuit for ibmqx2') display(qt_qx2.draw(output='mpl')) # Transpile the circuit to run on ibmq_burlington qt_bu = transpile(qc,provider.get_backend('ibmq_burlington')) print('Transpiled circuit for ibmqx_Burlington') display(qt_bu.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations for ibmqx2 = %s" % qt_qx2.size()) print("Number of operations for ibmq_burlington = %s \n" % qt_bu.size()) # Circuit depth print("Circuit depth for ibmqx2 = %s" % qt_qx2.depth()) print("Circuit depth for ibmq_burlington = %s \n" % qt_bu.depth()) # Number of qubits print("Number of qubits for ibmqx2 = %s" % qt_qx2.width()) print("Number of qubits for ibmq_burlington = %s \n" % qt_bu.width()) # Breakdown of operations by type print("Operations for ibmqx2: %s" % qt_qx2.count_ops()) print("Operations for ibmq_burlington: %s \n" % qt_bu.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits for ibmqx2 = %s" % qt_qx2.num_tensor_factors()) print("Number of unentangled subcircuits for ibmq_burlington = %s" % qt_bu.num_tensor_factors()) qr = QuantumRegister(4,'q') cr = ClassicalRegister(4,'c') qc_test = QuantumCircuit(qr,cr) qc_test.h(0) for i in range(3): qc_test.cx(i,i+1) qc_test.barrier() qc_test.measure(qr,cr) qc_test.draw(output='mpl') qc_t = transpile(qc_test, backend = provider.get_backend('ibmq_london')) # Display transpiled circuit display(qc_t.draw(output='mpl')) # Display the qubit layout display(plot_error_map(provider.get_backend('ibmq_london'))) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Execute the circuit on the qasm simulator. job_test = execute(qc_test, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test) # Customize the layout layout = Layout({qr[0]: 4, qr[1]: 3, qr[2]: 1, qr[3]:0}) # Map it onto 5 qubit backend ibmqx2 qc_test_new = transpile(qc_test, backend = provider.get_backend('ibmq_london'), initial_layout=layout, basis_gates=['u1','u2','u3','cx']) display(qc_test_new.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_test_new.size()) # Circuit depth print("Circuit depth = %s" % qc_test_new.depth()) # Execute the circuit on the qasm simulator. job_test_new = execute(qc_test_new, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test_new) # Now, compare the two result_test = job_test.result() result_test_new = job_test_new.result() # Plot both experimental and ideal results plot_histogram([result_test.get_counts(qc_test),result_test_new.get_counts(qc_test_new)], color=['green','blue'],legend=['default','custom'],figsize = [20,8]) # Apply 4-qubit controlled x gate qr = QuantumRegister(5,'q') qc = QuantumCircuit(qr) qc.h(0) qc.h(1) qc.h(3) qc.ccx(0,1,2) qc.ccx(2,3,4) qc.ccx(0,1,2) display(qc.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s \n" % qc.size()) # Count different types of operations print("Operation counts = %s \n" % qc.count_ops()) # Circuit depth print("Circuit depth = %s" % qc.depth()) qc_t = transpile(qc, provider.get_backend('ibmq_valencia')) display(qc_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Transpile many times (20 times in this example) and pick the best one trial = 20 # Use ibmq_valencia for example backend_exp = provider.get_backend('ibmq_valencia') tcircs0 = transpile([qc]*trial, backend_exp, optimization_level=0) tcircs1 = transpile([qc]*trial, backend_exp, optimization_level=1) tcircs2 = transpile([qc]*trial, backend_exp, optimization_level=2) tcircs3 = transpile([qc]*trial, backend_exp, optimization_level=3) import matplotlib.pyplot as plt num_cx0 = [c.count_ops()['cx'] for c in tcircs0] num_cx1 = [c.count_ops()['cx'] for c in tcircs1] num_cx2 = [c.count_ops()['cx'] for c in tcircs2] num_cx3 = [c.count_ops()['cx'] for c in tcircs3] num_tot0 = [c.size() for c in tcircs0] num_tot1 = [c.size() for c in tcircs1] num_tot2 = [c.size() for c in tcircs2] num_tot3 = [c.size() for c in tcircs3] num_depth0 = [c.depth() for c in tcircs0] num_depth1 = [c.depth() for c in tcircs1] num_depth2 = [c.depth() for c in tcircs2] num_depth3 = [c.depth() for c in tcircs3] plt.rcParams.update({'font.size': 16}) # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of cx gates') plt.show() # Plot total number of gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_tot0)),num_tot0,'r',label='level 0') plt.plot(range(len(num_tot1)),num_tot1,'b',label='level 1') plt.plot(range(len(num_tot2)),num_tot2,'g',label='level 2') plt.plot(range(len(num_tot3)),num_tot3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of total gates') plt.show() # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_depth0)),num_depth0,'r',label='level 0') plt.plot(range(len(num_depth1)),num_depth1,'b',label='level 1') plt.plot(range(len(num_depth2)),num_depth2,'g',label='level 2') plt.plot(range(len(num_depth3)),num_depth3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('Circuit depth') plt.show() print('Opt0: Minimum # of cx gates = %s' % min(num_cx0)) print('Opt0: The best circuit is the circut %s \n' % num_cx0.index(min(num_cx0))) print('Opt1: Minimum # of cx gates = %s' % min(num_cx1)) print('Opt1: The best circuit is the circut %s \n' % num_cx1.index(min(num_cx1))) print('Opt2: Minimum # of cx gates = %s' % min(num_cx2)) print('Opt2: The best circuit is the circut %s \n' % num_cx2.index(min(num_cx2))) print('Opt3: Minimum # of cx gates = %s' % min(num_cx3)) print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3)))
https://github.com/dkp-quantum/Tutorials
dkp-quantum
# If you already have saved IBM credentials with previous version, # update your credentials that is stored in disk from qiskit import IBMQ IBMQ.update_account() # import from qiskit import * import numpy as np from qiskit.visualization import plot_histogram, plot_state_city, plot_state_paulivec from qiskit.quantum_info import Pauli, state_fidelity, basis_state, process_fidelity from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor # Create a quantum register with 2 qubits q = QuantumRegister(2,'q') # Form a quantum circuit # Note that the circuit name is optional qc = QuantumCircuit(q,name="first_qc") # Display the quantum circuit qc.draw() # Create a classical register with 2 bits c = ClassicalRegister(2,'c') meas = QuantumCircuit(q,c,name="first_m") meas.barrier(q) meas.measure(q[0], c[0]) meas.measure(q[1], c[1]) #meas.measure(q[3], c[3]) #meas.measure(q[4], c[4]) meas.draw() # Add a x gate on qubit 0. qc.x(0) # Add a Hadamard gate on qubit 0, putting this in superposition. qc.h(0) # Add a CX (CNOT) gate on control qubit 0 # and target qubit 1 to create an entangled state. qc.cx(0, 1) qc.draw() # Quantum circuits can be added with + operations # Add two pre-defined circuits qc_comp=qc+meas qc_comp.draw() # Draw the quantum circuit in a different (slightly better) format qc_comp.draw(output='mpl') # Create the quantum circuit with the measurement in one go. qc_tot = QuantumCircuit(q,c,name="2q_all") qc_tot.x(0) qc_tot.h(0) qc_tot.cx(0,1) qc_tot.barrier() qc_tot.measure(0,0) qc_tot.measure(1,1) qc_tot.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is default. job_sim1 = execute(qc_comp, backend_q, shots=1024) job_sim1.status() # Grab the results from the job. result_sim1 = job_sim1.result() result_sim1 result_sim1.get_counts(qc_comp) plot_histogram(result_sim1.get_counts(qc_comp)) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the circuit on the statevector simulator. job_sim2 = execute(qc, backend_sv) # Grab the results from the job. result_sim2 = job_sim2.result() # Output the entire result job_sim2.result() # See output state as a vector outputstate = result_sim2.get_statevector(qc, decimals=5) print(outputstate) # Visualize density matrix plot_state_city(outputstate) # Examine state fidelity, compare with a basis state |111> sf1=state_fidelity(basis_state('11', 2), outputstate) # Examine state fidelity w.r.t the desired state desired_state=[1,0,0,-1]/np.sqrt(2) sf2=state_fidelity(desired_state, outputstate) print(sf1) print(sf2) # Create a quantum register with 4 qubits q4 = QuantumRegister(4,'q') # Create classical registers for measurement c4 = ClassicalRegister(4,'c') # Form a quantum circuit # Note that the circuit name is optional ex1_qc = QuantumCircuit(q4,c4,name="ex1") # Display the quantum circuit ex1_qc.draw() # Add gates to the quantum circuit ex1_qc.h(0) ex1_qc.cx(0,1) ex1_qc.cx(0,2) ex1_qc.cx(0,3) # Measurement ex1_qc.barrier() ex1_qc.measure(0,0) ex1_qc.measure(1,1) ex1_qc.measure(2,2) ex1_qc.measure(3,3) ex1_qc.draw(output='mpl') # Simpler code ex1_qc = QuantumCircuit(q4,c4,name="first_m") # Gates ex1_qc.h(0) for i in range(3): ex1_qc.cx(0,i+1) # Measurement ex1_qc.barrier() for i in range(4): ex1_qc.measure(i,i) ex1_qc.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is default. job_ex1 = execute(ex1_qc, backend_q, shots=1024) plot_histogram(job_ex1.result().get_counts(ex1_qc)) # Create a simple quantum register with 2 qubit # to examine unitary simulator qu2 = QuantumRegister(2,'qu') # Form a quantum circuit # Note that the circuit name is optional qu = QuantumCircuit(qu2,name="unitary_qc") # Add a single qubit rotation qu.z(0) qu.z(1) # Display the quantum circuit qu.draw(output='mpl') # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Execute the circuit on the unitary simulator. job_usim = execute(qu, backend_u) # Grab the results from the job. result_usim = job_usim.result() result_usim # Output the unitary matrix unitary = result_usim.get_unitary(qu) print('%s\n' % unitary) # Check process fidelity pf1=process_fidelity(Pauli(label='IX').to_matrix(), unitary) pf2=process_fidelity(Pauli(label='ZZ').to_matrix(), unitary) print('%s\n' % pf1) print('%s\n' % pf2) from qiskit.quantum_info import process_fidelity def compare_qc(qc_ref,qc_test): # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Output the refernce unitary matrix u_ref = execute(qc_ref,backend_u).result().get_unitary(qc_ref) # Output the test unitary matrix u_test = execute(qc_test,backend_u).result().get_unitary(qc_test) return process_fidelity(u_ref,u_test) # Create a reference circuit swap_c_ref = QuantumCircuit(2) swap_c_ref.swap(0,1) display(swap_c_ref.draw(output='mpl')) # Create a test circuit with 3 cnot gates instead of a swap gate swap_c_test = QuantumCircuit(2) swap_c_test.cx(0,1) swap_c_test.cx(1,0) swap_c_test.cx(0,1) display(swap_c_test.draw(output='mpl')) # Compare two unitaries compare_qc(swap_c_ref,swap_c_test) from qiskit.quantum_info import state_fidelity def compare_sv(qc_ref,qc_test): # Use Aer's unitary_simulator backend_v = Aer.get_backend('statevector_simulator') # Output the refernce unitary matrix sv_ref = execute(qc_ref,backend_v).result().get_statevector(qc_ref,decimals=7) # Output the test unitary matrix sv_test = execute(qc_test,backend_v).result().get_statevector(qc_test,decimals=7) return state_fidelity(sv_ref,sv_test) import random as r # Apply a random 1-qubit rotation around x and y ay = r.random()*np.pi ax = r.random()*np.pi # Create a circuit for preparing an initial state swap_c_init = QuantumCircuit(3) swap_c_init.h(0) swap_c_init.ry(ay,1) swap_c_init.rx(ax,2) display(swap_c_init.draw(output='mpl')) # Create a reference circuit cswap_c_ref = QuantumCircuit(3) cswap_c_ref.append(swap_c_init,[0,1,2]) cswap_c_ref.cswap(0,1,2) display(cswap_c_ref.draw(output='mpl')) # Create a test circuit with 3 cnot gates instead of a swap gate cswap_c_test = QuantumCircuit(3) cswap_c_test.append(swap_c_init,[0,1,2]) cswap_c_test.cx(2,1) cswap_c_test.ccx(0,1,2) cswap_c_test.cx(2,1) display(cswap_c_test.draw(output='mpl')) # Compare two states compare_sv(cswap_c_ref,cswap_c_test) # Measure an expectation value of a Pauli observable Z = np.array([[1, 0], [0, -1]]) X = np.array([[0, 1], [1, 0]]) Y = np.array([[0, -1j], [1j, 0]]) ZZ=np.kron(Z,Z) XX=np.kron(X,X) # Or use qiskit's built-in function to define Pauli matrices ZI = Pauli(label='ZI').to_matrix() XI = Pauli(label='XI').to_matrix() YI = Pauli(label='YI').to_matrix() # Create some functions for measuring expectation values # For pure states def expectation_state(state, Operator): return np.dot(state.conj(), np.dot(Operator, state)) # For density matrices def expectation_density(density, Operator): return np.trace(Operator @ density) # We'll use statevector simulator, so no need to define classical registers q2 = QuantumRegister(2,'q') # Create a quantum circuit for 00 + 11 state ex2_qc1 = QuantumCircuit(q2) ex2_qc1.h(0) ex2_qc1.cx(0,1) # Create a quantum circuit for 00 - 11 state ex2_qc2 = QuantumCircuit(q2) ex2_qc2.x(0) ex2_qc2.h(0) ex2_qc2.cx(0,1) print('00+11 circuit:') display(ex2_qc1.draw(output='mpl')) print('00-11 circuit:') display(ex2_qc2.draw(output='mpl')) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the first circuit on the statevector simulator. job_ex2_1 = execute(ex2_qc1, backend_sv) output1 = job_ex2_1.result().get_statevector(ex2_qc1, decimals=5) # Execute the second circuit on the statevector simulator. job_ex2_2 = execute(ex2_qc2, backend_sv) output2 = job_ex2_2.result().get_statevector(ex2_qc2, decimals=5) # Measure the expectation values zz1 = expectation_state(output1,ZZ) zz2 = expectation_state(output2,ZZ) xx1 = expectation_state(output1,XX) xx2 = expectation_state(output2,XX) print('<ZZ> on circuit 1 = %s' % zz1) print('<ZZ> on circuit 2 = %s' % zz2) print('<XX> on circuit 1 = %s' % xx1) print('<XX> on circuit 2 = %s' % xx2) IBMQ.enable_account('YOUR_TOKEN') print(IBMQ.stored_account()) print(IBMQ.active_account()) my_provider=IBMQ.get_provider() my_provider.backends() # Retrieve IBM Quantum device information backend_overview() backend_qx2 = my_provider.get_backend('ibmqx2') backend_vigo = my_provider.get_backend('ibmq_vigo') backend_vigo.properties() # Retrieve a specific IBM Quantum device information # ibmq_16_melbourne as an example backend_mel = my_provider.get_backend('ibmq_16_melbourne') backend_monitor(backend_mel) # Let's look at one more example backend_qx2 = my_provider.get_backend('ibmqx2') backend_monitor(backend_qx2) # Create a 3-qubit GHZ state ghz3_q = QuantumRegister(3,'q') ghz3_c = ClassicalRegister(3,'c') ghz3= QuantumCircuit(ghz3_q,ghz3_c) ghz3.h(0) ghz3.cx(0,1) ghz3.cx(0,2) ghz3.barrier() for i in range(3): ghz3.measure(i,i) ghz3.draw(output='mpl') # Define backend as one of the real devices (5-qubit systems for now) backend_vigo = my_provider.get_backend('ibmq_vigo') backend_es = my_provider.get_backend('ibmq_essex') backend_ou = my_provider.get_backend('ibmq_ourense') # Run 3-qubit GHZ experiment on a 5-qubit device (try vigo) job_exp = execute(ghz3, backend=backend_vigo) job_monitor(job_exp) # Grab experimental results result_vigo = job_exp.result() counts_vigo = result_vigo.get_counts(ghz3) plot_histogram(counts_vigo) # Finally, run the same experiment on the 14-qubit device. job_exp2 = execute(ghz3, backend=backend_mel) job_monitor(job_exp2) # Grab experimental results result_mel = job_exp2.result() counts_mel = result_mel.get_counts(ghz3) plot_histogram(counts_mel) # Now, compare to theory by running it on qasm_simulator job_qasm = execute(ghz3,backend=backend_q) result_qasm = job_qasm.result() counts_qasm = result_qasm.get_counts(ghz3) # Plot both experimental and ideal results plot_histogram([counts_qasm,counts_vigo,counts_mel], color=['black','green','blue'], legend=['QASM','Vigo','Melbourne']) import random as r # Define a 3-qubit circuit with 3 classical registers qtel = QuantumCircuit(3,3) # Apply a random 1-qubit rotation around y a1 = r.random()*np.pi a2 = r.random()*np.pi qtel.ry(a1,0) qtel.rz(a2,0) qtel.barrier() qtel.draw(output='mpl') # Prepare a 2-qubit bell state qtel.h(1) qtel.cx(1,2) qtel.draw(output='mpl') # Apply bell measurement on qubit 0 and 1 qtel.cx(0,1) qtel.h(0) qtel.barrier() qtel.measure([0, 1],[0, 1]) qtel.draw(output='mpl') # Apply controlled gates to complete the teleportation qtel.barrier() qtel.cx(1,2) qtel.cz(0,2) qtel.draw(output='mpl') # Check the answer by applying the inverse unitary qtel.rz(-a2,2) qtel.ry(-a1,2) qtel.measure(2,2) print('Quantum teleportation circuit:') qtel.draw(output='mpl') # n is the number of shots n=10000 job_qtel = execute(qtel, backend_q, shots=n) display(plot_histogram(job_qtel.result().get_counts(qtel))) qtel_c = job_qtel.result().get_counts(qtel) print(qtel_c) # Simple example from qiskit.circuit import Parameter # Define two parameters, t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') # Build a 5-qubit circuit qc = QuantumCircuit(3, 1) # First parameter, t1, is used for a single qubit rotation of a controlled qubit qc.ry(theta1,0) for i in range(2): qc.cx(i, i+1) qc.barrier() # Second parameter, t2, is used here qc.rz(theta2,range(3)) qc.barrier() for i in reversed(range(2)): qc.cx(i, i+1) qc.ry(theta1,0) qc.measure(0, 0) qc.draw(output='mpl') theta1_range = np.linspace(0, np.pi/2, 2) theta2_range = np.linspace(0, 2 * np.pi, 16) circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val1 in theta1_range for theta_val2 in theta2_range ] # Visualize several circuits to check that correct circuits are generated correctly. display(circuits[0].draw(output='mpl')) display(circuits[1].draw(output='mpl')) display(circuits[16].draw(output='mpl')) # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val1 in theta1_range for theta_val2 in theta2_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Plot to visualize the result import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/1024,counts))) plt.show() # Exercise 4. a) # Create the measurement circuit m_ZZI = QuantumCircuit(4,1) m_ZZI.h(3) m_ZZI.cz(3,0) m_ZZI.cz(3,1) m_ZZI.h(3) m_ZZI.barrier() m_ZZI.measure(3,0) m_ZZI.draw(output='mpl') # #m_ZIZ = QuantumCircuit(4,1) #m_ZIZ.h(3) #m_ZIZ.cz(3,0) #m_ZIZ.cz(3,2) #m_ZIZ.h(3) #m_ZIZ.barrier() #m_ZIZ.measure(3,0) #display(m_ZIZ.draw(output='mpl')) # Exercise 4. a) # Create the state preparation circuit for a|000> + b|111> and a|010> + b|101> # for various values of a & b from qiskit.circuit import Parameter # Define parameter t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') qs_a = QuantumCircuit(4,1) qs_a.ry(theta1,0) qs_a.cx(0,1) qs_a.cx(0,2) qs_a.ry(theta2,1) qs_a.barrier() display(qs_a.draw(output='mpl')) # Add state prep. and measurement circuits qc_ZZI = qs_a+m_ZZI qc_ZZI.draw(output='mpl') theta1_range = np.linspace(0, np.pi, 16) theta2_range = np.linspace(0, np.pi, 2) # Bind parameters and create multiple circuits # Test for various a & b for a|000> + b|111> first, # then vary the amplitudes for a|010> + b|101> : # Fix theta2 first, and vary theta1: circuits_ZZI = [qc_ZZI.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val2 in theta2_range for theta_val1 in theta1_range ] # Execute multiple circuits job_ZZI = execute(circuits_ZZI, backend=Aer.get_backend('qasm_simulator')) # Store all counts counts_ZZI = [job_ZZI.result().get_counts(i) for i in range(len(job_ZZI.result().results))] # Plot to visualize the result import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts_ZZI: (counts_ZZI.get('0',0)-counts_ZZI.get('1',1))/1024, counts_ZZI))) plt.show() # Exercise 4. b) # Create the measurement circuit m_XXI = QuantumCircuit(4,1) m_XXI.h(3) m_XXI.cx(3,0) m_XXI.cx(3,1) m_XXI.h(3) m_XXI.barrier() m_XXI.measure(3,0) m_XXI.draw(output='mpl') # #m_XIX = QuantumCircuit(4,1) #m_XIX.h(3) #m_XIX.cx(3,0) #m_XIX.cx(3,2) #m_XIX.h(3) #m_XIX.barrier() #m_XIX.measure(3,0) #display(m_XIX.draw(output='mpl')) # Exercise 4. b) # Create the state preparation circuit for a|+++> + b|---> and a|+-+> + b|-+-> # for various values of a & b qs_b = QuantumCircuit(4,1) qs_b.ry(theta1,0) qs_b.cx(0,1) qs_b.cx(0,2) for i in range(3): qs_b.h(i) # To flip |+> to |->, we need a phase flip gate qs_b.rz(theta2,1) qs_b.barrier() display(qs_b.draw(output='mpl')) # Add state prep. and measurement circuits qc_XXI = qs_b+m_XXI qc_XXI.draw(output='mpl') # Bind parameters and create multiple circuits # Test for various a & b for a|000> + b|111> first, # then vary the amplitudes for a|010> + b|101> : # Fix theta2 first, and vary theta1: circuits_XXI = [qc_XXI.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val2 in theta2_range for theta_val1 in theta1_range ] # Execute multiple circuits job_XXI = execute(circuits_XXI, backend=Aer.get_backend('qasm_simulator')) # Store all counts counts_XXI = [job_XXI.result().get_counts(i) for i in range(len(job_XXI.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts_XXI: (counts_XXI.get('0',0)-counts_XXI.get('1',1))/1024, counts_XXI))) plt.show() # Create a quantum register with 3 qubits q = QuantumRegister(3,'q') # Form a quantum circuit qent = QuantumCircuit(q) qent.initialize([1, 0, 0, 0, 0, 0, 0, 1] / np.sqrt(2), [q[0], q[1], q[2]]) # Display the quantum circuit qent.draw(output='mpl') # Use Aer's state vector simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute and plot output state output_ent = execute(qent, backend_sv).result().get_statevector(0, decimals=3) plot_state_city(output_ent) # Build a sub-circuit # sub_ghz(n,c,t) creates a quantum circuit for creating an n-qubit GHZ state. # n is the total number of qubits, c is an index for a control qubit, t is a vector of indices for target qubits. def sub_ghz(n,c,t): sub_q = QuantumRegister(n) sub_circ = QuantumCircuit(sub_q, name='sub_ghz') sub_circ.h(c) for i in t: sub_circ.cx(c,i) return sub_circ # Create a sub-circuit for 3-qubit GHZ state prep. sub_ghz3 = sub_ghz(3,0,[1,2]) sub_inst3 = sub_ghz3.to_instruction() # Create a sub-circuit consisting of T gate and cnot. sub_tcnot = QuantumCircuit(QuantumRegister(2),name='t+cnot') sub_tcnot.t(0) sub_tcnot.cx(0,1) q = QuantumRegister(5, 'q') circ = QuantumCircuit(q) # Now create a quantum circuit using sub-circuits. # Apply Hadamard on all gates. for i in range(5): circ.h(i) # circ.barrier() # Appy 2-qubit GHZ preparation on qubits 0 and 1, and on qubits 3 and 4. circ.append(sub_tcnot, [q[0],q[1]]) circ.append(sub_tcnot, [q[3], q[4]]) # circ.barrier() # Apply 3-qubit GHZ preparation on all 3 neighbouring qubits. for i in range(3): circ.append(sub_inst3, [q[i], q[i+1],q[i+2]]) circ.draw(output='mpl') # We can also decompose the circuit that is constructed using sub-circuits. circ.decompose().draw(output='mpl') # Reset operation forces the target qubit to go to |0> q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.reset(0) qc.measure(q, c) display(qc.draw(output='mpl')) # Test the result job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1024) job.result().get_counts(qc) # Controlled qubit operation, controlled by classical bits # This could be useful for designing a post-selection scheme of a quantum algorithm q2 = QuantumRegister(2,'q') cont = ClassicalRegister(1,'cont') qc = QuantumCircuit(q2,cont) qc.x(0) # Swap qubits 1 and 2 if the classical bit is 0 qc.swap(0,1).c_if(cont, 0) qc.measure(0,cont) display(qc.draw(output='mpl')) job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1024) print(job.result().get_counts(qc)) from qiskit.compiler import transpile from qiskit.transpiler import PassManager, Layout from qiskit.tools.visualization import plot_gate_map # Let's take a look at the layout of physical devices with the gate directions display(plot_gate_map(backend_qx2,plot_directed=True)) display(plot_gate_map(my_provider.get_backend('ibmq_burlington'),plot_directed=True)) display(plot_gate_map(my_provider.get_backend('ibmq_london'),plot_directed=True)) # Create a dummy circuit for default transpiler demonstration qr = QuantumRegister(3) cr = ClassicalRegister(3) qc = QuantumCircuit(qr,cr) qc.h(0) qc.swap(0,1) qc.cx(1,0) qc.s(2) qc.x(2) qc.h(2) qc.measure(qr[2],cr[2]) qc.h(0) qc.cx(0,1) qc.cx(0,1) qc.h(0) qc.measure(qr[0],cr[0]) qc.measure(qr[1],cr[1]) print('Original circuit') display(qc.draw(output='mpl')) # Transpile the circuit to run on ibmqx2 qt_qx4 = transpile(qc,backend_qx2) print('Transpiled circuit for ibmqx2') display(qt_qx4.draw(output='mpl')) # Transpile the circuit to run on ibmq_burlington qt_ou = transpile(qc,my_provider.get_backend('ibmq_burlington')) print('Transpiled circuit for ibmqx_Burlington') display(qt_ou.draw(output='mpl')) qr = QuantumRegister(5,'q') qc = QuantumCircuit(qr) qc.h(0) for i in range(4): qc.cx(0,i+1) qc.draw(output='mpl') qc_t = transpile(qc, basis_gates=['u1','u2','u3','cx']) # Display transpiled circuit display(qc_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Number of qubits print("Number of qubits = %s" % qc_t.width()) # Breakdown of operations by type print("Operations: %s" % qc_t.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits = %s" % qc_t.num_tensor_factors()) # Map it onto 5 qubit backend ibmqx2 qc_qx2 = transpile(qc, backend_qx2, basis_gates=['u1','u2','u3','cx']) display(qc_qx2.draw(output='mpl')) display(plot_gate_map(backend_qx2,plot_directed=True)) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_qx2.size()) # Circuit depth print("Circuit depth = %s" % qc_qx2.depth()) # Map it onto 5 qubit backend ibmq_vigo qc_vigo = transpile(qc, backend_vigo,basis_gates=['u1','u2','u3','cx']) display(qc_vigo.draw(output='mpl')) display(plot_gate_map(backend_vigo,plot_directed=True)) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_vigo.size()) # Circuit depth print("Circuit depth = %s" % qc_vigo.depth()) # Customize the layout layout = Layout({qr[0]: 2, qr[1]: 1, qr[2]: 0, qr[3]:3, qr[4]:4}) # Map it onto 5 qubit backend ibmqx2 qc_qx2_new = transpile(qc, backend_qx2, initial_layout=layout,basis_gates=['u1','u2','u3','cx']) display(qc_qx2_new.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_qx2_new.size()) # Circuit depth print("Circuit depth = %s" % qc_qx2_new.depth()) # Test transpilation with a 5-qubit circuit including a Toffoli gate qr = QuantumRegister(5,'q') qccx = QuantumCircuit(qr) qccx.h(0) qccx.ccx(1,2,3) qccx.x(4) qccx.cz(0,4) display(qccx.draw(output='mpl')) print('Decompose in terms of a one and two qubit universal gate set') display(qccx.decompose().draw(output='mpl')) # Check device properties. # The device information such as gate error and T1 and T2 also should be considered # when picking a device for a given quantum circuit. display(plot_gate_map(my_provider.get_backend('ibmq_vigo'),plot_directed=True)) backend_monitor(my_provider.get_backend('ibmq_vigo')) # Customize the layout 5 qubit backend ibmq_vigo layout = Layout({qr[0]: 1, qr[1]: 2, qr[2]: 3, qr[3]:0, qr[4]:4}) # Map it onto 5 qubit backend ibmq_vigo without changing the layout qccx_vigo_naive = transpile(qccx, backend_vigo,basis_gates=['u1','u2','u3','cx']) # Map it onto 5 qubit backend ibmq_vigo with the above layout qccx_vigo_layout = transpile(qccx, backend_vigo, initial_layout=layout,basis_gates=['u1','u2','u3','cx']) display(qccx_vigo_naive.draw(output='mpl')) # Print out some circuit properties for the circuit without layout change print("Circuit complexity when transpiled without layout change:") print("Number of operations = %s" % qccx_vigo_naive.size()) print("Circuit depth = %s" % qccx_vigo_naive.depth()) print("Number of cx operations = %s" % qccx_vigo_naive.count_ops()['cx']) display(qccx_vigo_layout.draw(output='mpl')) # Print out some circuit properties for the circuit with layout change print("Circuit complexity when transpiled with layout change:") print("Number of operations = %s" % qccx_vigo_layout.size()) print("Circuit depth = %s" % qccx_vigo_layout.depth()) print("Number of cx operations = %s" % qccx_vigo_layout.count_ops()['cx']) # Apply 4-qubit controlled x gate qr = QuantumRegister(5,'q') c4z = QuantumCircuit(qr) c4z.h(0) c4z.h(1) c4z.h(3) c4z.ccx(0,1,2) c4z.ccx(2,3,4) c4z.ccx(0,1,2) display(c4z.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % c4z.size()) # Count different types of operations print("Operation counts = %s" % c4z.count_ops()) # Circuit depth print("Circuit depth = %s" % c4z.depth()) backend_london = my_provider.get_backend('ibmq_london') c4z_t = transpile(c4z, backend_london) display(c4z_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % c4z_t.size()) # Count different types of operations print("Operation counts = %s" % c4z_t.count_ops()) # Circuit depth print("Circuit depth = %s" % c4z_t.depth()) # Transpile many times (100 times in this example) and pick the best one # Use ibmq_london for example tcircs0 = transpile([c4z]*20, backend_london,optimization_level=0) tcircs1 = transpile([c4z]*20, backend_london,optimization_level=1) tcircs2 = transpile([c4z]*20, backend_london,optimization_level=2) tcircs3 = transpile([c4z]*20, backend_london,optimization_level=3) import matplotlib.pyplot as plt num_cx0 = [c.count_ops()['cx'] for c in tcircs0] num_cx1 = [c.count_ops()['cx'] for c in tcircs1] num_cx2 = [c.count_ops()['cx'] for c in tcircs2] num_cx3 = [c.count_ops()['cx'] for c in tcircs3] num_tot0 = [c.size() for c in tcircs0] num_tot1 = [c.size() for c in tcircs1] num_tot2 = [c.size() for c in tcircs2] num_tot3 = [c.size() for c in tcircs3] num_depth0 = [c.depth() for c in tcircs0] num_depth1 = [c.depth() for c in tcircs1] num_depth2 = [c.depth() for c in tcircs2] num_depth3 = [c.depth() for c in tcircs3] plt.rcParams.update({'font.size': 16}) # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of cx gates') plt.show() # Plot total number of gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_tot0)),num_tot0,'r',label='level 0') plt.plot(range(len(num_tot1)),num_tot1,'b',label='level 1') plt.plot(range(len(num_tot2)),num_tot2,'g',label='level 2') plt.plot(range(len(num_tot3)),num_tot3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of total gates') plt.show() # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_depth0)),num_depth0,'r',label='level 0') plt.plot(range(len(num_depth1)),num_depth1,'b',label='level 1') plt.plot(range(len(num_depth2)),num_depth2,'g',label='level 2') plt.plot(range(len(num_depth3)),num_depth3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('Circuit depth') plt.show() print('Opt0: Minimum # of cx gates = %s' % min(num_cx0)) print('Opt0: The best circuit is the circut %s' % num_cx0.index(min(num_cx0))) print('Opt1: Minimum # of cx gates = %s' % min(num_cx1)) print('Opt1: The best circuit is the circut %s' % num_cx1.index(min(num_cx1))) print('Opt2: Minimum # of cx gates = %s' % min(num_cx2)) print('Opt2: The best circuit is the circut %s' % num_cx2.index(min(num_cx2))) print('Opt3: Minimum # of cx gates = %s' % min(num_cx3)) print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3)))
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Create a quantum register with 2 qubits q = QuantumRegister(2,'q') # Form a quantum circuit # Note that the circuit name is optional qc = QuantumCircuit(q,name="first_qc") # Display the quantum circuit qc.draw() # Add a Hadamard gate on qubit 0, putting this in superposition. qc.h(0) # Add a CX (CNOT) gate on control qubit 0 # and target qubit 1 to create an entangled state. qc.cx(0, 1) qc.draw() # Create a classical register with 2 bits c = ClassicalRegister(2,'c') meas = QuantumCircuit(q,c,name="first_m") meas.barrier(q) meas.measure(q, c) meas.draw() # Quantum circuits can be added with + operations # Add two pre-defined circuits qc_all=qc+meas qc_all.draw() # Draw the quantum circuit in a different (slightly better) format qc_all.draw(output='mpl') # Create the quantum circuit with the measurement in one go. qc_all = QuantumCircuit(q,c,name="2q_all") qc_all.h(0) qc_all.cx(0,1) qc_all.barrier() qc_all.measure(0,0) qc_all.measure(1,1) qc_all.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_sim1 = execute(qc_all, backend_q, shots=4096) job_sim1.status() # Grab the results from the job. result_sim1 = job_sim1.result() result_sim1 result_sim1.get_counts(qc_all) plot_histogram(result_sim1.get_counts(qc_all)) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim2 = execute(qc, backend_sv) # Grab the results from the job. result_sim2 = job_sim2.result() # Output the entire result result_sim2 # See output state as a vector outputstate = result_sim2.get_statevector(qc, decimals=5) print(outputstate) # Visualize density matrix plot_state_city(outputstate) # Create the quantum circuit with the measurement in one go. qc_3 = QuantumCircuit(3,3,name="qc_bloch") qc_3.x(1) qc_3.h(2) qc_3.barrier() qc_3.draw(output='mpl') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim_bloch = execute(qc_3, backend_sv) # Grab the results from the job. result_sim_bloch = job_sim_bloch.result() # See output state as a vector output_bloch = result_sim_bloch.get_statevector(qc_3, decimals=5) # Draw on the Bloch sphere plot_bloch_multivector(output_bloch) # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Execute the circuit on the unitary simulator. job_usim = execute(qc, backend_u) # Grab the results from the job. result_usim = job_usim.result() result_usim # Output the unitary matrix unitary = result_usim.get_unitary(qc) print('%s\n' % unitary) # Create the quantum circuit with the measurement in one go. qc_ex1 = QuantumCircuit(q,c,name="ex1") # Put the first qubit in equal superposition qc_ex1.h(0) # Rest of the circuit qc_ex1.x(1) qc_ex1.cx(0,1) qc_ex1.barrier() qc_ex1.measure(0,0) qc_ex1.measure(1,1) qc_ex1.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex1 = execute(qc_ex1, backend_q, shots=4096) job_ex1.status() # Grab the results from the job. result_ex1 = job_ex1.result() result_ex1.get_counts(qc_ex1) plot_histogram(result_ex1.get_counts(qc_ex1)) # Or get the histogram in one go plot_histogram(job_ex1.result().get_counts(qc_ex1)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit with the measurement in one go. qc_ex2 = QuantumCircuit(q3,c3,name="ex1") qc_ex2.ry(2*np.pi/3,0) qc_ex2.cx(0,1) qc_ex2.cx(1,2) qc_ex2.barrier() qc_ex2.measure(q3,c3) qc_ex2.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex2 = execute(qc_ex2, backend_q, shots=4096) # Grab the results from the job. result_ex2 = job_ex2.result() plot_histogram(result_ex2.get_counts(qc_ex2)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit without a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.ccx(1,2,0) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) IBMQ.disable_account() provider = IBMQ.enable_account('IBM_TOKEN') # provider = IBMQ.get_provider(hub='ibm-q-research') provider.backends() from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Let's get two quantum devices as an example backend_qx2 = provider.get_backend('ibmqx2') backend_vigo = provider.get_backend('ibmq_vigo') backend_monitor(backend_qx2) plot_error_map(backend_qx2) backend_monitor(backend_vigo) plot_error_map(backend_vigo) ![sdc2](jupyter_img/superdensecoding2.png)# Create a 5-qubit GHZ state (i.e. (|00000> + |11111>)/sqrt(2)) q5 = QuantumRegister(5,'q') c5 = ClassicalRegister(5,'c') ghz5= QuantumCircuit(q5,c5) ghz5.h(0) for i in range(1,5): ghz5.cx(0,i) ghz5.barrier() ghz5.measure(q5,c5) ghz5.draw(output='mpl') # Run the 5-qubit GHZ experiment on a 5-qubit device (try vigo) job_exp1 = execute(ghz5, backend=backend_vigo, shots=4096) job_monitor(job_exp1) # Grab experimental results result_vigo = job_exp1.result() counts_vigo = result_vigo.get_counts(ghz5) # Let's also try the same experiment on the 14-qubit device. job_exp2 = execute(ghz5, backend=provider.get_backend('ibmq_16_melbourne'), shots=4096) job_monitor(job_exp2) # Grab experimental results result_mel = job_exp2.result() counts_mel = result_mel.get_counts(ghz5) # Now, compare to theory by running it on qasm_simulator job_qasm = execute(ghz5,backend=backend_q) result_qasm = job_qasm.result() counts_qasm = result_qasm.get_counts(ghz5) # Plot both experimental and ideal results plot_histogram([counts_qasm,counts_vigo,counts_mel], color=['black','green','blue'], legend=['QASM','Vigo','Melbourne'],figsize = [20,8])
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit with the measurement in one go. qc_ex2 = QuantumCircuit(q3,c3,name="ex1") qc_ex2.ry(2*np.pi/3,0) qc_ex2.cx(0,1) qc_ex2.cx(1,2) qc_ex2.barrier() qc_ex2.measure(q3,c3) qc_ex2.draw(output='mpl')# Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_ex2 = execute(qc_ex2, backend_q, shots=4096) # Grab the results from the job. result_ex2 = job_ex2.result() plot_histogram(result_ex2.get_counts(qc_ex2)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit without a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.ccx(1,2,0) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') provider = IBMQ.get_provider(hub='ibm-q-research') provider.backends() from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Let's get two quantum devices as an example backend_qx2 = provider.get_backend('ibmqx2') backend_vigo = provider.get_backend('ibmq_vigo') backend_monitor(backend_qx2) plot_error_map(backend_qx2) backend_monitor(backend_vigo) plot_error_map(backend_vigo) # Create a 5-qubit GHZ state (i.e. (|00000> + |11111>)/sqrt(2)) q5 = QuantumRegister(5,'q') c5 = ClassicalRegister(5,'c') ghz5= QuantumCircuit(q5,c5) ghz5.h(0) for i in range(1,5): ghz5.cx(0,i) ghz5.barrier() ghz5.measure(q5,c5) ghz5.draw(output='mpl') # Run the 5-qubit GHZ experiment on a 5-qubit device (try vigo) job_exp1 = execute(ghz5, backend=backend_vigo, shots=4096) job_monitor(job_exp1) # Grab experimental results result_vigo = job_exp1.result() counts_vigo = result_vigo.get_counts(ghz5) # Let's also try the same experiment on the 15-qubit device. job_exp2 = execute(ghz5, backend=provider.get_backend('ibmq_16_melbourne'), shots=4096) job_monitor(job_exp2) # Grab experimental results result_mel = job_exp2.result() counts_mel = result_mel.get_counts(ghz5) # Now, compare to theory by running it on qasm_simulator job_qasm = execute(ghz5,backend=backend_q) result_qasm = job_qasm.result() counts_qasm = result_qasm.get_counts(ghz5) # Plot both experimental and ideal results plot_histogram([counts_qasm,counts_vigo,counts_mel], color=['black','green','blue'], legend=['QASM','Vigo','Melbourne'],figsize = [20,8]) %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Define a function that takes a QuantumCircuit (qc) # a qubit index (index) and a message string (msg) def encoding(qc, index, msg): if msg == 0: pass # To send 00 we do nothing elif msg == 1: qc.x(index) # To send 10 we apply an X-gate elif msg == 2: qc.z(index) # To send 01 we apply a Z-gate elif msg == 3: qc.z(index) # To send 11, we apply a Z-gate qc.x(index) # followed by an X-gate else: print("Invalid Message. Sending '00'.") def decoding(qc, a, b): qc.cx(a,b) qc.h(a) def qc_sdc(msg): # Create the quantum circuit with 2 qubits qc = QuantumCircuit(2) # First, an entangled pair is created between Alice and Bob # Bob has the first qubit, Alice has the second qubit. qc.h(0) qc.cx(0,1) qc.barrier() # Next, Bob encodes his message onto qubit 0. encoding(qc, 0, msg) qc.barrier() # Bob then sends his qubit to Alice. # After recieving qubit 0, Alice applies the recovery protocol: decoding(qc, 0, 1) # Finally, Alice measures her qubits to read Bob's message qc.measure_all() return qc backend_qasm = Aer.get_backend('qasm_simulator') rand_msg = np.random.randint(4) qc = qc_sdc(rand_msg) job_sim = execute(qc, backend_qasm, shots=1024) sim_result = job_sim.result() measurement_result = sim_result.get_counts(qc) print(measurement_result) plot_histogram(measurement_result) print("The random message was: %s" % rand_msg) qc.draw(output='mpl') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Run the superdense coding experiment on a 5-qubit device (try london) job_sdc = execute(qc, backend=provider.get_backend('ibmq_london'), shots=4096) job_monitor(job_sdc) experiment_result = job_sdc.result().get_counts(qc) print("The random message was: %s" % rand_msg) plot_histogram(experiment_result) def create_bell_pair(qc, a, b): # Creates a bell pair in qc using qubits a & b qc.h(a) # Put qubit a into state |+> qc.cx(a,b) # CNOT with a as control and b as target qr = QuantumRegister(3) # Protocol uses 3 qubits cr1 = ClassicalRegister(1) # and 2 classical bits cr2 = ClassicalRegister(1) # in 2 different registers teleportation = QuantumCircuit(qr, cr1, cr2) ## STEP 1 # Entangle qubits q1 and q2 create_bell_pair(teleportation, 1, 2) teleportation.barrier() # And view the circuit so far: teleportation.draw(output='mpl') ## STEP 2 # Bob performs his gates teleportation.cx(0,1) teleportation.h(0) teleportation.barrier() # And view the circuit so far: teleportation.draw(output='mpl') ## STEP 3 # Bob measures his part teleportation.measure(0,0) teleportation.measure(1,1) # And view the circuit so far: teleportation.draw(output='mpl') # This function takes a QuantumCircuit (qc), qubit index # and ClassicalRegisters (cr1 & cr2) to decide which gates to apply def alice_recover(qc, index, cr1, cr2): # Here we use c_if to control our gates with a classical # bit instead of a qubit qc.z(index).c_if(cr1, 1) # Apply gates if the registers qc.x(index).c_if(cr2, 1) # are in the state '1' ## STEP 4 # Alice perform recovery alice_recover(teleportation, 2, cr1, cr2) # And view the circuit so far: teleportation.draw(output='mpl') def random_init(qc,r1,r2,index): ## STEP 0 # Bob prepares a quantum state to teleport # by applying a random rotation around y and z qc.ry(r1,index) qc.rz(r2,index) qc.barrier() def quantum_teleportation(qc): ## STEP 1 # Entangle qubits q1 and q2 create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Bob performs his gates qc.cx(0,1) qc.h(0) qc.barrier() ## STEP 3 # Bob measures his part qc.measure(0,0) qc.measure(1,1) ## STEP 4 # Alice perform recovery alice_recover(qc, 2, cr1, cr2) qr = QuantumRegister(3) # Protocol uses 3 qubits cr1 = ClassicalRegister(1) # and 2 classical bits cr2 = ClassicalRegister(1) # in 2 different registers qc_teleportation = QuantumCircuit(qr, cr1, cr2) qc_ref = QuantumCircuit(qr) r1 = np.random.random()*np.pi r2 = np.random.random()*2*np.pi random_init(qc_ref, r1, r2, 0) random_init(qc_teleportation, r1, r2, 0) quantum_teleportation(qc_teleportation) qc_teleportation.draw(output='mpl') backend_sv = BasicAer.get_backend('statevector_simulator') in_vector = execute(qc_ref, backend_sv).result().get_statevector() out_vector = execute(qc_teleportation, backend_sv).result().get_statevector() plot_bloch_multivector(in_vector) plot_bloch_multivector(out_vector)
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np def encoding_x(qc): qc.cx(0,1) qc.cx(0,2) qc.barrier() def decoding_x(qc): qc.cx(0,2) qc.cx(0,1) qc.barrier() def random_init(qc,theta,phi,index): ## Prepare a random single-qubit state qc.ry(theta,index) qc.rz(phi,index) qc.barrier() def random_init_inv(qc,theta,phi,index): ## Inverse of the random single-qubit state preparation qc.rz(-phi,index) qc.ry(-theta,index) qc.barrier() q = QuantumRegister(3) c = ClassicalRegister(1) qec = QuantumCircuit(q,c) # Initialize the first qubit in a random state theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi random_init(qec,theta,phi,0) # QEC encoding for correcting a bit-flip error encoding_x(qec) # QEC decoding for correcting a bit-flip error decoding_x(qec) # Correction qec.ccx(1,2,0) # Insert inverse of the random initial state preparation # to check that the QEC has worked. random_init_inv(qec,theta,phi,0) qec.measure(q[0],c) qec.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_qec_ref = execute(qec, backend_q, shots=4096) # Grab the results from the job. result_qec_ref = job_qec_ref.result() plot_histogram(result_qec_ref.get_counts(qec)) # Define bit-flip errors with probability p def bitflip(qc,qubit,p): if np.random.binomial(1,p) == 1: qc.x(qubit) q = QuantumRegister(3) c = ClassicalRegister(1) qec = QuantumCircuit(q,c) # Initialize the first qubit in a random state theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi random_init(qec,theta,phi,0) # QEC encoding for correcting a bit-flip error encoding_x(qec) # Insert error p=1 bitflip(qec,0,p) # bitflip(qec,1,p) # bitflip(qec,2,p) qec.barrier() # QEC decoding for correcting a bit-flip error decoding_x(qec) # Correction qec.ccx(1,2,0) # Insert inverse of the random initial state preparation # to check that the QEC has worked. random_init_inv(qec,theta,phi,0) qec.measure(q[0],c) qec.draw(output='mpl') # Execute the circuit on the qasm simulator. job_qec = execute(qec, backend_q, shots=4096) # Grab the results from the job. result_qec = job_qec.result() plot_histogram(result_qec.get_counts(qec)) q = QuantumRegister(3) c = ClassicalRegister(1) qec = QuantumCircuit(q,c) # Initialize the first qubit in a random state theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi random_init(qec,theta,phi,0) # QEC encoding for correcting a bit-flip error encoding_x(qec) # Insert error p=1 bitflip(qec,0,p) bitflip(qec,1,p) # bitflip(qec,2,p) qec.barrier() # QEC decoding for correcting a bit-flip error decoding_x(qec) # Correction qec.ccx(1,2,0) # Insert inverse of the random initial state preparation # to check that the QEC has worked. random_init_inv(qec,theta,phi,0) qec.measure(q[0],c) qec.draw(output='mpl') # Execute the circuit on the qasm simulator. job_qec = execute(qec, backend_q, shots=4096) # Grab the results from the job. result_qec = job_qec.result() plot_histogram(result_qec.get_counts(qec)) q = QuantumRegister(3) c = ClassicalRegister(1) qec = QuantumCircuit(q,c) # Initialize the first qubit in a random state theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi random_init(qec,theta,phi,0) # QEC encoding for correcting a bit-flip error encoding_x(qec) # Insert error p=1 bitflip(qec,0,p) bitflip(qec,1,p) bitflip(qec,2,p) qec.barrier() # QEC decoding for correcting a bit-flip error decoding_x(qec) # Correction qec.ccx(1,2,0) # Insert inverse of the random initial state preparation # to check that the QEC has worked. random_init_inv(qec,theta,phi,0) qec.measure(q[0],c) qec.draw(output='mpl') # Execute the circuit on the qasm simulator. job_qec = execute(qec, backend_q, shots=4096) # Grab the results from the job. result_qec = job_qec.result() plot_histogram(result_qec.get_counts(qec)) import numpy as np from numpy import pi # importing Qiskit from qiskit import * from qiskit.visualization import * from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map qftc = QuantumCircuit(3) qftc.h(0) qftc.draw(output='mpl') qftc.cu1(2*pi/(2**2), 1, 0) # CROT from qubit 1 to qubit 0 qftc.draw(output='mpl') qftc.cu1(2*pi/(2**3), 2, 0) # CROT from qubit 1 to qubit 0 qftc.draw(output='mpl') qftc.h(1) qftc.cu1(2*pi/(2**2), 2, 1) # CROT from qubit 2 to qubit 1 qftc.h(2) qftc.draw(output='mpl') # Complete the QFT circuit by reordering qubits (by exchanging qubit 1 and 3) qftc.swap(0,2) qftc.draw(output='mpl') def qft_rotations(circuit, n): if n == 0: # Exit function if circuit is empty print("The number of qubits must be greater than 0") return circuit index = 0 circuit.h(index) # Apply the H-gate to the most significant qubit index += 1 n -= 1 for qubit in range(n): # Apply the controlled rotations conditioned on n-1 qubits # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cu1(2*pi/2**(2+qubit), index + qubit, 0) qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw(output = 'mpl') def qft_rotations(circuit, n, start): if n == 0: # Exit function if circuit is empty return circuit circuit.h(start) # Apply the H-gate to the most significant qubit if start == n-1: return circuit for qubit in range(n-1-start): # Apply the controlled rotations conditioned on n-1 qubits # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cu1(2*pi/2**(2+qubit), start + 1 + qubit, start) start += 1 circuit.barrier() # Apply QFT recursively qft_rotations(circuit, n, start) qc = QuantumCircuit(5) qft_rotations(qc,5,0) qc.draw(output = 'mpl')
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Exercise 1. # Create the measurement circuit ZZI = QuantumCircuit(4,1) ZZI.h(3) ZZI.cz(3,0) ZZI.cz(3,1) ZZI.h(3) ZZI.barrier() ZZI.measure(3,0) ZZI.draw(output='mpl') # Create the first test state, i.e. a|000> + b|111> ztest1 = QuantumCircuit(4) theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi ztest1.ry(theta,0) ztest1.rz(phi,0) ztest1.cx(0,1) ztest1.cx(0,2) ztest1.barrier() # Now add the measurement circuit ztest1 = ztest1 + ZZI ztest1.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_ztest1 = execute(ztest1, backend_q, shots=4096) # Grab the results from the job. result_ztest1 = job_ztest1.result() plot_histogram(result_ztest1.get_counts(ztest1)) # Create the second test state, i.e. a|010> + b|101> ztest2 = QuantumCircuit(4) theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi ztest2.ry(theta,0) ztest2.rz(phi,0) # Flip the second qubit ztest2.x(1) ztest2.cx(0,1) ztest2.cx(0,2) ztest2.barrier() # Now add the measurement circuit ztest2 = ztest2 + ZZI ztest2.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ztest2 = execute(ztest2, backend_q, shots=4096) # Grab the results from the job. result_ztest2 = job_ztest2.result() plot_histogram(result_ztest2.get_counts(ztest2)) # Exercise 2. # Create the measurement circuit XXI = QuantumCircuit(4,1) XXI.h(3) XXI.cx(3,0) XXI.cx(3,1) XXI.h(3) XXI.barrier() XXI.measure(3,0) XXI.draw(output='mpl') # Create the first test state, i.e. a|+++> + b|---> xtest1 = QuantumCircuit(4) theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi xtest1.ry(theta,0) xtest1.rz(phi,0) xtest1.cx(0,1) xtest1.cx(0,2) for i in range(3): xtest1.h(i) xtest1.barrier() # Now add the measurement circuit xtest1 = xtest1 + XXI xtest1.draw(output='mpl') # Execute the circuit on the qasm simulator. job_xtest1 = execute(xtest1, backend_q, shots=4096) # Grab the results from the job. result_xtest1 = job_xtest1.result() plot_histogram(result_xtest1.get_counts(xtest1)) # Create the first test state, i.e. a|+-+> + b|-+-> xtest2 = QuantumCircuit(4) theta = np.random.random()*np.pi phi = np.random.random()*2*np.pi xtest2.ry(theta,0) xtest2.rz(phi,0) # Flip the second qubit xtest2.x(1) xtest2.cx(0,1) xtest2.cx(0,2) for i in range(3): xtest2.h(i) xtest2.barrier() # Now add the measurement circuit xtest2 = xtest2 + XXI xtest2.draw(output='mpl') # Execute the circuit on the qasm simulator. job_xtest2 = execute(xtest2, backend_q, shots=4096) # Grab the results from the job. result_xtest2 = job_xtest2.result() plot_histogram(result_xtest2.get_counts(xtest2)) %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np def encoding_x(qc): qc.cx(0,1) qc.cx(0,2) qc.barrier() def measure_error(qc,error): if error == 'x': qc.h(3) qc.h(4) qc.cz(3,0) qc.cz(3,1) qc.cz(4,0) qc.cz(4,2) qc.h(3) qc.h(4) elif error == 'z': qc.h(3) qc.h(4) qc.cx(3,0) qc.cx(3,1) qc.cx(4,0) qc.cx(4,2) qc.h(3) qc.h(4) qc.barrier() # We don't need decoding for QEC, # but we will use it for checking the answer def decoding_x(qc): qc.cx(0,2) qc.cx(0,1) qc.barrier() def random_init(qc,theta,phi,index): ## Prepare a random single-qubit state qc.ry(theta,index) qc.rz(phi,index) qc.barrier() def random_init_inv(qc,theta,phi,index): ## Inverse of the random single-qubit state preparation qc.rz(-phi,index) qc.ry(-theta,index) qc.barrier() qec2x = QuantumCircuit(5,3) # Initialize the first qubit in a random state theta = np.random.random()*np.pi qec2x.ry(theta,0) # QEC encoding for correcting a bit-flip error encoding_x(qec2x) # Measurement measure_error(qec2x,'x') # Correction # Correct the first qubit qec2x.ccx(3,4,0) # Correct the second qubit qec2x.x(4) qec2x.ccx(3,4,1) qec2x.x(4) # Correct the third qubit qec2x.x(3) qec2x.ccx(3,4,2) qec2x.x(3) qec2x.barrier() # QEC decoding for correcting a bit-flip error decoding_x(qec2x) # Insert inverse of the random initial state preparation # to check that the QEC has worked. qec2x.ry(-theta,0) qec2x.measure(0,0) # Let's check the error syndrome qec2x.measure(3,1) qec2x.measure(4,2) qec2x.draw(output='mpl') # Execute the circuit on the qasm simulator. job_qec2x_ref = execute(qec2x, backend_q, shots=4096) # Grab the results from the job. result_qec2x_ref = job_qec2x_ref.result() plot_histogram(result_qec2x_ref.get_counts(qec2x)) # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Let's also try the same experiment on the 15-qubit device. job_exp_qec2x = execute(qec2x, backend=provider.get_backend('ibmq_valencia'), shots=8192) job_monitor(job_exp_qec2x) # Grab experimental results result_exp_qec2x = job_exp_qec2x.result() plot_histogram(result_exp_qec2x.get_counts(qec2x)) # Define bit-flip errors with probability p def bitflip(qc,qubit,p): if np.random.binomial(1,p) == 1: qc.x(qubit) qec2x = QuantumCircuit(5,3) # Initialize the first qubit in a random state theta = np.random.random()*np.pi qec2x.ry(theta,0) # QEC encoding for correcting a bit-flip error encoding_x(qec2x) # Insert error p=1 # bitflip(qec2x,0,p) # bitflip(qec2x,1,p) bitflip(qec2x,2,p) qec2x.barrier() # Measurement measure_error(qec2x,'x') # Correction # Correct the first qubit qec2x.ccx(3,4,0) # Correct the second qubit qec2x.x(4) qec2x.ccx(3,4,1) qec2x.x(4) # Correct the third qubit qec2x.x(3) qec2x.ccx(3,4,2) qec2x.x(3) qec2x.barrier() # QEC decoding for correcting a bit-flip error decoding_x(qec2x) # Insert inverse of the random initial state preparation # to check that the QEC has worked. qec2x.ry(-theta,0) qec2x.measure(0,0) # Let's check the error syndrome qec2x.measure(3,1) qec2x.measure(4,2) qec2x.draw(output='mpl') # Execute the circuit on the qasm simulator. job_qec2x = execute(qec2x, backend_q, shots=4096) # Grab the results from the job. result_qec2x = job_qec2x.result() plot_histogram(result_qec2x.get_counts(qec2x)) from qiskit.compiler import transpile from qiskit.transpiler import PassManager, Layout display(plot_error_map(provider.get_backend('ibmqx2'))) display(plot_error_map(provider.get_backend('ibmq_burlington'))) # Create a dummy circuit for default transpiler demonstration qc = QuantumCircuit(4) qc.h(0) qc.swap(0,1) qc.cx(1,0) qc.s(3) qc.x(3) qc.h(3) qc.h(0) qc.cx(0,2) qc.ccx(0,1,2) qc.h(0) print('Original circuit') display(qc.draw(output='mpl')) # Transpile the circuit to run on ibmqx2 qt_qx2 = transpile(qc,provider.get_backend('ibmqx2')) print('Transpiled circuit for ibmqx2') display(qt_qx2.draw(output='mpl')) # Transpile the circuit to run on ibmq_burlington qt_bu = transpile(qc,provider.get_backend('ibmq_burlington')) print('Transpiled circuit for ibmqx_Burlington') display(qt_bu.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations for ibmqx2 = %s" % qt_qx2.size()) print("Number of operations for ibmq_burlington = %s \n" % qt_bu.size()) # Circuit depth print("Circuit depth for ibmqx2 = %s" % qt_qx2.depth()) print("Circuit depth for ibmq_burlington = %s \n" % qt_bu.depth()) # Number of qubits print("Number of qubits for ibmqx2 = %s" % qt_qx2.width()) print("Number of qubits for ibmq_burlington = %s \n" % qt_bu.width()) # Breakdown of operations by type print("Operations for ibmqx2: %s" % qt_qx2.count_ops()) print("Operations for ibmq_burlington: %s \n" % qt_bu.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits for ibmqx2 = %s" % qt_qx2.num_tensor_factors()) print("Number of unentangled subcircuits for ibmq_burlington = %s" % qt_bu.num_tensor_factors()) qr = QuantumRegister(4,'q') cr = ClassicalRegister(4,'c') qc_test = QuantumCircuit(qr,cr) qc_test.h(0) for i in range(3): qc_test.cx(i,i+1) qc_test.barrier() qc_test.measure(qr,cr) qc_test.draw(output='mpl') qc_t = transpile(qc_test, backend = provider.get_backend('ibmq_london')) # Display transpiled circuit display(qc_t.draw(output='mpl')) # Display the qubit layout display(plot_error_map(provider.get_backend('ibmq_london'))) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Execute the circuit on the qasm simulator. job_test = execute(qc_test, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test) # Customize the layout layout = Layout({qr[0]: 4, qr[1]: 3, qr[2]: 1, qr[3]:0}) # Map it onto 5 qubit backend ibmqx2 qc_test_new = transpile(qc_test, backend = provider.get_backend('ibmq_london'), initial_layout=layout, basis_gates=['u1','u2','u3','cx']) display(qc_test_new.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_test_new.size()) # Circuit depth print("Circuit depth = %s" % qc_test_new.depth()) # Execute the circuit on the qasm simulator. job_test_new = execute(qc_test_new, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test_new) # Now, compare the two result_test = job_test.result() result_test_new = job_test_new.result() # Plot both experimental and ideal results plot_histogram([result_test.get_counts(qc_test),result_test_new.get_counts(qc_test_new)], color=['green','blue'],legend=['default','custom'],figsize = [20,8]) # Apply 4-qubit controlled x gate qr = QuantumRegister(5,'q') qc = QuantumCircuit(qr) qc.h(0) qc.h(1) qc.h(3) qc.ccx(0,1,2) qc.ccx(2,3,4) qc.ccx(0,1,2) display(qc.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s \n" % qc.size()) # Count different types of operations print("Operation counts = %s \n" % qc.count_ops()) # Circuit depth print("Circuit depth = %s" % qc.depth()) qc_t = transpile(qc, provider.get_backend('ibmq_valencia')) display(qc_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Transpile many times (20 times in this example) and pick the best one trial = 20 # Use ibmq_valencia for example backend_exp = provider.get_backend('ibmq_valencia') tcircs0 = transpile([qc]*trial, backend_exp, optimization_level=0) tcircs1 = transpile([qc]*trial, backend_exp, optimization_level=1) tcircs2 = transpile([qc]*trial, backend_exp, optimization_level=2) tcircs3 = transpile([qc]*trial, backend_exp, optimization_level=3) import matplotlib.pyplot as plt num_cx0 = [c.count_ops()['cx'] for c in tcircs0] num_cx1 = [c.count_ops()['cx'] for c in tcircs1] num_cx2 = [c.count_ops()['cx'] for c in tcircs2] num_cx3 = [c.count_ops()['cx'] for c in tcircs3] num_tot0 = [c.size() for c in tcircs0] num_tot1 = [c.size() for c in tcircs1] num_tot2 = [c.size() for c in tcircs2] num_tot3 = [c.size() for c in tcircs3] num_depth0 = [c.depth() for c in tcircs0] num_depth1 = [c.depth() for c in tcircs1] num_depth2 = [c.depth() for c in tcircs2] num_depth3 = [c.depth() for c in tcircs3] plt.rcParams.update({'font.size': 16}) # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of cx gates') plt.show() # Plot total number of gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_tot0)),num_tot0,'r',label='level 0') plt.plot(range(len(num_tot1)),num_tot1,'b',label='level 1') plt.plot(range(len(num_tot2)),num_tot2,'g',label='level 2') plt.plot(range(len(num_tot3)),num_tot3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of total gates') plt.show() # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_depth0)),num_depth0,'r',label='level 0') plt.plot(range(len(num_depth1)),num_depth1,'b',label='level 1') plt.plot(range(len(num_depth2)),num_depth2,'g',label='level 2') plt.plot(range(len(num_depth3)),num_depth3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('Circuit depth') plt.show() print('Opt0: Minimum # of cx gates = %s' % min(num_cx0)) print('Opt0: The best circuit is the circut %s \n' % num_cx0.index(min(num_cx0))) print('Opt1: Minimum # of cx gates = %s' % min(num_cx1)) print('Opt1: The best circuit is the circut %s \n' % num_cx1.index(min(num_cx1))) print('Opt2: Minimum # of cx gates = %s' % min(num_cx2)) print('Opt2: The best circuit is the circut %s \n' % num_cx2.index(min(num_cx2))) print('Opt3: Minimum # of cx gates = %s' % min(num_cx3)) print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3)))
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * from qiskit.circuit import Parameter # Simple example # Define two parameters, t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') # Build a 1-qubit circuit qc = QuantumCircuit(1, 1) # First parameter, t1, is used for a single qubit rotation of a controlled qubit qc.ry(theta1,0) qc.rz(theta2,0) qc.barrier() qc.measure(0, 0) qc.draw(output='mpl') theta1_range = np.linspace(0, 2 * np.pi, 20) theta2_range = np.linspace(0, np.pi, 2) circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val2 in theta2_range for theta_val1 in theta1_range ] # Visualize several circuits to check that correct circuits are generated correctly. display(circuits[0].draw(output='mpl')) display(circuits[1].draw(output='mpl')) display(circuits[20].draw(output='mpl')) # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts))) plt.show() # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Execute multiple circuits job_exp = execute(qc, backend=provider.get_backend('ibmq_essex'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Monitor job status job_monitor(job_exp) # Store all counts counts_exp = [job_exp.result().get_counts(i) for i in range(len(job_exp.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.rcParams.update({'font.size': 16}) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts)),'r',label='Simulation') plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts_exp: (counts_exp.get('0',0)-counts_exp.get('1',1))/8192,counts_exp)), 'b',label='Experiment') plt.legend(loc='best') plt.show() def swaptest(qc,ancilla,qubit1,qubit2): qc.h(ancilla) qc.cswap(ancilla,qubit1,qubit2) qc.h(ancilla) qr = QuantumRegister(5,'q') cr = ClassicalRegister(2,'c') qc = QuantumCircuit(qr,cr,name='qclassifier') # Put equal weights on the training data qc.h(1) # Prepare the test data quantum state theta1 = Parameter('t1') qc.rx(theta1,4) # Prepare the training data quantum state qc.h(2) qc.rz(-np.pi,2) qc.s(2) qc.cz(1,2) # Put the label qc.cx(1,3) qc.barrier() # Perform swap-test swaptest(qc,0,2,4) qc.barrier() # Measurement qc.measure(0,0) qc.measure(3,1) qc.draw(output='mpl') # Select the range of parameters theta1_range = np.linspace(0, 2 * np.pi, 20) # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots = 8192, parameter_binds=[{theta1: theta_val1} for theta_val1 in theta1_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Let's see how the 'counts' looks like counts # Plot to visualize the result plt.figure(figsize=(12,6)) plt.rcParams.update({'font.size': 20}) # How to extract <ZZ>? Answer: <ZZ> = P(00) - P(01) - P(10) + P(11) plt.plot(theta1_range, list(map(lambda counts: (counts.get('00')-counts.get('10')-counts.get('01')+counts.get('11'))/8192, counts))) plt.rc('text', usetex=True) plt.xlabel(r'$\theta$ (Parameter for test data)') plt.ylabel(r'$ \langle Z\otimes Z \rangle $') plt.show() # Let's also try the same experiment on the 5-qubit device. # Select the range of parameters theta1_range = np.linspace(0, 2 * np.pi, 20) # Execute multiple circuits job_classifier = execute(qc, backend=provider.get_backend('ibmq_essex'), shots = 8192, parameter_binds=[{theta1: theta_val1} for theta_val1 in theta1_range]) # Monitor job status job_monitor(job_classifier) # Store all counts counts_exp = [job_classifier.result().get_counts(i) for i in range(len(job_classifier.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.rcParams.update({'font.size': 20}) # Plot theory plt.plot(theta1_range, list(map(lambda counts: (counts.get('00')-counts.get('10')-counts.get('01')+counts.get('11'))/8192, counts)),'r',label='Theory') # Plot experimental result plt.plot(theta1_range, list(map(lambda counts_exp: 4*(counts_exp.get('00')-counts_exp.get('10') -counts_exp.get('01')+counts_exp.get('11'))/8192,counts_exp)),'b', label='Exp. (scaled by a factor of 4)') plt.rc('text', usetex=True) plt.xlabel(r'$\theta$ (Parameter for test data)') plt.ylabel(r'$ \langle Z\otimes Z \rangle $') plt.legend(loc='best') plt.show()
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * import numpy as np # Create a quantum register with 2 qubits q = QuantumRegister(2,'q') # Form a quantum circuit # Note that the circuit name is optional qc = QuantumCircuit(q,name="first_qc") # Display the quantum circuit qc.draw() # Add a Hadamard gate on qubit 0, putting this in superposition. qc.h(0) # Add a CX (CNOT) gate on control qubit 0 # and target qubit 1 to create an entangled state. qc.cx(0, 1) qc.draw() # Create a classical register with 2 bits c = ClassicalRegister(2,'c') meas = QuantumCircuit(q,c,name="first_m") meas.barrier(q) meas.measure(q, c) meas.draw() # Quantum circuits can be added with + operations # Add two pre-defined circuits qc_all=qc+meas qc_all.draw() # Draw the quantum circuit in a different (slightly better) format qc_all.draw(output='mpl') # Create the quantum circuit with the measurement in one go. qc_all = QuantumCircuit(q,c,name="2q_all") qc_all.h(0) qc_all.cx(0,1) qc_all.barrier() qc_all.measure(0,0) qc_all.measure(1,1) qc_all.draw(output='mpl') # Use Aer's qasm_simulator backend_q = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. job_sim1 = execute(qc_all, backend_q, shots=4096) job_sim1.status() # Grab the results from the job. result_sim1 = job_sim1.result() result_sim1 result_sim1.get_counts(qc_all) plot_histogram(result_sim1.get_counts(qc_all)) # Use Aer's statevector_simulator backend_sv = Aer.get_backend('statevector_simulator') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim2 = execute(qc, backend_sv) # Grab the results from the job. result_sim2 = job_sim2.result() # Output the entire result result_sim2 # See output state as a vector outputstate = result_sim2.get_statevector(qc, decimals=5) print(outputstate) # Visualize density matrix plot_state_city(outputstate) # Create the quantum circuit with the measurement in one go. qc_3 = QuantumCircuit(3,3,name="qc_bloch") qc_3.x(1) qc_3.h(2) qc_3.barrier() qc_3.draw(output='mpl') # Execute the circuit on the statevector simulator. # It is important to note that the measurement has been excluded job_sim_bloch = execute(qc_3, backend_sv) # Grab the results from the job. result_sim_bloch = job_sim_bloch.result() # See output state as a vector output_bloch = result_sim_bloch.get_statevector(qc_3, decimals=5) # Draw on the Bloch sphere plot_bloch_multivector(output_bloch) # Use Aer's unitary_simulator backend_u = Aer.get_backend('unitary_simulator') # Execute the circuit on the unitary simulator. job_usim = execute(qc, backend_u) # Grab the results from the job. result_usim = job_usim.result() result_usim # Output the unitary matrix unitary = result_usim.get_unitary(qc) print('%s\n' % unitary) # Create the quantum circuit with the measurement in one go. qc_ex1 = QuantumCircuit(q,c,name="ex1") # Put the first qubit in equal superposition qc_ex1.h(0) # Rest of the circuit qc_ex1.x(1) qc_ex1.cx(0,1) qc_ex1.barrier() qc_ex1.measure(0,0) qc_ex1.measure(1,1) qc_ex1.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex1 = execute(qc_ex1, backend_q, shots=4096) job_ex1.status() # Grab the results from the job. result_ex1 = job_ex1.result() result_ex1.get_counts(qc_ex1) plot_histogram(result_ex1.get_counts(qc_ex1)) # Or get the histogram in one go plot_histogram(job_ex1.result().get_counts(qc_ex1)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit with the measurement in one go. qc_ex2 = QuantumCircuit(q3,c3,name="ex1") qc_ex2.ry(2*np.pi/3,0) qc_ex2.cx(0,1) qc_ex2.cx(1,2) qc_ex2.barrier() qc_ex2.measure(q3,c3) qc_ex2.draw(output='mpl') # Execute the circuit on the qasm simulator. job_ex2 = execute(qc_ex2, backend_q, shots=4096) # Grab the results from the job. result_ex2 = job_ex2.result() plot_histogram(result_ex2.get_counts(qc_ex2)) # Create a quantum register with 3 qubits q3 = QuantumRegister(3,'q') # Create a classical register with 3 qubits c3 = ClassicalRegister(3,'c') # Create the quantum circuit without a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) # Now, add a Toffoli gate qc_toff = QuantumCircuit(q3,c3,name="ex1") qc_toff.ry(2*np.pi/3,0) qc_toff.h(1) qc_toff.h(2) qc_toff.ccx(1,2,0) qc_toff.barrier() qc_toff.measure(q3,c3) qc_toff.draw(output='mpl') # Execute the circuit on the qasm simulator. job_toff = execute(qc_toff, backend_q, shots=4096) # Grab the results from the job. result_toff = job_toff.result() plot_histogram(result_toff.get_counts(qc_toff)) IBMQ.disable_account() provider = IBMQ.enable_account('IBM_TOKEN') # provider = IBMQ.get_provider(hub='ibm-q-research') provider.backends() from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Let's get two quantum devices as an example backend_qx2 = provider.get_backend('ibmqx2') backend_vigo = provider.get_backend('ibmq_vigo') backend_monitor(backend_qx2) plot_error_map(backend_qx2) backend_monitor(backend_vigo) plot_error_map(backend_vigo) #![sdc2](jupyter_img/superdensecoding2.png) # Create a 5-qubit GHZ state (i.e. (|00000> + |11111>)/sqrt(2)) q5 = QuantumRegister(5,'q') c5 = ClassicalRegister(5,'c') ghz5= QuantumCircuit(q5,c5) ghz5.h(0) for i in range(1,5): ghz5.cx(0,i) ghz5.barrier() ghz5.measure(q5,c5) ghz5.draw(output='mpl') # Run the 5-qubit GHZ experiment on a 5-qubit device (try vigo) job_exp1 = execute(ghz5, backend=backend_vigo, shots=4096) job_monitor(job_exp1) # Grab experimental results result_vigo = job_exp1.result() counts_vigo = result_vigo.get_counts(ghz5) # Let's also try the same experiment on the 14-qubit device. job_exp2 = execute(ghz5, backend=provider.get_backend('ibmq_16_melbourne'), shots=4096) job_monitor(job_exp2) # Grab experimental results result_mel = job_exp2.result() counts_mel = result_mel.get_counts(ghz5) # Now, compare to theory by running it on qasm_simulator job_qasm = execute(ghz5,backend=backend_q) result_qasm = job_qasm.result() counts_qasm = result_qasm.get_counts(ghz5) # Plot both experimental and ideal results plot_histogram([counts_qasm,counts_vigo,counts_mel], color=['black','green','blue'], legend=['QASM','Vigo','Melbourne'],figsize = [20,8]) %matplotlib inline import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.visualization import * from qiskit.circuit import Parameter # Simple example # Define two parameters, t1 and t2 theta1 = Parameter('t1') theta2 = Parameter('t2') # Build a 1-qubit circuit qc = QuantumCircuit(1, 1) # First parameter, t1, is used for a single qubit rotation of a controlled qubit qc.ry(theta1,0) qc.rz(theta2,0) qc.barrier() qc.measure(0, 0) qc.draw(output='mpl') theta1_range = np.linspace(0, 2 * np.pi, 20) theta2_range = np.linspace(0, np.pi, 2) circuits = [qc.bind_parameters({theta1: theta_val1, theta2: theta_val2}) for theta_val2 in theta2_range for theta_val1 in theta1_range ] # Visualize several circuits to check that correct circuits are generated correctly. display(circuits[0].draw(output='mpl')) display(circuits[1].draw(output='mpl')) display(circuits[20].draw(output='mpl')) # Execute multiple circuits job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Store all counts counts = [job.result().get_counts(i) for i in range(len(job.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts))) plt.show() # IBMQ.disable_account() provider = IBMQ.enable_account('TOKEN') from qiskit.tools.monitor import backend_overview, backend_monitor, job_monitor from qiskit.tools.visualization import plot_gate_map, plot_error_map # Retrieve IBM Quantum device information backend_overview() # Execute multiple circuits job_exp = execute(qc, backend=provider.get_backend('ibmq_essex'), shots = 8192, parameter_binds=[{theta1: theta_val1, theta2: theta_val2} for theta_val2 in theta2_range for theta_val1 in theta1_range]) # Monitor job status job_monitor(job_exp) # Store all counts counts_exp = [job_exp.result().get_counts(i) for i in range(len(job_exp.result().results))] # Plot to visualize the result plt.figure(figsize=(12,6)) plt.rcParams.update({'font.size': 16}) plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts: (counts.get('0',0)-counts.get('1',1))/8192,counts)),'r',label='Simulation') plt.plot(range(len(theta1_range)*len(theta2_range)), list(map(lambda counts_exp: (counts_exp.get('0',0)-counts_exp.get('1',1))/8192,counts_exp)), 'b',label='Experiment') plt.legend(loc='best') plt.show() from qiskit.compiler import transpile from qiskit.transpiler import PassManager, Layout display(plot_error_map(provider.get_backend('ibmqx2'))) display(plot_error_map(provider.get_backend('ibmq_burlington'))) # Create a dummy circuit for default transpiler demonstration qc = QuantumCircuit(4) qc.h(0) qc.swap(0,1) qc.cx(1,0) qc.s(3) qc.x(3) qc.h(3) qc.h(0) qc.cx(0,2) qc.ccx(0,1,2) qc.h(0) print('Original circuit') display(qc.draw(output='mpl')) # Transpile the circuit to run on ibmqx2 qt_qx2 = transpile(qc,provider.get_backend('ibmqx2')) print('Transpiled circuit for ibmqx2') display(qt_qx2.draw(output='mpl')) # Transpile the circuit to run on ibmq_burlington qt_bu = transpile(qc,provider.get_backend('ibmq_burlington')) print('Transpiled circuit for ibmqx_Burlington') display(qt_bu.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations for ibmqx2 = %s" % qt_qx2.size()) print("Number of operations for ibmq_burlington = %s \n" % qt_bu.size()) # Circuit depth print("Circuit depth for ibmqx2 = %s" % qt_qx2.depth()) print("Circuit depth for ibmq_burlington = %s \n" % qt_bu.depth()) # Number of qubits print("Number of qubits for ibmqx2 = %s" % qt_qx2.width()) print("Number of qubits for ibmq_burlington = %s \n" % qt_bu.width()) # Breakdown of operations by type print("Operations for ibmqx2: %s" % qt_qx2.count_ops()) print("Operations for ibmq_burlington: %s \n" % qt_bu.count_ops()) # Number of unentangled subcircuits in this circuit. # In principle, each subcircuit can be executed on a different quantum device. print("Number of unentangled subcircuits for ibmqx2 = %s" % qt_qx2.num_tensor_factors()) print("Number of unentangled subcircuits for ibmq_burlington = %s" % qt_bu.num_tensor_factors()) qr = QuantumRegister(4,'q') cr = ClassicalRegister(4,'c') qc_test = QuantumCircuit(qr,cr) qc_test.h(0) for i in range(3): qc_test.cx(i,i+1) qc_test.barrier() qc_test.measure(qr,cr) qc_test.draw(output='mpl') qc_t = transpile(qc_test, backend = provider.get_backend('ibmq_london')) # Display transpiled circuit display(qc_t.draw(output='mpl')) # Display the qubit layout display(plot_error_map(provider.get_backend('ibmq_london'))) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Execute the circuit on the qasm simulator. job_test = execute(qc_test, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test) # Customize the layout layout = Layout({qr[0]: 4, qr[1]: 3, qr[2]: 1, qr[3]:0}) # Map it onto 5 qubit backend ibmqx2 qc_test_new = transpile(qc_test, backend = provider.get_backend('ibmq_london'), initial_layout=layout, basis_gates=['u1','u2','u3','cx']) display(qc_test_new.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_test_new.size()) # Circuit depth print("Circuit depth = %s" % qc_test_new.depth()) # Execute the circuit on the qasm simulator. job_test_new = execute(qc_test_new, provider.get_backend('ibmq_london'), shots=8192) job_monitor(job_test_new) # Now, compare the two result_test = job_test.result() result_test_new = job_test_new.result() # Plot both experimental and ideal results plot_histogram([result_test.get_counts(qc_test),result_test_new.get_counts(qc_test_new)], color=['green','blue'],legend=['default','custom'],figsize = [20,8]) # Apply 4-qubit controlled x gate qr = QuantumRegister(5,'q') qc = QuantumCircuit(qr) qc.h(0) qc.h(1) qc.h(3) qc.ccx(0,1,2) qc.ccx(2,3,4) qc.ccx(0,1,2) display(qc.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s \n" % qc.size()) # Count different types of operations print("Operation counts = %s \n" % qc.count_ops()) # Circuit depth print("Circuit depth = %s" % qc.depth()) qc_t = transpile(qc, provider.get_backend('ibmq_valencia')) display(qc_t.draw(output='mpl')) # Print out some circuit properties # Total nunmber of operations print("Number of operations = %s" % qc_t.size()) # Circuit depth print("Circuit depth = %s" % qc_t.depth()) # Transpile many times (20 times in this example) and pick the best one trial = 20 # Use ibmq_valencia for example backend_exp = provider.get_backend('ibmq_valencia') tcircs0 = transpile([qc]*trial, backend_exp, optimization_level=0) tcircs1 = transpile([qc]*trial, backend_exp, optimization_level=1) tcircs2 = transpile([qc]*trial, backend_exp, optimization_level=2) tcircs3 = transpile([qc]*trial, backend_exp, optimization_level=3) import matplotlib.pyplot as plt num_cx0 = [c.count_ops()['cx'] for c in tcircs0] num_cx1 = [c.count_ops()['cx'] for c in tcircs1] num_cx2 = [c.count_ops()['cx'] for c in tcircs2] num_cx3 = [c.count_ops()['cx'] for c in tcircs3] num_tot0 = [c.size() for c in tcircs0] num_tot1 = [c.size() for c in tcircs1] num_tot2 = [c.size() for c in tcircs2] num_tot3 = [c.size() for c in tcircs3] num_depth0 = [c.depth() for c in tcircs0] num_depth1 = [c.depth() for c in tcircs1] num_depth2 = [c.depth() for c in tcircs2] num_depth3 = [c.depth() for c in tcircs3] plt.rcParams.update({'font.size': 16}) # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_cx0)),num_cx0,'r',label='level 0') plt.plot(range(len(num_cx1)),num_cx1,'b',label='level 1') plt.plot(range(len(num_cx2)),num_cx2,'g',label='level 2') plt.plot(range(len(num_cx3)),num_cx3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of cx gates') plt.show() # Plot total number of gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_tot0)),num_tot0,'r',label='level 0') plt.plot(range(len(num_tot1)),num_tot1,'b',label='level 1') plt.plot(range(len(num_tot2)),num_tot2,'g',label='level 2') plt.plot(range(len(num_tot3)),num_tot3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('# of total gates') plt.show() # Plot the number of CNOT gates plt.figure(figsize=(12,6)) plt.plot(range(len(num_depth0)),num_depth0,'r',label='level 0') plt.plot(range(len(num_depth1)),num_depth1,'b',label='level 1') plt.plot(range(len(num_depth2)),num_depth2,'g',label='level 2') plt.plot(range(len(num_depth3)),num_depth3,'k',label='level 3') plt.legend(loc='upper left') plt.xlabel('Random trial') plt.ylabel('Circuit depth') plt.show() print('Opt0: Minimum # of cx gates = %s' % min(num_cx0)) print('Opt0: The best circuit is the circut %s \n' % num_cx0.index(min(num_cx0))) print('Opt1: Minimum # of cx gates = %s' % min(num_cx1)) print('Opt1: The best circuit is the circut %s \n' % num_cx1.index(min(num_cx1))) print('Opt2: Minimum # of cx gates = %s' % min(num_cx2)) print('Opt2: The best circuit is the circut %s \n' % num_cx2.index(min(num_cx2))) print('Opt3: Minimum # of cx gates = %s' % min(num_cx3)) print('Opt3: The best circuit is the circut %s' % num_cx3.index(min(num_cx3)))
https://github.com/dkp-quantum/Tutorials
dkp-quantum
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() import scipy from scipy.stats import unitary_group u = unitary_group.rvs(2) print(u) qc = QuantumCircuit(2) qc.iso(u, [0], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(2) import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (2): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(2) qc.diagonal(c2, [0]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(4) print(u) qc = QuantumCircuit(4) qc.iso(u, [0,1], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(4)/2 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (4): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(4) qc.diagonal(c2, [0, 1]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(8) print(u) qc = QuantumCircuit(4) qc.iso(u, [0, 1, 2], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(8)/3 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (8): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(4) qc.diagonal(c2, [0, 1, 2]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(16) print(u) qc = QuantumCircuit(4) qc.iso(u, [0, 1, 2, 3], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(16)/4 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (16): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(4) qc.diagonal(c2, [0, 1, 2, 3]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(32) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(32)/5 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (32): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(64) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4, 5], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(64)/6 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (64): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4, 5]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(128) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4, 5, 6], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(128)/7 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (128): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(256) print(u) qc = QuantumCircuit(8) qc.iso(u, [0, 1, 2, 3, 4, 5, 6, 7], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(256)/8 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (256): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(8) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6, 7]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(512) print(u) qc = QuantumCircuit(16) qc.iso(u, [0, 1, 2, 3, 4, 5, 6, 7, 8], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(512)/9 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (512): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(16) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6, 7, 8]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy.stats import unitary_group u = unitary_group.rvs(1024) print(u) qc = QuantumCircuit(16) qc.iso(u, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], []) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc) import scipy from scipy import linalg h = scipy.linalg.hadamard(1024)/10 import numpy as np u1 = np.dot(h, u) u2 = np.dot(u1, h) c2 = [] for i in range (1024): c2.append(u2[i,i]) print(c2) qc = QuantumCircuit(16) qc.diagonal(c2, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) qc = transpile(qc, basis_gates = ['u3', 'cx'], seed_transpiler=0, optimization_level=3) circuit_drawer(qc)
https://github.com/dkp-quantum/Tutorials
dkp-quantum
import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import qiskit as qk qr0 = qk.QuantumRegister(1,name='qb') # qb for "qubit", but the name is optional cr0 = qk.ClassicalRegister(1,name='b') # b for "bit", but the name is optional qc0 = qk.QuantumCircuit(qr0,cr0) qc0.draw(output='mpl') # this is to visualize the circuit. Remove the output option for a different style. from qiskit.tools.visualization import plot_bloch_vector import math theta = math.pi/2 # You can try to change the parameters theta and phi phi = math.pi/4 # to see how the vector moves on the sphere plot_bloch_vector([math.cos(phi)*math.sin(theta),math.sin(phi)*math.sin(theta),math.cos(theta)]) # Entries of the # input vector are # coordinates [x,y,z] qc0.measure(qr0[0],cr0[0]) qc0.draw(output='mpl') backend = qk.Aer.get_backend('qasm_simulator') job = qk.execute(qc0, backend, shots=1024) result = job.result() counts = result.get_counts() print(counts) qc1 = qk.QuantumCircuit(qr0,cr0) qc1.x(qr0[0]) # A X gate targeting the first (and only) qubit in register qr0 qc1.measure(qr0[0],cr0[0]) qc1.draw(output='mpl') backend = qk.Aer.get_backend('qasm_simulator') job1 = qk.execute(qc1, backend, shots=1024) result1 = job1.result() counts1 = result1.get_counts() print(counts1) from qiskit.tools.visualization import plot_bloch_multivector vec_backend = qk.Aer.get_backend('statevector_simulator') result_vec0 = qk.execute(qc0, vec_backend).result() result_vec1 = qk.execute(qc1, vec_backend).result() psi0 = result_vec0.get_statevector() psi1 = result_vec1.get_statevector() plot_bloch_multivector(psi0) plot_bloch_multivector(psi1) qc2 = qk.QuantumCircuit(qr0,cr0) qc2.h(qr0[0]) qc2.measure(qr0[0],cr0[0]) qc2.draw(output='mpl') job2 = qk.execute(qc2, backend, shots=1024) result2 = job2.result() counts2 = result2.get_counts() print(counts2) qc2_bis = qk.QuantumCircuit(qr0,cr0) qc2_bis.h(qr0[0]) result_vec2 = qk.execute(qc2_bis, vec_backend).result() psi2 = result_vec2.get_statevector() plot_bloch_multivector(psi2) qc3 = qk.QuantumCircuit(qr0,cr0) qc3.h(qr0[0]) qc3.s(qr0[0]) # Use sdg instead of s for the adjoint qc3.measure(qr0[0],cr0[0]) qc3.draw(output='mpl') job3 = qk.execute(qc3, backend, shots=1024) result3 = job3.result() counts3 = result3.get_counts() print(counts3) qc3_bis = qk.QuantumCircuit(qr0,cr0) qc3_bis.h(qr0[0]) qc3_bis.s(qr0[0]) result_vec3 = qk.execute(qc3_bis, vec_backend).result() psi3 = result_vec3.get_statevector() plot_bloch_multivector(psi3) qc4 = qk.QuantumCircuit(qr0,cr0) qc4.h(qr0[0]) qc4.t(qr0[0]) # Use tdg instead of t for the adjoint qc4.measure(qr0[0],cr0[0]) qc4.draw(output='mpl') job4 = qk.execute(qc4, backend, shots=1024) result4 = job4.result() counts4 = result4.get_counts() print(counts4) qc4_bis = qk.QuantumCircuit(qr0,cr0) qc4_bis.h(qr0[0]) qc4_bis.t(qr0[0]) result_vec4 = qk.execute(qc4_bis, vec_backend).result() psi4 = result_vec4.get_statevector() plot_bloch_multivector(psi4) lmbd = 1.2 # Change this value to rotate the output vector on the equator of the Bloch sphere qc5 = qk.QuantumCircuit(qr0,cr0) qc5.h(qr0[0]) qc5.u1(lmbd, qr0[0]) qc5.draw(output='mpl') result_vec5 = qk.execute(qc5, vec_backend).result() psi5 = result_vec5.get_statevector() plot_bloch_multivector(psi5) qc6 = qk.QuantumCircuit(qr0,cr0) qc6.u2(0,math.pi, qr0[0]) result_vec6 = qk.execute(qc6, vec_backend).result() psi6 = result_vec6.get_statevector() plot_bloch_multivector(psi6) theta = 0.5 phi = math.pi/4 lmb = math.pi/8 qc7 = qk.QuantumCircuit(qr0,cr0) qc7.u3(theta,phi, lmb, qr0[0]) result_vec7 = qk.execute(qc7, vec_backend).result() psi7 = result_vec7.get_statevector() plot_bloch_multivector(psi7) qr = qk.QuantumRegister(2,name='qr') # we need a 2-qubit register now cr = qk.ClassicalRegister(2,name='cr') cnot_example = qk.QuantumCircuit(qr,cr) cnot_example.x(qr[0]) cnot_example.cx(qr[0],qr[1]) # First entry is control, the second is the target cnot_example.measure(qr[0],cr[0]) cnot_example.measure(qr[1],cr[1]) cnot_example.draw(output='mpl') job_cnot = qk.execute(cnot_example, backend, shots=1024) result_cnot = job_cnot.result() counts_cnot = result_cnot.get_counts() print(counts_cnot) cnot_reversed = qk.QuantumCircuit(qr,cr) cnot_reversed.x(qr[0]) # This part uses cx(qr[1],qr[0]) but is equivalent to cx(qr[0],qr[1]) cnot_reversed.h(qr[0]) cnot_reversed.h(qr[1]) cnot_reversed.cx(qr[1],qr[0]) cnot_reversed.h(qr[0]) cnot_reversed.h(qr[1]) # cnot_reversed.measure(qr[0],cr[0]) cnot_reversed.measure(qr[1],cr[1]) cnot_reversed.draw(output='mpl') job_cnot_rev = qk.execute(cnot_reversed, backend, shots=1024) result_cnot_rev = job_cnot_rev.result() counts_cnot_rev = result_cnot_rev.get_counts() print(counts_cnot_rev) bell_phi_p = qk.QuantumCircuit(qr,cr) bell_phi_p.h(qr[0]) bell_phi_p.cx(qr[0],qr[1]) bell_phi_p.measure(qr[0],cr[0]) bell_phi_p.measure(qr[1],cr[1]) bell_phi_p.draw(output='mpl') job_bell_phi_p = qk.execute(bell_phi_p, backend, shots=1024) result_bell_phi_p = job_bell_phi_p.result() counts_bell_phi_p = result_bell_phi_p.get_counts() print(counts_bell_phi_p) cz_example = qk.QuantumCircuit(qr) cz_example.cz(qr[0],qr[1]) cz_example.draw(output='mpl') cz_from_cnot = qk.QuantumCircuit(qr) cz_from_cnot.h(qr[1]) cz_from_cnot.cx(qr[0],qr[1]) cz_from_cnot.h(qr[1]) cz_from_cnot.draw(output='mpl') delta = 0.5 cphase_test = qk.QuantumCircuit(qr) cphase_test.cu1(delta,qr[0],qr[1]) cphase_test.draw(output='mpl') delta = 0.5 cphase_from_cnot = qk.QuantumCircuit(qr) cphase_from_cnot.u1(delta/2,qr[1]) cphase_from_cnot.cx(qr[0],qr[1]) cphase_from_cnot.u1(-delta/2,qr[1]) cphase_from_cnot.cx(qr[0],qr[1]) cphase_from_cnot.u1(delta/2,qr[0]) cphase_from_cnot.draw(output='mpl') swap_test = qk.QuantumCircuit(qr) swap_test.swap(qr[0],qr[1]) swap_test.draw(output='mpl') swap_from_cnot = qk.QuantumCircuit(qr) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.cx(qr[1],qr[0]) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.draw(output='mpl') qr_many = qk.QuantumRegister(5) control_example = qk.QuantumCircuit(qr_many) control_example.cy(qr_many[0],qr_many[1]) control_example.ch(qr_many[1],qr_many[2]) control_example.crz(0.2,qr_many[2],qr_many[3]) control_example.cu3(0.5, 0, 0, qr_many[3],qr_many[4]) control_example.draw(output='mpl') qrthree = qk.QuantumRegister(3) toffoli_example = qk.QuantumCircuit(qrthree) toffoli_example.ccx(qrthree[0],qrthree[1],qrthree[2]) toffoli_example.draw(output='mpl') toffoli_from_cnot = qk.QuantumCircuit(qrthree) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.s(qrthree[1]) toffoli_from_cnot.t(qrthree[0]) toffoli_from_cnot.draw(output='mpl') crsingle = qk.ClassicalRegister(1) deutsch = qk.QuantumCircuit(qr,crsingle) deutsch.x(qr[1]) deutsch.h(qr[1]) deutsch.draw(output='mpl') deutsch.h(qr[0]) deutsch.draw(output='mpl') deutsch.cx(qr[0],qr[1]) deutsch.h(qr[0]) deutsch.measure(qr[0],crsingle[0]) deutsch.draw(output='mpl') N = 4 qrQFT = qk.QuantumRegister(N,'qftr') QFT = qk.QuantumCircuit(qrQFT) for i in range(N): QFT.h(qrQFT[i]) for k in range(i+1,N): l = k-i+1 QFT.cu1(2*math.pi/(2**l),qrQFT[k],qrQFT[i]) QFT.draw(output='mpl')
https://github.com/dkp-quantum/Tutorials
dkp-quantum
import qiskit as qk import numpy as np from scipy.linalg import expm import matplotlib.pyplot as plt import math # Single qubit operators sx = np.array([[0.0, 1.0],[1.0, 0.0]]) sy = np.array([[0.0, -1.0*1j],[1.0*1j, 0.0]]) sz = np.array([[1.0, 0.0],[0.0, -1.0]]) idt = np.array([[1.0, 0.0],[0.0, 1.0]]) import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) psi0 = np.array([1.0, 0.0]) thetas = np.linspace(0,4*math.pi,200) avg_sx_tot = np.zeros(len(thetas)) for i in range(len(thetas)): psi_theta = expm(-1j*0.5*thetas[i]*(sx+sz)/math.sqrt(2)).dot(psi0) avg_sx_tot[i] = np.real(psi_theta.conjugate().transpose().dot(sx.dot(psi_theta))) plt.plot(thetas,avg_sx_tot) plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.show() avg_sx_zx = np.zeros(len(thetas)) avg_sx_xz = np.zeros(len(thetas)) for i in range(len(thetas)): psi_theta_zx = expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(psi0)) psi_theta_xz = expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(psi0)) avg_sx_zx[i] = np.real(psi_theta_zx.conjugate().transpose().dot(sx.dot(psi_theta_zx))) avg_sx_xz[i] = np.real(psi_theta_xz.conjugate().transpose().dot(sx.dot(psi_theta_xz))) plt.plot(thetas,avg_sx_tot) plt.plot(thetas,avg_sx_zx) plt.plot(thetas,avg_sx_xz) plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.legend(['Around x = z', 'x first', 'z first'],loc=1) plt.show() # Try this with e.g. ntrot = 1, 5, 10, 50. # You can also try to do sx and sz slices in the reverse order: both choices will become good approximations # for large n ntrot = 10 avg_sx_n = np.zeros(len(thetas)) for i in range(len(thetas)): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))) for j in range(ntrot-1): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))).dot(rot) psi_theta_n = rot.dot(psi0) avg_sx_n[i] = np.real(psi_theta_n.conjugate().transpose().dot(sx.dot(psi_theta_n))) plt.plot(thetas,avg_sx_tot) plt.plot(thetas,avg_sx_n,'--') plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.legend(['Exact', 'ntrot = ' + str(ntrot)],loc=1) plt.show() delta = 0.1 qr = qk.QuantumRegister(2,name='qr') zz_example = qk.QuantumCircuit(qr) zz_example.cx(qr[0],qr[1]) zz_example.u1(2*delta,qr[1]) zz_example.cx(qr[0],qr[1]) zz_example.draw(output='mpl') J = 1 c_times = np.linspace(0,0.5*math.pi/abs(J),1000) q_times = np.linspace(0,0.5*math.pi/abs(J),10) ### Classical simulation of the Heisenberg dimer model psi0 = np.kron( np.array([0,1]), np.array([1,0]) ) H = J * ( np.kron(sx,sx) + np.kron(sy,sy) + np.kron(sz,sz) ) sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz1 = np.kron(sz,idt) sz2 = np.kron(idt,sz) for i in range(len(c_times)): t = c_times[i] psi_t = expm(-1j*H*t).dot(psi0) sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) ### Digital quantum simulation of the Heisenberg dimer model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) for k in range(len(q_times)): delta = J*q_times[k] qr = qk.QuantumRegister(2,name='qr') cr = qk.ClassicalRegister(2,name='cr') Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis2.x(qr[0]) # ZZ Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) # YY Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure Heis2.measure(qr,cr) # Run the quantum algorithm backend = qk.Aer.get_backend('qasm_simulator') job = qk.execute(Heis2, backend, shots=nshots) result = job.result() counts = result.get_counts() # Post processing of outcomes to get sz expectation values sz1q = 0 sz2q = 0 for key,value in counts.items(): if key == '00': sz1q += value sz2q += value elif key == '01': sz1q -= value sz2q += value elif key == '10': sz1q += value sz2q -= value elif key == '11': sz1q -= value sz2q -= value sz1q_t[k] = sz1q/nshots sz2q_t[k] = sz2q/nshots plt.plot(abs(J)*c_times,0.5*sz1_t,'b--') plt.plot(abs(J)*c_times,0.5*sz2_t,'c') plt.plot(abs(J)*q_times,0.5*sz1q_t,'rd') plt.plot(abs(J)*q_times,0.5*sz2q_t,'ko') plt.legend(['sz1','sz2','sz1q','sz2q']) plt.xlabel(r'$\delta = |J|t$') plt.show() # WARNING: this cell can take a few minutes to run! ntrotter = 5 J12 = 1 J23 = 1 c_times = np.linspace(0,math.pi/abs(J12),1000) q_times = np.linspace(0,math.pi/abs(J12),20) ### Classical simulation of the Heisenberg trimer model psi0 = np.kron( np.kron( np.array([0,1]), np.array([1,0]) ) , np.array([1,0]) ) sxsx12 = np.kron(sx, np.kron(sx,idt)) sysy12 = np.kron(sy, np.kron(sy,idt)) szsz12 = np.kron(sz, np.kron(sz,idt)) sxsx23 = np.kron(idt, np.kron(sx,sx)) sysy23 = np.kron(idt, np.kron(sy,sy)) szsz23 = np.kron(idt, np.kron(sz,sz)) H12 = J12 * ( sxsx12 + sysy12 + szsz12 ) H23 = J23 * ( sxsx23 + sysy23 + szsz23 ) H = H12 + H23 sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz3_t = np.zeros(len(c_times)) sz1 = np.kron(sz, np.kron(idt,idt)) sz2 = np.kron(idt, np.kron(sz,idt)) sz3 = np.kron(idt, np.kron(idt,sz)) for i in range(len(c_times)): t = c_times[i] psi_t = expm(-1j*H*t).dot(psi0) sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) sz3_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Classical simulation of the Heisenberg trimer model WITH SUZUKI TROTTER DIGITALIZATION sz1st_t = np.zeros(len(c_times)) sz2st_t = np.zeros(len(c_times)) sz3st_t = np.zeros(len(c_times)) for i in range(len(c_times)): t = c_times[i] Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)) for j in range(ntrotter-1): Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)).dot(Ust) psi_t = Ust.dot(psi0) sz1st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) sz3st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Digital quantum simulation of the Heisenberg model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) sz3q_t = np.zeros(len(q_times)) for k in range(len(q_times)): delta12n = J12*q_times[k]/ntrotter delta23n = J23*q_times[k]/ntrotter qr = qk.QuantumRegister(3,name='qr') cr = qk.ClassicalRegister(3,name='cr') Heis3 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis3.x(qr[0]) for n in range(ntrotter): # 1-2 bond mapped on qubits 0 and 1 in the quantum register # ZZ Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) # 2-3 bond mapped on qubits 1 and 2 in the quantum register # ZZ Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[2]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[2]) # measure Heis3.measure(qr,cr) # Run the quantum algorithm backend = qk.Aer.get_backend('qasm_simulator') job = qk.execute(Heis3, backend, shots=nshots) result = job.result() counts = result.get_counts() # Post processing of outcomes to get sz expectation values sz1q = 0 sz2q = 0 sz3q = 0 for key,value in counts.items(): if key == '000': sz1q += value sz2q += value sz3q += value elif key == '001': sz1q -= value sz2q += value sz3q += value elif key == '010': sz1q += value sz2q -= value sz3q += value elif key == '011': sz1q -= value sz2q -= value sz3q += value elif key == '100': sz1q += value sz2q += value sz3q -= value elif key == '101': sz1q -= value sz2q += value sz3q -= value elif key == '110': sz1q += value sz2q -= value sz3q -= value elif key == '111': sz1q -= value sz2q -= value sz3q -= value sz1q_t[k] = sz1q/nshots sz2q_t[k] = sz2q/nshots sz3q_t[k] = sz3q/nshots fig = plt.figure() ax = plt.subplot(111) ax.plot(abs(J12)*c_times,0.5*sz1_t,'b', label='sz1 full') ax.plot(abs(J12)*c_times,0.5*sz2_t,'r', label='sz2 full') ax.plot(abs(J12)*c_times,0.5*sz3_t,'g', label='sz3 full') ax.plot(abs(J12)*c_times,0.5*sz1st_t,'b--',label='sz1 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz2st_t,'r--', label='sz2 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz3st_t,'g--', label='sz3 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*q_times,0.5*sz1q_t,'b*',label='sz1 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz2q_t,'ro', label='sz2 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz3q_t,'gd', label='sz3 n = ' + str(ntrotter) + ' (quantum)') chartBox = ax.get_position() ax.set_position([chartBox.x0, chartBox.y0, chartBox.width*1, chartBox.height]) ax.legend(loc='upper center', bbox_to_anchor=(1.3, 0.8), shadow=True, ncol=1) plt.xlabel(r'$\delta_{12} = |J_{12}|t$') plt.show() qr = qk.QuantumRegister(1,name='qr') cr = qk.ClassicalRegister(1,name='cr') x_meas = qk.QuantumCircuit(qr,cr) # Here you can add any quantum circuit generating the quantum state # that you with to measure at the end e.g. # # x_meas.u3(a,b,c,qr[0]) # # Measurement in x direction x_meas.h(qr[0]) x_meas.measure(qr,cr) x_meas.draw(output='mpl') nshots = 8192 backend = qk.Aer.get_backend('qasm_simulator') job = qk.execute(x_meas, backend, shots=nshots) result = job.result() counts = result.get_counts() print(counts) average_sigma_x = 0 for key,value in counts.items(): if key == '0': average_sigma_x += value elif key == '1': average_sigma_x -= value average_sigma_x = average_sigma_x/nshots print('Average of sx = ', average_sigma_x) theta_a = np.linspace(0.0, 2*math.pi, 21) # Some angles for the a vector, with respect to the z axis theta_b = 0.0 # If the b vector is the z axis -> angle = 0 theta_c = math.pi/2 # If the vector c is the x axis -> angle = pi/2 with respect to z # Quantum version nshots = 1024 Pab = np.zeros(len(theta_a)) Pac = np.zeros(len(theta_a)) # Quantum circuit to measure Pbc qr = qk.QuantumRegister(2, name='qr') cr = qk.ClassicalRegister(2, name='cr') qc = qk.QuantumCircuit(qr, cr) ## Initialize Bell state qc.x(qr[0]) qc.x(qr[1]) qc.h(qr[0]) qc.cx(qr[0],qr[1]) ## Pre measurement unitaries to select the basis along a (for the first qubit) and b (for the second qubit) qc.u3(theta_b,0,0,qr[0]) qc.u3(theta_c,0,0,qr[1]) ## Measures qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) ## Running and saving result backend = qk.Aer.get_backend('qasm_simulator') job = qk.execute(qc, backend, shots=nshots) result = job.result() counts = result.get_counts() out = 0 for key,value in counts.items(): if (key == '00') or (key == '11'): out += value elif (key == '01') or (key == '10'): out -= value Pbc = out/nshots # Now we compute Pab and Pac for different a vectors for i in range(len(theta_a)): ta = theta_a[i] # Quantum circuit to measure Pab with the given a qr = qk.QuantumRegister(2, name='qr') cr = qk.ClassicalRegister(2, name='cr') qc = qk.QuantumCircuit(qr, cr) ## Initialize Bell state qc.x(qr[0]) qc.x(qr[1]) qc.h(qr[0]) qc.cx(qr[0],qr[1]) ## Pre measurement unitaries to select the basis along a (for the first qubit) and b (for the second qubit) qc.u3(ta,0,0,qr[0]) qc.u3(theta_b,0,0,qr[1]) ## Measures qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) ## Running and saving result backend = qk.Aer.get_backend('qasm_simulator') job = qk.execute(qc, backend, shots=nshots) result = job.result() counts = result.get_counts() out = 0 for key,value in counts.items(): if (key == '00') or (key == '11'): out += value elif (key == '01') or (key == '10'): out -= value Pab[i] = out/nshots # Quantum circuit to measure Pac with the given a qr = qk.QuantumRegister(2, name='qr') cr = qk.ClassicalRegister(2, name='cr') qc = qk.QuantumCircuit(qr, cr) ## Initialize Bell state qc.x(qr[0]) qc.x(qr[1]) qc.h(qr[0]) qc.cx(qr[0],qr[1]) ## Pre measurement unitaries to select the basis along a (for the first qubit) and c (for the second qubit) qc.u3(ta,0,0,qr[0]) qc.u3(theta_c,0,0,qr[1]) ## Measures qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) ## Running and saving result backend = qk.Aer.get_backend('qasm_simulator') job = qk.execute(qc, backend, shots=nshots) result = job.result() counts = result.get_counts() out = 0 for key,value in counts.items(): if (key == '00') or (key == '11'): out += value elif (key == '01') or (key == '10'): out -= value Pac[i] = out/nshots quantum_outs = Pab-Pac # Classical calculations thetas = np.linspace(0,2*math.pi,100) classical_outs = np.zeros(len(thetas)) b_vec = np.array([math.sin(theta_b),0.0,math.cos(theta_b)]) c_vec = np.array([math.sin(theta_c),0.0,math.cos(theta_c)]) Bell_limit = (1 - b_vec.dot(c_vec))*np.ones(len(thetas)) for k in range(len(thetas)): a_vec = np.array([math.sin(thetas[k]),0.0,math.cos(thetas[k])]) classical_outs[k] = -a_vec.dot(b_vec) + a_vec.dot(c_vec) fig = plt.figure() ax = plt.subplot(111) ax.plot(thetas,classical_outs,'b', label='classical computation') ax.plot(theta_a,quantum_outs,'r*', label='quantum algorithm') ax.plot(thetas,Bell_limit,'--k', label='Bell bound') # If the data go beyond these boundaries, ax.plot(thetas,-Bell_limit,'--k', label='Bell bound') # the inequality is violated ax.plot(thetas,(1+Pbc)*np.ones(len(thetas)),'--c', label='Bell bound (quantum)') ax.plot(thetas,-(1+Pbc)*np.ones(len(thetas)),'--c', label='Bell bound (quantum)') chartBox = ax.get_position() ax.set_position([chartBox.x0, chartBox.y0, chartBox.width*1, chartBox.height]) ax.legend(loc='upper center', bbox_to_anchor=(1.3, 0.8), shadow=True, ncol=1) plt.xlabel(r'$\theta_a$') plt.show() from qiskit.tools.monitor import job_monitor my_token = '' ibmq_provider = qk.IBMQ.enable_account(my_token) delta = 0.5*math.pi qr = qk.QuantumRegister(2,name='qr') cr = qk.ClassicalRegister(2,name='cr') Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis2.x(qr[0]) # ZZ Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) # YY Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure Heis2.measure(qr,cr) my_backend = ibmq_provider.get_backend('ibmqx2') job = qk.execute(Heis2, backend=my_backend, shots=1024) job_monitor(job, interval=5) result = job.result() counts = result.get_counts() print(counts) plot_histogram(counts) my_backend.configuration().coupling_map # In the output, the first entry in a pair [a,b] is a control, second is the # corresponding target for a CNOT
https://github.com/dkp-quantum/Tutorials
dkp-quantum
# Install packages #!pip install numpy #!pip install matplotlib #!pip install qiskit #!pip install qiskit[visualization] #!pip install qiskit[optimization] #!pip install qiskit_machine_learning # Load packages ## General tools import numpy as np import matplotlib.pyplot as plt from math import pi ## Qiskit Circuit Functions from qiskit import * from qiskit.quantum_info import * from qiskit.visualization import * # install the latest released version of PennyLane !pip install pennylane from pennylane import numpy as np import matplotlib.pyplot as plt from math import pi import pennylane as qml # Setup the device using qml.device() ## Assigning the device and defining the measurement of the circuit dev = qml.device(name = 'default.qubit', wires = 2) @qml.qnode(dev) def circuit(): return qml.expval(qml.PauliZ(0) @ qml.PauliZ(1)) drawer = qml.draw(circuit, show_all_wires=True) print(drawer()) # Setup the device using qml.device() ## Assigning names to each wires dev = qml.device(name = 'default.qubit', wires = ['a', 'b']) @qml.qnode(dev) def circuit(x): return qml.expval(qml.PauliZ('a') @ qml.PauliZ('b')) drawer = qml.draw(circuit, show_all_wires=True) print(drawer(0.5)) # Setup the device using qml.device() ## Assigning the number of shots shots_list = [5, 10, 1000] # number of shots for each batches dev = qml.device("default.qubit", wires=2, shots=shots_list) @qml.qnode(dev) def circuit(x): qml.RX(x, wires=0) qml.CNOT(wires=[0, 1]) return qml.expval(qml.PauliZ(0) @ qml.PauliX(1)), qml.expval(qml.PauliZ(0)) drawer = qml.draw(circuit, show_all_wires=True) print(drawer(x = 0.5)) ## The result of the execution of the circuit. circuit(0.5) dev = qml.device('default.qubit', wires=['aux', 'q1', 'q2']) # Quntum function def my_quantum_function(x, y): qml.RZ(x, wires='q1') qml.CNOT(wires=['aux' ,'q1']) qml.RY(y, wires='q2') return qml.expval(qml.PauliZ('q2')) circuit = qml.QNode(my_quantum_function, dev) circuit(x = np.pi/4, y = 0.7) # Plot the circuit print(qml.draw(circuit)(np.pi/4, 0.7)) # Plot the circuit with matplotlib.pyplot library import matplotlib.pyplot as plt fig, ax = qml.draw_mpl(circuit)(x = np.pi/4, y = 0.7) plt.show() # Measurement 1) Sampling result from each shots dev = qml.device("default.qubit", wires=2, shots=1000) @qml.qnode(dev) def circuit(): qml.Hadamard(wires=0) qml.CNOT(wires=[0, 1]) return qml.sample(qml.PauliZ(0)), qml.sample(qml.PauliZ(1)) fig, ax = qml.draw_mpl(circuit)() plt.show() result_sample = circuit() # Print out the dimension of the result print(result_sample.shape) # Let's look at the result result_sample # Measurement 2) Sampling result from each shots dev = qml.device("default.qubit", wires=2, shots=1000) @qml.qnode(dev) def circuit(): qml.Hadamard(wires=0) qml.CNOT(wires=[0, 1]) return qml.probs(wires=[0, 1]) fig, ax = qml.draw_mpl(circuit)() plt.show() result_prob = circuit() # Print out the dimension of the result print(result_prob.shape) # Let's look at the result result_prob # Measurement 3) Sampling result from each shots dev = qml.device("default.qubit", wires=3, shots=1000) @qml.qnode(dev) def my_quantum_function(x, y): qml.RZ(x, wires=0) qml.CNOT(wires=[0, 1]) qml.RY(y, wires=1) qml.CNOT(wires=[0, 2]) return qml.expval(qml.PauliZ(0) @ qml.Identity(1) @qml.PauliX(2)) fig, ax = qml.draw_mpl(my_quantum_function)(x = pi/2, y = pi/3) plt.show() result_tensor = my_quantum_function(x = pi/2, y = pi/3) # Let's look at the result result_tensor import pennylane as qml from pennylane import numpy as np from pennylane.optimize import NesterovMomentumOptimizer dev = qml.device("default.qubit", wires=4) def layer(W): qml.Rot(W[0, 0], W[0, 1], W[0, 2], wires=0) qml.Rot(W[1, 0], W[1, 1], W[1, 2], wires=1) qml.Rot(W[2, 0], W[2, 1], W[2, 2], wires=2) qml.Rot(W[3, 0], W[3, 1], W[3, 2], wires=3) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) qml.CNOT(wires=[2, 3]) qml.CNOT(wires=[3, 0]) def statepreparation(x): qml.BasisState(x, wires=[0, 1, 2, 3]) @qml.qnode(dev) def circuit(weights, x): statepreparation(x) for W in weights: layer(W) return qml.expval(qml.PauliZ(0)) def variational_classifier(weights, bias, x): return circuit(weights, x) + bias def square_loss(labels, predictions): loss = 0 for l, p in zip(labels, predictions): loss = loss + (l - p) ** 2 loss = loss / len(labels) return loss def accuracy(labels, predictions): loss = 0 for l, p in zip(labels, predictions): if abs(l - p) < 1e-5: loss = loss + 1 loss = loss / len(labels) return loss def cost(weights, bias, X, Y): predictions = [variational_classifier(weights, bias, x) for x in X] return square_loss(Y, predictions) from pennylane import numpy as np data = np.array([[0., 0., 0., 0., 0], [0., 0., 0., 1., 1], [0., 0., 1., 0., 1], [0., 0., 1., 1., 0], [0., 1., 0., 0., 1], [0., 1., 0., 1., 0], [0., 1., 1., 0., 0], [0., 1., 1., 1., 1], [1., 0., 0., 0., 1], [1., 0., 0., 1., 0], [1., 0., 1., 0., 0], [1., 0., 1., 1., 1], [1., 1., 0., 0., 0], [1., 1., 0., 1., 1], [1., 1., 1., 0., 1], [1., 1., 1., 1., 0]]) X = np.array(data[:, :-1], requires_grad=False) Y = np.array(data[:, -1], requires_grad=False) Y = Y * 2 - np.ones(len(Y)) # shift label from {0, 1} to {-1, 1} for i in range(5): print("X = {}, Y = {: d}".format(X[i], int(Y[i]))) print("...") np.random.seed(0) num_qubits = 4 num_layers = 2 weights_init = 0.01 * np.random.randn(num_layers, num_qubits, 3, requires_grad=True) bias_init = np.array(0.0, requires_grad=True) print(weights_init, bias_init) opt = NesterovMomentumOptimizer(0.5) batch_size = 5 weights = weights_init bias = bias_init iter_num = 10 for it in range(iter_num): # Update the weights by one optimizer step batch_index = np.random.randint(0, len(X), (batch_size,)) X_batch = X[batch_index] Y_batch = Y[batch_index] weights, bias, _, _ = opt.step(cost, weights, bias, X_batch, Y_batch) # Compute accuracy predictions = [np.sign(variational_classifier(weights, bias, x)) for x in X] acc = accuracy(Y, predictions) print( "Iter: {:5d} | Cost: {:0.7f} | Accuracy: {:0.7f} ".format( it + 1, cost(weights, bias, X, Y), acc ) ) dev = qml.device("default.qubit", wires=2) def get_angles(x): beta0 = 2 * np.arcsin(np.sqrt(x[1] ** 2) / np.sqrt(x[0] ** 2 + x[1] ** 2 + 1e-12)) beta1 = 2 * np.arcsin(np.sqrt(x[3] ** 2) / np.sqrt(x[2] ** 2 + x[3] ** 2 + 1e-12)) beta2 = 2 * np.arcsin( np.sqrt(x[2] ** 2 + x[3] ** 2) / np.sqrt(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3] ** 2) ) return np.array([beta2, -beta1 / 2, beta1 / 2, -beta0 / 2, beta0 / 2]) def statepreparation(a): qml.RY(a[0], wires=0) qml.CNOT(wires=[0, 1]) qml.RY(a[1], wires=1) qml.CNOT(wires=[0, 1]) qml.RY(a[2], wires=1) qml.PauliX(wires=0) qml.CNOT(wires=[0, 1]) qml.RY(a[3], wires=1) qml.CNOT(wires=[0, 1]) qml.RY(a[4], wires=1) qml.PauliX(wires=0) x = np.array([0.53896774, 0.79503606, 0.27826503, 0.0], requires_grad=False) ang = get_angles(x) @qml.qnode(dev) def test(angles): statepreparation(angles) return qml.expval(qml.PauliZ(0)) test(ang) print("x : ", x) print("angles : ", ang) print("amplitude vector: ", np.real(dev.state)) def layer(W): qml.Rot(W[0, 0], W[0, 1], W[0, 2], wires=0) qml.Rot(W[1, 0], W[1, 1], W[1, 2], wires=1) qml.CNOT(wires=[0, 1]) @qml.qnode(dev) def circuit(weights, angles): statepreparation(angles) for W in weights: layer(W) return qml.expval(qml.PauliZ(0)) def variational_classifier(weights, bias, angles): return circuit(weights, angles) + bias def cost(weights, bias, features, labels): predictions = [variational_classifier(weights, bias, f) for f in features] return square_loss(labels, predictions) # !pip install pandas # !pip install sklearn from sklearn.datasets import load_iris import pandas as pd import numpy as np # visualization package import matplotlib.pyplot as plt import seaborn as sns iris = load_iris() # sample data load #print(iris) # pring out data with variable types and its description print(iris.DESCR) # Description of the dataset # feature_names(x variables) 와 target(y variable)을 잘 나타내도록 data frame 생성 df = pd.DataFrame(data=iris.data, columns=iris.feature_names) df['target'] = iris.target # 숫자형으로 기록된 target(y variable) - (0.0, 1.0, 2.0)을 문자값으로 변환 df['target'] = df['target'].map({0:"setosa", 1:"versicolor", 2:"virginica"}) print(df) sns.pairplot(df, hue="target", height=3) plt.show() from pennylane import numpy as np data = np.loadtxt("iris_classes1and2_scaled.txt") X = data[:, 0:2] print("First X sample (original) :", X[0]) # pad the vectors to size 2^2 with constant values padding = 0.3 * np.ones((len(X), 1)) X_pad = np.c_[np.c_[X, padding], np.zeros((len(X), 1))] print("First X sample (padded) :", X_pad[0]) # normalize each input normalization = np.sqrt(np.sum(X_pad ** 2, -1)) X_norm = (X_pad.T / normalization).T print("First X sample (normalized):", X_norm[0]) # angles for state preparation are new features features = np.array([get_angles(x) for x in X_norm], requires_grad=False) print("First features sample :", features[0]) Y = data[:, -1] import matplotlib.pyplot as plt plt.figure() plt.scatter(X[:, 0][Y == 1], X[:, 1][Y == 1], c="b", marker="o", edgecolors="k") plt.scatter(X[:, 0][Y == -1], X[:, 1][Y == -1], c="r", marker="o", edgecolors="k") plt.title("Original data") plt.show() plt.figure() dim1 = 0 dim2 = 1 plt.scatter( X_norm[:, dim1][Y == 1], X_norm[:, dim2][Y == 1], c="b", marker="o", edgecolors="k" ) plt.scatter( X_norm[:, dim1][Y == -1], X_norm[:, dim2][Y == -1], c="r", marker="o", edgecolors="k" ) plt.title("Padded and normalised data (dims {} and {})".format(dim1, dim2)) plt.show() plt.figure() dim1 = 0 dim2 = 3 plt.scatter( features[:, dim1][Y == 1], features[:, dim2][Y == 1], c="b", marker="o", edgecolors="k" ) plt.scatter( features[:, dim1][Y == -1], features[:, dim2][Y == -1], c="r", marker="o", edgecolors="k" ) plt.title("Feature vectors (dims {} and {})".format(dim1, dim2)) plt.show() np.random.seed(0) num_data = len(Y) num_train = int(0.75 * num_data) index = np.random.permutation(range(num_data)) feats_train = features[index[:num_train]] Y_train = Y[index[:num_train]] feats_val = features[index[num_train:]] Y_val = Y[index[num_train:]] # We need these later for plotting X_train = X[index[:num_train]] X_val = X[index[num_train:]] num_qubits = 2 num_layers = 6 weights_init = 0.01 * np.random.randn(num_layers, num_qubits, 3, requires_grad=True) bias_init = np.array(0.0, requires_grad=True) opt = NesterovMomentumOptimizer(0.01) batch_size = 50 # train the variational classifier weights = weights_init bias = bias_init Iter_num = 25 for it in range(Iter_num): # Update the weights by one optimizer step batch_index = np.random.randint(0, num_train, (batch_size,)) feats_train_batch = feats_train[batch_index] Y_train_batch = Y_train[batch_index] weights, bias, _, _ = opt.step(cost, weights, bias, feats_train_batch, Y_train_batch) # Compute predictions on train and validation set predictions_train = [np.sign(variational_classifier(weights, bias, f)) for f in feats_train] predictions_val = [np.sign(variational_classifier(weights, bias, f)) for f in feats_val] # Compute accuracy on train and validation set acc_train = accuracy(Y_train, predictions_train) acc_val = accuracy(Y_val, predictions_val) print( "Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} " "".format(it + 1, cost(weights, bias, features, Y), acc_train, acc_val) ) plt.figure(figsize=(12,9)) cm = plt.cm.RdBu # make data for decision regions xx, yy = np.meshgrid(np.linspace(0.0, 1.5, 20), np.linspace(0.0, 1.5, 20)) X_grid = [np.array([x, y]) for x, y in zip(xx.flatten(), yy.flatten())] # preprocess grid points like data inputs above padding = 0.3 * np.ones((len(X_grid), 1)) X_grid = np.c_[np.c_[X_grid, padding], np.zeros((len(X_grid), 1))] # pad each input normalization = np.sqrt(np.sum(X_grid ** 2, -1)) X_grid = (X_grid.T / normalization).T # normalize each input features_grid = np.array( [get_angles(x) for x in X_grid] ) # angles for state preparation are new features predictions_grid = [variational_classifier(weights, bias, f) for f in features_grid] Z = np.reshape(predictions_grid, xx.shape) # plot decision regions cnt = plt.contourf( xx, yy, Z, levels=np.arange(-1, 1.1, 0.1), cmap=cm, alpha=0.8, extend="both" ) plt.contour( xx, yy, Z, levels=[0.0], colors=("black",), linestyles=("--",), linewidths=(0.8,) ) plt.colorbar(cnt, ticks=[-1, 0, 1]) # plot data plt.scatter( X_train[:, 0][Y_train == 1], X_train[:, 1][Y_train == 1], c="b", marker="o", edgecolors="k", label="class 1 train", ) plt.scatter( X_val[:, 0][Y_val == 1], X_val[:, 1][Y_val == 1], c="b", marker="^", edgecolors="k", label="class 1 validation", ) plt.scatter( X_train[:, 0][Y_train == -1], X_train[:, 1][Y_train == -1], c="r", marker="o", edgecolors="k", label="class -1 train", ) plt.scatter( X_val[:, 0][Y_val == -1], X_val[:, 1][Y_val == -1], c="r", marker="^", edgecolors="k", label="class -1 validation", ) plt.legend() plt.show() # Install packages # !pip install tensorflow # Loading packages import pennylane as qml from pennylane import numpy as np from pennylane.templates import RandomLayers import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt n_epochs = 30 # Number of optimization epochs n_layers = 1 # Number of random layers n_train = 50 # Size of the train dataset n_test = 30 # Size of the test dataset # SAVE_PATH = "quanvolution/" # Data saving folder. Here we don't need to make saving path. PREPROCESS = True # If False, skip quantum processing and load data from SAVE_PATH np.random.seed(0) # Seed for NumPy random number generator tf.random.set_seed(0) # Seed for TensorFlow random number generator # Assigning MNIST data into train / test data mnist_dataset = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist_dataset.load_data() # Reduce dataset size ## Previouslys, we set the number of train / test data in setting the hyper-parameters. train_images = train_images[:n_train] train_labels = train_labels[:n_train] test_images = test_images[:n_test] test_labels = test_labels[:n_test] # Normalize pixel values within 0 and 1. ## We are modifying the data values between 0 and 1. train_images = train_images / 255 test_images = test_images / 255 # Add extra dimension for convolution channels train_images = np.array(train_images[..., tf.newaxis], requires_grad=False) test_images = np.array(test_images[..., tf.newaxis], requires_grad=False) # Setup the device using qml.device() dev = qml.device("default.qubit", wires=4) # Random circuit parameters using in rotation-Y gate rand_params = np.random.uniform(high=2 * np.pi, size=(n_layers, 4)) @qml.qnode(dev) def circuit(phi): # Encoding of 4 classical input values for j in range(4): qml.RY(np.pi * phi[j], wires=j) # Random quantum circuit RandomLayers(rand_params, wires=list(range(4))) # Measurement producing 4 classical output values return [qml.expval(qml.PauliZ(j)) for j in range(4)] ## Assigning phi_value to plot the circuit phi_value = [0,0,0,0] ## Plotting the quantum circuit fig, ax = qml.draw_mpl(circuit)(phi_value) plt.show() def quanv(image): """Convolves the input image with many applications of the same quantum circuit.""" out = np.zeros((14, 14, 4)) # Loop over the coordinates of the top-left pixel of 2X2 squares for j in range(0, 28, 2): for k in range(0, 28, 2): # Process a squared 2x2 region of the image with a quantum circuit q_results = circuit( [ image[j, k, 0], image[j, k + 1, 0], image[j + 1, k, 0], image[j + 1, k + 1, 0] ] ) # Assign expectation values to different channels of the output pixel (j/2, k/2) for c in range(4): out[j // 2, k // 2, c] = q_results[c] return out if PREPROCESS == True: q_train_images = [] print("Quantum pre-processing of train images:") for idx, img in enumerate(train_images): print("{}/{} ".format(idx + 1, n_train), end="\r") q_train_images.append(quanv(img)) q_train_images = np.asarray(q_train_images) q_test_images = [] print("\nQuantum pre-processing of test images:") for idx, img in enumerate(test_images): print("{}/{} ".format(idx + 1, n_test), end="\r") q_test_images.append(quanv(img)) q_test_images = np.asarray(q_test_images) # # Save pre-processed images # np.save(SAVE_PATH + "q_train_images.npy", q_train_images) # np.save(SAVE_PATH + "q_test_images.npy", q_test_images) # # Load pre-processed images # q_train_images = np.load(SAVE_PATH + "q_train_images.npy") # q_test_images = np.load(SAVE_PATH + "q_test_images.npy") n_samples = 4 n_channels = 4 fig, axes = plt.subplots(1 + n_channels, n_samples, figsize=(10, 10)) for k in range(n_samples): axes[0, 0].set_ylabel("Input") if k != 0: axes[0, k].yaxis.set_visible(False) axes[0, k].imshow(train_images[k, :, :, 0], cmap="gray") # Plot all output channels for c in range(n_channels): axes[c + 1, 0].set_ylabel("Output [ch. {}]".format(c)) if k != 0: axes[c, k].yaxis.set_visible(False) axes[c + 1, k].imshow(q_train_images[k, :, :, c], cmap="gray") plt.tight_layout() plt.show() def MyModel(): """Initializes and returns a custom Keras model which is ready to be trained.""" model = keras.models.Sequential([ keras.layers.Flatten(), keras.layers.Dense(10, activation="softmax") ]) model.compile( optimizer='adam', loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model q_model = MyModel() q_history = q_model.fit( q_train_images, train_labels, validation_data=(q_test_images, test_labels), batch_size=4, epochs=n_epochs, verbose=2, ) c_model = MyModel() c_history = c_model.fit( train_images, train_labels, validation_data=(test_images, test_labels), batch_size=4, epochs=n_epochs, verbose=2, ) import matplotlib.pyplot as plt plt.style.use("seaborn") fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 9)) ax1.plot(q_history.history["val_accuracy"], "-ob", label="With quantum layer") ax1.plot(c_history.history["val_accuracy"], "-og", label="Without quantum layer") ax1.set_ylabel("Accuracy") ax1.set_ylim([0, 1]) ax1.set_xlabel("Epoch") ax1.legend() ax2.plot(q_history.history["val_loss"], "-ob", label="With quantum layer") ax2.plot(c_history.history["val_loss"], "-og", label="Without quantum layer") ax2.set_ylabel("Loss") ax2.set_ylim(top=2.5) ax2.set_xlabel("Epoch") ax2.legend() plt.tight_layout() plt.show()
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np from qiskit import( QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram circuit = QuantumCircuit(2, 2) # Two Qubit and 2 Classical bit (q,c) circuit.h(0) circuit.cx(0, 1) #Controlled-NOT Gate circuit.measure([0,1], [0,1]) #([q,q],[c,c]) circuit.draw() simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, simulator, shots=100) result = job.result() counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) plot_histogram(counts)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
#An attempt by N Malakar #Aug 27, 2020 # Thanks QC class, Especially Shree and Sovit #References: https://github.com/anpaschool/QC-School-Fall2020/blob/master/Tuesday-Formal/Lecture2-QC-Fall2020.ipynb #https://qiskit.org/textbook/ch-states/representing-qubit-states.html from qiskit import QuantumCircuit, execute,QuantumCircuit, ClassicalRegister, QuantumRegister, Aer from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector,plot_state_qsphere from math import sqrt, pi import numpy as np %matplotlib inline qc = QuantumCircuit(1) # Create a quantum circuit with one qubit initial_state = [0,1] # Define initial_state as |1> qc.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit qc.draw('text') # Let's view our circuit (text drawing is required for the 'Initialize' gate due to a known bug in qiskit) backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit job = execute(qc,backend).result() # Do the simulation, returning the state vector print(job.get_statevector()) out_state = job.get_statevector() qc.measure_all() qc.draw('text') result = execute(qc,backend).result() counts = result.get_counts() plot_histogram(counts) #print(out_state) # Display the output state vector #plot_bloch_multivector(job.get_statevector()) # Display the output state vector initial_state = [1/sqrt(2), 1j/sqrt(2)] # Define state |q> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialise the 0th qubit in the state `initial_state` qc.draw('text') state = execute(qc,backend).result().get_statevector() # Execute the circuit print(state) # Print the result #------------- results = execute(qc,backend).result().get_counts() plot_histogram(results) state = execute(qc, backend).result().get_statevector() print("Qubit State = " + str(state)) qc.measure_all() qc.draw('text') # Installed https://github.com/qiskit-community/qiskit-textbookpip # install ./qiskit-textbook-src from qiskit_textbook.widgets import plot_bloch_vector_spherical coords = [0,pi/2,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates #Use plot_bloch_vector() or plot_bloch_sphere_spherical() to plot a qubit in the states: |0> coords = [0,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates #or, use plot_bloch_vector from qiskit.visualization import plot_bloch_vector %matplotlib inline plot_bloch_vector([0,0,1], title="This is $|0>$") coords = [ pi ,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates #alternatively, plot_bloch_vector([0,0,-1], title="This is $|1>$") # the theta is pi/2, phi is 0, r is 1 coords = [ pi/2 ,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates #plot_bloch_vector([1 ,0 ,0] , title="This is $|1>$") ??? # the multivector plot is having issues in this version...see https://github.com/Qiskit/qiskit-terra/issues/4982 # https://qiskit.org/documentation/stubs/qiskit.visualization.plot_bloch_multivector.html#qiskit.visualization.plot_bloch_multivector
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np zero_ket = np.array([[1], [0]]) print("|0> ket:\n", zero_ket) print("<0| bra:\n", zero_ket.T.conj()) zero_ket.T.conj() @ zero_ket one_ket = np.array([[0], [1]]) zero_ket.T.conj() @ one_ket zero_ket @ zero_ket.T.conj() ψ = np.array([[1], [0]])/np.sqrt(2) Π_0 = zero_ket @ zero_ket.T.conj() ψ.T.conj() @ Π_0 @ ψ from qiskit import QuantumCircuit, execute,QuantumCircuit, ClassicalRegister, QuantumRegister, Aer from math import pi import numpy as np from qiskit.visualization import plot_bloch_multivector, plot_histogram %matplotlib inline q = QuantumRegister(1) c = ClassicalRegister(1) circuit = QuantumCircuit(q, c) # Apply H-gate to each qubit: circuit.h(q[0]) circuit.measure(q, c) circuit.draw('mpl') # Let's see the result: backend = Aer.get_backend('qasm_simulator') results = execute(circuit,backend, shots=1000).result() counts = results.get_counts(circuit) print(counts) plot_histogram(counts) ψ = np.array([[np.sqrt(2)/2], [np.sqrt(2)/2]]) Π_0 = zero_ket @ zero_ket.T.conj() probability_0 = ψ.T.conj() @ Π_0 @ ψ Π_0 @ ψ/np.sqrt(probability_0) backend = Aer.get_backend('qasm_simulator') q1 = QuantumRegister(1) c1 = ClassicalRegister(2) circuit1 = QuantumCircuit(q1, c1) circuit1.h(q1[0]) circuit1.measure(q1[0], c1[0]) circuit1.measure(q1[0], c1[1]) circuit1.draw('mpl') results = execute(circuit1,backend, shots=1000).result() counts1 = results.get_counts(circuit1) print(counts1) plot_histogram(counts1) q = QuantumRegister(2) c = ClassicalRegister(2) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.measure(q, c) job = execute(circuit, backend, shots=1000) plot_histogram(job.result().get_counts(circuit)) q = QuantumRegister(2) c = ClassicalRegister(2) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.cx(q[0], q[1]) circuit.measure(q, c) circuit.draw('mpl') job = execute(circuit, backend, shots=1000) plot_histogram(job.result().get_counts(circuit)) ψ = np.array([[1], [1]])/np.sqrt(2) ρ = ψ @ ψ.T.conj() Π_0 = zero_ket @ zero_ket.T.conj() np.trace(Π_0 @ ρ) probability_0 = np.trace(Π_0 @ ρ) Π_0 @ ρ @ Π_0/probability_0 zero_ket = np.array([[1], [0]]) one_ket = np.array([[0], [1]]) ψ = (zero_ket + one_ket)/np.sqrt(2) print("Density matrix of the equal superposition") print(ψ @ ψ.T.conj()) print("Density matrix of the equally mixed state of |0><0| and |1><1|") print((zero_ket @ zero_ket.T.conj()+one_ket @ one_ket.T.conj())/2)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, Aer from qiskit.tools.visualization import plot_histogram, plot_bloch_multivector #import numpy as np q = QuantumRegister(2) c = ClassicalRegister(2) # Define Quantum circuit with 2 quantum register and 2 classical register bell = QuantumCircuit(q,c) # Create a Bell state bell.x(q[0]) bell.x(q[1]) bell.h(q[0]) bell.cx(q[0], q[1]) # Draw circuit bell.draw(output = 'mpl') backend_statevector = Aer.get_backend('statevector_simulator') job = execute(bell, backend_statevector) result = job.result() outputstate = result.get_statevector(bell, decimals = 3) print(outputstate) #plot_bloch_multivector(job.result().get_statevector(bell)) bell.measure(q, c) bell.draw('mpl') backend = Aer.get_backend('qasm_simulator') job = execute(bell, backend) result = job.result() result.get_counts(bell) plot_histogram(job.result().get_counts(bell)) import numpy as np zero_ket = np.array([[1], [0]]) one_ket = np.array([[0], [1]]) ψ = (zero_ket + one_ket)/np.sqrt(2) print("Density matrix of the equal superposition") print(ψ @ ψ.T.conj()) print("Density matrix of the equally mixed state of |0><0| and |1><1|") print((zero_ket @ zero_ket.T.conj()+one_ket @ one_ket.T.conj())/2) def mixed_state(pure_state, visibility): #density_matrix = pure_state @ pure_state.T.conj() density_matrix = np.dot( pure_state, np.matrix.getH(pure_state) ) maximally_mixed_state = np.eye(4)/2**2 return visibility*density_matrix + (1-visibility)*maximally_mixed_state ϕ = np.array([[1],[0],[0],[1]])/np.sqrt(2) #print (array_to_latex(ϕ, pretext="$\phi$ = ")) print(f"Maximum visibility is a pure state: \n{mixed_state(ϕ, 1.0)}\n") print(f"The state is still entangled with visibility 0.8:\n {mixed_state(ϕ, 0.8)}\n") print(f"Entanglement is lost by 0.6:\n{mixed_state(ϕ, 0.6)}\n") print(f"Barely any coherence remains by 0.2:\n{mixed_state(ϕ, 0.2)}\n") import matplotlib.pyplot as plt temperatures = [.5, 5, 2000] energies = np.linspace(0, 20, 100) fig, ax = plt.subplots() for i, T in enumerate(temperatures): probabilities = np.exp(-energies/T) Z = probabilities.sum() probabilities /= Z ax.plot(energies, probabilities, linewidth=3, label = "$T_" + str(i+1)+"$="+str(T)) ax.set_xlim(0, 20) ax.set_ylim(0, 1.2*probabilities.max()) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel('Energy') ax.set_ylabel('Probability') ax.legend() from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer cq = QuantumRegister(2,'code\_qubit\_') lq = QuantumRegister(1,'ancilla\_qubit\_') sb = ClassicalRegister(1,'syndrome\_bit') qc = QuantumCircuit(cq,lq,sb) qc.cx(cq[0],lq[0]) qc.cx(cq[1],lq[0]) qc.measure(lq,sb) qc.draw('mpl') qc_init = QuantumCircuit(cq) (qc_init+qc).draw('mpl') counts = execute( qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts) qc_init = QuantumCircuit(cq) qc_init.x(cq) (qc_init+qc).draw('mpl') counts = execute(qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts) qc_init = QuantumCircuit(cq) qc_init.h(cq[0]) qc_init.cx(cq[0],cq[1]) (qc_init+qc).draw('mpl') counts = execute(qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts) qc_init = QuantumCircuit(cq) qc_init.h(cq[0]) qc_init.cx(cq[0],cq[1]) qc_init.x(cq[0]) (qc_init+qc).draw('mpl') counts = execute(qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
%matplotlib inline # Importing standard Qiskit libraries import random from qiskit import execute, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from may4_challenge.ex3 import alice_prepare_qubit, check_bits, check_key, check_decrypted, show_message # Configuring account provider = IBMQ.load_account() backend = provider.get_backend('ibmq_qasm_simulator') # with this simulator it wouldn't work \ # Initial setup random.seed(84) # do not change this seed, otherwise you will get a different key # This is your 'random' bit string that determines your bases numqubits = 100 bob_bases = str('{0:0100b}'.format(random.getrandbits(numqubits))) def bb84(): print('Bob\'s bases:', bob_bases) # Now Alice will send her bits one by one... all_qubit_circuits = [] for qubit_index in range(numqubits): # This is Alice creating the qubit thisqubit_circuit = alice_prepare_qubit(qubit_index) # This is Bob finishing the protocol below bob_measure_qubit(bob_bases, qubit_index, thisqubit_circuit) # We collect all these circuits and put them in an array all_qubit_circuits.append(thisqubit_circuit) # Now execute all the circuits for each qubit results = execute(all_qubit_circuits, backend=backend, shots=1).result() # And combine the results bits = '' for qubit_index in range(numqubits): bits += [measurement for measurement in results.get_counts(qubit_index)][0] return bits # Here is your task def bob_measure_qubit(bob_bases, qubit_index, qubit_circuit): # # if bob_bases[qubit_index] == '0': qubit_circuit.measure(0, 0) elif bob_bases[qubit_index] == '1': qubit_circuit.h(0) qubit_circuit.measure(0, 0) # # ... bits = bb84() print('Bob\'s bits: ', bits) check_bits(bits) alice_bases = '10000000000100011111110011011001010001111101001101111110001100000110000010011000111'\ '00111010010000110' # Alice's bases bits # # key = '' for bit, alice_basis, bob_basis in zip(bits, alice_bases, bob_bases): if alice_basis == bob_basis: key += bit # # check_key(key) m = '0011011010100011101000001100010000001000011000101110110111100111111110001111100011100101011010111010111010001'\ '1101010010111111100101000011010011011011011101111010111000101111111001010101001100101111011' # encrypted message # # all_key_bits = key * 4 decrypted = '' for key_bit, message_bit in zip(all_key_bits, m): decrypted += str( (int(key_bit) + int(message_bit)) % 2) # # check_decrypted(decrypted) MORSE_CODE_DICT = { 'a':'.-', 'b':'-...', 'c':'-.-.', 'd':'-..', 'e':'.', 'f':'..-.', 'g':'--.', 'h':'....', 'i':'..', 'j':'.---', 'k':'-.-', 'l':'.-..', 'm':'--', 'n':'-.', 'o':'---', 'p':'.--.', 'q':'--.-', 'r':'.-.', 's':'...', 't':'-', 'u':'..-', 'v':'...-', 'w':'.--', 'x':'-..-', 'y':'-.--', 'z':'--..', '1':'.----', '2':'..---', '3':'...--', '4':'....-', '5':'.....', '6':'-....', '7':'--...', '8':'---..', '9':'----.', '0':'-----', ', ':'--..--', '.':'.-.-.-', '?':'..--..', '/':'-..-.', '-':'-....-', '(':'-.--.', ')':'-.--.-'} # # words_decoded = [] words_encoded = decrypted.split('000') for word_encoded in words_encoded: letters_encoded = word_encoded.split('00') letters_decoded = '' for letter_encoded in letters_encoded: dotordashes = letter_encoded.split('0') letter_morse = '' for dotordash in dotordashes: if dotordash == '11': letter_morse += '-' elif dotordash == '1': letter_morse += '.' letters_decoded += next(key for key, value in MORSE_CODE_DICT.items() if value == letter_morse) words_decoded.append(letters_decoded) solution = ' '.join(words_decoded) # # show_message(solution)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
#supporting package import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi, sqrt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, Aer qc = QuantumCircuit(2) qc.h(0) qc.cz(0, 1) #squareroot control Z-gate qc.h(1) qc.swap(0,1) # to make completeness in orthonormal basis qc.draw('mpl') s = np.array([[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]) s h = np.array([[0.707,0.707,0,0],[0.707,-0.707,0,0],[0,0,0.707,0.707],[0,0,0.707,-0.707]]) h z=np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,0+1.j]]) z QFT2 = s*h*z*h #need to do #QFT2 qc = QuantumCircuit(3) qc.h(2) display( qc.draw('mpl') ) # UROT_2 gate to x1 depending on x2 qc.cu1(pi/2, 1, 2) # CROT from qubit 1 to qubit 2 hence the angle: pi/2^{2-1} display ( qc.draw('mpl') ) qc.cu1(pi/4, 0, 2) # CROT from qubit 2 to qubit 0 hence the angle: pi/2^{2-0} display( qc.draw('mpl') ) # Repeat the process for 1 and 0 qc.h(1) # Hadamard on 1 qc.cu1(pi/2, 0, 1) # CROT from qubit 0 to qubit 1 hence the angle: pi/2^{1-0} qc.h(0) # Hadamard on 0 display( qc.draw('mpl') ) # Now swap the qubit 0 and 2 to complete QFT. [NOT CLEAR TO ME] qc.swap(0,2) display ( qc.draw('mpl') ) qc = QuantumCircuit(2) qc.h(1) display( qc.draw('mpl') ) # UROT_1 gate to x0 depending on x1 qc.cu1(pi/2, 0, 1) # CROT from qubit 0 to qubit 1 hence the angle: pi/2^{1-0} display ( qc.draw('mpl') ) qc.h(0) # Hadamard on 1 # Now swap the qubit 0 and 2 to complete QFT. [To make orthonormal bais set completeness] qc.swap(0,1) display ( qc.draw('mpl') )
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
References 1. https://qiskit.org/textbook/preface.html 2. https://www.youtube.com/watch?v=IT-O-KSWlaE 3. https://www.youtube.com/watch?v=m4zs_fqS0Zw
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
#initialization import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram Circuit = QuantumCircuit(2) Circuit.draw('mpl') Circuit.h(0) Circuit.h(1) Circuit.draw('mpl') #apply Oracle U_f Circuit.cz(0,1) Circuit.draw('mpl') #apply diffuser U_S Circuit.h(0) Circuit.h(1) Circuit.z(0) Circuit.z(1) Circuit.cz(0,1) Circuit.h(0) Circuit.h(1) Circuit.draw('mpl') sv_sim = Aer.get_backend('statevector_simulator') job_sim = execute(Circuit, sv_sim) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") Circuit.measure_all() qasm_simulator = Aer.get_backend('qasm_simulator') shots = 1-24 results = execute(Circuit, backend=qasm_simulator, shots=shots).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, Aer from qiskit.tools.visualization import plot_histogram, plot_bloch_multivector #import numpy as np q = QuantumRegister(2) c = ClassicalRegister(2) # Define Quantum circuit with 2 quantum register and 2 classical register bell = QuantumCircuit(q,c) # Create a Bell state bell.x(q[0]) bell.x(q[1]) bell.h(q[0]) bell.cx(q[0], q[1]) # Draw circuit bell.draw(output = 'mpl') backend_statevector = Aer.get_backend('statevector_simulator') job = execute(bell, backend_statevector) result = job.result() outputstate = result.get_statevector(bell, decimals = 3) print(outputstate) #plot_bloch_multivector(job.result().get_statevector(bell)) bell.measure(q, c) bell.draw('mpl') backend = Aer.get_backend('qasm_simulator') job = execute(bell, backend) result = job.result() result.get_counts(bell) plot_histogram(job.result().get_counts(bell)) import numpy as np zero_ket = np.array([[1], [0]]) one_ket = np.array([[0], [1]]) ψ = (zero_ket + one_ket)/np.sqrt(2) print("Density matrix of the equal superposition") print(ψ @ ψ.T.conj()) print("Density matrix of the equally mixed state of |0><0| and |1><1|") print((zero_ket @ zero_ket.T.conj()+one_ket @ one_ket.T.conj())/2) def mixed_state(pure_state, visibility): #density_matrix = pure_state @ pure_state.T.conj() density_matrix = np.dot( pure_state, np.matrix.getH(pure_state) ) maximally_mixed_state = np.eye(4)/2**2 return visibility*density_matrix + (1-visibility)*maximally_mixed_state ϕ = np.array([[1],[0],[0],[1]])/np.sqrt(2) #print (array_to_latex(ϕ, pretext="$\phi$ = ")) print(f"Maximum visibility is a pure state: \n{mixed_state(ϕ, 1.0)}\n") print(f"The state is still entangled with visibility 0.8:\n {mixed_state(ϕ, 0.8)}\n") print(f"Entanglement is lost by 0.6:\n{mixed_state(ϕ, 0.6)}\n") print(f"Barely any coherence remains by 0.2:\n{mixed_state(ϕ, 0.2)}\n") import matplotlib.pyplot as plt temperatures = [.5, 5, 2000] energies = np.linspace(0, 20, 100) fig, ax = plt.subplots() for i, T in enumerate(temperatures): probabilities = np.exp(-energies/T) Z = probabilities.sum() probabilities /= Z ax.plot(energies, probabilities, linewidth=3, label = "$T_" + str(i+1)+"$="+str(T)) ax.set_xlim(0, 20) ax.set_ylim(0, 1.2*probabilities.max()) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel('Energy') ax.set_ylabel('Probability') ax.legend() from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer cq = QuantumRegister(2,'code\_qubit\_') lq = QuantumRegister(1,'ancilla\_qubit\_') sb = ClassicalRegister(1,'syndrome\_bit') qc = QuantumCircuit(cq,lq,sb) qc.cx(cq[0],lq[0]) qc.cx(cq[1],lq[0]) qc.measure(lq,sb) qc.draw('mpl') qc_init = QuantumCircuit(cq) (qc_init+qc).draw('mpl') counts = execute( qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts) qc_init = QuantumCircuit(cq) qc_init.x(cq) (qc_init+qc).draw('mpl') counts = execute(qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts) qc_init = QuantumCircuit(cq) qc_init.h(cq[0]) qc_init.cx(cq[0],cq[1]) (qc_init+qc).draw('mpl') counts = execute(qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts) qc_init = QuantumCircuit(cq) qc_init.h(cq[0]) qc_init.cx(cq[0],cq[1]) qc_init.x(cq[0]) (qc_init+qc).draw('mpl') counts = execute(qc_init+qc, Aer.get_backend('qasm_simulator')).result().get_counts() print('Results:',counts)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer from math import pi from qiskit.visualization import plot_bloch_multivector, plot_state_qsphere %matplotlib inline qcx = QuantumCircuit(1) qcx.draw('mpl') backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit job = execute(qcx,backend).result() # Do the simulation, returning the state vector plot_bloch_multivector(job.get_statevector()) # Display the output state vector plot_state_qsphere(job.get_statevector(qcx)) # Let's do an X-gate on a |0> qubit qcx.x(0) qcx.draw('mpl') job = execute(qcx,backend).result() # Do the simulation, returning the state vector plot_bloch_multivector(job.get_statevector()) # Display the output state vector plot_state_qsphere(job.get_statevector(qcx)) from IPython.display import YouTubeVideo print("Install Qiskit") YouTubeVideo("M4EkW4VwhcI") print("Hello World!") YouTubeVideo("RrUTwq5jKM4")
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np n_samples = 100 p_1 = 0.2 x_data = np.random.binomial(1, p_1, (n_samples,)) print(x_data) frequency_of_zeros, frequency_of_ones = 0, 0 for x in x_data: if x: frequency_of_ones += 1/n_samples else: frequency_of_zeros += 1/n_samples print(frequency_of_ones+frequency_of_zeros) import matplotlib.pyplot as plt %matplotlib inline p_0 = np.linspace(0, 1, 100) #print(p_0) p_1 = 1-p_0 #print(p_1) fig, ax = plt.subplots() ax.set_xlim(-1.2, 1.2) ax.set_ylim(-1.2, 1.2) ax.spines['left'].set_position('center') ax.spines['bottom'].set_position('center') ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.set_xlabel("$p_0$") ax.xaxis.set_label_coords(1.0, 0.5) ax.set_ylabel("$p_1$") ax.yaxis.set_label_coords(0.5, 1.0) plt.plot(p_0, p_1) p = np.array([[0.7], [0.3]]) np.linalg.norm(p, ord=1) Π_0 = np.array([[1, 0], [0, 0]]) np.linalg.norm(Π_0 @ p, ord=1) Π_1 = np.array([[0, 0], [0, 1]]) np.linalg.norm(Π_1 @ p, ord=1) p = np.array([[.5], [.5]]) M = np.array([[0.7, 0.6], [0.3, 0.4]]) np.linalg.norm(M @ p, ord=1) ϵ = 10e-10 p_0 = np.linspace(ϵ, 1-ϵ, 100) p_1 = 1-p_0 H = -(p_0*np.log2(p_0) + p_1*np.log2(p_1)) fig, ax = plt.subplots() ax.set_xlim(0, 1) ax.set_ylim(0, -np.log2(0.5)) ax.set_xlabel("$p_0$") ax.set_ylabel("$H$") plt.plot(p_0, H) plt.axvline(x=0.5, color='k', linestyle='--') from qiskit import QuantumCircuit, execute,QuantumCircuit, ClassicalRegister, QuantumRegister, Aer from qiskit.visualization import plot_histogram, plot_bloch_vector,plot_bloch_multivector,plot_state_qsphere from math import sqrt, pi import numpy as np %matplotlib inline qc = QuantumCircuit(1) # Create a quantum circuit with one qubit backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit job = execute(qc,backend).result() # Do the simulation, returning the state vector plot_bloch_multivector(job.get_statevector()) # Display the output state vector initial_state = [0,1] # Define initial_state as |1> qc.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit qc.draw()# Let's view our circuit result = execute(qc,backend).result() # Do the simulation, returning the state vector plot_bloch_multivector(result.get_statevector()) # Display the output state vector out_state = result.get_statevector() print(out_state) # Display the output state vector qc.measure_all() qc.draw() result = execute(qc,backend).result() counts = result.get_counts() plot_histogram(counts) initial_state = [1/sqrt(2), 1j/sqrt(2)] # Define state |q> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0)# Initialise the 0th qubit in the state `initial_state` qc.h(0) qc.draw() state = execute(qc,backend).result().get_statevector() # Execute the circuit print(state) # Print the result results = execute(qc,backend).result().get_counts() plot_histogram(results) vector = [0,1] qc.initialize(vector, 0) qc = QuantumCircuit(1) # Redefine qc initial_state = [0.+1.j/sqrt(2),1/sqrt(2)+0.j] qc.initialize(initial_state, 0) print(initial_state) qc.draw() state = execute(qc, backend).result().get_statevector() print("Qubit State = " + str(state)) qc.measure_all() qc.draw() state = execute(qc, backend).result().get_statevector() print("State of Measured Qubit = " + str(state)) π = np.pi backend = BasicAer.get_backend('qasm_simulator') q = QuantumRegister(1) c = ClassicalRegister(1) circuit = QuantumCircuit(q, c) circuit.measure(q, c) job = execute(circuit, backend, shots=100) result = job.result() result.get_counts(circuit) backend_statevector = BasicAer.get_backend('statevector_simulator') circuit = QuantumCircuit(q, c) circuit.iden(q[0]) job = execute(circuit, backend_statevector) plot_bloch_multivector(job.result().get_statevector(circuit)) circuit = QuantumCircuit(q, c) circuit.ry(π/2, q[0]) circuit.measure(q, c) job = execute(circuit, backend, shots=100) plot_histogram(job.result().get_counts(circuit)) circuit = QuantumCircuit(q, c) circuit.ry(π/2, q[0]) job = execute(circuit, backend_statevector) plot_bloch_multivector(job.result().get_statevector(circuit)) circuit = QuantumCircuit(q, c) circuit.x(q[0]) circuit.ry(π/2, q[0]) job = execute(circuit, backend_statevector) plot_bloch_multivector(job.result().get_statevector(circuit)) circuit.measure(q, c) job = execute(circuit, backend, shots=100) plot_histogram(job.result().get_counts(circuit)) circuit = QuantumCircuit(q, c) circuit.ry(π/2, q[0]) circuit.ry(π/2, q[0]) circuit.measure(q, c) job = execute(circuit, backend, shots=100) plot_histogram(job.result().get_counts(circuit)) q0 = np.array([[1], [0]]) q1 = np.array([[1], [0]]) np.kron(q0, q1) q = QuantumRegister(2) c = ClassicalRegister(2) circuit = QuantumCircuit(q, c) circuit.h(q[0]) circuit.cx(q[0], q[1]) circuit.measure(q, c) job = execute(circuit, backend, shots=100) plot_histogram(job.result().get_counts(circuit))
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
from qiskit import * from math import pi import numpy as np from qiskit.quantum_info import Statevector from qiskit_textbook.tools import array_to_latex from qiskit.visualization import plot_bloch_multivector, plot_histogram, plot_state_city,plot_state_qsphere %matplotlib inline qc1 = QuantumCircuit(2) qc1.draw('mpl') backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit final_state = execute(qc1,backend).result().get_statevector() job = execute(qc1,backend).result() # Do the simulation, returning the state vector print(final_state) array_to_latex(final_state, pretext="\\text{Statevector} = ") plot_state_qsphere(job.get_statevector(qc1)) qc1 = QuantumCircuit(2) qc1.x(0) qc1.draw('mpl') backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit final_state = execute(qc1,backend).result().get_statevector() job = execute(qc1,backend).result() # Do the simulation, returning the state vector print(final_state) array_to_latex(final_state, pretext="\\text{Statevector} = ") plot_state_qsphere(job.get_statevector(qc1)) qc1 = QuantumCircuit(2) qc1.x(1) qc1.draw('mpl') backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit final_state = execute(qc1,backend).result().get_statevector() job = execute(qc1,backend).result() # Do the simulation, returning the state vector print(final_state) array_to_latex(final_state, pretext="\\text{Statevector = }") plot_state_qsphere(job.get_statevector(qc1)) qc1 = QuantumCircuit(2) qc1.x(0) qc1.x(1) qc1.draw('mpl') backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit final_state = execute(qc1,backend).result().get_statevector() job = execute(qc1,backend).result() # Do the simulation, returning the state vector print(final_state) array_to_latex(final_state, pretext="\\text{Statevector} = ") plot_state_qsphere(job.get_statevector(qc1)) sv = Statevector.from_label('00') # Bell State |Ψ+> qcb = QuantumCircuit(2) qcb.h(0) qcb.cx(0, 1) qcb.draw('mpl') new_sv = sv.evolve(qcb) print(new_sv) plot_state_qsphere(new_sv.data) qc = QuantumCircuit(2) # Apply H-gate to the first: qc.h(0) # Apply a CNOT: qc.cx(0,1) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,backend).result().get_statevector() job = execute(qc,backend).result() # Do the simulation, returning the state vector print(np.round(final_state,10)) array_to_latex(final_state, pretext="\\text{Statevector} = ") plot_state_qsphere(job.get_statevector(qc)) sv = Statevector.from_label('01') # Bell State |Ψ+> qcx = QuantumCircuit(2) qcx.h(0) qcx.cx(0, 1) qcx.draw('mpl') new_sv = sv.evolve(qcx) print(new_sv) plot_state_qsphere(new_sv.data) qc = QuantumCircuit(2) # Apply H-gate to the first: qc.x(0) qc.h(0) # Apply a CNOT: qc.cx(0,1) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,backend).result().get_statevector() job = execute(qc,backend).result() # Do the simulation, returning the state vector print(np.round(final_state,10)) array_to_latex(final_state, pretext="\\text{Statevector} = ") plot_state_qsphere(job.get_statevector(qc)) sv = Statevector.from_label('10') # Bell State |Ψ+> qcx = QuantumCircuit(2) qcx.h(0) qcx.cx(0, 1) qcx.draw('mpl') new_sv = sv.evolve(qcx) print(new_sv) plot_state_qsphere(new_sv.data) qc = QuantumCircuit(2) # Apply H-gate to the first: qc.x(1) qc.h(0) # Apply a CNOT: qc.cx(0,1) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,backend).result().get_statevector() job = execute(qc,backend).result() # Do the simulation, returning the state vector print(np.round(final_state,10)) array_to_latex(final_state, pretext="\\text{Statevector} = ") plot_state_qsphere(job.get_statevector(qc)) sv = Statevector.from_label('11') # Bell State |Ψ+> qcx = QuantumCircuit(2) qcx.h(0) qcx.cx(0, 1) qcx.draw('mpl') new_sv = sv.evolve(qcx) print(new_sv) plot_state_qsphere(new_sv.data) qc = QuantumCircuit(2) # Apply H-gate to the first: qc.x(0) qc.x(1) qc.h(0) # Apply a CNOT: qc.cx(0,1) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,backend).result().get_statevector() job = execute(qc,backend).result() # Do the simulation, returning the state vector print(np.round(final_state,10)) array_to_latex(final_state, pretext="\\text{Statevector} = ") plot_state_qsphere(job.get_statevector(qc))
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
from qiskit import QuantumCircuit, execute,QuantumCircuit, ClassicalRegister, QuantumRegister, Aer from math import pi import numpy as np from qiskit.visualization import plot_bloch_multivector, plot_histogram %matplotlib inline qc = QuantumCircuit(3) # Apply H-gate to each qubit: for qubit in range(3): qc.h(qubit) # See the circuit: qc.draw('mpl') # Let's see the result def final_state(circuit): backend = Aer.get_backend('statevector_simulator') final_state = execute(circuit,backend).result().get_statevector() return final_state fs=final_state(qc) fs # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print(final_state) instead. from qiskit_textbook.tools import array_to_latex array_to_latex(fs, pretext="\\text{Statevector} = ") qchx = QuantumCircuit(2) qchx.h(0) qchx.x(1) qchx.draw('mpl') backend = Aer.get_backend('unitary_simulator') unitary = execute(qchx,backend).result().get_unitary() # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print(unitary) instead. from qiskit_textbook.tools import array_to_latex array_to_latex(unitary, pretext="\\text{Circuit = }\n") qci = QuantumCircuit(2) qci.x(1) qci.draw('mpl') # Simulate the unitary backend = Aer.get_backend('unitary_simulator') unitary = execute(qci,backend).result().get_unitary() # Display the results: array_to_latex(unitary, pretext="\\text{Circuit = } ") qcn = QuantumCircuit(2) # Apply CNOT qcn.cx(0,1) # See the circuit: qcn.draw('mpl') qch = QuantumCircuit(2) # Apply H-gate to the first: qch.h(0) qch.draw('mpl') # # Let's see the result: # backend = Aer.get_backend('statevector_simulator') # final_state = execute(qch,backend).result().get_statevector() fs1 = final_state(qch) fs1 # # Print the statevector neatly: array_to_latex(fs1, pretext="\\text{Statevector = }") qchn = QuantumCircuit(2) # Apply H-gate to the first: qchn.h(0) # Apply a CNOT: qchn.cx(0,1) qchn.draw('mpl') # Let's see the result: fs2 = final_state(qchn) # Print the statevector neatly: array_to_latex(fs2, pretext="\\text{Statevector = }") qcu = QuantumCircuit(2) # Apply H-gate to the first: qcu.h(0) qcu.draw('mpl') # Let's see the result: backend = Aer.get_backend('unitary_simulator') final_state = execute(qcu,backend).result().get_unitary() # Print the statevector neatly: array_to_latex(final_state, pretext="\\text{Circuit = }") qcm = QuantumCircuit(2,2) # Apply H-gate to the first: qcm.h(0) qcm.draw('mpl') qcm.cx(0,1) qcm.measure([0,1],[0,1]) qcm.draw('mpl') # Let's see the result: backend = Aer.get_backend('qasm_simulator') results = execute(qcm,backend, shots=1000).result() counts = results.get_counts(qcm) print(counts) plot_histogram(counts) import qiskit qiskit.__qiskit_version__
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
#!pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src import numpy as np from qiskit_textbook.tools import array_to_latex Y=np.array([[0,complex(0,-1)],[complex(0,1),0]]) #print ('Y:',Y) print (array_to_latex(Y,pretext="\\text{Y = } ")) Y_dag= Y.conj().transpose() print (array_to_latex(Y_dag, pretext="\\text{Y_dag = } ")) A=np.dot(Y,Y_dag) #print ('A:',A) print (array_to_latex(A,pretext="\\text{A = } ")) from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit import Aer from qiskit.tools.visualization import circuit_drawer # Calling a simulator to see what happened after applying the gate backend_statevector = Aer.get_backend('statevector_simulator') # create a quantum register and a classical register q = QuantumRegister(1) c = ClassicalRegister(1) #used to measure the result circuit = QuantumCircuit(q, c) # Now we created a circuit circuit.x(q[0]) # Applied a Pauli X-gate to q0 job = execute(circuit, backend_statevector) print(array_to_latex(job.result().get_statevector(circuit),pretext="\\text{Psi after X-gate is applied = } ")) circuit.x(q[0]) # Apllied another Pauli X-gate to q print(circuit.draw(style='mpl')) job1 = execute(circuit, backend_statevector) # ran the job #print("Psi after X-gate applied again:",job1.result().get_statevector(circuit)) print(array_to_latex(job1.result().get_statevector(circuit),pretext="\\text{Psi after X-gate is applied again = } ")) np.eye(4) # Creates an identity matrix of 4 X 4 def mixed_state(pure_state, visibility): density_matrix = pure_state @ pure_state.T.conj() maximally_mixed_state = np.eye(4)/2**2 return visibility*density_matrix + (1-visibility)*maximally_mixed_state ϕ = np.array([[1],[0],[0],[1]])/np.sqrt(2) ##################### print(array_to_latex(ϕ,pretext="\\text{ϕ = } ")) d_m= ϕ @ ϕ.T.conj() print ('Density_matrix') print (d_m) ############################### print("Maximum visibility is a pure state:") print(mixed_state(ϕ, 1.0)) ############################# print("The state is still entangled with visibility 0.8:") print(mixed_state(ϕ, 0.8)) ################################ print("Entanglement is lost by 0.6:") print(mixed_state(ϕ, 0.6)) ############################ print("Barely any coherence remains by 0.2:") print(mixed_state(ϕ, 0.2)) import matplotlib.pyplot as plt temperatures = [.5, 5, 200] energies = np.linspace(0, 20, 100) # Creating uniform energy levels fig, ax = plt.subplots() for i, T in enumerate(temperatures): probabilities = np.exp(-energies/T) Z = probabilities.sum() probabilities /= Z ax.plot(energies, probabilities, linewidth=3, label = "$T_" + str(i+1)+"$="+str(T)) ax.set_xlim(0, 20) ax.set_ylim(0, 1.2*probabilities.max()) #ax.set_xticks([]) #ax.set_yticks([]) ax.set_xlabel('Energy') ax.set_ylabel('Probability') ax.legend() from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error def get_noise(p_meas,p_gate): error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)]) error_gate1 = depolarizing_error(p_gate, 1) error_gate2 = error_gate1.tensor(error_gate1) noise_model = NoiseModel() # measurement error is applied to measurements noise_model.add_all_qubit_quantum_error(error_meas, "measure") # single qubit gate error is applied to x gates noise_model.add_all_qubit_quantum_error(error_gate1, ["x"]) # two qubit gate error is applied to cx gates noise_model.add_all_qubit_quantum_error(error_gate2, ["cx"]) return noise_model #Create noise_model with a probability of 1% for each type of error noise_model=get_noise(0.01,0.01) # initialize circuit with three qubits in the 0 state qc0 = QuantumCircuit(3,3,name='0') # measure the qubits qc0.measure(qc0.qregs[0],qc0.cregs[0]) print(qc0.draw(style='mpl')) # run the circuit with th noise model and extract the counts counts_noise = execute( qc0, Aer.get_backend('qasm_simulator'),noise_model=noise_model).result().get_counts() counts = execute( qc0, Aer.get_backend('qasm_simulator')).result().get_counts() print(' No noise:',counts,'\n','Noise:',counts_noise) n =1024 # number of shots #Running same with '111' this time! qc1 = QuantumCircuit(3, 3, name='0') qc1.x(qc1.qregs[0]) # flip each 0 to 1 qc1.measure(qc1.qregs[0],qc1.cregs[0]) # measure the qubits print(qc1.draw(style='mpl')) # run the circuit with th noise model and extract the counts counts_noise = execute( qc1, Aer.get_backend('qasm_simulator'),noise_model=noise_model,shots=n).result().get_counts() counts = execute( qc1, Aer.get_backend('qasm_simulator'),shots=n).result().get_counts() print(' No noise:',counts,'\n','Noise:',counts_noise) #Increase measurement_noise probability noise_model = get_noise(0.5,0.0) counts = execute(qc1, Aer.get_backend('qasm_simulator'),noise_model=noise_model).result().get_counts() print(counts)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np import matplotlib.pylab as plt import seaborn as sns np.sign(2*np.random.rand(10)-1).astype('int') class Ising2D(): def __init__(self, N=10, seed=8848): self.N = N self.seed = seed np.random.seed(self.seed) # construct a lattice with random spins (+1, -1) self.Lattice = np.array([ np.sign(2*np.random.rand(self.N)-1).astype('int') for i in range(self.N)] ) def Print_lattice(self): for row in self.Lattice: print (row) def Plot_lattice(self): fig,ax=plt.subplots(1,1, figsize=(6,6)) sns.heatmap(self.Lattice, linecolor='white', cbar=True, ax=ax,\ square=True, cmap='viridis', xticklabels=[], yticklabels=[]); plt.show() def Energy(self, J=1): # one liner using list comprehension ene = np.sum([ -1.0*J*self.Lattice[i,j] *( self.Lattice[ (i+1)%self.N, j ] + self.Lattice[ (i-1)%self.N, j ] +\ self.Lattice[ i, (j+1)%self.N ] + self.Lattice[ i, (j-1)%self.N ] ) \ for i in range(self.N) for j in range(self.N) ]) return ene def Magnetization(self): return np.sum(self.Lattice) model = Ising2D(N=10, seed=1) # seed 0, N=12 model.Plot_lattice() #model.Print_lattice() Ene = model.Energy() M = model.Magnetization() print ( f"Energy of given configuration: {Ene} and Magnetization: {M}") def calculate_energy(J, σ, h=[0]): energy = -sum(J_ij*σ[i]*σ[i+1] for i, J_ij in enumerate(J)) energy += -sum(h_i*σ_i for h_i, σ_i in zip(h, σ)) return energy J = [1.0, -1.0] σ = [+1, -1, +1] calculate_energy(J, σ) import itertools for σ in itertools.product(*[{+1, -1}, {+1, -1}, {+1, -1}]): #for σ in itertools.product(*[{+1,-1} for _ in range(3)]): print(f"Spin configuration:\t{σ} \tEnergy: \t {calculate_energy(J, σ)}") J = [1., 1.] σ = [+1, -1, +1] h = [0.5, 0.5, 0.4] print ( f"J={J} \tEnergy= {calculate_energy(J, σ, h)}") J = [-1., -1.] σ = [+1, -1, +1] h = [0.5, 0.5, 0.4] print ( f"J={J} \tEnergy= {calculate_energy(J, σ, h)}") import itertools J = [-1, -1] h = [0, 0, 0] minimum_energy = 0 for σ_c in itertools.product(*[{+1,-1} for _ in range(3)]): energy = calculate_energy(J, σ_c, h) if energy < minimum_energy: minimum_energy = energy σ = σ_c σ, minimum_energy #!pip3 install dimod import dimod J = {(0, 1): 1.0, (1, 2): -1.0} h = {0:0, 1:0, 2:0} model = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.SPIN) # syntax (linear, quadratic, offset, vartype) sampler = dimod.SimulatedAnnealingSampler() response = sampler.sample(model, num_reads=10) all_ene = [solution.energy for solution in response.data()] print (f"All energies: {all_ene} with total count: {all_ene.count(-2.)}") from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit import Aer from qiskit.visualization import plot_state_qsphere from qiskit_textbook.tools import array_to_latex np.set_printoptions(precision=3, suppress=True) backend = Aer.get_backend('statevector_simulator') q = QuantumRegister(1) c = ClassicalRegister(1) circuit = QuantumCircuit(q, c) display ( circuit.draw('mpl') ) def get_statevector(qc): return execute(qc, backend = Aer.get_backend('statevector_simulator') ).result().get_statevector() circuit.z(q[0]) state = get_statevector(circuit) array_to_latex ( state, pretext="\\text{ State : }\n" ) plot_state_qsphere(state.data) circuit = QuantumCircuit(q, c) circuit.z(q[0]) circuit.x(q[0]) state = get_statevector(circuit) array_to_latex ( state, pretext="\\text{ State : }\n" ) plot_state_qsphere(state.data) def calculate_energy_expectation(state, hamiltonian): return np.squeeze(np.dot(np.matrix.getH(state), np.dot(hamiltonian, state) )) #return float((state.T.conj() @ hamiltonian @ state).real) #return float((state.T.conj() @ hamiltonian @ state).real) # built-in operators from qiskit.quantum_info import Operator, Pauli array_to_latex ( Operator(Pauli(label='X')).data, pretext="\\text{ Pauli-X operator : }\n" ) array_to_latex ( Operator(Pauli(label='XZ')).data, pretext="\\text{ XZ operator : }\n" ) PauliZ = np.array([[1, 0], [0, -1]]) I2 = np.eye(2) IZ = np.kron(I2, PauliZ); ZI = np.kron(PauliZ, I2); ZZ = np.kron(PauliZ, PauliZ); H = -ZZ + -0.5*(ZI+IZ); ψ = np.kron([[1], [0]], [[1], [0]]) ; ψ_H_ψ = calculate_energy_expectation(ψ, H); array_to_latex ( IZ, pretext="\\text{ IZ = }\n" ) array_to_latex ( ZI, pretext="\\text{ ZI = }\n" ) array_to_latex ( ZZ, pretext="\\text{ ZZ = }\n" ) array_to_latex ( H, pretext="\\text{ H = }\n" ) array_to_latex ( ψ, pretext="\\text{ ψ = }\n" ) print (f"Energy expectetation value: {ψ_H_ψ}") circuit = QuantumCircuit(q, c) circuit.x(q[0]); circuit.z(q[0]) state = get_statevector(circuit) op = Operator(circuit) array_to_latex ( op.data, pretext="\\text{ Pauli-X, then Pauli-Z, Circuit as operator : }\n" ) array_to_latex ( state, pretext="\\text{ Statevector : }\n" ) circuit = QuantumCircuit(q, c) circuit.z(q[0]); circuit.x(q[0]) state = get_statevector(circuit) op = Operator(circuit) array_to_latex ( op.data, pretext="\\text{ Pauli-Z, then Pauli-X, Circuit as operator : }\n" ) array_to_latex ( state, pretext="\\text{ Statevector: }\n" ) X = np.array([[0, 1], [1, 0]]) IX = np.kron(I2, X) XI = np.kron(X, I2) H = H - XI - IX H ψ = np.kron([[1], [0]], [[1], [0]]) calculate_energy_expectation(ψ, H) eigenvalues, eigenvectors = np.linalg.eigh(H) ψ = eigenvectors[:, 0:1] energy_expectation_value = calculate_energy_expectation(ψ, H) energy_expectation_value from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error from qiskit import ignis from qiskit.visualization import plot_histogram # Construct a 5% single-qubit Bit-flip error p_error = 0.05 bit_flip = pauli_error([('X', p_error), ('I', 1 - p_error)]) phase_flip = pauli_error([('Z', p_error), ('I', 1 - p_error)]) print(bit_flip) print(phase_flip) def get_noise(p): # flip the bit with a given p error_meas = pauli_error([('X',p), ('I', 1 - p)]) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error_meas, "measure") # measurement error is applied to measurements return noise_model noise_model = get_noise(0.01) noise_model qc = QuantumCircuit(2,2) qc.x(0) qc.h(1) qc.measure(0, 1) display( qc.draw('mpl') ) backend = Aer.get_backend('qasm_simulator') noises = np.array([0.01, 0.1, .5]) noises_label = ['noise='+str(n) for n in noises] all_counts =[] for noise in noises: noise_model = get_noise(noise) job = execute(qc, backend=backend, noise_model=noise_model, shots=10000) counts = job.result().get_counts() all_counts.append(counts) plot_histogram(all_counts, legend=noises_label, figsize=(6, 4)) noise_model = get_noise(0.01) qc = QuantumCircuit(2,2) for state in ['00','01','10','11']: if state[0]=='1': qc.x(1) if state[1]=='1': qc.x(0) qc.measure(qc.qregs[0],qc.cregs[0]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend=backend, noise_model=noise_model, shots=10000) counts = job.result().get_counts() print ( f"Pure State: {state}, mixed states counts: {counts}" ) def Get_matrix(): M = np.zeros((2**2, 2**2), dtype=float) for i, state in enumerate(['00','01','10','11']): qc = QuantumCircuit(2,2) if state[0]=='1': qc.x(1) if state[1]=='1': qc.x(0) qc.measure(qc.qregs[0],qc.cregs[0]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend=backend, noise_model=noise_model, shots=10000) counts = job.result().get_counts() M[i] = np.array([counts.get(s, 0) for s in ['00','01','10','11'] ])/10000 return M M = Get_matrix() array_to_latex(M, pretext="M=") C_ideal = np.array([0, 5000, 5000, 0] ) C_noisy = np.dot(M, C_ideal) print (f"C_ideal: {C_ideal}") print (f"C_Noisy: {C_noisy}") C_mitigated = np.dot(np.linalg.inv(M), C_noisy) print (f"C_mitigated: {C_mitigated}") from qiskit.ignis.mitigation.measurement import (complete_meas_cal, CompleteMeasFitter) qr = QuantumRegister(2) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') print ("The basis states: ", state_labels) for circuit in meas_calibs: print ("Circuit:",circuit.name) display(circuit.draw('mpl')) # Execute the calibration circuits without noise backend = Aer.get_backend('qasm_simulator') job = execute(meas_calibs, backend=backend, shots=1000) cal_results = job.result() #cal_results meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') print(meas_fitter.cal_matrix) noise_model = get_noise(0.1) backend = Aer.get_backend('qasm_simulator') job = execute(meas_calibs, backend=backend, shots=1000, noise_model=noise_model) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') print(meas_fitter.cal_matrix) qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) display ( qc.draw('mpl') ) qc.measure(qc.qregs[0],qc.cregs[0]) job = execute(qc, backend=backend, shots=10000, noise_model=noise_model) results = job.result() noisy_counts = results.get_counts() print("Noisy Counts:",noisy_counts) # Get the filter object meas_filter = meas_fitter.filter # Results with mitigation mitigated_results = meas_filter.apply(results) mitigated_counts = mitigated_results.get_counts(0) print ("mitigated counts:\n", mitigated_counts) print ( noisy_counts) print ( mitigated_counts ) %config InlineBackend.figure_format = 'svg' # Makes the images look nice plot_histogram([noisy_counts, mitigated_counts], legend=['noisy', 'mitigated'], figsize=(6, 4))
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ,Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.extensions import Initialize from qiskit_textbook.tools import random_state, array_to_latex #Create a circuit qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical bits crx = ClassicalRegister(1) # in 2 different registers teleportation_circuit = QuantumCircuit(qr, crz, crx) def create_bell_pair(qc, a, b): """Creates a bell pair in qc using qubits a & b""" qc.h(a) # Put qubit a into state |+> qc.cx(a,b) # CNOT with a as control and b as target ## SETUP # Protocol uses 3 qubits and 2 classical bits in 2 different registers qr = QuantumRegister(3,name='q') crz, crx = ClassicalRegister(1,name='crz'),ClassicalRegister(1,name='crx') teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 # In our case, Telamon entangles qubits q1 and q2 # Let's apply this to our circuit: create_bell_pair(teleportation_circuit, 1, 2) # And view the circuit so far: teleportation_circuit.draw('mpl') def alice_gates(qc, psi, a): qc.cx(psi, a) qc.h(psi) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw(output='mpl') def measure_and_send(qc, a, b): """Measures qubits a & b and 'sends' the results to Bob""" qc.barrier() qc.measure(a,0) qc.measure(b,1) measure_and_send(teleportation_circuit, 0 ,1) teleportation_circuit.draw('mpl') # This function takes a QuantumCircuit (qc), integer (qubit) # and ClassicalRegisters (crz & crx) to decide which gates to apply def bob_gates(qc, qubit, crz, crx): # Here we use c_if to control our gates with a classical # bit instead of a qubit qc.x(qubit).c_if(crx, 1) # Apply gates if the registers qc.z(qubit).c_if(crz, 1) # are in the state '1' ## STEP 4 ## Complete Circuit Again # Protocol uses 3 qubits and 2 classical bits in 2 different registers qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) ## STEP 3 measure_and_send(teleportation_circuit, 0, 1) ## STEP 4 teleportation_circuit.barrier() # Use barrier to separate steps bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw('mpl') psi=random_state(1) array_to_latex(psi, pretext="|\\psi\\rangle =") plot_bloch_multivector(psi) #Create initialization gate to create psi from |0> init_gate=Initialize(psi) init_gate.label='init' ## SETUP qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical registers crx = ClassicalRegister(1, name="crx") qc = QuantumCircuit(qr, crz, crx) ## STEP 0 # First, let's initialize Alice's q0 qc.append(init_gate, [0]) qc.barrier() ## STEP 1 # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) ## STEP 3 # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) ## STEP 4 # Bob decodes qubits bob_gates(qc, 2, crz, crx) # Display the circuit qc.draw('mpl') backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() ## SETUP qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical registers crx = ClassicalRegister(1, name="crx") qc = QuantumCircuit(qr, crz, crx) ## STEP 0 # First, let's initialize Alice's q0 qc.append(init_gate, [0]) qc.barrier() ## STEP 1 # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) ## STEP 3 # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) ## STEP 4 # Bob decodes qubits bob_gates(qc, 2, crz, crx) ## STEP 5 # reverse the initialization process qc.append(inverse_init_gate, [2]) # Display the circuit qc.draw('mpl') # Need to add a new ClassicalRegister # to see the result cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw('mpl') backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np import pylab as plt from numpy import pi from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc = QuantumCircuit(3) qc.h(2) display( qc.draw('mpl') ) # UROT_2 gate to x1 depending on x2 qc.cu1(pi/2, 1, 2) # CROT from qubit 1 to qubit 2 hence the angle: pi/2^{2-1} display ( qc.draw('mpl') ) qc.cu1(pi/4, 0, 2) # CROT from qubit 2 to qubit 0 hence the angle: pi/2^{2-0} display( qc.draw('mpl') ) # Repeat the process for 2 and 3 qc.h(1) # Hadamard on 1 qc.cu1(pi/2, 0, 1) # CROT from qubit 0 to qubit 1 hence the angle: pi/2^{1-0} qc.h(0) # Hadamard on 0 display( qc.draw('mpl') ) # Now swap the qubit 0 and 2 to complete QFT. [NOT CLEAR TO ME] qc.swap(0,2) display ( qc.draw('mpl') ) def qft_rotations(ckt, n): if n == 0: return ckt n -= 1 ckt.h(n) for qubit in range(n): ckt.cu1( pi/2**(n-qubit), qubit, n ) qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw('mpl') def qft_rotations(ckt, n): if n == 0: return ckt n -= 1 ckt.h(n) for qubit in range(n): ckt.cu1( pi/2**(n-qubit), qubit, n ) qft_rotations(ckt, n) qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw('mpl') from qiskit_textbook.widgets import scalable_circuit scalable_circuit(qft_rotations) def swap_registers(ckt, n): for qubit in range(n//2): ckt.swap(qubit, n-qubit-1) return ckt def qft(ckt, n): qft_rotations(ckt, n) swap_registers(ckt, n) return ckt qc = QuantumCircuit(4) qft(qc, 4) qc.draw('mpl') print (f"5 and it's binary: {bin(5)}") #bin(9) qc = QuantumCircuit(3) qc.x(0) qc.x(2) display(qc.draw('mpl')) backend = Aer.get_backend('statevector_simulator') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) print (sv.real) qft(qc, 3) qc.draw('mpl') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) print ('The statevectors are:\n', sv.round(1)) print ('Angle subtended by each states (as a factor of pi):\n',(np.angle(sv)/np.pi).round(2)) # 10 qc = QuantumCircuit(2) qc.x(0) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) qft(qc, 2) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) def inverse_qft(circuit, n): """Does the inverse QFT on the first n qubits in circuit""" # First we create a QFT circuit of the correct size: qft_circ = qft(QuantumCircuit(n), n) # Then we take the inverse of this circuit invqft_circ = qft_circ.inverse() # And add it to the first n qubits in our existing circuit circuit.append(invqft_circ, circuit.qubits[:n]) # use .decompose() which allows us to see the individual gates return circuit.decompose() nqubits = 3 number = 6 qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) qc.u1(number*pi/4,0) qc.u1(number*pi/2,1) qc.u1(number*pi,2) qc.draw('mpl') backend = Aer.get_backend("statevector_simulator") sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) print ('The statevectors are:\n', sv.round(1)) print ('Angle subtended by each states (as a factor of pi):\n',(np.angle(sv)/np.pi).round(2)) qc = inverse_qft(qc,nqubits) qc.measure_all() qc.draw('mpl') backend = Aer.get_backend("qasm_simulator") shots = 2048 job = execute(qc, backend=backend, shots=shots, optimization_level=3) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit import IBMQ, BasicAer from IPython.core.display import Image, display simulator = Aer.get_backend('qasm_simulator') # Alice prepares the qubits input_register = QuantumRegister(1, "x") output_register = QuantumRegister(1, "f(x)") classical_register = ClassicalRegister(1, "c") circuit_Deutsch = QuantumCircuit(input_register, output_register, classical_register) # Prepare the qubit in the output register in the |1> state circuit_Deutsch.x(output_register[0]) # Hadamard gates applied on input and output registers circuit_Deutsch.h(input_register[0]) circuit_Deutsch.h(output_register[0]) # Add a barrier circuit_Deutsch.barrier() # Draw the circuit circuit_Deutsch.draw(output="mpl") # Bob's four functions/circuits # The first option: constant f(0) = f(1) = 0 circuit_Bob1 = QuantumCircuit(input_register, output_register) circuit_Bob1.barrier() # The second option: constant f(0) = f(1) = 1 circuit_Bob2 = QuantumCircuit(input_register, output_register) circuit_Bob2.cx(input_register[0], output_register) circuit_Bob2.x(input_register[0]) circuit_Bob2.cx(input_register[0], output_register) circuit_Bob2.x(input_register[0]) circuit_Bob2.barrier() # The third option: balanced f(0) = 0 & f(1) = 1 circuit_Bob3 = QuantumCircuit(input_register, output_register) circuit_Bob3.cx(input_register[0], output_register) circuit_Bob3.barrier() # The fourth option: balanced f(0) = 1 & f(1) = 0 circuit_Bob4 = QuantumCircuit(input_register, output_register) circuit_Bob4.x(input_register[0]) circuit_Bob4.cx(input_register[0], output_register) circuit_Bob4.x(input_register[0]) circuit_Bob4.barrier() import random list_options_Bob = [circuit_Bob2,circuit_Bob2, circuit_Bob3, circuit_Bob4] circuit_Bob_choice = random.choice(list_options_Bob) # Add the chosen circuit to the main circuit circuit_Deutsch += circuit_Bob_choice # Draw the circuit print("The circuit with Bob's chosen function") circuit_Deutsch.draw(output="mpl") # Alice's final operations circuit_Deutsch.h(input_register[0]) circuit_Deutsch.measure(input_register[0], classical_register[0]) # Draw the final version of the circuit print("The final version of the circuit") circuit_Deutsch.draw(output="mpl") # The execution of the circuit counts = execute(circuit_Deutsch, simulator, shots=1).result().get_counts() # Finding the only key/measurement outcome measurement_result = list(counts.keys())[0] print("The results of the measurements: {}".format(counts)) print("The final result is: {}".format(measurement_result)) # From the final measurement result, Alice understands if # the Bob's chosen function balanced or constant if measurement_result == '0': print("Bob's chosen function was constant") elif measurement_result == '1': print("Bob's chosen function was balanced") # Alice: qubit preparation input_register = QuantumRegister(3, "x") output_register = QuantumRegister(1, "f(x)") classical_register = ClassicalRegister(3, "c") circuit_Deutsch_Jozsa = QuantumCircuit(input_register, output_register, classical_register) # Prepare the qubit in the output register in the |1> state circuit_Deutsch_Jozsa.x(output_register[0]) # Hadamard gates on both input and output registers circuit_Deutsch_Jozsa.h(input_register) # Hadamard gate is applied to all qubits in the input_register circuit_Deutsch_Jozsa.h(output_register[0]) # Add a barrier circuit_Deutsch_Jozsa.barrier() circuit_Deutsch_Jozsa.draw('mpl') # Circuit for the constant function circtuit_Deutsch_Jozsa_constant = QuantumCircuit(input_register, output_register, classical_register) circtuit_Deutsch_Jozsa_constant += circuit_Deutsch_Jozsa # Implementing the f(x) = 1 constant function circtuit_Deutsch_Jozsa_constant.x(output_register[0]) # Add a barrier circtuit_Deutsch_Jozsa_constant.barrier() # Final Hadamard gates applied on all qubits in the input register circtuit_Deutsch_Jozsa_constant.h(input_register) # Measurements executed for all qubits in the input register circtuit_Deutsch_Jozsa_constant.measure(input_register, classical_register) # Draw the circuit circtuit_Deutsch_Jozsa_constant.draw(output="mpl") # A function that will help Alice to define if # the chosen function was balanced or constant def is_balanced_or_constant(circuit, bakend): # The execution of the circuit counts = execute(circuit, bakend, shots=1).result().get_counts() # Finding the only key/measurement outcome measurement_result = list(counts.keys())[0] print("The results of the measurements: {}".format(counts)) print("The final result is: {}".format(measurement_result)) # Alice checks if Bob's function was constant or balanced if '000' in counts: print("Bob's chosen function was constant") else: print("Bob's chosen function was balanced") # Alice uses is_balanced_or_constant() function is_balanced_or_constant(circtuit_Deutsch_Jozsa_constant, simulator) # Circuit for the balanced case circtuit_Deutsch_Jozsa_balanced = QuantumCircuit(input_register, output_register, classical_register) circtuit_Deutsch_Jozsa_balanced += circuit_Deutsch_Jozsa # implementing the balanced function circtuit_Deutsch_Jozsa_balanced.cx(input_register[0], output_register[0]) circtuit_Deutsch_Jozsa_balanced.cx(input_register[1], output_register[0]) circtuit_Deutsch_Jozsa_balanced.cx(input_register[2], output_register[0]) # add a barrier circtuit_Deutsch_Jozsa_balanced.barrier() # final Hadamard gates applied on all qubits in the input register circtuit_Deutsch_Jozsa_balanced.h(input_register) # measurements executed for all qubits in the input register circtuit_Deutsch_Jozsa_balanced.measure(input_register, classical_register) # draw the circuit circtuit_Deutsch_Jozsa_balanced.draw(output="mpl") # Alice uses is_balanced_or_constant() function simulator = Aer.get_backend('qasm_simulator') is_balanced_or_constant(circtuit_Deutsch_Jozsa_balanced, simulator)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
from google.colab import drive drive.mount('/content/drive') !pip install pylatexenc !pip install qiskit # the output will be cleared after installation from IPython.display import clear_output clear_output() import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.style.use('seaborn-notebook') from scipy.fft import fft def periodfind(x,I,N): # find period a of function f(x)=x^a mod N arr=[] for i in range(N): f= (x**i)%(I) arr.append(f) return arr N=16 I=15 a=11 y=np.array(periodfind(a,I,N)) x=np.arange(N) print('f(x) = ',y) # Values of f(x) # plotting plt.style.use('seaborn-whitegrid') def plot_fig(xvals,yvals,a,I): # to make the plot nice yvals=list(yvals) fig, ax = plt.subplots() ax.plot(xvals, yvals, linewidth=1, linestyle='--', marker='o') ax.set(xlabel='$x$', ylabel='f(x)=${a}^x$(mod {I})'.format(a=a,I=I), title='Period of function f(x)=${a}^x$(mod {I})'.format(a=a,I=I)) try: # plot r on the graph r = yvals[1:].index(1) +1 plt.annotate(s='', xy=(0,1), xytext=(r,1), arrowprops=dict(arrowstyle='<->')) plt.annotate(s='$r=%i$' % r, xy=(r/3,1.5)) except: print('Could not find period, check a < N and have no common factors.') display(plt.show()) plot_fig(x,y,a,I) z=fft(y) #Apply Fast fourier Transform plt.style.use('seaborn-whitegrid') plt.title('Fast Fourier transform of function f(x)=$3^x$(mod 16)') plt.bar(x,np.abs(z),width=0.5) display(plt.show()) print('Period is 1/(a/N) is ',2) %matplotlib inline import matplotlib.pyplot as plt from qiskit import IBMQ # Importing standard Qiskit libraries and configuring account from qiskit.compiler import transpile, assemble # Loading your IBM Q account(s) # provider = IBMQ.load_account() # uncomment to run on quantum computerr import numpy as np import math import qiskit from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, Aer, execute from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram, plot_bloch_multivector, plot_state_hinton from qiskit import Aer def measure(circuit,n,c): for i in range(n): circuit.measure(i,i) return circuit pi = np.pi qc_q = QuantumRegister(4, 'input') #Initialize the Working Register qc_c = QuantumRegister(2, 'period') #Initialize the Control Register c = ClassicalRegister(4) #Register which will eventually hold measurements Shor = QuantumCircuit(qc_q, qc_c,c) Shor.x(4) # It is common convention to add a not gate before Modular Exponentiation Shor.h(qc_q[0:4]) #Initialize 4 Hadamard Gates to allow for all possibilities Shor.barrier() Shor.draw('mpl') #This is a compiled version of modular exponentiation that will not generalize outside of fermat primes. Shor.cx(qc_q[0],qc_c[0]) Shor.cx(qc_q[0],qc_c[1]) Shor.barrier() Shor.draw(output='mpl') #This can be ommited by classically swapping the order of measurments if noise is an issue. Shor.swap(qc_q[0],qc_q[3]) Shor.swap(qc_q[1],qc_q[2]) #The Inverse Quantum Fourier Transform Shor.h(0) Shor.crz(-pi/2,qc_q[0],qc_q[1]) Shor.h(1) Shor.crz(-pi/2,qc_q[1],qc_q[2]) Shor.crz(-pi/4,qc_q[0],qc_q[2]) Shor.h(2) Shor.crz(-pi/2,qc_q[2],qc_q[3]) Shor.crz(-pi/4,qc_q[1],qc_q[3]) Shor.crz(-pi/8,qc_q[0],qc_q[3]) Shor.h(3) Shor.barrier() Shor.draw(output='mpl') #Measure Working Register Shor.measure(qc_q[3],3) Shor.measure(qc_q[2],2) Shor.measure(qc_q[1],1) Shor.measure(qc_q[0],0) Shor.draw(output='mpl') import pandas as pd df=pd.read_csv("/content/drive/My Drive/QC-project/SHor code/shor_format_15_11.csv") print(df.head(16)) plt.plot(df["input_reg_value"],df["period_reg_value"]) plt.show() # # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to nqubits # provider = IBMQ.get_provider(hub='ibm-q') # from qiskit.providers.ibmq import least_busy # backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= N # and not x.configuration().simulator # and x.status().operational==True)) # print("least busy backend: ", backend) simulator = Aer.get_backend('qasm_simulator') # backend = provider.get_backend("ibmq_16_melbourne") # to run in the actual quantum computer # Replace simulator in execute function with 'backend' to run on a quantum computer job = execute(Shor, simulator, shots=8192) result = job.result() counts = result.get_counts(Shor) plot_histogram(counts) output=[] for keys in list(counts.keys()): output.append(int(keys,2)) print('The values with maximum probabilities are: {}'.format(output)) # Classical analysis of result(classical) print(output) y_over_N=[out/N for out in output[1:] ] print('y over N is',y_over_N) def find_period(output): y_over_N=[out/N for out in output[1:] ] from fractions import Fraction temp=[] num=len(y_over_N) for i in range(num): temp.append(Fraction(y_over_N[i]).limit_denominator(N)) temp[i]=Fraction(temp[i].denominator,temp[i].numerator) return temp[i].numerator a= find_period(output) print('The period of the function is ',a) # find factors by taking GCD from math import gcd factors=[] if (a/2)-(a//2)==0: # test if (a/2) is integer p=int(a/2) factors.append(gcd(11**p+1,15)) factors.append(gcd(11**p-1,15)) print(factors) # General Implementation of Shor's Algorithm # Using Qiskit library from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Shor n=63 # n is the number to be factored. factors= Shor(n) # Shor() is a function in qiskit.aqua.algorithms that performs shor's algorithm simulator = Aer.get_backend('qasm_simulator') result_dict = factors.run(QuantumInstance(simulator)) result = result_dict['factors'] result qc_shor=factors.construct_circuit() qc_shor.draw('mpl') import qiskit qiskit.__qiskit_version__
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
#Create the random probability Vector import numpy as np np.random.seed(999999) target_distr = np.random.rand(2) #print (target_distr) # We now convert the random vector into a valid probability vector target_distr /= sum(target_distr) print (target_distr) #This is our original state, we want our result close to this #This block of code is to make a function that takes the parameters of our single U3 variational form as argument #and returns the corresponding quantum circuit from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_var_form(params): qr = QuantumRegister(1, name="q") cr = ClassicalRegister(1, name='c') qc = QuantumCircuit(qr, cr) qc.u3(params[0], params[1], params[2], qr[0]) qc.measure(qr, cr[0]) return qc #Now specify the objective function which takes as input a list of the variational form's parameter and returns #the cost associated with those parameters(how much the final state is differ from intial state) from qiskit import Aer, execute backend = Aer.get_backend("qasm_simulator") NUM_SHOTS = 10000 def get_probability_distribution(counts): output_distr = [v / NUM_SHOTS for v in counts.values()] #print("Counts",counts) print ("Count Values",counts.values()) #print("Output_distr",output_distr) #print("Target_distr",target_distr) if len(output_distr) == 1: output_distr.append(0) return output_distr def objective_function(params): # Obtain a quantum circuit instance from the paramters qc = get_var_form(params) # Execute the quantum circuit to obtain the probability distribution associated with the current parameters result = execute(qc, backend, shots=NUM_SHOTS).result() print("Results",result.get_counts(qc)) # Obtain the counts for each measured state, and convert those counts into a probability vector output_distr = get_probability_distribution(result.get_counts(qc)) # Calculate the cost as the distance between the output distribution and the target distribution cost = sum([np.abs(output_distr[i] - target_distr[i]) for i in range(2)]) #display(qc.draw('mpl')) print('Input_distr:',target_distr) print('Output_distr:',output_distr) print('Cost',cost) print('-------------') return cost #This step is similar as to get the minimum energy state using variational principle #Finally COBYLA optimizer is used and run the algorithm. from qiskit.aqua.components.optimizers import COBYLA # Constrained Optimization by Linear Approximation optimizer (COBYLA) # Initialize the COBYLA optimizer optimizer = COBYLA(maxiter=500, disp=True,tol=0.0001) # Create the initial parameters (noting that our single qubit variational form has 3 parameters) params = np.random.rand(3) print ('Input parameters:->',params) ret = optimizer.optimize(num_vars=3, objective_function=objective_function, initial_point=params) #print("ret==>",ret) # Obtain the output distribution using the final parameters qc = get_var_form(ret[0]) counts = execute(qc, backend, shots=NUM_SHOTS).result().get_counts(qc) output_distr = get_probability_distribution(counts) print("Target Distribution:", target_distr) print("Obtained Distribution:", output_distr) print("Output Error (Manhattan Distance):", ret[1]) print("Parameters Found:", ret[0]) from qiskit.aqua.algorithms import VQE, NumPyEigensolver import matplotlib.pyplot as plt import numpy as np from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.circuit.library import EfficientSU2 from qiskit.aqua.components.optimizers import COBYLA, SPSA, SLSQP from qiskit.aqua.operators import Z2Symmetries from qiskit import IBMQ, BasicAer, Aer from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry import FermionicOperator from qiskit import IBMQ from qiskit.aqua import QuantumInstance from qiskit.ignis.mitigation.measurement import CompleteMeasFitter from qiskit.providers.aer.noise import NoiseModel def get_qubit_op(dist): #Step 1: Define a molecule #Here, we use LiH in the sto3g basis with the PySCF driver as an example. #The molecule object records the information from the PySCF driver. driver = PySCFDriver(atom="Li .0 .0 .0; H .0 .0 " + str(dist), unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') #sto3g-> small toy model molecule = driver.run() #ferOp_nofreeze=FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals) freeze_list = [0] remove_list = [-3, -2] repulsion_energy = molecule.nuclear_repulsion_energy #under Born Opperhiemer Approximation all the nuclei are stationary #so their contribution to the ground state energy is only nuclear repulsion. #print(repulsion_energy) #in Hatree Unit num_particles = molecule.num_alpha + molecule.num_beta #number of electrons in the system #print("number of particles==>",num_particles) #4 num_spin_orbitals = molecule.num_orbitals * 2 #number of spin orbital is twice of that space orbitals print("number of spin orbitals",num_spin_orbitals) #as spin degeneracy is 2 remove_list = [x % molecule.num_orbitals for x in remove_list] #% in interpreted language: Reminder=dividend-divisor*floor(quotient) #==> R_0 = -3 -6*(-1) = +3 and R_1= -2-6*(-1) = +4 #print ('freeze_list=>',freeze_list) #[0] #print ('Remove list=>',remove_list) #[3,4] freeze_list = [x % molecule.num_orbitals for x in freeze_list] remove_list = [x - len(freeze_list) for x in remove_list] #print ('freeze_list=>',freeze_list) #[0] #print ('Remove list=>',remove_list) #[2,3] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] print ('Remove list=>',remove_list) #[2,3,7,8] print ('freeze_list=>',freeze_list) #[0,6] #Define Fermionic Operator ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals) ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list)# the frozen electron(2 inner electron from Li+) #do not interact with other electrons but contribute by a constant term to the total ground state energy num_spin_orbitals -= len(freeze_list) #rescale num_spin_orbiatls after freeze list num_particles -= len(freeze_list) print("number of particles==>",num_particles) #print=>2 ferOp = ferOp.fermion_mode_elimination(remove_list) h1=molecule.one_body_integrals h2=molecule.two_body_integrals #print('one body integral=>') #print (ferOp_nofreeze.h1) #intialially it has 12 #print('one body integral after freezeing and removing') #print(ferOp.h1) # after applying freeze and remove it drop down to 6 #print('-------------------------------------------') #print('two body integrals=>') #print(ferOp.h2) #print ('------------------------------') num_spin_orbitals -= len(remove_list) #print("========================Fermionic Operator After applying freezing and removing list==================") #print (ferOp) #Create a Qubit Operator qubitOp = ferOp.mapping(map_type='parity', threshold=0.00000001) #print ("=====Qubit Operator berfore applying parity========") print(qubitOp) # qubits is 6 which is same as fermionic operator after applying freezing and removing list print(Z2Symmetries.find_Z2_symmetries(qubitOp))#Show spin and charge symmetries, so two conserved quantities #which will further helps to reduce the qubitOp qubitOp = Z2Symmetries.two_qubit_reduction(qubitOp, num_particles) shift = energy_shift + repulsion_energy #shift is the enegy comming from repulsion energy of two nuclei under Born–Oppenheimer approximation and #and freezing two electrons #print("-----------------Qubit Operator after appying parity---------------------") #print (qubitOp) # give type of operator(paulis) working on number of qubits(6) and number of paulis operator #print(qubitOp.print_details()) return qubitOp, num_particles, num_spin_orbitals, shift backend = BasicAer.get_backend("statevector_simulator") #distances=[1.6] distances = np.arange(0.5, 4.0, 0.1) exact_energies = [] vqe_energies = [] optimizer = SLSQP(maxiter=5) #Sequential Least SQuares Programming optimizer (SLSQP) for dist in distances: qubitOp, num_particles, num_spin_orbitals, shift = get_qubit_op(dist) #Returing multiple values in python function result = NumPyEigensolver(qubitOp).run() #Just to check with result obtained from VQE exact_energies.append(np.real(result.eigenvalues) + shift) #Create initial Guess state(Ansatz) initial_state = HartreeFock( num_spin_orbitals, num_particles, qubit_mapping='parity' ) print(initial_state.bitstr) HF_circuit=initial_state.construct_circuit('circuit') display(HF_circuit.decompose().draw(output='mpl')) #inital Hatree Fock state #UCCSD is used as problem has one and two body integral var_form = UCCSD( num_orbitals=num_spin_orbitals, num_particles=num_particles, initial_state=initial_state, qubit_mapping='parity' ) #print(var_form.single_excitations) print("Number of Parameters",var_form.num_parameters) #var_circuit=var_form.construct_circuit([2]) #display(var_circuit.decompose().draw('mpl')) vqe = VQE(qubitOp, var_form, optimizer) vqe_result = np.real(vqe.run(backend)['eigenvalue'] + shift) vqe_energies.append(vqe_result) print("Interatomic Distance:", np.round(dist, 2), "VQE Result:", vqe_result, "Exact Energy:", exact_energies[-1]) print("All energies have been calculated") plt.plot(distances, exact_energies, label="Exact Energy") #plt.plot(distances, vqe_energies, label="VQE Energy") plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy') plt.legend() plt.show() init_state=HartreeFock(num_orbitals=4,num_particles=2,qubit_mapping='jordan_wigner') print(init_state.bitstr) #give fermionic mode on which particle are occupied HF_circuit=init_state.construct_circuit('circuit') display(HF_circuit.decompose().draw('mpl')) UCCSD_var_form=UCCSD(num_orbitals=4,num_particles=2,qubit_mapping='jordan_wigner',excitation_type='s', method_singles='beta',initial_state=init_state,two_qubit_reduction=False,reps=1) var_circuit=UCCSD_var_form.construct_circuit([1]) var_circuit.decompose().draw(output='mpl') #print(UCCSD_var_form.single_excitations)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit import IBMQ, BasicAer from qiskit.circuit.library import QFT from IPython.core.display import Image, display #INITIALISE THE QUANTUM AND CLASSICAL REGISTERS q = QuantumRegister(4,'q') c = ClassicalRegister(3,'c') circuit1 = QuantumCircuit(q,c) #PUT THE COUNTING QUBITS IN TO SUPERPOSITION circuit1.h(q[0]) circuit1.h(q[1]) circuit1.h(q[2]) circuit1.x(q[3]) # Flips Q[3] to 1 circuit1.draw('mpl') pi= np.pi angle = 2*pi/3 #The phase angle we wish to encode actual_phase = angle/(2*pi) # This is the actual phase rotation ie 0.5 would be half a rotation. #Our expected rotation will be 0.33. circuit1.cu1(angle, q[0], q[3]);#where angle is the rotation amount, q[0] is the control qubit and q[3] is the target qubit circuit1.cu1(angle, q[1], q[3]); circuit1.cu1(angle, q[1], q[3]); circuit1.cu1(angle, q[2], q[3]); circuit1.cu1(angle, q[2], q[3]); circuit1.cu1(angle, q[2], q[3]); circuit1.cu1(angle, q[2], q[3]); circuit1.barrier() circuit1.draw('mpl') circuit1.swap(q[0],q[2]) circuit1.h(q[0]) circuit1.cu1(-pi/2, q[0], q[1]); circuit1.h(q[1]) circuit1.cu1(-pi/4, q[0], q[2]); circuit1.cu1(-pi/2, q[1], q[2]); circuit1.h(q[2]) circuit1.barrier() circuit1.draw('mpl') #### Measuring counting qubits #### circuit1.measure(q[0],0) circuit1.measure(q[1],1) circuit1.measure(q[2],2) from qiskit.visualization import plot_histogram simulator = Aer.get_backend('qasm_simulator') counts = execute(circuit1, backend=simulator, shots=1000).result().get_counts(circuit1) plot_histogram(counts) maxcounts = max(counts, key=counts.get) # take the most often obtaned result print(maxcounts) a=int(maxcounts, 2)#convert to decimal print(a) print('Most frequent measurement: ',a,'\n') n=3 phase = a/(2**n)# The calculation used to estimate the phase print('Actual phase is: ',actual_phase) print('Estimated phase is: ',phase)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
import numpy as np from random import random from qiskit import * from qiskit.aqua.utils.controlled_circuit import get_controlled_circuit num_bits_estimate = 3 # For 2x2 matrix one qubit is enough q = QuantumRegister(1, name="q") # In QPE we use n ancillas to estimate n bits from the phase a = QuantumRegister(num_bits_estimate, name="a") # For n ancillary qubit measurment we need n cllasical bits c = ClassicalRegister(num_bits_estimate, name="c") # Create a quantum circuit circuit = QuantumCircuit(q, a, c) # |1> eigenstate initialization circuit.x(q[0]) circuit.draw('mpl') E_1, E_2 = (2 * np.pi * random(), 2 * np.pi * random()) print("We are going to estimate E_2 via QPE algorithm \nE_2 = {}".format(E_2)) # circuit for unitary operator exp(iHt) t = 1 unitary = QuantumCircuit(q) unitary.u1(E_2 * t, q[0]) # q[0] is the only qubit in q register unitary.x(q[0]) unitary.u1(E_1 * t, q[0]) unitary.x(q[0]) unitary.draw('mpl') for ancillary in a: circuit.h(ancillary) for n in range(a.size): for m in range(2**n): get_controlled_circuit(unitary, a[n], circuit) # inverse QFT without SWAP gates for n in reversed(range(a.size)): circuit.h(a[n]) if n != 0: for m in reversed(range(n)): angle = -2*np.pi / (2**(n - m + 1)) circuit.cu1(angle, a[n], a[m]) # measurements on the ancillary qubits stored in c classical register for n in reversed(range(a.size)): circuit.measure(a[n],c[n]) circuit.draw('mpl') backend = BasicAer.get_backend('qasm_simulator') shots = 1024 # how many time execute the algorithm job = execute(circuit, backend, shots=shots) result = job.result() counts = result.get_counts() phase_bits = max(counts, key=counts.get) # take the most often obtaned result phase = 0 for index, bit in enumerate(reversed(phase_bits)): phase += int(bit) / 2**(index + 1) estimated_E_2 = 2 * np.pi * phase / t print("Eigenvalue of the Hamiltonian: {}".format(E_2)) print("Estimated eigenvalue of the Hamiltonian: {}".format(estimated_E_2))
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
#101 000 -put AND gate ->010 --- 3 step # initialization import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.visualization import plot_histogram n = 5# number of qubits used to represent s s = '10011' # the hidden binary string # We need a circuit with n qubits, plus one ancilla qubit # Also need n classical bits to write the output to bv_circuit = QuantumCircuit(n+1, n) # put ancilla in state |-> bv_circuit.h(n) bv_circuit.z(n) # Apply Hadamard gates before querying the oracle for i in range(n): bv_circuit.h(i) # Apply barrier bv_circuit.barrier() # Apply the inner-product oracle s = s[::-1] # reverse s to fit qiskit's qubit ordering for q in range(n): if s[q] == '0': bv_circuit.i(q) else: bv_circuit.cx(q, n) # Apply barrier bv_circuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(n): bv_circuit.h(i) # Measurement for i in range(n): bv_circuit.measure(i, i) bv_circuit.draw() # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(bv_circuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/anpaschool/QC-School-Fall2020
anpaschool
# importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle %matplotlib inline b = '111' n = len(b) simon_circuit = QuantumCircuit(n*2, n) # Apply Hadamard gates before querying the oracle simon_circuit.h(range(n)) # Apply barrier for visual separation simon_circuit.barrier() simon_circuit += simon_oracle(b) # Apply barrier for visual separation simon_circuit.barrier() # Apply Hadamard gates to the input register simon_circuit.h(range(n)) # Measure qubits simon_circuit.measure(range(n), range(n)) simon_circuit.draw() # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(simon_circuit, backend=backend, shots=shots).result() counts = results.get_counts() plot_histogram(counts) print(counts) # Calculate the dot product of the results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) for z in counts: print( '{}.{} = {} (mod 2)'.format(b, z, bdotz(b,z)) ) b = '10' n = len(b) simon_circuit_2 = QuantumCircuit(n*2, n) # Apply Hadamard gates before querying the oracle simon_circuit_2.h(range(n)) # Apply barrier for visual separation simon_circuit_2.barrier() # Query oracle simon_circuit_2 += simon_oracle(b) # Apply barrier for visual separation simon_circuit_2.barrier() # Apply Hadamard gates to the input register simon_circuit_2.h(range(n)) # Measure qubits simon_circuit_2.measure(range(n), range(n)) simon_circuit_2.draw() # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Execute and monitor the job from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simon_circuit_2, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) # Get results and plot counts device_counts = job.result().get_counts() plot_histogram(device_counts) # Calculate the dot product of the results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) print('b = ' + b) for z in device_counts: print( '{}.{} = {} (mod 2) ({:.1f}%)'.format(b, z, bdotz(b,z), device_counts[z]*100/shots))
https://github.com/7enTropy7/Shor-s-Algorithm_Quantum
7enTropy7
import numpy as np import math import gmpy2 from gmpy2 import powmod,mpz,isqrt,invert from qiskit.aqua.algorithms import Shor from qiskit.aqua import QuantumInstance from qiskit import Aer,execute,QuantumCircuit from qiskit.tools.visualization import plot_histogram from qiskit.providers.ibmq import least_busy from qiskit import IBMQ, execute def generate_keys(): # prime number of 3 digits i.e 7 bits random1 = np.random.randint(3,40) random2 = np.random.randint(3,40) p = int(gmpy2.next_prime(random1)) q = int(gmpy2.next_prime(random2)) n = p*q while (n<100 or n>127): random1 = np.random.randint(3,40) random2 = np.random.randint(3,40) p = int(gmpy2.next_prime(random1)) q = int(gmpy2.next_prime(random2)) n = p*q phi = (p-1)*(q-1) e = 2 while True: if gmpy2.gcd(phi,e) != 1: e = e + 1 else : break d = gmpy2.invert(e,phi) return n,e,d def encrypt(plain_text_blocks,public_keys): cipher_text_blocks = [] n,e = public_keys for plain_text in plain_text_blocks: cipher_text = (gmpy2.powmod(plain_text,e,n)) cipher_text_blocks.append(cipher_text) return cipher_text_blocks def decrypt(cipher_text_blocks,secret_key,public_keys): n,e = public_keys d = secret_key decypted_plain_text_blocks = [] for cipher_text in cipher_text_blocks: plain_text = (gmpy2.powmod(cipher_text,d,n)) decypted_plain_text_blocks.append(plain_text) return decypted_plain_text_blocks def get_factors(public_keys): n,e = public_keys # backend = Aer.get_backend('qasm_simulator') provider = IBMQ.load_account() backend = provider.get_backend('ibmq_qasm_simulator') quantum_instance = QuantumInstance(backend,shots=2500) find_factors = Shor(n,a=2,quantum_instance=quantum_instance) factors = Shor.run(find_factors) p = ((factors['factors'])[0])[0] q = ((factors['factors'])[0])[1] print('Factors of',n,'are :',p,q) return p,q # taken in 'Hello World!!!' returns ['Hello World!','!!'] def get_blocks(PT,block_size): blocks = [] i = 0 while i<len(PT): temp_str='' if i+block_size-1 < len(PT): temp_str=temp_str+PT[i:i+block_size] else : temp_str=temp_str+PT[i::] blocks.append(temp_str) i=i+block_size return blocks # covert plain_text block from characters to the numbers def format_plain_text(PT): plain_text_blocks = [] for block in PT: plain_text = 0 for i in range(len(block)): # for 'd' if ord(block[i]) == 100: plain_text = plain_text*100 + 28 # between (101,127) elif ord(block[i])>100: plain_text = plain_text*100 + (ord(block[i])-100) else : plain_text = plain_text*100 + (ord(block[i])) plain_text_blocks.append(plain_text) return plain_text_blocks # convert numeric decypted_plain_text_blocks into a single plain text of characters def format_decrypted_plain_text(decypted_plain_text_blocks): plain_text_blocks = [] for dc_pt in decypted_plain_text_blocks: plain_text = '' temp = dc_pt # for 'd' temp = 28 while temp > 0: if temp%100 == 28: plain_text = plain_text + 'd' elif (temp%100) in range(0,27): plain_text = plain_text + chr((temp%100)+100) else : plain_text = plain_text + chr((temp%100)) temp = temp//100 plain_text = plain_text[::-1] plain_text_blocks.append(plain_text) final_plain_text = '' for plain_text_block in plain_text_blocks: final_plain_text = final_plain_text + plain_text_block return final_plain_text n,e,d = generate_keys() public_keys = (n,e) secret_key = d print("\nPublic Key :") print('n :',n) print('e :',e) print("Secret Key :\nd :",d) PT = input("\nEnter Plain Text to encrypt : ") original_plain_text = PT block_size = 1 PT = get_blocks(PT,block_size) print('\nPlain Text after converting to blocks',PT) plain_text_blocks = format_plain_text(PT) print('\nPlain text blocks after formatting to numbers:',plain_text_blocks) cipher_text_blocks = encrypt(plain_text_blocks,public_keys) print("\nCipher Text Blocks After RSA encryption :",cipher_text_blocks) p,q = get_factors(public_keys) phi = (p-1)*(q-1) broken_d = gmpy2.invert(e,phi) compromised_PT = decrypt(cipher_text_blocks,broken_d,public_keys) compromised_PT = format_decrypted_plain_text(compromised_PT) compromised_PT = '!!!Your message has been attacked!!! ' + compromised_PT compromised_PT = get_blocks(compromised_PT,block_size) compromised_PT = format_plain_text(compromised_PT) compromised_CT = encrypt(compromised_PT,public_keys) cipher_text_blocks = compromised_CT decypted_plain_text_blocks = decrypt(cipher_text_blocks,secret_key,public_keys) print("\nPlain Text blocks after decryption of Cipher Text blocks :",decypted_plain_text_blocks) plain_text_after_decryption = format_decrypted_plain_text(decypted_plain_text_blocks) print("\nAfter decryption Plain Text :",plain_text_after_decryption) if (original_plain_text == plain_text_after_decryption): print("\nHurrayyy!!!\n\nDecrypted plain_text is same as original plain_text! :) ") else : print('RSA was attacked!!! :(')
https://github.com/7enTropy7/Shor-s-Algorithm_Quantum
7enTropy7
from math import gcd,log from random import randint import numpy as np from qiskit import * qasm_sim = qiskit.Aer.get_backend('qasm_simulator') def period(a,N): available_qubits = 16 r=-1 if N >= 2**available_qubits: print(str(N)+' is too big for IBMQX') qr = QuantumRegister(available_qubits) cr = ClassicalRegister(available_qubits) qc = QuantumCircuit(qr,cr) x0 = randint(1, N-1) x_binary = np.zeros(available_qubits, dtype=bool) for i in range(1, available_qubits + 1): bit_state = (N%(2**i)!=0) if bit_state: N -= 2**(i-1) x_binary[available_qubits-i] = bit_state for i in range(0,available_qubits): if x_binary[available_qubits-i-1]: qc.x(qr[i]) x = x0 while np.logical_or(x != x0, r <= 0): r+=1 qc.measure(qr, cr) for i in range(0,3): qc.x(qr[i]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[2]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) qc.cx(qr[0],qr[1]) qc.cx(qr[1],qr[0]) qc.cx(qr[3],qr[0]) qc.cx(qr[0],qr[1]) qc.cx(qr[1],qr[0]) result = execute(qc,backend = qasm_sim, shots=1024).result() counts = result.get_counts() print(qc) results = [[],[]] for key,value in counts.items(): #the result should be deterministic but there might be some quantum calculation error so we take the most reccurent output results[0].append(key) results[1].append(int(value)) s = results[0][np.argmax(np.array(results[1]))] return r def shors_breaker(N): N = int(N) while True: a=randint(0,N-1) g=gcd(a,N) if g!=1 or N==1: return g,N//g else: r=period(a,N) if r % 2 != 0: continue elif pow(a,r//2,N)==-1: continue else: p=gcd(pow(a,r//2)+1,N) q=gcd(pow(a,r//2)-1,N) if p==N or q==N: continue return p,q N=int(input("Enter a number:")) assert N>0,"Input must be positive" print(shors_breaker(N))
https://github.com/7enTropy7/Shor-s-Algorithm_Quantum
7enTropy7
import RSA_module bit_length = int(input("Enter bit_length: ")) public, private = RSA_module.generate_keypair(2**bit_length) msg = input("\nWrite message: ") encrypted_msg, encryption_obj = RSA_module.encrypt(msg, public) print("\nEncrypted message: " + encrypted_msg) decrypted_msg = RSA_module.decrypt(encryption_obj, private) print("\nDecrypted message using RSA Algorithm: " + decrypted_msg) from math import gcd,log from random import randint import numpy as np from qiskit import * qasm_sim = qiskit.Aer.get_backend('qasm_simulator') def period(a,N): available_qubits = 16 r=-1 if N >= 2**available_qubits: print(str(N)+' is too big for IBMQX') qr = QuantumRegister(available_qubits) cr = ClassicalRegister(available_qubits) qc = QuantumCircuit(qr,cr) x0 = randint(1, N-1) x_binary = np.zeros(available_qubits, dtype=bool) for i in range(1, available_qubits + 1): bit_state = (N%(2**i)!=0) if bit_state: N -= 2**(i-1) x_binary[available_qubits-i] = bit_state for i in range(0,available_qubits): if x_binary[available_qubits-i-1]: qc.x(qr[i]) x = x0 while np.logical_or(x != x0, r <= 0): r+=1 qc.measure(qr, cr) for i in range(0,3): qc.x(qr[i]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[2]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) qc.cx(qr[0],qr[1]) qc.cx(qr[1],qr[0]) qc.cx(qr[3],qr[0]) qc.cx(qr[0],qr[1]) qc.cx(qr[1],qr[0]) result = execute(qc,backend = qasm_sim, shots=1024).result() counts = result.get_counts() #print(qc) results = [[],[]] for key,value in counts.items(): results[0].append(key) results[1].append(int(value)) s = results[0][np.argmax(np.array(results[1]))] return r def shors_breaker(N): N = int(N) while True: a=randint(0,N-1) g=gcd(a,N) if g!=1 or N==1: return g,N//g else: r=period(a,N) if r % 2 != 0: continue elif pow(a,r//2,N)==-1: continue else: p=gcd(pow(a,r//2)+1,N) q=gcd(pow(a,r//2)-1,N) if p==N or q==N: continue return p,q def modular_inverse(a,m): a = a % m; for x in range(1, m) : if ((a * x) % m == 1) : return x return 1 N_shor = public[1] assert N_shor>0,"Input must be positive" p,q = shors_breaker(N_shor) phi = (p-1) * (q-1) d_shor = modular_inverse(public[0], phi) decrypted_msg = RSA_module.decrypt(encryption_obj, (d_shor,N_shor)) print('\nMessage Cracked using Shors Algorithm: ' + decrypted_msg + "\n")
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(2) #Defining qubits c = ClassicalRegister(2) #Defining bits qc = QuantumCircuit(q, c) #Making a Circuit #Entanglement qc.h(q[0]) #Hadamard Gate qc.cx(q[0], q[1]) #CNOT Gate (Control on 1st qubit and target on 2nd qubit) qc.measure(q, c) #Measure qubits to bits qc.draw('mpl') qc.draw('text') qc.draw('latex')
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q[0]) from qiskit.quantum_info import * Density_Matrix = DensityMatrix.from_instruction(qc) plot_state_hinton(Density_Matrix) #Hinton plot tells the imaginary and real part of the circuit
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.measure(q, c) sim = Aer.get_backend('qasm_simulator') job = execute(qc, sim, shots=1024) result = job.result() counts = result.get_counts() counts #THERE ARE 3 WAYS TO CHECK MONITOR YOUR JOB #MONITOR JOB STATUS:- job.status() from qiskit.tools import * job_monitor(job) import qiskit.tools.jupyter %qiskit_job_watcher
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) provider = IBMQ.load_account() backend = provider.get_backend('ibmq_belem') plot_gate_map(backend) #Tells us the way the qubits are arranged in a quantum system plot_error_map(backend) #Also tell us the error rate of the qubits #THERE ARE 2 WAYS TO SEE THE VERSION OF QISKIT:- qiskit.__qiskit_version__ #TELLS US ABOUT THE VERSION OF QISKIT import qiskit.tools.jupyter %qiskit_version_table %qiskit_backend_overview #TELLS US ABOUT THE HARDWARE PART OF EACH AVAILABLE QUANTUM SYSTEM. #T1 = RELAXATION TIME | T2 = DECOHERNECE TIME | Avg. CX Err = Gate error rate | Avg. Meas.Er = Measurement error rate
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, QuantumRegister from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.cx(q[0], q[1]) qc.measure(q, c) #you can also use #qc.measure_all() OR #qc.measure([0], [0]) qc.draw('mpl') sim = Aer.get_backend('qasm_simulator') job = execute(qc, sim, shots=1024) result = job.result() counts = result.get_counts() plot_histogram(counts) #QASM SIMULATOR NEEDS MEASUREMENT AND COUNTS AS INPUT NOT STATE
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.x(q[0]) qc.measure(q, c) #To convert into qasm use:- qc.qasm(formatted=True, filename='my_circuit.qasm') #To get circuit from qasm file use:- qc = QuantumCircuit.from_qasm_file('my_circuit.qam')
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.cx(q[0], q[1]) qc.draw('mpl') sim = Aer.get_backend('statevector_simulator') qobj = assemble(qc) final_state = sim.run(qobj).result().get_statevector() plot_state_qsphere(final_state)
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.cx(q[0], q[1]) qc.draw('mpl') sim = Aer.get_backend('statevector_simulator') qobj = assemble(qc) final_state = sim.run(qobj).result().get_statevector() final_state #BLOCH SPHERE """ THERE ARE 2 TYPES OF BLOCH SPHERE:- 1. plot_bloch_multivector 2.plot_bloch_vector """ plot_bloch_multivector(final_state, "Entanglement") #FOR BLOCH_MULTIVECTOR YOU NEED A STATE #FOR BLOCH_VECTOR YOU NEED COORDINATE POINTS coords = [1, 1, 1] plot_bloch_vector(coords, coord_type='cartesian') #THERE IS ANOTHER COORD_TYPE THAT IS "SPHERICAL" coords1 = [1, np.pi, np.pi] plot_bloch_vector(coords1, coord_type='spherical')
https://github.com/VedDharkar/IBM_QISKIT_EXAM_C1000-112
VedDharkar
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit import * # Loading your IBM Q account(s) #provider = IBMQ.load_account() q = QuantumRegister(2) c = ClassicalRegister(2) qc = QuantumCircuit(q, c) qc.h(q[0]) qc.x(q[0]) sim = Aer.get_backend('unitary_simulator') job = execute(qc, sim) unitary = job.result().get_unitary() unitary unitary = array_to_latex(unitary) unitary
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
import random from random import seed from random import random from numpy import where from collections import Counter from sklearn.datasets import make_blobs from matplotlib import pyplot import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.neighbors import KernelDensity import random def my_circle(center, rx, ry, Nmax): #This function generate the random number inside of the circle #center is the location of the circle. input : [x,y] # rx is the radius of the eplicipe in x-axis. input : rx # ry is the radius of the eplicipe in y-axis. input : ry # Total number of the data. input: Nmax # Output will generate the data in array{[[x1,y1],[x2,y2]....[xn,yn]]} x2=[] y2=[] for i in range(Nmax): r2=np.sqrt(random.random()) theta2=2 * np.pi * random.random() x2.append(rx*r2 * np.cos(theta2) + center[0]) y2.append(ry*r2 * np.sin(theta2) + center[1]) return np.transpose([x2,y2]) def my_plot(data,lab,counter): #This function generate the plot of the labeled data for label, _ in counter.items(): row_ix = where(lab == label)[0] pyplot.scatter(data[row_ix, 0], data[row_ix, 1], label=str(label)) pyplot.legend() pyplot.xlim([0, 1]) pyplot.ylim([0, 1]) pyplot.show() #Seeding is defined inside of the function #Those functions will generate dataset, and lableing and the number of the counters of each label. #label are {0,1}, and they are equally divided into 1:1 ratio. def data0test(): seed(30) X1=my_circle([0.24,0.5],0.2,0.4,750) X2=my_circle([0.76,0.5],0.2,0.4,750) y1=[0] * 750 y2=[1] * 750 X_1=np.concatenate((X1,X2)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data1a(): seed(30) X1=my_circle([0.3,0.5],0.25,0.4,750) X2=my_circle([0.7,0.5],0.25,0.4,750) y1=[0] * 750 y2=[1] * 750 X_1=np.concatenate((X1,X2)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data1b(): seed(30) X1=my_circle([0.4,0.2],0.25,0.15,375) X2=my_circle([0.6,0.5],0.25,0.15,750) X3=my_circle([0.4,0.8],0.25,0.15,375) y1=[0] * 375 y2=[1] * 750 y3=[0] * 375 X_1=np.concatenate((X1,X2,X3)) y_1=np.concatenate((y1, y2,y3)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data1c(): seed(30) X1=my_circle([0.3,0.2],0.25,0.12,375) X2=my_circle([0.7,0.4],0.25,0.12,375) X3=my_circle([0.3,0.6],0.25,0.12,375) X4=my_circle([0.7,0.8],0.25,0.12,375) y1=[0] * 375 y2=[1] * 375 y3=[0] * 375 y4=[1] * 375 X_1=np.concatenate((X1,X2,X3,X4)) y_1=np.concatenate((y1, y2,y3,y4)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2a(): seed(30) X1=my_circle([0.25,0.25],0.2,0.2,375) X2=my_circle([0.25,0.75],0.2,0.2,375) X3=my_circle([0.75,0.75],0.2,0.2,375) X4=my_circle([0.75,0.25],0.2,0.2,375) y1=[0] * 375 y2=[1] * 375 y3=[0] * 375 y4=[1] * 375 X_1=np.concatenate((X1,X2,X3,X4)) y_1=np.concatenate((y1, y2,y3,y4)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2b(): seed(30) r=0.12 n=166 X1=my_circle([0.2,0.2],r,r,n) X2=my_circle([0.5,0.2],r,r,n) X3=my_circle([0.8,0.2],r,r,n) X4=my_circle([0.2,0.5],r,r,n) X5=my_circle([0.5,0.5],r,r,n) X6=my_circle([0.8,0.5],r,r,n) X7=my_circle([0.2,0.8],r,r,n) X8=my_circle([0.5,0.8],r,r,n) X9=my_circle([0.8,0.8],r,r,n) y1=[0] * n y2=[1] * n y3=[0] * n y4=[1] * n y5=[0] * n y6=[1] * n y7=[0] * n y8=[1] * n y9=[0] * n X_1=np.concatenate((X1,X2,X3,X4,X5,X6,X7,X8,X9)) y_1=np.concatenate((y1, y2,y3,y4,y5,y6,y7,y8,y9)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2c(): seed(30) r=0.1 n=93 X1=my_circle([0.15,0.15],r,r,n) X2=my_circle([0.38,0.15],r,r,n) X3=my_circle([0.62,0.15],r,r,n) X4=my_circle([0.85,0.15],r,r,n) X5=my_circle([0.15,0.38],r,r,n) X6=my_circle([0.38,0.38],r,r,n) X7=my_circle([0.62,0.38],r,r,n) X8=my_circle([0.85,0.38],r,r,n) X9=my_circle([0.15,0.62],r,r,n) X10=my_circle([0.38,0.62],r,r,n) X11=my_circle([0.62,0.62],r,r,n) X12=my_circle([0.85,0.62],r,r,n) X13=my_circle([0.15,0.85],r,r,n) X14=my_circle([0.38,0.85],r,r,n) X15=my_circle([0.62,0.85],r,r,n) X16=my_circle([0.85,0.85],r,r,n) y1=[0] * n y2=[1] * n y3=[0] * n y4=[1] * n y5=[1] * n y6=[0] * n y7=[1] * n y8=[0] * n y9=[0] * n y10=[1] * n y11=[0] * n y12=[1] * n y13=[1] * n y14=[0] * n y15=[1] * n y16=[0] * n X_1=np.concatenate((X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16)) y_1=np.concatenate((y1, y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3a(): seed(30) X1 = [] radius = 0.25 n=750 index = 0 while index < n: x=random.random() y=random.random() if (x-0.5)**2 + (y-0.5)**2 > radius**2: X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.5,0.5],radius,radius,750) y2=[0] *750 X_1=np.concatenate((X1,X2)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3b(): seed(30) X1 = [] radius = 0.15 n=750 index = 0 while index < n: x=random.random() y=random.random() if ((x-0.25)**2 + (y-0.25)**2 > radius**2 and (x-0.75)**2 + (y-0.75)**2 > radius**2): X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.25,0.25],radius,radius,375) X3=my_circle([0.75,0.75],radius,radius,375) y2=[0] *750 X_1=np.concatenate((X1,X2,X3)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3c(): seed(30) X1 = [] radius = 0.15 n=750 n2=187 index = 0 while index < n: x=random.random() y=random.random() if ((x-0.25)**2 + (y-0.25)**2 > radius**2 and (x-0.75)**2 + (y-0.75)**2 > radius**2 and (x-0.75)**2 + (y-0.25)**2 > radius**2 and (x-0.25)**2 + (y-0.75)**2 > radius**2 ): X1 = X1 + [[x,y]] index = index + 1 y1=[1] *748 X2=my_circle([0.25,0.25],radius,radius,n2) X3=my_circle([0.75,0.75],radius,radius,n2) X4=my_circle([0.75,0.25],radius,radius,n2) X5=my_circle([0.25,0.75],radius,radius,n2) y2=[0] *748 X_1=np.concatenate((X1,X2,X3,X4,X5)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter # Plot my_plot(data1a()[0],data1a()[1],data1a()[2]) # Plot my_plot(data0test()[0],data0test()[1],data0test()[2]) # Plot my_plot(data1a()[0],data1a()[1],data1a()[2]) # Plot my_plot(data1b()[0],data1b()[1],data1b()[2]) # Plot my_plot(data1c()[0],data1c()[1],data1c()[2]) # Plot my_plot(data2a()[0],data2a()[1],data2a()[2]) # Plot my_plot(data2b()[0],data2b()[1],data2b()[2]) # Plot my_plot(data2c()[0],data2c()[1],data2c()[2]) # Plot my_plot(data3a()[0],data3a()[1],data3a()[2]) # Plot my_plot(data3b()[0],data3b()[1],data3b()[2]) # Plot my_plot(data3c()[0],data3c()[1],data3c()[2]) print(data1a()[2]) print(data1b()[2]) print(data1c()[2]) print(data2a()[2]) print(data2b()[2]) print(data2c()[2]) print(data3a()[2]) print(data3b()[2]) print(data3c()[2]) import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("data0test.txt",data0test()[0],fmt='%.2f') np.savetxt("data0testlabel.txt",data0test()[1],fmt='%.2f') import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("data1a.txt",data1a()[0],fmt='%.2f') np.savetxt("data1b.txt",data1b()[0],fmt='%.2f') np.savetxt("data1c.txt",data1c()[0],fmt='%.2f') np.savetxt("data2a.txt",data2a()[0],fmt='%.2f') np.savetxt("data2b.txt",data2b()[0],fmt='%.2f') np.savetxt("data2c.txt",data2c()[0],fmt='%.2f') np.savetxt("data3a.txt",data3a()[0],fmt='%.2f') np.savetxt("data3b.txt",data3b()[0],fmt='%.2f') np.savetxt("data3c.txt",data3c()[0],fmt='%.2f') np.savetxt("data1alabel.txt",data1a()[1],fmt='%.2f') np.savetxt("data1blabel.txt",data1b()[1],fmt='%.2f') np.savetxt("data1clabel.txt",data1c()[1],fmt='%.2f') np.savetxt("data2alabel.txt",data2a()[1],fmt='%.2f') np.savetxt("data2blabel.txt",data2b()[1],fmt='%.2f') np.savetxt("data2clabel.txt",data2c()[1],fmt='%.2f') np.savetxt("data3alabel.txt",data3a()[1],fmt='%.2f') np.savetxt("data3blabel.txt",data3b()[1],fmt='%.2f') np.savetxt("data3clabel.txt",data3c()[1],fmt='%.2f') import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("data1a.txt",data1a()[0],fmt='%.2f') np.savetxt("data1b.txt",data1b()[0],fmt='%.2f') np.savetxt("data1c.txt",data1c()[0],fmt='%.2f') np.savetxt("data2a.txt",data2a()[0],fmt='%.2f') np.savetxt("data2b.txt",data2b()[0],fmt='%.2f') np.savetxt("data2c.txt",data2c()[0],fmt='%.2f') np.savetxt("data3a.txt",data3a()[0],fmt='%.2f') np.savetxt("data3b.txt",data3b()[0],fmt='%.2f') np.savetxt("data3c.txt",data3c()[0],fmt='%.2f') np.savetxt("data1alabel.txt",data1a()[1],fmt='%.2f') np.savetxt("data1blabel.txt",data1b()[1],fmt='%.2f') np.savetxt("data1clabel.txt",data1c()[1],fmt='%.2f') np.savetxt("data2alabel.txt",data2a()[1],fmt='%.2f') np.savetxt("data2blabel.txt",data2b()[1],fmt='%.2f') np.savetxt("data2clabel.txt",data2c()[1],fmt='%.2f') np.savetxt("data3alabel.txt",data3a()[1],fmt='%.2f') np.savetxt("data3blabel.txt",data3b()[1],fmt='%.2f') np.savetxt("data3clabel.txt",data3c()[1],fmt='%.2f') import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) def readfile(name): f = open (name , 'r') l = [] l = [line.split() for line in f] l = np.array(l) return l data1a = readfile("data1a.txt") data1alabel = readfile("data1alabel.txt") data1alabel[0] data[0] f = eval(open('data1a.txt').read(). array = np.array
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
import random from random import seed from random import random from numpy import where from collections import Counter from sklearn.datasets import make_blobs from matplotlib import pyplot import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.neighbors import KernelDensity import random def my_circle(center, rx, ry, Nmax): R = 1 x2=[] y2=[] for i in range(Nmax): r2=np.sqrt(random.random()) theta2=2 * np.pi * random.random() x2.append(rx*r2 * np.cos(theta2) + center[0]) y2.append(ry*r2 * np.sin(theta2) + center[1]) return np.transpose([x2,y2]) def my_plot(data,lab,counter): for label, _ in counter.items(): row_ix = where(lab == label)[0] pyplot.scatter(data[row_ix, 0], data[row_ix, 1], label=str(label)) pyplot.legend() pyplot.xlim([0, 1]) pyplot.ylim([0, 1]) pyplot.show() def data1a(): seed(30) X1=my_circle([0.3,0.5],0.25,0.4,750) X2=my_circle([0.7,0.5],0.25,0.4,750) y1=[0] * 750 y2=[1] * 750 X_1=np.concatenate((X1,X2)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data1b(): seed(30) X1=my_circle([0.4,0.2],0.25,0.15,375) X2=my_circle([0.6,0.5],0.25,0.15,750) X3=my_circle([0.4,0.8],0.25,0.15,375) y1=[0] * 375 y2=[1] * 750 y3=[0] * 375 X_1=np.concatenate((X1,X2,X3)) y_1=np.concatenate((y1, y2,y3)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data1c(): seed(30) X1=my_circle([0.3,0.2],0.25,0.12,375) X2=my_circle([0.7,0.4],0.25,0.12,375) X3=my_circle([0.3,0.6],0.25,0.12,375) X4=my_circle([0.7,0.8],0.25,0.12,375) y1=[0] * 375 y2=[1] * 375 y3=[0] * 375 y4=[1] * 375 X_1=np.concatenate((X1,X2,X3,X4)) y_1=np.concatenate((y1, y2,y3,y4)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2a(): seed(30) X1=my_circle([0.25,0.25],0.2,0.2,375) X2=my_circle([0.25,0.75],0.2,0.2,375) X3=my_circle([0.75,0.75],0.2,0.2,375) X4=my_circle([0.75,0.25],0.2,0.2,375) y1=[0] * 375 y2=[1] * 375 y3=[0] * 375 y4=[1] * 375 X_1=np.concatenate((X1,X2,X3,X4)) y_1=np.concatenate((y1, y2,y3,y4)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2b(): seed(30) r=0.12 n=166 X1=my_circle([0.2,0.2],r,r,n) X2=my_circle([0.5,0.2],r,r,n) X3=my_circle([0.8,0.2],r,r,n) X4=my_circle([0.2,0.5],r,r,n) X5=my_circle([0.5,0.5],r,r,n) X6=my_circle([0.8,0.5],r,r,n) X7=my_circle([0.2,0.8],r,r,n) X8=my_circle([0.5,0.8],r,r,n) X9=my_circle([0.8,0.8],r,r,n) y1=[0] * n y2=[1] * n y3=[0] * n y4=[1] * n y5=[0] * n y6=[1] * n y7=[0] * n y8=[1] * n y9=[0] * n X_1=np.concatenate((X1,X2,X3,X4,X5,X6,X7,X8,X9)) y_1=np.concatenate((y1, y2,y3,y4,y5,y6,y7,y8,y9)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data2c(): seed(30) r=0.1 n=93 X1=my_circle([0.15,0.15],r,r,n) X2=my_circle([0.38,0.15],r,r,n) X3=my_circle([0.62,0.15],r,r,n) X4=my_circle([0.85,0.15],r,r,n) X5=my_circle([0.15,0.38],r,r,n) X6=my_circle([0.38,0.38],r,r,n) X7=my_circle([0.62,0.38],r,r,n) X8=my_circle([0.85,0.38],r,r,n) X9=my_circle([0.15,0.62],r,r,n) X10=my_circle([0.38,0.62],r,r,n) X11=my_circle([0.62,0.62],r,r,n) X12=my_circle([0.85,0.62],r,r,n) X13=my_circle([0.15,0.85],r,r,n) X14=my_circle([0.38,0.85],r,r,n) X15=my_circle([0.62,0.85],r,r,n) X16=my_circle([0.85,0.85],r,r,n) y1=[0] * n y2=[1] * n y3=[0] * n y4=[1] * n y5=[1] * n y6=[0] * n y7=[1] * n y8=[0] * n y9=[0] * n y10=[1] * n y11=[0] * n y12=[1] * n y13=[1] * n y14=[0] * n y15=[1] * n y16=[0] * n X_1=np.concatenate((X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16)) y_1=np.concatenate((y1, y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3a(): seed(30) X1 = [] radius = 0.25 n=750 index = 0 while index < n: x=random.random() y=random.random() if (x-0.5)**2 + (y-0.5)**2 > radius**2: X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.5,0.5],radius,radius,750) y2=[0] *750 X_1=np.concatenate((X1,X2)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3b(): seed(30) X1 = [] radius = 0.15 n=750 index = 0 while index < n: x=random.random() y=random.random() if ((x-0.25)**2 + (y-0.25)**2 > radius**2 and (x-0.75)**2 + (y-0.75)**2 > radius**2): X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.25,0.25],radius,radius,375) X3=my_circle([0.75,0.75],radius,radius,375) y2=[0] *750 X_1=np.concatenate((X1,X2,X3)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter def data3c(): seed(30) X1 = [] radius = 0.15 n=750 n2=187 index = 0 while index < n: x=random.random() y=random.random() if ((x-0.25)**2 + (y-0.25)**2 > radius**2 and (x-0.75)**2 + (y-0.75)**2 > radius**2 and (x-0.75)**2 + (y-0.25)**2 > radius**2 and (x-0.25)**2 + (y-0.75)**2 > radius**2 ): X1 = X1 + [[x,y]] index = index + 1 y1=[1] *750 X2=my_circle([0.25,0.25],radius,radius,n2) X3=my_circle([0.75,0.75],radius,radius,n2) X4=my_circle([0.75,0.25],radius,radius,n2) X5=my_circle([0.25,0.75],radius,radius,n2) y2=[0] *748 X_1=np.concatenate((X1,X2,X3,X4,X5)) y_1=np.concatenate((y1, y2)) # Generate uniform noise counter = Counter(y_1) # Generate uniform noise counter = Counter(y_1) return X_1, y_1, counter # Plot my_plot(data1a()[0],data1a()[1],data1a()[2]) # Plot my_plot(data1b()[0],data1b()[1],data1b()[2]) # Plot my_plot(data1c()[0],data1c()[1],data1c()[2]) # Plot my_plot(data2a()[0],data2a()[1],data2a()[2]) # Plot my_plot(data2b()[0],data2b()[1],data2b()[2]) # Plot my_plot(data2c()[0],data2c()[1],data2c()[2]) # Plot my_plot(data3a()[0],data3a()[1],data3a()[2]) # Plot my_plot(data3b()[0],data3b()[1],data3b()[2]) # Plot my_plot(data3c()[0],data3c()[1],data3c()[2])
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
from qiskit import * from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute,assemble,QuantumCircuit from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector from qiskit.quantum_info import Statevector from qiskit.extensions import * from qiskit.quantum_info import random_unitary import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math from math import pi, sqrt from scipy.special import rel_entr from random import seed from random import random import cmath import os from qiskit.circuit import Parameter import sys sys.path.append('../Pyfiles') from circuits import * #Possible Bin bins_list=[]; for i in range(76): bins_list.append((i)/75) #Center of the Bean bins_x=[] for i in range(75): bins_x.append(bins_list[1]+bins_list[i]) def P_harr(l,u,N): return (1-l)**(N-1)-(1-u)**(N-1) #Harr historgram P_harr_hist=[] for i in range(75): P_harr_hist.append(P_harr(bins_list[i],bins_list[i+1],16)) #Imaginary j=(-1)**(1/2) backend = Aer.get_backend('qasm_simulator') nshot=1000 nparam=2000 fidelity=[] for x in range(nparam): qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr) theta=[]; for y in range(80): theta.append(2*pi*random()) qc=circuit9(qc,qr,theta,3,1) qc.measure(qr[:],cr[:]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0000' in count and '1' in count: ratio=count['0000']/nshot elif '0000' in count and '1' not in count: ratio=count['0000']/nshot else: ratio=0 fidelity.append(ratio) weights = np.ones_like(fidelity)/float(len(fidelity)) plt.hist(fidelity, bins=bins_list, weights=weights, range=[0, 1], label='Circuit 1') plt.plot(bins_x, P_harr_hist, label='Harr') plt.legend(loc='upper right') plt.show() # example of calculating the kl divergence (relative entropy) with scipy P_1_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0] kl_pq = rel_entr(P_1_hist, P_harr_hist) print('KL(P || Q): %.3f nats' % sum(kl_pq)) list_of_circuit = [circuit1,circuit2,circuit3,circuit4,circuit5,circuit6,circuit7,circuit8,circuit9,circuit10,circuit11,circuit12,circuit13,circuit14,circuit15,circuit16,circuit17,circuit18,circuit19] backend = Aer.get_backend('qasm_simulator') arr = [] for kk in range(19): arr.append([]) for lo in [1,2,3,4,5]: nshot=1000 nparam=2000 fidelity=[] for x in range(nparam): qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr) theta=[]; for y in range(500): theta.append(2*pi*random()) qc=list_of_circuit[kk](qc,qr,theta,lo,1) qc.measure(qr[:],cr[:]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0000' in count and '1' in count: ratio=count['0000']/nshot elif '0000' in count and '1' not in count: ratio=count['0000']/nshot else: ratio=0 fidelity.append(ratio) weights = np.ones_like(fidelity)/float(len(fidelity)) # example of calculating the kl divergence (relative entropy) with scipy P_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0] kl_pq = rel_entr(P_hist, P_harr_hist) arr[kk].append(sum(kl_pq)) print(kk,'cir',lo,'lay') import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("express_nshot1000_nparam2000.txt",express) express import pandas as pd import matplotlib.pyplot as plt #loading dataset x = [i+1 for i in range(19)] y = [i[0] for i in arr] plt.plot(x, y, 'o', color='red', label='L=1'); x = [i+1 for i in range(19)] y = [i[1] for i in arr] plt.plot(x, y, 'o', color='blue', label='L=2'); x = [i+1 for i in range(19)] y = [i[2] for i in arr] plt.plot(x, y, 'o', color='black', label='L=3'); x = [i+1 for i in range(19)] y = [i[3] for i in arr] plt.plot(x, y, 'o', color='green', label='L=4'); x = [i+1 for i in range(19)] y = [i[3] for i in arr] plt.plot(x, y, 'o', color='purple', label='L=5'); plt.legend(loc='upper right') plt.yscale('log',base=10) plt.xlabel('Circuit ID') plt.ylabel('Expressibility') # Create names on the x axis plt.xticks([i+1 for i in range(19)]) plt.show() x = [str(i+1) for i in range(19)] x_ticks_labels = ['9','1','2','16','3','18','10','12','15','17','4','11','7','8','19','5','13','14','6'] xarr = np.array(x) ind = np.where(xarr.reshape(xarr.size, 1) == np.array(x_ticks_labels))[1] fig, ax = plt.subplots(1,1) y = [i[0] for i in arr] ax.scatter(ind,y, marker="o", color='red', label='L=1') y = [i[1] for i in arr] ax.scatter(ind,y, marker="o", color='blue', label='L=2') y = [i[2] for i in arr] ax.scatter(ind,y, marker="o", color='black', label='L=3') y = [i[3] for i in arr] ax.scatter(ind,y, marker="o", color='green', label='L=4') y = [i[4] for i in arr] ax.scatter(ind,y, marker="o", color='purple', label='L=5') ax.set_yscale('log',base=10) ax.set_xlabel('Circuit ID') ax.set_ylabel('Expressibility') ax.legend(loc='upper right') ax.set_xticks(range(len(x_ticks_labels))) ax.set_xticklabels(x_ticks_labels) plt.show() fig from matplotlib import pyplot as plt fig.savefig('express_nshot1000_nparam2000.png') list_of_circuit = [circuit1,circuit2,circuit3,circuit4,circuit5,circuit6,circuit7,circuit8,circuit9,circuit10,circuit11,circuit12,circuit13,circuit14,circuit15,circuit16,circuit17,circuit18,circuit19] backend = Aer.get_backend('qasm_simulator') arr = [] for kk in range(19): arr.append([]) for lo in [1,2,3,4,5]: nshot=10000 nparam=1000 fidelity=[] for x in range(nparam): qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr) theta=[]; for y in range(500): theta.append(2*pi*random()) qc=list_of_circuit[kk](qc,qr,theta,lo,1) qc.measure(qr[:],cr[:]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0000' in count and '1' in count: ratio=count['0000']/nshot elif '0000' in count and '1' not in count: ratio=count['0000']/nshot else: ratio=0 fidelity.append(ratio) weights = np.ones_like(fidelity)/float(len(fidelity)) # example of calculating the kl divergence (relative entropy) with scipy P_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0] kl_pq = rel_entr(P_hist, P_harr_hist) arr[kk].append(sum(kl_pq)) print(kk,'cir',lo,'lay') express express=[[0.32952413239340933, 0.2160076560690873, 0.21764729834615873, 0.2473835588095912, 0.24225112795339898], [0.32696068662224353, 0.02882892743034554, 0.016267808316341933, 0.011239533562489743, 0.014454756871595335], [0.2724963267277256, 0.09297432646189611, 0.05316589878004338, 0.015713919742898073, 0.024985709696968308], [0.13368059415831227, 0.04064900653499141, 0.010705050297397748, 0.013853567790054458, 0.005871642903255154], [0.06736311068291166, 0.018156334236215592, 0.01063201904450228, 0.013316433532184285, 0.007592151156475834], [0.009458920213652083, 0.008379672440371308, 0.010342492342456355, 0.006491253689230598, 0.006360265144835441], [0.11252639719416441, 0.048734485611284246, 0.02917920621977864, 0.021220914498718095, 0.011322409296335365], [0.07799698630987113, 0.03461538963835257, 0.02645406983833787, 0.009609047546796293, 0.010314541867701806], [0.7416977310427298, 0.4023390066678401, 0.04364507668153466, 0.0120927672656568, 0.01312193911083145], [0.2568922048986469, 0.159877856023638, 0.14981483475374258, 0.11517099082521957, 0.14284391643493405], [0.15798258034579774, 0.015098001400060396, 0.011383645396280426, 0.010105335417854225, 0.005632643410627778], [0.19446925387256803, 0.031175656437504834, 0.02084429521271306, 0.01343313112097519, 0.00768059915246622], [0.09061768972578448, 0.011526900417017642, 0.008189880893093129, 0.0060108893015350506, 0.011751397567911099], [0.018799262840916854, 0.007136143406884642, 0.007623092145230341, 0.009053624288535378, 0.007663290417292582], [0.19746628980579164, 0.15281958598891646, 0.1355063400118548, 0.15111662634669093, 0.11741954724324753], [0.2684937151020319, 0.09697128618178347, 0.05370640870529413, 0.032238736633842385, 0.023082433062011888], [0.14026071817411356, 0.047939490546422714, 0.021117783500337883, 0.015818882293649358, 0.008967458429476547], [0.21391972052843847, 0.07307155307919132, 0.02627846142683268, 0.020869197694583997, 0.010954254599580318], [0.07137805144811141, 0.01173518527289049, 0.014645535174778783, 0.008417810099715662, 0.006455244968957593]] import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("express_nshot10000_nparam1000.txt",express) x = [str(i+1) for i in range(19)] x_ticks_labels = ['9','1','2','16','3','18','10','12','15','17','4','11','7','8','19','5','13','14','6'] xarr = np.array(x) ind = np.where(xarr.reshape(xarr.size, 1) == np.array(x_ticks_labels))[1] fig, ax = plt.subplots(1,1) y = [i[0] for i in arr] ax.scatter(ind,y, marker="o", color='red', label='L=1') y = [i[1] for i in arr] ax.scatter(ind,y, marker="o", color='blue', label='L=2') y = [i[2] for i in arr] ax.scatter(ind,y, marker="o", color='black', label='L=3') y = [i[3] for i in arr] ax.scatter(ind,y, marker="o", color='green', label='L=4') y = [i[4] for i in arr] ax.scatter(ind,y, marker="o", color='purple', label='L=5') ax.set_yscale('log',base=10) ax.set_xlabel('Circuit ID') ax.set_ylabel('Expressibility') ax.legend(loc='upper right') ax.set_xticks(range(len(x_ticks_labels))) ax.set_xticklabels(x_ticks_labels) plt.show() plt.plot(express[12], marker="o") plt.ylim(0,0.1) plt.plot(express[14], marker="o") plt.ylim(0,0.21) from matplotlib import pyplot as plt fig.savefig('express_nshot10000_nparam1000.png')
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
from matplotlib import pyplot from qiskit import * from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute,assemble,QuantumCircuit, aqua from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector from qiskit.quantum_info import Statevector from qiskit.extensions import * provider = IBMQ.load_account() from qiskit.quantum_info import random_unitary from qiskit.providers.aer import QasmSimulator, StatevectorSimulator, UnitarySimulator import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math from math import pi, sqrt from scipy.special import rel_entr from random import seed from random import random import cmath import sys sys.path.append('../Pyfiles') from circuits import * #Possible Bin bins_list=[]; for i in range(76): bins_list.append((i)/75) #Center of the Bean bins_x=[] for i in range(75): bins_x.append(bins_list[1]+bins_list[i]) def P_harr(l,u,N): return (1-l)**(N-1)-(1-u)**(N-1) #Harr historgram P_harr_hist=[] for i in range(75): P_harr_hist.append(P_harr(bins_list[i],bins_list[i+1],2)) #Imaginary j=(-1)**(1/2) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = 'ibmq_valencia'# you may choice here a different backend fidelity_dic = {'ibmq_athens': 0.925110, 'ibmq_valencia': 0.809101, 'ibmq_ourense': 0.802380, "ibmqx2": 0.627392, 'ibmq_santiago': 0.919399, 'ibmq_vigo': 0.908840, 'ideal_device': 1.0} QV_dic = {'ibmq_athens': 32.0, 'ibmq_valencia': 16.0, 'ibmq_ourense': 8.0, "ibmqx2": 8.0, 'ibmq_santiago': 32.0, 'ibmq_vigo': 16.0, 'ideal_device': np.inf} dev_dic = {'ibmq_santiago': "San",'ibmq_athens': "Ath", 'ibmq_valencia': "Val", 'ibmq_vigo': 'Vig','ibmq_ourense': "Our", "ibmqx2": 'Yor', 'ideal_device': "Ide"} backend = provider.get_backend('ibmq_vigo') for x in range(1,20,1): print() arr = [] for nsh in range(1,20,1): arr.append([]) for lp in range(1,10,1): nshot=int(round(1000*(nsh)**1.5,0)) nparam=1000*lp fidelity=[] for x in range(nparam): qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) qc.measure(qr[0],cr[0]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0' in count and '1' in count: ratio=count['0']/nshot elif '0' in count and '1' not in count: ratio=count['0']/nshot else: ratio=0 fidelity.append(ratio) #Kullback Leibler divergence weights = np.ones_like(fidelity)/float(len(fidelity)) P_U_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0]; #Kullback Leibler divergence print(nshot,'shots per simulation',nparam,'distribution size') arr[nsh-1].append(sum(rel_entr(P_U_hist, P_harr_hist))) import sys import numpy qasm=arr numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("KLDivg_qasm.txt",qasm,fmt='%.2f') import random for nsh in range(1,20,1): print(int(round(1000*(nsh)**1.5,0))) backend = Aer.get_backend('statevector_simulator') for x in range(1,20,1): print() arr = [] for nsh in range(1,20,1): arr.append([]) for lp in range(1,10,1): nshot=int(round(1000*(nsh)**1.5,0)) nparam=1000*lp fidelity=[] for x in range(nparam): qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) qc.measure(qr[0],cr[0]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0' in count and '1' in count: ratio=count['0']/nshot elif '0' in count and '1' not in count: ratio=count['0']/nshot else: ratio=0 fidelity.append(ratio) #Kullback Leibler divergence weights = np.ones_like(fidelity)/float(len(fidelity)) P_U_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0]; #Kullback Leibler divergence print(nshot,'shots per simulation',nparam,'distribution size') arr[nsh-1].append(sum(rel_entr(P_U_hist, P_harr_hist))) import sys import numpy statevector=arr numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("KLDivg_statevector.txt",statevector,fmt='%.2f') ##Plot import pandas as pd import matplotlib.pyplot as plt #loading dataset x = [i+1 for i in range(19)] y = [i[0] for i in arr] plt.plot(x, y, 'o', color='red', label='L=1'); x = [i+1 for i in range(19)] y = [i[1] for i in arr] plt.plot(x, y, 'o', color='blue', label='L=2'); x = [i+1 for i in range(19)] y = [i[2] for i in arr] plt.plot(x, y, 'o', color='black', label='L=3'); x = [i+1 for i in range(19)] y = [i[3] for i in arr] plt.plot(x, y, 'o', color='green', label='L=4'); x = [i+1 for i in range(19)] y = [i[3] for i in arr] plt.plot(x, y, 'o', color='purple', label='L=5'); plt.legend(loc='upper right') plt.yscale('log',base=10) plt.xlabel('Circuit ID') plt.ylabel('Expressibility') # Create names on the x axis plt.xticks([i+1 for i in range(19)]) plt.show()
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
from matplotlib import pyplot from qiskit import * from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute,assemble,QuantumCircuit, aqua from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector from qiskit.quantum_info import Statevector from qiskit.extensions import * provider = IBMQ.load_account() from qiskit.quantum_info import random_unitary from qiskit.providers.aer import QasmSimulator, StatevectorSimulator, UnitarySimulator import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math from math import pi, sqrt from scipy.special import rel_entr from random import seed from random import random import cmath import sys sys.path.append('../Pyfiles') from circuits import * #Possible Bin bins_list=[]; for i in range(76): bins_list.append((i)/75) #Center of the Bean bins_x=[] for i in range(75): bins_x.append(bins_list[1]+bins_list[i]) def P_harr(l,u,N): return (1-l)**(N-1)-(1-u)**(N-1) #Harr historgram P_harr_hist=[] for i in range(75): P_harr_hist.append(P_harr(bins_list[i],bins_list[i+1],2)) #Imaginary j=(-1)**(1/2) backend = Aer.get_backend('qasm_simulator') for x in range(1,20,1): print() arr = [] for nsh in range(1,20,1): arr.append([]) for lp in range(1,10,1): nshot=int(round(1000*(nsh)**1.5,0)) nparam=1000*lp fidelity=[] for x in range(nparam): qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) qc.measure(qr[0],cr[0]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0' in count and '1' in count: ratio=count['0']/nshot elif '0' in count and '1' not in count: ratio=count['0']/nshot else: ratio=0 fidelity.append(ratio) #Kullback Leibler divergence weights = np.ones_like(fidelity)/float(len(fidelity)) P_U_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0]; #Kullback Leibler divergence print(nshot,'shots per simulation',nparam,'distribution size') arr[nsh-1].append(sum(rel_entr(P_U_hist, P_harr_hist))) import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("KLDivg_qasm.txt",qasm) qasm backend = QasmSimulator(method='density_matrix') for x in range(1,20,1): print() arr = [] for nsh in range(1,20,1): arr.append([]) for lp in range(1,10,1): nshot=int(round(1000*(nsh)**1.5,0)) nparam=1000*lp fidelity=[] for x in range(nparam): qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) qc.measure(qr[0],cr[0]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0' in count and '1' in count: ratio=count['0']/nshot elif '0' in count and '1' not in count: ratio=count['0']/nshot else: ratio=0 fidelity.append(ratio) #Kullback Leibler divergence weights = np.ones_like(fidelity)/float(len(fidelity)) P_U_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0]; #Kullback Leibler divergence arr[nsh-1].append(sum(rel_entr(P_U_hist, P_harr_hist))) print(nshot,'shots per simulation',nparam,'distribution size KL=',sum(rel_entr(P_U_hist, P_harr_hist))) import sys import numpy density_mat=arr numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("KLDivg_density_mat.txt",density_mat) density_mat backend = QasmSimulator(method='statevector') for x in range(1,20,1): print() arr = [] for nsh in range(1,20,1): arr.append([]) for lp in range(1,10,1): nshot=int(round(1000*(nsh)**1.5,0)) nparam=1000*lp fidelity=[] for x in range(nparam): qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) qc.measure(qr[0],cr[0]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0' in count and '1' in count: ratio=count['0']/nshot elif '0' in count and '1' not in count: ratio=count['0']/nshot else: ratio=0 fidelity.append(ratio) #Kullback Leibler divergence weights = np.ones_like(fidelity)/float(len(fidelity)) P_U_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0]; #Kullback Leibler divergence arr[nsh-1].append(sum(rel_entr(P_U_hist, P_harr_hist))) print(nshot,'shots per simulation',nparam,'distribution size KL=',sum(rel_entr(P_U_hist, P_harr_hist))) import sys import numpy statevector1=arr numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("KLDivg_statevector.txt",statevector1) statevector1 backend = QasmSimulator(method='matrix_product_state') for x in range(1,20,1): print() arr = [] for nsh in range(1,20,1): arr.append([]) for lp in range(1,10,1): nshot=int(round(1000*(nsh)**1.5,0)) nparam=1000*lp fidelity=[] for x in range(nparam): qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) u13=UnitaryGate(random_unitary(2)) qc.append(u13, [qr[0]] ) qc.measure(qr[0],cr[0]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0' in count and '1' in count: ratio=count['0']/nshot elif '0' in count and '1' not in count: ratio=count['0']/nshot else: ratio=0 fidelity.append(ratio) #Kullback Leibler divergence weights = np.ones_like(fidelity)/float(len(fidelity)) P_U_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0]; #Kullback Leibler divergence arr[nsh-1].append(sum(rel_entr(P_U_hist, P_harr_hist))) print(nshot,'shots per simulation',nparam,'distribution size KL=',sum(rel_entr(P_U_hist, P_harr_hist))) import sys import numpy matrix_product1=arr numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("KLDivg_matrix_product1.txt",matrix_product1) matrix_product1 def plotdata(i,data): klll=np.transpose(data) x=[]; y=[]; for nsh in range(0,9,1): x.append(int(round(1000*(nsh)**1.5,0))) y.append(klll[nsh][i]) return [x,y] #loading dataset fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(20, 5)) datalist=[density_mat,statevector1,matrix_product1,qasm] datalistn=['density_mat','statevector','matrix_product','qasm'] indx=0; for indx in range(4): data=datalist[indx]; axes[indx].plot(plotdata(0,data)[0],plotdata(0,data)[1], color='red', label='npram=1000'); axes[indx].plot(plotdata(1,data)[0],plotdata(1,data)[1], color='blue', label='npram=2000'); axes[indx].plot(plotdata(2,data)[0],plotdata(2,data)[1], color='black', label='npram=3000'); axes[indx].plot(plotdata(3,data)[0],plotdata(3,data)[1], color='green', label='npram=4000'); axes[indx].plot(plotdata(4,data)[0],plotdata(4,data)[1], color='purple', label='npram=5000'); axes[indx].plot(plotdata(5,data)[0],plotdata(5,data)[1], color='gray', label='npram=6000'); axes[indx].plot(plotdata(6,data)[0],plotdata(6,data)[1], color='black', label='npram=7000'); axes[indx].plot(plotdata(7,data)[0],plotdata(7,data)[1], color='yellow', label='npram=8000'); axes[indx].plot(plotdata(8,data)[0],plotdata(8,data)[1], color='pink', label='npram=9000'); axes[indx].set_ylim([0.003, 0.05]) axes[indx].legend(loc='upper right') axes[indx].set_title(datalistn[indx]) axes[indx].set_yscale('log',base=10) axes[indx].set_ylabel('Expressibility') from matplotlib import pyplot as plt fig.savefig('ExpressibilitybySimulator.png') fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(20, 5)) indx=0 for indx in range(4): data=density_mat; axes[indx].plot(plotdata(indx,data)[0],plotdata(indx,data)[1], color='red', label='density_mat'); data=statevector1; axes[indx].plot(plotdata(indx,data)[0],plotdata(indx,data)[1], color='blue', label='statevector'); data=matrix_product1; axes[indx].plot(plotdata(indx,data)[0],plotdata(indx,data)[1], color='green', label='matrix_product1'); data=qasm; axes[indx].plot(plotdata(indx,data)[0],plotdata(indx,data)[1], color='pink', label='qasm'); axes[indx].set_title('nparam='+str((indx+1)*1000)) axes[indx].set_yscale('log',base=10) axes[indx].set_ylim([0.003, 0.05]) axes[indx].set_ylabel('Expressibility') axes[indx].legend(['density_mat','statevector','matrix_product1','qasm']) axes[indx].set_xlabel('iteration') fig.savefig('ExpressibilitybySimulatornparam1.png') fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(20, 5)) indx=0 for indx1 in range(4,8,1): indx=indx1-4 data=density_mat; axes[indx].plot(plotdata(indx1,data)[0],plotdata(indx1,data)[1], color='red', label='density_mat'); data=statevector1; axes[indx].plot(plotdata(indx1,data)[0],plotdata(indx1,data)[1], color='blue', label='statevector'); data=matrix_product1; axes[indx].plot(plotdata(indx1,data)[0],plotdata(indx1,data)[1], color='green', label='matrix_product1'); data=qasm; axes[indx].plot(plotdata(indx1,data)[0],plotdata(indx1,data)[1], color='pink', label='qasm'); axes[indx].set_title('nparam='+str((indx1+1)*1000)) axes[indx].set_yscale('log',base=10) axes[indx].set_ylabel('Expressibility') axes[indx].set_ylim([0.003, 0.05]) axes[indx].legend(['density_mat','statevector','matrix_product1','qasm']) axes[indx].set_xlabel('iteration') fig.savefig('ExpressibilitybySimulatornparam2.png')
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
import numpy as np from qiskit.quantum_info import state_fidelity, Statevector def getStatevector(circuit): return Statevector(circuit).data import warnings warnings.filterwarnings('ignore') def P_haar(N, F): if F == 1: return 0 else: return (N - 1) * ((1 - F) ** (N - 2)) def KL(P, Q): epsilon = 1e-8 kl_divergence = 0.0 for p, q in zip(P, Q): kl_divergence += p * np.log( (p + epsilon) / (q + epsilon) ) return abs(kl_divergence) def expressibility(qubits, sampler, *, bins=100, epoch=3000, layer=1, encode=False, return_detail=False): unit = 1 / bins limits = [] probabilities = np.array([0] * bins) for i in range(1, bins + 1): limits.append(unit * i) for i in range(epoch): circuit_1 = sampler(layer=layer, qubits=qubits) circuit_2 = sampler(layer=layer, qubits=qubits) f = state_fidelity( getStatevector(circuit_1), getStatevector(circuit_2) ) for j in range(bins): if f <= limits[j]: probabilities[j] += 1 break pHaar_vqc = [ P_haar(2 ** qubits, f - (unit/2)) / bins for f in limits] probabilities = [ p / epoch for p in probabilities ] if return_detail: return pHaar_vqc, probabilities else: return KL(probabilities, pHaar_vqc)
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
from qiskit import * from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute,assemble,QuantumCircuit, aqua from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector from qiskit.quantum_info import Statevector from qiskit.extensions import * provider = IBMQ.load_account() from qiskit.quantum_info import random_unitary import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math from math import pi, sqrt from qiskit.circuit import Parameter from random import seed from random import random import cmath #circuit 1 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(8): theta.append((Parameter('θ'+str(i)))) for i in range(4): qc.rx(theta[i],qr[i]) for i in range(4): qc.rz(theta[i+4],qr[i]) qc.draw('mpl') #circuit 2 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(8): theta.append((Parameter('θ'+str(i)))) for i in range(4): qc.rx(theta[i],qr[i]) for i in range(4): qc.rz(theta[i+4],qr[i]) qc.cx(qr[3],qr[2]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) qc.draw('mpl') #circuit 3 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(11): theta.append((Parameter('θ'+str(i)))) for i in range(4): qc.rx(theta[i],qr[i]) for i in range(4): qc.rz(theta[i+4],qr[i]) qc.crz(theta[8],qr[3],qr[2]) qc.crz(theta[9],qr[2],qr[1]) qc.crz(theta[10],qr[1],qr[0]) qc.draw('mpl') #circuit 4 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(11): theta.append((Parameter('θ'+str(i)))) for i in range(4): qc.rx(theta[i],qr[i]) for i in range(4): qc.rz(theta[i+4],qr[i]) qc.crx(theta[8],qr[3],qr[2]) qc.crx(theta[9],qr[2],qr[1]) qc.crx(theta[10],qr[1],qr[0]) qc.draw('mpl') #circuit 5 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) for j in range(4): for i in range(4): if i!=j: qc.crz(theta[count],qr[3-j],qr[3-i]) count=count+1 qc.barrier(qr) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.draw('mpl') #circuit 6 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) for j in range(4): for i in range(4): if i!=j: qc.crx(theta[count],qr[3-j],qr[3-i]) count=count+1 qc.barrier(qr) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.draw('mpl') #circuit 7 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.barrier(qr) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crz(theta[count],qr[2],qr[1]) qc.draw('mpl') #circuit 8 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.barrier(qr) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crx(theta[count],qr[2],qr[1]) qc.draw('mpl') #circuit 9 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.h(qr[i]) qc.barrier(qr) qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) qc.barrier(qr) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.draw('mpl') #circuit 10 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[0]) qc.barrier(qr) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.draw('mpl') #circuit 11 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.cx(qr[1],qr[0]) qc.cx(qr[3],qr[2]) qc.barrier(qr) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) qc.cx(qr[2],qr[1]) qc.draw('mpl') #circuit 12 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[2]) qc.barrier(qr) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) qc.cz(qr[2],qr[1]) qc.draw('mpl') #circuit 13 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 qc.barrier(qr) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) qc.draw('mpl') #circuit 14 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 qc.barrier(qr) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) qc.draw('mpl') #circuit 15 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.cx(qr[3],qr[0]) count=count+1 qc.cx(qr[2],qr[3]) count=count+1 qc.cx(qr[1],qr[2]) count=count+1 qc.cx(qr[0],qr[1]) count=count+1 qc.barrier(qr) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.cx(qr[3],qr[2]) count=count+1 qc.cx(qr[0],qr[3]) count=count+1 qc.cx(qr[1],qr[0]) count=count+1 qc.cx(qr[2],qr[1]) qc.draw('mpl') #circuit 16 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) qc.draw('mpl') #circuit 17 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) qc.draw('mpl') #circuit 18 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) qc.draw('mpl') #circuit 19 qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[] for i in range(28): theta.append((Parameter('θ'+str(i)))) count=0 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.barrier(qr) qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) qc.draw('mpl')
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
from qiskit import * from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute,assemble,QuantumCircuit, aqua from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector from qiskit.quantum_info import Statevector from qiskit.extensions import * import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math from math import pi, sqrt from qiskit.quantum_info import random_unitary from random import seed from random import random import cmath from qiskit.circuit import Parameter import numpy as np import scipy.linalg as la from qiskit.exceptions import QiskitError from qiskit.quantum_info.states.densitymatrix import DensityMatrix, Statevector from qiskit.quantum_info.states.utils import (partial_trace, shannon_entropy,_format_state, _funm_svd, partial_trace) from qiskit.quantum_info.states.measures import partial_trace, _format_state qr = QuantumRegister(2) qc = QuantumCircuit(qr) qc.h(qr[0]) qc.h(qr[1]) qc.cz(qr[0],qr[1]) svsim = Aer.get_backend('statevector_simulator') def entange_measure2(qc,n): qobj = assemble(qc) state = svsim.run(qobj).result().get_statevector() dm=DensityMatrix(state) partial=[] for i in range(n): pt=partial_trace(dm,[i]).to_operator().data partial.append((1/2)*np.dot(pt,pt).trace()) return 2*(1-(sum(partial))) def entange_measure4(qc,n): qobj = assemble(qc) state = svsim.run(qobj).result().get_statevector() dm=DensityMatrix(state) partial=[] for i in range(4): for j in range(4): for k in range(4): if i>j>k: pt=partial_trace(dm,[i,j,k]).data partial.append(np.dot(pt,pt).trace()) return 2*(1-(1/16)*(sum(partial))) entange_measure(qc,2) ll=0; for i in range(4): for j in range(4): for k in range(4): if i>j and j>k: ll=ll+1 ll qr = QuantumRegister(4) qc = QuantumCircuit(qr) theta=[]; for y in range(500): theta.append(2*pi*random()) qc=circuit1(qc,qr,theta,1,0) qobj = assemble(qc) state = svsim.run(qobj).result().get_statevector() dm=DensityMatrix(state) pt=partial_trace(dm,[0,1,2]).data pt backend = Aer.get_backend('qasm_simulator') nshot=1000 m=[]; qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr) theta=[]; for y in range(80): theta.append(2*pi*random()) qc=circuit1(qc,qr,theta,1,0) qc.measure(qr[:],cr[:]) job = execute(qc, bWackend, shots=nshot) result = job.result() count =result.get_counts() count Q=Q+0.5**(u[i]*v[j]-u[j]*v[i])**2 Q def circuit1(qc,qr,theta,L,repeat): #circuit 1 #theta is list of the parameters #theta length is 8L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit2(qc,qr,theta,L,repeat): #circuit 2 #theta is list of the parameters #theta length is 8L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[1],qr[0]) qc.cx(qr[2],qr[1]) qc.cx(qr[3],qr[2]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit3(qc,qr,theta,L,repeat): #circuit 3 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit4(qc,qr,theta,L,repeat): #circuit 4 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit5(qc,qr,theta,L,repeat): #circuit 5 #theta is list of the parameters #theta length is (28)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crz(theta[count],qr[3-j],qr[3-i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crz(theta[count],qr[j],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit6(qc,qr,theta,L,repeat): #circuit 6 #theta is list of the parameters #theta length is (28)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crx(theta[count],qr[3-j],qr[3-i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crx(theta[count],qr[j],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit7(qc,qr,theta,L,repeat): #circuit 7 #theta is list of the parameters #theta length is (19)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit8(qc,qr,theta,L,repeat): #circuit 8 #theta is list of the parameters #theta length is (19)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit9(qc,qr,theta,L,repeat): #circuit 9 #theta is list of the parameters #theta length is (4)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.h(qr[i]) qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.cz(qr[1],qr[0]) qc.cz(qr[2],qr[1]) qc.cz(qr[3],qr[2]) for i in range(4): qc.h(qr[i]) return qc def circuit10(qc,qr,theta,L,repeat): #circuit 10 #theta is list of the parameters #theta length is (4)L+4 #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for l in range(L): qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[0]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cz(qr[3],qr[0]) qc.cz(qr[1],qr[0]) qc.cz(qr[2],qr[1]) qc.cz(qr[3],qr[2]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit11(qc,qr,theta,L,repeat): #circuit 11 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cx(qr[1],qr[0]) qc.cx(qr[3],qr[2]) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) count=count+1 qc.cx(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[2],qr[1]) qc.rz(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.ry(theta[count],qr[1]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[1],qr[0]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit12(qc,qr,theta,L,repeat): #circuit 12 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[2]) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) count=count+1 qc.cz(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cz(qr[2],qr[1]) qc.rz(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.ry(theta[count],qr[1]) count=count+1 qc.cz(qr[3],qr[2]) qc.cz(qr[1],qr[0]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit13(qc,qr,theta,L,repeat): #circuit 13 #theta is list of the parameters #theta length is (16)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[0],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit14(qc,qr,theta,L,repeat): #circuit 14 #theta is list of the parameters #theta length is (16)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[0],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit15(qc,qr,theta,L,repeat): #circuit 15 #theta is list of the parameters #theta length is (8)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[0]) qc.cx(qr[2],qr[3]) qc.cx(qr[1],qr[2]) qc.cx(qr[0],qr[1]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[0],qr[3]) qc.cx(qr[1],qr[0]) qc.cx(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) qc.cx(qr[0],qr[3]) qc.cx(qr[3],qr[2]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[0],qr[1]) qc.cx(qr[1],qr[2]) qc.cx(qr[2],qr[3]) qc.cx(qr[3],qr[0]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit16(qc,qr,theta,L,repeat): #circuit 16 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit17(qc,qr,theta,L,repeat): #circuit 17 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit18(qc,qr,theta,L,repeat): #circuit 18 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[0],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit19(qc,qr,theta,L,repeat): #circuit 1 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[0],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc
https://github.com/bagmk/Quantum_Machine_Learning_Express
bagmk
from qiskit import * from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute,assemble,QuantumCircuit, aqua from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector from qiskit.quantum_info import Statevector from qiskit.extensions import * provider = IBMQ.load_account() from qiskit.quantum_info import random_unitary import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math from math import pi, sqrt from scipy.special import rel_entr from random import seed from random import random import cmath import os from qiskit.circuit import Parameter #Possible Bin bins_list=[]; for i in range(76): bins_list.append((i)/75) #Center of the Bean bins_x=[] for i in range(75): bins_x.append(bins_list[1]+bins_list[i]) def P_harr(l,u,N): return (1-l)**(N-1)-(1-u)**(N-1) #Harr historgram P_harr_hist=[] for i in range(75): P_harr_hist.append(P_harr(bins_list[i],bins_list[i+1],16)) #Imaginary j=(-1)**(1/2) backend = Aer.get_backend('qasm_simulator') nshot=1000 nparam=2000 fidelity=[] for x in range(nparam): qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr) theta=[]; for y in range(80): theta.append(2*pi*random()) qc=circuit9(qc,qr,theta,3,1) qc.measure(qr[:],cr[:]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0000' in count and '1' in count: ratio=count['0000']/nshot elif '0000' in count and '1' not in count: ratio=count['0000']/nshot else: ratio=0 fidelity.append(ratio) weights = np.ones_like(fidelity)/float(len(fidelity)) plt.hist(fidelity, bins=bins_list, weights=weights, range=[0, 1], label='Circuit 1') plt.plot(bins_x, P_harr_hist, label='Harr') plt.legend(loc='upper right') plt.show() # example of calculating the kl divergence (relative entropy) with scipy P_1_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0] kl_pq = rel_entr(P_1_hist, P_harr_hist) print('KL(P || Q): %.3f nats' % sum(kl_pq)) list_of_circuit = [circuit1,circuit2,circuit3,circuit4,circuit5,circuit6,circuit7,circuit8,circuit9,circuit10,circuit11,circuit12,circuit13,circuit14,circuit15,circuit16,circuit17,circuit18,circuit19] backend = Aer.get_backend('qasm_simulator') arr = [] for kk in range(19): arr.append([]) for lo in [1,2,3,4,5]: nshot=1000 nparam=2000 fidelity=[] for x in range(nparam): qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr) theta=[]; for y in range(500): theta.append(2*pi*random()) qc=list_of_circuit[kk](qc,qr,theta,lo,1) qc.measure(qr[:],cr[:]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0000' in count and '1' in count: ratio=count['0000']/nshot elif '0000' in count and '1' not in count: ratio=count['0000']/nshot else: ratio=0 fidelity.append(ratio) weights = np.ones_like(fidelity)/float(len(fidelity)) # example of calculating the kl divergence (relative entropy) with scipy P_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0] kl_pq = rel_entr(P_hist, P_harr_hist) arr[kk].append(sum(kl_pq)) print(kk,'cir',lo,'lay') import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("express_nshot1000_nparam2000.txt",express) express import pandas as pd import matplotlib.pyplot as plt #loading dataset x = [i+1 for i in range(19)] y = [i[0] for i in arr] plt.plot(x, y, 'o', color='red', label='L=1'); x = [i+1 for i in range(19)] y = [i[1] for i in arr] plt.plot(x, y, 'o', color='blue', label='L=2'); x = [i+1 for i in range(19)] y = [i[2] for i in arr] plt.plot(x, y, 'o', color='black', label='L=3'); x = [i+1 for i in range(19)] y = [i[3] for i in arr] plt.plot(x, y, 'o', color='green', label='L=4'); x = [i+1 for i in range(19)] y = [i[3] for i in arr] plt.plot(x, y, 'o', color='purple', label='L=5'); plt.legend(loc='upper right') plt.yscale('log',base=10) plt.xlabel('Circuit ID') plt.ylabel('Expressibility') # Create names on the x axis plt.xticks([i+1 for i in range(19)]) plt.show() x = [str(i+1) for i in range(19)] x_ticks_labels = ['9','1','2','16','3','18','10','12','15','17','4','11','7','8','19','5','13','14','6'] xarr = np.array(x) ind = np.where(xarr.reshape(xarr.size, 1) == np.array(x_ticks_labels))[1] fig, ax = plt.subplots(1,1) y = [i[0] for i in arr] ax.scatter(ind,y, marker="o", color='red', label='L=1') y = [i[1] for i in arr] ax.scatter(ind,y, marker="o", color='blue', label='L=2') y = [i[2] for i in arr] ax.scatter(ind,y, marker="o", color='black', label='L=3') y = [i[3] for i in arr] ax.scatter(ind,y, marker="o", color='green', label='L=4') y = [i[4] for i in arr] ax.scatter(ind,y, marker="o", color='purple', label='L=5') ax.set_yscale('log',base=10) ax.set_xlabel('Circuit ID') ax.set_ylabel('Expressibility') ax.legend(loc='upper right') ax.set_xticks(range(len(x_ticks_labels))) ax.set_xticklabels(x_ticks_labels) plt.show() fig from matplotlib import pyplot as plt fig.savefig('express_nshot1000_nparam2000.png') list_of_circuit = [circuit1,circuit2,circuit3,circuit4,circuit5,circuit6,circuit7,circuit8,circuit9,circuit10,circuit11,circuit12,circuit13,circuit14,circuit15,circuit16,circuit17,circuit18,circuit19] backend = Aer.get_backend('qasm_simulator') arr = [] for kk in range(19): arr.append([]) for lo in [1,2,3,4,5]: nshot=10000 nparam=1000 fidelity=[] for x in range(nparam): qr = QuantumRegister(4) cr = ClassicalRegister(4) qc = QuantumCircuit(qr, cr) theta=[]; for y in range(500): theta.append(2*pi*random()) qc=list_of_circuit[kk](qc,qr,theta,lo,1) qc.measure(qr[:],cr[:]) job = execute(qc, backend, shots=nshot) result = job.result() count =result.get_counts() if '0000' in count and '1' in count: ratio=count['0000']/nshot elif '0000' in count and '1' not in count: ratio=count['0000']/nshot else: ratio=0 fidelity.append(ratio) weights = np.ones_like(fidelity)/float(len(fidelity)) # example of calculating the kl divergence (relative entropy) with scipy P_hist=np.histogram(fidelity, bins=bins_list, weights=weights, range=[0, 1])[0] kl_pq = rel_entr(P_hist, P_harr_hist) arr[kk].append(sum(kl_pq)) print(kk,'cir',lo,'lay') express import sys import numpy numpy.set_printoptions(threshold=sys.maxsize) np.savetxt("express_nshot10000_nparam1000.txt",express) x = [str(i+1) for i in range(19)] x_ticks_labels = ['9','1','2','16','3','18','10','12','15','17','4','11','7','8','19','5','13','14','6'] xarr = np.array(x) ind = np.where(xarr.reshape(xarr.size, 1) == np.array(x_ticks_labels))[1] fig, ax = plt.subplots(1,1) y = [i[0] for i in arr] ax.scatter(ind,y, marker="o", color='red', label='L=1') y = [i[1] for i in arr] ax.scatter(ind,y, marker="o", color='blue', label='L=2') y = [i[2] for i in arr] ax.scatter(ind,y, marker="o", color='black', label='L=3') y = [i[3] for i in arr] ax.scatter(ind,y, marker="o", color='green', label='L=4') y = [i[4] for i in arr] ax.scatter(ind,y, marker="o", color='purple', label='L=5') ax.set_yscale('log',base=10) ax.set_xlabel('Circuit ID') ax.set_ylabel('Expressibility') ax.legend(loc='upper right') ax.set_xticks(range(len(x_ticks_labels))) ax.set_xticklabels(x_ticks_labels) plt.show() from matplotlib import pyplot as plt fig.savefig('express_nshot10000_nparam1000.png') def circuit1(qc,qr,theta,L,repeat): #circuit 1 #theta is list of the parameters #theta length is 8L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit2(qc,qr,theta,L,repeat): #circuit 2 #theta is list of the parameters #theta length is 8L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[1],qr[0]) qc.cx(qr[2],qr[1]) qc.cx(qr[3],qr[2]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit3(qc,qr,theta,L,repeat): #circuit 3 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit4(qc,qr,theta,L,repeat): #circuit 4 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit5(qc,qr,theta,L,repeat): #circuit 5 #theta is list of the parameters #theta length is (28)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crz(theta[count],qr[3-j],qr[3-i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crz(theta[count],qr[j],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit6(qc,qr,theta,L,repeat): #circuit 6 #theta is list of the parameters #theta length is (28)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crx(theta[count],qr[3-j],qr[3-i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crx(theta[count],qr[j],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit7(qc,qr,theta,L,repeat): #circuit 7 #theta is list of the parameters #theta length is (19)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit8(qc,qr,theta,L,repeat): #circuit 8 #theta is list of the parameters #theta length is (19)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit9(qc,qr,theta,L,repeat): #circuit 9 #theta is list of the parameters #theta length is (4)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.h(qr[i]) qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.cz(qr[1],qr[0]) qc.cz(qr[2],qr[1]) qc.cz(qr[3],qr[2]) for i in range(4): qc.h(qr[i]) return qc def circuit10(qc,qr,theta,L,repeat): #circuit 10 #theta is list of the parameters #theta length is (4)L+4 #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for l in range(L): qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[0]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cz(qr[3],qr[0]) qc.cz(qr[1],qr[0]) qc.cz(qr[2],qr[1]) qc.cz(qr[3],qr[2]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit11(qc,qr,theta,L,repeat): #circuit 11 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cx(qr[1],qr[0]) qc.cx(qr[3],qr[2]) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) count=count+1 qc.cx(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[2],qr[1]) qc.rz(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.ry(theta[count],qr[1]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[1],qr[0]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit12(qc,qr,theta,L,repeat): #circuit 12 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[2]) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) count=count+1 qc.cz(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cz(qr[2],qr[1]) qc.rz(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.ry(theta[count],qr[1]) count=count+1 qc.cz(qr[3],qr[2]) qc.cz(qr[1],qr[0]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit13(qc,qr,theta,L,repeat): #circuit 13 #theta is list of the parameters #theta length is (16)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[0],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit14(qc,qr,theta,L,repeat): #circuit 14 #theta is list of the parameters #theta length is (16)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[0],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit15(qc,qr,theta,L,repeat): #circuit 15 #theta is list of the parameters #theta length is (8)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[0]) qc.cx(qr[2],qr[3]) qc.cx(qr[1],qr[2]) qc.cx(qr[0],qr[1]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[0],qr[3]) qc.cx(qr[1],qr[0]) qc.cx(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) qc.cx(qr[0],qr[3]) qc.cx(qr[3],qr[2]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[0],qr[1]) qc.cx(qr[1],qr[2]) qc.cx(qr[2],qr[3]) qc.cx(qr[3],qr[0]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit16(qc,qr,theta,L,repeat): #circuit 16 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit17(qc,qr,theta,L,repeat): #circuit 17 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit18(qc,qr,theta,L,repeat): #circuit 18 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[0],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit19(qc,qr,theta,L,repeat): #circuit 1 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[0],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc