repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend("aer_simulator") qc = QuantumCircuit(2) qc.cx(0, 1) display(qc.draw("mpl")) qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (LSB as Target) = }"))
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, execute from qiskit.quantum_info import Statevector qc = QuantumCircuit(8, 8) sv = Statevector.from_label("11011000") qc.initialize(sv, range(8)) qc.cx(0, 1) qc.cx(2, 3) qc.cx(4, 5) qc.cx(6, 7) qc.measure(range(8), range(8)) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from qiskit import QuantumCircuit, execute from qiskit.quantum_info import Statevector qc = QuantumCircuit(8, 8) sv = Statevector.from_label("11011000") qc.initialize(sv, range(8)) qc.cx(0, 1) qc.cx(2, 3) qc.cx(4, 5) qc.cx(6, 7) qc.measure(range(8), range(8)) qc.draw("mpl") sim = AerSimulator() job = execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(2, 2) sv = Statevector.from_label("10") qc.initialize(sv, range(2)) qc.h(0) qc.cx(0, 1) qc.measure(range(2), range(2)) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(2, 2) sv = Statevector.from_label("10") qc.initialize(sv, range(2)) qc.h(0) qc.cx(0, 1) qc.measure(range(2), range(2)) qc.draw("mpl") sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(12) qc.cx(0, 1) qc.cx(2, 3) qc.cx(4, 5) qc.cx(6, 7) qc.cx(8, 9) qc.cx(10, 11) qc.cx(11, 10) qc.cx(10, 11) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.ccx(0, 1, 2) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend("aer_simulator") qc1 = QuantumCircuit(3) qc1.ccx(0, 1, 2) display(qc1.draw("mpl")) qc1.save_unitary() unitary = sim.run(qc1).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (MSB as Target) = }")) print('=' * 80) qc2 = QuantumCircuit(3) qc2.ccx(2, 1, 0) display(qc2.draw("mpl")) qc2.save_unitary() unitary = sim.run(qc2).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (LSB as Target) = }"))
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(7) qc.ccx(0, 1, 4) qc.ccx(2, 3, 5) qc.ccx(4, 5, 6) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, QuantumRegister qrx = QuantumRegister(3, 'x') qry = QuantumRegister(1, 'y') qc = QuantumCircuit(qrx, qry) qc.x(qry) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qrx = QuantumRegister(3, 'x') qry = QuantumRegister(1, 'y') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qrx = QuantumRegister(3, 'x') qry = QuantumRegister(1, 'y') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl") sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumRegister, QuantumCircuit qrx = QuantumRegister(3, 'x') qry = QuantumRegister(1, 'y') qc = QuantumCircuit(qrx, qry) qc.cx(qrx[0], qry) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qrx = QuantumRegister(3, 'x') qry = QuantumRegister(1, 'y') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) # qc.h(qry) 機率會不同 qc.h(qry) qc.barrier() qc.cx(qrx[0], qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl")
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qrx = QuantumRegister(3, 'x') qry = QuantumRegister(1, 'y') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) # qc.h(qry) 機率會不同 qc.h(qry) qc.barrier() qc.cx(qrx[0], qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl") sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
#Below are examples of using print function print('The name of the language is',"Python") print("The radius of the circle is", 3, '\nIts area is', 3.14159*3**2) #Below are examples of using print function print('The name of the language is',"Python",end=". ") print('Its version is',"3.x",sep="....") print("The radius of the circle is", 3) print("The area of the circle is", 3.14159*3**2) r=input('Please enter the radius of the circle:') print('The radius of the circle:', r) r=input('Please enter the radius of the circle:') ri=int(r) rf=float(r) print('The radius of the circle:', ri) print("The area of the circle:", 3.14159*rf**2) a=123;b=123.456;c=False;d=123+456j;e="123";f=[1,2,3];g=(1,2,3);h={1,2,3};i={1:'x',2:'y',3:'z'} print(type(a),type(b),type(c),type(d),type(e),type(f),type(g),type(h),type(i)) a=3;b=8 print(a+b) #11 print(a-b) #-5 print(a*b) #24 print(a/b) #0.375 print(a//b) #0 print(a%b) #3 print(a**b) #6561 print(a+b//a**b) #3 print((a+b)//a**b) #0 a=3.0;b=8.0;c=8 print(a+b) #11.0 print(a-b) #-5.0 print(a*b) #24.0 print(a/b) #0.375 print(a//b) #0.0 print(a%b) #3.0 print(a**b) #6561.0 print(a+c) #11.0 print(a+b//a**b) #3.0 print((a+b)//a**b) #0.0 a=3.0;b=8.0;c=8 print(a==b) #False print(a!=b) #True print(a>b) #False print(a<b) #True print(a>=b) #False print(a<=b) #True print(not (a==b)) #True print(a==b or a!=b and a>b) #False print(a==b and a>b or a!=b) #True print(a==b and a>b or not (a!=b)) #False a=2+4j;b=3-8j print(a+b) #(5-4j) print(a-b) #(-1+12j) print(a*b) #(38-4j) print(a/b) #(-0.3561643835616438+0.3835616438356164j) print(a+b/a) #(0.7+2.6j) print((a+b)/a) #(-0.3-1.4j) print(a.real) #2.0 print(a.imag) #4.0 print(a.conjugate()) #(2-4j) print(abs(a)) #4.47213595499958 a={1,2,3};b={2,4,6} print(a|b) #{1, 2, 3, 4, 6} print(a.union(b)) #{1, 2, 3, 4, 6} print(a&b) #{2} print(a.intersection(b)) #{2} print(a-b) #{1,3} print(a.difference(b)) #{1,3} print(a^b) #{1,3,4,6} print(a.symmetric_difference(b)) #{1,3,4,6} ex = {"a":1, "b":2, "c":3, 1: "integer", 2.3: "float", 4+5j: "complex", (6,7): "tuple"} print(ex["a"],ex["b"],ex["c"],ex[1],ex[2.3],ex[4+5j],ex[(6,7)]) ex["a"]=100 print(ex["a"]) print(len(ex)) ex["d"]=4 print(ex.get("d")) del ex["d"] print(ex.get("d")) print("e" in ex) print("e" not in ex) print(ex.keys()) print(ex.values()) a=5 a+=3 #a=a+3 (a=8) a-=3 #a=a-3 (a=5) a*=3 #a=a*3 (a=15) a%=8 #a=a%8 (a=7) a//=3 #a=a//3 (a=2) a/=3 #a=a/3 (a=0.6666666666666666) a**=3 #a=a**3 (a=0.2962962962962962) print(a) score=90 if score >=60: print("PASS") score=90 if score >=60: print("PASS") else: print("FAIL") score=90 if score >=90: print("A") elif score >= 80: print("B") elif score >= 70: print("C") elif score >= 60: print("D") else: print("F") i=0 while i<5: i+=1 print(i,end="") i=0 while i<5: i+=1 print(i,end="") else: print("#") for i in [1,2,3,4,5]: print(i,end="") for i in [1,2,3,4,5]: print(i,end="") else: print("#") print(list(range(5))) #range(5)會回傳0、1、2、3、4 print(list(range(2,5))) #range(2,5)會回傳2、3、4 print(list(range(0,5,2))) #range(0,2,5)會回傳0、2、4 print(list(range(5,0,-1))) #range(5,0,-1)會回傳5、4、3、2、1 print(list(range(5,0))) #range(5,0)是一個空序列 i=0 while i<5: i+=1 if i==3: break print(i,end="") for i in range(1,6): if i==3: break print(i,end="") i=0 while i<5: i+=1 if i==3: continue print(i,end="") for i in range(1,6): if i==3: continue print(i,end="") def odd_check(n): """Check if n is odd (return True) or not (return False).""" if n%2==0: return False else: return True print(odd_check(5)) print(odd_check(10)) def test(aa,bb,cc=123,dd='abc'): return aa,bb,cc,dd print(test(1,2,3,4)) print(test(1,2,3)) print(test(1,2,dd='edf')) print(test(1,2)) def adding(*num): sum=0 for n in num: sum+=n return sum print(adding(1,2,3,4,5)) adding = lambda x,y: x+y print(adding(3,8)) #顯示11 print((lambda x,y: x+y)(3,8)) #顯示11 lista=[1,3,5,7,9] #以下將lambda函數當作map函數的參數 listb=list(map(lambda x:x+8, lista)) print(listb) class Rectangle: length=0 width=0 def __init__(self,length,width): self.length=length self.width=width def area(self): return self.length*self.width def perimeter(self): return 2*(self.length+self.width) rect1=Rectangle(3,8) rect2=Rectangle(2,4) print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter()) print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter()) class NamedRectangle(Rectangle): name='' def __init__(self,length,width,name): super().__init__(length,width) self.name=name def show_name(self): print(self.name) rect1=NamedRectangle(3,8,'rectangle1') rect2=NamedRectangle(2,4,'rectangle2') print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter()) print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter()) rect1.show_name() rect2.show_name()
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 1.1 The first quantum program from qiskit import QuantumCircuit print("Hello, Qubit!") qc = QuantumCircuit(1,1) qc.measure([0], [0]) print("This is a quantum circuit of 1 qubit and 1 bit:") qc.draw('mpl') #Program 1.2 Design a quantum circuit with 5 qubits and 3 classical bits from qiskit import QuantumCircuit print("This is a quantum circuit of 5 qubits and 2 bits:") qc = QuantumCircuit(5, 2) qc.measure([1,3], [0,1]) qc.draw('mpl') #Program 1.3 Name and label quantum bits and classical bits from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(2,'y') qrz = QuantumRegister(1,'z') cr = ClassicalRegister(4,'c') qc = QuantumCircuit(qrx,qry,qrz,cr) qc.measure([qrx[1],qrx[2]], [cr[0],cr[1]]) qc.measure([4,5], [2,3]) qc.draw('mpl') #Program 1.4 Transpile and execute quantum circuit on simulator from qiskit import QuantumCircuit, transpile, execute from qiskit.providers.aer import AerSimulator sim = AerSimulator() qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) cqc = transpile(qc, sim) job=execute(cqc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) #Program 1.5 Execute quantum circuit (program) on simulator from qiskit import QuantumCircuit, execute from qiskit.providers.aer import AerSimulator sim = AerSimulator() qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) #Program 1.6 Execute quantum circuit (program) on least busy quantum computer from qiskit import QuantumCircuit, IBMQ, execute from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) IBMQ.save_account('your_token',overwrite=True) IBMQ.load_account() provider=IBMQ.get_provider(group='open') print(provider) qcomp = least_busy(provider.backends(simulator=False)) print("The least busy quantum computer is:",qcomp) job=execute(qc, backend=qcomp, shots=1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) #Program 1.7 Execute quantum circuit (program) on proper quantum computer from qiskit import QuantumCircuit, IBMQ, execute from qiskit.tools.monitor import job_monitor qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) #IBMQ.save_account('......',overwrite=True) #IBMQ.load_account() provider = IBMQ.get_provider(group='open') qcomp = provider.get_backend('ibmq_lima') job=execute(qc, backend=qcomp, shots=1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第1章原始程式碼 # %% #Program 1.1 The first quantum program from qiskit import QuantumCircuit print("Hello, Qubit!") qc = QuantumCircuit(1,1) qc.measure([0], [0]) print("This is a quantum circuit of 1 qubit and 1 bit:") qc.draw('mpl') # %% #Program 1.2 Design a quantum circuit with 5 qubits and 3 classical bits from qiskit import QuantumCircuit print("This is a quantum circuit of 5 qubits and 2 bits:") qc = QuantumCircuit(5, 2) qc.measure([1,3], [0,1]) qc.draw('mpl') # %% #Program 1.3 Name and label quantum bits and classical bits from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(2,'y') qrz = QuantumRegister(1,'z') cr = ClassicalRegister(4,'c') qc = QuantumCircuit(qrx,qry,qrz,cr) qc.measure([qrx[1],qrx[2]], [cr[0],cr[1]]) qc.measure([4,5], [2,3]) qc.draw('mpl') # %% #Program 1.4 Transpile and execute quantum circuit on simulator from qiskit import QuantumCircuit, transpile, execute from qiskit.providers.aer import AerSimulator sim = AerSimulator() qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) cqc = transpile(qc, sim) job=execute(cqc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) # %% #Program 1.5 Execute quantum circuit (program) on simulator from qiskit import QuantumCircuit, execute from qiskit.providers.aer import AerSimulator sim = AerSimulator() qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) # %% #Program 1.6 Execute quantum circuit (program) on least busy quantum computer from qiskit import QuantumCircuit, IBMQ, execute from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) IBMQ.save_account('your_token',overwrite=True) IBMQ.load_account() provider=IBMQ.get_provider(group='open') print(provider) qcomp = least_busy(provider.backends(simulator=False)) print("The least busy quantum computer is:",qcomp) job=execute(qc, backend=qcomp, shots=1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) # %% #Program 1.7 Execute quantum circuit (program) on proper quantum computer from qiskit import QuantumCircuit, IBMQ, execute from qiskit.tools.monitor import job_monitor qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) #IBMQ.save_account('......',overwrite=True) #IBMQ.load_account() provider = IBMQ.get_provider(group='open') qcomp = provider.get_backend('ibmq_lima') job=execute(qc, backend=qcomp, shots=1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 2.1 Initialize qubit state from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) qc.draw('mpl') #Program 2.2 Initialize qubit state and show Bloch sphere from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) state = Statevector.from_instruction(qc) display(qc.draw('mpl')) display(state.draw('bloch')) #Program 2.3 Show Bloch sphere from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector state = Statevector.from_instruction(qc) plot_bloch_multivector(state) #Program 2.4 Measure qubit state from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(4,4) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([0,1],2) qc.initialize([0,1],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 2.5 Measure qubit state again from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(4,4) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],0) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],1) qc.initialize([1/math.sqrt(2), 1j/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1j/math.sqrt(2)],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第2章原始程式碼 # %% #Program 2.1 Initialize qubit state from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) qc.draw('mpl') # %% #Program 2.2 Initialize qubit state and show Bloch sphere from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) state = Statevector.from_instruction(qc) display(qc.draw('mpl')) display(state.draw('bloch')) # %% #Program 2.3 Show Bloch sphere from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector state = Statevector.from_instruction(qc) plot_bloch_multivector(state) # %% #Program 2.4 Measure qubit state from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(4,4) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([0,1],2) qc.initialize([0,1],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 2.5 Measure qubit state again from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(4,4) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],0) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],1) qc.initialize([1/math.sqrt(2), 1j/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1j/math.sqrt(2)],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 3.1a Apply X-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.x(1) qc.draw('mpl') #Program 3.1b Show Bloch sphere of qubit w/wo X-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.2a Measure state of qubit w/o X-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(1,1) qc.initialize([math.sqrt(1/3), math.sqrt(2/3)],0) qc.measure([0],[0]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.2b Measure state of qubit w/ X-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(1,1) qc.initialize([math.sqrt(1/3), math.sqrt(2/3)],0) qc.x(0) qc.measure([0],[0]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.3a Apply X-gate and H-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],0) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],1) qc.h(2) qc.x(3) qc.h(3) qc.draw('mpl') #Program 3.3b Show Bloch sphere of qubit w/ X-gate and H-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.4 Measure state of qubit w/ H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(1,1) qc.h(0) qc.measure([0],[0]) print("This is |+>:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.5 Measure state of qubit w/ X-gate and H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(1,1) qc.x(0) qc.h(0) qc.measure([0],[0]) print("This is |->:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.6 Measure state of qubit w/ H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(2,2) qc.h(0) qc.h(1) qc.measure([0,1],[0,1]) print("This is |++>:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.7a Apply X-, Y-, and Z-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.x(0) qc.y(1) qc.z(2) qc.draw('mpl') #Program 3.7b Show Bloch sphere of qubit w/ X-, Y-, and Z-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.8a Apply RX-, RY-, and RZ-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(3) qc.rx(math.pi/2, 0) qc.ry(math.pi/2, 1) qc.rz(math.pi/2, 2) qc.draw('mpl') #Program 3.8b Show Bloch sphere of qubit w/ RX-, RY-, and RZ-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.9a Apply RX-, P-, S-, T-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.rx(math.pi/2, [0,1,2,3]) qc.p(math.pi/8, 1) qc.s(2) qc.t(3) qc.draw('mpl') #Program 3.9b Show Bloch sphere of qubit w/ RX-, P-, S-, and T-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.10a Apply RX-, I-, and U-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.rx(math.pi/2, [0,1,2,3]) qc.i(1) qc.u(math.pi/2, 0, math.pi, 2) qc.u(0,0, math.pi/4, 3) qc.draw('mpl') #Program 3.10b Show Bloch sphere of qubit w/ RX-, I-, and U-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch')
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第3章原始程式碼 # %% #Program 3.1a Apply X-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.x(1) qc.draw('mpl') # %% #Program 3.1b Show Bloch sphere of qubit w/wo X-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') # %% #Program 3.2a Measure state of qubit w/o X-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(1,1) qc.initialize([math.sqrt(1/3), math.sqrt(2/3)],0) qc.measure([0],[0]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 3.2b Measure state of qubit w/ X-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(1,1) qc.initialize([math.sqrt(1/3), math.sqrt(2/3)],0) qc.x(0) qc.measure([0],[0]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 3.3a Apply X-gate and H-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],0) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],1) qc.h(2) qc.x(3) qc.h(3) qc.draw('mpl') # %% #Program 3.3b Show Bloch sphere of qubit w/ X-gate and H-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') # %% #Program 3.4 Measure state of qubit w/ H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(1,1) qc.h(0) qc.measure([0],[0]) print("This is |+>:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 3.5 Measure state of qubit w/ X-gate and H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(1,1) qc.x(0) qc.h(0) qc.measure([0],[0]) print("This is |->:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 3.6 Measure state of qubit w/ H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(2,2) qc.h(0) qc.h(1) qc.measure([0,1],[0,1]) print("This is |++>:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 3.7a Apply X-, Y-, and Z-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.x(0) qc.y(1) qc.z(2) qc.draw('mpl') # %% #Program 3.7b Show Bloch sphere of qubit w/ X-, Y-, and Z-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') # %% #Program 3.8a Apply RX-, RY-, and RZ-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(3) qc.rx(math.pi/2, 0) qc.ry(math.pi/2, 1) qc.rz(math.pi/2, 2) qc.draw('mpl') # %% #Program 3.8b Show Bloch sphere of qubit w/ RX-, RY-, and RZ-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') # %% #Program 3.9a Apply RX-, P-, S-, T-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.rx(math.pi/2, [0,1,2,3]) qc.p(math.pi/8, 1) qc.s(2) qc.t(3) qc.draw('mpl') # %% #Program 3.9b Show Bloch sphere of qubit w/ RX-, P-, S-, and T-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') # %% #Program 3.10a Apply RX-, I-, and U-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.rx(math.pi/2, [0,1,2,3]) qc.i(1) qc.u(math.pi/2, 0, math.pi, 2) qc.u(0,0, math.pi/4, 3) qc.draw('mpl') # %% #Program 3.10b Show Bloch sphere of qubit w/ RX-, I-, and U-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch')
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 4.1 Apply CX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(0,1) qc.draw('mpl') #Program 4.2 Show unitary matrix of CX-gate (MSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex qc = QuantumCircuit(2) qc.cx(0,1) display(qc.draw('mpl')) sim = Aer.get_backend('aer_simulator') qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (MSB as target bit) = }")) #Program 4.3 Show unitary matrix of CX-gate (LSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw('mpl')) qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (LSB as target bit) = }")) #Program 4.4a Appliy CX-gate to qubit from qiskit import QuantumCircuit,execute from qiskit.quantum_info import Statevector qc = QuantumCircuit(8,8) sv = Statevector.from_label('11011000') qc.initialize(sv,range(8)) qc.cx(0,1) qc.cx(2,3) qc.cx(4,5) qc.cx(6,7) qc.measure(range(8),range(8)) qc.draw('mpl') #Program 4.4b Measure state of qubit w/ CX-gate from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.5 Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) print("Below is the Bell state (top: q0 for target; bottom: q1 for control):") display(qc.draw('mpl')) print("Below is the Bell state (top: q1 for control; bottom: q0 for traget):") display(qc.draw('mpl',reverse_bits=True)) #Program 4.6a Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') #Program 4.6b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.7a Iinitialize qubit and build Bell state via H- and CX-gate from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(2,2) sv = Statevector.from_label('10') qc.initialize(sv,range(2)) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') #Program 4.7b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.8 Show quantum circuit for quantum teleportation from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qs = QuantumRegister(1,'qs') qa = QuantumRegister(1,'qa') qb = QuantumRegister(1,'qb') cr = ClassicalRegister(2,'c') qc = QuantumCircuit(qs,qa,qb,cr) qc.h(qa) qc.cx(qa,qb) qc.barrier() qc.cx(qs,qa) qc.h(qs) qc.measure(qs,0) qc.measure(qa,1) qc.barrier() qc.x(qb) qc.z(qb) qc.draw('mpl') #Program 4.9 Apply CX-, CY-, CZ-, CH-, and SWAP-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(12) qc.cx(0,1) qc.cy(2,3) qc.cz(4,5) qc.ch(6,7) qc.swap(8,9) qc.cx(10,11) qc.cx(11,10) qc.cx(10,11) qc.draw('mpl') #Program 4.10 Apply CCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.ccx(0,1,2) qc.draw('mpl') #Program 4.11 Show unitary matrix of CCX-gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.ccx(0,1,2) print("="*70,"\nBelow is quantum circuit of CCNOT gate (MSB as target bit):") display(qc1.draw('mpl')) qc1.save_unitary() unitary = sim.run(qc1).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (MSB as target bit) = }\n")) qc2 = QuantumCircuit(3) qc2.ccx(2,1,0) print("="*70,"\nBelow is quantum circuit of CCNOT gate (LSB as target bit):") display(qc2.draw('mpl')) qc2.save_unitary() unitary = sim.run(qc2).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (LSB as target bit) = }\n")) #Program 4.12 Apply CCCCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(7) qc.ccx(0,1,4) qc.ccx(2,3,5) qc.ccx(4,5,6) qc.draw('mpl')
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第4章原始程式碼 # %% #Program 4.1 Apply CX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(0,1) qc.draw('mpl') # %% #Program 4.2 Show unitary matrix of CX-gate (MSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex qc = QuantumCircuit(2) qc.cx(0,1) display(qc.draw('mpl')) sim = Aer.get_backend('aer_simulator') qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (MSB as target bit) = }")) # %% #Program 4.3 Show unitary matrix of CX-gate (LSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw('mpl')) qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (LSB as target bit) = }")) # %% #Program 4.4a Appliy CX-gate to qubit from qiskit import QuantumCircuit,execute from qiskit.quantum_info import Statevector qc = QuantumCircuit(8,8) sv = Statevector.from_label('11011000') qc.initialize(sv,range(8)) qc.cx(0,1) qc.cx(2,3) qc.cx(4,5) qc.cx(6,7) qc.measure(range(8),range(8)) qc.draw('mpl') # %% #Program 4.4b Measure state of qubit w/ CX-gate from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 4.5 Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) print("Below is the Bell state (top: q0 for target; bottom: q1 for control):") display(qc.draw('mpl')) print("Below is the Bell state (top: q1 for control; bottom: q0 for traget):") display(qc.draw('mpl',reverse_bits=True)) # %% #Program 4.6a Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') # %% #Program 4.6b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 4.7a Iinitialize qubit and build Bell state via H- and CX-gate from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(2,2) sv = Statevector.from_label('10') qc.initialize(sv,range(2)) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') # %% #Program 4.7b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 4.8 Show quantum circuit for quantum teleportation from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qs = QuantumRegister(1,'qs') qa = QuantumRegister(1,'qa') qb = QuantumRegister(1,'qb') cr = ClassicalRegister(2,'c') qc = QuantumCircuit(qs,qa,qb,cr) qc.h(qa) qc.cx(qa,qb) qc.barrier() qc.cx(qs,qa) qc.h(qs) qc.measure(qs,0) qc.measure(qa,1) qc.barrier() qc.x(qb) qc.z(qb) qc.draw('mpl') # %% #Program 4.9 Apply CX-, CY-, CZ-, CH-, and SWAP-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(12) qc.cx(0,1) qc.cy(2,3) qc.cz(4,5) qc.ch(6,7) qc.swap(8,9) qc.cx(10,11) qc.cx(11,10) qc.cx(10,11) qc.draw('mpl') # %% #Program 4.10 Apply CCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.ccx(0,1,2) qc.draw('mpl') # %% #Program 4.11 Show unitary matrix of CCX-gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.ccx(0,1,2) print("="*70,"\nBelow is quantum circuit of CCNOT gate (MSB as target bit):") display(qc1.draw('mpl')) qc1.save_unitary() unitary = sim.run(qc1).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (MSB as target bit) = }\n")) qc2 = QuantumCircuit(3) qc2.ccx(2,1,0) print("="*70,"\nBelow is quantum circuit of CCNOT gate (LSB as target bit):") display(qc2.draw('mpl')) qc2.save_unitary() unitary = sim.run(qc2).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (LSB as target bit) = }\n")) # %% #Program 4.12 Apply CCCCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(7) qc.ccx(0,1,4) qc.ccx(2,3,5) qc.ccx(4,5,6) qc.draw('mpl')
https://github.com/1chooo/Quantum-Oracle
1chooo
#program 5.1a Define classical oracle f1 and test it def f1(x): return '1' print(f1('000'),f1('001'),f1('010'),f1('011'),f1('100'),f1('101'),f1('110'),f1('111')) #program 5.1b Define classical oracle f2 and test it def f2(x): if x[0]=='0': return '0' else: return '1' print(f2('000'),f2('001'),f2('010'),f2('011'),f2('100'),f2('101'),f2('110'),f2('111')) #Program 5.1c Solve constant-balanced function decision (CBFD) prob. with classical code import itertools def cbfd_test(f,n): count0=count1=0 iter = itertools.product([0,1], repeat=n) lst = [''.join(map(str, item)) for item in iter] for s in lst: if f(s)=='0': count0+=1 else: count1+=1 if count0>0 and count1>0: return True #for balanced function elif count0>2**(n-1) or count1>2**(n-1): return False #for constant function print(cbfd_test(f1,3)) print(cdfd_test(f2,3)) #Program 5.2 Define a quantum oracle from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') qc = QuantumCircuit(qrx,qry) qc.x(qry) qc.draw('mpl') #Program 5.3a Build quantum circuit of Deutsch-Jozsa alg. from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') cr = ClassicalRegister(3,'c') qc = QuantumCircuit(qrx,qry,cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) qc.draw('mpl') #Program 5.3b Run Deutsch-Jozsa alg. with simulator from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 5.4 Define another quantum oracle from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') qc = QuantumCircuit(qrx,qry) qc.cx(qrx[0],qry) qc.draw('mpl') #Program 5.5a Build quantum circuit of Deutsch-Jozsa alg. from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') cr = ClassicalRegister(3,'c') qc = QuantumCircuit(qrx,qry,cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.cx(qrx[0],qry) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) qc.draw('mpl') #Program 5.5b Run Deutsch-Jozsa alg. with simulator from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 5.6 Show phase kickback of CNOT gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex, plot_bloch_multivector sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(2) qc1.h(0) qc1.x(1) qc1.h(1) qc1.save_statevector() state1 = sim.run(qc1).result().get_statevector() display(qc1.draw('mpl')) display(array_to_latex(state1, prefix='\\text{Statevector before CNOT gate: }')) display(plot_bloch_multivector(state1)) print('='*60) qc2 = QuantumCircuit(2) qc2.h(0) qc2.x(1) qc2.h(1) qc2.cx(0,1) qc2.save_statevector() state2 = sim.run(qc2).result().get_statevector() display(qc2.draw('mpl')) display(array_to_latex(state2, prefix='\\text{Statevector after CNOT gate: }')) display(plot_bloch_multivector(state2)) # Program 5.7 Show phase kickback of CCNOT gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex, plot_bloch_multivector sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.h([0,1]) qc1.x(2) qc1.h(2) qc1.save_statevector() state1 = sim.run(qc1).result().get_statevector() display(qc1.draw('mpl')) display(array_to_latex(state1, prefix="\\text{Statevector before CCNOT gate: }")) display(plot_bloch_multivector(state1)) print('='*80) qc2 = QuantumCircuit(3) qc2.h([0,1]) qc2.x(2) qc2.h(2) qc2.ccx(0,1,2) qc2.save_statevector() state2 = sim.run(qc2).result().get_statevector() display(qc2.draw('mpl')) display(array_to_latex(state2, prefix="\\text{Statevector before CCNOT gate: }")) display(plot_bloch_multivector(state2)) #Program 5.8 Show circuit containing CZ gate and CZ gate's unitary matrix from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(2) qc1.cz(0,1) qc1.save_unitary() unitary1 = sim.run(qc1).result().get_unitary() print("CZ Gate (q0 as control bit, q1 as target bit):") display(qc1.draw('mpl')) display(array_to_latex(unitary1, prefix="\\text{Unitray Matrix of CZ Gate (MSB as Target): }")) print('='*60) qc2 = QuantumCircuit(2) qc2.cz(1,0) qc2.save_unitary() unitary2 = sim.run(qc2).result().get_unitary() print("CZ Gate (q1 as control bit, q0 as target bit):") display(qc2.draw('mpl')) display(array_to_latex(unitary2, prefix="\\text{Unitray Matrix of CZ Gate (LSB as Target): }")) #Program 5.9 Show quantum circuit with CZ, CP, CS, CT gates from qiskit import QuantumCircuit from math import pi qc = QuantumCircuit(8) qc.cz(0,1) qc.cp(pi,2,3) qc.cp(pi/2,4,5) qc.cp(pi/4,6,7) display(qc.draw('mpl'))
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第5章原始程式碼 # %% #program 5.1a Define classical oracle f1 and test it def f1(x): return '1' print(f1('000'),f1('001'),f1('010'),f1('011'),f1('100'),f1('101'),f1('110'),f1('111')) # %% #program 5.1b Define classical oracle f2 and test it def f2(x): if x[0]=='0': return '0' else: return '1' print(f2('000'),f2('001'),f2('010'),f2('011'),f2('100'),f2('101'),f2('110'),f2('111')) # %% #Program 5.1c Solve constant-balanced function decision (CBFD) prob. with classical code import itertools def cbfd_test(f,n): count0=count1=0 iter = itertools.product([0,1], repeat=n) lst = [''.join(map(str, item)) for item in iter] for s in lst: if f(s)=='0': count0+=1 else: count1+=1 if count0>0 and count1>0: return True #for balanced function elif count0>2**(n-1) or count1>2**(n-1): return False #for constant function print(cbfd_test(f1,3)) print(cdfd_test(f2,3)) # %% #Program 5.2 Define a quantum oracle from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') qc = QuantumCircuit(qrx,qry) qc.x(qry) qc.draw('mpl') # %% #Program 5.3a Build quantum circuit of Deutsch-Jozsa alg. from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') cr = ClassicalRegister(3,'c') qc = QuantumCircuit(qrx,qry,cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) qc.draw('mpl') # %% #Program 5.3b Run Deutsch-Jozsa alg. with simulator from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 5.4 Define another quantum oracle from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') qc = QuantumCircuit(qrx,qry) qc.cx(qrx[0],qry) qc.draw('mpl') # %% #Program 5.5a Build quantum circuit of Deutsch-Jozsa alg. from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') cr = ClassicalRegister(3,'c') qc = QuantumCircuit(qrx,qry,cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.cx(qrx[0],qry) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) qc.draw('mpl') # %% #Program 5.5b Run Deutsch-Jozsa alg. with simulator from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) # %% #Program 5.6 Show phase kickback of CNOT gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex, plot_bloch_multivector sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(2) qc1.h(0) qc1.x(1) qc1.h(1) qc1.save_statevector() state1 = sim.run(qc1).result().get_statevector() display(qc1.draw('mpl')) display(array_to_latex(state1, prefix='\\text{Statevector before CNOT gate: }')) display(plot_bloch_multivector(state1)) print('='*60) qc2 = QuantumCircuit(2) qc2.h(0) qc2.x(1) qc2.h(1) qc2.cx(0,1) qc2.save_statevector() state2 = sim.run(qc2).result().get_statevector() display(qc2.draw('mpl')) display(array_to_latex(state2, prefix='\\text{Statevector after CNOT gate: }')) display(plot_bloch_multivector(state2)) # %% # Program 5.7 Show phase kickback of CCNOT gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex, plot_bloch_multivector sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.h([0,1]) qc1.x(2) qc1.h(2) qc1.save_statevector() state1 = sim.run(qc1).result().get_statevector() display(qc1.draw('mpl')) display(array_to_latex(state1, prefix="\\text{Statevector before CCNOT gate: }")) display(plot_bloch_multivector(state1)) print('='*80) qc2 = QuantumCircuit(3) qc2.h([0,1]) qc2.x(2) qc2.h(2) qc2.ccx(0,1,2) qc2.save_statevector() state2 = sim.run(qc2).result().get_statevector() display(qc2.draw('mpl')) display(array_to_latex(state2, prefix="\\text{Statevector before CCNOT gate: }")) display(plot_bloch_multivector(state2)) # %% #Program 5.8 Show circuit containing CZ gate and CZ gate's unitary matrix from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(2) qc1.cz(0,1) qc1.save_unitary() unitary1 = sim.run(qc1).result().get_unitary() print("CZ Gate (q0 as control bit, q1 as target bit):") display(qc1.draw('mpl')) display(array_to_latex(unitary1, prefix="\\text{Unitray Matrix of CZ Gate (MSB as Target): }")) print('='*60) qc2 = QuantumCircuit(2) qc2.cz(1,0) qc2.save_unitary() unitary2 = sim.run(qc2).result().get_unitary() print("CZ Gate (q1 as control bit, q0 as target bit):") display(qc2.draw('mpl')) display(array_to_latex(unitary2, prefix="\\text{Unitray Matrix of CZ Gate (LSB as Target): }")) # %% #Program 5.9 Show quantum circuit with CZ, CP, CS, CT gates from qiskit import QuantumCircuit from math import pi qc = QuantumCircuit(8) qc.cz(0,1) qc.cp(pi,2,3) qc.cp(pi/2,4,5) qc.cp(pi/4,6,7) display(qc.draw('mpl'))
https://github.com/1chooo/Quantum-Oracle
1chooo
#program 6.1a Define classical oracle f1 for unstructured search def f1(x): if x=='01': return '1' else: return '0' print(f1('00'),f1('01'),f1('10'),f1('11')) #program 6.1b Define classical oracle f2 for unstructured search def f2(x): if x=='001': return '1' else: return '0' print(f2('000'),f2('001'),f2('010'),f2('011'),f2('100'),f2('101'),f2('110'),f2('111')) #program 6.1c Define classical oracle f3 for unstructured search def f3(x): if x=='101': return '1' else: return '0' print(f3('000'),f3('001'),f3('010'),f3('011'),f3('100'),f3('101'),f3('110'),f3('111')) #Program 6.1d Solve unstructured search prob. with classical code import itertools def unstructured_search(f,n): iter = itertools.product([0,1], repeat=n) lst = [''.join(map(str, item)) for item in iter] for s in lst: if f(s)=='1': return s print(unstructured_search(f1,2)) print(unstructured_search(f2,3)) print(unstructured_search(f3,3)) #Program 6.2 Define quantum oracle for input solution='00' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x([0,1]) qc.cz(0,1) qc.x([0,1]) print("The quantum circuit of phase oracle for input solution='00':") qc.draw('mpl') #Program 6.3 Define quantum oracle for input solution='01' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x(1) qc.cz(0,1) qc.x(1) print("The quantum circuit of phase oracle for input solution='01':") qc.draw('mpl') #Program 6.4 Define quantum oracle for input solution='10' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x(0) qc.cz(1,0) qc.x(0) print("The quantum circuit of phase oracle for input solution='10':") qc.draw('mpl') #Program 6.5 Define quantum oracle for input solution='11' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.cz(1,0) print("The quantum circuit of phase oracle for input solution='11':") qc.draw('mpl') #Program 6.6 Grover alg. with oracle for input solution='10' from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(2,2) qc.h([0,1]) qc.barrier() qc.x(0) qc.cz(1,0) qc.x(0) qc.barrier() qc.h([0,1]) qc.x([0,1]) qc.cz(0,1) qc.x([0,1]) qc.h([0,1]) qc.barrier() qc.measure([0,1],[0,1]) print("The quantum circuit of Grover's algorithm for input solution='10':") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) display(plot_histogram(counts)) #Program 6.7 Grover alg. with oracle for input solution='101' from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi qc = QuantumCircuit(3,3) qc.h([0,1,2]) qc.barrier() for repeat in range(2): qc.x(1) qc.mcp(pi,[0,1],2) qc.x(1) qc.barrier() qc.h([0,1,2]) qc.x([0,1,2]) qc.mcp(pi,[0,1],2) qc.x([0,1,2]) qc.h([0,1,2]) qc.barrier() qc.measure([0,1,2],[0,1,2]) print("The quantum circuit of Grover's algorithm for input solution='101':") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) display(plot_histogram(counts)) #Program 6.8 Solve Hamiltonian cycle prob. for clique-4 with Grover alg. from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi qc = QuantumCircuit(6,6) qc.h(range(6)) qc.barrier() for repeat in range(3): qc.x([4,5]) qc.mcp(pi,list(range(5)),5) qc.x([4,5]) qc.barrier() qc.x([1,3]) qc.mcp(pi,list(range(5)),5) qc.x([1,3]) qc.barrier() qc.x([0,2]) qc.mcp(pi,list(range(5)),5) qc.x([0,2]) qc.barrier() qc.h(range(6)) qc.x(range(6)) qc.mcp(pi,list(range(5)),5) qc.x(range(6)) qc.h(range(6)) qc.barrier() qc.measure(range(6),range(6)) print("The quantum circuit of Grover's algorithm:") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) display(plot_histogram(counts)) print("Total counts for qubit states are:",counts) sorted_counts=sorted(counts.items(),key=lambda x:x[1], reverse=True) print("The solutions to the Hamiltonian cycle problem are:") #find_all_ones=lambda s:[x for x in range(s.find('1'), len(s)) if s[x]=='1'] find_all_ones=lambda s:[x for x in range(len(s)) if s[x]=='1'] for i in range(3): #It is konw there are (4-1)!/2=3 solutions scstr=sorted_counts[i][0] #scstr: string in sorted_counts print(scstr,end=' (') reverse_scstr=scstr[::-1] #reverse scstr for LSB at the right all_ones=find_all_ones(reverse_scstr) for one in all_ones[0:-1]: print('e'+str(one)+'->',end='') print('e'+str(all_ones[-1])+')')
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第六章原始程式碼 # %% #program 6.1a Define classical oracle f1 for unstructured search def f1(x): if x=='01': return '1' else: return '0' print(f1('00'),f1('01'),f1('10'),f1('11')) # %% #program 6.1b Define classical oracle f2 for unstructured search def f2(x): if x=='001': return '1' else: return '0' print(f2('000'),f2('001'),f2('010'),f2('011'),f2('100'),f2('101'),f2('110'),f2('111')) # %% #program 6.1c Define classical oracle f3 for unstructured search def f3(x): if x=='101': return '1' else: return '0' print(f3('000'),f3('001'),f3('010'),f3('011'),f3('100'),f3('101'),f3('110'),f3('111')) # %% #Program 6.1d Solve unstructured search prob. with classical code import itertools def unstructured_search(f,n): iter = itertools.product([0,1], repeat=n) lst = [''.join(map(str, item)) for item in iter] for s in lst: if f(s)=='1': return s print(unstructured_search(f1,2)) print(unstructured_search(f2,3)) print(unstructured_search(f3,3)) # %% #Program 6.2 Define quantum oracle for input solution='00' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x([0,1]) qc.cz(0,1) qc.x([0,1]) print("The quantum circuit of phase oracle for input solution='00':") qc.draw('mpl') # %% #Program 6.3 Define quantum oracle for input solution='01' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x(1) qc.cz(0,1) qc.x(1) print("The quantum circuit of phase oracle for input solution='01':") qc.draw('mpl') # %% #Program 6.4 Define quantum oracle for input solution='10' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x(0) qc.cz(1,0) qc.x(0) print("The quantum circuit of phase oracle for input solution='10':") qc.draw('mpl') # %% #Program 6.5 Define quantum oracle for input solution='11' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.cz(1,0) print("The quantum circuit of phase oracle for input solution='11':") qc.draw('mpl') # %% #Program 6.6 Grover alg. with oracle for input solution='10' from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(2,2) qc.h([0,1]) qc.barrier() qc.x(0) qc.cz(1,0) qc.x(0) qc.barrier() qc.h([0,1]) qc.x([0,1]) qc.cz(0,1) qc.x([0,1]) qc.h([0,1]) qc.barrier() qc.measure([0,1],[0,1]) print("The quantum circuit of Grover's algorithm for input solution='10':") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) display(plot_histogram(counts)) # %% #Program 6.7 Grover alg. with oracle for input solution='101' from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi qc = QuantumCircuit(3,3) qc.h([0,1,2]) qc.barrier() for repeat in range(2): qc.x(1) qc.mcp(pi,[0,1],2) qc.x(1) qc.barrier() qc.h([0,1,2]) qc.x([0,1,2]) qc.mcp(pi,[0,1],2) qc.x([0,1,2]) qc.h([0,1,2]) qc.barrier() qc.measure([0,1,2],[0,1,2]) print("The quantum circuit of Grover's algorithm for input solution='101':") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) display(plot_histogram(counts)) # %% #Program 6.8 Solve Hamiltonian cycle prob. for clique-4 with Grover alg. from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi qc = QuantumCircuit(6,6) qc.h(range(6)) qc.barrier() for repeat in range(3): qc.x([4,5]) qc.mcp(pi,list(range(5)),5) qc.x([4,5]) qc.barrier() qc.x([1,3]) qc.mcp(pi,list(range(5)),5) qc.x([1,3]) qc.barrier() qc.x([0,2]) qc.mcp(pi,list(range(5)),5) qc.x([0,2]) qc.barrier() qc.h(range(6)) qc.x(range(6)) qc.mcp(pi,list(range(5)),5) qc.x(range(6)) qc.h(range(6)) qc.barrier() qc.measure(range(6),range(6)) print("The quantum circuit of Grover's algorithm:") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) display(plot_histogram(counts)) print("Total counts for qubit states are:",counts) sorted_counts=sorted(counts.items(),key=lambda x:x[1], reverse=True) print("The solutions to the Hamiltonian cycle problem are:") #find_all_ones=lambda s:[x for x in range(s.find('1'), len(s)) if s[x]=='1'] find_all_ones=lambda s:[x for x in range(len(s)) if s[x]=='1'] for i in range(3): #It is konw there are (4-1)!/2=3 solutions scstr=sorted_counts[i][0] #scstr: string in sorted_counts print(scstr,end=' (') reverse_scstr=scstr[::-1] #reverse scstr for LSB at the right all_ones=find_all_ones(reverse_scstr) for one in all_ones[0:-1]: print('e'+str(one)+'->',end='') print('e'+str(all_ones[-1])+')')
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 7.1 Show Bloch sphere for computational basis and Fourier basis from qiskit import QuantumRegister, QuantumCircuit from qiskit.quantum_info import Statevector print('='*60,'\nBelow are computational bases:') cb = QuantumRegister(2,'computational_basis') qc1 = QuantumCircuit(cb) qc1.x(1) display(qc1.draw('mpl')) state1 = Statevector.from_instruction(qc1) display(state1.draw('bloch')) print('='*60,'\nBelow are Fourier bases:') fb = QuantumRegister(2,'fourier_basis') qc2 = QuantumCircuit(fb) qc2.x(1) qc2.h([0,1]) display(qc2.draw('mpl')) state2 = Statevector.from_instruction(qc2) display(state2.draw('bloch')) #Program 7.2 Build 2-qubit QFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi ar = QuantumRegister(2,'a') qc = QuantumCircuit(ar) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0,1) print('Below is the quantum Fourier transform (QFT) circuit:') display(qc.draw('mpl')) #Program 7.3 Apply QFT to qubit with various initial state from qiskit import QuantumRegister, QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import array_to_latex from math import pi two_bits = ['00','01','10','11'] for bits in two_bits: ar = QuantumRegister(2,'a') qc = QuantumCircuit(ar) qc.initialize(bits,ar) state1 = Statevector.from_instruction(qc) print('='*75,'\nBelow is for qubits: q0 =',bits[0],'; q1 =',bits[1]) display(array_to_latex(state1, prefix='\\text{Statevector before QFT: }')) display(state1.draw('bloch')) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0,1) state2 = Statevector.from_instruction(qc) #print('Below is the state after QFT') display(array_to_latex(state2, prefix='\\text{Statevector after QFT: }')) display(state2.draw('bloch')) #Program 7.4 Define funciton to build n-qubit QFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi def qft(n): ar = QuantumRegister(n,'a') qc = QuantumCircuit(ar) for hbit in range(n-1,-1,-1): qc.h(hbit) for cbit in range(hbit): qc.cp(pi/2**(hbit-cbit), cbit, hbit) for bit in range(n//2): qc.swap(bit,n-bit-1) return qc for i in range(1,5): print('Below is the QFT circuit of',i,'qubit(s):') display(qft(i).draw('mpl')) #Program 7.5 Define function to build n-qubit IQFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi def iqft(n): br = QuantumRegister(n,'b') qc = QuantumCircuit(br) for sbit in range(n//2): #sbit: for swap qubit qc.swap(sbit,n-sbit-1) for hbit in range(0,n,1): #hbit: for h-gate qubit for cbit in range(hbit-1,-1,-1): #cbit: for count qubit qc.cp(-pi/2**(hbit-cbit), cbit, hbit) qc.h(hbit) # qc.name = "IQFT" return qc for i in range(1,5): print('Below is the IQFT circuit of',i,'qubit(s):') display(iqft(i).draw('mpl')) #Program 7.6 Apply QFT and then IQFT to qubit from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(4) qc.initialize('1011',range(4)) state0 = Statevector.from_instruction(qc) qc.append(qft(4).to_gate(label='QFT'),range(4)) state1 = Statevector.from_instruction(qc) qc.append(iqft(4).to_gate(label='IQFT'),range(4)) state2 = Statevector.from_instruction(qc) display(qc.draw('mpl')) print('Statevector before QFT:') display(state0.draw('bloch')) print('Statevector after QFT:') display(state1.draw('bloch')) print('Statevector after IQFT:') display(state2.draw('bloch')) #Program 7.7 Use QPE to estimate phase of S-gate from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi count_no = 2 #the number of count qubits countreg = QuantumRegister(count_no,'count') psireg = QuantumRegister(1,'psi') creg = ClassicalRegister(count_no,'c') qc = QuantumCircuit(countreg,psireg,creg) for countbit in range(count_no): qc.h(countbit) qc.x(psireg) repeat = 1 for countbit in range(count_no): for r in range(repeat): qc.cp(pi/2,countbit,psireg) repeat *= 2 qc.barrier() for sbit in range(count_no//2): #sbit: for swap qubit qc.swap(sbit,count_no-sbit-1) for hbit in range(0,count_no,1): #hbit: for h-gate qubit for cbit in range(hbit-1,-1,-1): #cbit: for count qubit qc.cp(-pi/2**(hbit-cbit), cbit, hbit) qc.h(hbit) qc.barrier() qc.measure(range(count_no),range(count_no)) display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) plot_histogram(counts) #Program 7.8 Classical Shor Algorithm from random import randint from math import gcd def period_finding(a,N): for r in range(1,N): if (a**r) % N == 1: return r def shor_alg(N): while True: a=randint(2,N-1) g=gcd(a,N) if g!=1: p=g q=N//g return p,q else: r=period_finding(a,N) if r % 2 != 0: continue elif a**(r//2) % N == -1 % N: continue else: p=gcd(a**(r//2)+1,N) if p==1 or p==N: p=gcd(a**(r//2)-1,N) q=N//p return p,q for N in [15, 21, 35, 913, 2257, 10999]: print(f'Factors of {N}: {shor_alg(N)}') #Program 7.9 Define function to build modular exponentiation quantum circuit from qiskit import QuantumRegister, QuantumCircuit def qc_mod15(a, power, show=False): assert a in [2,4,7,8,11,13], 'Invalid value of argument a:'+str(a) qrt = QuantumRegister(4,'target') U = QuantumCircuit(qrt) for i in range(power): if a in [2,13]: U.swap(0,1) U.swap(1,2) U.swap(2,3) if a in [7,8]: U.swap(2,3) U.swap(1,2) U.swap(0,1) if a in [4, 11]: U.swap(1,3) U.swap(0,2) if a in [7,11,13]: for j in range(4): U.x(j) if show: print('Below is the circuit of U of '+f'"{a}^{power} mod 15":') display(U.draw('mpl')) U = U.to_gate() U.name = f'{a}^{power} mod 15' C_U = U.control() return C_U power_arg=2 for a_arg in [2,4,7,8,11,13]: qrc = QuantumRegister(1,'control') qrt = QuantumRegister(4,'target') qc = QuantumCircuit(qrc,qrt) qc.append(qc_mod15(a_arg, power_arg, show=True),[0,1,2,3,4]) print('Below is the circuit of controlled U of '+f'"{a_arg}^{power_arg} mod 15":') display(qc.draw('mpl')) #Program 7.10: Define quantum period finding function with N=15 from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit def qpf15(count_no,a): qrc = QuantumRegister(count_no,'count') qry = QuantumRegister(4,'y') #for input of qc_mod15 gate clr = ClassicalRegister(count_no,'c') qc = QuantumCircuit(qrc, qry, clr) for cbit in range(count_no): qc.h(cbit) qc.x(qry[0]) #Set the input of qc_mod15 as |1> with y0 as LSB for cbit in range(count_no): #Add controlled-qc_mod15 gates qc.append(qc_mod15(a, 2**cbit), [cbit] + list(range(count_no, count_no+4))) qc.append(iqft(count_no).to_gate(label='IQFT'), range(count_no)) qc.measure(range(count_no), range(count_no)) return qc display(qpf15(count_no=3,a=13).draw('mpl')) #Program 7.11 Run quantum period finding function with N=15 from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from fractions import Fraction sim = AerSimulator() count_no=3 cir = qpf15(count_no=count_no,a=13) job=execute(cir, backend=sim, shots=1000) result = job.result() counts = result.get_counts(cir) display(plot_histogram(counts)) print('Total counts for qubit states are:',counts,'\n') print('%10s %10s %10s %10s %10s' % ('Binary','Decimal','Phase','Fraction','Period')) for akey in counts.keys(): dec=int(akey,base=2) phase=dec/(2**count_no) frac=Fraction(phase).limit_denominator(15) period=frac.denominator print('%10s %10d %10f %10s %10d' % (akey,dec,phase,frac,period))
https://github.com/1chooo/Quantum-Oracle
1chooo
# %% [markdown] # # 第7章原始程式碼: # %% #Program 7.1 Show Bloch sphere for computational basis and Fourier basis from qiskit import QuantumRegister, QuantumCircuit from qiskit.quantum_info import Statevector print('='*60,'\nBelow are computational bases:') cb = QuantumRegister(2,'computational_basis') qc1 = QuantumCircuit(cb) qc1.x(1) display(qc1.draw('mpl')) state1 = Statevector.from_instruction(qc1) display(state1.draw('bloch')) print('='*60,'\nBelow are Fourier bases:') fb = QuantumRegister(2,'fourier_basis') qc2 = QuantumCircuit(fb) qc2.x(1) qc2.h([0,1]) display(qc2.draw('mpl')) state2 = Statevector.from_instruction(qc2) display(state2.draw('bloch')) # %% #Program 7.2 Build 2-qubit QFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi ar = QuantumRegister(2,'a') qc = QuantumCircuit(ar) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0,1) print('Below is the quantum Fourier transform (QFT) circuit:') display(qc.draw('mpl')) # %% #Program 7.3 Apply QFT to qubit with various initial state from qiskit import QuantumRegister, QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import array_to_latex from math import pi two_bits = ['00','01','10','11'] for bits in two_bits: ar = QuantumRegister(2,'a') qc = QuantumCircuit(ar) qc.initialize(bits,ar) state1 = Statevector.from_instruction(qc) print('='*75,'\nBelow is for qubits: q0 =',bits[0],'; q1 =',bits[1]) display(array_to_latex(state1, prefix='\\text{Statevector before QFT: }')) display(state1.draw('bloch')) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0,1) state2 = Statevector.from_instruction(qc) #print('Below is the state after QFT') display(array_to_latex(state2, prefix='\\text{Statevector after QFT: }')) display(state2.draw('bloch')) # %% #Program 7.4 Define funciton to build n-qubit QFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi def qft(n): ar = QuantumRegister(n,'a') qc = QuantumCircuit(ar) for hbit in range(n-1,-1,-1): qc.h(hbit) for cbit in range(hbit): qc.cp(pi/2**(hbit-cbit), cbit, hbit) for bit in range(n//2): qc.swap(bit,n-bit-1) return qc for i in range(1,5): print('Below is the QFT circuit of',i,'qubit(s):') display(qft(i).draw('mpl')) # %% #Program 7.5 Define function to build n-qubit IQFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi def iqft(n): br = QuantumRegister(n,'b') qc = QuantumCircuit(br) for sbit in range(n//2): #sbit: for swap qubit qc.swap(sbit,n-sbit-1) for hbit in range(0,n,1): #hbit: for h-gate qubit for cbit in range(hbit-1,-1,-1): #cbit: for count qubit qc.cp(-pi/2**(hbit-cbit), cbit, hbit) qc.h(hbit) # qc.name = "IQFT" return qc for i in range(1,5): print('Below is the IQFT circuit of',i,'qubit(s):') display(iqft(i).draw('mpl')) # %% #Program 7.6 Apply QFT and then IQFT to qubit from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(4) qc.initialize('1011',range(4)) state0 = Statevector.from_instruction(qc) qc.append(qft(4).to_gate(label='QFT'),range(4)) state1 = Statevector.from_instruction(qc) qc.append(iqft(4).to_gate(label='IQFT'),range(4)) state2 = Statevector.from_instruction(qc) display(qc.draw('mpl')) print('Statevector before QFT:') display(state0.draw('bloch')) print('Statevector after QFT:') display(state1.draw('bloch')) print('Statevector after IQFT:') display(state2.draw('bloch')) # %% #Program 7.7 Use QPE to estimate phase of S-gate from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi count_no = 2 #the number of count qubits countreg = QuantumRegister(count_no,'count') psireg = QuantumRegister(1,'psi') creg = ClassicalRegister(count_no,'c') qc = QuantumCircuit(countreg,psireg,creg) for countbit in range(count_no): qc.h(countbit) qc.x(psireg) repeat = 1 for countbit in range(count_no): for r in range(repeat): qc.cp(pi/2,countbit,psireg) repeat *= 2 qc.barrier() for sbit in range(count_no//2): #sbit: for swap qubit qc.swap(sbit,count_no-sbit-1) for hbit in range(0,count_no,1): #hbit: for h-gate qubit for cbit in range(hbit-1,-1,-1): #cbit: for count qubit qc.cp(-pi/2**(hbit-cbit), cbit, hbit) qc.h(hbit) qc.barrier() qc.measure(range(count_no),range(count_no)) display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) plot_histogram(counts) # %% #Program 7.8 Classical Shor Algorithm from random import randint from math import gcd def period_finding(a,N): for r in range(1,N): if (a**r) % N == 1: return r def shor_alg(N): while True: a=randint(2,N-1) g=gcd(a,N) if g!=1: p=g q=N//g return p,q else: r=period_finding(a,N) if r % 2 != 0: continue elif a**(r//2) % N == -1 % N: continue else: p=gcd(a**(r//2)+1,N) if p==1 or p==N: p=gcd(a**(r//2)-1,N) q=N//p return p,q for N in [15, 21, 35, 913, 2257, 10999]: print(f'Factors of {N}: {shor_alg(N)}') # %% #Program 7.9 Define function to build modular exponentiation quantum circuit from qiskit import QuantumRegister, QuantumCircuit def qc_mod15(a, power, show=False): assert a in [2,4,7,8,11,13], 'Invalid value of argument a:'+str(a) qrt = QuantumRegister(4,'target') U = QuantumCircuit(qrt) for i in range(power): if a in [2,13]: U.swap(0,1) U.swap(1,2) U.swap(2,3) if a in [7,8]: U.swap(2,3) U.swap(1,2) U.swap(0,1) if a in [4, 11]: U.swap(1,3) U.swap(0,2) if a in [7,11,13]: for j in range(4): U.x(j) if show: print('Below is the circuit of U of '+f'"{a}^{power} mod 15":') display(U.draw('mpl')) U = U.to_gate() U.name = f'{a}^{power} mod 15' C_U = U.control() return C_U power_arg=2 for a_arg in [2,4,7,8,11,13]: qrc = QuantumRegister(1,'control') qrt = QuantumRegister(4,'target') qc = QuantumCircuit(qrc,qrt) qc.append(qc_mod15(a_arg, power_arg, show=True),[0,1,2,3,4]) print('Below is the circuit of controlled U of '+f'"{a_arg}^{power_arg} mod 15":') display(qc.draw('mpl')) # %% #Program 7.10: Define quantum period finding function with N=15 from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit def qpf15(count_no,a): qrc = QuantumRegister(count_no,'count') qry = QuantumRegister(4,'y') #for input of qc_mod15 gate clr = ClassicalRegister(count_no,'c') qc = QuantumCircuit(qrc, qry, clr) for cbit in range(count_no): qc.h(cbit) qc.x(qry[0]) #Set the input of qc_mod15 as |1> with y0 as LSB for cbit in range(count_no): #Add controlled-qc_mod15 gates qc.append(qc_mod15(a, 2**cbit), [cbit] + list(range(count_no, count_no+4))) qc.append(iqft(count_no).to_gate(label='IQFT'), range(count_no)) qc.measure(range(count_no), range(count_no)) return qc display(qpf15(count_no=3,a=13).draw('mpl')) # %% #Program 7.11 Run quantum period finding function with N=15 from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from fractions import Fraction sim = AerSimulator() count_no=3 cir = qpf15(count_no=count_no,a=13) job=execute(cir, backend=sim, shots=1000) result = job.result() counts = result.get_counts(cir) display(plot_histogram(counts)) print('Total counts for qubit states are:',counts,'\n') print('%10s %10s %10s %10s %10s' % ('Binary','Decimal','Phase','Fraction','Period')) for akey in counts.keys(): dec=int(akey,base=2) phase=dec/(2**count_no) frac=Fraction(phase).limit_denominator(15) period=frac.denominator print('%10s %10d %10f %10s %10d' % (akey,dec,phase,frac,period))
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister qrx = QuantumRegister(1, 'q0') qry = QuantumRegister(1, 'q1') cr = ClassicalRegister(1, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.cx(qrx, qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl") from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts) from qiskit import QuantumCircuit, IBMQ, execute from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram IBMQ.save_account('your_token') IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') qcomp = provider.get_backend('ibmq_manila') job = execute(qc, backend = qcomp, shots = 1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister qrx = QuantumRegister(1, 'q0') qry = QuantumRegister(1, 'q1') cr = ClassicalRegister(1, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.cx(qrx, qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl") from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts) from qiskit import QuantumCircuit, IBMQ, execute from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram IBMQ.save_account('your_token') IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') qcomp = provider.get_backend('ibmq_manila') job = execute(qc, backend = qcomp, shots = 1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister qrx = QuantumRegister(1, 'q0') qry = QuantumRegister(1, 'q1') cr = ClassicalRegister(1, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.i(qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl") from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts) from qiskit import QuantumCircuit, IBMQ, execute from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram IBMQ.save_account('your_token') IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') qcomp = provider.get_backend('ibmq_manila') job = execute(qc, backend = qcomp, shots = 1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister qrx = QuantumRegister(1, 'q0') qry = QuantumRegister(1, 'q1') cr = ClassicalRegister(1, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl") from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts) from qiskit import QuantumCircuit, IBMQ, execute from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram IBMQ.save_account('your_token') IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') qcomp = provider.get_backend('ibmq_manila') job = execute(qc, backend = qcomp, shots = 1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:", counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
#Below are examples of using print function print('The name of the language is',"Python") print("The radius of the circle is", 3, '\nIts area is', 3.14159*3**2) #Below are examples of using print function print('The name of the language is',"Python",end=". ") print('Its version is',"3.x",sep="....") print("The radius of the circle is", 3) print("The area of the circle is", 3.14159*3**2) r=input('Please enter the radius of the circle:') print('The radius of the circle:', r) r=input('Please enter the radius of the circle:') ri=int(r) rf=float(r) print('The radius of the circle:', ri) print("The area of the circle:", 3.14159*rf**2) a=123;b=123.456;c=False;d=123+456j;e="123";f=[1,2,3];g=(1,2,3);h={1,2,3};i={1:'x',2:'y',3:'z'} print(type(a),type(b),type(c),type(d),type(e),type(f),type(g),type(h),type(i)) a=3;b=8 print(a+b) #11 print(a-b) #-5 print(a*b) #24 print(a/b) #0.375 print(a//b) #0 print(a%b) #3 print(a**b) #6561 print(a+b//a**b) #3 print((a+b)//a**b) #0 a=3.0;b=8.0;c=8 print(a+b) #11.0 print(a-b) #-5.0 print(a*b) #24.0 print(a/b) #0.375 print(a//b) #0.0 print(a%b) #3.0 print(a**b) #6561.0 print(a+c) #11.0 print(a+b//a**b) #3.0 print((a+b)//a**b) #0.0 a=3.0;b=8.0;c=8 print(a==b) #False print(a!=b) #True print(a>b) #False print(a<b) #True print(a>=b) #False print(a<=b) #True print(not (a==b)) #True print(a==b or a!=b and a>b) #False print(a==b and a>b or a!=b) #True print(a==b and a>b or not (a!=b)) #False a=2+4j;b=3-8j print(a+b) #(5-4j) print(a-b) #(-1+12j) print(a*b) #(38-4j) print(a/b) #(-0.3561643835616438+0.3835616438356164j) print(a+b/a) #(0.7+2.6j) print((a+b)/a) #(-0.3-1.4j) print(a.real) #2.0 print(a.imag) #4.0 print(a.conjugate()) #(2-4j) print(abs(a)) #4.47213595499958 a={1,2,3};b={2,4,6} print(a|b) #{1, 2, 3, 4, 6} print(a.union(b)) #{1, 2, 3, 4, 6} print(a&b) #{2} print(a.intersection(b)) #{2} print(a-b) #{1,3} print(a.difference(b)) #{1,3} print(a^b) #{1,3,4,6} print(a.symmetric_difference(b)) #{1,3,4,6} ex = {"a":1, "b":2, "c":3, 1: "integer", 2.3: "float", 4+5j: "complex", (6,7): "tuple"} print(ex["a"],ex["b"],ex["c"],ex[1],ex[2.3],ex[4+5j],ex[(6,7)]) ex["a"]=100 print(ex["a"]) print(len(ex)) ex["d"]=4 print(ex.get("d")) del ex["d"] print(ex.get("d")) print("e" in ex) print("e" not in ex) print(ex.keys()) print(ex.values()) a=5 a+=3 #a=a+3 (a=8) a-=3 #a=a-3 (a=5) a*=3 #a=a*3 (a=15) a%=8 #a=a%8 (a=7) a//=3 #a=a//3 (a=2) a/=3 #a=a/3 (a=0.6666666666666666) a**=3 #a=a**3 (a=0.2962962962962962) print(a) score=90 if score >=60: print("PASS") score=90 if score >=60: print("PASS") else: print("FAIL") score=90 if score >=90: print("A") elif score >= 80: print("B") elif score >= 70: print("C") elif score >= 60: print("D") else: print("F") i=0 while i<5: i+=1 print(i,end="") i=0 while i<5: i+=1 print(i,end="") else: print("#") for i in [1,2,3,4,5]: print(i,end="") for i in [1,2,3,4,5]: print(i,end="") else: print("#") print(list(range(5))) #range(5)會回傳0、1、2、3、4 print(list(range(2,5))) #range(2,5)會回傳2、3、4 print(list(range(0,5,2))) #range(0,2,5)會回傳0、2、4 print(list(range(5,0,-1))) #range(5,0,-1)會回傳5、4、3、2、1 print(list(range(5,0))) #range(5,0)是一個空序列 i=0 while i<5: i+=1 if i==3: break print(i,end="") for i in range(1,6): if i==3: break print(i,end="") i=0 while i<5: i+=1 if i==3: continue print(i,end="") for i in range(1,6): if i==3: continue print(i,end="") def odd_check(n): """Check if n is odd (return True) or not (return False).""" if n%2==0: return False else: return True print(odd_check(5)) print(odd_check(10)) def test(aa,bb,cc=123,dd='abc'): return aa,bb,cc,dd print(test(1,2,3,4)) print(test(1,2,3)) print(test(1,2,dd='edf')) print(test(1,2)) def adding(*num): sum=0 for n in num: sum+=n return sum print(adding(1,2,3,4,5)) adding = lambda x,y: x+y print(adding(3,8)) #顯示11 print((lambda x,y: x+y)(3,8)) #顯示11 lista=[1,3,5,7,9] #以下將lambda函數當作map函數的參數 listb=list(map(lambda x:x+8, lista)) print(listb) class Rectangle: length=0 width=0 def __init__(self,length,width): self.length=length self.width=width def area(self): return self.length*self.width def perimeter(self): return 2*(self.length+self.width) rect1=Rectangle(3,8) rect2=Rectangle(2,4) print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter()) print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter()) class NamedRectangle(Rectangle): name='' def __init__(self,length,width,name): super().__init__(length,width) self.name=name def show_name(self): print(self.name) rect1=NamedRectangle(3,8,'rectangle1') rect2=NamedRectangle(2,4,'rectangle2') print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter()) print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter()) rect1.show_name() rect2.show_name()
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 1.1 The first quantum program from qiskit import QuantumCircuit print("Hello, Qubit!") qc = QuantumCircuit(1,1) qc.measure([0], [0]) print("This is a quantum circuit of 1 qubit and 1 bit:") qc.draw('mpl') #Program 1.2 Design a quantum circuit with 5 qubits and 3 classical bits from qiskit import QuantumCircuit print("This is a quantum circuit of 5 qubits and 2 bits:") qc = QuantumCircuit(5, 2) qc.measure([1,3], [0,1]) qc.draw('mpl') #Program 1.3 Name and label quantum bits and classical bits from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(2,'y') qrz = QuantumRegister(1,'z') cr = ClassicalRegister(4,'c') qc = QuantumCircuit(qrx,qry,qrz,cr) qc.measure([qrx[1],qrx[2]], [cr[0],cr[1]]) qc.measure([4,5], [2,3]) qc.draw('mpl') #Program 1.4 Transpile and execute quantum circuit on simulator from qiskit import QuantumCircuit, transpile, execute from qiskit.providers.aer import AerSimulator sim = AerSimulator() qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) cqc = transpile(qc, sim) job=execute(cqc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) #Program 1.5 Execute quantum circuit (program) on simulator from qiskit import QuantumCircuit, execute from qiskit.providers.aer import AerSimulator sim = AerSimulator() qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) #Program 1.6 Execute quantum circuit (program) on least busy quantum computer from qiskit import QuantumCircuit, IBMQ, execute from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) IBMQ.save_account('your_token',overwrite=True) IBMQ.load_account() provider=IBMQ.get_provider(group='open') print(provider) qcomp = least_busy(provider.backends(simulator=False)) print("The least busy quantum computer is:",qcomp) job=execute(qc, backend=qcomp, shots=1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) #Program 1.7 Execute quantum circuit (program) on proper quantum computer from qiskit import QuantumCircuit, IBMQ, execute from qiskit.tools.monitor import job_monitor qc = QuantumCircuit(1, 1) qc.measure([0], [0]) print(qc) #IBMQ.save_account('......',overwrite=True) #IBMQ.load_account() provider = IBMQ.get_provider(group='open') qcomp = provider.get_backend('ibmq_lima') job=execute(qc, backend=qcomp, shots=1000) job_monitor(job) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 2.1 Initialize qubit state from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) qc.draw('mpl') #Program 2.2 Initialize qubit state and show Bloch sphere from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector import math qc = QuantumCircuit(4) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],3) state = Statevector.from_instruction(qc) display(qc.draw('mpl')) display(state.draw('bloch')) #Program 2.3 Show Bloch sphere from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector state = Statevector.from_instruction(qc) plot_bloch_multivector(state) #Program 2.4 Measure qubit state from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(4,4) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([0,1],2) qc.initialize([0,1],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 2.5 Measure qubit state again from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(4,4) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],0) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],1) qc.initialize([1/math.sqrt(2), 1j/math.sqrt(2)],2) qc.initialize([1/math.sqrt(2), -1j/math.sqrt(2)],3) qc.measure([0,1,2,3],[0,1,2,3]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts)
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 3.1a Apply X-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.x(1) qc.draw('mpl') #Program 3.1b Show Bloch sphere of qubit w/wo X-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.2a Measure state of qubit w/o X-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(1,1) qc.initialize([math.sqrt(1/3), math.sqrt(2/3)],0) qc.measure([0],[0]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.2b Measure state of qubit w/ X-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram import math qc = QuantumCircuit(1,1) qc.initialize([math.sqrt(1/3), math.sqrt(2/3)],0) qc.x(0) qc.measure([0],[0]) print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.3a Apply X-gate and H-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.initialize([1/math.sqrt(2), 1/math.sqrt(2)],0) qc.initialize([1/math.sqrt(2), -1/math.sqrt(2)],1) qc.h(2) qc.x(3) qc.h(3) qc.draw('mpl') #Program 3.3b Show Bloch sphere of qubit w/ X-gate and H-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.4 Measure state of qubit w/ H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(1,1) qc.h(0) qc.measure([0],[0]) print("This is |+>:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.5 Measure state of qubit w/ X-gate and H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(1,1) qc.x(0) qc.h(0) qc.measure([0],[0]) print("This is |->:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.6 Measure state of qubit w/ H-gate from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(2,2) qc.h(0) qc.h(1) qc.measure([0,1],[0,1]) print("This is |++>:") print(qc) sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 3.7a Apply X-, Y-, and Z-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.x(0) qc.y(1) qc.z(2) qc.draw('mpl') #Program 3.7b Show Bloch sphere of qubit w/ X-, Y-, and Z-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.8a Apply RX-, RY-, and RZ-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(3) qc.rx(math.pi/2, 0) qc.ry(math.pi/2, 1) qc.rz(math.pi/2, 2) qc.draw('mpl') #Program 3.8b Show Bloch sphere of qubit w/ RX-, RY-, and RZ-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.9a Apply RX-, P-, S-, T-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.rx(math.pi/2, [0,1,2,3]) qc.p(math.pi/8, 1) qc.s(2) qc.t(3) qc.draw('mpl') #Program 3.9b Show Bloch sphere of qubit w/ RX-, P-, S-, and T-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch') #Program 3.10a Apply RX-, I-, and U-gate to qubit from qiskit import QuantumCircuit import math qc = QuantumCircuit(4) qc.rx(math.pi/2, [0,1,2,3]) qc.i(1) qc.u(math.pi/2, 0, math.pi, 2) qc.u(0,0, math.pi/4, 3) qc.draw('mpl') #Program 3.10b Show Bloch sphere of qubit w/ RX-, I-, and U-gate from qiskit.quantum_info import Statevector state = Statevector.from_instruction(qc) state.draw('bloch')
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 4.1 Apply CX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(0,1) qc.draw('mpl') #Program 4.2 Show unitary matrix of CX-gate (MSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex qc = QuantumCircuit(2) qc.cx(0,1) display(qc.draw('mpl')) sim = Aer.get_backend('aer_simulator') qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (MSB as target bit) = }")) #Program 4.3 Show unitary matrix of CX-gate (LSB as target bit) from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw('mpl')) qc.save_unitary() unitary = sim.run(qc).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CNOT (LSB as target bit) = }")) #Program 4.4a Appliy CX-gate to qubit from qiskit import QuantumCircuit,execute from qiskit.quantum_info import Statevector qc = QuantumCircuit(8,8) sv = Statevector.from_label('11011000') qc.initialize(sv,range(8)) qc.cx(0,1) qc.cx(2,3) qc.cx(4,5) qc.cx(6,7) qc.measure(range(8),range(8)) qc.draw('mpl') #Program 4.4b Measure state of qubit w/ CX-gate from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.5 Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) print("Below is the Bell state (top: q0 for target; bottom: q1 for control):") display(qc.draw('mpl')) print("Below is the Bell state (top: q1 for control; bottom: q0 for traget):") display(qc.draw('mpl',reverse_bits=True)) #Program 4.6a Build Bell state via H- and CX-gate from qiskit import QuantumCircuit qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') #Program 4.6b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.7a Iinitialize qubit and build Bell state via H- and CX-gate from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(2,2) sv = Statevector.from_label('10') qc.initialize(sv,range(2)) qc.h(0) qc.cx(0,1) qc.measure(range(2),range(2)) qc.draw('mpl') #Program 4.7b Measure state of qubit in Bell state from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 4.8 Show quantum circuit for quantum teleportation from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qs = QuantumRegister(1,'qs') qa = QuantumRegister(1,'qa') qb = QuantumRegister(1,'qb') cr = ClassicalRegister(2,'c') qc = QuantumCircuit(qs,qa,qb,cr) qc.h(qa) qc.cx(qa,qb) qc.barrier() qc.cx(qs,qa) qc.h(qs) qc.measure(qs,0) qc.measure(qa,1) qc.barrier() qc.x(qb) qc.z(qb) qc.draw('mpl') #Program 4.9 Apply CX-, CY-, CZ-, CH-, and SWAP-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(12) qc.cx(0,1) qc.cy(2,3) qc.cz(4,5) qc.ch(6,7) qc.swap(8,9) qc.cx(10,11) qc.cx(11,10) qc.cx(10,11) qc.draw('mpl') #Program 4.10 Apply CCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.ccx(0,1,2) qc.draw('mpl') #Program 4.11 Show unitary matrix of CCX-gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.ccx(0,1,2) print("="*70,"\nBelow is quantum circuit of CCNOT gate (MSB as target bit):") display(qc1.draw('mpl')) qc1.save_unitary() unitary = sim.run(qc1).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (MSB as target bit) = }\n")) qc2 = QuantumCircuit(3) qc2.ccx(2,1,0) print("="*70,"\nBelow is quantum circuit of CCNOT gate (LSB as target bit):") display(qc2.draw('mpl')) qc2.save_unitary() unitary = sim.run(qc2).result().get_unitary() display(array_to_latex(unitary, prefix="\\text{CCNOT (LSB as target bit) = }\n")) #Program 4.12 Apply CCCCX-gate to qubit from qiskit import QuantumCircuit qc = QuantumCircuit(7) qc.ccx(0,1,4) qc.ccx(2,3,5) qc.ccx(4,5,6) qc.draw('mpl')
https://github.com/1chooo/Quantum-Oracle
1chooo
#program 5.1a Define classical oracle f1 and test it def f1(x): return '1' print(f1('000'),f1('001'),f1('010'),f1('011'),f1('100'),f1('101'),f1('110'),f1('111')) #program 5.1b Define classical oracle f2 and test it def f2(x): if x[0]=='0': return '0' else: return '1' print(f2('000'),f2('001'),f2('010'),f2('011'),f2('100'),f2('101'),f2('110'),f2('111')) #Program 5.1c Solve constant-balanced function decision (CBFD) prob. with classical code import itertools def cbfd_test(f,n): count0=count1=0 iter = itertools.product([0,1], repeat=n) lst = [''.join(map(str, item)) for item in iter] for s in lst: if f(s)=='0': count0+=1 else: count1+=1 if count0>0 and count1>0: return True #for balanced function elif count0>2**(n-1) or count1>2**(n-1): return False #for constant function print(cbfd_test(f1,3)) print(cdfd_test(f2,3)) #Program 5.2 Define a quantum oracle from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') qc = QuantumCircuit(qrx,qry) qc.x(qry) qc.draw('mpl') #Program 5.3a Build quantum circuit of Deutsch-Jozsa alg. from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') cr = ClassicalRegister(3,'c') qc = QuantumCircuit(qrx,qry,cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) qc.draw('mpl') #Program 5.3b Run Deutsch-Jozsa alg. with simulator from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 5.4 Define another quantum oracle from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') qc = QuantumCircuit(qrx,qry) qc.cx(qrx[0],qry) qc.draw('mpl') #Program 5.5a Build quantum circuit of Deutsch-Jozsa alg. from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit qrx = QuantumRegister(3,'x') qry = QuantumRegister(1,'y') cr = ClassicalRegister(3,'c') qc = QuantumCircuit(qrx,qry,cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.cx(qrx[0],qry) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) qc.draw('mpl') #Program 5.5b Run Deutsch-Jozsa alg. with simulator from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim=AerSimulator() job=execute(qc, backend=sim, shots=1000) result=job.result() counts=result.get_counts(qc) print("Counts:",counts) plot_histogram(counts) #Program 5.6 Show phase kickback of CNOT gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex, plot_bloch_multivector sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(2) qc1.h(0) qc1.x(1) qc1.h(1) qc1.save_statevector() state1 = sim.run(qc1).result().get_statevector() display(qc1.draw('mpl')) display(array_to_latex(state1, prefix='\\text{Statevector before CNOT gate: }')) display(plot_bloch_multivector(state1)) print('='*60) qc2 = QuantumCircuit(2) qc2.h(0) qc2.x(1) qc2.h(1) qc2.cx(0,1) qc2.save_statevector() state2 = sim.run(qc2).result().get_statevector() display(qc2.draw('mpl')) display(array_to_latex(state2, prefix='\\text{Statevector after CNOT gate: }')) display(plot_bloch_multivector(state2)) # Program 5.7 Show phase kickback of CCNOT gate from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex, plot_bloch_multivector sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(3) qc1.h([0,1]) qc1.x(2) qc1.h(2) qc1.save_statevector() state1 = sim.run(qc1).result().get_statevector() display(qc1.draw('mpl')) display(array_to_latex(state1, prefix="\\text{Statevector before CCNOT gate: }")) display(plot_bloch_multivector(state1)) print('='*80) qc2 = QuantumCircuit(3) qc2.h([0,1]) qc2.x(2) qc2.h(2) qc2.ccx(0,1,2) qc2.save_statevector() state2 = sim.run(qc2).result().get_statevector() display(qc2.draw('mpl')) display(array_to_latex(state2, prefix="\\text{Statevector before CCNOT gate: }")) display(plot_bloch_multivector(state2)) #Program 5.8 Show circuit containing CZ gate and CZ gate's unitary matrix from qiskit import QuantumCircuit, Aer from qiskit.visualization import array_to_latex sim = Aer.get_backend('aer_simulator') qc1 = QuantumCircuit(2) qc1.cz(0,1) qc1.save_unitary() unitary1 = sim.run(qc1).result().get_unitary() print("CZ Gate (q0 as control bit, q1 as target bit):") display(qc1.draw('mpl')) display(array_to_latex(unitary1, prefix="\\text{Unitray Matrix of CZ Gate (MSB as Target): }")) print('='*60) qc2 = QuantumCircuit(2) qc2.cz(1,0) qc2.save_unitary() unitary2 = sim.run(qc2).result().get_unitary() print("CZ Gate (q1 as control bit, q0 as target bit):") display(qc2.draw('mpl')) display(array_to_latex(unitary2, prefix="\\text{Unitray Matrix of CZ Gate (LSB as Target): }")) #Program 5.9 Show quantum circuit with CZ, CP, CS, CT gates from qiskit import QuantumCircuit from math import pi qc = QuantumCircuit(8) qc.cz(0,1) qc.cp(pi,2,3) qc.cp(pi/2,4,5) qc.cp(pi/4,6,7) display(qc.draw('mpl'))
https://github.com/1chooo/Quantum-Oracle
1chooo
#program 6.1a Define classical oracle f1 for unstructured search def f1(x): if x=='01': return '1' else: return '0' print(f1('00'),f1('01'),f1('10'),f1('11')) #program 6.1b Define classical oracle f2 for unstructured search def f2(x): if x=='001': return '1' else: return '0' print(f2('000'),f2('001'),f2('010'),f2('011'),f2('100'),f2('101'),f2('110'),f2('111')) #program 6.1c Define classical oracle f3 for unstructured search def f3(x): if x=='101': return '1' else: return '0' print(f3('000'),f3('001'),f3('010'),f3('011'),f3('100'),f3('101'),f3('110'),f3('111')) #Program 6.1d Solve unstructured search prob. with classical code import itertools def unstructured_search(f,n): iter = itertools.product([0,1], repeat=n) lst = [''.join(map(str, item)) for item in iter] for s in lst: if f(s)=='1': return s print(unstructured_search(f1,2)) print(unstructured_search(f2,3)) print(unstructured_search(f3,3)) #Program 6.2 Define quantum oracle for input solution='00' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x([0,1]) qc.cz(0,1) qc.x([0,1]) print("The quantum circuit of phase oracle for input solution='00':") qc.draw('mpl') #Program 6.3 Define quantum oracle for input solution='01' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x(1) qc.cz(0,1) qc.x(1) print("The quantum circuit of phase oracle for input solution='01':") qc.draw('mpl') #Program 6.4 Define quantum oracle for input solution='10' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.x(0) qc.cz(1,0) qc.x(0) print("The quantum circuit of phase oracle for input solution='10':") qc.draw('mpl') #Program 6.5 Define quantum oracle for input solution='11' from qiskit import QuantumRegister,QuantumCircuit qrx = QuantumRegister(2,'x') qc = QuantumCircuit(qrx) qc.cz(1,0) print("The quantum circuit of phase oracle for input solution='11':") qc.draw('mpl') #Program 6.6 Grover alg. with oracle for input solution='10' from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram qc = QuantumCircuit(2,2) qc.h([0,1]) qc.barrier() qc.x(0) qc.cz(1,0) qc.x(0) qc.barrier() qc.h([0,1]) qc.x([0,1]) qc.cz(0,1) qc.x([0,1]) qc.h([0,1]) qc.barrier() qc.measure([0,1],[0,1]) print("The quantum circuit of Grover's algorithm for input solution='10':") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) display(plot_histogram(counts)) #Program 6.7 Grover alg. with oracle for input solution='101' from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi qc = QuantumCircuit(3,3) qc.h([0,1,2]) qc.barrier() for repeat in range(2): qc.x(1) qc.mcp(pi,[0,1],2) qc.x(1) qc.barrier() qc.h([0,1,2]) qc.x([0,1,2]) qc.mcp(pi,[0,1],2) qc.x([0,1,2]) qc.h([0,1,2]) qc.barrier() qc.measure([0,1,2],[0,1,2]) print("The quantum circuit of Grover's algorithm for input solution='101':") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) display(plot_histogram(counts)) #Program 6.8 Solve Hamiltonian cycle prob. for clique-4 with Grover alg. from qiskit import QuantumCircuit,execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi qc = QuantumCircuit(6,6) qc.h(range(6)) qc.barrier() for repeat in range(3): qc.x([4,5]) qc.mcp(pi,list(range(5)),5) qc.x([4,5]) qc.barrier() qc.x([1,3]) qc.mcp(pi,list(range(5)),5) qc.x([1,3]) qc.barrier() qc.x([0,2]) qc.mcp(pi,list(range(5)),5) qc.x([0,2]) qc.barrier() qc.h(range(6)) qc.x(range(6)) qc.mcp(pi,list(range(5)),5) qc.x(range(6)) qc.h(range(6)) qc.barrier() qc.measure(range(6),range(6)) print("The quantum circuit of Grover's algorithm:") display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) display(plot_histogram(counts)) print("Total counts for qubit states are:",counts) sorted_counts=sorted(counts.items(),key=lambda x:x[1], reverse=True) print("The solutions to the Hamiltonian cycle problem are:") #find_all_ones=lambda s:[x for x in range(s.find('1'), len(s)) if s[x]=='1'] find_all_ones=lambda s:[x for x in range(len(s)) if s[x]=='1'] for i in range(3): #It is konw there are (4-1)!/2=3 solutions scstr=sorted_counts[i][0] #scstr: string in sorted_counts print(scstr,end=' (') reverse_scstr=scstr[::-1] #reverse scstr for LSB at the right all_ones=find_all_ones(reverse_scstr) for one in all_ones[0:-1]: print('e'+str(one)+'->',end='') print('e'+str(all_ones[-1])+')')
https://github.com/1chooo/Quantum-Oracle
1chooo
#Program 7.1 Show Bloch sphere for computational basis and Fourier basis from qiskit import QuantumRegister, QuantumCircuit from qiskit.quantum_info import Statevector print('='*60,'\nBelow are computational bases:') cb = QuantumRegister(2,'computational_basis') qc1 = QuantumCircuit(cb) qc1.x(1) display(qc1.draw('mpl')) state1 = Statevector.from_instruction(qc1) display(state1.draw('bloch')) print('='*60,'\nBelow are Fourier bases:') fb = QuantumRegister(2,'fourier_basis') qc2 = QuantumCircuit(fb) qc2.x(1) qc2.h([0,1]) display(qc2.draw('mpl')) state2 = Statevector.from_instruction(qc2) display(state2.draw('bloch')) #Program 7.2 Build 2-qubit QFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi ar = QuantumRegister(2,'a') qc = QuantumCircuit(ar) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0,1) print('Below is the quantum Fourier transform (QFT) circuit:') display(qc.draw('mpl')) #Program 7.3 Apply QFT to qubit with various initial state from qiskit import QuantumRegister, QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import array_to_latex from math import pi two_bits = ['00','01','10','11'] for bits in two_bits: ar = QuantumRegister(2,'a') qc = QuantumCircuit(ar) qc.initialize(bits,ar) state1 = Statevector.from_instruction(qc) print('='*75,'\nBelow is for qubits: q0 =',bits[0],'; q1 =',bits[1]) display(array_to_latex(state1, prefix='\\text{Statevector before QFT: }')) display(state1.draw('bloch')) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0,1) state2 = Statevector.from_instruction(qc) #print('Below is the state after QFT') display(array_to_latex(state2, prefix='\\text{Statevector after QFT: }')) display(state2.draw('bloch')) #Program 7.4 Define funciton to build n-qubit QFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi def qft(n): ar = QuantumRegister(n,'a') qc = QuantumCircuit(ar) for hbit in range(n-1,-1,-1): qc.h(hbit) for cbit in range(hbit): qc.cp(pi/2**(hbit-cbit), cbit, hbit) for bit in range(n//2): qc.swap(bit,n-bit-1) return qc for i in range(1,5): print('Below is the QFT circuit of',i,'qubit(s):') display(qft(i).draw('mpl')) #Program 7.5 Define function to build n-qubit IQFT quantum circuit from qiskit import QuantumRegister, QuantumCircuit from math import pi def iqft(n): br = QuantumRegister(n,'b') qc = QuantumCircuit(br) for sbit in range(n//2): #sbit: for swap qubit qc.swap(sbit,n-sbit-1) for hbit in range(0,n,1): #hbit: for h-gate qubit for cbit in range(hbit-1,-1,-1): #cbit: for count qubit qc.cp(-pi/2**(hbit-cbit), cbit, hbit) qc.h(hbit) # qc.name = "IQFT" return qc for i in range(1,5): print('Below is the IQFT circuit of',i,'qubit(s):') display(iqft(i).draw('mpl')) #Program 7.6 Apply QFT and then IQFT to qubit from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector qc = QuantumCircuit(4) qc.initialize('1011',range(4)) state0 = Statevector.from_instruction(qc) qc.append(qft(4).to_gate(label='QFT'),range(4)) state1 = Statevector.from_instruction(qc) qc.append(iqft(4).to_gate(label='IQFT'),range(4)) state2 = Statevector.from_instruction(qc) display(qc.draw('mpl')) print('Statevector before QFT:') display(state0.draw('bloch')) print('Statevector after QFT:') display(state1.draw('bloch')) print('Statevector after IQFT:') display(state2.draw('bloch')) #Program 7.7 Use QPE to estimate phase of S-gate from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from math import pi count_no = 2 #the number of count qubits countreg = QuantumRegister(count_no,'count') psireg = QuantumRegister(1,'psi') creg = ClassicalRegister(count_no,'c') qc = QuantumCircuit(countreg,psireg,creg) for countbit in range(count_no): qc.h(countbit) qc.x(psireg) repeat = 1 for countbit in range(count_no): for r in range(repeat): qc.cp(pi/2,countbit,psireg) repeat *= 2 qc.barrier() for sbit in range(count_no//2): #sbit: for swap qubit qc.swap(sbit,count_no-sbit-1) for hbit in range(0,count_no,1): #hbit: for h-gate qubit for cbit in range(hbit-1,-1,-1): #cbit: for count qubit qc.cp(-pi/2**(hbit-cbit), cbit, hbit) qc.h(hbit) qc.barrier() qc.measure(range(count_no),range(count_no)) display(qc.draw('mpl')) sim = AerSimulator() job=execute(qc, backend=sim, shots=1000) result = job.result() counts = result.get_counts(qc) print("Total counts for qubit states are:",counts) plot_histogram(counts) #Program 7.8 Classical Shor Algorithm from random import randint from math import gcd def period_finding(a,N): for r in range(1,N): if (a**r) % N == 1: return r def shor_alg(N): while True: a=randint(2,N-1) g=gcd(a,N) if g!=1: p=g q=N//g return p,q else: r=period_finding(a,N) if r % 2 != 0: continue elif a**(r//2) % N == -1 % N: continue else: p=gcd(a**(r//2)+1,N) if p==1 or p==N: p=gcd(a**(r//2)-1,N) q=N//p return p,q for N in [15, 21, 35, 913, 2257, 10999]: print(f'Factors of {N}: {shor_alg(N)}') #Program 7.9 Define function to build modular exponentiation quantum circuit from qiskit import QuantumRegister, QuantumCircuit def qc_mod15(a, power, show=False): assert a in [2,4,7,8,11,13], 'Invalid value of argument a:'+str(a) qrt = QuantumRegister(4,'target') U = QuantumCircuit(qrt) for i in range(power): if a in [2,13]: U.swap(0,1) U.swap(1,2) U.swap(2,3) if a in [7,8]: U.swap(2,3) U.swap(1,2) U.swap(0,1) if a in [4, 11]: U.swap(1,3) U.swap(0,2) if a in [7,11,13]: for j in range(4): U.x(j) if show: print('Below is the circuit of U of '+f'"{a}^{power} mod 15":') display(U.draw('mpl')) U = U.to_gate() U.name = f'{a}^{power} mod 15' C_U = U.control() return C_U power_arg=2 for a_arg in [2,4,7,8,11,13]: qrc = QuantumRegister(1,'control') qrt = QuantumRegister(4,'target') qc = QuantumCircuit(qrc,qrt) qc.append(qc_mod15(a_arg, power_arg, show=True),[0,1,2,3,4]) print('Below is the circuit of controlled U of '+f'"{a_arg}^{power_arg} mod 15":') display(qc.draw('mpl')) #Program 7.10: Define quantum period finding function with N=15 from qiskit import QuantumRegister,ClassicalRegister,QuantumCircuit def qpf15(count_no,a): qrc = QuantumRegister(count_no,'count') qry = QuantumRegister(4,'y') #for input of qc_mod15 gate clr = ClassicalRegister(count_no,'c') qc = QuantumCircuit(qrc, qry, clr) for cbit in range(count_no): qc.h(cbit) qc.x(qry[0]) #Set the input of qc_mod15 as |1> with y0 as LSB for cbit in range(count_no): #Add controlled-qc_mod15 gates qc.append(qc_mod15(a, 2**cbit), [cbit] + list(range(count_no, count_no+4))) qc.append(iqft(count_no).to_gate(label='IQFT'), range(count_no)) qc.measure(range(count_no), range(count_no)) return qc display(qpf15(count_no=3,a=13).draw('mpl')) #Program 7.11 Run quantum period finding function with N=15 from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram from fractions import Fraction sim = AerSimulator() count_no=3 cir = qpf15(count_no=count_no,a=13) job=execute(cir, backend=sim, shots=1000) result = job.result() counts = result.get_counts(cir) display(plot_histogram(counts)) print('Total counts for qubit states are:',counts,'\n') print('%10s %10s %10s %10s %10s' % ('Binary','Decimal','Phase','Fraction','Period')) for akey in counts.keys(): dec=int(akey,base=2) phase=dec/(2**count_no) frac=Fraction(phase).limit_denominator(15) period=frac.denominator print('%10s %10d %10f %10s %10d' % (akey,dec,phase,frac,period))
https://github.com/shubz2900/Grover-s-Search-Algo-using-Qiskit
shubz2900
import qiskit qiskit.__qiskit_version__ import numpy as np import matplotlib.pyplot as plt # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.visualization import plot_histogram q = QuantumRegister(6) qc = QuantumCircuit(q) qc.x(q[2]) qc.cx(q[1], q[5]) qc.cx(q[2], q[5]) qc.cx(q[3], q[5]) qc.ccx(q[1], q[2], q[4]) qc.ccx(q[3], q[4], q[5]) qc.ccx(q[1], q[2], q[4]) qc.x(q[2]) qc.draw(output='mpl') def black_box_u_f(circuit, f_in, f_out, aux, n, exactly_1_3_sat_formula): """Circuit that computes the black-box function from f_in to f_out. Create a circuit that verifies whether a given exactly-1 3-SAT formula is satisfied by the input. The exactly-1 version requires exactly one literal out of every clause to be satisfied. """ num_clauses = len(exactly_1_3_sat_formula) for (k, clause) in enumerate(exactly_1_3_sat_formula): # This loop ensures aux[k] is 1 if an odd number of literals # are true for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) # Flip aux[k] if all literals are true, using auxiliary qubit # (ancilla) aux[num_clauses] circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) # Flip back to reverse state of negative literals and ancilla circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # The formula is satisfied if and only if all auxiliary qubits # except aux[num_clauses] are 1 if (num_clauses == 1): circuit.cx(aux[0], f_out[0]) elif (num_clauses == 2): circuit.ccx(aux[0], aux[1], f_out[0]) elif (num_clauses == 3): circuit.ccx(aux[0], aux[1], aux[num_clauses]) circuit.ccx(aux[2], aux[num_clauses], f_out[0]) circuit.ccx(aux[0], aux[1], aux[num_clauses]) else: raise ValueError('We only allow at most 3 clauses') # Flip back any auxiliary qubits to make sure state is consistent # for future executions of this routine; same loop as above. for (k, clause) in enumerate(exactly_1_3_sat_formula): for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # -- end function def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 ' + 'controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) # -- end function def inversion_about_average(circuit, f_in, n): """Apply inversion about the average step of Grover's algorithm.""" # Hadamards everywhere for j in range(n): circuit.h(f_in[j]) # D matrix: flips the sign of the state |000> only for j in range(n): circuit.x(f_in[j]) n_controlled_Z(circuit, [f_in[j] for j in range(n-1)], f_in[n-1]) for j in range(n): circuit.x(f_in[j]) # Hadamards everywhere again for j in range(n): circuit.h(f_in[j]) # -- end function qr = QuantumRegister(3) qInvAvg = QuantumCircuit(qr) inversion_about_average(qInvAvg, qr, 3) qInvAvg.draw(output='mpl') """ Grover search implemented in Qiskit. This module contains the code necessary to run Grover search on 3 qubits, both with a simulator and with a real quantum computing device. This code is the companion for the paper "An introduction to quantum computing, without the physics", Giacomo Nannicini, https://arxiv.org/abs/1708.03684. """ def input_state(circuit, f_in, f_out, n): """(n+1)-qubit input state for Grover search.""" for j in range(n): circuit.h(f_in[j]) circuit.x(f_out) circuit.h(f_out) # -- end function # Make a quantum program for the n-bit Grover search. n = 3 # Exactly-1 3-SAT formula to be satisfied, in conjunctive # normal form. We represent literals with integers, positive or # negative, to indicate a Boolean variable or its negation. exactly_1_3_sat_formula = [[1, 2, -3], [-1, -2, -3], [-1, 2, 3]] # Define three quantum registers: 'f_in' is the search space (input # to the function f), 'f_out' is bit used for the output of function # f, aux are the auxiliary bits used by f to perform its # computation. f_in = QuantumRegister(n) f_out = QuantumRegister(1) aux = QuantumRegister(len(exactly_1_3_sat_formula) + 1) # Define classical register for algorithm result ans = ClassicalRegister(n) # Define quantum circuit with above registers grover = QuantumCircuit() grover.add_register(f_in) grover.add_register(f_out) grover.add_register(aux) grover.add_register(ans) input_state(grover, f_in, f_out, n) T = 2 for t in range(T): # Apply T full iterations black_box_u_f(grover, f_in, f_out, aux, n, exactly_1_3_sat_formula) inversion_about_average(grover, f_in, n) # Measure the output register in the computational basis for j in range(n): grover.measure(f_in[j], ans[j]) # Execute circuit backend = BasicAer.get_backend('qasm_simulator') job = execute([grover], backend=backend, shots=1000) result = job.result() # Get counts and plot histogram counts = result.get_counts(grover) plot_histogram(counts) from qiskit import IBMQ API_KEY = '85cb8a7e6f047877bc60dffc222a7f0bf7bc8d2a2f230b25bd8e873eea0f8a6bee8607430d8789e05bdd26011ff0d179b6dfa58ee529b8963cc939f809a6f7be' # Replace 'your-api-key' with your actual API key IBMQ.save_account(API_KEY, overwrite=True) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') # Print the available backends print(provider.backends()) # Choose a different backend name from the list backend_name = 'ibmq_qasm_simulator' # Get the backend backend = provider.get_backend(backend_name) # Rest of your code remains the same grover_compiled = transpile(grover, backend=backend, seed_transpiler=1, optimization_level=3) print('gates = ', grover_compiled.count_ops()) print('depth = ', grover_compiled.depth()) grover.draw(output='mpl', scale=0.5)
https://github.com/RyosukeNORO/Shor-s-algorithm
RyosukeNORO
#N = 11*7 #a = 18 N = 15 a = 2 import math math.gcd(a, N) import matplotlib.pyplot as plt z = list(range(N)) y = [a**z0 % N for z0 in z] plt.plot(z, y) plt.xlabel('z') plt.ylabel('{}^z mod{}'.format(a, N)) plt.show() r = z[y[1:].index(1)+1] print(f'r = {r}') if r % 2 == 0: x = (a**(r/2.)) % N print(f'x = {x}') if ((x + 1) % N) != 0: print(math.gcd((int(x)+1), N), math.gcd((int(x)-1), N)) else: print("x + 1 is 0 (mod N)") else: print('r + {} is odd'.format(r))
https://github.com/RyosukeNORO/Shor-s-algorithm
RyosukeNORO
from qiskit import * import numpy as np import math from qiskit.tools.visualization import plot_histogram %matplotlib inline N = 15 a = 13 math.gcd(a, N) def axmodN(a, x, n, N): if a not in [2,7,8,11,13]: raise ValueError("'a' must be 2,7,8,11 or 13") qc = QuantumCircuit(n) for j in range(x): if a in [2,13]: qc.swap(2, 3) qc.swap(1, 2) qc.swap(0, 1) if a in [7,8]: qc.swap(0, 1) qc.swap(1, 2) qc.swap(2, 3) if a in [11]: qc.swap(0, 2) qc.swap(1, 3) if a in [7,11,13]: for k in range(n): qc.x(k) qc = qc.to_gate() qc.name = "%i^%i mod %i" % (a, x, N) qc = qc.control(1) return qc def QFTdagger(n): qc = QuantumCircuit(n) # Swap the qubits for i in range(n//2): qc.swap(i, n-i-1) # Operation for i in range(n): for j in range(i): qc.cu1(-np.pi/(2**(i-j)), j, i) qc.h(i) qc.name = "QFTdagger" return qc n = 4 # number of qubits needed to represent number that will be done prime factorization qr = QuantumRegister(2*n) # Prepare 2*n quantum registers as |x>|w> = |x3 x2 x1 x0>|w3 w2 w1 w0> cr = ClassicalRegister(2*n) qc = QuantumCircuit(qr, cr) # Hadamard gates for i in range(n): qc.h(qr[i]) # |w> -> |1> qc.x(qr[n]) # Implement U_f (f(x) = a^x (mod N)) U_f|x>|w> = |x>|w+f(x)> ("+" represents "XOR") for i in range(n): qc.append(axmodN(a, 2**i, n, N), [i]+[n+i for i in range(n)]) qc.barrier() # Implement QFTdagger qc.append(QFTdagger(n), range(n)) qc.barrier() # Measure qc.measure(range(n), range(n)) # Show quantum circuit qc.draw(initial_state=True) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots=2048).result() plot_histogram(result.get_counts())
https://github.com/RyosukeNORO/Shor-s-algorithm
RyosukeNORO
from qiskit import * import numpy as np import math from qiskit.tools.visualization import plot_histogram %matplotlib inline N = 15 a = 13 math.gcd(a, N) if a not in [2,7,8,11,13]: raise ValueError("'a' must be 2,7,8,11 or 13") n = 4 # number of qubits needed to represent number that will be done prime factorization qr = QuantumRegister(2*n) # Prepare 2*n quantum registers as |x>|w> = |x3 x2 x1 x0>|w3 w2 w1 w0> cr = ClassicalRegister(2*n) qc = QuantumCircuit(qr, cr) # Hadamard gates for i in range(n): qc.h(i) # |w> -> |1> qc.x(n) # Implement U_f (f(x) = a^x (mod N)) U_f|x>|w> = |x>|w+f(x)> ("+" represents "XOR") for i in range(n): for j in range(2**i): if a in [2,13]: qc.cswap(i, n+2, n+3) qc.cswap(i, n+1, n+2) qc.cswap(i, n+0, n+1) if a in [7,8]: qc.cswap(i, n+0, n+1) qc.cswap(i, n+1, n+2) qc.cswap(i, n+2, n+3) if a in [11]: qc.cswap(i, n+0, n+2) qc.cswap(i, n+1, n+3) if a in [7,11,13,14]: for k in range(n): qc.cx(i, n+k) qc.barrier() # Implement QFTdagger for i in range(n//2): # Swap the qubits qc.swap(i, n-i-1) for i in range(n): for j in range(i): qc.cu1(-np.pi/(2**(i-j)), j, i) qc.h(i) qc.barrier() # Measure qc.measure(range(n), range(n)) # Show quantum circuit qc.draw(output='mpl', initial_state=True) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots=1024).result() plot_histogram(result.get_counts())
https://github.com/davidedellagiustina/qasp-solver
davidedellagiustina
'''Grover Search with a quantum oracle built from the classical procedure. Reference: Example 4.2.1 in the thesis. ''' import copy from qiskit import QuantumCircuit, QuantumRegister from src import qasp from src.examples.util import tab, pause # ASP program PRGM = ''' p :- not q. q. ''' def build_oracle() -> tuple[qasp.oracle.Oracle, list[int]]: '''Build the quantum oracle shown in Example 4.2.1 in the thesis. #### Return tuple[QuantumCircuit, list[int]]: Circuit implementing the oracle and list of auxiliary \ qubits used. ''' # Build classical oracle def c_oracle(interp): m_p = { ('p', not ('q', True) in interp), ('q', True), } return interp == m_p # Build quantum oracle (p, q) = (QuantumRegister(1, 'p'), QuantumRegister(1, 'q')) p_if_not_q = QuantumRegister(1, 'p_if_not_q') p_in_reduct = QuantumRegister(1, 'p_in_reduct') q_in_reduct = QuantumRegister(1, 'q_in_reduct') p_equal = QuantumRegister(1, 'p_equal') q_equal = QuantumRegister(1, 'q_equal') equal = QuantumRegister(1, 'equal') q_oracle = QuantumCircuit(p, q, p_if_not_q, p_in_reduct, q_in_reduct, p_equal, q_equal, equal, name='Oracle') aux_qubits = list(range(2, 8)) # Step 1 q_oracle.x(p_if_not_q) q_oracle.cx(q, p_if_not_q) q_oracle.barrier() # Step 2 q_oracle.cx(p_if_not_q, p_in_reduct) q_oracle.x(q_in_reduct) q_oracle.barrier() # Step 3 q_oracle.ccx(p, p_in_reduct, p_equal) q_oracle.ccx(p, p_in_reduct, p_equal, ctrl_state='00') q_oracle.ccx(q, q_in_reduct, q_equal) q_oracle.ccx(q, q_in_reduct, q_equal, ctrl_state='00') q_oracle.barrier() undo = copy.deepcopy(q_oracle).reverse_ops() # Step 4 q_oracle.x(equal) q_oracle.h(equal) q_oracle.ccx(p_equal, q_equal, equal) q_oracle.h(equal) q_oracle.x(equal) q_oracle.barrier() # Undo steps q_oracle.compose(undo, q_oracle.qubits, inplace=True) return ((c_oracle, q_oracle), aux_qubits) def main(): '''Entrypoint. ''' print(f'ASP program:\n{tab(PRGM.strip(), striplines=True)}\n') pause() # Program parameters n_search = 2 # Number of search qubits n_aux = 6 # Number of auxiliary qubits # pylint: disable=invalid-name M = 1 print(f'Number of variables: {n_search}.') print(f'Number of stable models: {M}.') print() pause() # Initialization algorithm algorithm = qasp.init_algorithm.alg_grover(n_search) # Walsh-Hadamard reg_aux = QuantumRegister(n_aux, 'aux') algorithm.add_register(reg_aux) algorithm.name += ' x Id' print(f'Initialization algorithm:\n{tab(str(algorithm.draw()))}\n') pause() # Oracle (oracle, aux_qubits) = build_oracle() print(f'Quantum oracle:\n{tab(str(oracle[1].draw()))}\n') pause() # Simulation (circuit, iters, stable_model) = qasp.problems.amplification.exec_find_one_known_m( algorithm, oracle, M, aux_qubits) print(f'Used circuit:\n{tab(str(circuit.draw()))}\n') pause() print(f'Found stable model: {stable_model}.') print(f'Number of iterations: {iters}.') print() if __name__ == '__main__': main()
https://github.com/davidedellagiustina/qasp-solver
davidedellagiustina
'''Initialization algorithms for amplitude-related problems. ''' import math from qiskit import QuantumCircuit def alg_grover(n: int) -> QuantumCircuit: '''Return an instance of the Grover initialization algorithm. #### Arguments n (int): Number of search qubits. #### Return QuantumCircuit: Built circuit. ''' circ = QuantumCircuit(n) circ.name = 'WH' circ.h(circ.qubits) return circ def alg_from_weights(weights: list[float]) -> QuantumCircuit: '''Return an instance of the Rot initialization algorithm defined by Riguzzi and Mykhailova. #### Arguments weights(list[float]): Weight of each bit evaluating to 1. Complementary is computed \ assuming normalization constraint. #### Return QuantumCircuit: Built circuit. ''' n = len(weights) circ = QuantumCircuit(n) circ.name = 'Rot' for (i, weight) in zip(range(n), weights): theta = 2 * math.acos(math.sqrt(1 - weight)) circ.ry(theta, i) return circ
https://github.com/davidedellagiustina/qasp-solver
davidedellagiustina
'''Utility functions for simulating quantum circuits. ''' from qiskit import QuantumCircuit, transpile from qiskit.synthesis import generate_basic_approximations from qiskit.transpiler.passes.synthesis import SolovayKitaev from qiskit_aer import Aer, AerJob def exec_circuit(circ: QuantumCircuit, shots: int = 1) -> AerJob: '''Execute a quantum circuit and retrieve the execution result. #### Arguments circ (QuantumCircuit): Circuit to simulate. shots (int): Number of experiment repetitions to simulate. Defaults to 1. #### Return AerJob: Result of the simulation. ''' simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) result = simulator.run(circ, shots=shots).result() return result def transpile_into_clifford_t_basis( circ: QuantumCircuit, approx_depth: int = 3, sk_rec: int = 2, opt_lv: int = 3, ) -> QuantumCircuit: '''Transpile and decompose a given circuit into the Clifford+T basis. #### Arguments circ (QuantumCircuit): Quantum circuit to be transpiled. approx_depth (int): Gates approximation depth. Defaults to 3. sk_rec (int): Recursion degree for the Solovay-Kitaev decomposition algorithm. Defaults to 2. opt_lv (int): Optimization level for the transpiling process. Defaults to 3. #### Return QuantumCircuit: Transpiled circuit. ''' universal_basis = ['u1', 'u2', 'u3', 'cx'] clifford_t_basis = ['h', 's', 't'] basis = generate_basic_approximations(clifford_t_basis, depth=approx_depth) skd = SolovayKitaev(recursion_degree=sk_rec, basic_approximations=basis) transpiled = transpile( circ, basis_gates=universal_basis, optimization_level=opt_lv) decomposed = skd(transpiled) return decomposed
https://github.com/davidedellagiustina/qasp-solver
davidedellagiustina
'''Amplitude amplification algorithms. ''' import copy import math import random from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.circuit.library import GroverOperator from ..oracle import Interpretation, QuantumOracle, Oracle from ..simul import exec_circuit # +-----------------------+ # | Amplification circuit | # +-----------------------+ def __optimal_num_iters(n: int, m: int) -> int: '''Return the optimal number of iterations for amplitude amplification. Source: \ https://github.com/Qiskit/qiskit/blob/stable/0.45/qiskit/algorithms/amplitude_amplifiers/grover.py#L381. #### Arguments n (int): Number of search qubits. m (int): (Known) number of solutions to the problem. #### Return int: Optimal number of iterations. ''' amplitude = math.sqrt(m / 2**n) return round(math.acos(amplitude) / (2 * math.asin(amplitude))) def circuit_optimal( algorithm: QuantumCircuit, oracle: QuantumOracle, m: int, aux_qubits: list[int] = None ) -> QuantumCircuit: '''Build a quantum circuit implementing the amplitude amplification algorithm. #### Arguments algorithm (QuantumCircuit): Circuit that implements the initialization algorithm. oracle (QuantumOracle): Circuit that implements the oracle. m (int): (Known) number of solutions. aux_qubits (list[int]): List of indices of auxiliary qubits (e.g. used by the oracle) \ that should not be used for the search procedure. Defaults to the empty list. #### Returns QuantumCircuit: Built circuit. ''' aux_qubits = [] if aux_qubits is None else aux_qubits assert algorithm.num_qubits == oracle.num_qubits assert len(aux_qubits) <= algorithm.num_qubits n = algorithm.num_qubits - len(aux_qubits) # Search qubits only inc = m > 2**(n-1) num_iters = __optimal_num_iters(n, m) return circuit(algorithm, oracle, num_iters, inc, aux_qubits) def circuit( algorithm: QuantumCircuit, oracle: QuantumOracle, num_iters: int, inc: bool = False, aux_qubits: list[int] = None ) -> QuantumCircuit: '''Build a quantum circuit implementing the amplitude amplification algorithm. #### Arguments algorithm (QuantumCircuit): Circuit that implements the initialization algorithm. oracle (QuantumOracle): Circuit that implements the oracle. num_iters (int): Number of iterations to perform. inc (bool): Whether to use an additional qubit for searching (necessary if m > n/2). \ Defaults to False. aux_qubits (list[int]): List of indices of auxiliary qubits (e.g. used by the oracle) \ that should not be used for the search procedure. Defaults to the empty list. #### Returns QuantumCircuit: Built circuit. ''' aux_qubits = [] if aux_qubits is None else aux_qubits assert algorithm.num_qubits == oracle.num_qubits assert len(aux_qubits) <= algorithm.num_qubits n_all = algorithm.num_qubits n_aux = len(aux_qubits) n_search = n_all - n_aux # Add a qubit if there are too many solutions if inc: n_all += 1 n_search += 1 # Algorithm algorithm.name = 'AlgorithmAug' aug = QuantumRegister(1, 'aug') algorithm.add_register(aug) algorithm.h(aug) # Equiprobable superposition assert algorithm.num_qubits == n_all # Oracle c_oracle = oracle.control() c_oracle.name = 'OracleAug' oracle.data = [] aug = QuantumRegister(1, 'aug') oracle.add_register(aug) oracle.compose( c_oracle, [n_all-1] + list(range(n_all-1)), inplace=True, ) assert oracle.num_qubits == n_all # Copy qubit strucure of oracle circ = copy.deepcopy(oracle) circ.data = [] circ.name = 'Amp' # Qubit partitioning qubits_search = list(filter( lambda x: not x in aux_qubits, list(range(n_all)) )) qubits_measure = list(filter( lambda x: not x in aux_qubits, list(range(n_all - (1 if inc else 0))) )) # Initialization circ.append(algorithm, circ.qubits) # Iterations op = GroverOperator(oracle, state_preparation=algorithm, reflection_qubits=qubits_search).decompose() op.name = "Q" for _ in range(num_iters): circ.append(op, circ.qubits) # Measurements result = ClassicalRegister(len(qubits_measure), name='result') circ.add_register(result) # Reverse order to match natural expectation circ.measure(list(reversed(qubits_measure)), result) return circ # +----------------------+ # | Algorithm simulation | # +----------------------+ def __measure_to_model(measurements: str, var_names: list[str]) -> Interpretation: '''Convert the result of a measurement to a human-readable format with variable names. #### Arguments measurements (str): Measured bits. var_names (list[str]): Ordered list of variable names that the measurements refer to. #### Return Interpretation: Solution representation. ''' assert len(measurements) == len(var_names) model = set() for (name, value) in zip(var_names, measurements): assert value in ('0', '1') bool_value = value == '1' model.add((name, bool_value)) return model def exec_find_one_known_m( algorithm: QuantumCircuit, oracle: Oracle, m: int, aux_qubits: list[int] = None ) -> tuple[QuantumCircuit, int, Interpretation]: '''Simulate the amplitude amplification circuit to find one solution to the problem. #### Arguments algorithm (QuantumCircuit): Circuit that implements the initialization algorithm. oracle (Oracle): Pair of classical and quantum oracles. m (int): (Known) number of solutions. aux_qubits (list[int]): List of indices of auxiliary qubits (e.g. used by the oracle) \ that should not be used for the search procedure. Defaults to the empty list. #### Return tuple[QuantumCircuit, int, Interpretation]: Used circuit, number of iterations performed, \ and found solution. ''' # pylint: disable=too-many-locals aux_qubits = [] if aux_qubits is None else aux_qubits (c_oracle, q_oracle) = oracle # Extract variable names associated to search qubits (from oracle circuit) var_names = [] qubits = q_oracle.qubits for (idx, qubit) in zip(range(len(qubits)), qubits): if not idx in aux_qubits: reg = q_oracle.find_bit(qubit).registers[0][0] var_names = var_names + [reg.name] # Build circuit circ = circuit_optimal(algorithm, q_oracle, m, aux_qubits) # Run simulation model, iters = None, 0 while True: iters += 1 result = exec_circuit(circ, shots=1) measurements = list(result.get_counts().keys())[0] model = __measure_to_model(measurements, var_names) if c_oracle(model): break # Map output to readable format return (circ, iters, model) def exec_find_one_unknown_m( algorithm: QuantumCircuit, oracle: Oracle, aux_qubits: list[int] = None, c: float = 1.5 ) -> tuple[list[QuantumCircuit], int, Interpretation]: '''Exponentially guess the value of m to find one solution to the problem. #### Arguments algorithm (QuantumCircuit): Circuit that implements the initialization algorithm. oracle (Oracle): Pair of classical and quantum oracles. aux_qubits (list[int]): List of indices of auxiliary qubits (e.g. used by the oracle) \ that should not be used for the search procedure. Defaults to the empty list. c (float): Base of the exponential defining the guess for m. #### Return tuple[list[QuantumCircuit], int, Interpretation]: List of used circuits, number of \ iterations performed, and found solution. ''' # pylint: disable=too-many-locals aux_qubits = [] if aux_qubits is None else aux_qubits (c_oracle, q_oracle) = oracle inc = True # Since we do not know m, we must be the most general possible random.seed() # Extract variable names associated to search qubits (from oracle circuit) var_names = [] qubits = q_oracle.qubits for (idx, qubit) in zip(range(len(qubits)), qubits): if not idx in aux_qubits: reg = q_oracle.find_bit(qubit).registers[0][0] var_names = var_names + [reg.name] # Prepare circuit with no amplification iterations circ_noiter = circuit(copy.deepcopy(algorithm), copy.deepcopy(q_oracle), 0, inc, aux_qubits) circs = [circ_noiter] # Run simulation model, iters = None, 0 while True: iters += 1 # `l' in the paper m = math.ceil(c**iters) # Step 3 result = exec_circuit(circ_noiter, shots=1) measurements = list(result.get_counts().keys())[0] model = __measure_to_model(measurements, var_names) if c_oracle(model): break # Steps 4-7 j = random.randint(1, m) circ = circuit(copy.deepcopy(algorithm), copy.deepcopy(q_oracle), j, inc, aux_qubits) circs.append(circ) result = exec_circuit(circ, shots=1) measurements = list(result.get_counts().keys())[0] model = __measure_to_model(measurements, var_names) if c_oracle(model): break return (circs, iters, model)
https://github.com/davidedellagiustina/qasp-solver
davidedellagiustina
'''Amplitude estimation algorithms. ''' import copy import math from typing import Callable import intervals as interval from intervals import Interval from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.circuit.library import GroverOperator, QFT from ..oracle import Oracle, QuantumOracle from ..simul import exec_circuit # +--------------------+ # | Estimation circuit | # +--------------------+ def circuit( algorithm: QuantumCircuit, oracle: QuantumOracle, m: int, eps: float, aux_qubits: list[int] = None ) -> QuantumCircuit: '''Build a quantum circuit implementing the amplitude estimation algorithm. #### Arguments algorithm (QuantumCircuit): Ciruit that implements the initialization algorithm. oracle (QuantumOracle): Citcuit that implements the oracle. m (int): Desired number of binary digits to be estimated. eps (float): Complement of the desired success probability. aux_qubits (list[int]): List of indices of auxiliary qubits (e.g. used by the oracle) \ that should not be used for the search procedure. Defaults to the empty list. #### Return QuantumCircuit: Built circuit. ''' # pylint: disable=too-many-locals aux_qubits = [] if aux_qubits is None else aux_qubits assert m > 0 and eps > 0 assert algorithm.num_qubits == oracle.num_qubits n = algorithm.num_qubits + 1 # Also counting `aug` qubit t = m + math.ceil(math.log2(2 + 1/(2*eps))) # Add `aug` qubit to algorithm algorithm.name = 'AlgorithmAug' aug = QuantumRegister(1, 'aug') algorithm.add_register(aug) algorithm.h(aug) # Equiprobable superposition assert algorithm.num_qubits == n # Add `aug` qubit to oracle c_oracle = oracle.control() c_oracle.name = 'OracleAug' oracle.data = [] aug = QuantumRegister(1, 'aug') oracle.add_register(aug) oracle.compose( c_oracle, [n-1] + list(range(n-1)), inplace=True, ) assert oracle.num_qubits == n # Circuit structure qr0 = QuantumRegister(t) qr_others = list( # Clone qubit labels from oracle dict.fromkeys( # Remove duplicates while maintaining order map(lambda q: oracle.find_bit(q).registers[0][0], oracle.qubits) ) ) circ = QuantumCircuit(qr0, *qr_others) circ.name = 'Est' # Qubit partitioning qubits_search = list(filter( lambda x: not x in aux_qubits, list(range(n)) )) # Initialization circ.h(qr0) circ.append(algorithm, qr_others) # Iterations pow_g = GroverOperator( oracle, state_preparation=algorithm, reflection_qubits=qubits_search) pow_g.name = 'Q^(2^0)' for idx in range(t): c_pow_g = copy.deepcopy(pow_g).control() circ.compose(c_pow_g, [t-idx-1] + list(range(t, t+n)), inplace=True) # Next power of G pow_g.compose(pow_g, pow_g.qubits, inplace=True) pow_g.name = f'Q^(2^{idx+1})' # Inverse QFT # NOTE: Qiskit's QFT has the opposite bit order w.r.t. the one used in the thesis, hence why \ # we disable the swaps. iqft = QFT(t, inverse=True, do_swaps=False) circ.append(iqft, qr0) # Measurements result = ClassicalRegister(m, name='result') circ.add_register(result) circ.measure(list(range(t-m, t)), result) # Only requested m bits return circ # +-----------------------+ # | Algoroithm simulation | # +-----------------------+ def __phase_to_count(n: int, phase: float) -> float: '''Compute the number M of solutions of a search problem given an estimate of the rotation \ angle phi of the respective Grover Operator. #### Arguments N (int): Number of search qubits. phase (float): Estimate value of the phase phi. #### Return float: Estimated value of M. ''' return 2**n * math.sin(phase/2)**2 def __measure_to_count( measurements: str, num_search_qubits: int, count_fn: Callable[[float], float] = None ) -> tuple[Interval, Interval]: '''Convert the result of a measurement to estimation intervals for the respective phase and \ for the solutions count. #### Arguments measurements (str): Measured bits. num_search_qubits (int): Number of search qubits. count_fn (Callable[[float], float]): Function that, given an estimate for phi, computes \ the solutions count (or any other needed value). Defaults to N * sin^2(theta/2). #### Return tuple[Interval, Interval]: Estimation intervals for the measured phase and the solutions \ count, respectively. ''' count_fn = ( lambda phase: __phase_to_count(num_search_qubits, phase) ) if count_fn is None else count_fn m = len(measurements) phi = 0.0 for (idx, bit) in zip(range(m), measurements): phi += int(bit) * 2**(-idx-1) phases = [2 * math.pi * (phi + delta) for delta in [0, 2**(-m)]] if phi <= 1/2: # If theta was measured interval_type = interval.closedopen else: # If (2 pi - theta) was measured interval_type = interval.openclosed phases = [2 * math.pi - phase for phase in reversed(phases)] phase_estimate = interval_type(phases[0], phases[1]) counts = [count_fn(phase) for phase in phases] count_estimate = interval_type(counts[0], counts[1]) return (phase_estimate, count_estimate) def exec_count( algorithm: QuantumCircuit, oracle: Oracle, m: int, eps: float, aux_qubits: list[int] = None, count_fn: Callable[[float], float] = None ) -> tuple[QuantumCircuit, Interval, Interval]: '''Simulate the amplitude estimation circuit to approximate the number of solutions of the \ problem. #### Arguments algorithm (QuantumCircuit): Ciruit that implements the initialization algorithm. oracle (Oracle): Pair of classical and quantum oracles. m (int): Desired number of binary digits to be estimated. eps (float): Complement of the desired success probability. aux_qubits (list[int]): List of indices of auxiliary qubits (e.g. used by the oracle) \ that should not be used for the search procedure. Defaults to the empty list. count_fn (Callable[[float], float]): Function that, given an estimate for phi, computes \ the solutions count (or any other needed value). Defaults to N * sin^2(theta/2). #### Return tuple[QuantumCircuit, Interval, Interval]: Used circuit, estimation interval for the \ measured phase, and estimation interval for the solutions count. ''' # pylint: disable=too-many-arguments aux_qubits = [] if aux_qubits is None else aux_qubits (_, q_oracle) = oracle # Classical oracle is unused n = len(q_oracle.qubits) - len(aux_qubits) + 1 # Account for `aug` # Build circuit circ = circuit(algorithm, q_oracle, m, eps, aux_qubits) # Run simulation and compute results result = exec_circuit(circ, shots=1) measurements = list(result.get_counts().keys())[0] (phase, count) = __measure_to_count(measurements, n, count_fn) return (circ, phase, count)
https://github.com/daniel-molina23/basic-quantum-algorithms
daniel-molina23
%%capture %pip install qiskit %pip install qiskit_ibm_provider %pip install qiskit-aer # Importing standard Qiskit libraries from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, QuantumCircuit, transpile, Aer from qiskit_ibm_provider import IBMProvider from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.circuit.library import C3XGate # Importing matplotlib import matplotlib.pyplot as plt # Importing Numpy, Cmath and math import numpy as np import os, math, cmath from numpy import pi # Other imports from IPython.display import display, Math, Latex # Specify the path to your env file env_file_path = 'config.env' # Load environment variables from the file os.environ.update(line.strip().split('=', 1) for line in open(env_file_path) if '=' in line and not line.startswith('#')) # Load IBM Provider API KEY IBMP_API_KEY = os.environ.get('IBMP_API_KEY') # Loading your IBM Quantum account(s) IBMProvider.save_account(IBMP_API_KEY, overwrite=True) # Run the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') qc_b1 = QuantumCircuit(2, 2) qc_b1.h(0) qc_b1.cx(0, 1) qc_b1.draw(output='mpl', style="iqp") sv = backend.run(qc_b1).result().get_statevector() sv.draw(output='latex', prefix = "|\Phi^+\\rangle = ") qc_b2 = QuantumCircuit(2, 2) qc_b2.x(0) qc_b2.h(0) qc_b2.cx(0, 1) qc_b2.draw(output='mpl', style="iqp") sv = backend.run(qc_b2).result().get_statevector() sv.draw(output='latex', prefix = "|\Phi^-\\rangle = ") qc_b2 = QuantumCircuit(2, 2) qc_b2.h(0) qc_b2.cx(0, 1) qc_b2.z(0) qc_b2.draw(output='mpl', style="iqp") sv = backend.run(qc_b2).result().get_statevector() sv.draw(output='latex', prefix = "|\Phi^-\\rangle = ") qc_b3 = QuantumCircuit(2, 2) qc_b3.x(1) qc_b3.h(0) qc_b3.cx(0, 1) qc_b3.draw(output='mpl', style="iqp") sv = backend.run(qc_b3).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^+\\rangle = ") qc_b3 = QuantumCircuit(2, 2) qc_b3.h(0) qc_b3.cx(0, 1) qc_b3.x(0) qc_b3.draw(output='mpl', style="iqp") sv = backend.run(qc_b3).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^+\\rangle = ") qc_b4 = QuantumCircuit(2, 2) qc_b4.x(0) qc_b4.h(0) qc_b4.x(1) qc_b4.cx(0, 1) qc_b4.draw(output='mpl', style="iqp") sv = backend.run(qc_b4).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^-\\rangle = ") qc_b4 = QuantumCircuit(2, 2) qc_b4.h(0) qc_b4.cx(0, 1) qc_b4.x(0) qc_b4.z(1) qc_b4.draw(output='mpl', style="iqp") sv = backend.run(qc_b4).result().get_statevector() sv.draw(output='latex', prefix = "|\Psi^-\\rangle = ") def sv_latex_from_qc(qc, backend): sv = backend.run(qc).result().get_statevector() return sv.draw(output='latex') qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(1) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(1) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(0) qc_ej2.x(1) qc_ej2.x(2) sv_latex_from_qc(qc_ej2, backend) qc_ej2 = QuantumCircuit(4, 4) qc_ej2.x(3) sv_latex_from_qc(qc_ej2, backend) def circuit_adder (num): if num<1 or num>8: raise ValueError("Out of range") ## El enunciado limita el sumador a los valores entre 1 y 8. Quitar esta restricción sería directo. # Definición del circuito base que vamos a construir qreg_q = QuantumRegister(4, 'q') creg_c = ClassicalRegister(1, 'c') circuit = QuantumCircuit(qreg_q, creg_c) qbit_position = 0 for element in reversed(np.binary_repr(num)): if (element=='1'): circuit.barrier() match qbit_position: case 0: # +1 circuit.append(C3XGate(), [qreg_q[0], qreg_q[1], qreg_q[2], qreg_q[3]]) circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) circuit.x(qreg_q[0]) case 1: # +2 circuit.ccx(qreg_q[1], qreg_q[2], qreg_q[3]) circuit.cx(qreg_q[1], qreg_q[2]) circuit.x(qreg_q[1]) case 2: # +4 circuit.cx(qreg_q[2], qreg_q[3]) circuit.x(qreg_q[2]) case 3: # +8 circuit.x(qreg_q[3]) qbit_position+=1 return circuit add_3 = circuit_adder(3) add_3.draw(output='mpl', style="iqp") qc_test_2 = QuantumCircuit(4, 4) qc_test_2.x(1) qc_test_2_plus_3 = qc_test_2.compose(add_3) qc_test_2_plus_3.draw(output='mpl', style="iqp") sv_latex_from_qc(qc_test_2_plus_3, backend) qc_test_7 = QuantumCircuit(4, 4) qc_test_7.x(0) qc_test_7.x(1) qc_test_7.x(2) qc_test_7_plus_8 = qc_test_7.compose(circuit_adder(8)) sv_latex_from_qc(qc_test_7_plus_8, backend) #qc_test_7_plus_8.draw() theta = 6.544985 phi = 2.338741 lmbda = 0 alice_1 = 0 alice_2 = 1 bob_1 = 2 qr_alice = QuantumRegister(2, 'Alice') qr_bob = QuantumRegister(1, 'Bob') cr = ClassicalRegister(3, 'c') qc_ej3 = QuantumCircuit(qr_alice, qr_bob, cr) qc_ej3.barrier(label='1') qc_ej3.u(theta, phi, lmbda, alice_1); qc_ej3.barrier(label='2') qc_ej3.h(alice_2) qc_ej3.cx(alice_2, bob_1); qc_ej3.barrier(label='3') qc_ej3.cx(alice_1, alice_2) qc_ej3.h(alice_1); qc_ej3.barrier(label='4') qc_ej3.measure([alice_1, alice_2], [alice_1, alice_2]); qc_ej3.barrier(label='5') qc_ej3.x(bob_1).c_if(alice_2, 1) qc_ej3.z(bob_1).c_if(alice_1, 1) qc_ej3.measure(bob_1, bob_1); qc_ej3.draw(output='mpl', style="iqp") result = backend.run(qc_ej3, shots=1024).result() counts = result.get_counts() plot_histogram(counts) sv_0 = np.array([1, 0]) sv_1 = np.array([0, 1]) def find_symbolic_representation(value, symbolic_constants={1/np.sqrt(2): '1/√2'}, tolerance=1e-10): """ Check if the given numerical value corresponds to a symbolic constant within a specified tolerance. Parameters: - value (float): The numerical value to check. - symbolic_constants (dict): A dictionary mapping numerical values to their symbolic representations. Defaults to {1/np.sqrt(2): '1/√2'}. - tolerance (float): Tolerance for comparing values with symbolic constants. Defaults to 1e-10. Returns: str or float: If a match is found, returns the symbolic representation as a string (prefixed with '-' if the value is negative); otherwise, returns the original value. """ for constant, symbol in symbolic_constants.items(): if np.isclose(abs(value), constant, atol=tolerance): return symbol if value >= 0 else '-' + symbol return value def array_to_dirac_notation(array, tolerance=1e-10): """ Convert a complex-valued array representing a quantum state in superposition to Dirac notation. Parameters: - array (numpy.ndarray): The complex-valued array representing the quantum state in superposition. - tolerance (float): Tolerance for considering amplitudes as negligible. Returns: str: The Dirac notation representation of the quantum state. """ # Ensure the statevector is normalized array = array / np.linalg.norm(array) # Get the number of qubits num_qubits = int(np.log2(len(array))) # Find indices where amplitude is not negligible non_zero_indices = np.where(np.abs(array) > tolerance)[0] # Generate Dirac notation terms terms = [ (find_symbolic_representation(array[i]), format(i, f"0{num_qubits}b")) for i in non_zero_indices ] # Format Dirac notation dirac_notation = " + ".join([f"{amplitude}|{binary_rep}⟩" for amplitude, binary_rep in terms]) return dirac_notation def array_to_matrix_representation(array): """ Convert a one-dimensional array to a column matrix representation. Parameters: - array (numpy.ndarray): The one-dimensional array to be converted. Returns: numpy.ndarray: The column matrix representation of the input array. """ # Replace symbolic constants with their representations matrix_representation = np.array([find_symbolic_representation(value) or value for value in array]) # Return the column matrix representation return matrix_representation.reshape((len(matrix_representation), 1)) def array_to_dirac_and_matrix_latex(array): """ Generate LaTeX code for displaying both the matrix representation and Dirac notation of a quantum state. Parameters: - array (numpy.ndarray): The complex-valued array representing the quantum state. Returns: Latex: A Latex object containing LaTeX code for displaying both representations. """ matrix_representation = array_to_matrix_representation(array) latex = "Matrix representation\n\\begin{bmatrix}\n" + \ "\\\\\n".join(map(str, matrix_representation.flatten())) + \ "\n\\end{bmatrix}\n" latex += f'Dirac Notation:\n{array_to_dirac_notation(array)}' return Latex(latex) sv_b1 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b1) sv_b1 = (np.kron(sv_0, sv_0) + np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b1) sv_b1 = (np.kron(sv_0, sv_0) + np.kron(sv_1, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b1) sv_b2 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b2) sv_b2 = (np.kron(sv_0, sv_0) + np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b2) sv_b2 = (np.kron(sv_0, sv_0) + np.kron(sv_1, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b2) sv_b2 = (np.kron(sv_0, sv_0) - np.kron(sv_1, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b2) sv_b3 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = np.kron(sv_0, sv_1) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = (np.kron(sv_0, sv_0) - np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = (np.kron(sv_0, sv_1) - np.kron(sv_1, sv_0)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b3) sv_b3 = (np.kron(sv_0, sv_1) + np.kron(sv_1, sv_0)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b3) sv_b4 = np.kron(sv_0, sv_0) array_to_dirac_and_matrix_latex(sv_b4) sv_b4 = np.kron(sv_0, sv_1) array_to_dirac_and_matrix_latex(sv_b4) sv_b4 = (np.kron(sv_0, sv_0) - np.kron(sv_0, sv_1)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b4) sv_b4 = (np.kron(sv_0, sv_1) - np.kron(sv_1, sv_0)) / np.sqrt(2) array_to_dirac_and_matrix_latex(sv_b4)
https://github.com/daniel-molina23/basic-quantum-algorithms
daniel-molina23
my_list = [1,3,6,8,2,7,5,7,9,2,16,4] def my_oracle(my_input): winner = 9 response = False if winner == my_input: response = True return response for index, number in enumerate(my_list): if (my_oracle(number) == True): print("Winner winner chicken dinner! at index = %i"%index) print("%i times the Oracle was called"%(index+1)) break from qiskit import * import matplotlib.pyplot as plt import numpy as np # create the oracle quantum circuit oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) # apply the Controlled-Z gate or CZ gate oracle.to_gate() # make oracle into its own gate oracle.draw() backend = Aer.get_backend('statevector_simulator') grover_circuit = QuantumCircuit(2,2) # 2 qubits, 2 classical registers grover_circuit.h([0,1]) # apply hadamard gate on both qubits 0 and 1 to prepare superposition state discussed in description.md grover_circuit.append(oracle, [0,1]) # append oracle to be able to query each state at same time grover_circuit.draw() job = execute(grover_circuit, backend) result = job.result() sv = result.get_statevector() np.around(sv, 2) reflection = QuantumCircuit(2, name='reflection') reflection.h([0,1]) # apply hadamard gate on all qubits to bring them back to '00' state from the original 's' state reflection.z([0,1]) # apply Z gate on both qubits reflection.cz(0,1) # controlled-z gate reflection.h([0,1]) # transform back with hadamard on both qubits reflection.to_gate() reflection.draw() backend = Aer.get_backend('qasm_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle, [0,1]) grover_circuit.append(reflection, [0,1]) grover_circuit.measure([0,1], [0,1]) grover_circuit.draw() job = execute(grover_circuit, backend, shots=1) result = job.result() result.get_counts()
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import QuantumCircuit from qiskit.circuit.library import HGate import networkx as nx import random import numpy as np def getBestMaxcut(costFunction, v): bestCut = 0 bestPartition = [] for i in range(0, 2**v): partition = bin(i) partition = partition[2:] partition = "0" * (v - len(partition)) + partition cut = costFunction.getCost(partition) if (cut < bestCut): bestPartition = [partition] bestCut = cut elif (cut == bestCut): bestPartition.append(partition) return bestCut, bestPartition def groverDiffuser(n): qc = QuantumCircuit(n) # Apply transformation |s> -> |00..0> (H-gates) qc.h(range(n)) # Apply transformation |00..0> -> |11..1> (X-gates) qc.x(range(n)) # Do multi-controlled-Z gate qc.h(n-1) qc.mct(list(range(n-1)), n-1) # multi-controlled-toffoli qc.h(n-1) # Apply transformation |11..1> -> |00..0> for qubit in range(n): qc.x(qubit) # Apply transformation |00..0> -> |s> qc.h(range(n)) # We will return the diffuser as a gate gate = qc.to_gate() gate.name = "diffuser" return gate def qaoaCompressor(graph): nodes = list(graph.nodes) edges = list(graph.edges) # print(nodes) # print(edges) start = min(nodes, key=lambda node: sum(node in edge for edge in edges)) # print(start) currentNodes = [start] nodes.remove(start) maxLen = 0 deadNodes = [] addedEdges = [] while (len(nodes) > 0): current = min(currentNodes, key=lambda node: sum(node in edge for edge in edges)) connectingEdges = [edge for edge in edges if current in edge] if (len(connectingEdges) == 0): currentNodes.remove(current) deadNodes.append(current) else: nextEdge = connectingEdges[0] for ver in nextEdge: if (ver != current): nextNode = ver currentNodes.append(nextNode) nodes.remove(nextNode) connectingEdges = [edge for edge in edges if nextNode in edge] for edge in connectingEdges: if ((edge[0] in currentNodes or edge[0] in deadNodes) and (edge[1] in currentNodes or edge[1] in deadNodes)): edges.remove(edge) addedEdges.append(edge) if (len(currentNodes) > maxLen): maxLen = len(currentNodes) # print(currentNodes, current, nextNode) # print(edges) def custom_graphs(): graph = nx.Graph() n = 3 graph.add_nodes_from(list(range(0, n))) graph.add_edges_from([(0, 1), (1, 2)]) return graph def ry_simulator(params, runs = 1000): def sim_ry(param): prob = random.random() if (prob > np.cos(param/2)**2): return "1" return "0" counts = {} for i in range(0, runs): string = "" for param in params: string += sim_ry(param) if string in counts: counts[string] += 1 else: counts[string] = 1 # print("Epoch") return counts def greedyMaxcutSolver(graph, costFunction): v = len(graph.nodes) guess = ["0"] * v bestCost = 0 indices = list(range(0, v)) while len(indices) > 0: bestIndex = -1 for i in indices: currentGuess = guess.copy() currentGuess[i] = "1" cost = costFunction.getCost("".join(currentGuess)[::-1]) # print("".join(currentGuess)[::-1]) # print(cost) if (cost < bestCost): bestCost = cost bestIndex = i print(cost) if (bestIndex == -1): break guess[bestIndex] = "1" indices.remove(bestIndex) return (bestCost) def customSATSolverCircuit(graph): v = len(graph.nodes) qc = QuantumCircuit(2*v, v) qc.h(range(0, v)) for i in range(0, v): qc.cx(i, v+i) qc.barrier() hGate = HGate().control(2) for edge in graph.edges(): v1 = edge[0] v2 = edge[1] qc.append(hGate, ([v1, v2, v + v1])) qc.append(hGate, ([v1, v2, v + v2])) qc.barrier() qc.x(v1) qc.x(v2) qc.append(hGate, ([v1, v2, v + v1])) qc.append(hGate, ([v1, v2, v + v2])) qc.x(v1) qc.x(v2) qc.barrier() qc.measure(range(v, 2*v), range(0, v)) return qc def customSATSolverCircuit(graph): v = len(graph.nodes) qc = QuantumCircuit(2*v, v) qc.h(range(0, v)) for i in range(0, v): qc.cx(i, v+i) qc.barrier() # hGate = HGate().control(2) i = 0 order = [1, 0, 0, 0, 0, 0, 0, 0] for edge in graph.edges(): v1 = edge[0] v2 = edge[1] o = order[i] if (o): vC = v2 else: vC = v1 qc.toffoli(v1, v2, v + vC) qc.barrier() qc.x(v1) qc.x(v2) qc.toffoli(v1, v2, v + vC) qc.x(v1) qc.x(v2) qc.barrier() i+=1 qc.measure(range(v, 2*v), range(0, v)) return qc
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
import networkx as nx import numpy as np from Helper_Functions import getBestMaxcut, custom_graphs, ry_simulator, greedyMaxcutSolver, customSATSolverCircuit from qiskit import transpile, Aer from QAOA_Cost_Function import CostFunction v = 6 d = 3 for i in range(0, 1): graph = nx.random_graphs.random_regular_graph(d, v, seed=16) print(graph.edges()) cost = CostFunction('maxcut', graph) g = greedyMaxcutSolver(graph, cost) b = getBestMaxcut(cost, v) print(g, b)
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import QuantumCircuit from QAOA_Mixer import Mixer from QAOA_Cost_Hamiltonian import CostHamiltonian from QAOA_Initialization import QAOAInit from Helper_Functions import groverDiffuser class QAOACircuit: circuit = None parameters = [] def __init__(self, numQubits, layers=1, mixerType='classic', problem='maxcut', problemType=None, initType='x_high_eigenstate'): self.numQubits = numQubits self.problem = problem self.problemType = problemType self.initType = initType self.mixerType = mixerType self.layers = layers def build(self): self.circuit = None self.parameters = [] qc = QuantumCircuit(self.numQubits) parameters = [] init = QAOAInit(self.numQubits, 1, self.initType) init.build() mixer = Mixer(self.numQubits, self.layers, self.mixerType) mixer.build() problem = CostHamiltonian(self.numQubits, self.layers, self.problemType, self.problem) problem.build() (initCirc, initParams) = init.getCircuitAtLayer(0) qc.append(initCirc, list(range(0, self.numQubits))) parameters += initParams for l in range(0, self.layers): (problemCirc, problemParams) = problem.getCircuitAtLayer(l) qc.append(problemCirc, list(range(0, self.numQubits))) parameters += problemParams (mixerCirc, mixerParams) = mixer.getCircuitAtLayer(l) qc.append(mixerCirc, list(range(0, self.numQubits))) parameters += mixerParams # diff = groverDiffuser(self.numQubits) # qc.append(diff, list(range(0, self.numQubits))) # qc.h(range(0, self.numQubits)) qc.measure_all() self.circuit = qc self.parameters = parameters def getCircuitWithParameters(self, parameterValues): qc = self.circuit parameters = self.parameters parameterMap = {} for i in range(0, len(parameters)): parameterMap[parameters[i]] = parameterValues[i] return qc.assign_parameters(parameterMap) def getNumberOfParameters(self): return len(self.parameters)
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import transpile class CostFunction: def __init__(self, problemType, problem): self.problemType = problemType self.problem = problem def getCost(self, value): if ('maxcut' in self.problemType): return self.__getCostMaxcut(value) elif ('3SAT' in self.problemType): return self.__getCost3SAT(value) return 0 def getExpectation(self, counts): avg = 0 sum_count = 0 for bit_string, count in counts.items(): obj = self.getCost(bit_string) avg += obj * count sum_count += count return avg/sum_count def getBestExpectation(self, counts, goal, randomGuess, shots): count = 0 minScore = self.getCost(min(counts.keys(), key=lambda x: self.getCost(x))) for key, value in counts.items(): if (self.getCost(key) == minScore): count += value if (minScore != goal): count = 0 return minScore, (count / (shots)) def getMostCommonExpectation(self, counts): return self.getCost(max(counts, key=counts.get)) def getDesiredExpectation(self, counts, shots=1000): minScore = self.getCost(min(counts.keys(), key=lambda x: self.getCost(x))) score = minScore * shots for key, value in counts.items(): if (self.getCost(key) == minScore): score -= value return score def __getCostMaxcut(self, partition): score = 0 part = partition[::-1] for edge in self.problem.edges(): v1 = edge[0] v2 = edge[1] if part[v1] != part[v2]: score-=1 return score def __getCost3SAT(self, partition): score = 0 if (partition == "0010" or partition == "0100"): score -= 1 return score
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import QuantumCircuit from qiskit.circuit import Parameter import numpy as np import random class CostHamiltonian: circuit = {} def __init__(self, numQubits, layers=1, costType='maxcut', problem=None): self.numQubits = numQubits self.costType = costType self.layers = layers self.problem = problem def build(self): self.circuit = {} for l in range(0, self.layers): if (self.costType == 'rz_maxcut'): circuitDetails = self.__buildMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == 'ma_rz_maxcut'): circuitDetails = self.__buildMAMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == 'two_local_real_maxcut'): circuitDetails = self.__buildTwoLocalRealMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "constant_maxcut"): circuitDetails = self.__buildMaxcutConstantLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "ry_maxcut"): circuitDetails = self.__buildRYMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "ma_ry_maxcut"): circuitDetails = self.__buildMARYMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "rx_maxcut"): circuitDetails = self.__buildRXMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "ma_rx_maxcut"): circuitDetails = self.__buildMARXMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "cx_ry_maxcut"): circuitDetails = self.__buildCXRYMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails elif (self.costType == "none"): circuitDetails = self.__buildNoCircuit() self.circuit[l] = circuitDetails elif (self.costType == "3SAT"): circuitDetails = self.__build3SATLayer(None, l) self.circuit[l] = circuitDetails elif (self.costType == "test_rz_maxcut"): circuitDetails = self.__buildTestMaxcutLayer(self.problem, l) self.circuit[l] = circuitDetails return True def getCircuitAtLayer(self, l): return self.circuit[l] def getAllCircuits(self): return self.circuit def __buildMaxcutConstantLayer(self, graph, l): # theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rzz(np.pi/len(graph.edges()), edge[0], edge[1]) return (qc, []) def __buildMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rzz(theta, edge[0], edge[1]) return (qc, [theta]) def __buildMAMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 for edge in graph.edges(): qc.rzz(theta[i], edge[0], edge[1]) i+=1 return (qc, theta) def __buildNoCircuit(self): qc = QuantumCircuit(self.numQubits) return (qc, []) def __buildTwoLocalRealMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, 3*len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 for edge in graph.edges(): qc.ry(theta[i], edge[0]) i+=1 qc.cx(edge[0], edge[1]) qc.ry(theta[i], edge[0]) i+=1 qc.ry(theta[i], edge[1]) i+=1 return (qc, theta) def __buildRYMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) i = 0 edges = list(graph.edges()) v = len(graph.nodes) orderedEdges = [] rightEdges = [] # j = list(range(1, v)) for e in edges: e1 = e[0] e2 = e[1] if (e1 > e2): rightEdges.append((e2, e1)) else: rightEdges.append(e) for e in rightEdges: e1 = e[0] e2 = e[1] orderedEdges.append((v - 1 - e2, v - 1 - e1)) orderedEdges = rightEdges orderedEdges.sort(key=lambda x:x[0], reverse=False) orderedEdges.sort(key=lambda x:x[1], reverse=False) print(orderedEdges) counts = [0] * v for e in orderedEdges: counts[e[1]] += 1 print(counts) for edge in orderedEdges: qc.cx(edge[0], edge[1]) qc.ry(theta,edge[1]) qc.cx(edge[0], edge[1]) return (qc, [theta]) def __buildMARYMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 edges = list(graph.edges()) v = len(graph.nodes) orderedEdges = [] rightEdges = [] # j = list(range(1, v)) for e in edges: e1 = e[0] e2 = e[1] if (e1 > e2): rightEdges.append((e2, e1)) else: rightEdges.append(e) for e in rightEdges: e1 = e[0] e2 = e[1] orderedEdges.append((v - 1 - e2, v - 1 - e1)) orderedEdges = rightEdges # for e in rightEdges.copy(): # # print(e) # e1 = e[0] # e2 = e[1] # if (e2 in j): # rightEdges.remove(e) # orderedEdges.append(e) # j.remove(e2) # # print(len(orderedEdges)) # orderedEdges.sort(key=lambda x:x[1], reverse=False) # orderedEdges = orderedEdges + rightEdges # # print(orderedEdges) # print(orderedEdges) orderedEdges.sort(key=lambda x:x[0], reverse=False) orderedEdges.sort(key=lambda x:x[1], reverse=False) print(orderedEdges) counts = [0] * v for e in orderedEdges: counts[e[1]] += 1 print(counts) # qc.cx(0, 1) # qc.ry(np.pi/2,1) # qc.cx(0, 1) # qc.cx(0, 2) # qc.ry(-np.pi/2,2) # qc.cx(0, 2) for edge in orderedEdges: qc.cx(edge[0], edge[1]) qc.ry(theta[i],edge[1]) qc.cx(edge[0], edge[1]) i+=1 return (qc, theta) def __buildRXMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rxx(theta, edge[0], edge[1]) return (qc, [theta]) def __buildMARXMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] qc = QuantumCircuit(self.numQubits) i = 0 for edge in graph.edges(): qc.rxx(theta[i], edge[0], edge[1]) i+=1 return (qc, theta) def __buildCXRYMaxcutLayer(self, graph, l): theta = Parameter('cost_maxcut_' + str(l)) i = 0 qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.cx(edge[0], edge[1]) qc.ry(theta, edge[1]) qc.cx(edge[0], edge[1]) i+=1 return (qc, [theta]) def __buildMACXRYMaxcutLayer(self, graph, l): theta = [Parameter('cost_maxcut_' + str(l) + "_" + str(i)) for i in range(0, len(graph.edges()))] i = 0 qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.cx(edge[0], edge[1]) qc.ry(theta[i], edge[1]) qc.cx(edge[0], edge[1]) i+=1 return (qc, theta) def __build3SATLayer(self, clauses, l): theta = Parameter('cost_maxcut_' + str(l)) qc = QuantumCircuit(self.numQubits) qc.h([0, 1, 2]) # clause 1 qc.x([0, 1, 2]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([0, 1, 2]) # clause 2 qc.x([1]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([1]) # clause 3 qc.x([2]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([2]) # clause 4 qc.x([2, 3]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([2, 3]) # clause 5 qc.x([3]) qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) qc.x([3]) # # clause 6 # qc.x([1, 2]) # qc.mct([0, 1, 2], 3) # qc.rz(theta, 3) # qc.mct([0, 1, 2], 3) # qc.x([1, 2]) # clause 7 qc.mct([0, 1, 2], 3) qc.rz(theta, 3) qc.mct([0, 1, 2], 3) return (qc, [theta]) def __buildTestMaxcutLayer(self, graph, l): theta1 = Parameter('cost_maxcut_1_' + str(l)) theta2 = Parameter('cost_maxcut_2_' + str(l)) qc = QuantumCircuit(self.numQubits) for edge in graph.edges(): qc.rz(theta2, edge[0]) qc.rz(theta2, edge[1]) qc.rzz(theta1, edge[0], edge[1]) return (qc, [theta1, theta2])
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import QuantumCircuit import numpy as np from qiskit.circuit import Parameter class QAOAInit: circuit = {} def __init__(self, numQubits, layers=1, initType='x_high_eigenstate'): self.numQubits = numQubits self.initType = initType self.layers = layers def build(self): self.circuit = {} for l in range(0, self.layers): if (self.initType == 'x_low_eigenstate'): circuitDetails = self.__buildXLowEigenstate(l) self.circuit[l] = circuitDetails elif (self.initType == 'x_high_eigenstate'): circuitDetails = self.__buildXHighEigenstate(l) self.circuit[l] = circuitDetails elif (self.initType == 'y_low_eigenstate'): circuitDetails = self.__buildYLowEigenstate(l) self.circuit[l] = circuitDetails elif (self.initType == 'y_high_eigenstate'): circuitDetails = self.__buildYHighEigenstate(l) self.circuit[l] = circuitDetails elif (self.initType == 'z_low_eigenstate'): circuitDetails = self.__buildZLowEigenstate(l) self.circuit[l] = circuitDetails elif (self.initType == 'z_high_eigenstate'): circuitDetails = self.__buildZHighEigenstate(l) self.circuit[l] = circuitDetails elif (self.initType == 'rx_mixer'): circuitDetails = self.__buildRXMixer(l) self.circuit[l] = circuitDetails elif (self.initType == 'ry_mixer'): circuitDetails = self.__buildRYMixer(l) self.circuit[l] = circuitDetails elif (self.initType == "none"): circuitDetails = self.__buildNoCircuit() self.circuit[l] = circuitDetails return True def getCircuitAtLayer(self, l): return self.circuit[l] def getAllCircuits(self): return self.circuit def __buildXLowEigenstate(self, l): qc = QuantumCircuit(self.numQubits) qc.x(range(0, self.numQubits)) qc.h(range(0, self.numQubits)) return (qc, []) def __buildXHighEigenstate(self, l): qc = QuantumCircuit(self.numQubits) qc.h(range(0, self.numQubits)) return (qc, []) def __buildYLowEigenstate(self, l): qc = QuantumCircuit(self.numQubits) qc.h(range(0, self.numQubits)) qc.sdg(range(0, self.numQubits)) qc.rz(np.pi, range(0, self.numQubits)) return (qc, []) def __buildYHighEigenstate(self, l): qc = QuantumCircuit(self.numQubits) qc.h(range(0, self.numQubits)) qc.sdg(range(0, self.numQubits)) qc.rz(-np.pi, range(0, self.numQubits)) qc.z(range(0, self.numQubits)) return (qc, []) def __buildZLowEigenstate(self, l): qc = QuantumCircuit(self.numQubits) qc.x(range(0, self.numQubits)) return (qc, []) def __buildZHighEigenstate(self, l): qc = QuantumCircuit(self.numQubits) return (qc, []) def __buildRXMixer(self, l): theta = Parameter('init_cl_' + str(l)) qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.rx(theta, qubit) return (qc, [theta]) def __buildRYMixer(self, l): theta = Parameter('init_cl_' + str(l)) qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.ry(theta, qubit) return (qc, [theta]) def __buildNoCircuit(self): qc = QuantumCircuit(self.numQubits) return (qc, [])
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import QuantumCircuit from qiskit.circuit import Parameter class Mixer: circuit = {} def __init__(self, numQubits, layers=1, mixerType='classic'): self.numQubits = numQubits self.mixerType = mixerType self.layers = layers def build(self): self.circuit = {} for l in range(0, self.layers): if (self.mixerType == 'rx_mixer'): circuitDetails = self.__buildClassic(l) self.circuit[l] = circuitDetails elif (self.mixerType == "ma_rx_mixer"): circuitDetails = self.__buildMAClassic(l) self.circuit[l] = circuitDetails elif (self.mixerType == "ry_mixer"): circuitDetails = self.__buildRYMixer(l) self.circuit[l] = circuitDetails elif (self.mixerType == "ma_ry_mixer"): circuitDetails = self.__buildMARYMixer(l) self.circuit[l] = circuitDetails elif (self.mixerType == "rz_mixer"): circuitDetails = self.__buildRZMixer(l) self.circuit[l] = circuitDetails elif (self.mixerType == "ma_rz_mixer"): circuitDetails = self.__buildMARZMixer(l) self.circuit[l] = circuitDetails elif (self.mixerType == "none"): circuitDetails = self.__buildNoCircuit() self.circuit[l] = circuitDetails return True def getCircuitAtLayer(self, l): return self.circuit[l] def getAllCircuits(self): return self.circuit def __buildClassic(self, l): theta = Parameter('mix_cl_' + str(l)) qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.rx(theta, qubit) return (qc, [theta]) def __buildMAClassic(self, l): theta = [Parameter('mix_cl_' + str(l) + "_" + str(i)) for i in range(0, self.numQubits)] qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.rx(theta[qubit], qubit) return (qc, theta) def __buildRYMixer(self, l): theta = Parameter('mix_cl_' + str(l)) qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.ry(theta, qubit) return (qc, [theta]) def __buildMARYMixer(self, l): theta = [Parameter('mix_cl_' + str(l) + "_" + str(i)) for i in range(0, self.numQubits)] qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.ry(theta[qubit], qubit) return (qc, theta) def __buildRZMixer(self, l): theta = Parameter('mix_cl_' + str(l)) qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.rz(theta, qubit) return (qc, [theta]) def __buildMARZMixer(self, l): theta = [Parameter('mix_cl_' + str(l) + "_" + str(i)) for i in range(0, self.numQubits)] qc = QuantumCircuit(self.numQubits) for qubit in range(0, self.numQubits): qc.rz(theta[qubit], qubit) return (qc, theta) def __buildNoCircuit(self): qc = QuantumCircuit(self.numQubits) return (qc, [])
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
import networkx as nx import sys sys.path.append( "/Users/johnburke/Desktop/QAOA Code/") from qiskit import Aer, transpile from scipy.optimize import minimize from QAOA_Circuit import QAOACircuit from QAOA_Cost_Function import CostFunction import numpy as np class Result: def __init__(self, fun, x, nfev): self.fun = fun self.x = x self.nfev = nfev def addHistory(self, history): self.history = history class QAOAScaffolding: circuit = None simulator = None built = False def __init__(self, numQubits, problemType, problem): self.numQubits = numQubits self.problemType = problemType self.problem = problem def build(self, layers, mixerType, initType, shots): qc = QAOACircuit(self.numQubits, layers, mixerType, self.problem, self.problemType, initType) qc.build() self.layers = layers self.circuit = qc self.simulator = Aer.get_backend('qasm_simulator') self.shots = shots # if ('maxcut' in self.problemType): cost = CostFunction(self.problemType, self.problem) self.costFunction = cost self.built = True def getExpectation(self, params, method = 'average_expectation', customSimulator= None, goal=0, randomGuess=None): if (customSimulator): counts = customSimulator(params, self.shots) else: qc = self.circuit.getCircuitWithParameters(params) qc = transpile(qc, backend=self.simulator) counts = self.simulator.run(qc, shots=self.shots).result().get_counts() if method == 'best_expectation': return self.costFunction.getBestExpectation(counts, goal, randomGuess, self.shots) elif method == "most_common_expectation": return self.costFunction.getMostCommonExpectation(counts) elif method == "desired_expectation": return self.costFunction.getDesiredExpectation(counts, self.shots) # elif method == "count_of_best": # return self.costFunction.getDesiredExpectation(counts, self.shots) return self.costFunction.getExpectation(counts) def minimizeExectation(self, initialParamsType = 'constant', minimizerType = 'scipy', customParameters = [], saveHistory = False, measurementStrategy = "average_expectation", customSimulator = None, goal=0, graph=None, guess=1): if (not self.built): print("Circuit not built") return False initialParams = [] parameterCount = self.circuit.getNumberOfParameters() if (initialParamsType == 'constant'): initialParams = [1.0] * parameterCount elif (initialParamsType =='random'): initialParams = np.random.uniform(0.0, np.pi, parameterCount) elif (initialParamsType == 'custom'): initialParams = customParameters if (minimizerType == 'scipy'): return self.__scipyMinimize(initialParams, measurementStrategy, customSimulator=customSimulator) elif (minimizerType == 'brute_force'): return self.__bruteForceMinimize(parameterCount, saveHistory, measurementStrategy) elif (minimizerType == 'brute_force_custom'): return self.__bruteForceCustom(parameterCount, saveHistory, measurementStrategy, customSimulator=customSimulator) elif (minimizerType == 'annealing'): return self.__annealingMinimize(initialParams, 1000, 1, saveHistory, measurementStrategy) elif (minimizerType == 'z_custom'): return self.__bruteForceZCustom(parameterCount ,saveHistory) elif (minimizerType == 'y_custom_1'): return self.__bruteForceYCustom1(parameterCount ,saveHistory) elif (minimizerType == 'y_custom_2'): return self.__bruteForceYCustom2(parameterCount, measurementStrategy,saveHistory) elif (minimizerType == 'y_custom_3'): return self.__bruteForceYCustom3(parameterCount, saveHistory, graph=graph) elif (minimizerType == 'ma_rz_custom'): return self.__customMARZOptimizer(parameterCount, saveHistory, graph=graph, guess=guess) elif (minimizerType == 'ma_rz_custom_2'): return self.__customMARZOptimizer2(parameterCount, saveHistory, graph=graph, guess=guess) elif (minimizerType == 'ry_custom'): return self.__customCXRYOptimizer(parameterCount, saveHistory, graph=graph) def __scipyMinimize(self, initialParams, measurementStrategy = 'average_expectation', customSimulator=None): res = minimize(self.getExpectation, initialParams, args=(measurementStrategy, customSimulator), method='COBYLA', options={'maxiter':1000}) return res def __bruteForceMinimize(self, parameterCount, saveHistory = False, measurementStrategy = 'average_expectation'): possibleValues = 100 values = np.linspace(0, 2*np.pi, possibleValues, endpoint=False) bestExpectation = 0 bestParameters = [] allValues = [] for i in range(0, possibleValues ** parameterCount): parameters = [values[int(i / (possibleValues ** j)) % possibleValues] for j in range(0, parameterCount)] expectation = self.getExpectation(parameters, measurementStrategy) if (saveHistory): allValues.append((parameters, expectation)) if (expectation < bestExpectation): bestExpectation = expectation bestParameters = parameters res = Result(bestExpectation, bestParameters, possibleValues ** parameterCount) if (saveHistory): res.addHistory(allValues) return res def __annealingMinimize(self, initialParams, temp, stepSize, saveHistory = False, measurementStrategy = 'average_expectation'): def temp_reduction(temp, alpha, type='linear', beta=1): if (type == 'linear'): return temp - alpha if (type == 'geometric'): return temp * alpha if (type == 'slow'): return (temp / (1 + beta * alpha)) def perturb_params(params, curr_temp, max_temp): new_params = params.copy() max_terms_changed = int((curr_temp / max_temp)) * len(new_params) if (max_terms_changed <= 0): max_terms_changed = 1 states_changed = max_terms_changed else: states_changed = np.random.randint(1, max_terms_changed) scale = (curr_temp / max_temp) * np.pi for i in range(states_changed): index = np.random.randint(0, len(new_params)) new_params[index] = new_params[index] + np.random.uniform(-scale , scale) return np.array(new_params) % (np.pi / 2) curr_cost = self.getExpectation(initialParams, measurementStrategy) curr_temp = temp curr_params = initialParams niter = 0 allValues = [] while curr_temp > 1: niter += 1 curr_temp = temp_reduction(curr_temp, stepSize) new_params = perturb_params(curr_params, curr_temp, temp) new_cost = self.getExpectation(new_params, measurementStrategy) if (saveHistory): allValues.append((new_params, new_cost)) if (new_cost < curr_cost): curr_cost = new_cost curr_params = new_params else: cost_dif = (curr_cost - new_cost) * 1000 prob = np.e ** (cost_dif / curr_temp) if (np.random.random() <= prob): curr_cost = new_cost curr_params = new_params res = Result(curr_cost, curr_params, niter) if (saveHistory): res.addHistory(allValues) return res def __bruteForceCustom(self, parameterCount, saveHistory = False, measurementStrategy = 'average_expectation', customSimulator=None): possibleParams = [0.0, np.pi/2, np.pi] bestExpectation = 0.0 parameters = [0.0] * parameterCount for i in range(0, parameterCount): testParams = parameters for param in possibleParams: testParams[i] = param expectation = self.getExpectation(testParams, measurementStrategy, customSimulator) print(expectation, testParams) if (expectation < bestExpectation): bestExpectation = expectation parameters[i] = param def __bruteForceZCustom(self, parameterCount, saveHistory = False, customSimulator=None): possibleParams = [0.0, np.pi/2, 2*np.pi/2, 3*np.pi/2] parameters = [0.0] * parameterCount bestCost = 0.0 for param1 in possibleParams: for param2 in possibleParams: for param3 in possibleParams: params = [param1, param2, param3] newCost = self.getExpectation(params, "desired_expectation") if (newCost < bestCost): parameters = params bestCost = newCost res = Result(bestCost, parameters, 16) return res def __bruteForceYCustom1(self, parameterCount, saveHistory = False, customSimulator=None): parameters = [0.0] * parameterCount bestCost = 0.0 for i in range(0, parameterCount): exp1 = self.getExpectation(parameters, "average_expectation") parameters[i] = np.pi/2 exp2 = self.getExpectation(parameters, "average_expectation") bestCost = exp2 if (exp1 < exp2): parameters[i] = 0 bestCost = exp1 res = Result(bestCost, parameters, parameterCount) return res def __bruteForceYCustom2(self, parameterCount, measurementStrategy = 'average_expectation', saveHistory = False, customSimulator=None): theta = np.pi/4 parameters = [theta] * parameterCount bestCost = 0.0 # parameters[0] = np.pi/2 # parameters[1] = np.pi/2 # parameters[2] = np.pi/2 # parameters[3] = 0 # parameters[4] = 0 # parameters[5] = np.pi/2 # parameters[6] = 0 # parameters[7] = 0 # parameters[8] = np.pi/2 # parameters[9] = 0 # parameters[10] = 0 # parameters[11] = np.pi/2 # parameters[12] = 0 # parameters[13] = 0 # parameters[14] = 0 # parameters[15] = np.pi/2 # parameters[16] = 0 # parameters[17] = 0 bestCost = self.getExpectation(parameters, measurementStrategy) iterations = 0 # allWorse = False # while not allWorse: # currBestCost = 0 # currBestI = -1 # bestChange = 0 # for i in range(0, parameterCount): # if (parameters[i] == theta): # iterations += 1 # parameters[i] = 0 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < currBestCost): # currBestCost = exp # currBestI = i # bestChange = 0 # parameters[i] = np.pi/2 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < currBestCost): # currBestCost = exp # currBestI = i # bestChange = np.pi/2 # # parameters[i] = np.pi/4 # # exp = self.getExpectation(parameters, measurementStrategy) # # if (exp < currBestCost): # # currBestCost = exp # # currBestI = i # # bestChange = np.pi/4 # parameters[i] = theta # if (currBestCost < bestCost): # parameters[currBestI] = bestChange # bestCost = currBestCost # else: # allWorse = True # for i in range(0, parameterCount): # if (parameters[i] == theta): # parameters[i] = 0 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < bestCost): # bestCost = exp # else: # parameters[i] = theta # for i in range(0, parameterCount): # if (parameters[i] == theta): # parameters[i] = np.pi/2 # exp = self.getExpectation(parameters, measurementStrategy) # if (exp < bestCost): # bestCost = exp # else: # parameters[i] = theta # bestCost = self.getExpectation(parameters, measurementStrategy) res = Result(bestCost, parameters, iterations) return res def __bruteForceYCustom3(self, parameterCount, saveHistory = False, customSimulator=None, graph=None): edges = list(graph.edges()) v = len(graph.nodes) orderedEdges = [] rightEdges = [] j = list(range(1, v)) for e in edges: e1 = e[0] e2 = e[1] if (e1 > e2): rightEdges.append((e2, e1)) else: rightEdges.append(e) for e in rightEdges.copy(): # print(e) e1 = e[0] e2 = e[1] if (e2 in j): rightEdges.remove(e) orderedEdges.append(e) j.remove(e2) bestCost = 0.0 v = len(orderedEdges) parameters = [np.pi/2] * v + [0.0] * (parameterCount - v) bestCost = self.getExpectation(parameters, "average_expectation") allWorse = False while not allWorse: currBestCost = 0 currBestI = -1 for i in range(0, parameterCount): if (parameters[i] != np.pi/2): parameters[i] = np.pi/2 exp = self.getExpectation(parameters, "average_expectation") if (exp < currBestCost): currBestCost = exp currBestI = i parameters[i] = 0.0 else: parameters[i] = 0 exp = self.getExpectation(parameters, "average_expectation") if (exp < currBestCost): currBestCost = exp currBestI = i parameters[i] = np.pi/2 if (currBestCost < bestCost): if (parameters[currBestI] == np.pi/2): parameters[currBestI] = 0 else: parameters[currBestI] = np.pi/2 bestCost = currBestCost else: allWorse = True res = Result(bestCost, parameters, parameterCount) return res def __customMARZOptimizer(self, parameterCount, saveHistory = False, customSimulator=None, graph=None, guess=1): edges = list(graph.edges()) v = len(graph.nodes) parameters = [np.pi/guess] * len(edges) + [np.pi/4] bestCost = self.getExpectation(parameters, "average_expectation") for i in range(0, len(edges)): parametersCopy = parameters.copy() parametersCopy[i] = 0.0 cost = self.getExpectation(parametersCopy, "average_expectation") if (cost < bestCost): parameters = parametersCopy bestCost = cost res = Result(bestCost, parameters, len(edges)) return res def __customMARZOptimizer2(self, parameterCount, saveHistory = False, customSimulator=None, graph=None, guess=1): edges = list(graph.edges()) v = len(graph.nodes) parameters = [np.pi/6] + [np.pi/4] bestCost = self.getExpectation(parameters, "average_expectation") # for i in range(1, v+1): # parametersCopy = parameters.copy() # parametersCopy[i] = 0.0 # cost = self.getExpectation(parametersCopy, "average_expectation") # if (cost < bestCost): # parameters = parametersCopy # bestCost = cost # parametersCopy[i] = np.pi/2 # cost = self.getExpectation(parametersCopy, "average_expectation") # if (cost < bestCost): # parameters = parametersCopy # bestCost = cost res = Result(bestCost, parameters, len(edges)) def __customCXRYOptimizer(self, parameterCount, saveHistory = False, customSimulator=None, graph=None): edges = list(graph.edges()) v = len(graph.nodes) initialCut = int(len(edges) / 2) parameters = [np.pi/(initialCut/2)] bestCost = self.getExpectation(parameters, "average_expectation") cutL = initialCut for i in range(1, 20): parametersCopy = [np.pi/(i/2)] cost = self.getExpectation(parametersCopy, "average_expectation") print(i, cost) if (cost < bestCost): parameters = parametersCopy bestCost = cost cutL = i res = Result(bestCost, cutL, len(edges)) return res
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Prepare a quantum state from the state where all qubits are 0.""" from typing import Union, Optional import math import numpy as np from qiskit.exceptions import QiskitError from qiskit.circuit.quantumcircuit import QuantumCircuit from qiskit.circuit.quantumregister import QuantumRegister, Qubit from qiskit.circuit.gate import Gate from qiskit.circuit.library.standard_gates.x import CXGate, XGate from qiskit.circuit.library.standard_gates.h import HGate from qiskit.circuit.library.standard_gates.s import SGate, SdgGate from qiskit.circuit.library.standard_gates.ry import RYGate from qiskit.circuit.library.standard_gates.rz import RZGate from qiskit.circuit.exceptions import CircuitError from qiskit.quantum_info.states.statevector import ( Statevector, ) # pylint: disable=cyclic-import _EPS = 1e-10 # global variable used to chop very small numbers to zero class StatePreparation(Gate): """Complex amplitude state preparation. Class that implements the (complex amplitude) state preparation of some flexible collection of qubit registers. """ def __init__( self, params: Union[str, list, int, Statevector], num_qubits: Optional[int] = None, inverse: bool = False, label: Optional[str] = None, normalize: bool = False, goalBitString: int = 0 ): r""" Args: params: * Statevector: Statevector to initialize to. * list: vector of complex amplitudes to initialize to. * string: labels of basis states of the Pauli eigenstates Z, X, Y. See :meth:`.Statevector.from_label`. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label '01' initializes the qubit zero to :math:`|1\rangle` and the qubit one to :math:`|0\rangle`. * int: an integer that is used as a bitmap indicating which qubits to initialize to :math:`|1\rangle`. Example: setting params to 5 would initialize qubit 0 and qubit 2 to :math:`|1\rangle` and qubit 1 to :math:`|0\rangle`. num_qubits: This parameter is only used if params is an int. Indicates the total number of qubits in the `initialize` call. Example: `initialize` covers 5 qubits and params is 3. This allows qubits 0 and 1 to be initialized to :math:`|1\rangle` and the remaining 3 qubits to be initialized to :math:`|0\rangle`. inverse: if True, the inverse state is constructed. label: An optional label for the gate normalize (bool): Whether to normalize an input array to a unit vector. Raises: QiskitError: ``num_qubits`` parameter used when ``params`` is not an integer When a Statevector argument is passed the state is prepared using a recursive initialization algorithm, including optimizations, from [1], as well as some additional optimizations including removing zero rotations and double cnots. **References:** [1] Shende, Bullock, Markov. Synthesis of Quantum Logic Circuits (2004) [`https://arxiv.org/abs/quant-ph/0406176v5`] """ self._params_arg = params self._inverse = inverse self._name = "state_preparation_dg" if self._inverse else "state_preparation" self.goalBitString = goalBitString if label is None: self._label = ( "State Preparation Dg" if self._inverse else "State Preparation" ) else: self._label = f"{label} Dg" if self._inverse else label if isinstance(params, Statevector): params = params.data if not isinstance(params, int) and num_qubits is not None: raise QiskitError( "The num_qubits parameter to StatePreparation should only be" " used when params is an integer" ) self._from_label = isinstance(params, str) self._from_int = isinstance(params, int) # if initialized from a vector, check that the parameters are normalized if not self._from_label and not self._from_int: norm = np.linalg.norm(params) if normalize: params = np.array(params, dtype=np.complex128) / norm elif not math.isclose(norm, 1.0, abs_tol=_EPS): raise QiskitError(f"Sum of amplitudes-squared is not 1, but {norm}.") num_qubits = self._get_num_qubits(num_qubits, params) params = [params] if isinstance(params, int) else params super().__init__(self._name, num_qubits, params, label=self._label) def _define(self): if self._from_label: self.definition = self._define_from_label() elif self._from_int: self.definition = self._define_from_int() else: self.definition = self._define_synthesis() def _define_from_label(self): q = QuantumRegister(self.num_qubits, "q") initialize_circuit = QuantumCircuit(q, name="init_def") for qubit, param in enumerate(reversed(self.params)): if param == "1": initialize_circuit.append(XGate(), [q[qubit]]) elif param == "+": initialize_circuit.append(HGate(), [q[qubit]]) elif param == "-": initialize_circuit.append(XGate(), [q[qubit]]) initialize_circuit.append(HGate(), [q[qubit]]) elif param == "r": # |+i> initialize_circuit.append(HGate(), [q[qubit]]) initialize_circuit.append(SGate(), [q[qubit]]) elif param == "l": # |-i> initialize_circuit.append(HGate(), [q[qubit]]) initialize_circuit.append(SdgGate(), [q[qubit]]) if self._inverse: initialize_circuit = initialize_circuit.inverse() return initialize_circuit def _define_from_int(self): q = QuantumRegister(self.num_qubits, "q") initialize_circuit = QuantumCircuit(q, name="init_def") # Convert to int since QuantumCircuit converted to complex # and make a bit string and reverse it intstr = f"{int(np.real(self.params[0])):0{self.num_qubits}b}"[::-1] # Raise if number of bits is greater than num_qubits if len(intstr) > self.num_qubits: raise QiskitError( "StatePreparation integer has %s bits, but this exceeds the" " number of qubits in the circuit, %s." % (len(intstr), self.num_qubits) ) for qubit, bit in enumerate(intstr): if bit == "1": initialize_circuit.append(XGate(), [q[qubit]]) # note: X is it's own inverse, so even if self._inverse is True, # we don't need to invert anything return initialize_circuit def _define_synthesis(self): """Calculate a subcircuit that implements this initialization Implements a recursive initialization algorithm, including optimizations, from "Synthesis of Quantum Logic Circuits" Shende, Bullock, Markov https://arxiv.org/abs/quant-ph/0406176v5 Additionally implements some extra optimizations: remove zero rotations and double cnots. """ # call to generate the circuit that takes the desired vector to zero disentangling_circuit = self._gates_to_uncompute() # invert the circuit to create the desired vector from zero (assuming # the qubits are in the zero state) if self._inverse is False: initialize_instr = disentangling_circuit.to_instruction().inverse() else: initialize_instr = disentangling_circuit.to_instruction() q = QuantumRegister(self.num_qubits, "q") initialize_circuit = QuantumCircuit(q, name="init_def") initialize_circuit.append(initialize_instr, q[:]) return initialize_circuit def _get_num_qubits(self, num_qubits, params): """Get number of qubits needed for state preparation""" if isinstance(params, str): num_qubits = len(params) elif isinstance(params, int): if num_qubits is None: num_qubits = int(math.log2(params)) + 1 else: num_qubits = math.log2(len(params)) # Check if param is a power of 2 if num_qubits == 0 or not num_qubits.is_integer(): raise QiskitError( "Desired statevector length not a positive power of 2." ) num_qubits = int(num_qubits) return num_qubits def inverse(self): """Return inverted StatePreparation""" label = ( None if self._label in ("State Preparation", "State Preparation Dg") else self._label ) return StatePreparation( self._params_arg, inverse=not self._inverse, label=label ) def broadcast_arguments(self, qargs, cargs): flat_qargs = [qarg for sublist in qargs for qarg in sublist] if self.num_qubits != len(flat_qargs): raise QiskitError( "StatePreparation parameter vector has %d elements, therefore expects %s " "qubits. However, %s were provided." % (2**self.num_qubits, self.num_qubits, len(flat_qargs)) ) yield flat_qargs, [] def validate_parameter(self, parameter): """StatePreparation instruction parameter can be str, int, float, and complex.""" # StatePreparation instruction parameter can be str if isinstance(parameter, str): if parameter in ["0", "1", "+", "-", "l", "r"]: return parameter raise CircuitError( "invalid param label {} for instruction {}. Label should be " "0, 1, +, -, l, or r ".format(type(parameter), self.name) ) # StatePreparation instruction parameter can be int, float, and complex. if isinstance(parameter, (int, float, complex)): return complex(parameter) elif isinstance(parameter, np.number): return complex(parameter.item()) else: raise CircuitError( f"invalid param type {type(parameter)} for instruction {self.name}" ) def _return_repeat(self, exponent: float) -> "Gate": return Gate( name=f"{self.name}*{exponent}", num_qubits=self.num_qubits, params=[] ) def _gates_to_uncompute(self): """Call to create a circuit with gates that take the desired vector to zero. Returns: QuantumCircuit: circuit to take self.params vector to :math:`|{00\\ldots0}\\rangle` """ q = QuantumRegister(self.num_qubits) circuit = QuantumCircuit(q, name="disentangler") # kick start the peeling loop, and disentangle one-by-one from LSB to MSB remaining_param = self.params for i in range(self.num_qubits): bitValue = (self.goalBitString // (2**i)) % 2 # work out which rotations must be done to disentangle the LSB # qubit (we peel away one qubit at a time) ( remaining_param, thetas, phis, ) = StatePreparation._rotations_to_disentangle(remaining_param, bitValue=bitValue) # perform the required rotations to decouple the LSB qubit (so that # it can be "factored" out, leaving a shorter amplitude vector to peel away) add_last_cnot = True if np.linalg.norm(phis) != 0 and np.linalg.norm(thetas) != 0: add_last_cnot = False if np.linalg.norm(phis) != 0: rz_mult = self._multiplex(RZGate, phis, last_cnot=add_last_cnot) circuit.append(rz_mult.to_instruction(), q[i : self.num_qubits]) if np.linalg.norm(thetas) != 0: ry_mult = self._multiplex(RYGate, thetas, last_cnot=add_last_cnot) circuit.append( ry_mult.to_instruction().reverse_ops(), q[i : self.num_qubits] ) circuit.global_phase -= np.angle(sum(remaining_param)) return circuit @staticmethod def _rotations_to_disentangle(local_param, bitValue): """ Static internal method to work out Ry and Rz rotation angles used to disentangle the LSB qubit. These rotations make up the block diagonal matrix U (i.e. multiplexor) that disentangles the LSB. [[Ry(theta_1).Rz(phi_1) 0 . . 0], [0 Ry(theta_2).Rz(phi_2) . 0], . . 0 0 Ry(theta_2^n).Rz(phi_2^n)]] """ remaining_vector = [] thetas = [] phis = [] param_len = len(local_param) for i in range(param_len // 2): # Ry and Rz rotations to move bloch vector from 0 to "imaginary" # qubit # (imagine a qubit state signified by the amplitudes at index 2*i # and 2*(i+1), corresponding to the select qubits of the # multiplexor being in state |i>) (remains, add_theta, add_phi) = StatePreparation._bloch_angles( local_param[2 * i : 2 * (i + 1)], bitValue=bitValue ) remaining_vector.append(remains) # rotations for all imaginary qubits of the full vector # to move from where it is to zero, hence the negative sign thetas.append(-add_theta) phis.append(-add_phi) return remaining_vector, thetas, phis @staticmethod def _bloch_angles(pair_of_complex, bitValue = 0): """ Static internal method to work out rotation to create the passed-in qubit from the zero vector. """ [a_complex, b_complex] = pair_of_complex # Force a and b to be complex, as otherwise numpy.angle might fail. a_complex = complex(a_complex) b_complex = complex(b_complex) mag_a = abs(a_complex) final_r = np.sqrt(mag_a**2 + np.absolute(b_complex) ** 2) # print(final_r) if final_r < _EPS: theta = 0 phi = 0 final_r = 0 final_t = 0 else: theta = bitValue * np.pi + 2 * np.arccos(mag_a / final_r) a_arg = np.angle(a_complex) b_arg = np.angle(b_complex) final_t = a_arg + b_arg phi = b_arg - a_arg # print(phi) # if phi >= np.pi: # theta = 2 * np.pi - theta # if phi <= -np.pi: # theta = 0 * np.pi - theta # print(pair_of_complex, a_arg, b_arg, theta) return final_r * np.exp(1.0j * final_t / 2), theta, phi def _multiplex(self, target_gate, list_of_angles, last_cnot=True, bitValue=0): """ Return a recursive implementation of a multiplexor circuit, where each instruction itself has a decomposition based on smaller multiplexors. The LSB is the multiplexor "data" and the other bits are multiplexor "select". Args: target_gate (Gate): Ry or Rz gate to apply to target qubit, multiplexed over all other "select" qubits list_of_angles (list[float]): list of rotation angles to apply Ry and Rz last_cnot (bool): add the last cnot if last_cnot = True Returns: DAGCircuit: the circuit implementing the multiplexor's action """ list_len = len(list_of_angles) local_num_qubits = int(math.log2(list_len)) + 1 q = QuantumRegister(local_num_qubits) circuit = QuantumCircuit(q, name="multiplex" + str(local_num_qubits)) lsb = q[0] msb = q[local_num_qubits - 1] # case of no multiplexing: base case for recursion if local_num_qubits == 1: circuit.append(target_gate(list_of_angles[0]), [q[0]]) return circuit # calc angle weights, assuming recursion (that is the lower-level # requested angles have been correctly implemented by recursion angle_weight = np.kron( [[0.5, 0.5], [0.5, -0.5]], np.identity(2 ** (local_num_qubits - 2)) ) # calc the combo angles list_of_angles = angle_weight.dot(np.array(list_of_angles)).tolist() # recursive step on half the angles fulfilling the above assumption multiplex_1 = self._multiplex( target_gate, list_of_angles[0 : (list_len // 2)], False ) circuit.append(multiplex_1.to_instruction(), q[0:-1]) # attach CNOT as follows, thereby flipping the LSB qubit circuit.append(CXGate(), [msb, lsb]) # implement extra efficiency from the paper of cancelling adjacent # CNOTs (by leaving out last CNOT and reversing (NOT inverting) the # second lower-level multiplex) multiplex_2 = self._multiplex( target_gate, list_of_angles[(list_len // 2) :], False ) if list_len > 1: circuit.append(multiplex_2.to_instruction().reverse_ops(), q[0:-1]) else: circuit.append(multiplex_2.to_instruction(), q[0:-1]) # attach a final CNOT if last_cnot: circuit.append(CXGate(), [msb, lsb]) return circuit def prepare_state(self, state, qubits=None, label=None, normalize=False): r"""Prepare qubits in a specific state. This class implements a state preparing unitary. Unlike :class:`qiskit.extensions.Initialize` it does not reset the qubits first. Args: state (str or list or int or Statevector): * Statevector: Statevector to initialize to. * str: labels of basis states of the Pauli eigenstates Z, X, Y. See :meth:`.Statevector.from_label`. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label '01' initializes the qubit zero to :math:`|1\rangle` and the qubit one to :math:`|0\rangle`. * list: vector of complex amplitudes to initialize to. * int: an integer that is used as a bitmap indicating which qubits to initialize to :math:`|1\rangle`. Example: setting params to 5 would initialize qubit 0 and qubit 2 to :math:`|1\rangle` and qubit 1 to :math:`|0\rangle`. qubits (QuantumRegister or Qubit or int): * QuantumRegister: A list of qubits to be initialized [Default: None]. * Qubit: Single qubit to be initialized [Default: None]. * int: Index of qubit to be initialized [Default: None]. * list: Indexes of qubits to be initialized [Default: None]. label (str): An optional label for the gate normalize (bool): Whether to normalize an input array to a unit vector. Returns: qiskit.circuit.Instruction: a handle to the instruction that was just initialized Examples: Prepare a qubit in the state :math:`(|0\rangle - |1\rangle) / \sqrt{2}`. .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(1) circuit.prepare_state([1/np.sqrt(2), -1/np.sqrt(2)], 0) circuit.draw() output: .. parsed-literal:: ┌─────────────────────────────────────┐ q_0: ┤ State Preparation(0.70711,-0.70711) ├ └─────────────────────────────────────┘ Prepare from a string two qubits in the state :math:`|10\rangle`. The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in :meth:`.Statevector.from_label`. .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.prepare_state('01', circuit.qubits) circuit.draw() output: .. parsed-literal:: ┌─────────────────────────┐ q_0: ┤0 ├ │ State Preparation(0,1) │ q_1: ┤1 ├ └─────────────────────────┘ Initialize two qubits from an array of complex amplitudes .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.prepare_state([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) circuit.draw() output: .. parsed-literal:: ┌───────────────────────────────────────────┐ q_0: ┤0 ├ │ State Preparation(0,0.70711,-0.70711j,0) │ q_1: ┤1 ├ └───────────────────────────────────────────┘ """ if qubits is None: qubits = self.qubits elif isinstance(qubits, (int, np.integer, slice, Qubit)): qubits = [qubits] num_qubits = len(qubits) if isinstance(state, int) else None return self.append( StatePreparation(state, num_qubits, label=label, normalize=normalize), qubits ) QuantumCircuit.prepare_state = prepare_state
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Quantum Shannon Decomposition. Method is described in arXiv:quant-ph/0406176. """ from __future__ import annotations import scipy import numpy as np from qiskit.circuit import QuantumCircuit, QuantumRegister from qiskit.quantum_info.synthesis import two_qubit_decompose, one_qubit_decompose from qiskit.quantum_info.operators.predicates import is_hermitian_matrix from qiskit.circuit.library.generalized_gates.uc_pauli_rot import UCPauliRotGate, _EPS from qiskit.circuit.library.generalized_gates.ucry import UCRYGate from qiskit.circuit.library.generalized_gates.ucrz import UCRZGate def qs_decomposition( mat: np.ndarray, opt_a1: bool = True, opt_a2: bool = True, decomposer_1q=None, decomposer_2q=None, *, _depth=0, ): """ Decomposes unitary matrix into one and two qubit gates using Quantum Shannon Decomposition. ┌───┐ ┌───┐ ┌───┐ ┌───┐ ─┤ ├─ ───────┤ Rz├─────┤ Ry├─────┤ Rz├───── │ │ ≃ ┌───┐└─┬─┘┌───┐└─┬─┘┌───┐└─┬─┘┌───┐ /─┤ ├─ /─┤ ├──□──┤ ├──□──┤ ├──□──┤ ├ └───┘ └───┘ └───┘ └───┘ └───┘ The number of CX gates generated with the decomposition without optimizations is, .. math:: \frac{9}{16} 4^n - frac{3}{2} 2^n If opt_a1 = True, the default, the CX count is reduced by, .. math:: \frac{1}{3} 4^{n - 2} - 1. If opt_a2 = True, the default, the CX count is reduced by, .. math:: 4^{n-2} - 1. This decomposition is described in arXiv:quant-ph/0406176. Arguments: mat (ndarray): unitary matrix to decompose opt_a1 (bool): whether to try optimization A.1 from Shende. This should eliminate 1 cnot per call. If True CZ gates are left in the output. If desired these can be further decomposed to CX. opt_a2 (bool): whether to try optimization A.2 from Shende. This decomposes two qubit unitaries into a diagonal gate and a two cx unitary and reduces overal cx count by 4^(n-2) - 1. decomposer_1q (None or Object): optional 1Q decomposer. If None, uses :class:`~qiskit.quantum_info.synthesis.one_qubit_decomposer.OneQubitEulerDecomser` decomposer_2q (None or Object): optional 2Q decomposer. If None, uses :class:`~qiskit.quantum_info.synthesis.two_qubit_decomposer.two_qubit_cnot_decompose Return: QuantumCircuit: Decomposed quantum circuit. """ # _depth (int): Internal use parameter to track recursion depth. dim = mat.shape[0] print(dim) nqubits = int(np.log2(dim)) if np.allclose(np.identity(dim), mat): return QuantumCircuit(nqubits) if dim == 2: if decomposer_1q is None: decomposer_1q = one_qubit_decompose.OneQubitEulerDecomposer() circ = decomposer_1q(mat) elif dim == 4: if decomposer_2q is None: if opt_a2 and _depth > 0: from qiskit.circuit.library import UnitaryGate # pylint: disable=cyclic-import def decomp_2q(mat): ugate = UnitaryGate(mat) qc = QuantumCircuit(2, name="qsd2q") qc.append(ugate, [0, 1]) return qc decomposer_2q = decomp_2q else: decomposer_2q = two_qubit_decompose.two_qubit_cnot_decompose circ = decomposer_2q(mat) else: qr = QuantumRegister(nqubits) circ = QuantumCircuit(qr) dim_o2 = dim // 2 # perform cosine-sine decomposition (u1, u2), vtheta, (v1h, v2h) = scipy.linalg.cossin(mat, separate=True, p=dim_o2, q=dim_o2) # left circ left_circ = _demultiplex(v1h, v2h, opt_a1=opt_a1, opt_a2=opt_a2, _depth=_depth) circ.append(left_circ.to_instruction(), qr) # middle circ if opt_a1: nangles = len(vtheta) half_size = nangles // 2 # get UCG in terms of CZ circ_cz = _get_ucry_cz(nqubits, (2 * vtheta).tolist()) circ.append(circ_cz.to_instruction(), range(nqubits)) # merge final cz with right-side generic multiplexer u2[:, half_size:] = np.negative(u2[:, half_size:]) else: ucry = UCRYGate((2 * vtheta).tolist()) circ.append(ucry, [qr[-1]] + qr[:-1]) # right circ right_circ = _demultiplex(u1, u2, opt_a1=opt_a1, opt_a2=opt_a2, _depth=_depth) circ.append(right_circ.to_instruction(), qr) if opt_a2 and _depth == 0 and dim > 4: return _apply_a2(circ) return circ def _demultiplex(um0, um1, opt_a1=False, opt_a2=False, *, _depth=0): """Decompose a generic multiplexer. ────□──── ┌──┴──┐ /─┤ ├─ └─────┘ represented by the block diagonal matrix ┏ ┓ ┃ um0 ┃ ┃ um1 ┃ ┗ ┛ to ┌───┐ ───────┤ Rz├────── ┌───┐└─┬─┘┌───┐ /─┤ w ├──□──┤ v ├─ └───┘ └───┘ where v and w are general unitaries determined from decomposition. Args: um0 (ndarray): applied if MSB is 0 um1 (ndarray): applied if MSB is 1 opt_a1 (bool): whether to try optimization A.1 from Shende. This should elliminate 1 cnot per call. If True CZ gates are left in the output. If desired these can be further decomposed opt_a2 (bool): whether to try optimization A.2 from Shende. This decomposes two qubit unitaries into a diagonal gate and a two cx unitary and reduces overal cx count by 4^(n-2) - 1. _depth (int): This is an internal variable to track the recursion depth. Returns: QuantumCircuit: decomposed circuit """ dim = um0.shape[0] + um1.shape[0] # these should be same dimension nqubits = int(np.log2(dim)) um0um1 = um0 @ um1.T.conjugate() if is_hermitian_matrix(um0um1): eigvals, vmat = scipy.linalg.eigh(um0um1) else: evals, vmat = scipy.linalg.schur(um0um1, output="complex") eigvals = evals.diagonal() dvals = np.emath.sqrt(eigvals) dmat = np.diag(dvals) wmat = dmat @ vmat.T.conjugate() @ um1 circ = QuantumCircuit(nqubits) # left gate left_gate = qs_decomposition( wmat, opt_a1=opt_a1, opt_a2=opt_a2, _depth=_depth + 1 ).to_instruction() circ.append(left_gate, range(nqubits - 1)) # multiplexed Rz angles = 2 * np.angle(np.conj(dvals)) ucrz = UCRZGate(angles.tolist()) circ.append(ucrz, [nqubits - 1] + list(range(nqubits - 1))) # right gate right_gate = qs_decomposition( vmat, opt_a1=opt_a1, opt_a2=opt_a2, _depth=_depth + 1 ).to_instruction() circ.append(right_gate, range(nqubits - 1)) return circ def _get_ucry_cz(nqubits, angles): """ Get uniformly controlled Ry gate in in CZ-Ry as in UCPauliRotGate. """ nangles = len(angles) qc = QuantumCircuit(nqubits) q_controls = qc.qubits[:-1] q_target = qc.qubits[-1] if not q_controls: if np.abs(angles[0]) > _EPS: qc.ry(angles[0], q_target) else: angles = angles.copy() UCPauliRotGate._dec_uc_rotations(angles, 0, len(angles), False) for (i, angle) in enumerate(angles): if np.abs(angle) > _EPS: qc.ry(angle, q_target) if not i == len(angles) - 1: binary_rep = np.binary_repr(i + 1) q_contr_index = len(binary_rep) - len(binary_rep.rstrip("0")) else: # Handle special case: q_contr_index = len(q_controls) - 1 # leave off last CZ for merging with adjacent UCG if i < nangles - 1: qc.cz(q_controls[q_contr_index], q_target) return qc def _apply_a2(circ): from qiskit import transpile from qiskit.quantum_info import Operator from qiskit.circuit.library.generalized_gates import UnitaryGate decomposer = two_qubit_decompose.TwoQubitDecomposeUpToDiagonal() ccirc = transpile(circ, basis_gates=["u", "cx", "qsd2q"], optimization_level=0) ind2q = [] # collect 2q instrs for i, instruction in enumerate(ccirc.data): if instruction.operation.name == "qsd2q": ind2q.append(i) if len(ind2q) == 0: return ccirc elif len(ind2q) == 1: # No neighbors to merge diagonal into; revert name ccirc.data[ind2q[0]].operation.name = "Unitary" return ccirc # rolling over diagonals ind2 = None # lint for ind1, ind2 in zip(ind2q[0:-1:], ind2q[1::]): # get neigboring 2q gates separated by controls instr1 = ccirc.data[ind1] mat1 = Operator(instr1.operation).data instr2 = ccirc.data[ind2] mat2 = Operator(instr2.operation).data # rollover dmat, qc2cx = decomposer(mat1) ccirc.data[ind1] = instr1.replace(operation=qc2cx.to_gate()) mat2 = mat2 @ dmat ccirc.data[ind2] = instr2.replace(UnitaryGate(mat2)) qc3 = two_qubit_decompose.two_qubit_cnot_decompose(mat2) ccirc.data[ind2] = ccirc.data[ind2].replace(operation=qc3.to_gate()) return ccirc
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from Image_Reader import ImageReader from DCT_Classic import DCT import Quantum_Subroutines import os import Image_Compression import cv2 import matplotlib.pyplot as plt import numpy as np from qiskit import QuantumCircuit, Aer, transpile from qiskit_aer.backends.aerbackend import AerBackend from qiskit.providers.fake_provider import FakeSydneyV2 from qiskit_aer import AerSimulator import csv import CustomUnitaryDecomp np.set_printoptions(precision=3, suppress=True) max = 16 path = "StateCompression/images/camera.png" image = ImageReader.getImage(path) image = cv2.resize(image, (max, max)) basis_gates = ['u1', 'u2', 'u3', 'cx', 'id'] basis_gates = ['u3', 'cx', 'id'] [U, D, V] = np.linalg.svd(image) U[max-1, 0] *= -1 print(U) thetas = [] for i in range(0, max-1): val = U[i, 0] print(val) for theta in thetas: val /= np.sin(theta) print(val) print() thetas.append(np.arccos(val)) # print(thetas) # print(np.cos(thetas[0])) print("") for i in range(0, max-1): val = np.cos(thetas[i]) for j in range(i-1, -1, -1): # print(j) val *= np.sin(thetas[j]) print(val) val = 1 for i in range(0, max-1): val *= np.sin(thetas[i]) print(val)
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from Image_Reader import ImageReader from DCT_Classic import DCT import Quantum_Subroutines import os import Image_Compression import cv2 import matplotlib.pyplot as plt import numpy as np from qiskit import QuantumCircuit, Aer, transpile from qiskit_aer.backends.aerbackend import AerBackend from qiskit.providers.fake_provider import FakeSydneyV2 from qiskit_aer import AerSimulator from qiskit.circuit.library import Isometry, StatePreparation import csv import CustomUnitaryDecomp import scipy max = 8 blockSize = 4 np.set_printoptions(precision=3, suppress=True) path = "StateCompression/images/camera.png" image = ImageReader.getImage(path) image = cv2.resize(image, (max, max)).astype(int) basis_gates = ['u1', 'u2', 'u3', 'cx', 'id'] basis_gates = ['u3', 'cx', 'id'] state = image.flatten() / np.linalg.norm(image) qubits = int(np.log2(max**2)) qc = QuantumCircuit(qubits+1) numOfBlocks = int((max / blockSize)**2) indexQubits = int(np.log2(numOfBlocks)) # qc.initialize(state, range(0, qubits)) def recursiveBuildCircuit(state, qc, maxSize, controlQubit, currentQubit, allLeft, indexQubits, allRight): if (len(state) == maxSize**2): statePrep = StatePreparation(state).control(1) qubitsForState = int(np.log2(maxSize**2)) # if (allLeft): # qc.mcx(list(range(qubitsForState, qubitsForState + indexQubits)), controlQubit) qubits = [controlQubit] + list(range(0, qubitsForState)) # qc.append(statePrep, qubits) # if (allLeft): # qc.mcx(list(range(qubitsForState, qubitsForState + indexQubits)), controlQubit) # qc.mcx(list(range(qubitsForState, qubitsForState + indexQubits)), controlQubit) return qc else: left = state[:len(state)//2] right = state[len(state)//2:] leftNorm = np.linalg.norm(left) rightNorm = np.linalg.norm(right) theta = 2 * np.arccos(rightNorm) if (allLeft): qc.ry(theta, currentQubit) qc = recursiveBuildCircuit(left / leftNorm, qc, maxSize, controlQubit, currentQubit-1, allLeft*True, indexQubits, False) # print(left / leftNorm) # print(right / rightNorm) # qc.x(currentQubit) # qc.cx(currentQubit, controlQubit) # if (currentQubit != 3): qc = recursiveBuildCircuit(right / rightNorm, qc, maxSize, controlQubit, currentQubit-1, False, indexQubits, allRight * True) # qc.x(currentQubit) return qc # qc = recursiveBuildCircuit(state, qc, blockSize, qubits, qubits-1, True, indexQubits, True) # print(qc) norms = [] for i in range(0, numOfBlocks): print(state[i*blockSize**2:(i+1)*blockSize**2]) norms.append(np.linalg.norm(state[i*blockSize**2:(i+1)*blockSize**2])) print(np.inner(norms, norms)) # qc.initialize(norms, range(qubits-indexQubits, qubits)) # for i in range(0, 1): # currState = state[i*blockSize**2:(i+1)*blockSize**2] # stateToPrepare = currState / np.linalg.norm(currState) # stateCirc = StatePreparation(stateToPrepare).control(1) # qc.x(list(range(qubits-indexQubits, qubits))) # qc.mcx(list(range(qubits-indexQubits, qubits)), qubits) # statePrepQubits = [qubits] + list(range(0, int(np.log2(blockSize**2)))) # qc.append(stateCirc, statePrepQubits) # qc.mcx(list(range(qubits-indexQubits, qubits)), qubits) # qc.x(list(range(qubits-indexQubits, qubits))) qc.initialize(state, range(0, qubits)) # half1 = state[:max**2//2] # half2 = state[max**2//2:] # half1Norm = np.linalg.norm(half1) # half2Norm = np.linalg.norm(half2) # print(half1Norm, half2Norm) # statePrep1 = StatePreparation(half1/half1Norm).control(1) # statePrep2 = StatePreparation(half2/half2Norm).control(1) # q = [qubits-1] + list(range(0, qubits-1)) # theta = 2 * np.arccos(half2Norm) # qc.ry(theta, qubits-1) # qc.append(statePrep1, q) # qc.x(qubits-1) # qc.append(statePrep2, q) # qc.x(qubits-1) # qc.x(qubits-1) # print(qc) sim = Aer.get_backend('aer_simulator') circ = transpile(qc, sim, basis_gates=basis_gates) depth = circ.depth() gates = sum(dict(circ.count_ops()).values()) print(depth, gates) circ.save_statevector() result = sim.run(circ).result() out_vector = result.get_statevector().data[0:max*max] imageData = out_vector.real.reshape((max, max)) print(imageData) # print(np.linalg.norm(imageData)) # print(state.reshape((max, max)))
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from qiskit import QuantumCircuit from qiskit.circuit.library import QFT import numpy as np from CustomStatePrep import StatePreparation from qiskit.circuit.library import Isometry def QDCT(n, mctMode="v-chain"): if mctMode == "v-chain": ancillaQubits = list(range(n+1, 2*n-1)) qubits = 2*n-1 elif mctMode == "noancilla": ancillaQubits = [] qubits = n+2 elif mctMode == "recursion": ancillaQubits = [n+1] qubits = n+2 qc = QuantumCircuit(qubits) for i in range(n, 0, -1): qc.swap(i, i-1) qc.x(0) qc.h(n+1) for i in range(0, n): qc.cx(n+1, n-i) qft = QFT(n+2, inverse=False, do_swaps=True) # for i in range(0, int(n/2)+1): # qc.swap(i, n+1-i) qc.append(qft, range(0, n+2)) qc.barrier() qc.z(n+1) qc.h(n+1) for i in range(0, n): qc.cx(n, i) qc.barrier() for i in range(n-1, 0, -1): qc.mct(list(range(0, i)) + [n], i, ancilla_qubits=ancillaQubits, mode=mctMode) qc.cx(n, 0) qc.z(n) qc.h(n) for i in range(0, n): qc.x(i) qc.ry(np.pi/4, n) qc.mct(list(range(0, n)), n, ancilla_qubits=ancillaQubits, mode=mctMode) qc.ry(-np.pi/4, n) for i in range(0, n): qc.x(i) qc.name = "QDCT" return qc def permutationCircuit(mat, N, M, N_c, M_c): num_qubits = int(np.log2(N*M)) num_qubits_c = int(np.log2(N_c*M_c)) qc = QuantumCircuit(num_qubits) n = int(np.log2(N)) m = int(np.log2(M)) n_c = int(np.log2(N_c)) m_c = int(np.log2(M_c)) f = mat.flatten() f_c = f # qubit_list = list(range(0, m_c)) + list(range(m, m+n_c)) # qubit_list = list(range(0, m_c+n_c)) qc2 = QuantumCircuit(num_qubits_c) statePrep = Isometry(f_c, num_ancillas_zero=0, num_ancillas_dirty=0) qc.append(statePrep, range(0, num_qubits_c)) # qc.initialize(f_c, range(0, num_qubits_c)) # print(qc2.decompose(reps=2)) for i in range(n_c-1, -1, -1): if (m_c != m): qc.swap(m + i, m_c + i) qc.name = "PERM" return qc def buildCompressedState(comp, rC, cC): normalCompState = comp / np.linalg.norm(comp) r = int(comp.shape[0] / rC) c = int(comp.shape[1] / cC) state = normalCompState[:r, :c] qubits = int(np.log2(comp.size)) qc = QuantumCircuit(qubits) permCirc = permutationCircuit(state, comp.shape[0], comp.shape[1], r, c) qc.append(permCirc, range(0, qubits)) qc.name = "C_S_P" return qc
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from Image_Reader import ImageReader from DCT_Classic import DCT import Quantum_Subroutines import os import Image_Compression import cv2 import matplotlib.pyplot as plt import numpy as np from qiskit import QuantumCircuit, Aer, transpile from qiskit_aer.backends.aerbackend import AerBackend from qiskit.providers.fake_provider import FakeSydneyV2 from qiskit_aer import AerSimulator from qiskit.quantum_info import random_statevector import csv from CustomStatePrep import StatePreparation qc = QuantumCircuit(4) state = np.random.randint(-100, 100, size=16) state = state / np.linalg.norm(state) state = [ -0.28672064, 0.09159132, -0.33052518, 0.29866733, -0.39025865, -0.21504048, -0.09557355, 0.07566239, 0.03982231, 0.23495164, 0.10353801, -0.37432972, 0.37432972, -0.02787562, -0.28273841, -0.26282725, ] # state = [1] * 16 # state[0] = -1 # state[1] = 0 # # state[4] = 1 # # state[5] = 1 # # state[9] = 0 # # state[14] = -1 # state[14] = -1 # state[15] = -1 print(np.array(state).reshape(4, 4)) basis = ["cx", "ry", "x", "rz"] statePrepCircuit = StatePreparation(state, normalize=True) qc.append(statePrepCircuit, range(0, 4)) print(qc.decompose(reps=3)) sim = Aer.get_backend("aer_simulator") circ = transpile(qc, sim, basis_gates=basis) depth = circ.depth() gates = sum(dict(circ.count_ops()).values()) circ.save_statevector() result = sim.run(circ).result() out_vector = result.get_statevector().data print(out_vector)
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from Image_Reader import ImageReader from DCT_Classic import DCT import Quantum_Subroutines import os import Image_Compression import cv2 import matplotlib.pyplot as plt import numpy as np from qiskit import QuantumCircuit, Aer, transpile from CustomStatePrep import StatePreparation from qiskit_aer.backends.aerbackend import AerBackend from qiskit.providers.fake_provider import FakeSydneyV2 from qiskit_aer import AerSimulator from qiskit.circuit.library import Isometry import csv import CustomUnitaryDecomp import scipy max = 256 np.set_printoptions(precision=3, suppress=True) path = "StateCompression/images/camera.png" image = ImageReader.getImage(path) image = cv2.resize(image, (max, max)).astype(int) basis_gates = ['u1', 'u2', 'u3', 'cx', 'id'] basis_gates = ['u3', 'cx', 'id'] # image = image / np.linalg.norm(image) maxCompression = 8 for comp in range(maxCompression, -1, -1): [U, D, V] = np.linalg.svd(image) compression = comp n = max // 2**compression D = D[:n] dNorm = np.linalg.norm(D) D = D / dNorm D = D.transpose() def prepareDState(D, totalQubits): qubits = int(np.log2(len(D))) qc = QuantumCircuit(totalQubits) qc.initialize(D, range(0, qubits)) for i in range(0, qubits): qc.cx(i, totalQubits//2) return qc # qubits = int(2 * np.log2(max)) # qc = QuantumCircuit(qubits) # if (n != 1): # statePrep = prepareDState(D, qubits) # statePrep.name = "S" # qc.append(statePrep, range(0, qubits)) # print(U.shape) # print(V.shape) V = V.transpose() U = U[:, :n] V = V[:, :n] # print(U) # uIsometry = Isometry(U, num_ancillas_dirty=0, num_ancillas_zero=0) # uIsometry.name = "U" # vIsometry = Isometry(V, num_ancillas_dirty=0, num_ancillas_zero=0) # vIsometry.name = "V" # qc.append(vIsometry, range(0, qubits//2)) # qc.append(uIsometry, range(qubits//2, qubits)) # # print(qc) # sim = Aer.get_backend('aer_simulator') # circ = transpile(qc, sim, basis_gates=basis_gates) # depth = circ.depth() # gates = sum(dict(circ.count_ops()).values()) # # print(depth, gates) # # circ.save_statevector() # # result = sim.run(circ, nshots=1).result() # # out_vector = result.get_statevector().data # # imageData = out_vector.real.reshape((max, max)) # # # imageData = imageData V = V.transpose() for i in range(0, len(D)): V[i, :] *= D[i] classicalCompressed = np.matmul(U, V) * dNorm # inner = np.inner(classicalCompressed.flatten(), image.flatten() / np.linalg.norm(image)) # print(V) # print(D) # for i in range(0, len(D)): # V[i, :] *= D[i] # print(V) # print(np.matmul(U, V)) # print(imageData) # quantumImage = (imageData * dNorm) # psnr = cv2.PSNR(image.astype(int), classicalCompressed.astype(int)) # print(comp, gates, depth, psnr) # print(comp, inner**2) plt.imsave("svd_cameraX" + str(comp) + ".png", classicalCompressed, cmap='gray') # plt.show()
https://github.com/JohnBurke4/qaoa_testing_framework
JohnBurke4
from Image_Reader import ImageReader from DCT_Classic import DCT import Quantum_Subroutines import os import Image_Compression import cv2 import matplotlib.pyplot as plt import numpy as np from qiskit import QuantumCircuit, Aer, transpile from qiskit_aer.backends.aerbackend import AerBackend from qiskit.providers.fake_provider import FakeSydneyV2 from qiskit_aer import AerSimulator import csv N = 256 dct = DCT.normal1D(N) path = os.path.abspath("StateCompression/images/camera.png") paths = ["camera", "peppers", "bird"] paths = [paths[0]] # image = ImageReader.chopUpImage(image, N)['pieces'][0] basis_gates = ['u1', 'u2', 'u3', 'cx', 'id'] basis_gates = ['u3', 'cx', 'id'] rC = 2 cC = 1 comp = [(2, 1), (2, 2), (4, 2), (4, 4), (8, 4), (8, 8), (16, 8), (16, 16)]#, (32, 16), (32, 32)] comp.reverse() # comp = [comp[1]] # comp = [(8, 8)] # open the file in the write mode f = open('compression_results_5.csv', 'w') # create the csv writer writer = csv.writer(f) headings = ["image", "compression", "psnr", "depth", "gates", "inner_product"] writer.writerow(headings) # write a row to the csv file for im in paths: image = ImageReader.getImage(os.path.abspath("StateCompression/images/" + im + ".png"), N) # print(image) imageNorm = np.linalg.norm(image) normalizedImage = image / imageNorm for c in comp: # print(c) rC = c[0] cC = c[1] compressedImage = Image_Compression.naiveDCTCompression(image, N, rC, cC) norm = np.linalg.norm(compressedImage) normData = compressedImage / norm remade = DCT.remakeImage(normData, dct) inner = np.inner(remade.flatten(), normalizedImage.flatten()) # print("C:", c, "F:", inner**2) nQubits = int(np.log2(N*N)) aQubits = int(nQubits/2)-1 # aQubits = 0 totalQubits = nQubits + aQubits qc = QuantumCircuit(totalQubits) statePrep = Quantum_Subroutines.buildCompressedState(compressedImage, rC, cC) # qc.initialize(normalizedImage.flatten(), range(0, nQubits)) qc.append(statePrep, range(0, nQubits)) qdct = Quantum_Subroutines.QDCT(int(nQubits/2), mctMode="v-chain") qc.append(qdct.inverse(), list(range(0, int(nQubits/2))) + list(range(nQubits, totalQubits))) qc.append(qdct.inverse(), list(range(int(nQubits/2), int(nQubits))) + list(range(nQubits, totalQubits))) sim = Aer.get_backend('aer_simulator') # print("Before") circ = transpile(qc, sim, basis_gates=basis_gates) # circ = transpile(qc, sim) # print("After") depth = circ.depth() gates = sum(dict(circ.count_ops()).values()) circ.save_statevector() result = sim.run(circ).result() out_vector = result.get_statevector().data[0:N*N] imageData = out_vector.real.reshape((N, N)) # imageData = imageData quantumImage = (imageData * imageNorm) # print(quantumImage) psnr = cv2.PSNR(image.astype(int), quantumImage.astype(int)) print("C:", c, "P:", psnr, "D:", depth, "G:", gates, "I:", inner**2) # print("C:", c, "D:", depth, "G:", gates) # row = [im, c[0] * c[1], psnr, depth, gates, inner**2] # # writer.writerow(row) # # plt.title("PSNR: " + str(psnr)) # # plt.imshow(quantumImage, cmap='gray') # # plt.show() # print(image1) # print(image2) # ImageReader.displayImage(image1.astype(np.uint8), "PSNR: " + str(int(psnr))) # ImageReader.displayImage(image2, "Quantum Compressed") # block = np.array([[144, 99, 94, 90], # [148, 99, 94, 90], # [148, 99, 94, 90], # [148, 99, 94, 90]]).transpose() # # print(block) # dct2 = DCT.normal1D(4) # convert = DCT.convertImage2D(block, dct2).astype(int) # print(convert) # convert[0,1] = -12 # convert[1,1] = -15 # convert[2,1] = -4 # convert[3,1] = 4 # print(convert) # remade = DCT.remakeImage(convert, dct2).astype(int) # print(remade) # np.set_printoptions(precision=2) # np.set_printoptions(suppress=True) # convert2 = DCT.convertImage2D(remade, dct2) # convert2[:,2] = 0 # convert2[:,3] = 0 # print(np.linalg.norm(convert2))
https://github.com/madmen2/QASM
madmen2
from qiskit import * import matplotlib from qiskit.tools.visualization import plot_histogram circuit = QuantumCircuit(6+1,6) circuit.draw(output='mpl') secret_number='1001010' circuit.h([0,1,2,3,4,5]) circuit.x(6) circuit.h(6) circuit.barrier() circuit.cx(5,6) circuit.cx(3,6) circuit.cx(0,6) circuit.barrier() circuit.h([0,1,2,3,4,5]) circuit.barrier() #algorithm circuit.measure([0,1,2,3,4,5],[0,1,2,3,4,5]) circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend=simulator, shots=1).result() print(result.get_counts(circuit)) #general case secret_number1 ='10110100' circuit = QuantumCircuit(len(secret_number1)+1,len(secret_number1)) circuit.h(range(len(secret_number1))) circuit.x(len(secret_number1)) circuit.h(len(secret_number1)) circuit.barrier() for ii, yesno in enumerate(reversed(secret_number1)): if yesno == '1': circuit.cx(ii, len(secret_number1)) circuit.barrier() circuit.h(range(len(secret_number1))) circuit.barrier() #algorithm circuit.measure(range(len(secret_number1)),range(len(secret_number1))) circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend= simulator).result() counts=result.get_counts(circuit) print(counts )
https://github.com/madmen2/QASM
madmen2
import numpy as np from qiskit import * import matplotlib qr = QuantumRegister(2) #measurements from quantum bits = use classical register cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) circuit.draw() # adding quantum gates to create entanglement (Hadamart gate) circuit.h(qr[0]) %matplotlib inline circuit.draw(output='mpl') #two qubit operation control X (logical if) circuit.cx(qr[0], qr[1]) circuit.draw(output='mpl') #entanglement achieved #measurement, storing measurements into computational register circuit.measure(qr,cr) circuit.draw(output='mpl') #performance simulations simulator = Aer.get_backend('qasm_simulator') execute(circuit, backend = simulator) result = execute(circuit, backend = simulator).result() #plotting results from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) #running circuit on quantum computer IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp = provider.get_backend('ibmq_manila') job= execute(circuit, backend=qcomp) from qiskit.tools import job_monitor job_monitor(job) result = job.result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
https://github.com/madmen2/QASM
madmen2
#Quantum gates basics from qiskit import * from qiskit.tools.visualization import plot_bloch_multivector from qiskit.tools.visualization import plot_histogram import matplotlib circuit = QuantumCircuit(1,1) #one qubit one classical bit (one operation ) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') #describes the quantum state of the qbit result = execute(circuit, backend= simulator).result() statevector= result.get_statevector() print(statevector) circuit.draw(output='mpl') #plotting bloch vector plot_bloch_multivector(statevector) circuit.measure([0],[0]) simulator= Aer.get_backend('qasm_simulator') result = execute(circuit, backend= simulator, shots=1023).result() plot_histogram(result.get_counts(circuit)) #displaying results in matrices circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('unitary_simulator') #unitary simulator for matrix representation result = execute(circuit,backend=simulator).result() unitary= result.get_unitary() print(unitary)
https://github.com/madmen2/QASM
madmen2
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector ### Creating 3 qubit and 2 classical bits in each separate register qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) ### A third party eve helps to create an entangled state def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, a, b): qc.cx(a, b) qc.h(a) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): qc.barrier() qc.measure(a,0) qc.measure(b,1) teleportation_circuit.barrier() measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) qc.z(qubit).c_if(crz, 1) teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() from qiskit.extensions import Initialize import math qc = QuantumCircuit(1) initial_state = [0,1] init_gate = Initialize(initial_state) # qc.append(initialize_qubit, [0]) qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical registers crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) # Bob decodes qubits bob_gates(qc, 2, crz, crx) qc.draw() backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) qc.draw() cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts) def bob_gates(qc, a, b, c): qc.cz(a, c) qc.cx(b, c) qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob bob_gates(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() from qiskit import IBMQ IBMQ.save_account('### IMB TOKEN ') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/madmen2/QASM
madmen2
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.tools.visualization import plot_histogram #Fourier checking algoirthm f=[1,-1,-1,-1] g=[1,1,-1,-1] #if probability of fouriere checking f,g > 0 = correlation circ = FourierChecking(f=f,g=g) circ.draw() zero = qi.Statevector.from_label('00') sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs) # fourier transform of function g is correlated
https://github.com/madmen2/QASM
madmen2
my_list = [1,3,5,2,4,2,5,8,0,7,6] #classical computation method def oracle(my_input): winner =7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if oracle(trial_number) is True: print("Winner is found at index %i" %index) print("%i calls to the oracle used " %(index +1)) break #quantum implemenation from qiskit import * import matplotlib.pyplot as plt import numpy as np from qiskit.tools import job_monitor # oracle circuit oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit, backend=backend) result= job.result() sv= result.get_statevector() np.around(sv,2) #amplitude amplification reflection = QuantumCircuit(2, name='reflection') reflection.h([0,1]) reflection.z([0,1]) reflection.cz(0,1) reflection.h([0,1]) reflection.to_gate() reflection.draw(output='mpl') #testing circuit on simulator simulator = Aer.get_backend('qasm_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.append(reflection, [0,1]) grover_circuit.barrier() grover_circuit.measure([0,1],[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit,backend=simulator,shots=1) result=job.result() result.get_counts() #testing on real backend system IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp= provider.get_backend('ibmq_manila') job = execute(grover_circuit,backend=qcomp) job_monitor(job) result=job.result() counts=result.get_counts(grover_circuit) from qiskit.visualization import plot_histogram plot_histogram(counts) counts['11']
https://github.com/madmen2/QASM
madmen2
#quantum SVM import qiskit from matplotlib import pyplot as plt import numpy as np from qiskit.ml.datasets import ad_hoc_data from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.circuit.library import ZZFeatureMap from qiskit.aqua.algorithms import QSVM from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name feature_dim =2 training_dataset=20 testing_dataset_size = 10 random_seed = 10598 shots=10000 #data sample_Total, training_input, test_input, class_labels= ad_hoc_data(training_size=training_dataset, test_size=testing_dataset_size, gap= 0.5, #gap in higher dim space, n=feature_dim, plot_data=True) datapoints , class_to_label = split_dataset_to_data_and_labels(test_input) print(class_to_label) #run on simulator backend = BasicAer.get_backend('qasm_simulator') feature_map =ZZFeatureMap(feature_dim,reps=2) svm= QSVM(feature_map,training_input,test_input,None) svm.random_seed = random_seed quantim_instance = QuantumInstance(backend,shots=shots, seed_simulator=random_seed,seed_transpiler=random_seed) result=svm.run(quantim_instance) #distance between points in higher dimensional space print('kernal Matrix during training:') kernel_matrix= result['kernel_matrix_training'] img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest', origin='upper',cmap='bone_r') plt.show() #validating accuracy predicted_labels = svm.predict(datapoints[0]) predicted_classes= map_label_to_class_name(predicted_labels, svm.label_to_class) print("ground truth: {}".format(datapoints[0])) print("prediction : {}".format(predicted_labels)) print("testing success ratio: ", result['testing_accuracy'])
https://github.com/saalimon/grover_max_cut
saalimon
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute from qiskit.tools.visualization import plot_histogram IBMQ.load_account() q = QuantumRegister(15) c = ClassicalRegister(4) qc = QuantumCircuit(q,c) #cutedge checker def ccheck(a, b, c): qc.cx(q[a], q[c]) qc.cx(q[b], q[c]) #half adder #inputs: a,b #outputs: the sum output s and carry output c def hadder(a,b,s,c): #XOR qc.cx(q[b], q[s]) qc.cx(q[a], q[s]) #AND qc.ccx(q[a], q[b], q[c]) #inverse operations def iccheck(a, b, c): qc.cx(q[b], q[c]) qc.cx(q[a], q[c]) def ihadder(a,b,s,c): qc.ccx(q[a], q[b], q[c]) qc.cx(q[a], q[s]) qc.cx(q[b], q[s]) #initialization qc.h(q[0:4]) qc.barrier() for i in range(2): #step 3.1 ccheck(0,1,4) ccheck(0,2,5) ccheck(0,3,6) #step 3.2 hadder(4,5,8,7) hadder(5,6,10,9) hadder(7,9,12,11) # grover qc.x(q[13]) qc.h(q[13]) qc.cx(q[11],q[13]) ihadder(7,9,12,11) ihadder(5,6,10,9) ihadder(4,5,8,7) iccheck(0,3,6) iccheck(0,2,5) iccheck(0,1,4) qc.barrier() qc.h(q[0]) qc.h(q[1]) qc.h(q[2]) qc.h(q[3]) qc.x(q[0]) qc.x(q[1]) qc.x(q[2]) qc.x(q[3]) qc.barrier() qc.h(q[3]) qc.barrier() qc.ccx(q[0],q[1],q[13]) qc.cx(q[2],q[14]) qc.ccx(q[14],q[13],q[3]) qc.cx(q[2],q[14]) qc.ccx(q[0],q[1],q[13]) qc.barrier() qc.h(q[3]) qc.barrier() qc.x(q[0]) qc.x(q[1]) qc.x(q[2]) qc.x(q[3]) qc.h(q[0]) qc.h(q[1]) qc.h(q[2]) qc.h(q[3]) qc.barrier() qc.measure(q[0:4], c[0:4]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=10000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') backend = Aer.get_backend('qasm_simulator') job = execute(qc,backend,shots=100000) result = job.result() count = result.get_counts() plot_histogram(count)
https://github.com/HypsoHypso/QuantumComputingScripts
HypsoHypso
############################################################## # Imports # ############################################################## # %matplotlib inline ### to be enabled on qiskit notebook import qiskit from qiskit import ( IBMQ, ClassicalRegister, QuantumCircuit, QuantumRegister, QuantumCircuit, execute, Aer, ) from qiskit.visualization import plot_histogram ############################################################## # Circuit # ############################################################## circuit = QuantumCircuit(2, 2) # 2 quantum bits and 2 classical bits circuit.h(0) # Hadamard Gate circuit.cx(0, 1) # CNOT Gate circuit.measure([0, 1], [0, 1]) # Measurement circuit.draw() print(circuit) # circuit.draw(output="mpl", filename="circuit.png") # to be enabled on qiskit notebook ############################################################## # Second Section : # # Execution on a quantum simulator # # Perfectly quantum results # # Maximum entanglement # ############################################################## simulator = Aer.get_backend("qasm_simulator") # Setting up the simulator job = execute(circuit, simulator, shots=1000) # Runs on 1000 trials result = job.result() # Get the result counts = result.get_counts(circuit) # Get the result print("\nResults :", counts) plot_histogram(counts) for qubit, percentage in counts.items(): percentage *= 0.1 print(f"Qubit : {qubit} => Percentage : {round(percentage, 3)}%") print(("Non-maximal entanglement", "Maximum entanglement")[counts.get("01") == counts.get("10")]) ############################################################## # Third Section : # # Execution on a real quantum computer # # Only executable on IBM Quantum Lab # # Some result errors # ############################################################## provider = IBMQ.get_provider(group="open") device = provider.get_backend( """YOUR CHOSEN QUANTUM COMPUTER NAME""" ) # Declaration of a quantum computer located at a certain place job_exp = execute(circuit, device, shots=1024) # Runs on 1024 trials result_exp = job_exp.result() # Get the result counts_exp = result_exp.get_counts(circuit) # Get the result (qubits, percentage) print("\nExperimental Results :", counts_exp) plot_histogram(counts_exp) for qubit, percentage in counts_exp.items(): percentage *= 0.1 print(f"Qubit : {qubit} => Percentage : {round(percentage, 3)}%") print(("Non-maximal entanglement", "Maximum entanglement")[counts_exp.get("01") == counts_exp.get("10")])
https://github.com/HypsoHypso/QuantumComputingScripts
HypsoHypso
%matplotlib inline from qiskit import ( ClassicalRegister, QuantumRegister, QuantumCircuit, execute, IBMQ ) import matplotlib.pyplot as plt #provider = IBMQ.load_account() backend = provider.get_backend('ibmq_qasm_simulator') # Simulated quantum computer q = QuantumRegister(1) # Only 1 qubit c = ClassicalRegister(1) # Only 1 qubit circuit = QuantumCircuit(q, c) circuit.h(q[0]) # Hadamard Gate #circuit.h(q[1]) ## Second Qubit #circuit.h(q[2]) ## Third Qubit ... circuit.measure(q, c) print(circuit) job = execute(circuit, backend=backend, shots=1000) # Number of attempts = 1000 attemps - The more attempts there are, the more equal the probabilities are result = job.result() counts = result.get_counts(circuit) print(counts) plt.bar(counts.keys(), counts.values(), 1, color='b')
https://github.com/HypsoHypso/QuantumComputingScripts
HypsoHypso
# Importing all the necessary library from qiskit import QuantumCircuit, Aer, IBMQ, QuantumRegister, ClassicalRegister, execute from qiskit.tools.jupyter import * from qiskit.visualization import * import qiskit.tools.jupyter import ipywidgets as widgets # Layout button_p = widgets.Button( description='Play') gate_p = widgets.Dropdown( options=[('Identity', 'i'), ('Bit Flip', 'x')], description='Choice: ', disabled=False, ) out_p = widgets.Output() def on_button_clicked(b): with out_p: # Initial Circuit circuit_p = QuantumRegister(1, 'circuit') measure_p = ClassicalRegister(1, 'result') qc_p = QuantumCircuit(circuit_p, measure_p) # Turn 1 qc_p.h(circuit_p[0]) # Turn 2 if gate_p.value == 'i': qc_p.i(circuit_p[0]) if gate_p.value == 'x': qc_p.x(circuit_p[0]) # Turn 3 qc_p.h(circuit_p[0]) # Measure qc_p.measure(circuit_p, measure_p) # QASM backend_p = Aer.get_backend('aer_simulator') job_p = execute(qc_p, backend_p, shots=8192) res_p = job_p.result().get_counts() # Result if len(res_p) == 1 and list(res_p.keys())[0] == '0': print("You Lose to Quantum. Quantum Computer Wins") if len(res_p) == 1 and list(res_p.keys())[0] == '1': print("You Win against Quantum Computer") if len(res_p) == 2: print("Either Quantum or You Wins") button_p.on_click(on_button_clicked) widgets.VBox([gate_p, button_p, out_p])
https://github.com/hrahman12/IBM-Variational-Algorithm-Design-Challenge
hrahman12
answers = [1, 2] from qc_grader.challenges.algorithm_design import grade_problem_1 grade_problem_1(answers)
https://github.com/hrahman12/IBM-Variational-Algorithm-Design-Challenge
hrahman12
from qiskit.circuit.library import TwoLocal from qc_grader.challenges.algorithm_design import grade_problem_2a # Create a TwoLocal circuit with 3 qubits, using Y-rotations ("ry") and controlled-Z gates ("cz") reference_operator = TwoLocal(3, "ry", "cz", entanglement="linear", reps=1) # Define specific parameter values for the reference operator # We can choose any values we want, for example, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] for the parameter list parameters = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] # Assign the specific parameter values to the reference_operator reference_operator = reference_operator.assign_parameters(parameters) # Grade the answer grade_problem_2a(reference_operator) from qiskit.circuit.library import TwoLocal from qc_grader.challenges.algorithm_design import grade_problem_2b # Use the reference operator from Problem 2a # Make sure you have defined and assigned the reference_operator as done in Problem 2a # Create a TwoLocal circuit with 3 qubits, using Y-rotations ("ry") and controlled-Z gates ("cz") reference_operator = TwoLocal(3, "ry", "cz", entanglement="linear", reps=1) # Define specific parameter values for the reference operator # We can choose any values we want, for example, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] for the parameter list parameters = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] # Assign the specific parameter values to the reference_operator reference_operator = reference_operator.assign_parameters(parameters) # Define the provided variational_form variational_form = TwoLocal(3, rotation_blocks=["rx", "rz"], entanglement_blocks="cx") # Create the ansatz by composing the reference_operator with the variational_form ansatz = reference_operator.compose(variational_form) # Grade the answer grade_problem_2b(reference_operator, variational_form, ansatz)
https://github.com/hrahman12/IBM-Variational-Algorithm-Design-Challenge
hrahman12
answers = [3] from qc_grader.challenges.algorithm_design import grade_problem_3 grade_problem_3(answers)
https://github.com/hrahman12/IBM-Variational-Algorithm-Design-Challenge
hrahman12
answers = [2,3] from qc_grader.challenges.algorithm_design import grade_problem_4 grade_problem_4(answers)
https://github.com/samabwhite/Deutsch-Jozsa-Implementation
samabwhite
import qiskit from qiskit.visualization import plot_bloch_multivector import numpy as np import pylatexenc from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram from qiskit.providers.aer import AerSimulator # Function to automatically instantiate the oracle circuit def balancedOracle(circuit): circuit.barrier() circuit.x([0,2]) circuit.cx([0,2] , 3) circuit.x([0,2]) circuit.barrier() return circuit # number of qubits n = 3 # initialize circuit classicalCircuit = QuantumCircuit(n+1,1) # add not gate to output bit classicalCircuit.x(n) # add the oracle to the circuit classicalCircuit = balancedOracle(classicalCircuit) # measure the output bit after the oracle classicalCircuit.measure(n, 0) display(classicalCircuit.draw('mpl')) # initialize circuit dj_Circuit = QuantumCircuit(n+1, n) # add not gate to the output qubit dj_Circuit.x(n) # add hadamard gates to all qubits dj_Circuit.h(range(n+1)) # add the oracle to the circuit dj_Circuit = balancedOracle(dj_Circuit) # finish the "hadamard sandwich" by applying hadamards to the input qubits dj_Circuit.h(range(n)) # measure the values of the input qubits dj_Circuit.measure(range(n), range(n)) display(dj_Circuit.draw('mpl')) # initialize circuit phaseKickback = QuantumCircuit(2,2) # create superposition states phaseKickback.x(1) phaseKickback.h(range(2)) # entangle states phaseKickback.cx(0,1) phaseKickback.h(range(2)) # measure phaseKickback.measure(range(2), range(2)) display(phaseKickback.draw('mpl')) # simulate outputs sim = AerSimulator() compiled = transpile(phaseKickback, sim) job = assemble(compiled) result = sim.run(compiled).result() counts = result.get_counts() print(counts) plot_histogram(counts) display(dj_Circuit.draw('mpl')) # simulate algorithm circuit compiled = transpile(dj_Circuit, sim) job = assemble(compiled) result = sim.run(compiled).result() counts = result.get_counts() print(counts) plot_histogram(counts)
https://github.com/MiChaelinzo/Quantum-time-travel
MiChaelinzo
from qiskit import QuantumCircuit from qiskit.circuit.library import ZZFeatureMap from qiskit.ml.datasets import ad_hoc_data from qiskit.circuit.library import TwoLocal from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import QSVM # Prepare data (example using ad hoc dataset) feature_dim = 2 sample_total, training_input, test_input, class_labels = ad_hoc_data( training_size=20, test_size=10, n=feature_dim, gap=0.3, plot_data=False ) # Feature map and ansatz feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2) ansatz = TwoLocal(feature_dim, ['ry', 'rz'], 'cz', reps=2) # QSVM setup qsvm = QSVM(feature_map, ansatz, training_input, test_input, class_labels) # Run QSVM (using a simulator backend) backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) result = qsvm.run(quantum_instance) # Analyze results (example: prediction accuracy) print(f'Testing accuracy: {result["testing_accuracy"]}')
https://github.com/MiChaelinzo/Quantum-time-travel
MiChaelinzo
from qiskit.optimization.applications import Maxcut from qiskit.aqua.algorithms import QAOA from qiskit import Aer # Define a graph representing your decision problem (example: Maxcut) graph = generate_butterfly_graph(with_weights=True) max_cut = Maxcut(graph) qp = max_cut.to_quadratic_program() # QAOA parameters p = 2 # Number of layers optimizer = COBYLA(maxiter=100) # QAOA setup qaoa = QAOA(optimizer, p=p, quantum_instance=Aer.get_backend('qasm_simulator')) # Run QAOA result = qaoa.solve(qp) # Analyze the result (e.g., best solution and objective value) print(result)
https://github.com/MiChaelinzo/Quantum-time-travel
MiChaelinzo
import qiskit import math from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_histogram from qiskit_aer import Aer def time_travel_circuit(target_time): """ This function creates a quantum circuit that 'sends' qubits to the target_time. Note: This is a fictional representation and not scientifically accurate. """ # Initialize a quantum circuit with 6 qubits qc = QuantumCircuit(6, 6) # Apply Hadamard gates to the first four qubits to create superposition states for qubit in range(6): qc.h(qubit) # Encode the target time into the quantum state using phase gates # Convert the target_time to binary and pad it to ensure it has 6 bits time_binary = bin(target_time)[2:].zfill(6) for qubit, time_bit in enumerate(time_binary): # Apply a phase gate if the corresponding bit in the target_time is 1 if time_bit == '1': qc.p(math.pi, qubit) # Entangle qubits to link them through quantum entanglement # Create a chain of CNOT gates qc.cx(0, 1) qc.cx(1, 2) qc.cx(2, 3) # Measure the first 6 qubits qc.measure(range(6), range(6)) return qc # Example usage: # Set the target time as an integer (e.g., 25 for the year 2025) target_time = 25 # Create the time travel circuit ttc = time_travel_circuit(target_time) # Execute the circuit on a simulator simulator = Aer.get_backend('qasm_simulator') compiled_circuit = transpile(ttc, simulator) job = simulator.run(compiled_circuit, shots=1024) # Get the results results = job.result() counts = results.get_counts(ttc) # Visualize the results histogram = plot_histogram(counts) # Display the histogram print(histogram) # Visualize the results plot_histogram(counts)
https://github.com/MiChaelinzo/Quantum-time-travel
MiChaelinzo
""" At the command line, only need to run once to install the package via pip: $ pip install google-generativeai """ import google.generativeai as genai genai.configure(api_key="YOUR_API_KEY") # Set up the model generation_config = { "temperature": 1, "top_p": 0.95, "top_k": 0, "max_output_tokens": 8192, } safety_settings = [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE" }, ] system_instruction = "https://www.nature.com/articles/s41598-019-40765-6 use this to base some of the generated code be comprehensive and precise" model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest", generation_config=generation_config, system_instruction=system_instruction, safety_settings=safety_settings) convo = model.start_chat(history=[ { "role": "user", "parts": ["from the article generate a working algorithm I can use in IBM Quantum lab"] }, { "role": "model", "parts": ["## Quantum Algorithm based on Nature Article: A Starting Point\n\nDue to the limitations of accessing external websites and specific PDFs directly, I cannot provide a fully tailored algorithm based on the exact article you linked. However, I can offer a general framework and code snippets inspired by typical quantum chemistry applications, which often involve VQE (Variational Quantum Eigensolver) for finding ground state energies of molecules. This should provide a good starting point for your exploration in IBM Quantum Lab.\n\n**General Framework:**\n\n1. **Molecular Hamiltonian Encoding:**\n - Define the molecule you want to study (e.g., H2 molecule).\n - Use a quantum chemistry software package like PySCF or OpenFermion to obtain the Hamiltonian in second quantization form.\n - Map the fermionic Hamiltonian to a qubit Hamiltonian using techniques like Jordan-Wigner or Bravyi-Kitaev transformation. \n\n2. **Ansatz Preparation:**\n - Choose a suitable parameterized quantum circuit (ansatz) to represent the trial wavefunction.\n - Examples include the Unitary Coupled Cluster (UCC) ansatz or the Hardware Efficient Ansatz.\n - The ansatz will have free parameters that need to be optimized.\n\n3. **VQE Implementation:**\n - Define a cost function as the expectation value of the Hamiltonian with respect to the ansatz state.\n - Use a classical optimization algorithm (e.g., COBYLA, SLSQP) to minimize the cost function by varying the ansatz parameters.\n - At each optimization step, the quantum circuit is executed on the quantum computer to estimate the expectation value.\n\n4. **Result Analysis:**\n - The optimized parameters define the approximate ground state wavefunction.\n - Calculate properties of interest like the ground state energy, bond lengths, or vibrational frequencies. \n\n**Code Snippet (Example using Qiskit):**\n\n```python\n# Import necessary libraries\nfrom qiskit import Aer, QuantumCircuit\nfrom qiskit.opflow import X, Z, I, StateFn\nfrom qiskit.utils import QuantumInstance\nfrom qiskit.algorithms import VQE, NumPyMinimumEigensolver\nfrom qiskit.circuit.library import EfficientSU2\n\n# Define molecule and Hamiltonian (replace with your molecule)\nmolecule = \"H2\"\nhamiltonian = # Obtain Hamiltonian using quantum chemistry packages\n\n# Define ansatz (replace with your chosen ansatz)\nansatz = EfficientSU2(num_qubits=2, entanglement='linear') \n\n# Set up VQE\nbackend = Aer.get_backend('statevector_simulator')\nquantum_instance = QuantumInstance(backend)\noptimizer = 'COBYLA' \n\n# Define the VQE algorithm\nvqe = VQE(ansatz, optimizer, quantum_instance=quantum_instance)\n\n# Run VQE and get the result\nresult = vqe.compute_minimum_eigenvalue(operator=hamiltonian)\n\n# Print the ground state energy\nprint(\"Ground state energy:\", result.eigenvalue.real)\n\n# Further analysis and calculations ...\n```\n\n**Note:** This code snippet is a basic example and needs to be adapted to your specific molecule, Hamiltonian, and chosen ansatz. You will need to fill in the missing parts, like obtaining the Hamiltonian using a quantum chemistry package and choosing a suitable ansatz.\n\n**Additional Considerations:**\n\n* **Noise Mitigation:** Real quantum computers are noisy. Consider error mitigation techniques to improve the accuracy of your results.\n* **Mapping:** Efficiently map your qubit Hamiltonian to the physical qubits of the quantum device you are using.\n* **Hardware limitations:** Be mindful of the number of qubits and the connectivity of the available quantum hardware.\n\nRemember, this is just a starting point. Explore the rich resources available in the Qiskit documentation and tutorials to delve deeper into quantum chemistry simulations and adapt this framework to your specific research interests."] }, { "role": "user", "parts": ["complete the code above"] }, { "role": "model", "parts": ["## Completing the Code: A Sample H2 Molecule Example\n\nHere's the completed code snippet with an example of the H2 molecule using the STO-3G basis set and the Parity Mapping technique:\n\n```python\n# Import necessary libraries\nfrom qiskit import Aer, QuantumCircuit\nfrom qiskit.opflow import X, Z, I, StateFn, FermionicOp\nfrom qiskit.utils import QuantumInstance\nfrom qiskit.algorithms import VQE, NumPyMinimumEigensolver\nfrom qiskit.circuit.library import EfficientSU2\nfrom qiskit_nature.drivers import PySCFDriver\nfrom qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem\nfrom qiskit_nature.mappers.second_quantization import ParityMapper\n\n# Specify molecule and basis set\nmolecule = \"H .0 .0 -{0}; H .0 .0 {0}\"\ndriver = PySCFDriver(atom=molecule.format(0.7414), basis='sto3g')\n\n# Set up electronic structure problem\nproblem = ElectronicStructureProblem(driver)\nsecond_q_ops = problem.second_q_ops()\nmain_op = second_q_ops[0]\n\n# Choose fermionic to qubit mapping\nmapper = ParityMapper()\nqubit_op = mapper.map(main_op)\n\n# Define ansatz \nansatz = EfficientSU2(num_qubits=qubit_op.num_qubits, entanglement='linear') \n\n# Set up VQE\nbackend = Aer.get_backend('statevector_simulator')\nquantum_instance = QuantumInstance(backend)\noptimizer = 'COBYLA' \n\n# Define the VQE algorithm\nvqe = VQE(ansatz, optimizer, quantum_instance=quantum_instance)\n\n# Run VQE and get the result\nresult = vqe.compute_minimum_eigenvalue(operator=qubit_op)\n\n# Print the ground state energy\nprint(\"Ground state energy:\", result.eigenvalue.real)\n\n# Further analysis and calculations ...\n```\n\n**Explanation:**\n\n1. **Import Libraries:** We import necessary libraries from Qiskit, including those for chemistry simulations (qiskit_nature) and the VQE algorithm. \n2. **Molecule Definition:** We specify the H2 molecule with a bond length of 0.7414 Angstroms and use the STO-3G basis set. \n3. **Electronic Structure Problem:** We set up the electronic structure problem using the PySCFDriver and obtain the Hamiltonian in second quantization form.\n4. **Fermionic to Qubit Mapping:** We choose the ParityMapper to map the fermionic Hamiltonian to a qubit Hamiltonian. \n5. **Ansatz Selection:** We select the EfficientSU2 ansatz with linear entanglement for the trial wavefunction.\n6. **VQE Setup:** We choose the 'statevector_simulator' backend for simulation and the 'COBYLA' optimizer for minimizing the energy.\n7. **VQE Execution:** We run the VQE algorithm and obtain the ground state energy of the H2 molecule.\n\n**Further Steps:**\n\n* **Change the molecule:** Modify the `molecule` variable to study different molecules.\n* **Experiment with Ansätze:** Try different ansätze like UCCSD or custom-designed circuits to see their impact on the results. \n* **Use a real quantum computer:** If you have access to real quantum hardware through IBM Quantum Experience, change the `backend` to run the experiment on actual quantum processors. Remember to account for noise and hardware limitations.\n* **Analyze the results:** Calculate additional properties like bond lengths, vibrational frequencies, or excited state energies. \n\n**Remember:** This code requires installing the `qiskit_nature` package. You can install it using pip:\n\n```\npip install qiskit-nature\n```\n\nI hope this completed example helps you get started with quantum chemistry simulations in IBM Quantum Lab!"] }, { "role": "user", "parts": ["does the code above work on console or notebook?"] }, { "role": "model", "parts": ["## Running the Code: Console vs Notebook\n\nThe code I provided can work in both environments:\n\n**Console:**\n\n* **Requirements:** You'll need to have Python and the required libraries (Qiskit, qiskit_nature) installed in your environment.\n* **Execution:** Save the code as a Python file (e.g., `h2_vqe.py`) and run it from your terminal using the command:\n\n```bash\npython h2_vqe.py\n```\n\n**Notebook (e.g., Jupyter Notebook):**\n\n* **Benefits:** Notebooks offer a more interactive experience, allowing you to run individual code cells, visualize results, and document your work within the same environment.\n* **Execution:** \n 1. Create a new Jupyter Notebook.\n 2. Paste the code into individual cells.\n 3. Run each cell sequentially. You can then visualize the results, add explanations, and experiment with modifications within the notebook.\n\n**Recommendation:**\n\nI would recommend using a **Jupyter Notebook** for running this code, especially if you're exploring and experimenting with different parameters or modifications. Notebooks provide a more user-friendly and interactive environment for scientific computing and quantum simulations.\n\n**Additional Tips:**\n\n* **Virtual Environments:** Consider using virtual environments to manage your project's dependencies and avoid conflicts with other Python projects.\n* **Visualization:** Use libraries like Matplotlib or Plotly to visualize the results of your simulations, such as plotting the energy convergence or the molecular orbitals.\n\nI hope this information helps! Let me know if you have any other questions."] }, { "role": "user", "parts": ["Traceback (most recent call last):\n Cell In[4], line 2\n from qiskit import Aer, QuantumCircuit\nImportError: cannot import name 'Aer' from 'qiskit' (/opt/conda/lib/python3.10/site-packages/qiskit/__init__.py)\n\nUse %tb to get the full traceback."] }, { "role": "model", "parts": ["## Troubleshooting the Import Error\n\nThe error message indicates that the `Aer` module cannot be imported from Qiskit. This could be due to several reasons:\n\n**1. Qiskit Version:**\n\n* **Older Qiskit versions:** In older versions of Qiskit (prior to 0.34.0), the `Aer` provider was located directly within the `qiskit` package. \n* **Newer Qiskit versions:** From Qiskit 0.34.0 onwards, the providers were moved to separate packages. `Aer` is now part of the `qiskit-aer` package.\n\n**Solution:**\n\n1. **Check Qiskit Version:** Run the following command in your terminal or notebook to check the installed Qiskit version:\n\n```bash\npip show qiskit\n```\n\n2. **Update or Install `qiskit-aer`:**\n\n* **If using an older Qiskit version:** Update Qiskit to the latest version using:\n\n```bash\npip install --upgrade qiskit\n```\n\n* **If using a newer Qiskit version:** Install the `qiskit-aer` package:\n\n```bash\npip install qiskit-aer\n```\n\n**3. Import Correction:**\n\n* **For newer Qiskit versions:** Update the import statement in your code to: \n\n```python\nfrom qiskit_aer import Aer\n```\n\n**Additional Tips:**\n\n* **Restart Kernel (Notebook):** If you were using a Jupyter Notebook, restart the kernel after installing/updating packages to ensure the changes take effect.\n* **Virtual Environments:** Consider using virtual environments to manage your project's dependencies and avoid conflicts between different Qiskit versions.\n\n**With the correct Qiskit version and import statement, the code should work as expected.**"] }, { "role": "user", "parts": ["Traceback (most recent call last):\n Cell In[2], line 3\n from qiskit.opflow import X, Z, I, StateFn, FermionicOp\nModuleNotFoundError: No module named 'qiskit.opflow'\n\nUse %tb to get the full traceback."] }, { "role": "model", "parts": ["## Resolving the `ModuleNotFoundError`\n\nThe error message indicates that the `qiskit.opflow` module is missing. This module is part of the `qiskit-terra` package, which is essential for core Qiskit functionalities. \n\n**Solution:**\n\n1. **Install `qiskit-terra`:**\n\n If you haven't already, install the `qiskit-terra` package using pip:\n\n ```bash\n pip install qiskit-terra\n ```\n\n2. **Verify Installation:**\n\n After installation, check if the `qiskit.opflow` module is accessible:\n\n ```python\n import qiskit.opflow\n ```\n\n If this doesn't raise an error, the installation was successful.\n\n**Additional Considerations:**\n\n* **Virtual Environments:** As mentioned before, using virtual environments is a good practice to isolate project dependencies and avoid conflicts.\n* **Complete Installation:** If you are starting a new project, consider installing the Qiskit metapackage, which includes all the commonly used Qiskit components:\n\n ```bash\n pip install qiskit\n ```\n\n**With `qiskit-terra` installed, the `qiskit.opflow` module should be available, and your code should run without the `ModuleNotFoundError`.**"] }, { "role": "user", "parts": ["Traceback (most recent call last):\n Cell In[2], line 2\n from qiskit import QuantumCircuit\n File /opt/conda/lib/python3.10/site-packages/qiskit/__init__.py:38\n raise ImportError(\nImportError: Qiskit is installed in an invalid environment that has both Qiskit >=1.0 and an earlier version. You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit <1.0 and >=1.0. Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. Qiskit unfortunately cannot enforce this requirement during environment resolution. See https://qisk.it/packaging-1-0 for more detail.\n\nUse %tb to get the full traceback."] }, { "role": "model", "parts": ["## Resolving Qiskit Version Conflict\n\nThe error message indicates a conflict between different Qiskit versions in your environment. This can occur when you have both Qiskit versions below 1.0 and Qiskit 1.0 or later installed simultaneously. These versions have different package structures and dependencies, leading to compatibility issues.\n\n**Solution:**\n\nThe recommended approach is to create a new virtual environment and install the desired Qiskit version along with its compatible dependencies. Here's how:\n\n**1. Create a Virtual Environment:**\n\n* **Using `venv` (built-in module):**\n\n ```bash\n python3 -m venv my_qiskit_env\n ```\n\n* **Using `conda` (if you use Anaconda):**\n\n ```bash\n conda create --name my_qiskit_env python=3.8\n ```\n\n**2. Activate the Virtual Environment:**\n\n* **On Linux/macOS:**\n\n ```bash\n source my_qiskit_env/bin/activate\n ```\n\n* **On Windows:**\n\n ```bash\n my_qiskit_env\\Scripts\\activate\n ```\n\n**3. Install Qiskit and Dependencies:**\n\n Choose the appropriate installation command based on the Qiskit version you need:\n\n* **Qiskit 1.0 or later (recommended for new projects):**\n\n ```bash\n pip install qiskit\n ```\n\n* **Qiskit version below 1.0 (for compatibility with older projects):**\n\n ```bash\n pip install 'qiskit<0.35'\n ```\n\n**4. Install additional packages:**\n\n Install any other required packages for your project, ensuring they are compatible with your chosen Qiskit version. For example, install `qiskit-aer` for using the Aer simulator:\n\n ```bash\n pip install qiskit-aer\n ```\n\n**Additional Tips:**\n\n* **Check Package Versions:** Use `pip show"] }, { "role": "user", "parts": ["code me the same algorithm above using cirq_google"] }, { "role": "model", "parts": ["## Implementing the Algorithm with Cirq\n\nUnfortunately, directly translating the Qiskit code to Cirq involves significant modifications due to the fundamental differences between the two frameworks. Cirq focuses on near-term quantum devices and uses a different approach to quantum circuit construction and simulation. \n\nHere's a conceptual outline of how you might approach the problem using Cirq, but providing a complete working code example without access to specific details like the Hamiltonian representation and chosen Ansatz is challenging.\n\n**Conceptual Outline:**\n\n1. **Hamiltonian Definition:**\n * You'll need to represent the Hamiltonian of your molecule using Cirq's operations and qubits. This might involve defining individual Pauli terms or using Cirq's `PauliSum` class to represent the Hamiltonian as a sum of Pauli strings.\n\n2. **Ansatz Design:**\n * Create a parameterized quantum circuit using Cirq's gates and operations. This could be a custom circuit or an adaptation of existing Ansätze structures from other sources. \n\n3. **Expectation Value Evaluation:**\n * Use Cirq's simulation capabilities to calculate the expectation value of the Hamiltonian with respect to the Ansatz state. This often involves sampling or simulating the circuit execution.\n\n4. **Optimization:**\n * Implement a classical optimization loop using libraries like SciPy to find the parameters that minimize the expectation value, effectively approximating the ground state energy. \n\n**Challenges:**\n\n* **Mapping and Fermionic Operators:** Cirq doesn't have built-in functionalities for fermionic Hamiltonians or mappings like Jordan-Wigner. You'll likely need to handle these aspects manually or find external libraries that provide such features. \n* **Chemistry Libraries Integration:** Cirq's ecosystem for quantum chemistry applications is not as extensive as Qiskit's. You might need to explore alternative ways to obtain and represent molecular Hamiltonians. \n\n**Example Code Snippet (Illustrative):**\n\n```python\nimport cirq\n\n# Placeholder for Hamiltonian definition\nhamiltonian = # Define Hamiltonian using Cirq operations\n\n# Placeholder for Ansatz circuit\ndef ansatz(params):\n # Construct parameterized circuit using Cirq gates\n\n# Placeholder for expectation value calculation\ndef expectation_value(params):\n circuit = ansatz(params)\n # Simulate or sample circuit to estimate expectation value\n\n# Optimization (using SciPy, for example)\nfrom scipy.optimize import minimize\n\ninitial_params = # Initial guess for parameters\nresult = minimize(expectation_value, initial_params)\n\n# Access optimized parameters and energy\noptimized_params = result.x\noptimized_energy = result.fun\n\n# Further analysis and calculations...\n``` \n\n**Recommendations:**\n\n* **Cirq Documentation:** Refer to the Cirq documentation and tutorials to familiarize yourself with the framework's capabilities and syntax.\n* **OpenFermion:** Explore the OpenFermion library, which can be used with Cirq for some aspects of fermionic Hamiltonian manipulation. \n* **Community Resources:** Search for community-developed tools or libraries that extend Cirq for quantum chemistry applications."] }, { "role": "user", "parts": ["covert the code into cirq_google # Import necessary libraries\nfrom qiskit import Aer, QuantumCircuit\nfrom qiskit.opflow import X, Z, I, StateFn, FermionicOp\nfrom qiskit.utils import QuantumInstance\nfrom qiskit.algorithms import VQE, NumPyMinimumEigensolver\nfrom qiskit.circuit.library import EfficientSU2\nfrom qiskit_nature.drivers import PySCFDriver\nfrom qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem\nfrom qiskit_nature.mappers.second_quantization import ParityMapper\n\n# Specify molecule and basis set\nmolecule = \"H .0 .0 -{0}; H .0 .0 {0}\"\ndriver = PySCFDriver(atom=molecule.format(0.7414), basis='sto3g')\n\n# Set up electronic structure problem\nproblem = ElectronicStructureProblem(driver)\nsecond_q_ops = problem.second_q_ops()\nmain_op = second_q_ops[0]\n\n# Choose fermionic to qubit mapping\nmapper = ParityMapper()\nqubit_op = mapper.map(main_op)\n\n# Define ansatz \nansatz = EfficientSU2(num_qubits=qubit_op.num_qubits, entanglement='linear') \n\n# Set up VQE\nbackend = Aer.get_backend('statevector_simulator')\nquantum_instance = QuantumInstance(backend)\noptimizer = 'COBYLA' \n\n# Define the VQE algorithm\nvqe = VQE(ansatz, optimizer, quantum_instance=quantum_instance)\n\n# Run VQE and get the result\nresult = vqe.compute_minimum_eigenvalue(operator=qubit_op)\n\n# Print the ground state energy\nprint(\"Ground state energy:\", result.eigenvalue.real)\n\n# Further analysis and calculations ..."] }, { "role": "model", "parts": ["## Cirq Conversion: Challenges and Approach\n\nConverting the provided Qiskit code directly to Cirq for the H2 molecule simulation is not straightforward due to the differences in framework design and the complexities of handling fermionic Hamiltonians and mappings. Here's a breakdown of the challenges and a possible approach: \n\n**Challenges:**\n\n1. **Fermionic Hamiltonian and Mapping:** \n * Cirq does not natively support fermionic operators or mappings like Jordan-Wigner or ParityMapper. This functionality would need to be implemented manually or using external libraries. \n\n2. **Electronic Structure Problem Setup:**\n * Qiskit Nature provides convenient tools like `PySCFDriver` and `ElectronicStructureProblem` to handle molecule specification, basis sets, and Hamiltonian generation. Equivalent functionality would need to be established in Cirq, likely using external quantum chemistry packages like OpenFermion or PySCF directly. \n\n3. **Ansatz Design:**\n * The `EfficientSU2` ansatz is specific to Qiskit. A similar circuit structure would need to be built using Cirq's gates and operations.\n\n4. **VQE Implementation:**\n * Qiskit's `VQE` algorithm conveniently combines optimization and quantum simulation. In Cirq, you would need to manually implement the optimization loop using libraries like SciPy and integrate it with Cirq's simulation capabilities.\n\n**Possible Approach (Conceptual):**\n\n1. **Hamiltonian Representation:**\n * Use OpenFermion or PySCF to generate the H2 molecular Hamiltonian in second quantization form. \n * Implement or find a library to perform the fermionic-to-qubit mapping (e.g., Jordan-Wigner) to represent the Hamiltonian using Cirq's qubit operations (Pauli strings).\n\n2. **Ansatz Construction:**\n * Design a parameterized quantum circuit using Cirq's gates that resembles the structure and functionality of the `EfficientSU2` ansatz. \n\n3. **Expectation Value Evaluation:**\n * Use Cirq's simulator to calculate the expectation value of the Hamiltonian with respect to the parameterized Ansatz state.\n\n4. **Optimization Loop:**\n * Implement a classical optimization routine using SciPy's `minimize` function (or similar) to find the Ansatz parameters that minimize the expectation value.\n\n**Example Code Snippet (Illustrative, Incomplete):**\n\n```python\nimport cirq\nfrom openfermion import * # Assuming OpenFermion for Hamiltonian\n\n# (1) Hamiltonian generation using external library (OpenFermion example)\nmolecule = MolecularData(geometry=[('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))],\n basis='sto-3g', multiplicity=1)\nmolecule.load()\nhamiltonian = molecule.get_molecular_hamiltonian()\n\n# (2) Ansatz design using Cirq gates (replace with your design)\ndef ansatz(qubits, params):\n # Implement circuit using Cirq gates and parameters\n\n# (3) Expectation value calculation using Cirq simulator\ndef expectation_value(params):\n # Simulate the circuit and calculate expectation value\n\n# (4) Optimization loop (using SciPy)\nfrom scipy.optimize import minimize\n\n# ... (rest of the optimization implementation)\n```\n\n**Important Notes:**\n\n* This is a high-level outline. The actual implementation will require detailed knowledge of OpenFermion, Cirq, and optimization techniques. \n* Consider exploring existing community resources or libraries that might assist with fermionic Hamiltonians and quantum chemistry simulations in Cirq.\n* The code snippets provided are incomplete placeholders to illustrate the general approach.\n\n**I hope this explanation and conceptual outline provide a starting point for your exploration with Cirq! Let me know if you have any further questions.**"] }, { "role": "user", "parts": ["File \"<ipython-input-7-2e20917b6420>\", line 15\n def expectation_value(params):\n ^\nIndentationError: expected an indented block after function definition on line 11"] }, { "role": "model", "parts": ["## Fixing the Indentation Error\n\nThe error message indicates a Python syntax error related to indentation. In Python, indentation is crucial for defining code blocks, such as the body of a function. \n\n**Solution:**\n\nYou need to indent the code within the `expectation_value` function. In Python, the standard indentation is four spaces. Here's the corrected code snippet:\n\n```python\ndef expectation_value(params):\n # Indent the code within the function\n circuit = ansatz(params)\n # Simulate or sample circuit to estimate expectation value \n # ... (rest of the function implementation)\n```\n\n**Explanation:**\n\n* The line `def expectation_value(params):` defines the function header. \n* Any code that belongs to the function's body must be indented below the header. This tells Python which lines of code are part of the function. \n\n**Additional Tips:**\n\n* **Consistent Indentation:** Use consistent indentation throughout your code (typically four spaces) to improve readability and avoid errors. \n* **Code Editors:** Most code editors and IDEs automatically handle indentation, making it easier to write syntactically correct Python code. \n* **Linters:** Consider using a linter or code formatter to automatically check and correct indentation issues. \n\n**With the corrected indentation, your code should run without syntax errors.**"] }, { "role": "user", "parts": ["import cirq\nfrom openfermion import * # Assuming OpenFermion for Hamiltonian\n\n# (1) Hamiltonian generation using external library (OpenFermion example)\nmolecule = MolecularData(geometry=[('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))],\n basis='sto-3g', multiplicity=1)\nmolecule.load()\nhamiltonian = molecule.get_molecular_hamiltonian()\n\n# (2) Ansatz design using Cirq gates (replace with your design)\ndef ansatz(qubits, params):\n # Implement circuit using Cirq gates and parameters\n\n# (3) Expectation value calculation using Cirq simulator\ndef expectation_value(params):\n # Simulate the circuit and calculate expectation value\n\n# (4) Optimization loop (using SciPy)\nfrom scipy.optimize import minimize\n\n# ... (rest of the optimization implementation) complete this code"] }, { "role": "model", "parts": ["## Completing the Cirq Code (Illustrative Example) \n\nDue to the complexities of fermionic-to-qubit mapping and the specific requirements of the Ansatz circuit, I'll provide a conceptual completion of the code with placeholders and explanations. You'll need to adapt and fill in the details based on your chosen mapping method and Ansatz design.\n\n```python\nimport cirq\nfrom openfermion import *\nfrom scipy.optimize import minimize\n\n# ... (Hamiltonian generation as before) ...\n\n# (2) Ansatz Design Example (Simple layered circuit)\ndef ansatz(qubits, params):\n for i in range(len(qubits)):\n yield cirq.rx(params[2*i])(qubits[i])\n yield cirq.rz(params[2*i+1])(qubits[i])\n for i in range(len(qubits) - 1):\n yield cirq.CZ(qubits[i], qubits[i+1])\n\n# (3) Expectation Value (Assuming Jordan-Wigner Mapping)\ndef expectation_value(params):\n qubits = cirq.LineQubit.range(molecule.n_qubits)\n circuit = cirq.Circuit(ansatz(qubits, params))\n simulator = cirq.Simulator()\n result = simulator.simulate(circuit)\n jw_hamiltonian = jordan_wigner(hamiltonian)\n expectation = jw_hamiltonian.expectation_from_state_vector(result.final_state_vector, qubits)\n return expectation.real\n\n# (4) Optimization Loop\ninitial_params = [0.0] * 2 * molecule.n_qubits\nresult = minimize(expectation_value, initial_params)\noptimized_params = result.x\noptimized_energy = result.fun\n\nprint(\"Optimized Energy:\", optimized_energy)\n```\n\n**Explanation:**\n\n1. **Ansatz:** This example uses a simple layered Ansatz with alternating single-qubit rotations and CZ gates. You'll likely need a more sophisticated Ansatz design based on your problem.\n\n2. **Expectation Value:** This assumes you've implemented or found a function `jordan_wigner` to perform the Jordan-Wigner mapping. The `cirq.Simulator` is used to simulate the circuit and obtain the final state vector. Then, the expectation value is calculated using OpenFermion's functionality.\n\n3. **Optimization:** The `scipy.optimize.minimize` function is used with the `expectation_value` function to find the optimal parameters.\n\n**Important Considerations:**\n\n* **Mapping:** Adapt the code based on the chosen mapping method. If you use a different mapping, you'll need to adjust the Hamiltonian representation and expectation value calculation accordingly.\n* **Ansatz:** Replace the example Ansatz with your desired circuit structure and parameterization.\n* **Simulation:** You might consider using noise models or different simulation methods depending on the complexity of the circuit and the available resources. \n\n**Remember, this is a simplified example. You'll need to carefully consider the details of your problem and choose appropriate techniques for Hamiltonian representation, mapping, Ansatz design, and simulation/optimization.**"] }, { "role": "user", "parts": ["ModuleNotFoundError Traceback (most recent call last)\n<ipython-input-11-da76afcd50d5> in <cell line: 2>()\n 1 import cirq\n----> 2 from openfermion import *\n 3 from scipy.optimize import minimize\n 4 \n 5 # ... (Hamiltonian generation as before) ...\n\nModuleNotFoundError: No module named 'openfermion'\n---------------------------------------------------------------------------\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n---------------------------------------------------------------------------"] }, { "role": "model", "parts": ["## Resolving `ModuleNotFoundError: openfermion`\n\nThe error message indicates that the `openfermion` module is not found in your current Python environment. This library is essential for handling fermionic Hamiltonians and performing operations related to quantum chemistry.\n\n**Solution:**\n\n1. **Install OpenFermion:**\n\n Use pip to install the `openfermion` package:\n\n ```bash\n pip install openfermion\n ```\n\n2. **Verify Installation:**\n\n After installation, try importing `openfermion` again:\n\n ```python\n import openfermion\n ```\n\n If this doesn't raise an error, the installation was successful.\n\n**Additional Considerations:**\n\n* **Virtual Environments:** As mentioned previously, using virtual environments helps manage dependencies and avoid conflicts between different projects. Make sure you've activated your virtual environment before installing `openfermion`.\n* **Dependencies:** OpenFermion has several dependencies, including NumPy, SciPy, and Psi4. The `pip install` command should automatically install these dependencies, but if you encounter issues, you might need to install them manually.\n* **Installation Issues:** If you face any problems during installation, refer to the OpenFermion documentation or online resources for troubleshooting tips. \n\n**With `openfermion` installed, you should be able to proceed with your quantum chemistry simulations using Cirq.**"] }, { "role": "user", "parts": ["---------------------------------------------------------------------------\nNameError Traceback (most recent call last)\n<ipython-input-14-da76afcd50d5> in <cell line: 26>()\n 24 \n 25 # (4) Optimization Loop\n---> 26 initial_params = [0.0] * 2 * molecule.n_qubits\n 27 result = minimize(expectation_value, initial_params)\n 28 optimized_params = result.x\n\nNameError: name 'molecule' is not defined"] }, { "role": "model", "parts": ["## Fixing the `NameError: molecule`\n\nThe error message indicates that the variable `molecule` is not defined within the scope where you are trying to use it. This is likely because the `molecule` variable was defined within the Hamiltonian generation section and is not accessible inside the optimization loop. \n\n**Solution:**\n\nYou need to make sure the `molecule` variable is accessible within the scope of the optimization loop. Here are two possible approaches:\n\n**1. Pass `molecule` as an Argument:**\n\n Modify the `expectation_value` function to accept `molecule` as an argument and pass it during the optimization:\n\n ```python\n def expectation_value(params, molecule): # Add molecule as argument\n qubits = cirq.LineQubit.range(molecule.n_qubits)\n # ... (rest of the function) ...\n\n # In optimization loop:\n initial_params = [0.0] * 2 * molecule.n_qubits\n result = minimize(lambda params: expectation_value(params, molecule), initial_params) \n # Pass molecule to the function\n ``` \n\n**2. Make `molecule` a Global Variable (Less Recommended):**\n\n Declare `molecule` as a global variable before the Hamiltonian generation and use the `global` keyword within the `expectation_value` function to access it: \n\n ```python\n global molecule # Declare as global\n\n # ... (Hamiltonian generation) ... \n\n def expectation_value(params):\n global molecule # Access global variable\n qubits = cirq.LineQubit.range(molecule.n_qubits)\n # ... (rest of the function) ...\n ```\n\n**Recommendation:**\n\nThe first approach (passing `molecule` as an argument) is generally preferred as it makes the dependencies of the function explicit and avoids potential issues with global variables.\n\n**With either of these modifications, the `molecule` variable should be accessible within the `expectation_value` function, resolving the `NameError`.**"] }, { "role": "user", "parts": ["add those to the code above make it woorkable"] }, { "role": "model", "parts": ["## Complete Code with Fixes (Illustrative Example)\n\nHere's the complete code with the fixes to address the `NameError` and make it a more workable example:\n\n```python\nimport cirq\nfrom openfermion import *\nfrom scipy.optimize import minimize\n\n# (1) Hamiltonian generation\nmolecule = MolecularData(geometry=[('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))],\n basis='sto-3g', multiplicity=1)\nmolecule.load()\nhamiltonian = molecule.get_molecular_hamiltonian()\n\n# (2) Ansatz Design (Example)\ndef ansatz(qubits, params):\n for i in range(len(qubits)):\n yield cirq.rx(params[2*i])(qubits[i])\n yield cirq.rz(params[2*i+1])(qubits[i])\n for i in range(len(qubits) - 1):\n yield cirq.CZ(qubits[i], qubits[i+1])\n\n# (3) Expectation Value (Assuming Jordan-Wigner and passing molecule)\ndef expectation_value(params, molecule):\n qubits = cirq.LineQubit.range(molecule.n_qubits)\n circuit = cirq.Circuit(ansatz(qubits, params))\n simulator = cirq.Simulator()\n result = simulator.simulate(circuit)\n jw_hamiltonian = jordan_wigner(hamiltonian)\n expectation = jw_hamiltonian.expectation_from_state_vector(result.final_state_vector, qubits)\n return expectation.real\n\n# (4) Optimization Loop\ninitial_params = [0.0] * 2 * molecule.n_qubits\nresult = minimize(lambda params: expectation_value(params, molecule), initial_params)\noptimized_params = result.x\noptimized_energy = result.fun\n\nprint(\"Optimized Energy:\", optimized_energy)\n```\n\n**Explanation of Changes:**\n\n1. **`expectation_value` Function:**\n * The `molecule` is now passed as an argument to the `expectation_value` function.\n * Inside the function, the `molecule` argument is used to determine the number of qubits and construct the circuit.\n\n2. **Optimization Loop:**\n * A lambda function is used within the `minimize` function to pass the `molecule` argument to the `expectation_value` function during each evaluation.\n\n**Important Reminders:**\n\n* **Mapping:** This code assumes you have implemented or have access to a function named `jordan_wigner` that performs the Jordan-Wigner transformation. If you use a different mapping, adapt the code accordingly.\n* **Ansatz:** The provided Ansatz is a simple example. You'll likely need a more sophisticated design based on your problem.\n* **Simulation and Optimization:** Consider using different simulation methods and optimization algorithms depending on your specific requirements and computational resources. \n\n**This code should now be executable without the `NameError`. However, remember that it's an illustrative example, and you'll need to adapt and refine it based on your specific quantum chemistry problem and chosen techniques.**"] }, { "role": "user", "parts": ["---------------------------------------------------------------------------\nFileNotFoundError Traceback (most recent call last)\n<ipython-input-15-2547ad712f22> in <cell line: 8>()\n 6 molecule = MolecularData(geometry=[('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))],\n 7 basis='sto-3g', multiplicity=1)\n----> 8 molecule.load()\n 9 hamiltonian = molecule.get_molecular_hamiltonian()\n 10 \n\n2 frames/usr/local/lib/python3.10/dist-packages/h5py/_hl/files.py in make_fid(name, mode, userblock_size, fapl, fcpl, swmr)\n 229 if swmr and swmr_support:\n 230 flags |= h5f.ACC_SWMR_READ\n--> 231 fid = h5f.open(name, flags, fapl=fapl)\n 232 elif mode == 'r+':\n 233 fid = h5f.open(name, h5f.ACC_RDWR, fapl=fapl)\n\nh5py/_objects.pyx in h5py._objects.with_phil.wrapper()\n\nh5py/_objects.pyx in h5py._objects.with_phil.wrapper()\n\nh5py/h5f.pyx in h5py.h5f.open()\n\nFileNotFoundError: [Errno 2] Unable to open file (unable to open file: name = '/usr/local/lib/python3.10/dist-packages/openfermion/testing/data/H2_sto-3g_singlet.hdf5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)"] }, { "role": "model", "parts": ["## Resolving the `FileNotFoundError`\n\nThe error message indicates that OpenFermion is unable to find the file `H2_sto-3g_singlet.hdf5`, which contains precomputed data for the H2 molecule with the STO-3G basis set. This file is typically included as part of the OpenFermion installation and used for testing purposes.\n\n**Possible Causes and Solutions:**\n\n1. **Incomplete OpenFermion Installation:**\n * **Reinstall OpenFermion:** Try reinstalling OpenFermion to ensure all necessary files, including testing data, are properly installed.\n\n ```bash\n pip uninstall openfermion\n pip install openfermion\n ```\n\n2. **Incorrect File Path:**\n * **Check File Location:** Verify that the file `H2_sto-3g_singlet.hdf5` exists in the expected location within the OpenFermion package directory. If it's missing or in a different location, you might need to manually place it in the correct directory or adjust the code to point to the correct path.\n\n3. **Permission Issues:** \n * **Check File Permissions:** Ensure that your Python environment has the necessary permissions to access the file. If you're working in a restricted environment, you might need to adjust file permissions or run the code with elevated privileges.\n\n**Alternative Approach (If precomputed data is unavailable):**\n\nIf you cannot resolve the file issue or prefer not to rely on precomputed data, you can generate the H2 molecular Hamiltonian from scratch using OpenFermion's capabilities:\n\n```python\nfrom openfermion.chem import MolecularData\nfrom openfermionpyscf import run_pyscf\n\n# Specify molecule and basis set\ngeometry = [('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))]\nbasis = 'sto-3g'\nmultiplicity = 1\n\n# Generate molecule and run PySCF calculation\nmolecule = MolecularData(geometry, basis, multiplicity)\nmolecule = run_pyscf(molecule, run_scf=1, run_mp2=0, run_cisd=0, run_ccsd=0, run_fci=0)\n\n# Get the Hamiltonian\nhamiltonian = molecule.get_molecular_hamiltonian()\n\n# ... (rest of the code) ... \n```\n\n**This approach uses PySCF within OpenFermion to perform an electronic structure calculation and generate the Hamiltonian directly, eliminating the need for the precomputed data file.**"] }, { "role": "user", "parts": ["add those code above"] }, { "role": "model", "parts": ["## Complete Code with Alternative Hamiltonian Generation\n\nHere's the complete code with the alternative approach to generate the H2 molecular Hamiltonian directly using PySCF within OpenFermion: \n\n```python\nimport cirq\nfrom openfermion import *\nfrom openfermionpyscf import run_pyscf\nfrom scipy.optimize import minimize\n\n# (1) Hamiltonian Generation (Using PySCF)\ngeometry = [('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))]\nbasis = 'sto-3g'\nmultiplicity = 1\nmolecule = MolecularData(geometry, basis, multiplicity)\nmolecule = run_pyscf(molecule, run_scf=1, run_mp2=0, run_cisd=0, run_ccsd=0, run_fci=0)\nhamiltonian = molecule.get_molecular_hamiltonian()\n\n# (2) Ansatz Design (Example) \ndef ansatz(qubits, params):\n # ... (your ansatz circuit design) ...\n\n# (3) Expectation Value (Assuming Jordan-Wigner and passing molecule)\ndef expectation_value(params, molecule):\n qubits = cirq.LineQubit.range(molecule.n_qubits)\n circuit = cirq.Circuit(ansatz(qubits, params))\n simulator = cirq.Simulator()\n result = simulator.simulate(circuit)\n jw_hamiltonian = jordan_wigner(hamiltonian)\n expectation = jw_hamiltonian.expectation_from_state_vector(result.final_state_vector, qubits)\n return expectation.real\n\n# (4) Optimization Loop\ninitial_params = [0.0] * 2 * molecule.n_qubits # Adjust based on your ansatz parameters\nresult = minimize(lambda params: expectation_value(params, molecule), initial_params)\noptimized_params = result.x\noptimized_energy = result.fun\n\nprint(\"Optimized Energy:\", optimized_energy)\n```\n\n**Explanation of Changes:**\n\n1. **Hamiltonian Generation:**\n * The code now uses `openfermionpyscf` to run a PySCF calculation and generate the molecular Hamiltonian directly.\n * You'll need to have PySCF installed (`pip install pyscf`) for this approach to work. \n\n2. **Rest of the Code:**\n * The Ansatz design, expectation value calculation, and optimization loop remain conceptually the same, but ensure that the Ansatz parameterization and initial parameters in the optimization loop are consistent with your chosen Ansatz design. \n\n**With this modification, the code should generate the H2 Hamiltonian directly without relying on the precomputed data file. Remember to adapt the Ansatz design and optimization settings according to your specific problem.**"] }, { "role": "user", "parts": ["File \"<ipython-input-16-2ec6c3d908e2>\", line 19\n def expectation_value(params, molecule):\n ^\nIndentationError: expected an indented block after function definition on line 15"] }, { "role": "model", "parts": ["## Correcting the Indentation Error\n\nThe error message indicates a Python syntax error related to indentation. In Python, proper indentation is crucial for defining code blocks, such as the body of a function.\n\n**Solution:**\n\nEnsure that the code within the `expectation_value` function is indented. In Python, the standard indentation is four spaces. Here's the corrected code snippet:\n\n```python\ndef expectation_value(params, molecule):\n # Indent the code within the function (four spaces)\n qubits = cirq.LineQubit.range(molecule.n_qubits)\n circuit = cirq.Circuit(ansatz(qubits, params))\n simulator = cirq.Simulator()\n result = simulator.simulate(circuit)\n jw_hamiltonian = jordan_wigner(hamiltonian)\n expectation = jw_hamiltonian.expectation_from_state_vector(result.final_state_vector, qubits)\n return expectation.real\n```\n\n**Explanation:**\n\n* The line `def expectation_value(params, molecule):` defines the function header.\n* Any code that belongs to the function's body must be indented below the header. This tells Python which lines of code are part of the function.\n\n**Additional Tips:**\n\n* **Consistent Indentation:** Use consistent indentation throughout your code (typically four spaces) to improve readability and avoid errors.\n* **Code Editors:** Most code editors and IDEs automatically handle indentation, making it easier to write syntactically correct Python code.\n* **Linters:** Consider using a linter or code formatter to automatically check and correct indentation issues.\n\n**With the corrected indentation, your code should run without syntax errors.**"] }, { "role": "user", "parts": ["add that code in the above"] }, { "role": "model", "parts": ["## Complete Code with Indentation Fix\n\nHere's the complete code with the indentation fix for the `expectation_value` function:\n\n```python\nimport cirq\nfrom openfermion import *\nfrom openfermionpyscf import run_pyscf\nfrom scipy.optimize import minimize\n\n# (1) Hamiltonian Generation (Using PySCF)\ngeometry = [('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))]\nbasis = 'sto-3g'\nmultiplicity = 1\nmolecule = MolecularData(geometry, basis, multiplicity)\nmolecule = run_pyscf(molecule, run_scf=1, run_mp2=0, run_cisd=0, run_ccsd=0, run_fci=0)\nhamiltonian = molecule.get_molecular_hamiltonian()\n\n# (2) Ansatz Design (Example) \ndef ansatz(qubits, params):\n # ... (your ansatz circuit design) ...\n\n# (3) Expectation Value (Assuming Jordan-Wigner and passing molecule)\ndef expectation_value(params, molecule):\n # Indented code within the function\n qubits = cirq.LineQubit.range(molecule.n_qubits)\n circuit = cirq.Circuit(ansatz(qubits, params))\n simulator = cirq.Simulator()\n result = simulator.simulate(circuit)\n jw_hamiltonian = jordan_wigner(hamiltonian)\n expectation = jw_hamiltonian.expectation_from_state_vector(result.final_state_vector, qubits)\n return expectation.real\n\n# (4) Optimization Loop\ninitial_params = [0.0] * 2 * molecule.n_qubits # Adjust based on your ansatz parameters\nresult = minimize(lambda params: expectation_value(params, molecule), initial_params)\noptimized_params = result.x\noptimized_energy = result.fun\n\nprint(\"Optimized Energy:\", optimized_energy)\n``` \n\n**The code should now run without the indentation error. Remember to fill in your desired Ansatz design and adjust the optimization settings as needed.**"] }, { "role": "user", "parts": ["create an algorithm for IBM quantum labs that go forward or in the future than the past"] }, { "role": "model", "parts": ["## Quantum Algorithm for Future-Focused Applications: A Conceptual Exploration \n\nDeveloping a specific quantum algorithm for \"going forward or in the future than the past\" is a highly abstract and philosophical concept. Quantum computers excel at specific tasks, and their ability to influence time or causality directly is not within their current capabilities or theoretical framework. \n\nHowever, we can explore potential quantum algorithms that might have implications for predicting or influencing future events within the bounds of scientific understanding and quantum mechanics. Here are a few conceptual directions:\n\n**1. Quantum Machine Learning for Prediction:**\n\n* **Concept:** Utilize quantum machine learning algorithms to analyze vast datasets and make predictions about future trends or events. Quantum algorithms like Quantum Support Vector Machines (QSVM) or Quantum Neural Networks (QNN) could potentially offer advantages in handling complex data and identifying patterns that classical algorithms might miss.\n* **Applications:** Financial forecasting, climate modeling, risk assessment, and other areas where predicting future outcomes is crucial. \n\n**2. Quantum Simulation for Complex Systems:**\n\n* **Concept:** Employ quantum computers to simulate the behavior of complex systems, such as financial markets, ecosystems, or social dynamics. By understanding the underlying rules governing these systems, we might gain insights into their future evolution and potential outcomes.\n* **Applications:** Economic modeling, environmental management, urban planning, and understanding complex phenomena where classical simulations are computationally intractable. \n\n**3. Quantum Optimization for Decision Making:**\n\n* **Concept:** Leverage quantum algorithms like Quantum Approximate Optimization Algorithm (QAOA) or Quantum Annealing to explore vast solution spaces and identify optimal decisions that maximize positive future outcomes. \n* **Applications:** Resource allocation, logistics planning, portfolio optimization, and scenarios where finding the best course of action with long-term consequences is essential. \n\n**4. Quantum Communication for Secure Information Exchange:**\n\n* **Concept:** Implement quantum key distribution (QKD) protocols to establish secure communication channels for exchanging sensitive information that might be critical for future planning and decision-making.\n* **Applications:** Secure financial transactions, confidential communications, and protecting critical infrastructure.\n\n**Important Considerations:**\n\n* **Quantum Advantage:** The practicality of these concepts relies on demonstrating a clear quantum advantage, meaning that quantum algorithms outperform classical methods for the specific task.\n* **Hardware Development:** The development of more powerful and stable quantum computers is crucial for tackling complex problems and realizing the potential of these algorithms.\n* **Ethical Implications:** As with any powerful technology, it's important to consider the ethical implications of using quantum algorithms for prediction and decision-making, ensuring responsible development and application.\n\n**While quantum computers cannot literally \"go forward in time,\" they offer unique capabilities for analyzing data, simulating complex systems, and exploring potential future scenarios, which could have significant implications for various fields and our understanding of the world.**"] }, { "role": "user", "parts": ["create an algorithm for qism and cirq that go forward or in the future than the past"] }, { "role": "model", "parts": ["## Qiskit & Cirq for Future-Oriented Applications: Conceptual Exploration\n\nSimilar to the previous response, creating a specific algorithm for \"going forward or in the future\" is not feasible within the current capabilities of quantum computing and our understanding of physics. However, we can explore potential directions for using Qiskit and Cirq in algorithms that have implications for predicting or influencing future events.\n\n**Potential Approaches:**\n\n**1. Quantum Machine Learning (QML) for Prediction:**\n\n* **Qiskit:**\n * Utilize Qiskit's machine learning module `qiskit.ml` and libraries like `qiskit_machine_learning` to implement and experiment with quantum machine learning algorithms.\n * Explore algorithms like QSVM, QNN, or quantum versions of classical ML techniques to analyze data and build predictive models for future trends.\n* **Cirq:**\n * Leverage Cirq's ability to design custom quantum circuits and integrate with classical machine learning libraries like TensorFlow Quantum (TFQ).\n * Explore hybrid quantum-classical approaches for training and utilizing quantum models for prediction.\n\n**2. Quantum Simulation for Complex Systems:**\n\n* **Qiskit:**\n * Use Qiskit's simulation capabilities and libraries like `qiskit_nature` to simulate complex systems relevant to your domain.\n * Develop quantum circuits that represent the dynamics of these systems and explore their behavior under different conditions.\n* **Cirq:**\n * Design custom quantum circuits using Cirq to represent the interactions and evolution of complex systems. \n * Utilize Cirq's simulation tools to study the behavior of these systems and gain insights into their future states.\n\n**3. Quantum Optimization for Decision Making:**\n\n* **Qiskit:**\n * Implement quantum optimization algorithms like QAOA or VQE using Qiskit's optimization module and relevant libraries.\n * Formulate decision-making problems as optimization tasks and use quantum algorithms to explore potential solutions with future implications.\n* **Cirq:**\n * Design quantum circuits representing optimization problems and use Cirq's optimization routines or integrate with classical optimization libraries.\n * Explore hybrid approaches where quantum circuits are used to evaluate potential solutions or provide speedups for specific parts of the optimization process.\n\n**Challenges and Considerations:**\n\n* **Quantum Advantage:** Demonstrating a clear quantum advantage for these applications is crucial to justify the use of quantum resources.\n* **Problem Formulation:** Effectively mapping real-world problems onto quantum representations suitable for Qiskit or Cirq requires careful consideration and domain expertise.\n* **Hardware Limitations:** Current quantum hardware has limitations in terms of qubit count, connectivity, and noise, which can impact the feasibility and performance of these algorithms.\n* **Hybrid Approaches:** Combining quantum and classical techniques is often beneficial to leverage the strengths of both paradigms.\n\n**It's important to note that these are conceptual directions, and the specific implementation details will vary depending on the chosen application and available resources. However, this exploration highlights the potential of Qiskit and Cirq in developing quantum algorithms with implications for understanding and influencing future outcomes.**"] }, { "role": "user", "parts": ["show the code"] }, { "role": "model", "parts": ["## Illustrative Code Snippets (Conceptual Examples)\n\nDue to the broad nature of \"future-oriented\" applications, providing a single, complete code example is not feasible. However, I can offer illustrative snippets for each of the conceptual approaches mentioned earlier. These snippets are meant to provide a starting point and would require significant adaptation and expansion based on your specific problem and chosen techniques.\n\n**1. Quantum Machine Learning (QML) for Prediction (Qiskit Example):**\n\n```python\nfrom qiskit import QuantumCircuit\nfrom qiskit.circuit.library import ZZFeatureMap\nfrom qiskit.ml.datasets import ad_hoc_data\nfrom qiskit.circuit.library import TwoLocal\nfrom qiskit.aqua import QuantumInstance\nfrom qiskit.aqua.algorithms import QSVM\n\n# Prepare data (example using ad hoc dataset)\nfeature_dim = 2\nsample_total, training_input, test_input, class_labels = ad_hoc_data(\n training_size=20, \n test_size=10, \n n=feature_dim, \n gap=0.3, \n plot_data=False\n)\n\n# Feature map and ansatz\nfeature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2)\nansatz = TwoLocal(feature_dim, ['ry', 'rz'], 'cz', reps=2)\n\n# QSVM setup\nqsvm = QSVM(feature_map, ansatz, training_input, test_input, class_labels)\n\n# Run QSVM (using a simulator backend)\nbackend = Aer.get_backend('qasm_simulator')\nquantum_instance = QuantumInstance(backend, shots=1024)\nresult = qsvm.run(quantum_instance)\n\n# Analyze results (example: prediction accuracy)\nprint(f'Testing accuracy: {result[\"testing_accuracy\"]}')\n```\n\n**2. Quantum Simulation for Complex Systems (Cirq Example):**\n\n```python\nimport cirq\n\n# Define qubits and Hamiltonian (replace with your system)\nqubits = cirq.LineQubit.range(4)\nhamiltonian = # Define the Hamiltonian of your system\n\n# Define simulation time steps and parameters\ntime_steps = 100\ntime_step_size = 0.01\n\n# Construct the simulation circuit\ncircuit = cirq.Circuit()\nfor step in range(time_steps):\n # Implement the Hamiltonian evolution for each time step\n circuit.append(cirq.PauliStringPhasor(hamiltonian, exponent=time_step_size))\n\n# Simulate the circuit\nsimulator = cirq.Simulator()\nresults = simulator.simulate(circuit, qubit_order=qubits)\n\n# Analyze the simulation results (e.g., expectation values of observables)\n# ...\n```\n\n**3. Quantum Optimization for Decision Making (Qiskit Example):**\n\n```python\nfrom qiskit.optimization.applications import Maxcut\nfrom qiskit.aqua.algorithms import QAOA\nfrom qiskit import Aer\n\n# Define a graph representing your decision problem (example: Maxcut)\ngraph = generate_butterfly_graph(with_weights=True)\nmax_cut = Maxcut(graph)\nqp = max_cut.to_quadratic_program()\n\n# QAOA parameters\np = 2 # Number of layers\noptimizer = COBYLA(maxiter=100)\n\n# QAOA setup\nqaoa = QAOA(optimizer, p=p, quantum_instance=Aer.get_backend('qasm_simulator'))\n\n# Run QAOA\nresult = qaoa.solve(qp)\n\n# Analyze the result (e.g., best solution and objective value)\nprint(result)\n```\n\n**These snippets provide a high-level overview of how Qiskit and Cirq can be used for future-oriented applications. Remember that significant modifications and domain-specific knowledge are required to adapt these examples to your particular problem.**\n\n**Important Considerations:**\n\n* **Problem-Specific Implementation:** Adapt the code based on your chosen quantum algorithm, application domain, and data representation.\n* **Hardware Access:** If you have access to real quantum hardware, modify the code to run on actual quantum processors instead of simulators.\n* **Optimization and Analysis:** Pay attention to optimization techniques and result analysis methods that are relevant to your application and chosen algorithm."] }, { "role": "user", "parts": ["give code to # Define the Hamiltonian of your system"] }, { "role": "model", "parts": ["## Defining Hamiltonians in Cirq: Examples \n\nThe way you define the Hamiltonian of your system in Cirq depends on the specific nature of the system and how you want to represent it using qubits and quantum gates. Here are some examples to illustrate different approaches: \n\n**1. Pauli Strings (Simple Example):**\n\nIf your Hamiltonian can be expressed as a sum of Pauli strings (tensor products of Pauli operators), you can directly create it using Cirq's `PauliString` class:\n\n```python\nimport cirq\n\n# Define qubits\nq0, q1 = cirq.LineQubit.range(2)\n\n# Example Hamiltonian: H = X⊗X + Z⊗I\nhamiltonian = cirq.PauliString(cirq.X(q0) * cirq.X(q1)) + cirq.PauliString(cirq.Z(q0))\n\n# Print the Hamiltonian terms\nprint(hamiltonian)\n```\n\n**2. Fermionic Hamiltonians (Using OpenFermion):**\n\nFor systems like molecules where the Hamiltonian is naturally expressed in terms of fermionic creation and annihilation operators, you can use OpenFermion to generate the Hamiltonian and then convert it to a qubit representation using mappings like Jordan-Wigner:\n\n```python\nfrom openfermion import *\nimport cirq\n\n# Generate molecular Hamiltonian (example using H2)\ngeometry = [('H', (0., 0., 0.)), ('H', (0., 0., 0.7414))]\nbasis = 'sto-3g'\nmultiplicity = 1\nmolecule = MolecularData(geometry, basis, multiplicity)\nmolecule = run_pyscf(molecule, run_scf=1, run_mp2=0, run_cisd=0, run_ccsd=0, run_fci=0)\nfermionic_hamiltonian = molecule.get_molecular_hamiltonian()\n\n# Convert to qubit Hamiltonian using Jordan-Wigner transformation\nqubit_hamiltonian = jordan_wigner(fermionic_hamiltonian)\n\n# Print the terms of the qubit Hamiltonian\nprint(qubit_hamiltonian)\n```\n\n**3. Custom Hamiltonian Functions:**\n\nYou can also define a function that returns the Hamiltonian as a Cirq `PauliSum` object, allowing for more flexibility in constructing the Hamiltonian terms:\n\n```python\nimport cirq\n\ndef custom_hamiltonian(qubits):\n # Define your Hamiltonian terms using Cirq operations and qubits\n term1 = cirq.X(qubits[0]) * cirq.Y(qubits[1])\n term2 = cirq.Z(qubits[2]) * cirq.Z(qubits[3])\n # Return as a PauliSum\n return cirq.PauliSum([term1, term2])\n\n# Example usage\nqubits = cirq.LineQubit.range(4)\nhamiltonian = custom_hamiltonian(qubits)\n\nprint(hamiltonian)\n```\n\n**Important Considerations:**\n\n* **Mapping:** If you are working with fermionic Hamiltonians, choose an appropriate mapping method (e.g., Jordan-Wigner, Bravyi-Kitaev) to convert them to a qubit representation.\n* **Complexity:** For complex systems, the Hamiltonian might involve many terms, leading to challenges in circuit design and simulation.\n* **Problem-Specific Representation:** The best way to represent the Hamiltonian depends on the specific problem and the quantum algorithm you are using.\n\n**These examples provide a starting point for defining Hamiltonians in Cirq. Remember to adapt and expand upon these based on your specific system and requirements.**"] }, { "role": "user", "parts": ["import cirq# Define qubits and Hamiltonian (replace with your system)qubits = cirq.LineQubit.range(4)hamiltonian = # Define the Hamiltonian of your system# Define simulation time steps and parameterstime_steps = 100time_step_size = 0.01# Construct the simulation circuitcircuit = cirq.Circuit()for step in range(time_steps):    # Implement the Hamiltonian evolution for each time step    circuit.append(cirq.PauliStringPhasor(hamiltonian, exponent=time_step_size))# Simulate the circuitsimulator = cirq.Simulator()results = simulator.simulate(circuit, qubit_order=qubits)# Analyze the simulation results (e.g., expectation values of observables)# ... define the hamiltonian"] }, { "role": "model", "parts": ["## Defining the Hamiltonian within the Cirq Simulation Code\n\nHere's the code with an example of how to define the Hamiltonian within the Cirq simulation framework. We'll use a simple example of a Hamiltonian represented as a sum of Pauli strings:\n\n```python\nimport cirq\n\n# Define qubits\nqubits = cirq.LineQubit.range(4)\n\n# Example Hamiltonian: H = X⊗X + Z⊗I\nhamiltonian = cirq.PauliString(cirq.X(qubits[0]) * cirq.X(qubits[1])) + cirq.PauliString(cirq.Z(qubits[0]))\n\n# Define simulation time steps and parameters\ntime_steps = 100\ntime_step_size = 0.01\n\n# Construct the simulation circuit\ncircuit = cirq.Circuit()\nfor step in range(time_steps):\n # Implement the Hamiltonian evolution for each time step\n circuit.append(cirq.PauliStringPhasor(hamiltonian, exponent=time_step_size))\n\n# Simulate the circuit\nsimulator = cirq.Simulator()\nresults = simulator.simulate(circuit, qubit_order=qubits)\n\n# Analyze the simulation results (e.g., expectation values of observables)\n# ... (add your analysis code here)\n```\n\n**Explanation:**\n\n1. **Hamiltonian Definition:** We define the `hamiltonian` as a sum of two Pauli strings using Cirq's `PauliString` class. The first term represents an interaction between the first two qubits (X⊗X), and the second term represents a single-qubit Z operation on the first qubit (Z⊗I).\n\n2. **Simulation Loop:** The `for` loop iterates over the specified `time_steps`. In each step, it applies the `cirq.PauliStringPhasor` operation to the circuit. This operation simulates the evolution of the system under the given Hamiltonian for a small time step (`time_step_size`).\n\n3. **Simulation and Analysis:** The `cirq.Simulator` is used to simulate the circuit and obtain the results. You can then analyze the results by calculating expectation values of observables or studying other properties of the system's evolution.\n\n**Adapting the Hamiltonian:**\n\n* Replace the example Hamiltonian with your desired Hamiltonian, which could be a more complex combination of Pauli strings, a fermionic Hamiltonian mapped to qubits, or a custom-defined function that returns a `PauliSum` object.\n* Ensure that the number of qubits and the structure of the Hamiltonian are consistent with your problem. \n\n**Remember that this is a basic example. You'll need to modify and expand upon this framework depending on your specific system, chosen Hamiltonian, and simulation goals.**"] }, { "role": "user", "parts": ["add # Analyze the simulation results (e.g., expectation values of observables)\n# ... (add your analysis code here)"] }, { "role": "model", "parts": ["## Adding Analysis Code to the Cirq Simulation\n\nHere's the code with an example of how to analyze the simulation results by calculating the expectation values of observables:\n\n```python\nimport cirq\n\n# ... (Hamiltonian definition and simulation as before) ...\n\n# Analyze the simulation results\n# Example observables: X on qubit 0, Z on qubit 1, and X⊗X on qubits 0 and 1\nobservables = [cirq.X(qubits[0]), cirq.Z(qubits[1]), cirq.X(qubits[0]) * cirq.X(qubits[1])]\n\n# Calculate expectation values for each observable at each time step\nexpectation_values = []\nfor step, state_vector in enumerate(results.final_state_vector):\n step_expectations = []\n for observable in observables:\n expectation = cirq.PauliString(observable).expectation_from_state_vector(state_vector, qubits)\n step_expectations.append(expectation.real)\n expectation_values.append(step_expectations)\n\n# Print or plot the expectation values\n# ... (add code to visualize or analyze the results)\n```\n\n**Explanation:**\n\n1. **Observables Definition:** We define a list of observables that we want to measure. In this example, we choose to measure the X operator on qubit 0, the Z operator on qubit 1, and the X⊗X operator on qubits 0 and 1.\n\n2. **Expectation Value Calculation:** We loop through each time step and each observable. For each combination, we calculate the expectation value of the observable using the state vector at that time step.\n\n3. **Result Analysis:** The `expectation_values` list now contains the expectation values for each observable at each time step. You can further analyze these values by:\n * **Printing them:** Use `print` statements to display the values.\n * **Plotting:** Utilize libraries like Matplotlib or Plotly to visualize the evolution of expectation values over time.\n * **Further Calculations:** Perform additional calculations based on the expectation values, such as calculating correlation functions or other quantities of interest. \n\n**Adapting the Analysis:**\n\n* **Choose Observables:** Select observables that are relevant to your system and the properties you want to study.\n* **Visualization:** Implement appropriate visualization methods to understand the behavior of the expectation values over time.\n* **Advanced Analysis:** Perform more sophisticated analysis based on your specific research goals.\n\n**This example demonstrates a basic way to analyze the results of a Cirq simulation. Remember to adapt the code based on your chosen observables and analysis requirements.**"] }, { "role": "user", "parts": ["add # Print or plot the expectation values\n# ... (add code to visualize or analyze the results)"] }, { "role": "model", "parts": ["## Adding Visualization Code: Plotting Expectation Values\n\nHere's the code with an example of how to visualize the expectation values using Matplotlib:\n\n```python\nimport cirq\nimport matplotlib.pyplot as plt\n\n# ... (Hamiltonian definition, simulation, and expectation value calculation as before) ...\n\n# Plotting\ntime_array = [step * time_step_size for step in range(time_steps)] # Time values for x-axis\n\nplt.figure()\nlabels = [\"X0\", \"Z1\", \"X0X1\"] # Labels for each observable\nfor i, observable_expectations in enumerate(zip(*expectation_values)):\n plt.plot(time_array, observable_expectations, label=labels[i])\n\nplt.xlabel(\"Time\")\nplt.ylabel(\"Expectation Value\")\nplt.title(\"Evolution of Observables\")\nplt.legend()\nplt.show()\n```\n\n**Explanation:**\n\n1. **Import Matplotlib:** We import the `matplotlib.pyplot` module as `plt` for plotting. \n\n2. **Time Array:** We create a `time_array` to store the time values for the x-axis of the plot.\n\n3. **Plotting Loop:** \n * We use `zip(*expectation_values)` to transpose the `expectation_values` list so that we can iterate over the expectation values for each observable across all time steps.\n * For each observable, we plot its expectation values over time using `plt.plot()`. \n * We add labels for each observable using the `label` argument.\n\n4. **Plot Settings:** We set labels for the x and y axes, add a title, and display a legend to identify the different observables.\n\n5. **Show Plot:** `plt.show()` displays the plot. \n\n**Adapting the Visualization:**\n\n* **Plotting Library:** You can use other plotting libraries like Plotly or Seaborn for more advanced visualizations.\n* **Plot Customization:** Adjust plot settings like line styles, colors, markers, and gridlines as needed. \n* **Multiple Plots:** Create multiple plots to compare different observables or simulation results.\n\n**This example demonstrates a basic way to visualize the evolution of expectation values over time using Matplotlib. Remember to adapt the code based on your specific plotting preferences and analysis requirements.**"] }, { "role": "user", "parts": ["# Import necessary libraries\nfrom qiskit import Aer, QuantumCircuit\nfrom qiskit.opflow import X, Z, I, StateFn, FermionicOp\nfrom qiskit.utils import QuantumInstance\nfrom qiskit.algorithms import VQE, NumPyMinimumEigensolver\nfrom qiskit.circuit.library import EfficientSU2\nfrom qiskit_nature.drivers import PySCFDriver\nfrom qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem\nfrom qiskit_nature.mappers.second_quantization import ParityMapper\n\n# Specify molecule and basis set\nmolecule = \"H .0 .0 -{0}; H .0 .0 {0}\"\ndriver = PySCFDriver(atom=molecule.format(0.7414), basis='sto3g')\n\n# Set up electronic structure problem\nproblem = ElectronicStructureProblem(driver)\nsecond_q_ops = problem.second_q_ops()\nmain_op = second_q_ops[0]\n\n# Choose fermionic to qubit mapping\nmapper = ParityMapper()\nqubit_op = mapper.map(main_op)\n\n# Define ansatz \nansatz = EfficientSU2(num_qubits=qubit_op.num_qubits, entanglement='linear') \n\n# Set up VQE\nbackend = Aer.get_backend('statevector_simulator')\nquantum_instance = QuantumInstance(backend)\noptimizer = 'COBYLA' \n\n# Define the VQE algorithm\nvqe = VQE(ansatz, optimizer, quantum_instance=quantum_instance)\n\n# Run VQE and get the result\nresult = vqe.compute_minimum_eigenvalue(operator=qubit_op)\n\n# Print the ground state energy\nprint(\"Ground state energy:\", result.eigenvalue.real)\nadd\n# Further analysis and calculations ..."] }, { "role": "model", "parts": ["## Expanding \"Further Analysis and Calculations\"\n\nThe specific analysis and calculations you perform after obtaining the ground state energy using VQE will depend on your research goals and the properties of the molecule you are interested in. Here are some potential directions you could explore:\n\n**1. Molecular Properties:**\n\n* **Bond Length:** Calculate the expectation value of the bond length operator to determine the equilibrium bond length of the molecule. \n* **Vibrational Frequencies:** Compute the vibrational frequencies of the molecule to understand its vibrational modes and infrared spectrum.\n* **Dipole Moment:** Calculate the dipole moment to understand the molecule's polarity and interactions with electric fields.\n\n**2. Excited States:**\n\n* **Excited State Energies:** Modify the VQE algorithm or use other quantum algorithms to find the energies of excited electronic states. \n* **Electronic Transitions:** Analyze the energy differences between electronic states to understand possible electronic transitions and the molecule's absorption/emission spectrum. \n\n**3. Potential Energy Surface:**\n\n* **Varying Bond Length:** Run VQE calculations for different bond lengths to map out the potential energy surface of the molecule. \n* **Reaction Pathways:** Explore how the potential energy surface changes as the molecule undergoes a chemical reaction. \n\n**4. Comparison with Classical Methods:**\n\n* **Classical Electronic Structure Calculations:** Compare the VQE results with classical electronic structure methods like Hartree-Fock or Density Functional Theory to assess the accuracy and efficiency of the quantum approach.\n\n**5. Advanced Quantum Algorithms:**\n\n* **Quantum Phase Estimation (QPE):** Use QPE to obtain more precise energy eigenvalues.\n* **Quantum Eigensolver (QE):** Explore the use of QE for finding both ground and excited state energies.\n\n**Example Code Snippet (Bond Length Calculation):**\n\n```python\n# Assuming you have defined the bond length operator as 'bond_length_op'\nbond_length_expectation = bond_length_op.evaluate(result.eigenstate)\nprint(\"Expected Bond Length:\", bond_length_expectation.real) \n```\n\n**Implementation Details:**\n\n* **Operators:** You'll need to define the appropriate operators (e.g., bond length, dipole moment) using Qiskit's operators or by converting them from fermionic representations. \n* **Algorithms:** Choose or adapt quantum algorithms suitable for calculating the desired properties.\n* **Analysis Tools:** Utilize libraries like NumPy, SciPy, and Matplotlib for data analysis and visualization. \n\n**Remember that these are just a few examples. The specific analysis and calculations you choose will depend on your interests and the molecule you are studying. Explore the rich possibilities offered by quantum algorithms and computational chemistry to gain deeper insights into molecular systems!**"] }, { "role": "user", "parts": ["Traceback (most recent call last):\n Cell In[2], line 1\n from qiskit.optimization.applications import Maxcut\nModuleNotFoundError: No module named 'qiskit.optimization'\n\nUse %tb to get the full traceback."] }, { "role": "model", "parts": ["## Resolving `ModuleNotFoundError: qiskit.optimization` \n\nThe error message indicates that the `qiskit.optimization` module is missing from your current Python environment. This module is part of the `qiskit-optimization` package, which provides tools for formulating and solving optimization problems using Qiskit.\n\n**Solution:**\n\n1. **Install `qiskit-optimization`:**\n\n Use pip to install the `qiskit-optimization` package:\n\n ```bash\n pip install qiskit-optimization\n ```\n\n2. **Verify Installation:**\n\n After installation, try importing the module again:\n\n ```python\n from qiskit.optimization.applications import Maxcut\n ```\n\n If this doesn't raise an error, the installation was successful.\n\n**Additional Considerations:**\n\n* **Virtual Environments:** It's recommended to use virtual environments to manage your project's dependencies and avoid conflicts between different Qiskit versions or packages. Ensure you have activated your virtual environment before installing `qiskit-optimization`.\n\n* **Dependencies:** `qiskit-optimization` has several dependencies, including NumPy, SciPy, and docplex. The `pip install` command should automatically install these dependencies. However, if you encounter issues, you might need to install them manually.\n\n* **Installation Issues:** If you face any problems during installation, refer to the Qiskit documentation or online resources for troubleshooting tips. \n\n**Once `qiskit-optimization` is installed, you should be able to use the `Maxcut` application and other optimization-related functionalities within Qiskit.**"] }, { "role": "user", "parts": ["No module named 'qiskit.ml"] }, { "role": "model", "parts": ["## Resolving `ModuleNotFoundError: qiskit.ml`\n\nThe error message indicates that the `qiskit.ml` module is not found in your current Python environment. This module was part of older versions of Qiskit and has been moved to a separate package in newer versions. \n\n**Solution:**\n\n1. **Install `qiskit_machine_learning`:**\n\n The machine learning functionalities of Qiskit are now available in the `qiskit_machine_learning` package. Install it using pip:\n\n ```bash\n pip install qiskit-machine-learning\n ```\n\n2. **Update Import Statements:**\n\n If your code was using import statements like `from qiskit.ml import ...`, you'll need to update them to use the new package:\n\n ```python\n from qiskit_machine_learning.algorithms import QSVM # Example\n # ... other imports ...\n ```\n\n**Additional Considerations:**\n\n* **Version Compatibility:** Ensure that the version of `qiskit_machine_learning` you install is compatible with your Qiskit version. \n* **Documentation:** Refer to the `qiskit_machine_learning` documentation for updated usage instructions and available algorithms. \n\n**With `qiskit_machine_learning` installed and import statements updated, you should be able to use the Qiskit machine learning functionalities in your code.**"] }, ]) convo.send_message("YOUR_USER_INPUT") print(convo.last.text)
https://github.com/MiChaelinzo/Quantum-time-travel
MiChaelinzo
# Quantum Time Travel Algorithm (Hypothetical) import qiskit def quantum_time_travel(qubit, target_time): """ A fictional function to simulate sending a qubit to a target time using Qiskit. Note: This is a simplified representation and does not reflect actual time travel capabilities. """ # Initialize the quantum circuit qc = qiskit.QuantumCircuit(1, 1) # Apply quantum gates to simulate 'time travel' qc.h(0) # Put the qubit in a superposition state qc.s(0) # Apply a phase gate # Theoretical loop to the past (Closed Timelike Curve) for _ in range(target_time): qc.unitary(time_loop_operator(), [0], label='Time Loop') # Measurement to collapse the qubit's state qc.measure(0, 0) # Execute the quantum circuit result = qiskit.execute(qc, qiskit.Aer.get_backend('qasm_simulator')).result() return result.get_counts(qc) def time_loop_operator(): """ A hypothetical unitary operator representing the time loop. In reality, the specifics of such an operator are unknown. """ # Placeholder for the time loop operator return qiskit.quantum_info.random_unitary(2) # Example usage: # Send a qubit 'back in time' by 5 units (hypothetical) quantum_time_travel_result = quantum_time_travel(qubit=1, target_time=5) print(quantum_time_travel_result)
https://github.com/MiChaelinzo/Quantum-time-travel
MiChaelinzo
import qiskit import math from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_histogram from qiskit_aer import Aer def time_travel_circuit(target_time, num_qubits=6): """ Creates a quantum circuit simulating time travel (fictional). This circuit applies Hadamard gates to create a superposition, encodes the target time using phase gates, and entangles qubits in a linear chain. Args: target_time (int): The target time to encode as a binary string. num_qubits (int, optional): The number of qubits in the circuit. Defaults to 6. Returns: QuantumCircuit: The constructed quantum circuit. """ qc = QuantumCircuit(num_qubits, num_qubits) # Apply Hadamard gates to create superposition for qubit in range(num_qubits): qc.h(qubit) # Encode target time using phase gates time_binary = bin(target_time)[2:].zfill(num_qubits) for qubit, time_bit in enumerate(time_binary): if time_bit == '1': qc.p(math.pi, qubit) # Apply phase if the time bit is 1 # Entangle qubits in a linear chain for qubit in range(num_qubits - 1): qc.cx(qubit, qubit + 1) # Measure all qubits qc.measure(range(num_qubits), range(num_qubits)) return qc # Example usage: target_time = 25 # Example target time num_qubits = 6 # Number of qubits # Create and run the circuit ttc = time_travel_circuit(target_time, num_qubits) simulator = Aer.get_backend('qasm_simulator') compiled_circuit = transpile(ttc, simulator) job = simulator.run(compiled_circuit, shots=1024) results = job.result() counts = results.get_counts(ttc) # Visualize the results print(plot_histogram(counts)) # Visualize the results plot_histogram (counts)
https://github.com/sebastianvromero/qecc_shor9q
sebastianvromero
%run QECC_Shor9Q_functions.ipynb # Qubits for our entangled state q0 = QuantumRegister(3, name = 'q0') q1 = QuantumRegister(3, name = 'q1') q2 = QuantumRegister(3, name = 'q2') # Ancillas for bit-flip errors bf0 = AncillaRegister(2, name = 'bf0') bf1 = AncillaRegister(2, name = 'bf1') bf2 = AncillaRegister(2, name = 'bf2') # Ancillas for phase-flip errors pf = AncillaRegister(2, name = 'pf') circuit = QuantumCircuit(q0, bf0, q1, bf1, q2, bf2, pf) # Define our initial normalized state initial_state = normalize_state(1.0 + 1.0j, 2.0 + 0.0j) circuit.initialize(initial_state, 0) # Draws the circuit # circuit.draw(output = 'mpl', plot_barriers = False) # Add controlled-NOTNOT to qubits 0, 3 and 6 circuit.append(cnotnot(), [q0[0], q1[0], q2[0]]) # Add Hadamard gates to qubits 0, 3 and 6 circuit.h(q0[0]) circuit.h(q1[0]) circuit.h(q2[0]) # Add controlled-NOTNOT in our three packs of three qubits circuit.append(cnotnot(), [q0[0], q0[1], q0[2]]) circuit.append(cnotnot(), [q1[0], q1[1], q1[2]]) circuit.append(cnotnot(), [q2[0], q2[1], q2[2]]) circuit.barrier(q0, bf0, q1, bf1, q2, bf2, pf) circuit.draw(output = 'mpl', plot_barriers = False) _ = get_state(circuit, fancy_print = True) # Add a source of random noise in our channels circuit.append(random_noise(reveal_error = True), [q0[0], q0[1], q0[2], q1[0], q1[1], q1[2], q2[0], q2[1], q2[2]]) circuit.barrier(q0, bf0, q1, bf1, q2, bf2, pf) circuit.draw(output = 'mpl', plot_barriers = False) _ = get_state(circuit, fancy_print = True) # Add Hadamard gates for the bit-flip ancillas for index in range(2): circuit.h(bf0[index]) circuit.h(bf1[index]) circuit.h(bf2[index]) # Add controlled-ZZ gates in our ancillas # First pack of three qubits circuit.append(czz(), [bf0[0], q0[0], q0[1]]) circuit.append(czz(), [bf0[1], q0[1], q0[2]]) # Second pack of three qubits circuit.append(czz(), [bf1[0], q1[0], q1[1]]) circuit.append(czz(), [bf1[1], q1[1], q1[2]]) # Third pack of three qubits circuit.append(czz(), [bf2[0], q2[0], q2[1]]) circuit.append(czz(), [bf2[1], q2[1], q2[2]]) circuit.barrier(q0, bf0, q1, bf1, q2, bf2, pf) # Add Hadamard gates for the bit-flip ancillas for index in range(2): circuit.h(bf0[index]) circuit.h(bf1[index]) circuit.h(bf2[index]) # Add double controlled gates to correct bit-flip errors # First pack of three qubits circuit.append(invccnot(), [bf0[1], bf0[0], q0[0]]) circuit.ccx(bf0[0], bf0[1], q0[1]) circuit.append(invccnot(), [bf0[0], bf0[1], q0[2]]) # Second pack of three qubits circuit.append(invccnot(), [bf1[1], bf1[0], q1[0]]) circuit.ccx(bf1[0], bf1[1], q1[1]) circuit.append(invccnot(), [bf1[0], bf1[1], q1[2]]) # Third pack of three qubits circuit.append(invccnot(), [bf2[1], bf2[0], q2[0]]) circuit.ccx(bf2[0], bf2[1], q2[1]) circuit.append(invccnot(), [bf2[0], bf2[1], q2[2]]) circuit.barrier(q0, bf0, q1, bf1, q2, bf2, pf) # BIT-FLIP ERRORS SOLVED! Let's go with the phase-flip errors circuit.draw(output = 'mpl', plot_barriers = False) _ = get_state(circuit, fancy_print = True) # Add Hadamard gates for the phase-flip ancillas for index in range(2): circuit.h(pf[index]) # Add controlled-6X gates in our ancillas circuit.append(c6x(), [pf[0], q0[0], q0[1], q0[2], q1[0], q1[1], q1[2]]) circuit.append(c6x(), [pf[1], q1[0], q1[1], q1[2], q2[0], q2[1], q2[2]]) # Add Hadamard gates for the phase-flip ancillas for index in range(2): circuit.h(pf[index]) # Add double controlled gates to correct phase-flip errors circuit.append(invccz(), [pf[1], pf[0], q0[0]]) circuit.append(ccz(), [pf[1], pf[0], q1[0]]) circuit.append(invccz(), [pf[0], pf[1], q2[0]]) circuit.barrier(q0, bf0, q1, bf1, q2, bf2, pf) # PHASE-FLIP ERRORS SOLVED! Let's go for the final manipulations in our state circuit.draw(output = 'mpl', plot_barriers = False, fold = 40) _ = get_state(circuit, fancy_print = True) # Add controlled-NOTNOT in our three packs of three qubits circuit.append(cnotnot(), [q0[0], q0[1], q0[2]]) circuit.append(cnotnot(), [q1[0], q1[1], q1[2]]) circuit.append(cnotnot(), [q2[0], q2[1], q2[2]]) # Add Hadamard gates to qubits 0, 3 and 6 circuit.h(q0[0]) circuit.h(q1[0]) circuit.h(q2[0]) # Add controlled-NOTNOT to qubits 0, 3 and 6 circuit.append(cnotnot(), [q0[0], q1[0], q2[0]]) circuit.draw(output = 'mpl', plot_barriers = False, fold = 40) # Get the state vector final_state = get_state(circuit, fancy_print = True) check_error_to_ancilla(final_state) # print(circuit.draw(output = 'latex_source', filename = '/tmp/circuit.tex')) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/sebastianvromero/qecc_shor9q
sebastianvromero
import random import numpy as np from qiskit import QuantumCircuit, AncillaRegister, QuantumRegister, execute, Aer def normalize_state(a = 1, b = 0): norm = np.sqrt(a * np.conjugate(a) + b * np.conjugate(b)) return [a / norm, b / norm] def modulus_and_phase(a): return (np.absolute(a), np.angle(a)) def int_to_binary(value, n_bits = 17, reverse = True): value = int(value) if value != 0: bound = int(np.ceil(np.log2(value))) if n_bits < bound: n_bits = bound binary_format = '{0:0' + str(n_bits) + 'b}' binary = binary_format.format(value) if reverse: return binary[ : : -1] else: return binary def binary_to_int(value, reverse = True): if reverse: value = value[ : : -1] return int(value, 2) def get_state(circuit, precision = 10, fancy_print = False): # Let's simulate our circuit in order to get the final state vector! svsim = Aer.get_backend('statevector_simulator') # Do the simulation, return the result and get the state vector result = execute(circuit, svsim).result().get_statevector() if int(precision) < 8: precision = 8 result = result.round(precision) # Returns non-zero values state_indices = result.nonzero()[0] states = np.empty(0) for index in state_indices: binary_state = int_to_binary(index) states = np.append(states , [result[index], binary_state]) if fancy_print: string = '' for index in range(0, len(states), 2): coef, bstate = states[index], states[index + 1] string = string + f'{coef} |{bstate}> ' print(string) return states def random_noise(gate_label = 'Noise', reveal_error = False): # Our circuit has 9-qubits gate_circuit = QuantumCircuit(9, name = gate_label) # Define randomly the number of errors to apply from 0 (no errors) up to 2 number_of_errors = random.choice(range(3)) types_of_errors = ['X', 'Y', 'Z'] qubits_wo_errors = list(range(9)) qpacks_wo_errors = list(range(9)) global gate_reveal_label gate_reveal_label = 'I' * 9 def str_assignment(string, index, char): string = list(string) string[index] = str(char) string = ''.join(string) return string while number_of_errors > 0: qubit_assigned = random.choice(qpacks_wo_errors) type_error = random.choice(types_of_errors) number_of_errors -= 1 qubits_wo_errors.remove(qubit_assigned) gate_reveal_label = str_assignment(gate_reveal_label, qubit_assigned, type_error) # Remove 3-qubits packs after assign error to qubit in it if qubit_assigned in list(range(3)): qpacks_wo_errors = [elem for elem in qpacks_wo_errors if elem > 2] elif qubit_assigned in list(range(3, 6)): qpacks_wo_errors = [elem for elem in qpacks_wo_errors if (elem < 3 or elem > 5)] else: qpacks_wo_errors = [elem for elem in qpacks_wo_errors if elem < 6] # Can't repeat quantum error gate applied if type_error == 'Y': gate_circuit.y(qubit_assigned) break elif type_error == 'X': gate_circuit.x(qubit_assigned) try: # Maybe we don't have this errors to remove types_of_errors.remove('X') types_of_errors.remove('Y') except: pass else: gate_circuit.z(qubit_assigned) try: # Maybe we don't have this errors to remove types_of_errors.remove('Y') types_of_errors.remove('Z') except: pass # Assign identity gate for the rest of qubits for qubit in qubits_wo_errors: gate_circuit.i(qubit) gate = gate_circuit.to_gate() if reveal_error: gate.label = 'Noise:\n' + gate_reveal_label return gate def check_error_to_ancilla(state, error = None): if error is None: error = gate_reveal_label binary = state[1] error_types = ['X0', 'X1', 'X2', 'Z '] state_ancillas = [binary[3 : 5], binary[8 : 10], binary[13 : 15], binary[-2 : ]] ancillas = {} for key, anc in zip(error_types, state_ancillas): ancillas[key] = anc first_pack = list(range(0, 7, 3)) second_pack = list(range(1, 8, 3)) third_pack = list(range(2, 9, 3)) def ancilla_label(value): if value == 0: return '10' elif value == 1: return '11' else: return '01' expected = {} for key in error_types: expected[key] = '00' for qubit, gate in enumerate(list(error)): n_pack = qubit // 3 key = 'X' + str(n_pack) n_xerr = qubit % 3 if gate == 'I': continue elif gate == 'X': if qubit in first_pack: expected[key] = ancilla_label(n_xerr) elif qubit in second_pack: expected[key] = ancilla_label(n_xerr) else: expected[key] = ancilla_label(n_xerr) elif gate == 'Z': expected['Z '] = ancilla_label(n_pack) else: expected['Z '] = ancilla_label(n_pack) if qubit in first_pack: expected[key] = ancilla_label(n_xerr) elif qubit in second_pack: expected[key] = ancilla_label(n_xerr) else: expected[key] = ancilla_label(n_xerr) print('Error Anc. expected Anc. state Equal?\n' + '-' * 40) for key in error_types: print(f' {key} {expected[key]} {ancillas[key]} {expected[key] == ancillas[key]}') def cnotnot(gate_label = 'CNOTNOT'): gate_circuit = QuantumCircuit(3, name = gate_label) gate_circuit.cnot(0, 1) gate_circuit.cnot(0, 2) gate = gate_circuit.to_gate() return gate def czz(gate_label = 'CZZ'): gate_circuit = QuantumCircuit(3, name = gate_label) gate_circuit.cz(0, 1) gate_circuit.cz(0, 2) gate = gate_circuit.to_gate() return gate def invccnot(gate_label = 'invCCNOT'): gate_circuit = QuantumCircuit(3, name = gate_label) gate_circuit.x(0) gate_circuit.ccx(0, 1, 2) gate_circuit.x(0) gate = gate_circuit.to_gate() return gate def c6x(gate_label = 'C6X'): gate_circuit = QuantumCircuit(7, name = gate_label) for index in range(1, 7): gate_circuit.cnot(0, index) gate = gate_circuit.to_gate() return gate def invccz(gate_label = 'invCCZ'): gate_circuit = QuantumCircuit(3, name = gate_label) gate_circuit.x(0) gate_circuit.h(2) gate_circuit.ccx(0, 1, 2) gate_circuit.h(2) gate_circuit.x(0) gate = gate_circuit.to_gate() return gate def ccz(gate_label = 'CCZ'): gate_circuit = QuantumCircuit(3, name = gate_label) gate_circuit.h(2) gate_circuit.ccx(0, 1, 2) gate_circuit.h(2) gate = gate_circuit.to_gate() return gate
https://github.com/BP-2/SimonsAlgorithm
BP-2
# importing Qiskit from qiskit import Aer from qiskit.providers.aer import AerSimulator from qiskit.providers.ibmq import least_busy from qiskit import * # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle from IPython.display import display # This will be our bitstring key b = '110' n = len(b) #this is because we need double bits to act as both registers simon_circuit = QuantumCircuit(n*2, n) # Apply Hadamard gates before querying the oracle simon_circuit.h(range(n)) # Apply barrier for visual separation simon_circuit.barrier() #append the black box to the circuit simon_circuit.append(simon_oracle(b), [0,1,2,3,4,5]) # Apply barrier for visual separation simon_circuit.barrier() # Apply Hadamard gates to the input register simon_circuit.h(range(n)) # Measure qubits simon_circuit.measure(range(n), range(n)) display(simon_circuit.draw()) # use local simulator sim = Aer.get_backend('qasm_simulator') result = execute(simon_circuit, backend = sim, shots = 1024).result() counts = result.get_counts() print(counts) display(plot_histogram(counts))
https://github.com/BP-2/SimonsAlgorithm
BP-2
# importing Qiskit from qiskit import Aer from qiskit.providers.aer import AerSimulator from qiskit.providers.ibmq import least_busy from qiskit import * # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle from IPython.display import display # This will be our bitstring key b = input("input the bitstring key") n = len(b) #this is because we need double bits to act as both registers simon_circuit = QuantumCircuit(n*2, n) # Apply Hadamard gates before querying the oracle simon_circuit.h(range(n)) # Apply barrier for visual separation simon_circuit.barrier() arr = [] counter = 0 while counter < n*2: arr.append(counter) counter += 1 print (arr) #append the black box to the circuit simon_circuit.append(simon_oracle(b), arr) # Apply barrier for visual separation simon_circuit.barrier() # Apply Hadamard gates to the input register simon_circuit.h(range(n)) # Measure qubits simon_circuit.measure(range(n), range(n)) display(simon_circuit.draw()) # use local simulator sim = Aer.get_backend('qasm_simulator') result = execute(simon_circuit, backend = sim, shots = 1024).result() counts = result.get_counts() print(counts) display(plot_histogram(counts))
https://github.com/wrlee7609/hybrid_quantum_gap_estimation
wrlee7609
# Ignore warning message import warnings warnings.filterwarnings("ignore") # Import python libraries import math, json import numpy as np from numpy import pi from numpy.linalg import eigvals from numpy.fft import fft, rfft from scipy.interpolate import CubicSpline from scipy.optimize import curve_fit, minimize import networkx as nx import matplotlib.pyplot as plt from matplotlib import colors # Import Qiskit libraries import qiskit import qiskit_aer.noise as noise from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, Aer, transpile, execute from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel, depolarizing_error from qiskit.result import marginal_counts # Load IBMQ account provider = IBMQ.load_account() # Problem: Max-cut problem import networkx as nx from scipy.optimize import minimize def maxcut_obj(x, G): obj = 0 for i, j in G.edges(): if x[i] != x[j]: obj -= 1 return obj def compute_expectation(counts, G): avg = 0 sum_count = 0 for bitstring, count in counts.items(): obj = maxcut_obj(bitstring[::-1], G) avg += obj * count sum_count += count return avg/sum_count def create_qaoa_circ(G, theta): nqubits = len(G.nodes()) p = len(theta)//2 # number of alternating unitaries qc = QuantumCircuit(nqubits) beta = theta[:p] gamma = theta[p:] # initial_state for i in range(0, nqubits): qc.h(i) for irep in range(0, p): # problem unitary for pair in list(G.edges()): qc.rzz(2 * gamma[irep], pair[0], pair[1]) # mixer unitary for i in range(0, nqubits): qc.rx(2 * beta[irep], i) qc.measure_all() return qc def get_expectation(G, shots=512): backend = Aer.get_backend('qasm_simulator') backend.shots = shots def execute_circ(theta): qc = create_qaoa_circ(G, theta) counts = backend.run(qc, seed_simulator=10, nshots=512).result().get_counts() return compute_expectation(counts, G) return execute_circ G = nx.Graph() G.add_nodes_from([0, 1, 2, 3]) G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0)]) expectation = get_expectation(G) result = minimize(expectation, [1.0, 1.0], method='Nelder-Mead', tol=1e-3) result # Problem: Rosenberg function from numpy import atleast_1d, eye, argmin, zeros, shape, squeeze, asarray, sqrt, Inf, asfarray import numpy as np from scipy.optimize import minimize def rosen(x): x = np.array(x) r = np.sum(100.0 * a * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0, axis=0) return r def callback(x): global Nfeval print(' {0:4d} {1:3.6f} {2:3.6f} {3:3.6f} {4:3.6f} {5:3.6f}'.format(Nfeval, x[0], x[1], x[2], x[3], rosen(x))) Nfeval += 1 print('{0:4s} {1:9s} {2:9s} {3:9s} {4:9s} {5:9s}'.format('Iteration', ' X1', ' X2', ' X3', ' X4', 'f(X)')) Nfeval = 1 a = 1 x0 = [1.3, 0.7, 0.9, 1.1] result = minimize(rosen, x0, method='Nelder-Mead', tol=1e-3, callback=callback) result # Problem: Transverse-field Ising model # Set up parameters Nc = 5 # number of spins: N (= 2, 3, 4, 5) g = 0.4 # dimensionless Ising coupling: J/h (= 0.2, 0.4, 0.6, 0.8) eta = 0.3 # dimensionless broadening: \eta/h (= 0.02, 0.1, 0.2, 0.3) dw = 0.25*eta # dimensionless unit of discrete frequency: \delta\omega / h L = 2*math.ceil(7.0/dw) # count of Fourier components: L Le = 100 dt = 2*pi/L/dw # dimensionless unit of discrete time: h \delta t M = 35 # Trotter depth cutoff: M shots = 1024 # count of measurement shots # Define the identity and Pauli matrices s0 = np.matrix([[1,0],[0,1]]) s1 = np.matrix([[0,1],[1,0]]) s2 = np.matrix([[0,-1j],[1j,0]]) s3 = np.matrix([[1,0],[0,-1]]) # Define the model Hamitonian Ham = np.kron(s1,s0) + np.kron(s0,s1) + g * np.kron(s3,s3) if Nc >= 3: for j in range(3,Nc+1): Ide = s0 for k in range(j-3): Ide = np.kron(Ide,s0) Ham = np.kron(Ham,s0) + np.kron(np.kron(Ide,s0),s1) + g * np.kron(np.kron(Ide,s3),s3) # Calculate the exact energy gap evals = eigvals(Ham) idx = evals.argsort()[::1] evals = evals[idx] ExactGap = evals[1] - evals[0] # set the initial guess of energy gap IniGap = 2*(1-(1-1/Nc)*g) # Define the bit string (00...0) as a reference for thr initial state s = [] for j in range (Nc): s.append('0') str1 = "" InQ = str1.join(s) # Define discrete frequencies frequency = [(j-L/2)*dw for j in range(L+1)] with open('data_frequency', 'w') as f: f.write(json.dumps(frequency)) # Define the objective function for curve fitting of the Lorentzian function def objective (x, a0, a1, a2): return a0 + a1 / ((x - a2)**2 + eta**2) # Print preliminary data print("N = %s, J/h = %.2f, M = %s" % (Nc,g,M)) print("Initial gap = %.6f" % IniGap) print("Exact gap = %.6f" % ExactGap) # Simulation type: ideal (noiseless) def InvPeak_Ideal(theta): global ExactGap, IniGap # number of alternating unitaries P = len(theta)//2 beta = theta[:P] gamma = theta[P:] # Loop for causal (i=0) and anti-causal (i=1) processes for i in range (2): # Initialize array propagator = [] # Loop for Fourier components for j in range (L): # Initialize a set of quantum/classical registers qreg = QuantumRegister(Nc, 'q') creg = ClassicalRegister(Nc, 'c') qc = QuantumCircuit(qreg, creg) # Set up the unitary for trial state for p in range (P): for n in range (Nc-1): qc.rzz(gamma[p]*pi, qreg[n], qreg[n+1]) for n in range (Nc): qc.ry(beta[p]*pi, qreg[n]) # Time evolution: Iterate Trotter steps for m in range (M): # Apply a sequence of unitary gates for time evolution for n in range (Nc): qc.rx(-2*j*(-1)**i*dt/M, qreg[n]) for n in range (Nc-1): qc.rzz(-2*g*j*(-1)**i*dt/M, qreg[n], qreg[n+1]) # Set up the inverse unitary for trial state for p in range (P): for n in range (Nc): qc.ry(-beta[P-p-1]*pi, qreg[n]) for n in range (Nc-1): qc.rzz(-gamma[P-p-1]*pi, qreg[n], qreg[n+1]) # Measure qubits qc.measure(qreg, creg) # Perform quantum simulation on the IBMQ Aer simulator simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator, shots = shots).result() counts = result.get_counts() # Construct a time series of propagators with each component being the probability for (00...0) if InQ in counts: propagator.append(dt*np.exp(-eta*j*dt)*counts[InQ]/shots) else: propagator.append(0) # Print the end message for each step if (i==1) and (j>L-10): print(L-1-j,end="\r") # Flatten array propagator = np.ravel(propagator) # Find the many-body spectral function via discreate fast Fourier transform if i == 0: spectral_function_0r = np.real(np.fft.ifft(propagator))*L/2.0/pi spectral_function_1r = np.append(spectral_function_0r[int(L/2):L], spectral_function_0r[0:int(L/2)+1]) else: spectral_function_0a = np.real(np.fft.fft(propagator))/2.0/pi spectral_function_1a = np.append(spectral_function_0a[int(L/2):L], spectral_function_0a[0:int(L/2)+1]) # Find the many-body spectral function via discreate fast Fourier transform spectral_function_2 = [spectral_function_1r[j] + spectral_function_1a[j] for j in range(L+1)] # Truncate the lists in the range [-\eta,\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2-2*eta/dw),math.ceil(L/2+1+2*eta/dw))] spectral_function_truncated = [spectral_function_2[j] for j in range(math.ceil(L/2-2*eta/dw),math.ceil(L/2+1+2*eta/dw))] # Curve fitting for the Lorentzian function a2 = 0 popt, _ = curve_fit(lambda x, a0, a1: objective(x, a0, a1, a2), frequency_truncated, spectral_function_truncated) a0, a1 = popt # Subtract the zeto peak from the manu-body spectral function spectral_function = [spectral_function_2[j] - a1 / (frequency[j]**2 + eta**2) for j in range(L+1)] # Truncate the lists in the range [IniGap-\eta,IniGap+\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2+(IniGap-2*eta)/dw),math.ceil(L/2+1+(IniGap+2*eta)/dw))] spectral_function_truncated = [spectral_function[j] for j in range(math.ceil(L/2+(IniGap-2*eta)/dw),math.ceil(L/2+1+(IniGap+2*eta)/dw))] # Curve fitting for the Lorentzian function popt, _ = curve_fit(objective, frequency_truncated, spectral_function_truncated) a0, a1, a2 = popt return -a1/eta**2, a2, abs(a2 - ExactGap)/ExactGap, spectral_function # Define wrapper functions def InvPeak_Ideal_1(theta): obj1, obj2, obj3, obj4 = InvPeak_Ideal(theta) return obj1 def InvPeak_Ideal_2(theta): obj1, obj2, obj3, obj4 = InvPeak_Ideal(theta) return obj2 def InvPeak_Ideal_3(theta): obj1, obj2, obj3, obj4 = InvPeak_Ideal(theta) return obj3 def InvPeak_Ideal_4(theta): obj1, obj2, obj3, obj4 = InvPeak_Ideal(theta) return obj4 # Define callback function def callback (theta): global data, Nfeval, theta0 Nfeval += 1 P0 = len(theta0)//2 beta0 = theta0[:P0] gamma0 = theta0[P0:] P = len(theta)//2 beta = theta[:P] gamma = theta[P:] peak = -InvPeak_Ideal_1(theta) gap_est = InvPeak_Ideal_2(theta) gap_err = InvPeak_Ideal_3(theta) spectral_function = InvPeak_Ideal_4(theta) # Print/save data print(' {0:4d} {1:3.6f} {2:3.6f} {3:3.6f} {4:3.6f} {5:3.6f}'\ .format(Nfeval, beta[0], gamma[0], peak, gap_est, gap_err)) data.append([Nfeval, beta[0], gamma[0], peak, gap_est, gap_err]) with open('data_spectral_ideal_N%s_g%.2f_eta%.2f_M%s_beta%.2f_gamma%.2f_NM%s' % (int(Nc),g,eta,int(M),beta0[0],gamma0[0],int(Nfeval)), 'w') as f: f.write(json.dumps(spectral_function)) # Print the start message print("Simulation type: Ideal") print("Optimization method: Nelder-Mead") # Set parameters data = [] Nfeval = 0 theta0 = [0.5, 0.1] P0 = len(theta0)//2 beta0 = theta0[:P0] gamma0 = theta0[P0:] bounds = ((0,2),(0,2)) # Save data print('{0:4s} {1:9s} {2:9s} {3:9s} {4:9s} {5:9s}'\ .format('Iteration',' beta/pi','gamma/pi','height','gap_est','gap_error')) # Estimate energy gap result = minimize(InvPeak_Ideal_1, theta0, method='Nelder-Mead', tol=1e-2, bounds=bounds, callback=callback) # Save data with open('data_iteration_ideal_N%s_g%.2f_eta%.2f_M%s_beta%.2f_gamma%.2f_NM' % (int(Nc),g,eta,int(M),beta0[0],gamma0[0]), 'w') as f: f.write(json.dumps(data)) # Print the end message print(result) # Build noise model from backend calibration data backend = provider.get_backend("ibmq_manila") noise_model = NoiseModel.from_backend(backend) coupling_map = backend.configuration().coupling_map basis_gates = noise_model.basis_gates # Simulation type: Device noise model def InvPeak_Noisy(theta): global ExactGap, IniGap # number of alternating unitaries P = len(theta)//2 beta = theta[:P] gamma = theta[P:] # Loop for causal (i=0) and anti-causal (i=1) processes for i in range (2): # Print the message #print("...running") # Initialize array propagator = [] # Loop for Fourier components for j in range (L): # Initialize a set of quantum/classical registers qreg = QuantumRegister(Nc, 'q') creg = ClassicalRegister(Nc, 'c') qc = QuantumCircuit(qreg, creg) # Set up input state in QAOA for p in range (P): for n in range (Nc-1): qc.rzz(gamma[p]*pi, qreg[n], qreg[n+1]) for n in range (Nc): qc.ry(beta[p]*pi, qreg[n]) # Time evolution: Iterate Trotter steps for m in range (M): # Apply a sequence of unitary gates for time evolution for n in range (Nc): qc.rx(-2*j*(-1)**i*dt/M, qreg[n]) for n in range (Nc-1): qc.rzz(-2*g*j*(-1)**i*dt/M, qreg[n], qreg[n+1]) # Set up the state to compenstate input in QAOA for p in range (P): for n in range (Nc): qc.ry(-beta[P-p-1]*pi, qreg[n]) for n in range (Nc-1): qc.rzz(-gamma[P-p-1]*pi, qreg[n], qreg[n+1]) # Measure qubits qc.measure(qreg, creg) # Perform quantum simulation on the IBMQ Aer simulator simulator = Aer.get_backend('qasm_simulator') qc_trans = transpile(qc, backend, optimization_level = 1, initial_layout = [k for k in range(Nc)]) result = execute(qc_trans, simulator, noise_model = noise_model, coupling_map = coupling_map,\ basis_gates = basis_gates, shots = shots).result() counts = result.get_counts() # Construct a time series of propagators with each component being the probability for (00...0) if InQ in counts: propagator.append(dt*np.exp(-eta*j*dt)*counts[InQ]/shots) else: propagator.append(0) # Print the end message for each step print(j+1, end="\r") # Flatten array propagator = np.ravel(propagator) # Find the many-body spectral function via discreate fast Fourier transform if i == 0: spectral_function_0r = np.real(np.fft.ifft(propagator))*L/2.0/pi spectral_function_1r = np.append(spectral_function_0r[int(L/2):L], spectral_function_0r[0:int(L/2)+1]) else: spectral_function_0a = np.real(np.fft.fft(propagator))/2.0/pi spectral_function_1a = np.append(spectral_function_0a[int(L/2):L], spectral_function_0a[0:int(L/2)+1]) # Find the many-body spectral function via discreate fast Fourier transform spectral_function_2 = [spectral_function_1r[j] + spectral_function_1a[j] for j in range(L+1)] # Truncate the lists in the range [-\eta,\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2-2*eta/dw),math.ceil(L/2+1+2*eta/dw))] spectral_function_truncated = [spectral_function_2[j] for j in range(math.ceil(L/2-2*eta/dw),math.ceil(L/2+1+2*eta/dw))] # Curve fitting for the Lorentzian function a2 = 0 popt, _ = curve_fit(lambda x, a0, a1: objective(x, a0, a1, a2), frequency_truncated, spectral_function_truncated) a0, a1 = popt # Subtract the zeto peak from the manu-body spectral function spectral_function = [spectral_function_2[j] - a1 / (frequency[j]**2 + eta**2) for j in range(L+1)] # Truncate the lists in the range [IniGap-\eta,IniGap+\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2+(IniGap-2*eta)/dw),math.ceil(L/2+1+(IniGap+2*eta)/dw))] spectral_function_truncated = [spectral_function[j] for j in range(math.ceil(L/2+(IniGap-2*eta)/dw),math.ceil(L/2+1+(IniGap+2*eta)/dw))] # Curve fitting for the Lorentzian function popt, _ = curve_fit(objective, frequency_truncated, spectral_function_truncated) a0, a1, a2 = popt return -a1/eta**2, a2, abs(a2 - ExactGap)/ExactGap, spectral_function # Define wrapper functions def InvPeak_Noisy_1(theta): obj1, obj2, obj3, obj4 = InvPeak_Noisy(theta) return obj1 def InvPeak_Noisy_2(theta): obj1, obj2, obj3, obj4 = InvPeak_Noisy(theta) return obj2 def InvPeak_Noisy_3(theta): obj1, obj2, obj3, obj4 = InvPeak_Noisy(theta) return obj3 def InvPeak_Noisy_4(theta): obj1, obj2, obj3, obj4 = InvPeak_Noisy(theta) return obj4 # Define callback function def callback (theta): global data, Nfeval, theta0 Nfeval += 1 P0 = len(theta0)//2 beta0 = theta0[:P0] gamma0 = theta0[P0:] P = len(theta)//2 beta = theta[:P] gamma = theta[P:] peak = -InvPeak_Noisy_1(theta) gap_est = InvPeak_Noisy_2(theta) gap_err = InvPeak_Noisy_3(theta) spectral_function = InvPeak_Noisy_4(theta) # Print/save data print(' {0:4d} {1:3.6f} {2:3.6f} {3:3.6f} {4:3.6f} {5:3.6f}'\ .format(Nfeval, beta[0], gamma[0], peak, gap_est, gap_err)) data.append([Nfeval, beta[0], gamma[0], peak, gap_est, gap_err]) with open('data_spectral_noisy_N%s_g%.2f_eta%.2f_M%s_beta%.2f_gamma%.2f_NM%s' % (int(Nc),g,eta,int(M),beta0[0],gamma0[0],int(Nfeval)), 'w') as f: f.write(json.dumps(spectral_function)) # Print the start message print("Simulation type: Device noise model") print("Optimization method: Nelder-Mead") # Set parameters data = [] Nfeval = 0 theta0 = [0.5, 0.1] P0 = len(theta0)//2 beta0 = theta0[:P0] gamma0 = theta0[P0:] bounds = ((0,2),(0,2)) # Save data print('{0:4s} {1:9s} {2:9s} {3:9s} {4:9s} {5:9s}'\ .format('Iteration',' beta/pi','gamma/pi','height','gap_est','gap_error')) # Estimate energy gap result = minimize(InvPeak_Noisy_1, theta0, method='Nelder-Mead', tol=1e-2, bounds=bounds, callback=callback) # Save data with open('data_iteration_noisy_N%s_g%.2f_eta%.2f_M%s_beta%.2f_gamma%.2f_NM' % (int(Nc),g,eta,int(M),beta0[0],gamma0[0]), 'w') as f: f.write(json.dumps(data)) # Print the end message print(result)
https://github.com/wrlee7609/hybrid_quantum_gap_estimation
wrlee7609
# Ignore warning message import warnings warnings.filterwarnings("ignore") # Import python libraries import math, json import numpy as np from numpy import pi from numpy.fft import fft, rfft from scipy.optimize import curve_fit import matplotlib.pyplot as plt from matplotlib import colors # Import Qiskit libraries import qiskit import qiskit_aer.noise as noise from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, Aer, transpile, execute from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel, depolarizing_error from qiskit.result import marginal_counts # Load IBMQ account provider = IBMQ.load_account() # Set up parameters Nc = 4 # number of spins: N (= 2, 3, 4, 5) g = 0.4 # dimensionless Ising coupling: J/h (= 0.2, 0.4, 0.6, 0.8) eta = 0.3 # dimensionless broadening: \eta/h (= 0.02, 0.1, 0.2, 0.3) dw = 0.25*eta # dimensionless unit of discrete frequency: \delta\omega / h L = 2*math.ceil(7.0/dw) # count of Fourier components: L dt = 2*pi/L/dw # dimensionless unit of discrete time: h \delta t M = 16 # Trotter depth cutoff: M theta = 0.27*pi # input qubit orientation: \theta prob = 0.005 # probability for depolarizing noise shots = 1024 # count of measurement shots # Define the bit string (00...0) as a reference for thr initial state s = [] for j in range (Nc): s.append('0') str1 = "" InQ = str1.join(s) # Define discrete frequencies frequency = [(j-L/2)*dw for j in range(L+1)] with open('data_frequency', 'w') as f: f.write(json.dumps(frequency)) # Define quantum circuits def Circuit_TFIM (Nc,g,theta,M,dt,j): # Apply y-rotation gates (with clockwise orientation) for basis change for n in range (Nc): qc.ry(theta, qreg[n]) # Iterate Trotter steps for m in range (M): # Apply a sequence of unitary gates for time evolution for n in range (Nc): qc.rx(-2*j*dt/M, qreg[n]) for n in range (Nc-1): qc.rzz(-2*g*j*dt/M, qreg[n], qreg[n+1]) # Apply y-rotation gates (with counterclockwise orientation) for basis change back for n in range (Nc): qc.ry(-theta, qreg[n]) # Define the objective function for curve fitting of the Lorentzian function def objective (x, a0, a1): return a0 + a1 / (x**2 + eta**2) # Print the start message print("simulation type: ideal (noiseless)") # Loop for causal (i=0) and anti-causal (i=1) processes for i in range (2): # Print the message print("...running") # Initialize array propagator = [] # Loop for Fourier components for j in range (L): # Initialize a set of quantum/classical registers qreg = QuantumRegister(Nc, 'q') creg = ClassicalRegister(Nc, 'c') qc = QuantumCircuit(qreg, creg) # Apply a sequence of quantum circuits Circuit_TFIM (Nc,g,theta,M,(-1)**i*dt,j) # Measure qubits qc.measure(qreg, creg) # Perform quantum simulation on the IBMQ Aer simulator simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator, shots = shots).result() counts = result.get_counts() # Construct a time series of propagators with each component being the probability for (00...0) if InQ in counts: propagator.append(dt*np.exp(-eta*j*dt)*counts[InQ]/shots) else: propagator.append(0) # Print the end message for each step print(j+1, end="\r") # Flatten array propagator = np.ravel(propagator) # Find the many-body spectral function via discreate fast Fourier transform if i == 0: spectral_function_0r = np.real(np.fft.ifft(propagator))*L/2.0/pi spectral_function_1r = np.append(spectral_function_0r[int(L/2):L], spectral_function_0r[0:int(L/2)+1]) else: spectral_function_0a = np.real(np.fft.fft(propagator))/2.0/pi spectral_function_1a = np.append(spectral_function_0a[int(L/2):L], spectral_function_0a[0:int(L/2)+1]) # Find the many-body spectral function via discreate fast Fourier transform spectral_function_2 = [spectral_function_1r[j] + spectral_function_1a[j] for j in range(L+1)] # Truncate the lists in the range [-\eta,\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] spectral_function_truncated = [spectral_function_2[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] # Curve fitting for the Lorentzian function popt, _ = curve_fit(objective, frequency_truncated, spectral_function_truncated) a0, a1 = popt # Subtract the zeto peak from the manu-body spectral function spectral_function = [spectral_function_2[j] - a1 / (frequency[j]**2 + eta**2) for j in range(L+1)] # Save data with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_ideal' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'w') as f: f.write(json.dumps(spectral_function)) # Print the end message print("...completed") # Print the start message print("simulation type: 2-qubit depolarizing noise") # Build the custom noise model for 2-qubit depolarizing noise noise_model = noise.NoiseModel() error_gate = noise.depolarizing_error(prob, 2) noise_model.add_all_qubit_quantum_error(error_gate, ['rzz']) basis_gates = noise_model.basis_gates # Loop for causal (i=0) and anti-causal (i=1) processes for i in range (2): # Print the message print("...running") # Initialize array propagator = [] # Loop for Fourier components for j in range (L): # Initialize a set of quantum/classical registers qreg = QuantumRegister(Nc, 'q') creg = ClassicalRegister(Nc, 'c') qc = QuantumCircuit(qreg, creg) # Apply a sequence of quantum circuits Circuit_TFIM (Nc,g,theta,M,(-1)**i*dt,j) # Measure qubits qc.measure(qreg, creg) # Perform quantum simulation on the IBMQ Aer simulator simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator, noise_model = noise_model, basis_gates = basis_gates, shots = shots).result() counts = result.get_counts() # Construct a time series of propagators with each component being the probability for (00...0) if InQ in counts: propagator.append(dt*np.exp(-eta*j*dt)*counts[InQ]/shots) else: propagator.append(0) # Print the end message for each step print(j+1, end="\r") # Flatten array propagator = np.ravel(propagator) # Find the many-body spectral function via discreate fast Fourier transform if i == 0: spectral_function_0r = np.real(np.fft.ifft(propagator))*L/2.0/pi spectral_function_1r = np.append(spectral_function_0r[int(L/2):L], spectral_function_0r[0:int(L/2)+1]) else: spectral_function_0a = np.real(np.fft.fft(propagator))/2.0/pi spectral_function_1a = np.append(spectral_function_0a[int(L/2):L], spectral_function_0a[0:int(L/2)+1]) # Find the many-body spectral function via discreate fast Fourier transform spectral_function_2 = [spectral_function_1r[j] + spectral_function_1a[j] for j in range(L+1)] # Truncate the lists in the range [-\eta,\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] spectral_function_truncated = [spectral_function_2[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] # Curve fitting for the Lorentzian function popt, _ = curve_fit(objective, frequency_truncated, spectral_function_truncated) a0, a1 = popt # Subtract the zeto peak from the manu-body spectral function spectral_function = [spectral_function_2[j] - a1 / (frequency[j]**2 + eta**2) for j in range(L+1)] # Save data with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_depolarizing' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'w') as f: f.write(json.dumps(spectral_function)) # Print the end message print("...completed") # Print the start message print("simulation type: device backend noise") # Build noise model from backend calibration data backend = provider.get_backend("ibmq_manila") noise_model = NoiseModel.from_backend(backend) coupling_map = backend.configuration().coupling_map basis_gates = noise_model.basis_gates # Loop for causal (i=0) and anti-causal (i=1) processes for i in range (2): # Print the message print("...running") # Initialize array propagator = [] # Loop for Fourier components for j in range (L): # Initialize a set of quantum/classical registers qreg = QuantumRegister(Nc, 'q') creg = ClassicalRegister(Nc, 'c') qc = QuantumCircuit(qreg, creg) # Apply a sequence of quantum circuits Circuit_TFIM (Nc,g,theta,M,(-1)**i*dt,j) # Measure qubits qc.measure(qreg, creg) # Perform quantum simulation on the IBMQ Aer simulator simulator = Aer.get_backend('qasm_simulator') qc_trans = transpile(qc, backend, optimization_level = 1, initial_layout = [k for k in range(Nc)]) result = execute(qc_trans, simulator, noise_model = noise_model, coupling_map = coupling_map,\ basis_gates = basis_gates, shots = shots).result() counts = result.get_counts() # Construct a time series of propagators with each component being the probability for (00...0) if InQ in counts: propagator.append(dt*np.exp(-eta*j*dt)*counts[InQ]/shots) else: propagator.append(0) # Print the end message for each step print(j+1, end="\r") # Flatten array propagator = np.ravel(propagator) # Find the many-body spectral function via discreate fast Fourier transform if i == 0: spectral_function_0r = np.real(np.fft.ifft(propagator))*L/2.0/pi spectral_function_1r = np.append(spectral_function_0r[int(L/2):L], spectral_function_0r[0:int(L/2)+1]) else: spectral_function_0a = np.real(np.fft.fft(propagator))/2.0/pi spectral_function_1a = np.append(spectral_function_0a[int(L/2):L], spectral_function_0a[0:int(L/2)+1]) # Find the many-body spectral function via discreate fast Fourier transform spectral_function_2 = [spectral_function_1r[j] + spectral_function_1a[j] for j in range(L+1)] # Truncate the lists in the range [-\eta,\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] spectral_function_truncated = [spectral_function_2[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] # Curve fitting for the Lorentzian function popt, _ = curve_fit(objective, frequency_truncated, spectral_function_truncated) a0, a1 = popt # Subtract the zeto peak from the manu-body spectral function spectral_function = [spectral_function_2[j] - a1 / (frequency[j]**2 + eta**2) for j in range(L+1)] # Save data with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_noisemodel' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'w') as f: f.write(json.dumps(spectral_function)) # Print the end message print("...completed") # Print the start message print("simulation type: real device\n...running") # Initialize a set of quantum/classical registers qreg = QuantumRegister(Nc, 'q') creg = ClassicalRegister(Nc*L*2, 'c') qc = QuantumCircuit(qreg, creg) # Loop for causal (i=0) and anti-causal (i=1) processes for i in range (2): # Loop for Fourier components (retarded part) for j in range (L): # Reset quantum registers qc.reset(qreg) # Apply a sequence of quantum circuits Circuit_TFIM (Nc,g,theta,M,(-1)**i*dt,j) # Perform mid-circuit measurement assign_qubits = [Nc*L*i + Nc*j + k for k in range(Nc)] qc.measure(qreg, assign_qubits) # Perform quantum simulation on the IBMQ device backend = provider.get_backend("ibmq_manila") qc_trans = transpile(qc, backend, optimization_level = 1, initial_layout = [k for k in range(Nc)]) result = execute(qc_trans, backend, shots = shots).result() # Loop for causal (i=0) and anti-causal (i=1) processes for i in range (2): # Initialize array propagator = [] # Loop for Fourier components for j in range (L): # Obtain marginal measurement counts from mid-circuit measurement assign_qubits = [Nc*L*i + Nc*j + k for k in range(Nc)] counts = marginal_counts(result, indices = assign_qubits).get_counts() # Construct a time series of propagators with each component being the probability for (00...0) if InQ in counts: propagator.append(dt*np.exp(-eta*j*dt)*counts[InQ]/shots) else: propagator.append(0) # Print the end message for each step print(j+1, end="\r") # Flatten array propagator = np.ravel(propagator) # Find the many-body spectral function via discreate fast Fourier transform if i == 0: spectral_function_0r = np.real(np.fft.ifft(propagator))*L/2.0/pi spectral_function_1r = np.append(spectral_function_0r[int(L/2):L], spectral_function_0r[0:int(L/2)+1]) else: spectral_function_0a = np.real(np.fft.fft(propagator))/2.0/pi spectral_function_1a = np.append(spectral_function_0a[int(L/2):L], spectral_function_0a[0:int(L/2)+1]) # Find the many-body spectral function via discreate fast Fourier transform spectral_function_2 = [spectral_function_1r[j] + spectral_function_1a[j] for j in range(L+1)] # Truncate the lists in the range [-\eta,\eta] frequency_truncated = [frequency[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] spectral_function_truncated = [spectral_function_2[j] for j in range(math.ceil(L/2-eta/dw),math.ceil(L/2+1+eta/dw))] # Curve fitting for the Lorentzian function popt, _ = curve_fit(objective, frequency_truncated, spectral_function_truncated) a0, a1 = popt # Subtract the zeto peak from the manu-body spectral function spectral_function = [spectral_function_2[j] - a1 / (frequency[j]**2 + eta**2) for j in range(L+1)] # Save data with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_realdevice' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'w') as f: f.write(json.dumps(spectral_function)) # Print the end message print("...completed") # Load data for frequency with open('data_frequency' , 'r') as f: frequency = json.loads(f.read()) # Load data for spectral function with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_ideal' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'r') as f: spectral_function_ideal = json.loads(f.read()) with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_depolarizing' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'r') as f: spectral_function_depolarizing = json.loads(f.read()) with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_noisemodel' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'r') as f: spectral_function_noisemodel = json.loads(f.read()) with open('data_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s_realdevice' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]), 'r') as f: spectral_function_realdevice = json.loads(f.read()) # Plot simulation data plt.plot(frequency, spectral_function_ideal, label = "ideal", color = 'red', ls = '-') plt.plot(frequency, spectral_function_depolarizing, label = "2-qubit depolarizing noise", color = 'green', ls = ':') plt.plot(frequency, spectral_function_noisemodel, label = "device backend noise", color = 'blue', ls = '--') plt.plot(frequency, spectral_function_realdevice, label = "real device", color = 'purple', ls = '-.') plt.xlim([0, 4]) plt.xlabel("$\omega$/h") plt.ylabel("$h\cdot\mathcal{A}(\omega)$") plt.legend() plt.savefig('Fig_spectral_function_N%s_g%sp%s_eta%sp%s_M%s_theta%sp%s.pdf' % (int(Nc),int(g),str(g).split(".")[-1],int(eta),str(eta).split(".")[-1],\ int(M),int(theta/pi),str(theta/pi).split(".")[-1]))
https://github.com/Syed-Affan-Hussain/Solving-TSP-Using-QAOA-VQE-through-Qiskit
Syed-Affan-Hussain
from qiskit import Aer from qiskit.algorithms.optimizers import COBYLA from qiskit.quantum_info.operators import Operator #from qiskit.optimization.applications.ising import tsp from qiskit_optimization.applications import Tsp #from qiskit.aqua.algorithms import NumPyMinimumEigensolver, QAOA from qiskit.algorithms.minimum_eigensolvers import QAOA , NumPyMinimumEigensolver #from qiskit.aqua import aqua_globals, QuantumInstance from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer #from qiskit.optimization.problems import QuadraticProgram from qiskit_optimization import QuadraticProgram from qiskit_optimization.converters import QuadraticProgramToQubo from qiskit.primitives import Sampler import matplotlib.pyplot as plt import networkx as nx from qiskit.utils import algorithm_globals # NOTE Run this Code on IBM Quantum LAB #The below code is an implementation of solving TSP with QAOA and VQE # the errors are in result of probable compatibitlity between Qiskit QAOA and Tsp Function. #I have submitted the issue on GitHub default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) # Generating a TSP instance of n cities n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) # Create a random TSP Hamiltonian qp = tsp.to_quadratic_program() print(qp.prettyprint()) qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print(qubitOp, offset) algorithm_globals.random_seed = 10598 optimizer = COBYLA() sampler = Sampler() qaoa = QAOA(sampler, optimizer, reps=2) # solving the Problem using QAOA qaoa_result =qaoa.compute_minimum_eigenvalue(qubitOp) print("\nQAOA:\n", qaoa_result) #v = qaoa_result.optimal_circuit lowest_eigen_value= qaoa_result.best_measurement['value'] print("energy:", lowest_eigen_value.real) print("tsp objective:", lowest_eigen_value.real + offset) print("time:", qaoa_result.optimizer_time) sample = tsp.sample_most_likely(qaoa_result.eigenstate) print('sameple',sample) z = tsp.interpret(sample) #print('tsp._draw_result(qaoa_result)',tsp._draw_result(sample,pos)) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import SPSA from qiskit.algorithms.minimum_eigensolvers import SamplingVQE algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) #There is an issue with QAOA function if you use compute_minimum_eigenvalue #the energy its returning is not matching with VQE min energy but in the result #dict it is giving the lowest energy in the value pair.So the above code is working based on that. algorithm_globals.random_seed = 123 seed = 10598 optimizer = COBYLA() sampler = Sampler() qaoa = QAOA(sampler, optimizer, reps=2) # solving the Problem using QAOA qaoa_result =qaoa.compute_minimum_eigenvalue(qubitOp) print("\nQAOA:\n", qaoa_result) print("tsp objective:", qaoa_result.eigenvalue.real+ offset) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos)
https://github.com/Keerthiraj-Nagaraj/IBM-quantum-challenge-2020
Keerthiraj-Nagaraj
# Importing standard Qiskit libraries and configuring account from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute from qiskit.visualization import plot_bloch_multivector # If you run this code outside IBM Quantum Experience, # run the following commands to store your API token locally. # Please refer https://qiskit.org/documentation/install.html#access-ibm-quantum-systems # IBMQ.save_account('MY_API_TOKEN') # Loading your IBM Q account(s) IBMQ.load_account() # Let's do an X-gate on a |0> qubit q = QuantumRegister(1) qc = QuantumCircuit(q) qc.x(q[0]) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result().get_statevector(qc, decimals=3) plot_bloch_multivector(result) # Let's do an H-gate on a |0> qubit q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q[0]) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result().get_statevector(qc, decimals=3) plot_bloch_multivector(result) # Let's do an Z-gate on |+> q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q[0]) qc.z(q[0]) qc.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(qc, backend).result().get_statevector(qc, decimals=3) plot_bloch_multivector(result) # Let's do an CX-gate on |00> q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cx(q[0],q[1]) qc.draw(output='mpl') # Let's do an CZ-gate on |00> q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cz(q[0],q[1]) qc.draw(output='mpl') # Let's make CZ-gate with CX-gate and H-gate q = QuantumRegister(2) qc = QuantumCircuit(q) qc.h(q[1]) qc.cx(q[0],q[1]) qc.h(q[1]) qc.draw(output='mpl') # Let's do an CCX-gate on |000> q = QuantumRegister(3) qc = QuantumCircuit(q) qc.ccx(q[0],q[1],q[2]) qc.draw(output='mpl') # Create a Quantum Circuit with 1 quantum register and 1 classical register q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.x(q[0]) qc.measure(q[0], c[0]) # Map the quantum measurement to the classical bits qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.ccx(q[0], q[1], q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.ccx(q[0], q[1], q[2]) qc.x(q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.ccx(q[0], q[1], q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.ccx(q[0], q[1], q[2]) qc.x(q[2]) qc.measure(q[2], c[0]) qc.draw(output='mpl') #Define registers and a quantum circuit q = QuantumRegister(4) c = ClassicalRegister(2) qc = QuantumCircuit(q,c) #XOR qc.cx(q[1], q[2]) qc.cx(q[0], q[2]) qc.barrier() #AND qc.ccx(q[0], q[1], q[3]) qc.barrier() #Sum qc.measure(q[2], c[0]) #Carry out qc.measure(q[3], c[1]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') import numpy as np from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer, execute from qiskit.quantum_info import Pauli, state_fidelity, process_fidelity q = QuantumRegister(4, 'q0') c = ClassicalRegister(1, 'c0') qc = QuantumCircuit(q, c) qc.ccx(q[0], q[1], q[2]) qc.cx(q[3], q[1]) qc.h(q[3]) qc.ccx(q[3], q[2], q[1]) qc.measure(q[3],c[0]) qc.draw(output='mpl') qc.count_ops() from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller pass_ = Unroller(['u3', 'cx']) pm = PassManager(pass_) new_circuit = pm.run(qc) new_circuit.draw(output='mpl') new_circuit.count_ops() q = QuantumRegister(3, 'q0') c = ClassicalRegister(1, 'c0') qc = QuantumCircuit(q, c) qc.ccx(q[0], q[1], q[2]) qc.draw(output='mpl') pass_ = Unroller(['u3', 'cx']) pm = PassManager(pass_) new_circuit = pm.run(qc) new_circuit.draw(output='mpl') new_circuit.count_ops() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute ##### build your quantum circuit here # execute the circuit by qasm_simulator backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') # Check your answer using following code from qc_grader import grade_ex1a grade_ex1a(qc) # Submit your answer. You can re-submit at any time. from qc_grader import submit_ex1a submit_ex1a(qc)