repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/martynscn/Masters-Thesis-on-Quantum-Cryptography
martynscn
# This code has been adapted and modified from IBM Qiskit 2021 and also from https://github.com/ttlion/ShorAlgQiskit. # It uses the implementation as contained in the work of Stephane Beauregard (https://arxiv.org/abs/quant-ph/0205095) # Many thanks to IBM Qiskit team, Tiago Miguel (ttlion), Qubit by Qubit, Peter Shor and Stephane Beauregard. from typing import Optional, Union, Tuple, List import math import array import fractions import logging import numpy as np from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute, IBMQ, transpile,BasicAer, Aer, assemble from qiskit.circuit import Gate, Instruction, ParameterVector from qiskit.circuit.library import QFT from qiskit.providers import BaseBackend, Backend from qiskit.quantum_info import partial_trace from qiskit.utils import summarize_circuits from qiskit.utils.arithmetic import is_power from qiskit.utils.validation import validate_min from qiskit.utils.quantum_instance import QuantumInstance import qiskit.visualization from qiskit.providers.aer import QasmSimulator from datetime import datetime import csv # provider = IBMQ.enable_account("PUT TOKEN HERE") backend = QasmSimulator() from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" #"last_expr" or "all" # """ Function to check if N is of type q^p""" def check_if_power(N): # """ Check if N is a perfect power in O(n^3) time, n=ceil(logN) """ b=2 while (2**b) <= N: a = 1 c = N while (c-a) >= 2: m = int( (a+c)/2 ) if (m**b) < (N+1): p = int( (m**b) ) else: p = int(N+1) if int(p) == int(N): print('N is {0}^{1}'.format(int(m),int(b)) ) return True if p<N: a = int(m) else: c = int(m) b=b+1 return False def egcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def create_QFT(circuit,up_reg,n,with_swaps): i=n-1 while i>=0: circuit.h(up_reg[i]) j=i-1 while j>=0: if (np.pi)/(pow(2,(i-j))) > 0: circuit.cu1( (np.pi)/(pow(2,(i-j))) , up_reg[i] , up_reg[j] ) j=j-1 i=i-1 if with_swaps==1: i=0 while i < ((n-1)/2): circuit.swap(up_reg[i], up_reg[n-1-i]) i=i+1 def create_inverse_QFT(circuit,up_reg,n,with_swaps): if with_swaps==1: i=0 while i < ((n-1)/2): circuit.swap(up_reg[i], up_reg[n-1-i]) i=i+1 i=0 while i<n: circuit.h(up_reg[i]) if i != n-1: j=i+1 y=i while y>=0: if (np.pi)/(pow(2,(j-y))) > 0: circuit.cu1( - (np.pi)/(pow(2,(j-y))) , up_reg[j] , up_reg[y] ) y=y-1 i=i+1 def getAngle(a, N): s=bin(int(a))[2:].zfill(N) angle = 0 for i in range(0, N): if s[N-1-i] == '1': angle += math.pow(2, -(N-i)) angle *= np.pi return angle def getAngles(a,N): s=bin(int(a))[2:].zfill(N) angles=np.zeros([N]) for i in range(0, N): for j in range(i,N): if s[j]=='1': angles[N-i-1]+=math.pow(2, -(j-i)) angles[N-i-1]*=np.pi return angles def ccphase(circuit, angle, ctl1, ctl2, tgt): circuit.cu1(angle/2,ctl1,tgt) circuit.cx(ctl2,ctl1) circuit.cu1(-angle/2,ctl1,tgt) circuit.cx(ctl2,ctl1) circuit.cu1(angle/2,ctl2,tgt) def phiADD(circuit, q, a, N, inv): angle=getAngles(a,N) for i in range(0,N): if inv==0: circuit.u1(angle[i],q[i]) else: circuit.u1(-angle[i],q[i]) def cphiADD(circuit, q, ctl, a, n, inv): angle=getAngles(a,n) for i in range(0,n): if inv==0: circuit.cu1(angle[i],ctl,q[i]) else: circuit.cu1(-angle[i],ctl,q[i]) def ccphiADD(circuit,q,ctl1,ctl2,a,n,inv): angle=getAngles(a,n) for i in range(0,n): if inv==0: ccphase(circuit,angle[i],ctl1,ctl2,q[i]) else: ccphase(circuit,-angle[i],ctl1,ctl2,q[i]) def ccphiADDmodN(circuit, q, ctl1, ctl2, aux, a, N, n): ccphiADD(circuit, q, ctl1, ctl2, a, n, 0) phiADD(circuit, q, N, n, 1) # phiADD(circuit, q, a,N, 1) create_inverse_QFT(circuit, q, n, 0) circuit.cx(q[n-1],aux) create_QFT(circuit,q,n,0) cphiADD(circuit, q, aux, N, n, 0) # cphiADD(circuit, q, aux, a, n, 0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 1) create_inverse_QFT(circuit, q, n, 0) circuit.x(q[n-1]) circuit.cx(q[n-1], aux) circuit.x(q[n-1]) create_QFT(circuit,q,n,0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 0) def ccphiADDmodN_inv(circuit, q, ctl1, ctl2, aux, a, N, n): ccphiADD(circuit, q, ctl1, ctl2, a, n, 1) create_inverse_QFT(circuit, q, n, 0) circuit.x(q[n-1]) circuit.cx(q[n-1],aux) circuit.x(q[n-1]) create_QFT(circuit, q, n, 0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 0) cphiADD(circuit, q, aux, N, n, 1) # cphiADD(circuit, q, aux, a, n, 1) create_inverse_QFT(circuit, q, n, 0) circuit.cx(q[n-1], aux) create_QFT(circuit, q, n, 0) phiADD(circuit, q, N, n, 0) # phiADD(circuit, q, a, N, 0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 1) def cMULTmodN(circuit, ctl, q, aux, a, N, n): # up_reg = QuantumRegister(1, name = "up_reg") # down_reg = QuantumRegister(n, name = "down_reg") # up_classic = ClassicalRegister(2*n, name="up_classic") # c_aux = ClassicalRegister(1, name = "aux_classic") # cMULTmodN_circuit = QuantumCircuit( # up_reg ,down_reg , aux,up_classic, c_aux, # name=r"${0}^{{{1}^{{{2}}}}} mod{3}$".format(2,2,int(math.log(math.log(a,2),2)), N) # ) # create_QFT(cMULTmodN_circuit,aux,n+1,0) # for i in range(0, n): # ccphiADDmodN(cMULTmodN_circuit, aux, q[i], ctl, aux[n+1], (2**i)*a % N, N, n+1) # create_inverse_QFT(cMULTmodN_circuit, aux, n+1, 0) # for i in range(0, n): # circuit.cswap(ctl,q[i],aux[i]) # cMULTmodN_circuit.cswap(ctl,q[i],aux[i]) # create_QFT(cMULTmodN_circuit, aux, n+1, 0) # ccphiADDmodN_inv(cMULTmodN_circuit, aux, q[i], ctl, aux[n+1], math.pow(2,i)*a_inv % N, N, n+1) # create_inverse_QFT(cMULTmodN_circuit, aux, n+1, 0) # cMULTmodN_circuit_instruction = cMULTmodN_circuit.to_instruction() # circuit.append(cMULTmodN_circuit_instruction, [ctl, *down_reg, *aux]) create_QFT(circuit,aux,n+1,0) for i in range(0, n): ccphiADDmodN(circuit, aux, q[i], ctl, aux[n+1], (2**i)*a % N, N, n+1) create_inverse_QFT(circuit, aux, n+1, 0) for i in range(0, n): circuit.cswap(ctl,q[i],aux[i]) a_inv = modinv(a, N) create_QFT(circuit, aux, n+1, 0) i = n-1 while i >= 0: ccphiADDmodN_inv(circuit, aux, q[i], ctl, aux[n+1], math.pow(2,i)*a_inv % N, N, n+1) i -= 1 create_inverse_QFT(circuit, aux, n+1, 0) def calculate_continued_fraction(b: array.array) -> int: # """Calculate the continued fraction of x/T from the current terms of expansion b.""" x_over_T = 0 for i in reversed(range(len(b) - 1)): x_over_T = 1 / (b[i + 1] + x_over_T) x_over_T += b[0] frac = fractions.Fraction(x_over_T).limit_denominator() return frac.denominator def get_factors(N: int, a: int, measurement: str) -> Optional[List[int]]: # """Apply the continued fractions to find r and the gcd to find the desired factors.""" x_final = int(measurement, 2) #print('In decimal, x_final value for this result is: {}.'.format(x_final)) if x_final <= 0: fail_reason = 'x_final value is <= 0, there are no continued fractions.' else: fail_reason = None #print('Running continued fractions for this case.') # Calculate T and x/T T_upper = len(measurement) T = pow(2, T_upper) x_over_T = x_final / T ## this is our theta # Cycle in which each iteration corresponds to putting one more term in the # calculation of the Continued Fraction (CF) of x/T # Initialize the first values according to CF rule i = 0 b = array.array('i') t = array.array('f') b.append(math.floor(x_over_T)) t.append(x_over_T - b[i]) exponential = 0.0 while i < N and fail_reason is None: # From the 2nd iteration onwards, calculate the new terms of the CF based on the previous terms as the rule suggests if i > 0: try: b_temp = math.floor(1 / t[i - 1]) except ZeroDivisionError as err: b_temp = 0 b.append(b_temp) try: t_temp = (1 / t[i - 1]) - b[i] except ZeroDivisionError as err: t_temp = 0 t.append(t_temp) # type: ignore # Calculate the denominator of the CF using the known terms denominator = calculate_continued_fraction(b) # Increment i for next iteration i += 1 if denominator % 2 == 1: #print('Odd denominator, will try next iteration of continued fractions.') continue # Denominator is even, try to get factors of N. Get the exponential a^(r/2) if denominator < 1000: try: exponential = pow(a, denominator / 2) except OverflowError as err: exponential = 999999999 # Check if the value is too big or not if exponential > 1000000: if exponential == 999999999: fail_reason = 'OverflowError' else: fail_reason = 'denominator of continued fraction is too big (> 10^3).' else: # The value is not too big, get the right values and do the proper gcd() putting_plus = int(exponential + 1) putting_minus = int(exponential - 1) one_factor = math.gcd(putting_plus, N) other_factor = math.gcd(putting_minus, N) # Check if the factors found are trivial factors or are the desired factors if any(factor in {1, N} for factor in (one_factor, other_factor)): #print('Found just trivial factors, not good enough.') # Check if the number has already been found, (use i - 1 because i was already incremented) if t[i - 1] == 0: fail_reason = 'the continued fractions found exactly x_final/(2^(2n)).' else: return sorted((one_factor, other_factor)) return None def process_results(sim_result, circuit, shots, N, a, n): counts_result = sim_result.get_counts(circuit) total_counts = len(counts_result) counts_result_sorted = sorted(counts_result.items(), key=lambda x: x[1], reverse=True) counts_result_keys = list(counts_result.keys()) counts_result_values = list(counts_result.values()) prob_success=0 prob_failure=0 result_successful_counts = 0 result_failure_counts = 0 for initial_undesired_measurement, frequency in counts_result_sorted: measurement = initial_undesired_measurement.split(" ")[1] x_value = int(measurement, 2) prob_this_result = 100 * frequency/shots factors = get_factors(N, a, measurement) if factors: prob_success = prob_success + prob_this_result result_successful_counts = result_successful_counts + 1 if factors not in result_factors: result_factors.append(factors) elif not factors: prob_failure = prob_failure + prob_this_result result_failure_counts = result_failure_counts + 1 return [result_factors, prob_success, prob_failure, total_counts, result_successful_counts,result_failure_counts] def my_shor(a,N,shots): start_time_number = datetime.now() start_time = start_time_number.strftime("%H:%M:%S") summary_result = dict() validate_min('N', N, 3) validate_min('a', a, 2) if N < 1 or N % 2 == 0: raise ValueError('The input needs to be an odd integer greater than 1.') if a >= N or math.gcd(a, N) != 1: raise ValueError('The integer a needs to satisfy a < N and gcd(a, N) = 1.') n = math.ceil(math.log(N,2)) global result_factors result_factors = [] tf, b, p = is_power(N, return_decomposition=True) if tf: print('The input integer is a power: {0}={1}^{2}.'.format(N, b, p)) result_factors.append(b) # """auxilliary quantum register used in addition and multiplication""" aux = QuantumRegister(size = n+2, name="aux_reg") # """single qubit where the sequential QFT is performed""" up_reg = QuantumRegister(1, name = "up_reg") down_reg = QuantumRegister(n, name = "down_reg") # """classical register where the measured values of the sequential QFT are stored""" up_classic = ClassicalRegister(2*n, name="up_classic") # """classical bit used to reset the state of the top qubit to 0 if the previous measurement was 1""" c_aux = ClassicalRegister(1, name = "aux_classic") # """ Create Quantum Circuit """ circuit = QuantumCircuit(up_reg ,down_reg , aux,up_classic, c_aux) circuit.x(down_reg[0]) # circuit.draw(filename = "shor_semiclassical_QFT_initialization") for i in range(0, 2*n): circuit.x(up_reg).c_if(c_aux, 1) circuit.h(up_reg) cMULTmodN(circuit, up_reg[0], down_reg, aux, a**(2**(2*n-1-i)), N, n) # later confirm if this should be up_reg[i] instead of up_reg[0] for j in range(0, 2**i): circuit.u1(getAngle(j, i), up_reg[0]).c_if(up_classic, j) circuit.h(up_reg) circuit.measure(up_reg[0], up_classic[i]) circuit.measure(up_reg[0], c_aux[0]) # circuit.draw(filename = "shor_semiclassical_QFT_final_circuit") circuit.draw() qc_compiled = transpile(circuit, backend, optimization_level = 3) job_sim_1 = backend.run(qc_compiled, shots=shots) sim_result=job_sim_1.result() # counts_result = sim_result.get_counts(circuit) # len(counts_result) # measurement_plot = qiskit.visualization.plot_histogram(counts_result,figsize=(20, 12) ,number_to_keep = 30,bar_labels=True, title = "Measurement results from shor_standard_QFT circuit variant" ) # measurement_plot.savefig("shor_semiclassical_QFT_measurement_result") # measurement_plot processed_result = process_results(sim_result, circuit, shots, N, a, n) end_time_number = datetime.now() end_time = end_time_number.strftime("%H:%M:%S") duration = end_time_number - start_time_number print("Current Start Time =", start_time) print(processed_result) print("Current End Time =", end_time) circuit_count_ops = circuit.count_ops() circuit_decomposed = circuit.decompose() circuit_decomposed_count_ops = circuit_decomposed.count_ops() qc_compiled_count_ops = qc_compiled.count_ops() summary_result["num_qubits"] = n summary_result["Number(N)"] = N summary_result["a"] = a summary_result["start_time"] = start_time summary_result["end_time"] = end_time summary_result["duration"] = duration summary_result["result_factors"] = processed_result[0] summary_result["prob_success"] = processed_result[1] summary_result["prob_failure"] = processed_result[2] summary_result["total_counts"] = processed_result[3] summary_result["result_successful_counts"] = processed_result[4] summary_result["result_failure_counts"] = processed_result[5] summary_result["circuit_width"] = circuit.width() summary_result["circuit_depth"] = circuit.depth() summary_result["circuit_size"] = circuit.size() summary_result["circuit_num_nonlocal_gates"] = circuit.num_nonlocal_gates() summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_clbits"] = circuit.num_clbits summary_result["circuit_num_qubits"] = circuit.num_qubits summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_of_count_ops"] = len(circuit_count_ops) summary_result["circuit_num_of_x"] = circuit_count_ops.get('x') summary_result["circuit_num_of_measure"] = circuit_count_ops.get('measure') summary_result["circuit_num_of_h"] = circuit_count_ops.get('h') summary_result["circuit_num_of_cswap"] = circuit_count_ops.get('cswap') summary_result["circuit_num_of_swap"] = circuit_count_ops.get('swap') summary_result["circuit_num_of_cx"] = circuit_count_ops.get('cx') summary_result["circuit_num_of_toffoli"] = circuit_count_ops.get('toffoli') summary_result["circuit_num_of_p"] = circuit_count_ops.get('p') summary_result["circuit_num_of_t"] = circuit_count_ops.get('t') summary_result["circuit_decomposed_width"] = circuit_decomposed.width() summary_result["circuit_decomposed_depth"] = circuit_decomposed.depth() summary_result["circuit_decomposed_size"] = circuit_decomposed.size() summary_result["circuit_decomposed_num_nonlocal_gates"] = circuit_decomposed.num_nonlocal_gates() summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_clbits"] = circuit_decomposed.num_clbits summary_result["circuit_decomposed_num_qubits"] = circuit_decomposed.num_qubits summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_of_count_ops"] = len(circuit_decomposed_count_ops) summary_result["circuit_decomposed_num_of_x"] = circuit_decomposed_count_ops.get('x') summary_result["circuit_decomposed_num_of_measure"] = circuit_decomposed_count_ops.get('measure') summary_result["circuit_decomposed_num_of_h"] = circuit_decomposed_count_ops.get('h') summary_result["circuit_decomposed_num_of_cswap"] = circuit_decomposed_count_ops.get('cswap') summary_result["circuit_decomposed_num_of_swap"] = circuit_decomposed_count_ops.get('swap') summary_result["circuit_decomposed_num_of_cx"] = circuit_decomposed_count_ops.get('cx') summary_result["circuit_decomposed_num_of_toffoli"] = circuit_decomposed_count_ops.get('toffoli') summary_result["circuit_decomposed_num_of_p"] = circuit_decomposed_count_ops.get('p') summary_result["circuit_decomposed_num_of_t"] = circuit_decomposed_count_ops.get('t') summary_result["qc_compiled_width"] = qc_compiled.width() summary_result["qc_compiled_depth"] = qc_compiled.depth() summary_result["qc_compiled_size"] = qc_compiled.size() summary_result["qc_compiled_num_nonlocal_gates"] = qc_compiled.num_nonlocal_gates() summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_clbits"] = qc_compiled.num_clbits summary_result["qc_compiled_num_qubits"] = qc_compiled.num_qubits summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_of_count_ops"] = len(qc_compiled_count_ops) summary_result["qc_compiled_num_of_x"] = qc_compiled_count_ops.get('x') summary_result["qc_compiled_num_of_measure"] = qc_compiled_count_ops.get('measure') summary_result["qc_compiled_num_of_h"] = qc_compiled_count_ops.get('h') summary_result["qc_compiled_num_of_cswap"] = qc_compiled_count_ops.get('cswap') summary_result["qc_compiled_num_of_swap"] = qc_compiled_count_ops.get('swap') summary_result["qc_compiled_num_of_cx"] = qc_compiled_count_ops.get('cx') summary_result["qc_compiled_num_of_toffoli"] = qc_compiled_count_ops.get('toffoli') summary_result["qc_compiled_num_of_p"] = qc_compiled_count_ops.get('p') summary_result["qc_compiled_num_of_t"] = qc_compiled_count_ops.get('t') return summary_result # Run for just a single number N %%time N = 21 shots = 1024 global result_factors all_summary_result_temp = [] for random_a in range(2, N): if math.gcd(random_a,N) > 1: continue a = random_a summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n".format(a, N)) all_summary_result_temp.append(summary_result) summary_result_list = [] for key, value in summary_result.items(): summary_result_list.append([key,value]) summary_result_list with open("a({0})_N({1})_semiclassical.csv".format(a, N), 'a') as myfile: write = csv.writer(myfile) #write.writerow(fields) write.writerows(summary_result_list) all_summary_result_temp # Run for many numbers N. %%time shots = 1024 global result_factors all_summary_result = [] for N in [15, 21, 33, 35, 39, 51, 55, 57]: for a in range(2, N): if math.gcd(a,N) > 1: continue print("Beginning running for a = {} and N = {}".format(a, N)) summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n\n".format(a, N)) all_summary_result.append(summary_result) all_summary_result %qiskit_copyright
https://github.com/martynscn/Masters-Thesis-on-Quantum-Cryptography
martynscn
# This code has been adapted and modified from IBM Qiskit 2021 and also from https://github.com/ttlion/ShorAlgQiskit. # It uses the implementation as contained in the work of Stephane Beauregard (https://arxiv.org/abs/quant-ph/0205095) # Many thanks to IBM Qiskit team, Tiago Miguel (ttlion), Qubit by Qubit, Peter Shor and Stephane Beauregard. from typing import Optional, Union, Tuple, List import math import array import fractions import logging import numpy as np from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute, IBMQ, transpile,BasicAer, Aer, assemble from qiskit.circuit import Gate, Instruction, ParameterVector from qiskit.circuit.library import QFT from qiskit.providers import BaseBackend, Backend from qiskit.quantum_info import partial_trace from qiskit.utils import summarize_circuits from qiskit.utils.arithmetic import is_power from qiskit.utils.validation import validate_min from qiskit.utils.quantum_instance import QuantumInstance import qiskit.visualization from qiskit.providers.aer import QasmSimulator from datetime import datetime import csv # provider = IBMQ.enable_account("PUT TOKEN HERE") backend = QasmSimulator() from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" #"last_expr" or "all" def get_angles(a: int, n) -> np.ndarray: # """Calculates the array of angles to be used in the addition in Fourier Space.""" s = bin(int(a))[2:].zfill(n + 1) angles = np.zeros([n + 1]) for i in range(0, n + 1): for j in range(i, n + 1): if s[j] == '1': angles[n - i] += math.pow(2, -(j - i)) angles[n - i] *= np.pi return angles[::-1] # This returns the angles in the opposite order def my_create_QFT(qft_num_qubits,approximation_degree: int = 0,do_swaps: bool = False,insert_barriers: bool = True, name: str = 'qft'): # up_reg = QuantumRegister(size = qft_num_qubits, name="aux") circuit_qft = QuantumCircuit(qft_num_qubits) i=qft_num_qubits-1 while i>=0: # circuit_qft.h(up_reg[i]) circuit_qft.h(i) j=i-1 while j>=0: if (np.pi)/(pow(2,(i-j))) > approximation_degree: # circuit_qft.cu1( (np.pi)/(pow(2,(i-j))) , up_reg[i] , up_reg[j] ) circuit_qft.cu1( (np.pi)/(pow(2,(i-j))) , i , j ) j=j-1 if insert_barriers: circuit_qft.barrier() i=i-1 """ If specified, apply the Swaps at the end """ if do_swaps: i=0 while i < ((qft_num_qubits-1)/2): # circuit_qft.swap(up_reg[i], up_reg[qft_num_qubits-1-i]) circuit_qft.swap(i, qft_num_qubits-1-i) i=i+1 circuit_qft.name = "QFT" return circuit_qft def my_create_inverse_QFT(qft_num_qubits,approximation_degree: int = 0,do_swaps: bool = False,insert_barriers: bool = True, name: str = 'iqft'): my_create_QFT_circuit = my_create_QFT(qft_num_qubits,approximation_degree,do_swaps,insert_barriers, name) my_create_inverse_QFT_circuit = my_create_QFT_circuit.inverse() my_create_inverse_QFT_circuit.name = "QFT†" return my_create_inverse_QFT_circuit def phi_add_gate(size: int, angles: Union[np.ndarray, ParameterVector]) -> Gate: # """Gate that performs addition by a in Fourier Space.""" circuit = QuantumCircuit(size, name="phi_add") for i, angle in enumerate(angles): circuit.p(angle, i) return circuit.to_gate() def double_controlled_phi_add_mod_N(num_qubits: int, angles: Union[np.ndarray, ParameterVector],reg_size, a, N, n) -> QuantumCircuit: # """Creates a circuit which implements double-controlled modular addition by a.""" circuit = QuantumCircuit(num_qubits, name="ccphi_add_mod_N") ctl_up = 0 ctl_down = 1 ctl_aux = 2 # get qubits from aux register, omitting the control qubit qubits = range(3, num_qubits) # store the gates representing addition/subtraction by a in Fourier Space phi_add_a = phi_add_gate(len(qubits), angles) iphi_add_a = phi_add_a.inverse() phi_add_N = phi_add_gate(reg_size - 1, get_angles(N, n)) iphi_add_N = phi_add_N.inverse() circuit.append(phi_add_a.control(2), [ctl_up, ctl_down, *qubits]) circuit.append(iphi_add_N, qubits) qft = QFT(n + 1).to_instruction() # qft = my_create_QFT(n + 1).to_instruction() iqft = QFT(n + 1).inverse().to_instruction() # iqft = my_create_inverse_QFT(n + 1).to_instruction() circuit.append(iqft, qubits) circuit.cx(qubits[0], ctl_aux) circuit.append(qft, qubits) circuit.append(phi_add_N, qubits) circuit.append(iphi_add_a.control(2), [ctl_up, ctl_down, *qubits]) circuit.append(iqft, qubits) circuit.x(qubits[0]) circuit.cx(qubits[0], ctl_aux) circuit.x(qubits[0]) circuit.append(qft, qubits) circuit.append(phi_add_a.control(2), [ctl_up, ctl_down, *qubits]) return circuit # """Circuit that implements single controlled modular multiplication by a""" def controlled_multiple_mod_N(num_qubits: int, N: int, a: int, n, aux_reg_size): # """Implements modular multiplication by a as an instruction.""" circuit = QuantumCircuit( num_qubits, # name="multiply_by_{}_mod_{}".format(a % N, N), name=r"${0}^{{{1}^{{{2}}}}} mod{3}$".format(2,2,int(math.log(math.log(a,2),2)), N) ) # label = r"${0}^{{{1}^{{{2}}}}} mod{3}$".format("†","y") down = circuit.qubits[1: n + 1] aux = circuit.qubits[n + 1:] qubits = [aux[i] for i in reversed(range(n + 1))] ctl_up = 0 ctl_aux = aux[-1] angle_params = ParameterVector("angles", length=len(aux) - 1) double_controlled_phi_add = double_controlled_phi_add_mod_N( len(aux) + 2, angle_params, aux_reg_size, a, N, n ) idouble_controlled_phi_add = double_controlled_phi_add.inverse() qft_circuit = QFT(n + 1).to_instruction() # qft_circuit = my_create_QFT(n + 1).to_instruction() iqft_circuit = QFT(n + 1).inverse().to_instruction() # iqft_circuit = my_create_inverse_QFT(n + 1).to_instruction() circuit.append(qft_circuit, qubits) # perform controlled addition by a on the aux register in Fourier space for i, ctl_down in enumerate(down): a_exp = (2 ** i) * a % N angles = get_angles(a_exp, n) bound = double_controlled_phi_add.assign_parameters({angle_params: angles}) circuit.append(bound, [ctl_up, ctl_down, ctl_aux, *qubits]) circuit.append(iqft_circuit, qubits) # perform controlled subtraction by a in Fourier space on both the aux and down register for j in range(n): circuit.cswap(ctl_up, down[j], aux[j]) circuit.append(qft_circuit, qubits) a_inv = modinv(a, N) for i in reversed(range(len(down))): a_exp = (2 ** i) * a_inv % N angles = get_angles(a_exp, n) bound = idouble_controlled_phi_add.assign_parameters({angle_params: angles}) circuit.append(bound, [ctl_up, down[i], ctl_aux, *qubits]) circuit.append(iqft_circuit, qubits) return circuit def modinv(a: int, m: int) -> int: # """Returns the modular multiplicative inverse of a with respect to the modulus m.""" def egcd(a: int, b: int) -> Tuple[int, int, int]: if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y g, x, _ = egcd(a, m) if g != 1: raise ValueError("The greatest common divisor of {} and {} is {}, so the " "modular inverse does not exist.".format(a, m, g)) return x % m def get_factors(N: int, a: int, measurement: str) -> Optional[List[int]]: # """Apply the continued fractions to find r and the gcd to find the desired factors.""" x_final = int(measurement, 2) #print('In decimal, x_final value for this result is: {}.'.format(x_final)) if x_final <= 0: fail_reason = 'x_final value is <= 0, there are no continued fractions.' else: fail_reason = None #print('Running continued fractions for this case.') # Calculate T and x/T T_upper = len(measurement) T = pow(2, T_upper) x_over_T = x_final / T ## this is our theta # Cycle in which each iteration corresponds to putting one more term in the # calculation of the Continued Fraction (CF) of x/T # Initialize the first values according to CF rule i = 0 b = array.array('i') t = array.array('f') b.append(math.floor(x_over_T)) t.append(x_over_T - b[i]) exponential = 0.0 while i < N and fail_reason is None: # From the 2nd iteration onwards, calculate the new terms of the CF based on the previous terms as the rule suggests if i > 0: try: b_temp = math.floor(1 / t[i - 1]) except ZeroDivisionError as err: b_temp = 0 b.append(b_temp) try: t_temp = (1 / t[i - 1]) - b[i] except ZeroDivisionError as err: t_temp = 0 t.append(t_temp) # type: ignore # Calculate the denominator of the CF using the known terms denominator = calculate_continued_fraction(b) # Increment i for next iteration i += 1 if denominator % 2 == 1: #print('Odd denominator, will try next iteration of continued fractions.') continue # Denominator is even, try to get factors of N. Get the exponential a^(r/2) if denominator < 1000: try: exponential = pow(a, denominator / 2) except OverflowError as err: exponential = 999999999 # Check if the value is too big or not if exponential > 1000000: if exponential == 999999999: fail_reason = 'OverflowError' else: fail_reason = 'denominator of continued fraction is too big (> 10^9).' else: # The value is not too big, get the right values and do the proper gcd() putting_plus = int(exponential + 1) putting_minus = int(exponential - 1) one_factor = math.gcd(putting_plus, N) other_factor = math.gcd(putting_minus, N) # Check if the factors found are trivial factors or are the desired factors if any(factor in {1, N} for factor in (one_factor, other_factor)): #print('Found just trivial factors, not good enough.') # Check if the number has already been found, (use i - 1 because i was already incremented) if t[i - 1] == 0: fail_reason = 'the continued fractions found exactly x_final/(2^(2n)).' else: return sorted((one_factor, other_factor)) # Search for factors failed, write the reason for failure to the debug logs #print('Cannot find factors from measurement {0} because {1}'.format(measurement, fail_reason or 'it took too many attempts.')) return None def calculate_continued_fraction(b: array.array) -> int: # """Calculate the continued fraction of x/T from the current terms of expansion b.""" x_over_T = 0 for i in reversed(range(len(b) - 1)): x_over_T = 1 / (b[i + 1] + x_over_T) x_over_T += b[0] frac = fractions.Fraction(x_over_T).limit_denominator() #print('Approximation number %s of continued fractions:'.format(len(b))) #print("Numerator:{0} \t\t Denominator: {1}.".format(frac.numerator, frac.denominator)) return frac.denominator def process_results(sim_result, circuit, shots, N, a, n): counts_result = sim_result.get_counts(circuit) total_counts = len(counts_result) counts_result_sorted = sorted(counts_result.items(), key=lambda x: x[1], reverse=True) # """ Print info to user from the simulation results """ # print('Printing the various results followed by how many times they happened (out of the {} cases):\n'.format(shots)) counts_result_keys = list(counts_result.keys()) counts_result_values = list(counts_result.values()) #i=0 #while i < len(counts_result): #print('Result \"{0}\" happened {1} times out of {2}\n'.format(list(sim_result.get_counts().keys())[i],list(sim_result.get_counts().values())[i],shots)) #print('Result \"{0}\" happened {1} times out of {2}\n'.format(counts_result_keys[i],counts_result_values[i],shots)) #i=i+1 prob_success=0 prob_failure=0 result_successful_counts = 0 result_failure_counts = 0 # len(counts_result_sorted) # For each simulation result, print proper info to user and try to calculate the factors of N #for measurement in counts_result_keys: for measurement, frequency in counts_result_sorted: # Get the x_final value from the final state qubits x_value = int(measurement, 2) #prob_this_result = 100 * ( int(counts_result[measurement] ) ) / (shots) prob_this_result = 100 * frequency/shots # print("------> Analyzing result {0}. This result happened in {1:.4f} % of all cases\nIn decimal, x_final value for this result is: {2}".format(measurement,prob_this_result,x_value)) factors = get_factors(N, a, measurement) if factors: prob_success = prob_success + prob_this_result # print('Found factors {0} from measurement {1} which is {2} in decimal.\n'.format(factors, measurement, x_value)) result_successful_counts = result_successful_counts + 1 if factors not in result_factors: result_factors.append(factors) elif not factors: prob_failure = prob_failure + prob_this_result result_failure_counts = result_failure_counts + 1 return [result_factors, prob_success, prob_failure, total_counts, result_successful_counts,result_failure_counts] def my_shor(a,N,shots): start_time_number = datetime.now() start_time = start_time_number.strftime("%H:%M:%S") summary_result = dict() validate_min('N', N, 3) validate_min('a', a, 2) if N < 1 or N % 2 == 0: raise ValueError('The input needs to be an odd integer greater than 1.') if a >= N or math.gcd(a, N) != 1: raise ValueError('The integer a needs to satisfy a < N and gcd(a, N) = 1.') n = math.ceil(math.log(N,2)) global result_factors result_factors = [] tf, b, p = is_power(N, return_decomposition=True) if tf: print('The input integer is a power: {0}={1}^{2}.'.format(N, b, p)) result_factors.append(b) # """auxilliary quantum register used in addition and multiplication""" aux_reg = QuantumRegister(size = n+2, name="aux_reg") up_reg = QuantumRegister(2*n, name = "up_reg") # """quantum register where the multiplications are made""" down_reg = QuantumRegister(n, name = "down_reg") # """classical register where the measured values of the QFT are stored""" up_classic = ClassicalRegister(2*n, name="up_classic") # """ Create Quantum Circuit """ circuit = QuantumCircuit(up_reg ,down_reg ,aux_reg, up_classic, name="Shor circuit(N={}, a={})".format(N, a)) # phi_add_N_gate = phiADD(circuit,q,a,N,inv) phi_add_N_gate = phi_add_gate(aux_reg.size - 1, get_angles(N,n)) iphi_add_N_gate = phi_add_N_gate.inverse() # """ Initialize down register to 1 and create maximal superposition in top register """ circuit.h(up_reg) circuit.x(down_reg[0]) # circuit.draw(filename = "shor_standard_QFT") # """ Apply the multiplication gates as showed in the report in order to create the exponentiation """ for i, ctl_up in enumerate(up_reg): # type: ignore a_aux = int(pow(a, pow(2, i))) controlled_multiple_mod_N_circuit = controlled_multiple_mod_N( len(down_reg) + len(aux_reg) + 1, N, a_aux,n,aux_reg.size ) controlled_multiple_mod_N_result = controlled_multiple_mod_N_circuit.to_instruction() circuit.append( controlled_multiple_mod_N_result, [ctl_up, *down_reg, *aux_reg] ) # circuit.draw() iqft = QFT(len(up_reg)).inverse().to_instruction() # iqft = my_create_inverse_QFT(len(up_reg)).to_instruction() # iqft = my_create_inverse_QFT(len(up_reg), insert_barriers = False).to_gate(label = r"$QFT^{{{0}}}$".format("†")) circuit.append(iqft, up_reg) circuit.measure(up_reg, up_classic) # circuit.draw(filename = "shor_standard_QFT_final_circuit",fold = -1 ) # print(summarize_circuits(circuit)) # circuit.draw() print('Running with N={0} and a={1} with number of qubits n={2}'.format(N, a, 4*n + 2)) qc_compiled = transpile(circuit, backend, optimization_level = 3) job_sim_1 = backend.run(qc_compiled, shots=shots) sim_result=job_sim_1.result() # counts_result = sim_result.get_counts(circuit) # len(counts_result) # measurement_plot = qiskit.visualization.plot_histogram(counts_result,figsize=(20, 12) ,number_to_keep = 30,bar_labels=True, title = "Measurement results from shor_standard_QFT circuit variant" ) # measurement_plot.savefig("shor_standard_QFT_measurement") # measurement_plot processed_result = process_results(sim_result, circuit, shots, N, a, n) end_time_number = datetime.now() end_time = end_time_number.strftime("%H:%M:%S") duration = end_time_number - start_time_number print("Current Start Time =", start_time) print(processed_result) print("Current End Time =", end_time) circuit_count_ops = circuit.count_ops() circuit_decomposed = circuit.decompose() circuit_decomposed_count_ops = circuit_decomposed.count_ops() qc_compiled_count_ops = qc_compiled.count_ops() summary_result["num_qubits"] = n summary_result["Number(N)"] = N summary_result["a"] = a summary_result["start_time"] = start_time summary_result["end_time"] = end_time summary_result["duration"] = duration summary_result["result_factors"] = processed_result[0] summary_result["prob_success"] = processed_result[1] summary_result["prob_failure"] = processed_result[2] summary_result["total_counts"] = processed_result[3] summary_result["result_successful_counts"] = processed_result[4] summary_result["result_failure_counts"] = processed_result[5] summary_result["circuit_width"] = circuit.width() summary_result["circuit_depth"] = circuit.depth() summary_result["circuit_size"] = circuit.size() summary_result["circuit_num_nonlocal_gates"] = circuit.num_nonlocal_gates() summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_clbits"] = circuit.num_clbits summary_result["circuit_num_qubits"] = circuit.num_qubits summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_of_count_ops"] = len(circuit_count_ops) summary_result["circuit_num_of_x"] = circuit_count_ops.get('x') summary_result["circuit_num_of_measure"] = circuit_count_ops.get('measure') summary_result["circuit_num_of_h"] = circuit_count_ops.get('h') summary_result["circuit_num_of_cswap"] = circuit_count_ops.get('cswap') summary_result["circuit_num_of_swap"] = circuit_count_ops.get('swap') summary_result["circuit_num_of_cx"] = circuit_count_ops.get('cx') summary_result["circuit_num_of_toffoli"] = circuit_count_ops.get('toffoli') summary_result["circuit_num_of_p"] = circuit_count_ops.get('p') summary_result["circuit_num_of_t"] = circuit_count_ops.get('t') summary_result["circuit_decomposed_width"] = circuit_decomposed.width() summary_result["circuit_decomposed_depth"] = circuit_decomposed.depth() summary_result["circuit_decomposed_size"] = circuit_decomposed.size() summary_result["circuit_decomposed_num_nonlocal_gates"] = circuit_decomposed.num_nonlocal_gates() summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_clbits"] = circuit_decomposed.num_clbits summary_result["circuit_decomposed_num_qubits"] = circuit_decomposed.num_qubits summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_of_count_ops"] = len(circuit_decomposed_count_ops) summary_result["circuit_decomposed_num_of_x"] = circuit_decomposed_count_ops.get('x') summary_result["circuit_decomposed_num_of_measure"] = circuit_decomposed_count_ops.get('measure') summary_result["circuit_decomposed_num_of_h"] = circuit_decomposed_count_ops.get('h') summary_result["circuit_decomposed_num_of_cswap"] = circuit_decomposed_count_ops.get('cswap') summary_result["circuit_decomposed_num_of_swap"] = circuit_decomposed_count_ops.get('swap') summary_result["circuit_decomposed_num_of_cx"] = circuit_decomposed_count_ops.get('cx') summary_result["circuit_decomposed_num_of_toffoli"] = circuit_decomposed_count_ops.get('toffoli') summary_result["circuit_decomposed_num_of_p"] = circuit_decomposed_count_ops.get('p') summary_result["circuit_decomposed_num_of_t"] = circuit_decomposed_count_ops.get('t') summary_result["qc_compiled_width"] = qc_compiled.width() summary_result["qc_compiled_depth"] = qc_compiled.depth() summary_result["qc_compiled_size"] = qc_compiled.size() summary_result["qc_compiled_num_nonlocal_gates"] = qc_compiled.num_nonlocal_gates() summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_clbits"] = qc_compiled.num_clbits summary_result["qc_compiled_num_qubits"] = qc_compiled.num_qubits summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_of_count_ops"] = len(qc_compiled_count_ops) summary_result["qc_compiled_num_of_x"] = qc_compiled_count_ops.get('x') summary_result["qc_compiled_num_of_measure"] = qc_compiled_count_ops.get('measure') summary_result["qc_compiled_num_of_h"] = qc_compiled_count_ops.get('h') summary_result["qc_compiled_num_of_cswap"] = qc_compiled_count_ops.get('cswap') summary_result["qc_compiled_num_of_swap"] = qc_compiled_count_ops.get('swap') summary_result["qc_compiled_num_of_cx"] = qc_compiled_count_ops.get('cx') summary_result["qc_compiled_num_of_toffoli"] = qc_compiled_count_ops.get('toffoli') summary_result["qc_compiled_num_of_p"] = qc_compiled_count_ops.get('p') summary_result["qc_compiled_num_of_t"] = qc_compiled_count_ops.get('t') return summary_result # Run for just a single number N %%time N = 33 shots = 1024 global result_factors all_summary_result_temp = [] for random_a in range(16, 17): if math.gcd(random_a,N) > 1: continue a = random_a summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n".format(a, N)) all_summary_result_temp.append(summary_result) summary_result_list = [] for key, value in summary_result.items(): summary_result_list.append([key,value]) summary_result_list with open("a({0})_N({1})_standard.csv".format(a, N), 'a') as myfile: write = csv.writer(myfile) #write.writerow(fields) write.writerows(summary_result_list) all_summary_result_temp # Run for many numbers N. %%time shots = 1024 global result_factors all_summary_result = [] for N in [15, 21, 33, 35, 39, 51, 55, 57]: for a in range(2, N): if math.gcd(a,N) > 1: continue print("Beginning running for a = {} and N = {}".format(a, N)) summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n\n".format(a, N)) all_summary_result.append(summary_result) all_summary_result %qiskit_copyright
https://github.com/AnkRaw/Quantum-Convolutional-Neural-Network
AnkRaw
# Importing Libraries import torch from torch import cat, no_grad, manual_seed from torch.utils.data import DataLoader from torchvision import transforms import torch.optim as optim from torch.nn import ( Module, Conv2d, Linear, Dropout2d, NLLLoss ) import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from qiskit_machine_learning.neural_networks import EstimatorQNN from qiskit_machine_learning.connectors import TorchConnector from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit import QuantumCircuit from qiskit.visualization import circuit_drawer # Imports for CIFAR-10s from torchvision.datasets import CIFAR10 from torchvision import transforms def prepare_data(X, labels_to_keep, batch_size): # Filtering out labels (originally 0-9), leaving only labels 0 and 1 filtered_indices = [i for i in range(len(X.targets)) if X.targets[i] in labels_to_keep] X.data = X.data[filtered_indices] X.targets = [X.targets[i] for i in filtered_indices] # Defining dataloader with filtered data loader = DataLoader(X, batch_size=batch_size, shuffle=True) return loader # Set seed for reproducibility manual_seed(42) # CIFAR-10 data transformation transform = transforms.Compose([ transforms.ToTensor(), # convert the images to tensors transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalization usign mean and std. ]) labels_to_keep = [0, 1] batch_size = 1 # Preparing Train Data X_train = CIFAR10(root="./data", train=True, download=True, transform=transform) train_loader = prepare_data(X_train, labels_to_keep, batch_size) # Preparing Test Data X_test = CIFAR10(root="./data", train=False, download=True, transform=transform) test_loader = prepare_data(X_test, labels_to_keep, batch_size) print(f"Training dataset size: {len(train_loader.dataset)}") print(f"Test dataset size: {len(test_loader.dataset)}") # Defining and creating QNN def create_qnn(): feature_map = ZZFeatureMap(2) # ZZFeatureMap with 2 bits, entanglement between qubits based on the pairwise product of input features. ansatz = RealAmplitudes(2, reps=1) # parameters (angles, in the case of RealAmplitudes) that are adjusted during the training process to optimize the quantum model for a specific task. qc = QuantumCircuit(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, input_gradients=True, ) return qnn qnn = create_qnn() # Visualizing the QNN circuit circuit_drawer(qnn.circuit, output='mpl') # Defining torch NN module class Net(Module): def __init__(self, qnn): super().__init__() self.conv1 = Conv2d(3, 16, kernel_size=3, padding=1) self.conv2 = Conv2d(16, 32, kernel_size=3, padding=1) self.dropout = Dropout2d() self.fc1 = Linear(32 * 8 * 8, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN self.qnn = TorchConnector(qnn) self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) x = self.fc3(x) return cat((x, 1 - x), -1) # Creating model model = Net(qnn) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Defining model, optimizer, and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = NLLLoss() # Starting training epochs = 10 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) # Move data to GPU optimizer.zero_grad(set_to_none=True) output = model(data) loss = loss_func(output, target) loss.backward() optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # Plotting loss convergence plt.plot(loss_list) plt.title("Hybrid NN Training Convergence") plt.xlabel("Training Iterations") plt.ylabel("Neg. Log Likelihood Loss") plt.show() # Saving the model torch.save( model.state_dict(), "model_cifar10_10EPOCHS.pt") # Loading the model qnn_cifar10 = create_qnn() model_cifar10 = Net(qnn_cifar10) model_cifar10.load_state_dict(torch.load("model_cifar10.pt")) correct = 0 total = 0 model_cifar10.eval() with torch.no_grad(): for data, target in test_loader: output = model_cifar10(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() # Calculating and print test accuracy test_accuracy = correct / total * 100 print(f"Test Accuracy: {test_accuracy:.2f}%") # Plotting predicted labels n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model_cifar10.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model_cifar10(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(np.transpose(data[0].numpy(), (1, 2, 0))) axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title("Predicted {0}\n Actual {1}".format(pred.item(), target.item())) count += 1 plt.show()
https://github.com/EusseJhoan/DeutschJosza_algorithm
EusseJhoan
from qiskit import QuantumCircuit, transpile, Aer from qiskit.visualization import plot_histogram import numpy as np sim = Aer.get_backend('aer_simulator') def U_f1(qc): return qc def U_f2(qc): qc.x(1) #Compuerta X al segundo qubit return qc def U_f3(qc): qc.cx(0,1) #Compuerta CNOT entre primer y segundo quibit (el primero es el que controla) return qc def U_f4(qc): qc.cx(0,1) #Compuerta CNOT entre primer y segundo quibit (el primero es el que controla) qc.x(1) #Compuerta X al segundo qubit return qc def Deutsch(U_f): qc=QuantumCircuit(2,1) #Se crea un circuito cuántico con 2 bits cuánticos y 1 canal clásico qc.x(1) #Compuerta X al segundo qubit (inicializar estado |1>) qc.h(0) #Compuerta H al primer qubit qc.h(1) #Compuerta H al segundo qubit qc.barrier() #Barrera (empieza oráculo) qc = U_f(qc) #Agregamos el oráculo qc.barrier() #Barrera (termina oráculo) qc.h(0) #Compuerta H al primer qubit qc.measure(0,0) #Medimos el primer qubit y enviamos señal al canal clásico return qc qc=Deutsch(U_f1) # definición circuito con oráculo usando f_1(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f2) #definición circuito con oráculo usando f_2(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas del simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f3) #definición circuito con oráculo usando f_3(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f4) #definición circuito con oráculo usando f_4(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados #oráculo para f(x) constante para un número n de bits en el registro def constant(qc,n): ran=np.random.randint(2) #selección aleatoria de 0 ó 1 if ran == 1: qc.x(n) #si el número aleatorio es 1 se pone compuerta X en el objetivo (se induce fase global -1 al registro) return qc #oráculo para f(x) balanceado para un número n de bits en el registro def balanced(qc,n): for i in range(n): qc.cx(i,n) #se crea una CNOT entre cada qubit del registro y el objetivo (los qubits del registro controlan) ran=np.random.randint(2) #selección aleatoria de 0 ó 1 if ran == 1: qc.x(n) #si el número aleatorio es 1 se pone compuerta X en el objetivo (se induce fase global -1 al registro) return qc def D_J(U_f,n): qc=QuantumCircuit(n+1,n) #Se crea un circuito cuántico con n+1 quibits y n canales clásicos qc.x(n) #Compuerta X al bit del registro for i in range(n+1): qc.h(i) #Compuerta H a todos los bits qc.barrier() #Barrera (empieza oráculo) qc = U_f(qc,n) #Agregamos el oráculo qc.barrier() #Barrera (termina oráculo) for i in range(n): qc.h(i) #Compuerta H a los n bits del registro qc.measure(i,i) #Medición los n bits del registro return qc qc=D_J(constant,3) #definición circuito con oráculo constante y 3 bits en registro display(qc.draw()) #ver circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=D_J(balanced,3) display(qc.draw()) counts = sim.run(qc).result().get_counts() plot_histogram(counts)
https://github.com/strangequarkkk/BB84-Protocol-for-QKD
strangequarkkk
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) qc.barrier() # Alice now sends the qubit to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) # Alice now sends the qubit to Bob # but Eve intercepts and tries to read it qc.measure(0, 0) qc.barrier() # Eve then passes this on to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) n = 100 ## Step 1 # Alice generates bits. alice_bits = np.random.randint(0,2,n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = np.random.randint(0,2,n) # Function to compare the bits & bases generated by alice, and then 'encode' the message. Basically determines the state of the qubit/photon to send. def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepare qubit in Z-basis if bits[i] == 0: pass else: qc.x(0) else: # Prepare qubit in X-basis if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message # Alice computes the encoded message using the function defined above. message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = np.random.randint(0,2,n) # Function to decode the message sent by alice by comparing qubit/photon states with Bob's generated bases. def measure_message(message, bases): backend = Aer.get_backend('aer_simulator') measurements = [] for q in range(n): if bases[q] == 0: # measuring in Z-basis message[q].measure(0,0) if bases[q] == 1: # measuring in X-basis message[q].h(0) message[q].measure(0,0) aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(message[q], shots=1, memory=True) result = aer_sim.run(qobj).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements # Decode the message according to his bases bob_results = measure_message(message, bob_bases) ## Step 4 # Function to perform sifting i.e. disregard the bits for which Bob's & A;ice's bases didnot match. def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits # Performing sifting for Alice's and Bob's bits. alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print("Alice's key after sifting (without interception)", alice_key) print("Bob's key after sifting (without interception) ", bob_key) # # Step 5 # # Function for parameter estimation i.e. determining the error rate by comparing subsets taen from both Alice's key & Bob's key. # def sample_bits(bits, selection): # sample = [] # for i in selection: # # use np.mod to make sure the # # bit we sample is always in # # the list range # i = np.mod(i, len(bits)) # # pop(i) removes the element of the # # list at index 'i' # sample.append(bits.pop(i)) # return sample # # Performing parameter estimation & disregarding the bits used for comparison from Alice's & Bob's key. # sample_size = 15 # bit_selection = np.random.randint(0,n,size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") ## Step 1 alice_bits = np.random.randint(2, size=n) ## Step 2 alice_bases = np.random.randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = np.random.randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = np.random.randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print("Alice's key after sifting (with interception)", alice_key) print("Bob's key after sifting (with interception) ", bob_key) # ## Step 5 # sample_size = 15 # bit_selection = np.random.randint(n, size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") plt.rcParams['axes.linewidth'] = 2 mpl.rcParams['font.family'] = ['Georgia'] plt.figure(figsize=(10.5,6)) ax=plt.axes() ax.set_title('') ax.set_xlabel('$n$ (Number of bits drawn from the sifted keys for determining error rate)',fontsize = 18,labelpad=10) ax.set_ylabel(r'$P(Eve\ detected)$',fontsize = 18,labelpad=10) ax.xaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.yaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.tick_params(axis='x', labelsize=20) ax.tick_params(axis='y', labelsize=20) ax. xaxis. label. set_size(20) ax. yaxis. label. set_size(20) n = 30 x = np.arange(n+1) y = 1 - 0.75**x ax.plot(x,y,color = plt.cm.rainbow(np.linspace(0, 1, 5))[0], marker = "s", markerfacecolor='r')
https://github.com/luis6156/Shor-s-Quantum-Algorithm
luis6156
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
with open('in-exemplo.txt', 'r') as f: print(f.read()) with open('out-exemplo.txt', 'r') as f: print(f.read()) import time import matplotlib.pyplot as plt import pandas as pd import os import subprocess %matplotlib inline #Roda entradas def roda_com_entrada(executavel, arquivo_in, envs = '1', deb = '0'): with open(arquivo_in) as f: start = time.perf_counter() a = f.read() proc = subprocess.run([executavel], input=a, text=True, capture_output=True, env=dict(OMP_NUM_THREADS=envs, DEBUG=deb, **os.environ)) end = time.perf_counter() f.close() ret = '' for i in a: if i == "\n": break ret += i return (proc.stdout, end - start, int(ret)) v #retorna tamanho do tour apartir do stdout buf = '' for i in out: if i == " ": return float(buf) buf += i #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] resultados1 = [] resultados2 = [] resultados3 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca_local_antigo','busca-exaustiva/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt') c = roda_com_entrada('./heuristico/heuristico','busca-exaustiva/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) resultados1.append(tamanho_tour(a[0])) resultados2.append(tamanho_tour(b[0])) resultados3.append(tamanho_tour(c[0])) #Teste com entrada um pouco maior print("Rodando entrada: 8") tempos.append(roda_com_entrada('./busca_local_antigo','maior.txt')[1]) tempos_1.append(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[1]) tempos_2.append(roda_com_entrada('./heuristico/heuristico','maior.txt')[1]) tamanho_entradas.append(roda_com_entrada('./busca-local/busca-local','maior.txt')[2]) resultados1.append(tamanho_tour(roda_com_entrada('./busca_local_antigo','maior.txt')[0])) resultados2.append(tamanho_tour(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[0])) resultados3.append(tamanho_tour(roda_com_entrada('./heuristico/heuristico','maior.txt')[0])) plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-exaustiva", "busca-local","heuristico"]) plt.show() plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-local","heuristico"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-tempo"] = pd.Series(tempos) df["busca-exaustiva-tempo"] = pd.Series(tempos_1) df["heuristica-tempo"] = pd.Series(tempos_2) df["busca-local-resultado"] = pd.Series(resultados1) df["busca-exaustiva-resultado"] = pd.Series(resultados2) df["heuristica-resultado"] = pd.Series(resultados3) df df.describe() #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] tempos_3 = [] tempos_4 = [] tempos_5 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','2') c = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','3') d = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','4') e = roda_com_entrada('./busca_local_antigo','busca-local/in-'+str(i)+'.txt') f = roda_com_entrada('./busca-local/busca-local-gpu','busca-local/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tempos_3.append(d[1]) tempos_4.append(e[1]) tempos_5.append(f[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.plot(tamanho_entradas, tempos_3) plt.legend(["1 thread otimizado", "2 threads otimizado","3 threads otimizado", "4 threads otimizado", "Sem otimizações"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_3) plt.plot(tamanho_entradas, tempos_5) plt.legend(["4 thread otimizado", "GPU"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_4) plt.legend(["1 thread otimizado", "Sem otimizações"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-1-thread"] = pd.Series(tempos) df["busca-local-2-threads"] = pd.Series(tempos_1) df["busca-local-3-threads"] = pd.Series(tempos_2) df["busca-local-4-threads"] = pd.Series(tempos_3) df["busca-local-gpu"] = pd.Series(tempos_5) df["busca-local-semopt"] = pd.Series(tempos_4) df #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) if i != 7: a = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '1') tempos.append(a[1]) b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '8', '0') c = roda_com_entrada('./busca-exaustiva-apenasbb','busca-exaustiva/in-'+str(i)+'.txt', '1', '0') tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas[:-1], tempos) plt.plot(tamanho_entradas[:-1], tempos_2[:-1]) plt.legend(["Exaustivo Simples", "Exaustivo Branch and Bound"]) plt.show() plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.legend(["Branch and Bound Paralelo", "Branch and Bound Simples"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-exaustiva-simples"] = pd.Series(tempos) df["busca-exaustiva-branchnbound"] = pd.Series(tempos_2) df["busca-exaustiva-branchnbound-par"] = pd.Series(tempos_1) df
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
with open('in-exemplo.txt', 'r') as f: print(f.read()) with open('out-exemplo.txt', 'r') as f: print(f.read()) import time import matplotlib.pyplot as plt import pandas as pd import os import subprocess %matplotlib inline #Roda entradas def roda_com_entrada(executavel, arquivo_in, envs = '1', deb = '0'): with open(arquivo_in) as f: start = time.perf_counter() a = f.read() proc = subprocess.run([executavel], input=a, text=True, capture_output=True, env=dict(OMP_NUM_THREADS=envs, DEBUG=deb, **os.environ)) end = time.perf_counter() f.close() ret = '' for i in a: if i == "\n": break ret += i return (proc.stdout, end - start, int(ret)) #retorna tamanho do tour apartir do stdout def tamanho_tour(out): buf = '' for i in out: if i == " ": return float(buf) buf += i #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] resultados1 = [] resultados2 = [] resultados3 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca_local_antigo','busca-exaustiva/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt') c = roda_com_entrada('./heuristico/heuristico','busca-exaustiva/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) resultados1.append(tamanho_tour(a[0])) resultados2.append(tamanho_tour(b[0])) resultados3.append(tamanho_tour(c[0])) #Teste com entrada um pouco maior print("Rodando entrada: 8") tempos.append(roda_com_entrada('./busca_local_antigo','maior.txt')[1]) tempos_1.append(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[1]) tempos_2.append(roda_com_entrada('./heuristico/heuristico','maior.txt')[1]) tamanho_entradas.append(roda_com_entrada('./busca-local/busca-local','maior.txt')[2]) resultados1.append(tamanho_tour(roda_com_entrada('./busca_local_antigo','maior.txt')[0])) resultados2.append(tamanho_tour(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[0])) resultados3.append(tamanho_tour(roda_com_entrada('./heuristico/heuristico','maior.txt')[0])) plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-exaustiva", "busca-local","heuristico"]) plt.show() plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-local","heuristico"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-tempo"] = pd.Series(tempos) df["busca-exaustiva-tempo"] = pd.Series(tempos_1) df["heuristica-tempo"] = pd.Series(tempos_2) df["busca-local-resultado"] = pd.Series(resultados1) df["busca-exaustiva-resultado"] = pd.Series(resultados2) df["heuristica-resultado"] = pd.Series(resultados3) df df.describe() #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] tempos_3 = [] tempos_4 = [] tempos_5 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','2') c = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','3') d = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','4') e = roda_com_entrada('./busca_local_antigo','busca-local/in-'+str(i)+'.txt') f = roda_com_entrada('./busca-local/busca-local-gpu','busca-local/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tempos_3.append(d[1]) tempos_4.append(e[1]) tempos_5.append(f[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.plot(tamanho_entradas, tempos_3) plt.legend(["1 thread otimizado", "2 threads otimizado","3 threads otimizado", "4 threads otimizado", "Sem otimizações"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_3) plt.plot(tamanho_entradas, tempos_5) plt.legend(["4 thread otimizado", "GPU"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_4) plt.legend(["1 thread otimizado", "Sem otimizações"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-1-thread"] = pd.Series(tempos) df["busca-local-2-threads"] = pd.Series(tempos_1) df["busca-local-3-threads"] = pd.Series(tempos_2) df["busca-local-4-threads"] = pd.Series(tempos_3) df["busca-local-gpu"] = pd.Series(tempos_5) df["busca-local-semopt"] = pd.Series(tempos_4) df #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '1') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '0') tempos.append(a[1]) tempos_1.append(b[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.legend(["Exaustivo Simples", "Exaustivo Branch and Bound"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-exaustiva-simples"] = pd.Series(tempos) df["busca-exaustiva-branchnbound"] = pd.Series(tempos_1) df
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/LeanderThiessen/antisymmetrization-circuit
LeanderThiessen
#General Imports import numpy as np import matplotlib.pyplot as plt import time from itertools import product,permutations from string import ascii_lowercase as asc import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) #Qiskit Imports from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile from qiskit.circuit.library.standard_gates import MCXGate, CXGate, XGate, CSwapGate from qiskit.circuit.library import Diagonal from qiskit.quantum_info import partial_trace,purity #############FUNCTIONS########################################################################################################### #wrapper for measuring time taken by function 'func' def timeis(func): def wrap(*args,**kwargs): start = time.time() result = func(*args,**kwargs) end = time.time() if measure_time: print("{} took {:.2f}s".format(func.__name__,end-start)) return result return wrap #check if inputs are valid def check_inputs(n,m): if n == 1: print("Case n=1 currently not supported") correct = 1 if m>2**n: correct == 0 if correct == 1: print("Inputs valid") return 0 #initialize quantum circuit with electron register, swap_ancillas, record_ancillas, collision_ancillas def initialize_circuit(n,m,L): circuit = QuantumCircuit() #add main electron register (seed/target) for e in range(m): r_q = QuantumRegister(n,'{}'.format(asc[e]))#asc[i]=ith letter of the alphabe c = QuantumCircuit(r_q) circuit = circuit.combine(c) #add ancillas for comparator_swaps for k in range(int(np.ceil(m/2))): anc_q = QuantumRegister(n-1,'anc_{}'.format(k)) c = QuantumCircuit(anc_q) circuit = circuit.combine(c) #add 'record' register for storing outcomes of comparators for l in range(L): anc_q = QuantumRegister(1,'record_{}'.format(l)) c = QuantumCircuit(anc_q) circuit = circuit.combine(c) #add ancillas to store the occurence of collisions between pairs of electrons for c in range(m-1): anc_q = QuantumRegister(1,'coll_record_{}'.format(c)) c = QuantumCircuit(anc_q) circuit = circuit.combine(c) #add one ancilla to store if all other collision ancillas are '1' anc_q = QuantumRegister(1,'collision_test') c = QuantumCircuit(anc_q) circuit = circuit.combine(c) return circuit #returns x in binary format as string of length n, incl leading zeros def binary_n(x,n): return bin(x)[2:].zfill(n) #initializes j-th electron register with number x def binary_init(circuit,n,m,input): for k,e in enumerate(input): e_bin = binary_n(e,n) for i in range(n): if e_bin[i]=='1': circuit.append(XGate(),[i+k*n]) return circuit #Apply a Hadamard gate to each qubit in the electron register def Hadamard(circuit,n,m): for q in range(n*m): circuit.h(q) return circuit #Compare bits at positions x and y, only output=(x<y) to position anc def bit_compare(circuit,cbits,control,debug=True): x = cbits[0] y = cbits[1] anc = cbits[2] if debug: circuit.barrier() #control='01' for initial sorting and '10' for collision detection circuit.append(MCXGate(2,ctrl_state=control),[x,y,anc]) if debug: circuit.barrier() return circuit #split the array 'index' into array of pairs of adjacent indices; first entry is (e.g.) [0] if number of entries of index is odd def get_subsets(index): #index = [0,1,2,3] -> result = [[0,1],[2,3]] #index = [0,1,2,3,4] -> result = [[0],[1,2],[3,4]] M = len(index) result = [] if M % 2 != 0: result.append(np.array([0])) n_split = int((M-1)/2) for s in np.split(index[1:M],n_split): result.append(s) else: result = np.split(index,M/2) return result #get position of first qubit in swap_control ancilla register def get_first_swap_ctrl(n,m): #n_comp_parallel is the number of comparators that are applied in each layer #n*m = main register for storing electron registers; #(n_comp_parallel)*(n-1) = fixed ancilla register needed for compare_n n_comp_parallel = int(np.ceil(m/2)) ctrl_0 = n*m + (n-1)*n_comp_parallel return ctrl_0 #get position of first qubit in collision_control ancilla register def get_first_coll_ctrl(n,m,L): coll_0 = get_first_swap_ctrl(n,m) + L return coll_0 #return pairs of electron indices that need to be compared in collision-detection step def get_coll_sets(m): ind = np.arange(m) if m == 2: sets_a = [np.array([0,1])] sets_b = [] return sets_a,sets_b if m % 2 == 0: sets_a = np.split(ind,m/2) sets_b = np.split(ind[1:-1],(m-2)/2) else: sets_a = np.split(ind[:-1],(m-1)/2) sets_b = np.split(ind[1:],(m-1)/2) #all gates in sets_a can be applied in parallel #all gates in sets_b can be applied in parallel return sets_a,sets_b #returns the first qubit position of the ancilla register used for swap of i and j (only really tested for m<6) def get_anc(n,m,i,j): if abs(j-i) == 1: anc_reg = int( np.min([i,j])/2 ) elif abs(j-i) == 2: anc_reg = int( np.ceil( np.min([i,j])/2 )) else: anc_reg = int( np.min([i,j]) ) anc = n*m + anc_reg*(n-1) return anc #Implement 'Compare2' function (Fig 3); input: two 2bit numbers, output: two 1bit numbers with same ordering def compare_2(circuit,x_0,x_1,y_0,y_1,anc): #Notation: x = 2^1*x_0 + x_1 (reverse from paper!!) #compares numbers x,y and outputs two bits x',y' (at positions x_1 and y_1) with the same ordering circuit.append(XGate(),[anc]) circuit.append(CXGate(),[y_0,x_0]) circuit.append(CXGate(),[y_1,x_1]) circuit.append(CSwapGate(),[x_0,x_1,anc]) circuit.append(CSwapGate(),[x_0,y_0,y_1]) circuit.append(CXGate(),[y_1,x_1]) return circuit #Generalisation of 'compare2' two nbit numbers, output: two 1bit numbers with same ordering at positions x1,y1 def compare_n(circuit,n,m,i,j,l,L,debug): index = np.arange(n) subsets = get_subsets(index) M = len(subsets) anc = get_anc(n,m,i,j) for s in subsets: if len(s)==2: if debug: circuit.barrier() x_0 = s[0] + i*n x_1 = s[1] + i*n y_0 = s[0] + j*n y_1 = s[1] + j*n circuit = compare_2(circuit,x_0,x_1,y_0,y_1,anc) anc += 1 while (len(subsets)>1): index = np.array([subsets[k][-1] for k in range(M)]) subsets = get_subsets(index) M = len(subsets) for s in subsets: if len(s)==2: if debug: circuit.barrier() x_0 = s[0] + i*n x_1 = s[1] + i*n y_0 = s[0] + j*n y_1 = s[1] + j*n circuit = compare_2(circuit,x_0,x_1,y_0,y_1,anc) anc += 1 ######################################################################################################################################## #at this point the bits x_1 and y_1 have the same ordering as numbers stored in registers i and j #e(i)<e(j) -> x_1=0 and y_1=1 #e(i)>e(j) -> x_1=1 and y_1=0 #e(i)=e(j) -> x_1=0 y_1=0 if e(i) even or x_1=1 y_1=1 if e(i) odd #prepare output for bit_compare function; anc iterates through the second ancilla register (+1 for each comparator) #l = current swap; each new swap gets a new ancilla for storing the outcome anc = get_first_swap_ctrl(n,m) + l cbits = x_1,y_1,anc return circuit,cbits #apply diagonal phase shift to qubit i, conditioned on qubit 'ctrl' def cphase_shift(circuit,ctrl,i): target = i*n CDiag = Diagonal([-1,-1]).control(1) CDiag = CDiag.to_gate() CDiag.label = "D" #doesn't work currently circuit.append(CDiag,[ctrl,target]) return circuit #performs swap of registers i and j conditioned on ancilla qubit 'ctrl' def swap_registers(circuit,n,i,j,ctrl,debug): for g in range(n): circuit.append(CSwapGate(),[ctrl,i*n+g,j*n+g]) if debug: circuit.barrier() return circuit #compare electron registers i and j; swap registers iff e(i)<(j); l=current swap (0 to L) def comparator_swap(n,m,i,j,l,L,phase,debug): #Perform comparison to generate output qubits "cbits" circuit_compute = initialize_circuit(n,m,L) circuit_compute,cbits = compare_n(circuit_compute,n,m,i,j,l,L,debug) #Add bit_compare between the two output qubits and store in ancilla circuit_bit_compare = initialize_circuit(n,m,L) circuit_bit_compare = bit_compare(circuit_bit_compare,cbits,'10',debug) #add uncomputing step only of the comparison circuit circuit_uncompute = circuit_compute.inverse() #Swap registers based on control ancilla circuit_swap = initialize_circuit(n,m,L) #apply a conditioned phase shift to the first qubit of the register pair; is only called when sn is applied backwards, that's why it's (phase,swap) and not (swap,phase) if phase: circuit_swap = cphase_shift(circuit_swap,cbits[2],i) circuit_swap = swap_registers(circuit_swap,n,i,j,cbits[2],debug) #Combine circuits circuit_comparator = circuit_compute + circuit_bit_compare + circuit_uncompute + circuit_swap return circuit_comparator #Apply the sorting network sn, where each comparator stores the outcome in ctrl_register def apply_sorting_network(circuit,n,m,sn,L,phase,debug): for l,swap in enumerate(sn): #swap = [i, j, direction]; dir = 0 : descending (from the top); dir = 1 : ascending (from the top) if swap[2]==0: i = swap[0] j = swap[1] if swap[2]==1: i = swap[1] j = swap[0] circuit_comparator = comparator_swap(n,m,i,j,l,L,phase,debug) circuit = circuit + circuit_comparator return circuit #Apply the reverse of the sorting networkl sn for antisymmetrizing the input state def apply_reverse_sorting_network(circuit,n,m,sn,L,phase,debug): circuit_sn = initialize_circuit(n,m,L) circuit_sn = apply_sorting_network(circuit_sn,n,m,sn,L,phase,debug) #reverse all gates in the circuit circuit_reverse_sn = circuit_sn.inverse() circuit = circuit + circuit_reverse_sn return circuit #reset first register to [|0>,|0>,|0>,...] (all zeros) def reset_electrons(circuit,n,m): circuit.barrier() for g in range(m): g_indices = np.arange(g*n,(g+1)*n) #classical register positions for electron g for g_i in g_indices: circuit.reset(g_i) return circuit #reset all registers except for the main electron register def reset_ancillas(circuit,n,m,L): circuit.barrier() start = n*m end = get_first_coll_ctrl(n,m,L) + m for q in range(start,end): circuit.reset(q) return circuit #Perform comparisons between all adjacent electron registers, with ctrl ancilla in the coll_register def collision_compare(circuit,n,m,L,debug): #all sets in sets_a can be applied simultaneously (same for sets_b); both for loops are otherwise identical and could be combined sets_a,sets_b = get_coll_sets(m) c = 0 for s in sets_a: circuit_coll_test = initialize_circuit(n,m,L) i = s[0] j = s[1] circuit_coll_test,cbits = compare_n(circuit_coll_test,n,m,i,j,0,L,debug) x_1 = cbits[0] y_1 = cbits[1] coll_anc = get_first_coll_ctrl(n,m,L) + c cbits = [x_1,y_1,coll_anc] circuit_coll_test_reverse = circuit_coll_test.inverse() circuit = circuit + circuit_coll_test circuit = bit_compare(circuit,cbits,'01',debug) circuit = circuit + circuit_coll_test_reverse c+=1 for s in sets_b: circuit_coll_test = initialize_circuit(n,m,L) i = s[0] j = s[1] circuit_coll_test,cbits = compare_n(circuit_coll_test,n,m,i,j,0,L,debug) x_1 = cbits[0] y_1 = cbits[1] coll_anc = get_first_coll_ctrl(n,m,L) + c cbits = [x_1,y_1,coll_anc] circuit_coll_test_reverse = circuit_coll_test.inverse() circuit = circuit + circuit_coll_test circuit = bit_compare(circuit,cbits,'01',debug) circuit = circuit + circuit_coll_test_reverse c+=1 return circuit #apply X gate on last qubit, conditioned on all other coll_ancillas being 1 (which means that all elctron registers are different) def collision_test(circuit,n,m,L,debug): coll_ctrl_0 = get_first_coll_ctrl(n,m,L) control = '' qubits = [] for i in range(m-1): control = control + '1' qubits.append(coll_ctrl_0+i) qubits.append(coll_ctrl_0+m-1) circuit.append(MCXGate(m-1,ctrl_state=control),qubits) return circuit #not necessary #returns True if output contains only unique elements; returns False otherwise (if two or more elements are the same) def collision_check_old(output): if len(output) == len(set(output)): return True else: return False #Perform measurement on last qubit in coll_register def measure_collisions(circuit,n,m,L): #add classical register to store measurement result c_q = QuantumRegister(0) c_reg = ClassicalRegister(1,'collision_check') c = QuantumCircuit(c_q,c_reg) circuit = circuit.combine(c) #perform measurements on each electron register and store in separate memorey circuit.measure(get_first_coll_ctrl(n,m,L) + m - 1, 0) return circuit #Add classical registers and apply measurements on the main electron register def measure_electrons(circuit,n,m): circuit.barrier() for g in range(m): #Add classicla register to store measurement outcomes c_q = QuantumRegister(0) c_reg = ClassicalRegister(n,'mem_{}'.format(asc[g])) c = QuantumCircuit(c_q,c_reg) circuit = circuit.combine(c) #perform measurements on each electron register and store in separate memorey circuit.measure(np.arange(g*n,(g+1)*n),np.arange(g*n + 1,(g+1)*n + 1)) return circuit #Build the circuit with all gates and measurements @timeis def build_circuit(n,m,input,sn,L,debug=True): #Initialize the circuit with the right number of qubits and ancillas circuit = initialize_circuit(n,m,L) #Apply Hadamard gates to each qubit in the first register circuit = Hadamard(circuit,n,m) #Apply the sorting network sn phase = False circuit = apply_sorting_network(circuit,n,m,sn,L,phase,debug) #apply comparisons between all adjacent electron registers and store outcome in coll_register circuit = collision_compare(circuit,n,m,L,debug) #check if outcome of all comparisons is "not_equal"; flip last qubit in coll_register if this is the case circuit = collision_test(circuit,n,m,L,debug) #measure last qubit in coll_register, which stores (no collisions = 1) or (collisions = 0); result is kept until the end of the simulation and result accepted if (no collisions == True) circuit = measure_collisions(circuit,n,m,L) #Measurements: classical register 0 stores the random sorted array that can still include collisions #circuit = measure_electrons(circuit,n,m) #Reset main electron register circuit = reset_electrons(circuit,n,m) #Initialize main electron register in given input product state circuit = binary_init(circuit,n,m,input) #Apply the reverse of 'apply_sorting_network' and add a conditioned phase shift after each swap (this antisymmetrizes the input state) phase = True circuit = apply_reverse_sorting_network(circuit,n,m,sn,L,phase,debug) #Reset all ancilla qubits and only keep the main electron register (disable for testing final state for antisymmetry) #circuit = reset_ancillas(circuit,n,m,L) #Measure electron register (for testing) #circuit = measure_electrons(circuit,n,m) return circuit #Simulate circuit using specified backend and return simulation result @timeis def simulate(circuit,backend,shots): simulator = Aer.get_backend(backend) #transpile the circuit into the supported set of gates circuit = transpile(circuit,backend=simulator) result = simulator.run(circuit,shots=shots).result() return result #turns simulation result 'counts' into list of decimal numbers corresponding to the electron registers; only use if shots=1 or all outcomes are the same def convert_output_to_decimal(counts,n,m): output_list = list(counts.keys())[0][::-1] coll_test = output_list[0] output_list = output_list[2:] output = [] offset = 0 for g in range(m): start = g*n + offset end = (g+1)*n + offset g_out = int(output_list[start:end],2) output.append(g_out) offset += 1 output_0 = output[0:m] return coll_test,output_0 #draw the circuit using size,name as input if plot==True @timeis def draw_circuit(circuit,plot_scale,fname): circuit.draw(output='mpl',fold=-1,scale=plot_scale,plot_barriers=True) plt.savefig(fname,dpi=700) return 0 def plot_circuit(circuit,plot_scale,fname,plot=True): if plot: draw_circuit(circuit,plot_scale,fname) plt.show() return 0 print("Plot disabled") return 0 #plot sorting network by itself, using cnot as directed comparator (only for visualizationo) def plot_sorting_network(sn,m): circuit_sn = QuantumCircuit(m) for s in sn: if s[2] == 0: i,j = s[0],s[1] else: i,j = s[1],s[0] circuit_sn.cz(i,j) circuit_sn.draw(output='mpl') plt.show() return 0 #Generate a bitonic sorting network for m electrons; dir=0 (descending), dir=1 (ascending) def sorting_network_bitonic(m,dir): sn = [] def compAndSwap(i,j,dir): sn.append([i,j,dir]) def bitonic_sort(low, cnt, dir): if cnt>1: k = cnt//2 dir_n = (dir + 1) % 2 bitonic_sort(low, k, dir_n)#n_dir bitonic_sort(low + k, cnt-k, dir)#dir bitonic_merge(low, cnt, dir) def bitonic_merge(low, cnt, dir): if cnt>1: k = greatestPowerOfTwoLessThan(cnt) i = low while i < low+cnt-k: compAndSwap(i, i+k, dir) i+=1 bitonic_merge(low,k,dir) bitonic_merge(low+k,cnt-k,dir) def greatestPowerOfTwoLessThan(cnt): i=1 while (2**i)<cnt: i+=1 return 2**(i-1) bitonic_sort(0,m,dir) L = len(sn) return sn,L #Test if sorting network correctly sorts all possible inputs def test_sn(sn,n,m): all_inputs = list(product(range(2**n),repeat=m)) fail = 0 count = 0 for input in all_inputs: input = np.array(input) temp = np.copy(input) for s in sn: if s[2]==0: i = s[0] j = s[1] if s[2]==1: i = s[1] j = s[0] if input[i]<input[j]: input[i],input[j] = input[j],input[i] should_be = np.sort(temp)[::-1] if (input == should_be).all(): fail += 0 else: fail += 1 print(f"Testing sorting network {count}/{len(all_inputs)}",end="\r") count+=1 print(" ", end = "\r") if fail == 0: print("Sorting network correct\n") return 1 else: print("Error in sorting network\n") return 0 #Returns all steps of sorting network with corresponding ancilla registers (for testing) def test_sn_anc(sn,n,m): for s in sn: i = s[0] j = s[1] anc = get_anc(n,m,i,j) anc_reg = int((anc-n*m)/(n-1)) print(f"[{i},{j}] anc_reg={anc_reg}") return 0 #Output density matrix of electron register (target) and compute purity, doesnt actually test antisymmetry yet! def test_antisymmetry(result,n,m,L): sv = result.get_statevector() trace_out = list(np.arange(n*m,get_first_coll_ctrl(n,m,L)+m)) #print(f"Tracing out qubits: {trace_out}") rho_e = partial_trace(sv,trace_out) if rho_e.is_valid(): print("Target state is valid density matrix\n") else: print("Target state is not valid density matrix") #print(rho_e) p = purity(rho_e) print(f"Purity of target state = {p}\n") return p ###################MAINPART############################################################################################################ #Parameters #n: number of qubits per electron; N = 2^n orbitals n=3 #m: number of electrons m=4 #input: list of orbitals the electrons are initialized in; needs to be in descending order, without repetitions input = [5,4,3,2] #dir: ordering descending (dir=0) or ascending (dir=1) dir = 0 #plot and save the circuit plot = True #include barriers between comparators in the circuit for visualization debug = False #measure time of functions: {build_circuit, simulate, draw_circuit} measure_time = True #size of the plot plot_scale = 0.2 #simulation method backend = 'statevector_simulator'#'aer_simulator' #number of circuit repetitions in 'simulate' shots = 1 #check valid inputs check_inputs(n,m) #Generate sorting network sn,L = sorting_network_bitonic(m,dir) #Test sorting network test_sn(sn,n,m) #Plot sorting network plot_sorting_network(sn,m) #Build circuit circuit = build_circuit(n,m,input,sn,L,debug) #Simulate result = simulate(circuit,backend,shots) counts = result.get_counts(circuit) print(f"Counts: {counts}\n") #Test if final state is antisymmetric test_antisymmetry(result,n,m,L) output_list = list(counts.keys())[0][::-1] coll_test = output_list[0] if coll_test == '1': print("No collisions detected - continue\n") else: print("Collisions detected - repeat\n") #plot circuit plot_circuit(circuit,plot_scale,f"Plots/Circuit_m{m}_n{n}_debug{debug}",plot)
https://github.com/Bikramaditya0154/Quantum-Simulation-of-the-ground-states-of-Li-and-Li-2-using-Variational-Quantum-EIgensolver
Bikramaditya0154
from qiskit import Aer from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper molecule = Molecule( geometry=[["Li", [0.0, 0.0, 0.0]]], charge=2, multiplicity=2 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(JordanWignerMapper()) from qiskit.providers.aer import StatevectorSimulator from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory quantum_instance = QuantumInstance(backend=Aer.get_backend("aer_simulator_statevector")) vqe_solver = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE( ansatz=tl_circuit, quantum_instance=QuantumInstance(Aer.get_backend("aer_simulator_statevector")), ) from qiskit_nature.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(qubit_converter, vqe_solver) res = calc.solve(es_problem) print(res)
https://github.com/Bikramaditya0154/Quantum-Simulation-of-the-ground-states-of-Li-and-Li-2-using-Variational-Quantum-EIgensolver
Bikramaditya0154
from qiskit import Aer from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper molecule = Molecule( geometry=[["Li", [0.0, 0.0, 0.0]]], charge=1, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(JordanWignerMapper()) from qiskit.providers.aer import StatevectorSimulator from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory quantum_instance = QuantumInstance(backend=Aer.get_backend("aer_simulator_statevector")) vqe_solver = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE( ansatz=tl_circuit, quantum_instance=QuantumInstance(Aer.get_backend("aer_simulator_statevector")), ) from qiskit_nature.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(qubit_converter, vqe_solver) res = calc.solve(es_problem) print(res)
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
hamburgerguy
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>) out of four possible values.""" #import numpy and plot library import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram # define variables, 1) initialize qubits to zero n = 2 grover_circuit = QuantumCircuit(n) #define initialization function def initialize_s(qc, qubits): '''Apply a H-gate to 'qubits' in qc''' for q in qubits: qc.h(q) return qc ### begin grovers circuit ### #2) Put qubits in equal state of superposition grover_circuit = initialize_s(grover_circuit, [0,1]) # 3) Apply oracle reflection to marked instance x_0 = 3, (|11>) grover_circuit.cz(0,1) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") # 4) apply additional reflection (diffusion operator) grover_circuit.h([0,1]) grover_circuit.z([0,1]) grover_circuit.cz(0,1) grover_circuit.h([0,1]) # 5) measure the qubits grover_circuit.measure_all() # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) #highest amplitude should correspond with marked value x_0 (|11>)
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
hamburgerguy
"""The following is python code utilizing the qiskit library that can be run on extant quantum hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding, for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1, results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>). To find the factor, use the equivalence a^r mod 15. From this: (a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15 Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients, gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15, so the result of running shors algorithm to find the prime factors of an integer using quantum hardware are demonstrated. Note, this is not the same as the technical implementation of shor's algorithm described in this section for breaking the discrete log hardness assumption, though the proof of concept remains.""" # Import libraries from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from numpy import pi from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram # Initialize qubit registers qreg_q = QuantumRegister(5, 'q') creg_c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.reset(qreg_q[0]) circuit.reset(qreg_q[1]) circuit.reset(qreg_q[2]) circuit.reset(qreg_q[3]) circuit.reset(qreg_q[4]) # Apply Hadamard transformations to qubit registers circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) # Apply first QFT, modular exponentiation, and another QFT circuit.h(qreg_q[1]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.crx(pi/2, qreg_q[0], qreg_q[1]) circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4]) circuit.h(qreg_q[0]) circuit.rx(pi/2, qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) # Measure the qubit registers 0-2 circuit.measure(qreg_q[2], creg_c[2]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[0], creg_c[0]) # Get least busy quantum hardware backend to run on provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run the circuit on available quantum hardware and plot histogram from qiskit.tools.monitor import job_monitor job = execute(circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) #largest amplitude results correspond with r values used to find the prime factor of N.
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
hamburgerguy
"""Qiskit code for running Simon's algorithm on quantum hardware for 2 qubits and b = '11' """ # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle #set b equal to '11' b = '11' #1) initialize qubits n = 2 simon_circuit_2 = QuantumCircuit(n*2, n) #2) Apply Hadamard gates before querying the oracle simon_circuit_2.h(range(n)) #3) Query oracle simon_circuit_2 += simon_oracle(b) #5) Apply Hadamard gates to the input register simon_circuit_2.h(range(n)) #3) and 6) Measure qubits simon_circuit_2.measure(range(n), range(n)) # Load saved IBMQ accounts and get the least busy backend device IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Execute and monitor the job from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simon_circuit_2, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) # Get results and plot counts device_counts = job.result().get_counts() plot_histogram(device_counts) #additionally, function for calculating dot product of results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) print('b = ' + b) for z in device_counts: print( '{}.{} = {} (mod 2) ({:.1f}%)'.format(b, z, bdotz(b,z), device_counts[z]*100/shots)) #the most significant results are those for which b dot z=0(mod 2). '''b = 11 11.00 = 0 (mod 2) (45.0%) 11.01 = 1 (mod 2) (6.2%) 11.10 = 1 (mod 2) (6.4%) 11.11 = 0 (mod 2) (42.4%)'''
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
hamburgerguy
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>) out of four possible values.""" #import numpy and plot library import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram # define variables, 1) initialize qubits to zero n = 2 grover_circuit = QuantumCircuit(n) #define initialization function def initialize_s(qc, qubits): '''Apply a H-gate to 'qubits' in qc''' for q in qubits: qc.h(q) return qc ### begin grovers circuit ### #2) Put qubits in equal state of superposition grover_circuit = initialize_s(grover_circuit, [0,1]) # 3) Apply oracle reflection to marked instance x_0 = 3, (|11>) grover_circuit.cz(0,1) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") # 4) apply additional reflection (diffusion operator) grover_circuit.h([0,1]) grover_circuit.z([0,1]) grover_circuit.cz(0,1) grover_circuit.h([0,1]) # 5) measure the qubits grover_circuit.measure_all() # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) #highest amplitude should correspond with marked value x_0 (|11>)
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
hamburgerguy
"""The following is python code utilizing the qiskit library that can be run on extant quantum hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding, for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1, results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>). To find the factor, use the equivalence a^r mod 15. From this: (a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15 Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients, gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15, so the result of running shors algorithm to find the prime factors of an integer using quantum hardware are demonstrated. Note, this is not the same as the technical implementation of shor's algorithm described in this section for breaking the discrete log hardness assumption, though the proof of concept remains.""" # Import libraries from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from numpy import pi from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram # Initialize qubit registers qreg_q = QuantumRegister(5, 'q') creg_c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.reset(qreg_q[0]) circuit.reset(qreg_q[1]) circuit.reset(qreg_q[2]) circuit.reset(qreg_q[3]) circuit.reset(qreg_q[4]) # Apply Hadamard transformations to qubit registers circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) # Apply first QFT, modular exponentiation, and another QFT circuit.h(qreg_q[1]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.crx(pi/2, qreg_q[0], qreg_q[1]) circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4]) circuit.h(qreg_q[0]) circuit.rx(pi/2, qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) # Measure the qubit registers 0-2 circuit.measure(qreg_q[2], creg_c[2]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[0], creg_c[0]) # Get least busy quantum hardware backend to run on provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run the circuit on available quantum hardware and plot histogram from qiskit.tools.monitor import job_monitor job = execute(circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) #largest amplitude results correspond with r values used to find the prime factor of N.
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
hamburgerguy
"""Qiskit code for running Simon's algorithm on quantum hardware for 2 qubits and b = '11' """ # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle #set b equal to '11' b = '11' #1) initialize qubits n = 2 simon_circuit_2 = QuantumCircuit(n*2, n) #2) Apply Hadamard gates before querying the oracle simon_circuit_2.h(range(n)) #3) Query oracle simon_circuit_2 += simon_oracle(b) #5) Apply Hadamard gates to the input register simon_circuit_2.h(range(n)) #3) and 6) Measure qubits simon_circuit_2.measure(range(n), range(n)) # Load saved IBMQ accounts and get the least busy backend device IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Execute and monitor the job from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simon_circuit_2, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) # Get results and plot counts device_counts = job.result().get_counts() plot_histogram(device_counts) #additionally, function for calculating dot product of results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) print('b = ' + b) for z in device_counts: print( '{}.{} = {} (mod 2) ({:.1f}%)'.format(b, z, bdotz(b,z), device_counts[z]*100/shots)) #the most significant results are those for which b dot z=0(mod 2). '''b = 11 11.00 = 0 (mod 2) (45.0%) 11.01 = 1 (mod 2) (6.2%) 11.10 = 1 (mod 2) (6.4%) 11.11 = 0 (mod 2) (42.4%)'''
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['instance', 'iteration', 'distance'] length_instances = 40 with open('qaoa_multiple_distance.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) for instance in range(length_instances): job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution() # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) index = -1 for sample in UNIFORM_CONVERGENCE_SAMPLE: mean = sample["mean"] index += 1 distance_p_ground_state = np.max(np.abs(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - sample["probabilities"])) UNIFORM_CONVERGENCE_SAMPLE[index]["distance_pgs"] = distance_p_ground_state iteration = 0 for sample in UNIFORM_CONVERGENCE_SAMPLE: iteration += 1 mean = sample["mean"] distance = sample["distance_pgs"] writer.writerow([instance,iteration, distance])
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['p', 'state', 'probability', 'mean'] length_p = 10 with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) first_p = False for p in range(length_p): p = p+1 if first_p == False: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) mean = UNIFORM_CONVERGENCE_SAMPLE[0]["mean"] print(mean) state = 0 for probability in UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"]: state += 1 writer.writerow([p,state, probability,mean])
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['instance','p','distance', 'mean'] length_p = 3 length_instances = 2 with open('qaoa_multiple_p_distance.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) instance_index = 0 for instance in range(length_instances): instance_index += 1 first_p = False UNIFORM_CONVERGENCE_P = [] UNIFORM_CONVERGENCE_SAMPLE = [] for p in range(length_p): p = p+1 if first_p == False: print("Vuelve a llamar a test_solution") job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) convergence_min = UNIFORM_CONVERGENCE_SAMPLE[0] UNIFORM_CONVERGENCE_P.append({ "mean":convergence_min["mean"], "probabilities": convergence_min["probabilities"] }) cauchy_function_nk = UNIFORM_CONVERGENCE_P[len(UNIFORM_CONVERGENCE_P) - 1] p_index = 0 for p_state in UNIFORM_CONVERGENCE_P: p_index += 1 print(p_index) mean = p_state["mean"] print(p_state) print(mean) distance_p_cauchy_function_nk = np.max(np.abs(cauchy_function_nk["probabilities"] - p_state["probabilities"])) writer.writerow([instance_index, p_index, distance_p_cauchy_function_nk, mean])
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution() plot_histogram(job_2.result().get_counts(), color='midnightblue', title="New Histogram", figsize=(30, 5)) plot_histogram(job_2.result().get_counts(), color='midnightblue', title="New Histogram", figsize=(30, 5)) G labels = nx.get_edge_attributes(G,'weight') labels import json # Array of JSON Objects products = [{"name": "HDD", "brand": "Samsung", "price": "$100"}, {"name": "Monitor", "brand": "Dell", "price": "$120"}, {"name": "Mouse", "brand": "Logitech", "price": "$10"}] # Print the original data print("The original JSON data:\n{0}".format(products)) # Sort the JSON data based on the value of the brand key products.sort(key=lambda x: x["price"]) # Print the sorted JSON data print("The sorted JSON data based on the value of the brand:\n{0}".format(products)) _LAMBDA UNIFORM_CONVERGENCE_SAMPLE import json # Array of JSON Objects # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) # Print the sorted JSON data UNIFORM_CONVERGENCE_SAMPLE np.max(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - UNIFORM_CONVERGENCE_SAMPLE[220]["probabilities"]) # generamos las distancias entre para la convergencia uniforme index = -1 for sample in UNIFORM_CONVERGENCE_SAMPLE: mean = sample["mean"] index += 1 distance_p_ground_state = np.max(np.abs(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - sample["probabilities"])) UNIFORM_CONVERGENCE_SAMPLE[index]["distance_pgs"] = distance_p_ground_state UNIFORM_CONVERGENCE_SAMPLE import csv header = ['iteration', 'state', 'probability', 'mean'] header_q = ['iteration', 'distance'] with open('qaoa_cu.csv', 'w', encoding='UTF8') as f: with open('qaoa_distance.csv', 'w', encoding='UTF8') as q: writer = csv.writer(f) writer_q = csv.writer(q) # write the header writer.writerow(header) writer_q.writerow(header_q) iteration = 0 for sample in UNIFORM_CONVERGENCE_SAMPLE: iteration += 1 mean = sample["mean"] distance = sample["distance_pgs"] state = 0 for probability in sample["probabilities"]: state += 1 # write the data data = [iteration, state, probability, mean] writer.writerow(data) writer_q.writerow([iteration, distance]) #plot_histogram(job_2, color='midnightblue', title=str(mean), figsize=(30, 5)).savefig(str(contador) + "_2.png") #print(sample["mean"]) plot_histogram(job_2, color='midnightblue', title="New Histogram", figsize=(30, 5)).savefig('out.png')
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo import qiskit import numpy as np import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * import json import csv # Gloabal _lambda variable _LAMBDA = 10 _SHOTS = 10000 _UNIFORM_CONVERGENCE_SAMPLE = [] # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def tsp_obj(x, G): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _LAMBDA) cost = 0 # z term for index in range(len(x)): z = (int(x[index]) * 2 ) -1 cost += z_classic_term[index] * z ## zz term for i in range(len(x)): z_1 = (int(x[i]) * 2 ) -1 for j in range(len(x)): z_2 = (int(x[j]) * 2 ) -1 cost += zz_classic_term[i][j] * z_1 * z_1 return cost # Sample expectation value def compute_tsp_energy(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj(meas, G) energy += obj_for_meas*meas_count total_counts += meas_count return energy/total_counts # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, _LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_black_box_objective(G,p): backend = Aer.get_backend('qasm_simulator') def f(theta): beta = theta[:p] gamma = theta[p:] _lambda = _LAMBDA # get global _lambda qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA) counts = execute(qc, backend, seed_simulator=10, shots=_SHOTS).result().get_counts() return compute_tsp_energy(invert_counts(counts),G) return f def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') def f(theta): beta = theta[:p] gamma = theta[p:] #print(beta) _lambda = _LAMBDA # get global _lambda qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA) #print(beta) result = execute(qc, backend, seed_simulator=10, shots=_SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() # expected value #print("prob-dict") #print(state_vector.probabilities_dict()) probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): # get cost from state cost = tsp_obj_2(state, G, _LAMBDA) expected_value += cost*probability #print(probabilities) counts = result.get_counts() #qc.save_statevector() # Tell simulator to save statevector #qobj = assemble(qc) # Create a Qobj from the circuit for the simulator to run #state_vector = sim.run(qobj).result().get_statevector() #state_vector = Statevector(state_vector) #probabilities = state_vector.probabilities() mean = compute_tsp_energy_2(invert_counts(counts),G) global _UNIFORM_CONVERGENCE_SAMPLE _UNIFORM_CONVERGENCE_SAMPLE.append({ "beta" : beta, "gamma" : gamma, "counts" : counts, "mean" : mean, "probabilities" : probabilities, "expected_value" : expected_value }) return mean return f def compute_tsp_min_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 min = 1000000000000000000000 index = 0 min_meas = "" for meas, meas_count in counts.items(): index = index + 1 obj_for_meas = tsp_obj_2(meas, G, _LAMBDA) if obj_for_meas < min: min = obj_for_meas min_meas = meas return index, min, min_meas def compute_tsp_min_energy_1(counts, G): energy = 0 get_counts = 0 total_counts = 0 min = 1000000000000000000000 index = 0 min_meas = "" for meas, meas_count in counts.items(): index = index + 1 obj_for_meas = tsp_obj(meas, G) if obj_for_meas < min: min = obj_for_meas min_meas = meas return index, min, min_meas def test_counts_2(counts, G): mean_energy2 = compute_tsp_energy_2(invert_counts(counts),G) cantidad, min, min_meas = compute_tsp_min_energy_2(invert_counts(counts),G) print("*************************") print("En el algoritmo 2 (Marina) el valor esperado como resultado es " + str(mean_energy2)) print("El valor minimo de todos los evaluados es " + str(min) + " se evaluaron un total de " + str(cantidad)) print("El vector minimo es " + min_meas) def test_counts_1(counts, G): mean_energy1 = compute_tsp_energy(invert_counts(counts),G) cantidad, min, min_meas = compute_tsp_min_energy_1(invert_counts(counts),G) print("*************************") print("En el algoritmo 1 (Pablo) el valor esperado como resultado es " + str(mean_energy1)) print("El valor minimo de todos los evaluados es " + str(min) + " se evaluaron un total de " + str(cantidad)) print("El vector minimo es " + min_meas) def test_solution(grafo=None, p=7): global _UNIFORM_CONVERGENCE_SAMPLE _UNIFORM_CONVERGENCE_SAMPLE = [] if grafo == None: cantidad_ciudades = 2 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) print(mejor_costo) print(mejor_camino) print(G.edges()) print(G.nodes()) else: G = grafo # beta [0,pi], gamma [0, 2pi] # create bounds for beta [0,pi] bounds = [] intial_random = [] for i in range(p): bounds.append((0, np.pi)) intial_random.append(np.random.uniform(0,np.pi)) # create bounds for gamma [0,2*pi] for i in range(p): bounds.append((0, np.pi * 2)) intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) # Pablo Solutions #obj = get_black_box_objective(G,p) #res_sample_1 = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) #print(res_sample_1) # Marina Solutions obj = get_black_box_objective_2(G,p) res_sample_2 = minimize(obj, init_point, method="COBYLA", options={"maxiter":2500,"disp":True}) print(res_sample_2) #theta_1 = res_sample_1.x theta_2 = res_sample_2.x #beta = theta_1[:p] #gamma = theta_1[p:] #_lambda = _LAMBDA # get global _lambda #qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA) #backend = Aer.get_backend('qasm_simulator') #job_1 = execute(qc, backend, shots=_SHOTS) #resutls_1 = job_1.result().get_counts() #test_counts_1(resutls_1, G) beta = theta_2[:p] gamma = theta_2[p:] _lambda = _LAMBDA # get global _lambda qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA) backend = Aer.get_backend('qasm_simulator') job_2 = execute(qc, backend, shots=_SHOTS) resutls_2 = job_2.result().get_counts() test_counts_2(resutls_2, G) #print( _UNIFORM_CONVERGENCE_SAMPLE) return job_2, G, _UNIFORM_CONVERGENCE_SAMPLE def create_multiple_p_mismo_grafo(): header = ['p', 'state', 'probability', 'mean'] length_p = 10 with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) first_p = False UNIFORM_CONVERGENCE_SAMPLE = [] for p in range(length_p): p = p+1 if first_p == False: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) mean = UNIFORM_CONVERGENCE_SAMPLE[0]["mean"] print(mean) state = 0 for probability in UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"]: state += 1 writer.writerow([p,state, probability,mean]) def create_multiple_p_mismo_grafo_multiples_instanncias(): header = ['instance','p','distance', 'mean'] length_p = 4 length_instances = 10 with open('qaoa_multiple_p_distance.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) instance_index = 0 for instance in range(length_instances): instance_index += 1 first_p = False UNIFORM_CONVERGENCE_P = [] UNIFORM_CONVERGENCE_SAMPLE = [] for p in range(length_p): p = p+1 print("p es igual " + str(p)) if first_p == False: print("Vuelve a llamar a test_solution") job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["expected_value"]) convergence_min = UNIFORM_CONVERGENCE_SAMPLE[0] UNIFORM_CONVERGENCE_P.append({ "mean":convergence_min["expected_value"], "probabilities": convergence_min["probabilities"] }) print("expected value min con p =" + str(p) + " : " + str(convergence_min["expected_value"])) cauchy_function_nk = UNIFORM_CONVERGENCE_P[len(UNIFORM_CONVERGENCE_P) - 1] p_index = 0 for p_state in UNIFORM_CONVERGENCE_P: p_index += 1 print(p_index) mean = p_state["mean"] #print(p_state) print("expected value min") print(mean) distance_p_cauchy_function_nk = np.max(np.abs(cauchy_function_nk["probabilities"] - p_state["probabilities"])) writer.writerow([instance_index, p_index, distance_p_cauchy_function_nk, mean]) if __name__ == '__main__': #create_multiple_p_mismo_grafo() create_multiple_p_mismo_grafo_multiples_instanncias() def defult_init(): cantidad_ciudades = 2 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) print(mejor_costo) print(mejor_camino) print(G.edges()) print(G.nodes()) print("labels") labels = nx.get_edge_attributes(G,'weight') #z_term, zz_term = get_classical_simplified_hamiltonian(G, 1) #print("z term") #print(z_term) #print("*****************") #print("zz term") #print(zz_term) #print(get_QAOA_circuit(G, beta = [2,3], gamma = [4,5], _lambda = 1)) p = 5 obj = get_black_box_objective(G,p) init_point = np.array([0.8,2.2,0.83,2.15,0.37,2.4,6.1,2.2,3.8,6.1]) #res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) #print(res_sample) # Marina Solutions obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) theta_2 = [0.72685401, 2.15678239, 0.86389827, 2.19403121, 0.26916675, 2.19832144, 7.06651453, 3.20333137, 3.81301611, 6.08893568] theta_1 = [0.90644898, 2.15994212, 1.8609325 , 2.14042604, 1.49126214, 2.4127999, 6.10529434, 2.18238732, 3.84056674, 6.07097744] beta = theta_1[:p] gamma = theta_1[p:] _lambda = _LAMBDA # get global _lambda qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend) print(plot_histogram(job.result().get_counts(), color='midnightblue', title="New Histogram")) beta = theta_2[:p] gamma = theta_2[p:] _lambda = _LAMBDA # get global _lambda qc = get_QAOA_circuit(G, beta, gamma, _LAMBDA) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend) print(plot_histogram(job.result().get_counts(), color='midnightblue', title="New Histogram"))
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
import json import csv import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SHOTS = 10000 UNIFORM_CONVERGENCE_SAMPLE = [] # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def tsp_obj(x, G): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, LAMBDA) cost = 0 # z term for index in range(len(x)): z = (int(x[index]) * 2 ) -1 cost += z_classic_term[index] * z ## zz term for i in range(len(x)): z_1 = (int(x[i]) * 2 ) -1 for j in range(len(x)): z_2 = (int(x[j]) * 2 ) -1 cost += zz_classic_term[i][j] * z_1 * z_1 return cost # Sample expectation value def compute_tsp_energy(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj(meas, G) energy += obj_for_meas*meas_count total_counts += meas_count return energy/total_counts # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_black_box_objective(G,p): backend = Aer.get_backend('qasm_simulator') def f(theta): beta = theta[:p] gamma = theta[p:] qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) counts = execute(qc, backend, seed_simulator=10, shots=SHOTS).result().get_counts() return compute_tsp_energy(invert_counts(counts),G) return f def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') def f(theta): beta = theta[:p] gamma = theta[p:] qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=10, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) global UNIFORM_CONVERGENCE_SAMPLE UNIFORM_CONVERGENCE_SAMPLE.append({ "beta" : beta, "gamma" : gamma, "counts" : counts, "mean" : mean, "probabilities" : probabilities, "expected_value" : expected_value }) return mean return f def compute_tsp_min_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 min = 1000000000000000000000 index = 0 min_meas = "" for meas, meas_count in counts.items(): index = index + 1 obj_for_meas = tsp_obj_2(meas, G, LAMBDA) if obj_for_meas < min: min = obj_for_meas min_meas = meas return index, min, min_meas def compute_tsp_min_energy_1(counts, G): energy = 0 get_counts = 0 total_counts = 0 min = 1000000000000000000000 index = 0 min_meas = "" for meas, meas_count in counts.items(): index = index + 1 obj_for_meas = tsp_obj(meas, G) if obj_for_meas < min: min = obj_for_meas min_meas = meas return index, min, min_meas def test_counts_2(counts, G): mean_energy2 = compute_tsp_energy_2(invert_counts(counts),G) cantidad, min, min_meas = compute_tsp_min_energy_2(invert_counts(counts),G) print("*************************") print("En el algoritmo 2 (Marina) el valor esperado como resultado es " + str(mean_energy2)) print("El valor minimo de todos los evaluados es " + str(min) + " se evaluaron un total de " + str(cantidad)) print("El vector minimo es " + min_meas) def test_counts_1(counts, G): mean_energy1 = compute_tsp_energy(invert_counts(counts),G) cantidad, min, min_meas = compute_tsp_min_energy_1(invert_counts(counts),G) print("*************************") print("En el algoritmo 1 (Pablo) el valor esperado como resultado es " + str(mean_energy1)) print("El valor minimo de todos los evaluados es " + str(min) + " se evaluaron un total de " + str(cantidad)) print("El vector minimo es " + min_meas) def test_solution(grafo=None, p=7): global UNIFORM_CONVERGENCE_SAMPLE UNIFORM_CONVERGENCE_SAMPLE = [] if grafo == None: cantidad_ciudades = 2 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) print(mejor_costo) print(mejor_camino) print(G.edges()) print(G.nodes()) else: G = grafo bounds = [] intial_random = [] for i in range(p): bounds.append((0, np.pi)) intial_random.append(np.random.uniform(0,np.pi)) for i in range(p): bounds.append((0, np.pi * 2)) intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) # Marina Solutions obj = get_black_box_objective_2(G,p) res_sample_2 = minimize(obj, init_point, method="COBYLA", options={"maxiter":2500,"disp":True}) theta_2 = res_sample_2.x beta = theta_2[:p] gamma = theta_2[p:] _lambda = LAMBDA qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) backend = Aer.get_backend('qasm_simulator') job_2 = execute(qc, backend, shots = SHOTS) resutls_2 = job_2.result().get_counts() test_counts_2(resutls_2, G) return job_2, G, UNIFORM_CONVERGENCE_SAMPLE def create_multiple_p_mismo_grafo(): header = ['p', 'state', 'probability', 'mean'] length_p = 10 with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) writer.writerow(header) first_p = False uniform_convergence_sample = [] for p in range(length_p): p = p+1 if first_p == False: job_2, G, uniform_convergence_sample = test_solution(p=p) first_p = True else: job_2, G, uniform_convergence_sample = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key uniform_convergence_sample.sort(key=lambda x: x["mean"]) mean = uniform_convergence_sample[0]["mean"] print(mean) state = 0 for probability in uniform_convergence_sample[0]["probabilities"]: state += 1 writer.writerow([p,state, probability,mean]) def create_multiple_p_mismo_grafo_multiples_instanncias(): header = ['instance','p','distance', 'mean'] length_p = 4 length_instances = 10 with open('qaoa_multiple_p_distance.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) writer.writerow(header) instance_index = 0 for instance in range(length_instances): instance_index += 1 first_p = False UNIFORM_CONVERGENCE_P = [] uniform_convergence_sample = [] for p in range(length_p): p = p+1 print("p es igual " + str(p)) if first_p == False: print("Vuelve a llamar a test_solution") job_2, G, uniform_convergence_sample = test_solution(p=p) first_p = True else: job_2, G, uniform_convergence_sample = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key uniform_convergence_sample.sort(key=lambda x: x["expected_value"]) convergence_min = uniform_convergence_sample[0] UNIFORM_CONVERGENCE_P.append({ "mean":convergence_min["expected_value"], "probabilities": convergence_min["probabilities"] }) cauchy_function_nk = UNIFORM_CONVERGENCE_P[len(UNIFORM_CONVERGENCE_P) - 1] p_index = 0 for p_state in UNIFORM_CONVERGENCE_P: p_index += 1 print(p_index) mean = p_state["mean"] distance_p_cauchy_function_nk = np.max(np.abs(cauchy_function_nk["probabilities"] - p_state["probabilities"])) writer.writerow([instance_index, p_index, distance_p_cauchy_function_nk, mean]) if __name__ == '__main__': create_multiple_p_mismo_grafo_multiples_instanncias() def defult_init(): cantidad_ciudades = 2 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) print(mejor_costo) print(mejor_camino) print(G.edges()) print(G.nodes()) print("labels") labels = nx.get_edge_attributes(G,'weight') p = 5 obj = get_black_box_objective(G,p) init_point = np.array([0.8,2.2,0.83,2.15,0.37,2.4,6.1,2.2,3.8,6.1]) # Marina Solutions obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) theta_2 = [0.72685401, 2.15678239, 0.86389827, 2.19403121, 0.26916675, 2.19832144, 7.06651453, 3.20333137, 3.81301611, 6.08893568] theta_1 = [0.90644898, 2.15994212, 1.8609325 , 2.14042604, 1.49126214, 2.4127999, 6.10529434, 2.18238732, 3.84056674, 6.07097744] beta = theta_1[:p] gamma = theta_1[p:] qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend) beta = theta_2[:p] gamma = theta_2[p:] qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend)
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
import qiskit import numpy as np import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from tsp_qaoa import marina_solution G=nx.Graph() i=1 G.add_node(i,pos=(i,i)) G.add_node(2,pos=(2,2)) G.add_node(3,pos=(1,0)) G.add_edge(1,2,weight=20.5) G.add_edge(1,3,weight=9.8) pos=nx.get_node_attributes(G,'pos') nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) def append_zz_term(qc,q1,q2,gamma): qc.cx(q1,q2) qc.rz(2*gamma,q2) qc.cx(q1,q2) def get_cost_circuit(G,gamma): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for i,j in G.edges(): append_zz_term(qc,i,j,gamma) return qc #print(get_cost_circuit(G,0.5)) def append_x_term(qc,q1,beta): qc.rx(2*beta,q1) def get_mixer_operator(G,beta): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for n in G.nodes(): append_x_term(qc,n,beta) return qc #print(get_mixer_operator(G,0.5)) def get_QAOA_circuit(G,beta,gamma): assert(len(beta)==len(gamma)) N=G.number_of_nodes() qc=QuantumCircuit(N,N) qc.h(range(N)) p=len(beta) #aplicamos las p rotaciones for i in range(p): qc=qc.compose(get_cost_circuit(G,gamma[i])) qc=qc.compose(get_mixer_operator(G,beta[i])) qc.barrier(range(N)) qc.measure(range(N),range(N)) return qc print(get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6])) def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} qc=get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6]) backend=Aer.get_backend('qasm_simulator') job=execute(qc,backend) result=job.result() print(invert_counts(result.get_counts())) def maxcut_obj(x,G): cut=0 for i,j in G.edges(): if x[i]!=x[j]: cut = cut-1 return cut print(maxcut_obj("00011",G)) def compute_maxcut_energy(counts,G): energy=0 get_counts=0 total_counts=0 for meas, meas_count in counts.items(): obj_for_meas=maxcut_obj(meas,G) energy+=obj_for_meas*meas_count total_counts+=meas_count return energy/total_counts def get_black_box_objective(G,p): backend=Aer.get_backend('qasm_simulator') def f(theta): beta=theta[:p] gamma=theta[p:] qc=get_QAOA_circuit(G,beta,gamma) counts=execute(qc,backend,seed_simulator=10).result().get_counts() return compute_maxcut_energy(invert_counts(counts),G) return f p=5 obj=get_black_box_objective(G,p) init_point=np.array([0.8,2.2,0.83,2.15,0.37,2.4,6.1,2.2,3.8,6.1])#([2,2,1,1,1,1,1,1,1,1]) res_sample=minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) res_sample from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo cantidad_ciudades = 4 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) pos=nx.spring_layout(G) nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) G pos=nx.get_node_attributes(G,'weight') pos labels = nx.get_edge_attributes(G,'weight') labels def funcion_costo(multiplicador_lagrange, cantidad_ciudades, pesos, conexiones ): N = G.number_of_nodes() N_square = N^2 # restriccion 1 for i in range(cantidad_ciudades): cur = sI(N_square) for j in range(num_cities): cur -= D(i, j) ret += cur**2 # retorna el indice de qubit por conversion al problema def quibit_indice(i, l, N): return i * N + l from qiskit.quantum_info.operators import Operator, Pauli # Create an operator XX = Operator(Pauli(label='XX')) # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(XX, [0, 1]) circ.measure([0,1], [0,1]) circ.draw('mpl') # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(a, [0]) #circ.measure([0,1], [0,1]) circ.draw('mpl') a = I - ( 0.5*(I+ Z))**2 a = Operator(a) a.is_unitary() print(I @ Z)
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) # genera las distancias index = -1 for sample in UNIFORM_CONVERGENCE_SAMPLE: mean = sample["mean"] index += 1 distance_p_ground_state = np.max(np.abs(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - sample["probabilities"])) UNIFORM_CONVERGENCE_SAMPLE[index]["distance_pgs"] = distance_p_ground_state header = ['instance', 'iteration', 'distance'] length_instances = 2 with open('qaoa_multiple_distance.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) for i in range(length_instances): job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution() iteration = 0 for sample in UNIFORM_CONVERGENCE_SAMPLE: iteration += 1 mean = sample["mean"] distance = sample["distance_pgs"] state = 0 for probability in sample["probabilities"]: state += 1 # write the data data = [iteration, state, probability, mean] writer.writerow(data) writer_q.writerow([iteration, distance])
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['p', 'state', 'probability', 'mean'] length_p = 10 with open('qaoa_multiple_p.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) first_p = False for p in range(length_p): p = p+1 if first_p == False: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) mean = UNIFORM_CONVERGENCE_SAMPLE[0]["mean"] print(mean) state = 0 for probability in UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"]: state += 1 writer.writerow([p,state, probability,mean])
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np import json import csv # Array of JSON Objects header = ['instance','p','distance', 'mean'] length_p = 3 length_instances = 2 with open('qaoa_multiple_p_distance.csv', 'w', encoding='UTF8') as f: writer = csv.writer(f) # write the header writer.writerow(header) instance_index = 0 for instance in range(length_instances): instance_index += 1 first_p = False UNIFORM_CONVERGENCE_P = [] UNIFORM_CONVERGENCE_SAMPLE = [] for p in range(length_p): p = p+1 if first_p == False: print("Vuelve a llamar a test_solution") job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(p=p) first_p = True else: job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution(grafo=G, p=p) # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) convergence_min = UNIFORM_CONVERGENCE_SAMPLE[0] UNIFORM_CONVERGENCE_P.append({ "mean":convergence_min["mean"], "probabilities": convergence_min["probabilities"] }) cauchy_function_nk = UNIFORM_CONVERGENCE_P[len(UNIFORM_CONVERGENCE_P) - 1] p_index = 0 for p_state in UNIFORM_CONVERGENCE_P: p_index += 1 print(p_index) mean = p_state["mean"] print(p_state) print(mean) distance_p_cauchy_function_nk = np.max(np.abs(cauchy_function_nk["probabilities"] - p_state["probabilities"])) writer.writerow([instance_index, p_index, distance_p_cauchy_function_nk, mean])
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
from tsp_qaoa import test_solution from qiskit.visualization import plot_histogram import networkx as nx import numpy as np job_2, G, UNIFORM_CONVERGENCE_SAMPLE = test_solution() plot_histogram(job_2.result().get_counts(), color='midnightblue', title="New Histogram", figsize=(30, 5)) plot_histogram(job_2.result().get_counts(), color='midnightblue', title="New Histogram", figsize=(30, 5)) G labels = nx.get_edge_attributes(G,'weight') labels import json # Array of JSON Objects products = [{"name": "HDD", "brand": "Samsung", "price": "$100"}, {"name": "Monitor", "brand": "Dell", "price": "$120"}, {"name": "Mouse", "brand": "Logitech", "price": "$10"}] # Print the original data print("The original JSON data:\n{0}".format(products)) # Sort the JSON data based on the value of the brand key products.sort(key=lambda x: x["price"]) # Print the sorted JSON data print("The sorted JSON data based on the value of the brand:\n{0}".format(products)) _LAMBDA UNIFORM_CONVERGENCE_SAMPLE import json # Array of JSON Objects # Sort the JSON data based on the value of the brand key UNIFORM_CONVERGENCE_SAMPLE.sort(key=lambda x: x["mean"]) # Print the sorted JSON data UNIFORM_CONVERGENCE_SAMPLE np.max(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - UNIFORM_CONVERGENCE_SAMPLE[220]["probabilities"]) # generamos las distancias entre para la convergencia uniforme index = -1 for sample in UNIFORM_CONVERGENCE_SAMPLE: mean = sample["mean"] index += 1 distance_p_ground_state = np.max(np.abs(UNIFORM_CONVERGENCE_SAMPLE[0]["probabilities"] - sample["probabilities"])) UNIFORM_CONVERGENCE_SAMPLE[index]["distance_pgs"] = distance_p_ground_state UNIFORM_CONVERGENCE_SAMPLE import csv header = ['iteration', 'state', 'probability', 'mean'] header_q = ['iteration', 'distance'] with open('qaoa_cu.csv', 'w', encoding='UTF8') as f: with open('qaoa_distance.csv', 'w', encoding='UTF8') as q: writer = csv.writer(f) writer_q = csv.writer(q) # write the header writer.writerow(header) writer_q.writerow(header_q) iteration = 0 for sample in UNIFORM_CONVERGENCE_SAMPLE: iteration += 1 mean = sample["mean"] distance = sample["distance_pgs"] state = 0 for probability in sample["probabilities"]: state += 1 # write the data data = [iteration, state, probability, mean] writer.writerow(data) writer_q.writerow([iteration, distance]) #plot_histogram(job_2, color='midnightblue', title=str(mean), figsize=(30, 5)).savefig(str(contador) + "_2.png") #print(sample["mean"]) plot_histogram(job_2, color='midnightblue', title="New Histogram", figsize=(30, 5)).savefig('out.png')
https://github.com/PabloMartinezAngerosa/QAOA-uniform-convergence
PabloMartinezAngerosa
import qiskit import numpy as np import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from tsp_qaoa import marina_solution G=nx.Graph() i=1 G.add_node(i,pos=(i,i)) G.add_node(2,pos=(2,2)) G.add_node(3,pos=(1,0)) G.add_edge(1,2,weight=20.5) G.add_edge(1,3,weight=9.8) pos=nx.get_node_attributes(G,'pos') nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) def append_zz_term(qc,q1,q2,gamma): qc.cx(q1,q2) qc.rz(2*gamma,q2) qc.cx(q1,q2) def get_cost_circuit(G,gamma): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for i,j in G.edges(): append_zz_term(qc,i,j,gamma) return qc #print(get_cost_circuit(G,0.5)) def append_x_term(qc,q1,beta): qc.rx(2*beta,q1) def get_mixer_operator(G,beta): N=G.number_of_nodes() qc=QuantumCircuit(N,N) for n in G.nodes(): append_x_term(qc,n,beta) return qc #print(get_mixer_operator(G,0.5)) def get_QAOA_circuit(G,beta,gamma): assert(len(beta)==len(gamma)) N=G.number_of_nodes() qc=QuantumCircuit(N,N) qc.h(range(N)) p=len(beta) #aplicamos las p rotaciones for i in range(p): qc=qc.compose(get_cost_circuit(G,gamma[i])) qc=qc.compose(get_mixer_operator(G,beta[i])) qc.barrier(range(N)) qc.measure(range(N),range(N)) return qc print(get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6])) def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} qc=get_QAOA_circuit(G,[0.5,0,6],[0.5,0,6]) backend=Aer.get_backend('qasm_simulator') job=execute(qc,backend) result=job.result() print(invert_counts(result.get_counts())) def maxcut_obj(x,G): cut=0 for i,j in G.edges(): if x[i]!=x[j]: cut = cut-1 return cut print(maxcut_obj("00011",G)) def compute_maxcut_energy(counts,G): energy=0 get_counts=0 total_counts=0 for meas, meas_count in counts.items(): obj_for_meas=maxcut_obj(meas,G) energy+=obj_for_meas*meas_count total_counts+=meas_count return energy/total_counts def get_black_box_objective(G,p): backend=Aer.get_backend('qasm_simulator') def f(theta): beta=theta[:p] gamma=theta[p:] qc=get_QAOA_circuit(G,beta,gamma) counts=execute(qc,backend,seed_simulator=10).result().get_counts() return compute_maxcut_energy(invert_counts(counts),G) return f p=5 obj=get_black_box_objective(G,p) init_point=np.array([0.8,2.2,0.83,2.15,0.37,2.4,6.1,2.2,3.8,6.1])#([2,2,1,1,1,1,1,1,1,1]) res_sample=minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) res_sample from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo cantidad_ciudades = 4 pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) pos=nx.spring_layout(G) nx.draw(G,pos) labels = nx.get_edge_attributes(G,'weight') nx.draw_networkx_edge_labels(G,pos,edge_labels=labels) G pos=nx.get_node_attributes(G,'weight') pos labels = nx.get_edge_attributes(G,'weight') labels def funcion_costo(multiplicador_lagrange, cantidad_ciudades, pesos, conexiones ): N = G.number_of_nodes() N_square = N^2 # restriccion 1 for i in range(cantidad_ciudades): cur = sI(N_square) for j in range(num_cities): cur -= D(i, j) ret += cur**2 # retorna el indice de qubit por conversion al problema def quibit_indice(i, l, N): return i * N + l from qiskit.quantum_info.operators import Operator, Pauli # Create an operator XX = Operator(Pauli(label='XX')) # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(XX, [0, 1]) circ.measure([0,1], [0,1]) circ.draw('mpl') # Add to a circuit circ = QuantumCircuit(2, 2) circ.append(a, [0]) #circ.measure([0,1], [0,1]) circ.draw('mpl') a = I - ( 0.5*(I+ Z))**2 a = Operator(a) a.is_unitary() print(I @ Z)
https://github.com/jaykomarraju/Quantum-Optimization-for-Solar-Farm
jaykomarraju
import numpy as np import networkx as nx from qiskit import Aer from qiskit.algorithms import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer num_time_slots = 24 # Define the QUBO problem qubo = QuadraticProgram() # Add binary variables for charging (c) and discharging (d) states for t in range(num_time_slots): qubo.binary_var(f'c_{t}') qubo.binary_var(f'd_{t}') # Define the objective function # (In practice, you need to calculate Jij and hi based on the solar farm data) Jij = np.random.rand(num_time_slots, num_time_slots) * 0.5 hi_c = -1 + np.random.rand(num_time_slots) hi_d = 1 - np.random.rand(num_time_slots) # Set linear and quadratic terms of the objective function linear_terms = {} quadratic_terms = {} for t in range(num_time_slots): linear_terms[f'c_{t}'] = hi_c[t] linear_terms[f'd_{t}'] = hi_d[t] for s in range(num_time_slots): if t != s: quadratic_terms[(f'c_{t}', f'c_{s}')] = Jij[t, s] quadratic_terms[(f'd_{t}', f'd_{s}')] = Jij[t, s] qubo.minimize(linear=linear_terms, quadratic=quadratic_terms) # Set up the quantum instance backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=42, seed_transpiler=42, shots=10000) # Set up the QAOA algorithm and optimizer optimizer = COBYLA(maxiter=500) qaoa = QAOA(optimizer=optimizer, reps=5, quantum_instance=quantum_instance) # Set up the minimum eigen optimizer min_eig_optimizer = MinimumEigenOptimizer(qaoa) # Solve the problem result = min_eig_optimizer.solve(qubo) print("QAOA result:", result) # Solve the problem using a classical solver (NumPyMinimumEigensolver) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qubo) print("Classical result:", exact_result)
https://github.com/jaykomarraju/Quantum-Optimization-for-Solar-Farm
jaykomarraju
import numpy as np import networkx as nx from qiskit import Aer from qiskit.algorithms import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer num_time_slots = 24 # Define the QUBO problem qubo = QuadraticProgram() # Add binary variables for charging (c) and discharging (d) states for t in range(num_time_slots): qubo.binary_var(f'c_{t}') qubo.binary_var(f'd_{t}') # Define the objective function # (In practice, you need to calculate Jij and hi based on the solar farm data) Jij = np.random.rand(num_time_slots, num_time_slots) * 0.5 hi_c = -1 + np.random.rand(num_time_slots) hi_d = 1 - np.random.rand(num_time_slots) # Set linear and quadratic terms of the objective function linear_terms = {} quadratic_terms = {} for t in range(num_time_slots): linear_terms[f'c_{t}'] = hi_c[t] linear_terms[f'd_{t}'] = hi_d[t] for s in range(num_time_slots): if t != s: quadratic_terms[(f'c_{t}', f'c_{s}')] = Jij[t, s] quadratic_terms[(f'd_{t}', f'd_{s}')] = Jij[t, s] qubo.minimize(linear=linear_terms, quadratic=quadratic_terms) # Set up the quantum instance backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=42, seed_transpiler=42, shots=10000) # Set up the QAOA algorithm and optimizer optimizer = COBYLA(maxiter=500) qaoa = QAOA(optimizer=optimizer, reps=5, quantum_instance=quantum_instance) # Set up the minimum eigen optimizer min_eig_optimizer = MinimumEigenOptimizer(qaoa) # Solve the problem result = min_eig_optimizer.solve(qubo) print("QAOA result:", result) # Solve the problem using a classical solver (NumPyMinimumEigensolver) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qubo) print("Classical result:", exact_result)
https://github.com/ACDuriez/Ising-VQE
ACDuriez
import numpy as np import networkx as nx import matplotlib.pyplot as plt from tqdm import tqdm from scipy.optimize import minimize from dataclasses import dataclass from qiskit.providers.fake_provider import FakeManila,FakeQuito,FakeLima,FakeKolkata,FakeNairobi from qiskit.transpiler import CouplingMap from qiskit.circuit import QuantumCircuit,ParameterVector,Parameter from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp #from qiskit.opflow import PauliSumOp from qiskit.primitives import Estimator,Sampler,BackendEstimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SLSQP,COBYLA,L_BFGS_B,QNSPSA,SPSA from qiskit_aer.noise import NoiseModel from qiskit_ibm_runtime import Session,Options,QiskitRuntimeService from qiskit_ibm_runtime import Estimator as IBM_Estimator from qiskit_ibm_runtime import Sampler as IBM_Sampler from qiskit_aer.primitives import Estimator as AerEstimator J = 1 h = 0.5 n_qubits = 4 def get_line_graph(n_qubits): """This function creates a linear lattice with open boundary conditions for a given number of qubits""" graph_line = nx.Graph() graph_line.add_nodes_from(range(n_qubits)) edge_list = [] for i in graph_line.nodes: if i < n_qubits-1: edge_list.append((i,i+1)) # Generate graph from the list of edges graph_line.add_edges_from(edge_list) return graph_line graph = get_line_graph(n_qubits) nx.draw_networkx(graph) #plotting the graph def get_h_op(graph,J=1.,hx=0.5,hz=0.,ap=0.): """Creates a general Ising hamiltonian for given values of the coupling, transverse field, longitudinal field and antiparallel field Args: graph: networkx graph of the lattice J: uniform coupling between first neighbors hx: transverse field parameter hz: longitudinal field parameter ap: antiparallel field at the boundaries""" num_qubits = len(graph.nodes()) sparse_list = [] # Uniform Z and X fields for qubit in graph.nodes(): # X field coeff = ('X',[qubit],-1*hx) sparse_list.append(coeff) # Z field coeff = ('Z',[qubit],-1*hz) sparse_list.append(coeff) # Anti-paralel field at the borders coeff = ('Z',[0],ap) #this is the positive field (order reversed) sparse_list.append(coeff) coeff = ('Z',[num_qubits-1],-1*ap) sparse_list.append(coeff) #Interaction field (ZZ) for i,j in graph.edges(): coeff = ('ZZ',[i,j],-1*J) sparse_list.append(coeff) hamiltonian = SparsePauliOp.from_sparse_list(sparse_list,num_qubits=num_qubits).simplify() return hamiltonian def get_kk_op(graph): """Creates the number of kinks operator""" sparse_list = [] for i,j in graph.edges(): coeff = ('II',[i,j],0.5) sparse_list.append(coeff) coeff = ('ZZ',[i,j],-0.5) sparse_list.append(coeff) kk_op = SparsePauliOp.from_sparse_list(sparse_list,num_qubits=len(graph.nodes)) return kk_op # We show the Hamiltonian with the crittical boundary field as well as # the number of kinks print(get_h_op(graph,J,h,ap=np.sqrt(1-h))) print(get_kk_op(graph)) exact_steps = 70 g_i = 0. g_f = 1.6 exact_g_values = np.linspace(g_i,g_f,exact_steps) def get_numpy_results(graph,J,h,g_values): """Returns the exact values of the energy and number of kinks for a given lattice, coupling, transverse field and values of the boundary field""" n_qubits = len(graph.nodes()) numpy_solver = NumPyMinimumEigensolver() E_values = [] kk_values = [] kk_op = get_kk_op(graph) #getting the (g-independent) number of kinks operator for g in g_values: h_op = get_h_op(graph,J,h,ap=g) #getting the hamiltonian operator for each g value result = numpy_solver.compute_minimum_eigenvalue(operator=h_op,aux_operators=[kk_op]) E_values.append(result.eigenvalue) kk_values.append(np.real(result.aux_operators_evaluated[0][0])) return E_values,kk_values exact_E,exact_kk = get_numpy_results(graph,J,h,exact_g_values) # getting the exact energy and number of kinks #Plotting f,ax = plt.subplots() plt.plot(exact_g_values,exact_E) plt.xlabel('boundary field') plt.ylabel('groundstate energy') inset_ax = f.add_axes([0.25, 0.3, 0.27, 0.27])# [left, bottom, width, height] inset_ax.plot(exact_g_values,exact_kk) inset_ax.set_ylabel('$<N_k>$') inset_ax.set_xlabel('boundary field') inset_ax.axvline(x=np.sqrt(1-h), color='red', linestyle='dashed') #indicating the critical boundary field plt.show() #Initialize runtime service = QiskitRuntimeService( channel='ibm_quantum', instance='ibm-q/open/main', token='your_token' ) backend = service.backend("ibmq_qasm_simulator") shots = 2**14 # shots for noisy simulations def get_ansatz_hva(graph, theta_list): """Creates the hamiltonian variaitonal ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 3*n_layers, and must have a form (coupling_i,transverse_i,boundary_i) Args: graph: lattice graph theta_list: list of parameters """ n_qubits = len(graph.nodes()) n_layers = len(theta_list)//3 qc = QuantumCircuit(n_qubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] # initial_state qc.h(range(n_qubits)) for layer_index in range(n_layers): # Coupling term for pair in even_edges: qc.rzz(2 * theta_list[3*layer_index],pair[0],pair[1]) for pair in odd_edges: qc.rzz(2 * theta_list[3*layer_index],pair[0],pair[1]) # boundary field term qc.rz(2 *theta_list[3*layer_index+2],0) qc.rz(-2 * theta_list[3*layer_index+2], n_qubits-1) # transverse field term qc.rx(2 * theta_list[3*layer_index+1], range(n_qubits)) return qc layers_hva = 4 theta_list_hva = ParameterVector('θ',3*layers_hva) ansatz_hva = get_ansatz_hva(graph,theta_list_hva) ansatz_hva.draw('mpl',style='iqx') def get_ansatz_hea(graph,theta_list): """Creates the hardware efficient ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 2*n_qubits_n_layers Args: graph: lattice graph theta_list: list of parameters """ nqubits = len(graph.nodes()) n_layers = len(theta_list)//(2*nqubits) assert len(theta_list)==2*n_qubits*n_layers, "The list of parameters does not have the correct size" qc = QuantumCircuit(nqubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] reversed_edges = [edge for edge in graph.edges()][::-1] for layer_index in range(n_layers): for qubit in range(nqubits): qc.ry(theta_list[2*(nqubits)*layer_index+qubit], qubit) # for pair in reversed_edges: # qc.cnot(pair[0],pair[1]) for pair in even_edges: qc.cnot(pair[0],pair[1]) for pair in odd_edges: qc.cnot(pair[0],pair[1]) for qubit in range(nqubits): qc.ry(theta_list[nqubits+2*(nqubits)*layer_index+qubit], qubit) return qc def get_ansatz_hea_ZNE(graph,theta_list): """Creates the folded version of hardware efficient ansatz for a given lattice graph and list of parameters. The parameters list must have a lenght of 2*n_qubits_n_layers. Used in the ZNE error mitigation protocol Args: graph: lattice graph theta_list: list of parameters """ nqubits = len(graph.nodes()) n_layers = len(theta_list)//(2*nqubits) assert len(theta_list)==2*n_qubits*n_layers, "The list of parameters does not have the correct size" qc = QuantumCircuit(nqubits) even_edges = [edge for edge in graph.edges() if edge[0]%2==0] odd_edges = [edge for edge in graph.edges() if edge[0]%2!=0] reversed_edges = [edge for edge in graph.edges()][::-1] for layer_index in range(n_layers): for qubit in range(nqubits): qc.ry(theta_list[2*(nqubits)*layer_index+qubit], qubit) # for pair in reversed_edges: # qc.cnot(pair[0],pair[1]) #folding even edges for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in even_edges: qc.cnot(pair[0],pair[1]) qc.barrier() #folding odd edges for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for pair in odd_edges: qc.cnot(pair[0],pair[1]) qc.barrier() for qubit in range(nqubits): qc.ry(theta_list[nqubits+2*(nqubits)*layer_index+qubit], qubit) return qc # Here we define and show the circuit for the HEA layers_hea = 1 theta_list = ParameterVector('t',2*n_qubits*layers_hea) # The list of parameters must ansatz_hea = get_ansatz_hea(graph,theta_list) ansatz_hea.draw('mpl', style="iqx") # Here is the folded version of the HEA ansatz for the ZNE ansatz_hea = get_ansatz_hea_ZNE(graph,theta_list) ansatz_hea.draw('mpl', style="iqx") def get_estimator(session, server='qasm', shots=2**14, device=FakeKolkata(), options_rtm=Options(), seed=170): """Defines an estimator. Set 'qasm' for noiseless, 'noisy' for backend estimator and 'rtm' for the runtime estimator""" if server =='qasm': estimator = Estimator(options={'shots':shots,'seed':seed}) elif server == 'noisy': estimator = BackendEstimator(device,options={'shots':shots,'seed':seed}) elif server == 'rtm': estimator = IBM_Estimator(session=session,options=options_rtm) return estimator def get_extrapolation(value_k1,value_k2,extrap='lin'): """Returns the exponential extrapolation given the values for k=1 and k=2 noise factors""" k_values = [1.,2.] if extrap =='lin': y_values = [value_k1,value_k2] # Fit a linear regression model (polynomial of degree 1) coefficients = np.polyfit(k_values, y_values, 1) # The coefficients represent the slope (m) and y-intercept (b) of the line slope, intercept = coefficients extrapolation = intercept if extrap == 'exp': y_values = [np.abs(value_k1/value_k2),1.] ln_y = np.log(y_values) # Fit a linear regression model (polynomial of degree 1) coefficients_exp = np.polyfit(k_values, ln_y, 1) # The coefficients represent the slope (m) and y-intercept (b) of the line slope_exp, intercept_exp = coefficients_exp extrapolation = np.exp(intercept_exp)*value_k2 return extrapolation def vqe_opt_scipy(graph, service, backend, g=0.7071067811865476, h=0.5, ansatz_str='hea', layers=1, optimizer='SLSQP', maxiter=50, ftol=0., reps=1, zne=False, extrap='exp', shots=None, server='qasm', device=FakeNairobi(), options=Options()): """Runs the vqe for the Ising model with boundary fields for a single value of the boundary field, using the scipy optimization function. It gives data for the convergence of the optimization, which is the logs for each sampling, the mean and standart deviation of these samplings, and also the number of function evaluations Args: graph: networkx lattice graph service: service for runtime backend: backend for runtime (can include quantum backends) g: value of the boundary field h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: number of layers for the ansatz optimizer: optimization algorithm, as string for scipy maxiter: maximum iterations for the optimization ftol: tolerance for convergence, for scipy reps: (int) number of initial parameters samplings zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) cost_operator = get_h_op(graph,hx=h,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] extrapolation = get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) return extrapolation log_list = [] nfev_list = [] with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) for i in tqdm(range(reps)): random_point = np.random.random(ansatz.num_parameters) iter_list = [] result_sample = minimize(cost_function_vqe, x0=random_point, method=optimizer, callback=lambda xk: iter_list.append(list(xk)), options={'maxiter':maxiter,'disp':False,'ftol':ftol}) iters = len(iter_list) energy_list = estimator.run(iters*[ansatz],iters*[cost_operator],iter_list).result().values nfev_list.append(int(result_sample.nfev)) log_list.append(list(energy_list)) session.close() max_length = max(len(sublist) for sublist in log_list) # Finding the length of the largest list for sublist in log_list: if len(sublist) < max_length: last_element = sublist[-1] # Extracting the last element sublist.extend([last_element] * (max_length - len(sublist))) # Filling with the last element mean_list = [] std_list = [] for i in range(len(log_list[0])): values_list = [l[i] for l in log_list] mean_list.append(np.mean(values_list)) std_list.append(np.std(values_list)) return log_list,mean_list,std_list,nfev_list g_mag = 0.2 g_knk = 1.2 E_mag = NumPyMinimumEigensolver().compute_minimum_eigenvalue(get_h_op(graph,ap=g_mag)).eigenvalue E_knk = NumPyMinimumEigensolver().compute_minimum_eigenvalue(get_h_op(graph,ap=g_knk)).eigenvalue reps = 5 # we define the number of initial parameters samplings logs_hva_mag,avgs_hva_mag,stds_hva_mag,nfevs_hva_mag = vqe_opt_scipy(graph=graph, service=service, backend=backend, server='qasm', g=g_mag, layers=layers_hva, ansatz_str='hva', reps=reps, maxiter=300, shots=None, ftol=1e-16) avgs_list = avgs_hva_mag stds_list = stds_hva_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlim((0,40)) x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -10, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() logs_hva_knk,avgs_hva_knk,stds_hva_knk,nfevs_hva_knk = vqe_opt_scipy(graph=graph, service=service, backend=backend, server='qasm', g=g_knk, layers=layers_hva, ansatz_str='hva', reps=reps, maxiter=300, shots=None, ftol=1e-16) avgs_list = avgs_hva_knk stds_list = stds_hva_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlim((0,40)) x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -10, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() # Here we define a different callback which is suited for the SPSA implementation of qiskit intermediate_info = { 'nfev': [], 'parameters': [], 'energy': [], 'step_size': [], 'step_sucesss': [] } def callback(nfev, parameters, energy, step_size,step_sucess): intermediate_info['nfev'].append(nfev) intermediate_info['parameters'].append(parameters) intermediate_info['energy'].append(energy) intermediate_info['step_size'].append(step_size) intermediate_info['step_sucess'].append(step_sucess) @dataclass class VQELog: values: list parameters: list def update(self, count, parameters, mean, step_size, step_sucess): self.values.append(mean) self.parameters.append(parameters) print(f"Running circuit {count}", end="\r", flush=True) # Here is the main function def vqe_critical_spsa(graph, service, backend, device=FakeKolkata(), g=0.7071067811865476, layers=1, server='qasm', learning_rate=0.07, perturbation=0.1, maxiter=200, hx=0.5, options=Options(), zne=False, extrap='exp', reps=1, shots=2**14, ansatz_str='hea'): """Runs the vqe for the Ising model with boundary fields for a single value of the boundary field, using the scipy optimization function. It gives data for the convergence of the optimization, which is the logs for each sampling, the mean and standart deviation of these samplings, and also the number of function evaluations Args: graph: networkx lattice graph service: service for runtime backend: backend for runtime (can include quantum backends) g: value of the boundary field h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: number of layers for the ansatz maxiter: maximum iterations for the optimization learning_rate: learning rate for the SPSA optimizer perturbation: perturbation for the SPSA optimizer reps: (int) number of initial parameters samplings zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) cost_operator = get_h_op(graph,hx=hx,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] return get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) log_list = [] nfev_list = [] with Session(service=service,backend=backend) as session: # estimator = BackendEstimator(FakeNairobiV2(),options={'shots':shots}) estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) for i in tqdm(range(reps)): log = VQELog([], []) spsa = SPSA(maxiter=maxiter, trust_region=True, learning_rate=learning_rate, perturbation=perturbation, callback=log.update) random_point = np.random.random(ansatz.num_parameters) result_sample = spsa.minimize(cost_function_vqe,x0=random_point) log_list.append(log) nfev_list.append(result_sample.nfev) session.close() max_length = max(len(sublist.values) for sublist in log_list) # Finding the length of the largest list for sublist in log_list: if len(sublist.values) < max_length: last_element = sublist[-1] # Extracting the last element sublist = list(sublist)[:].extend([last_element] * (max_length - len(sublist))) # Filling with the last element mean_list = [] std_list = [] for i in range(len(log_list[0].values)): values_list = [log.values[i] for log in log_list] mean_list.append(np.mean(values_list)) std_list.append(np.std(values_list)) return log_list,mean_list,std_list,nfev_list logs_hea_noisy_mag,avgs_hea_noisy_mag,stds_hea_noisy_mag,nfevs_hea_noisy_mag = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_mag, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=5, zne=False, shots = shots ) avgs_list = avgs_hea_noisy_mag stds_list = stds_hea_noisy_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization noisy g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() reps = 3 logs_hea_zne_mag,avgs_hea_zne_mag,stds_hea_zne_mag,nfevs_hea_zne_mag = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_mag, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=True, extrap='exp', shots=shots ) avgs_list = avgs_hea_zne_mag stds_list = stds_hea_zne_mag g_value = g_mag exact_energy = E_mag #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization mitigated g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() logs_hea_noisy_knk,avgs_hea_noisy_knk,stds_hea_noisy_knk,nfevs_hea_noisy_knk = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_knk, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=False, shots=shots ) avgs_list = avgs_hea_noisy_knk stds_list = stds_hea_noisy_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") x_lim = 60 # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization noisy g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() reps = 3 logs_hea_zne_knk,avgs_hea_zne_knk,stds_hea_zne_knk,nfevs_hea_zne_knk = vqe_critical_spsa(graph=graph, service=service, backend=backend, device=FakeKolkata(), g=g_knk, server='noisy', layers=1, maxiter=170, ansatz_str='hea', reps=reps, zne=True, extrap='exp', shots=shots ) avgs_list = avgs_hea_zne_knk stds_list = stds_hea_zne_knk g_value = g_knk exact_energy = E_knk #Plots x_values = np.arange(len(avgs_list)) f, ax = plt.subplots() plt.plot(avgs_list) # Calculating upper and lower bounds for the confidence interval upper_bound = np.array(avgs_list) + 3 * np.array(stds_list) # 3 sigmas lower_bound = np.array(avgs_list) - 3 * np.array(stds_list) # 3 sigmas plt.fill_between(x_values, lower_bound, upper_bound, color='skyblue', alpha=0.4) plt.axhline(y=exact_energy, color="tab:red", ls="--", label="exact") # plt.xlim(0,60) plt.xlabel("iteration") plt.ylabel("cost function") plt.title(f"VQE optimization mitigated g = {np.round(g_value,3)} {reps} samplings") inset_ax = f.add_axes([0.6,0.6,0.25,0.25]) # [left, bottom, width, height] inset_ax.plot([(exact_energy-avg)/exact_energy for avg in avgs_list]) inset_ax.set_yscale('log') y_ticks = [10**i for i in range(-0, -3, -1)] # Change the range to suit your needs inset_ax.set_yticks(y_ticks) inset_ax.set_xlabel("iteration") inset_ax.set_ylabel("relative error") plt.show() def vqe_phase_diagram(graph, g_values, optimizer, init_optimizer, service, backend, server='qasm', device=FakeNairobi(), angles_dict = {}, layers=1, hx=0.5, options=Options(), zne=False, extrap='exp', init_reps=1, shots=2**14, ansatz_str='hea'): """Runs the vqe to simulate the antiparallel model in the hardware efficient ansatz for different values of the antiparallel field. Returns the list of energies as well as a dictionary with the optimal angles for each value of the boundary field. Args: graph: networkx lattice graph g_values: list of values for the boundary field angles_dict: dictionary of angles optimizer: qiskit optimizer class init_optimizer: optimizer for the first point layers: layers for the ansatz service: service for runtime backend: backend for runtime (can include quantum backends) h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA reps: number of initial parameters samplings for the first point zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime """ n_qubits = len(graph.nodes()) if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) E_values = [] rev_g_values = g_values[::-1] for i,g in enumerate(tqdm(rev_g_values)): cost_operator = get_h_op(graph,hx=hx,ap=g) #Defining Hamiltonian # Now we set the cost function, with no mitigation, linear or exp extrapolation if zne == False: def cost_function_vqe(theta): job = estimator.run(ansatz, cost_operator, theta) values = job.result().values[0] return values if zne == True: def cost_function_vqe(theta): job = estimator.run([ansatz,ansatz_k2], 2*[cost_operator], 2*[theta]) value_k1 = job.result().values[0] value_k2 = job.result().values[1] return get_extrapolation(value_k1=value_k1,value_k2=value_k2,extrap=extrap) if i == 0: sample = 0. for j in range(init_reps): #Performs sampling of initial parameters for the first point initial_point = np.random.uniform(0., 2*np.pi, size=ansatz.num_parameters) with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result_sample = init_optimizer.minimize(fun=cost_function_vqe, x0=initial_point) session.close() if result_sample.fun < sample: sample = result_sample.fun result = result_sample initial_point = result.x else: with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result = optimizer.minimize(fun=cost_function_vqe, x0=initial_point) session.close() E_values.append(result.fun) #optimal angles storage angles = list(result.x) angles_dict[str(round(g,5))] = angles return E_values,angles_dict def vqe_optimal(graph, service, backend, angles_opt, server='qasm', device=FakeNairobi(), layers=1, hx=0.5, options=Options(), zne=False, extrap='lin', shots=2**14, ansatz_str='hea'): """ Receives the optimal parameters for each value of the boundary field and runs the circuits to compute the energy as well as the number of kinks Args: graph: networkx lattice graph g_values: list of values for the boundary field angles_opt: dictionary of optimal angles service: service for runtime backend: backend for runtime (can include quantum backends) h: value of the transverse field ansatz_str: choice of ansatz, 'hea' for HEA and 'hva' for HVA layers: layers for the ansatz reps: number of initial parameters samplings for the first point zne: (bool) zne option extrap: type of extrapolation shots: number of shots, set to None for statevector simulations server: 'qasm' for noiseless, 'noisy' for aer, 'rtm' for runtime device: noise model for noisy simulations options: Options() class for runtime Returns: The values of the energy, number of kinks, and the associated values of g to facilitate plotting """ n_qubits = len(graph.nodes()) g_values = [float(k) for k in angles_opt.keys()] n_points = len(g_values) # Setting the ansatz if ansatz_str == 'hea': theta_list = ParameterVector('θ',2*n_qubits*layers) ansatz = get_ansatz_hea(graph,theta_list) ansatz_k2 = get_ansatz_hea_ZNE(graph,theta_list) elif ansatz_str == 'hva': theta_list = ParameterVector('θ',3*layers) ansatz = get_ansatz_hva(graph,theta_list) ansatz_k2 = get_ansatz_hva(graph,theta_list) # Getting the list of angles and hamiltonians angles_list = [] h_list = [] g_list = [] kk_op = get_kk_op(graph) E_values = [] kk_values = [] for g_str,angles in angles_opt.items(): g = float(g_str) g_list.append(g) h_list.append(get_h_op(graph,hx=hx,ap=g)) angles_list.append(angles) with Session(service=service,backend=backend) as session: estimator = get_estimator(server=server, shots=shots, device=device, session=session, options_rtm=options) result_h = estimator.run(n_points*[ansatz],h_list,angles_list).result() result_kk = estimator.run(n_points*[ansatz],n_points*[kk_op],angles_list).result() if zne == False: E_values = list(result_h.values) kk_values = list(result_kk.values) else: result_h_k2 = estimator.run(n_points*[ansatz_k2],h_list,angles_list).result() result_kk_k2 = estimator.run(n_points*[ansatz_k2],n_points*[kk_op],angles_list).result() for i in range(n_points): E_values.append(get_extrapolation(result_h.values[i],result_h_k2.values[i],extrap)) kk_values.append(get_extrapolation(result_kk.values[i],result_kk_k2.values[i],extrap)) session.close() return E_values,kk_values,g_list # We define the range of values of g used for the VQE implentation g_values = np.linspace(g_i,g_f,25) init_reps = 5 slsqp = SLSQP(150) init_slsqp = SLSQP(150) # We consider more iterations for the first point E_hva,angles_hva = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hva', backend=backend, layers=layers_hva, optimizer=slsqp, init_optimizer=init_slsqp, service=service, server='qasm', shots=None, init_reps=init_reps) # Now we run the circuits one last time with the optimal parameters E_hva,kk_hva,g_hva = vqe_optimal(graph=graph, service=service, server='qasm', angles_opt=angles_hva, ansatz_str='hva', layers=layers_hva, backend=backend) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hva,E_hva,'ro',label='VQE') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hva,kk_hva,'ro',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() init_reps = 2 spsa = SPSA(maxiter=300,trust_region=True,learning_rate=0.07,perturbation=0.1) init_spsa = SPSA(maxiter=300,trust_region=True,learning_rate=0.07,perturbation=0.1) # We consider more iterations for the first point # To perform the whole optimization using ZNE, just set zne = True # This step took 207 minutes to run on my machine E_hea_noisy,angles_hea_noisy = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hea', backend=backend, layers=layers_hea, optimizer=spsa, init_optimizer=init_spsa, service=service, server='noisy', device=FakeKolkata(), zne=False, shots=shots, init_reps=init_reps) # Now we run the circuits one last time with the optimal parameters E_opt_hea_noisy,kk_opt_hea_noisy,g_hea = vqe_optimal(graph=graph, service=service, server='noisy', angles_opt=angles_hea_noisy, device=FakeKolkata(), ansatz_str='hea', layers=layers_hea, zne=False, backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy,'o',label='noisy') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() # Now we run the circuits now using ZNE E_opt_hea_mitigated,kk_opt_hea_mitigated,g_hea = vqe_optimal(graph=graph, service=service, server='noisy', angles_opt=angles_hea_noisy, device=FakeKolkata(), ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy,'o',label='noisy') plt.plot(g_hea,E_opt_hea_mitigated,'o',label='mitigated') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show() # First we get the optimal parameters with statevector simulations E_hea_noiseless,angles_hea_noiseless = vqe_phase_diagram(graph=graph, g_values=g_values, ansatz_str='hea', backend=backend, layers=layers_hea, optimizer=spsa, init_optimizer=init_spsa, service=service, server='qasm', shots=None, init_reps=init_reps) # Setting options for runtime # Noisy options fake_device = FakeKolkata() noise_model = NoiseModel.from_backend(fake_device) options_noisy = Options() options_noisy.execution.shots = shots options_noisy.simulator = { "noise_model": noise_model, "basis_gates": fake_device.configuration().basis_gates, "coupling_map": fake_device.configuration().coupling_map, "seed_simulator": 42 } options_noisy.optimization_level = 3 # no optimization options_noisy.resilience_level = 0 # M3 for Sampler and T-REx for Estimator # Mitigated options options_mitigated = Options() options_mitigated.execution.shots = shots options_mitigated.simulator = { "noise_model": noise_model, "basis_gates": fake_device.configuration().basis_gates, "coupling_map": fake_device.configuration().coupling_map } # Set number of shots, optimization_level and resilience_level options_mitigated.optimization_level = 3 options_mitigated.resilience_level = 1 # setting T-REX # Now we run the circuits in runtime with the optimal parameters # To run on runtime we set server = 'rtm' # First we run the unmitigated results E_opt_hea_noisy_rtm,kk_opt_hea_noisy_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_noisy, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=False, extrap='exp', backend=backend, shots=shots) # Now we run using ZNE and ZNE+T-REX # ZNE E_opt_hea_mitigated1_rtm,kk_opt_hea_mitigated1_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_noisy, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) # ZNE + T-REX E_opt_hea_mitigated2_rtm,kk_opt_hea_mitigated2_rtm,g_hea = vqe_optimal(graph=graph, service=service, server='rtm', options = options_mitigated, angles_opt=angles_hea_noiseless, ansatz_str='hea', layers=layers_hea, zne=True, extrap='exp', backend=backend, shots=shots) #Plotting f,ax = plt.subplots() #plt.plot(g_values,E_3,'ro') plt.plot(exact_g_values,exact_E,label='exact') plt.plot(g_hea,E_opt_hea_noisy_rtm,'o',label='noisy') plt.plot(g_hea,E_opt_hea_mitigated1_rtm,'o',label='ZNE') plt.plot(g_hea,E_opt_hea_mitigated2_rtm,'o',label='ZNE+T-REX') plt.xlabel('boundary field') plt.ylabel('groundstate energy') plt.legend() inset_ax = f.add_axes([0.24, 0.22, 0.3, 0.3]) # [left, bottom, width, height] plt.plot(exact_g_values,exact_kk) plt.plot(g_hea,kk_opt_hea_noisy_rtm,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated1_rtm,'o',markersize=4) plt.plot(g_hea,kk_opt_hea_mitigated2_rtm,'o',markersize=4) inset_ax.set_xlabel('boundary field') inset_ax.set_ylabel("$<N_k>$") plt.show()
https://github.com/unif2/Quantum-Computing-Mentorship-Task-4-Code
unif2
import numpy as np from numpy import kron import qiskit as qk def decomposition(H): """Decompose any 4x4 Hermitian matrix into a sum of tensor products of two Pauli matrices """ identity = np.array([[1, 0],[ 0, 1]], dtype=np.complex128) x = np.array([[0, 1], [ 1, 0]], dtype=np.complex128) y = np.array([[0, -1j],[1j, 0]], dtype=np.complex128) z = np.array([[1, 0], [0, -1]], dtype=np.complex128) S = [identity, x, y, z] labels = ['I', 'sigma_x', 'sigma_y', 'sigma_z'] d = {'00': 'I product I', '01': 'I product sigma_x', '02': 'I product sigma_y', '03': 'I product sigma_z', '10': 'sigma_x product I', '11': 'sigma_x product sigma_x', '12': 'sigma_x product sigma_y', '13': 'sigma_x product sigma_z', '20': 'sigma_y product I', '21': 'sigma_y product sigma_x', '22': 'sigma_y product sigma_y', '23': 'sigma_y product sigma_z', '30': 'sigma_z product I', '31': 'sigma_z product sigma_x', '32': 'sigma_z product sigma_y', '33': 'sigma_z product sigma_z'} for i in range(4): for j in range(4): a_ij = 0.25 * np.dot(kron(S[i], S[j]), H).trace() if a_ij != 0.0: print(str(a_ij) + ' * ' + d[str(i)+str(j)]) H = np.array([[0,0,0,0],[0,-1,1,0],[0,1,-1,0],[0,0,0,0]]) decomposition(H) def prepare_state(theta, n=3): """ Prepare three 2-qubit states with 3 associated quantum registers, 3 associated classical registers, and 3 quantum circuits. We will prepare the state with the ansatz mentioned in the notes in which we act on the first qubit with the Hadamard operator, then with the R_z operator, then we act on the 2-qubit state with the CNOT gate, and then on the second qubit in each terms of the superposition with the sigma_x operator. After that, we will take the first circuit and act on each qubit with the R_y(pi/2) operator, and take the second circuit and act on each qubit with the R_x(-pi/2) operator as explained in the notes. We do this so that those qubits will be in the basis of eigenvectors of sigma_x and sigma_y as explained in the notes. We can measure the qubits in the other circuit as-is because we need the expectation value of sigma_z and the qubits are already in the computational basis. """ qr0 = qk.QuantumRegister(2) cr0 = qk.ClassicalRegister(2) qc0 = qk.QuantumCircuit(qr0,cr0) qr1 = qk.QuantumRegister(2) cr1 = qk.ClassicalRegister(2) qc1 = qk.QuantumCircuit(qr1,cr1) qr2 = qk.QuantumRegister(2) cr2 = qk.ClassicalRegister(2) qc2 = qk.QuantumCircuit(qr2,cr2) qregisters = [qr0,qr1,qr2] cregisters = [cr0,cr1,cr2] qcircuits = [qc0,qc1,qc2] for i in range(n): qcircuits[i].h(qregisters[i][0]) for i in range(n): qcircuits[i].rz(theta, qregisters[i][0]) for i in range(n): qcircuits[i].cx(qregisters[i][0], qregisters[i][1]) for i in range(n): qcircuits[i].x(qregisters[i][1]) qcircuits[0].ry((np.pi)/2, qregisters[0][0]) qcircuits[0].ry((np.pi)/2, qregisters[0][1]) qcircuits[1].rx(-(np.pi)/2, qregisters[1][0]) qcircuits[1].rx(-(np.pi)/2, qregisters[1][1]) return qregisters, cregisters, qcircuits qregisters, cregisters, qcircuits = prepare_state(np.pi, n=3) qcircuits[0].draw(output='mpl') qcircuits[1].draw(output='mpl') qcircuits[2].draw(output='mpl') def expectation(qcircuits, cregisters, qregisters, n_shots, n=3): """ For each circuit, execute and measure it using the classical simulator 5000 times as explained above. Multiply each of the three expectation values by 0.5, add them up, and subtract -0.5. Return the result. """ expect = -0.5 for i in range(n): qcircuits[i].measure(qregisters[i],cregisters[i]) qk.Aer.backends() sim = qk.Aer.get_backend('qasm_simulator') res = qk.execute(qcircuits[i], sim, shots=n_shots).result() counts = res.get_counts() sum = 0 for k,v in counts.items(): if k=='01' or k=='10': sum += (-1)*v/n_shots elif k=='00' or k=='11': sum += v/n_shots sum = 0.5*sum expect += sum return expect # Consider 100 values of theta, between 0 and Pi. This theta is the one used in state preparation. thetas = np.linspace(0, np.pi, 100) # For each theta, store the resulting expectation value in results results = [] # For each theta, find the expectation value for theta in thetas: qregisters, cregisters, qcircuits = prepare_state(theta, n=3) expect = expectation(qcircuits, cregisters, qregisters, 5000, n=3) results.append(expect) # Sort the results in ascending order. The first one is your minimum eigenvalue. results.sort() print("The minimum eigenvalue is: {}.".format(results[0])) from qiskit import IBMQ #IBMQ.delete_account() IBMQ.save_account('my IBM token', overwrite=True) IBMQ.load_account() provider = IBMQ.get_provider() procs=provider.backends(operational=True, simulator=False) from qiskit.tools.jupyter import * %qiskit_backend_overview from qiskit.tools import monitor backend = qk.providers.ibmq.least_busy([p for p in procs if len(p.properties().qubits) >= 2]) from qiskit.tools.monitor import backend_overview, backend_monitor backend_monitor(backend) def q_expectation(qcircuits, cregisters, qregisters, n_shots, n=3): """ For each circuit, execute and measure it using the classical simulator 5000 times as explained above. Multiply each of the three expectation values by 0.5, add them up, and subtract -0.5. Return the result. """ expect = -0.5 for i in range(n): qcircuits[i].measure(qregisters[i],cregisters[i]) qk.Aer.backends() sim = qk.Aer.get_backend('qasm_simulator') res = qk.execute(qcircuits[i], backend=backend, shots=n_shots).result() #mon = monitor.job_monitor(res) counts = res.get_counts() sum = 0 for k,v in counts.items(): if k=='01' or k=='10': sum += (-1)*v/n_shots elif k=='00' or k=='11': sum += v/n_shots sum = 0.5*sum expect += sum return expect # Consider 10 values of theta, between 0 and Pi. This theta is the one used in state preparation. thetas = np.linspace(0, np.pi, 10) # Use n_shots = 100 results = [] # For each theta, find the expectation value for theta in thetas: qregisters, cregisters, qcircuits = prepare_state(theta, n=3) expect = q_expectation(qcircuits, cregisters, qregisters, 100, n=3) results.append(expect) # Sort the results in ascending order. The first one is your minimum eigenvalue. results.sort() print("The minimum eigenvalue is: {}.".format(results[0])) # Use n_shots = 1000 results = [] # For each theta, find the expectation value for theta in thetas: qregisters, cregisters, qcircuits = prepare_state(theta, n=3) expect = q_expectation(qcircuits, cregisters, qregisters, 1000, n=3) results.append(expect) # Sort the results in ascending order. The first one is your minimum eigenvalue. results.sort() print("The minimum eigenvalue is: {}.".format(results[0])) # Use n_shots = 5000 results = [] # For each theta, find the expectation value for theta in thetas: qregisters, cregisters, qcircuits = prepare_state(theta, n=3) expect = q_expectation(qcircuits, cregisters, qregisters, 5000, n=3) results.append(expect) # Sort the results in ascending order. The first one is your minimum eigenvalue. results.sort() print("The minimum eigenvalue is: {}.".format(results[0])) # Use n_shots = 8192 = max allowed results = [] thetas = [np.pi] # For each theta, find the expectation value for theta in thetas: qregisters, cregisters, qcircuits = prepare_state(theta, n=3) expect = q_expectation(qcircuits, cregisters, qregisters, 8192, n=3) results.append(expect) # Sort the results in ascending order. The first one is your minimum eigenvalue. results.sort() print("The minimum eigenvalue is: {}.".format(results[0])) def decomposition(H): """Decompose any 4x4 Hermitian matrix into a sum of tensor products of two Pauli matrices """ A_ij = [] identity = np.array([[1, 0],[ 0, 1]], dtype=np.complex128) x = np.array([[0, 1], [ 1, 0]], dtype=np.complex128) y = np.array([[0, -1j],[1j, 0]], dtype=np.complex128) z = np.array([[1, 0], [0, -1]], dtype=np.complex128) S = [identity, x, y, z] labels = ['I', 'sigma_x', 'sigma_y', 'sigma_z'] d = {'00': 'I product I', '01': 'I product sigma_x', '02': 'I product sigma_y', '03': 'I product sigma_z', '10': 'sigma_x product I', '11': 'sigma_x product sigma_x', '12': 'sigma_x product sigma_y', '13': 'sigma_x product sigma_z', '20': 'sigma_y product I', '21': 'sigma_y product sigma_x', '22': 'sigma_y product sigma_y', '23': 'sigma_y product sigma_z', '30': 'sigma_z product I', '31': 'sigma_z product sigma_x', '32': 'sigma_z product sigma_y', '33': 'sigma_z product sigma_z'} for i in range(4): for j in range(4): a_ij = 0.25 * np.dot(kron(S[i], S[j]), H).trace() A_ij.append(a_ij) if a_ij != 0.0: print(str(a_ij) + ' * ' + d[str(i)+str(j)]) return np.asarray(A_ij).reshape(4,4) def prepare_state2(A, theta): qregisters = [] cregisters = [] qcircuits = [] identity = np.array([[1, 0],[ 0, 1]], dtype=np.complex128) x = np.array([[0, 1], [ 1, 0]], dtype=np.complex128) y = np.array([[0, -1j],[1j, 0]], dtype=np.complex128) z = np.array([[1, 0], [0, -1]], dtype=np.complex128) d = {} for i in range(4): for j in range(4): if A[i,j] != 0: if i !=0 and j!=0: qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr,cr) qc.h(qr[0]) qc.rz(theta, qr[0]) qc.cx(qr[0], qr[1]) qc.x(qr[1]) if i==1: qc.ry((np.pi)/2, qr[0]) if i==2: qc.rx(-(np.pi)/2, qr[0]) if j==1: qc.ry((np.pi)/2, qr[1]) if j==2: qc.rx(-(np.pi)/2, qr[1]) qregisters.append(qr) cregisters.append(cr) qcircuits.append(qc) d[(i,j)] = [qregisters, cregisters, qcircuits] if i == 0 and j != 0: qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr,cr) qc.h(qr[0]) qc.rz(theta, qr[0]) qc.cx(qr[0], qr[1]) qc.x(qr[1]) if j==1: qc.ry((np.pi)/2, qr[1]) if j==2: qc.rx(-(np.pi)/2, qr[1]) qregisters.append(qr) cregisters.append(cr) qcircuits.append(qc) d[(i,j)] = [qregisters, cregisters, qcircuits] if i != 0 and j == 0: qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr,cr) qc.h(qr[0]) qc.rz(theta, qr[0]) qc.cx(qr[0], qr[1]) qc.x(qr[1]) if i==1: qc.ry((np.pi)/2, qr[0]) if i==2: qc.rx(-(np.pi)/2, qr[0]) qregisters.append(qr) cregisters.append(cr) qcircuits.append(qc) d[(i,j)] = [qregisters, cregisters, qcircuits] return d, A def expectation2(d, A, n_shots): """ For each circuit, execute and measure it using the classical simulator 5000 times as explained above. Return the result. """ expect = A[0,0] qk.Aer.backends() sim = qk.Aer.get_backend('qasm_simulator') for k,v in d.items(): for i in range(len(v[2])): v[2][i].measure(v[0][i],v[1][i]) res = qk.execute(v[2][i], sim, shots=n_shots).result() counts = res.get_counts() sum = 0 for m,n in counts.items(): if m=='01' or m=='10': sum += (-1)*n/n_shots elif m=='00' or m=='11': sum += n/n_shots sum = A[k[0],k[1]]*sum expect += sum return expect thetas = np.linspace(0, np.pi, 100) H = np.array([[0,0,0,0],[0,-1,1,0],[0,1,-1,0],[0,0,0,0]]) A = decomposition(H) # For each theta, store the resulting expectation value in results results = [] # For each theta, find the expectation value for theta in thetas: d, A = prepare_state2(A, theta) expect = expectation2(d, A, 5000) results.append(expect) # Sort the results in ascending order. The first one is your minimum eigenvalue. results.sort() print("The minimum eigenvalue is: {}.".format(results[0])) # -5??!! Maybe I missed something in my logic. Will continue to look into this. :-)
https://github.com/khaledalam/QuantumComputingAndPrimesAndOthers
khaledalam
# Author: Khaled Alam(khaledalam.net@gmail.com) ''' Guess binary string (secret) of length N in 1 shot only using quantum computing circuit! ~ by using clasical computers we need at least N shots to guess string (secret) of length N ~ by using quantum computer we need 1 shot to guess string (secret) of ANY length ( cool isn't it! ^^ ) ''' secret = '01000001' # `01000001` = `A` from qiskit import * n = len(secret) qCircuit = QuantumCircuit(n+1, n) # n+1 qubits and n classical bits qCircuit.x(n) qCircuit.barrier() qCircuit.h(range(n+1)) qCircuit.barrier() for ii, OZ in enumerate(reversed(secret)): if OZ == '1': qCircuit.cx(ii, n) qCircuit.barrier() qCircuit.h(range(n+1)) qCircuit.barrier() qCircuit.measure(range(n), range(n)) %matplotlib inline qCircuit.draw(output='mpl') # run on simulator simulator = Aer.get_backend('qasm_simulator') result = execute(qCircuit, backend=simulator, shots=1).result() # only 1 shot from qiskit.visualization import plot_histogram plot_histogram( result.get_counts(qCircuit) )
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram secret_number = '101001' # here work is happen like buttom to up for position,value in enumerate(reversed(secret_number)): if value == '1': print(position, value) circuit = QuantumCircuit(6+1, 6) circuit.h([0,1,2,3,4,5]) circuit.x(6) circuit.h(6) circuit.barrier() circuit.draw(output='mpl') circuit.cx(5, 6) circuit.cx(3, 6) circuit.cx(0, 6) circuit.barrier() circuit.draw(output='mpl') circuit.h([0,1,2,3,4,5]) circuit.draw(output='mpl') circuit.barrier() circuit.measure([i for i in range(5)],[i for i in range(5)]) circuit.barrier() circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, backend=simulator, shots=1) result = job.result() counts = result.get_counts() print(counts) circuit = QuantumCircuit(len(secret_number)+1, len(secret_number)) circuit.h(range(len(secret_number))) circuit.x(len(secret_number)) circuit.h(len(secret_number)) circuit.barrier() for position,value in enumerate(reversed(secret_number)): if value == '1': circuit.cx(position, len(secret_number)) circuit.barrier() circuit.h(range(len(secret_number))) circuit.barrier() circuit.measure(range(len(secret_number)), range(len(secret_number))) circuit.barrier() circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, backend=simulator, shots=1) result = job.result() counts = result.get_counts() print(counts) def find_secret_number(secter_number): secret_number = str(secter_number) # Using Bernstein Vazirani Algorithm circuit = QuantumCircuit(len(secret_number)+1, len(secret_number)) circuit.h(range(len(secret_number))) circuit.x(len(secret_number)) circuit.h(len(secret_number)) circuit.barrier() for position,value in enumerate(reversed(secret_number)): if value == '1': circuit.cx(position, len(secret_number)) circuit.barrier() circuit.h(range(len(secret_number))) circuit.barrier() circuit.measure(range(len(secret_number)), range(len(secret_number))) circuit.barrier() circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, backend=simulator, shots=1) result = job.result() counts = result.get_counts() print(counts) secret_number = int(input("enter number(digits should be 0 or 1): ")) find_secret_number(secret_number)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram from ibm_quantum_widgets import draw_circuit # initialize two qubits in the zero state and # two classical bits in the zero state in the quantum circuit circuit = QuantumCircuit(3,3) # C gate # (2) => q2 circuit.x(2) circuit.draw(output='mpl') draw_circuit(circuit) # Hadamard (H) gate # (0) => (q0) circuit.h(0) circuit.draw(output='mpl') draw_circuit(circuit) # A controlled-NOT (CX NOT) gate, on control qubit 0 # and target qubit 1, putting the qubits in an entangled state. # (2,1) = > q2(control bit)(quantum bit)(origin) --> q1(target bit)(quantum bit)(destination) circuit.cx(2,1) # (0,2) = > q0(control bit)(quantum bit)(origin) --> q2(target bit)(quantum bit)(destination) circuit.cx(0,2) circuit.draw(output='mpl') draw_circuit(circuit) # measurement between quantum state and classical state # [1,1] => [q1,q1](quantum bit) and [2,0] => [c2,c0](classical bit) circuit.measure([1,1],[2,0]) circuit.draw(output='mpl') draw_circuit(circuit) # The n qubit’s measurement result will be stored in the n classical bit circuit.measure([1,1,2],[2,0,0]) circuit.draw(output='mpl') draw_circuit(circuit) simulator = Aer.get_backend("qasm_simulator") job = execute(circuit, simulator, shots=2024) result = job.result() counts = result.get_counts(circuit) print("Total count for 100 and 101 are: ", counts) # 1. plot_histogram(counts) # 2. from ibm_quantum_widgets import draw_circuit draw_circuit(circuit)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram from ibm_quantum_widgets import draw_circuit circuit = QuantumCircuit(2,2) circuit circuit.draw(output='mpl') circuit.x(0) circuit.draw(output='mpl') circuit.h(0) circuit.draw(output='mpl') circuit.cx(0,1) circuit.draw(output='mpl') circuit.measure([0,1],[1,1]) circuit.draw(output='mpl') draw_circuit(circuit) simulator = Aer.get_backend('qasm_simulator') simulator job = execute(circuit, backend=simulator, shots=1024) job result = job.result() result counts = result.get_counts() counts plot_histogram(counts)
https://github.com/acfilok96/Quantum-Computation
acfilok96
from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) %matplotlib inline circuit.draw(output='mpl') circuit.h(qr[0]) circuit.draw(output = 'mpl') circuit.cx(qr[0], qr[1]) circuit.draw(output='mpl') circuit.measure(qr, cr) circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') execute(circuit, backend=simulator) result = execute(circuit, backend=simulator).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) from qiskit import IBMQ MY_API_TOKEN = "b32678329f7f6dd426b8cf18f20bea23c2cd056b0bee2b4bcf49744b612e598f20f7170a8da4bfd99b009b6fa59d596edea7a6926fd388be158843d8e******" IBMQ.save_account(MY_API_TOKEN, overwrite=True) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider.backends() backend = provider.get_backend('ibmq_santiago') job =execute(circuit, backend= backend) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result() # plot_histogram plot_histogram(result.get_counts(circuit))
https://github.com/acfilok96/Quantum-Computation
acfilok96
# Quantum Computation import qiskit print(qiskit.__version__) import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f = [1, -1, -1, -1] g = [1, 1, -1, -1] # How co-related fourier transform of function g to function f. # we will check for probability '00', if p(f,g) >= 0.05, then, # fourier transform of function g co-related to function f. circ = FourierChecking(f=f,g=g) circ.draw() zero = qi.Statevector.from_label('00') # '00' or '01' or '10' or '11' sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs)
https://github.com/acfilok96/Quantum-Computation
acfilok96
from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) %matplotlib inline circuit.draw() circuit.h(qr[0]) circuit.draw(output = 'mpl') circuit.cx(qr[0], qr[1]) circuit.draw(output='mpl') circuit.measure(qr, cr) circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') execute(circuit, backend=simulator) result = execute(circuit, backend=simulator).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) # plot_histogram provider = IBMQ.get_provider('ibm-q') backend = provider.get_backend('ibmq_16_melbourne') job =execute(circuit, backend= backend) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result() plot_histogram(result.get_counts(circuit))
https://github.com/acfilok96/Quantum-Computation
acfilok96
from qiskit import * from qiskit.tools.visualization import plot_bloch_multivector circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') result = execute(circuit, backend=simulator).result() statevector = result.get_statevector() print(statevector) %matplotlib inline circuit.draw(output='mpl') # bloch sphere plot_bloch_multivector(statevector) # measurement circuit.measure([0],[0]) backend = Aer.get_backend('qasm_simulator') result = execute(circuit, backend=backend, shots=1024).result() counts = result.get_counts() from qiskit.tools.visualization import plot_histogram plot_histogram(counts) circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('unitary_simulator') result = execute(circuit, backend=simulator).result() unitary = result.get_unitary() print(unitary) %matplotlib inline circuit.draw(output='mpl') # bloch sphere plot_bloch_multivector(unitary)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram from qiskit.providers.aer import QasmSimulator # use Aer's qasm_simulator simulator = QasmSimulator() # create quantum circute acting on the q register circuit = QuantumCircuit(2,2) # add a H gate on qubit 0 circuit.h(0) # add a cx (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0,1) # map the quantum measurement to the classical bits circuit.measure([0,1],[0,1]) # compile the circuit down to low-level QASM instructions # supported by the backend (not needed for simple circuits) compiled_circuit = transpile(circuit, simulator) # execute the circuit on the qasm simulator job = simulator.run(compiled_circuit, shots=1024) # grad results from the job result = job.result() # return counts counts = result.get_counts(compiled_circuit) print('total count for 00 and 11 are: ',counts) # draw circuit circuit.draw(output='mpl') # plot histogram plot_histogram(counts) from qiskit.circuit import QuantumCircuit, Parameter from qiskit.providers.aer import AerSimulator backend = AerSimulator() circuit = QuantumCircuit(2) theta = Parameter('theta') circuit.rx(234, 0) circuit.draw(output='mpl') backend = AerSimulator() circuit = QuantumCircuit(2) # theta = Parameter('theta') circuit.rx(20, 0) circuit.x(0) circuit.h(1) result = execute(circuit, backend=backend, shots=1024).result() # counts=result.get_counts() # print(counts) circuit.draw(output='mpl')
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram circuit = QuantumCircuit(3,3) circuit # qiskit.__dir__() circuit.draw(output='mpl') circuit.x(0) circuit.barrier() circuit.draw(output='mpl') circuit.h(1) circuit.cx(1,2) circuit.draw(output='mpl') circuit.barrier() circuit.cx(0,1) circuit.h(0) circuit.draw(output='mpl') circuit.barrier() circuit.measure([0,1],[0,1]) circuit.draw(output='mpl') circuit.barrier() circuit.cx(1,2) circuit.cx(0,2) circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, backend=simulator,shots=1024) result = job.result() counts=result.get_counts() print(counts) plot_histogram(counts)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * # import matplotlib.pyplot as plt %matplotlib inline print(qiskit.__version__) circuit = QuantumCircuit(2,2) circuit.h(0) circuit.cx(0,1) circuit.measure([0,1],[0,1]) # circuit.measure_all() circuit.barrier() # circuit.draw(output='mpl') circuit.draw(output='mpl') simulator = Aer.get_backend('aer_simulator') result = execute(circuit, backend=simulator, shots=1024).result() count = result.get_counts() print(count) from qiskit.tools.visualization import plot_histogram plot_histogram(count) from qiskit import IBMQ IBMQ.save_account("b32678329f7f6dd426b8cf18f20bea23c2cd056b0bee2b4bcf49744b612e598f20f7170a8da4bfd99b009b6fa59d596edea7a6926fd388be158843d8ef******", overwrite=True) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) job = execute(circuit, backend=backend, shots=1024) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result() count = result.get_counts() print(count) from qiskit.tools.visualization import plot_histogram plot_histogram(count)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit from qiskit import * print(qiskit.__version__) %matplotlib inline from qiskit.tools.visualization import plot_histogram def find_secret_number(secter_number): # Using Bernstein Vazirani Algorithm secret_number = str(secter_number) circuit = QuantumCircuit(len(secret_number)+1, len(secret_number)) circuit.h(range(len(secret_number))) circuit.x(len(secret_number)) circuit.h(len(secret_number)) circuit.barrier() for position,value in enumerate(reversed(secret_number)): if value == '1': circuit.cx(position, len(secret_number)) circuit.barrier() circuit.h(range(len(secret_number))) circuit.barrier() circuit.measure(range(len(secret_number)), range(len(secret_number))) circuit.barrier() # circuit.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, backend=simulator, shots=1) result = job.result() counts = result.get_counts() # print(counts) return circuit, counts secret_number = int(input("enter number: ")) circuit, number = find_secret_number(secret_number) print('required number: ', number) circuit.draw(output='mpl')
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit print(qiskit.__version__) from qiskit.aqua.algorithms import Shor from qiskit.aqua import QuantumInstance import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.tools.visualization import plot_histogram backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend=backend, shots=1024) my_shor = Shor(N=2189,a=4,quantum_instance=quantum_instance) Shor.run(my_shor)
https://github.com/acfilok96/Quantum-Computation
acfilok96
import qiskit print(qiskit.__version__) from qiskit_machine_learning.datasets import ad_hoc_data adhoc_dimension = 2 train_features, train_labels, test_features, test_labels, adhoc_total = ad_hoc_data(training_size = 20, test_size = 5, n = adhoc_dimension, gap=0.3, plot_data =False, one_hot=False, include_sample_total=True) import numpy print(numpy.array(adhoc_total).shape) print("train data shape: ", train_features.shape,"\ttrain labels shape: ", train_labels.shape) print("test data shape: ", test_features.shape,"\ttest labels shape: ", test_labels.shape) print('train data:\n',train_features[:5]) print('\ntrain label:\n',train_labels[:5]) # plot_adhoc_dataset(train_features, train_labels, test_features, test_labels, adhoc_total) from qiskit import Aer from qiskit.utils import QuantumInstance seed=20 quantum_instance = QuantumInstance(Aer.get_backend("qasm_simulator"), shots=1024, seed_simulator=seed, seed_transpiler=seed) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=2) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) # z_feature_map.draw(output='mpl', scale=2) z_feature_map.decompose().draw(output='mpl', scale=2) from sklearn.svm import SVC svc = SVC(kernel=z_kernel.evaluate) svc.fit(train_features, train_labels) score = svc.score(test_features, test_labels) print('Callable kernel with ZFeatureMap classification test score: ', score) prediction = svc.predict(test_features) print(prediction) from qiskit.circuit.library import ZZFeatureMap zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) from sklearn.svm import SVC svc = SVC(kernel=zz_kernel.evaluate) svc.fit(train_features, train_labels) score = svc.score(test_features, test_labels) print('Callable kernel with ZZFeatureMap classification test score: ', score) prediction = svc.predict(test_features) print(prediction) from qiskit_machine_learning.algorithms import QSVC qsvc = QSVC() qsvc.quantum_kernel.quantum_instance = quantum_instance qsvc.fit(train_features, train_labels) score = qsvc.score(test_features, test_labels) print('QSVC classification test score: ', score) prediction = qsvc.predict(test_features) print(prediction) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel # here feature_dimension = 2 and reps = 1 adhoc_dimension = 2 z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=1) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) z_feature_map.decompose().draw(output='mpl', scale=2) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel # here feature_dimension = 2 and reps = 2 adhoc_dimension = 2 z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=2) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) z_feature_map.decompose().draw(output='mpl', scale=2) from qiskit.circuit.library import ZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel # here feature_dimension = 3 and reps = 4 adhoc_dimension = 3 z_feature_map = ZFeatureMap(feature_dimension=adhoc_dimension, reps=4) z_kernel = QuantumKernel(feature_map = z_feature_map, quantum_instance=quantum_instance) z_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=2 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=1, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=2 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=3 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=1, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2) # same happens for ZZFeatureMap from qiskit.circuit.library import ZZFeatureMap adhoc_dimension=3 zz_feature_map = ZZFeatureMap(feature_dimension=adhoc_dimension, reps=2, entanglement='linear') zz_kernel = QuantumKernel(feature_map = zz_feature_map, quantum_instance=quantum_instance) zz_feature_map.decompose().draw(output='mpl', scale=2)
https://github.com/martynscn/Masters-Thesis-on-Quantum-Cryptography
martynscn
# This code has been adapted and modified from IBM Qiskit 2021 and # uses the constant optimized modular exponentiation circuit for mod 15 as contained # in https://arxiv.org/abs/1202.6614. import numpy as np import math from decimal import * import matplotlib.pyplot as plt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.visualization import plot_histogram from qiskit import Aer, transpile, assemble import pandas as pd from fractions import Fraction # # import math # from math import gcd # from numpy.random import randint # # # from decimal import * print("Imports Successful") from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" def my_mod(a,n): getcontext().prec = 27 return round((Decimal(a)/Decimal(n) - Decimal(a)//Decimal(n) ) * n) def constant_optimized_modular_exponentation_modulus15(a, power): if a not in [2,7,8,11,13]: raise ValueError("'a' must be 2,7,8,11 or 13") U = QuantumCircuit(4) for iteration in range(power): if a in [2,13]: U.swap(0,1) U.swap(1,2) U.swap(2,3) if a in [7,8]: U.swap(2,3) U.swap(1,2) U.swap(0,1) if a == 11: U.swap(1,3) U.swap(0,2) if a in [7,11,13]: for q in range(4): U.x(q) U = U.to_gate() U.name = "%i^%i mod 15" % (a, power) control_U = U.control() return control_U def inverse_qft(n): circuit = QuantumCircuit(n) for i in range(n//2): circuit.swap(i, n-1-i) for j in range(n): for m in range(j): circuit.cp(-np.pi/float(2**(j-m)), m, j) circuit.h(j) circuit.name = "QFT†" return circuit N = 15 a = 7 n_count = 8 counting_register = QuantumRegister(size = n_count, name = "counting_register") acting_register = QuantumRegister(size = 4, name="acting_register") classic_register = ClassicalRegister(size = n_count, name="classic_register") qc = QuantumCircuit(counting_register, acting_register ,classic_register) initial_state = [1,0] for q in range(8): qc.initialize(initial_state, q) qc.draw(output = 'mpl', filename = "Step0") for q in range(n_count): qc.h(q) qc.draw(output = 'mpl', filename = "Step1") qc.x(3+n_count) qc.draw(output = 'mpl', filename = "Step1b") for q in range(n_count): qc.append(constant_optimized_modular_exponentation_modulus15(a, 2**q), [q] + [i+n_count for i in range(4)]) qc.measure(range(n_count,n_count + 4), range(4)) qc.barrier() qc.draw(output = 'mpl', filename = "Step2") qc.append(inverse_qft(n_count), range(n_count)) qc.draw(output = 'mpl', filename = "Step3") # Measure circuit qc.measure(range(n_count), range(n_count)) qc.draw(output = 'mpl', filename = "Step4") qasm_sim = Aer.get_backend('qasm_simulator') t_qc = transpile(qc, qasm_sim) qobj = assemble(t_qc) results = qasm_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts) rows, measured_phases = [], [] for output in counts: decimal = int(output, 2) phase = decimal/(2**n_count) measured_phases.append(phase) rows.append([f"{output}(bin) = {decimal:>3}(dec)", f"{decimal}/{2**n_count} = {phase:.2f}"]) headers=["Register Output", "Phase"] df = pd.DataFrame(rows, columns=headers) df rows = [] for phase in measured_phases: frac = Fraction(phase).limit_denominator(15) rows.append([phase, f"{frac.numerator}/{frac.denominator}", frac.denominator]) headers=["Phase", "Fraction", "Guess for r"] df = pd.DataFrame(rows, columns=headers) my_period_r = max(df["Guess for r"]) print("My period (r) is %i" % my_period_r) # Confirm that the period is 4 xvals = np.arange(N) xvals = [x.item() for x in xvals] yvals = [my_mod(a**x, N) for x in xvals] fig, ax = plt.subplots(); ax.plot(xvals, yvals, linewidth=1, linestyle='dotted', marker='x'); ax.set(xlabel='$x$', ylabel='$%i^x$ mod $%i$' % (a, N), title="Example of Periodic Function in Shor's Algorithm"); try: r = yvals[1:].index(1) +1 plt.annotate(s = '', xy=(0,1), xytext=(r,1), arrowprops=dict(arrowstyle='<->')); plt.annotate(s = '$r=%i$' % r, xy=(r/3,1.5)); except ValueError: print('Could not find a period') first_shared_factor = math.gcd((7**(int(my_period_r/2)) + 1), 15) first_shared_factor second_shared_factor = math.gcd((7**(int(my_period_r/2)) - 1), 15) second_shared_factor %qiskit_copyright
https://github.com/martynscn/Masters-Thesis-on-Quantum-Cryptography
martynscn
# This code has been adapted and modified from IBM Qiskit 2021 and also from https://github.com/ttlion/ShorAlgQiskit. # It uses the implementation as contained in the work of Stephane Beauregard (https://arxiv.org/abs/quant-ph/0205095) # Many thanks to IBM Qiskit team, Tiago Miguel (ttlion), Qubit by Qubit, Peter Shor and Stephane Beauregard. from typing import Optional, Union, Tuple, List import math import array import fractions import logging import numpy as np from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute, IBMQ, transpile,BasicAer, Aer, assemble from qiskit.circuit import Gate, Instruction, ParameterVector from qiskit.circuit.library import QFT from qiskit.providers import BaseBackend, Backend from qiskit.quantum_info import partial_trace from qiskit.utils import summarize_circuits from qiskit.utils.arithmetic import is_power from qiskit.utils.validation import validate_min from qiskit.utils.quantum_instance import QuantumInstance import qiskit.visualization from qiskit.providers.aer import QasmSimulator from datetime import datetime import csv # provider = IBMQ.enable_account("PUT TOKEN HERE") backend = QasmSimulator() from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" #"last_expr" or "all" # """ Function to check if N is of type q^p""" def check_if_power(N): # """ Check if N is a perfect power in O(n^3) time, n=ceil(logN) """ b=2 while (2**b) <= N: a = 1 c = N while (c-a) >= 2: m = int( (a+c)/2 ) if (m**b) < (N+1): p = int( (m**b) ) else: p = int(N+1) if int(p) == int(N): print('N is {0}^{1}'.format(int(m),int(b)) ) return True if p<N: a = int(m) else: c = int(m) b=b+1 return False def egcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def create_QFT(circuit,up_reg,n,with_swaps): i=n-1 while i>=0: circuit.h(up_reg[i]) j=i-1 while j>=0: if (np.pi)/(pow(2,(i-j))) > 0: circuit.cu1( (np.pi)/(pow(2,(i-j))) , up_reg[i] , up_reg[j] ) j=j-1 i=i-1 if with_swaps==1: i=0 while i < ((n-1)/2): circuit.swap(up_reg[i], up_reg[n-1-i]) i=i+1 def create_inverse_QFT(circuit,up_reg,n,with_swaps): if with_swaps==1: i=0 while i < ((n-1)/2): circuit.swap(up_reg[i], up_reg[n-1-i]) i=i+1 i=0 while i<n: circuit.h(up_reg[i]) if i != n-1: j=i+1 y=i while y>=0: if (np.pi)/(pow(2,(j-y))) > 0: circuit.cu1( - (np.pi)/(pow(2,(j-y))) , up_reg[j] , up_reg[y] ) y=y-1 i=i+1 def getAngle(a, N): s=bin(int(a))[2:].zfill(N) angle = 0 for i in range(0, N): if s[N-1-i] == '1': angle += math.pow(2, -(N-i)) angle *= np.pi return angle def getAngles(a,N): s=bin(int(a))[2:].zfill(N) angles=np.zeros([N]) for i in range(0, N): for j in range(i,N): if s[j]=='1': angles[N-i-1]+=math.pow(2, -(j-i)) angles[N-i-1]*=np.pi return angles def ccphase(circuit, angle, ctl1, ctl2, tgt): circuit.cu1(angle/2,ctl1,tgt) circuit.cx(ctl2,ctl1) circuit.cu1(-angle/2,ctl1,tgt) circuit.cx(ctl2,ctl1) circuit.cu1(angle/2,ctl2,tgt) def phiADD(circuit, q, a, N, inv): angle=getAngles(a,N) for i in range(0,N): if inv==0: circuit.u1(angle[i],q[i]) else: circuit.u1(-angle[i],q[i]) def cphiADD(circuit, q, ctl, a, n, inv): angle=getAngles(a,n) for i in range(0,n): if inv==0: circuit.cu1(angle[i],ctl,q[i]) else: circuit.cu1(-angle[i],ctl,q[i]) def ccphiADD(circuit,q,ctl1,ctl2,a,n,inv): angle=getAngles(a,n) for i in range(0,n): if inv==0: ccphase(circuit,angle[i],ctl1,ctl2,q[i]) else: ccphase(circuit,-angle[i],ctl1,ctl2,q[i]) def ccphiADDmodN(circuit, q, ctl1, ctl2, aux, a, N, n): ccphiADD(circuit, q, ctl1, ctl2, a, n, 0) phiADD(circuit, q, N, n, 1) # phiADD(circuit, q, a,N, 1) create_inverse_QFT(circuit, q, n, 0) circuit.cx(q[n-1],aux) create_QFT(circuit,q,n,0) cphiADD(circuit, q, aux, N, n, 0) # cphiADD(circuit, q, aux, a, n, 0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 1) create_inverse_QFT(circuit, q, n, 0) circuit.x(q[n-1]) circuit.cx(q[n-1], aux) circuit.x(q[n-1]) create_QFT(circuit,q,n,0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 0) def ccphiADDmodN_inv(circuit, q, ctl1, ctl2, aux, a, N, n): ccphiADD(circuit, q, ctl1, ctl2, a, n, 1) create_inverse_QFT(circuit, q, n, 0) circuit.x(q[n-1]) circuit.cx(q[n-1],aux) circuit.x(q[n-1]) create_QFT(circuit, q, n, 0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 0) cphiADD(circuit, q, aux, N, n, 1) # cphiADD(circuit, q, aux, a, n, 1) create_inverse_QFT(circuit, q, n, 0) circuit.cx(q[n-1], aux) create_QFT(circuit, q, n, 0) phiADD(circuit, q, N, n, 0) # phiADD(circuit, q, a, N, 0) ccphiADD(circuit, q, ctl1, ctl2, a, n, 1) def cMULTmodN(circuit, ctl, q, aux, a, N, n): # up_reg = QuantumRegister(1, name = "up_reg") # down_reg = QuantumRegister(n, name = "down_reg") # up_classic = ClassicalRegister(2*n, name="up_classic") # c_aux = ClassicalRegister(1, name = "aux_classic") # cMULTmodN_circuit = QuantumCircuit( # up_reg ,down_reg , aux,up_classic, c_aux, # name=r"${0}^{{{1}^{{{2}}}}} mod{3}$".format(2,2,int(math.log(math.log(a,2),2)), N) # ) # create_QFT(cMULTmodN_circuit,aux,n+1,0) # for i in range(0, n): # ccphiADDmodN(cMULTmodN_circuit, aux, q[i], ctl, aux[n+1], (2**i)*a % N, N, n+1) # create_inverse_QFT(cMULTmodN_circuit, aux, n+1, 0) # for i in range(0, n): # circuit.cswap(ctl,q[i],aux[i]) # cMULTmodN_circuit.cswap(ctl,q[i],aux[i]) # create_QFT(cMULTmodN_circuit, aux, n+1, 0) # ccphiADDmodN_inv(cMULTmodN_circuit, aux, q[i], ctl, aux[n+1], math.pow(2,i)*a_inv % N, N, n+1) # create_inverse_QFT(cMULTmodN_circuit, aux, n+1, 0) # cMULTmodN_circuit_instruction = cMULTmodN_circuit.to_instruction() # circuit.append(cMULTmodN_circuit_instruction, [ctl, *down_reg, *aux]) create_QFT(circuit,aux,n+1,0) for i in range(0, n): ccphiADDmodN(circuit, aux, q[i], ctl, aux[n+1], (2**i)*a % N, N, n+1) create_inverse_QFT(circuit, aux, n+1, 0) for i in range(0, n): circuit.cswap(ctl,q[i],aux[i]) a_inv = modinv(a, N) create_QFT(circuit, aux, n+1, 0) i = n-1 while i >= 0: ccphiADDmodN_inv(circuit, aux, q[i], ctl, aux[n+1], math.pow(2,i)*a_inv % N, N, n+1) i -= 1 create_inverse_QFT(circuit, aux, n+1, 0) def calculate_continued_fraction(b: array.array) -> int: # """Calculate the continued fraction of x/T from the current terms of expansion b.""" x_over_T = 0 for i in reversed(range(len(b) - 1)): x_over_T = 1 / (b[i + 1] + x_over_T) x_over_T += b[0] frac = fractions.Fraction(x_over_T).limit_denominator() return frac.denominator def get_factors(N: int, a: int, measurement: str) -> Optional[List[int]]: # """Apply the continued fractions to find r and the gcd to find the desired factors.""" x_final = int(measurement, 2) #print('In decimal, x_final value for this result is: {}.'.format(x_final)) if x_final <= 0: fail_reason = 'x_final value is <= 0, there are no continued fractions.' else: fail_reason = None #print('Running continued fractions for this case.') # Calculate T and x/T T_upper = len(measurement) T = pow(2, T_upper) x_over_T = x_final / T ## this is our theta # Cycle in which each iteration corresponds to putting one more term in the # calculation of the Continued Fraction (CF) of x/T # Initialize the first values according to CF rule i = 0 b = array.array('i') t = array.array('f') b.append(math.floor(x_over_T)) t.append(x_over_T - b[i]) exponential = 0.0 while i < N and fail_reason is None: # From the 2nd iteration onwards, calculate the new terms of the CF based on the previous terms as the rule suggests if i > 0: try: b_temp = math.floor(1 / t[i - 1]) except ZeroDivisionError as err: b_temp = 0 b.append(b_temp) try: t_temp = (1 / t[i - 1]) - b[i] except ZeroDivisionError as err: t_temp = 0 t.append(t_temp) # type: ignore # Calculate the denominator of the CF using the known terms denominator = calculate_continued_fraction(b) # Increment i for next iteration i += 1 if denominator % 2 == 1: #print('Odd denominator, will try next iteration of continued fractions.') continue # Denominator is even, try to get factors of N. Get the exponential a^(r/2) if denominator < 1000: try: exponential = pow(a, denominator / 2) except OverflowError as err: exponential = 999999999 # Check if the value is too big or not if exponential > 1000000: if exponential == 999999999: fail_reason = 'OverflowError' else: fail_reason = 'denominator of continued fraction is too big (> 10^3).' else: # The value is not too big, get the right values and do the proper gcd() putting_plus = int(exponential + 1) putting_minus = int(exponential - 1) one_factor = math.gcd(putting_plus, N) other_factor = math.gcd(putting_minus, N) # Check if the factors found are trivial factors or are the desired factors if any(factor in {1, N} for factor in (one_factor, other_factor)): #print('Found just trivial factors, not good enough.') # Check if the number has already been found, (use i - 1 because i was already incremented) if t[i - 1] == 0: fail_reason = 'the continued fractions found exactly x_final/(2^(2n)).' else: return sorted((one_factor, other_factor)) return None def process_results(sim_result, circuit, shots, N, a, n): counts_result = sim_result.get_counts(circuit) total_counts = len(counts_result) counts_result_sorted = sorted(counts_result.items(), key=lambda x: x[1], reverse=True) counts_result_keys = list(counts_result.keys()) counts_result_values = list(counts_result.values()) prob_success=0 prob_failure=0 result_successful_counts = 0 result_failure_counts = 0 for initial_undesired_measurement, frequency in counts_result_sorted: measurement = initial_undesired_measurement.split(" ")[1] x_value = int(measurement, 2) prob_this_result = 100 * frequency/shots factors = get_factors(N, a, measurement) if factors: prob_success = prob_success + prob_this_result result_successful_counts = result_successful_counts + 1 if factors not in result_factors: result_factors.append(factors) elif not factors: prob_failure = prob_failure + prob_this_result result_failure_counts = result_failure_counts + 1 return [result_factors, prob_success, prob_failure, total_counts, result_successful_counts,result_failure_counts] def my_shor(a,N,shots): start_time_number = datetime.now() start_time = start_time_number.strftime("%H:%M:%S") summary_result = dict() validate_min('N', N, 3) validate_min('a', a, 2) if N < 1 or N % 2 == 0: raise ValueError('The input needs to be an odd integer greater than 1.') if a >= N or math.gcd(a, N) != 1: raise ValueError('The integer a needs to satisfy a < N and gcd(a, N) = 1.') n = math.ceil(math.log(N,2)) global result_factors result_factors = [] tf, b, p = is_power(N, return_decomposition=True) if tf: print('The input integer is a power: {0}={1}^{2}.'.format(N, b, p)) result_factors.append(b) # """auxilliary quantum register used in addition and multiplication""" aux = QuantumRegister(size = n+2, name="aux_reg") # """single qubit where the sequential QFT is performed""" up_reg = QuantumRegister(1, name = "up_reg") down_reg = QuantumRegister(n, name = "down_reg") # """classical register where the measured values of the sequential QFT are stored""" up_classic = ClassicalRegister(2*n, name="up_classic") # """classical bit used to reset the state of the top qubit to 0 if the previous measurement was 1""" c_aux = ClassicalRegister(1, name = "aux_classic") # """ Create Quantum Circuit """ circuit = QuantumCircuit(up_reg ,down_reg , aux,up_classic, c_aux) circuit.x(down_reg[0]) # circuit.draw(filename = "shor_semiclassical_QFT_initialization") for i in range(0, 2*n): circuit.x(up_reg).c_if(c_aux, 1) circuit.h(up_reg) cMULTmodN(circuit, up_reg[0], down_reg, aux, a**(2**(2*n-1-i)), N, n) # later confirm if this should be up_reg[i] instead of up_reg[0] for j in range(0, 2**i): circuit.u1(getAngle(j, i), up_reg[0]).c_if(up_classic, j) circuit.h(up_reg) circuit.measure(up_reg[0], up_classic[i]) circuit.measure(up_reg[0], c_aux[0]) # circuit.draw(filename = "shor_semiclassical_QFT_final_circuit") circuit.draw() qc_compiled = transpile(circuit, backend, optimization_level = 3) job_sim_1 = backend.run(qc_compiled, shots=shots) sim_result=job_sim_1.result() # counts_result = sim_result.get_counts(circuit) # len(counts_result) # measurement_plot = qiskit.visualization.plot_histogram(counts_result,figsize=(20, 12) ,number_to_keep = 30,bar_labels=True, title = "Measurement results from shor_standard_QFT circuit variant" ) # measurement_plot.savefig("shor_semiclassical_QFT_measurement_result") # measurement_plot processed_result = process_results(sim_result, circuit, shots, N, a, n) end_time_number = datetime.now() end_time = end_time_number.strftime("%H:%M:%S") duration = end_time_number - start_time_number print("Current Start Time =", start_time) print(processed_result) print("Current End Time =", end_time) circuit_count_ops = circuit.count_ops() circuit_decomposed = circuit.decompose() circuit_decomposed_count_ops = circuit_decomposed.count_ops() qc_compiled_count_ops = qc_compiled.count_ops() summary_result["num_qubits"] = n summary_result["Number(N)"] = N summary_result["a"] = a summary_result["start_time"] = start_time summary_result["end_time"] = end_time summary_result["duration"] = duration summary_result["result_factors"] = processed_result[0] summary_result["prob_success"] = processed_result[1] summary_result["prob_failure"] = processed_result[2] summary_result["total_counts"] = processed_result[3] summary_result["result_successful_counts"] = processed_result[4] summary_result["result_failure_counts"] = processed_result[5] summary_result["circuit_width"] = circuit.width() summary_result["circuit_depth"] = circuit.depth() summary_result["circuit_size"] = circuit.size() summary_result["circuit_num_nonlocal_gates"] = circuit.num_nonlocal_gates() summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_clbits"] = circuit.num_clbits summary_result["circuit_num_qubits"] = circuit.num_qubits summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_of_count_ops"] = len(circuit_count_ops) summary_result["circuit_num_of_x"] = circuit_count_ops.get('x') summary_result["circuit_num_of_measure"] = circuit_count_ops.get('measure') summary_result["circuit_num_of_h"] = circuit_count_ops.get('h') summary_result["circuit_num_of_cswap"] = circuit_count_ops.get('cswap') summary_result["circuit_num_of_swap"] = circuit_count_ops.get('swap') summary_result["circuit_num_of_cx"] = circuit_count_ops.get('cx') summary_result["circuit_num_of_toffoli"] = circuit_count_ops.get('toffoli') summary_result["circuit_num_of_p"] = circuit_count_ops.get('p') summary_result["circuit_num_of_t"] = circuit_count_ops.get('t') summary_result["circuit_decomposed_width"] = circuit_decomposed.width() summary_result["circuit_decomposed_depth"] = circuit_decomposed.depth() summary_result["circuit_decomposed_size"] = circuit_decomposed.size() summary_result["circuit_decomposed_num_nonlocal_gates"] = circuit_decomposed.num_nonlocal_gates() summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_clbits"] = circuit_decomposed.num_clbits summary_result["circuit_decomposed_num_qubits"] = circuit_decomposed.num_qubits summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_of_count_ops"] = len(circuit_decomposed_count_ops) summary_result["circuit_decomposed_num_of_x"] = circuit_decomposed_count_ops.get('x') summary_result["circuit_decomposed_num_of_measure"] = circuit_decomposed_count_ops.get('measure') summary_result["circuit_decomposed_num_of_h"] = circuit_decomposed_count_ops.get('h') summary_result["circuit_decomposed_num_of_cswap"] = circuit_decomposed_count_ops.get('cswap') summary_result["circuit_decomposed_num_of_swap"] = circuit_decomposed_count_ops.get('swap') summary_result["circuit_decomposed_num_of_cx"] = circuit_decomposed_count_ops.get('cx') summary_result["circuit_decomposed_num_of_toffoli"] = circuit_decomposed_count_ops.get('toffoli') summary_result["circuit_decomposed_num_of_p"] = circuit_decomposed_count_ops.get('p') summary_result["circuit_decomposed_num_of_t"] = circuit_decomposed_count_ops.get('t') summary_result["qc_compiled_width"] = qc_compiled.width() summary_result["qc_compiled_depth"] = qc_compiled.depth() summary_result["qc_compiled_size"] = qc_compiled.size() summary_result["qc_compiled_num_nonlocal_gates"] = qc_compiled.num_nonlocal_gates() summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_clbits"] = qc_compiled.num_clbits summary_result["qc_compiled_num_qubits"] = qc_compiled.num_qubits summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_of_count_ops"] = len(qc_compiled_count_ops) summary_result["qc_compiled_num_of_x"] = qc_compiled_count_ops.get('x') summary_result["qc_compiled_num_of_measure"] = qc_compiled_count_ops.get('measure') summary_result["qc_compiled_num_of_h"] = qc_compiled_count_ops.get('h') summary_result["qc_compiled_num_of_cswap"] = qc_compiled_count_ops.get('cswap') summary_result["qc_compiled_num_of_swap"] = qc_compiled_count_ops.get('swap') summary_result["qc_compiled_num_of_cx"] = qc_compiled_count_ops.get('cx') summary_result["qc_compiled_num_of_toffoli"] = qc_compiled_count_ops.get('toffoli') summary_result["qc_compiled_num_of_p"] = qc_compiled_count_ops.get('p') summary_result["qc_compiled_num_of_t"] = qc_compiled_count_ops.get('t') return summary_result # Run for just a single number N %%time N = 21 shots = 1024 global result_factors all_summary_result_temp = [] for random_a in range(2, N): if math.gcd(random_a,N) > 1: continue a = random_a summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n".format(a, N)) all_summary_result_temp.append(summary_result) summary_result_list = [] for key, value in summary_result.items(): summary_result_list.append([key,value]) summary_result_list with open("a({0})_N({1})_semiclassical.csv".format(a, N), 'a') as myfile: write = csv.writer(myfile) #write.writerow(fields) write.writerows(summary_result_list) all_summary_result_temp # Run for many numbers N. %%time shots = 1024 global result_factors all_summary_result = [] for N in [15, 21, 33, 35, 39, 51, 55, 57]: for a in range(2, N): if math.gcd(a,N) > 1: continue print("Beginning running for a = {} and N = {}".format(a, N)) summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n\n".format(a, N)) all_summary_result.append(summary_result) all_summary_result %qiskit_copyright
https://github.com/martynscn/Masters-Thesis-on-Quantum-Cryptography
martynscn
# This code has been adapted and modified from IBM Qiskit 2021 and also from https://github.com/ttlion/ShorAlgQiskit. # It uses the implementation as contained in the work of Stephane Beauregard (https://arxiv.org/abs/quant-ph/0205095) # Many thanks to IBM Qiskit team, Tiago Miguel (ttlion), Qubit by Qubit, Peter Shor and Stephane Beauregard. from typing import Optional, Union, Tuple, List import math import array import fractions import logging import numpy as np from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute, IBMQ, transpile,BasicAer, Aer, assemble from qiskit.circuit import Gate, Instruction, ParameterVector from qiskit.circuit.library import QFT from qiskit.providers import BaseBackend, Backend from qiskit.quantum_info import partial_trace from qiskit.utils import summarize_circuits from qiskit.utils.arithmetic import is_power from qiskit.utils.validation import validate_min from qiskit.utils.quantum_instance import QuantumInstance import qiskit.visualization from qiskit.providers.aer import QasmSimulator from datetime import datetime import csv # provider = IBMQ.enable_account("PUT TOKEN HERE") backend = QasmSimulator() from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" #"last_expr" or "all" def get_angles(a: int, n) -> np.ndarray: # """Calculates the array of angles to be used in the addition in Fourier Space.""" s = bin(int(a))[2:].zfill(n + 1) angles = np.zeros([n + 1]) for i in range(0, n + 1): for j in range(i, n + 1): if s[j] == '1': angles[n - i] += math.pow(2, -(j - i)) angles[n - i] *= np.pi return angles[::-1] # This returns the angles in the opposite order def my_create_QFT(qft_num_qubits,approximation_degree: int = 0,do_swaps: bool = False,insert_barriers: bool = True, name: str = 'qft'): # up_reg = QuantumRegister(size = qft_num_qubits, name="aux") circuit_qft = QuantumCircuit(qft_num_qubits) i=qft_num_qubits-1 while i>=0: # circuit_qft.h(up_reg[i]) circuit_qft.h(i) j=i-1 while j>=0: if (np.pi)/(pow(2,(i-j))) > approximation_degree: # circuit_qft.cu1( (np.pi)/(pow(2,(i-j))) , up_reg[i] , up_reg[j] ) circuit_qft.cu1( (np.pi)/(pow(2,(i-j))) , i , j ) j=j-1 if insert_barriers: circuit_qft.barrier() i=i-1 """ If specified, apply the Swaps at the end """ if do_swaps: i=0 while i < ((qft_num_qubits-1)/2): # circuit_qft.swap(up_reg[i], up_reg[qft_num_qubits-1-i]) circuit_qft.swap(i, qft_num_qubits-1-i) i=i+1 circuit_qft.name = "QFT" return circuit_qft def my_create_inverse_QFT(qft_num_qubits,approximation_degree: int = 0,do_swaps: bool = False,insert_barriers: bool = True, name: str = 'iqft'): my_create_QFT_circuit = my_create_QFT(qft_num_qubits,approximation_degree,do_swaps,insert_barriers, name) my_create_inverse_QFT_circuit = my_create_QFT_circuit.inverse() my_create_inverse_QFT_circuit.name = "QFT†" return my_create_inverse_QFT_circuit def phi_add_gate(size: int, angles: Union[np.ndarray, ParameterVector]) -> Gate: # """Gate that performs addition by a in Fourier Space.""" circuit = QuantumCircuit(size, name="phi_add") for i, angle in enumerate(angles): circuit.p(angle, i) return circuit.to_gate() def double_controlled_phi_add_mod_N(num_qubits: int, angles: Union[np.ndarray, ParameterVector],reg_size, a, N, n) -> QuantumCircuit: # """Creates a circuit which implements double-controlled modular addition by a.""" circuit = QuantumCircuit(num_qubits, name="ccphi_add_mod_N") ctl_up = 0 ctl_down = 1 ctl_aux = 2 # get qubits from aux register, omitting the control qubit qubits = range(3, num_qubits) # store the gates representing addition/subtraction by a in Fourier Space phi_add_a = phi_add_gate(len(qubits), angles) iphi_add_a = phi_add_a.inverse() phi_add_N = phi_add_gate(reg_size - 1, get_angles(N, n)) iphi_add_N = phi_add_N.inverse() circuit.append(phi_add_a.control(2), [ctl_up, ctl_down, *qubits]) circuit.append(iphi_add_N, qubits) qft = QFT(n + 1).to_instruction() # qft = my_create_QFT(n + 1).to_instruction() iqft = QFT(n + 1).inverse().to_instruction() # iqft = my_create_inverse_QFT(n + 1).to_instruction() circuit.append(iqft, qubits) circuit.cx(qubits[0], ctl_aux) circuit.append(qft, qubits) circuit.append(phi_add_N, qubits) circuit.append(iphi_add_a.control(2), [ctl_up, ctl_down, *qubits]) circuit.append(iqft, qubits) circuit.x(qubits[0]) circuit.cx(qubits[0], ctl_aux) circuit.x(qubits[0]) circuit.append(qft, qubits) circuit.append(phi_add_a.control(2), [ctl_up, ctl_down, *qubits]) return circuit # """Circuit that implements single controlled modular multiplication by a""" def controlled_multiple_mod_N(num_qubits: int, N: int, a: int, n, aux_reg_size): # """Implements modular multiplication by a as an instruction.""" circuit = QuantumCircuit( num_qubits, # name="multiply_by_{}_mod_{}".format(a % N, N), name=r"${0}^{{{1}^{{{2}}}}} mod{3}$".format(2,2,int(math.log(math.log(a,2),2)), N) ) # label = r"${0}^{{{1}^{{{2}}}}} mod{3}$".format("†","y") down = circuit.qubits[1: n + 1] aux = circuit.qubits[n + 1:] qubits = [aux[i] for i in reversed(range(n + 1))] ctl_up = 0 ctl_aux = aux[-1] angle_params = ParameterVector("angles", length=len(aux) - 1) double_controlled_phi_add = double_controlled_phi_add_mod_N( len(aux) + 2, angle_params, aux_reg_size, a, N, n ) idouble_controlled_phi_add = double_controlled_phi_add.inverse() qft_circuit = QFT(n + 1).to_instruction() # qft_circuit = my_create_QFT(n + 1).to_instruction() iqft_circuit = QFT(n + 1).inverse().to_instruction() # iqft_circuit = my_create_inverse_QFT(n + 1).to_instruction() circuit.append(qft_circuit, qubits) # perform controlled addition by a on the aux register in Fourier space for i, ctl_down in enumerate(down): a_exp = (2 ** i) * a % N angles = get_angles(a_exp, n) bound = double_controlled_phi_add.assign_parameters({angle_params: angles}) circuit.append(bound, [ctl_up, ctl_down, ctl_aux, *qubits]) circuit.append(iqft_circuit, qubits) # perform controlled subtraction by a in Fourier space on both the aux and down register for j in range(n): circuit.cswap(ctl_up, down[j], aux[j]) circuit.append(qft_circuit, qubits) a_inv = modinv(a, N) for i in reversed(range(len(down))): a_exp = (2 ** i) * a_inv % N angles = get_angles(a_exp, n) bound = idouble_controlled_phi_add.assign_parameters({angle_params: angles}) circuit.append(bound, [ctl_up, down[i], ctl_aux, *qubits]) circuit.append(iqft_circuit, qubits) return circuit def modinv(a: int, m: int) -> int: # """Returns the modular multiplicative inverse of a with respect to the modulus m.""" def egcd(a: int, b: int) -> Tuple[int, int, int]: if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y g, x, _ = egcd(a, m) if g != 1: raise ValueError("The greatest common divisor of {} and {} is {}, so the " "modular inverse does not exist.".format(a, m, g)) return x % m def get_factors(N: int, a: int, measurement: str) -> Optional[List[int]]: # """Apply the continued fractions to find r and the gcd to find the desired factors.""" x_final = int(measurement, 2) #print('In decimal, x_final value for this result is: {}.'.format(x_final)) if x_final <= 0: fail_reason = 'x_final value is <= 0, there are no continued fractions.' else: fail_reason = None #print('Running continued fractions for this case.') # Calculate T and x/T T_upper = len(measurement) T = pow(2, T_upper) x_over_T = x_final / T ## this is our theta # Cycle in which each iteration corresponds to putting one more term in the # calculation of the Continued Fraction (CF) of x/T # Initialize the first values according to CF rule i = 0 b = array.array('i') t = array.array('f') b.append(math.floor(x_over_T)) t.append(x_over_T - b[i]) exponential = 0.0 while i < N and fail_reason is None: # From the 2nd iteration onwards, calculate the new terms of the CF based on the previous terms as the rule suggests if i > 0: try: b_temp = math.floor(1 / t[i - 1]) except ZeroDivisionError as err: b_temp = 0 b.append(b_temp) try: t_temp = (1 / t[i - 1]) - b[i] except ZeroDivisionError as err: t_temp = 0 t.append(t_temp) # type: ignore # Calculate the denominator of the CF using the known terms denominator = calculate_continued_fraction(b) # Increment i for next iteration i += 1 if denominator % 2 == 1: #print('Odd denominator, will try next iteration of continued fractions.') continue # Denominator is even, try to get factors of N. Get the exponential a^(r/2) if denominator < 1000: try: exponential = pow(a, denominator / 2) except OverflowError as err: exponential = 999999999 # Check if the value is too big or not if exponential > 1000000: if exponential == 999999999: fail_reason = 'OverflowError' else: fail_reason = 'denominator of continued fraction is too big (> 10^9).' else: # The value is not too big, get the right values and do the proper gcd() putting_plus = int(exponential + 1) putting_minus = int(exponential - 1) one_factor = math.gcd(putting_plus, N) other_factor = math.gcd(putting_minus, N) # Check if the factors found are trivial factors or are the desired factors if any(factor in {1, N} for factor in (one_factor, other_factor)): #print('Found just trivial factors, not good enough.') # Check if the number has already been found, (use i - 1 because i was already incremented) if t[i - 1] == 0: fail_reason = 'the continued fractions found exactly x_final/(2^(2n)).' else: return sorted((one_factor, other_factor)) # Search for factors failed, write the reason for failure to the debug logs #print('Cannot find factors from measurement {0} because {1}'.format(measurement, fail_reason or 'it took too many attempts.')) return None def calculate_continued_fraction(b: array.array) -> int: # """Calculate the continued fraction of x/T from the current terms of expansion b.""" x_over_T = 0 for i in reversed(range(len(b) - 1)): x_over_T = 1 / (b[i + 1] + x_over_T) x_over_T += b[0] frac = fractions.Fraction(x_over_T).limit_denominator() #print('Approximation number %s of continued fractions:'.format(len(b))) #print("Numerator:{0} \t\t Denominator: {1}.".format(frac.numerator, frac.denominator)) return frac.denominator def process_results(sim_result, circuit, shots, N, a, n): counts_result = sim_result.get_counts(circuit) total_counts = len(counts_result) counts_result_sorted = sorted(counts_result.items(), key=lambda x: x[1], reverse=True) # """ Print info to user from the simulation results """ # print('Printing the various results followed by how many times they happened (out of the {} cases):\n'.format(shots)) counts_result_keys = list(counts_result.keys()) counts_result_values = list(counts_result.values()) #i=0 #while i < len(counts_result): #print('Result \"{0}\" happened {1} times out of {2}\n'.format(list(sim_result.get_counts().keys())[i],list(sim_result.get_counts().values())[i],shots)) #print('Result \"{0}\" happened {1} times out of {2}\n'.format(counts_result_keys[i],counts_result_values[i],shots)) #i=i+1 prob_success=0 prob_failure=0 result_successful_counts = 0 result_failure_counts = 0 # len(counts_result_sorted) # For each simulation result, print proper info to user and try to calculate the factors of N #for measurement in counts_result_keys: for measurement, frequency in counts_result_sorted: # Get the x_final value from the final state qubits x_value = int(measurement, 2) #prob_this_result = 100 * ( int(counts_result[measurement] ) ) / (shots) prob_this_result = 100 * frequency/shots # print("------> Analyzing result {0}. This result happened in {1:.4f} % of all cases\nIn decimal, x_final value for this result is: {2}".format(measurement,prob_this_result,x_value)) factors = get_factors(N, a, measurement) if factors: prob_success = prob_success + prob_this_result # print('Found factors {0} from measurement {1} which is {2} in decimal.\n'.format(factors, measurement, x_value)) result_successful_counts = result_successful_counts + 1 if factors not in result_factors: result_factors.append(factors) elif not factors: prob_failure = prob_failure + prob_this_result result_failure_counts = result_failure_counts + 1 return [result_factors, prob_success, prob_failure, total_counts, result_successful_counts,result_failure_counts] def my_shor(a,N,shots): start_time_number = datetime.now() start_time = start_time_number.strftime("%H:%M:%S") summary_result = dict() validate_min('N', N, 3) validate_min('a', a, 2) if N < 1 or N % 2 == 0: raise ValueError('The input needs to be an odd integer greater than 1.') if a >= N or math.gcd(a, N) != 1: raise ValueError('The integer a needs to satisfy a < N and gcd(a, N) = 1.') n = math.ceil(math.log(N,2)) global result_factors result_factors = [] tf, b, p = is_power(N, return_decomposition=True) if tf: print('The input integer is a power: {0}={1}^{2}.'.format(N, b, p)) result_factors.append(b) # """auxilliary quantum register used in addition and multiplication""" aux_reg = QuantumRegister(size = n+2, name="aux_reg") up_reg = QuantumRegister(2*n, name = "up_reg") # """quantum register where the multiplications are made""" down_reg = QuantumRegister(n, name = "down_reg") # """classical register where the measured values of the QFT are stored""" up_classic = ClassicalRegister(2*n, name="up_classic") # """ Create Quantum Circuit """ circuit = QuantumCircuit(up_reg ,down_reg ,aux_reg, up_classic, name="Shor circuit(N={}, a={})".format(N, a)) # phi_add_N_gate = phiADD(circuit,q,a,N,inv) phi_add_N_gate = phi_add_gate(aux_reg.size - 1, get_angles(N,n)) iphi_add_N_gate = phi_add_N_gate.inverse() # """ Initialize down register to 1 and create maximal superposition in top register """ circuit.h(up_reg) circuit.x(down_reg[0]) # circuit.draw(filename = "shor_standard_QFT") # """ Apply the multiplication gates as showed in the report in order to create the exponentiation """ for i, ctl_up in enumerate(up_reg): # type: ignore a_aux = int(pow(a, pow(2, i))) controlled_multiple_mod_N_circuit = controlled_multiple_mod_N( len(down_reg) + len(aux_reg) + 1, N, a_aux,n,aux_reg.size ) controlled_multiple_mod_N_result = controlled_multiple_mod_N_circuit.to_instruction() circuit.append( controlled_multiple_mod_N_result, [ctl_up, *down_reg, *aux_reg] ) # circuit.draw() iqft = QFT(len(up_reg)).inverse().to_instruction() # iqft = my_create_inverse_QFT(len(up_reg)).to_instruction() # iqft = my_create_inverse_QFT(len(up_reg), insert_barriers = False).to_gate(label = r"$QFT^{{{0}}}$".format("†")) circuit.append(iqft, up_reg) circuit.measure(up_reg, up_classic) # circuit.draw(filename = "shor_standard_QFT_final_circuit",fold = -1 ) # print(summarize_circuits(circuit)) # circuit.draw() print('Running with N={0} and a={1} with number of qubits n={2}'.format(N, a, 4*n + 2)) qc_compiled = transpile(circuit, backend, optimization_level = 3) job_sim_1 = backend.run(qc_compiled, shots=shots) sim_result=job_sim_1.result() # counts_result = sim_result.get_counts(circuit) # len(counts_result) # measurement_plot = qiskit.visualization.plot_histogram(counts_result,figsize=(20, 12) ,number_to_keep = 30,bar_labels=True, title = "Measurement results from shor_standard_QFT circuit variant" ) # measurement_plot.savefig("shor_standard_QFT_measurement") # measurement_plot processed_result = process_results(sim_result, circuit, shots, N, a, n) end_time_number = datetime.now() end_time = end_time_number.strftime("%H:%M:%S") duration = end_time_number - start_time_number print("Current Start Time =", start_time) print(processed_result) print("Current End Time =", end_time) circuit_count_ops = circuit.count_ops() circuit_decomposed = circuit.decompose() circuit_decomposed_count_ops = circuit_decomposed.count_ops() qc_compiled_count_ops = qc_compiled.count_ops() summary_result["num_qubits"] = n summary_result["Number(N)"] = N summary_result["a"] = a summary_result["start_time"] = start_time summary_result["end_time"] = end_time summary_result["duration"] = duration summary_result["result_factors"] = processed_result[0] summary_result["prob_success"] = processed_result[1] summary_result["prob_failure"] = processed_result[2] summary_result["total_counts"] = processed_result[3] summary_result["result_successful_counts"] = processed_result[4] summary_result["result_failure_counts"] = processed_result[5] summary_result["circuit_width"] = circuit.width() summary_result["circuit_depth"] = circuit.depth() summary_result["circuit_size"] = circuit.size() summary_result["circuit_num_nonlocal_gates"] = circuit.num_nonlocal_gates() summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_clbits"] = circuit.num_clbits summary_result["circuit_num_qubits"] = circuit.num_qubits summary_result["circuit_num_ancillas"] = circuit.num_ancillas summary_result["circuit_num_of_count_ops"] = len(circuit_count_ops) summary_result["circuit_num_of_x"] = circuit_count_ops.get('x') summary_result["circuit_num_of_measure"] = circuit_count_ops.get('measure') summary_result["circuit_num_of_h"] = circuit_count_ops.get('h') summary_result["circuit_num_of_cswap"] = circuit_count_ops.get('cswap') summary_result["circuit_num_of_swap"] = circuit_count_ops.get('swap') summary_result["circuit_num_of_cx"] = circuit_count_ops.get('cx') summary_result["circuit_num_of_toffoli"] = circuit_count_ops.get('toffoli') summary_result["circuit_num_of_p"] = circuit_count_ops.get('p') summary_result["circuit_num_of_t"] = circuit_count_ops.get('t') summary_result["circuit_decomposed_width"] = circuit_decomposed.width() summary_result["circuit_decomposed_depth"] = circuit_decomposed.depth() summary_result["circuit_decomposed_size"] = circuit_decomposed.size() summary_result["circuit_decomposed_num_nonlocal_gates"] = circuit_decomposed.num_nonlocal_gates() summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_clbits"] = circuit_decomposed.num_clbits summary_result["circuit_decomposed_num_qubits"] = circuit_decomposed.num_qubits summary_result["circuit_decomposed_num_ancillas"] = circuit_decomposed.num_ancillas summary_result["circuit_decomposed_num_of_count_ops"] = len(circuit_decomposed_count_ops) summary_result["circuit_decomposed_num_of_x"] = circuit_decomposed_count_ops.get('x') summary_result["circuit_decomposed_num_of_measure"] = circuit_decomposed_count_ops.get('measure') summary_result["circuit_decomposed_num_of_h"] = circuit_decomposed_count_ops.get('h') summary_result["circuit_decomposed_num_of_cswap"] = circuit_decomposed_count_ops.get('cswap') summary_result["circuit_decomposed_num_of_swap"] = circuit_decomposed_count_ops.get('swap') summary_result["circuit_decomposed_num_of_cx"] = circuit_decomposed_count_ops.get('cx') summary_result["circuit_decomposed_num_of_toffoli"] = circuit_decomposed_count_ops.get('toffoli') summary_result["circuit_decomposed_num_of_p"] = circuit_decomposed_count_ops.get('p') summary_result["circuit_decomposed_num_of_t"] = circuit_decomposed_count_ops.get('t') summary_result["qc_compiled_width"] = qc_compiled.width() summary_result["qc_compiled_depth"] = qc_compiled.depth() summary_result["qc_compiled_size"] = qc_compiled.size() summary_result["qc_compiled_num_nonlocal_gates"] = qc_compiled.num_nonlocal_gates() summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_clbits"] = qc_compiled.num_clbits summary_result["qc_compiled_num_qubits"] = qc_compiled.num_qubits summary_result["qc_compiled_num_ancillas"] = qc_compiled.num_ancillas summary_result["qc_compiled_num_of_count_ops"] = len(qc_compiled_count_ops) summary_result["qc_compiled_num_of_x"] = qc_compiled_count_ops.get('x') summary_result["qc_compiled_num_of_measure"] = qc_compiled_count_ops.get('measure') summary_result["qc_compiled_num_of_h"] = qc_compiled_count_ops.get('h') summary_result["qc_compiled_num_of_cswap"] = qc_compiled_count_ops.get('cswap') summary_result["qc_compiled_num_of_swap"] = qc_compiled_count_ops.get('swap') summary_result["qc_compiled_num_of_cx"] = qc_compiled_count_ops.get('cx') summary_result["qc_compiled_num_of_toffoli"] = qc_compiled_count_ops.get('toffoli') summary_result["qc_compiled_num_of_p"] = qc_compiled_count_ops.get('p') summary_result["qc_compiled_num_of_t"] = qc_compiled_count_ops.get('t') return summary_result # Run for just a single number N %%time N = 33 shots = 1024 global result_factors all_summary_result_temp = [] for random_a in range(16, 17): if math.gcd(random_a,N) > 1: continue a = random_a summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n".format(a, N)) all_summary_result_temp.append(summary_result) summary_result_list = [] for key, value in summary_result.items(): summary_result_list.append([key,value]) summary_result_list with open("a({0})_N({1})_standard.csv".format(a, N), 'a') as myfile: write = csv.writer(myfile) #write.writerow(fields) write.writerows(summary_result_list) all_summary_result_temp # Run for many numbers N. %%time shots = 1024 global result_factors all_summary_result = [] for N in [15, 21, 33, 35, 39, 51, 55, 57]: for a in range(2, N): if math.gcd(a,N) > 1: continue print("Beginning running for a = {} and N = {}".format(a, N)) summary_result = my_shor(a,N,shots) print("Finished running for a = {} and N = {}\n\n".format(a, N)) all_summary_result.append(summary_result) all_summary_result %qiskit_copyright
https://github.com/AnkRaw/Quantum-Convolutional-Neural-Network
AnkRaw
# Importing Libraries import torch from torch import cat, no_grad, manual_seed from torch.utils.data import DataLoader from torchvision import transforms import torch.optim as optim from torch.nn import ( Module, Conv2d, Linear, Dropout2d, NLLLoss ) import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from qiskit_machine_learning.neural_networks import EstimatorQNN from qiskit_machine_learning.connectors import TorchConnector from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit import QuantumCircuit from qiskit.visualization import circuit_drawer # Imports for CIFAR-10s from torchvision.datasets import CIFAR10 from torchvision import transforms def prepare_data(X, labels_to_keep, batch_size): # Filtering out labels (originally 0-9), leaving only labels 0 and 1 filtered_indices = [i for i in range(len(X.targets)) if X.targets[i] in labels_to_keep] X.data = X.data[filtered_indices] X.targets = [X.targets[i] for i in filtered_indices] # Defining dataloader with filtered data loader = DataLoader(X, batch_size=batch_size, shuffle=True) return loader # Set seed for reproducibility manual_seed(42) # CIFAR-10 data transformation transform = transforms.Compose([ transforms.ToTensor(), # convert the images to tensors transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalization usign mean and std. ]) labels_to_keep = [0, 1] batch_size = 1 # Preparing Train Data X_train = CIFAR10(root="./data", train=True, download=True, transform=transform) train_loader = prepare_data(X_train, labels_to_keep, batch_size) # Preparing Test Data X_test = CIFAR10(root="./data", train=False, download=True, transform=transform) test_loader = prepare_data(X_test, labels_to_keep, batch_size) print(f"Training dataset size: {len(train_loader.dataset)}") print(f"Test dataset size: {len(test_loader.dataset)}") # Defining and creating QNN def create_qnn(): feature_map = ZZFeatureMap(2) # ZZFeatureMap with 2 bits, entanglement between qubits based on the pairwise product of input features. ansatz = RealAmplitudes(2, reps=1) # parameters (angles, in the case of RealAmplitudes) that are adjusted during the training process to optimize the quantum model for a specific task. qc = QuantumCircuit(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, input_gradients=True, ) return qnn qnn = create_qnn() # Visualizing the QNN circuit circuit_drawer(qnn.circuit, output='mpl') # Defining torch NN module class Net(Module): def __init__(self, qnn): super().__init__() self.conv1 = Conv2d(3, 16, kernel_size=3, padding=1) self.conv2 = Conv2d(16, 32, kernel_size=3, padding=1) self.dropout = Dropout2d() self.fc1 = Linear(32 * 8 * 8, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN self.qnn = TorchConnector(qnn) self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) x = self.fc3(x) return cat((x, 1 - x), -1) # Creating model model = Net(qnn) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Defining model, optimizer, and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = NLLLoss() # Starting training epochs = 10 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) # Move data to GPU optimizer.zero_grad(set_to_none=True) output = model(data) loss = loss_func(output, target) loss.backward() optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # Plotting loss convergence plt.plot(loss_list) plt.title("Hybrid NN Training Convergence") plt.xlabel("Training Iterations") plt.ylabel("Neg. Log Likelihood Loss") plt.show() # Saving the model torch.save( model.state_dict(), "model_cifar10_10EPOCHS.pt") # Loading the model qnn_cifar10 = create_qnn() model_cifar10 = Net(qnn_cifar10) model_cifar10.load_state_dict(torch.load("model_cifar10.pt")) correct = 0 total = 0 model_cifar10.eval() with torch.no_grad(): for data, target in test_loader: output = model_cifar10(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() # Calculating and print test accuracy test_accuracy = correct / total * 100 print(f"Test Accuracy: {test_accuracy:.2f}%") # Plotting predicted labels n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model_cifar10.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model_cifar10(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(np.transpose(data[0].numpy(), (1, 2, 0))) axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title("Predicted {0}\n Actual {1}".format(pred.item(), target.item())) count += 1 plt.show()
https://github.com/EusseJhoan/DeutschJosza_algorithm
EusseJhoan
from qiskit import QuantumCircuit, transpile, Aer from qiskit.visualization import plot_histogram import numpy as np sim = Aer.get_backend('aer_simulator') def U_f1(qc): return qc def U_f2(qc): qc.x(1) #Compuerta X al segundo qubit return qc def U_f3(qc): qc.cx(0,1) #Compuerta CNOT entre primer y segundo quibit (el primero es el que controla) return qc def U_f4(qc): qc.cx(0,1) #Compuerta CNOT entre primer y segundo quibit (el primero es el que controla) qc.x(1) #Compuerta X al segundo qubit return qc def Deutsch(U_f): qc=QuantumCircuit(2,1) #Se crea un circuito cuántico con 2 bits cuánticos y 1 canal clásico qc.x(1) #Compuerta X al segundo qubit (inicializar estado |1>) qc.h(0) #Compuerta H al primer qubit qc.h(1) #Compuerta H al segundo qubit qc.barrier() #Barrera (empieza oráculo) qc = U_f(qc) #Agregamos el oráculo qc.barrier() #Barrera (termina oráculo) qc.h(0) #Compuerta H al primer qubit qc.measure(0,0) #Medimos el primer qubit y enviamos señal al canal clásico return qc qc=Deutsch(U_f1) # definición circuito con oráculo usando f_1(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f2) #definición circuito con oráculo usando f_2(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas del simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f3) #definición circuito con oráculo usando f_3(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=Deutsch(U_f4) #definición circuito con oráculo usando f_4(x) display(qc.draw()) # visualización del circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados #oráculo para f(x) constante para un número n de bits en el registro def constant(qc,n): ran=np.random.randint(2) #selección aleatoria de 0 ó 1 if ran == 1: qc.x(n) #si el número aleatorio es 1 se pone compuerta X en el objetivo (se induce fase global -1 al registro) return qc #oráculo para f(x) balanceado para un número n de bits en el registro def balanced(qc,n): for i in range(n): qc.cx(i,n) #se crea una CNOT entre cada qubit del registro y el objetivo (los qubits del registro controlan) ran=np.random.randint(2) #selección aleatoria de 0 ó 1 if ran == 1: qc.x(n) #si el número aleatorio es 1 se pone compuerta X en el objetivo (se induce fase global -1 al registro) return qc def D_J(U_f,n): qc=QuantumCircuit(n+1,n) #Se crea un circuito cuántico con n+1 quibits y n canales clásicos qc.x(n) #Compuerta X al bit del registro for i in range(n+1): qc.h(i) #Compuerta H a todos los bits qc.barrier() #Barrera (empieza oráculo) qc = U_f(qc,n) #Agregamos el oráculo qc.barrier() #Barrera (termina oráculo) for i in range(n): qc.h(i) #Compuerta H a los n bits del registro qc.measure(i,i) #Medición los n bits del registro return qc qc=D_J(constant,3) #definición circuito con oráculo constante y 3 bits en registro display(qc.draw()) #ver circuito counts = sim.run(qc).result().get_counts() #contando las medidas de simulador cuántico plot_histogram(counts) #histrograma de resultados qc=D_J(balanced,3) display(qc.draw()) counts = sim.run(qc).result().get_counts() plot_histogram(counts)
https://github.com/strangequarkkk/BB84-Protocol-for-QKD
strangequarkkk
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) qc.barrier() # Alice now sends the qubit to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) # Alice now sends the qubit to Bob # but Eve intercepts and tries to read it qc.measure(0, 0) qc.barrier() # Eve then passes this on to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) n = 100 ## Step 1 # Alice generates bits. alice_bits = np.random.randint(0,2,n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = np.random.randint(0,2,n) # Function to compare the bits & bases generated by alice, and then 'encode' the message. Basically determines the state of the qubit/photon to send. def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepare qubit in Z-basis if bits[i] == 0: pass else: qc.x(0) else: # Prepare qubit in X-basis if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message # Alice computes the encoded message using the function defined above. message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = np.random.randint(0,2,n) # Function to decode the message sent by alice by comparing qubit/photon states with Bob's generated bases. def measure_message(message, bases): backend = Aer.get_backend('aer_simulator') measurements = [] for q in range(n): if bases[q] == 0: # measuring in Z-basis message[q].measure(0,0) if bases[q] == 1: # measuring in X-basis message[q].h(0) message[q].measure(0,0) aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(message[q], shots=1, memory=True) result = aer_sim.run(qobj).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements # Decode the message according to his bases bob_results = measure_message(message, bob_bases) ## Step 4 # Function to perform sifting i.e. disregard the bits for which Bob's & A;ice's bases didnot match. def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits # Performing sifting for Alice's and Bob's bits. alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print("Alice's key after sifting (without interception)", alice_key) print("Bob's key after sifting (without interception) ", bob_key) # # Step 5 # # Function for parameter estimation i.e. determining the error rate by comparing subsets taen from both Alice's key & Bob's key. # def sample_bits(bits, selection): # sample = [] # for i in selection: # # use np.mod to make sure the # # bit we sample is always in # # the list range # i = np.mod(i, len(bits)) # # pop(i) removes the element of the # # list at index 'i' # sample.append(bits.pop(i)) # return sample # # Performing parameter estimation & disregarding the bits used for comparison from Alice's & Bob's key. # sample_size = 15 # bit_selection = np.random.randint(0,n,size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") ## Step 1 alice_bits = np.random.randint(2, size=n) ## Step 2 alice_bases = np.random.randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = np.random.randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = np.random.randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print("Alice's key after sifting (with interception)", alice_key) print("Bob's key after sifting (with interception) ", bob_key) # ## Step 5 # sample_size = 15 # bit_selection = np.random.randint(n, size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") plt.rcParams['axes.linewidth'] = 2 mpl.rcParams['font.family'] = ['Georgia'] plt.figure(figsize=(10.5,6)) ax=plt.axes() ax.set_title('') ax.set_xlabel('$n$ (Number of bits drawn from the sifted keys for determining error rate)',fontsize = 18,labelpad=10) ax.set_ylabel(r'$P(Eve\ detected)$',fontsize = 18,labelpad=10) ax.xaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.yaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.tick_params(axis='x', labelsize=20) ax.tick_params(axis='y', labelsize=20) ax. xaxis. label. set_size(20) ax. yaxis. label. set_size(20) n = 30 x = np.arange(n+1) y = 1 - 0.75**x ax.plot(x,y,color = plt.cm.rainbow(np.linspace(0, 1, 5))[0], marker = "s", markerfacecolor='r')
https://github.com/luis6156/Shor-s-Quantum-Algorithm
luis6156
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
with open('in-exemplo.txt', 'r') as f: print(f.read()) with open('out-exemplo.txt', 'r') as f: print(f.read()) import time import matplotlib.pyplot as plt import pandas as pd import os import subprocess %matplotlib inline #Roda entradas def roda_com_entrada(executavel, arquivo_in, envs = '1', deb = '0'): with open(arquivo_in) as f: start = time.perf_counter() a = f.read() proc = subprocess.run([executavel], input=a, text=True, capture_output=True, env=dict(OMP_NUM_THREADS=envs, DEBUG=deb, **os.environ)) end = time.perf_counter() f.close() ret = '' for i in a: if i == "\n": break ret += i return (proc.stdout, end - start, int(ret)) v #retorna tamanho do tour apartir do stdout buf = '' for i in out: if i == " ": return float(buf) buf += i #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] resultados1 = [] resultados2 = [] resultados3 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca_local_antigo','busca-exaustiva/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt') c = roda_com_entrada('./heuristico/heuristico','busca-exaustiva/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) resultados1.append(tamanho_tour(a[0])) resultados2.append(tamanho_tour(b[0])) resultados3.append(tamanho_tour(c[0])) #Teste com entrada um pouco maior print("Rodando entrada: 8") tempos.append(roda_com_entrada('./busca_local_antigo','maior.txt')[1]) tempos_1.append(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[1]) tempos_2.append(roda_com_entrada('./heuristico/heuristico','maior.txt')[1]) tamanho_entradas.append(roda_com_entrada('./busca-local/busca-local','maior.txt')[2]) resultados1.append(tamanho_tour(roda_com_entrada('./busca_local_antigo','maior.txt')[0])) resultados2.append(tamanho_tour(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[0])) resultados3.append(tamanho_tour(roda_com_entrada('./heuristico/heuristico','maior.txt')[0])) plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-exaustiva", "busca-local","heuristico"]) plt.show() plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-local","heuristico"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-tempo"] = pd.Series(tempos) df["busca-exaustiva-tempo"] = pd.Series(tempos_1) df["heuristica-tempo"] = pd.Series(tempos_2) df["busca-local-resultado"] = pd.Series(resultados1) df["busca-exaustiva-resultado"] = pd.Series(resultados2) df["heuristica-resultado"] = pd.Series(resultados3) df df.describe() #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] tempos_3 = [] tempos_4 = [] tempos_5 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','2') c = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','3') d = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','4') e = roda_com_entrada('./busca_local_antigo','busca-local/in-'+str(i)+'.txt') f = roda_com_entrada('./busca-local/busca-local-gpu','busca-local/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tempos_3.append(d[1]) tempos_4.append(e[1]) tempos_5.append(f[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.plot(tamanho_entradas, tempos_3) plt.legend(["1 thread otimizado", "2 threads otimizado","3 threads otimizado", "4 threads otimizado", "Sem otimizações"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_3) plt.plot(tamanho_entradas, tempos_5) plt.legend(["4 thread otimizado", "GPU"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_4) plt.legend(["1 thread otimizado", "Sem otimizações"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-1-thread"] = pd.Series(tempos) df["busca-local-2-threads"] = pd.Series(tempos_1) df["busca-local-3-threads"] = pd.Series(tempos_2) df["busca-local-4-threads"] = pd.Series(tempos_3) df["busca-local-gpu"] = pd.Series(tempos_5) df["busca-local-semopt"] = pd.Series(tempos_4) df #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) if i != 7: a = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '1') tempos.append(a[1]) b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '8', '0') c = roda_com_entrada('./busca-exaustiva-apenasbb','busca-exaustiva/in-'+str(i)+'.txt', '1', '0') tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas[:-1], tempos) plt.plot(tamanho_entradas[:-1], tempos_2[:-1]) plt.legend(["Exaustivo Simples", "Exaustivo Branch and Bound"]) plt.show() plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.legend(["Branch and Bound Paralelo", "Branch and Bound Simples"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-exaustiva-simples"] = pd.Series(tempos) df["busca-exaustiva-branchnbound"] = pd.Series(tempos_2) df["busca-exaustiva-branchnbound-par"] = pd.Series(tempos_1) df
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
with open('in-exemplo.txt', 'r') as f: print(f.read()) with open('out-exemplo.txt', 'r') as f: print(f.read()) import time import matplotlib.pyplot as plt import pandas as pd import os import subprocess %matplotlib inline #Roda entradas def roda_com_entrada(executavel, arquivo_in, envs = '1', deb = '0'): with open(arquivo_in) as f: start = time.perf_counter() a = f.read() proc = subprocess.run([executavel], input=a, text=True, capture_output=True, env=dict(OMP_NUM_THREADS=envs, DEBUG=deb, **os.environ)) end = time.perf_counter() f.close() ret = '' for i in a: if i == "\n": break ret += i return (proc.stdout, end - start, int(ret)) #retorna tamanho do tour apartir do stdout def tamanho_tour(out): buf = '' for i in out: if i == " ": return float(buf) buf += i #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] resultados1 = [] resultados2 = [] resultados3 = [] #Usando as mesmas entradas for i in range(8): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca_local_antigo','busca-exaustiva/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt') c = roda_com_entrada('./heuristico/heuristico','busca-exaustiva/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tamanho_entradas.append(a[2]) resultados1.append(tamanho_tour(a[0])) resultados2.append(tamanho_tour(b[0])) resultados3.append(tamanho_tour(c[0])) #Teste com entrada um pouco maior print("Rodando entrada: 8") tempos.append(roda_com_entrada('./busca_local_antigo','maior.txt')[1]) tempos_1.append(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[1]) tempos_2.append(roda_com_entrada('./heuristico/heuristico','maior.txt')[1]) tamanho_entradas.append(roda_com_entrada('./busca-local/busca-local','maior.txt')[2]) resultados1.append(tamanho_tour(roda_com_entrada('./busca_local_antigo','maior.txt')[0])) resultados2.append(tamanho_tour(roda_com_entrada('./busca-exaustiva/busca-exaustiva','maior.txt')[0])) resultados3.append(tamanho_tour(roda_com_entrada('./heuristico/heuristico','maior.txt')[0])) plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-exaustiva", "busca-local","heuristico"]) plt.show() plt.title("Comparacao Desempenho") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_2) plt.legend(["busca-local","heuristico"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-tempo"] = pd.Series(tempos) df["busca-exaustiva-tempo"] = pd.Series(tempos_1) df["heuristica-tempo"] = pd.Series(tempos_2) df["busca-local-resultado"] = pd.Series(resultados1) df["busca-exaustiva-resultado"] = pd.Series(resultados2) df["heuristica-resultado"] = pd.Series(resultados3) df df.describe() #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] tempos_2 = [] tempos_3 = [] tempos_4 = [] tempos_5 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt') b = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','2') c = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','3') d = roda_com_entrada('./busca-local/busca-local-paralela','busca-local/in-'+str(i)+'.txt','4') e = roda_com_entrada('./busca_local_antigo','busca-local/in-'+str(i)+'.txt') f = roda_com_entrada('./busca-local/busca-local-gpu','busca-local/in-'+str(i)+'.txt') tempos.append(a[1]) tempos_1.append(b[1]) tempos_2.append(c[1]) tempos_3.append(d[1]) tempos_4.append(e[1]) tempos_5.append(f[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.plot(tamanho_entradas, tempos_2) plt.plot(tamanho_entradas, tempos_3) plt.legend(["1 thread otimizado", "2 threads otimizado","3 threads otimizado", "4 threads otimizado", "Sem otimizações"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos_3) plt.plot(tamanho_entradas, tempos_5) plt.legend(["4 thread otimizado", "GPU"]) plt.show() plt.title("Comparacao Desempenho Busca Local") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_4) plt.legend(["1 thread otimizado", "Sem otimizações"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-local-1-thread"] = pd.Series(tempos) df["busca-local-2-threads"] = pd.Series(tempos_1) df["busca-local-3-threads"] = pd.Series(tempos_2) df["busca-local-4-threads"] = pd.Series(tempos_3) df["busca-local-gpu"] = pd.Series(tempos_5) df["busca-local-semopt"] = pd.Series(tempos_4) df #Cria resultados tamanho_entradas = [] tempos = [] tempos_1 = [] #Usando as mesmas entradas for i in range(7): print("Rodando entrada: "+str(i)) a = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '1') b = roda_com_entrada('./busca-exaustiva/busca-exaustiva','busca-exaustiva/in-'+str(i)+'.txt', '1', '0') tempos.append(a[1]) tempos_1.append(b[1]) tamanho_entradas.append(a[2]) plt.title("Comparacao Desempenho Busca Exaustiva") plt.ylabel("Tempo (s)") plt.xlabel("Tamanho entradas") plt.plot(tamanho_entradas, tempos) plt.plot(tamanho_entradas, tempos_1) plt.legend(["Exaustivo Simples", "Exaustivo Branch and Bound"]) plt.show() df = pd.DataFrame() df["Tamanho Entrada"] = pd.Series(tamanho_entradas) df["busca-exaustiva-simples"] = pd.Series(tempos) df["busca-exaustiva-branchnbound"] = pd.Series(tempos_1) df
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/hugoecarl/TSP-Problem-Study
hugoecarl
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/LeanderThiessen/antisymmetrization-circuit
LeanderThiessen
#General Imports import numpy as np import matplotlib.pyplot as plt import time from itertools import product,permutations from string import ascii_lowercase as asc import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) #Qiskit Imports from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile from qiskit.circuit.library.standard_gates import MCXGate, CXGate, XGate, CSwapGate from qiskit.circuit.library import Diagonal from qiskit.quantum_info import partial_trace,purity #############FUNCTIONS########################################################################################################### #wrapper for measuring time taken by function 'func' def timeis(func): def wrap(*args,**kwargs): start = time.time() result = func(*args,**kwargs) end = time.time() if measure_time: print("{} took {:.2f}s".format(func.__name__,end-start)) return result return wrap #check if inputs are valid def check_inputs(n,m): if n == 1: print("Case n=1 currently not supported") correct = 1 if m>2**n: correct == 0 if correct == 1: print("Inputs valid") return 0 #initialize quantum circuit with electron register, swap_ancillas, record_ancillas, collision_ancillas def initialize_circuit(n,m,L): circuit = QuantumCircuit() #add main electron register (seed/target) for e in range(m): r_q = QuantumRegister(n,'{}'.format(asc[e]))#asc[i]=ith letter of the alphabe c = QuantumCircuit(r_q) circuit = circuit.combine(c) #add ancillas for comparator_swaps for k in range(int(np.ceil(m/2))): anc_q = QuantumRegister(n-1,'anc_{}'.format(k)) c = QuantumCircuit(anc_q) circuit = circuit.combine(c) #add 'record' register for storing outcomes of comparators for l in range(L): anc_q = QuantumRegister(1,'record_{}'.format(l)) c = QuantumCircuit(anc_q) circuit = circuit.combine(c) #add ancillas to store the occurence of collisions between pairs of electrons for c in range(m-1): anc_q = QuantumRegister(1,'coll_record_{}'.format(c)) c = QuantumCircuit(anc_q) circuit = circuit.combine(c) #add one ancilla to store if all other collision ancillas are '1' anc_q = QuantumRegister(1,'collision_test') c = QuantumCircuit(anc_q) circuit = circuit.combine(c) return circuit #returns x in binary format as string of length n, incl leading zeros def binary_n(x,n): return bin(x)[2:].zfill(n) #initializes j-th electron register with number x def binary_init(circuit,n,m,input): for k,e in enumerate(input): e_bin = binary_n(e,n) for i in range(n): if e_bin[i]=='1': circuit.append(XGate(),[i+k*n]) return circuit #Apply a Hadamard gate to each qubit in the electron register def Hadamard(circuit,n,m): for q in range(n*m): circuit.h(q) return circuit #Compare bits at positions x and y, only output=(x<y) to position anc def bit_compare(circuit,cbits,control,debug=True): x = cbits[0] y = cbits[1] anc = cbits[2] if debug: circuit.barrier() #control='01' for initial sorting and '10' for collision detection circuit.append(MCXGate(2,ctrl_state=control),[x,y,anc]) if debug: circuit.barrier() return circuit #split the array 'index' into array of pairs of adjacent indices; first entry is (e.g.) [0] if number of entries of index is odd def get_subsets(index): #index = [0,1,2,3] -> result = [[0,1],[2,3]] #index = [0,1,2,3,4] -> result = [[0],[1,2],[3,4]] M = len(index) result = [] if M % 2 != 0: result.append(np.array([0])) n_split = int((M-1)/2) for s in np.split(index[1:M],n_split): result.append(s) else: result = np.split(index,M/2) return result #get position of first qubit in swap_control ancilla register def get_first_swap_ctrl(n,m): #n_comp_parallel is the number of comparators that are applied in each layer #n*m = main register for storing electron registers; #(n_comp_parallel)*(n-1) = fixed ancilla register needed for compare_n n_comp_parallel = int(np.ceil(m/2)) ctrl_0 = n*m + (n-1)*n_comp_parallel return ctrl_0 #get position of first qubit in collision_control ancilla register def get_first_coll_ctrl(n,m,L): coll_0 = get_first_swap_ctrl(n,m) + L return coll_0 #return pairs of electron indices that need to be compared in collision-detection step def get_coll_sets(m): ind = np.arange(m) if m == 2: sets_a = [np.array([0,1])] sets_b = [] return sets_a,sets_b if m % 2 == 0: sets_a = np.split(ind,m/2) sets_b = np.split(ind[1:-1],(m-2)/2) else: sets_a = np.split(ind[:-1],(m-1)/2) sets_b = np.split(ind[1:],(m-1)/2) #all gates in sets_a can be applied in parallel #all gates in sets_b can be applied in parallel return sets_a,sets_b #returns the first qubit position of the ancilla register used for swap of i and j (only really tested for m<6) def get_anc(n,m,i,j): if abs(j-i) == 1: anc_reg = int( np.min([i,j])/2 ) elif abs(j-i) == 2: anc_reg = int( np.ceil( np.min([i,j])/2 )) else: anc_reg = int( np.min([i,j]) ) anc = n*m + anc_reg*(n-1) return anc #Implement 'Compare2' function (Fig 3); input: two 2bit numbers, output: two 1bit numbers with same ordering def compare_2(circuit,x_0,x_1,y_0,y_1,anc): #Notation: x = 2^1*x_0 + x_1 (reverse from paper!!) #compares numbers x,y and outputs two bits x',y' (at positions x_1 and y_1) with the same ordering circuit.append(XGate(),[anc]) circuit.append(CXGate(),[y_0,x_0]) circuit.append(CXGate(),[y_1,x_1]) circuit.append(CSwapGate(),[x_0,x_1,anc]) circuit.append(CSwapGate(),[x_0,y_0,y_1]) circuit.append(CXGate(),[y_1,x_1]) return circuit #Generalisation of 'compare2' two nbit numbers, output: two 1bit numbers with same ordering at positions x1,y1 def compare_n(circuit,n,m,i,j,l,L,debug): index = np.arange(n) subsets = get_subsets(index) M = len(subsets) anc = get_anc(n,m,i,j) for s in subsets: if len(s)==2: if debug: circuit.barrier() x_0 = s[0] + i*n x_1 = s[1] + i*n y_0 = s[0] + j*n y_1 = s[1] + j*n circuit = compare_2(circuit,x_0,x_1,y_0,y_1,anc) anc += 1 while (len(subsets)>1): index = np.array([subsets[k][-1] for k in range(M)]) subsets = get_subsets(index) M = len(subsets) for s in subsets: if len(s)==2: if debug: circuit.barrier() x_0 = s[0] + i*n x_1 = s[1] + i*n y_0 = s[0] + j*n y_1 = s[1] + j*n circuit = compare_2(circuit,x_0,x_1,y_0,y_1,anc) anc += 1 ######################################################################################################################################## #at this point the bits x_1 and y_1 have the same ordering as numbers stored in registers i and j #e(i)<e(j) -> x_1=0 and y_1=1 #e(i)>e(j) -> x_1=1 and y_1=0 #e(i)=e(j) -> x_1=0 y_1=0 if e(i) even or x_1=1 y_1=1 if e(i) odd #prepare output for bit_compare function; anc iterates through the second ancilla register (+1 for each comparator) #l = current swap; each new swap gets a new ancilla for storing the outcome anc = get_first_swap_ctrl(n,m) + l cbits = x_1,y_1,anc return circuit,cbits #apply diagonal phase shift to qubit i, conditioned on qubit 'ctrl' def cphase_shift(circuit,ctrl,i): target = i*n CDiag = Diagonal([-1,-1]).control(1) CDiag = CDiag.to_gate() CDiag.label = "D" #doesn't work currently circuit.append(CDiag,[ctrl,target]) return circuit #performs swap of registers i and j conditioned on ancilla qubit 'ctrl' def swap_registers(circuit,n,i,j,ctrl,debug): for g in range(n): circuit.append(CSwapGate(),[ctrl,i*n+g,j*n+g]) if debug: circuit.barrier() return circuit #compare electron registers i and j; swap registers iff e(i)<(j); l=current swap (0 to L) def comparator_swap(n,m,i,j,l,L,phase,debug): #Perform comparison to generate output qubits "cbits" circuit_compute = initialize_circuit(n,m,L) circuit_compute,cbits = compare_n(circuit_compute,n,m,i,j,l,L,debug) #Add bit_compare between the two output qubits and store in ancilla circuit_bit_compare = initialize_circuit(n,m,L) circuit_bit_compare = bit_compare(circuit_bit_compare,cbits,'10',debug) #add uncomputing step only of the comparison circuit circuit_uncompute = circuit_compute.inverse() #Swap registers based on control ancilla circuit_swap = initialize_circuit(n,m,L) #apply a conditioned phase shift to the first qubit of the register pair; is only called when sn is applied backwards, that's why it's (phase,swap) and not (swap,phase) if phase: circuit_swap = cphase_shift(circuit_swap,cbits[2],i) circuit_swap = swap_registers(circuit_swap,n,i,j,cbits[2],debug) #Combine circuits circuit_comparator = circuit_compute + circuit_bit_compare + circuit_uncompute + circuit_swap return circuit_comparator #Apply the sorting network sn, where each comparator stores the outcome in ctrl_register def apply_sorting_network(circuit,n,m,sn,L,phase,debug): for l,swap in enumerate(sn): #swap = [i, j, direction]; dir = 0 : descending (from the top); dir = 1 : ascending (from the top) if swap[2]==0: i = swap[0] j = swap[1] if swap[2]==1: i = swap[1] j = swap[0] circuit_comparator = comparator_swap(n,m,i,j,l,L,phase,debug) circuit = circuit + circuit_comparator return circuit #Apply the reverse of the sorting networkl sn for antisymmetrizing the input state def apply_reverse_sorting_network(circuit,n,m,sn,L,phase,debug): circuit_sn = initialize_circuit(n,m,L) circuit_sn = apply_sorting_network(circuit_sn,n,m,sn,L,phase,debug) #reverse all gates in the circuit circuit_reverse_sn = circuit_sn.inverse() circuit = circuit + circuit_reverse_sn return circuit #reset first register to [|0>,|0>,|0>,...] (all zeros) def reset_electrons(circuit,n,m): circuit.barrier() for g in range(m): g_indices = np.arange(g*n,(g+1)*n) #classical register positions for electron g for g_i in g_indices: circuit.reset(g_i) return circuit #reset all registers except for the main electron register def reset_ancillas(circuit,n,m,L): circuit.barrier() start = n*m end = get_first_coll_ctrl(n,m,L) + m for q in range(start,end): circuit.reset(q) return circuit #Perform comparisons between all adjacent electron registers, with ctrl ancilla in the coll_register def collision_compare(circuit,n,m,L,debug): #all sets in sets_a can be applied simultaneously (same for sets_b); both for loops are otherwise identical and could be combined sets_a,sets_b = get_coll_sets(m) c = 0 for s in sets_a: circuit_coll_test = initialize_circuit(n,m,L) i = s[0] j = s[1] circuit_coll_test,cbits = compare_n(circuit_coll_test,n,m,i,j,0,L,debug) x_1 = cbits[0] y_1 = cbits[1] coll_anc = get_first_coll_ctrl(n,m,L) + c cbits = [x_1,y_1,coll_anc] circuit_coll_test_reverse = circuit_coll_test.inverse() circuit = circuit + circuit_coll_test circuit = bit_compare(circuit,cbits,'01',debug) circuit = circuit + circuit_coll_test_reverse c+=1 for s in sets_b: circuit_coll_test = initialize_circuit(n,m,L) i = s[0] j = s[1] circuit_coll_test,cbits = compare_n(circuit_coll_test,n,m,i,j,0,L,debug) x_1 = cbits[0] y_1 = cbits[1] coll_anc = get_first_coll_ctrl(n,m,L) + c cbits = [x_1,y_1,coll_anc] circuit_coll_test_reverse = circuit_coll_test.inverse() circuit = circuit + circuit_coll_test circuit = bit_compare(circuit,cbits,'01',debug) circuit = circuit + circuit_coll_test_reverse c+=1 return circuit #apply X gate on last qubit, conditioned on all other coll_ancillas being 1 (which means that all elctron registers are different) def collision_test(circuit,n,m,L,debug): coll_ctrl_0 = get_first_coll_ctrl(n,m,L) control = '' qubits = [] for i in range(m-1): control = control + '1' qubits.append(coll_ctrl_0+i) qubits.append(coll_ctrl_0+m-1) circuit.append(MCXGate(m-1,ctrl_state=control),qubits) return circuit #not necessary #returns True if output contains only unique elements; returns False otherwise (if two or more elements are the same) def collision_check_old(output): if len(output) == len(set(output)): return True else: return False #Perform measurement on last qubit in coll_register def measure_collisions(circuit,n,m,L): #add classical register to store measurement result c_q = QuantumRegister(0) c_reg = ClassicalRegister(1,'collision_check') c = QuantumCircuit(c_q,c_reg) circuit = circuit.combine(c) #perform measurements on each electron register and store in separate memorey circuit.measure(get_first_coll_ctrl(n,m,L) + m - 1, 0) return circuit #Add classical registers and apply measurements on the main electron register def measure_electrons(circuit,n,m): circuit.barrier() for g in range(m): #Add classicla register to store measurement outcomes c_q = QuantumRegister(0) c_reg = ClassicalRegister(n,'mem_{}'.format(asc[g])) c = QuantumCircuit(c_q,c_reg) circuit = circuit.combine(c) #perform measurements on each electron register and store in separate memorey circuit.measure(np.arange(g*n,(g+1)*n),np.arange(g*n + 1,(g+1)*n + 1)) return circuit #Build the circuit with all gates and measurements @timeis def build_circuit(n,m,input,sn,L,debug=True): #Initialize the circuit with the right number of qubits and ancillas circuit = initialize_circuit(n,m,L) #Apply Hadamard gates to each qubit in the first register circuit = Hadamard(circuit,n,m) #Apply the sorting network sn phase = False circuit = apply_sorting_network(circuit,n,m,sn,L,phase,debug) #apply comparisons between all adjacent electron registers and store outcome in coll_register circuit = collision_compare(circuit,n,m,L,debug) #check if outcome of all comparisons is "not_equal"; flip last qubit in coll_register if this is the case circuit = collision_test(circuit,n,m,L,debug) #measure last qubit in coll_register, which stores (no collisions = 1) or (collisions = 0); result is kept until the end of the simulation and result accepted if (no collisions == True) circuit = measure_collisions(circuit,n,m,L) #Measurements: classical register 0 stores the random sorted array that can still include collisions #circuit = measure_electrons(circuit,n,m) #Reset main electron register circuit = reset_electrons(circuit,n,m) #Initialize main electron register in given input product state circuit = binary_init(circuit,n,m,input) #Apply the reverse of 'apply_sorting_network' and add a conditioned phase shift after each swap (this antisymmetrizes the input state) phase = True circuit = apply_reverse_sorting_network(circuit,n,m,sn,L,phase,debug) #Reset all ancilla qubits and only keep the main electron register (disable for testing final state for antisymmetry) #circuit = reset_ancillas(circuit,n,m,L) #Measure electron register (for testing) #circuit = measure_electrons(circuit,n,m) return circuit #Simulate circuit using specified backend and return simulation result @timeis def simulate(circuit,backend,shots): simulator = Aer.get_backend(backend) #transpile the circuit into the supported set of gates circuit = transpile(circuit,backend=simulator) result = simulator.run(circuit,shots=shots).result() return result #turns simulation result 'counts' into list of decimal numbers corresponding to the electron registers; only use if shots=1 or all outcomes are the same def convert_output_to_decimal(counts,n,m): output_list = list(counts.keys())[0][::-1] coll_test = output_list[0] output_list = output_list[2:] output = [] offset = 0 for g in range(m): start = g*n + offset end = (g+1)*n + offset g_out = int(output_list[start:end],2) output.append(g_out) offset += 1 output_0 = output[0:m] return coll_test,output_0 #draw the circuit using size,name as input if plot==True @timeis def draw_circuit(circuit,plot_scale,fname): circuit.draw(output='mpl',fold=-1,scale=plot_scale,plot_barriers=True) plt.savefig(fname,dpi=700) return 0 def plot_circuit(circuit,plot_scale,fname,plot=True): if plot: draw_circuit(circuit,plot_scale,fname) plt.show() return 0 print("Plot disabled") return 0 #plot sorting network by itself, using cnot as directed comparator (only for visualizationo) def plot_sorting_network(sn,m): circuit_sn = QuantumCircuit(m) for s in sn: if s[2] == 0: i,j = s[0],s[1] else: i,j = s[1],s[0] circuit_sn.cz(i,j) circuit_sn.draw(output='mpl') plt.show() return 0 #Generate a bitonic sorting network for m electrons; dir=0 (descending), dir=1 (ascending) def sorting_network_bitonic(m,dir): sn = [] def compAndSwap(i,j,dir): sn.append([i,j,dir]) def bitonic_sort(low, cnt, dir): if cnt>1: k = cnt//2 dir_n = (dir + 1) % 2 bitonic_sort(low, k, dir_n)#n_dir bitonic_sort(low + k, cnt-k, dir)#dir bitonic_merge(low, cnt, dir) def bitonic_merge(low, cnt, dir): if cnt>1: k = greatestPowerOfTwoLessThan(cnt) i = low while i < low+cnt-k: compAndSwap(i, i+k, dir) i+=1 bitonic_merge(low,k,dir) bitonic_merge(low+k,cnt-k,dir) def greatestPowerOfTwoLessThan(cnt): i=1 while (2**i)<cnt: i+=1 return 2**(i-1) bitonic_sort(0,m,dir) L = len(sn) return sn,L #Test if sorting network correctly sorts all possible inputs def test_sn(sn,n,m): all_inputs = list(product(range(2**n),repeat=m)) fail = 0 count = 0 for input in all_inputs: input = np.array(input) temp = np.copy(input) for s in sn: if s[2]==0: i = s[0] j = s[1] if s[2]==1: i = s[1] j = s[0] if input[i]<input[j]: input[i],input[j] = input[j],input[i] should_be = np.sort(temp)[::-1] if (input == should_be).all(): fail += 0 else: fail += 1 print(f"Testing sorting network {count}/{len(all_inputs)}",end="\r") count+=1 print(" ", end = "\r") if fail == 0: print("Sorting network correct\n") return 1 else: print("Error in sorting network\n") return 0 #Returns all steps of sorting network with corresponding ancilla registers (for testing) def test_sn_anc(sn,n,m): for s in sn: i = s[0] j = s[1] anc = get_anc(n,m,i,j) anc_reg = int((anc-n*m)/(n-1)) print(f"[{i},{j}] anc_reg={anc_reg}") return 0 #Output density matrix of electron register (target) and compute purity, doesnt actually test antisymmetry yet! def test_antisymmetry(result,n,m,L): sv = result.get_statevector() trace_out = list(np.arange(n*m,get_first_coll_ctrl(n,m,L)+m)) #print(f"Tracing out qubits: {trace_out}") rho_e = partial_trace(sv,trace_out) if rho_e.is_valid(): print("Target state is valid density matrix\n") else: print("Target state is not valid density matrix") #print(rho_e) p = purity(rho_e) print(f"Purity of target state = {p}\n") return p ###################MAINPART############################################################################################################ #Parameters #n: number of qubits per electron; N = 2^n orbitals n=3 #m: number of electrons m=4 #input: list of orbitals the electrons are initialized in; needs to be in descending order, without repetitions input = [5,4,3,2] #dir: ordering descending (dir=0) or ascending (dir=1) dir = 0 #plot and save the circuit plot = True #include barriers between comparators in the circuit for visualization debug = False #measure time of functions: {build_circuit, simulate, draw_circuit} measure_time = True #size of the plot plot_scale = 0.2 #simulation method backend = 'statevector_simulator'#'aer_simulator' #number of circuit repetitions in 'simulate' shots = 1 #check valid inputs check_inputs(n,m) #Generate sorting network sn,L = sorting_network_bitonic(m,dir) #Test sorting network test_sn(sn,n,m) #Plot sorting network plot_sorting_network(sn,m) #Build circuit circuit = build_circuit(n,m,input,sn,L,debug) #Simulate result = simulate(circuit,backend,shots) counts = result.get_counts(circuit) print(f"Counts: {counts}\n") #Test if final state is antisymmetric test_antisymmetry(result,n,m,L) output_list = list(counts.keys())[0][::-1] coll_test = output_list[0] if coll_test == '1': print("No collisions detected - continue\n") else: print("Collisions detected - repeat\n") #plot circuit plot_circuit(circuit,plot_scale,f"Plots/Circuit_m{m}_n{n}_debug{debug}",plot)
https://github.com/Bikramaditya0154/Quantum-Simulation-of-the-ground-states-of-Li-and-Li-2-using-Variational-Quantum-EIgensolver
Bikramaditya0154
from qiskit import Aer from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper molecule = Molecule( geometry=[["Li", [0.0, 0.0, 0.0]]], charge=2, multiplicity=2 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(JordanWignerMapper()) from qiskit.providers.aer import StatevectorSimulator from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory quantum_instance = QuantumInstance(backend=Aer.get_backend("aer_simulator_statevector")) vqe_solver = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE( ansatz=tl_circuit, quantum_instance=QuantumInstance(Aer.get_backend("aer_simulator_statevector")), ) from qiskit_nature.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(qubit_converter, vqe_solver) res = calc.solve(es_problem) print(res)
https://github.com/Bikramaditya0154/Quantum-Simulation-of-the-ground-states-of-Li-and-Li-2-using-Variational-Quantum-EIgensolver
Bikramaditya0154
from qiskit import Aer from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper molecule = Molecule( geometry=[["Li", [0.0, 0.0, 0.0]]], charge=1, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(JordanWignerMapper()) from qiskit.providers.aer import StatevectorSimulator from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory quantum_instance = QuantumInstance(backend=Aer.get_backend("aer_simulator_statevector")) vqe_solver = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE( ansatz=tl_circuit, quantum_instance=QuantumInstance(Aer.get_backend("aer_simulator_statevector")), ) from qiskit_nature.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(qubit_converter, vqe_solver) res = calc.solve(es_problem) print(res)
https://github.com/Bikramaditya0154/Quantum-Simulation-of-the-ground-state-of-LiH-molecule-using-Variational-Quantum-Eigensolver
Bikramaditya0154
from qiskit.algorithms import VQE from qiskit_nature.algorithms import (GroundStateEigensolver, NumPyMinimumEigensolverFactory) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureMoleculeDriver, ElectronicStructureDriverType) from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import ParityMapper import matplotlib.pyplot as plt import numpy as np from qiskit_nature.circuit.library import UCCSD, HartreeFock from qiskit.circuit.library import EfficientSU2 from qiskit.algorithms.optimizers import COBYLA, SPSA, SLSQP from qiskit.opflow import TwoQubitReduction from qiskit import BasicAer, Aer from qiskit.utils import QuantumInstance from qiskit.utils.mitigation import CompleteMeasFitter from qiskit.providers.aer.noise import NoiseModel def get_qubit_op(dist): # Define Molecule molecule = Molecule( # Coordinates in Angstrom geometry=[ ["Li", [0.0, 0.0, 0.0] ], ["H", [dist, 0.0, 0.0] ] ], multiplicity=1, # = 2*spin + 1 charge=0, ) driver = ElectronicStructureMoleculeDriver( molecule=molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF) # Get properties properties = driver.run() num_particles = (properties .get_property("ParticleNumber") .num_particles) num_spin_orbitals = int(properties .get_property("ParticleNumber") .num_spin_orbitals) # Define Problem, Use freeze core approximation, remove orbitals. problem = ElectronicStructureProblem( driver, [FreezeCoreTransformer(freeze_core=True, remove_orbitals=[-3,-2])]) second_q_ops = problem.second_q_ops() # Get 2nd Quant OP num_spin_orbitals = problem.num_spin_orbitals num_particles = problem.num_particles mapper = ParityMapper() # Set Mapper hamiltonian = second_q_ops[0] # Set Hamiltonian # Do two qubit reduction converter = QubitConverter(mapper,two_qubit_reduction=True) reducer = TwoQubitReduction(num_particles) qubit_op = converter.convert(hamiltonian) qubit_op = reducer.convert(qubit_op) return qubit_op, num_particles, num_spin_orbitals, problem, converter def exact_solver(problem, converter): solver = NumPyMinimumEigensolverFactory() calc = GroundStateEigensolver(converter, solver) result = calc.solve(problem) return result backend = BasicAer.get_backend("statevector_simulator") distances = np.arange(0.5, 4.0, 0.2) exact_energies = [] vqe_energies = [] optimizer = SLSQP(maxiter=5) for dist in distances: (qubit_op, num_particles, num_spin_orbitals, problem, converter) = get_qubit_op(dist) result = exact_solver(problem,converter) exact_energies.append(result.total_energies[0].real) init_state = HartreeFock(num_spin_orbitals, num_particles, converter) var_form = UCCSD(converter, num_particles, num_spin_orbitals, initial_state=init_state) vqe = VQE(var_form, optimizer, quantum_instance=backend) vqe_calc = vqe.compute_minimum_eigenvalue(qubit_op) vqe_result = problem.interpret(vqe_calc).total_energies[0].real vqe_energies.append(vqe_result) print(f"Interatomic Distance: {np.round(dist, 2)}", f"VQE Result: {vqe_result:.5f}", f"Exact Energy: {exact_energies[-1]:.5f}") print("All energies have been calculated") plt.plot(distances, exact_energies, label="Exact Energy") plt.plot(distances, vqe_energies, label="VQE Energy") plt.xlabel('Interatomic distance(Angstrom)') plt.ylabel('Energy(Hartree)') plt.legend() plt.show()
https://github.com/MariosTsatsos/4qubitGrover
MariosTsatsos
#initialization import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'svg' # Makes the images look nice import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit.circuit import Parameter from math import pi as pi def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 3): raise ValueError('The controlled Z with more than 3 controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) elif (len(controls) == 3): circuit.cu1(pi/4, controls[0], target) circuit.cx(controls[0], controls[1]) circuit.cu1(-pi/4, controls[1],target) circuit.cx(controls[0], controls[1]) circuit.cu1(pi/4, controls[1], target) circuit.cx(controls[1], controls[2]) circuit.cu1(-pi/4, controls[2], target) circuit.cx(controls[0], controls[2]) circuit.cu1(pi/4, controls[2], target) circuit.cx(controls[1], controls[2]) circuit.cu1(-pi/4, controls[2], target) circuit.cx(controls[0], controls[2]) circuit.cu1(pi/4, controls[2], target) def grover_n(circuit, qr, N, barriers = True): j = 0 while j < N: ##################################### ### Oracle for 0010 circuit.x(qr[0]) circuit.x(qr[2]) circuit.x(qr[3]) ######### cccZ ##################### n_controlled_Z(circuit, [qr[i] for i in range(n-1)], qr[n-1]) if barriers: circuit.barrier() circuit.x(qr[0]) circuit.x(qr[2]) circuit.x(qr[3]) if barriers: circuit.barrier() ###################################### #### Amplification circuit.h(qr) circuit.x(qr) ######## cccZ ########### n_controlled_Z(circuit, [qr[i] for i in range(n-1)], qr[n-1]) if barriers: circuit.barrier() circuit.x(qr) circuit.h(qr) if barriers: circuit.barrier() j += 1 print("I implemented gate M.H.B.H",j,"time.") barriers = True theta = Parameter('θ') n = 4 qr = QuantumRegister(n) cr = ClassicalRegister(n) groverCircuit = QuantumCircuit(qr,cr) ########################## ### Initialization groverCircuit.h(qr) if barriers: groverCircuit.barrier() ######################### ### Grover gate - N times grover_n(groverCircuit, qr, 3) ######################### ### measure groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 2**12 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(simulator=False)) print("Running on current least busy device: ", device) backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 4 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 2**12 job = execute(groverCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts(groverCircuit) plot_histogram(answer)
https://github.com/Bikramaditya0154/Quantum-Simulation-of-the-ground-state-of-Hydrogen-molecule-using-Variational-Quantum-Eigensolver-
Bikramaditya0154
from qiskit.algorithms import VQE from qiskit_nature.algorithms import (GroundStateEigensolver, NumPyMinimumEigensolverFactory) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureMoleculeDriver, ElectronicStructureDriverType) from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import ParityMapper import matplotlib.pyplot as plt import numpy as np from qiskit_nature.circuit.library import UCCSD, HartreeFock from qiskit.circuit.library import EfficientSU2 from qiskit.algorithms.optimizers import COBYLA, SPSA, SLSQP from qiskit.opflow import TwoQubitReduction from qiskit import BasicAer, Aer from qiskit.utils import QuantumInstance from qiskit.utils.mitigation import CompleteMeasFitter from qiskit.providers.aer.noise import NoiseModel def get_qubit_op(dist): # Define Molecule molecule = Molecule( # Coordinates in Angstrom geometry=[ ["H", [0.0, 0.0, 0.0] ], ["H", [dist, 0.0, 0.0] ] ], multiplicity=1, # = 2*spin + 1 charge=0, ) driver = ElectronicStructureMoleculeDriver( molecule=molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF) # Get properties properties = driver.run() num_particles = (properties .get_property("ParticleNumber") .num_particles) num_spin_orbitals = int(properties .get_property("ParticleNumber") .num_spin_orbitals) # Define Problem, Use freeze core approximation, remove orbitals. problem = ElectronicStructureProblem( driver ) second_q_ops = problem.second_q_ops() # Get 2nd Quant OP num_spin_orbitals = problem.num_spin_orbitals num_particles = problem.num_particles mapper = ParityMapper() # Set Mapper hamiltonian = second_q_ops[0] # Set Hamiltonian # Do two qubit reduction converter = QubitConverter(mapper,two_qubit_reduction=True) reducer = TwoQubitReduction(num_particles) qubit_op = converter.convert(hamiltonian) qubit_op = reducer.convert(qubit_op) return qubit_op, num_particles, num_spin_orbitals, problem, converter def exact_solver(problem, converter): solver = NumPyMinimumEigensolverFactory() calc = GroundStateEigensolver(converter, solver) result = calc.solve(problem) return result backend = BasicAer.get_backend("statevector_simulator") distances = np.arange(0.5, 5.0, 0.1) exact_energies = [] vqe_energies = [] optimizer = SLSQP(maxiter=5) for dist in distances: (qubit_op, num_particles, num_spin_orbitals, problem, converter) = get_qubit_op(dist) result = exact_solver(problem,converter) exact_energies.append(result.total_energies[0].real) init_state = HartreeFock(num_spin_orbitals, num_particles, converter) var_form = UCCSD(converter, num_particles, num_spin_orbitals, initial_state=init_state) vqe = VQE(var_form, optimizer, quantum_instance=backend) vqe_calc = vqe.compute_minimum_eigenvalue(qubit_op) vqe_result = problem.interpret(vqe_calc).total_energies[0].real vqe_energies.append(vqe_result) print(f"Interatomic Distance: {np.round(dist, 2)}", f"VQE Result: {vqe_result:.5f}", f"Exact Energy: {exact_energies[-1]:.5f}") print("All energies have been calculated.") plt.plot(distances, exact_energies, label="Exact Energy") plt.plot(distances, vqe_energies, label="VQE Energy") plt.xlabel('Interatomic distance (Angstrom)') plt.ylabel('Energy(Hartree)') plt.legend() plt.show()
https://github.com/AkshayPatil347/Grover-s-Code
AkshayPatil347
from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from numpy import random color_codes = [0,1,2,3,4,5,6,7] random.shuffle(color_codes) database = {} for i in range(8): database[i] = color_codes[i] desired_color_code = 2 DB = QuantumCircuit(7) def DB_function(QC, color_code): if color_code == 7: QC.mcx([0,1,2],3) QC.mcx([0,1,2],4) QC.mcx([0,1,2],5) elif color_code == 6: QC.mcx([0,1,2],3) QC.mcx([0,1,2],4) elif color_code == 5: QC.mcx([0,1,2],3) QC.mcx([0,1,2],5) elif color_code == 4: QC.mcx([0,1,2],3) elif color_code == 3: QC.mcx([0,1,2],4) QC.mcx([0,1,2],5) elif color_code == 2: QC.mcx([0,1,2],4) elif color_code == 1: QC.mcx([0,1,2],5) #for when index = 0 = 000 DB.x(0) DB.x(1) DB.x(2) DB_function(DB, database[0]) DB.x(0) DB.x(1) DB.x(2) #for when index = 1 = 001 DB.x(0) DB.x(1) DB_function(DB, database[1]) DB.x(0) DB.x(1) #for when index = 2 = 010 DB.x(0) DB.x(2) DB_function(DB, database[2]) DB.x(0) DB.x(2) #for when index = 3 = 011 DB.x(0) DB_function(DB, database[3]) DB.x(0) #for when index = 4 = 100 DB.x(1) DB.x(2) DB_function(DB, database[4]) DB.x(1) DB.x(2) #for when index = 5 = 101 DB.x(1) DB_function(DB, database[5]) DB.x(1) #for when index = 6 = 110 DB.x(2) DB_function(DB, database[6]) DB.x(2) #for when index = 7 = 111 DB_function(DB, database[7]) DB.draw() MG = QuantumCircuit(7) if desired_color_code == 0: MG.x(3) MG.x(4) MG.x(5) MG.mcx([3,4,5],6) MG.x(3) MG.x(4) MG.x(5) elif desired_color_code == 1: MG.x(3) MG.x(4) MG.mcx([3,4,5],6) MG.x(3) MG.x(4) elif desired_color_code == 2: MG.x(3) MG.x(5) MG.mcx([3,4,5],6) MG.x(3) MG.x(5) elif desired_color_code == 3: MG.x(3) MG.mcx([3,4,5],6) MG.x(3) elif desired_color_code == 4: MG.x(4) MG.x(5) MG.mcx([3,4,5],6) MG.x(4) MG.x(5) elif desired_color_code == 5: MG.x(4) MG.mcx([3,4,5],6) MG.x(4) elif desired_color_code == 6: MG.x(4) MG.mcx([3,4,5],6) MG.x(4) elif desired_color_code == 7: MG.mcx([3,4,5],6) MG.draw() oracle = QuantumCircuit(7) oracle = oracle + DB + MG + DB oracle.draw() phase = QuantumCircuit(7) phase.x(0) phase.x(1) phase.x(2) phase.h(2) phase.ccx(0,1,2) phase.h(2) phase.x(0) phase.x(1) phase.x(2) phase.draw() Grover = QuantumCircuit(7) Grover = Grover + oracle Grover.h(0) Grover.h(1) Grover.h(2) Grover = Grover + phase Grover.h(0) Grover.h(1) Grover.h(2) Grover = Grover + Grover Grover.draw() circuit = QuantumCircuit(7,3) circuit.x(6) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(6) circuit = circuit + Grover circuit.measure(0,2) circuit.measure(1,1) circuit.measure(2,0) sim = Aer.get_backend ('qasm_simulator') results = execute(circuit,sim,shots = 1000) counts = results.result().get_counts() def mitigated_results(backend,circuit,results,results_sim): # Import the required classes from qiskit.providers.aer.noise import NoiseModel from qiskit.ignis.mitigation.measurement import (complete_meas_cal,CompleteMeasFitter) # Get noise model for backend noise_model = NoiseModel.from_backend(backend) # Create the measurement fitter qr = QuantumRegister(circuit.num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') job = execute(meas_calibs, backend=Aer.get_backend('qasm_simulator'), shots=1000, noise_model=noise_model) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') print(meas_fitter.cal_matrix) # Get the filter object meas_filter = meas_fitter.filter # Results with mitigation mitigated_results = meas_filter.apply(results) mitigated_counts = mitigated_results.get_counts(0) return(mitigated_counts) plot_histogram( mitigated_counts) plot_histogram(counts) from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit,transpile,execute from qiskit.tools.jupyter import * import qiskit # Qiskit quantum circuits libraries # prepare your circuit to run from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-education', group='iisc-bangalore-1', project = 'm-tech-quantum-t') device = provider.get_backend('ibmq_casablanca') from qiskit.tools.monitor import job_monitor from qiskit import transpile, assemble def transpile_circuit(circuit,backend): trans_circ = transpile(circuit, backend) display(trans_circ.draw(output="mpl")) transpiled_grover_circuit = transpile(circuit, device, optimization_level=3) print("Circuit data\n\nDepth: ",transpiled_grover_circuit.depth(),"\ nWidth: ",transpiled_grover_circuit.width(),"\nSize: ",transpiled_grover_circuit. size()) job = device.run(transpiled_grover_circuit) job_monitor(job, interval=2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) transpiled_grover_circuit.draw()
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit from qiskit import QuantumCircuit # creating a quantum circuit qc = QuantumCircuit(3) qc.z(0) qc.s(1) qc.t(2) qc.cx(0,1) qc.h(2) qc.ccx(0, 1, 2) qc.draw() # inverse of the quantum circuit inverse_qc = qc.inverse() # to draw the quantum circuit inverse_qc.draw() # If we measure the quantum circuit's each qubit's states qc.measure() # to draw the quantum circuit qc.draw() # inverse of the measured quantum circuit's qubit is not possible inverse_qc = qc.inverse() qc.measure() # to draw the quantum circuit inverse_qc.draw() # creating a quantum circuit m_circuit = QuantumCircuit(3) m_circuit.h(2) m_circuit.ccx(0, 1, 2) m_circuit.cz(2, 1) # draw the circuit m_circuit.draw() m_gate = m_circuit.to_gate() type(m_gate) new_circuit = QuantumCircuit(5) new_circuit.append(m_gate, [1, 2, 4]) new_circuit.draw() #decompose the circuit new_circuit.decompose().draw() from qiskit import QuantumCircuit, transpile, Aer my_circuit = QuantumCircuit(3) my_circuit.t(1) my_circuit.h(0) my_circuit.ccx(2,1,0) my_circuit.s(2) my_circuit.t(0) my_circuit.draw() my_gate = my_circuit.to_gate() my_gate my_inv_gate = my_gate.inverse() my_inv_gate my_inv_gate.name = 'My Inverse Gate' new_circuit = QuantumCircuit(3) new_circuit.append(my_inv_gate, [0,1,2]) new_circuit.draw() new_circuit.decompose().draw() my_circuit = QuantumCircuit(2) my_circuit.cx(1,0) my_circuit.cx(0,1) my_circuit.cx(1,0) my_circuit.draw() my_gate = my_circuit.to_gate() my_gate.name = "My Gate" my_controlled_gate = my_gate.control() new_circuit = QuantumCircuit(3) new_circuit.append(my_controlled_gate, [0, 1, 2]) new_circuit.draw() new_circuit.decompose().draw() ## What is the qsphere ? ## What is the unitary simulator ? ## How can i convert a Unitary Matrix to a set of One and Two Qubit gates ? ## How can i change qiskit's defoult behaviour ? ## How do i use parameterization circuit in Qiskit ? ## Why does qiskit order it's qubit the way it does ? ## How i combine two quantum circuits ? ## What is the difference between gates and instructions ? ## How can i use a specific version of qiskit ? ## How can i implement a multi controlled Toffoli Gate ? ## How can i monitor a job send to IBM Quantum ? ## How can i convert a quantum circuit to QASM ? my_circuit = QuantumCircuit(3) my_circuit.t(1) my_circuit.h(0) my_circuit.ccx(2,1,0) my_circuit.s(2) my_circuit.t(0) my_circuit.draw('latex') my_circuit.draw('latex_source') print(my_circuit.draw('latex_source')) ## How can i bundle several circuit into a single job ? ## How can i save circuit Drawings to Different File Types ? ## How can i contruct a quantum volume circuit ? ## What trick can i do with draw methods ? ## How i can find reduced quantum states using qiskit ? ## In What different ways can i draw a quantum circuit ? ## How can i use a classical register for quantum compuation ? ## What is circuit depth and how can i calculate it ? ## How can i choose initial layout for the traspiler ? ## What are the Ancillary Qubits and how are they usefull ? ## What are registers ? ## How can i create a custom gate from matrix ? ## How can i find expectation value for an operator ? ## How can i measure the qubit midway through a quantum circuit ? ## How can i transpile a quantum circuit ? ## How can i make a noise model with qiskit ? ## How can i create a custome controlled gate ? ## How can i choose the best backend from a provider ? ## How can i perform state tomography ? ## How can i reset a qubit in a quantum circuit ## How do i perform a unitary projection in a quantum circuit ? ## How do i debuge an issue in transpiler ? ## How can i estimate Pi using a quantum computer ? ## How do i initialize a mixed states ? ## What is gate fidelity and how do i canculate it ? ## How do i check the state fedility with noisy simulator ? ## How do i change the fitter algorithm in a state tomography experiment ?
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f = [1, -1, -1, -1] g = [1, 1, -1, -1] # FourierChecking() : How our Fourier Transform of F is correlated with G. # if p(f,g) <= 0.01 # p(f, g) > 0.05 Fourier Exits between f and g qc = FourierChecking(f=f, g=g) qc.draw(output='mpl') zero = qi.Statevector.from_label('00') sv = zero.evolve(qc) probs = sv.probabilities_dict() plot_histogram(probs) # We are only interested in 00 qubit thus our function f is correlated in 00 state to g with probabilites of 25%
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import * from qiskit.visualization import plot_histogram import numpy as np def NOT(inp): """An NOT gate. Parameters: inp (str): Input, encoded in qubit 0. Returns: QuantumCircuit: Output NOT circuit. str: Output value measured from qubit 0. """ qc = QuantumCircuit(1, 1) # A quantum circuit with a single qubit and a single classical bit qc.reset(0) # We encode '0' as the qubit state |0⟩, and '1' as |1⟩ # Since the qubit is initially |0⟩, we don't need to do anything for an input of '0' # For an input of '1', we do an x to rotate the |0⟩ to |1⟩ if inp=='1': qc.x(0) # barrier between input state and gate operation qc.barrier() # Now we've encoded the input, we can do a NOT on it using x qc.x(0) #barrier between gate operation and measurement qc.barrier() # Finally, we extract the |0⟩/|1⟩ output of the qubit and encode it in the bit c[0] qc.measure(0,0) qc.draw() # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp in ['0', '1']: qc, out = NOT(inp) print('NOT with input',inp,'gives output',out) display(qc.draw()) print('\n') def XOR(inp1,inp2): """An XOR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 1. """ qc = QuantumCircuit(2, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) # barrier between input state and gate operation qc.barrier() # this is where your program for quantum XOR gate goes qc.cx(0, 1) # barrier between input state and gate operation qc.barrier() qc.measure(1,0) # output from qubit 1 is measured #We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') #Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = XOR(inp1, inp2) print('XOR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def AND(inp1,inp2): """An AND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum AND gate goes qc.ccx(0,1,2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = AND(inp1, inp2) print('AND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def NAND(inp1,inp2): """An NAND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output NAND circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum NAND gate goes qc.ccx(0,1,2) if inp=='1': qc.x(2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = NAND(inp1, inp2) print('NAND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def OR(inp1,inp2): """An OR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum OR gate goes qc.cx(0, 2) qc.cx(1, 2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = OR(inp1, inp2) print('OR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') from qiskit import IBMQ #IBMQ.save_account("a68a35747d4eccd1d58f275e637909987c789ce5c0edd8a4f43014672bf0301b54b28b1b5f44ba8ff87500777429e1e4ceb79621a6ba248d6cca6bca0e233d23", overwrite=True) IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider('ibm-q') provider.backends() import qiskit.tools.jupyter # run this cell backend = provider.get_backend('ibmq_quito') qc_and = QuantumCircuit(3) qc_and.ccx(0,1,2) print('AND gate') display(qc_and.draw()) print('\n\nTranspiled AND gate with all the required connectivity') qc_and.decompose().draw() from qiskit.tools.monitor import job_monitor # run the cell to define AND gate for real quantum system def AND(inp1, inp2, backend, layout): qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() qc.ccx(0, 1, 2) qc.barrier() qc.measure(2, 0) qc_trans = transpile(qc, backend, initial_layout=layout, optimization_level=3) job = backend.run(qc_trans, shots=8192) print(job.job_id()) job_monitor(job) output = job.result().get_counts() return qc_trans, output backend layout = [0, 1, 2] output_all = [] qc_trans_all = [] prob_all = [] worst = 1 best = 0 for input1 in ['0','1']: for input2 in ['0','1']: qc_trans, output = AND(input1, input2, backend, layout) output_all.append(output) qc_trans_all.append(qc_trans) prob = output[str(int( input1=='1' and input2=='1' ))]/8192 prob_all.append(prob) print('\nProbability of correct answer for inputs',input1,input2) print('{:.2f}'.format(prob) ) print('---------------------------------') worst = min(worst,prob) best = max(best, prob) print('') print('\nThe highest of these probabilities was {:.2f}'.format(best)) print('The lowest of these probabilities was {:.2f}'.format(worst)) print('Transpiled AND gate circuit for ibmq_vigo with input 0 0') print('\nThe circuit depth : {}'.format (qc_trans_all[0].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[0].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[0]) ) qc_trans_all[0].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 0 1') print('\nThe circuit depth : {}'.format (qc_trans_all[1].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[1].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[1]) ) qc_trans_all[1].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 0') print('\nThe circuit depth : {}'.format (qc_trans_all[2].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[2].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[2]) ) qc_trans_all[2].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 1') print('\nThe circuit depth : {}'.format (qc_trans_all[3].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[3].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[3]) ) qc_trans_all[3].draw()
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import QuantumCircuit # Creating a quantum circuit with the 2 qubit and 2 bits to store # the measurements of the qubits 3 qc = QuantumCircuit(2, 2) # draw the quantum circuit qc.draw() # Measuring the qubits states and storing it into the classical bits qc.measure([0,1], [0,1]) qc.draw()
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
my_list = [1,2,3 ,4,5, 6,8,8,3,23,7,75,54,3] def my_oracle(my_input): winner=7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if my_oracle(trial_number) is True: print('Winner found at index :%i'%index) print('%i calls to the Oracle used'%(index+1)) break from qiskit import * from qiskit.qiskit_aer import Aer from qiskit import QuantumCircuit import matplotlib.pyplot as plt import numpy as np oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circ = QuantumCircuit(2,2) grover_circ.h(0) grover_circ.append(oracle,[0,1]) grover_circ.draw(output='mpl') job = execute(grover_circ, backend) result = job.result() sv = result.get_statevector() np.arount(sv, 2)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import QasmSimulator backend = Aer.get_backend('statevector_simulator') qc1 = QuantumCircuit(4) # perform gate operations on individual qubits qc1.x(0) qc1.y(1) qc1.z(2) qc1.s(3) # Draw circuit qc1.draw() # Plot blochshere out1 = execute(qc1,backend).result().get_statevector() plot_bloch_multivector(out1) qc2 = QuantumCircuit(4) # initialize qubits qc2.x(range(4)) # perform gate operations on individual qubits qc2.x(0) qc2.y(1) qc2.z(2) qc2.s(3) # Draw circuit qc2.draw() # Plot blochshere out2 = execute(qc2,backend).result().get_statevector() plot_bloch_multivector(out2) qc3 = QuantumCircuit(4) # initialize qubits qc3.h(range(4)) # perform gate operations on individual qubits qc3.x(0) qc3.y(1) qc3.z(2) qc3.s(3) # Draw circuit qc3.draw() # Plot blochshere out3 = execute(qc3,backend).result().get_statevector() plot_bloch_multivector(out3) qc4 = QuantumCircuit(4) # initialize qubits qc4.x(range(4)) qc4.h(range(4)) # perform gate operations on individual qubits qc4.x(0) qc4.y(1) qc4.z(2) qc4.s(3) # Draw circuit qc4.draw() # Plot blochshere out4 = execute(qc4,backend).result().get_statevector() plot_bloch_multivector(out4) qc5 = QuantumCircuit(4) # initialize qubits qc5.h(range(4)) qc5.s(range(4)) # perform gate operations on individual qubits qc5.x(0) qc5.y(1) qc5.z(2) qc5.s(3) # Draw circuit qc5.draw() # Plot blochshere out5 = execute(qc5,backend).result().get_statevector() plot_bloch_multivector(out5) qc6 = QuantumCircuit(4) # initialize qubits qc6.x(range(4)) qc6.h(range(4)) qc6.s(range(4)) # perform gate operations on individual qubits qc6.x(0) qc6.y(1) qc6.z(2) qc6.s(3) # Draw circuit qc6.draw() # Plot blochshere out6 = execute(qc6,backend).result().get_statevector() plot_bloch_multivector(out6) import qiskit qiskit.__qiskit_version__
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import * import numpy as np from numpy import linalg as la from qiskit.tools.monitor import job_monitor import qiskit.tools.jupyter qc = QuantumCircuit(1) #### your code goes here # z measurement of qubit 0 measure_z = QuantumCircuit(1,1) measure_z.measure(0,0) # x measurement of qubit 0 measure_x = QuantumCircuit(1,1) # your code goes here # y measurement of qubit 0 measure_y = QuantumCircuit(1,1) # your code goes here shots = 2**14 # number of samples used for statistics sim = Aer.get_backend('qasm_simulator') bloch_vector_measure = [] for measure_circuit in [measure_x, measure_y, measure_z]: # run the circuit with a the selected measurement and get the number of samples that output each bit value counts = execute(qc+measure_circuit, sim, shots=shots).result().get_counts() # calculate the probabilities for each bit value probs = {} for output in ['0','1']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 bloch_vector_measure.append( probs['0'] - probs['1'] ) # normalizing the bloch sphere vector bloch_vector = bloch_vector_measure/la.norm(bloch_vector_measure) print('The bloch sphere coordinates are [{0:4.3f}, {1:4.3f}, {2:4.3f}]' .format(*bloch_vector)) from kaleidoscope.interactive import bloch_sphere bloch_sphere(bloch_vector, vectors_annotation=True) from qiskit.visualization import plot_bloch_vector plot_bloch_vector( bloch_vector ) # circuit for the state Tri1 Tri1 = QuantumCircuit(2) # your code goes here # circuit for the state Tri2 Tri2 = QuantumCircuit(2) # your code goes here # circuit for the state Tri3 Tri3 = QuantumCircuit(2) # your code goes here # circuit for the state Sing Sing = QuantumCircuit(2) # your code goes here # <ZZ> measure_ZZ = QuantumCircuit(2) measure_ZZ.measure_all() # <XX> measure_XX = QuantumCircuit(2) # your code goes here # <YY> measure_YY = QuantumCircuit(2) # your code goes here shots = 2**14 # number of samples used for statistics A = 1.47e-6 #unit of A is eV E_sim = [] for state_init in [Tri1,Tri2,Tri3,Sing]: Energy_meas = [] for measure_circuit in [measure_XX, measure_YY, measure_ZZ]: # run the circuit with a the selected measurement and get the number of samples that output each bit value qc = state_init+measure_circuit counts = execute(qc, sim, shots=shots).result().get_counts() # calculate the probabilities for each computational basis probs = {} for output in ['00','01', '10', '11']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 Energy_meas.append( probs['00'] - probs['01'] - probs['10'] + probs['11'] ) E_sim.append(A * np.sum(np.array(Energy_meas))) # Run this cell to print out your results print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E_sim[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E_sim[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E_sim[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E_sim[3])) # reduced plank constant in (eV) and the speed of light(cgs units) hbar, c = 4.1357e-15, 3e10 # energy difference between the triplets and singlet E_del = abs(E_sim[0] - E_sim[3]) # frequency associated with the energy difference f = E_del/hbar # convert frequency to wavelength in (cm) wavelength = c/f print('The wavelength of the radiation from the transition\ in the hyperfine structure is : {:.1f} cm'.format(wavelength)) provider = IBMQ.load_account() backend = provider.get_backend('ibmq_athens') # run this cell to get the backend information through the widget backend # assign your choice for the initial layout to the list variable `initial_layout`. initial_layout = qc_all = [state_init+measure_circuit for state_init in [Tri1,Tri2,Tri3,Sing] for measure_circuit in [measure_XX, measure_YY, measure_ZZ] ] shots = 8192 job = execute(qc_all, backend, initial_layout=initial_layout, optimization_level=3, shots=shots) print(job.job_id()) job_monitor(job) # getting the results of your job results = job.result() ## To access the results of the completed job #results = backend.retrieve_job('job_id').result() def Energy(results, shots): """Compute the energy levels of the hydrogen ground state. Parameters: results (obj): results, results from executing the circuits for measuring a hamiltonian. shots (int): shots, number of shots used for the circuit execution. Returns: Energy (list): energy values of the four different hydrogen ground states """ E = [] A = 1.47e-6 for ind_state in range(4): Energy_meas = [] for ind_comp in range(3): counts = results.get_counts(ind_state*3+ind_comp) # calculate the probabilities for each computational basis probs = {} for output in ['00','01', '10', '11']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 Energy_meas.append( probs['00'] - probs['01'] - probs['10'] + probs['11'] ) E.append(A * np.sum(np.array(Energy_meas))) return E E = Energy(results, shots) print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E[3])) from qiskit.ignis.mitigation.measurement import * # your code to create the circuits, meas_calibs, goes here meas_calibs, state_labels = # execute meas_calibs on your choice of the backend job = execute(meas_calibs, backend, shots = shots) print(job.job_id()) job_monitor(job) cal_results = job.result() ## To access the results of the completed job #cal_results = backend.retrieve_job('job_id').result() # your code to obtain the measurement filter object, 'meas_filter', goes here results_new = meas_filter.apply(results) E_new = Energy(results_new, shots) print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E_new[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E_new[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E_new[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E_new[3])) # results for the energy estimation from the simulation, # execution on a quantum system without error mitigation and # with error mitigation in numpy array format Energy_exact, Energy_exp_orig, Energy_exp_new = np.array(E_sim), np.array(E), np.array(E_new) # Calculate the relative errors of the energy values without error mitigation # and assign to the numpy array variable `Err_rel_orig` of size 4 Err_rel_orig = # Calculate the relative errors of the energy values with error mitigation # and assign to the numpy array variable `Err_rel_new` of size 4 Err_rel_new = np.set_printoptions(precision=3) print('The relative errors of the energy values for four bell basis\ without measurement error mitigation : {}'.format(Err_rel_orig)) np.set_printoptions(precision=3) print('The relative errors of the energy values for four bell basis\ with measurement error mitigation : {}'.format(Err_rel_new))
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
# Importing standard Qiskit libraries from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import Aer, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector, plot_state_qsphere, plot_state_city, plot_state_paulivec, plot_state_hinton # Ignore warnings import warnings warnings.filterwarnings('ignore') # Define backend sim = Aer.get_backend('aer_simulator') def createBellStates(inp1, inp2): qc = QuantumCircuit(2) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() qc.h(0) qc.cx(0,1) qc.save_statevector() qobj = assemble(qc) result = sim.run(qobj).result() state = result.get_statevector() return qc, state, result print('Note: Since these qubits are in entangled state, their state cannot be written as two separate qubit states. This also means that we lose information when we try to plot our state on separate Bloch spheres as seen below.\n') inp1 = 0 inp2 = 1 qc, state, result = createBellStates(inp1, inp2) display(plot_bloch_multivector(state)) # Uncomment below code in order to explore other states #for inp2 in ['0', '1']: #for inp1 in ['0', '1']: #qc, state, result = createBellStates(inp1, inp2) #print('For inputs',inp2,inp1,'Representation of Entangled States are:') # Uncomment any of the below functions to visualize the resulting quantum states # Draw the quantum circuit #display(qc.draw()) # Plot states on QSphere #display(plot_state_qsphere(state)) # Plot states on Bloch Multivector #display(plot_bloch_multivector(state)) # Plot histogram #display(plot_histogram(result.get_counts())) # Plot state matrix like a city #display(plot_state_city(state)) # Represent state matix using Pauli operators as the basis #display(plot_state_paulivec(state)) # Plot state matrix as Hinton representation #display(plot_state_hinton(state)) #print('\n')''' from qiskit import IBMQ, execute from qiskit.providers.ibmq import least_busy from qiskit.tools import job_monitor # Loading your IBM Quantum account(s) provider = IBMQ.load_account() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) def createBSRealDevice(inp1, inp2): qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.reset(range(2)) if inp1 == 1: qc.x(0) if inp2 == 1: qc.x(1) qc.barrier() qc.h(0) qc.cx(0,1) qc.measure(qr, cr) job = execute(qc, backend=backend, shots=100) job_monitor(job) result = job.result() return qc, result inp1 = 0 inp2 = 0 print('For inputs',inp2,inp1,'Representation of Entangled States are,') #first results qc, first_result = createBSRealDevice(inp1, inp2) first_counts = first_result.get_counts() # Draw the quantum circuit display(qc.draw()) #second results qc, second_result = createBSRealDevice(inp1, inp2) second_counts = second_result.get_counts() # Plot results on histogram with legend legend = ['First execution', 'Second execution'] plot_histogram([first_counts, second_counts], legend=legend) def ghzCircuit(inp1, inp2, inp3): qc = QuantumCircuit(3) qc.reset(range(3)) if inp1 == 1: qc.x(0) if inp2 == 1: qc.x(1) if inp3 == 1: qc.x(2) qc.barrier() qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.save_statevector() qobj = assemble(qc) result = sim.run(qobj).result() state = result.get_statevector() return qc, state, result print('Note: Since these qubits are in entangled state, their state cannot be written as two separate qubit states. This also means that we lose information when we try to plot our state on separate Bloch spheres as seen below.\n') inp1 = 0 inp2 = 1 inp3 = 1 qc, state, result = ghzCircuit(inp1, inp2, inp3) display(plot_bloch_multivector(state)) # Uncomment below code in order to explore other states #for inp3 in ['0','1']: #for inp2 in ['0','1']: #for inp1 in ['0','1']: #qc, state, result = ghzCircuit(inp1, inp2, inp3) #print('For inputs',inp3,inp2,inp1,'Representation of GHZ States are:') # Uncomment any of the below functions to visualize the resulting quantum states # Draw the quantum circuit #display(qc.draw()) # Plot states on QSphere #display(plot_state_qsphere(state)) # Plot states on Bloch Multivector #display(plot_bloch_multivector(state)) # Plot histogram #display(plot_histogram(result.get_counts())) # Plot state matrix like a city #display(plot_state_city(state)) # Represent state matix using Pauli operators as the basis #display(plot_state_paulivec(state)) # Plot state matrix as Hinton representation #display(plot_state_hinton(state)) #print('\n') def ghz5QCircuit(inp1, inp2, inp3, inp4, inp5): qc = QuantumCircuit(5) #qc.reset(range(5)) if inp1 == 1: qc.x(0) if inp2 == 1: qc.x(1) if inp3 == 1: qc.x(2) if inp4 == 1: qc.x(3) if inp5 == 1: qc.x(4) qc.barrier() qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.cx(0,3) qc.cx(0,4) qc.save_statevector() qobj = assemble(qc) result = sim.run(qobj).result() state = result.get_statevector() return qc, state, result # Explore GHZ States for input 00010. Note: the input has been stated in little-endian format. inp1 = 0 inp2 = 1 inp3 = 0 inp4 = 0 inp5 = 0 qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') display(plot_state_qsphere(state)) print('\n') # Explore GHZ States for input 11001. Note: the input has been stated in little-endian format. inp1 = 1 inp2 = 0 inp3 = 0 inp4 = 1 inp5 = 1 qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') display(plot_state_qsphere(state)) print('\n') # Explore GHZ States for input 01010. Note: the input has been stated in little-endian format. inp1 = 0 inp2 = 1 inp3 = 0 inp4 = 1 inp5 = 0 qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') display(plot_state_qsphere(state)) print('\n') # Uncomment below code in order to explore other states #for inp5 in ['0','1']: #for inp4 in ['0','1']: #for inp3 in ['0','1']: #for inp2 in ['0','1']: #for inp1 in ['0','1']: #qc, state, result = ghz5QCircuit(inp1, inp2, inp3, inp4, inp5) #print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ States are:') # Uncomment any of the below functions to visualize the resulting quantum states # Draw the quantum circuit #display(qc.draw()) # Plot states on QSphere #display(plot_state_qsphere(state)) # Plot states on Bloch Multivector #display(plot_bloch_multivector(state)) # Plot histogram #display(plot_histogram(result.get_counts())) # Plot state matrix like a city #display(plot_state_city(state)) # Represent state matix using Pauli operators as the basis #display(plot_state_paulivec(state)) # Plot state matrix as Hinton representation #display(plot_state_hinton(state)) #print('\n') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 5 and not x.configuration().simulator and x.status().operational==True)) def create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5): qr = QuantumRegister(5) cr = ClassicalRegister(5) qc = QuantumCircuit(qr, cr) qc.reset(range(5)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) if inp3=='1': qc.x(1) if inp4=='1': qc.x(1) if inp5=='1': qc.x(1) qc.barrier() qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.cx(0,3) qc.cx(0,4) qc.measure(qr, cr) job = execute(qc, backend=backend, shots=1000) job_monitor(job) result = job.result() return qc, result inp1 = 0 inp2 = 0 inp3 = 0 inp4 = 0 inp5 = 0 #first results qc, first_result = create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5) first_counts = first_result.get_counts() # Draw the quantum circuit display(qc.draw()) #second results qc, second_result = create5QGHZRealDevice(inp1, inp2, inp3, inp4, inp5) second_counts = second_result.get_counts() print('For inputs',inp5,inp4,inp3,inp2,inp1,'Representation of GHZ circuit states are,') # Plot results on histogram with legend legend = ['First execution', 'Second execution'] plot_histogram([first_counts, second_counts], legend=legend) import qiskit qiskit.__qiskit_version__
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import SparsePauliOp def heisenberg_hamiltonian( length: int, jx: float = 1.0, jy: float = 0.0, jz: float = 0.0 ) -> SparsePauliOp: terms = [] for i in range(length - 1): if jx: terms.append(("XX", [i, i + 1], jx)) if jy: terms.append(("YY", [i, i + 1], jy)) if jz: terms.append(("ZZ", [i, i + 1], jz)) return SparsePauliOp.from_sparse_list(terms, num_qubits=length) def state_prep_circuit(num_qubits: int, layers: int = 1) -> QuantumCircuit: qubits = QuantumRegister(num_qubits, name="q") circuit = QuantumCircuit(qubits) circuit.h(qubits) for _ in range(layers): for i in range(0, num_qubits - 1, 2): circuit.cx(qubits[i], qubits[i + 1]) circuit.ry(0.1, qubits) for i in range(1, num_qubits - 1, 2): circuit.cx(qubits[i], qubits[i + 1]) circuit.ry(0.1, qubits) return circuit length = 5 hamiltonian = heisenberg_hamiltonian(length, 1.0, 1.0) circuit = state_prep_circuit(length, layers=2) print(hamiltonian) circuit.draw("mpl") from qiskit_aer.primitives import Estimator estimator = Estimator(approximation=True) job = estimator.run(circuit, hamiltonian, shots=None) result = job.result() exact_value = result.values[0] print(f"Exact energy: {exact_value}") from qiskit_ibm_runtime import QiskitRuntimeService hub = "ibm-q-internal" group = "deployed" project = "default" service = QiskitRuntimeService(instance=f"{hub}/{group}/{project}") from qiskit_ibm_runtime import Estimator, Options, Session from qiskit.transpiler import CouplingMap backend = service.get_backend("simulator_statevector") # set simulation options simulator = { "basis_gates": ["id", "rz", "sx", "cx", "reset"], "coupling_map": list(CouplingMap.from_line(length + 1)), } shots = 10000 import math options = Options( simulator=simulator, resilience_level=0, ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") from qiskit_aer.noise import NoiseModel, ReadoutError noise_model = NoiseModel() ##### your code here ##### # P(A|B) = [P(A|0), P(A|1)] = [ 1 - q0_01, q0_01 ] = [ 0.8, 0.2 ] q0_10 = 0.5 q0_01 = 0.2 qn_10 = 0.05 qn_01 = 0.02 re_l = [ReadoutError( [ [1 - q0_01, q0_01], [q0_10, 1 - q0_10], ] )] n_qubits = 6 for _ in range(n_qubits - 1): re_l.append(ReadoutError( [ [1 - qn_01, qn_01], [qn_10, 1 - qn_10], ] )) for q in range(n_qubits): noise_model.add_readout_error(re_l[q], (q, )) print(noise_model.to_dict()) # Submit your answer from qc_grader.challenges.qgss_2023 import grade_lab5_ex1 grade_lab5_ex1(noise_model) options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=0, transpilation=dict(initial_layout=list(range(length))), ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=0, transpilation=dict(initial_layout=list(range(1, length + 1))), ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=1, transpilation=dict(initial_layout=list(range(1, length + 1))), ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") new_shots: int ##### your code here ##### new_shots = 20000 # Submit your answer from qc_grader.challenges.qgss_2023 import grade_lab5_ex2 grade_lab5_ex2(new_shots) from qiskit_aer.noise import depolarizing_error noise_model = NoiseModel() ##### your code here ##### error = depolarizing_error(0.01, 2) noise_model.add_all_qubit_quantum_error(error, ['cx']) print(noise_model) # Submit your answer from qc_grader.challenges.qgss_2023 import grade_lab5_ex3 grade_lab5_ex3(noise_model) options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=1, ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=2, ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variances = result.metadata[0]["zne"]["noise_amplification"]["variance"] print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variances: {variances}")
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f = [1, -1, -1, -1] g = [1, 1, -1, -1] # FourierChecking() : How our Fourier Transform of F is correlated with G. # if p(f,g) <= 0.01 # p(f, g) > 0.05 Fourier Exits between f and g qc = FourierChecking(f=f, g=g) qc.draw(output='mpl') zero = qi.Statevector.from_label('00') sv = zero.evolve(qc) probs = sv.probabilities_dict() plot_histogram(probs) # We are only interested in 00 qubit thus our function f is correlated in 00 state to g with probabilites of 25%
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
my_list = [1,2,3 ,4,5, 6,8,8,3,23,7,75,54,3] def my_oracle(my_input): winner=7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if my_oracle(trial_number) is True: print('Winner found at index :%i'%index) print('%i calls to the Oracle used'%(index+1)) break from qiskit import * from qiskit.qiskit_aer import Aer from qiskit import QuantumCircuit import matplotlib.pyplot as plt import numpy as np oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circ = QuantumCircuit(2,2) grover_circ.h(0) grover_circ.append(oracle,[0,1]) grover_circ.draw(output='mpl') job = execute(grover_circ, backend) result = job.result() sv = result.get_statevector() np.arount(sv, 2)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit.aqua.operators import WeightedPauliOperator pauli_dict = { 'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op = WeightedPauliOperator.from_dict(pauli_dict) from qiskit.aqua.algorithms import NumPyMinimumEigensolver ee = NumPyMinimumEigensolver(qubit_op) result = ee.run() print(result.eigenvalue.real) from qiskit import BasicAer from qiskit.aqua.algorithms import VQE from qiskit.circuit.library import TwoLocal from qiskit.aqua.components.optimizers import L_BFGS_B var_form = TwoLocal(qubit_op.num_qubits, ['ry', 'rz'], 'cz', reps=3, entanglement='linear') optimizer = L_BFGS_B(maxfun=1000) vqe = VQE(qubit_op, var_form, optimizer) backend = BasicAer.get_backend('statevector_simulator') result = vqe.run(backend) print(result.eigenvalue.real) from qiskit.aqua import QuantumInstance var_form = TwoLocal(qubit_op.num_qubits, ['ry', 'rz'], 'cz', reps=3, entanglement='linear') optimizer = L_BFGS_B(maxfun=1000) vqe = VQE(qubit_op, var_form, optimizer) backend = BasicAer.get_backend('statevector_simulator') qi = QuantumInstance(backend=backend) result = vqe.run(qi) print(result.eigenvalue.real)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ #initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts. IBMQ.load_account() nQubits = 14 # number of physical qubits a = 101 # the hidden integer whose bitstring is 1100101 # make sure that a can be represented with nQubits a = a % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # for recording the measurement on qr cr = ClassicalRegister(nQubits) circuitName = "BernsteinVazirani" bvCircuit = QuantumCircuit(qr, cr) # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier so that it is not optimized by the compiler bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (a & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.iden(qr[i]) # Apply barrier bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Measurement bvCircuit.barrier(qr) bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') shots = 1000 bvCompiled = transpile(bvCircuit, backend=backend, optimization_level=1) job_exp = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job_exp) results = job_exp.result() answer = results.get_counts(bvCircuit) threshold = int(0.01 * shots) #the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} #filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) #number of counts removed filteredAnswer['other_bitstrings'] = removedCounts #the removed counts is assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ # useful additional packages import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts IBMQ.load_account() n = 13 # the length of the first register for querying the oracle # Choose a type of oracle at random. With probability half it is constant, # and with the same probability it is balanced oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("The oracle returns a constant value ", oracleValue) else: print("The oracle returns a balanced function") a = np.random.randint(1,2**n) # this is a hidden parameter for balanced oracle. # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) #all qubits are initialized to zero # for recording the measurement on the first register cr = ClassicalRegister(n) circuitName = "DeutschJozsa" djCircuit = QuantumCircuit(qr, cr) # Create the superposition of all input queries in the first register by applying the Hadamard gate to each qubit. for i in range(n): djCircuit.h(qr[i]) # Flip the second register and apply the Hadamard gate. djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Apply barrier to mark the beginning of the oracle djCircuit.barrier() if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue for all input. if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # Otherwise, it returns the inner product of the input with a (non-zero bitstring) for i in range(n): if (a & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier to mark the end of the oracle djCircuit.barrier() # Apply Hadamard gates after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measurement djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) #draw the circuit djCircuit.draw(output='mpl',scale=0.5) backend = BasicAer.get_backend('qasm_simulator') shots = 1000 job = execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') djCompiled = transpile(djCircuit, backend=backend, optimization_level=1) djCompiled.draw(output='mpl',scale=0.5) job = execute(djCompiled, backend=backend, shots=1024) job_monitor(job) results = job.result() answer = results.get_counts() threshold = int(0.01 * shots) # the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} # filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) # number of counts removed filteredAnswer['other_bitstrings'] = removedCounts # the removed counts are assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np from qiskit import BasicAer from qiskit.transpiler import PassManager from qiskit.aqua import QuantumInstance from qiskit.aqua.operators import MatrixOperator, op_converter from qiskit.aqua.algorithms import EOH from qiskit.aqua.components.initial_states import Custom num_qubits = 2 temp = np.random.random((2 ** num_qubits, 2 ** num_qubits)) qubit_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T)) temp = np.random.random((2 ** num_qubits, 2 ** num_qubits)) evo_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T)) evo_time = 1 num_time_slices = 1 state_in = Custom(qubit_op.num_qubits, state='uniform') eoh = EOH(qubit_op, state_in, evo_op, evo_time=evo_time, num_time_slices=num_time_slices) backend = BasicAer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend) ret = eoh.run(quantum_instance) print('The result is\n{}'.format(ret))
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np from scipy.linalg import expm from qiskit import BasicAer from qiskit import execute as q_execute from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import state_fidelity from qiskit.aqua.operators import MatrixOperator, op_converter from qiskit.aqua.components.initial_states import Custom num_qubits = 2 evo_time = 1 temp = np.random.random((2 ** num_qubits, 2 ** num_qubits)) h1 = temp + temp.T qubitOp = MatrixOperator(matrix=h1) state_in = Custom(num_qubits, state='random') state_in_vec = state_in.construct_circuit('vector') groundtruth = expm(-1.j * h1 * evo_time) @ state_in_vec print('The directly computed groundtruth evolution result state is\n{}.'.format(groundtruth)) groundtruth_evolution = qubitOp.evolve(state_in_vec, evo_time, num_time_slices=0) print('The groundtruth evolution result as computed by the Dynamics algorithm is\n{}.'.format(groundtruth_evolution)) np.testing.assert_allclose(groundtruth_evolution, groundtruth) qubit_op = op_converter.to_weighted_pauli_operator(qubitOp) quantum_registers = QuantumRegister(qubit_op.num_qubits) circuit = state_in.construct_circuit('circuit', quantum_registers) circuit += qubit_op.evolve( None, evo_time, num_time_slices=1, quantum_registers=quantum_registers, expansion_mode='suzuki', expansion_order=3 ) circuit.draw(output='mpl') backend = BasicAer.get_backend('statevector_simulator') job = q_execute(circuit, backend) circuit_execution_result = np.asarray(job.result().get_statevector(circuit)) print('The evolution result state from executing the Dynamics circuit is\n{}.'.format(circuit_execution_result)) print('Fidelity between the groundtruth and the circuit result states is {}.'.format( state_fidelity(groundtruth, circuit_execution_result) ))
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Shor N = 15 shor = Shor(N) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) ret = shor.run(quantum_instance) print("The list of factors of {} as computed by the Shor's algorithm is {}.".format(N, ret['factors'][0]))
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Simon from qiskit.aqua.components.oracles import TruthTableOracle bitmaps = [ '01101001', '10011001', '01100110' ] oracle = TruthTableOracle(bitmaps) def compute_mask(input_bitmaps): vals = list(zip(*input_bitmaps))[::-1] def find_pair(): for i in range(len(vals)): for j in range(i + 1, len(vals)): if vals[i] == vals[j]: return i, j return 0, 0 k1, k2 = find_pair() return np.binary_repr(k1 ^ k2, int(np.log2(len(input_bitmaps[0])))) mask = compute_mask(bitmaps) print(f'The groundtruth mask is {mask}.') simon = Simon(oracle) backend = BasicAer.get_backend('qasm_simulator') result = simon.run(QuantumInstance(backend, shots=1024)) print('The mask computed using Simon is {}.'.format(result['result'])) assert(result['result'] == mask) bitmaps = [ '00011110', '01100110', '10101010' ] mask = compute_mask(bitmaps) print(f'The groundtruth mask is {mask}.') oracle = TruthTableOracle(bitmaps) simon = Simon(oracle) result = simon.run(QuantumInstance(backend, shots=1024)) print('The mask computed using Simon is {}.'.format(result['result'])) assert(result['result'] == mask)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np import pylab from qiskit import Aer, IBMQ from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.circuit.library import TwoLocal from qiskit.aqua.operators import WeightedPauliOperator pauli_dict = { 'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op = WeightedPauliOperator.from_dict(pauli_dict) num_qubits = qubit_op.num_qubits print('Number of qubits: {}'.format(num_qubits)) ee = NumPyMinimumEigensolver(qubit_op.copy()) result = ee.run() ref = result.eigenvalue.real print('Reference value: {}'.format(ref)) backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend=backend, seed_simulator=167, seed_transpiler=167) counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) aqua_globals.random_seed = 167 optimizer = SPSA(maxiter=200) var_form = TwoLocal(num_qubits, 'ry', 'cz') vqe = VQE(qubit_op, var_form, optimizer, callback=store_intermediate_result) vqe_result = vqe.run(quantum_instance) print('VQE on Aer qasm simulator (no noise): {}'.format(vqe_result.eigenvalue.real)) print('Delta from reference: {}'.format(vqe_result.eigenvalue.real-ref)) pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts, values) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence with no noise') import os from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.ibmq.exceptions import IBMQAccountCredentialsNotFound backend = Aer.get_backend('qasm_simulator') counts1 = [] values1 = [] noise_model = None try: os.environ['QISKIT_IN_PARALLEL'] = 'TRUE' provider = IBMQ.load_account() device = provider.get_backend('ibmqx2') coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) basis_gates = noise_model.basis_gates print(noise_model) quantum_instance = QuantumInstance(backend=backend, seed_simulator=167, seed_transpiler=167, noise_model=noise_model,) def store_intermediate_result1(eval_count, parameters, mean, std): counts1.append(eval_count) values1.append(mean) aqua_globals.random_seed = 167 optimizer = SPSA(maxiter=200) var_form = TwoLocal(num_qubits, 'ry', 'cz') vqe = VQE(qubit_op, var_form, optimizer, callback=store_intermediate_result1) vqe_result1 = vqe.run(quantum_instance) print('VQE on Aer qasm simulator (with noise): {}'.format(vqe_result1.eigenvalue.real)) print('Delta from reference: {}'.format(vqe_result1.eigenvalue.real-ref)) except IBMQAccountCredentialsNotFound as ex: print(str(ex)) if counts1 or values1: pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts1, values1) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence with noise') from qiskit.ignis.mitigation.measurement import CompleteMeasFitter counts1 = [] values1 = [] if noise_model is not None: quantum_instance = QuantumInstance(backend=backend, seed_simulator=167, seed_transpiler=167, noise_model=noise_model, measurement_error_mitigation_cls=CompleteMeasFitter, cals_matrix_refresh_period=30) def store_intermediate_result1(eval_count, parameters, mean, std): counts1.append(eval_count) values1.append(mean) aqua_globals.random_seed = 167 optimizer = SPSA(maxiter=200) var_form = TwoLocal(num_qubits, 'ry', 'cz') vqe = VQE(qubit_op, var_form, optimizer, callback=store_intermediate_result1) vqe_result1 = vqe.run(quantum_instance) print('VQE on Aer qasm simulator (with noise and measurement error mitigation): {}'.format(vqe_result1.eigenvalue)) print('Delta from reference: {}'.format(vqe_result1.eigenvalue.real-ref)) if counts1 or values1: pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts1, values1) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence with noise, enabling measurement error mitigation')
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np from qiskit import BasicAer from qiskit.transpiler import PassManager from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver, IQPE from qiskit.aqua.operators import WeightedPauliOperator from qiskit.circuit.library import TwoLocal from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua.components.initial_states.var_form_based import VarFormBased pauli_dict = { 'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op = WeightedPauliOperator.from_dict(pauli_dict) result_reference = NumPyMinimumEigensolver(qubit_op).run() print('The reference ground energy level is {}.'.format(result_reference.eigenvalue.real)) random_seed = 0 np.random.seed(random_seed) backend = BasicAer.get_backend('qasm_simulator') var_form_depth = 3 var_form = TwoLocal(qubit_op.num_qubits, ['ry', 'rz'], 'cz', reps=var_form_depth) spsa_max_trials=10 optimizer = SPSA(max_trials=spsa_max_trials) vqe = VQE(qubit_op, var_form, optimizer) quantum_instance = QuantumInstance(backend) result_vqe = vqe.run(quantum_instance) print('VQE estimated the ground energy to be {}.'.format(result_vqe.eigenvalue.real)) state_in = VarFormBased(var_form, result_vqe.optimal_point) num_time_slices = 1 num_iterations = 6 iqpe = IQPE(qubit_op, state_in, num_time_slices, num_iterations, expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=True) quantum_instance = QuantumInstance(backend, shots=100, seed_simulator=random_seed, seed_transpiler=random_seed) result_iqpe = iqpe.run(quantum_instance) print("Continuing with VQE's result, IQPE estimated the ground energy to be {}.".format( result_iqpe.eigenvalue.real))
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import numpy as np import pylab from qiskit import BasicAer from qiskit.aqua.operators import WeightedPauliOperator from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.initial_states import Zero from qiskit.aqua.components.optimizers import COBYLA, L_BFGS_B, SLSQP from qiskit.circuit.library import TwoLocal pauli_dict = { 'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op = WeightedPauliOperator.from_dict(pauli_dict) optimizers = [COBYLA, L_BFGS_B, SLSQP] converge_cnts = np.empty([len(optimizers)], dtype=object) converge_vals = np.empty([len(optimizers)], dtype=object) num_qubits = qubit_op.num_qubits for i in range(len(optimizers)): aqua_globals.random_seed = 250 optimizer = optimizers[i]() print('\rOptimizer: {} '.format(type(optimizer).__name__), end='') init_state = Zero(num_qubits) var_form = TwoLocal(num_qubits, 'ry', 'cz', initial_state=init_state) counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) algo = VQE(qubit_op, var_form, optimizer, callback=store_intermediate_result) backend = BasicAer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(backend=backend) algo_result = algo.run(quantum_instance) converge_cnts[i] = np.asarray(counts) converge_vals[i] = np.asarray(values) print('\rOptimization complete '); pylab.rcParams['figure.figsize'] = (12, 8) for i in range(len(optimizers)): pylab.plot(converge_cnts[i], converge_vals[i], label=optimizers[i].__name__) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Energy convergence for various optimizers') pylab.legend(loc='upper right') ee = NumPyMinimumEigensolver(qubit_op) result = ee.run() ref = result.eigenvalue.real print('Reference value: {}'.format(ref)) pylab.rcParams['figure.figsize'] = (12, 8) for i in range(len(optimizers)): pylab.plot(converge_cnts[i], abs(ref - converge_vals[i]), label=optimizers[i].__name__) pylab.xlabel('Eval count') pylab.ylabel('Energy difference from solution reference value') pylab.title('Energy convergence for various optimizers') pylab.yscale('log') pylab.legend(loc='upper right')
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ #initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts. IBMQ.load_account() nQubits = 14 # number of physical qubits a = 101 # the hidden integer whose bitstring is 1100101 # make sure that a can be represented with nQubits a = a % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # for recording the measurement on qr cr = ClassicalRegister(nQubits) circuitName = "BernsteinVazirani" bvCircuit = QuantumCircuit(qr, cr) # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier so that it is not optimized by the compiler bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (a & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.iden(qr[i]) # Apply barrier bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Measurement bvCircuit.barrier(qr) bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') shots = 1000 bvCompiled = transpile(bvCircuit, backend=backend, optimization_level=1) job_exp = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job_exp) results = job_exp.result() answer = results.get_counts(bvCircuit) threshold = int(0.01 * shots) #the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} #filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) #number of counts removed filteredAnswer['other_bitstrings'] = removedCounts #the removed counts is assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ # useful additional packages import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load our saved IBMQ accounts IBMQ.load_account() n = 13 # the length of the first register for querying the oracle # Choose a type of oracle at random. With probability half it is constant, # and with the same probability it is balanced oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("The oracle returns a constant value ", oracleValue) else: print("The oracle returns a balanced function") a = np.random.randint(1,2**n) # this is a hidden parameter for balanced oracle. # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) #all qubits are initialized to zero # for recording the measurement on the first register cr = ClassicalRegister(n) circuitName = "DeutschJozsa" djCircuit = QuantumCircuit(qr, cr) # Create the superposition of all input queries in the first register by applying the Hadamard gate to each qubit. for i in range(n): djCircuit.h(qr[i]) # Flip the second register and apply the Hadamard gate. djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Apply barrier to mark the beginning of the oracle djCircuit.barrier() if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue for all input. if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # Otherwise, it returns the inner product of the input with a (non-zero bitstring) for i in range(n): if (a & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier to mark the end of the oracle djCircuit.barrier() # Apply Hadamard gates after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measurement djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) #draw the circuit djCircuit.draw(output='mpl',scale=0.5) backend = BasicAer.get_backend('qasm_simulator') shots = 1000 job = execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') djCompiled = transpile(djCircuit, backend=backend, optimization_level=1) djCompiled.draw(output='mpl',scale=0.5) job = execute(djCompiled, backend=backend, shots=1024) job_monitor(job) results = job.result() answer = results.get_counts() threshold = int(0.01 * shots) # the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} # filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) # number of counts removed filteredAnswer['other_bitstrings'] = removedCounts # the removed counts are assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.visualization import plot_histogram q = QuantumRegister(6) qc = QuantumCircuit(q) qc.x(q[2]) qc.cx(q[1], q[5]) qc.cx(q[2], q[5]) qc.cx(q[3], q[5]) qc.ccx(q[1], q[2], q[4]) qc.ccx(q[3], q[4], q[5]) qc.ccx(q[1], q[2], q[4]) qc.x(q[2]) qc.draw(output='mpl') def black_box_u_f(circuit, f_in, f_out, aux, n, exactly_1_3_sat_formula): """Circuit that computes the black-box function from f_in to f_out. Create a circuit that verifies whether a given exactly-1 3-SAT formula is satisfied by the input. The exactly-1 version requires exactly one literal out of every clause to be satisfied. """ num_clauses = len(exactly_1_3_sat_formula) for (k, clause) in enumerate(exactly_1_3_sat_formula): # This loop ensures aux[k] is 1 if an odd number of literals # are true for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) # Flip aux[k] if all literals are true, using auxiliary qubit # (ancilla) aux[num_clauses] circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) # Flip back to reverse state of negative literals and ancilla circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # The formula is satisfied if and only if all auxiliary qubits # except aux[num_clauses] are 1 if (num_clauses == 1): circuit.cx(aux[0], f_out[0]) elif (num_clauses == 2): circuit.ccx(aux[0], aux[1], f_out[0]) elif (num_clauses == 3): circuit.ccx(aux[0], aux[1], aux[num_clauses]) circuit.ccx(aux[2], aux[num_clauses], f_out[0]) circuit.ccx(aux[0], aux[1], aux[num_clauses]) else: raise ValueError('We only allow at most 3 clauses') # Flip back any auxiliary qubits to make sure state is consistent # for future executions of this routine; same loop as above. for (k, clause) in enumerate(exactly_1_3_sat_formula): for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # -- end function def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 ' + 'controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) # -- end function def inversion_about_average(circuit, f_in, n): """Apply inversion about the average step of Grover's algorithm.""" # Hadamards everywhere for j in range(n): circuit.h(f_in[j]) # D matrix: flips the sign of the state |000> only for j in range(n): circuit.x(f_in[j]) n_controlled_Z(circuit, [f_in[j] for j in range(n-1)], f_in[n-1]) for j in range(n): circuit.x(f_in[j]) # Hadamards everywhere again for j in range(n): circuit.h(f_in[j]) # -- end function qr = QuantumRegister(3) qInvAvg = QuantumCircuit(qr) inversion_about_average(qInvAvg, qr, 3) qInvAvg.draw(output='mpl') """ Grover search implemented in Qiskit. This module contains the code necessary to run Grover search on 3 qubits, both with a simulator and with a real quantum computing device. This code is the companion for the paper "An introduction to quantum computing, without the physics", Giacomo Nannicini, https://arxiv.org/abs/1708.03684. """ def input_state(circuit, f_in, f_out, n): """(n+1)-qubit input state for Grover search.""" for j in range(n): circuit.h(f_in[j]) circuit.x(f_out) circuit.h(f_out) # -- end function # Make a quantum program for the n-bit Grover search. n = 3 # Exactly-1 3-SAT formula to be satisfied, in conjunctive # normal form. We represent literals with integers, positive or # negative, to indicate a Boolean variable or its negation. exactly_1_3_sat_formula = [[1, 2, -3], [-1, -2, -3], [-1, 2, 3]] # Define three quantum registers: 'f_in' is the search space (input # to the function f), 'f_out' is bit used for the output of function # f, aux are the auxiliary bits used by f to perform its # computation. f_in = QuantumRegister(n) f_out = QuantumRegister(1) aux = QuantumRegister(len(exactly_1_3_sat_formula) + 1) # Define classical register for algorithm result ans = ClassicalRegister(n) # Define quantum circuit with above registers grover = QuantumCircuit() grover.add_register(f_in) grover.add_register(f_out) grover.add_register(aux) grover.add_register(ans) input_state(grover, f_in, f_out, n) T = 2 for t in range(T): # Apply T full iterations black_box_u_f(grover, f_in, f_out, aux, n, exactly_1_3_sat_formula) inversion_about_average(grover, f_in, n) # Measure the output register in the computational basis for j in range(n): grover.measure(f_in[j], ans[j]) # Execute circuit backend = BasicAer.get_backend('qasm_simulator') job = execute([grover], backend=backend, shots=1000) result = job.result() # Get counts and plot histogram counts = result.get_counts(grover) plot_histogram(counts) IBMQ.load_account() # get ibmq_16_melbourne configuration and coupling map backend = IBMQ.get_backend('ibmq_16_melbourne') # compile the circuit for ibmq_16_rueschlikon grover_compiled = transpile(grover, backend=backend, seed_transpiler=1, optimization_level=3) print('gates = ', grover_compiled.count_ops()) print('depth = ', grover_compiled.depth()) grover.draw(output='mpl', scale=0.5)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ from math import pi import numpy as np import scipy as sp import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit.tools.visualization import plot_histogram from qiskit.tools.monitor import job_monitor # Load saved IBMQ accounts IBMQ.load_account() # We first define controlled gates used in the IPEA def cu1fixed(qProg, c, t, a): qProg.u1(-a, t) qProg.cx(c, t) qProg.u1(a, t) qProg.cx(c, t) def cu5pi8(qProg, c, t): cu1fixed(qProg, c, t, -5.0*pi/8.0) # We then prepare quantum and classical registers and the circuit qr = QuantumRegister(2) cr = ClassicalRegister(4) circuitName="IPEAonSimulator" ipeaCircuit = QuantumCircuit(qr, cr) # Apply IPEA ipeaCircuit.h(qr[0]) for i in range(8): cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[0]) ipeaCircuit.reset(qr[0]) ipeaCircuit.h(qr[0]) for i in range(4): cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.u1(-pi/2, qr[0]).c_if(cr, 1) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[1]) ipeaCircuit.reset(qr[0]) ipeaCircuit.h(qr[0]) for i in range(2): cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.u1(-pi/4, qr[0]).c_if(cr, 1) ipeaCircuit.u1(-pi/2, qr[0]).c_if(cr, 2) ipeaCircuit.u1(-3*pi/4, qr[0]).c_if(cr, 3) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[2]) ipeaCircuit.reset(qr[0]) ipeaCircuit.h(qr[0]) cu5pi8(ipeaCircuit, qr[0], qr[1]) ipeaCircuit.u1(-pi/8, qr[0]).c_if(cr, 1) ipeaCircuit.u1(-2*pi/8, qr[0]).c_if(cr, 2) ipeaCircuit.u1(-3*pi/8, qr[0]).c_if(cr, 3) ipeaCircuit.u1(-4*pi/8, qr[0]).c_if(cr, 4) ipeaCircuit.u1(-5*pi/8, qr[0]).c_if(cr, 5) ipeaCircuit.u1(-6*pi/8, qr[0]).c_if(cr, 6) ipeaCircuit.u1(-7*pi/8, qr[0]).c_if(cr, 7) ipeaCircuit.h(qr[0]) ipeaCircuit.measure(qr[0], cr[3]) backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(ipeaCircuit, backend=backend, shots=shots).result() plot_histogram(results.get_counts()) # We then prepare quantum and classical registers and the circuit qr = QuantumRegister(5) cr = ClassicalRegister(5) realStep1Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep1Circuit.h(qr[0]) for i in range(8): cu5pi8(realStep1Circuit, qr[0], qr[1]) realStep1Circuit.h(qr[0]) realStep1Circuit.measure(qr[0], cr[0]) #connect to remote API to be able to use remote simulators and real devices print("Available backends:", [BasicAer.backends(), IBMQ.backends()]) backend = IBMQ.get_backend("ibmq_5_yorktown") shots = 1000 job_exp1 = execute(realStep1Circuit, backend=backend, shots=shots) job_monitor(job_exp1) results1 = job_exp1.result() plot_histogram(results1.get_counts()) realStep2Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep2Circuit.h(qr[0]) for i in range(4): cu5pi8(realStep2Circuit, qr[0], qr[1]) realStep2Circuit.u1(-pi/2, qr[0]) # Assuming the value of the measurement on Step 1 realStep2Circuit.h(qr[0]) realStep2Circuit.measure(qr[0], cr[0]) job_exp2 = execute(realStep2Circuit, backend=backend, shots=shots) job_monitor(job_exp1) results2 = job_exp2.result() plot_histogram(results2.get_counts()) realStep3Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep3Circuit.h(qr[0]) for i in range(2): cu5pi8(realStep3Circuit, qr[0], qr[1]) realStep3Circuit.u1(-3*pi/4, qr[0]) # Assuming the value of the measurement on Step 1 and Step 2 realStep3Circuit.h(qr[0]) realStep3Circuit.measure(qr[0], cr[0]) job_exp3 = execute(realStep3Circuit, backend=backend, shots=shots) job_monitor(job_exp3) results3 = job_exp3.result() plot_histogram(results3.get_counts()) realStep4Circuit = QuantumCircuit(qr, cr) # Apply IPEA realStep4Circuit.h(qr[0]) cu5pi8(realStep4Circuit, qr[0], qr[1]) realStep4Circuit.u1(-3*pi/8, qr[0]) # Assuming the value of the measurement on Step 1, 2, and 3 realStep4Circuit.h(qr[0]) realStep4Circuit.measure(qr[0], cr[0]) job_exp4 = execute(realStep4Circuit, backend=backend, shots=shots) job_monitor(job_exp4) results4 = job_exp4.result() plot_histogram(results4.get_counts())
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from IPython.display import YouTubeVideo YouTubeVideo('BYKc2RnQMqo', width=858, height=540) !pip install qiskit --quiet !pip install qiskit-aer --quiet !pip install pylatexenc --quiet # @markdown ### **1. Import `Qiskit` and essential packages** { display-mode: "form" } from qiskit import QuantumCircuit, transpile, assemble from qiskit.circuit.library import QFT from qiskit_aer import AerSimulator from fractions import Fraction import random import sympy import math # @markdown ### **2. Controlled Modular Multiplication for $U(x) = a^x mod N$** { display-mode: "form" } class CtrlMultCircuit(QuantumCircuit): def __init__(self, a, binary_power, N): super().__init__(N.bit_length()) self.a = a self.power = 2 ** binary_power # Convert binary to decimal self.N = N self.name = f'{self.a}^{self.power} mod {self.N}' self._create_circuit() def _create_circuit(self): for dec_power in range(self.power): a_exp = self.a ** dec_power % self.N for i in range(self.num_qubits): if a_exp >> i & 1: self.x(i) for j in range(i + 1, self.num_qubits): if a_exp >> j & 1: self.swap(i, j) # @markdown ### **3. Quantum Phase Estimation with `Modular Exponentiation` and `Quantum Fourier Transform` to find period $r$** { display-mode: "form" } # @markdown ![](https://reneroliveira.github.io/quantum-shors-algorithm/images/shor_circuit.png) class QPECircuit(QuantumCircuit): def __init__(self, a, N): super().__init__(2 * N.bit_length(), N.bit_length()) self.a = a self.N = N self._create_circuit() def _modular_exponentiation(self): for qbit_idx in range(self.num_qubits // 2): self.append( CtrlMultCircuit(self.a, qbit_idx, self.N).to_gate().control(), [qbit_idx] + list(range(self.num_qubits // 2, 2 * self.num_qubits // 2)) ) def _create_circuit(self): self.h(range(self.num_qubits // 2)) # Apply Hadamard gates to the first n qubits self.x(self.num_qubits - 1) self.barrier() self._modular_exponentiation() # Apply controlled modular exponentiation self.barrier() self.append( QFT(self.num_qubits // 2, inverse=True), range(self.num_qubits // 2) # Apply inverse QFT to the first n qubits ) def collapse(self, simulator): self.measure(range(self.num_qubits // 2), range(self.num_qubits // 2)) transpiled_circuit = transpile(self, simulator) self.collapse_result = simulator.run(transpiled_circuit, memory=True).result() return self.collapse_result # @markdown ### **4. Completed Shor's Algorithm for Integer Factorization** { display-mode: "form" } class ShorAlgorithm: def __init__(self, N, max_attempts=-1, random_coprime_only=False, simulator=None): self.N = N self.simulator = simulator self.max_attempts = max_attempts # -1 for all possible values of a self.random_coprime_only = random_coprime_only # True to select only coprime values of a and N def execute(self): is_N_invalid = self._is_N_invalid() if is_N_invalid: return is_N_invalid # Only coprime values remain if random_coprime_only is enabled, # Otherwise select a random integer in [2, N) as initial guess a_values = [a for a in range(2, self.N) if not self.random_coprime_only or (math.gcd(a, self.N) == 1)] print(f'[INFO] {len(a_values)} possible values of a: {a_values}') self.max_attempts = len(a_values) if self.max_attempts <= -1 else min(self.max_attempts, len(a_values)) attempts_count = 0 while attempts_count < self.max_attempts: print(f'\n===== Attempt {attempts_count + 1}/{self.max_attempts} =====') attempts_count += 1 self.chosen_a = random.choice(a_values) self.r = 1 print(f'[START] Chosen base a: {self.chosen_a}') if not self.random_coprime_only: gcd = math.gcd(self.chosen_a, self.N) if gcd != 1: print(f'=> {self.chosen_a} and {self.N} share common factor: {self.N} = {gcd} * {self.N // gcd}') return gcd, self.N // gcd print(f'>>> {self.chosen_a} and {self.N} are coprime => Perform Quantum Phase Estimation to find {self.chosen_a}^r - 1 = 0 (MOD {self.N})') if not self._quantum_period_finding(): a_values.remove(self.chosen_a) self.r = self.chosen_a = self.qpe_circuit = None continue factors = self._classical_postprocess() if factors: return factors a_values.remove(self.chosen_a) self.r = self.chosen_a = self.qpe_circuit = None print(f'[FAIL] No non-trivial factors found after {self.max_attempts} attempts.') def _is_N_invalid(self): if self.N <= 3: print('[ERR] N must be > 3') return 1, self.N if self.N % 2 == 0: print(f'=> {self.N} is an even number: {self.N} = 2 * {self.N // 2}') return 2, self.N // 2 if sympy.isprime(self.N): print(f'=> {self.N} is a prime number: {self.N} = 1 * {self.N}') return 1, self.N max_exponent = int(math.log2(self.N)) # Start with a large exponent and reduce for k in range(max_exponent, 1, -1): p = round(self.N ** (1 / k)) if p ** k == self.N: print(f'=> {self.N} is a power of prime: {self.N} = {p}^{k}') return p, k return False def _quantum_period_finding(self): while self.chosen_a ** self.r % self.N != 1: # QPE + continued fractions may find wrong r self.qpe_circuit = QPECircuit(self.chosen_a, self.N) # Find phase s/r result = self.qpe_circuit.collapse(self.simulator) state_bin = result.get_memory()[0] state_dec = int(state_bin, 2) # Convert to decimal bits_count = 2 ** (self.N.bit_length() - 1) phase = state_dec / bits_count # Continued fraction to find r self.r = Fraction(phase).limit_denominator(self.N).denominator # Get fraction that most closely approximates phase if self.r > self.N or self.r == 1: # Safety check to avoid infinite loops print(f'[ERR] Invalid period found: r = {self.r} => Retry with different a.') return False print(f'>>> Output State: |{state_bin}⟩ = {state_dec} (dec) => Phase = {state_dec} / {bits_count} = {phase:.3f}') return True def _classical_postprocess(self): # Classical postprocessing to find factors from the period print(f'>>> Found r = {self.r} => a^{{r/2}} ± 1 = {self.chosen_a:.0f}^{self.r/2:.0f} ± 1') if self.r % 2 != 0: print(f'[ERR] r = {self.r} is odd => Retry with different a.') return None int1, int2 = self.chosen_a ** (self.r // 2) - 1, self.chosen_a ** (self.r // 2) + 1 if int1 % self.N == 0 or int2 % self.N == 0: print(f'[ERR] {self.chosen_a}^{self.r/2:.0f} ± 1 is a multiple of {self.N} => Retry with different a.') return None factor1, factor2 = math.gcd(int1, self.N), math.gcd(int2, self.N) if factor1 not in [1, self.N] and factor2 not in [1, self.N]: # Check to see if factor is non-trivial print(f'[DONE] Successfully found non-trivial factors: {self.N} = {factor1} * {factor2}') return factor1, factor2 print(f'[FAIL] Trivial factors found: [1, {self.N}] => Retry with different a.') return None # @markdown ### **5. Run the Factorization** { display-mode: "form" } number_to_factor = 21 # @param {type:"slider", min: 15, max: 55, step: 1} max_attempts = -1 # @param {type:"slider", min:-1, max:100, step:10} random_coprime_only = False # @param {type:"boolean"} # @markdown ***Note**: `max_attempts` will be limited to number of available values. shor = ShorAlgorithm(number_to_factor, max_attempts, random_coprime_only, AerSimulator()) factors = shor.execute() try: display(shor.qpe_circuit.draw(output='mpl', fold=-1)) except Exception: pass
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import qiskit qiskit.__qiskit_version__ #initialization import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram # Load the saved IBMQ accounts IBMQ.load_account() s = "010101" # the hidden bitstring assert 1 < len(s) < 20, "The length of s must be between 2 and 19" for c in s: assert c == "0" or c == "1", "s must be a bitstring of '0' and '1'" n = len(s) #the length of the bitstring # Step 1 # Creating registers # qubits for querying the oracle and recording its output qr = QuantumRegister(2*n) # for recording the measurement on the first register of qr cr = ClassicalRegister(n) circuitName = "Simon" simonCircuit = QuantumCircuit(qr, cr) # Step 2 # Apply Hadamard gates before querying the oracle for i in range(n): simonCircuit.h(qr[i]) # Apply barrier to mark the beginning of the blackbox function simonCircuit.barrier() # Step 3 query the blackbox function # copy the content of the first register to the second register for i in range(n): simonCircuit.cx(qr[i], qr[n+i]) # get the least index j such that s_j is "1" j = -1 for i, c in enumerate(s): if c == "1": j = i break # Creating 1-to-1 or 2-to-1 mapping with the j-th qubit of x as control to XOR the second register with s for i, c in enumerate(s): if c == "1" and j >= 0: simonCircuit.cx(qr[j], qr[n+i]) #the i-th qubit is flipped if s_i is 1 # get random permutation of n qubits perm = list(np.random.permutation(n)) #initial position init = list(range(n)) i = 0 while i < n: if init[i] != perm[i]: k = perm.index(init[i]) simonCircuit.swap(qr[n+i], qr[n+k]) #swap qubits init[i], init[k] = init[k], init[i] #marked swapped qubits else: i += 1 # randomly flip the qubit for i in range(n): if np.random.random() > 0.5: simonCircuit.x(qr[n+i]) # Apply the barrier to mark the end of the blackbox function simonCircuit.barrier() # Step 4 apply Hadamard gates to the first register for i in range(n): simonCircuit.h(qr[i]) # Step 5 perform measurement on the first register for i in range(n): simonCircuit.measure(qr[i], cr[i]) #draw the circuit simonCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend("qasm_simulator") # the number of shots is twice the length of the bitstring shots = 2*n job = execute(simonCircuit, backend=backend, shots=shots) answer = job.result().get_counts() plot_histogram(answer) # Post-processing step # Constructing the system of linear equations Y s = 0 # By k[::-1], we reverse the order of the bitstring lAnswer = [ (k[::-1],v) for k,v in answer.items() if k != "0"*n ] #excluding the trivial all-zero #Sort the basis by their probabilities lAnswer.sort(key = lambda x: x[1], reverse=True) Y = [] for k, v in lAnswer: Y.append( [ int(c) for c in k ] ) #import tools from sympy from sympy import Matrix, pprint, MatrixSymbol, expand, mod_inverse Y = Matrix(Y) #pprint(Y) #Perform Gaussian elimination on Y Y_transformed = Y.rref(iszerofunc=lambda x: x % 2==0) # linear algebra on GF(2) #to convert rational and negatives in rref of linear algebra on GF(2) def mod(x,modulus): numer, denom = x.as_numer_denom() return numer*mod_inverse(denom,modulus) % modulus Y_new = Y_transformed[0].applyfunc(lambda x: mod(x,2)) #must takecare of negatives and fractional values #pprint(Y_new) print("The hidden bistring s[ 0 ], s[ 1 ]....s[",n-1,"] is the one satisfying the following system of linear equations:") rows, cols = Y_new.shape for r in range(rows): Yr = [ "s[ "+str(i)+" ]" for i, v in enumerate(list(Y_new[r,:])) if v == 1 ] if len(Yr) > 0: tStr = " + ".join(Yr) print(tStr, "= 0") #Use one of the available backends backend = IBMQ.get_backend("ibmq_16_melbourne") # show the status of the backend print("Status of", backend, "is", backend.status()) shots = 10*n #run more experiments to be certain max_credits = 3 # Maximum number of credits to spend on executions. simonCompiled = transpile(simonCircuit, backend=backend, optimization_level=1) job_exp = execute(simonCompiled, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job_exp) results = job_exp.result() answer = results.get_counts(simonCircuit) plot_histogram(answer) # Post-processing step # Constructing the system of linear equations Y s = 0 # By k[::-1], we reverse the order of the bitstring lAnswer = [ (k[::-1][:n],v) for k,v in answer.items() ] #excluding the qubits that are not part of the inputs #Sort the basis by their probabilities lAnswer.sort(key = lambda x: x[1], reverse=True) Y = [] for k, v in lAnswer: Y.append( [ int(c) for c in k ] ) Y = Matrix(Y) #Perform Gaussian elimination on Y Y_transformed = Y.rref(iszerofunc=lambda x: x % 2==0) # linear algebra on GF(2) Y_new = Y_transformed[0].applyfunc(lambda x: mod(x,2)) #must takecare of negatives and fractional values #pprint(Y_new) print("The hidden bistring s[ 0 ], s[ 1 ]....s[",n-1,"] is the one satisfying the following system of linear equations:") rows, cols = Y_new.shape for r in range(rows): Yr = [ "s[ "+str(i)+" ]" for i, v in enumerate(list(Y_new[r,:])) if v == 1 ] if len(Yr) > 0: tStr = " + ".join(Yr) print(tStr, "= 0")
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
import math b_max = math.pi / 5 # upper limit of integral nbit = 3 # change this value to get discretized result closer to analytical results analyticResult = (b_max / 2.0 - math.sin(2 * b_max) / 4.0 ) / b_max # the target integral can be analytically solved print("Analytical Result:", analyticResult) ndiv = 2**nbit #number of discretization discretizedResult = 0.0 for i in range(ndiv): discretizedResult += math.sin(b_max / ndiv * (i + 0.5))**2 discretizedResult = discretizedResult / ndiv print("Discretized Result:", discretizedResult) def P(qc, qx, nbit): """ Generating uniform probability distribution qc: quantum circuit qx: quantum register nbit: number of qubits The inverse of P = P """ qc.h(qx) def R(qc, qx, qx_measure, nbit, b_max): """ Computing the integral function f() qc: quantum circuit qx: quantum register qx_measure: quantum register for measurement nbit: number of qubits b_max: upper limit of integral """ qc.ry(b_max / 2**nbit * 2 * 0.5, qx_measure) for i in range(nbit): qc.cu3(2**i * b_max / 2**nbit * 2, 0, 0, qx[i], qx_measure[0]) def Rinv(qc, qx, qx_measure, nbit, b_max): """ The inverse of R qc: quantum circuit qx: quantum register qx_measure : quantum register for measurement nbit: number of qubits b_max: upper limit of integral """ for i in range(nbit)[::-1]: qc.cu3(-2**i * b_max / 2**nbit * 2, 0, 0, qx[i], qx_measure[0]) qc.ry(-b_max / 2**nbit * 2 * 0.5, qx_measure) #Preparing qiskit environment from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit from qiskit import execute from qiskit import IBMQ from qiskit import Aer from scipy import optimize import sys, time import mpmath as mp import numpy as np import matplotlib.pyplot as plt # Functions to construct circuits for Grover operators def multi_control_NOT(qc, qx, qx_measure, qx_ancilla, nbit, b_max): """ Computing multi controlled NOT gate qc: quantum circuit qx: quantum register qx_measure: quantum register for measurement qx_ancilla: temporal quantum register for decomposing multi controlled NOT gate nbit: number of qubits b_max: upper limit of integral """ if nbit == 1: qc.cz(qx[0], qx_measure[0]) elif nbit == 2: qc.h(qx_measure[0]) qc.ccx(qx[0], qx[1], qx_measure[0]) qc.h(qx_measure[0]) elif nbit > 2.0: qc.ccx(qx[0], qx[1], qx_ancilla[0]) for i in range(nbit - 3): qc.ccx(qx[i + 2], qx_ancilla[i], qx_ancilla[i + 1]) qc.h(qx_measure[0]) qc.ccx(qx[nbit - 1], qx_ancilla[nbit - 3], qx_measure[0]) qc.h(qx_measure[0]) for i in range(nbit - 3)[::-1]: qc.ccx(qx[i + 2], qx_ancilla[i], qx_ancilla[i + 1]) qc.ccx(qx[0], qx[1], qx_ancilla[0]) def reflect(qc, qx, qx_measure, qx_ancilla, nbit, b_max): """ Computing reflection operator (I - 2|0><0|) qc: quantum circuit qx: quantum register qx_measure: quantum register for measurement qx_ancilla: temporal quantum register for decomposing multi controlled NOT gate nbit: number of qubits b_max: upper limit of integral """ for i in range(nbit): qc.x(qx[i]) qc.x(qx_measure[0]) qc.barrier() #format the circuits visualization multi_control_NOT(qc, qx, qx_measure, qx_ancilla, nbit, b_max) qc.barrier() #format the circuits visualization qc.x(qx_measure[0]) for i in range(nbit): qc.x(qx[i]) # This is to implement Grover Operator def Q_grover(qc, qx, qx_measure, qx_ancilla, nbit, b_max): """ The Grover operator: R P (I - 2|0><0|) P^+ R^+ U_psi_0 qc: quantum circuit qx: quantum register qx_measure: quantum register for measurement qx_ancilla: temporal quantum register for decomposing multi controlled NOT gate nbit: number of qubits b_max: upper limit of integral """ qc.z(qx_measure[0]) Rinv(qc, qx, qx_measure, nbit, b_max) qc.barrier() #format the circuits visualization P(qc, qx, nbit) reflect(qc, qx, qx_measure, qx_ancilla, nbit, b_max) P(qc, qx, nbit) qc.barrier() #format the circuits visualization R(qc, qx, qx_measure, nbit, b_max) def create_grover_circuit(numebr_grover_list, nbit, b_max): """ To generate quantum circuits running Grover operators with number of iterations in number_grover_list numebr_grover_list: list of number of Grover operators nbit: number of qubits (2**nbit = ndiv is the number of discretization in the Monte Carlo integration) b_max: upper limit of integral Return: qc_list: quantum circuits with Grover operators as in number_grover_list """ qc_list = [] for igrover in range(len(numebr_grover_list)): qx = QuantumRegister(nbit) qx_measure = QuantumRegister(1) cr = ClassicalRegister(1) if (nbit > 2): qx_ancilla = QuantumRegister(nbit - 2) qc = QuantumCircuit(qx, qx_ancilla, qx_measure, cr) else: qx_ancilla = 0 qc = QuantumCircuit(qx, qx_measure, cr) P(qc, qx, nbit) R(qc, qx, qx_measure, nbit, b_max) for ikAA in range(numebr_grover_list[igrover]): Q_grover(qc, qx, qx_measure, qx_ancilla, nbit, b_max) qc.measure(qx_measure[0], cr[0]) qc_list.append(qc) return qc_list qc_list = create_grover_circuit([2], nbit, b_max) my_style = {'usepiformat': True, 'cregbundle': True,'compress': True } qc_list[0].draw(output="mpl", style=my_style, plot_barriers=False ) def run_grover(qc_list, number_grover_list, shots_list, backend): """ Run the quantum circuits returned by create_grover_circuit() qc_list: list of quantum circuits numebr_grover_list: list of number of Grover operators shots_list: list of number of shots backend: name of backends Return: hit_list: list of count of obserbving "1" for qc_list """ hit_list = [] for k in range(len(number_grover_list)): job = execute(qc_list[k], backend=backend, shots=shots_list[k]) lapse = 0 interval = 0.00001 time.sleep(interval) while job.status().name != 'DONE': time.sleep(interval) lapse += 1 counts = job.result().get_counts(qc_list[k]).get("1", 0) hit_list.append(counts) return hit_list def calculate_theta(hit_list, number_grover_list, shots_list): """ calculate optimal theta values hit_list: list of count of obserbving "1" for qc_list numebr_grover_list: list of number of Grover operators shots_list: list of number of shots Return: thetaCandidate_list: list of optimal theta """ small = 1.e-15 # small valued parameter to avoid zero division confidenceLevel = 5 # confidence level to determine the search range thetaCandidate_list = [] rangeMin = 0.0 + small rangeMax = 1.0 - small for igrover in range(len(number_grover_list)): def loglikelihood(p): ret = np.zeros_like(p) theta = np.arcsin(np.sqrt(p)) for n in range(igrover + 1): ihit = hit_list[n] arg = (2 * number_grover_list[n] + 1) * theta ret = ret + 2 * ihit * np.log(np.abs(np.sin(arg))) + 2 * ( shots_list[n] - ihit) * np.log(np.abs(np.cos(arg))) return -ret searchRange = (rangeMin, rangeMax) searchResult = optimize.brute(loglikelihood, [searchRange]) pCandidate = searchResult[0] thetaCandidate_list.append(np.arcsin(np.sqrt(pCandidate))) perror = CalcErrorCramérRao(igrover, shots_list, pCandidate, number_grover_list) rangeMax = min(pCandidate+confidenceLevel*perror,1.0 - small) rangeMin = max(pCandidate-confidenceLevel*perror,0.0 + small) return thetaCandidate_list #setting the number of shots and Grover operators. shots_list = [100, 100, 100, 100, 100, 100, 100] # list of number of shots number_grover_list = [0, 1, 2, 4, 8, 16, 32] # list of number of Grover operators if len(shots_list) != len(number_grover_list): raise Exception( 'The length of shots_list should be equal to the length of number_grover_list.' ) backend = Aer.get_backend('qasm_simulator') def CalcErrorCramérRao(M, shot_list, p0, number_grover_list): """ calculate Cramér-Rao lower bound M: upper limit of the sum in Fisher information shots_list: list of number of shots p0: the true parameter value to be estimated numebr_grover_list: list of number of Grover operators Return: square root of Cramér-Rao lower bound: lower bound on the standard deviation of unbiased estimators """ FisherInfo = 0 for k in range(M + 1): Nk = shot_list[k] mk = number_grover_list[k] FisherInfo += Nk / (p0 * (1 - p0)) * (2 * mk + 1)**2 return np.sqrt(1 / FisherInfo) def CalcNumberOracleCalls(M, shot_list, number_grover_list): """ calculate the total number of oracle calls M: upper limit of the sum in Fisher information shots_list: list of number of shots numebr_grover_list: list of number of Grover operators Return: Norac: the total number of oracle calls """ Norac = 0 for k in range(M + 1): Nk = shots_list[k] mk = number_grover_list[k] Norac += Nk * (2 * mk + 1) return Norac qc_list = create_grover_circuit(number_grover_list, nbit, b_max) # list of Grover circuits hit_list = run_grover(qc_list, number_grover_list, shots_list, backend) # list of number of grover operators thetaCandidate_list = calculate_theta( hit_list, number_grover_list, shots_list) # list of estimated theta values error_list = np.abs(np.sin(thetaCandidate_list)**2 - discretizedResult) # list of estimation errors OracleCall_list = [] # list of number of oracle calls ErrorCramérRao_list = [] # list of Cramér-Rao lower bound for i in range(len(number_grover_list)): OracleCall_list.append( CalcNumberOracleCalls(i, shots_list, number_grover_list)) ErrorCramérRao_list.append( CalcErrorCramérRao(i, shots_list, discretizedResult, number_grover_list)) p1 = plt.plot(OracleCall_list, error_list, 'o') p2 = plt.plot( OracleCall_list, ErrorCramérRao_list) plt.xscale('log') plt.xlabel("Number of oracle calls") plt.yscale('log') plt.ylabel("Estimation Error") plt.legend((p1[0], p2[0]), ("Estimated Value", "Cramér-Rao")) plt.show() n_trial = 100 error_list= np.zeros_like(number_grover_list,dtype=float) qc_list = create_grover_circuit(number_grover_list, nbit, b_max) for i in range(n_trial): sys.stdout.write("n_trial=(%d/%d)\r" % ((i + 1), n_trial)) sys.stdout.flush() hit_list = run_grover(qc_list, number_grover_list, shots_list, backend) thetaCandidate_list = calculate_theta(hit_list, number_grover_list, shots_list) error_list += (np.sin(thetaCandidate_list)**2 - discretizedResult)**2 # list of estimation errors error_list = (error_list / (n_trial-1))**(1/2) p1 = plt.plot(OracleCall_list, error_list, 'o') p2 = plt.plot(OracleCall_list, ErrorCramérRao_list) plt.xscale('log') plt.xlabel("Number of oracle calls") plt.yscale('log') plt.ylabel("Estimation Error") plt.legend((p1[0], p2[0]), ("Estimated Value", "Cramér-Rao")) plt.show()
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import * from qiskit.circuit.library import * from qiskit.providers.aer import * sim = AerSimulator(method='statevector', device='GPU') qubits = 15 depth=10 shots = 10 circuit = QuantumVolume(qubits, depth, seed=0) circuit.measure_all() result = execute(circuit,sim,shots=shots,seed_simulator=12345).result() print("{0} qubits Quantum Volume, Simulation Time = {1} sec".format(qubits,result.to_dict()['results'][0]['time_taken'])) counts = result.get_counts() print(counts) from qiskit import * from qiskit.circuit.library import * from qiskit.providers.aer import * sim = AerSimulator(method='statevector', device='GPU', cuStateVec_enable=True) qubits = 15 depth=10 shots = 10 circuit = QuantumVolume(qubits, depth, seed=0) circuit.measure_all() result = execute(circuit,sim,shots=shots,seed_simulator=12345).result() if result.to_dict()['results'][0]['metadata']['cuStateVec_enable'] == True: print("cuStateVector is used for the simulation") print("{0} qubits, Time = {1} sec".format(qubits,result.to_dict()['results'][0]['time_taken'])) counts = result.get_counts() print(counts) from qiskit import * from qiskit.circuit.library import * from qiskit.providers.aer import * import matplotlib.pyplot as plt sim = AerSimulator(method='statevector', device='GPU') shots = 100 depth=10 time_thrust= [] time_cuStateVec= [] qubits_list = [] for qubits in range (15, 26): qubits_list.append(qubits) circuit = QuantumVolume(qubits, depth, seed=0) circuit.measure_all() result = execute(circuit,sim,shots=shots,seed_simulator=12345,fusion_threshold=20,cuStateVec_enable=False).result() time_thrust.append(float(result.to_dict()['results'][0]['time_taken'])) result_cuStateVec = execute(circuit,sim,shots=shots,seed_simulator=12345,fusion_threshold=20,cuStateVec_enable=True).result() time_cuStateVec.append(float(result_cuStateVec.to_dict()['results'][0]['time_taken'])) plt.yscale("log") plt.plot(qubits_list, time_thrust, marker="o", label='ThrustGPU') plt.plot(qubits_list, time_cuStateVec, 'g', marker="x", label='cuStateVec') plt.legend()
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import * %matplotlib inline from qiskit.tools.visualization import plot_histogram from qiskit.tools.monitor import job_monitor # create qubit using quantum registers qr = QuantumRegister(2) # create classical register to take measurement of `qr` cr = ClassicalRegister(2) # build a circuit qc = QuantumCircuit(qr, cr) # visualize the circuit to know how it's looks like or there any modification init ? qc.draw() # to add gates into the circuit so that # to build entanglement in circuit we uses hadamard gate : H qc.h(0) qc.draw(output='mpl') # two qubit controlled operation gate : CNOT gate # cx(c_1, t) it controls the c_1 qubit and target the t qubit qc.cx(0, 1) #qc.cx(qr[0],qr[1]) qc.draw(output='mpl') # to measure the qubits and store into classical bits qc.measure(qr, cr) qc.draw(output='mpl') # How to run this quantum circuit on classical computer or quantum simulator # used qiskit's Aer Simulator simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator).result() plot_histogram(result.get_counts(qc)) # How to run this qunatum circuit on the Quantum computer # IBM's Quantum Computer # We access it from cloud using an api call with our account on the ibm experieance #loading our ibm account IBMQ.load_account('API_Key') # provider = IBMQ.get_provider('ibm-q') qcomp = provider.get_backend('ibmqx2') job = execute(qc, backend=qcomp) job_monitor(job) result = job.result() plot_histogram(result.get_counts(qc)) """ Question : Why there is a difference in output in executing quantum circuit on simulator and on actual quantum device ? Question : What is the difference b/w the Quantum Simulator and a Quantum Computer ? """
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import * from qiskit.tools.visualization import plot_bloch_multivector, plot_histogram qc = QuantumCircuit(1, 1) qc.x(0) qc.draw(output='mpl') simulator = Aer.get_backend('statevector_simulator') result = execute(qc, backend=simulator).result() statevector = result.get_statevector() print(statevector) plot_bloch_multivector(statevector) qc.measure([0],[0]) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator, shots=1024).result() counts = result.get_counts() print(counts) plot_histogram(counts) qc = QuantumCircuit(1, 1) qc.x(0) simulator = Aer.get_backend('unitary_simulator') result = execute(qc, backend=simulator).result() unitary = result.get_unitary() print(unitary)
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import * %matplotlib inline from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(3, 3) qc.draw(output='mpl') # we will teleport the state q_0 to q_2 with using q_1 qc.x(0) qc.barrier() qc.draw(output='mpl') # barrier decide that after barrier q_0 has state |1> than of |0> qc.h(1) qc.cx(1, 2) qc.draw(output='mpl') # It created an entangled state means same qubit exits on q_1 and q_2 at the same time also qc.cx(0, 1) qc.h(0) qc.draw(output='mpl') qc.barrier() qc.measure([0,1],[0,1]) qc.draw(output='mpl') # before measure all the states are entangled but to complete the teleportation process qc.barrier() qc.cx(1,2) qc.cz(0,2) qc.draw(output='mpl') # the qubit at q_0 teleported to the state q_2 # let's measure q_2 states qc.measure(2,2) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator, shots=1024).result() counts = result.get_counts() plot_histogram(counts) print(counts) # It is used to transfer quantum information over long distances """ Question : Build a Quantum Teleportation circuit to teleport the qubit |+> or |-> """ qc = QuantumCircuit(3, 3) qc.h(0) qc.barrier() qc.draw(output='mpl')