repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit from numpy.random import rand from qiskit import transpile ## The Receiver entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Receiver(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Decode the message measuring the circuit (density-dependent) def decode_quantum_message(self, message, density, backend): ## The values of the participant self.values = [] for i, qc in enumerate(message): qc.barrier() if rand() < density: if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) qc.measure(0, 0) transpiled_qc = transpile(qc, backend=backend) result = backend.run(transpiled_qc, shots=1, memory=True).result() measured_bit = int(result.get_memory()[0]) self.values.append(measured_bit) else: self.values.append(-1) return message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit ## The Sender entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Sender(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Encode the message (values) using a quantum circuit def encode_quantum_message(self): encoded_message = [] for i in range(len(self.axes)): qc = QuantumCircuit(1, 1) if self.values[i] == 1: qc.x(0) if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) encoded_message.append(qc) return encoded_message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from qiskit import QuantumCircuit from random import vonmisesvariate as random_angle from qiskit.circuit.library import UGate from crypto.elgamal.sender import Sender from crypto.elgamal.receiver import Receiver from qiskit.quantum_info import Statevector import qiskit.quantum_info as qi import numpy as np ELGAMAL_SIMULATOR = 'ElGamal SIMULATOR' ## An implementation of the ElGamal protocol ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class ElGamalAlgorithm: ## Run the implementation of ElGamal protocol def run(self, message): msg_qc = QuantumCircuit(1, name='message') msg_sv = Statevector([complex(x) for x in message.split(',')]) msg_qc.initialize(msg_sv) u1, u2 = self.public_keys_generation() # Receiver Bob bob = Receiver('Bob', u1, u2) bob.generate_keys() # Sender Alice alice = Sender('Alice', u1, u2) alice.set_message(msg_qc) alice.generate_keys() alice.compute_shared_secret(bob.public_key) # Encryption c1 = alice.public_key c2 = alice.get_encripted_message() # Decryption bob.compute_shared_secret(c1) decrypted_message = bob.decrypt_message(c2) encrypted_message = c2 shared_secret = alice.shared_secret decrypted_message_sv = qi.Statevector.from_instruction(decrypted_message) encrypted_message_sv = qi.Statevector.from_instruction(encrypted_message) return msg_sv, encrypted_message, decrypted_message, encrypted_message_sv, decrypted_message_sv, alice, bob ## Gets random public matrices def public_keys_generation(self): u1 = QuantumCircuit(1, name='U1') u1.append(UGate(random_angle(0, 0), random_angle(0, 0), random_angle(0, 0)), [0]) u2 = QuantumCircuit(1, name='U2') u2.append(UGate(random_angle(0, 0), random_angle(0, 0), random_angle(0, 0)), [0]) return (u1, u2)
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from abc import ABC, abstractmethod from qiskit import QuantumCircuit from qiskit.circuit.library import YGate, ZGate from qiskit.circuit.gate import Gate import qiskit.quantum_info as qi from numpy.random import randint import numpy as np from math import ceil ## An abstract class of a participant entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Participant(ABC): ## Constructor @abstractmethod def __init__(self, name='', original_bits_size=0): ## The name of the participant self.name = name ## The original size of the message self.original_bits_size = original_bits_size ## The values of the participant self.values = None ## The axes of the participant self.axes = None ## The key of the participant self.key = None ## If the key is determined safe self.is_safe_key = False ## The otp of the participant self.otp = None ## The gate measuring z and y axes self.set_hy() ## Values setter def set_values(self, values=None): if values == None: self.values = list(randint(2, size=self.original_bits_size)) else: self.values = values ## Axes setter def set_axes(self, axes=None): if axes == None: self.axes = list(randint(3, size=self.original_bits_size)) else: self.axes = axes ## Print values def show_values(self): print('\n' + self.name, 'Values:') print(self.values) ## Print axes def show_axes(self): print('\n' + self.name, 'Axes:') print(self.axes) ## Print key def show_key(self): print('\n' + self.name, 'Key:') print(self.key) ## Print otp def show_otp(self): print('\n' + self.name, 'OTP:') print(self.otp) ## Remove the values of the qubits that were measured on the wrong axis def remove_garbage(self, another_axes): self.key = [] for i in range(self.original_bits_size): if self.axes[i] == another_axes[i]: self.key.append(self.values[i]) ## Check if the shared key is equal to the current key def check_key(self, shared_key): return shared_key == self.key[:len(shared_key)] ## Use the rest of the key and validate it def confirm_key(self, shared_size): self.key = self.key[shared_size:] self.is_safe_key = True ## Generate an One-Time Pad def generate_otp(self, n_bits): self.otp = [] for i in range(ceil(len(self.key) / n_bits)): bits_string = ''.join(map(str, self.key[i * n_bits: (i + 1) * n_bits])) self.otp.append(int(bits_string, 2)) ## Performs an XOR operation between the message and the One-Time Pad def xor_otp_message(self, message): final_message = '' CHR_LIMIT = 1114112 if len(self.otp) > 0: for i, char in enumerate(message): final_message += chr((ord(char) ^ self.otp[i % len(self.otp)]) % CHR_LIMIT) return final_message ## New gate setter def set_hy(self): hy_op = qi.Operator(1/np.sqrt(2)*(YGate().to_matrix() + ZGate().to_matrix())) hy_gate = QuantumCircuit(1) hy_gate.unitary(hy_op, [0], label='h_y') self.hy = hy_gate.to_gate()
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit from numpy.random import rand from qiskit import transpile ## The Receiver entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Receiver(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Decode the message measuring the circuit (density-dependent) def decode_quantum_message(self, message, density, backend): ## The values of the participant self.values = [] for i, qc in enumerate(message): qc.barrier() if rand() < density: if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) qc.measure(0, 0) transpiled_qc = transpile(qc, backend=backend) result = backend.run(transpiled_qc, shots=1, memory=True).result() measured_bit = int(result.get_memory()[0]) self.values.append(measured_bit) else: self.values.append(-1) return message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit ## The Sender entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Sender(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Encode the message (values) using a quantum circuit def encode_quantum_message(self): encoded_message = [] for i in range(len(self.axes)): qc = QuantumCircuit(1, 1) if self.values[i] == 1: qc.x(0) if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) encoded_message.append(qc) return encoded_message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit from numpy.random import rand from qiskit import transpile ## The Receiver entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Receiver(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Decode the message measuring the circuit (density-dependent) def decode_quantum_message(self, message, density, backend): ## The values of the participant self.values = [] for i, qc in enumerate(message): qc.barrier() if rand() < density: if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) qc.measure(0, 0) transpiled_qc = transpile(qc, backend=backend) result = backend.run(transpiled_qc, shots=1, memory=True).result() measured_bit = int(result.get_memory()[0]) self.values.append(measured_bit) else: self.values.append(-1) return message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito import binascii from math import sqrt from qiskit import execute, QuantumCircuit, transpile, assemble from qiskit.quantum_info import Statevector from qiskit.extensions import Initialize from crypto.rsa_substitute.sender import Sender from crypto.rsa_substitute.receiver import Receiver RSA_SUBSTITUTE_SIMULATOR = 'RSA SUBSTITUTE SIMULATOR' ## An implementation of the RSA substitute protocol ## @see https://journals.aijr.org/index.php/ajgr/article/view/699/168 class RsaSubstituteAlgorithm: ## Run the implementation of RSA substitute protocol def run(self, measure_zero_prob, n_shots, backend, verbose): bob = Receiver('Bob', 6, 5) alice = Sender('Alice', 4, bob.p) message = self.generate_message(measure_zero_prob) alice_encoded_message = alice.encode(message) alice_bob_encoded_message = bob.encode(alice_encoded_message) bob_encoded_message = alice.decode(alice_bob_encoded_message) decoded_message = bob.decode(bob_encoded_message) decoded_message.measure(0, 0) test = transpile(decoded_message, backend) qobj = assemble(test) counts = backend.run(qobj, shots=n_shots).result().get_counts() if not '0' in counts.keys(): counts['0'] = 0 obtained_prob = counts['0'] / n_shots EPSILON = 5 relative_error = abs(measure_zero_prob - obtained_prob) check_probability = relative_error <= 0.01 * EPSILON if verbose: print('\nOutput: ' + str(counts)) print('\nInitial Message:') print(message) print('\nAlice-Encoded Message:') print(alice_encoded_message) print('\nAlice-and-Bob-Encoded Message:') print(alice_bob_encoded_message) print('\nBob-Encoded Message:') print(bob_encoded_message) print('\n💡 Decoded Message:') print(decoded_message) print('\nInput Probability:') print(measure_zero_prob) print('\nObtained Probability:') print(obtained_prob) print('\nRelative Error: ' + str(relative_error) + ' %') if check_probability: print('\n✅ The expected probability is obtained within an error range of ±' + str(EPSILON) + '%') else: print('\n❌ The expected probability is obtained with an error greater than ±' + str(EPSILON) + '%') return check_probability, relative_error def generate_message(self, measure_zero_prob): a1 = sqrt(measure_zero_prob) a2 = sqrt(1 - measure_zero_prob) psi = Statevector([complex(a1, 0), complex(a2, 0)]) init_gate = Initialize(psi) init_gate.label = 'Init' qc = QuantumCircuit(1, 1) qc.append(init_gate, [0]) qc.barrier() return qc
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit ## The Sender entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Sender(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Encode the message (values) using a quantum circuit def encode_quantum_message(self): encoded_message = [] for i in range(len(self.axes)): qc = QuantumCircuit(1, 1) if self.values[i] == 1: qc.x(0) if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) encoded_message.append(qc) return encoded_message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from abc import ABC, abstractmethod from qiskit import QuantumCircuit from qiskit.circuit.library import YGate, ZGate from qiskit.circuit.gate import Gate import qiskit.quantum_info as qi from numpy.random import randint import numpy as np from math import ceil ## An abstract class of a participant entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Participant(ABC): ## Constructor @abstractmethod def __init__(self, name='', original_bits_size=0): ## The name of the participant self.name = name ## The original size of the message self.original_bits_size = original_bits_size ## The values of the participant self.values = None ## The axes of the participant self.axes = None ## The key of the participant self.key = None ## If the key is determined safe self.is_safe_key = False ## The otp of the participant self.otp = None ## The gate measuring z and y axes self.set_hy() ## Values setter def set_values(self, values=None): if values == None: self.values = list(randint(2, size=self.original_bits_size)) else: self.values = values ## Axes setter def set_axes(self, axes=None): if axes == None: self.axes = list(randint(3, size=self.original_bits_size)) else: self.axes = axes ## Print values def show_values(self): print('\n' + self.name, 'Values:') print(self.values) ## Print axes def show_axes(self): print('\n' + self.name, 'Axes:') print(self.axes) ## Print key def show_key(self): print('\n' + self.name, 'Key:') print(self.key) ## Print otp def show_otp(self): print('\n' + self.name, 'OTP:') print(self.otp) ## Remove the values of the qubits that were measured on the wrong axis def remove_garbage(self, another_axes): self.key = [] for i in range(self.original_bits_size): if self.axes[i] == another_axes[i]: self.key.append(self.values[i]) ## Check if the shared key is equal to the current key def check_key(self, shared_key): return shared_key == self.key[:len(shared_key)] ## Use the rest of the key and validate it def confirm_key(self, shared_size): self.key = self.key[shared_size:] self.is_safe_key = True ## Generate an One-Time Pad def generate_otp(self, n_bits): self.otp = [] for i in range(ceil(len(self.key) / n_bits)): bits_string = ''.join(map(str, self.key[i * n_bits: (i + 1) * n_bits])) self.otp.append(int(bits_string, 2)) ## Performs an XOR operation between the message and the One-Time Pad def xor_otp_message(self, message): final_message = '' CHR_LIMIT = 1114112 if len(self.otp) > 0: for i, char in enumerate(message): final_message += chr((ord(char) ^ self.otp[i % len(self.otp)]) % CHR_LIMIT) return final_message ## New gate setter def set_hy(self): hy_op = qi.Operator(1/np.sqrt(2)*(YGate().to_matrix() + ZGate().to_matrix())) hy_gate = QuantumCircuit(1) hy_gate.unitary(hy_op, [0], label='h_y') self.hy = hy_gate.to_gate()
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit from numpy.random import rand from qiskit import transpile ## The Receiver entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Receiver(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Decode the message measuring the circuit (density-dependent) def decode_quantum_message(self, message, density, backend): ## The values of the participant self.values = [] for i, qc in enumerate(message): qc.barrier() if rand() < density: if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) qc.measure(0, 0) transpiled_qc = transpile(qc, backend=backend) result = backend.run(transpiled_qc, shots=1, memory=True).result() measured_bit = int(result.get_memory()[0]) self.values.append(measured_bit) else: self.values.append(-1) return message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from crypto.six_state.participant import Participant from qiskit import QuantumCircuit ## The Sender entity in the Six-State implementation ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class Sender(Participant): ## Constructor def __init__(self, name='', original_bits_size=0): super().__init__(name, original_bits_size) ## Encode the message (values) using a quantum circuit def encode_quantum_message(self): encoded_message = [] for i in range(len(self.axes)): qc = QuantumCircuit(1, 1) if self.values[i] == 1: qc.x(0) if self.axes[i] == 1: qc.h(0) elif self.axes[i] == 2: qc.append(self.hy, [0]) encoded_message.append(qc) return encoded_message
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito, Andrea Hernández Martín from qiskit import QuantumCircuit from crypto.six_state.sender import Sender from crypto.six_state.receiver import Receiver import binascii SIX_STATE_SIMULATOR = 'SIX-STATE SIMULATOR' ## An implementation of the Six-State protocol ## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html class SixStateAlgorithm: ## Generate a key for Alice and Bob def __generate_key(self, backend, original_bits_size, verbose): # Encoder Alice alice = Sender('Alice', original_bits_size) alice.set_values() alice.set_axes() message = alice.encode_quantum_message() # Interceptor Eve eve = Receiver('Eve', original_bits_size) eve.set_axes() message = eve.decode_quantum_message(message, self.measure_density, backend) # Decoder Bob bob = Receiver('Bob', original_bits_size) bob.set_axes() message = bob.decode_quantum_message(message, 1, backend) # Alice - Bob Remove Garbage alice_axes = alice.axes # Alice share her axes bob_axes = bob.axes # Bob share his axes # Delete the difference alice.remove_garbage(bob_axes) bob.remove_garbage(alice_axes) # Bob share some values of the key to check SHARED_SIZE = round(0.5 * len(bob.key)) shared_key = bob.key[:SHARED_SIZE] if verbose: alice.show_values() alice.show_axes() eve.show_values() eve.show_axes() bob.show_values() bob.show_axes() alice.show_key() bob.show_key() print('\nShared Bob Key:') print(shared_key) # Alice check the shared key if alice.check_key(shared_key): shared_size = len(shared_key) alice.confirm_key(shared_size) bob.confirm_key(shared_size) if verbose: print('\nFinal Keys') alice.show_key() bob.show_key() print('\nSecure Communication!') elif verbose: print('\nUnsecure Communication! Eve has been detected intercepting messages\n') return alice, bob ## Run the implementation of Six-State protocol def run(self, message, backend, original_bits_size, measure_density, n_bits, verbose): ## The original size of the message self.original_bits_size = original_bits_size ## The probability of an interception occurring self.measure_density = measure_density alice, bob = self.__generate_key(backend, original_bits_size, verbose) if not (alice.is_safe_key and bob.is_safe_key): if verbose: print('❌ Message not send') return False alice.generate_otp(n_bits) bob.generate_otp(n_bits) encoded_message = alice.xor_otp_message(message) decoded_message = bob.xor_otp_message(encoded_message) if verbose: alice.show_otp() bob.show_otp() print('\nInitial Message:') print(message) print('Encoded Message:') print(encoded_message) print('💡 Decoded Message:') print(decoded_message) if message == decoded_message: print('\n✅ The initial message and the decoded message are identical') else: print('\n❌ The initial message and the decoded message are different') return True
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
#!/usr/bin/env python3 # Author: Daniel Escanez-Exposito from qiskit import transpile, Aer from qiskit.providers.ibmq import IBMQFactory from qiskit.utils import QuantumInstance from qiskit.test.mock import FakeProvider ## The component that manages the execution of quantum algorithms for QuantumSolver class QExecute: ## Constructor def __init__(self, token: str = ''): ## The IBMQ Experience token self.token = token ## The fake backends provider self.provider_fake = FakeProvider() ## The available backends self.backends = [ Aer.get_backend('aer_simulator') ] fake_backends = [ 'fake_armonk', 'fake_tenerife', 'fake_casablanca', 'fake_melbourne', 'fake_guadalupe', 'fake_tokyo', 'fake_paris', 'fake_cambridge', 'fake_rochester', 'fake_brooklyn' ] for fake_backend in fake_backends: self.backends.append(self.provider_fake.get_backend(fake_backend)) if self.token: ## The IBMQ provider self.provider = IBMQFactory().enable_account(self.token) self.backends += self.provider.backends() ## The current backend self.current_backend = None ## Current backend setter def set_current_backend(self, backend_name: str): if backend_name == 'aer_simulator': self.current_backend = self.backends[0] elif backend_name[0:5] == 'fake_': self.current_backend = self.provider_fake.get_backend(backend_name) elif self.provider: self.current_backend = self.provider.get_backend(backend_name) ## Check if the guest mode is activated def is_guest_mode(self): return self.token == '' ## Print the available backends def print_avaiable_backends(self): print('\nAvaliable backends:') for i in range(len(self.backends)): backend = self.backends[i] status = backend.status() config = backend.configuration() jobs_in_queue = status.pending_jobs q_instance = QuantumInstance(backend) is_simulator = q_instance.is_simulator or str(backend)[0:5] == 'fake_' is_operational = status.operational print('[' + str(i + 1) + ']\tName:', str(backend), \ '\n\tNumber of qubits:', str(config.n_qubits) + \ '\n\tMaximum shots:', str(config.max_shots) + \ '\n\tJobs in queue:', str(jobs_in_queue)) print('\tIs ' + ('' if is_simulator else 'NOT ') + 'a simulator') if is_operational: print('\t✅ Is operational') else: print('\t❌ Is NOT operational') print() ## Backend selection menu def select_backend(self): range_backends = '[1 - ' + str(len(self.backends)) + ']' index = -2 while index < 0 or index >= len(self.backends): msg = '[&] Select a backend of the list ' + str(range_backends) + ': ' index = int(input(msg)) - 1 if index == -1: self.current_backend = None print('[$] Backend not selected') return if index < 0 or index >= len(self.backends) or \ not self.backends[index].status().operational: index = -1 print('[!] The backend must be one of the list', range_backends, \ 'and must be operational') else: self.current_backend = self.backends[index] print('[$]', str(self.current_backend), 'selected') ## Run the circuit using the current backend def run(self, circuit: 'QuantumCircuit', n_shots: int): # Compile the circuit down to low-level QASM instructions # supported by the backend compiled_circuit = transpile(circuit, self.current_backend) # Execute the circuit on the current backend job = self.current_backend.run(compiled_circuit, shots=n_shots) # Return the counts from the job results return job.result().get_counts(compiled_circuit)
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
''' Quantum Phase Estimation By Abdulah Amer T gate leaves |0> state alone and adds a phase of e^pi/4 to |1> state. Quantum Phase Estimation measures theta where T|1> = e^2ipitheta|1> First n-1 qubits are used for the protocol and get measured the nth qubit is put into the eigenstate of the operator whose phase we are measuring this is important ''' from qiskit import * import numpy as np from math import * from qiskit.visualization import plot_histogram import matplotlib.pyplot as plt from fractions import Fraction S_simulator=Aer.backends(name='statevector_simulator')[0] M_simulator=Aer.backends(name='qasm_simulator')[0] # # a circuit with 4 qubits and 3 classical bits # # n=4 #number of qubits # m=3 #number of classical bits # # # a circuit with n qubits and m classical # qc=QuantumCircuit(n,m) # # qc.x(3) # # for qubit in range(3): # qc.h(qubit) # # #Now estimate phase for T gate with phase of pi/4 # # apply the T gate a bunch of times # # reps=1 # for counting_qubit in range(3): # for i in range(reps): # #applies T gate using the counting qubits as control # #qubits and the last qubit as the target qubit. # # # qc.cu1(pi/4, counting_qubit, 3) # # reps *=2 #doubles the number of T gates to each adjacent qubit # # # qc.draw(output='mpl') # # # #Do the inverse qft to find the state # def qft_inverse(qc,n): for qubit in range(n//2): #floor division for odd number of qubits qc.swap(qubit, n-qubit-1) #swaps the current qubit with n-qubit-1 for j in range(n): for m in range(j): qc.cu1(-pi/float(2**(j-m)),m,j) qc.h(j) # # # qc.barrier() # # qft_inverse(qc,3) # # qc.barrier() # # for n in range(3): # qc.measure(n,n) # # # #qc.draw(output='mpl') # #lol # # # results=execute(qc,backend=M_simulator, shots=4096).result() # histogram=results.get_counts() # # plot_histogram(histogram) # After measurement we divide the decimal equivalent by 2^n # 1/2^3 =1/8 , theta =1/8, therefore e^2ipitheta = e^ipi/4 #Which is the phase added by the T gate. #This was a pretty trivial result since we perfectly get #one highest probability #make functions to generalize even better # def prepQPE(qc, n,m): #prepares the circuit # for qubit in range(m): # qc.h(qubit) # # qc.x(m) # # # def CU(theta, qc, n,m): #performs controlled unitary operations # # prepQPE(qc,n,m) # # angle=theta # reps=1 # for counting_qubit in range(m): # for i in range(reps): # qc.cu1(angle, counting_qubit,5) # reps*=2 # #Let us also Automate more of the process so we can scale these things #To learn even more from them ''' Note we are making circuits to measure known thetas But we will try to build up to design a circuit to do Arbitrary Phase Estimation ''' #Makes an isntance of a quantum circuit that runs the QPE protocol def makeQPE(theta, n): #m=n-1 m=n-1 qc=QuantumCircuit(n,m) #Prep for qubit in range(m): qc.h(qubit) qc.x(m) #CU1 gates reps=1 for counting_qubit in range(m): for i in range(reps): qc.cu1(theta, counting_qubit, m) reps*=2 qc.barrier() qft_inverse(qc,m) qc.barrier() for n in range(m): qc.measure(n,n) return qc #gets out results and aquires the one with the most hits def get_results(q,n): m=n-1 results=execute(q, backend=M_simulator).result() histo=results.get_counts() higher=0 hits=histo.values() for i in hits: if i>higher: higher=i newhisto=dict([(value,key) for key, value in histo.items()]) answer=int(newhisto[higher],2) check=(answer/(2**m)) return check #simple finding error function def error(expected, actual): expected_minus_actual=abs(expected-actual) percent_error=expected_minus_actual/100 return percent_error #tie it all together def graph_qubits_error(piece_of_pi, qubits): #set up angle=pi*piece_of_pi expected=(piece_of_pi/2) qubits=[] results=[] errors=[] n=2 while n<=qubits: #make circuit and measure q=makeQPE(angle,n) actual=get_results(q,n) #our error err=error(expected, actual) #Dont forget how to graph qubits.append(n) results.append(actual) errors.append(err) n+=1 #Plotting########## # plt.figure(1) # plt.title('Value vs qubits used') # plt.plot(qubits,results, color='green', label='Experimental Result') # plt.hlines(expected,2,16, color='blue', linestyles='dashed', label=' Expected Value') # plt.xlabel('Number of Qubits') # plt.ylabel('Result of Measurement') # # # plt.figure(2) # plt.title('Error vs qubits used') # plt.plot(qubits, errors) # plt.xlabel('Number of Qubits') # plt.ylabel('Percent Error') # plt.show() piece_of_pi=1/2 qubits=8 #graph_qubits_error(piece_of_pi,qubits) def error_per_slice(piece_of_pi, qubits): angle=pi*piece_of_pi expected=(piece_of_pi/2) q=makeQPE(angle,qubits) actual=get_results(q,qubits) err=error(expected, actual) return err def yeet(): slices=[] list_of_errors=[] qubits=5 i=1 while i<=16: piece_of_pi=1/i slices.append(piece_of_pi) list_of_errors.append(error_per_slice(piece_of_pi, qubits)) i+=1 title= ('Error for different slices of pi using '+ str(qubits)+ ' qubits') plt.title(title) plt.plot(slices,list_of_errors, color='green') #plt.hlines(expected,2,16, color='blue', linestyles='dashed', label=' Expected Value') plt.xlabel('Slices') plt.ylabel('Error in measurement') #plt.show() return list_of_errors def get_slices(): slices=[] i=1 while i<=16: piece_of_pi=1/i slices.append(piece_of_pi) i+=1 return slices ''' some stuff to look at the fractions ''' def frac_stuff(slices): integers=[] for i in range(len(slices)): two_to_the_n=2**(qubits-1) it_theta=slices[i] integers.append(two_to_the_n*it_theta) fracslices=[] for i in range(len(slices)+1): piece='1/' + str(i) fracslices.append(piece) #gets rid of the 1/0 at the front of the list fracslices.pop(0) #inserts a 1 instead of 1/1 in our list fracslices.insert(0,1) #gets ride of 1/1 fracslices.pop(1) ''' Make a Table! ''' Dabois=yeet() header=['2^n*', 'Slice'] head1='2^n*'+ 'Theta' head2='Slice' head3='Error amounts' col1=integers col2=fracslices col3=Dabois from tabulate import tabulate table=tabulate({head2: col2, head1: col1, head3:col3}, headers='keys', tablefmt='github') for i in range(len(col1)): print(col2[i], '&' , round(col1[i],5), '&', round(col3[i],5)) return table #print(table) from qiskit.visualization import plot_bloch_vector ''' The following code is execute in Jupyter notebooks file called QPE final It gives us images Rx and Ry respectively #Rx q=QuantumRegister(1, 'l') blocher=QuantumCircuit(q) blocher.ry(pi/2,0) bloch_job=execute(blocher, S_simulator).result() plot_bloch_multivector(bloch_job.get_statevector(blocher), title='initial') #Ry blocher=QuantumCircuit(q) blocher.ry(pi/2,0) blocher.u1(pi/2,0) bloch_job=execute(blocher, S_simulator).result() plot_bloch_multivector(bloch_job.get_statevector(blocher), title='final') ''' piece_of_pi=1/4 qubits=3 q=makeQPE(piece_of_pi,qubits) #q.draw(output='mpl').savefig('The Circuit is Here.png') print(frac_stuff(get_slices()))
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
"""The following is python code utilizing the qiskit library that can be run on extant quantum hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding, for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1, results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>). To find the factor, use the equivalence a^r mod 15. From this: (a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15 Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients, gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15, so the result of running shors algorithm to find the prime factors of an integer using quantum hardware are demonstrated. Note, this is not the same as the technical implementation of shor's algorithm described in this section for breaking the discrete log hardness assumption, though the proof of concept remains.""" # Import libraries from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from numpy import pi from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram # Initialize qubit registers qreg_q = QuantumRegister(5, 'q') creg_c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.reset(qreg_q[0]) circuit.reset(qreg_q[1]) circuit.reset(qreg_q[2]) circuit.reset(qreg_q[3]) circuit.reset(qreg_q[4]) # Apply Hadamard transformations to qubit registers circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) # Apply first QFT, modular exponentiation, and another QFT circuit.h(qreg_q[1]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.crx(pi/2, qreg_q[0], qreg_q[1]) circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4]) circuit.h(qreg_q[0]) circuit.rx(pi/2, qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) # Measure the qubit registers 0-2 circuit.measure(qreg_q[2], creg_c[2]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[0], creg_c[0]) # Get least busy quantum hardware backend to run on provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run the circuit on available quantum hardware and plot histogram from qiskit.tools.monitor import job_monitor job = execute(circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) #largest amplitude results correspond with r values used to find the prime factor of N.
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
"""Qiskit code for running Simon's algorithm on quantum hardware for 2 qubits and b = '11' """ # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle #set b equal to '11' b = '11' #1) initialize qubits n = 2 simon_circuit_2 = QuantumCircuit(n*2, n) #2) Apply Hadamard gates before querying the oracle simon_circuit_2.h(range(n)) #3) Query oracle simon_circuit_2 += simon_oracle(b) #5) Apply Hadamard gates to the input register simon_circuit_2.h(range(n)) #3) and 6) Measure qubits simon_circuit_2.measure(range(n), range(n)) # Load saved IBMQ accounts and get the least busy backend device IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Execute and monitor the job from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simon_circuit_2, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) # Get results and plot counts device_counts = job.result().get_counts() plot_histogram(device_counts) #additionally, function for calculating dot product of results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) print('b = ' + b) for z in device_counts: print( '{}.{} = {} (mod 2) ({:.1f}%)'.format(b, z, bdotz(b,z), device_counts[z]*100/shots)) #the most significant results are those for which b dot z=0(mod 2). '''b = 11 11.00 = 0 (mod 2) (45.0%) 11.01 = 1 (mod 2) (6.2%) 11.10 = 1 (mod 2) (6.4%) 11.11 = 0 (mod 2) (42.4%)'''
https://github.com/jdanielescanez/quantum-solver
jdanielescanez
import unittest import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../src') from bb84.participant import Participant from bb84.sender import Sender from bb84.receiver import Receiver from qiskit import Aer ALICE = 'Alice' BOB = 'Bob' EXAMPLE_LIST_1 = [1, 0, 0, 1, 0, 1, 1] EXAMPLE_LIST_2 = [1, 1, 0, 0, 0, 1, 0] ORIGINAL_BITS_SIZE = len(EXAMPLE_LIST_1) INDEX_SHARED_KEY = 2 def is_lambda(x): return callable(x) and x.__name__ == '<lambda>' class BB84EntitiesTests(unittest.TestCase): def setUp(self): self.sender = Sender(ALICE, ORIGINAL_BITS_SIZE) self.receiver = Receiver(BOB, ORIGINAL_BITS_SIZE) @unittest.expectedFailure def test_participant(self): _ = Participant('Participant', ORIGINAL_BITS_SIZE) def test_name(self): self.assertEqual(self.sender.name, ALICE) self.assertEqual(self.receiver.name, BOB) def test_original_bits_size(self): self.assertEqual(self.sender.original_bits_size, ORIGINAL_BITS_SIZE) self.assertEqual(self.receiver.original_bits_size, ORIGINAL_BITS_SIZE) def test_setter_values(self): self.sender.set_values(EXAMPLE_LIST_1) self.receiver.set_values(EXAMPLE_LIST_1) self.assertEqual(self.sender.values, EXAMPLE_LIST_1) self.assertEqual(self.receiver.values, EXAMPLE_LIST_1) def test_set_random_values(self): self.sender.set_values() self.receiver.set_values() self.assertTrue(isinstance(self.sender.values, list) and \ len(self.sender.values) == ORIGINAL_BITS_SIZE) self.assertTrue(isinstance(self.receiver.values, list) and \ len(self.receiver.values) == ORIGINAL_BITS_SIZE) def test_show_values(self): self.assertTrue(self.sender.show_values is not None) self.assertTrue(self.receiver.show_values is not None) def test_setter_axes(self): self.sender.set_axes(EXAMPLE_LIST_1) self.receiver.set_axes(EXAMPLE_LIST_1) self.assertEqual(self.sender.axes, EXAMPLE_LIST_1) self.assertEqual(self.receiver.axes, EXAMPLE_LIST_1) def test_set_random_axes(self): self.sender.set_axes() self.receiver.set_axes() self.assertTrue(isinstance(self.sender.axes, list) and \ len(self.sender.axes) == ORIGINAL_BITS_SIZE) self.assertTrue(isinstance(self.receiver.axes, list) and \ len(self.receiver.axes) == ORIGINAL_BITS_SIZE) def test_show_axes(self): self.assertTrue(self.sender.show_axes is not None) self.assertTrue(self.receiver.show_axes is not None) def test_remove_garbage(self): self.sender.set_values(EXAMPLE_LIST_1) self.receiver.set_values(EXAMPLE_LIST_2) self.sender.set_axes(EXAMPLE_LIST_1) self.receiver.set_axes(EXAMPLE_LIST_2) self.sender.remove_garbage(EXAMPLE_LIST_2) self.receiver.remove_garbage(EXAMPLE_LIST_1) def test_check_key(self): self.test_remove_garbage() shared_key = self.receiver.key[:INDEX_SHARED_KEY] self.assertTrue(self.sender.check_key(shared_key)) def test_confirm_key(self): self.test_check_key() shared_key = self.receiver.key[:INDEX_SHARED_KEY] self.sender.confirm_key(len(shared_key)) def test_is_safe_key(self): self.test_confirm_key() self.assertTrue(self.sender.is_safe_key) def test_show_key(self): self.test_is_safe_key() self.assertTrue(self.sender.show_key is not None) def test_generate_otp(self): self.test_is_safe_key() self.sender.generate_otp(ORIGINAL_BITS_SIZE) self.assertTrue(isinstance(self.sender.otp, list)) def test_show_otp(self): self.test_generate_otp() self.assertTrue(self.sender.show_otp is not None) def test_xor_otp_message(self): self.test_generate_otp() msg = 'qwertyuiopasdfghjklñzxcvbnm012345789QWERTYUIOPASDFGHJKLÑZXCVBNM,._-' encoded_msg = self.sender.xor_otp_message(msg) decoded_msg = self.sender.xor_otp_message(encoded_msg) self.assertEqual(decoded_msg, msg) def test_encode_quantum_message(self): self.test_set_random_axes() self.test_set_random_values() self.msg = self.sender.encode_quantum_message() for i, qc in enumerate(self.msg): for gate in qc.data: if gate[0].name == 'x': self.assertTrue(self.sender.values[i] == 1) if gate[0].name == 'h': self.assertTrue(self.sender.axes[i] == 1) def test_decode_quantum_message(self): self.test_encode_quantum_message() backend = Aer.get_backend('aer_simulator') self.msg = self.receiver.decode_quantum_message(self.msg, 1, backend) for i in self.receiver.axes: if self.receiver.axes[i] == self.sender.axes[i]: self.assertEqual(self.receiver.values[i], self.sender.values[i]) if __name__ == '__main__': unittest.main()
https://github.com/stefan-woerner/qiskit_optimization_circuits
stefan-woerner
# useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes import numpy as np import networkx as nx from qiskit import Aer, execute, QuantumCircuit from qiskit.quantum_info import Statevector # auxilliary function to plot graphs def plot_result(G, x): colors = ['r' if x[i] == 0 else 'b' for i in range(n)] pos, default_axes = nx.spring_layout(G), plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos) # create graph G = nx.Graph() # add nodes n = 5 G.add_nodes_from(range(n)) # add edges: tuple is (i,j,weight) where (i,j) is the edge edges = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0), (2, 4, 1.0), (3, 4, 1.0)] G.add_weighted_edges_from(edges) # plot graph plot_result(G, [0]*n) from docplex.mp.model import Model mdl = Model('MaxCut') x = mdl.binary_var_list('x{}'.format(i) for i in range(n)) objective = mdl.sum([ w * (x[i] + x[j] - 2*x[i]*x[j]) for (i, j, w) in edges]) mdl.maximize(objective) mdl.prettyprint() b = 2 mdl.add_constraint(mdl.sum(x) == b) mdl.prettyprint() from qiskit.optimization import QuadraticProgram from qiskit.optimization.algorithms import CplexOptimizer # convert from DOcplex model to Qiskit Quadratic Program qp = QuadraticProgram() qp.from_docplex(mdl) # Solve Quadratic Program using CPLEX cplex = CplexOptimizer() result = cplex.solve(qp) print(result) plot_result(G, result.x) from qiskit.optimization.converters import ( InequalityToEquality, # converts inequality constraints to equality constraints by adding slack variables LinearEqualityToPenalty, # converts linear equality constraints to quadratic penalty terms IntegerToBinary, # converts integer variables to binary variables QuadraticProgramToQubo # combines the previous three converters ) lineq2penalty = LinearEqualityToPenalty(penalty=1) qp_wo_constr = lineq2penalty.convert(qp) qp_wo_constr # Solve converted Quadratic Program using CPLEX result = cplex.solve(qp_wo_constr) print(result) plot_result(G, result.x) H, offset = qp_wo_constr.to_ising() print('offset =', offset) print() print('H =', H) # print Ising Hamiltonian as matrix H_matrix = np.real(H.to_matrix()) print('dim(H):', H_matrix.shape) print(H_matrix) # plot diagonal of matrix opt_indices = list(np.where(H_matrix.diagonal() == min(H_matrix.diagonal())))[0] plt.figure(figsize=(12, 5)) plt.bar(range(2**n), H_matrix.diagonal()) plt.bar(opt_indices, H_matrix.diagonal()[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() from qiskit.circuit.library import RealAmplitudes qc = RealAmplitudes(5, reps=1) qc.draw(fold=120) # run VQE from qiskit.aqua.algorithms import VQE vqe = VQE(H, qc, quantum_instance=Aer.get_backend('statevector_simulator')) result = vqe.run() print('optimal value:', np.round(result.eigenvalue, decimals=4)) # plot probabilities probabilities = np.abs(result.eigenstate)**2 plt.figure(figsize=(12, 5)) plt.bar(range(2**n), probabilities) plt.bar(opt_indices, probabilities[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() from qiskit.circuit import Parameter gamma, beta = Parameter('gamma'), Parameter('beta') qc = QuantumCircuit(1) qc.h(0) qc.barrier() qc.rz(gamma, 0) qc.rx(beta, 0) qc.barrier() qc.draw() def construct_schedule(T, N): delta_t = T/N gammas, betas = [], [] # H_C, H_X parameters for i in range(N+1): t = i * delta_t gammas += [ 2 * delta_t * t/T ] # H_C betas += [ -2 * delta_t * (1 - t/T) ] # H_X return gammas, betas T = 5 N = 10 gammas, betas = construct_schedule(T, N) plt.figure(figsize=(10, 4)) plt.plot(np.linspace(0, T, N+1), gammas, label='gammas') plt.plot(np.linspace(0, T, N+1), betas, label='betas') plt.legend(fontsize=14) plt.xticks(fontsize=14) plt.xlabel('time', fontsize=14) plt.yticks(fontsize=14) plt.ylabel('parameters', fontsize=14); # track probabilities during trotterized annealing probabilities = np.zeros((2, N+1)) # construct circuit qc = QuantumCircuit(1) qc.h(0) qc.barrier() for i, (gamma, beta) in enumerate(zip(gammas, betas)): qc.rz(gamma, 0) qc.rx(beta, 0) qc.barrier() probabilities[:, i] = Statevector.from_instruction(qc).probabilities() qc.draw() plt.figure(figsize=(12, 7)) plt.plot(np.linspace(0, T, N+1), probabilities[1, :], 'gd-', label=r'$|1\rangle$') plt.plot(np.linspace(0, T, N+1), probabilities[0, :], 'bo-', label=r'$|0\rangle$') plt.legend(fontsize=14) plt.xticks(fontsize=14) plt.xlabel('time $t$', fontsize=14) plt.yticks(fontsize=14) plt.ylabel('probabilities', fontsize=14); plt.figure(figsize=(12, 7)) plt.plot(np.linspace(0, T, N+1), probabilities[0, :] - probabilities[1, :], 'gd-') plt.xticks(fontsize=14) plt.xlabel('time $t$', fontsize=14) plt.yticks(fontsize=14) plt.ylabel('objective value', fontsize=14); gamma = Parameter('gamma') qc1 = QuantumCircuit(2) qc1.cx(0, 1) qc1.rz(gamma, 1) qc1.cx(0, 1) qc1.draw() qc2 = QuantumCircuit(2) qc2.rzz(gamma, 0, 1) qc2.draw() from qiskit.aqua.components.optimizers import COBYLA # QAOA circuit for p = 1 gamma, beta = Parameter('gamma'), Parameter('beta') qc = QuantumCircuit(1) qc.h(0) qc.rz(gamma, 0) qc.rx(beta, 0) def objective(params): qc_ = qc.bind_parameters({gamma: params[0], beta: params[1]}) probs = Statevector.from_instruction(qc_).probabilities() return probs @ [1, -1] optimizer = COBYLA() result = optimizer.optimize(num_vars=2, objective_function=objective, initial_point=[0.5, 0.5]) print('optimal params:', np.round(result[0], decimals=4)) print('optimal value: ', np.round(result[1], decimals=4)) print('optimal state: ', np.round(Statevector.from_instruction(qc.bind_parameters( {gamma: result[0][0], beta: result[0][1]})).data, decimals=4)) from qiskit.aqua.algorithms.minimum_eigen_solvers.qaoa.var_form import QAOAVarForm # construct parameters from annealing schedule T = 10 N = 20 gammas, betas = construct_schedule(T, N) # construct variational form var_form = QAOAVarForm(H, N+1) # evaluate circuit qc = var_form.construct_circuit(gammas + betas) sv = Statevector.from_instruction(qc) # plot probabilities probabilities = sv.probabilities() plt.figure(figsize=(12, 5)) plt.bar(range(2**n), probabilities) plt.bar(opt_indices, probabilities[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14); # illustrating the QAOA var form p = 1 var_form = QAOAVarForm(H, p) var_form.construct_circuit([gamma, beta]).draw() from qiskit.aqua.algorithms import QAOA qaoa_mes = QAOA(H, p=1, optimizer=optimizer, quantum_instance=Aer.get_backend('statevector_simulator')) result = qaoa_mes.run() print('optimal params: ', result.optimal_parameters) print('optimal value: ', result.optimal_value) print('optimal probability: ', sum(np.abs(result.eigenstate[opt_indices])**2)) # plot probabilities probabilities = np.abs(result['eigenstate'])**2 plt.figure(figsize=(12, 5)) plt.bar(range(2**n), probabilities) plt.bar(opt_indices, probabilities[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() from qiskit.optimization.algorithms import MinimumEigenOptimizer # construct QAOA as Minimum Eigensolver qaoa_mes = QAOA(p=1, optimizer=optimizer, quantum_instance=Aer.get_backend('statevector_simulator')) # construct Minimum Eigen Optimizer based on QAOA qaoa = MinimumEigenOptimizer(qaoa_mes) # solve Quadratic Program result = qaoa.solve(qp) print(result) plot_result(G, result.x) # converts two's complement bit string to corresponding integer def twos_complement(val, num_bits): val = int(val, 2) if (val & (1 << (num_bits - 1))) != 0: val = val - (1 << num_bits) return val print(twos_complement('0011', 4)) print(twos_complement('1011', 4)) from qiskit.circuit.library import QFT def encode(num_qubits, k): qc = QuantumCircuit(num_qubits, name='enc({})'.format(k)) for i in range(num_qubits): theta = 2*np.pi * 2**i / 2**num_qubits * k qc.rz(theta, i) return qc num_value_qubits = 4 qc = QuantumCircuit(num_value_qubits, num_value_qubits) qc.h(range(num_value_qubits)) qc.barrier() qc.extend(encode(num_value_qubits, 2)) qc.barrier() qc.append(QFT(num_value_qubits, do_swaps=False).inverse(), qc.qubits) qc.measure(qc.qregs[0], qc.cregs[0][::-1]) qc.draw(fold=120) num_value_qubits = 4 qc = QuantumCircuit(num_value_qubits, num_value_qubits) qc.h(range(num_value_qubits)) qc.barrier() qc.extend(encode(num_value_qubits, 2)) # qc.extend(encode(num_value_qubits, -3)) # qc.extend(encode(num_value_qubits, 4)) qc.barrier() qc.append(QFT(num_value_qubits, do_swaps=False, inverse=True), qc.qubits) qc.measure(qc.qregs[0], qc.cregs[0][::-1]) qc.draw(fold=120) counts = execute(qc, Aer.get_backend('qasm_simulator')).result().get_counts() for key in counts: print(key, ' -->', twos_complement(key, num_value_qubits)) num_input_qubits = 3 num_total_qubits = num_input_qubits + num_value_qubits qc = QuantumCircuit(num_total_qubits) qc.h([0, 1, 2]) qc.barrier() qc.h(range(num_input_qubits, num_total_qubits)) qc.append(encode(num_value_qubits, 2).control(2), [0, 2] + list(range(num_input_qubits, num_total_qubits))) qc.append(encode(num_value_qubits, -3).control(), [1] + list(range(num_input_qubits, num_total_qubits))) qc.append(encode(num_value_qubits, 4).control(), [2] + list(range(num_input_qubits, num_total_qubits))) qc.append(QFT(num_value_qubits, do_swaps=False).inverse(), range(num_input_qubits, num_total_qubits)) qc.measure_all() qc.draw(fold=120) counts = execute(qc, Aer.get_backend('qasm_simulator')).result().get_counts() for key, value in counts.items(): x = key[num_value_qubits:] y_bin = key[:num_value_qubits][::-1] y_int = twos_complement(y_bin, num_value_qubits) print(x, '-->', y_bin, '-->', y_int, '\t(counts: {})'.format(value)) from qiskit.circuit.library import QuadraticForm # get quadratic / linear / constant part of quadratic program A = qp_wo_constr.objective.quadratic.to_array() b = qp_wo_constr.objective.linear.to_array() c = qp_wo_constr.objective.constant # set number of results qubits num_value_qubits = 5 # construct circuit to evaluate quadratic form qf = QuadraticForm(num_value_qubits, A, b, c) qf.draw(fold=115) qc = QuantumCircuit(n + num_value_qubits) qc.h(range(n)) qc.append(qf, range(n + num_value_qubits)) qc.measure_all() qc.draw() counts = execute(qc, backend=Aer.get_backend('qasm_simulator')).result().get_counts() for key, value in counts.items(): x_ = key[num_value_qubits:] x = [0 if x__ == '0' else 1 for x__ in x_][::-1] y_bin = key[:num_value_qubits] y_int = twos_complement(y_bin, num_value_qubits) qx = qp_wo_constr.objective.evaluate(x) print('x =', x_, '\ty_bin =', y_bin, '\ty_int =', y_int, '\tQ(x) =', qx, '\t(counts: {})'.format(value)) qc = QuantumCircuit(n + num_value_qubits) qc.append(qf, range(n + num_value_qubits)) # 1. compute Q(x) qc.z(qc.qubits[-1]) # 2. multiply all |x>|Q(x)> by -1 where Q(x) < 0. qc.append(qf.inverse(), range(n + num_value_qubits)) # 3. uncompute Q(x). qc.draw(output='text', vertical_compression="high") from qiskit.optimization.algorithms import GroverOptimizer # set up Grover Optimizer grover = GroverOptimizer(num_value_qubits=5, quantum_instance=Aer.get_backend('statevector_simulator')) grover._qubo_converter.penalty = 1 # set to small value to reduce required number of value qubits # solver problem result = grover.solve(qp) print(result) plot_result(G, result.x)
https://github.com/Dirac231/BCHamming
Dirac231
import numpy as np from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister def num_to_binary(n, N): """Returns the binary representation of n Args: n (int): The number to be represented in binary N (int): The number of digits of the rapresentation Returns: bool: The binary representation of n es: num_to_binary(5,4) = 0101 """ Nbits=2**N if n>=Nbits: return 0 return bin(n+2*Nbits)[4:] def is_power_2(n): """Returns True if the number is a power of two""" return n & (n-1) == 0 def HammingCircuit(N, classical_registers=False, name=None, ancillas=None): """It gives you a circuit with 2^N qbits of (message + redundancy) Args: N (int): Order of the Hamming cirucit classical_registers (Bool, int): If True if gives an amount of classical registers equal to the number of qbits, if you want a specific number of classical registers just write the number you want. Defaults to False. name (str): Name of the circuit. Defaults to None. ancillas (int): Is the number of ancillas of the circuit. Defaults to zero. Returns: circuit: Returns a circuit with just the qbits labeled as the parity and signal """ if ancillas is None: ancillas = 2*N-1 registers=[] for i in range(2**N): prefix='s' #s stands for signal if is_power_2(i): prefix='p' #c stands for parity registers.append(QuantumRegister(1,prefix+num_to_binary(i, N))) if classical_registers!=False: if classical_registers==True: registers.append(ClassicalRegister(2**N + ancillas)) else: registers.append(ClassicalRegister(classical_registers)) if ancillas > 0: registers.append(QuantumRegister(ancillas)) circuit=QuantumCircuit(*registers) #circuit already with ancillas circuit.N=N if name is not None: circuit.name = name return circuit def Swapper(N): """Circuit that shifts the every qubit right by the number of power-of-two qubits before it Args: N (int): Order of Hamming code Returns: gate: swapper """ qc = HammingCircuit(N, name="Swapper", ancillas=0) source = 2**N - N - 2 target = 2**N - 1 while source >= 0: if is_power_2(target): target -= 1 qc.swap(source, target) source -= 1 target -= 1 return qc.to_gate(label="Swapper") def ReverseSwapper(N): """ Circuit that shifts the every qubit left by the number of power-of-two qubits before it """ qc = HammingCircuit(N, ancillas=0) source = 0 target = 0 while target < 2**N: if is_power_2(target): target += 1 continue qc.swap(source, target) source += 1 target += 1 return qc.to_gate(label="Reverse Swapper") def Encoder(N): """Encoder for the quantum hamming code""" qc = HammingCircuit(N, name="Encoder", ancillas=0) for p in range(N): p = 2**p [qc.cx(i, p) for i in range(2**N) if (i & p) == p and i != p] return qc.to_gate(label="Encoder") def Hamming_bit_encoder(N, kind="bit", name="bit encoder"): """Creates quantum Hamming bit encoder circuit of order N Args: N (int): Order of the circuit name (str, optional): Name of the circuit. Defaults to "bit encoder". kind (str, optional): Set to "bit" for correcting bit flip errors, "phase" for correcting phase flip errors. Returns: Gates: Quantum Hamming bit encoder circuit of order N """ qc = HammingCircuit(N, ancillas=0) qc.append(Swapper(N), [*range(2**N)]) qc.append(Encoder(N), [*range(2**N)]) if kind=="phase": qc.h([*range(2**N)]) return qc.to_gate(label=name) def is_valid_input(kind): """Helper function that checks if kind="bit", "phase" or "both" and raises an exeption if it isn't """ if kind not in ["bit", "phase", "both"]: message = f"The kind argument must be one of bit, phase or both, received {kind} instead" raise Exception(message) return True def HammingOrder(n): """Gives you the order of the Hamming gate as a function of n Args: n (int): lenght of the input message Returns: N (int): order of the Hamming gate """ for i in range(0,15): N=2**i if N-i-1>=n: return i def syndrome(N): """This gate calculates the syndrome, this gives the position of the faulty qbit""" circ=HammingCircuit(N, ancillas=N) nqubits=2**N for i in range(1,nqubits): for j in range(0,N): if i & 2**j == 2**j: circ.cx(i,nqubits+j) return circ.to_gate(label='syndrome') def apply_syndrome(N): """This gate that corrects the faulty qbit identified in the syndrome""" circ=HammingCircuit(N, ancillas=N) nqubits=2**N count=np.zeros(N) for i in range(1,nqubits): count=count+1 for j in range(N): count[j]=count[j]%(2**j) if count[j]==0 and i!=1: circ.x(nqubits+j) if i==1 and j!=0: circ.x(nqubits+j) circ.mct([*range(nqubits,nqubits+N)],i) return circ.to_gate(label='Correction') def Hamming_bit_decoder(N,kind='bit',read=True,name='decoder'): """Hamming Gate resistant to bit-fips""" circ=HammingCircuit(N, ancillas=N) if kind=='phase': circ.h([*range(2**N)]) circ.append(syndrome(N),[*range(2**N+N)]) circ.append(apply_syndrome(N),[*range(2**N+N)]) if read==True: circ.append(ReverseSwapper(N), [*range(2**N)]) return circ.to_gate(label=name) def HammingSize(n, gate='decoder', kind='both'): """Gives you the number of qubits that must be present in the circuit Args: n (int): lenght of the input message gate (str): It's either 'encoder' or 'decoder' kind (str): The kind argument must be one of bit, phase or both Returns: n (int): Number of qubits required for the circuit """ is_valid_input(kind) N=HammingOrder(n) if gate=='encoder': if kind=='both': return 2**(N+1) return 2**N if gate=='decoder': if kind=='both': return 2**(N+1) + 2*N + 1 return 2**N + N raise Exception('Gate not valid, the input must be either \'encoder\' or \'decoder\'') # I don't know if these functions are still useful def HammingRedundant(n): """Takes a integer "n" and makes the binary representation of that integer hamming redundant""" bits=int(np.log2(n))+1 parity=int(np.log2(bits))+2 total=2**(parity-1) N,j=0,0 #shift the digits in the correct positions for the hamming code for i in range(total): if i!=0 and int(np.log2(i))!=np.log2(i): N=N+(n&(2**j)==2**j)*(2**i) j=j+1 #puts the parity bit in place except for the global parity bit for i in range(parity): i=2**i for j in range(i,total): N=N^((2**i)*((j&i==i)&((N&2**j)!=0))) #Global parity bit (yet to be tested) #for i in range(1,total):N=N^((N&2**i)==1) return N def classic_input(n,N=None): #n is the number in integer format, N is the size of the gate #doesn't work and i if N==None: N=int(np.log2(n))+1 if (n>=2**N): raise 'ma sei trimò' registers=QuantumRegister(N) circuit=QuantumCircuit(registers) for i in range(N): j=2**i if (n&j)==j: circuit.x(i) return circuit.to_gate(num_to_binary(n,N))
https://github.com/Dirac231/BCHamming
Dirac231
import numpy as np from qiskit import QuantumRegister, ClassicalRegister,QuantumCircuit, transpile, Aer from qiskit import IBMQ, Aer from qiskit.providers.aer import QasmSimulator from qiskit.providers.aer.noise import NoiseModel from Hamming import * import qiskit %matplotlib inline from random import randint # Create a hamming circuit N = 3 enc=HammingEncode(N) dec=HammingDecode(N,read=True) circuit = QuantumCircuit(dec.size,dec.size) # Create a input circuit.h(0) circuit.cx(0,1) circuit.x(1) circuit.cx(0,2) # Add the encoder to the circuit circuit.append(enc, range(enc.size)) # Add errors circuit.y(4) # Add the decoder to the circuit circuit.append(dec,range(dec.size)) # Measure the qubits circuit.measure(list(range(N)),list(range(N))) circuit.draw(output='mpl') # Simulate the circuit simulator = Aer.get_backend("qasm_simulator") result = qiskit.execute(circuit, backend = simulator, shots=1000).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit))
https://github.com/Dirac231/BCHamming
Dirac231
from qiskit import * from unireedsolomon import * from matplotlib import * from math import * from collections import defaultdict import numpy as np from numpy.polynomial import Polynomial from qiskit.providers.aer import AerSimulator from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram from qiskit.providers.aer.noise import NoiseModel #NOISE MODULE #Needed in order to load the ibm-mps simulator for an optimal simulation provider = IBMQ.load_account() ##the following adds the noise model that is based on ibmq_vigo backend = provider.get_backend('ibmq_16_melbourne') noise_model = NoiseModel.from_backend(backend) #noise model from real machines ##The following adds custom noise model to the circuit # Error probabilities #prob_1 = 0.001 # x error #prob_2 = 0.01 # depolarizing error # Depolarizing quantum errors #error_1 = noise.depolarizing_error(prob_1, 1) #error_2 = noise.depolarizing_error(prob_2, 2) #error_1 = NoiseModel.depolarizing_error(prob_1, 1) #error_2 = NoiseModel.depolarizing_error(prob_2, 2) # Get basis gates from noise model basis_gates = noise_model.basis_gates basis_gates = ['cx', 'id', 'u1', 'sx', 'x'] #-------------------------------------------------------------------------------------- #PARAMETERS SETUP #Parameters of the classical code used to generate the optimal quantum code. #The code is built so that everything is a function of k_cl, the order of the finite field. #The initial state is read from the file states.txt def init_decoder(): global initial_state, k_cl, delta, K, ENC, encode_reg, ecc, shots, fourier, inv_fourier,provider provider = IBMQ.load_account() initial_state = np.loadtxt('states.txt') k_cl = len(initial_state) #Order of the finite field in terms of powers of 2, corresponds to the amount of qbits sent delta = floor((2**k_cl-1)/2+2) #Classical optimal minimum distance of the code K = (2**k_cl) - delta #Number of classical bits sent, directly related to the error-correcting capability of the code ecc = floor((K+1)/2) ENC = k_cl*(2**k_cl - 1) #Total encoding Qbits needed encode_reg = QuantumRegister(ENC+2*k_cl*K) #Quantum Register used to construct the full circuit ecc = floor((K+1)/2) #Maximum error correction capability per symbol shots = 100 #Initialization of the parameters is completed print("") print("Reading from file: found ",k_cl," Qbits: \n") print("Parameters of the code: ") print("-------------------------------------------") print("Encoding Qbits: ", ENC) print("Sent Qbits: ", k_cl*(2**k_cl-1-2*K)) print("Maximum error-correcting: ", ecc, "/Symbol = ", ecc*k_cl, "/Encoded Qbit") print("-------------------------------------------") #-------------------------------------------------------------------------------------- #QTF IMPLEMENTATION #A quantum fourier transform is used both for encoding and decoding purposes fourier = QFT(num_qubits=ENC, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft') inv_fourier = QFT(num_qubits=ENC, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=False, name='qft-inverse') #----------------------------------------------------------------------------------- #SIMULATES THE CIRCUIT def simulate(qc): """Simulates the circuit using the cloud-computing services of IBMq, this is always the recommended choice to run simulations""" provider = IBMQ.get_provider(hub='ibm-q') backend=provider.get_backend('simulator_mps') result = execute(circ, backend,shots=shots, basis_gates=basis_gates, noise_model=noise_model).result() #add noise module print('Simulation Success: {}'.format(result.success)) print("Time taken: {} sec".format(result.time_taken)) counts = result.get_counts(0) return counts #------------------------------------------------------------------------------------ #MEASURE FUNCTIONS def measure_encoding(qc): """Measure the Qbits used in the encoding, i.e. if the lenght is 3, the first 21 Qbits""" cr = ClassicalRegister(ENC, 'encoded') qc.add_register(cr) for i in range(0, ENC): qc.measure(i,cr[i]) results = simulate(qc) encoded = max(results, key=results.get) return encoded def get_qbits(qc): """Measure the Qbits with the message, i.e. if the lenght is 3, the first 3 Qbits""" cr = ClassicalRegister(k_cl*(2**k_cl-1-2*K), 'out') qc.add_register(cr) for i in range(0,k_cl): qc.measure(i, cr[i]) for i in range(k_cl*(K + 1), ENC-k_cl*K): qc.measure(i, cr[i]) results = simulate(qc) qbits = max(results, key=results.get) return qbits,results def get_syndrome(qc): """Measure the Qbits with the syndrome, i.e. if the lenght is 3, the last 18 Qbits""" cr = ClassicalRegister(2*k_cl*K) qc.add_register(cr) for i in range(0, 2*k_cl*K): qc.measure(ENC+i,cr[i]) #orders the syndromes in descending order in term of the occurrences ordered_res = {k: v for k, v in sorted(simulate(qc).items(), key=lambda item: item[1])} syndromes = list(ordered_res)[::-1] return syndromes #------------------------------------------------------------------------------------ #GIVEN THE CLASSICAL SYNDROME, RETURNS THE POSITIONS OF THE ERRORS USING CLASSICAL BERLEKAMP-MASSEY #Performs a Berlekamp-Massey algorithm in order to find the error locator polynomial relative to the syndrome# def error_string(classical_syn): k1 = int(ENC/k_cl) k2 = int(((ENC-K*k_cl)/k_cl)) prime = int(hex(find_prime_polynomials(c_exp=k_cl,single=True)),16) coder = rs.RSCoder(k1, k2, prim=prime,c_exp=k_cl) error_bf, sigma_bf = coder._berlekamp_massey_fast(coder._list2gfpoly(str(classical_syn))) eval_tmp_bf, bf = coder._chien_search_faster(error_bf) Y = coder._forney(sigma_bf, eval_tmp_bf) Elist = [] if(classical_syn != "0"*k_cl): if len(Y) >= len(bf): for i in range(coder.gf2_charac): if i in bf: Elist.append(Y[bf.index(i)]) E = Polynomial( Elist[::-1]) error_bits = [bin(int(i))[2:] for i in Elist] s = "" for i in range(len(error_bits)): s += error_bits[i] s = s[::-1] return s else: return "" def error_locator(syn): """take the syndrome computed by the quantum circuit and apply error_string""" for x in syn: BFsyndrome = oct(int((x[::-1])[:k_cl*K],2))[2:] #bit flip syndrome string PFsyndrome = oct(int((x[::-1])[k_cl*K:],2))[2:] #phase flip syndrome string #Performs the error locator finding for each measured syndrome, if a error occurs, it computes the errors associated with the next most probable syndrome try: #uses functions in the unireedsolomon library to compute the error locations bf, pf bf = error_string(BFsyndrome) pf = error_string(PFsyndrome) return bf,pf,x except (RSCodecError,ValueError): continue print("No valid syndrome was found, too many errors try increasing the number of shots.") exit() #------------------------------------------------------------------------------------ """ENCODING: takes a message and return the circuit that encodes it""" def encoder(initial_state): """Takes a message and return the circuit that encodes it""" qc = QuantumCircuit(encode_reg) for i in range(0,k_cl): qc.initialize(initial_state[i], i) for i in range(k_cl*(K + 1), ENC-k_cl*K): qc.initialize(initial_state[i], i) for i in range(ENC - k_cl*K,ENC): qc.h(i) qc.append(inv_fourier, encode_reg[:ENC]) return qc #CIRCUIT TO COMPUTE THE SYNDROME def decoder(qc): """Takes the ecoding circuit, computes the syndrome and corrects the message""" qc.append(fourier, encode_reg[:ENC]) for i in range(k_cl+1,k_cl*(K+1)+1): qc.cx(i-1, i+ENC-k_cl-1) for i in range(ENC -k_cl*K, ENC): qc.h(i) for i in range(ENC-k_cl*K-1,ENC-1): qc.cx(i+1, i+ENC-k_cl+1) for i in range(ENC -k_cl*K-1, ENC-1): qc.h(i+1) qc.append(inv_fourier, encode_reg[:ENC]) syn = get_syndrome(qc) bf,pf,x = error_locator(syn) if(bf != "1" or x[:k_cl*K] != "0"*k_cl*K): for i in range(len(bf)): if (bf[i] == "1"): qc.x(i) if (pf != "1" or x[k_cl*K:] != "0"*k_cl*K): for i in range(ENC): qc.h(i) for i in range(len(pf)): if (pf[i] == "1"): qc.z(i) for i in range(ENC): qc.h(i) qc.append(fourier, encode_reg[:ENC]) message,occurrences = get_qbits(qc) occurrences = zip([x[:3][::-1] for x in occurrences.keys()] , list(occurrences.values())) D = defaultdict(int) for k,v in occurrences: D[k]+= int(v) occurrences = dict(D) return qc,message,x,occurrences #------------------------------------------------------------------------------------ def send_message(initial_state): """Auxiliary testing function, sends the message contained in the file states.txt and returns the simulation circuit.""" qc = encoder(initial_state) #Classical optimal minimum distance of the code #INSERT ERRORS HERE: (such as qc.x(4) or z-errors) qc,retrieved,syn,occurrences = decoder(qc) plot_histogram(occurrences, color='midnightblue', title="Message occurrences").savefig("histogram.png") print("Most probable message: ", retrieved[:3][::-1]) print("Occurrences: ", occurrences) print("Compared with: ") for i in initial_state: print(i,"\n") print("Syndrome was: ", syn[::-1]) qc.draw(output='mpl', filename='prova.png') return qc #------------------------------------------------------------------------------------ qc = send_message(initial_state)
https://github.com/Dirac231/BCHamming
Dirac231
from qiskit import * from unireedsolomon import * from matplotlib import * from math import * from collections import defaultdict import numpy as np from numpy.polynomial import Polynomial from qiskit.providers.aer import AerSimulator from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram #PARAMETERS SETUP #Parameters of the classical code used to generate the optimal quantum code. #The code is built so that everything is a function of k_cl, the order of the finite field. #The initial state is read from the file states.txt def init_decoder(): global initial_state, k_cl, delta, K, ENC, encode_reg, ecc, shots, fourier, inv_fourier,provider provider = IBMQ.load_account() initial_state = np.loadtxt('states.txt') k_cl = len(initial_state) #Order of the finite field in terms of powers of 2, corresponds to the amount of qbits sent delta = floor((2**k_cl-1)/2+2) #Classical optimal minimum distance of the code K = (2**k_cl) - delta #Number of classical bits sent, directly related to the error-correcting capability of the code ecc = floor((K+1)/2) ENC = k_cl*(2**k_cl - 1) #Total encoding Qbits needed encode_reg = QuantumRegister(ENC+2*k_cl*K) #Quantum Register used to construct the full circuit ecc = floor((K+1)/2) #Maximum error correction capability per symbol shots = 128 #Initialization of the parameters is completed print("") print("Reading from file: found ",k_cl," Qbits: \n") print("Parameters of the code: ") print("-------------------------------------------") print("Encoding Qbits: ", ENC) print("Sent Qbits: ", k_cl*(2**k_cl-1-2*K)) print("Maximum error-correcting: ", ecc, "/Symbol = ", ecc*k_cl, "/Encoded Qbit") print("-------------------------------------------") #-------------------------------------------------------------------------------------- #QTF IMPLEMENTATION #A quantum fourier transform is used both for encoding and decoding purposes fourier = QFT(num_qubits=ENC, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft') inv_fourier = QFT(num_qubits=ENC, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=False, name='qft-inverse') #----------------------------------------------------------------------------------- #SIMULATES THE CIRCUIT def simulate(qc): """Simulates the circuit using the cloud-computing services of IBMq, this is always the recommended choice to run simulations""" provider = IBMQ.get_provider(hub='ibm-q') backend=provider.get_backend('simulator_mps') result = execute(qc, backend,shots=shots).result() print('Simulation Success: {}'.format(result.success)) print("Time taken: {} sec".format(result.time_taken)) counts = result.get_counts(0) return counts #------------------------------------------------------------------------------------ #MEASURE FUNCTIONS def measure_encoding(qc): """Measure the Qbits used in the encoding, i.e. if the lenght is 3, the first 21 Qbits""" cr = ClassicalRegister(ENC, 'encoded') qc.add_register(cr) for i in range(0, ENC): qc.measure(i,cr[i]) results = simulate(qc) encoded = max(results, key=results.get) return encoded def get_qbits(qc): """Measure the Qbits with the message, i.e. if the lenght is 3, the first 3 Qbits""" cr = ClassicalRegister(k_cl*(2**k_cl-1-2*K), 'out') qc.add_register(cr) for i in range(0,k_cl): qc.measure(i, cr[i]) for i in range(k_cl*(K + 1), ENC-k_cl*K): qc.measure(i, cr[i]) results = simulate(qc) qbits = max(results, key=results.get) return qbits,results def get_syndrome(qc): """Measure the Qbits with the syndrome, i.e. if the lenght is 3, the last 18 Qbits""" cr = ClassicalRegister(2*k_cl*K) qc.add_register(cr) for i in range(0, 2*k_cl*K): qc.measure(ENC+i,cr[i]) #orders the syndromes in descending order in term of the occurrences ordered_res = {k: v for k, v in sorted(simulate(qc).items(), key=lambda item: item[1])} syndromes = list(ordered_res)[::-1] return syndromes #------------------------------------------------------------------------------------ #GIVEN THE CLASSICAL SYNDROME, RETURNS THE POSITIONS OF THE ERRORS USING CLASSICAL BERLEKAMP-MASSEY #Performs a Berlekamp-Massey algorithm in order to find the error locator polynomial relative to the syndrome# def error_string(classical_syn): k1 = int(ENC/k_cl) k2 = int(((ENC-K*k_cl)/k_cl)) prime = int(hex(find_prime_polynomials(c_exp=k_cl,single=True)),16) coder = rs.RSCoder(k1, k2, prim=prime,c_exp=k_cl) error_bf, sigma_bf = coder._berlekamp_massey_fast(coder._list2gfpoly(str(classical_syn))) eval_tmp_bf, bf = coder._chien_search_faster(error_bf) Y = coder._forney(sigma_bf, eval_tmp_bf) Elist = [] if(classical_syn != "0"*k_cl): if len(Y) >= len(bf): for i in range(coder.gf2_charac): if i in bf: Elist.append(Y[bf.index(i)]) E = Polynomial( Elist[::-1]) error_bits = [bin(int(i))[2:] for i in Elist] s = "" for i in range(len(error_bits)): s += error_bits[i] s = s[::-1] return s else: return "" def error_locator(syn): """take the syndrome computed by the quantum circuit and apply error_string""" for x in syn: BFsyndrome = oct(int((x[::-1])[:k_cl*K],2))[2:] #bit flip syndrome string PFsyndrome = oct(int((x[::-1])[k_cl*K:],2))[2:] #phase flip syndrome string #Performs the error locator finding for each measured syndrome, if a error occurs, it computes the errors associated with the next most probable syndrome try: #uses functions in the unireedsolomon library to compute the error locations bf, pf bf = error_string(BFsyndrome) pf = error_string(PFsyndrome) return bf,pf,x except (RSCodecError,ValueError): continue print("No valid syndrome was found, too many errors try increasing the number of shots.") exit() #------------------------------------------------------------------------------------ """ENCODING: takes a message and return the circuit that encodes it""" def encoder(initial_state): """Takes a message and return the circuit that encodes it""" qc = QuantumCircuit(encode_reg) for i in range(0,k_cl): qc.initialize(initial_state[i], i) for i in range(k_cl*(K + 1), ENC-k_cl*K): qc.initialize(initial_state[i], i) for i in range(ENC - k_cl*K,ENC): qc.h(i) qc.append(inv_fourier, encode_reg[:ENC]) return qc #CIRCUIT TO COMPUTE THE SYNDROME def decoder(qc): """Takes the ecoding circuit, computes the syndrome and corrects the message""" qc.append(fourier, encode_reg[:ENC]) for i in range(k_cl+1,k_cl*(K+1)+1): qc.cx(i-1, i+ENC-k_cl-1) for i in range(ENC -k_cl*K, ENC): qc.h(i) for i in range(ENC-k_cl*K-1,ENC-1): qc.cx(i+1, i+ENC-k_cl+1) for i in range(ENC -k_cl*K-1, ENC-1): qc.h(i+1) qc.append(inv_fourier, encode_reg[:ENC]) syn = get_syndrome(qc) bf,pf,x = error_locator(syn) if(bf != "1" or x[:k_cl*K] != "0"*k_cl*K): for i in range(len(bf)): if (bf[i] == "1"): qc.x(i) if (pf != "1" or x[k_cl*K:] != "0"*k_cl*K): for i in range(ENC): qc.h(i) for i in range(len(pf)): if (pf[i] == "1"): qc.z(i) for i in range(ENC): qc.h(i) qc.append(fourier, encode_reg[:ENC]) message,occurrences = get_qbits(qc) occurrences = zip([x[:3][::-1] for x in occurrences.keys()] , list(occurrences.values())) D = defaultdict(int) for k,v in occurrences: D[k]+= int(v) occurrences = dict(D) return qc,message,x,occurrences #------------------------------------------------------------------------------------ def send_message(initial_state): """Auxiliary testing function, sends the message contained in the file states.txt and returns the simulation circuit.""" qc = encoder(initial_state) #Classical optimal minimum distance of the code #INSERT ERRORS HERE: (such as qc.x(4) or z-errors) qc,retrieved,syn,occurrences = decoder(qc) plot_histogram(occurrences, color='midnightblue', title="Message occurrences").savefig("histogram.png") print("Most probable message: ", retrieved[:3][::-1]) print("Occurrences: ", occurrences) print("Compared with: ") for i in initial_state: print(i,"\n") print("Syndrome was: ", syn[::-1]) qc.draw(output='mpl', filename='prova.png') return qc #------------------------------------------------------------------------------------
https://github.com/rubenandrebarreiro/ibm-qiskit-quantum-explorers-2023-2024
rubenandrebarreiro
# build your code here answer1 = [3] # run this cell to submit your answer # import the grader for the exercise 1 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex1 # expected result type: List grade_badge1_ex1(answer1) # build your code here answer2 = [1] # eun this cell to submit your answer # import the grader for the exercise 2 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex2 # expected result type: List grade_badge1_ex2(answer2) # build your code here answer3 = [4] # run this cell to submit your answer # import the grader for the exercise 3 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex3 # expected result type: List grade_badge1_ex3(answer3) # build your code here answer4 = [2] # run this cell to submit your answer # import the grader for the exercise 4 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex4 # expected result type: List grade_badge1_ex4(answer4) # build your code here answer5 = [2] # run this cell to submit your answer # import the grader for the exercise 5 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex5 # expected result type: List grade_badge1_ex5(answer5) # build your code here answer6 = [4] # run this cell to submit your answer # import the grader for the exercise 6 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex6 # expected result type: List grade_badge1_ex6(answer6) # build your code here answer7 = [2] # run this cell to submit your answer # import the grader for the exercise 7 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex7 # expected result type: List grade_badge1_ex7(answer7) # build your code here answer8 = [4] # run this cell to submit your answer # import the grader for the exercise 8 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex8 # expected result type: List grade_badge1_ex8(answer8) # build your code here answer9 = [1] # run this cell to submit your answer # import the grader for the exercise 9 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex9 # expected result type: List grade_badge1_ex9(answer9) # build your code here answer10 = [2] # run this cell to submit your answer # import the grader for the exercise 10 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex10 # expected result type: List grade_badge1_ex10(answer10) # build your code here answer11 = [1] # run this cell to submit your answer # import the grader for the exercise 11 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex11 # expected result type: List grade_badge1_ex11(answer11) # build your code here answer12 = [2] # run this cell to submit your answer # import the grader for the exercise 12 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex12 # expected result type: List grade_badge1_ex12(answer12) # import the quantum circuit # from the IBM's Qiskit library from qiskit import QuantumCircuit # import the plotting state of qsphere function # from the IBM's Qiskit Visualization module from qiskit.visualization import plot_state_qsphere ####### build your code below ######### # create a quantum circuit with # a quantum register with 4 qubits circuit = QuantumCircuit(4) # apply the Hadamard gate to all the 4 qubits # to see all the possible combinations of quantum states # note: uncomment to see all the possible # combinations of quantum states # circuit.h( [0, 1, 2, 3] ) # the (entangled) quantum state we need is # |psi> = 1/sqrt(2) * ( |0010> + |1101> ) # apply the Hadamard gate to the 2nd qubit on # the quantum register of the quantum circuit circuit.h(1) # apply the CX/CNOT gate on the 2nd qubit # as control and on the 1st qubit as target, # both on the quantum register of the quantum circuit circuit.cx(1, 0) # apply the CX/CNOT gate on the 2nd qubit # as control and on the 3rd qubit as target, # both on the quantum register of the quantum circuit circuit.cx(1, 2) # apply the CX/CNOT gate on the 2nd qubit # as control and on the 4th qubit as target, # both on the quantum register of the quantum circuit circuit.cx(1, 3) # apply the Pauli-X gate to the 2nd qubit on # the quantum register of the quantum circuit circuit.x(1) ####### build your code above ######### # display the plot of the quantum state from the QSphere # applied to the quantum circuit defined before display( plot_state_qsphere( circuit ) ) # draw the quantum circuit defined before display( circuit.draw("mpl") ) # run this cell to submit your answer # import the grader for the coding exercise of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_code # expected result type: QuantumCircuit answer_code = grade_badge1_code(circuit) #### get statevector from a quantum circuit #### # import the statevector from the IBM's Qiskit # Quantum Information module from qiskit.quantum_info import Statevector # retrieve the statevector from the instructions of # the quantum circuit defined before statevector = Statevector.from_instruction( circuit ) #### run this cell to view the output of #### #### your quantum circuit as a histogram #### # import the Sampler from the IBM's Qiskit Aer Primitives module, # with the 'AerSampler' alias being defined from qiskit_aer.primitives import Sampler as AerSampler # import the plot distribution function # from the IBM's Qiskit Tools for Visualization module from qiskit.tools.visualization import plot_distribution #### run the circuit on the simulator #### #### and get probability distribution #### # create an Aer Sampler object sampler = AerSampler() # measure all the qubits from # the quantum circuit defined before circuit.measure_all() # execute the quantum circuit defined before, # on the Aer Sampler, retrieving the respective job job = sampler.run(circuit) # retrieve the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before prob_distribution = job.result().quasi_dists[0].binary_probabilities() # print the statevector from the instructions of # the quantum circuit defined before print( statevector ) # print the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before print( "Simulator Probability Distribution:", prob_distribution ) # plot the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before plot_distribution( prob_distribution, color=[ "lightblue" ] ) # import the Qiskit's Runtime Service, Session, and Sampler # from the Qiskit's IBM Runtime module from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler # create a Qiskit's Runtime Service object, # using the IBM Quantum channel service = QiskitRuntimeService( channel="ibm_quantum" ) # retrieve the least busy backend # (this step may take a while) real_backend = service.least_busy( min_num_qubits=4, simulator=False ) # within the context of a session with Session( service, backend=real_backend ) as session: # create the Sampler object for the Session defined before sampler = Sampler( session=session ) # execute the quantum simulation of # the quantum circuit created before, # using the Sampler, and retrieving # the respective job on # a real quantum device job_real = sampler.run( circuit ) # retrieve and show the status of # the job created for the execution of # the quantum circuit defined before, # on the Aer Sampler, using # a real quantum device job_real.status() # retrieve the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # using a real quantum device prob_distribution_real = job_real.result().quasi_dists[0].binary_probabilities() # fix the probability distributions # from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator, for values # lower or equal to 0 (zero) prob_distribution = { binary_string : prob if prob > 0 else 1e-8 for binary_string, prob in prob_distribution.items() } # create a list with all the possible binary strings # with 4 bits (i.e., a total of 16 possible different values) binary_strings_4_bits = [ bin( num )[2:].zfill(4) for num in range( 2**4 ) ] # for each possible binary string with 4 bits for binary_string_4_bits in binary_strings_4_bits: # if the current binary string with 4 bits is # not in the diectionary of the probability # distributions from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator if binary_string_4_bits not in prob_distribution: # add the missing binary string with 4 bits to # the diectionary of the probability # distributions from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator, with a negligible value prob_distribution[ binary_string_4_bits ] = 1e-8 # fix the probability distributions # from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using a real quantum device, # for values lower or equal to 0 (zero) prob_distribution_real = { binary_string : prob if prob > 0 else 1e-8 for binary_string, prob in prob_distribution_real.items() } # plot the probability distributions # from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator and a real quantum device plot_distribution( data=[ prob_distribution, prob_distribution_real ], legend=[ "Simulator", "Quantum Real Device" ], color=[ "lightblue", "black" ], bar_labels = False ) # import the Quantum Circuit and the execute # instruction from the IBM's Qiskit library from qiskit import QuantumCircuit, execute # import the Qiskit's Aer object # from the IBM's Qiskit library from qiskit import Aer # retrieve the Unitary Simulator object backend = Aer.get_backend( "unitary_simulator" ) ###################################### #### for the 1st quantum circuit #### # create the 1st quantum circuit, # with a quantum register of 2 qubits qc_1 = QuantumCircuit(2) # apply the inverse of S gate on # the 2nd qubit on the quantum register of # the 1st quantum circuit created before qc_1.sdg(1) # apply the CX/CNOT gate on the 1st qubit # as control and on the 2nd qubit as target, # both on the quantum register of # the 1st quantum circuit created before qc_1.cx( 0, 1 ) # apply the S gate on the 2nd # qubit on the quantum register of # the 1st quantum circuit created before qc_1.s(1) # execute the quantum simulation of # the 1st quantum circuit created before, # and retrieve the respective job job = execute( qc_1, backend, shots=10000 ) # retrieve the result obtained # from the quantum simulation of # the 1st quantum circuit created before result = job.result() # retrieve the unitary operator from the results # obtained from the quantum simulation of # the 1st quantum circuit created before qc_1_unitary = result.get_unitary( qc_1, decimals = 3 ) ###################################### #### for the 2nd quantum circuit #### # create the 2nd quantum circuit, # with a quantum register of 2 qubits qc_2 = QuantumCircuit(2) # apply the CY gate on the 1st qubit # as control and on the 2nd qubit as target, # both on the quantum register of # the 2nd quantum circuit created before qc_2.cy( 0, 1) # execute the quantum simulation of # the 2nd quantum circuit created before, # and retrieve the respective job job = execute( qc_2, backend, shots=10000 ) # retrieve the result obtained # from the quantum simulation of # the 2nd quantum circuit created before result = job.result() # retrieve the unitary operator from the results # obtained from the quantum simulation of # the 2nd quantum circuit created before qc_2_unitary = result.get_unitary( qc_2, decimals = 3 ) # if the two quantum circuits are # represented by the same unitary operator if( qc_1_unitary == qc_2_unitary ): # print an informative success message, # in the case that the two quantum circuits # are represented by the same unitary operator print( "The two quantum circuits are represented by " "the same unitary operator!" ) # build your code here answer13 = [3] # run this cell to submit your answer # import the grader for the exercise 13 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex13 # expected result type: List grade_badge1_ex13(answer13) # build your code here answer14 = [3] # run this cell to submit your answer # import the grader for the exercise 14 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex14 # expected result type: List grade_badge1_ex14(answer14) # build your code here answer15 = [4] # run this cell to submit your answer # import the grader for the exercise 15 of the lab/badge 1 from qc_grader.challenges.quantum_explorers23 import grade_badge1_ex15 # expected result type: List grade_badge1_ex15(answer15) # run this cell to check whether you have passed # import the grader for the badge 1 of # the IBM Qiskit's Quantum Explorers 2023-2024 from qc_grader.challenges.quantum_explorers23 import grade_badge1_score # grade the score of the quiz of the lab for the badge 1 grade_badge1_score("en")
https://github.com/rubenandrebarreiro/ibm-qiskit-quantum-explorers-2023-2024
rubenandrebarreiro
# build your code here password = "Experiment%" # submit your answer using following code # import the grader for the badge 3 of # the IBM Qiskit's Quantum Explorers 2023-2024 from qc_grader.challenges.quantum_explorers23 import grade_badge3_ex1 # expected result type: string grade_badge3_ex1(password)
https://github.com/rubenandrebarreiro/ibm-qiskit-quantum-explorers-2023-2024
rubenandrebarreiro
# build your code here answer1 = [3] # run this cell to submit your answer # import the grader for the exercise 1 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex1 # expected result type: List grade_badge4_ex1(answer1) # build your code here answer2 = [3] # run this cell to submit your answer # import the grader for the exercise 2 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex2 # expected result type: List grade_badge4_ex2(answer2) # build your code here answer3 = [1] # run this cell to submit your answer # import the grader for the exercise 3 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex3 # expected result type: List grade_badge4_ex3(answer3) # build your code here answer4 = [4] # run this cell to submit your answer # import the grader for the exercise 4 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex4 # expected result type: List grade_badge4_ex4(answer4) # build your code here answer5 = [2] # run this cell to submit your answer # import the grader for the exercise 5 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex5 # expected result type: List grade_badge4_ex5(answer5) # build your code here answer6 = [2] # run this cell to submit your answer # import the grader for the exercise 6 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex6 # expected result type: List grade_badge4_ex6(answer6) # build your code here answer7 = [4] # run this cell to submit your answer # import the grader for the exercise 7 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex7 # expected result type: List grade_badge4_ex7(answer7) # build your code here answer8 = [2] # run this cell to submit your answer # import the grader for the exercise 8 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex8 # expected result type: List grade_badge4_ex8(answer8) # build your code here answer9 = [3] # run this cell to submit your answer # import the grader for the exercise 9 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex9 # expected result type: List grade_badge4_ex9(answer9) # build your code here answer10 = [1] # run this cell to submit your answer # import the grader for the exercise 10 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex10 # expected result type: List grade_badge4_ex10(answer10) # build your code here answer11 = [1] # run this cell to submit your answer # import the grader for the exercise 11 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex11 # expected result type: List grade_badge4_ex11(answer11) # build your code here answer12 = [2] # run this cell to submit your answer # import the grader for the exercise 12 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex12 # expected result type: List grade_badge4_ex12(answer12) #### do not edit this code #### #### you will use this circuit #### #### for your code question #### # import the quantum circuit # from the IBM's Qiskit libtrary from qiskit import QuantumCircuit # create a quantum circuit with # a quantum register of two qubits qc = QuantumCircuit(2) # apply a Hadamard gate to the 1st # qubit on the quantum register of # the quantum circuit before qc.h(0) # apply a Pauli-X gate to the 2nd # qubit on the quantum register of # the quantum circuit before qc.x(1) # apply the CX/CNOT gate on the 1st qubit # as control and on the 2nd qubit as target, # both on the quantum register of the quantum circuit qc.cx(0, 1) # perform a meausrement of all # the qubits on the quantum register of # the Quantum Circuit created before qc.measure_all() # draw the Quantum Circuit created before qc.draw() # import the Qiskit Runtime Service, Session, Options, # and Sampler from the Qiksit's IBM Runtime module from qiskit_ibm_runtime import QiskitRuntimeService,\ Session, Options, Sampler # import the Fake Manila provider from # the Qiskit's Provider - Fake Provider module from qiskit.providers.fake_provider import FakeManila # import the Noise Model from # the Qiskit's Aer Noise module from qiskit_aer.noise import NoiseModel #### save the Qiskit Runtime account #### #### credentials if you have not done so already #### #### if you need to overwrite the account info, #### #### please add the `overwrite=True` option #### # perform the instruction call to save # the Qiskit Runtime account credentials #QiskitRuntimeService.save_account( channel="ibm_quantum", # token="my_token", overwrite=True) # create a Qiskit's Runtime Service object, # using the IBM Quantum channel service = QiskitRuntimeService( channel="ibm_quantum" ) # retrieve the IBM's QASM Simulator as the backend service # note: we will be using the QASM Simulator backend = service.get_backend( "ibmq_qasm_simulator" ) # print the existing information about # the IBM's QASM Simulator backend service print( backend ) # create a Fake Manila backend object # note: here, from a fake noisy backend, # we obtain the noise model, which we will apply to # the selected simulator backend from above fake_backend = FakeManila() # retrieve the noise model from # the noisy Fake Manila backend object noise_model = NoiseModel.from_backend( fake_backend ) # create the quantum simulation object # note: use this when defining the quantum simulator # in your options instances sim = { # define the noise model to use # in the quantum simulation "noise_model": noise_model, # define the seed to use # in the quantum simulation # note: do not change this value # doing so may result in # your answer being marked # as an incorrect one "seed_simulator": 42 } ########################################################### ####### build your code below ######### # create the options for the quantum simulation # configured with no error mitigation options = Options( simulator=sim, resilience_level=0, ) # create the options for the quantum simulation # configured with the M3 error mitigation options_with_m3 = Options( simulator=sim, resilience_level=1, ) # within the context of a Session configured # with the Qiskit's Runtime Service object, # created before, using the IBM Quantum channel, # and also using the backend defined before with Session( service=service, backend=backend ): # first, we will run the quntum simulation # configured with no error mitigation # create the Sampler object with # the Session context defined # and the relevant options sampler = Sampler( options=options ) # run the Sampler object with # a number of shots equal to 4000, # retrieving the resulting submitted # job for the quantum simulation job = sampler.run( qc, shots=4000 ) # retrieve the count results # from the submitted job of # the quantum simulation configured # with no error mitigation results_no_em = job.result() # retrieve a dictionary (not a list) of # the quasi-distribution probabilities # from the count results obtained for # the quantum simulation configured # with no error mitigation quasi_dist_no_em = results_no_em.quasi_dists[0] ######################################## # second, we will run the quantum simulation # configured with the M3 error mitigation # create the Sampler object with # the Session context defined # and the relevant options sampler = Sampler( options=options_with_m3 ) # run the Sampler object with # a number of shots equal to 4000, # retrieving the resulting submitted # job for the quantum simulation job = sampler.run( qc, shots=4000 ) # retrieve the count results # from the submitted job of # the quantum simulation configured # with the T-REX error mitigation, # as well as with the M3 Sampler results_with_m3 = job.result() # retrieve a dictionary (not a list) of # the quasi-distribution probabilities # from the count results obtained for # the quantum simulation configured # with the T-REX error mitigation, # as well as with the M3 Sampler quasi_dist_with_m3 = results_with_m3.quasi_dists[0] ####### build your code above ######### ########################################################### # print the quasi-distribution probabilities # from the count results obtained for # the quantum simulation configured # with no error mitigation print( "Quasi-distribution with No Error Mitigation: ", quasi_dist_no_em ) # print the quasi-distribution probabilities # from the count results obtained for # the quantum simulation configured # with the T-REX error mitigation, # as well as with the M3 Sampler print( "Quasi-distribution with Error Mitigation (M3): ", quasi_dist_with_m3 ) ########### cell to visualise your results ########### # import the statevector object from # the IBM's Qiskit Quantum Information module from qiskit.quantum_info import Statevector # import the plotting histogram function from # the IBM's Qiskit Visualization module from qiskit.visualization import plot_histogram ###################################################### #### get the probability distribution results #### # retrieve the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with no error mitigation applied binary_prob_dist_no_em = quasi_dist_no_em.binary_probabilities() # retrieve the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with T-REX error mitigation and M3 sampler applied binary_prob_dist_with_m3 = quasi_dist_with_m3.binary_probabilities() ###################################################### #### compute the theoretical results #### # remove all the final measurements on # all the quantum registers of the quantum circuit # created before for the quantum simulation qc.remove_final_measurements() # retrieve the theoretical measurement probabilities # from the statevector representing the quantum circuit # created before, without the measurements applied theory_probabilities = Statevector(qc).probabilities_dict() # create a copy of the theoretical measurement probabilities # from the statevector representing the quantum circuit # created before, without the measurements applied theory_probabilities_plot = theory_probabilities.copy() # create a list with all the possible binary strings # with 2 bits (i.e., a total of 4 possible different values) binary_strings_2_bits = [ bin( num )[2:].zfill(2) for num in range( 2**2 ) ] # for each possible binary string with 2 bits for binary_string_2_bits in binary_strings_2_bits: # if the current binary string with 2 bits is # not in the dictionary of the probability # distributions from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator if binary_string_2_bits not in theory_probabilities_plot: # add the missing binary string with 2 bits to # the dictionary of the probability # distributions from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator, with a negligible value theory_probabilities_plot[ binary_string_2_bits ] = 1e-8 # perform (again) all the final measurements on # all the quantum registers of the quantum circuit # created before for the quantum simulation qc.measure_all() ###################################################### #### plot all the probability distribution results #### # create the list of the captions for the legend of # the histogram for the probability distributions # from the quasi-distributions of the results obtained # from the execution of the quantum circuit created before, # without and with error mitigation, as well as # the theoretically expected results legends = [ "No Error Mitigation", "Error Mitigation Applied", "Theory" ] # plot the histogram for the probability distributions # from the quasi-distributions of the results obtained # from the execution of the quantum circuit created before, # without and with error mitigation, as well as # the theoretically expected results plot_histogram( [ binary_prob_dist_no_em, binary_prob_dist_with_m3, theory_probabilities_plot ], legend=legends ) # run this cell to submit your answer # import the grader for the coding exercise of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_code # expected result type: List answer_code = grade_badge4_code( [ results_no_em, results_with_m3 ], [ quasi_dist_no_em, quasi_dist_with_m3 ] ) #### run this cell to run your quantum circuit #### #### on a real quantum device #### # retrieve the least-busy backend # with a minimum number of two qubits # (this step can take a while) real_backend = service.least_busy( min_num_qubits=2, simulator=False ) # print the information about the best (i.e., the least-busy) # backend with a minimum number of two qubits, and an informative # message about the job submission on this backend print( "The best backend is " + real_backend.name ) print( "Submitting your job..." ) ########################################################### ####### add your answers from above ######### ####### before running the cell ######### # define the options for the quantum simulation # configured with no error mitigation options = Options( simulator=sim, resilience_level=0, ) # define the options for the quantum simulation # configured with the M3 error mitigation options_with_m3 = Options( simulator=sim, resilience_level=1, ) # within the context of a Session configured # with the Qiskit's Runtime Service object, # created before, using the IBM Quantum channel, # and also using the backend defined before with Session( service=service, backend=real_backend ): # first, we will run the quantum simulation # configured with no error mitigation # create the Sampler object with # the Session context defined # and the relevant options sampler = Sampler( options=options ) # run the Sampler object with # a number of shots equal to 4000, # retrieving the resulting submitted # job for the quantum simulation job = sampler.run( qc, shots=4000 ) # print the ID of the job submitted # for the quantum simulation configured # with no error mitigation # note: do not change this code print( f"Job ID: { job.job_id() }" ) # retrieve the count results # from the submitted job of # the quantum simulation configured # with no error mitigation results_no_em = job.result() # retrieve a dictionary (not a list) of # the quasi-distribution probabilities # from the count results obtained for # the quantum simulation configured # with no error mitigation quasi_dist_no_em = results_no_em.quasi_dists[0] ########################################### # second, we will run the quantum simulation # configured with the M3 error mitigation # create the Sampler object with # the Session context defined # and the relevant options sampler = Sampler( options=options_with_m3 ) # run the Sampler object with # a number of shots equal to 4000, # retrieving the resulting submitted # job for the quantum simulation job = sampler.run( qc, shots=4000 ) # print the ID of the job submitted # for the quantum simulation configured # with the T-REX error mitigation, # as well as with the M3 Sampler # note: do not change this code print( f"Job ID: { job.job_id() }" ) # retrieve the count results # from the submitted job of # the quantum simulation configured # with the T-REX error mitigation, # as well as with the M3 Sampler results_with_m3 = job.result() # retrieve a dictionary (not a list) of # the quasi-distribution probabilities # from the count results obtained for # the quantum simulation configured # with the T-REX error mitigation, # as well as with the M3 Sampler quasi_dist_with_m3 = results_with_m3.quasi_dists[0] ####### add your answers from above ######### ####### before running the cell ######### ########################################################### # run this cell to view the output histogram and # compare the two probability distributions obtained # retrieve the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with no error mitigation applied, # but now executed on a real quantum device binary_prob_dist_no_em = quasi_dist_no_em.binary_probabilities() # retrieve the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with T-REX error mitigation and M3 sampler applied, # but now executed on a real quantum device binary_prob_dist_with_m3 = quasi_dist_with_m3.binary_probabilities() # create a copy of the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with no error mitigation applied, # but now executed on a real quantum device binary_prob_dist_no_em_plot = binary_prob_dist_no_em.copy() # create a copy of the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with T-REX error mitigation and M3 sampler applied, # but now executed on a real quantum device binary_prob_dist_with_m3_plot = binary_prob_dist_with_m3.copy() # create a list with all the possible binary strings # with 2 bits (i.e., a total of 4 possible different values) binary_strings_2_bits = [ bin( num )[2:].zfill(2) for num in range( 2**2 ) ] # for each possible binary string with 2 bits for binary_string_2_bits in binary_strings_2_bits: # if the current binary string with 2 bits is # not in the dictionary of the probability # distributions from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with no error mitigation applied, # but now executed on a real quantum device if binary_string_2_bits not in binary_prob_dist_no_em_plot: # add the missing binary string with 2 bits to # the dictionary of the probability # distributions from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator, with a negligible value binary_prob_dist_no_em_plot[ binary_string_2_bits ] = 1e-8 # if the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with no error mitigation applied, # but now executed on a real quantum device, # is lower or equal to 0 (zero) elif binary_prob_dist_no_em_plot[ binary_string_2_bits ] <= 0: # flip the signal of the probability # distribution from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator, for a positive value binary_prob_dist_no_em_plot[ binary_string_2_bits ] *= -1 # for each possible binary string with 2 bits for binary_string_2_bits in binary_strings_2_bits: # if the current binary string with 2 bits is # not in the dictionary of the probability # distributions from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with T-REX error mitigation and M3 sampler applied, # but now executed on a real quantum device if binary_string_2_bits not in binary_prob_dist_with_m3_plot: # add the missing binary string with 2 bits to # the dictionary of the probability # distributions from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator, with a negligible value binary_prob_dist_with_m3_plot[ binary_string_2_bits ] = 1e-8 # if the probability distribution # from the quasi-distribution of # the results obtained from the execution of # the quantum circuit created before, # with T-REX error mitigation and M3 sampler applied, # but now executed on a real quantum device, # is lower or equal to 0 (zero) elif binary_prob_dist_with_m3_plot[ binary_string_2_bits ] <= 0: # flip the signal of the probability # distribution from the quasi-distributions of # the results obtained from the execution of # the quantum circuit created before, # using the simulator, for a positive value binary_prob_dist_with_m3_plot[ binary_string_2_bits ] *= -1 # create the list of the captions for the legend of # the histogram for the probability distributions # from the quasi-distributions of the results obtained # from the execution of the quantum circuit created before, # without and with error mitigation, as well as # the theoretically expected results, # but now executed on a real quantum device legend = [ "No Error Mitigation", "Error Mitigation Applied", "Theory" ] # plot the histogram for the probability distributions # from the quasi-distributions of the results obtained # from the execution of the quantum circuit created before, # without and with error mitigation, as well as # the theoretically expected results, # but now executed on a real quantum device plot_histogram( [ binary_prob_dist_no_em_plot, binary_prob_dist_with_m3_plot, theory_probabilities_plot ], legend=legend ) # build your code here answer13 = [3] # run this cell to submit your answer # import the grader for the exercise 13 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex13 # expected result type: List grade_badge4_ex13(answer13) # build your code here answer14 = [4] # run this cell to submit your answer # import the grader for the exercise 14 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex14 # expected result type: List grade_badge4_ex14(answer14) # build your code here answer15 = [2] # run this cell to submit your answer # import the grader for the exercise 15 of the lab/badge 4 from qc_grader.challenges.quantum_explorers23 import grade_badge4_ex15 # expected result type: List grade_badge4_ex15(answer15) # run this cell to check whether you have passed # import the grader for the badge 4 of # the IBM Qiskit's Quantum Explorers 2023-2024 from qc_grader.challenges.quantum_explorers23 import grade_badge4_score # grade the score of the quiz of the lab for the badge 4 grade_badge4_score("en")
https://github.com/rubenandrebarreiro/ibm-qiskit-quantum-explorers-2023-2024
rubenandrebarreiro
# build your code here answer1 = [1] # run this cell to submit your answer # import the grader for the exercise 1 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex1 # expected result type: List grade_badge5_ex1(answer1) # build your code here answer2 = [2] # run this cell to submit your answer # import the grader for the exercise 2 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex2 # expected result type: List grade_badge5_ex2(answer2) # build your code here answer3 = [4] # run this cell to submit your answer # import the grader for the exercise 3 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex3 # expected result type: List grade_badge5_ex3(answer3) # build your code here answer4 = [4] # run this cell to submit your answer # import the grader for the exercise 4 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex4 # expected result type: List grade_badge5_ex4(answer4) # build your code here answer5 = [3] # run this cell to submit your answer # import the grader for the exercise 5 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex5 # expected result type: List grade_badge5_ex5(answer5) # build your code here answer6 = [1] # run this cell to submit your answer # import the grader for the exercise 6 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex6 # expected result type: List grade_badge5_ex6(answer6) # build your code here answer7 = [1] # run this cell to submit your answer # import the grader for the exercise 7 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex7 # expected result type: List grade_badge5_ex7(answer7) # build your code here answer8 = [2] # run this cell to submit your answer # import the grader for the exercise 8 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex8 # expected result type: List grade_badge5_ex8(answer8) # build your code here answer9 = [1] # run this cell to submit your answer # import the grader for the exercise 9 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex9 # expected result type: List grade_badge5_ex9(answer9) # build your code here answer10 = [3] # run this cell to submit your answer # import the grader for the exercise 10 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex10 # expected result type: List grade_badge5_ex10(answer10) # build your code here answer11 = [1] # run this cell to submit your answer # import the grader for the exercise 11 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex11 # expected result type: List grade_badge5_ex11(answer11) # build your code here answer12 = [4] # run this cell to submit your answer # import the grader for the exercise 12 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex12 # expected result type: List grade_badge5_ex12(answer12) # import the NumPy library with 'np' alias import numpy as np # import the Quantum Support Vector Classifier (QSVC) from # the Qiskit's Machine Learning - Algorithms module from qiskit_machine_learning.algorithms import QSVC # define the features X of the initial training dataset x_train = np.array([ [1.25663706, 5.02654825, 3.76991118], [3.76991118, 0. , 0.62831853], [4.08407045, 3.76991118, 1.88495559], [0.62831853, 2.82743339, 2.51327412], [0.9424778 , 5.96902604, 5.02654825], [5.02654825, 2.51327412, 0.31415927], [5.34070751, 0.62831853, 3.45575192], [0.31415927, 3.45575192, 3.76991118], [1.25663706, 4.39822972, 5.96902604], [3.76991118, 1.25663706, 2.82743339], [3.14159265, 5.34070751, 1.88495559], [3.45575192, 0.31415927, 1.57079633], [1.57079633, 0. , 5.96902604], [4.08407045, 3.14159265, 0. ], [1.57079633, 4.39822972, 0.9424778 ], [0. , 1.57079633, 0.31415927], [5.02654825, 2.82743339, 4.71238898], [2.51327412, 0.62831853, 0.62831853], [3.14159265, 5.34070751, 1.88495559], [5.65486678, 4.71238898, 4.08407045], [0. , 2.19911486, 3.45575192], [0.62831853, 0.31415927, 3.45575192], [5.65486678, 2.51327412, 5.65486678], [2.19911486, 0.62831853, 5.02654825], [5.34070751, 3.45575192, 4.39822972], [4.08407045, 2.51327412, 4.08407045], [0.62831853, 5.65486678, 4.08407045], [5.96902604, 4.39822972, 0.62831853], [5.96902604, 4.39822972, 5.96902604], [0. , 5.96902604, 4.08407045] ]) # define the labels Y of the initial training dataset y_train = np.array([ 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0 ]) # compute the size of metric to # split the initial training dataset into # a final training set and a final test set, # where 80% of the data will be used for training, # and 20% of the data will be used for testing train_size = int( 0.8 * len(x_train) ) # split the initial training dataset # into a final training set, # for the data features X x_train_split = x_train[:train_size] # split the initial training dataset # into a final training set, # for the data labels Y y_train_split = y_train[:train_size] # split the initial training dataset # into a final testing set, # for the data features X x_test = x_train[train_size:] # split the initial training dataset # into a final testing set, # for the data labels Y y_test = y_train[train_size:] ####### build your code below ######### # import the Z Feature Map from # the Qiskit's Circuit Library module from qiskit.circuit.library import ZFeatureMap # import the Sampler from # the Qiskit's Primitives module from qiskit.primitives import Sampler # import the Compute-Uncompute method from # the Qiskit's Algorithms - State Fidelities module from qiskit.algorithms.state_fidelities import ComputeUncompute # import the Fidelity Quantum Kernel from # the Qiskit's Machine Learning - Kernels module from qiskit_machine_learning.kernels import FidelityQuantumKernel # compute the number of features X of # the samples present in the final training set num_features = x_train_split.shape[1] # define the number of repetitions of # the quantum circuits for the Z Feature Map num_repetitions = 1 # create a Z Feature Map for the number of # features X and number of repetitions defined before, # to be used for the creation of the Quantum Kernel feature_map = ZFeatureMap( feature_dimension=num_features, reps=num_repetitions ) # create the Sampler object # for the Compute-Uncompute method sampler = Sampler() # create the Fidelity object object # with the Sampler object defined before fidelity = ComputeUncompute( sampler=sampler ) # create the Fidelity Quantum Kernel object # with the Fidelity and the Z Feature Map defined before quantum_kernel = FidelityQuantumKernel( fidelity=fidelity, feature_map=feature_map ) # create the Quantum Support Vector Classifier (QSVC) # with the Fidelity Quantum Kernel defined before qsvc = QSVC( quantum_kernel=quantum_kernel ) # fit the data features X and data labels Y of # the final training dataset into the previously # created Quantum Support Vector Classifier (QSVC) qsvc.fit( x_train_split, y_train_split ) ####### build your code above ######### # evaluate the performance score of # the quantum learning model of # the Quantum Support Vector Classifier (QSVC) # note: you need achieve a score higher # than 0.8 to pass the code question qsvc_score = qsvc.score(x_test, y_test) # print the performance score of # the quantum learning model of # the Quantum Support Vector Classifier (QSVC) print(f"QSVC classification test score: {qsvc_score} ( { ( round( qsvc_score * 100 , 2 ) ) }% )") # run this cell to submit your answer # import the grader for the coding exercise of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_code # expected result type: QSVC answer_code = grade_badge5_code(qsvc) # import the Qiskit Runtime Service # from the Qiksit's IBM Runtime module from qiskit_ibm_runtime import QiskitRuntimeService # create a Qiskit's Runtime Service object, # using the IBM Quantum channel service = QiskitRuntimeService( channel="ibm_quantum" ) # compute the number of features X of # the samples present in the final training set num_features = x_train_split.shape[1] # retrieve the least-busy backend # with a minimum number of two qubits # (this step can take a while) real_backend = service.least_busy( min_num_qubits=num_features, simulator=False ) # print the information about the best (i.e., the least-busy) # backend with a minimum number of two qubits, and an informative # message about the job submission on this backend print( "The best backend is " + real_backend.name + "!" ) # import the ZZ Feature Map from # the Qiskit's Circuit Library module from qiskit.circuit.library import ZZFeatureMap # import the Quantum Support Vector Classifier (QSVC) from # the Qiskit's Machine Learning - Algorithms module from qiskit_machine_learning.algorithms import QSVC # import the Session from # the Qiksit's IBM Runtime module from qiskit_ibm_runtime import Session # import the Sampler from # the Qiskit's Primitives module from qiskit.primitives import Sampler # import the Compute-Uncompute method from # the Qiskit's Algorithms - State Fidelities module from qiskit.algorithms.state_fidelities import ComputeUncompute # import the Fidelity Quantum Kernel from # the Qiskit's Machine Learning - Kernels module from qiskit_machine_learning.kernels import FidelityQuantumKernel # compute the number of features X of # the samples present in the final training set num_features = x_train_split.shape[1] # create a ZZ Feature Map for # the number of features X defined before, # to be used for the creation of the Quantum Kernel fm = feature_map = ZZFeatureMap( num_features ) # within the context of a Session configured # with the Qiskit's Runtime Service object, # created before, using the IBM Quantum channel, # and also using the backend defined before with Session( service=service, backend=real_backend ) as session: # create the Sampler object # for the Compute-Uncompute method sampler = Sampler() # create the Fidelity object, # using the Compute-Uncompute method # applied on the Sampler object defined before fidelity = ComputeUncompute( sampler ) # create the Fidelity Quantum Kernel object # with the Fidelity and the ZZ Feature Map defined before quantum_kernel = FidelityQuantumKernel( feature_map=fm, fidelity=fidelity ) # create the Quantum Support Vector Classifier (QSVC) # with the Fidelity Quantum Kernel defined before qsvc = QSVC( quantum_kernel=quantum_kernel ) ###### add your answers from above before running the cell ####### # fit the data features X and data labels Y of # the final training dataset into the previously # created Quantum Support Vector Classifier (QSVC) qsvc.fit( x_train_split, y_train_split ) # evaluate the performance score of # the quantum learning model of # the Quantum Support Vector Classifier (QSVC) qsvc_score = qsvc.score(x_test, y_test) # print the performance score of # the quantum learning model of # the Quantum Support Vector Classifier (QSVC) print(f"QSVC classification test score: {qsvc_score} ( { ( round( qsvc_score * 100 , 2 ) ) }% )") # build your code here answer13 = [4] # run this cell to submit your answer # import the grader for the exercise 13 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex13 # expected result type: List grade_badge5_ex13(answer13) # build your code here answer14 = [3] # run this cell to submit your answer # import the grader for the exercise 14 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex14 # expected result type: List grade_badge5_ex14(answer14) # build your code here answer15 = [2] # run this cell to submit your answer # import the grader for the exercise 15 of the lab/badge 5 from qc_grader.challenges.quantum_explorers23 import grade_badge5_ex15 # expected result type: List grade_badge5_ex15(answer15) # run this cell to check whether you have passed # import the grader for the badge 5 of # the IBM Qiskit's Quantum Explorers 2023-2024 from qc_grader.challenges.quantum_explorers23 import grade_badge5_score # grade the score of the quiz of the lab for the badge 5 grade_badge5_score("en")
https://github.com/rubenandrebarreiro/ibm-qiskit-quantum-explorers-2023-2024
rubenandrebarreiro
# update/upgrade Python's pip module !pip install --upgrade pip -q # install the IBM Qiskit's Machine Learning and Optimization modules !pip install qiskit_machine_learning qiskit_optimization -q # build your code here answer1 = [2] # run this cell to submit your answer # import the grader for the exercise 1 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex1 # expected result type: List grade_badge6_ex1(answer1) # build your code here answer2 = [4] # run this cell to submit your answer # import the grader for the exercise 2 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex2 # expected result type: List grade_badge6_ex2(answer2) # build your code here answer3 = [3] # run this cell to submit your answer # import the grader for the exercise 3 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex3 # expected result type: List grade_badge6_ex3(answer3) # build your code here answer4 = [2] # run this cell to submit your answer # import the grader for the exercise 4 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex4 # expected result type: List grade_badge6_ex4(answer4) # build your code here answer5 = [3] # run this cell to submit your answer # import the grader for the exercise 5 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex5 # expected result type: List grade_badge6_ex5(answer5) # build your code here answer6 = [1] # run this cell to submit your answer # import the grader for the exercise 6 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex6 # expected result type: List grade_badge6_ex6(answer6) # build your code here answer7 = [2] # run this cell to submit your answer # import the grader for the exercise 7 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex7 # expected result type: list grade_badge6_ex7(answer7) # build your code here answer8 = [1] # run this cell to submit your answer # import the grader for the exercise 8 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex8 # expected result type: List grade_badge6_ex8(answer8) # build your code here answer9 = [3] # run this cell to submit your answer # import the grader for the exercise 9 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex9 # expected result type: List grade_badge6_ex9(answer9) # build your code here answer10 = [2] # run this cell to submit your answer # import the grader for the exercise 10 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex10 # expected result type: List grade_badge6_ex10(answer10) # build your code here answer11 = [3] # run this cell to submit your answer # import the grader for the exercise 11 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex11 # expected result type: List grade_badge6_ex11(answer11) # build your code here answer12 = [4] # run this cell to submit your answer # import the grader for the exercise 12 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex12 # expected result type: List grade_badge6_ex12(answer12) # cod block for the definition of helper functions # to draw and visualize graph solution # import the PyPlot module from the Matplot Library import matplotlib.pyplot as plt # import the NetworkX Library import networkx as nx # definition of a helper function to draw the graph, # using the NetworkX library's functionalities def draw_graph(G, colors, pos): # retrieve the default axes of the plotting object with a frame-on default_axes = plt.axes(frameon = True) # draw a network representing the graph, with the respective nodes and edges nx.draw_networkx(G, node_color = colors, node_size = 600, alpha = 0.8, ax = default_axes, pos = pos, node_shape = "o") # retrieve the weight labels of the edges of the graph edge_labels = nx.get_edge_attributes(G, "weight") # draw the weight labels of the edges to the resulting graph network nx.draw_networkx_edge_labels(G, pos = pos, edge_labels = edge_labels) # definition of a helper function to draw the solution of # the Traveling Salesman Problem (TSP), in the respective graph representation def draw_tsp_solution(G, order, colors, pos): # convert the structure of the initial given # undirected graph to a directed graph G2 = nx.DiGraph() # add the nodes from the initial given # undirected graph to the created directed graph G2.add_nodes_from(G) # retrieves the number of edges of the directed graph representation n = len(order) # for any edge for the directed graph representing the solution # for the given Traveling Salesman Problem (TSP) for i in range(n): # retrieve the destination node for the current directed edge j = (i + 1) % n # add the current directed edge to # the directed graph representing the solution # for the given Traveling Salesman Problem (TSP) G2.add_edge(order[i], order[j], weight = G[order[i]][order[j]]["weight"]) # retrieve the default axes of the plotting object with a frame-on default_axes = plt.axes(frameon = True) # draw a network representing the new directed graph, # with the respective nodes and edges, representing # the solution for the given Traveling Salesman Problem (TSP) nx.draw_networkx(G2, node_color = colors, edge_color = "b", node_size = 600, alpha = 0.8, ax = default_axes, pos = pos) # retrieve the weight labels of the edges of the new directed graph, # representing the solution for the given Traveling Salesman Problem (TSP) edge_labels = nx.get_edge_attributes(G2, "weight") # draw the weight labels of the edges to the resulting new directed graph network, # representing the solution for the given Traveling Salesman Problem (TSP) nx.draw_networkx_edge_labels(G2, pos, font_color = "b", edge_labels = edge_labels) # import the Traveling Salesman Problem (TSP) from # the IBM Qiskit's Optimization Application module from qiskit_optimization.applications import Tsp # create a random instance of the Traveling Salesman Problem (TSP), # with 4 nodes and a fixed pseudo-random seed tsp = Tsp.create_random_instance(4, seed=43) # retrieve the adjoint matrix for the graph representation of # the instance of the Traveling Salesman Problem (TSP) previously created adj_matrix = nx.to_numpy_array(tsp.graph) # print the adjoint matrix for the graph representation of # the instance of the Traveling Salesman Problem (TSP) previously created, # as the distances (edges' weigths) between the respective nodes print("Distances:\n", adj_matrix) # set the color of the nodes of # the instance of the Traveling Salesman Problem (TSP) # previously created, with the red color colors = ["r"] * len(tsp.graph.nodes) # retrieve the positions of the nodes of # the instance of the Traveling Salesman Problem (TSP) pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] # draw the graph representation of # the instance of the Traveling Salesman Problem (TSP), # using the NetworkX library's functionalities draw_graph(tsp.graph, colors, pos) # import the Quandratic Program to # Quadratic Unconstrained Binary Optimization (QUBO) converter, # from the IBM Qiskit's Optimization Convertes module from qiskit_optimization.converters import QuadraticProgramToQubo # convert the original optimization formulation of # the Traveling Salesman Problem (TSP) created before, # to a Quadratic Program, to solve it using a quantum computer qp = tsp.to_quadratic_program() # initialize the Quandratic Program to # Quadratic Unconstrained Binary Optimization (QUBO) converter qp2qubo = QuadraticProgramToQubo() # convert the Quadratic Program formulation of # the Traveling Salesman Problem (TSP) created before, # to a Quadratic Unconstrained Binary Optimization (QUBO) Program, # to solve it using a quantum computer qubo = qp2qubo.convert(qp) # convert the Quadratic Unconstrained Binary Optimization (QUBO) # formulation of the Traveling Salesman Problem (TSP) created before, # to an Ising Hamiltonian, to solve it using a quantum computer, # retrieving the respective qubit operations qubitOp, offset = qubo.to_ising() # import the Sampling Variational Quantum Eigensolver (VQE) algorithm # from the IBM Qiskit's Minimum Eigesolvers Algorithms module from qiskit.algorithms.minimum_eigensolvers import SamplingVQE # import the Nakanishi-Fujii-Todo (NFT) Optimizer # from the IBM Qiskit's Optimizers Algorithms module from qiskit.algorithms.optimizers import NFT # import the parametrized two-local quantum circuits # from the IBM Qiskit's Circuit Library module from qiskit.circuit.library import TwoLocal # import the Aer Sample from # the IBM Qiskit's Aer Primitives module from qiskit_aer.primitives import Sampler as AerSampler # import the Algorithm's Global Parameters from # the IBM Qiskit's Utilities module from qiskit.utils import algorithm_globals # set a fixed pseudo-random seed # as an Algorithm's Global Parameter algorithm_globals.random_seed = 123 # create a Nakanishi-Fujii-Todo (NFT) Optimizer instance, # with a maximum number of 100 iterations optimizer = NFT(maxiter=100) # create a Parametrized Two-Local Ansatz Quantum Circuit, # for the parametrized y-axis rotations for the qubits, # aiming a linear quantum entanglement ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps = 2, entanglement = "linear") ####### build your code below ######### # build a Variational Quantum Eigensolver (VQE) algorithm instance, # with the respective Aer Sample, Parametrized Two-Local Ansatz # Quantum Circuit, and Nakanishi-Fujii-Todo (NFT) Optimizer, # to solve the Traveling Salesman Problem (TSP) created before vqe = SamplingVQE(sampler=AerSampler(), ansatz=ry, optimizer=optimizer) ####### build your code above ######### # compute the minimum eigenvalue for # the Variational Quantum Eigensolver (VQE) algorithm instance # created before to solve the Traveling Salesman Problem (TSP) # created before, using the Qubit Operations retrieved before result = vqe.compute_minimum_eigenvalue(qubitOp) # print the energy values from minimum eigenvalue computed before # from Variational Quantum Eigensolver (VQE) algorithm instance # that solved the Traveling Salesman Problem (TSP) print("Energy:", result.eigenvalue.real) # print the elepsed time to compute minimum eigenvalue # from Variational Quantum Eigensolver (VQE) algorithm instance # that solved the Traveling Salesman Problem (TSP) print("Elapsed Time (secs):", result.optimizer_time) # retrieve the most likely saple from the eigenstate # from the minimum eigenvalue computed before # from Variational Quantum Eigensolver (VQE) algorithm instance # that solved the Traveling Salesman Problem (TSP), # as one the possible solutions for it x = tsp.sample_most_likely(result.eigenstate) # retrieve the boolean flag with respect to # the fact that the solution achieved is feasible # for the Quadratic Unconstrained Binary Optimization (QUBO) Program # formulating the pretended Traveling Salesman Problem (TSP) print("Feasible:", qubo.is_feasible(x)) # retrieves (and interprets) the solution result as a list of # nodes' indices corresponding to the real solution # for the pretended Traveling Salesman Problem (TSP) z = tsp.interpret(x) # print the list of nodes' indices # corresponding to the real solution (nodes' sequence) # for the pretended Traveling Salesman Problem (TSP) print("Solution:", z) # print solution to the objective function # corresponding to the real solution (nodes' sequence) # for the pretended Traveling Salesman Problem (TSP) print("Solution Objective:", tsp.tsp_value(z, adj_matrix)) # draw the solution of the pretended Traveling Salesman Problem (TSP) # solution, in the respective graph representation draw_tsp_solution(tsp.graph, z, colors, pos) # run this cell to submit your answer # import the grader for the coding exercise of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_code # expected result type: ( tsp: Tsp, qubo: QuadraticProgram, # result: SamplingVQEResult ) grade_badge6_code(tsp, qubo, result) # import the Qiskit Runtime Service, Session, and Sampler, # from the Qiksit's IBM Runtime module from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler # create a Qiskit's Runtime Service object, # using the IBM Quantum channel service = QiskitRuntimeService( channel="ibm_quantum" ) # retrieve the least-busy backend # with a minimum number of qubits # corresponding to the number of qubits # required for the retrieved Qubit Operations # (this step can take a while) real_backend = service.least_busy( min_num_qubits=qubitOp.num_qubits, simulator=False ) # print the information about the best (i.e., the least-busy) # backend with a minimum number of two qubits, and an informative # message about the job submission on this backend print(f"The least busy backend is {real_backend.name}!") # within the context of a Session configured # with the Qiskit's Runtime Service object, # created before, using the IBM Quantum channel, # and also using the backend defined before # with Session( service=service, backend=real_backend ) as session: ###### add your answers from the above code cell here ####### ###### before running this code cell itself ####### # build a Variational Quantum Eigensolver (VQE) algorithm instance, # with the respective Aer Sample, Parametrized Two-Local Ansatz # Quantum Circuit, and Nakanishi-Fujii-Todo (NFT) Optimizer, # to solve the Traveling Salesman Problem (TSP) created before #vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # compute the minimum eigenvalue for # the Variational Quantum Eigensolver (VQE) algorithm instance # created before to solve the Traveling Salesman Problem (TSP) # created before, using the Qubit Operations retrieved before #result = vqe.compute_minimum_eigenvalue(qubitOp) # compute the minimum eigenvalue for # the Variational Quantum Eigensolver (VQE) algorithm instance # created before to solve the Traveling Salesman Problem (TSP) # created before, using the Qubit Operations retrieved before #result = vqe.compute_minimum_eigenvalue(qubitOp) # print the energy values from minimum eigenvalue computed before # from Variational Quantum Eigensolver (VQE) algorithm instance # that solved the Traveling Salesman Problem (TSP) #print("Energy:", result.eigenvalue.real) # print the elepsed time to compute minimum eigenvalue # from Variational Quantum Eigensolver (VQE) algorithm instance # that solved the Traveling Salesman Problem (TSP) #print("Elapsed Time (secs):", result.optimizer_time) # retrieve the most likely saple from the eigenstate # from the minimum eigenvalue computed before # from Variational Quantum Eigensolver (VQE) algorithm instance # that solved the Traveling Salesman Problem (TSP), # as one the possible solutions for it #x = tsp.sample_most_likely(result.eigenstate) # retrieve the boolean flag with respect to # the fact that the solution achieved is feasible # for the Quadratic Unconstrained Binary Optimization (QUBO) Program # formulating the pretended Traveling Salesman Problem (TSP) #print("Feasible:", qubo.is_feasible(x)) # retrieves (and interprets) the solution result as a list of # nodes' indices corresponding to the real solution # for the pretended Traveling Salesman Problem (TSP) #z = tsp.interpret(x) # print the list of nodes' indices # corresponding to the real solution (nodes' sequence) # for the pretended Traveling Salesman Problem (TSP) #print("Solution:", z) # print solution to the objective function # corresponding to the real solution (nodes' sequence) # for the pretended Traveling Salesman Problem (TSP) #print("Solution Objective:", tsp.tsp_value(z, adj_matrix)) # draw the solution of the pretended Traveling Salesman Problem (TSP) # solution, in the respective graph representation #draw_tsp_solution(tsp.graph, z, colors, pos) # build your code here answer13 = [1] # run this cell to submit your answer # import the grader for the exercise 13 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex13 # expected result type: List grade_badge6_ex13(answer13) # build your code here answer14 = [1] # run this cell to submit your answer # import the grader for the exercise 14 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex14 # expected result type: List grade_badge6_ex14(answer14) # build your code here answer15 = [4] # run this cell to submit your answer # import the grader for the exercise 15 of the lab/badge 6 from qc_grader.challenges.quantum_explorers23 import grade_badge6_ex15 # expected result type: List grade_badge6_ex15(answer15) # run this cell to check whether you have passed # import the grader for the badge 6 of # the IBM Qiskit's Quantum Explorers 2023-2024 from qc_grader.challenges.quantum_explorers23 import grade_badge6_score # grade the score of the quiz of the lab for the badge 6 grade_badge6_score("en")
https://github.com/derivation/quantum_image_edge_detection
derivation
import numpy as np from numpy import pi import matplotlib.pyplot as plt import matplotlib.image as mpimg filename = './schrodin_yang.png' im = mpimg.imread(filename) fig, ax = plt.subplots() ax.imshow(im) from skimage.transform import resize n_pixels = 2**5 im = resize(im, (n_pixels, n_pixels)) fig, ax = plt.subplots() ax.imshow(im) data = im[:,:,0].ravel() from qiskit_aqua.components.initial_states import Custom n_qubits = np.int_(np.log2(len(data))) init_state = Custom(n_qubits, state_vector=data) circ = init_state.construct_circuit('circuit') qr = circ.qregs from copy import deepcopy circ_init = deepcopy(circ) circ.h(qr[0][0]) from qiskit import BasicAer, execute simulator = BasicAer.get_backend('statevector_simulator') result = execute(circ, simulator).result() final_state_vector = result.get_statevector(circ) edge_even = np.real(final_state_vector) n_rows = int(np.sqrt(len(edge_even))) edge_even = edge_even.reshape(n_rows, -1) edge_even[:,::2] = 0 fig, ax = plt.subplots(1,2) ax[0].imshow(edge_even) ax[1].imshow(im) def qft(c, q, n): """n-qubit QFT on q in c.""" for j in range(n): for k in range(j): c.cu1(pi/float(2**(j-k)), q[j], q[k]) c.h(q[j]) def iqft(c, q, n): """n-qubit IQFT on q in c.""" for j in range(n): for k in range(j): c.cu1(-pi/float(2**(j-k)), q[int(n-j-1)], q[int(n-k-1)]) c.h(q[int(n-j-1)]) def shiftBases(c, q, n, p): """Shift the register q by p positions""" iqft(c,q,n) for k in range(n): c.u1(-p*2*pi/float(2**(n-k)), q[int(n-k-1)]) qft(c,q,n) from qiskit import QuantumRegister, QuantumCircuit n = 2 q = QuantumRegister(n,'q') c = QuantumCircuit(q) iqft(c,q,n) shiftBases(c,q,n,1) qft(c,q,n) c.draw(output='mpl') circ = deepcopy(circ_init) qr = circ.qregs shiftBases(circ,qr[0],n_qubits,1) circ.h(qr[0][0]) shiftBases(circ,qr[0],n_qubits,-1) simulator = BasicAer.get_backend('statevector_simulator') result = execute(circ, simulator).result() final_state_vector = result.get_statevector(circ) edge_odd = np.real(final_state_vector) n_rows = np.int_(np.sqrt(len(edge_odd))) edge_odd = edge_odd.reshape(n_rows, -1) edge_odd[:,1::2] = 0 fig, ax = plt.subplots(1,2) ax[0].imshow(edge_odd) ax[1].imshow(im) edge = edge_even + edge_odd fig, ax = plt.subplots(1,2) ax[0].imshow(edge) ax[1].imshow(im)
https://github.com/derivation/quantum_image_edge_detection
derivation
import numpy as np from numpy import pi import matplotlib.pyplot as plt import matplotlib.image as mpimg from skimage.transform import resize filename = './schrodin_yang.png' im = mpimg.imread(filename) n_pixels = 2**5 im = resize(im, (n_pixels, n_pixels)) data = im[:,:,0].ravel() fig, ax = plt.subplots() ax.imshow(im) n_qubits = int(np.log2(len(data))) from qiskit_aqua.components.initial_states import Custom init_state = Custom(n_qubits, state_vector=data) circ = init_state.construct_circuit('circuit') qr = circ.qregs # circ.draw() circ.h(qr[0][0]) from qiskit import BasicAer, execute simulator = BasicAer.get_backend('statevector_simulator') sim_result = execute(circ, simulator).result() final_state = sim_result.get_statevector(circ) edge = np.real(final_state) n_rows = int(np.sqrt(len(edge))) n_cols = n_rows edge = edge.reshape(n_rows, n_cols) edge[:,::2] = 0 fig, ax = plt.subplots(1,2) ax[0].imshow(edge) ax[1].imshow(im)
https://github.com/derivation/quantum_image_edge_detection
derivation
# import_demo_tools.py import numpy as np from numpy import pi import matplotlib.pyplot as plt from qiskit_aqua.components.initial_states import Custom from qiskit import BasicAer, execute
https://github.com/derivation/quantum_image_edge_detection
derivation
import numpy as np from numpy import pi import matplotlib.pyplot as plt import matplotlib.image as mpimg from skimage.transform import resize filename = './schrodin_yang.png' im = mpimg.imread(filename) n_pixels = 2**5 im = resize(im, (n_pixels, n_pixels)) data = im[:,:,0].ravel() fig, ax = plt.subplots() ax.imshow(im) n_qubits = int(np.log2(len(data))) from qiskit_aqua.components.initial_states import Custom init_state = Custom(n_qubits, state_vector=data) circ = init_state.construct_circuit('circuit') qr = circ.qregs # circ.draw() circ.h(qr[0][0]) from qiskit import BasicAer, execute simulator = BasicAer.get_backend('statevector_simulator') sim_result = execute(circ, simulator).result() final_state = sim_result.get_statevector(circ) edge = np.real(final_state) n_rows = int(np.sqrt(len(edge))) n_cols = n_rows edge = edge.reshape(n_rows, n_cols) edge[:,::2] = 0 fig, ax = plt.subplots(1,2) ax[0].imshow(edge) ax[1].imshow(im)
https://github.com/qiskit-fall-fest-hackathon-france/qiskit-fall-fest-hackathon-france
qiskit-fall-fest-hackathon-france
import qiskit qiskit.__qiskit_version__ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr,cr) qc.draw() qc.h(qr[0]) qc.draw() qc = QuantumCircuit(qr,cr) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr,cr) qc.draw() from qiskit import execute from qiskit import Aer print(Aer.backends()) #, nicer printout below: backend_list = Aer.backends() for be in backend_list: print(be) backend = Aer.get_backend('qasm_simulator') job = execute(qc,backend,shots=100000) print(job) my_results = job.result() print(my_results) print(my_results.get_counts()) # with shots=1, you will get a count of 1 either on 00 or on 11 job = execute(qc,backend, shots=111) my_results = job.result() print(my_results.get_counts(qc)) from qiskit.tools.visualization import plot_histogram plot_histogram(my_results.get_counts(qc)) qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr,cr) qc.x(qr[0]) qc.id(qr[1]) qc.measure(qr,cr) qc.draw() # with shots=1, you will get a count of 1 either on 00 or on 11 job = execute(qc,backend, shots=1024) my_results = job.result() print(my_results.get_counts(qc)) from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr,cr) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr,cr) qc.draw(output='latex') # how to use the machines and simulator in the cloud from qiskit import IBMQ MY_API_TOKEN= 'e5f5ed26c560465a044adb6bbbad67743cd41365ff700fe7ab7104ef83518ccff6b28b4b52ecd827de2df397aba6a6e8eb88cc154842ab203f1aadfbdff3f024' IBMQ.save_account(MY_API_TOKEN, overwrite=True) IBMQ.load_account() sp = IBMQ.get_provider(hub='ibm-q') # list backends available for this provider print(sp.backends()) sp = IBMQ.get_provider(hub='ibm-q') # selected provider backends_set = set() for b in selected_provider.backends(): backends_set.add(str(b)) print("backend name queue qubits operational status message") print("------------------------------- ----- ------ ----------- --------------") for b in backends_set: be = sp.get_backend(b) pj = be.status().pending_jobs qb = be.configuration().n_qubits op = be.status().operational sm = be.status().status_msg print(f"{b:32} {pj:4} {qb:6}{op:12} {sm:6}") print("------------------------------ ----- ------ ----------- --------------") backend = selected_provider.get_backend('simulator_statevector') # IBMQ for access to online devices and helps manage your IBM Q account data from your workstation. from qiskit import IBMQ MY_API_TOKEN= 'e5f5ed26c560465a044adb6bbbad67743cd41365ff700fe7ab7104ef83518ccff6b28b4b52ecd827de2df397aba6a6e8eb88cc154842ab203f1aadfbdff3f024' IBMQ.save_account(MY_API_TOKEN, overwrite=True) IBMQ.load_account() # choose one available provider selected_provider = IBMQ.get_provider(hub='ibm-q') # list backends available for this provider selected_provider.backends() # small program to get backends configs and status # using least_busy() is more straightforward, this is to show # how we get info from the provider's backends sp = IBMQ.get_provider(hub='ibm-q') # selected provider backends_set = set() for b in selected_provider.backends(): backends_set.add(str(b)) print("backend name queue qubits operational status message") print("------------------------------- ----- ------ ----------- --------------") for b in backends_set: be = sp.get_backend(b) pj = be.status().pending_jobs qb = be.configuration().n_qubits op = be.status().operational sm = be.status().status_msg print(f"{b:32} {pj:4} {qb:6}{op:12} {sm:6}") print("------------------------------ ----- ------ ----------- --------------") backend = sp.get_backend('ibmq_belem') backend.name() # we want more than 1 qubit (we need 2), on an operationnal backend which is not a simulator from qiskit.providers.ibmq import least_busy backend = least_busy(sp.backends(filters = lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational == True)) print("least busy backend: ", backend) # execution from qiskit.tools.monitor import job_monitor job = execute(qc,backend) print(job.job_id()) job_monitor(job) res = job.result() from qiskit.tools.visualization import plot_histogram d = (res.get_counts(qc)) d plot_histogram(d) import numpy as np from qiskit import Aer, QuantumCircuit, execute from qiskit.visualization import plot_histogram, plot_state_qsphere from qiskit.quantum_info import Statevector from IPython.display import display, Math, Latex # 1 def create_circuit(): qc = QuantumCircuit(1) # # FILL YOUR CODE IN HERE # # return qc # check solution qc = create_circuit() sv = Statevector.from_label('0') sv = sv.evolve(qc) plot_state_qsphere(sv.data, show_state_labels=True, show_state_phases=True) # 2 def create_circuit(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # return qc qc = create_circuit() sv = Statevector.from_label('0') sv = sv.evolve(qc) plot_state_qsphere(sv.data, show_state_labels=True, show_state_phases=True) # 3 def create_circuit(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # return qc qc = create_circuit() sv = Statevector.from_label('0') sv = sv.evolve(qc) plot_state_qsphere(sv.data, show_state_labels=True, show_state_phases=True) # 4 def create_circuit(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE # # # return qc qc = create_circuit() sv = Statevector.from_label('0') sv = sv.evolve(qc) plot_state_qsphere(sv.data, show_state_labels=True, show_state_phases=True) # 5 def create_circuit(): qc = QuantumCircuit(2) # # # FILL YOUR CODE IN HERE qc.h(0) qc.cx(0,1) # return qc qc = create_circuit() sv = Statevector.from_label('00') sv = sv.evolve(qc) plot_state_qsphere(sv.data, show_state_labels=True, show_state_phases=True) # 6 def create_circuit(): qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also # two classical bits for the measurement later # # # FILL YOUR CODE IN HERE # return qc qc = create_circuit() sv = Statevector.from_label('00') sv = sv.evolve(qc) print(sv) plot_state_qsphere(sv.data, show_state_labels=True, show_state_phases=True) # 7 qc.measure(0, 0) # we perform a measurement on qubit q_0 and store the information on the classical bit c_0 qc.measure(1, 1) # we perform a measurement on qubit q_1 and store the information on the classical bit c_1 qc.draw(output='mpl') # we draw the circuit # 8 def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 1000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc) print(counts) plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities # 9 def create_circuit(): qc = QuantumCircuit(2) ## initializing part qc.rx(np.pi/3,0) qc.x(1) ## end of initializing # # # FILL YOUR CODE IN HERE # # return qc qc = create_circuit() sv = Statevector.from_label('00') sv = sv.evolve(qc) print(sv) plot_state_qsphere(sv.data, show_state_labels=True, show_state_phases=True) # 10 # # # FILL YOUR CODE IN HERE # # # # # FILL YOUR CODE IN HERE # # from qiskit import ClassicalRegister, QuantumRegister from qiskit import QuantumCircuit, execute from qiskit.tools.visualization import plot_histogram from qiskit import IBMQ, BasicAer from qiskit.tools.jupyter import * import matplotlib.pyplot as plt %matplotlib inline #### backend = BasicAer.get_backend('qasm_simulator') shots_sim = 10 job_sim = execute(qc, backend, shots=shots_sim) stats_sim = job_sim.result().get_counts() def plot_letter (stats, shots): ### code from the qiskit.org smiley demo for bitString in stats: char = chr(int( bitString[0:7] ,2)) # get string of the leftmost 7 bits and convert to an ASCII character prob = stats[bitString] / shots # fraction of shots for which this result occurred # create plot with all characters on top of each other with alpha given by how often it turned up in the output plt.annotate( char, (0.5,0.5), va="center", ha="center", color = (0,0,0, prob ), size = 300) if (prob>0.05): # list prob and char for the dominant results (occurred for more than 5% of shots) print(str(prob)+"\t"+char) plt.axis('off') plt.show() print(shots_sim) print(stats_sim) plot_letter(stats_sim, shots_sim)
https://github.com/pbark/qiskit_tutorials
pbark
print("Hello! I'm a code cell") print('Set up started...') %matplotlib notebook import sys sys.path.append('game_engines') import hello_quantum print('Set up complete!') initialize = [] success_condition = {} allowed_gates = {'0': {'NOT': 3}, '1': {}, 'both': {}} vi = [[1], False, False] qubit_names = {'0':'the only bit', '1':None} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [] success_condition = {} allowed_gates = {'0': {}, '1': {'NOT': 0}, 'both': {}} vi = [[], False, False] qubit_names = {'0':'the bit on the left', '1':'the bit on the right'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '0']] success_condition = {'IZ': -1.0} allowed_gates = {'0': {'CNOT': 0}, '1': {'CNOT': 0}, 'both': {}} vi = [[], False, False] qubit_names = {'0':'the bit on the left', '1':'the bit on the right'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '0']] success_condition = {'ZI': 1.0, 'IZ': -1.0} allowed_gates = {'0': {'CNOT': 0}, '1': {'CNOT': 0}, 'both': {}} vi = [[], False, False] qubit_names = {'0':'the bit on the left', '1':'the bit on the right'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '0']] success_condition = {'IZ': 0.0} allowed_gates = {'0': {'CNOT': 0}, '1': {'CNOT': 0}, 'both': {}} vi = [[], False, False] qubit_names = {'0':'the bit on the left', '1':'the bit on the right'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '0']] success_condition = {'ZZ': -1.0} allowed_gates = {'0': {'NOT': 0, 'CNOT': 0}, '1': {'NOT': 0, 'CNOT': 0}, 'both': {}} vi = [[], False, True] qubit_names = {'0':'the bit on the left', '1':'the bit on the right'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '1']] success_condition = {'IZ': -1.0} allowed_gates = {'0': {'NOT': 0, 'CNOT': 0}, '1': {'NOT': 0, 'CNOT': 0}, 'both': {}} vi = [[], False, True] qubit_names = {'0':'the bit on the left', '1':'the bit on the right'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [ ["x","0"] ] success_condition = {"ZI":1.0} allowed_gates = { "0":{"x":3}, "1":{}, "both":{} } vi = [[1],True,True] qubit_names = {'0':'the only qubit', '1':None} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '0']] success_condition = {'ZI': 1.0} allowed_gates = {'0': {'x': 0}, '1': {}, 'both': {}} vi = [[1], True, True] qubit_names = {'0':'the only qubit', '1':None} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '1']] success_condition = {'IZ': 1.0} allowed_gates = {'0': {}, '1': {'x': 0}, 'both': {}} vi = [[0], True, True] qubit_names = {'0':None, '1':'the other qubit'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [] success_condition = {'ZI': 0.0} allowed_gates = {'0': {'h': 3}, '1': {}, 'both': {}} vi = [[1], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '1']] success_condition = {'IZ': 1.0} allowed_gates = {'0': {}, '1': {'x': 3, 'h': 0}, 'both': {}} vi = [[0], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '0'], ['z', '0']] success_condition = {'XI': 1.0} allowed_gates = {'0': {'z': 0, 'h': 0}, '1': {}, 'both': {}} vi = [[1], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [] success_condition = {'ZI': -1.0} allowed_gates = {'0': {'z': 0, 'h': 0}, '1': {}, 'both': {}} vi = [[1], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '0']] success_condition = {'IX': 1.0} allowed_gates = {'0': {}, '1': {'z': 0, 'h': 0}, 'both': {}} vi = [[0], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['ry(pi/4)', '1']] success_condition = {'IZ': -0.7071, 'IX': -0.7071} allowed_gates = {'0': {}, '1': {'z': 0, 'h': 0}, 'both': {}} vi = [[0], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '1']] success_condition = {'ZI': 0.0, 'IZ': 0.0} allowed_gates = {'0': {'x': 0, 'z': 0, 'h': 0}, '1': {'x': 0, 'z': 0, 'h': 0}, 'both': {}} vi = [[], True, False] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h','0'],['h','1']] success_condition = {'ZZ': -1.0} allowed_gates = {'0': {'x': 0, 'z': 0, 'h': 0}, '1': {'x': 0, 'z': 0, 'h': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x','0']] success_condition = {'XX': 1.0} allowed_gates = {'0': {'x': 0, 'z': 0, 'h': 0}, '1': {'x': 0, 'z': 0, 'h': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [] success_condition = {'XZ': -1.0} allowed_gates = {'0': {'x': 0, 'z': 0, 'h': 0}, '1': {'x': 0, 'z': 0, 'h': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['ry(-pi/4)', '1'], ['ry(-pi/4)','0']] success_condition = {'ZI': -0.7071, 'IZ': -0.7071} allowed_gates = {'0': {'x': 0}, '1': {'x': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '1'], ['x','0']] success_condition = {'XI':1, 'IX':1} allowed_gates = {'0': {'z': 0, 'h': 0}, '1': {'z': 0, 'h': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '0']] success_condition = {'ZI': 1.0, 'IZ': -1.0} allowed_gates = {'0': {'cx': 0}, '1': {'cx': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '0'],['x', '1']] success_condition = {'XI': -1.0, 'IZ': 1.0} allowed_gates = {'0': {'h': 0, 'cz': 0}, '1': {'cx': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '0'],['x', '1'],['h', '1']] success_condition = { } allowed_gates = {'0':{'cz': 2}, '1':{'cz': 2}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x', '0']] success_condition = {'IZ': -1.0} allowed_gates = {'0': {'h':0}, '1': {'h':0}, 'both': {'cz': 0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['h', '0'],['h', '1']] success_condition = {'XI': -1.0, 'IX': -1.0} allowed_gates = {'0': {}, '1': {'z':0,'cx': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [] success_condition = {'IZ': -1.0} allowed_gates = {'0': {'x':0,'h':0,'cx':0}, '1': {'h':0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['ry(-pi/4)','0'],['ry(-pi/4)','0'],['ry(-pi/4)','0'],['x','0'],['x','1']] success_condition = {'ZI': -1.0,'XI':0,'IZ':0.7071,'IX':-0.7071} allowed_gates = {'0': {'h':0}, '1': {'h':0}, 'both': {'cz': 0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x','0'],['h','1']] success_condition = {'IX':1,'ZI':-1} allowed_gates = {'0': {'h':0}, '1': {'h':0}, 'both': {'cz':3}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names,shots=2000) initialize = [['x','1']] success_condition = {'IZ':1.0,'ZI':-1.0} allowed_gates = {'0': {'h':0}, '1': {'h':0}, 'both': {'cz':0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names,shots=2000) initialize = [] success_condition = {} allowed_gates = {'0': {'ry(pi/4)': 4}, '1': {}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names) initialize = [['x','0']] success_condition = {'XX': 1.0} allowed_gates = {'0': {'x': 0, 'z': 0, 'h': 0}, '1': {'x': 0, 'z': 0, 'h': 0}, 'both': {}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') initialize = [] success_condition = {'ZI': -1.0} allowed_gates = {'0': {'bloch':1, 'ry(pi/4)': 0}, '1':{}, 'both': {'unbloch':0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') initialize = [['h','0'],['h','1']] success_condition = {'ZI': -1.0,'IZ': -1.0} allowed_gates = {'0': {'bloch':0, 'ry(pi/4)': 0, 'ry(-pi/4)': 0}, '1': {'bloch':0, 'ry(pi/4)': 0, 'ry(-pi/4)': 0}, 'both': {'unbloch':0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') initialize = [['h','0']] success_condition = {'ZZ': 1.0} allowed_gates = {'0': {}, '1': {'bloch':0, 'ry(pi/4)': 0, 'ry(-pi/4)': 0}, 'both': {'unbloch':0,'cz':0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') initialize = [['ry(pi/4)','0'],['ry(pi/4)','1']] success_condition = {'ZI': 1.0,'IZ': 1.0} allowed_gates = {'0': {'bloch':0, 'z':0, 'ry(pi/4)': 1}, '1': {'bloch':0, 'x':0, 'ry(pi/4)': 1}, 'both': {'unbloch':0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') initialize = [['x','0'],['h','1']] success_condition = {'IZ': 1.0} allowed_gates = {'0': {}, '1': {'bloch':0, 'cx':0, 'ry(pi/4)': 1, 'ry(-pi/4)': 1}, 'both': {'unbloch':0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') initialize = [] success_condition = {'IZ': 1.0,'IX': 1.0} allowed_gates = {'0': {'bloch':0, 'x':0, 'z':0, 'h':0, 'cx':0, 'ry(pi/4)': 0, 'ry(-pi/4)': 0}, '1': {'bloch':0, 'x':0, 'z':0, 'h':0, 'cx':0, 'ry(pi/4)': 0, 'ry(-pi/4)': 0}, 'both': {'cz':0, 'unbloch':0}} vi = [[], True, True] qubit_names = {'0':'qubit 0', '1':'qubit 1'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') import random def setup_variables (): ### Replace this section with anything you want ### r = random.random() A = r*(2/3) B = r*(1/3) ### End of section ### return A, B def hash2bit ( variable, hash ): ### Replace this section with anything you want ### if hash=='V': bit = (variable<0.5) elif hash=='H': bit = (variable<0.25) bit = str(int(bit)) ### End of section ### return bit shots = 8192 def calculate_P ( ): P = {} for hashes in ['VV','VH','HV','HH']: # calculate each P[hashes] by sampling over `shots` samples P[hashes] = 0 for shot in range(shots): A, B = setup_variables() a = hash2bit ( A, hashes[0] ) # hash type for variable `A` is the first character of `hashes` b = hash2bit ( B, hashes[1] ) # hash type for variable `B` is the second character of `hashes` P[hashes] += (a!=b) / shots return P P = calculate_P() print(P) def bell_test (P): sum_P = sum(P.values()) for hashes in P: bound = sum_P - P[hashes] print("The upper bound for P['"+hashes+"'] is "+str(bound)) print("The value of P['"+hashes+"'] is "+str(P[hashes])) if P[hashes]<=bound: print("The upper bound is obeyed :)\n") else: if P[hashes]-bound < 0.1: print("This seems to have gone over the upper bound, but only by a little bit :S\nProbably just rounding errors or statistical noise.\n") else: print("!!!!! This has gone well over the upper bound :O !!!!!\n") bell_test(P) from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def initialize_program (): qubit = QuantumRegister(2) A = qubit[0] B = qubit[1] bit = ClassicalRegister(2) a = bit[0] b = bit[1] qc = QuantumCircuit(qubit, bit) return A, B, a, b, qc def hash2bit ( variable, hash, bit, qc ): if hash=='H': qc.h( variable ) qc.measure( variable, bit ) initialize = [] success_condition = {'ZZ':-0.7071,'ZX':-0.7071,'XZ':-0.7071,'XX':-0.7071} allowed_gates = {'0': {'bloch':0, 'x':0, 'z':0, 'h':0, 'cx':0, 'ry(pi/4)': 0, 'ry(-pi/4)': 0}, '1': {'bloch':0, 'x':0, 'z':0, 'h':0, 'cx':0, 'ry(pi/4)': 0, 'ry(-pi/4)': 0}, 'both': {'cz':0, 'unbloch':0}} vi = [[], True, True] qubit_names = {'0':'A', '1':'B'} puzzle = hello_quantum.run_game(initialize, success_condition, allowed_gates, vi, qubit_names, mode='line') import numpy as np def setup_variables ( A, B, qc ): for line in puzzle.program: eval(line) shots = 8192 from qiskit import execute def calculate_P ( backend ): P = {} program = {} for hashes in ['VV','VH','HV','HH']: A, B, a, b, program[hashes] = initialize_program () setup_variables( A, B, program[hashes] ) hash2bit ( A, hashes[0], a, program[hashes]) hash2bit ( B, hashes[1], b, program[hashes]) # submit jobs job = execute( list(program.values()), backend, shots=shots ) # get the results for hashes in ['VV','VH','HV','HH']: stats = job.result().get_counts(program[hashes]) P[hashes] = 0 for string in stats.keys(): a = string[-1] b = string[-2] if a!=b: P[hashes] += stats[string] / shots return P device = 'qasm_simulator' from qiskit import Aer, IBMQ try: IBMQ.load_accounts() except: pass try: backend = Aer.get_backend(device) except: backend = IBMQ.get_backend(device) print(backend.status()) P = calculate_P( backend ) print(P) bell_test( P )
https://github.com/pbark/qiskit_tutorials
pbark
# import common packages import numpy as np import matplotlib.pyplot as plt from qiskit import Aer, IBMQ, QuantumRegister from qiskit.providers.ibmq import least_busy from qiskit.providers.aer import noise # lib from Qiskit Aqua from qiskit.aqua import Operator, QuantumInstance from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit.aqua.components.optimizers import COBYLA, SPSA, L_BFGS_B from qiskit.aqua.components.variational_forms import RY, RYRZ, SwapRZ # lib from Qiskit Aqua Chemistry from qiskit.chemistry import QiskitChemistry from qiskit.chemistry import FermionicOperator from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock # setup qiskit.chemistry logging import logging from qiskit.chemistry import set_qiskit_chemistry_logging # function that allows us to create multiple figures in single notebook cell def show_figure(fig): dummy_fig = plt.figure() new_dummy_fig_manager = dummy_fig.canvas.manager new_dummy_fig_manager.canvas.figure = fig fig.set_canvas(new_dummy_fig_manager.canvas) set_qiskit_chemistry_logging(logging.INFO) # choose among DEBUG, INFO, WARNING, ERROR, CRITICAL and NOTSET driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 1.6', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() nuclear_repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 print("HF energy: {}".format(molecule.hf_energy - molecule.nuclear_repulsion_energy)) print("# of electrons: {}".format(num_particles)) print("# of spin orbitals: {}".format(num_spin_orbitals)) print("Contents of molecule object: \n{}".format(sorted(molecule.__dir__()))) # get the integrals from molecule object h1 = molecule.one_body_integrals h2 = molecule.two_body_integrals # create a fermionic operator ferOp = FermionicOperator(h1=h1, h2=h2) map_type = 'parity' # 'jordan_wigner', 'parity', 'bravyi_kitaev', 'bksf' # if 'parity' mapping is selected, reduce the number of qubits (-2 qubits) qubit_reduction = True if map_type == 'parity' else False qubitOp = ferOp.mapping(map_type=map_type, threshold=10**-10) # paulis with coefs below threshold are not considered qubitOp = qubitOp.two_qubit_reduced_operator(num_particles) if qubit_reduction else qubitOp qubitOp.chop(10**-10) # cut out the pauli strings with prefacator smaller then print(qubitOp) qubitOp.paulis # to see all the contents of given class # qubitOp.__dir__() # one can group the Paulis # qubitOp.to_grouped_paulis() # qubitOp.paulis for pauli in qubitOp.paulis: print(pauli[0],str(pauli[1])) max_iter = 200 # maximum number of iterations # optimizer = COBYLA(maxiter=max_iter) # optimizer = SPSA(maxiter=max_iter) optimizer = L_BFGS_B(maxiter=max_iter) HF_state = HartreeFock(qubitOp.num_qubits, num_spin_orbitals, num_particles, map_type, qubit_reduction) HF_state_vec = HF_state.construct_circuit(mode='vector') # we can use qiskit's vizualisation module to plot the state from qiskit.visualization import plot_state_city plot_state_city(HF_state_vec) # you might want to visualise on the Bloch sphere for a non-superposition state from qiskit.visualization import plot_state_city, plot_bloch_multivector plot_bloch_multivector(HF_state_vec) var_form_uccsd = UCCSD(qubitOp.num_qubits, depth=1, num_orbitals=num_spin_orbitals, num_particles=num_particles, active_occupied=None, active_unoccupied=None, # you could modify the active space here initial_state=HF_state, qubit_mapping=map_type, two_qubit_reduction=qubit_reduction, num_time_slices=1) var_form_swaprz = SwapRZ(qubitOp.num_qubits, depth=1, initial_state=HF_state) var_form_ryrz = RYRZ(qubitOp.num_qubits, depth=1, initial_state=HF_state) # var_form_ry = RY(qubitOp.num_qubits, depth=1, # initial_state=HF_state) simultation_type = 'state_vector'# qasm, qasm_cloud, real_device, state_vector if simultation_type == 'qasm': sv_mode = False qasm_simulator = Aer.get_backend('qasm_simulator') # qasm_simulator, ibmq_qasm_simulator # uncomment this and put your token from the IBMQ website. #IBMQ.save_account('Your IBMQ API-token', overwrite=True) IBMQ.load_accounts() # connect with your token to IBMQ provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') print(provider.backends()) # lists available backends # set the noise model device = provider.get_backend('ibmq_16_melbourne') # ibmq_16_melbourne properties = device.properties() coupling_map = device.configuration().coupling_map noise_model = noise.device.basic_device_noise_model(properties) basis_gates = noise_model.basis_gates shots = 8192 # choose the maximal number of shots (8192 is max on the ibmq_qasm_simulator) num_qubits = qubitOp.num_qubits # run on qasm_simulator quantum_instance = QuantumInstance(qasm_simulator, shots=shots, basis_gates=basis_gates, coupling_map=coupling_map, noise_model=noise_model) # all the details of noise model print(noise_model.to_dict()) elif simultation_type == 'qasm_cloud': sv_mode = False # uncomment this and put your token from the IBMQ website. #IBMQ.save_account('Your IBMQ API-token', overwrite=True) IBMQ.load_accounts() # connect with your token to IBMQ provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') print(provider.backends()) # lists available backends qasm_simulator_cloud = provider.get_backend('ibmq_qasm_simulator') # ibmq_16_melbourne , ibmq_qasm_simulator # set the qasm cloud simulator shots = 8192 quantum_instance = QuantumInstance(qasm_simulator_cloud, shots=shots) elif simultation_type == 'real_device': sv_mode = False # uncomment this and put your token from the IBMQ website. #IBMQ.save_account('Your IBMQ API-token', overwrite=True) IBMQ.load_accounts() # connect with your token to IBMQ provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') print(provider.backends()) # lists available backends # set the noise model device = provider.get_backend('ibmq_16_melbourne') # ibmq_16_melbourne # run on qasm_simulator shots = 8192 quantum_instance = QuantumInstance(device, shots=shots) elif simultation_type == 'state_vector': sv_mode = True num_qubits = qubitOp.num_qubits sv_simulator = Aer.get_backend('statevector_simulator') quantum_instance = QuantumInstance(sv_simulator) else: raise Exception('Please select for simultation_type == qasm, qasm_cloud, real_device, state_vector') vqe_uccsd = VQE(qubitOp, var_form_uccsd, optimizer) vqe_ryrz = VQE(qubitOp, var_form_ryrz, optimizer) vqe_swaprz = VQE(qubitOp, var_form_swaprz, optimizer) for pauli in qubitOp.paulis: print('Circuit for:', pauli[1]) circuit_uccsd = vqe_uccsd.construct_circuit(statevector_mode=sv_mode, parameter=np.ones(var_form_uccsd._num_parameters)) for i in range(len(circuit_uccsd)): fig = circuit_uccsd[i].draw(output='mpl') show_figure(fig) fig.show() circuit_swaprz = vqe_swaprz.construct_circuit(statevector_mode=sv_mode, parameter=np.ones(var_form_swaprz._num_parameters)) circuit_swaprz[1].draw(output='mpl') circuit_ryrz = vqe_ryrz.construct_circuit(statevector_mode=sv_mode, parameter=np.ones(var_form_ryrz._num_parameters)) circuit_ryrz[1].draw(output='mpl') results = vqe_uccsd.run(quantum_instance) print('The computed ground state energy is: {:.12f}'.format(results['eigvals'][0])) print('The total ground state energy is: {:.12f}'.format(results['eigvals'][0] + nuclear_repulsion_energy)) print("Parameters: {}".format(results['opt_params'])) evolution_time = 100 # how many time steps num_time_slices = 4 # number of Trotter steps qr = QuantumRegister(num_qubits,'q') initial_circuit = HF_state.construct_circuit(mode='circuit') evolution_circuit = qubitOp.evolve(state_in=initial_circuit, evo_time=evolution_time, evo_mode='circuit',num_time_slices=num_time_slices, expansion_mode='trotter') evolution_circuit.draw(output='mpl') max_time=evolution_time statevector_of_t = np.zeros([max_time,2*num_qubits]) for evo_t in range(max_time): evolution_circuit = qubitOp.evolve(state_in=initial_circuit, evo_time=evo_t, evo_mode='circuit',num_time_slices=num_time_slices, expansion_mode='trotter') result = quantum_instance.execute(evolution_circuit) statevector_of_t[evo_t,:] = np.asarray(result.get_statevector(evolution_circuit)) time_min = 0 time_max = 4 for i in range(time_min, time_max): fig = plot_state_city(statevector_of_t[i,:]) show_figure(fig) fig.show() # First, we use classical eigendecomposition to get ground state energy (including nuclear repulsion energy) as reference. qiskit_chemistry_dict = { 'driver': {'name': 'HDF5'}, 'HDF5': {'hdf5_input': 'H2/H2_equilibrium_0.735_sto-3g.hdf5'}, 'operator': {'name':'hamiltonian', 'qubit_mapping': 'parity', 'two_qubit_reduction': True}, 'algorithm': {'name': 'ExactEigensolver'} } solver = QiskitChemistry() result_classical = solver.run(qiskit_chemistry_dict) # Second, we use variational quantum eigensolver (VQE) qiskit_chemistry_dict['algorithm']['name'] = 'VQE' qiskit_chemistry_dict['optimizer'] = {'name': 'SPSA', 'max_trials': 350} qiskit_chemistry_dict['variational_form'] = {'name': 'RYRZ', 'depth': 3, 'entanglement':'full'} backend = Aer.get_backend('statevector_simulator') solver = QiskitChemistry() result = solver.run(qiskit_chemistry_dict, backend=backend) # We print out the results print('Ground state energy (classical): {:.12f}'.format(result_classical['energy'])) print('Ground state energy (quantum) : {:.12f}'.format(result['energy'])) print("====================================================") # You can also print out other info in the field 'printable' for line in result['printable']: print(line) molecule='H2' maxiter = 10 # increase to allow optimizer to converge, set low to test mol_distances = np.arange(0.2, 3.1, 0.2) mol_distances_vqe = np.arange(0.2, 3.1,1) # Exact eigensolver qiskit_chemistry_dict_ee = { 'driver': {'name': 'HDF5'}, 'HDF5': {'hdf5_input': ''}, 'operator': {'name':'hamiltonian', 'qubit_mapping': 'parity', 'two_qubit_reduction': True}, 'algorithm': {'name': 'ExactEigensolver'} } # choose which backend want to use # backend = Aer.get_backend('qasm_simulator') backend = Aer.get_backend('statevector_simulator') # VQE qiskit_chemistry_dict_vqe = { 'driver': {'name': 'HDF5'}, 'HDF5': {'hdf5_input': ''}, 'operator': {'name':'hamiltonian', 'qubit_mapping': 'parity', 'two_qubit_reduction': True}, 'algorithm': {'name': 'VQE'}, 'optimizer': {'name': 'L_BFGS_B', 'maxiter': maxiter}, # or SPSA, max_trials=200 'variational_form': {'name': 'RY', 'depth': 1, 'entanglement':'full'}, # RYRZ, UCCSD (delete entanglement field) 'backend': {'shots': 1024} } algos = ['ExactEigensolver', 'VQE'] energy = np.zeros((len(algos), len(mol_distances))) energy_vqe = np.zeros((len(algos), len(mol_distances_vqe))) # Run the algos for j, algo in enumerate([qiskit_chemistry_dict_ee, qiskit_chemistry_dict_vqe]): algo_name = algo['algorithm']['name'] print("Using {}".format(algo_name)) if algo_name == 'VQE': for i, dis in enumerate(mol_distances_vqe): print("Processing atomic distance: {:1.1f} Angstrom".format(dis), end='\r') algo['HDF5']['hdf5_input'] = "{}/{:1.1f}_sto-3g.hdf5".format(molecule, dis) result = solver.run(algo, backend=backend if algo_name == 'VQE' else None) energy_vqe[j][i] = result['energy'] else: for i, dis in enumerate(mol_distances): print("Processing atomic distance: {:1.1f} Angstrom".format(dis), end='\r') algo['HDF5']['hdf5_input'] = "{}/{:1.1f}_sto-3g.hdf5".format(molecule, dis) result = solver.run(algo, backend=backend if algo_name == 'VQE' else None) energy[j][i] = result['energy'] for i, algo in enumerate(algos): if algo == 'VQE': plt.plot(mol_distances_vqe, energy_vqe[i], label=algo, linestyle='', marker='x') else: plt.plot(mol_distances, energy[i], label=algo) plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy [Ha]') plt.legend() plt.show() mol_distances_errors = [] energy_errors = [] for i, pts_vqe in enumerate(mol_distances_vqe): for j, pts in enumerate(mol_distances): # find the entries with same bond distances if pts_vqe == pts: mol_distances_errors.append(pts) energy_errors.append(abs(energy[0][j]-energy_vqe[1][i])) # plot the errors print('Errors |Exact - VQE|:\n',energy_errors) plt.plot(mol_distances_errors, energy_errors, label='Errors(Exact-VQE)', linestyle='', marker='x') # chemical accuracy of 1 mHa plt.hlines(0.001, 0, 3, colors='k', label='Chemical Accuracy') plt.legend() plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import qiskit import qiskit_superstaq provider = qiskit_superstaq.superstaq_provider.SuperstaQProvider("YOUR API KEY") circuit1 = qiskit.QuantumCircuit(8) for i in range(4, 8): circuit1.h(i) circuit1.draw(fold=-1) compiler_output = provider.aqt_compile(circuit1) print(compiler_output.circuit) compiler_output.seq.plot(element=0) circuit2 = qiskit.QuantumCircuit(8) circuit2.swap(4, 5) circuit2.h(6) circuit2.draw(fold=-1) compiler_output = provider.aqt_compile([circuit1, circuit2]) print(compiler_output.circuits[0]) print() print(compiler_output.circuits[1]) compiler_output.seq.plot(element=0) compiler_output.seq.plot(element=1)
https://github.com/anirban-m/qiskit-superstaq
anirban-m
""" Creates and simulates a bell circuit. Example Output: job has successfully run {'00': 52, '11': 48} """ import qiskit import qiskit_superstaq as qss # SuperstaQ token retrieved through API token = "insert api token" # Create provider using authorization token superstaq = qss.superstaq_provider.SuperstaQProvider(token) # Retrieve backend from superstaq provider backend = superstaq.get_backend("ibmq_qasm_simulator") # Standard bell circuit qc = qiskit.QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 1], [0, 1]) # Submit job to backend job = backend.run(qc, shots=100) # Get job status print(job.status().value) # Get result of job result = job.result() # Print job counts print(result.get_counts())
https://github.com/anirban-m/qiskit-superstaq
anirban-m
""" Creates and simulates multiple circuits with batch submission. Example Output: job has successfully run [{'00': 44, '11': 56}, {'000': 57, '111': 43}] {'000': 57, '111': 43} """ import qiskit import qiskit_superstaq as qss # SuperstaQ token retrieved through API token = "insert api token" # Create provider using authorization token superstaq = qss.superstaq_provider.SuperstaQProvider(token) # Retrieve backend from superstaq provider backend = superstaq.get_backend("ibmq_qasm_simulator") # Standard bell circuit qc1 = qiskit.QuantumCircuit(2, 2) qc1.h(0) qc1.cx(0, 1) qc1.measure([0, 1], [0, 1]) # 3-qubit GHZ state qc2 = qiskit.QuantumCircuit(3, 3) qc2.h(0) qc2.cx(0, 1) qc2.cx(0, 2) qc2.measure([0, 1, 2], [0, 1, 2]) # Submit list of jobs to backend. Circuits submitted simultaneously # will run with the same backend and the same number of shots. job = backend.run([qc1, qc2], shots=100) # The status of the circuit furthest behind in the queue. print(job.status().value) # List of result counts print(job.result().get_counts()) # ith result counts (0-indexed) print(job.result().get_counts(1))
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import importlib from typing import List, Optional, Union import applications_superstaq import qiskit try: import qtrl.sequencer except ModuleNotFoundError: pass class AQTCompilerOutput: def __init__( self, circuits: Union[qiskit.QuantumCircuit, List[qiskit.QuantumCircuit]], seq: Optional["qtrl.sequencer.Sequence"] = None, pulse_lists: Optional[Union[List[List], List[List[List]]]] = None, ) -> None: if isinstance(circuits, qiskit.QuantumCircuit): self.circuit = circuits self.pulse_list = pulse_lists else: self.circuits = circuits self.pulse_lists = pulse_lists self.seq = seq def has_multiple_circuits(self) -> bool: """Returns True if this object represents multiple circuits. If so, this object has .circuits and .pulse_lists attributes. Otherwise, this object represents a single circuit, and has .circuit and .pulse_list attributes. """ return hasattr(self, "circuits") def __repr__(self) -> str: if not self.has_multiple_circuits(): return f"AQTCompilerOutput({self.circuit!r}, {self.seq!r}, {self.pulse_list!r})" return f"AQTCompilerOutput({self.circuits!r}, {self.seq!r}, {self.pulse_lists!r})" def read_json(json_dict: dict, circuits_list: bool) -> AQTCompilerOutput: """Reads out returned JSON from SuperstaQ API's AQT compilation endpoint. Args: json_dict: a JSON dictionary matching the format returned by /aqt_compile endpoint circuits_list: bool flag that controls whether the returned object has a .circuits attribute (if True) or a .circuit attribute (False) Returns: a AQTCompilerOutput object with the compiled circuit(s). If qtrl is available locally, the returned object also stores the pulse sequence in the .seq attribute and the list(s) of cycles in the .pulse_list(s) attribute. """ seq = None pulse_lists = None if importlib.util.find_spec( "qtrl" ): # pragma: no cover, b/c qtrl is not open source so it is not in qiskit-superstaq reqs state_str = json_dict["state_jp"] state = applications_superstaq.converters.deserialize(state_str) seq = qtrl.sequencer.Sequence(n_elements=1) seq.__setstate__(state) seq.compile() pulse_lists_str = json_dict["pulse_lists_jp"] pulse_lists = applications_superstaq.converters.deserialize(pulse_lists_str) compiled_circuits = [qiskit.QuantumCircuit.from_qasm_str(q) for q in json_dict["qasm_strs"]] if circuits_list: return AQTCompilerOutput(compiled_circuits, seq, pulse_lists) pulse_list = pulse_lists[0] if pulse_lists is not None else None return AQTCompilerOutput(compiled_circuits[0], seq, pulse_list)
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import importlib import pickle from unittest import mock import applications_superstaq import pytest import qiskit from qiskit_superstaq import aqt def test_aqt_compiler_output_repr() -> None: circuit = qiskit.QuantumCircuit(4) assert repr(aqt.AQTCompilerOutput(circuit)) == f"AQTCompilerOutput({circuit!r}, None, None)" circuits = [circuit, circuit] assert repr(aqt.AQTCompilerOutput(circuits)) == f"AQTCompilerOutput({circuits!r}, None, None)" @mock.patch.dict("sys.modules", {"qtrl": None}) def test_read_json() -> None: importlib.reload(aqt) circuit = qiskit.QuantumCircuit(4) for i in range(4): circuit.h(i) state_str = applications_superstaq.converters.serialize({}) pulse_lists_str = applications_superstaq.converters.serialize([[[]]]) json_dict = { "qasm_strs": [circuit.qasm()], "state_jp": state_str, "pulse_lists_jp": pulse_lists_str, } out = aqt.read_json(json_dict, circuits_list=False) assert out.circuit == circuit assert not hasattr(out, "circuits") out = aqt.read_json(json_dict, circuits_list=True) assert out.circuits == [circuit] assert not hasattr(out, "circuit") pulse_lists_str = applications_superstaq.converters.serialize([[[]], [[]]]) json_dict = { "qasm_strs": [circuit.qasm(), circuit.qasm()], "state_jp": state_str, "pulse_lists_jp": pulse_lists_str, } out = aqt.read_json(json_dict, circuits_list=True) assert out.circuits == [circuit, circuit] assert not hasattr(out, "circuit") def test_read_json_with_qtrl() -> None: # pragma: no cover, b/c test requires qtrl installation qtrl = pytest.importorskip("qtrl", reason="qtrl not installed") seq = qtrl.sequencer.Sequence(n_elements=1) circuit = qiskit.QuantumCircuit(4) for i in range(4): circuit.h(i) state_str = applications_superstaq.converters.serialize(seq.__getstate__()) pulse_lists_str = applications_superstaq.converters.serialize([[[]]]) json_dict = { "qasm_strs": [circuit.qasm()], "state_jp": state_str, "pulse_lists_jp": pulse_lists_str, } out = aqt.read_json(json_dict, circuits_list=False) assert out.circuit == circuit assert pickle.dumps(out.seq) == pickle.dumps(seq) assert out.pulse_list == [[]] assert not hasattr(out, "circuits") and not hasattr(out, "pulse_lists") out = aqt.read_json(json_dict, circuits_list=True) assert out.circuits == [circuit] assert pickle.dumps(out.seq) == pickle.dumps(seq) assert out.pulse_lists == [[[]]] assert not hasattr(out, "circuit") and not hasattr(out, "pulse_list") pulse_lists_str = applications_superstaq.converters.serialize([[[]], [[]]]) json_dict = { "qasm_strs": [circuit.qasm(), circuit.qasm()], "state_jp": state_str, "pulse_lists_jp": pulse_lists_str, } out = aqt.read_json(json_dict, circuits_list=True) assert out.circuits == [circuit, circuit] assert pickle.dumps(out.seq) == pickle.dumps(seq) assert out.pulse_lists == [[[]], [[]]] assert not hasattr(out, "circuit") and not hasattr(out, "pulse_list")
https://github.com/anirban-m/qiskit-superstaq
anirban-m
"""Integration checks that run daily (via Github action) between client and prod server.""" import os import pytest import qiskit import qiskit_superstaq @pytest.fixture def provider() -> qiskit_superstaq.superstaq_provider.SuperstaQProvider: token = os.environ["TEST_USER_TOKEN"] provider = qiskit_superstaq.superstaq_provider.SuperstaQProvider(token) return provider def test_aqt_compile(provider: qiskit_superstaq.superstaq_provider.SuperstaQProvider) -> None: circuit = qiskit.QuantumCircuit(8) circuit.h(4) expected = qiskit.QuantumCircuit(1) expected.s(0) expected.sx(0) expected.s(0) assert provider.aqt_compile(circuit).circuit == expected assert provider.aqt_compile([circuit]).circuits == [expected] assert provider.aqt_compile([circuit, circuit]).circuits == [expected, expected]
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import io from typing import List, Union import applications_superstaq import qiskit import qiskit.circuit.qpy_serialization def serialize_circuits(circuits: Union[qiskit.QuantumCircuit, List[qiskit.QuantumCircuit]]) -> str: """Serialize QuantumCircuit(s) into a single string Args: circuits: a QuantumCircuit or list of QuantumCircuits to be serialized Returns: str representing the serialized circuit(s) """ buf = io.BytesIO() qiskit.circuit.qpy_serialization.dump(circuits, buf) return applications_superstaq.converters._bytes_to_str(buf.getvalue()) def deserialize_circuits(serialized_circuits: str) -> List[qiskit.QuantumCircuit]: """Deserialize serialized QuantumCircuit(s) Args: serialized_circuits: str generated via qiskit_superstaq.serialization.serialize_circuit() Returns: a list of QuantumCircuits """ buf = io.BytesIO(applications_superstaq.converters._str_to_bytes(serialized_circuits)) return qiskit.circuit.qpy_serialization.load(buf)
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import qiskit import qiskit_superstaq def test_circuit_serialization() -> None: circuits = [qiskit.QuantumCircuit(3), qiskit.QuantumCircuit(2)] circuits[0].cx(2, 1) circuits[0].cz(0, 1) circuits[1].swap(0, 1) serialized_circuits = qiskit_superstaq.serialization.serialize_circuits(circuits) assert isinstance(serialized_circuits, str) assert qiskit_superstaq.serialization.deserialize_circuits(serialized_circuits) == circuits
https://github.com/anirban-m/qiskit-superstaq
anirban-m
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. from typing import Any, List, Union import qiskit import requests import qiskit_superstaq as qss class SuperstaQBackend(qiskit.providers.BackendV1): def __init__( self, provider: "qss.superstaq_provider.SuperstaQProvider", url: str, backend: str ) -> None: self.url = url self._provider = provider self.configuration_dict = { "backend_name": backend, "backend_version": "n/a", "n_qubits": -1, "basis_gates": None, "gates": [], "local": False, "simulator": False, "conditional": False, "open_pulse": False, "memory": False, "max_shots": -1, "coupling_map": None, } super().__init__( configuration=qiskit.providers.models.BackendConfiguration.from_dict( self.configuration_dict ), provider=provider, ) @classmethod def _default_options(cls) -> qiskit.providers.Options: return qiskit.providers.Options(shots=1000) def __eq__(self, other: Any) -> bool: if not isinstance(other, qss.superstaq_backend.SuperstaQBackend): return False return ( self._provider == other._provider and self.configuration_dict == other.configuration_dict ) def run( self, circuits: Union[qiskit.QuantumCircuit, List[qiskit.QuantumCircuit]], **kwargs: int ) -> "qss.superstaq_job.SuperstaQJob": if isinstance(circuits, qiskit.QuantumCircuit): circuits = [circuits] superstaq_json = { "qasm_strings": [circuit.qasm() for circuit in circuits], "backend": self.name(), "shots": kwargs.get("shots"), "ibmq_token": kwargs.get("ibmq_token"), "ibmq_hub": kwargs.get("ibmq_hub"), "ibmq_group": kwargs.get("ibmq_group"), "ibmq_project": kwargs.get("ibmq_project"), "ibmq_pulse": kwargs.get("ibmq_pulse"), } headers = { "Authorization": self._provider.get_access_token(), "Content-Type": "application/json", } res = requests.post( self.url + "/" + qss.API_VERSION + "/qasm_strings_multi_job", json=superstaq_json, headers=headers, verify=(self.url == qss.API_URL), ) res.raise_for_status() response = res.json() if "job_ids" not in response: raise Exception # we make a virtual job_id that aggregates all of the individual jobs # into a single one, that comma-separates the individual jobs: job_id = ",".join(response["job_ids"]) job = qss.superstaq_job.SuperstaQJob(self, job_id) return job
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import json from typing import Any, Dict, List import pytest import qiskit import requests import qiskit_superstaq as qss def test_default_options() -> None: ss_provider = qss.superstaq_provider.SuperstaQProvider("MY_TOKEN") device = qss.superstaq_backend.SuperstaQBackend( provider=ss_provider, url=qss.API_URL, backend="ibmq_qasm_simulator", ) assert qiskit.providers.Options(shots=1000) == device._default_options() class MockResponse: def __init__(self, job_ids: List[str]) -> None: self.content = json.dumps({"job_ids": job_ids}) def json(self) -> Dict: return json.loads(self.content) def raise_for_status(self) -> None: pass class MockBadResponse: def __init__(self) -> None: self.content = json.dumps({}) def json(self) -> Dict: return {} def raise_for_status(self) -> None: pass class MockProvider(qss.superstaq_provider.SuperstaQProvider): def __init__(self) -> None: self.access_token = "super.tech" class MockDevice(qss.superstaq_backend.SuperstaQBackend): def __init__(self) -> None: super().__init__(MockProvider(), "super.tech", "mock_backend") self._provider = MockProvider() def test_run(monkeypatch: Any) -> None: qc = qiskit.QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 0], [1, 1]) device = MockDevice() monkeypatch.setattr(requests, "post", lambda *_, **__: MockResponse(["123abc"])) answer = device.run(circuits=qc) expected = qss.superstaq_job.SuperstaQJob(device, "123abc") assert answer == expected monkeypatch.setattr(requests, "post", lambda *_, **__: MockBadResponse()) with pytest.raises(Exception): device.run(circuits=qc) def test_multi_circuit_run(monkeypatch: Any) -> None: device = MockDevice() qc1 = qiskit.QuantumCircuit(1, 1) qc1.h(0) qc1.measure(0, 0) qc2 = qiskit.QuantumCircuit(2, 2) qc2.h(0) qc2.cx(0, 1) qc2.measure([0, 1], [0, 1]) monkeypatch.setattr(requests, "post", lambda *_, **__: MockResponse(["123abc", "456efg"])) answer = device.run(circuits=[qc1, qc2]) expected = qss.superstaq_job.SuperstaQJob(device, "123abc,456efg") assert answer == expected def test_eq() -> None: assert MockDevice() != 3 provider = qss.superstaq_provider.SuperstaQProvider(access_token="123") backend1 = qss.superstaq_backend.SuperstaQBackend( provider=provider, backend="ibmq_qasm_simulator", url=qss.API_URL ) backend2 = qss.superstaq_backend.SuperstaQBackend( provider=provider, backend="ibmq_athens", url=qss.API_URL ) assert backend1 != backend2 backend3 = qss.superstaq_backend.SuperstaQBackend( provider=provider, backend="ibmq_qasm_simulator", url=qss.API_URL ) assert backend1 == backend3
https://github.com/anirban-m/qiskit-superstaq
anirban-m
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import time from typing import Any, Dict, List import qiskit import requests import qiskit_superstaq as qss class SuperstaQJob(qiskit.providers.JobV1): def __init__( self, backend: qss.superstaq_backend.SuperstaQBackend, job_id: str, ) -> None: # Can we stop setting qobj and access_token to None """Initialize a job instance. Parameters: backend (BaseBackend): Backend that job was executed on. job_id (str): The unique job ID from SuperstaQ. access_token (str): The access token. """ super().__init__(backend, job_id) def __eq__(self, other: Any) -> bool: if not (isinstance(other, SuperstaQJob)): return False return self._job_id == other._job_id def _wait_for_results(self, timeout: float = None, wait: float = 5) -> List[Dict]: result_list: List[Dict] = [] job_ids = self._job_id.split(",") # separate aggregated job_ids header = { "Authorization": self._backend._provider.access_token, "SDK": "qiskit", } for jid in job_ids: start_time = time.time() result = None while True: elapsed = time.time() - start_time if timeout and elapsed >= timeout: raise qiskit.providers.JobTimeoutError( "Timed out waiting for result" ) # pragma: no cover b/c don't want slow test or mocking time getstr = f"{self._backend.url}/" + qss.API_VERSION + f"/job/{jid}" result = requests.get( getstr, headers=header, verify=(self._backend.url == qss.API_URL) ).json() if result["status"] == "Done": break if result["status"] == "Error": raise qiskit.providers.JobError("API returned error:\n" + str(result)) time.sleep(wait) # pragma: no cover b/c don't want slow test or mocking time result_list.append(result) return result_list def result(self, timeout: float = None, wait: float = 5) -> qiskit.result.Result: # Get the result data of a circuit. results = self._wait_for_results(timeout, wait) # create list of result dictionaries results_list = [] for result in results: results_list.append( {"success": True, "shots": result["shots"], "data": {"counts": result["samples"]}} ) return qiskit.result.Result.from_dict( { "results": results_list, "qobj_id": -1, "backend_name": self._backend._configuration.backend_name, "backend_version": self._backend._configuration.backend_version, "success": True, "job_id": self._job_id, } ) def status(self) -> str: """Query for the job status.""" header = { "Authorization": self._backend._provider.access_token, "SDK": "qiskit", } job_id_list = self._job_id.split(",") # separate aggregated job ids status = "Done" # when we have multiple jobs, we will take the "worst status" among the jobs # For example, if any of the jobs are still queued, we report Queued as the status # for the entire batch. for job_id in job_id_list: get_url = self._backend.url + "/" + qss.API_VERSION + f"/job/{job_id}" result = requests.get( get_url, headers=header, verify=(self._backend.url == qss.API_URL) ) temp_status = result.json()["status"] if temp_status == "Queued": status = "Queued" break elif temp_status == "Running": status = "Running" assert status in ["Queued", "Running", "Done"] if status == "Queued": status = qiskit.providers.jobstatus.JobStatus.QUEUED elif status == "Running": status = qiskit.providers.jobstatus.JobStatus.RUNNING else: status = qiskit.providers.jobstatus.JobStatus.DONE return status def submit(self) -> None: raise NotImplementedError("Submit through SuperstaQBackend, not through SuperstaqJob")
https://github.com/anirban-m/qiskit-superstaq
anirban-m
import json from typing import Any, Dict import pytest import qiskit import requests import qiskit_superstaq as qss class MockConfiguration: backend_name = "superstaq_backend" backend_version = qss.API_VERSION class MockProvider(qss.superstaq_provider.SuperstaQProvider): def __init__(self) -> None: self.access_token = "very.tech" class MockDevice(qss.superstaq_backend.SuperstaQBackend): def __init__(self) -> None: self._provider = MockProvider() self.diff = "" _configuration = MockConfiguration() url = "super.tech" class MockJob(qss.superstaq_job.SuperstaQJob): def __init__(self) -> None: self._backend = MockDevice() self._job_id = "123abc" self.qobj = None class MockJobs(qss.superstaq_job.SuperstaQJob): def __init__(self) -> None: self._backend = MockDevice() self._job_id = "123abc,456def" self.qobj = None class MockResponse: def __init__(self, status_str: str) -> None: self.content = json.dumps({"status": status_str, "samples": None, "shots": 100}) def json(self) -> Dict: return json.loads(self.content) def test_wait_for_results(monkeypatch: Any) -> None: job = MockJob() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) assert job._wait_for_results() == [{"status": "Done", "samples": None, "shots": 100}] monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Error")) with pytest.raises(qiskit.providers.JobError, match="API returned error"): job._wait_for_results() jobs = MockJobs() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) assert jobs._wait_for_results() == [ {"status": "Done", "samples": None, "shots": 100}, {"status": "Done", "samples": None, "shots": 100}, ] def test_result(monkeypatch: Any) -> None: job = MockJob() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) expected_results = [{"success": True, "shots": 100, "data": {"counts": None}}] expected = qiskit.result.Result.from_dict( { "results": expected_results, "qobj_id": -1, "backend_name": "superstaq_backend", "backend_version": qss.API_VERSION, "success": True, "job_id": "123abc", } ) ans = job.result() assert ans.backend_name == expected.backend_name assert ans.job_id == expected.job_id def test_status(monkeypatch: Any) -> None: job = MockJob() monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Queued")) assert job.status() == qiskit.providers.JobStatus.QUEUED monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Running")) assert job.status() == qiskit.providers.JobStatus.RUNNING monkeypatch.setattr(requests, "get", lambda *_, **__: MockResponse("Done")) assert job.status() == qiskit.providers.JobStatus.DONE def test_submit() -> None: job = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="12345") with pytest.raises(NotImplementedError, match="Submit through SuperstaQBackend"): job.submit() def test_eq() -> None: job = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="12345") assert job != "super.tech" job2 = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="123456") assert job != job2 job3 = qss.superstaq_job.SuperstaQJob(backend=MockDevice(), job_id="12345") assert job == job3
https://github.com/anirban-m/qiskit-superstaq
anirban-m
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import os from typing import List, Union import qiskit import requests import qiskit_superstaq as qss class SuperstaQProvider(qiskit.providers.ProviderV1): """Provider for SuperstaQ backend. Typical usage is: .. code-block:: python import qiskit_superstaq as qss ss_provider = qss.superstaq_provider.SuperstaQProvider('MY_TOKEN') backend = ss_provider.get_backend('my_backend') where `'MY_TOKEN'` is the access token provided by SuperstaQ, and 'my_backend' is the name of the desired backend. Attributes: access_token (str): The access token. name (str): Name of the provider instance. url (str): The url that the API is hosted on. """ def __init__( self, access_token: str, url: str = os.getenv("SUPERSTAQ_REMOTE_HOST") or qss.API_URL, ) -> None: self.access_token = access_token self._name = "superstaq_provider" self.url = url def __str__(self) -> str: return f"<SuperstaQProvider(name={self._name})>" def __repr__(self) -> str: repr1 = f"<SuperstaQProvider(name={self._name}, " return repr1 + f"access_token={self.access_token})>" def get_backend(self, backend: str) -> "qss.superstaq_backend.SuperstaQBackend": return qss.superstaq_backend.SuperstaQBackend(provider=self, url=self.url, backend=backend) def get_access_token(self) -> str: return self.access_token def backends(self) -> List[qss.superstaq_backend.SuperstaQBackend]: # needs to be fixed (#469) backend_names = [ "aqt_device", "ionq_device", "rigetti_device", "ibmq_botoga", "ibmq_casablanca", "ibmq_jakarta", "ibmq_qasm_simulator", ] backends = [] for name in backend_names: backends.append( qss.superstaq_backend.SuperstaQBackend(provider=self, url=self.url, backend=name) ) return backends def aqt_compile( self, circuits: Union[qiskit.QuantumCircuit, List[qiskit.QuantumCircuit]] ) -> "qss.aqt.AQTCompilerOutput": """Compiles the given circuit(s) to AQT device, optimized to its native gate set. Args: circuits: qiskit QuantumCircuit(s) Returns: object whose .circuit(s) attribute is an optimized qiskit QuantumCircuit(s) If qtrl is installed, the object's .seq attribute is a qtrl Sequence object of the pulse sequence corresponding to the optimized qiskit.QuantumCircuit(s) and the .pulse_list(s) attribute is the list(s) of cycles. """ if isinstance(circuits, qiskit.QuantumCircuit): json_dict = {"qasm_strs": [circuits.qasm()]} circuits_list = False else: json_dict = {"qasm_strs": [c.qasm() for c in circuits]} circuits_list = True headers = { "Authorization": self.get_access_token(), "Content-Type": "application/json", } res = requests.post( self.url + "/" + qss.API_VERSION + "/aqt_compile", json=json_dict, headers=headers, verify=(self.url == qss.API_URL), ) res.raise_for_status() json_dict = res.json() from qiskit_superstaq import aqt return aqt.read_json(json_dict, circuits_list)
https://github.com/anirban-m/qiskit-superstaq
anirban-m
from unittest.mock import MagicMock, patch import applications_superstaq import qiskit import qiskit_superstaq as qss def test_provider() -> None: ss_provider = qss.superstaq_provider.SuperstaQProvider(access_token="MY_TOKEN") assert str(ss_provider.get_backend("ibmq_qasm_simulator")) == str( qss.superstaq_backend.SuperstaQBackend( provider=ss_provider, url=qss.API_URL, backend="ibmq_qasm_simulator", ) ) assert str(ss_provider) == "<SuperstaQProvider(name=superstaq_provider)>" assert ( repr(ss_provider) == "<SuperstaQProvider(name=superstaq_provider, access_token=MY_TOKEN)>" ) backend_names = [ "aqt_device", "ionq_device", "rigetti_device", "ibmq_botoga", "ibmq_casablanca", "ibmq_jakarta", "ibmq_qasm_simulator", ] backends = [] for name in backend_names: backends.append( qss.superstaq_backend.SuperstaQBackend( provider=ss_provider, url=qss.API_URL, backend=name ) ) assert ss_provider.backends() == backends @patch("requests.post") def test_aqt_compile(mock_post: MagicMock) -> None: provider = qss.superstaq_provider.SuperstaQProvider(access_token="MY_TOKEN") qc = qiskit.QuantumCircuit(8) qc.cz(4, 5) out_qasm_str = """OPENQASM 2.0; include "qelib1.inc"; //Qubits: [4, 5] qreg q[2]; cz q[0],q[1]; """ expected_qc = qiskit.QuantumCircuit(2) expected_qc.cz(0, 1) mock_post.return_value.json = lambda: { "qasm_strs": [out_qasm_str], "state_jp": applications_superstaq.converters.serialize({}), "pulse_lists_jp": applications_superstaq.converters.serialize([[[]]]), } out = provider.aqt_compile(qc) assert out.circuit == expected_qc assert not hasattr(out, "circuits") and not hasattr(out, "pulse_lists") out = provider.aqt_compile([qc]) assert out.circuits == [expected_qc] assert not hasattr(out, "circuit") and not hasattr(out, "pulse_list") mock_post.return_value.json = lambda: { "qasm_strs": [out_qasm_str, out_qasm_str], "state_jp": applications_superstaq.converters.serialize({}), "pulse_lists_jp": applications_superstaq.converters.serialize([[[]], [[]]]), } out = provider.aqt_compile([qc, qc]) assert out.circuits == [expected_qc, expected_qc] assert not hasattr(out, "circuit") and not hasattr(out, "pulse_list")
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
from qiskit import IBMQ # IBMQ.save_account(MY_API_TOKEN) import qiskit qiskit.__version__ import scipy import numpy as np import random from sklearn import preprocessing from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.quantum_info.operators import Operator from qiskit import(QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram from qiskit.extensions import Initialize # Import the Inititialize function from qiskit.aqua.circuits.gates import multi_control_toffoli_gate from qiskit.aqua.circuits.gates import multi_control_multi_target_gate # JUŻ NIEPOTRZEBNE - TUTAJ BYŁY HIPERPARAMETRY OBWODU TESOWEGO # #definicja rozmiaru sieci # visible = 1 # hidden = 1 # ancilla = visible-1 # #definicja wejścia (x) oraz inicjalizacja macierzy wag # x = np.array([random.uniform(0, 1) for n in range(visible)]) # weight_matrix = np.random.rand(visible, hidden) * np.pi # JUŻ NIEPOTRZEBNE - TUTAJ BYŁ BUDOWANY OBWÓD TESTOWY # # definicja obwodu (linii qubitów) # # qc = QuantumCircuit(visible + hidden, visible) # qr = QuantumRegister(visible + hidden + ancilla, 'q') # cr = ClassicalRegister(visible + hidden, 'c') # qc = QuantumCircuit(qr, cr) # # inicjalizacja wartości qubitów wejściowych (x) na razie randomowa # initial_state = [[np.sqrt(x[i]), np.sqrt(1-x[i])] for i in range(len(x))] # # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda # for i in range(visible): # initialize_qubit = Initialize(initial_state[i]) # qc.append(initialize_qubit, [i]) # qc.h(i) # # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) # for i in range(hidden): # for j in range(visible): # qc.rz(weight_matrix[j][i], j) # multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible)], qr[visible + i], [qr[i] for i in range(visible + hidden, visible + hidden + ancilla)], mode='basic') # # bramki Hadamarda na warstwie ukrytej # for i in range(hidden): # qc.h(visible + i) # # pomiar linii visible # qc.measure(list(range(visible, visible+hidden)), list(range(visible, visible+hidden))) # ### OBWÓD DRUGĄ STRONĘ # # wyzerowanie wartości qubitów visible # for i in range(visible): # initialize_qubit = Initialize([1, 0]) # qc.append(initialize_qubit, [i]) # # bramka Hadamarda na qubitach hidden # for i in range(visible, hidden + visible): # qc.h(i) # #odwrócone rotacje i CNOTy # for i in range(hidden): # for j in range(visible): # multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible, visible + hidden)], qr[j], [qr[k] for k in range(visible + hidden, visible + hidden + ancilla)], mode='basic') # qc.rz(-weight_matrix[j][hidden - 1 - i], j) # # bramka Hadamarda i pomiar na qubitach visible # for i in range(visible): # qc.h(i) # qc.measure(list(range(visible)), list(range(visible))) # EKSPERYMNET Z TESTOWYM UKŁADEM - JUŻ NIEPOTRZEBNY # # Use Aer's qasm_simulator # simulator = Aer.get_backend('qasm_simulator') # # Execute the circuit on the qasm simulator # job = execute(qc, simulator, shots=1000) # # Grab results from the job # result = job.result() # # Returns counts # counts = result.get_counts(qc) # print("\nTotal count for 0 and 1 are:",counts) # # qc.draw(output='mpl') # qc.draw() # # komórka do testowania wieloqubitowej bramki CNOT - JUŻ NIEPOTRZEBNA BO BRAMKA DZIAŁA # # NIE ZALEŻNA OD WŁAŚCIWEJ SIECI # # work = ancilla # def n_control_gate(qc, target, control: list, work: list, gate_type): # if len(control) - len(work) != 1: # raise Exception("Wrong number of control or work qubits!") # qc.toffoli(control[0], control[1], work[0]) # control_left = control[2:] # for i, c_bit in enumerate(control_left): # qc.toffoli(c_bit, work[i], work[i+1]) # qc.gate_type(work[-1], target) # for i, c_bit in reversed(list(enumerate(control_left))): # qc.toffoli(c_bit, work[i], work[i+1]) # qc.toffoli(control[0], control[1], work[0]) # visible = 2 # hidden = 2 # ancilla = visible - 1 # # qr_visible = QuantumRegister(visible, 'visible') # # qr_hidden = QuantumRegister(hidden, 'hidden') # # cr = ClassicalRegister(3, 'c') # # if visible > 2: # # anc = QuantumRegister(visible - 2, 'ancilla') # # qc = QuantumCircuit(qr_visible, qr_hidden, anc, cr) # # else: # # qc = QuantumCircuit(qr_visible, qr_hidden, cr) # # qr_visible = QuantumRegister(visible, 'visible') # qr = QuantumRegister(visible + hidden + ancilla, 'q') # cr = ClassicalRegister(3, 'c') # qc = QuantumCircuit(qr, cr) # for i in range(visible + hidden): # initialize_qubit = Initialize([0, 1]) # qc.append(initialize_qubit, [i]) # # initialize_qubit = Initialize([1, 0]) # # qc.append(initialize_qubit, [2]) # # for i in range(hidden): # # for j in range(visible): # # qc.rz(weight_matrix[j][i], j) # print(list(range(visible)) + [visible + 0]) # print(list(range(visible+hidden, visible+hidden+ancilla))) # # multi_control_multi_target_gate.mcmt(qc, list(range(visible)), [], QuantumCircuit.cx, [visible]) # # print([qr_visible[i] for i in range(visible)]) # # print([anc[i] for i in range(ancilla)]) # # print([qr_hidden[i] for i in range(hidden)]) # for j in range(hidden): # multi_control_multi_target_gate.mcmt(qc, [qr[i] for i in range(visible)], [qr[i] for i in range(visible + hidden, visible + hidden + ancilla)], QuantumCircuit.cx, [qr[visible + j]]) # # multi_control_multi_target_gate.mcmt(qc, [qr_visible[i] for i in range(visible)], [anc[i] for i in range(ancilla)], QuantumCircuit.cx, [qr_hidden[0]]) # # qc.measure(list(range(visible+hidden)), list(range(visible + hidden))) # # (qc, list(range(visible)) + [visible + 0], qancilla = 6) # # Use Aer's qasm_simulator # simulator = Aer.get_backend('qasm_simulator') # # Execute the circuit on the qasm simulator # job = execute(qc, simulator, shots=1000) # # Grab results from the job # result = job.result() # # Returns counts # counts = result.get_counts(qc) # print("\nTotal count for 0 and 1 are:",counts) # qc.draw() # TO JUŻ NIEPOTRZEBNE - NIE DZIAŁA TEN SPOSÓB Z ARTYKUŁU # print(weight_matrix, '\n') # sinus_matrix = np.sin(weight_matrix + np.pi/4) # print(sinus_matrix, '\n') # print(sinus_matrix.prod(axis = 0), '\n') # phi = np.arcsin(sinus_matrix.prod(axis = 0)) # print(phi, '\n') # psi = phi + np.pi/4 # print(psi, '\n') # ph = np.sin(psi)**2 # print(ph, '\n') # # ph_normalized = preprocessing.normalize([ph], norm = 'l1')[0] # # print(ph_normalized) def exctract_single_qubit_measurment(dict_of_counts, qubit_range): # print(dict_of_counts) # print(len(list(dict_of_counts.keys())[0])) num_qubits = len(list(dict_of_counts.keys())[0]) # result = np.zeros(len(qubit_range)) result = np.zeros(num_qubits) # print(result) for el in dict_of_counts: for i in range(num_qubits): # print("i", i) # print("el[i]", el[i]) if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] # print(result) # print(result[qubit_range]) return result[qubit_range] def create_dataset(dataset_size): dataset = [] for i in range(dataset_size): x = np.array([random.choice([0,1]), random.choice([0,1])]) y = 1 if np.array_equal(x, np.array([0,0])): y = 0 dataset.append({"x": x, "y": y}) return dataset dataset = create_dataset(4) print(dataset) def circuit_function(qc, weight_matrix): qc.data = [] # inicjalizacja wartości qubitów wejściowych (x) initial_state = [[np.sqrt(1-x[i]), np.sqrt(x[i])] for i in range(len(x))] # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda for i in range(visible): initialize_qubit = Initialize(initial_state[i]) qc.append(initialize_qubit, [i]) qc.h(i) # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) for i in range(hidden): for j in range(visible): qc.ry(weight_matrix[j][i], j) multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible)], qr[visible + i], [qr[i] for i in range(visible + hidden, visible + hidden + ancilla)], mode='basic') # bramki Hadamarda na warstwie ukrytej # for i in range(hidden): # qc.h(visible + i) # pomiar linii visible qc.measure(list(range(visible, visible+hidden)), list(range(hidden))) #eksperyment: #symylator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(qc, simulator, shots=num_shots) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(qc) # print(counts) ph = exctract_single_qubit_measurment(counts, list(range(hidden))) / num_shots # print("\nProbabilities are:",ph) return ph[0] epsilon = 0.01 def update2(ph, expected_ph, weight_matrix, lr): gradient = [] for i, row in enumerate(weight_matrix): gradient_row = [] for j, el in enumerate(row): weight_matrix[i][j] += epsilon result_plus = circuit_function(qc, weight_matrix) weight_matrix[i][j] -= 2*epsilon result_minus = circuit_function(qc, weight_matrix) weight_matrix[i][j] += epsilon # result_zero = circuit_function(qc, weight_matrix) # print("ph", result_zero) # print("exp_ph", expected_ph) # print("el final:", el) # print(result_plus - result_minus) result = (result_plus - result_minus)/(2*epsilon) * lr * (ph - expected_ph) gradient_row.append(result) gradient.append(gradient_row) # print("gradient", gradient) weight_matrix = weight_matrix - gradient return weight_matrix # update2() # template do uczenia import matplotlib.pyplot as plt %matplotlib inline def update(exp_ph, ph): global weight_matrix # #obliczanie prawdopodobieństwa p(|h>) ze wzoru # sinus_matrix = np.sin(weight_matrix + np.pi/4) # phi = np.arcsin(sinus_matrix.prod(axis = 0)) # # print('phi', phi) # psi = phi + np.pi/4 # # print('psi', psi) # ph = np.sin(psi)**2 # # print('ph', ph) #obliczanie gradientu i,k S = 1/(np.sqrt(1-(np.sin(phi))**2)) # print("S", S) T = np.sin(phi) * np.sum(1/np.tan(weight_matrix + np.pi/4), axis = 0) # print("T", T) # print("sum products", (exp_ph - ph) * ph * np.cos(2*psi) * S * T) gradient = np.zeros(hidden) for k in range(hidden): gradient[k] = np.sum( (exp_ph - ph) * ph * np.cos(2*psi) * S * T[k]) # print("gradient = ", gradient) # print([gradient] * len(weight_matrix)) weight_matrix = weight_matrix + ([gradient] * len(weight_matrix)) #definicja rozmiaru sieci visible = 2 hidden = 1 ancilla = visible-1 #definicja wejścia (x)oraz inicjalizacja macierzy wag # x = np.array([random.uniform(0, 1) for n in range(visible)]) dataset = create_dataset(10) print(dataset[0]["x"][0]) print(dataset[0]["x"][1]) print([n for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi #definicja parametrów uczenia num_shots = 1000 num_epochs = 100 qr = QuantumRegister(visible + hidden + ancilla, 'q') cr = ClassicalRegister(hidden, 'c') qc = QuantumCircuit(qr, cr) cost_function_data = [] lr = 0.05 for epoch in range(num_epochs): print("epoch: ", epoch) for i, element in enumerate(dataset): # print(element) x = np.array([dataset[i]["x"][n] for n in range(visible)]) exp_ph = dataset[i]["y"] ph = circuit_function(qc, weight_matrix) weight_matrix = update2(ph, exp_ph, weight_matrix, lr) # print("exp_ph", exp_ph, "ph", ph, "weight_matrix", weight_matrix, "cost_function", 0.5 * (ph - exp_ph)**2) cost_function_data.append(0.5 * (ph - exp_ph)**2) qc.draw() plt.xlabel('number of epochs') plt.ylabel('cost') plt.plot(cost_function_data) qc.draw()
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import qiskit from qiskit.visualization import * # Concentrating on the first 100 samples n_samples = 100 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples] ) idx = np.append(idx, np.where(X_train.targets == 2)[0][:n_samples] ) # idx = np.append(idx, # np.where(X_train.targets == 3)[0][:n_samples] # ) print(idx) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) idx = np.append(idx, np.where(X_test.targets == 2)[0][:n_samples] ) # idx = np.append(idx, # np.where(X_test.targets == 3)[0][:n_samples] # ) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True) def exctract_single_qubit_measurment(dict_of_counts, qubit_range): # print(dict_of_counts) # print(len(list(dict_of_counts.keys())[0])) num_qubits = len(list(dict_of_counts.keys())[0]) result = np.zeros(len(qubit_range)) result = np.zeros(num_qubits) # print(result) for el in dict_of_counts: for i in range(num_qubits): # print("i", i) # print("el[i]", el[i]) if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] # print(result) # print(result[qubit_range]) return result[qubit_range] class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) self.n_qubits = n_qubits all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): job = qiskit.execute(self._circuit, self.backend, shots = self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) result = job.result().get_counts(self._circuit) counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) # print("states: ", states) # print("probabilities: ", probabilities) new_probabilities = exctract_single_qubit_measurment(result, list(range(self.n_qubits)))/self.shots # print("new_probabilities: ", new_probabilities) # new_expectation = np.sum(states * new_probabilities) # print("old expectation", np.array([expectation])) return new_probabilities # return np.array([expectation]) simulator = qiskit.Aer.get_backend('qasm_simulator') circuit = QuantumCircuit(2, simulator, 100) print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0])) circuit._circuit.draw() class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): # print("FORWARD BEGIN") # print("input: ", input) """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = ctx.quantum_circuit.run(input[0].tolist()) # print("expectation_z: ", expectation_z) result = torch.tensor([expectation_z]) # print("result", result) ctx.save_for_backward(input, result) # print("FORWARD END") return result @staticmethod def backward(ctx, grad_output): # print("BACKWARD BEGIN") # print("Grad_output: ", grad_output) """ Backward pass computation """ input, expectation_z = ctx.saved_tensors # print("input_list: ", input.tolist()) input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = expectation_right - expectation_left gradients.append(gradient) # print("HALO") gradients = np.array([gradients]).T # print("gradients: ", gradients) # print("BACKWARD END") return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(2, backend, shots) self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(6400, 64) self.fc2 = nn.Linear(64, 2) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) self.fc3 = nn.Linear(2, 3) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(-1, 6400) x = F.relu(self.fc1(x)) # print(x) x = self.fc2(x) # print("x before hybrid layer", x) # print(x.size()) x = self.hybrid(x) # print("x after hybrid layer", x) # x = F.relu(self.fc3(x.float())) # print("return: ", torch.cat((x, 1 - x), -1)) x = self.fc3(x.float()) # print(torch.cat((x, 1 - x), -1)) # return torch.cat((x, 1 - x), -1) # print("softmax: ", F.softmax(x)) # print("argmax: ", torch.argmax(x)) return F.softmax(x) # return torch.argmax(x) # model = Net() optimizer = optim.Adam(model.parameters(), lr=0.01) loss_func = nn.CrossEntropyLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): # print(target) optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg Log Likelihood Loss') model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model.eval() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title('Predicted {}'.format(pred.item())) count += 1 import qiskit qiskit.__qiskit_version__
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import qiskit from qiskit.visualization import * # Concentrating on the first 100 samples n_samples = 100 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples] ) # idx = np.append(idx, # np.where(X_train.targets == 2)[0][:n_samples] # ) # idx = np.append(idx, # np.where(X_train.targets == 3)[0][:n_samples] # ) print(idx) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) # idx = np.append(idx, # np.where(X_test.targets == 2)[0][:n_samples] # ) # idx = np.append(idx, # np.where(X_test.targets == 3)[0][:n_samples] # ) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True) def exctract_single_qubit_measurment(dict_of_counts, qubit_range): # print(dict_of_counts) # print(len(list(dict_of_counts.keys())[0])) num_qubits = len(list(dict_of_counts.keys())[0]) result = np.zeros(len(qubit_range)) result = np.zeros(num_qubits) # print(result) for el in dict_of_counts: for i in range(num_qubits): # print("i", i) # print("el[i]", el[i]) if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] # print(result) # print(result[qubit_range]) return result[qubit_range] class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) self.n_qubits = n_qubits all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): job = qiskit.execute(self._circuit, self.backend, shots = self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) result = job.result().get_counts(self._circuit) counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) # print("states: ", states) # print("probabilities: ", probabilities) new_probabilities = exctract_single_qubit_measurment(result, list(range(self.n_qubits)))/self.shots # print("new_probabilities: ", new_probabilities) # new_expectation = np.sum(states * new_probabilities) # print("old expectation", np.array([expectation])) return new_probabilities # return np.array([expectation]) simulator = qiskit.Aer.get_backend('qasm_simulator') circuit = QuantumCircuit(2, simulator, 100) print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0])) circuit._circuit.draw() class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): # print("FORWARD BEGIN") # print("input: ", input) """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = ctx.quantum_circuit.run(input[0].tolist()) # print("expectation_z: ", expectation_z) result = torch.tensor([expectation_z]) # print("result", result) ctx.save_for_backward(input, result) # print("FORWARD END") return result @staticmethod def backward(ctx, grad_output): # print("BACKWARD BEGIN") # print("Grad_output: ", grad_output) """ Backward pass computation """ input, expectation_z = ctx.saved_tensors # print("input_list: ", input.tolist()) input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = expectation_right - expectation_left gradients.append(gradient) # print("HALO") gradients = np.array([gradients]).T # print("gradients: ", gradients) # print("BACKWARD END") return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(2, backend, shots) self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(6400, 64) self.fc2 = nn.Linear(64, 2) self.hybrid = Hybrid(qiskit.Aer.get_backend('qasm_simulator'), 100, np.pi / 2) self.fc3 = nn.Linear(2, 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(-1, 6400) x = F.relu(self.fc1(x)) # print(x.size()) x = self.fc2(x) # print("x before hybrid layer", x) # print(x.size()) x = self.hybrid(x) # print("x after hybrid layer", x) # x = F.relu(self.fc3(x.float())) # print("return: ", torch.cat((x, 1 - x), -1)) x = self.fc3(x.float()) # print(torch.cat((x, 1 - x), -1)) # return torch.cat((x, 1 - x), -1) # print("softmax: ", F.softmax(x)) # print("argmax: ", torch.argmax(x)) return F.softmax(x) # return torch.argmax(x) # model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.CrossEntropyLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): # print(target) optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg Log Likelihood Loss') model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model.eval() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title('Predicted {}'.format(pred.item())) count += 1 import qiskit qiskit.__qiskit_version__
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
from qiskit import IBMQ # IBMQ.save_account(MY_API_TOKEN) import qiskit qiskit.__version__ import scipy import numpy as np import random from sklearn import preprocessing from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.quantum_info.operators import Operator from qiskit import(QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram from qiskit.extensions import Initialize # Import the Inititialize function from qiskit.aqua.circuits.gates import multi_control_toffoli_gate from qiskit.aqua.circuits.gates import multi_control_multi_target_gate #definicja rozmiaru sieci visible = 1 hidden = 1 ancilla = visible-1 #definicja wejścia (x) oraz inicjalizacja macierzy wag x = np.array([random.uniform(0, 1) for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi # definicja obwodu (linii qubitów) # qc = QuantumCircuit(visible + hidden, visible) qr = QuantumRegister(visible + hidden + ancilla, 'q') cr = ClassicalRegister(visible + hidden, 'c') qc = QuantumCircuit(qr, cr) # inicjalizacja wartości qubitów wejściowych (x) na razie randomowa initial_state = [[np.sqrt(x[i]), np.sqrt(1-x[i])] for i in range(len(x))] # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda for i in range(visible): initialize_qubit = Initialize(initial_state[i]) qc.append(initialize_qubit, [i]) qc.h(i) # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) for i in range(hidden): for j in range(visible): qc.rz(weight_matrix[j][i], j) multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible)], qr[visible + i], [qr[i] for i in range(visible + hidden, visible + hidden + ancilla)], mode='basic') # bramki Hadamarda na warstwie ukrytej for i in range(hidden): qc.h(visible + i) # pomiar linii visible qc.measure(list(range(visible, visible+hidden)), list(range(visible, visible+hidden))) ### OBWÓD DRUGĄ STRONĘ # wyzerowanie wartości qubitów visible for i in range(visible): initialize_qubit = Initialize([1, 0]) qc.append(initialize_qubit, [i]) # bramka Hadamarda na qubitach hidden for i in range(visible, hidden + visible): qc.h(i) #odwrócone rotacje i CNOTy for i in range(hidden): for j in range(visible): multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible, visible + hidden)], qr[j], [qr[k] for k in range(visible + hidden, visible + hidden + ancilla)], mode='basic') qc.rz(-weight_matrix[j][hidden - 1 - i], j) # bramka Hadamarda i pomiar na qubitach visible for i in range(visible): qc.h(i) qc.measure(list(range(visible)), list(range(visible))) # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(qc, simulator, shots=1000) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(qc) print("\nTotal count for 0 and 1 are:",counts) # qc.draw(output='mpl') qc.draw() # komórka do testowania wieloqubitowej bramki CNOT # NIE ZALEŻNA OD WŁAŚCIWEJ SIECI # work = ancilla def n_control_gate(qc, target, control: list, work: list, gate_type): if len(control) - len(work) != 1: raise Exception("Wrong number of control or work qubits!") qc.toffoli(control[0], control[1], work[0]) control_left = control[2:] for i, c_bit in enumerate(control_left): qc.toffoli(c_bit, work[i], work[i+1]) qc.gate_type(work[-1], target) for i, c_bit in reversed(list(enumerate(control_left))): qc.toffoli(c_bit, work[i], work[i+1]) qc.toffoli(control[0], control[1], work[0]) visible = 2 hidden = 2 ancilla = visible - 1 # qr_visible = QuantumRegister(visible, 'visible') # qr_hidden = QuantumRegister(hidden, 'hidden') # cr = ClassicalRegister(3, 'c') # if visible > 2: # anc = QuantumRegister(visible - 2, 'ancilla') # qc = QuantumCircuit(qr_visible, qr_hidden, anc, cr) # else: # qc = QuantumCircuit(qr_visible, qr_hidden, cr) # qr_visible = QuantumRegister(visible, 'visible') qr = QuantumRegister(visible + hidden + ancilla, 'q') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qr, cr) for i in range(visible + hidden): initialize_qubit = Initialize([0, 1]) qc.append(initialize_qubit, [i]) # initialize_qubit = Initialize([1, 0]) # qc.append(initialize_qubit, [2]) # for i in range(hidden): # for j in range(visible): # qc.rz(weight_matrix[j][i], j) print(list(range(visible)) + [visible + 0]) print(list(range(visible+hidden, visible+hidden+ancilla))) # multi_control_multi_target_gate.mcmt(qc, list(range(visible)), [], QuantumCircuit.cx, [visible]) # print([qr_visible[i] for i in range(visible)]) # print([anc[i] for i in range(ancilla)]) # print([qr_hidden[i] for i in range(hidden)]) for j in range(hidden): multi_control_multi_target_gate.mcmt(qc, [qr[i] for i in range(visible)], [qr[i] for i in range(visible + hidden, visible + hidden + ancilla)], QuantumCircuit.cx, [qr[visible + j]]) # multi_control_multi_target_gate.mcmt(qc, [qr_visible[i] for i in range(visible)], [anc[i] for i in range(ancilla)], QuantumCircuit.cx, [qr_hidden[0]]) # qc.measure(list(range(visible+hidden)), list(range(visible + hidden))) # (qc, list(range(visible)) + [visible + 0], qancilla = 6) # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(qc, simulator, shots=1000) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(qc) print("\nTotal count for 0 and 1 are:",counts) qc.draw() print(weight_matrix, '\n') sinus_matrix = np.sin(weight_matrix + np.pi/4) print(sinus_matrix, '\n') print(sinus_matrix.prod(axis = 0), '\n') phi = np.arcsin(sinus_matrix.prod(axis = 0)) print(phi, '\n') psi = phi + np.pi/4 print(psi, '\n') ph = np.sin(psi)**2 print(ph, '\n') # ph_normalized = preprocessing.normalize([ph], norm = 'l1')[0] # print(ph_normalized) def exctract_single_qubit_measurment(dict_of_counts, qubit_range): num_qubits = int(np.log2(len(counts))) # result = np.zeros(len(qubit_range)) result = np.zeros(num_qubits) for el in dict_of_counts: for i in range(num_qubits): # print("i", i) # print("el[i]", el[i]) if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] # print(result) # print(result[qubit_range]) return result[qubit_range] # template do uczenia def update(exp_ph): global weight_matrix #obliczanie prawdopodobieństwa p(|h>) ze wzoru sinus_matrix = np.sin(weight_matrix + np.pi/4) phi = np.arcsin(sinus_matrix.prod(axis = 0)) # print('phi', phi) psi = phi + np.pi/4 # print('psi', psi) ph = np.sin(psi)**2 # print('ph', ph) #obliczanie gradientu i,k S = 1/(np.sqrt(1-(np.sin(phi))**2)) # print("S", S) T = np.sin(phi) * np.sum(1/np.tan(weight_matrix + np.pi/4), axis = 0) # print("T", T) # print("sum products", (exp_ph - ph) * ph * np.cos(2*psi) * S * T) gradient = np.zeros(hidden) for k in range(hidden): gradient[k] = np.sum( (exp_ph - ph) * ph * np.cos(2*psi) * S * T[k]) # print("gradient = ", gradient) # print([gradient] * len(weight_matrix)) weight_matrix = weight_matrix + ([gradient] * len(weight_matrix)) #definicja rozmiaru sieci visible = 3 hidden = 2 ancilla = visible-1 #definicja wejścia (x)oraz inicjalizacja macierzy wag # x = np.array([random.uniform(0, 1) for n in range(visible)]) x = np.array([0.25 for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi #definicja parametrów uczenia num_shots = 1000 num_epochs = 100 for epoch in range(num_epochs): ########################## # definicja obwodu (linii qubitów) # qc = QuantumCircuit(visible + hidden, visible) qr = QuantumRegister(visible + hidden + ancilla, 'q') cr = ClassicalRegister(visible + hidden, 'c') qc = QuantumCircuit(qr, cr) # inicjalizacja wartości qubitów wejściowych (x) na razie randomowa initial_state = [[np.sqrt(x[i]), np.sqrt(1-x[i])] for i in range(len(x))] # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda for i in range(visible): initialize_qubit = Initialize(initial_state[i]) qc.append(initialize_qubit, [i]) qc.h(i) # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) for i in range(hidden): for j in range(visible): qc.rz(weight_matrix[j][i], j) multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible)], qr[visible + i], [qr[i] for i in range(visible + hidden, visible + hidden + ancilla)], mode='basic') # bramki Hadamarda na warstwie ukrytej for i in range(hidden): qc.h(visible + i) # pomiar linii visible qc.measure(list(range(visible, visible+hidden)), list(range(visible, visible+hidden))) ### OBWÓD DRUGĄ STRONĘ # wyzerowanie wartości qubitów visible for i in range(visible): initialize_qubit = Initialize([1, 0]) qc.append(initialize_qubit, [i]) # bramka Hadamarda na qubitach hidden for i in range(visible, hidden + visible): qc.h(i) #odwrócone rotacje i CNOTy for i in range(hidden): for j in range(visible): multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible, visible + hidden)], qr[j], [qr[k] for k in range(visible + hidden, visible + hidden + ancilla)], mode='basic') qc.rz(-weight_matrix[j][hidden - 1 - i], j) # bramka Hadamarda i pomiar na qubitach visible for i in range(visible): qc.h(i) qc.measure(list(range(visible)), list(range(visible))) ################################# #eksperyment: #symylator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(qc, simulator, shots=num_shots) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(qc) exp_ph = exctract_single_qubit_measurment(counts, list(range(visible, visible + hidden))) / num_shots # print("\nTotal count for hidden qubits '1' measurments are:",exctract_single_qubit_measurment(counts)) print("\nProbabilities are:",exp_ph) # print("\nTotal count for 0 and 1 are:",counts) print(weight_matrix) qc.draw() update(exp_ph)
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
from qiskit import IBMQ # IBMQ.save_account(MY_API_TOKEN) import qiskit qiskit.__version__ import numpy as np from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info.operators import Operator from qiskit import(QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram from qiskit.extensions import Initialize # Import the Inititialize function theta = np.pi / 6 x = 0.25 qc = QuantumCircuit(2,2) initial_state = [np.sqrt(x), np.sqrt(1-x)] initialize_qubit = Initialize(initial_state) qc.append(initialize_qubit, [0]) qc.h(0) # qc.unitary(Rz(0), [0], label='Rz') qc.rz(theta, 0) qc.cx(0,1) qc.h(1) # Map the quantum measurement to the classical bits qc.measure([0], [0]) # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(qc, simulator, shots=1000) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(qc) print("\nTotal count for 0 and 1 are:",counts) qc.draw()
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
from qiskit import IBMQ # IBMQ.save_account(MY_API_TOKEN) import qiskit qiskit.__version__ import scipy import numpy as np import random from sklearn import preprocessing from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.quantum_info.operators import Operator from qiskit import(QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram from qiskit.extensions import Initialize # Import the Inititialize function from qiskit.aqua.circuits.gates import multi_control_toffoli_gate from qiskit.aqua.circuits.gates import multi_control_multi_target_gate import torch from torch.autograd import Function import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms import timeit import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['image.cmap'] = 'gray' import pandas as pd from skimage import data, color from skimage.transform import rescale, resize, downscale_local_mean from skimage import img_as_bool import cv2 as cv def exctract_single_qubit_measurment(dict_of_counts, qubit_range): # print(dict_of_counts) # print(len(list(dict_of_counts.keys())[0])) num_qubits = len(list(dict_of_counts.keys())[0]) # result = np.zeros(len(qubit_range)) result = np.zeros(num_qubits) # print(result) for el in dict_of_counts: for i in range(num_qubits): # print("i", i) # print("el[i]", el[i]) if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] # print(result) # print(result[qubit_range]) return result[qubit_range] # Wczytywanie danych inną metodą # Concentrating on the first 100 samples n_samples = 100 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True) class QMLCircuit(): def __init__(self, visible, hidden, num_shots=1000): self.visible = visible self.hidden = hidden self.ancilla = visible-1 self.qr = QuantumRegister((self.visible + self.hidden + self.ancilla), 'q') self.cr = ClassicalRegister(self.hidden, 'c') self.qc = QuantumCircuit(self.qr, self.cr) self.num_shots = num_shots # def run(self, thetas): def circuit_function(self, x, weight_matrix): self.qc.data = [] # print("x: ",x) # print("x[0]: ", x[0]) # inicjalizacja wartości qubitów wejściowych (x) initial_state = [[np.sqrt(1-x[i]*x[i]), x[i]] for i in range(len(x))] # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda for i in range(visible): initialize_qubit = Initialize(initial_state[i]) self.qc.append(initialize_qubit, [i]) self.qc.h(i) # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) for i in range(self.hidden): for j in range(self.visible): self.qc.ry(weight_matrix[j][i], j) # print([self.qr[k] for k in range(self.visible)]) # print(self.qr[self.visible + i]) # print([self.qr[i] for i in range(self.visible + self.hidden, self.visible + self.hidden + self.ancilla)]) multi_control_toffoli_gate.mct(self.qc, [self.qr[k] for k in range(self.visible)], self.qr[self.visible + i], [self.qr[i] for i in range(self.visible + self.hidden, self.visible + self.hidden + self.ancilla)], mode='basic') # pomiar linii visible self.qc.measure(list(range(self.visible, self.visible+self.hidden)), list(range(self.hidden))) #eksperyment: simulator = Aer.get_backend('qasm_simulator') job = execute(self.qc, simulator, shots=self.num_shots) result = job.result() counts = result.get_counts(self.qc) ph = exctract_single_qubit_measurment(counts, list(range(self.hidden))) / self.num_shots # print("\nProbabilities are:",ph) return ph visible = 2 hidden = 2 QMLC = QMLCircuit(visible, hidden, 1000) #definicja wejścia (x)oraz inicjalizacja macierzy wag x = np.array([random.uniform(0, 1) for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi ph = QMLC.circuit_function(x, weight_matrix) print("ph: ", ph) QMLC.qc.draw() # global weight_matrix # weight_matrix = nn.Parameter(torch.tensor(np.random.rand(visible, hidden) * np.pi)) # print("self.weight_matrix: ", weight_matrix) class QFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, weight_matrix, QMLC, epsilon): """ Forward pass computation """ print("FORWARD BEGIN") ctx.epsilon = epsilon ctx.QMLC = QMLC ctx.weight_matrix = weight_matrix print("input from forward: ", input) print("weight_matrix: ", ctx.weight_matrix) wm = ctx.weight_matrix.tolist() print("wm: ", wm) ph = ctx.QMLC.circuit_function(input.tolist()[0], wm) result = torch.tensor([ph]) print("result: ", result) ctx.save_for_backward(input, result) print("FORWARD END") return result @staticmethod def backward(ctx, grad_output): print("BACKWARD BEGIN") print("grad_output: ", grad_output) input, ph = ctx.saved_tensors input_list = np.array(input.tolist()) wm = ctx.weight_matrix.tolist() # print("wm: ", wm) # print(len(wm)) # print(len(wm[0])) gradient = [] # wyliczam część gradientu dy/dw for i in range(len(wm)): gradient_row = [] for j in range(len(wm[0])): wm[i][j] += ctx.epsilon result_plus = ctx.QMLC.circuit_function(input_list.tolist()[0], wm) print(wm) wm[i][j] -= 2*ctx.epsilon result_minus = ctx.QMLC.circuit_function(input_list.tolist()[0], wm) print(wm) wm[i][j] += ctx.epsilon result_0 = ctx.QMLC.circuit_function(input_list.tolist()[0], wm) print(wm) # print("exp_ph", expected_ph) # print(result_plus - result_minus) dydw = (result_plus - result_minus)/(2*ctx.epsilon) djdy = (result_0 - grad_output.tolist()) lr = 0.05 print("dydw: ", dydw) print("djdy: ", djdy) result = djdy * dydw * lr # print("result: ", result) gradient_row.append(np.sum(result)) gradient.append(gradient_row) # print("gradient: ", gradient) gradient = np.array(gradient) # print("gradient size: ", gradient) # print("wm size: ", wm) wm -= gradient # print("self.weight_matrix: ", wm) # print(torch.tensor(gradient).float() * grad_output.float(), None, None) # print("BACKWARD END") ret = np.zeros((len(wm), 1)).T # print(ret) return torch.tensor(ret).float(), None, None, None class QuantumLayer(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, visible, hidden, backend, shots, epsilon): super(QuantumLayer, self).__init__() self.visible = visible self.hidden = hidden self.QMLC = QMLCircuit(self.visible, self.hidden, 1000) self.epsilon = epsilon # self.weight_matrix = nn.Parameter(torch.randn(visible, hidden)) # self.weight_matrix = np.random.rand(visible, hidden) * np.pi self.weight_matrix = nn.Parameter(torch.tensor(np.random.rand(visible, hidden) * np.pi)) print("self.weight_matrix: ", self.weight_matrix) def forward(self, input): return QFunction.apply(input, self.weight_matrix, self.QMLC, self.epsilon) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(6400, 64) self.fc2 = nn.Linear(64, 2) self.quantum = QuantumLayer(2, 2, qiskit.Aer.get_backend('qasm_simulator'), 1000, 0.01) self.fc3 = nn.Linear(2, 2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(-1, 6400) x = F.relu(self.fc1(x)) x = self.fc2(x) x = F.softmax(x) # print("softmax x: ", x) x = self.quantum(x) # print("x after quantum: ", x) # print("x after quantum: ", x.size()) x = self.fc3(x.float()) # print("x after fc3: ", x.size()) # print("x after fc3: ", x) return F.log_softmax(x) # return x # trenowanie modelu model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): print("epoch: ", epoch) print("weight_matrix: ", weight_matrix) # print("wm: ", weight_matrix) total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): # target = target.float() # for MSELoss() function optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg Log Likelihood Loss') model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model.eval() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title('Predicted {}'.format(pred.item())) count += 1 # nie trzeba odpalać STARE FUNKCJE epsilon = 0.01 def update(ph, expected_ph, weight_matrix, lr): gradient = [] for i, row in enumerate(weight_matrix): gradient_row = [] for j, el in enumerate(row): weight_matrix[i][j] += epsilon result_plus = circuit_function(qc, weight_matrix) weight_matrix[i][j] -= 2*epsilon result_minus = circuit_function(qc, weight_matrix) weight_matrix[i][j] += epsilon # result_zero = circuit_function(qc, weight_matrix) # print("ph", result_zero) # print("exp_ph", expected_ph) # print("el final:", el) # print(result_plus - result_minus) result = (result_plus - result_minus)/(2*epsilon) * lr * (ph - expected_ph) gradient_row.append(result) gradient.append(gradient_row) # print("gradient", gradient) weight_matrix = weight_matrix - gradient return weight_matrix def create_dataset(dataset_size): dataset = [] for i in range(dataset_size): x = np.array([random.choice([0,1]), random.choice([0,1])]) y = 1 if np.array_equal(x, np.array([0,0])) or np.array_equal(x, np.array([1,1])): y = 0 dataset.append({"x": x, "y": y}) return dataset dataset = create_dataset(4) print(dataset) # template do uczenia import matplotlib.pyplot as plt %matplotlib inline #definicja rozmiaru sieci visible = 2 hidden = 1 ancilla = visible-1 #definicja wejścia (x)oraz inicjalizacja macierzy wag # x = np.array([random.uniform(0, 1) for n in range(visible)]) dataset = create_dataset(10) print(dataset[0]["x"][0]) print(dataset[0]["x"][1]) print([n for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi #definicja parametrów uczenia num_shots = 1000 num_epochs = 100 qr = QuantumRegister(visible + hidden + ancilla, 'q') cr = ClassicalRegister(hidden, 'c') qc = QuantumCircuit(qr, cr) cost_function_data = [] lr = 0.05 for epoch in range(num_epochs): print("epoch: ", epoch) for i, element in enumerate(dataset): # print(element) x = np.array([dataset[i]["x"][n] for n in range(visible)]) exp_ph = dataset[i]["y"] ph = circuit_function(qc, weight_matrix) weight_matrix = update(ph, exp_ph, weight_matrix, lr) # print("exp_ph", exp_ph, "ph", ph, "weight_matrix", weight_matrix, "cost_function", 0.5 * (ph - exp_ph)**2) cost_function_data.append(0.5 * (ph - exp_ph)**2) qc.draw() plt.xlabel('number of epochs') plt.ylabel('cost') plt.plot(cost_function_data) for i in range(len(dataset)): x = np.array([dataset[i]["x"][n] for n in range(visible)]) exp_ph = dataset[i]["y"] ph = circuit_function(qc, weight_matrix) print(ph) print(exp_ph, "\n") qc.draw() ph = circuit_function(qc, weight_matrix) print(ph)
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
from qiskit import IBMQ # IBMQ.save_account(MY_API_TOKEN) import qiskit qiskit.__version__ import scipy import numpy as np import random from sklearn import preprocessing from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.quantum_info.operators import Operator from qiskit import(QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram from qiskit.extensions import Initialize # Import the Inititialize function from qiskit.aqua.circuits.gates import multi_control_toffoli_gate from qiskit.aqua.circuits.gates import multi_control_multi_target_gate import torch from torch.autograd import Function import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms import timeit import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['image.cmap'] = 'gray' import pandas as pd from skimage import data, color from skimage.transform import rescale, resize, downscale_local_mean from skimage import img_as_bool import cv2 as cv image_height = 14 image_width = 14 len_x = image_height * image_width len_y = 0 mnist_dataset = pd.read_csv('../data/mnist_train.csv') X_train = mnist_dataset.values[:,1:] img = np.resize(X_train[1], (28, 28)) def random_image(dataset): return random.choice(dataset) X_train = mnist_dataset.values[:,1:] X_train2 = mnist_dataset.values[:,:] # print(mnist_dataset.values[:,0]) X_train3 = mnist_dataset.values[np.where(mnist_dataset.values[:,0] < 2), 1:] labels =mnist_dataset.values[np.where(mnist_dataset.values[:,0] < 2), 0] # print(labels) # print(X_train3) image = random_image(X_train3[0]) print(len(X_train3[0])) imgs = np.resize(X_train3[0], (len(X_train3[0]), 28, 28)) / 255 print(len(imgs)) plt.imshow(imgs[0]) plt.show() # print([img for img in imgs) images_resized = [resize(img, (14, 14), anti_aliasing=True) for img in imgs] # print(images_resized) plt.imshow(images_resized[8]) plt.show() # print(image_resized) # # img = np.array(data).reshape(image_height, -1) # print(len(X_train[0])) # # plt.imshow(np.resize(X_train[0], (28, 28))) # plt.show() plt.imshow(images_resized[7]) plt.show() plt.imshow(images_resized[8]) plt.show() plt.imshow(images_resized[9]) plt.show() images_normalized = [cv.normalize(image_resized, image_resized, 0, 255, cv.NORM_MINMAX) for image_resized in images_resized] print(len(images_normalized)) plt.imshow(images_normalized[0]) plt.show() data = [np.where(image_resized > 0.1, 1, 0) for image_resized in images_resized] print(len(data)) print(data[0]) plt.imshow(data[0]) plt.show() # data = np.reshape(data, (image_height*image_height)) data = [x.flatten().tolist() for x in data] # len_y = len(X_train3[0]) print(data[0]) def exctract_single_qubit_measurment(dict_of_counts, qubit_range): # print(dict_of_counts) # print(len(list(dict_of_counts.keys())[0])) num_qubits = len(list(dict_of_counts.keys())[0]) # result = np.zeros(len(qubit_range)) result = np.zeros(num_qubits) # print(result) for el in dict_of_counts: for i in range(num_qubits): # print("i", i) # print("el[i]", el[i]) if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] # print(result) # print(result[qubit_range]) return result[qubit_range] # TUTAJ ZACZYNAM KOD class QMLCircuit(): def __init__(self, visible, hidden, num_shots=1000): self.visible = visible self.hidden = hidden self.ancilla = visible-1 self.qr = QuantumRegister((self.visible + self.hidden + self.ancilla), 'q') self.cr = ClassicalRegister(self.hidden, 'c') self.qc = QuantumCircuit(self.qr, self.cr) self.num_shots = num_shots # def run(self, thetas): def circuit_function(self, x, weight_matrix): self.qc.data = [] # inicjalizacja wartości qubitów wejściowych (x) initial_state = [[np.sqrt(1-x[i]), np.sqrt(x[i])] for i in range(len(x))] # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda for i in range(visible): initialize_qubit = Initialize(initial_state[i]) self.qc.append(initialize_qubit, [i]) self.qc.h(i) # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) for i in range(self.hidden): for j in range(self.visible): self.qc.ry(weight_matrix[j][i], j) print([self.qr[k] for k in range(self.visible)]) print(self.qr[self.visible + i]) print([self.qr[i] for i in range(self.visible + self.hidden, self.visible + self.hidden + self.ancilla)]) multi_control_toffoli_gate.mct(self.qc, [self.qr[k] for k in range(self.visible)], self.qr[self.visible + i], [self.qr[i] for i in range(self.visible + self.hidden, self.visible + self.hidden + self.ancilla)], mode='basic') # pomiar linii visible self.qc.measure(list(range(visible, visible+hidden)), list(range(hidden))) #eksperyment: simulator = Aer.get_backend('qasm_simulator') job = execute(self.qc, simulator, shots=self.num_shots) result = job.result() counts = result.get_counts(self.qc) ph = exctract_single_qubit_measurment(counts, list(range(self.hidden))) / self.num_shots # print("\nProbabilities are:",ph) return ph visible = 2 hidden = 1 QMLC = QMLCircuit(visible, hidden, 1000) #definicja wejścia (x)oraz inicjalizacja macierzy wag x = np.array([random.uniform(0, 1) for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi print(QMLC.circuit_function(x, weight_matrix)) QMLC.qc.draw() class QFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, QMLC, epsilon): """ Forward pass computation """ ctx.epsilon = epsilon ctx.QMLC = QMLC print(input) ph = ctx.QMLC(input[0].tolist()) result = torch.tensor([ph]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): # def update(ph, expected_ph, weight_matrix, lr): input, ph = ctx.saved_tensors input_list = np.array(input.tolist()) gradients = [] gradient_row = [] for j, el in enumerate(row): weight_matrix[i][j] += epsilon result_plus = circuit_function(qc, weight_matrix) weight_matrix[i][j] -= 2*epsilon result_minus = circuit_function(qc, weight_matrix) weight_matrix[i][j] += epsilon # result_zero = circuit_function(qc, weight_matrix) # print("ph", result_zero) # print("exp_ph", expected_ph) # print("el final:", el) # print(result_plus - result_minus) result = (result_plus - result_minus)/(2*epsilon) * lr * (ph - expected_ph) gradient_row.append(result) gradient.append(gradient_row) # print("gradient", gradient) weight_matrix = weight_matrix - gradient return weight_matrix """ Backward pass computation """ input, ph = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.epsilon shift_left = input_list - np.ones(input_list.shape) * ctx.epsilon gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class QuantumLayer(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, epsilon): super(QuantumLayer, self).__init__() self.QMLC = QMLCircuit(1, 1, 1000) self.epsilon = epsilon def forward(self, input): return QFunction.apply(input, self.QMLC, self.epsilon) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(256, 64) self.fc2 = nn.Linear(64, 1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(-1, 256) x = F.relu(self.fc1(x)) x = self.fc2(x) return torch.cat((x, 1 - x), -1) # Concentrating on the first 100 samples n_samples = 100 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True) model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] print(i for i in enumerate(train_loader)) for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) for epoch in range(epochs): total_loss = [] print(i for i in enumerate(train_loader)) for batch_idx, something in enumerate(train_loader): print(batch_idx) print(something) print(something) class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, visible, hidden, backend, shots): # --- Circuit definition --- self.qc = qiskit.QuantumCircuit(visible + hidden) all_qubits = [i for i in range(visible+hidden)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): job = qiskit.execute(self._circuit, self.backend, shots = self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) result = job.result().get_counts(self._circuit) counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) return np.array([expectation]) simulator = qiskit.Aer.get_backend('qasm_simulator') circuit = QuantumCircuit(1, 1, simulator, 100) print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0])) circuit._circuit.draw() epsilon = 0.01 def update(ph, expected_ph, weight_matrix, lr): gradient = [] for i, row in enumerate(weight_matrix): gradient_row = [] for j, el in enumerate(row): weight_matrix[i][j] += epsilon result_plus = circuit_function(qc, weight_matrix) weight_matrix[i][j] -= 2*epsilon result_minus = circuit_function(qc, weight_matrix) weight_matrix[i][j] += epsilon # result_zero = circuit_function(qc, weight_matrix) # print("ph", result_zero) # print("exp_ph", expected_ph) # print("el final:", el) # print(result_plus - result_minus) result = (result_plus - result_minus)/(2*epsilon) * lr * (ph - expected_ph) gradient_row.append(result) gradient.append(gradient_row) # print("gradient", gradient) weight_matrix = weight_matrix - gradient return weight_matrix # class QuantumCircuit: # """ # This class provides a simple interface for interaction # with the quantum circuit # """ # def __init__(self, n_qubits, backend, shots): # # --- Circuit definition --- # self._circuit = qiskit.QuantumCircuit(n_qubits) # all_qubits = [i for i in range(n_qubits)] # self.theta = qiskit.circuit.Parameter('theta') # self._circuit.h(all_qubits) # self._circuit.barrier() # self._circuit.ry(self.theta, all_qubits) # self._circuit.measure_all() # # --------------------------- # self.backend = backend # self.shots = shots # def run(self, thetas): #MOJE circuit_funcion() # job = qiskit.execute(self._circuit, # self.backend, # shots = self.shots, # parameter_binds = [{self.theta: theta} for theta in thetas]) # result = job.result().get_counts(self._circuit) # counts = np.array(list(result.values())) # states = np.array(list(result.keys())).astype(float) # # Compute probabilities for each state # probabilities = counts / self.shots # # Get state expectation # expectation = np.sum(states * probabilities) # return np.array([expectation]) class QuantumFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit ph = ctx.quantum_circuit.run(input[0].tolist()) result = torch.tensor([expectation_z]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): """ Backward pass computation """ input, expectation_z = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class QuantumLayer(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(QuantumLayer, self).__init__() self.quantum_circuit = QuantumCircuit(1, backend, shots) self.shift = shift def forward(self, input): return QuantumFunction.apply(input, self.quantum_circuit, self.shift) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(256, 64) self.fc2 = nn.Linear(64, 1) self.quantum_layer = Quantum_Layer() def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(-1, 256) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.quantum_layer(x) return torch.cat((x, 1 - x), -1) net = Net() print(net) def exctract_single_qubit_measurment(dict_of_counts, qubit_range): # print(dict_of_counts) # print(len(list(dict_of_counts.keys())[0])) num_qubits = len(list(dict_of_counts.keys())[0]) # result = np.zeros(len(qubit_range)) result = np.zeros(num_qubits) # print(result) for el in dict_of_counts: for i in range(num_qubits): # print("i", i) # print("el[i]", el[i]) if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] # print(result) # print(result[qubit_range]) return result[qubit_range] def create_dataset(dataset_size): dataset = [] for i in range(dataset_size): x = np.array([random.choice([0,1]), random.choice([0,1])]) y = 1 if np.array_equal(x, np.array([0,0])) or np.array_equal(x, np.array([1,1])): y = 0 dataset.append({"x": x, "y": y}) return dataset dataset = create_dataset(4) print(dataset) class QuantumCircuit(): def __init__(self, visible=1, hidden=1, num_shots=1000): self._visible = visible self._hidden = hidden print(self._visible + self._hidden + ancilla) qr = QuantumRegister((self._visible + self._hidden), 'q') cr = ClassicalRegister(self._hidden, 'c') self._qc = QuantumCircuit(qr, cr) self._num_shots = num_shots # def run(self, thetas): def circuit_function(qc, x, weight_matrix): qc.data = [] # inicjalizacja wartości qubitów wejściowych (x) initial_state = [[np.sqrt(1-x[i]), np.sqrt(x[i])] for i in range(len(x))] # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda for i in range(visible): initialize_qubit = Initialize(initial_state[i]) qc.append(initialize_qubit, [i]) qc.h(i) # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) for i in range(hidden): for j in range(visible): qc.ry(weight_matrix[j][i], j) multi_control_toffoli_gate.mct(qc, [qr[k] for k in range(visible)], qr[visible + i], [qr[i] for i in range(visible + hidden, visible + hidden + ancilla)], mode='basic') # pomiar linii visible qc.measure(list(range(visible, visible+hidden)), list(range(hidden))) #eksperyment: simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=num_shots) result = job.result() counts = result.get_counts(qc) ph = exctract_single_qubit_measurment(counts, list(range(hidden))) / num_shots # print("\nProbabilities are:",ph) return ph[0] epsilon = 0.01 def update(ph, expected_ph, weight_matrix, lr): gradient = [] for i, row in enumerate(weight_matrix): gradient_row = [] for j, el in enumerate(row): weight_matrix[i][j] += epsilon result_plus = circuit_function(qc, weight_matrix) weight_matrix[i][j] -= 2*epsilon result_minus = circuit_function(qc, weight_matrix) weight_matrix[i][j] += epsilon # result_zero = circuit_function(qc, weight_matrix) # print("ph", result_zero) # print("exp_ph", expected_ph) # print("el final:", el) # print(result_plus - result_minus) result = (result_plus - result_minus)/(2*epsilon) * lr * (ph - expected_ph) gradient_row.append(result) gradient.append(gradient_row) # print("gradient", gradient) weight_matrix = weight_matrix - gradient return weight_matrix visible = 2 hidden = 1 ancilla = visible-1 num_shots = 1000 qc = QuantumCircuit(visible, hidden, 1000) # template do uczenia import matplotlib.pyplot as plt %matplotlib inline #definicja rozmiaru sieci visible = 2 hidden = 1 ancilla = visible-1 #definicja wejścia (x)oraz inicjalizacja macierzy wag # x = np.array([random.uniform(0, 1) for n in range(visible)]) dataset = create_dataset(10) print(dataset[0]["x"][0]) print(dataset[0]["x"][1]) print([n for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi #definicja parametrów uczenia num_shots = 1000 num_epochs = 100 qr = QuantumRegister(visible + hidden + ancilla, 'q') cr = ClassicalRegister(hidden, 'c') qc = QuantumCircuit(qr, cr) cost_function_data = [] lr = 0.05 for epoch in range(num_epochs): print("epoch: ", epoch) for i, element in enumerate(dataset): # print(element) x = np.array([dataset[i]["x"][n] for n in range(visible)]) exp_ph = dataset[i]["y"] ph = circuit_function(qc, weight_matrix) weight_matrix = update(ph, exp_ph, weight_matrix, lr) # print("exp_ph", exp_ph, "ph", ph, "weight_matrix", weight_matrix, "cost_function", 0.5 * (ph - exp_ph)**2) cost_function_data.append(0.5 * (ph - exp_ph)**2) qc.draw() plt.xlabel('number of epochs') plt.ylabel('cost') plt.plot(cost_function_data) for i in range(len(dataset)): x = np.array([dataset[i]["x"][n] for n in range(visible)]) exp_ph = dataset[i]["y"] ph = circuit_function(qc, weight_matrix) print(ph) print(exp_ph, "\n") qc.draw() ph = circuit_function(qc, weight_matrix) print(ph)
https://github.com/mareksubocz/QRBM-qiskit
mareksubocz
from qiskit import IBMQ # IBMQ.save_account(MY_API_TOKEN) import qiskit qiskit.__version__ import scipy import numpy as np import random from sklearn import preprocessing from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.quantum_info.operators import Operator from qiskit import(QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram from qiskit.extensions import Initialize # Import the Inititialize function from qiskit.aqua.circuits.gates import multi_control_toffoli_gate from qiskit.aqua.circuits.gates import multi_control_multi_target_gate import torch from torch.autograd import Function import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms import timeit import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['image.cmap'] = 'gray' import pandas as pd from skimage import data, color from skimage.transform import rescale, resize, downscale_local_mean from skimage import img_as_bool import cv2 as cv def exctract_single_qubit_measurment(dict_of_counts, qubit_range): num_qubits = len(list(dict_of_counts.keys())[0]) result = np.zeros(num_qubits) for el in dict_of_counts: for i in range(num_qubits): if i in qubit_range and el[i] == '1': result[i] += dict_of_counts[el] return result[qubit_range] class QMLCircuit(): def __init__(self, visible, hidden, num_shots=1000): self.visible = visible self.hidden = hidden self.ancilla = visible-1 self.qr = QuantumRegister((self.visible + self.hidden + self.ancilla), 'q') self.cr = ClassicalRegister(self.hidden, 'c') self.qc = QuantumCircuit(self.qr, self.cr) self.num_shots = num_shots # def run(self, thetas): def circuit_function(self, x, weight_matrix): self.qc.data = [] # inicjalizacja wartości qubitów wejściowych (x) initial_state = [[np.sqrt(1-x[i]), np.sqrt(x[i])] for i in range(len(x))] print('dlugosc initial_state: ', len(initial_state)) # inicjalizacja wartości qubitów wejściowych i bramka Hadamarda for i in range(visible): print('i vis: ', i) initialize_qubit = Initialize(initial_state[i]) self.qc.append(initialize_qubit, [i]) self.qc.h(i) # ciąg bramek CNOT i bramek rotacji R (zależnych od parametrów) for i in range(self.hidden): print('i hid: ', i) for j in range(self.visible): print('j vis: ', j) self.qc.ry(weight_matrix[j][i], j) print([self.qr[k] for k in range(self.visible)]) print(self.qr[self.visible + i]) print([self.qr[i] for i in range(self.visible + self.hidden, self.visible + self.hidden + self.ancilla)]) multi_control_toffoli_gate.mct(self.qc, [self.qr[k] for k in range(self.visible)], self.qr[self.visible + i], [self.qr[i] for i in range(self.visible + self.hidden, self.visible + self.hidden + self.ancilla)], mode='basic') # pomiar linii visible self.qc.measure(list(range(visible, visible+hidden)), list(range(hidden))) #eksperyment: simulator = Aer.get_backend('qasm_simulator') job = execute(self.qc, simulator, shots=self.num_shots) result = job.result() counts = result.get_counts(self.qc) ph = exctract_single_qubit_measurment(counts, list(range(self.hidden))) / self.num_shots # print("\nProbabilities are:",ph) return ph visible = 2 hidden = 1 QMLC = QMLCircuit(visible, hidden, 1000) #definicja wejścia (x)oraz inicjalizacja macierzy wag x = np.array([random.uniform(0, 1) for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi print(QMLC.circuit_function(x, weight_matrix)) QMLC.qc.draw() ##Na razie zostawiam na później class QFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, QMLC, epsilon): """ Forward pass computation """ ctx.epsilon = epsilon ctx.QMLC = QMLC print(input) ph = ctx.QMLC(input[0].tolist()) result = torch.tensor([ph]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): # def update(ph, expected_ph, weight_matrix, lr): input, ph = ctx.saved_tensors input_list = np.array(input.tolist()) gradients = [] gradient_row = [] for j, el in enumerate(row): weight_matrix[i][j] += epsilon result_plus = circuit_function(qc, weight_matrix) weight_matrix[i][j] -= 2*epsilon result_minus = circuit_function(qc, weight_matrix) weight_matrix[i][j] += epsilon # result_zero = circuit_function(qc, weight_matrix) # print("ph", result_zero) # print("exp_ph", expected_ph) # print("el final:", el) # print(result_plus - result_minus) result = (result_plus - result_minus)/(2*epsilon) * lr * (ph - expected_ph) gradient_row.append(result) gradient.append(gradient_row) # print("gradient", gradient) weight_matrix = weight_matrix - gradient return weight_matrix """ Backward pass computation """ input, ph = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.epsilon shift_left = input_list - np.ones(input_list.shape) * ctx.epsilon gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class QuantumLayer(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, epsilon): super(QuantumLayer, self).__init__() self.QMLC = QMLCircuit(1, 1, 1000) self.epsilon = epsilon def forward(self, input): return QFunction.apply(input, self.QMLC, self.epsilon) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(6400, 64) self.fc2 = nn.Linear(64, 1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(-1, 6400) x = F.relu(self.fc1(x)) x = self.fc2(x) return torch.cat((x, 1 - x), -1) # Wczytywanie danych inną metodą # Concentrating on the first 100 samples n_samples = 100 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True) # trenowanie modelu model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] print(i for i in enumerate(train_loader)) for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) # nie trzeba odpalać STARE FUNKCJE epsilon = 0.01 def update(ph, expected_ph, weight_matrix, lr): gradient = [] for i, row in enumerate(weight_matrix): gradient_row = [] for j, el in enumerate(row): weight_matrix[i][j] += epsilon result_plus = circuit_function(qc, weight_matrix) weight_matrix[i][j] -= 2*epsilon result_minus = circuit_function(qc, weight_matrix) weight_matrix[i][j] += epsilon # result_zero = circuit_function(qc, weight_matrix) # print("ph", result_zero) # print("exp_ph", expected_ph) # print("el final:", el) # print(result_plus - result_minus) result = (result_plus - result_minus)/(2*epsilon) * lr * (ph - expected_ph) gradient_row.append(result) gradient.append(gradient_row) # print("gradient", gradient) weight_matrix = weight_matrix - gradient return weight_matrix def create_dataset(dataset_size): dataset = [] for i in range(dataset_size): x = np.array([random.choice([0,1]), random.choice([0,1])]) y = 1 if np.array_equal(x, np.array([0,0])) or np.array_equal(x, np.array([1,1])): y = 0 dataset.append({"x": x, "y": y}) return dataset dataset = create_dataset(4) print(dataset) # template do uczenia import matplotlib.pyplot as plt %matplotlib inline #definicja rozmiaru sieci visible = 2 hidden = 1 ancilla = visible-1 #definicja wejścia (x)oraz inicjalizacja macierzy wag # x = np.array([random.uniform(0, 1) for n in range(visible)]) dataset = create_dataset(10) print(dataset[0]["x"][0]) print(dataset[0]["x"][1]) print([n for n in range(visible)]) weight_matrix = np.random.rand(visible, hidden) * np.pi #definicja parametrów uczenia num_shots = 1000 num_epochs = 100 QMLC = QMLCircuit(visible, hidden, 1000) qr = QuantumRegister(visible + hidden + ancilla, 'q') cr = ClassicalRegister(hidden, 'c') qc = QuantumCircuit(qr, cr) cost_function_data = [] lr = 0.05 for epoch in range(num_epochs): print("epoch: ", epoch) # qc.data = [] # initial_state = [[np.sqrt(1-x[i]), np.sqrt(x[i])] for i in range(len(x))] # for i in range(visible): # print('i vis: ', i) # initialize_qubit = Initialize(initial_state[i]) # qc.append(initialize_qubit, [i]) # qc.h(i) for i, element in enumerate(dataset): # print(element) x = np.array([dataset[i]["x"][n] for n in range(visible)]) exp_ph = dataset[i]["y"] ph = QMLC.circuit_function(qc, weight_matrix) weight_matrix = update(ph, exp_ph, weight_matrix, lr) # print("exp_ph", exp_ph, "ph", ph, "weight_matrix", weight_matrix, "cost_function", 0.5 * (ph - exp_ph)**2) cost_function_data.append(0.5 * (ph - exp_ph)**2) qc.draw() plt.xlabel('number of epochs') plt.ylabel('cost') plt.plot(cost_function_data) for i in range(len(dataset)): x = np.array([dataset[i]["x"][n] for n in range(visible)]) exp_ph = dataset[i]["y"] ph = circuit_function(qc, weight_matrix) print(ph) print(exp_ph, "\n") qc.draw() ph = circuit_function(qc, weight_matrix) print(ph)
https://github.com/sathayen/qiskit-docker
sathayen
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit import Aer from qiskit import execute from qiskit.tools.visualization import circuit_drawer, plot_histogram qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.measure(qr, cr) # Draw the circuit circuit_drawer(qc) # Print qasm qc_qasm = qc.qasm() print(qc_qasm) # Run the circuit job = execute(qc, backend = Aer.get_backend('qasm_simulator'), shots=1024) # get status job.status # get results result = job.result() counts = result.get_counts() print("Probability = ", counts['00']/1024)
https://github.com/sathayen/qiskit-docker
sathayen
# Creating quantum circuits from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit import execute, Aer from qiskit.tools.visualization import circuit_drawer, plot_histogram qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.x(qr[0]) qc.measure(qr, cr) circuit_drawer(qc) # Run the circuit job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1024) result = job.result() counts = result.get_counts() plot_histogram(counts) print("Counts dictionary:", counts ) print("Probability = ", counts['01']/1024)
https://github.com/sathayen/qiskit-docker
sathayen
# Creating quantum circuits from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit import execute, Aer from qiskit.tools.visualization import circuit_drawer, plot_histogram qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) # Apply a single H gate qc.h(qr) qc.measure(qr, cr) circuit_drawer(qc) # Create a backend object local_simulator = Aer.get_backend('qasm_simulator') # Run the circuit job = execute(qc, backend=local_simulator, shots=100) result = job.result() counts = result.get_counts() plot_histogram(counts) print(counts) qc2 = QuantumCircuit(qr, cr) qc2.h(qr) qc2.h(qr) qc2.measure(qr, cr) circuit_drawer(qc2) # Run the circuit with 2 H gates applied in succession job = execute(qc2, backend=local_simulator, shots=100) result = job.result() counts = result.get_counts() plot_histogram(counts) print(counts)
https://github.com/sathayen/qiskit-docker
sathayen
# Creating quantum circuits from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit import execute, Aer from qiskit.tools.visualization import circuit_drawer, plot_histogram qr = QuantumRegister(5) cr = ClassicalRegister(5) qc = QuantumCircuit(qr, cr) qc.x(qr[0]) qc.cx(qr[0], qr[1]) qc.measure(qr, cr) circuit_drawer(qc) # Run the circuit job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1024) result = job.result() counts = result.get_counts() plot_histogram(counts) print("Counts dictionary:", counts ) print("Probability = ", counts['00011']/1024)
https://github.com/sathayen/qiskit-docker
sathayen
# Creating quantum circuits from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit import execute from qiskit.tools.visualization import circuit_drawer, plot_histogram qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) # Apply a single H gate qc.h(qr) qc.measure(qr, cr) circuit_drawer(qc) import os from qiskit import Aer # Print the local simulator backends print("Local simulator backends: ") Aer.backends() from qiskit import IBMQ # Save your credeintials on disk. Need to be done only once. IBMQ.save_account(os.getenv('QX_API_TOKEN')) #IBMQ.save_account("PUT_YOUR_API_TOKEN_HERE") # Alternatively, you can only "enable" the credentials, for this session only: # IBMQ.enable_account("PUT_YOUR_API_TOKEN_HERE") IBMQ.load_accounts() print("Available online backends: ") IBMQ.backends() # Run the circuit using local simulator local_simulator = Aer.get_backend("qasm_simulator") job = execute(qc, backend=local_simulator, shots=100) result = job.result() counts = result.get_counts() plot_histogram(counts) print(counts) # Run the circuit using the cloud simulator online_simulator = IBMQ.get_backend("ibmq_qasm_simulator") job = execute(qc, backend=online_simulator) result_cloud = job.result() counts = result.get_counts() plot_histogram(counts) print(counts)
https://github.com/sathayen/qiskit-docker
sathayen
# Creating quantum circuits from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit.tools.visualization import circuit_drawer qr = QuantumRegister(5) cr = ClassicalRegister(5) qc = QuantumCircuit(qr, cr) def swap_gate(q_swap, q1, q2): q_swap.cx(q1, q2) q_swap.cx(q2, q1) q_swap.cx(q1, q2) #q_swap.measure(qr2, cr2) #circuit_drawer(q_swap) swap_gate(qc, qr[3], qr[4]) qc.measure(qr, cr) circuit_drawer(qc)
https://github.com/sathayen/qiskit-docker
sathayen
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer, IBMQ from qiskit.tools.visualization import plot_histogram , circuit_drawer qr = QuantumRegister(16) cr = ClassicalRegister(16) qc = QuantumCircuit(qr, cr) import bitarray s1 = ";)" s2 = "8)" b1 = bitarray.bitarray() b1.fromstring(s1) b2 = bitarray.bitarray() b2.fromstring(s2) # print the bit sequences print("b1 =", b1) print("b2 =", b2) # qr[0] ----> qr[15] # 0011 1011 0010 1001" # s1 bit sequence # 0011 1000 0010 1001" #s2 bit sequence # Notice the difference between s1 and s2 -- bits 7 (qr[6]) and 8 (qr[7]) are different. # 11 (s1) # 00 (s2) # All other bits are identical # First take care of all other qubits -- APPLY x gates for appropriate qubits # YOUR CODE HERE: # We want both qr[6],qr[7] as 00 or 11 to get either 8 or ; respectively. # Apply a controlled-NOT gate between 6 and 7 , so that when qubit 6 is "1", 7 also becomes 1 # YOUR CODE HERE: # MEASURE: # DRAW Circuit # SET THE API: # EXECUTE ON REMOTE BACKEND: # Results: result.status() stats = result.result().get_counts() plot_histogram(stats)
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
# Import the Qiskit SDK. from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute, Aer from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state # Define the number of n-qbits. n = 6 # Create a Quantum Register with n-qbits. q = QuantumRegister(n) # Create a Classical Register with n-bits. c = ClassicalRegister(n) # Create a Quantum Circuit qc = QuantumCircuit(q, c) # Init with |1> qc.x(q[0]) qc.x(q[1]) # Add H-gate to get superposition. qc.h(q[0]) qc.h(q[1]) # Apply the oracle 11. qc.cx(q[0],q[1],q[2]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[3]) qc.x(q[0]) qc.x(q[1]) qc.x(q[0]) qc.cx(q[0],q[4]) qc.x(q[0]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.cx(q[2],q[3],q[4],q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.z(q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.cx(q[2],q[3],q[4],q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.x(q[0]) qc.cx(q[0],q[4]) qc.x(q[0]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[3]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[2]) # Apply the grover-algorithm 11 # Measure qubit to bit. . qc.measure(q, c) # Get Aer backend. backend_sim = Aer.get_backend('qasm_simulator') # Compile and run the Quantum circuit on a simulator backend. sim_result1 = execute(qc, backend_sim, shots=1000).result() counts1 = sim_result1.get_counts(qc) # Show the results as text and plot. print("Simulation: ", sim_result1) print("Output: ", counts1) plot_histogram(counts1) circuit_drawer(qc)
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
import grover_test as gt # Simulator-Backend # output = gt.build_and_run(3, [1]) # IBMQ-Backend output = gt.build_and_run(2, [1], real=True, online=True) print(output)
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
import pylab import numpy as np from qiskit.providers.ibmq import least_busy from qiskit import LegacySimulators, execute, IBMQ, Aer from qiskit.tools.visualization import plot_histogram from qiskit_aqua import QuantumInstance from qiskit_aqua import run_algorithm from qiskit_aqua.algorithms import Grover from qiskit_aqua.components.oracles import SAT satProblem = '3sat2-3.cnf' with open(satProblem, 'r') as f: sat_cnf = f.read() print(sat_cnf) sat_oracle = SAT(sat_cnf) algorithm = Grover(sat_oracle) backend = Aer.get_backend('qasm_simulator') algorithm = Grover(sat_oracle) result = algorithm.run(backend) print(result['result']) plot_histogram(result['measurements']) params = { 'problem': {'name': 'search'}, 'algorithm': { 'name': 'Grover' }, 'oracle': { 'name': 'SAT', 'cnf': sat_cnf }, 'backend': { 'shots': 100 } } result_dict = run_algorithm(params, backend=backend) plot_histogram(result_dict['measurements']) # Authenticate for access to remote backends try: import Qconfig IBMQ.load_accounts() except: print("""WARNING: There's no connection with the API for remote backends. Have you initialized a file with your personal token? For now, there's only access to local simulator backends...""") backend = least_busy(IBMQ.backends(simulator=False)) algorithm = Grover(sat_oracle) result = algorithm.run(backend) print(result['result'])
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
import pylab import numpy as np from qiskit.providers.ibmq import least_busy from qiskit import LegacySimulators, execute, IBMQ, Aer from qiskit.tools.visualization import plot_histogram from qiskit_aqua import QuantumInstance from qiskit_aqua import run_algorithm from qiskit_aqua.algorithms import Grover from qiskit_aqua.components.oracles import SAT m = 2 n = 2 satProblem = '3SATm-n\\3sat' + str(m) + '-' + str(n) + '.cnf' with open(satProblem, 'r') as f: sat_cnf = f.read() print(sat_cnf) sat_oracle = SAT(sat_cnf) algorithm = Grover(sat_oracle) sim_backend = Aer.get_backend('qasm_simulator') result = algorithm.run(sim_backend) print(result['result']) plot_histogram(result['measurements']) # Authenticate for access to remote backends try: import Qconfig IBMQ.load_accounts() except: print("""WARNING: There's no connection with the API for remote backends. Have you initialized a file with your personal token? For now, there's only access to local simulator backends...""") ibmq_backend = least_busy(IBMQ.backends(simulator=False)) result = algorithm.run(ibmq_backend) print(result['result']) plot_histogram(result['measurements']) params = { 'problem': {'name': 'search'}, 'algorithm': { 'name': 'Grover' }, 'oracle': { 'name': 'SAT', 'cnf': sat_cnf }, 'backend': { 'shots': 100 } } result_dict = run_algorithm(params, backend=backend) plot_histogram(result_dict['measurements']) from __future__ import print_function def even_ones(s): # Two states: # - 0 (even number of ones seen so far) # - 1 (odd number of ones seen so far) rules = {(0, '0'): 0, (0, '1'): 1, (1, '0'): 1, (1, '1'): 0} # There are 0 (which is an even number) ones in the empty # string so we start with state = 0. state = 0 for c in s: state = rules[state, c] return state == 0 # Example usage: s = "100110" print('Output for {} = {}'.format(s, even_ones(s)))
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
# Import the Qiskit SDK. from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute, Aer from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state # Define the number of n-qbits. n = 6 # Create a Quantum Register with n-qbits. q = QuantumRegister(n) # Create a Classical Register with n-bits. c = ClassicalRegister(n) # Create a Quantum Circuit qc = QuantumCircuit(q, c) # Init with |1> qc.x(q[0]) qc.x(q[1]) # Add H-gate to get superposition. qc.h(q[0]) qc.h(q[1]) # Apply the oracle 11. qc.cx(q[0],q[1],q[2]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[3]) qc.x(q[0]) qc.x(q[1]) qc.x(q[0]) qc.cx(q[0],q[4]) qc.x(q[0]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.cx(q[2],q[3],q[4],q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.z(q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.cx(q[2],q[3],q[4],q[5]) qc.x(q[2]) qc.x(q[3]) qc.x(q[4]) qc.x(q[5]) qc.x(q[0]) qc.cx(q[0],q[4]) qc.x(q[0]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[3]) qc.x(q[0]) qc.x(q[1]) qc.cx(q[0],q[1],q[2]) # Apply the grover-algorithm 11 # Measure qubit to bit. . qc.measure(q, c) # Get Aer backend. backend_sim = Aer.get_backend('qasm_simulator') # Compile and run the Quantum circuit on a simulator backend. sim_result1 = execute(qc, backend_sim, shots=1000).result() counts1 = sim_result1.get_counts(qc) # Show the results as text and plot. print("Simulation: ", sim_result1) print("Output: ", counts1) plot_histogram(counts1) circuit_drawer(qc)
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
import pylab import numpy as np from qiskit.providers.ibmq import least_busy from qiskit import LegacySimulators, execute, IBMQ, Aer from qiskit.tools.visualization import plot_histogram from qiskit_aqua import QuantumInstance from qiskit_aqua import run_algorithm from qiskit_aqua.algorithms import Grover from qiskit_aqua.components.oracles import SAT m = 4 n = 5 satProblem = 'examples\\3sat' + str(m) + '-' + str(n) + '.cnf' with open(satProblem, 'r') as f: sat_cnf = f.read() print(sat_cnf) sat_oracle = SAT(sat_cnf) algorithm = Grover(sat_oracle) sim_backend = Aer.get_backend('qasm_simulator') result = algorithm.run(sim_backend) print(result['result']) plot_histogram(result['measurements']) # figsize = (15,12), # bar_labels = False) # Authenticate for access to remote backends try: import Qconfig IBMQ.load_accounts() except: print("""WARNING: There's no connection with the API for remote backends. Have you initialized a file with your personal token? For now, there's only access to local simulator backends...""") ibmq_backend = least_busy(IBMQ.backends(simulator=False)) result = algorithm.run(ibmq_backend) print(result['result']) plot_histogram(result['measurements']) params = { 'problem': {'name': 'search'}, 'algorithm': { 'name': 'Grover' }, 'oracle': { 'name': 'SAT', 'cnf': sat_cnf }, 'backend': { 'shots': 100 } } result_dict = run_algorithm(params, backend=backend) plot_histogram(result_dict['measurements']) from __future__ import print_function def even_ones(s): # Two states: # - 0 (even number of ones seen so far) # - 1 (odd number of ones seen so far) rules = {(0, '0'): 0, (0, '1'): 1, (1, '0'): 1, (1, '1'): 0} # There are 0 (which is an even number) ones in the empty # string so we start with state = 0. state = 0 for c in s: state = rules[state, c] return state == 0 # Example usage: s = "100110" print('Output for {} = {}'.format(s, even_ones(s)))
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
#setup.py import numpy as np from scipy.linalg import expm from qiskit.extensions import UnitaryGate from qiskit.circuit.add_control import add_control from qiskit import Aer import circuit import hhl import tools #참고 논문 :Low Complexity Quantum Matrix Inversion A기gorithm for non-Hermitian Matrices def main(A,b,backend,shots,t,n_l,delta): #Check if Hermitian if np.allclose(A,A.T) == False: print("Given A matrice is not Hermitian.") print("Given Matrices will be transformed into Hermitian formation.") A = np.vstack((np.hstack((np.zeros_like(A),A)),np.hstack((A.T, np.zeros_like(A))))) # Hermitian의 꼴로 바꿈 b = np.hstack((b,np.zeros_like((np.shape(A)[0]-np.shape(b)[0],1)))) #A의 shape와 동일한 zero array를 생성하고, A의 왼쪽에 배치, horizontal 방향도 마찬가지. i = complex(0,1) #complex(real part, imaginary part) U = expm(i*A*t) #여기서 A가 행렬로 주어졌기 때문에, 행렬을 exp에 올리기 위해서는 expm이라는 scipy 패키지가 필요함. U_gate = UnitaryGate(U) #위에서 구성한 U라는 행렬로써 Unitary gate를 구성할 수 있음. (4*4) 행렬 CU = add_control(U_gate,1,ctrl_state=None, label="CU") #CU라는 게이트 이름을 label에 저장 #control 되는 경우의 state를 지정 -> 해당사항 없음 #두번째 인자는 컨트롤 큐빗의 개수를 지정함. n_b = int(np.log2(U.shape[0])) #Ax =b의 꼴이고, b는 4*1의 shape이므로, A의 행의 개수와 동일함. 따라서, U의 행렬의 행의 개수와 동일함. #행의 개수에 log2를 취하면 필요한 n_b의 값을 구할 수 있음. My_HHL_result = hhl.My_HHL(CU,b,n_l,n_b,backend,delta,shots,A,details = True,chevyshev = False) print("\n") qiskit_result = hhl.qiskit_HHL(A,b,backend) print("\n") classical_result = hhl.classical_HHL(A,b) print("\n") #For normalized answer print("<Un - normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[1]-classical_result[1]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[1]-classical_result[1]))) print("\n") print("<Normalized Case Comparision>") print('Qiskit Error : {0}'.format(np.linalg.norm(qiskit_result[0]-classical_result[0]))) print('My HHL Error : {0}'.format(np.linalg.norm(My_HHL_result[0]-classical_result[0]))) if __name__ == "__main__": #setups A = np.array([[2,-1],[1,4]]) #non-Hermitian인 경우의 행렬에 대한 저장 b = np.array([1,1]) backend = Aer.get_backend('aer_simulator') shots = 8192 t = np.pi*2/16 n_l = 3 #QPE 상에서 n_ㅣ는 하다마드로 초기화 되는 부분 delta = 1/16*(2**(n_l-1)) main(A,b,backend,shots,t,n_l,delta)
https://github.com/soultanis/Quantum-SAT-Solver
soultanis
""" Solves SAT instance by reading from stdin using Qiskit framework from IBM. For text recognition as input you have to set the path to your lib. """ import pylab import numpy as np from sys import stdin import argparse from argparse import ArgumentParser from argparse import FileType from PIL import Image import pytesseract from qiskit.providers.ibmq import least_busy from qiskit import LegacySimulators, execute, IBMQ, Aer from qiskit.tools.visualization import plot_histogram from qiskit_aqua import QuantumInstance from qiskit_aqua import run_algorithm from qiskit_aqua.algorithms import Grover from qiskit_aqua.components.oracles import SAT # from qiskit_aqua.components.oracles import LogicalExpressionOracle def grover_solution(m, n, hr, i): # normal parser if m and n is not None: satProblem = 'examples\\3sat' + m + '-' + n + '.cnf' with open(satProblem, 'r') as f: sat_cnf = f.read() print(sat_cnf) # hand recognition parser: still needs to be implemented elif hr: # tesseract parser pass else: pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' i_read = pytesseract.image_to_string(Image.open(i.name), lang='eng') print(i_read) sat_oracle = SAT(sat_cnf) algorithm = Grover(sat_oracle) backend = Aer.get_backend('qasm_simulator') algorithm = Grover(sat_oracle) result = algorithm.run(backend) print(result['result']) plot_histogram(result['measurements']) def main(): args = parse_args() grover_solution(args.variable, args.equation, args.hand_recognition, args.file_input) def parse_args(): parser = ArgumentParser( description='Quantum SAT solver with Grovers algorithm') parser.add_argument('-m', '--variable', help='the number of variable for the SAT-Problem from examples') parser.add_argument('-n', '--equation', help='the number of equation for the SAT-Problem from examples') parser.add_argument('-hr', '--hand_recognition', action='store_true', help='set to true, if your file is handwritten (still needs to be implemented)') parser.add_argument('-i', '--file_input', type=FileType('r'), help='read from given file instead of stdin',) return parser.parse_args() if __name__ == "__main__": main() ''' print('Type the number of m variables and on the next line the number of n equations for the SAT-Problem:') m = input() n = input() print('You set the SAT-Problem with ' + m + ' variables and ' + n + ' equations.') (m, n) parser.add_argument('-i', '--input', help='read from given file instead of stdin', type=FileType('r'), default=stdin) parser.add_argument('-o', '--output', help='write to given file instead of default stdout', type=FileType('w'), default=stdout) '''
https://github.com/ranaarp/Qiskit-Meetup-content
ranaarp
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram # IBMQ.save_account('your account id') provider = IBMQ.load_account() q = QuantumRegister(7) c = ClassicalRegister(4) qc = QuantumCircuit(q, c) # initialize in a superposition of all possible states qc.x(q[4]) qc.h(q[0:5]) qc.barrier(q) qc.barrier(q) # build oracle. ex: to find 1010 state qc.x(q[1]) qc.x(q[3]) qc.barrier(q) qc.mct([q[0], q[1], q[2], q[3]], q[4], q[5:7]) # control qubits, target qubit, ancilla qubits = number of control qubits - 2 qc.barrier(q) qc.x(q[1]) qc.x(q[3]) qc.barrier(q) qc.barrier(q) qc.h(q[0:4]) qc.barrier(q) qc.x(q[0:4]) qc.barrier(q) qc.h(q[3]) qc.barrier(q) qc.mct([q[0], q[1], q[2]], q[3], q[5:6]) qc.barrier(q) qc.h(q[3]) qc.barrier(q) qc.x(q[0:4]) qc.barrier(q) qc.h(q[0:4]) qc.barrier(q) qc.measure(q[0:4], c[0:4]) qc.draw(output='mpl') # in the output drawing # running and getting results backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) # backend = provider.get_backend('ibmq_qasm_simulator') # job = execute(qc, backend=backend, shots=8000, seed_simulator=12345, backend_options={"fusion_enable":True}) result = job.result() count = result.get_counts() print(count) # the code snippet below can be used to retreive your job in case your jupyter notebook loses connection with IBMQ servers before completion of the job # backend = provider.get_backend('ibmq_qasm_simulator') # job = backend.retrieve_job('enter your job id here. it can be found in your IBM Q Experience dashboard') # counts = job.result().get_counts() # print(counts) plot_histogram(count) # the answer may seem inverted, i.e, 0101 is actually state 1010. that's just the notation used by qiskit.
https://github.com/ranaarp/Qiskit-Meetup-content
ranaarp
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def phase_oracle(circuit, register): circuit.cz(register[0], register[1]) qr = QuantumRegister(2) oracleCircuit = QuantumCircuit(qr) phase_oracle(oracleCircuit, qr) oracleCircuit.draw(output="mpl") def inversion_about_average(circuit, register): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) circuit.h(register[1]) circuit.cx(register[0], register[1]) circuit.h(register[1]) circuit.x(register) circuit.h(register) qAverage = QuantumCircuit(qr) inversion_about_average(qAverage, qr) qAverage.draw(output='mpl') qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) phase_oracle(groverCircuit, qr) inversion_about_average(groverCircuit, qr) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device # These are compatible with QisKit v0.11.x # IBMQ.load_accounts() # IBMQ.backends() # backend_lb = least_busy(IBMQ.backends(simulator=False)) # print("Least busy backend: ", backend_lb) # Updated to run on QisKit v0.12.0 IBMQ.load_account() provider = IBMQ.get_provider(group='open') backend_lb = least_busy(provider.backends(simulator=False, operational=True)) print("Least busy backend: ", backend_lb) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor backend = backend_lb shots = 1024 job_exp = execute(groverCircuit, backend=backend, shots=shots) job_monitor(job_exp, interval = 2) # get the results from the computation results = job_exp.result() answer = results.get_counts(groverCircuit) plot_histogram(answer) # Initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # Importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # Import basic plot tools from qiskit.tools.visualization import plot_histogram def phase_oracle(circuit, register,oracle_register): circuit.h(oracle_register) circuit.ccx(register[0], register[1],oracle_register) circuit.h(oracle_register) qr = QuantumRegister(3) oracleCircuit = QuantumCircuit(qr) oracleCircuit.x(qr[2]) phase_oracle(oracleCircuit, qr,qr[2]) oracleCircuit.draw(output="mpl") def inversion_about_average(circuit, register): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) circuit.h(register[1]) circuit.cx(register[0], register[1]) circuit.h(register[1]) circuit.x(register) circuit.h(register) qAverage = QuantumCircuit(qr) inversion_about_average(qAverage, qr[0:2]) qAverage.draw(output='mpl') qr = QuantumRegister(3) cr = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr[0:2]) groverCircuit.x(qr[2]) phase_oracle(groverCircuit, qr,qr[2]) inversion_about_average(groverCircuit, qr[0:2]) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) #initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def phase_oracle(circuit, register): circuit.x(register[0]) circuit.cz(register[0], register[1]) circuit.x(register[0]) qr = QuantumRegister(2) oracleCircuit = QuantumCircuit(qr) phase_oracle(oracleCircuit, qr) oracleCircuit.draw(output="mpl") def inversion_about_average(circuit, register): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) circuit.h(register[1]) circuit.cx(register[0], register[1]) circuit.h(register[1]) circuit.x(register) circuit.h(register) qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) phase_oracle(groverCircuit, qr) inversion_about_average(groverCircuit, qr) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) #initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def phase_oracle(circuit, register,oracle_register): circuit.h(oracle_register) circuit.x(register[0]) circuit.ccx(register[0], register[1],oracle_register) circuit.x(register[0]) circuit.h(oracle_register) qr = QuantumRegister(3) oracleCircuit = QuantumCircuit(qr) oracleCircuit.x(qr[2]) phase_oracle(oracleCircuit, qr,qr[2]) oracleCircuit.draw(output="mpl") def inversion_about_average(circuit, register): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) circuit.h(register[1]) circuit.cx(register[0], register[1]) circuit.h(register[1]) circuit.x(register) circuit.h(register) qr = QuantumRegister(3) cr = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr[0:2]) groverCircuit.x(qr[2]) phase_oracle(groverCircuit, qr,qr[2]) inversion_about_average(groverCircuit, qr[0:2]) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/ranaarp/Qiskit-Meetup-content
ranaarp
import numpy as np from qiskit import BasicAer from qiskit.visualization import plot_histogram from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle, TruthTableOracle input_3sat = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' oracle = LogicalExpressionOracle(input_3sat) grover = Grover(oracle) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) result = grover.run(quantum_instance) print(result['result']) plot_histogram(result['measurement']) # Load our saved IBMQ accounts and get the ibmq_16_melbourne backend from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_16_melbourne') from qiskit.compiler import transpile # transpile the circuit for ibmq_16_melbourne grover_compiled = transpile(result['circuit'], backend=backend, optimization_level=3) print('gates = ', grover_compiled.count_ops()) print('depth = ', grover_compiled.depth()) import qiskit qiskit.__qiskit_version__
https://github.com/ranaarp/Qiskit-Meetup-content
ranaarp
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ, Aer, execute IBMQ.load_account() q = QuantumRegister(3) qc = QuantumCircuit(q) #cutedge checker def ccheck(a, b, c): qc.cx(q[a], q[c]) qc.cx(q[b], q[c]) qc.h(q[0]) qc.h(q[1]) ccheck(0,1,2) qc.draw(output='mpl') q = QuantumRegister(8) qc = QuantumCircuit(q) #half adder #inputs: a,b #outputs: the sum output s and carry output c def hadder(a,b,s,c): #XOR qc.cx(q[b], q[s]) qc.cx(q[a], q[s]) #AND qc.ccx(q[a], q[b], q[c]) qc.h(q[0:3]) ccheck(0,1,3) ccheck(1,2,4) hadder(3,4,6,5) qc.draw(output='mpl') #create an oracle q = QuantumRegister(8) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) qc.h(q[0:3]) ccheck(0,1,3) ccheck(1,2,4) hadder(3,4,6,5) qc.cx(q[5],q[7]) qc.measure(q[7], c[0]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=100000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') q = QuantumRegister(8) c = ClassicalRegister(7) qc = QuantumCircuit(q,c) #inverse operations def iccheck(a, b, c): qc.cx(q[b], q[c]) qc.cx(q[a], q[c]) def ihadder(a,b,s,c): qc.ccx(q[a], q[b], q[c]) qc.cx(q[a], q[s]) qc.cx(q[b], q[s]) qc.h(q[0:3]) qc.x(q[7]) qc.h(q[7]) ccheck(0,1,3) ccheck(1,2,4) hadder(3,4,6,5) qc.cx(q[5],q[7]) ihadder(3,4,6,5) iccheck(1,2,4) iccheck(0,1,3) qc.barrier() qc.measure(q[0:7], c[0:7]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') q = QuantumRegister(8) c = ClassicalRegister(3) qc = QuantumCircuit(q,c) #diffusion operations def diffusion(a,b,c): qc.h(q[a]) qc.h(q[b]) qc.h(q[c]) qc.x(q[a]) qc.x(q[b]) qc.x(q[c]) qc.h(q[c]) qc.ccx(q[a],q[b], q[c]) qc.h(q[c]) qc.x(q[a]) qc.x(q[b]) qc.x(q[c]) qc.h(q[a]) qc.h(q[b]) qc.h(q[c]) #initialization qc.h(q[0:3]) qc.x(q[7]) qc.h(q[7]) qc.barrier() #oracle part ccheck(0,1,3) ccheck(1,2,4) hadder(3,4,6,5) qc.cx(q[5],q[7]) ihadder(3,4,6,5) iccheck(1,2,4) iccheck(0,1,3) qc.barrier() #diffusion part diffusion(0,1,2) qc.barrier() qc.measure(q[0:3], c[0:3]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=10000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') #from qiskit.aqua.circuits.gates import mct q = QuantumRegister(11) c = ClassicalRegister(4) qc = QuantumCircuit(q,c) ite = 2 #number of iteration #initialization qc.h(q[0:4]) qc.x(q[8]) qc.h(q[8]) qc.barrier() for i in range(ite): #oracle part ccheck(0,1,4) ccheck(0,2,5) ccheck(0,3,6) qc.mct([q[4],q[5],q[6]], q[8] , [q[7]], mode='basic') iccheck(0,3,6) iccheck(0,2,5) iccheck(0,1,4) qc.barrier() #diffusion part qc.h(q[0:4]) qc.barrier() qc.x(q[0:4]) qc.barrier() qc.h(q[3]) qc.mct([q[0],q[1],q[2]], q[3] , [q[7]], mode='basic') qc.h(q[3]) qc.barrier() qc.x(q[0:4]) qc.barrier() qc.h(q[0:4]) qc.barrier() qc.measure(q[0:4], c[0:4]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=10000) result = job.result() count =result.get_counts() print(count) qc.draw(output='mpl') # the measurement results for each quantum state will be shown in reverse order. (i.e. 1000 -> 0001, 0111-> 1110) #Decompose the circuit by using the Unroller from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller pass_ = Unroller(['u3', 'cx']) pm = PassManager(pass_) new_circuit = pm.run(qc) new_circuit.draw(output='mpl') #show elementary gate counts new_circuit.count_ops() #create output text file with the gate counts import json dct = new_circuit.count_ops() with open('wk3_output.txt', 'w') as f: f.write(json.dumps(dct))
https://github.com/tula3and/random-question-generator
tula3and
from qiskit import * # from qiskit import IBMQ # IBMQ.save_account('<API Token>') # provider = IBMQ.load_account() # backend = IBMQ.get_provider(hub='ibm-q-kaist', group='internal', project='default').backends.ibmq_manhattan backend = Aer.get_backend('qasm_simulator') q = QuantumRegister(48) c = ClassicalRegister(48) circuit = QuantumCircuit(q,c) circuit.h(q) for i in range(47): circuit.cx(q[i], q[47]) circuit.measure(q,c) import string table = string.ascii_uppercase + string.ascii_lowercase + string.digits def hash8(): hash_result = '' result = execute(circuit, backend, shots=1).result() count = result.get_counts(circuit) bits = max(count, key=lambda i: count[i]) start = 0 end = 6 while (end <= 48): rand = int(bits[start:end], 2) % len(table) start += 6 end += 6 hash_result += table[rand] return hash_result
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
p = 0.2 import numpy as np from qiskit.circuit import QuantumCircuit class BernoulliA(QuantumCircuit): """A circuit representing the Bernoulli A operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(theta_p, 0) class BernoulliQ(QuantumCircuit): """A circuit representing the Bernoulli Q operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit self._theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(2 * self._theta_p, 0) def power(self, k): # implement the efficient power of Q q_k = QuantumCircuit(1) q_k.ry(2 * k * self._theta_p, 0) return q_k A = BernoulliA(p) Q = BernoulliQ(p) from qiskit.algorithms import EstimationProblem problem = EstimationProblem( state_preparation=A, # A operator grover_operator=Q, # Q operator objective_qubits=[0], # the "good" state Psi1 is identified as measuring |1> in qubit 0 ) from qiskit.primitives import Sampler sampler = Sampler() from qiskit.algorithms import AmplitudeEstimation ae = AmplitudeEstimation( num_eval_qubits=3, # the number of evaluation qubits specifies circuit width and accuracy sampler=sampler, ) ae_result = ae.estimate(problem) print(ae_result.estimation) import matplotlib.pyplot as plt # plot estimated values gridpoints = list(ae_result.samples.keys()) probabilities = list(ae_result.samples.values()) plt.bar(gridpoints, probabilities, width=0.5 / len(probabilities)) plt.axvline(p, color="r", ls="--") plt.xticks(size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title("Estimated Values", size=15) plt.ylabel("Probability", size=15) plt.xlabel(r"Amplitude $a$", size=15) plt.ylim((0, 1)) plt.grid() plt.show() print("Interpolated MLE estimator:", ae_result.mle) ae_circuit = ae.construct_circuit(problem) ae_circuit.decompose().draw( "mpl", style="iqx" ) # decompose 1 level: exposes the Phase estimation circuit! from qiskit import transpile basis_gates = ["h", "ry", "cry", "cx", "ccx", "p", "cp", "x", "s", "sdg", "y", "t", "cz"] transpile(ae_circuit, basis_gates=basis_gates, optimization_level=2).draw("mpl", style="iqx") from qiskit.algorithms import IterativeAmplitudeEstimation iae = IterativeAmplitudeEstimation( epsilon_target=0.01, # target accuracy alpha=0.05, # width of the confidence interval sampler=sampler, ) iae_result = iae.estimate(problem) print("Estimate:", iae_result.estimation) iae_circuit = iae.construct_circuit(problem, k=3) iae_circuit.draw("mpl", style="iqx") from qiskit.algorithms import MaximumLikelihoodAmplitudeEstimation mlae = MaximumLikelihoodAmplitudeEstimation( evaluation_schedule=3, # log2 of the maximal Grover power sampler=sampler, ) mlae_result = mlae.estimate(problem) print("Estimate:", mlae_result.estimation) from qiskit.algorithms import FasterAmplitudeEstimation fae = FasterAmplitudeEstimation( delta=0.01, # target accuracy maxiter=3, # determines the maximal power of the Grover operator sampler=sampler, ) fae_result = fae.estimate(problem) print("Estimate:", fae_result.estimation) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, QAOA, SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit.result import QuasiDistribution from qiskit_aer.primitives import Sampler from qiskit_finance.applications.optimization import PortfolioOptimization from qiskit_finance.data_providers import RandomDataProvider from qiskit_optimization.algorithms import MinimumEigenOptimizer import numpy as np import matplotlib.pyplot as plt import datetime # set number of assets (= number of qubits) num_assets = 4 seed = 123 # Generate expected return and covariance matrix from (random) time-series stocks = [("TICKER%s" % i) for i in range(num_assets)] data = RandomDataProvider( tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=seed, ) data.run() mu = data.get_period_return_mean_vector() sigma = data.get_period_return_covariance_matrix() # plot sigma plt.imshow(sigma, interpolation="nearest") plt.show() q = 0.5 # set risk factor budget = num_assets // 2 # set budget penalty = num_assets # set parameter to scale the budget penalty term portfolio = PortfolioOptimization( expected_returns=mu, covariances=sigma, risk_factor=q, budget=budget ) qp = portfolio.to_quadratic_program() qp def print_result(result): selection = result.x value = result.fval print("Optimal: selection {}, value {:.4f}".format(selection, value)) eigenstate = result.min_eigen_solver_result.eigenstate probabilities = ( eigenstate.binary_probabilities() if isinstance(eigenstate, QuasiDistribution) else {k: np.abs(v) ** 2 for k, v in eigenstate.to_dict().items()} ) print("\n----------------- Full result ---------------------") print("selection\tvalue\t\tprobability") print("---------------------------------------------------") probabilities = sorted(probabilities.items(), key=lambda x: x[1], reverse=True) for k, v in probabilities: x = np.array([int(i) for i in list(reversed(k))]) value = portfolio.to_quadratic_program().objective.evaluate(x) print("%10s\t%.4f\t\t%.4f" % (x, value, v)) exact_mes = NumPyMinimumEigensolver() exact_eigensolver = MinimumEigenOptimizer(exact_mes) result = exact_eigensolver.solve(qp) print_result(result) from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=500) ry = TwoLocal(num_assets, "ry", "cz", reps=3, entanglement="full") vqe_mes = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=cobyla) vqe = MinimumEigenOptimizer(vqe_mes) result = vqe.solve(qp) print_result(result) algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa_mes = QAOA(sampler=Sampler(), optimizer=cobyla, reps=3) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qp) print_result(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# Import requisite modules import math import datetime import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Import Qiskit packages from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, QAOA, SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit_aer.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # The data providers of stock-market data from qiskit_finance.data_providers import RandomDataProvider from qiskit_finance.applications.optimization import PortfolioDiversification # Generate a pairwise time-series similarity matrix seed = 123 stocks = ["TICKER1", "TICKER2"] n = len(stocks) data = RandomDataProvider( tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=seed, ) data.run() rho = data.get_similarity_matrix() q = 1 # q less or equal than n class ClassicalOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n # number of inner variables self.q = q # number of required selection def compute_allowed_combinations(self): f = math.factorial return int(f(self.n) / f(self.q) / f(self.n - self.q)) def cplex_solution(self): # refactoring rho = self.rho n = self.n q = self.q my_obj = list(rho.reshape(1, n**2)[0]) + [0.0 for x in range(0, n)] my_ub = [1 for x in range(0, n**2 + n)] my_lb = [0 for x in range(0, n**2 + n)] my_ctype = "".join(["I" for x in range(0, n**2 + n)]) my_rhs = ( [q] + [1 for x in range(0, n)] + [0 for x in range(0, n)] + [0.1 for x in range(0, n**2)] ) my_sense = ( "".join(["E" for x in range(0, 1 + n)]) + "".join(["E" for x in range(0, n)]) + "".join(["L" for x in range(0, n**2)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] col = [x for x in range(n**2, n**2 + n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [ii * n + ii, n**2 + ii] coef = [1, -1] rows.append([col, coef]) for ii in range(0, n): for jj in range(0, n): col = [ii * n + jj, n**2 + jj] coef = [1, -1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(rho, n, q) # Compute the number of feasible solutions: print("Number of feasible combinations= " + str(classical_optimizer.compute_allowed_combinations())) # Compute the total number of possible combinations (feasible + unfeasible) print("Total number of combinations= " + str(2 ** (n * (n + 1)))) # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.015, yc[i]), size=16, color="r") plt.grid() for ii in range(n**2, n**2 + n): if x[ii] > 0: plt.plot(xc[ii - n**2], yc[ii - n**2], "r*", ms=20) for ii in range(0, n**2): if x[ii] > 0: iy = ii // n ix = ii % n plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], "C2") plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() from qiskit.utils import algorithm_globals class QuantumOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n self.q = q self.pdf = PortfolioDiversification(similarity_matrix=rho, num_assets=n, num_clusters=q) self.qp = self.pdf.to_quadratic_program() # Obtains the least eigenvalue of the Hamiltonian classically def exact_solution(self): exact_mes = NumPyMinimumEigensolver() exact_eigensolver = MinimumEigenOptimizer(exact_mes) result = exact_eigensolver.solve(self.qp) return self.decode_result(result) def vqe_solution(self): algorithm_globals.random_seed = 100 cobyla = COBYLA() cobyla.set_options(maxiter=250) ry = TwoLocal(n, "ry", "cz", reps=5, entanglement="full") vqe_mes = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=cobyla) vqe = MinimumEigenOptimizer(vqe_mes) result = vqe.solve(self.qp) return self.decode_result(result) def qaoa_solution(self): algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa_mes = QAOA(sampler=Sampler(), optimizer=cobyla, reps=3) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(self.qp) return self.decode_result(result) def decode_result(self, result, offset=0): quantum_solution = 1 - (result.x) ground_level = self.qp.objective.evaluate(result.x) return quantum_solution, ground_level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(rho, n, q) # Check if the binary representation is correct. This requires CPLEX try: import cplex # warnings.filterwarnings('ignore') quantum_solution, quantum_cost = quantum_optimizer.exact_solution() print(quantum_solution, quantum_cost) classical_solution, classical_cost = classical_optimizer.cplex_solution() print(classical_solution, classical_cost) if np.abs(quantum_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the formulation of the Hamiltonian") except Exception as ex: print(ex) ground_state, ground_level = quantum_optimizer.exact_solution() print(ground_state) classical_cost = 1.000779571614484 # obtained from the CPLEX solution try: if np.abs(ground_level - classical_cost) < 0.01: print("Ising Hamiltonian in Z basis is correct") else: print("Error in the Ising Hamiltonian formulation") except Exception as ex: print(ex) vqe_state, vqe_level = quantum_optimizer.vqe_solution() print(vqe_state, vqe_level) try: if np.linalg.norm(ground_state - vqe_state) < 0.01: print("SamplingVQE produces the same solution as the exact eigensolver.") else: print( "SamplingVQE does not produce the same solution as the exact eigensolver, but that is to be expected." ) except Exception as ex: print(ex) xc, yc = data.get_coordinates() visualize_solution(xc, yc, ground_state, ground_level, n, q, "Classical") visualize_solution(xc, yc, vqe_state, vqe_level, n, q, "VQE") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 1.896 # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = high - strike_price european_call_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=c_approx, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective num_qubits = european_call_objective.num_qubits european_call = QuantumCircuit(num_qubits) european_call.append(uncertainty_model, range(num_uncertainty_qubits)) european_call.append(european_call_objective, range(num_qubits)) # draw the circuit european_call.draw() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, x - strike_price) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum(uncertainty_model.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_call, objective_qubits=[3], post_processing=european_call_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallPricing european_call_pricing = EuropeanCallPricing( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=(low, high), uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallDelta european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=uncertainty_model, ) european_call_delta._objective.decompose().draw() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2.126 # set the approximation scaling for the payoff function rescaling_factor = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [-1, 0] offsets = [strike_price - low, 0] f_min = 0 f_max = strike_price - low european_put_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=rescaling_factor, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective european_put = european_put_objective.compose(uncertainty_model, front=True) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, strike_price - x) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = -sum(uncertainty_model.probabilities[x <= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_put, objective_qubits=[num_uncertainty_qubits], post_processing=european_put_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 0] offsets = [1, 0] f_min = 0 f_max = 1 european_put_delta_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, ) # construct circuit for payoff function european_put_delta = european_put_delta_objective.compose(uncertainty_model, front=True) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_put_delta, objective_qubits=[num_uncertainty_qubits] ) # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = -np.array(result_delta.confidence_interval)[::-1] print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % -result_delta.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct circuit for uncertainty model uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 1.438 strike_price_2 = 2.584 # set the approximation scaling for the payoff function rescaling_factor = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, strike_price_2 - strike_price_1] f_min = 0 f_max = strike_price_2 - strike_price_1 bull_spread_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=rescaling_factor, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective bull_spread = bull_spread_objective.compose(uncertainty_model, front=True) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum( uncertainty_model.probabilities[np.logical_and(x >= strike_price_1, x <= strike_price_2)] ) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread, objective_qubits=[num_uncertainty_qubits], post_processing=bull_spread_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 0, 0] offsets = [0, 1, 0] f_min = 0 f_max = 1 bull_spread_delta_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, ) # no approximation necessary, hence no rescaling factor # construct the A operator by stacking the uncertainty model and payoff function together bull_spread_delta = bull_spread_delta_objective.compose(uncertainty_model, front=True) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread_delta, objective_qubits=[num_uncertainty_qubits] ) # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval) print("Exact delta: \t%.4f" % exact_delta) print("Estimated value:\t%.4f" % result_delta.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from scipy.interpolate import griddata %matplotlib inline import numpy as np from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import WeightedAdder, LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits per dimension to represent the uncertainty num_uncertainty_qubits = 2 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # map to higher dimensional distribution # for simplicity assuming dimensions are independent and identically distributed) dimension = 2 num_qubits = [num_uncertainty_qubits] * dimension low = low * np.ones(dimension) high = high * np.ones(dimension) mu = mu * np.ones(dimension) cov = sigma**2 * np.eye(dimension) # construct circuit u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=list(zip(low, high))) # plot PDF of uncertainty model x = [v[0] for v in u.values] y = [v[1] for v in u.values] z = u.probabilities # z = map(float, z) # z = list(map(float, z)) resolution = np.array([2**n for n in num_qubits]) * 1j grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]] grid_z = griddata((x, y), z, (grid_x, grid_y)) plt.figure(figsize=(10, 8)) ax = plt.axes(projection="3d") ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral) ax.set_xlabel("Spot Price $S_T^1$ (\$)", size=15) ax.set_ylabel("Spot Price $S_T^2$ (\$)", size=15) ax.set_zlabel("Probability (\%)", size=15) plt.show() # determine number of qubits required to represent total loss weights = [] for n in num_qubits: for i in range(n): weights += [2**i] # create aggregation circuit agg = WeightedAdder(sum(num_qubits), weights) n_s = agg.num_sum_qubits n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 3.5 # map strike price from [low, high] to {0, ..., 2^n-1} max_value = 2**n_s - 1 low_ = low[0] high_ = high[0] mapped_strike_price = ( (strike_price - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [0, mapped_strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = 2 * (2**num_uncertainty_qubits - 1) - mapped_strike_price basket_objective = LinearAmplitudeFunction( n_s, slopes, offsets, domain=(0, max_value), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define overall multivariate problem qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution qr_obj = QuantumRegister(1, "obj") # to encode the function values ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum ar = AncillaRegister(max(n_aux, basket_objective.num_ancillas), "work") # additional qubits objective_index = u.num_qubits basket_option = QuantumCircuit(qr_state, qr_obj, ar_sum, ar) basket_option.append(u, qr_state) basket_option.append(agg, qr_state[:] + ar_sum[:] + ar[:n_aux]) basket_option.append(basket_objective, ar_sum[:] + qr_obj[:] + ar[: basket_objective.num_ancillas]) print(basket_option.draw()) print("objective qubit index", objective_index) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = np.linspace(sum(low), sum(high)) y = np.maximum(0, x - strike_price) plt.plot(x, y, "r-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Sum of Spot Prices ($S_T^1 + S_T^2)$", size=15) plt.ylabel("Payoff", size=15) plt.xticks(size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value sum_values = np.sum(u.values, axis=1) exact_value = np.dot( u.probabilities[sum_values >= strike_price], sum_values[sum_values >= strike_price] - strike_price, ) print("exact expected value:\t%.4f" % exact_value) num_state_qubits = basket_option.num_qubits - basket_option.num_ancillas print("state qubits: ", num_state_qubits) transpiled = transpile(basket_option, basis_gates=["u", "cx"]) print("circuit width:", transpiled.width()) print("circuit depth:", transpiled.depth()) basket_option_measure = basket_option.measure_all(inplace=False) sampler = Sampler() job = sampler.run(basket_option_measure) # evaluate the result value = 0 probabilities = job.result().quasi_dists[0].binary_probabilities() for i, prob in probabilities.items(): if prob > 1e-4 and i[-num_state_qubits:][0] == "1": value += prob # map value to original range mapped_value = ( basket_objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % mapped_value) print("Exact Expected Payoff: %.4f" % exact_value) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=basket_option, objective_qubits=[objective_index], post_processing=basket_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = ( np.array(result.confidence_interval_processed) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact value: \t%.4f" % exact_value) print( "Estimated value: \t%.4f" % (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_)) ) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from scipy.interpolate import griddata %matplotlib inline import numpy as np from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile from qiskit.circuit.library import IntegerComparator, WeightedAdder, LinearAmplitudeFunction from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits per dimension to represent the uncertainty num_uncertainty_qubits = 2 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # map to higher dimensional distribution # for simplicity assuming dimensions are independent and identically distributed) dimension = 2 num_qubits = [num_uncertainty_qubits] * dimension low = low * np.ones(dimension) high = high * np.ones(dimension) mu = mu * np.ones(dimension) cov = sigma**2 * np.eye(dimension) # construct circuit u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=(list(zip(low, high)))) # plot PDF of uncertainty model x = [v[0] for v in u.values] y = [v[1] for v in u.values] z = u.probabilities # z = map(float, z) # z = list(map(float, z)) resolution = np.array([2**n for n in num_qubits]) * 1j grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]] grid_z = griddata((x, y), z, (grid_x, grid_y)) plt.figure(figsize=(10, 8)) ax = plt.axes(projection="3d") ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral) ax.set_xlabel("Spot Price $S_1$ (\$)", size=15) ax.set_ylabel("Spot Price $S_2$ (\$)", size=15) ax.set_zlabel("Probability (\%)", size=15) plt.show() # determine number of qubits required to represent total loss weights = [] for n in num_qubits: for i in range(n): weights += [2**i] # create aggregation circuit agg = WeightedAdder(sum(num_qubits), weights) n_s = agg.num_sum_qubits n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 3 strike_price_2 = 4 # set the barrier threshold barrier = 2.5 # map strike prices and barrier threshold from [low, high] to {0, ..., 2^n-1} max_value = 2**n_s - 1 low_ = low[0] high_ = high[0] mapped_strike_price_1 = ( (strike_price_1 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) mapped_strike_price_2 = ( (strike_price_2 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) mapped_barrier = (barrier - low) / (high - low) * (2**num_uncertainty_qubits - 1) # condition and condition result conditions = [] barrier_thresholds = [2] * dimension n_aux_conditions = 0 for i in range(dimension): # target dimension of random distribution and corresponding condition (which is required to be True) comparator = IntegerComparator(num_qubits[i], mapped_barrier[i] + 1, geq=False) n_aux_conditions = max(n_aux_conditions, comparator.num_ancillas) conditions += [comparator] # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [0, mapped_strike_price_1, mapped_strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, mapped_strike_price_2 - mapped_strike_price_1] f_min = 0 f_max = mapped_strike_price_2 - mapped_strike_price_1 objective = LinearAmplitudeFunction( n_s, slopes, offsets, domain=(0, max_value), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define overall multivariate problem qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution qr_obj = QuantumRegister(1, "obj") # to encode the function values ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum ar_cond = AncillaRegister(len(conditions) + 1, "conditions") ar = AncillaRegister( max(n_aux, n_aux_conditions, objective.num_ancillas), "work" ) # additional qubits objective_index = u.num_qubits # define the circuit asian_barrier_spread = QuantumCircuit(qr_state, qr_obj, ar_cond, ar_sum, ar) # load the probability distribution asian_barrier_spread.append(u, qr_state) # apply the conditions for i, cond in enumerate(conditions): state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))] asian_barrier_spread.append(cond, state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas]) # aggregate the conditions on a single qubit asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1]) # apply the aggregation function controlled on the condition asian_barrier_spread.append(agg.control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux]) # apply the payoff function asian_barrier_spread.append(objective, ar_sum[:] + qr_obj[:] + ar[: objective.num_ancillas]) # uncompute the aggregation asian_barrier_spread.append( agg.inverse().control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux] ) # uncompute the conditions asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1]) for j, cond in enumerate(reversed(conditions)): i = len(conditions) - j - 1 state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))] asian_barrier_spread.append( cond.inverse(), state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas] ) print(asian_barrier_spread.draw()) print("objective qubit index", objective_index) # plot exact payoff function plt.figure(figsize=(7, 5)) x = np.linspace(sum(low), sum(high)) y = (x <= 5) * np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "r-") plt.grid() plt.title("Payoff Function (for $S_1 = S_2$)", size=15) plt.xlabel("Sum of Spot Prices ($S_1 + S_2)$", size=15) plt.ylabel("Payoff", size=15) plt.xticks(size=15, rotation=90) plt.yticks(size=15) plt.show() # plot contour of payoff function with respect to both time steps, including barrier plt.figure(figsize=(7, 5)) z = np.zeros((17, 17)) x = np.linspace(low[0], high[0], 17) y = np.linspace(low[1], high[1], 17) for i, x_ in enumerate(x): for j, y_ in enumerate(y): z[i, j] = np.minimum( np.maximum(0, x_ + y_ - strike_price_1), strike_price_2 - strike_price_1 ) if x_ > barrier or y_ > barrier: z[i, j] = 0 plt.title("Payoff Function", size=15) plt.contourf(x, y, z) plt.colorbar() plt.xlabel("Spot Price $S_1$", size=15) plt.ylabel("Spot Price $S_2$", size=15) plt.xticks(size=15) plt.yticks(size=15) plt.show() # evaluate exact expected value sum_values = np.sum(u.values, axis=1) payoff = np.minimum(np.maximum(sum_values - strike_price_1, 0), strike_price_2 - strike_price_1) leq_barrier = [np.max(v) <= barrier for v in u.values] exact_value = np.dot(u.probabilities[leq_barrier], payoff[leq_barrier]) print("exact expected value:\t%.4f" % exact_value) num_state_qubits = asian_barrier_spread.num_qubits - asian_barrier_spread.num_ancillas print("state qubits: ", num_state_qubits) transpiled = transpile(asian_barrier_spread, basis_gates=["u", "cx"]) print("circuit width:", transpiled.width()) print("circuit depth:", transpiled.depth()) asian_barrier_spread_measure = asian_barrier_spread.measure_all(inplace=False) sampler = Sampler() job = sampler.run(asian_barrier_spread_measure) # evaluate the result value = 0 probabilities = job.result().quasi_dists[0].binary_probabilities() for i, prob in probabilities.items(): if prob > 1e-4 and i[-num_state_qubits:][0] == "1": value += prob # map value to original range mapped_value = objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % mapped_value) print("Exact Expected Payoff: %.4f" % exact_value) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=asian_barrier_spread, objective_qubits=[objective_index], post_processing=objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation(epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})) result = ae.estimate(problem) conf_int = ( np.array(result.confidence_interval_processed) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact value: \t%.4f" % exact_value) print( "Estimated value:\t%.4f" % (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_)) ) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import NormalDistribution # can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example. A = np.eye(2) b = np.zeros(2) # specify the number of qubits that are used to represent the different dimenions of the uncertainty model num_qubits = [2, 2] # specify the lower and upper bounds for the different dimension low = [0, 0] high = [0.12, 0.24] mu = [0.12, 0.24] sigma = 0.01 * np.eye(2) # construct corresponding distribution bounds = list(zip(low, high)) u = NormalDistribution(num_qubits, mu, sigma, bounds) # plot contour of probability density function x = np.linspace(low[0], high[0], 2 ** num_qubits[0]) y = np.linspace(low[1], high[1], 2 ** num_qubits[1]) z = u.probabilities.reshape(2 ** num_qubits[0], 2 ** num_qubits[1]) plt.contourf(x, y, z) plt.xticks(x, size=15) plt.yticks(y, size=15) plt.grid() plt.xlabel("$r_1$ (%)", size=15) plt.ylabel("$r_2$ (%)", size=15) plt.colorbar() plt.show() # specify cash flow cf = [1.0, 2.0] periods = range(1, len(cf) + 1) # plot cash flow plt.bar(periods, cf) plt.xticks(periods, size=15) plt.yticks(size=15) plt.grid() plt.xlabel("periods", size=15) plt.ylabel("cashflow ($)", size=15) plt.show() # estimate real value cnt = 0 exact_value = 0.0 for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])): for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])): prob = u.probabilities[cnt] for t in range(len(cf)): # evaluate linear approximation of real value w.r.t. interest rates exact_value += prob * ( cf[t] / pow(1 + b[t], t + 1) - (t + 1) * cf[t] * np.dot(A[:, t], np.asarray([x1, x2])) / pow(1 + b[t], t + 2) ) cnt += 1 print("Exact value: \t%.4f" % exact_value) # specify approximation factor c_approx = 0.125 # create fixed income pricing application from qiskit_finance.applications.estimation import FixedIncomePricing fixed_income = FixedIncomePricing( num_qubits=num_qubits, pca_matrix=A, initial_interests=b, cash_flow=cf, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=u, ) fixed_income._objective.draw() fixed_income_circ = QuantumCircuit(fixed_income._objective.num_qubits) # load probability distribution fixed_income_circ.append(u, range(u.num_qubits)) # apply function fixed_income_circ.append(fixed_income._objective, range(fixed_income._objective.num_qubits)) fixed_income_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 # construct amplitude estimation problem = fixed_income.to_estimation_problem() ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (fixed_income.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit.library import IntegerComparator from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler # set problem parameters n_z = 2 z_max = 2 z_values = np.linspace(-z_max, z_max, 2**n_z) p_zeros = [0.15, 0.25] rhos = [0.1, 0.05] lgd = [1, 2] K = len(p_zeros) alpha = 0.05 from qiskit_finance.circuit.library import GaussianConditionalIndependenceModel as GCI u = GCI(n_z, z_max, p_zeros, rhos) u.draw() u_measure = u.measure_all(inplace=False) sampler = Sampler() job = sampler.run(u_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # analyze uncertainty circuit and determine exact solutions p_z = np.zeros(2**n_z) p_default = np.zeros(K) values = [] probabilities = [] num_qubits = u.num_qubits for i, prob in binary_probabilities.items(): # extract value of Z and corresponding probability i_normal = int(i[-n_z:], 2) p_z[i_normal] += prob # determine overall default probability for k loss = 0 for k in range(K): if i[K - k - 1] == "1": p_default[k] += prob loss += lgd[k] values += [loss] probabilities += [prob] values = np.array(values) probabilities = np.array(probabilities) expected_loss = np.dot(values, probabilities) losses = np.sort(np.unique(values)) pdf = np.zeros(len(losses)) for i, v in enumerate(losses): pdf[i] += sum(probabilities[values == v]) cdf = np.cumsum(pdf) i_var = np.argmax(cdf >= 1 - alpha) exact_var = losses[i_var] exact_cvar = np.dot(pdf[(i_var + 1) :], losses[(i_var + 1) :]) / sum(pdf[(i_var + 1) :]) print("Expected Loss E[L]: %.4f" % expected_loss) print("Value at Risk VaR[L]: %.4f" % exact_var) print("P[L <= VaR[L]]: %.4f" % cdf[exact_var]) print("Conditional Value at Risk CVaR[L]: %.4f" % exact_cvar) # plot loss PDF, expected loss, var, and cvar plt.bar(losses, pdf) plt.axvline(expected_loss, color="green", linestyle="--", label="E[L]") plt.axvline(exact_var, color="orange", linestyle="--", label="VaR(L)") plt.axvline(exact_cvar, color="red", linestyle="--", label="CVaR(L)") plt.legend(fontsize=15) plt.xlabel("Loss L ($)", size=15) plt.ylabel("probability (%)", size=15) plt.title("Loss Distribution", size=20) plt.xticks(size=15) plt.yticks(size=15) plt.show() # plot results for Z plt.plot(z_values, p_z, "o-", linewidth=3, markersize=8) plt.grid() plt.xlabel("Z value", size=15) plt.ylabel("probability (%)", size=15) plt.title("Z Distribution", size=20) plt.xticks(size=15) plt.yticks(size=15) plt.show() # plot results for default probabilities plt.bar(range(K), p_default) plt.xlabel("Asset", size=15) plt.ylabel("probability (%)", size=15) plt.title("Individual Default Probabilities", size=20) plt.xticks(range(K), size=15) plt.yticks(size=15) plt.grid() plt.show() # add Z qubits with weight/loss 0 from qiskit.circuit.library import WeightedAdder agg = WeightedAdder(n_z + K, [0] * n_z + lgd) from qiskit.circuit.library import LinearAmplitudeFunction # define linear objective function breakpoints = [0] slopes = [1] offsets = [0] f_min = 0 f_max = sum(lgd) c_approx = 0.25 objective = LinearAmplitudeFunction( agg.num_sum_qubits, slope=slopes, offset=offsets, # max value that can be reached by the qubit register (will not always be reached) domain=(0, 2**agg.num_sum_qubits - 1), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A") # load the random variable state_preparation.append(u.to_gate(), qr_state) # aggregate state_preparation.append(agg.to_gate(), qr_state[:] + qr_sum[:] + qr_carry[:]) # linear objective function state_preparation.append(objective.to_gate(), qr_sum[:] + qr_obj[:]) # uncompute aggregation state_preparation.append(agg.to_gate().inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) # draw the circuit state_preparation.draw() state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result value = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1": value += prob print("Exact Expected Loss: %.4f" % expected_loss) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % objective.post_processing(value)) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)], post_processing=objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) # print results conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % expected_loss) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # set x value to estimate the CDF x_eval = 2 comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False) comparator.draw() def get_cdf_circuit(x_eval): # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") qr_compare = QuantumRegister(1, "compare") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A") # load the random variable state_preparation.append(u, qr_state) # aggregate state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:]) # comparator objective function comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False) state_preparation.append(comparator, qr_sum[:] + qr_obj[:] + qr_carry[:]) # uncompute aggregation state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) return state_preparation state_preparation = get_cdf_circuit(x_eval) state_preparation.draw() state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result var_prob = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1": var_prob += prob print("Operator CDF(%s)" % x_eval + " = %.4f" % var_prob) print("Exact CDF(%s)" % x_eval + " = %.4f" % cdf[x_eval]) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem(state_preparation=state_preparation, objective_qubits=[len(qr_state)]) # construct amplitude estimation ae_cdf = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_cdf = ae_cdf.estimate(problem) # print results conf_int = np.array(result_cdf.confidence_interval) print("Exact value: \t%.4f" % cdf[x_eval]) print("Estimated value:\t%.4f" % result_cdf.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) def run_ae_for_cdf(x_eval, epsilon=0.01, alpha=0.05, simulator="aer_simulator"): # construct amplitude estimation state_preparation = get_cdf_circuit(x_eval) problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)] ) ae_var = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_var = ae_var.estimate(problem) return result_var.estimation def bisection_search( objective, target_value, low_level, high_level, low_value=None, high_value=None ): """ Determines the smallest level such that the objective value is still larger than the target :param objective: objective function :param target: target value :param low_level: lowest level to be considered :param high_level: highest level to be considered :param low_value: value of lowest level (will be evaluated if set to None) :param high_value: value of highest level (will be evaluated if set to None) :return: dictionary with level, value, num_eval """ # check whether low and high values are given and evaluated them otherwise print("--------------------------------------------------------------------") print("start bisection search for target value %.3f" % target_value) print("--------------------------------------------------------------------") num_eval = 0 if low_value is None: low_value = objective(low_level) num_eval += 1 if high_value is None: high_value = objective(high_level) num_eval += 1 # check if low_value already satisfies the condition if low_value > target_value: return { "level": low_level, "value": low_value, "num_eval": num_eval, "comment": "returned low value", } elif low_value == target_value: return {"level": low_level, "value": low_value, "num_eval": num_eval, "comment": "success"} # check if high_value is above target if high_value < target_value: return { "level": high_level, "value": high_value, "num_eval": num_eval, "comment": "returned low value", } elif high_value == target_value: return { "level": high_level, "value": high_value, "num_eval": num_eval, "comment": "success", } # perform bisection search until print("low_level low_value level value high_level high_value") print("--------------------------------------------------------------------") while high_level - low_level > 1: level = int(np.round((high_level + low_level) / 2.0)) num_eval += 1 value = objective(level) print( "%2d %.3f %2d %.3f %2d %.3f" % (low_level, low_value, level, value, high_level, high_value) ) if value >= target_value: high_level = level high_value = value else: low_level = level low_value = value # return high value after bisection search print("--------------------------------------------------------------------") print("finished bisection search") print("--------------------------------------------------------------------") return {"level": high_level, "value": high_value, "num_eval": num_eval, "comment": "success"} # run bisection search to determine VaR objective = lambda x: run_ae_for_cdf(x) bisection_result = bisection_search( objective, 1 - alpha, min(losses) - 1, max(losses), low_value=0, high_value=1 ) var = bisection_result["level"] print("Estimated Value at Risk: %2d" % var) print("Exact Value at Risk: %2d" % exact_var) print("Estimated Probability: %.3f" % bisection_result["value"]) print("Exact Probability: %.3f" % cdf[exact_var]) # define linear objective breakpoints = [0, var] slopes = [0, 1] offsets = [0, 0] # subtract VaR and add it later to the estimate f_min = 0 f_max = 3 - var c_approx = 0.25 cvar_objective = LinearAmplitudeFunction( agg.num_sum_qubits, slopes, offsets, domain=(0, 2**agg.num_sum_qubits - 1), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) cvar_objective.draw() # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") qr_work = QuantumRegister(cvar_objective.num_ancillas - len(qr_carry), "work") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, qr_work, name="A") # load the random variable state_preparation.append(u, qr_state) # aggregate state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:]) # linear objective function state_preparation.append(cvar_objective, qr_sum[:] + qr_obj[:] + qr_carry[:] + qr_work[:]) # uncompute aggregation state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result value = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1)] == "1": value += prob # normalize and add VaR to estimate value = cvar_objective.post_processing(value) d = 1.0 - bisection_result["value"] v = value / d if d != 0 else 0 normalized_value = v + var print("Estimated CVaR: %.4f" % normalized_value) print("Exact CVaR: %.4f" % exact_cvar) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)], post_processing=cvar_objective.post_processing, ) # construct amplitude estimation ae_cvar = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_cvar = ae_cvar.estimate(problem) # print results d = 1.0 - bisection_result["value"] v = result_cvar.estimation_processed / d if d != 0 else 0 print("Exact CVaR: \t%.4f" % exact_cvar) print("Estimated CVaR:\t%.4f" % (v + var)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.circuit import ParameterVector from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Statevector from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.applications.estimation import EuropeanCallPricing from qiskit_finance.circuit.library import NormalDistribution # Set upper and lower data values bounds = np.array([0.0, 7.0]) # Set number of qubits used in the uncertainty model num_qubits = 3 # Load the trained circuit parameters g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225] # Set an initial state for the generator circuit init_dist = NormalDistribution(num_qubits, mu=1.0, sigma=1.0, bounds=bounds) # construct the variational form var_form = TwoLocal(num_qubits, "ry", "cz", entanglement="circular", reps=1) # keep a list of the parameters so we can associate them to the list of numerical values # (otherwise we need a dictionary) theta = var_form.ordered_parameters # compose the generator circuit, this is the circuit loading the uncertainty model g_circuit = init_dist.compose(var_form) # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2 # set the approximation scaling for the payoff function c_approx = 0.25 # Evaluate trained probability distribution values = [ bounds[0] + (bounds[1] - bounds[0]) * x / (2**num_qubits - 1) for x in range(2**num_qubits) ] uncertainty_model = g_circuit.assign_parameters(dict(zip(theta, g_params))) amplitudes = Statevector.from_instruction(uncertainty_model).data x = np.array(values) y = np.abs(amplitudes) ** 2 # Sample from target probability distribution N = 100000 log_normal = np.random.lognormal(mean=1, sigma=1, size=N) log_normal = np.round(log_normal) log_normal = log_normal[log_normal <= 7] log_normal_samples = [] for i in range(8): log_normal_samples += [np.sum(log_normal == i)] log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples)) # Plot distributions plt.bar(x, y, width=0.2, label="trained distribution", color="royalblue") plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.plot( log_normal_samples, "-o", color="deepskyblue", label="target distribution", linewidth=4, markersize=12, ) plt.legend(loc="best") plt.show() # Evaluate payoff for different distributions payoff = np.array([0, 0, 0, 1, 2, 3, 4, 5]) ep = np.dot(log_normal_samples, payoff) print("Analytically calculated expected payoff w.r.t. the target distribution: %.4f" % ep) ep_trained = np.dot(y, payoff) print("Analytically calculated expected payoff w.r.t. the trained distribution: %.4f" % ep_trained) # Plot exact payoff function (evaluated on the grid of the trained uncertainty model) x = np.array(values) y_strike = np.maximum(0, x - strike_price) plt.plot(x, y_strike, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # construct circuit for payoff function european_call_pricing = EuropeanCallPricing( num_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % ep_trained) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
%matplotlib inline from qiskit_finance import QiskitFinanceError from qiskit_finance.data_providers import * import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider( tickers=["TICKER1", "TICKER2"], start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=1, ) data.run() means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) data = RandomDataProvider( tickers=["CompanyA", "CompanyB", "CompanyC"], start=datetime.datetime(2015, 1, 1), end=datetime.datetime(2016, 1, 30), seed=1, ) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() stocks = ["GOOG", "AAPL"] token = "REPLACE-ME" if token != "REPLACE-ME": try: wiki = WikipediaDataProvider( token=token, tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), ) wiki.run() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") if token != "REPLACE-ME": if wiki._data: if wiki._n <= 1: print( "Not enough wiki data to plot covariance or time-series similarity. Please use at least two tickers." ) else: rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() else: print("No wiki data loaded.") if token != "REPLACE-ME": if wiki._data: print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) else: print("No wiki data loaded.") token = "REPLACE-ME" if token != "REPLACE-ME": try: nasdaq = DataOnDemandProvider( token=token, tickers=["GOOG", "AAPL"], start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 2), ) nasdaq.run() for (cnt, s) in enumerate(nasdaq._tickers): plt.plot(nasdaq._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") token = "REPLACE-ME" if token != "REPLACE-ME": try: lse = ExchangeDataProvider( token=token, tickers=["AEO", "ABBY", "ADIG", "ABF", "AEP", "AAL", "AGK", "AFN", "AAS", "AEFS"], stockmarket=StockMarket.LONDON, start=datetime.datetime(2018, 1, 1), end=datetime.datetime(2018, 12, 31), ) lse.run() for (cnt, s) in enumerate(lse._tickers): plt.plot(lse._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") try: data = YahooDataProvider( tickers=["MSFT", "AAPL", "GOOG"], start=datetime.datetime(2021, 1, 1), end=datetime.datetime(2021, 12, 31), ) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3) plt.xticks(rotation=90) plt.show() except QiskitFinanceError as ex: data = None print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
p = 0.2 import numpy as np from qiskit.circuit import QuantumCircuit class BernoulliA(QuantumCircuit): """A circuit representing the Bernoulli A operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(theta_p, 0) class BernoulliQ(QuantumCircuit): """A circuit representing the Bernoulli Q operator.""" def __init__(self, probability): super().__init__(1) # circuit on 1 qubit self._theta_p = 2 * np.arcsin(np.sqrt(probability)) self.ry(2 * self._theta_p, 0) def power(self, k): # implement the efficient power of Q q_k = QuantumCircuit(1) q_k.ry(2 * k * self._theta_p, 0) return q_k A = BernoulliA(p) Q = BernoulliQ(p) from qiskit.algorithms import EstimationProblem problem = EstimationProblem( state_preparation=A, # A operator grover_operator=Q, # Q operator objective_qubits=[0], # the "good" state Psi1 is identified as measuring |1> in qubit 0 ) from qiskit.primitives import Sampler sampler = Sampler() from qiskit.algorithms import AmplitudeEstimation ae = AmplitudeEstimation( num_eval_qubits=3, # the number of evaluation qubits specifies circuit width and accuracy sampler=sampler, ) ae_result = ae.estimate(problem) print(ae_result.estimation) import matplotlib.pyplot as plt # plot estimated values gridpoints = list(ae_result.samples.keys()) probabilities = list(ae_result.samples.values()) plt.bar(gridpoints, probabilities, width=0.5 / len(probabilities)) plt.axvline(p, color="r", ls="--") plt.xticks(size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title("Estimated Values", size=15) plt.ylabel("Probability", size=15) plt.xlabel(r"Amplitude $a$", size=15) plt.ylim((0, 1)) plt.grid() plt.show() print("Interpolated MLE estimator:", ae_result.mle) ae_circuit = ae.construct_circuit(problem) ae_circuit.decompose().draw( "mpl", style="iqx" ) # decompose 1 level: exposes the Phase estimation circuit! from qiskit import transpile basis_gates = ["h", "ry", "cry", "cx", "ccx", "p", "cp", "x", "s", "sdg", "y", "t", "cz"] transpile(ae_circuit, basis_gates=basis_gates, optimization_level=2).draw("mpl", style="iqx") from qiskit.algorithms import IterativeAmplitudeEstimation iae = IterativeAmplitudeEstimation( epsilon_target=0.01, # target accuracy alpha=0.05, # width of the confidence interval sampler=sampler, ) iae_result = iae.estimate(problem) print("Estimate:", iae_result.estimation) iae_circuit = iae.construct_circuit(problem, k=3) iae_circuit.draw("mpl", style="iqx") from qiskit.algorithms import MaximumLikelihoodAmplitudeEstimation mlae = MaximumLikelihoodAmplitudeEstimation( evaluation_schedule=3, # log2 of the maximal Grover power sampler=sampler, ) mlae_result = mlae.estimate(problem) print("Estimate:", mlae_result.estimation) from qiskit.algorithms import FasterAmplitudeEstimation fae = FasterAmplitudeEstimation( delta=0.01, # target accuracy maxiter=3, # determines the maximal power of the Grover operator sampler=sampler, ) fae_result = fae.estimate(problem) print("Estimate:", fae_result.estimation) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, QAOA, SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit.result import QuasiDistribution from qiskit_aer.primitives import Sampler from qiskit_finance.applications.optimization import PortfolioOptimization from qiskit_finance.data_providers import RandomDataProvider from qiskit_optimization.algorithms import MinimumEigenOptimizer import numpy as np import matplotlib.pyplot as plt import datetime # set number of assets (= number of qubits) num_assets = 4 seed = 123 # Generate expected return and covariance matrix from (random) time-series stocks = [("TICKER%s" % i) for i in range(num_assets)] data = RandomDataProvider( tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=seed, ) data.run() mu = data.get_period_return_mean_vector() sigma = data.get_period_return_covariance_matrix() # plot sigma plt.imshow(sigma, interpolation="nearest") plt.show() q = 0.5 # set risk factor budget = num_assets // 2 # set budget penalty = num_assets # set parameter to scale the budget penalty term portfolio = PortfolioOptimization( expected_returns=mu, covariances=sigma, risk_factor=q, budget=budget ) qp = portfolio.to_quadratic_program() qp def print_result(result): selection = result.x value = result.fval print("Optimal: selection {}, value {:.4f}".format(selection, value)) eigenstate = result.min_eigen_solver_result.eigenstate probabilities = ( eigenstate.binary_probabilities() if isinstance(eigenstate, QuasiDistribution) else {k: np.abs(v) ** 2 for k, v in eigenstate.to_dict().items()} ) print("\n----------------- Full result ---------------------") print("selection\tvalue\t\tprobability") print("---------------------------------------------------") probabilities = sorted(probabilities.items(), key=lambda x: x[1], reverse=True) for k, v in probabilities: x = np.array([int(i) for i in list(reversed(k))]) value = portfolio.to_quadratic_program().objective.evaluate(x) print("%10s\t%.4f\t\t%.4f" % (x, value, v)) exact_mes = NumPyMinimumEigensolver() exact_eigensolver = MinimumEigenOptimizer(exact_mes) result = exact_eigensolver.solve(qp) print_result(result) from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=500) ry = TwoLocal(num_assets, "ry", "cz", reps=3, entanglement="full") vqe_mes = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=cobyla) vqe = MinimumEigenOptimizer(vqe_mes) result = vqe.solve(qp) print_result(result) algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa_mes = QAOA(sampler=Sampler(), optimizer=cobyla, reps=3) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qp) print_result(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# Import requisite modules import math import datetime import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Import Qiskit packages from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, QAOA, SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit_aer.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # The data providers of stock-market data from qiskit_finance.data_providers import RandomDataProvider from qiskit_finance.applications.optimization import PortfolioDiversification # Generate a pairwise time-series similarity matrix seed = 123 stocks = ["TICKER1", "TICKER2"] n = len(stocks) data = RandomDataProvider( tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=seed, ) data.run() rho = data.get_similarity_matrix() q = 1 # q less or equal than n class ClassicalOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n # number of inner variables self.q = q # number of required selection def compute_allowed_combinations(self): f = math.factorial return int(f(self.n) / f(self.q) / f(self.n - self.q)) def cplex_solution(self): # refactoring rho = self.rho n = self.n q = self.q my_obj = list(rho.reshape(1, n**2)[0]) + [0.0 for x in range(0, n)] my_ub = [1 for x in range(0, n**2 + n)] my_lb = [0 for x in range(0, n**2 + n)] my_ctype = "".join(["I" for x in range(0, n**2 + n)]) my_rhs = ( [q] + [1 for x in range(0, n)] + [0 for x in range(0, n)] + [0.1 for x in range(0, n**2)] ) my_sense = ( "".join(["E" for x in range(0, 1 + n)]) + "".join(["E" for x in range(0, n)]) + "".join(["L" for x in range(0, n**2)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] col = [x for x in range(n**2, n**2 + n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [ii * n + ii, n**2 + ii] coef = [1, -1] rows.append([col, coef]) for ii in range(0, n): for jj in range(0, n): col = [ii * n + jj, n**2 + jj] coef = [1, -1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(rho, n, q) # Compute the number of feasible solutions: print("Number of feasible combinations= " + str(classical_optimizer.compute_allowed_combinations())) # Compute the total number of possible combinations (feasible + unfeasible) print("Total number of combinations= " + str(2 ** (n * (n + 1)))) # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.015, yc[i]), size=16, color="r") plt.grid() for ii in range(n**2, n**2 + n): if x[ii] > 0: plt.plot(xc[ii - n**2], yc[ii - n**2], "r*", ms=20) for ii in range(0, n**2): if x[ii] > 0: iy = ii // n ix = ii % n plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], "C2") plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() from qiskit.utils import algorithm_globals class QuantumOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n self.q = q self.pdf = PortfolioDiversification(similarity_matrix=rho, num_assets=n, num_clusters=q) self.qp = self.pdf.to_quadratic_program() # Obtains the least eigenvalue of the Hamiltonian classically def exact_solution(self): exact_mes = NumPyMinimumEigensolver() exact_eigensolver = MinimumEigenOptimizer(exact_mes) result = exact_eigensolver.solve(self.qp) return self.decode_result(result) def vqe_solution(self): algorithm_globals.random_seed = 100 cobyla = COBYLA() cobyla.set_options(maxiter=250) ry = TwoLocal(n, "ry", "cz", reps=5, entanglement="full") vqe_mes = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=cobyla) vqe = MinimumEigenOptimizer(vqe_mes) result = vqe.solve(self.qp) return self.decode_result(result) def qaoa_solution(self): algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa_mes = QAOA(sampler=Sampler(), optimizer=cobyla, reps=3) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(self.qp) return self.decode_result(result) def decode_result(self, result, offset=0): quantum_solution = 1 - (result.x) ground_level = self.qp.objective.evaluate(result.x) return quantum_solution, ground_level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(rho, n, q) # Check if the binary representation is correct. This requires CPLEX try: import cplex # warnings.filterwarnings('ignore') quantum_solution, quantum_cost = quantum_optimizer.exact_solution() print(quantum_solution, quantum_cost) classical_solution, classical_cost = classical_optimizer.cplex_solution() print(classical_solution, classical_cost) if np.abs(quantum_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the formulation of the Hamiltonian") except Exception as ex: print(ex) ground_state, ground_level = quantum_optimizer.exact_solution() print(ground_state) classical_cost = 1.000779571614484 # obtained from the CPLEX solution try: if np.abs(ground_level - classical_cost) < 0.01: print("Ising Hamiltonian in Z basis is correct") else: print("Error in the Ising Hamiltonian formulation") except Exception as ex: print(ex) vqe_state, vqe_level = quantum_optimizer.vqe_solution() print(vqe_state, vqe_level) try: if np.linalg.norm(ground_state - vqe_state) < 0.01: print("SamplingVQE produces the same solution as the exact eigensolver.") else: print( "SamplingVQE does not produce the same solution as the exact eigensolver, but that is to be expected." ) except Exception as ex: print(ex) xc, yc = data.get_coordinates() visualize_solution(xc, yc, ground_state, ground_level, n, q, "Classical") visualize_solution(xc, yc, vqe_state, vqe_level, n, q, "VQE") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 1.896 # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = high - strike_price european_call_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=c_approx, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective num_qubits = european_call_objective.num_qubits european_call = QuantumCircuit(num_qubits) european_call.append(uncertainty_model, range(num_uncertainty_qubits)) european_call.append(european_call_objective, range(num_qubits)) # draw the circuit european_call.draw() # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, x - strike_price) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum(uncertainty_model.probabilities[x >= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) european_call.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_call, objective_qubits=[3], post_processing=european_call_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallPricing european_call_pricing = EuropeanCallPricing( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=(low, high), uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (european_call_pricing.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) from qiskit_finance.applications.estimation import EuropeanCallDelta european_call_delta = EuropeanCallDelta( num_state_qubits=num_uncertainty_qubits, strike_price=strike_price, bounds=(low, high), uncertainty_model=uncertainty_model, ) european_call_delta._objective.decompose().draw() european_call_delta_circ = QuantumCircuit(european_call_delta._objective.num_qubits) european_call_delta_circ.append(uncertainty_model, range(num_uncertainty_qubits)) european_call_delta_circ.append( european_call_delta._objective, range(european_call_delta._objective.num_qubits) ) european_call_delta_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_delta.to_estimation_problem() # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval_processed) print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % european_call_delta.interpret(result_delta)) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2.126 # set the approximation scaling for the payoff function rescaling_factor = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [-1, 0] offsets = [strike_price - low, 0] f_min = 0 f_max = strike_price - low european_put_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=rescaling_factor, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective european_put = european_put_objective.compose(uncertainty_model, front=True) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.maximum(0, strike_price - x) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = -sum(uncertainty_model.probabilities[x <= strike_price]) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_put, objective_qubits=[num_uncertainty_qubits], post_processing=european_put_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) # setup piecewise linear objective fcuntion breakpoints = [low, strike_price] slopes = [0, 0] offsets = [1, 0] f_min = 0 f_max = 1 european_put_delta_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, ) # construct circuit for payoff function european_put_delta = european_put_delta_objective.compose(uncertainty_model, front=True) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=european_put_delta, objective_qubits=[num_uncertainty_qubits] ) # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = -np.array(result_delta.confidence_interval)[::-1] print("Exact delta: \t%.4f" % exact_delta) print("Esimated value: \t%.4f" % -result_delta.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits to represent the uncertainty num_uncertainty_qubits = 3 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # construct circuit for uncertainty model uncertainty_model = LogNormalDistribution( num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(low, high) ) # plot probability distribution x = uncertainty_model.values y = uncertainty_model.probabilities plt.bar(x, y, width=0.2) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.show() # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 1.438 strike_price_2 = 2.584 # set the approximation scaling for the payoff function rescaling_factor = 0.25 # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, strike_price_2 - strike_price_1] f_min = 0 f_max = strike_price_2 - strike_price_1 bull_spread_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, rescaling_factor=rescaling_factor, ) # construct A operator for QAE for the payoff function by # composing the uncertainty model and the objective bull_spread = bull_spread_objective.compose(uncertainty_model, front=True) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = uncertainty_model.values y = np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value (normalized to the [0, 1] interval) exact_value = np.dot(uncertainty_model.probabilities, y) exact_delta = sum( uncertainty_model.probabilities[np.logical_and(x >= strike_price_1, x <= strike_price_2)] ) print("exact expected value:\t%.4f" % exact_value) print("exact delta value: \t%.4f" % exact_delta) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread, objective_qubits=[num_uncertainty_qubits], post_processing=bull_spread_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # setup piecewise linear objective fcuntion breakpoints = [low, strike_price_1, strike_price_2] slopes = [0, 0, 0] offsets = [0, 1, 0] f_min = 0 f_max = 1 bull_spread_delta_objective = LinearAmplitudeFunction( num_uncertainty_qubits, slopes, offsets, domain=(low, high), image=(f_min, f_max), breakpoints=breakpoints, ) # no approximation necessary, hence no rescaling factor # construct the A operator by stacking the uncertainty model and payoff function together bull_spread_delta = bull_spread_delta_objective.compose(uncertainty_model, front=True) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=bull_spread_delta, objective_qubits=[num_uncertainty_qubits] ) # construct amplitude estimation ae_delta = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_delta = ae_delta.estimate(problem) conf_int = np.array(result_delta.confidence_interval) print("Exact delta: \t%.4f" % exact_delta) print("Estimated value:\t%.4f" % result_delta.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from scipy.interpolate import griddata %matplotlib inline import numpy as np from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit.circuit.library import WeightedAdder, LinearAmplitudeFunction from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits per dimension to represent the uncertainty num_uncertainty_qubits = 2 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # map to higher dimensional distribution # for simplicity assuming dimensions are independent and identically distributed) dimension = 2 num_qubits = [num_uncertainty_qubits] * dimension low = low * np.ones(dimension) high = high * np.ones(dimension) mu = mu * np.ones(dimension) cov = sigma**2 * np.eye(dimension) # construct circuit u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=list(zip(low, high))) # plot PDF of uncertainty model x = [v[0] for v in u.values] y = [v[1] for v in u.values] z = u.probabilities # z = map(float, z) # z = list(map(float, z)) resolution = np.array([2**n for n in num_qubits]) * 1j grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]] grid_z = griddata((x, y), z, (grid_x, grid_y)) plt.figure(figsize=(10, 8)) ax = plt.axes(projection="3d") ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral) ax.set_xlabel("Spot Price $S_T^1$ (\$)", size=15) ax.set_ylabel("Spot Price $S_T^2$ (\$)", size=15) ax.set_zlabel("Probability (\%)", size=15) plt.show() # determine number of qubits required to represent total loss weights = [] for n in num_qubits: for i in range(n): weights += [2**i] # create aggregation circuit agg = WeightedAdder(sum(num_qubits), weights) n_s = agg.num_sum_qubits n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 3.5 # map strike price from [low, high] to {0, ..., 2^n-1} max_value = 2**n_s - 1 low_ = low[0] high_ = high[0] mapped_strike_price = ( (strike_price - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [0, mapped_strike_price] slopes = [0, 1] offsets = [0, 0] f_min = 0 f_max = 2 * (2**num_uncertainty_qubits - 1) - mapped_strike_price basket_objective = LinearAmplitudeFunction( n_s, slopes, offsets, domain=(0, max_value), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define overall multivariate problem qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution qr_obj = QuantumRegister(1, "obj") # to encode the function values ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum ar = AncillaRegister(max(n_aux, basket_objective.num_ancillas), "work") # additional qubits objective_index = u.num_qubits basket_option = QuantumCircuit(qr_state, qr_obj, ar_sum, ar) basket_option.append(u, qr_state) basket_option.append(agg, qr_state[:] + ar_sum[:] + ar[:n_aux]) basket_option.append(basket_objective, ar_sum[:] + qr_obj[:] + ar[: basket_objective.num_ancillas]) print(basket_option.draw()) print("objective qubit index", objective_index) # plot exact payoff function (evaluated on the grid of the uncertainty model) x = np.linspace(sum(low), sum(high)) y = np.maximum(0, x - strike_price) plt.plot(x, y, "r-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Sum of Spot Prices ($S_T^1 + S_T^2)$", size=15) plt.ylabel("Payoff", size=15) plt.xticks(size=15, rotation=90) plt.yticks(size=15) plt.show() # evaluate exact expected value sum_values = np.sum(u.values, axis=1) exact_value = np.dot( u.probabilities[sum_values >= strike_price], sum_values[sum_values >= strike_price] - strike_price, ) print("exact expected value:\t%.4f" % exact_value) num_state_qubits = basket_option.num_qubits - basket_option.num_ancillas print("state qubits: ", num_state_qubits) transpiled = transpile(basket_option, basis_gates=["u", "cx"]) print("circuit width:", transpiled.width()) print("circuit depth:", transpiled.depth()) basket_option_measure = basket_option.measure_all(inplace=False) sampler = Sampler() job = sampler.run(basket_option_measure) # evaluate the result value = 0 probabilities = job.result().quasi_dists[0].binary_probabilities() for i, prob in probabilities.items(): if prob > 1e-4 and i[-num_state_qubits:][0] == "1": value += prob # map value to original range mapped_value = ( basket_objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % mapped_value) print("Exact Expected Payoff: %.4f" % exact_value) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=basket_option, objective_qubits=[objective_index], post_processing=basket_objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = ( np.array(result.confidence_interval_processed) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact value: \t%.4f" % exact_value) print( "Estimated value: \t%.4f" % (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_)) ) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from scipy.interpolate import griddata %matplotlib inline import numpy as np from qiskit import QuantumRegister, QuantumCircuit, AncillaRegister, transpile from qiskit.circuit.library import IntegerComparator, WeightedAdder, LinearAmplitudeFunction from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import LogNormalDistribution # number of qubits per dimension to represent the uncertainty num_uncertainty_qubits = 2 # parameters for considered random distribution S = 2.0 # initial spot price vol = 0.4 # volatility of 40% r = 0.05 # annual interest rate of 4% T = 40 / 365 # 40 days to maturity # resulting parameters for log-normal distribution mu = (r - 0.5 * vol**2) * T + np.log(S) sigma = vol * np.sqrt(T) mean = np.exp(mu + sigma**2 / 2) variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2) stddev = np.sqrt(variance) # lowest and highest value considered for the spot price; in between, an equidistant discretization is considered. low = np.maximum(0, mean - 3 * stddev) high = mean + 3 * stddev # map to higher dimensional distribution # for simplicity assuming dimensions are independent and identically distributed) dimension = 2 num_qubits = [num_uncertainty_qubits] * dimension low = low * np.ones(dimension) high = high * np.ones(dimension) mu = mu * np.ones(dimension) cov = sigma**2 * np.eye(dimension) # construct circuit u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=(list(zip(low, high)))) # plot PDF of uncertainty model x = [v[0] for v in u.values] y = [v[1] for v in u.values] z = u.probabilities # z = map(float, z) # z = list(map(float, z)) resolution = np.array([2**n for n in num_qubits]) * 1j grid_x, grid_y = np.mgrid[min(x) : max(x) : resolution[0], min(y) : max(y) : resolution[1]] grid_z = griddata((x, y), z, (grid_x, grid_y)) plt.figure(figsize=(10, 8)) ax = plt.axes(projection="3d") ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral) ax.set_xlabel("Spot Price $S_1$ (\$)", size=15) ax.set_ylabel("Spot Price $S_2$ (\$)", size=15) ax.set_zlabel("Probability (\%)", size=15) plt.show() # determine number of qubits required to represent total loss weights = [] for n in num_qubits: for i in range(n): weights += [2**i] # create aggregation circuit agg = WeightedAdder(sum(num_qubits), weights) n_s = agg.num_sum_qubits n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits # set the strike price (should be within the low and the high value of the uncertainty) strike_price_1 = 3 strike_price_2 = 4 # set the barrier threshold barrier = 2.5 # map strike prices and barrier threshold from [low, high] to {0, ..., 2^n-1} max_value = 2**n_s - 1 low_ = low[0] high_ = high[0] mapped_strike_price_1 = ( (strike_price_1 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) mapped_strike_price_2 = ( (strike_price_2 - dimension * low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1) ) mapped_barrier = (barrier - low) / (high - low) * (2**num_uncertainty_qubits - 1) # condition and condition result conditions = [] barrier_thresholds = [2] * dimension n_aux_conditions = 0 for i in range(dimension): # target dimension of random distribution and corresponding condition (which is required to be True) comparator = IntegerComparator(num_qubits[i], mapped_barrier[i] + 1, geq=False) n_aux_conditions = max(n_aux_conditions, comparator.num_ancillas) conditions += [comparator] # set the approximation scaling for the payoff function c_approx = 0.25 # setup piecewise linear objective fcuntion breakpoints = [0, mapped_strike_price_1, mapped_strike_price_2] slopes = [0, 1, 0] offsets = [0, 0, mapped_strike_price_2 - mapped_strike_price_1] f_min = 0 f_max = mapped_strike_price_2 - mapped_strike_price_1 objective = LinearAmplitudeFunction( n_s, slopes, offsets, domain=(0, max_value), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define overall multivariate problem qr_state = QuantumRegister(u.num_qubits, "state") # to load the probability distribution qr_obj = QuantumRegister(1, "obj") # to encode the function values ar_sum = AncillaRegister(n_s, "sum") # number of qubits used to encode the sum ar_cond = AncillaRegister(len(conditions) + 1, "conditions") ar = AncillaRegister( max(n_aux, n_aux_conditions, objective.num_ancillas), "work" ) # additional qubits objective_index = u.num_qubits # define the circuit asian_barrier_spread = QuantumCircuit(qr_state, qr_obj, ar_cond, ar_sum, ar) # load the probability distribution asian_barrier_spread.append(u, qr_state) # apply the conditions for i, cond in enumerate(conditions): state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))] asian_barrier_spread.append(cond, state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas]) # aggregate the conditions on a single qubit asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1]) # apply the aggregation function controlled on the condition asian_barrier_spread.append(agg.control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux]) # apply the payoff function asian_barrier_spread.append(objective, ar_sum[:] + qr_obj[:] + ar[: objective.num_ancillas]) # uncompute the aggregation asian_barrier_spread.append( agg.inverse().control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux] ) # uncompute the conditions asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1]) for j, cond in enumerate(reversed(conditions)): i = len(conditions) - j - 1 state_qubits = qr_state[(num_uncertainty_qubits * i) : (num_uncertainty_qubits * (i + 1))] asian_barrier_spread.append( cond.inverse(), state_qubits + [ar_cond[i]] + ar[: cond.num_ancillas] ) print(asian_barrier_spread.draw()) print("objective qubit index", objective_index) # plot exact payoff function plt.figure(figsize=(7, 5)) x = np.linspace(sum(low), sum(high)) y = (x <= 5) * np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1) plt.plot(x, y, "r-") plt.grid() plt.title("Payoff Function (for $S_1 = S_2$)", size=15) plt.xlabel("Sum of Spot Prices ($S_1 + S_2)$", size=15) plt.ylabel("Payoff", size=15) plt.xticks(size=15, rotation=90) plt.yticks(size=15) plt.show() # plot contour of payoff function with respect to both time steps, including barrier plt.figure(figsize=(7, 5)) z = np.zeros((17, 17)) x = np.linspace(low[0], high[0], 17) y = np.linspace(low[1], high[1], 17) for i, x_ in enumerate(x): for j, y_ in enumerate(y): z[i, j] = np.minimum( np.maximum(0, x_ + y_ - strike_price_1), strike_price_2 - strike_price_1 ) if x_ > barrier or y_ > barrier: z[i, j] = 0 plt.title("Payoff Function", size=15) plt.contourf(x, y, z) plt.colorbar() plt.xlabel("Spot Price $S_1$", size=15) plt.ylabel("Spot Price $S_2$", size=15) plt.xticks(size=15) plt.yticks(size=15) plt.show() # evaluate exact expected value sum_values = np.sum(u.values, axis=1) payoff = np.minimum(np.maximum(sum_values - strike_price_1, 0), strike_price_2 - strike_price_1) leq_barrier = [np.max(v) <= barrier for v in u.values] exact_value = np.dot(u.probabilities[leq_barrier], payoff[leq_barrier]) print("exact expected value:\t%.4f" % exact_value) num_state_qubits = asian_barrier_spread.num_qubits - asian_barrier_spread.num_ancillas print("state qubits: ", num_state_qubits) transpiled = transpile(asian_barrier_spread, basis_gates=["u", "cx"]) print("circuit width:", transpiled.width()) print("circuit depth:", transpiled.depth()) asian_barrier_spread_measure = asian_barrier_spread.measure_all(inplace=False) sampler = Sampler() job = sampler.run(asian_barrier_spread_measure) # evaluate the result value = 0 probabilities = job.result().quasi_dists[0].binary_probabilities() for i, prob in probabilities.items(): if prob > 1e-4 and i[-num_state_qubits:][0] == "1": value += prob # map value to original range mapped_value = objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % mapped_value) print("Exact Expected Payoff: %.4f" % exact_value) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=asian_barrier_spread, objective_qubits=[objective_index], post_processing=objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation(epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})) result = ae.estimate(problem) conf_int = ( np.array(result.confidence_interval_processed) / (2**num_uncertainty_qubits - 1) * (high_ - low_) ) print("Exact value: \t%.4f" % exact_value) print( "Estimated value:\t%.4f" % (result.estimation_processed / (2**num_uncertainty_qubits - 1) * (high_ - low_)) ) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import NormalDistribution # can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example. A = np.eye(2) b = np.zeros(2) # specify the number of qubits that are used to represent the different dimenions of the uncertainty model num_qubits = [2, 2] # specify the lower and upper bounds for the different dimension low = [0, 0] high = [0.12, 0.24] mu = [0.12, 0.24] sigma = 0.01 * np.eye(2) # construct corresponding distribution bounds = list(zip(low, high)) u = NormalDistribution(num_qubits, mu, sigma, bounds) # plot contour of probability density function x = np.linspace(low[0], high[0], 2 ** num_qubits[0]) y = np.linspace(low[1], high[1], 2 ** num_qubits[1]) z = u.probabilities.reshape(2 ** num_qubits[0], 2 ** num_qubits[1]) plt.contourf(x, y, z) plt.xticks(x, size=15) plt.yticks(y, size=15) plt.grid() plt.xlabel("$r_1$ (%)", size=15) plt.ylabel("$r_2$ (%)", size=15) plt.colorbar() plt.show() # specify cash flow cf = [1.0, 2.0] periods = range(1, len(cf) + 1) # plot cash flow plt.bar(periods, cf) plt.xticks(periods, size=15) plt.yticks(size=15) plt.grid() plt.xlabel("periods", size=15) plt.ylabel("cashflow ($)", size=15) plt.show() # estimate real value cnt = 0 exact_value = 0.0 for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])): for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])): prob = u.probabilities[cnt] for t in range(len(cf)): # evaluate linear approximation of real value w.r.t. interest rates exact_value += prob * ( cf[t] / pow(1 + b[t], t + 1) - (t + 1) * cf[t] * np.dot(A[:, t], np.asarray([x1, x2])) / pow(1 + b[t], t + 2) ) cnt += 1 print("Exact value: \t%.4f" % exact_value) # specify approximation factor c_approx = 0.125 # create fixed income pricing application from qiskit_finance.applications.estimation import FixedIncomePricing fixed_income = FixedIncomePricing( num_qubits=num_qubits, pca_matrix=A, initial_interests=b, cash_flow=cf, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=u, ) fixed_income._objective.draw() fixed_income_circ = QuantumCircuit(fixed_income._objective.num_qubits) # load probability distribution fixed_income_circ.append(u, range(u.num_qubits)) # apply function fixed_income_circ.append(fixed_income._objective, range(fixed_income._objective.num_qubits)) fixed_income_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 # construct amplitude estimation problem = fixed_income.to_estimation_problem() ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (fixed_income.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit.library import IntegerComparator from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler # set problem parameters n_z = 2 z_max = 2 z_values = np.linspace(-z_max, z_max, 2**n_z) p_zeros = [0.15, 0.25] rhos = [0.1, 0.05] lgd = [1, 2] K = len(p_zeros) alpha = 0.05 from qiskit_finance.circuit.library import GaussianConditionalIndependenceModel as GCI u = GCI(n_z, z_max, p_zeros, rhos) u.draw() u_measure = u.measure_all(inplace=False) sampler = Sampler() job = sampler.run(u_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # analyze uncertainty circuit and determine exact solutions p_z = np.zeros(2**n_z) p_default = np.zeros(K) values = [] probabilities = [] num_qubits = u.num_qubits for i, prob in binary_probabilities.items(): # extract value of Z and corresponding probability i_normal = int(i[-n_z:], 2) p_z[i_normal] += prob # determine overall default probability for k loss = 0 for k in range(K): if i[K - k - 1] == "1": p_default[k] += prob loss += lgd[k] values += [loss] probabilities += [prob] values = np.array(values) probabilities = np.array(probabilities) expected_loss = np.dot(values, probabilities) losses = np.sort(np.unique(values)) pdf = np.zeros(len(losses)) for i, v in enumerate(losses): pdf[i] += sum(probabilities[values == v]) cdf = np.cumsum(pdf) i_var = np.argmax(cdf >= 1 - alpha) exact_var = losses[i_var] exact_cvar = np.dot(pdf[(i_var + 1) :], losses[(i_var + 1) :]) / sum(pdf[(i_var + 1) :]) print("Expected Loss E[L]: %.4f" % expected_loss) print("Value at Risk VaR[L]: %.4f" % exact_var) print("P[L <= VaR[L]]: %.4f" % cdf[exact_var]) print("Conditional Value at Risk CVaR[L]: %.4f" % exact_cvar) # plot loss PDF, expected loss, var, and cvar plt.bar(losses, pdf) plt.axvline(expected_loss, color="green", linestyle="--", label="E[L]") plt.axvline(exact_var, color="orange", linestyle="--", label="VaR(L)") plt.axvline(exact_cvar, color="red", linestyle="--", label="CVaR(L)") plt.legend(fontsize=15) plt.xlabel("Loss L ($)", size=15) plt.ylabel("probability (%)", size=15) plt.title("Loss Distribution", size=20) plt.xticks(size=15) plt.yticks(size=15) plt.show() # plot results for Z plt.plot(z_values, p_z, "o-", linewidth=3, markersize=8) plt.grid() plt.xlabel("Z value", size=15) plt.ylabel("probability (%)", size=15) plt.title("Z Distribution", size=20) plt.xticks(size=15) plt.yticks(size=15) plt.show() # plot results for default probabilities plt.bar(range(K), p_default) plt.xlabel("Asset", size=15) plt.ylabel("probability (%)", size=15) plt.title("Individual Default Probabilities", size=20) plt.xticks(range(K), size=15) plt.yticks(size=15) plt.grid() plt.show() # add Z qubits with weight/loss 0 from qiskit.circuit.library import WeightedAdder agg = WeightedAdder(n_z + K, [0] * n_z + lgd) from qiskit.circuit.library import LinearAmplitudeFunction # define linear objective function breakpoints = [0] slopes = [1] offsets = [0] f_min = 0 f_max = sum(lgd) c_approx = 0.25 objective = LinearAmplitudeFunction( agg.num_sum_qubits, slope=slopes, offset=offsets, # max value that can be reached by the qubit register (will not always be reached) domain=(0, 2**agg.num_sum_qubits - 1), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A") # load the random variable state_preparation.append(u.to_gate(), qr_state) # aggregate state_preparation.append(agg.to_gate(), qr_state[:] + qr_sum[:] + qr_carry[:]) # linear objective function state_preparation.append(objective.to_gate(), qr_sum[:] + qr_obj[:]) # uncompute aggregation state_preparation.append(agg.to_gate().inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) # draw the circuit state_preparation.draw() state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result value = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1": value += prob print("Exact Expected Loss: %.4f" % expected_loss) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % objective.post_processing(value)) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)], post_processing=objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) # print results conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % expected_loss) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # set x value to estimate the CDF x_eval = 2 comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False) comparator.draw() def get_cdf_circuit(x_eval): # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") qr_compare = QuantumRegister(1, "compare") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A") # load the random variable state_preparation.append(u, qr_state) # aggregate state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:]) # comparator objective function comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False) state_preparation.append(comparator, qr_sum[:] + qr_obj[:] + qr_carry[:]) # uncompute aggregation state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) return state_preparation state_preparation = get_cdf_circuit(x_eval) state_preparation.draw() state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result var_prob = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1": var_prob += prob print("Operator CDF(%s)" % x_eval + " = %.4f" % var_prob) print("Exact CDF(%s)" % x_eval + " = %.4f" % cdf[x_eval]) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem(state_preparation=state_preparation, objective_qubits=[len(qr_state)]) # construct amplitude estimation ae_cdf = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_cdf = ae_cdf.estimate(problem) # print results conf_int = np.array(result_cdf.confidence_interval) print("Exact value: \t%.4f" % cdf[x_eval]) print("Estimated value:\t%.4f" % result_cdf.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) def run_ae_for_cdf(x_eval, epsilon=0.01, alpha=0.05, simulator="aer_simulator"): # construct amplitude estimation state_preparation = get_cdf_circuit(x_eval) problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)] ) ae_var = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_var = ae_var.estimate(problem) return result_var.estimation def bisection_search( objective, target_value, low_level, high_level, low_value=None, high_value=None ): """ Determines the smallest level such that the objective value is still larger than the target :param objective: objective function :param target: target value :param low_level: lowest level to be considered :param high_level: highest level to be considered :param low_value: value of lowest level (will be evaluated if set to None) :param high_value: value of highest level (will be evaluated if set to None) :return: dictionary with level, value, num_eval """ # check whether low and high values are given and evaluated them otherwise print("--------------------------------------------------------------------") print("start bisection search for target value %.3f" % target_value) print("--------------------------------------------------------------------") num_eval = 0 if low_value is None: low_value = objective(low_level) num_eval += 1 if high_value is None: high_value = objective(high_level) num_eval += 1 # check if low_value already satisfies the condition if low_value > target_value: return { "level": low_level, "value": low_value, "num_eval": num_eval, "comment": "returned low value", } elif low_value == target_value: return {"level": low_level, "value": low_value, "num_eval": num_eval, "comment": "success"} # check if high_value is above target if high_value < target_value: return { "level": high_level, "value": high_value, "num_eval": num_eval, "comment": "returned low value", } elif high_value == target_value: return { "level": high_level, "value": high_value, "num_eval": num_eval, "comment": "success", } # perform bisection search until print("low_level low_value level value high_level high_value") print("--------------------------------------------------------------------") while high_level - low_level > 1: level = int(np.round((high_level + low_level) / 2.0)) num_eval += 1 value = objective(level) print( "%2d %.3f %2d %.3f %2d %.3f" % (low_level, low_value, level, value, high_level, high_value) ) if value >= target_value: high_level = level high_value = value else: low_level = level low_value = value # return high value after bisection search print("--------------------------------------------------------------------") print("finished bisection search") print("--------------------------------------------------------------------") return {"level": high_level, "value": high_value, "num_eval": num_eval, "comment": "success"} # run bisection search to determine VaR objective = lambda x: run_ae_for_cdf(x) bisection_result = bisection_search( objective, 1 - alpha, min(losses) - 1, max(losses), low_value=0, high_value=1 ) var = bisection_result["level"] print("Estimated Value at Risk: %2d" % var) print("Exact Value at Risk: %2d" % exact_var) print("Estimated Probability: %.3f" % bisection_result["value"]) print("Exact Probability: %.3f" % cdf[exact_var]) # define linear objective breakpoints = [0, var] slopes = [0, 1] offsets = [0, 0] # subtract VaR and add it later to the estimate f_min = 0 f_max = 3 - var c_approx = 0.25 cvar_objective = LinearAmplitudeFunction( agg.num_sum_qubits, slopes, offsets, domain=(0, 2**agg.num_sum_qubits - 1), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) cvar_objective.draw() # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") qr_work = QuantumRegister(cvar_objective.num_ancillas - len(qr_carry), "work") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, qr_work, name="A") # load the random variable state_preparation.append(u, qr_state) # aggregate state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:]) # linear objective function state_preparation.append(cvar_objective, qr_sum[:] + qr_obj[:] + qr_carry[:] + qr_work[:]) # uncompute aggregation state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result value = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1)] == "1": value += prob # normalize and add VaR to estimate value = cvar_objective.post_processing(value) d = 1.0 - bisection_result["value"] v = value / d if d != 0 else 0 normalized_value = v + var print("Estimated CVaR: %.4f" % normalized_value) print("Exact CVaR: %.4f" % exact_cvar) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)], post_processing=cvar_objective.post_processing, ) # construct amplitude estimation ae_cvar = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_cvar = ae_cvar.estimate(problem) # print results d = 1.0 - bisection_result["value"] v = result_cvar.estimation_processed / d if d != 0 else 0 print("Exact CVaR: \t%.4f" % exact_cvar) print("Estimated CVaR:\t%.4f" % (v + var)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt import numpy as np from qiskit.circuit import ParameterVector from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Statevector from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.applications.estimation import EuropeanCallPricing from qiskit_finance.circuit.library import NormalDistribution # Set upper and lower data values bounds = np.array([0.0, 7.0]) # Set number of qubits used in the uncertainty model num_qubits = 3 # Load the trained circuit parameters g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225] # Set an initial state for the generator circuit init_dist = NormalDistribution(num_qubits, mu=1.0, sigma=1.0, bounds=bounds) # construct the variational form var_form = TwoLocal(num_qubits, "ry", "cz", entanglement="circular", reps=1) # keep a list of the parameters so we can associate them to the list of numerical values # (otherwise we need a dictionary) theta = var_form.ordered_parameters # compose the generator circuit, this is the circuit loading the uncertainty model g_circuit = init_dist.compose(var_form) # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2 # set the approximation scaling for the payoff function c_approx = 0.25 # Evaluate trained probability distribution values = [ bounds[0] + (bounds[1] - bounds[0]) * x / (2**num_qubits - 1) for x in range(2**num_qubits) ] uncertainty_model = g_circuit.assign_parameters(dict(zip(theta, g_params))) amplitudes = Statevector.from_instruction(uncertainty_model).data x = np.array(values) y = np.abs(amplitudes) ** 2 # Sample from target probability distribution N = 100000 log_normal = np.random.lognormal(mean=1, sigma=1, size=N) log_normal = np.round(log_normal) log_normal = log_normal[log_normal <= 7] log_normal_samples = [] for i in range(8): log_normal_samples += [np.sum(log_normal == i)] log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples)) # Plot distributions plt.bar(x, y, width=0.2, label="trained distribution", color="royalblue") plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.grid() plt.xlabel("Spot Price at Maturity $S_T$ (\$)", size=15) plt.ylabel("Probability ($\%$)", size=15) plt.plot( log_normal_samples, "-o", color="deepskyblue", label="target distribution", linewidth=4, markersize=12, ) plt.legend(loc="best") plt.show() # Evaluate payoff for different distributions payoff = np.array([0, 0, 0, 1, 2, 3, 4, 5]) ep = np.dot(log_normal_samples, payoff) print("Analytically calculated expected payoff w.r.t. the target distribution: %.4f" % ep) ep_trained = np.dot(y, payoff) print("Analytically calculated expected payoff w.r.t. the trained distribution: %.4f" % ep_trained) # Plot exact payoff function (evaluated on the grid of the trained uncertainty model) x = np.array(values) y_strike = np.maximum(0, x - strike_price) plt.plot(x, y_strike, "ro-") plt.grid() plt.title("Payoff Function", size=15) plt.xlabel("Spot Price", size=15) plt.ylabel("Payoff", size=15) plt.xticks(x, size=15, rotation=90) plt.yticks(size=15) plt.show() # construct circuit for payoff function european_call_pricing = EuropeanCallPricing( num_qubits, strike_price=strike_price, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=uncertainty_model, ) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = european_call_pricing.to_estimation_problem() # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % ep_trained) print("Estimated value: \t%.4f" % (result.estimation_processed)) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright