repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from linear_entangelment_and_full_entangelment_ansatz_circuits import * def get_ansatz_state(thetas, ansatz_entangelment, input_state): if ansatz_entangelment=="full": return get_full_entangelment_ansatz(QUBITS_NUM, thetas, input_state) if ansatz_entangelment=="linear": return get_linear_entangelment_ansatz(QUBITS_NUM, thetas, input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(reduced_pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian, ansatz_entangelment): initial_eigenvector = np.identity(N)[0] pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) ansatz_state = get_ansatz_state(thetas, ansatz_entangelment, initial_eigenvector) L = get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(L) return L def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=PARAMS_NUM) optimizer_result = minimize(cost_function, x0=initial_thetas, args=(hamiltonian, ansatz_entangelment), method="POWELL", options={"maxiter":NUM_ITERATIONS, "return_all": True, "disp": True}) optimal_thetas = optimizer_result.x return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian, ansatz_entangelment): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment) print(optimal_thetas) initial_eigenvector = np.identity(N)[0] optimal_ansatz_state = get_ansatz_state(optimal_thetas, ansatz_entangelment, initial_eigenvector) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian): eigen_values = LA.eigvals(hamiltonian.to_matrix()) print(sorted(eigen_values)) return min(sorted(eigen_values)) def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian) print("Exact Eigenvalue:") print(exact_eigenvalue) print("\nApproximated Eigenvalue:") print(approximated_eigenvalue) print("\nApproximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin=3) approximated_energies = [] def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies[-NUM_ITERATIONS]) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.grid() plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, I, H, Y LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "full") compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "full") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 3 N = 2**QUBITS_NUM NUM_SHOTS = 1024 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit.opflow import X, Z, I transverse_ising_3_qubits = 0.0 * (I^I^I) \ + 0.012764169333459807 * (X^I^I) \ + 0.7691573729160869 * (I^X^I) \ + 0.398094746026449 * (Z^Z^I) \ + 0.15250261906586637 * (I^I^X) \ + 0.2094051920882264 * (Z^I^Z) \ + 0.5131291860752999 * (I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 2 N = 2**QUBITS_NUM NUM_SHOTS = 1024 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) transverse_ising_2_qubits = 0.13755727363376802 * (I^X) \ + 0.43305656297810435 * (X^I) \ + 0.8538597608997253 * (Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) from qiskit.opflow import X, Z, I H2_molecule_Hamiltonian_2_qubits = -0.5053051899926562*(I^I) + \ -0.3277380754984016*(Z^I) + \ 0.15567463610622564*(Z^Z) + \ -0.3277380754984016*(I^Z) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "linear") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "full") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue)
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from linear_entangelment_and_full_entangelment_ansatz_circuits import * def get_ansatz_state(thetas, ansatz_entangelment, input_state): if ansatz_entangelment=="full": return get_full_entangelment_ansatz(QUBITS_NUM, thetas, input_state) if ansatz_entangelment=="linear": return get_linear_entangelment_ansatz(QUBITS_NUM, thetas, input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(reduced_pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in tqdm(zip(pauli_coeffs, pauli_strings)): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian, ansatz_entangelment): initial_eigenvector = np.identity(N)[0] pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) ansatz_state = get_ansatz_state(thetas, ansatz_entangelment, initial_eigenvector) L = get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(L) return L def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=PARAMS_NUM) optimizer_result = minimize(cost_function, x0=initial_thetas, args=(hamiltonian, ansatz_entangelment), method="TNC", options={"maxiter":NUM_ITERATIONS, "disp": True}) optimal_thetas = optimizer_result.x return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian, ansatz_entangelment): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment) print(optimal_thetas) initial_eigenvector = np.identity(N)[0] optimal_ansatz_state = get_ansatz_state(optimal_thetas, ansatz_entangelment, initial_eigenvector) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian): eigen_values = LA.eigvals(hamiltonian.to_matrix()) print(sorted(eigen_values)) return min(sorted(eigen_values)) def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian) print("Exact Eigenvalue:") print(exact_eigenvalue) print("\nApproximated Eigenvalue:") print(approximated_eigenvalue) print("\nApproximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin=3) initialize_approximated_energy_to_list_of_all_approximated_energies() approximated_energies = [] def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies[-NUM_ITERATIONS:]) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.grid() plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, I, H, Y LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "full") compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "full") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 3 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 1000 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit.opflow import X, Z, I transverse_ising_3_qubits = 0.0 * (I^I^I) \ + 0.012764169333459807 * (X^I^I) \ + 0.7691573729160869 * (I^X^I) \ + 0.398094746026449 * (Z^Z^I) \ + 0.15250261906586637 * (I^I^X) \ + 0.2094051920882264 * (Z^I^Z) \ + 0.5131291860752999 * (I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 2 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 1000 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) transverse_ising_2_qubits = 0.13755727363376802 * (I^X) \ + 0.43305656297810435 * (X^I) \ + 0.8538597608997253 * (Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "linear") compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "full") compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) from qiskit.opflow import X, Z, I H2_molecule_Hamiltonian_2_qubits = -0.5053051899926562*(I^I) + \ -0.3277380754984016*(Z^I) + \ 0.15567463610622564*(Z^Z) + \ -0.3277380754984016*(I^Z) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "linear") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "full") compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue)
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 from qiskit.circuit.library.standard_gates import RXGate, RZGate, CXGate, CZGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_thetas_circuit(thetas, D2): qr = QuantumRegister(4, name="qubit") qc = QuantumCircuit(qr) for d in range(D2): qc.append(RXGate(thetas[0]), [qr[0]]) qc.append(RXGate(thetas[1]), [qr[1]]) qc.append(RXGate(thetas[2]), [qr[2]]) qc.append(RXGate(thetas[3]), [qr[3]]) qc.append(RZGate(thetas[4]), [qr[0]]) qc.append(RZGate(thetas[5]), [qr[1]]) qc.append(RZGate(thetas[6]), [qr[2]]) qc.append(RZGate(thetas[7]), [qr[3]]) qc.append(CZGate(), [qr[0], qr[1]]) qc.append(CZGate(), [qr[1], qr[2]]) qc.append(CZGate(), [qr[2], qr[3]]) qc.barrier(qr) qc.append(RXGate(thetas[0]), [qr[0]]) qc.append(RXGate(thetas[1]), [qr[1]]) qc.append(RXGate(thetas[2]), [qr[2]]) qc.append(RXGate(thetas[3]), [qr[3]]) qc.append(RZGate(thetas[4]), [qr[0]]) qc.append(RZGate(thetas[5]), [qr[1]]) qc.append(RZGate(thetas[6]), [qr[2]]) qc.append(RZGate(thetas[7]), [qr[3]]) return qc def get_phis_circuit(phis, D1, input_state): qr = QuantumRegister(4, name="qubit") qc = QuantumCircuit(qr) qc.initialize(input_state) for d in range(D1): qc.append(RXGate(phis[0]), [qr[2]]) qc.append(RXGate(phis[1]), [qr[3]]) qc.append(RZGate(phis[2]), [qr[2]]) qc.append(RZGate(phis[3]), [qr[3]]) qc.append(CZGate(), [qr[2], qr[3]]) qc.barrier(qr) return qc def get_full_variational_quantum_circuit(thetas, phis, D1, D2, input_state): thetas_quantum_circuit = get_thetas_circuit(thetas, D2) phis_quantum_circuit = get_phis_circuit(phis, D1, input_state) variational_quantum_circuit = phis_quantum_circuit.compose(thetas_quantum_circuit) return variational_quantum_circuit
https://github.com/Tojarieh97/VQE
Tojarieh97
import numpy as np def get_first_k_eigenvectors_from_n_computational_basis(k, n): n_computational_basis = np.identity(n) return n_computational_basis[:k]
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 2**QUBITS_NUM K = 4 w = 0.5 NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 6 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 6 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(reduced_pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) k_ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[K-1]) approximated_energey = get_expectation_value(k_ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energey) L_w = w*approximated_energey for j in range(K-1): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) L_w += get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=PARAMS_NUM) optimizer_result = minimize(cost_function, x0=initial_thetas, args=(hamiltonian), method="BFGS", options={"maxiter":NUM_ITERATIONS, "disp": True}) optimal_thetas = optimizer_result.x return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) print("### The optimal parameters found by the optimizer ###") print(optimal_thetas) optimal_circuit_params = prepare_circuit_params(optimal_thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) optimal_ansatz_state = get_ansatz_state(optimal_circuit_params, computational_eigenvectors[K-1]) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian): eigen_values = LA.eigvals(hamiltonian.to_matrix()) print(sorted(eigen_values)) return min(sorted(eigen_values)) def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian) print("Exact Eigenvalue:") print(exact_eigenvalue) print("\nApproximated Eigenvalue:") print(approximated_eigenvalue) print("\nApproximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin=3) approximated_energies = [] def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies[-NUM_ITERATIONS:]) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.grid() plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, I, H, Y LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 3 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit.opflow import X, Z, I transverse_ising_3_qubits = 0.0 * (I^I^I) \ + 0.012764169333459807 * (X^I^I) \ + 0.7691573729160869 * (I^X^I) \ + 0.398094746026449 * (Z^Z^I) \ + 0.15250261906586637 * (I^I^X) \ + 0.2094051920882264 * (Z^I^Z) \ + 0.5131291860752999 * (I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 2 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) transverse_ising_2_qubits = 0.13755727363376802 * (I^X) \ + 0.43305656297810435 * (X^I) \ + 0.8538597608997253 * (Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) from qiskit.opflow import X, Z, I H2_molecule_Hamiltonian_2_qubits = -0.5053051899926562*(I^I) + \ -0.3277380754984016*(Z^I) + \ 0.15567463610622564*(Z^Z) + \ -0.3277380754984016*(I^Z) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue)
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 2**QUBITS_NUM K = 4 w = 0.5 NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 6 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 6 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(reduced_pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in tqdm(zip(pauli_coeffs, pauli_strings)): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) k_ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[K-1]) approximated_energey = get_expectation_value(k_ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energey) L_w = w*approximated_energey for j in range(K-1): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) L_w += get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=PARAMS_NUM) optimizer_result = minimize(cost_function, x0=initial_thetas, args=(hamiltonian), method="COBYLA", options={"maxiter":NUM_ITERATIONS, "disp": True}) optimal_thetas = optimizer_result.x return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) print("### The optimal parameters found by the optimizer ###") print(optimal_thetas) optimal_circuit_params = prepare_circuit_params(optimal_thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) optimal_ansatz_state = get_ansatz_state(optimal_circuit_params, computational_eigenvectors[K-1]) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian): eigen_values = LA.eigvals(hamiltonian.to_matrix()) print(sorted(eigen_values)) return min(sorted(eigen_values)) def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian) print("Exact Eigenvalue:") print(exact_eigenvalue) print("\nApproximated Eigenvalue:") print(approximated_eigenvalue) print("\nApproximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin=3) approximated_energies = [] def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies[-NUM_ITERATIONS]) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.grid() plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, I, H, Y LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 3 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) from qiskit.opflow import X, Z, I transverse_ising_3_qubits = 0.0 * (I^I^I) \ + 0.012764169333459807 * (X^I^I) \ + 0.7691573729160869 * (I^X^I) \ + 0.398094746026449 * (Z^Z^I) \ + 0.15250261906586637 * (I^I^X) \ + 0.2094051920882264 * (Z^I^Z) \ + 0.5131291860752999 * (I^Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue) QUBITS_NUM = 2 N = 2**QUBITS_NUM NUM_SHOTS = 1024 NUM_ITERATIONS = 100 CIRCUIT_DEPTH = 3 PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1) transverse_ising_2_qubits = 0.13755727363376802 * (I^X) \ + 0.43305656297810435 * (X^I) \ + 0.8538597608997253 * (Z^Z) %%time TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue) from qiskit.opflow import X, Z, I H2_molecule_Hamiltonian_2_qubits = -0.5053051899926562*(I^I) + \ -0.3277380754984016*(Z^I) + \ 0.15567463610622564*(Z^Z) + \ -0.3277380754984016*(I^Z) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue)
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 16 K = 4 NUM_SHOTS = 1024 NUM_ITERATIONS = 50 w = 0.5 approximated_energies = [] from qiskit import IBMQ provider = IBMQ.enable_account('4cd532424f249f20233857b3b211eb28dfc0e790386bd2ea14d3e0d03c867dfcfec4c2c968e4693f1c9caf7b3f6fad3f6a6393065fb45719692fd1a5177536cb') real_backend = provider.get_backend('ibmq_belem') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 6 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 6 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, real_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = real_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) k_ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[K-1]) approximated_energey = get_expectation_value(k_ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energey) L_w = w*approximated_energey for j in range(K-1): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) L_w += get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=12) optimizer_result = minimize(cost_function,x0=initial_thetas,args=(hamiltonian),method="BFGS",options={"maxiter":NUM_ITERATIONS}) optimal_thetas = prepare_circuit_params(optimizer_result.x) return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) print(optimal_thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) optimal_ansatz_state = get_ansatz_state(optimal_thetas, computational_eigenvectors[K-1]) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, k): eigen_values = LA.eig(hamiltonian.to_matrix())[0] print(sorted(eigen_values, reverse=True)) return sorted(eigen_values,reverse=True)[k-1] def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, K) print("Exact Eigenvalue:") print(exact_eigenvalue) print("Approximated K Eigenvalues:") print(approximated_eigenvalue) print("Approximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, Y, I, H, S LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] LiH_approximated_energies = [-7.086471480342895, -7.100658534270067, -7.099715987203259, -7.104706322802394, -7.0881767422400515, -7.094941901238781, -7.101189782415803, -7.091782649949064, -7.095129380762572, -7.089782186084561, -7.103641494347653, -7.08770304365008, -7.097466178879243, -6.927386893001271, -6.918605722866235, -6.929889900623873, -6.929547677497744, -6.9144751585444, -6.92705204011207, -6.928594209576469, -6.918356322098606, -6.922146575259048, -6.928167910638778, -6.920735015129623, -6.934524032800371, -6.9240609972824645, -7.054992091903585, -7.056718682779798, -7.047680065570422, -7.057958949601671, -7.049809365284406, -7.04886498241836, -7.061382947330433, -7.047727314056423, -7.05595544969352, -7.0549833626221155, -7.064687065647647, -7.04480704575676, -7.053986384203245, -7.079305098939433, -7.08780253307097, -7.079683274206787, -7.082864577262481, -7.074313240029014, -7.076075827379148, -7.094328957871822, -7.08496554875689, -7.08017425919163, -7.080091087607597, -7.091782059567345, -7.091247992689509, -7.070866930379006, -7.090286264563848, -7.104283776653907, -7.105507768659804, -7.082013868585181, -7.089272262553638, -7.093947194681023, -7.074106629342778, -7.098394252872861, -7.0959686725785405, -7.07952225336062, -7.095513342542343, -7.09416071736501, -7.096369979461571, -7.099848242069214, -7.084955688773306, -7.100455873892028, -7.093183696883554, -7.0975872306150345, -7.088097397700704, -7.106647897103562, -7.093977686069661, -7.087712543786841, -7.111504280126781, -7.1022363547755125, -7.087493749330183, -7.086287626873361, -7.093369560806178, -7.078161435586905, -7.09441449134148, -7.089607689893512, -7.0932238396900935, -7.111989359310854, -7.104929885548429, -7.091436536609016, -7.08666585935681, -7.082934757346767, -7.101100532138134, -7.088104163062988, -7.096424567809472, -7.099068194469176, -7.092174139685106, -7.093834778605302, -7.102211865551155, -7.093273952141729, -7.098925944110142, -7.094136827312879, -7.096515152172171, -7.106869073487611, -7.105025480517323, -7.08291256775595, -7.090057760157153, -7.101077914837238, -7.098981572929163, -7.103243624466709, -7.081271774215078, -7.113017035519717, -7.081225379146937, -7.116834711504442, -7.095492739824888, -7.092682578748099, -7.101013785481937, -7.1014895178629045, -7.089392729188864, -7.107015846039383, -7.098163688087048, -7.111610506727951, -7.107437432724649, -7.104541043920935, -7.104814557146702, -7.088507490097296, -7.091868681777208, -7.092327160052328, -7.110303366341896, -7.084971369187621, -7.106279269575924, -7.08748298127782, -7.1068551105826145, -7.091008955160712, -7.096443978916333, -7.084657042850862, -7.091138219995237, -7.0998677627359195, -7.0888015973421545, -7.077323969498798, -7.090075437365467, -7.103938600828348, -7.085513121721133, -7.093846377275633, -7.100739101641138, -7.092065649168193, -7.094889058778457, -7.092173541005391, -7.101259881230652, -7.093329510244533, -7.105936945903171, -7.087603313944616, -7.097873442997792, -7.101002397868193, -7.085514640470669, -7.104346225751653, -7.108225666766319, -7.111418621976149, -7.092840805395079, -7.0997679722989115, -7.103255616021782, -7.1174210275723695, -7.102934036335791, -7.094670120993602, -7.0951047953871305, -7.089065125835845, -7.09840645780722, -7.105211057511607, -7.089083299917603, -7.093536455196501, -7.089028853201778, -7.085106562924485, -7.094025566715013, -7.093679961728104, -7.097635614184673, -7.097876397476181, -7.094228767292644, -7.095176655148256, -7.098376263483634, -7.103892028959518, -7.086136465046034, -7.087496098005651, -7.116101776894849, -7.0836112045512705, -7.087318451256026, -7.089288193935741, -7.0990242642314785, -7.095138019651596, -7.098662991437872, -7.094562027567983, -7.099690770432304, -7.10097689047591, -7.103828491824173, -7.095403813862108, -7.092482494208955, -7.0961542900231755, -7.097735395547859, -7.101840243383003, -7.094728079435617, -7.089079166461775, -7.0918303529233695, -7.093445910102374, -7.0824677848419855, -7.088613823891637, -7.094448016211003, -7.102567463647013, -7.093674126629666, -7.107515891897475, -7.091175773435145, -7.099878612823926, -7.108888487835898, -7.0932901938871025, -7.100690499032453, -7.1027627009989205, -7.095985679639996, -7.103159134683138, -7.101594099093457, -7.09708690219646, -7.089839220984511, -7.110835783093937, -7.1106173669768005, -7.105706223928073, -7.101671068636789, -7.093043127308357, -7.107499275434534, -7.098620367705562, -7.101791302589503, -7.093974565602916, -7.100086270996543, -7.103967087697664, -7.096334501266853, -7.093197040678562, -7.090566503804324, -7.10777548347143, -7.0940663715743515, -7.079435919407288, -7.1045995778828575, -7.10782600555929, -7.095063062315657, -7.088283716422724, -7.083549548308807, -7.109182438307642, -7.0973139726115155, -7.091323880662006, -7.089267567957862, -7.093801064885492, -7.096478431968507, -7.096450570087517, -7.0834951672860145, -7.105536970385327, -7.091694022844323, -7.0987246829979735, -7.105823728075208, -7.091466927556181, -7.087866391118642, -7.086779542808011, -7.082284206870279, -7.102748671032144, -7.094013649749645, -7.076280227170458, -7.09268421659322, -7.098730097915838, -7.095792848436216, -7.090464809457003, -7.098254342554415, -7.098030162423567, -7.0935066669889375, -7.086557591264656, -7.102526761243724, -7.098181739651888, -7.10872784155506, -7.097459195380401, -7.095191100812662, -7.102890507504376, -7.0923183296893795, -7.102156393269663, -7.09845792437554, -7.096080365452766, -7.10013103533166, -7.1005268316155945, -7.092915662727403, -7.095654857173873, -7.10922258172602, -7.099831667590216, -7.108845117487635, -7.082825083394153, -7.09107742992335, -7.077237571417883, -7.096191060913464, -7.0969085540182455, -7.114145172610189, -7.108437033980985, -7.105356395396853, -7.102301352541805, -7.103938890772344, -7.101405935547222, -7.1113452563763815, -7.0947122361413415, -7.099371225641347, -7.102428612231857, -7.080811315146189, -7.091175823108694, -7.1006602596540445, -7.085633248686943, -7.101715269263441, -7.0835485945728305, -7.0994928231977195, -7.09758387589104, -7.0795693729863505, -7.093444335523969, -7.102404867274401, -7.09942952825781, -7.092772226440181, -7.104709368820088, -7.098167881166478, -7.090812612388616, -7.104342211111905, -7.095634875814595, -7.092173851473915, -7.096806777226616, -7.104061399180975, -7.103310800731109, -7.083274172204216, -7.097915562847112, -7.077818214117743, -7.083628375959302, -7.093476904190158, -7.089513462892567, -7.090304705450007, -7.093392779706353, -7.10554680082769, -7.088962810558666, -7.091859039419992, -7.095055353625999, -7.095717126988325, -7.083592132581408, -7.100324224161871, -7.0785000809768714, -7.105908001716903, -7.093818438314592, -7.098883881335108, -7.104431926558294, -7.099627499021038, -7.092250021905359, -7.0907944678741535, -7.09293707780021, -7.091586685769627, -7.089190047620321, -7.1018597532027385, -7.100262126701205, -7.09131145193086, -7.09482991668717, -7.088031963725242, -7.09771658959787, -7.089270186131905, -7.096846356920972, -7.09686896582669, -7.092845267851078, -7.11130293906202, -7.091518158249563, -7.094435352643231, -7.097573980280066, -7.097401803322267, -7.09679214923423, -7.096140093891424, -7.105779785807971, -7.101284059739653] plot_convergence_of_optimization_process(LiH_approximated_energies, exact_eigenvalue=-7.151525481896562,margin=1) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] H2_approximated_energies = [-0.6479084750255486, -0.6276579569919597, -0.6079422008169065, -0.616731159779808, -0.6325842283091055, -0.6393897280901208, -0.6171807581727554, -0.632653791572579, -0.6213172282987715, -0.6295655663398093, -0.6289772030449229, -0.6186181091776035, -0.624022941533276, -0.5082839240612291, -0.48226570208794234, -0.4821361107003052, -0.4954020352078101, -0.4793435904590445, -0.49199670120300654, -0.49416478838441447, -0.502190052373643, -0.49599755978221166, -0.5020643548684793, -0.4889205213711024, -0.5018939914800866, -0.5099878400191491, -0.5856552068715944, -0.54923382599589, -0.5582306982767166, -0.5444314531693122, -0.5567710700669415, -0.5659113697818672, -0.552668511160273, -0.5735134318844516, -0.549852476753314, -0.5503189869962759, -0.5601864836520486, -0.5659896127460298, -0.5446950460298908, -0.615920984439197, -0.5928640404070656, -0.5879106801498322, -0.5935911543775607, -0.6075920247035514, -0.6201194518598445, -0.60623970115924, -0.6162790804378995, -0.6070899791213487, -0.6105620077787796, -0.604279338203177, -0.5953765787888684, -0.6176510100281449, -0.6121876903025966, -0.6221925707825862, -0.6167720694769763, -0.6138135616671906, -0.6141332165079305, -0.6280212409220817, -0.6360069982326235, -0.6007258601159454, -0.6251861183198779, -0.6230618384361196, -0.6294049945914133, -0.6233533946933156, -0.608497712991425, -0.6496414061454564, -0.6486467922145787, -0.6248046230879923, -0.6382435950247505, -0.6396933212611499, -0.6313975747684536, -0.6205882624714589, -0.6408121049037772, -0.6358325058878442, -0.6483418584555031, -0.6371649113759628, -0.6291839190391355, -0.6347573834032361, -0.6407098912056699, -0.6159176260854965, -0.6384554645835627, -0.6164080207309359, -0.625543079338974, -0.6382937503891668, -0.6264097132175528, -0.6420718561520969, -0.6267262725213436, -0.6374963711667498, -0.6193193504433864, -0.6078143278866533, -0.634472486357409, -0.6223512323012782, -0.6351163020561015, -0.634661177023637, -0.6327899211075433, -0.6336448686497769, -0.6193351633432258, -0.6281755978797693, -0.6264777231208046, -0.6414830476329384, -0.6307683399864691, -0.6307085701314388, -0.6206080402310008, -0.6348255969934301, -0.6396136598903551, -0.6119662685652434, -0.6416707355866279, -0.6413693107560723, -0.6177947197203094, -0.6298765228276698, -0.6523529064199631, -0.6449003109571184, -0.653383311719062, -0.6114270075961685, -0.6288547938898695, -0.618693644838608, -0.6474406100562011, -0.6311230491106903, -0.6116401562656182, -0.636431790506111, -0.6291838050229098, -0.6323232015973214, -0.6084567336875317, -0.6260410898582017, -0.6558980736383361, -0.6088478495140429, -0.6362772541154403, -0.6229687283270671, -0.6337477882049586, -0.6146890139542273, -0.6109822191193143, -0.6410668717503976, -0.6050360295204666, -0.6127109227117324, -0.613969481075047, -0.6330316470359499, -0.6336428860578563, -0.6579205656897767, -0.6226609914498723, -0.6308197002529959, -0.6592780043421462, -0.6286105470576249, -0.6142144474532307, -0.6308763800946607, -0.6313362339145869, -0.6587453552909762, -0.6439616021766039, -0.6342588475726809, -0.6348805630323535, -0.612208176680939, -0.6384209891698392, -0.6377259399102154, -0.6288355030414153, -0.6254287723561084, -0.6267028568621377, -0.633225553954038, -0.6266439989301029, -0.6219787315736918, -0.6444478946498267, -0.6078647889145464, -0.6169625336670495, -0.6228416937169068, -0.6055808453138738, -0.6349070986052844, -0.6233134657244299, -0.638807727216456, -0.6439324406558855, -0.6290682438485403, -0.6347278678305891, -0.6370807223116214, -0.6331202879928073, -0.6259391405710086, -0.6205239729014943, -0.6271330693467981, -0.6384914098927226, -0.6540996612097635, -0.6297277932870161, -0.6230026756130547, -0.6337458840743901, -0.6269616938156711, -0.6071713916280417, -0.6182364077263139, -0.6295847748388186, -0.6340000050667973, -0.662525648783056, -0.6268357485227919, -0.6383142008116837, -0.6356494637389134, -0.6334179386720562, -0.6368477711503842, -0.6258766827515051, -0.6250225216677815, -0.6402120922677865, -0.6215866553687236, -0.6300458164726813, -0.6349074242618946, -0.6281512038322912, -0.6106861518433435, -0.6257220729152266, -0.6264637065414248, -0.6413022282257185, -0.6287300650968061, -0.6415216331142828, -0.6177784438217981, -0.6235031629550336, -0.6522908854196745, -0.6433100700195024, -0.6467856500499529, -0.6383906423809346, -0.6353007399215785, -0.628267887248418, -0.6530534039557805, -0.6489154837903043, -0.6251303963665552, -0.606115215627397, -0.640564227336403, -0.6426262151446616, -0.6375465819155562, -0.6241657686495026, -0.6365874044036779, -0.6368987773426885, -0.6254336505997881, -0.6195698003196071, -0.6312797723656407, -0.6493745786523953, -0.6255032951930553, -0.6076271422511403, -0.6369485503847903, -0.633978893260772, -0.6247995690801257, -0.6181592078851024, -0.6413113581396256, -0.6357432503116383, -0.6413681655967249, -0.6349930744741815, -0.6553915345015394, -0.6333982709804692, -0.6323784240845362, -0.597462603561814, -0.6354799343741077, -0.6435513818689228, -0.6288306285283861, -0.6252986455639116, -0.6338258059332423, -0.6354797897494069, -0.6118871374772903] plot_convergence_of_optimization_process(H2_approximated_energies, exact_eigenvalue=-0.353325104107155, margin=5) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigen_value = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] TI_approximated_energies = [1.8984375, 1.943359375, 1.9619140625, 1.978515625, 1.984375, 1.9873046875, 1.9931640625, 1.9248046875, 1.962890625, 1.9248046875, 1.9150390625, 1.9052734375, 1.9267578125, 1.802734375, 1.81640625, 1.86328125, 1.8623046875, 1.7939453125, 1.8623046875, 1.89453125, 1.880859375, 1.8388671875, 1.8720703125, 1.83984375, 1.8837890625, 1.8359375, 1.701171875, 1.7470703125, 1.69140625, 1.73828125, 1.833984375, 1.69921875, 1.7744140625, 1.7529296875, 1.7353515625, 1.7265625, 1.7666015625, 1.708984375, 1.7421875, 1.79296875, 1.8671875, 1.91015625, 1.8828125, 1.884765625, 1.875, 1.86328125, 1.85546875, 1.8134765625, 1.84375, 1.79296875, 1.865234375, 1.8916015625, 1.908203125, 1.900390625, 1.8837890625, 1.876953125, 1.896484375, 1.9921875, 1.9208984375, 1.94921875, 1.96875, 1.8466796875, 1.92578125, 1.8740234375, 1.9716796875, 1.9130859375, 1.939453125, 1.9599609375, 1.9716796875, 1.9150390625, 1.98828125, 1.865234375, 1.9248046875, 1.890625, 2.0146484375, 1.9560546875, 1.947265625, 1.9619140625, 1.955078125, 1.9208984375, 1.955078125, 1.9384765625, 1.96484375, 1.9150390625, 1.923828125, 1.9580078125, 1.958984375, 2.013671875, 1.935546875, 1.9443359375, 2.0546875, 2.001953125, 1.958984375, 1.98828125, 1.962890625, 2.0205078125, 2.0029296875, 1.93359375, 1.91015625, 1.9765625, 1.9365234375, 1.8984375, 1.9072265625, 1.939453125, 1.9033203125, 2.0556640625, 1.947265625, 1.9267578125, 1.9541015625, 1.962890625, 1.9287109375, 1.9072265625, 1.962890625, 1.966796875, 1.9560546875, 1.970703125, 1.9580078125, 1.9833984375, 2.013671875, 1.966796875, 1.9599609375, 1.943359375, 1.974609375, 1.9619140625, 1.9462890625, 1.974609375, 1.9482421875, 1.943359375, 1.9697265625, 1.9033203125, 1.9794921875, 1.98828125, 1.94140625, 1.9658203125, 2.0078125, 1.9912109375, 1.916015625, 1.916015625, 2.0068359375, 1.9130859375, 1.9267578125, 1.90234375, 1.921875, 1.943359375, 1.9755859375, 1.90234375, 1.95703125, 1.9482421875, 1.97265625, 1.9658203125, 1.990234375, 1.9384765625, 1.935546875, 1.916015625, 1.91796875, 1.99609375, 1.87109375, 1.9599609375, 1.919921875, 1.951171875, 1.9521484375, 1.9716796875, 1.9736328125, 1.9794921875, 1.99609375, 1.9765625, 1.9228515625, 1.9482421875, 1.9462890625, 1.986328125, 1.927734375, 1.9482421875, 2.0771484375, 2.0009765625, 1.9267578125, 1.9638671875, 1.904296875, 1.9365234375, 1.962890625, 1.958984375, 1.96875, 1.9521484375, 1.8935546875, 1.916015625, 1.939453125, 1.98046875, 1.9560546875, 1.9541015625, 1.955078125, 1.9228515625, 1.9951171875, 1.93359375, 1.9736328125, 1.9443359375, 1.96484375, 1.984375, 1.8681640625, 1.923828125, 1.947265625, 1.96484375, 1.94140625, 1.9375, 1.96875, 1.94921875, 1.943359375, 1.8935546875, 1.9638671875, 1.912109375, 2.0, 1.921875, 2.064453125, 1.95703125, 1.9287109375, 1.951171875, 1.982421875, 1.8955078125, 1.9482421875, 1.9970703125, 1.9423828125, 1.9697265625, 1.90625, 1.9306640625, 1.9716796875, 1.92578125, 1.98046875, 1.9521484375, 1.9072265625, 1.962890625, 1.9365234375, 1.9609375, 1.9560546875, 1.9462890625, 2.0166015625, 1.9609375, 1.9287109375, 1.962890625, 1.9677734375, 1.9169921875, 1.876953125, 1.9443359375, 1.984375, 1.9697265625, 1.978515625, 1.958984375, 1.9677734375, 2.0341796875, 1.9697265625, 1.93359375, 1.966796875, 1.9482421875, 1.9345703125, 1.9453125, 1.9912109375, 1.986328125, 1.955078125, 1.927734375, 2.03125, 1.921875, 1.951171875, 1.9990234375, 1.8955078125, 1.9794921875, 2.0078125, 1.9580078125, 1.986328125, 1.9287109375, 1.9853515625, 1.9990234375, 1.9365234375, 2.0048828125, 1.9462890625, 1.9580078125, 1.970703125, 1.951171875, 1.91015625, 1.8662109375, 1.9013671875, 1.9267578125, 1.943359375, 1.9814453125, 1.927734375, 1.99609375, 1.9580078125, 1.904296875, 1.912109375, 1.978515625, 1.9453125, 1.990234375, 1.97265625, 1.9580078125, 1.93359375, 1.9599609375, 1.986328125, 1.970703125, 1.966796875, 1.947265625, 1.875, 1.953125, 1.966796875, 1.931640625, 1.9140625, 1.98828125, 1.919921875, 1.970703125, 1.8916015625, 2.0615234375, 2.015625, 1.8466796875, 1.916015625, 1.96875, 1.9697265625, 2.0029296875, 1.9326171875, 1.939453125, 1.873046875, 1.9345703125, 1.9501953125, 1.927734375, 1.9453125, 2.005859375, 1.96484375, 1.9384765625, 1.9609375, 1.990234375, 1.951171875, 1.951171875, 1.994140625, 2.015625, 1.9462890625, 1.94140625, 2.0439453125, 1.9755859375, 1.9326171875, 2.0224609375, 1.9248046875, 1.990234375, 2.0, 1.9091796875, 1.9267578125, 1.951171875, 1.95703125, 1.9521484375] plot_convergence_of_optimization_process(TI_approximated_energies, exact_eigenvalue=1.6816520928402046, margin=3)
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 16 K = 4 NUM_SHOTS = 1024 NUM_ITERATIONS = 50 w = 0.5 approximated_energies = [] from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 6 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 6 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) k_ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[K-1]) approximated_energey = get_expectation_value(k_ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energey) L_w = w*approximated_energey for j in range(K-1): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) L_w += get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=12) optimizer_result = minimize(cost_function,x0=initial_thetas,args=(hamiltonian),method="BFGS",options={"maxiter":NUM_ITERATIONS}) optimal_thetas = prepare_circuit_params(optimizer_result.x) return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) print(optimal_thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) optimal_ansatz_state = get_ansatz_state(optimal_thetas, computational_eigenvectors[K-1]) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, k): eigen_values = LA.eig(hamiltonian.to_matrix())[0] print(sorted(eigen_values, reverse=True)) return sorted(eigen_values,reverse=True)[k-1] def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, K) print("Exact Eigenvalue:") print(exact_eigenvalue) print("Approximated K Eigenvalues:") print(approximated_eigenvalue) print("Approximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies[-NUM_ITERATIONS:]) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.grid() plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, I, H, Y LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] LiH_approximated_energies = [-7.5811722185398285, -7.59159646344728, -7.591712498431583, -7.5823144711155255, -7.601228227804495, -7.5736138923664065, -7.599055184917277, -7.595389384370309, -7.586873555877376, -7.586779572764962, -7.587446891289177, -7.58816416037616, -7.606319025241597, -7.5468150612323015, -7.54795274923913, -7.561365217492775, -7.560844694104422, -7.548328551094029, -7.556729381819861, -7.5501822152874825, -7.552787397268313, -7.567509848511693, -7.573107964123815, -7.541648049799553, -7.546799664950377, -7.53654352129788, -7.589160003564084, -7.578598759247515, -7.590933004721402, -7.588143540217285, -7.594244897237276, -7.587510169441045, -7.5868306475144776, -7.587602605379268, -7.59225930178968, -7.5988486139694436, -7.573672664147123, -7.587077981079782, -7.589894569667096, -7.593989957965422, -7.5934638061012665, -7.586978945437706, -7.576471075379983, -7.586002143566326, -7.593009863418946, -7.594930172385808, -7.588512242648442, -7.60293471934649, -7.591877985644651, -7.580969380150128, -7.596119932713606, -7.615516216961582, -7.596055304700592, -7.5996270334260725, -7.586983361838935, -7.596246225349671, -7.590777615173849, -7.5935751302098256, -7.592837174684869, -7.603790076682524, -7.6093363504202145, -7.60522230882189, -7.577824083506902, -7.583940898791256, -7.585838556976443, -7.591352114525316, -7.586985421943245, -7.590516288197774, -7.592645661018166, -7.6022590957403695, -7.591330646171517, -7.594369777609106, -7.588063188591844, -7.590887567834473, -7.58529252287314, -7.590260727471608, -7.592442375670534, -7.588704468391091, -7.589907345471134, -7.594705545462669, -7.6098627506974665, -7.595941589491842, -7.594781927195355, -7.583709436067628, -7.601491453462858, -7.597492855351171, -7.596534669869249, -7.588718115470418, -7.580497184080997, -7.583102004301224, -7.591826652364619, -7.5996868685846355, -7.588597363608952, -7.5813554074546055, -7.583835495117783, -7.59064434908851, -7.58437365137141, -7.590315760666925, -7.597855922766573, -7.590740727486217, -7.596056737044825, -7.5902279046692325, -7.609184282492802, -7.591748265755058, -7.602981872142157, -7.59998915723516, -7.588200490143084, -7.591025078502806, -7.588051902013782, -7.611052590540253, -7.587486622263765, -7.591803731736747, -7.589835728854846, -7.593340824035681, -7.581866774777097, -7.58836662913097, -7.6053870554693805, -7.590489094786991, -7.580771153453858, -7.5905219906055565, -7.602079027418958, -7.59869534734383, -7.592327067764258, -7.586492679563721, -7.5900307096383495, -7.605871180701457, -7.583686251845164, -7.59084383030994, -7.591011259270283, -7.609378670021997, -7.602092819996155, -7.5890139534539784, -7.586869308169689, -7.585646372448603, -7.58076297152655, -7.609251035755286, -7.591515311689081, -7.59257083904225, -7.584083715434293, -7.586450125487619, -7.593598728550749, -7.580488061773295, -7.605496242684976, -7.593414651298946, -7.60217927693839, -7.576912879829302, -7.604154147713128, -7.6084567317964975, -7.578611304029224, -7.591686370715707, -7.596609189738003, -7.5779236456467185, -7.600899390110624, -7.589656688978693, -7.591824476469537, -7.588295121277478, -7.604646934476692, -7.599305159948481, -7.601823274459693, -7.599153286574935, -7.59398640868234, -7.594623264414274, -7.563535780759224, -7.5907374418716795, -7.584497327439853, -7.598880523136912, -7.589930732585632, -7.596773581756135, -7.5820404386071925, -7.591745408563035, -7.595021082718484, -7.591871643380514, -7.5923783623174295, -7.588662444757317, -7.601348684176666, -7.604692130795216, -7.581271720491602, -7.592316763268401, -7.599557460899818, -7.590233868866651, -7.60106633139657, -7.591029502106871, -7.590946526294125, -7.578047392804944, -7.584371216579831, -7.58297181596419, -7.593260068364673, -7.588794164898488, -7.595498777698822, -7.57844959725151, -7.601455854688926, -7.591515635688625, -7.5844746837553405, -7.590480735122996, -7.59115080196329, -7.583228595085926, -7.591838539639781, -7.5880938775924935, -7.591635548561748, -7.591955549690062, -7.598088450438071, -7.582096714835912, -7.588480649207663, -7.575017322673416, -7.591209269166958, -7.582617613707098, -7.596106095701603, -7.562895071846649, -7.581176362485807, -7.578569198893786, -7.591395966192013, -7.589017847713364, -7.576334250015566, -7.587794803768129, -7.616990543910279, -7.5906539038020435, -7.586853063919036, -7.585559440057858, -7.584803368513558, -7.597555640231412, -7.595228097920501, -7.595190095630545, -7.590903350802588, -7.591718676589801, -7.586795506030791, -7.580612481966594, -7.593603416733997, -7.598238714945253, -7.605972868167942, -7.584061079920518, -7.587272086190425, -7.60479190195469, -7.6013951681300655, -7.593690915438579, -7.599320500571691, -7.58002377916205, -7.597620308675762, -7.595205045762717, -7.601282182510587, -7.5764528159136475, -7.58003542137329, -7.577500526862233, -7.585601464645433, -7.594348998755124, -7.594659687853514, -7.584691274533544, -7.579260346160663, -7.589381346695482, -7.581942488616398, -7.585761838931412, -7.5888806656223, -7.5906512594778786, -7.59460061471894, -7.598291131300036, -7.566077017354454, -7.598568920462468, -7.588458586865334, -7.580516851783573, -7.581120795801359, -7.573401531185061, -7.587906649375854, -7.577894400309903, -7.588650004367097, -7.601671473700583, -7.6045987582499, -7.587960747276149, -7.586668925102221, -7.598896396820583, -7.584992838351697, -7.588738488491178, -7.592081956817983, -7.594450290229943, -7.577207933669749, -7.592589318566335, -7.591631016036065, -7.586822528718511, -7.5865236423006515, -7.575498534956321, -7.574278911271381, -7.584707709876169, -7.590472728393561, -7.599499257712318, -7.589231395611416, -7.597168903183947, -7.590381517053034, -7.603836632255566, -7.593864793429861, -7.600191191390682, -7.586817716211005, -7.587970682164855, -7.588438308757338, -7.586491923661776, -7.5849299950060445, -7.5726557026548, -7.605430277807631, -7.583551608530619, -7.590313233780737, -7.582464090187332, -7.587898000394051, -7.57869966024508, -7.59814204971804, -7.58368253706408, -7.583281132917466, -7.596340009605541, -7.580639556870499, -7.594986105182591, -7.597986634078884, -7.605014774124471, -7.595227520703942, -7.6126847535198445, -7.599313575341617, -7.569816760702087, -7.594416054247172, -7.605083757930927, -7.582868819170454, -7.586396258585806, -7.604414920719065, -7.599387572834845, -7.594782011899959, -7.606698086162534, -7.599912812617114, -7.609221282226267, -7.588232008218757, -7.60346462535037, -7.57588689646886, -7.588493577576002, -7.587845316302236, -7.577824438147921, -7.59972110610129, -7.601255963829907, -7.591292742933581, -7.591643875142415, -7.595608436976339, -7.604907684584499, -7.586236901477843, -7.599687143227731, -7.6019079185697205, -7.582693582623832, -7.599300342093287, -7.600243633211197, -7.592954405838291, -7.58819349398165, -7.601064555573852, -7.598241391296196, -7.596549098561609, -7.599227365949463, -7.594832883549281, -7.582626984810636, -7.5759575479403365, -7.587274253615891, -7.592166994254732, -7.599369142236348, -7.592745920229135, -7.574743004640935, -7.6065301484133485, -7.6110277743814025, -7.577220966905672, -7.596052441127596, -7.594975868864067, -7.583058349968933, -7.58912555988364, -7.593591137603428, -7.598784448149547, -7.596526026783077, -7.584847627840902, -7.593575746597375, -7.590229568191782, -7.579561798198312, -7.57274335076671, -7.595408728174156, -7.616555806795029] plot_convergence_of_optimization_process(LiH_approximated_energies, exact_eigenvalue=-7.7140566916607005,margin=1) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] H2_approximated_energies = [-0.6197535280860968, -0.63113013317311, -0.641885414639814, -0.6482547418356555, -0.65455000829844, -0.6441486895522341, -0.6186687021257633, -0.6337374526097435, -0.63137130321273, -0.6515250743774067, -0.6579678475184173, -0.6398929213318618, -0.6555847628548984, -0.40354990528583756, -0.42633959272606203, -0.39180257499975996, -0.419385140488104, -0.4052452163765543, -0.3968392598264421, -0.41327196278701983, -0.3897682032307278, -0.41190320628798593, -0.4155349659846535, -0.38689315655724943, -0.39488576584884966, -0.4101577563997251, -0.646246089992425, -0.64640556215564, -0.6408025316083132, -0.6481729361748543, -0.6321210801588072, -0.6169734445936428, -0.6531880101925263, -0.6516595101969759, -0.6370106901252102, -0.6410493390206395, -0.6549643568126738, -0.6434282271634354, -0.6374465180654254, -0.6998006222609853, -0.6989411616133739, -0.7113515779782615, -0.6845563444533804, -0.6912851288084605, -0.6823206756219158, -0.6715092561687758, -0.6950950360064898, -0.7048125041323035, -0.6949055673239051, -0.6876195557523046, -0.6871916327390696, -0.6920620441807598, -0.6754031102431696, -0.6405037528920269, -0.6479106194443648, -0.6571243727534537, -0.6585210677012743, -0.6619852684486195, -0.6306692686820092, -0.6426806791628032, -0.6605101341410042, -0.6581734283582826, -0.6602845191858175, -0.6403463546120416, -0.6838573980740288, -0.6367601998705805, -0.6389697979320161, -0.6342448131512901, -0.6275459264150375, -0.6397639594996816, -0.6516652787828084, -0.6568333186072677, -0.6337354077401545, -0.6534843394293214, -0.6561183148929468, -0.6394550125097977, -0.6282040909709646, -0.6566726955439391, -0.6480962237754406, -0.6391249852824691, -0.6302805184048759, -0.6134825837204779, -0.6324807924099654, -0.648200184148801, -0.6411199725353807, -0.6368985204497558, -0.6299450915767432, -0.6077929487594798, -0.650795244723779, -0.6364396855992979, -0.6561074752564185, -0.6411855472811453, -0.6636963692795997, -0.644828181245867, -0.6426381659395819, -0.6395444214753829, -0.6428019435419277, -0.6477507227847618, -0.6245247077953339, -0.6524683695964778, -0.657026854334116, -0.6358256453202371, -0.6549216159614076, -0.6414823984346717, -0.6559324505625062, -0.6184921814281965, -0.6243527663890307, -0.6347039342445667, -0.6423667818441274, -0.6416632437237163, -0.6355679476249553, -0.6101453551739199, -0.6428657380183808, -0.6371993803542474, -0.6190951873626491, -0.6300491872725141, -0.6443076254087124, -0.6346503527906344, -0.6374022072525142, -0.6365415695138426, -0.6215329044766564, -0.6025672090796137, -0.6262126292580317, -0.6121655900183715, -0.6372581587495586, -0.6532601474080465, -0.6502386208320281, -0.6374473928211839, -0.649108661977176, -0.6428978019524852, -0.6377680232901412, -0.62148731332837, -0.6295014947278836, -0.6303577746392046, -0.6311824700622705, -0.6485908334116913, -0.6555308247607579, -0.6387533756242247, -0.6387831688041341, -0.6362224138123854, -0.6321326357150927, -0.622886094438443, -0.6381661184242305, -0.6207598749285432, -0.633337235851305, -0.6433014163336428, -0.6216780295166963, -0.640547648407052, -0.6504721343163778, -0.6289231121104825, -0.6420313548519503, -0.6491871272384829, -0.6303753733515429, -0.6422070448022406, -0.6283882694196357, -0.6379372975401341, -0.6298035124355486, -0.6376118905742243, -0.6112071558166968, -0.6243668348101994, -0.601586210931813, -0.6246804576520302, -0.6225112843707201, -0.6385828114683393, -0.6308445065147489, -0.6459667238092578, -0.6420608286322824, -0.6284852174798609, -0.619517446532688, -0.6502311414153916, -0.6209974249236357, -0.6500441487817326, -0.6270160102758754, -0.6321138163295283, -0.6318213468032534, -0.6308663247351938, -0.6351155382454959, -0.6206589579897115, -0.6230425476232493, -0.6457261606370266, -0.638217697666363, -0.5967596291858532, -0.6308080357393553, -0.645343139596654, -0.6361652737273936, -0.6216439843718955, -0.6381345598638063, -0.6436054044017382, -0.6402634016890136, -0.6286637688911421, -0.6176910501936059, -0.6426835317643965, -0.6392144191408344, -0.6379698862857323, -0.6294007310483538, -0.6536384710745602, -0.6358065891830973, -0.6281936714944539, -0.6198882142883465, -0.6667152509756108, -0.6478727132696764, -0.639743219643381, -0.6594605134740277, -0.6208263182667817, -0.6484844194562659, -0.6560350644220397, -0.6400305393668726, -0.6082390327656634, -0.6177097860668552, -0.6444776983490096, -0.6405638061358565, -0.6531983360761086, -0.6384666560316292, -0.6026381248979216, -0.6205265201994276, -0.6580811400893553, -0.6242879958522837, -0.6256237085721144, -0.6370627576610521, -0.6193780381228698, -0.6110480817069229, -0.6348741804124418, -0.6469297212858536, -0.6284047197112129, -0.6425857646008404, -0.6227145680975487, -0.6543951355139729, -0.6135377860147931, -0.6151008019528299, -0.6332371262963544, -0.6213803615123089, -0.6197342220002152, -0.6553553047211762, -0.6542865700842904, -0.6447201703460987, -0.607866355025946, -0.6300084394962439, -0.6411144050158086, -0.6178965245521646, -0.616191998658104, -0.6348708952923955, -0.623907264080751, -0.641086457337346, -0.6444154604034792, -0.621800174387, -0.6244882763185394, -0.6376556734303133, -0.6375013731590747, -0.6275068048204745, -0.6623644844595649, -0.630649046531283, -0.6548727406536676, -0.6362997093395338, -0.6061815282744116, -0.6546951895602897, -0.6309023807683508, -0.6508388161226021, -0.6385027712100855, -0.6190137561886869, -0.6696046214509908, -0.6562145856438492, -0.6186112558608597, -0.6473301190677272, -0.6462712478136641, -0.673403768067784, -0.6530082059325099, -0.6543125213926978, -0.6378511211667697, -0.6345475633154861, -0.6368035646034413, -0.6420046649037825, -0.6415451595381126, -0.6447601324975634, -0.6308090659348322, -0.6442243984560325, -0.6337552468237352, -0.6652098463681152, -0.6450651275200792, -0.6415608484514996, -0.6297426007842335, -0.628971981721844, -0.6290368436378584, -0.6296828008139378, -0.6326057245473052, -0.6287268748618635, -0.6523495046628819, -0.654514736278266, -0.6503390006896462, -0.6267667849085593, -0.6518861485724909, -0.6213049629142335, -0.6152511068093129, -0.6444920885486036, -0.6538763157213386, -0.6169162063050543, -0.6374557936296323, -0.639117369570508, -0.636462951162852, -0.6517593736006154, -0.6076877031233741, -0.6403602223149248, -0.6298396251235469, -0.6637221198146037, -0.64886754893841, -0.6345453470146507, -0.6382894853660541, -0.6177025318805094, -0.652638852060324, -0.622038295932382, -0.6415029691455418, -0.6482039684567894, -0.6444058652688481, -0.6431931740464266, -0.6348402433271942, -0.6526661449410499, -0.6274506541843567, -0.6588510196703152, -0.6552920830042773, -0.6460730559750325, -0.6595908999970469, -0.6246926245873604, -0.6332020529350273, -0.6548958894755552, -0.6261489147202579] plot_convergence_of_optimization_process(H2_approximated_energies, exact_eigenvalue=-1.2445845498133272, margin=5) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigen_value = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] TI_approximated_energies = [1.8984375, 1.943359375, 1.9619140625, 1.978515625, 1.984375, 1.9873046875, 1.9931640625, 1.9248046875, 1.962890625, 1.9248046875, 1.9150390625, 1.9052734375, 1.9267578125, 1.802734375, 1.81640625, 1.86328125, 1.8623046875, 1.7939453125, 1.8623046875, 1.89453125, 1.880859375, 1.8388671875, 1.8720703125, 1.83984375, 1.8837890625, 1.8359375, 1.701171875, 1.7470703125, 1.69140625, 1.73828125, 1.833984375, 1.69921875, 1.7744140625, 1.7529296875, 1.7353515625, 1.7265625, 1.7666015625, 1.708984375, 1.7421875, 1.79296875, 1.8671875, 1.91015625, 1.8828125, 1.884765625, 1.875, 1.86328125, 1.85546875, 1.8134765625, 1.84375, 1.79296875, 1.865234375, 1.8916015625, 1.908203125, 1.900390625, 1.8837890625, 1.876953125, 1.896484375, 1.9921875, 1.9208984375, 1.94921875, 1.96875, 1.8466796875, 1.92578125, 1.8740234375, 1.9716796875, 1.9130859375, 1.939453125, 1.9599609375, 1.9716796875, 1.9150390625, 1.98828125, 1.865234375, 1.9248046875, 1.890625, 2.0146484375, 1.9560546875, 1.947265625, 1.9619140625, 1.955078125, 1.9208984375, 1.955078125, 1.9384765625, 1.96484375, 1.9150390625, 1.923828125, 1.9580078125, 1.958984375, 2.013671875, 1.935546875, 1.9443359375, 2.0546875, 2.001953125, 1.958984375, 1.98828125, 1.962890625, 2.0205078125, 2.0029296875, 1.93359375, 1.91015625, 1.9765625, 1.9365234375, 1.8984375, 1.9072265625, 1.939453125, 1.9033203125, 2.0556640625, 1.947265625, 1.9267578125, 1.9541015625, 1.962890625, 1.9287109375, 1.9072265625, 1.962890625, 1.966796875, 1.9560546875, 1.970703125, 1.9580078125, 1.9833984375, 2.013671875, 1.966796875, 1.9599609375, 1.943359375, 1.974609375, 1.9619140625, 1.9462890625, 1.974609375, 1.9482421875, 1.943359375, 1.9697265625, 1.9033203125, 1.9794921875, 1.98828125, 1.94140625, 1.9658203125, 2.0078125, 1.9912109375, 1.916015625, 1.916015625, 2.0068359375, 1.9130859375, 1.9267578125, 1.90234375, 1.921875, 1.943359375, 1.9755859375, 1.90234375, 1.95703125, 1.9482421875, 1.97265625, 1.9658203125, 1.990234375, 1.9384765625, 1.935546875, 1.916015625, 1.91796875, 1.99609375, 1.87109375, 1.9599609375, 1.919921875, 1.951171875, 1.9521484375, 1.9716796875, 1.9736328125, 1.9794921875, 1.99609375, 1.9765625, 1.9228515625, 1.9482421875, 1.9462890625, 1.986328125, 1.927734375, 1.9482421875, 2.0771484375, 2.0009765625, 1.9267578125, 1.9638671875, 1.904296875, 1.9365234375, 1.962890625, 1.958984375, 1.96875, 1.9521484375, 1.8935546875, 1.916015625, 1.939453125, 1.98046875, 1.9560546875, 1.9541015625, 1.955078125, 1.9228515625, 1.9951171875, 1.93359375, 1.9736328125, 1.9443359375, 1.96484375, 1.984375, 1.8681640625, 1.923828125, 1.947265625, 1.96484375, 1.94140625, 1.9375, 1.96875, 1.94921875, 1.943359375, 1.8935546875, 1.9638671875, 1.912109375, 2.0, 1.921875, 2.064453125, 1.95703125, 1.9287109375, 1.951171875, 1.982421875, 1.8955078125, 1.9482421875, 1.9970703125, 1.9423828125, 1.9697265625, 1.90625, 1.9306640625, 1.9716796875, 1.92578125, 1.98046875, 1.9521484375, 1.9072265625, 1.962890625, 1.9365234375, 1.9609375, 1.9560546875, 1.9462890625, 2.0166015625, 1.9609375, 1.9287109375, 1.962890625, 1.9677734375, 1.9169921875, 1.876953125, 1.9443359375, 1.984375, 1.9697265625, 1.978515625, 1.958984375, 1.9677734375, 2.0341796875, 1.9697265625, 1.93359375, 1.966796875, 1.9482421875, 1.9345703125, 1.9453125, 1.9912109375, 1.986328125, 1.955078125, 1.927734375, 2.03125, 1.921875, 1.951171875, 1.9990234375, 1.8955078125, 1.9794921875, 2.0078125, 1.9580078125, 1.986328125, 1.9287109375, 1.9853515625, 1.9990234375, 1.9365234375, 2.0048828125, 1.9462890625, 1.9580078125, 1.970703125, 1.951171875, 1.91015625, 1.8662109375, 1.9013671875, 1.9267578125, 1.943359375, 1.9814453125, 1.927734375, 1.99609375, 1.9580078125, 1.904296875, 1.912109375, 1.978515625, 1.9453125, 1.990234375, 1.97265625, 1.9580078125, 1.93359375, 1.9599609375, 1.986328125, 1.970703125, 1.966796875, 1.947265625, 1.875, 1.953125, 1.966796875, 1.931640625, 1.9140625, 1.98828125, 1.919921875, 1.970703125, 1.8916015625, 2.0615234375, 2.015625, 1.8466796875, 1.916015625, 1.96875, 1.9697265625, 2.0029296875, 1.9326171875, 1.939453125, 1.873046875, 1.9345703125, 1.9501953125, 1.927734375, 1.9453125, 2.005859375, 1.96484375, 1.9384765625, 1.9609375, 1.990234375, 1.951171875, 1.951171875, 1.994140625, 2.015625, 1.9462890625, 1.94140625, 2.0439453125, 1.9755859375, 1.9326171875, 2.0224609375, 1.9248046875, 1.990234375, 2.0, 1.9091796875, 1.9267578125, 1.951171875, 1.95703125, 1.9521484375] plot_convergence_of_optimization_process(TI_approximated_energies, exact_eigenvalue=-1.7583827504312988, margin=3)
https://github.com/Tojarieh97/VQE
Tojarieh97
import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 16 K = 4 NUM_SHOTS = 1024 NUM_ITERATIONS = 50 w = 0.5 approximated_energies = [] from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 6 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 6 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) k_ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[K-1]) approximated_energey = get_expectation_value(k_ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energey) L_w = w*approximated_energey for j in range(K-1): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) L_w += get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=12) optimizer_result = minimize(cost_function, x0=initial_thetas, args=(hamiltonian), method="COBYLA", options={"disp": True, "maxiter":NUM_ITERATIONS}) optimal_thetas = prepare_circuit_params(optimizer_result.x) return optimal_thetas def get_approximated_eigenvalue_of_hamiltonian(hamiltonian): optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) print(optimal_thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) optimal_ansatz_state = get_ansatz_state(optimal_thetas, computational_eigenvectors[K-1]) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) return approximated_eigenvalue from numpy import linalg as LA def get_approximation_error(exact_eigenvalue, approximated_eigenvalue): return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue) def get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, k): eigen_values = LA.eig(hamiltonian.to_matrix())[0] print(sorted(eigen_values, reverse=True)) return sorted(eigen_values,reverse=True)[k-1] def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue): exact_eigenvalue = get_k_exact_eigenvalue_of_hamiltonian(hamiltonian, K) print("Exact Eigenvalue:") print(exact_eigenvalue) print("Approximated K Eigenvalues:") print(approximated_eigenvalue) print("Approximation Error") print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue)) def insert_approximated_energy_to_list_of_all_approximated_energies(energy): approximated_energies.append(energy) import matplotlib.pyplot as plt def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0, margin) plt.plot(approximated_energies) plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-') plt.xlabel("# of iterations") plt.ylabel("Energy") def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, Y, I, H, S LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] LiH_approximated_energies = [-7.6274591415582105, -7.607576828257072, -7.632200935003245, -7.609855196623901, -7.6059250397280795, -7.854597415729809, -7.628956794318834, -7.6784378048763715, -7.640342773091634, -7.665298199108273, -7.4589086431520615, -7.64400728822478, -7.63919074876535, -7.5712982052834015, -7.644638404908841, -7.646954760531615, -7.755301596699023, -7.631831246253383, -7.631061799605215, -7.616310788526333, -7.611576222526171, -7.620105483420993, -7.6417862171136335, -7.589952292685995, -7.610418644012381, -7.674320046442037, -7.61956694546109, -7.627683802497983, -7.623678295984975, -7.617228428549745, -7.633104604686701, -7.629086274819348, -7.595694407363554, -7.617836676264696, -7.617389773769819, -7.634299221424122, -7.598467942904893, -7.630191480144404, -7.63698619980098, -7.623626950424333, -7.612007795510998, -7.6261074907011634, -7.6148982305668405, -7.623709634670492, -7.61204075447679, -7.6106110013026385, -7.620711346718306, -7.618187492707977, -7.612462844967995, -7.623640830688807] plot_convergence_of_optimization_process(LiH_approximated_energies, exact_eigenvalue=-7.7140566916607005,margin=1) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue) print(approximated_energies) approximated_energies = [] H2_approximated_energies = [-1.009976657006965, -0.9238284763706393, -0.9884320852467877, -0.9805917857984984, -1.0167176344158073, -0.803009921527331, -0.4598306468944341, -0.5114890962692614, -0.8589176393087158, -0.9346855734783651, -0.8412382644084648, -0.6224404303456501, -0.653317087612677, -0.7607656559263039, -0.7930275875404521, -0.4281158503125878, -0.5788815212789364, -0.7176165386431208, -0.8701142070097521, -0.8688095826524974, -0.9151572025822381, -0.6635735611840398, -0.6037067550586409, -0.9285839833437391, -0.5058550482270441, -0.9291800596309192, -0.49550483773798376, -0.7464398349372543, -0.9433354608506894, -0.8895971844704103, -0.9048816527272305, -0.8978302385287464, -0.6949574562429168, -0.8304208103551916, -0.4692230966986817, -0.8462497998117152, -0.7185585023635032, -0.8077110062007753, -0.5192275804166049, -0.5640061209546482, -0.8011222125790844, -0.9513753098344495, -0.8402620344123755, -0.6086751350074949, -0.7369530952207817, -0.7603612456563129, -0.7950958666448285, -0.7999579057635281, -0.7706575601258369, -0.7909119439657882] plot_convergence_of_optimization_process(H2_approximated_energies, exact_eigenvalue=-1.2445845498133272, margin=5) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_eigen_value = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigen_value) print(approximated_energies) approximated_energies = [] TI_approximated_energies = [1.0877911566875362, 1.3339897771771856, 1.1497195956414945, 1.3463775026022828, 1.1824868775928117, 1.6423958284840114, 1.5842407965410792, 1.6377219801098, 1.5250316270225506, 1.626129653972439, 1.3560460449434424, 1.6695319025733455, 1.6842571288891142, 1.5407570120203158, 1.5187677867233031, 1.4564666271629088, 1.7323725293893963, 1.792109013228278, 1.7481282811675565, 1.8139670143156743, 1.6629383661129478, 1.68337823955209, 1.4848944286809986, 1.4845001982657569, 1.6129182843066505, 1.6625400070359255, 1.6104761870181472, 1.7152744787413363, 1.6678413737920048, 1.6869395320619605, 1.6590487040095492, 1.6723344557176432, 1.627252139576561, 1.6998615622327233, 1.6227578573441954, 1.6709380388303952, 1.747587311276882, 1.7146592410359045, 1.7219455615683754, 1.6503664867345986, 1.7349602602365404, 1.767898541795154, 1.7803996165862503, 1.6955748077929296, 1.7174656756704858, 1.715728620581076, 1.7002352954018423, 1.7436412571902764, 1.6757447332820925, 1.7032804122037015] plot_convergence_of_optimization_process(TI_approximated_energies, exact_eigenvalue=-1.7583827504312988, margin=3)
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 from qiskit.circuit.library.standard_gates import RXGate, RZGate, CXGate, CZGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_thetas_circuit(thetas, D2): qr = QuantumRegister(4, name="qubit") qc = QuantumCircuit(qr) for d in range(D2): qc.append(RXGate(thetas[0]), [qr[0]]) qc.append(RXGate(thetas[1]), [qr[1]]) qc.append(RXGate(thetas[2]), [qr[2]]) qc.append(RXGate(thetas[3]), [qr[3]]) qc.append(RZGate(thetas[4]), [qr[0]]) qc.append(RZGate(thetas[5]), [qr[1]]) qc.append(RZGate(thetas[6]), [qr[2]]) qc.append(RZGate(thetas[7]), [qr[3]]) qc.append(CZGate(), [qr[0], qr[1]]) qc.append(CZGate(), [qr[1], qr[2]]) qc.append(CZGate(), [qr[2], qr[3]]) qc.barrier(qr) qc.append(RXGate(thetas[0]), [qr[0]]) qc.append(RXGate(thetas[1]), [qr[1]]) qc.append(RXGate(thetas[2]), [qr[2]]) qc.append(RXGate(thetas[3]), [qr[3]]) qc.append(RZGate(thetas[4]), [qr[0]]) qc.append(RZGate(thetas[5]), [qr[1]]) qc.append(RZGate(thetas[6]), [qr[2]]) qc.append(RZGate(thetas[7]), [qr[3]]) return qc def get_phis_circuit(phis, D1, input_state): qr = QuantumRegister(4, name="qubit") qc = QuantumCircuit(qr) qc.initialize(input_state) for d in range(D1): qc.append(RXGate(phis[0]), [qr[2]]) qc.append(RXGate(phis[1]), [qr[3]]) qc.append(RZGate(phis[2]), [qr[2]]) qc.append(RZGate(phis[3]), [qr[3]]) qc.append(CZGate(), [qr[2], qr[3]]) qc.barrier(qr) return qc def get_full_variational_quantum_circuit(thetas, phis, D1, D2, input_state): thetas_quantum_circuit = get_thetas_circuit(thetas, D2) phis_quantum_circuit = get_phis_circuit(phis, D1, input_state) variational_quantum_circuit = phis_quantum_circuit.compose(thetas_quantum_circuit) return variational_quantum_circuit
https://github.com/Tojarieh97/VQE
Tojarieh97
import numpy as np def get_first_k_eigenvectors_from_n_computational_basis(k, n): n_computational_basis = np.identity(n) return n_computational_basis[:k]
https://github.com/Tojarieh97/VQE
Tojarieh97
import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 16 K = 4 NUM_SHOTS = 1024 NUM_ITERATIONS = 50 w_vector = np.asarray([4,3,2,1]) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 8 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 8 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): L_w = 0 circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(LiH_molecule_4_qubits) for j in tqdm(range(K)): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) approximated_energy = get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies( approximated_energies_dict["approximated_eneriges_"+str(j)], approximated_energy) L_w += w_vector[j]*approximated_energy return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=360, size=12) optimizer_result = minimize( cost_function, x0=initial_thetas, args=(hamiltonian), method="BFGS", options={"maxiter":NUM_ITERATIONS}) optimal_thetas = prepare_circuit_params(optimizer_result.x) return optimal_thetas def get_approximated_k_eigenvalues_of_hamiltonian(hamiltonian): approximated_k_eigenvalues = [] optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) for eigenvalue_index, eigenvector in enumerate(computational_eigenvectors): optimal_ansatz_state = get_ansatz_state(optimal_thetas, eigenvector) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) approximated_k_eigenvalues.append(approximated_eigenvalue) return approximated_k_eigenvalues from numpy import linalg as LA from statistics import mean def get_mean_approximation_error(exact_k_eigenvalues, approximated_k_eigenvalues): approximated_errors = [] for exact_eigenvalue, approximated_eigenvalue in zip(exact_k_eigenvalues, approximated_k_eigenvalues): approximated_errors.append(abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue)) return mean(approximated_errors) def get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, k): eigenvalues = LA.eig(hamiltonian.to_matrix())[0] return sorted(eigenvalues)[:k] def compare_exact_and_approximated_eigenvectors(hamiltonian, approximated_k_eigenvalues): exact_k_eigenvalues = get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, K) print("Exact K Eigenvalues:") print(exact_k_eigenvalues) print("\nApproximated K Eigenvalues:") print(approximated_k_eigenvalues) print("\nMean Approximation error:") print(get_mean_approximation_error(exact_k_eigenvalues, approximated_k_eigenvalues)) approximated_energies_dict = { "approximated_eneriges_0": [], "approximated_eneriges_1":[], "approximated_eneriges_2": [], "approximated_eneriges_3": []} def initialize_approximated_energies_dict(): return { "approximated_eneriges_0": [], "approximated_eneriges_1":[], "approximated_eneriges_2": [], "approximated_eneriges_3": []} def insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energies_list, energy): approximated_energies_list.append(energy) import matplotlib.pyplot as plt import matplotlib.colors as mcolors def plot_convergence_of_optimization_process(approximated_energies, hamiltonian, margin=0.02): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0,margin) base_colors_list = list(mcolors.BASE_COLORS.keys()) exact_k_eigenvalues = get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, K) print(exact_k_eigenvalues) for energy_level, eigenvalue in enumerate(exact_k_eigenvalues): energy_level_name = "E_{0}".format(str(energy_level)) plt.axhline(y = eigenvalue, color = base_colors_list[energy_level], linestyle = 'dotted', label=energy_level_name) plt.plot(approximated_energies["approximated_eneriges_{0}".format(str(energy_level))], color = base_colors_list[energy_level], label="Weighted_SSVQE({0})".format(energy_level_name)) # plt.plot(approximated_energies["approximated_eneriges_0"]) # plt.plot(approximated_energies["approximated_eneriges_1"]) # plt.plot(approximated_energies["approximated_eneriges_2"]) # plt.plot(approximated_energies["approximated_eneriges_3"]) plt.xlabel("# of iterations") plt.ylabel("Energy") plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, Y, I, H, S LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvectors(LiH_molecule_4_qubits, LiH_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() LiH_approximated_energies = {'approximated_eneriges_0': [-7.562071486292104, -7.551346757429608, -7.552944523914135, -7.560116772775394, -7.565448199837231, -7.562546777411176, -7.556370586953186, -7.5674961396597515, -7.562868323640123, -7.569727297671011, -7.577241001152592, -7.569901653592553, -7.560170928569707, -7.50450294015484, -7.507421280130349, -7.513641444931524, -7.505252370983593, -7.504378338149738, -7.511089721083689, -7.492616949145766, -7.504733592874844, -7.505057286909975, -7.500944996847547, -7.510777395650015, -7.50684214460726, -7.494074441023492, -7.560548573373164, -7.562214184024206, -7.568477882703838, -7.5455461632531655, -7.564340538776625, -7.553988541052734, -7.5451955641745085, -7.5609456305954925, -7.5483501889539975, -7.556677716954072, -7.56005590213002, -7.5631439275507315, -7.553392111383577, -7.556743753345377, -7.561551788828242, -7.555342548733728, -7.556766445089764, -7.553542895341899, -7.559683391361186, -7.560925469458819, -7.563572357485119, -7.567151568002535, -7.571946591188674, -7.570142191678787, -7.557106639758928, -7.558439292968819, -7.574579104067784, -7.562883709761341, -7.543713858491556, -7.564720803456668, -7.5457497014403065, -7.558969672912834, -7.572319575797064, -7.56292452904019, -7.573479760327174, -7.562199030564257, -7.568681686528937, -7.563004496841959, -7.560909055570279, -7.563440128011368, -7.559393749815729, -7.555472180892113, -7.562844249951609, -7.558531024188177, -7.575698822248928, -7.55404084909291, -7.567979735908607, -7.557018847801117, -7.560978919569245, -7.561794829078547, -7.562143635631656, -7.566271922325941, -7.560839611270146, -7.5568033902098195, -7.58142513791027, -7.573881846816633, -7.558732728073843, -7.56231060585952, -7.551624934331701, -7.551909164866761, -7.5638131868631815, -7.549845397747916, -7.5589181330700805, -7.540495085034901, -7.577617386377836, -7.562660697312212, -7.5559425308224695, -7.561386635696937, -7.577264904915713, -7.553963097036648, -7.573178097168689, -7.580582024019519, -7.5702738283835815, -7.556843980390578, -7.559149777706205, -7.569885360295614, -7.567209735965058, -7.555616248808023, -7.568195665853206, -7.568236031253794, -7.569588764497501, -7.5469170982088745, -7.551910171848012, -7.56070080426784, -7.55777115024099, -7.559179078756845, -7.571503944007687, -7.563577336071192, -7.568322764040547, -7.570259682411341, -7.5752124577109825, -7.574351422210891, -7.568048101368627, -7.5574802857572765, -7.5698666855121735, -7.574140547848547, -7.562281537007218, -7.560887200033612, -7.561833170760727, -7.566703915939199, -7.557248337704557, -7.552393839555408, -7.564795356944313, -7.563885543697337, -7.559295993912143, -7.551819460291054, -7.558610716537125, -7.572150334020591, -7.564829143448873, -7.5649749821297005, -7.559880775892233, -7.562095014235116, -7.555258749423826, -7.563330197776976, -7.576172555094606, -7.56109702344153, -7.560220437853168, -7.563316771592021, -7.55927764982648, -7.559489229938778, -7.560311914696335, -7.5758565696485105, -7.575167851245861, -7.559661332074081, -7.570187549559718, -7.565836319171639, -7.561504371857765, -7.57023042999233, -7.557965382900609, -7.5588943241487385, -7.565503057849797, -7.566276315012363, -7.556233953236954, -7.555144578373757, -7.573777660175128, -7.559991356466428, -7.542063221770774, -7.559407920550896, -7.568143821006155, -7.563686528171099, -7.5642605095860445, -7.5618362170315825, -7.571431894796191, -7.553895503314807, -7.5582535646354065, -7.567586909130106, -7.565961202348206, -7.568978997128765, -7.559340951338928, -7.56445806146827, -7.5556876792359695, -7.56460053303355, -7.570850901726988, -7.568585489747921, -7.557607035779572, -7.564746300706346, -7.561021813150516, -7.562876730931318, -7.571504302167662, -7.561367947755987, -7.566122191231275, -7.560375807672051, -7.561596670973815, -7.557932614828941, -7.560059245807887, -7.569372561667943, -7.577526582464007, -7.565419191759633, -7.560723711434731, -7.560687793830521, -7.567853605434033, -7.5695315149905165, -7.559057395081173, -7.576396592141188, -7.569482907819277, -7.566176238781431, -7.559480733078293, -7.555440467881515, -7.5722562004117355, -7.563561051500816, -7.569102134783019, -7.5624251768939255, -7.553238644209887, -7.566688525378806, -7.57427446525249, -7.5630089364129, -7.559170646039951, -7.573016576285714, -7.584234644863586, -7.563774665710167, -7.559999708140727, -7.558618140639516, -7.55225503083047, -7.557642799541379, -7.563901866709506, -7.553289758355393, -7.558633780019458, -7.572573129411478, -7.557194844186757, -7.556664728469042, -7.559564789456388, -7.565594323797267, -7.555190264866648, -7.561624263586976, -7.569789625285521, -7.5690157809803456, -7.544118474969882, -7.561047611370386, -7.554555222654382, -7.546317221250312, -7.567349270266024, -7.5673888180098325, -7.561428441164426, -7.560936846098908, -7.583650803960547, -7.572308414798167, -7.557746434820991, -7.563764459606351, -7.5587571353624, -7.563416427888439, -7.569696456404504, -7.562540355868497, -7.560495854027838, -7.567457286444577, -7.570867740017869, -7.567086356575003, -7.560381244145666, -7.547049169199666, -7.555784321622338, -7.569474376081687, -7.5722757014839654, -7.560066374314964, -7.554831247356704, -7.549778933470774, -7.550601706977019, -7.570006340302589, -7.564876409869264, -7.564559009400159, -7.560123971954665, -7.5565573892896944, -7.5491087521206195, -7.570018687683115, -7.553176898896319, -7.5638762714361905, -7.558619243737311, -7.555619087766442, -7.564029863039117, -7.555163295228039, -7.56290446645362, -7.575012659147997, -7.552840275809348, -7.5799696493221855, -7.567475401942004, -7.56305130559502, -7.563508335327721, -7.555894563238186, -7.572075891781376, -7.555604946309137, -7.558284106172176, -7.567270751416418, -7.552151995055932, -7.573093018147093, -7.565849448615926, -7.560728523332386, -7.561475572421954, -7.557857962584839, -7.57102858041606, -7.5601827041613445, -7.5473846644268905, -7.567554019242569, -7.566923472324098, -7.571172604068238, -7.573534646914643, -7.568365397345586, -7.573096907598021, -7.568072358316656, -7.5624371348290484, -7.569334313303235, -7.569107128693299, -7.569438063580029, -7.557081199304223, -7.556793444721364, -7.565564138171619, -7.584047083603657, -7.550468510480313, -7.5721701200656755, -7.561405357628065, -7.568843499808381, -7.582132396455182, -7.56188172212797, -7.565780797594704, -7.5581809752026645, -7.563924689693823, -7.568310006966299, -7.570973966169818, -7.566526969313047, -7.556837856869171, -7.556959357100385, -7.55802539600483, -7.560157547145864, -7.558819606357595, -7.5716432114033685, -7.574679379170924, -7.558314028696738, -7.5592360010565995, -7.552304228834449, -7.567720644203105, -7.553819160843, -7.564363448769347, -7.5667092400451255, -7.558673226311031, -7.557102272988306, -7.56406445986514, -7.550601245662824, -7.5642687847953, -7.562428841944573, -7.554217816157429, -7.567761628415078, -7.559682214760878, -7.571207288584289, -7.550142299269893, -7.570586131073872, -7.5605912454613655, -7.556847794745476, -7.559811269546062, -7.570036341292319, -7.564677334894062, -7.563188252164309, -7.563738648634944, -7.562081214609168, -7.565029085996614, -7.552285855207653, -7.5587401551887785, -7.567044590000477, -7.554827834724664, -7.564142970628503, -7.570785867741189, -7.5568222014998785, -7.565658174898904, -7.56968748071879, -7.554067354326688, -7.566300026647628, -7.55845704485936, -7.551501158686343, -7.561167024505615, -7.573625008309388, -7.559870114940783, -7.565501456554783, -7.561293415371925, -7.574687001507515, -7.55926251913646, -7.563852554125366, -7.560994576121271, -7.566721437077942, -7.573291148108524, -7.562883029407168, -7.570158159077053, -7.549374795901499, -7.5640639695420075, -7.572251998484766, -7.570972389043582, -7.557080874727251, -7.5547683042560685], 'approximated_eneriges_1': [-7.640004876805808, -7.663640722664111, -7.658611929963564, -7.64932547704183, -7.646797803653223, -7.665442251078073, -7.663642689359795, -7.663556103716576, -7.664762017962395, -7.659539943254729, -7.653825233560599, -7.671736337391423, -7.655284105369079, -7.597651501673428, -7.601322561951349, -7.597295701081217, -7.5995434567321745, -7.603809864776037, -7.614372704985102, -7.603637104328402, -7.587494654856017, -7.595271793938281, -7.616879795695566, -7.589553721419916, -7.596416341830358, -7.596034796833454, -7.636209438889688, -7.640877649341832, -7.657679139320576, -7.6363317069501715, -7.634009690454076, -7.650685810199302, -7.642970968474241, -7.647171253048493, -7.649113730245329, -7.632589528503865, -7.631625548600127, -7.640657607231181, -7.637011643554965, -7.6519853787423715, -7.6346252169762785, -7.659438164187605, -7.649134794688484, -7.656067137177791, -7.656308879678295, -7.656600376216503, -7.664776501884009, -7.654613607723093, -7.664969430903149, -7.648273559419987, -7.664870709406619, -7.6469497023504225, -7.643659500147412, -7.645751102067645, -7.646286196764285, -7.6459080652210885, -7.651782113361833, -7.658184809230566, -7.646392105677173, -7.659855511304261, -7.674622701536653, -7.653690153821832, -7.657108979247705, -7.669192622856933, -7.659338187830021, -7.659255866767289, -7.642787974230109, -7.645383883879427, -7.662495541010129, -7.655440842815017, -7.669557208297275, -7.6756909723728795, -7.649491309169715, -7.652262225804263, -7.662422713416752, -7.659914401465116, -7.6639905955020815, -7.6566673637561715, -7.6586633675018625, -7.668702497209907, -7.656154354812613, -7.659014207552145, -7.665265620831511, -7.652713926513206, -7.658480326185389, -7.64981261192683, -7.654614416145373, -7.66396866337189, -7.661425047413697, -7.65942993358875, -7.658563520972784, -7.6514926583190634, -7.644135199378931, -7.642104164460429, -7.669130202549792, -7.643096426186087, -7.654953306643982, -7.662778253610977, -7.662008704804949, -7.662297656266985, -7.664652442531045, -7.662341568683591, -7.650731033972629, -7.65865575908331, -7.6594704205503, -7.652988061222755, -7.661235266653203, -7.653987188331512, -7.651868104406244, -7.651944984193438, -7.657564091355315, -7.640071623656383, -7.652522066174303, -7.662010083630387, -7.647888345260418, -7.650936792580378, -7.655897253299694, -7.653322392254577, -7.644805038244322, -7.652796357049603, -7.659324658913715, -7.650261760707197, -7.662121270587388, -7.655967589917249, -7.6517776917299845, -7.661450519934126, -7.641166197403465, -7.655404138361534, -7.648879831917093, -7.657596913720103, -7.6590897115736984, -7.64991776437358, -7.656498968379245, -7.662734745207417, -7.6513120368663055, -7.644002948397324, -7.657408606711758, -7.660792912880495, -7.660712711942249, -7.649928308881624, -7.649335433945487, -7.653650140193882, -7.652255933020255, -7.639367216167971, -7.662778846906539, -7.652260591782108, -7.650598648861375, -7.662590372653764, -7.650342710622928, -7.6501448723513725, -7.658949388846702, -7.651395906431559, -7.656810220714922, -7.6321390678820205, -7.650008411682383, -7.665943429318839, -7.659303769636394, -7.66175343609437, -7.664889400703618, -7.660941428234831, -7.655777486687101, -7.639890218869916, -7.6404586733828, -7.646546669058496, -7.641522175777968, -7.653600965386103, -7.658168313069703, -7.663408087736834, -7.64237595177724, -7.647074326535779, -7.662532146997315, -7.641935778444564, -7.664735283161793, -7.649548709483991, -7.652085538245844, -7.666668508392412, -7.639771290700313, -7.649496158587092, -7.6568362596053605, -7.655744241997743, -7.664685030863114, -7.663826007050182, -7.649790587112996, -7.64443378177775, -7.658059841719335, -7.653514123802562, -7.653854477512821, -7.646481685942946, -7.668778512368588, -7.66931149740886, -7.647086355555541, -7.641207585483791, -7.662796697913889, -7.654944710173036, -7.639670433309078, -7.662647849868859, -7.659169336973351, -7.649045024363313, -7.649902950465767, -7.660845152542733, -7.64997346217619, -7.659656505795857, -7.646712215566484, -7.653523082543233, -7.649493675081297, -7.655471393693474, -7.674354557783189, -7.649868727439205, -7.657708573676187, -7.648498237270756, -7.6535668913852035, -7.654604999387128, -7.657184118242257, -7.661015568187299, -7.647850392858409, -7.658511169027303, -7.658972301781452, -7.6627155202222905, -7.659343425662869, -7.6653726330212875, -7.644723460329305, -7.668724873820755, -7.659938937532452, -7.664237945432445, -7.652549577013326, -7.654151510415249, -7.669238815055444, -7.666681401675911, -7.669218431486016, -7.647179612366595, -7.655195040863664, -7.663883794389363, -7.656220095677754, -7.652714111757331, -7.660091731494186, -7.653382972001038, -7.649685032899117, -7.643434026734703, -7.653779360455354, -7.649040098024922, -7.650736086171822, -7.662868198158262, -7.6501933250935155, -7.64973877850863, -7.657948064113084, -7.662622266990542, -7.663076116756231, -7.650314400813861, -7.6636252982682045, -7.6493285100228166, -7.655115749146944, -7.644262568636023, -7.654237639095005, -7.6736574011945455, -7.6493474525286445, -7.647472666863004, -7.659184047322648, -7.65912277649649, -7.6654110550839665, -7.661775451342709, -7.649639297095291, -7.653073388579447, -7.655681166370746, -7.647732810883867, -7.6619795234069725, -7.639049506367911, -7.656046843463907, -7.659363290452618, -7.6565259542680195, -7.653607621717966, -7.653468958961931, -7.6646939127860305, -7.664208775193248, -7.6580143217798575, -7.640833891558509, -7.6742343740424745, -7.6368088827610965, -7.676849993512226, -7.660514920077705, -7.651583484887268, -7.668268592423068, -7.6646010667684195, -7.642075015284122, -7.662675943256403, -7.664589673885046, -7.654168128102824, -7.652899497355082, -7.656562292144806, -7.65441159181004, -7.653903217180547, -7.653699566381234, -7.65916383616381, -7.652062498055793, -7.659770782365602, -7.649973183440041, -7.658416249308681, -7.648280662215833, -7.657440584268751, -7.653280984673626, -7.654650326352021, -7.651503976021746, -7.650725270622099, -7.650953823305091, -7.663453719577422, -7.663136563134576, -7.648552058672743, -7.645717317561624, -7.661677391075099, -7.650639645207763, -7.653162448343972, -7.647940290358222, -7.65349195437921, -7.655227609743165, -7.660800320152206, -7.655876286253898, -7.653362417457495, -7.662900578450083, -7.665759889583327, -7.64850603317317, -7.64639804610784, -7.657554964336688, -7.653934318847597, -7.656989653718636, -7.654003033193125, -7.663278274501233, -7.666423380077609, -7.655046975756818, -7.66894116678348, -7.661409124458723, -7.654453806674957, -7.6498362917783425, -7.659479111374668, -7.65850880813774, -7.649723814710095, -7.668599193491497, -7.653559251181374, -7.651880099847571, -7.648275147789655, -7.652882577216799, -7.644777263225337, -7.665841694995836, -7.657295888566798, -7.650380545448417, -7.639585679978297, -7.665489676763162, -7.6548503410482525, -7.6436946240394175, -7.663573440940202, -7.649710258532595, -7.655170355908884, -7.657163682467192, -7.664515491695974, -7.654927719140413, -7.652749483894446, -7.663378842271306, -7.647988315215243, -7.662107961183042, -7.66474215776545, -7.637231085764769, -7.665794116547952, -7.659041651972093, -7.648965313349237, -7.67295614592449, -7.665980286725987, -7.652996229373012, -7.665622980515267, -7.659422815244974, -7.644928616011809, -7.658062566347961, -7.666474881683342, -7.642640171231159, -7.664938294267261, -7.662099851005686, -7.64814476099854, -7.644567976847967, -7.648680150743558, -7.655541946192065, -7.653112692719887, -7.6538334178079985, -7.675629929335296, -7.647642939973969, -7.650061824260243, -7.66209311769753, -7.653972963672962, -7.639499794912201, -7.654796842420962, -7.653923396462375, -7.6617034515694415, -7.655354344789989], 'approximated_eneriges_2': [-7.364883295491945, -7.357096546692957, -7.364955640080209, -7.366649835041585, -7.370178562738035, -7.370498295639986, -7.359850343021811, -7.369578873911706, -7.356601813997492, -7.358935651502489, -7.357796998557633, -7.369132170244881, -7.370702735100627, -7.274325050775206, -7.280474963079358, -7.281708787780506, -7.280556555262666, -7.259920023445053, -7.2785681459669185, -7.285094941009067, -7.271930987000509, -7.28050081577424, -7.268045134634672, -7.277905509462009, -7.27674183916798, -7.276019138655873, -7.349741384646146, -7.342049394958048, -7.360711308891955, -7.346157367111212, -7.335181510651091, -7.336460259713555, -7.3503315982180135, -7.343012489174863, -7.350680303032871, -7.346283858351786, -7.352005549652531, -7.336713141766783, -7.356632635936495, -7.361404363466478, -7.358421968675841, -7.354922720317311, -7.351437910086754, -7.357982322018829, -7.352521671214343, -7.355041799412635, -7.372545589228418, -7.365964181946214, -7.354378458902148, -7.351744159257381, -7.350925066165386, -7.357593585644726, -7.365417233199112, -7.373991478179518, -7.3577941933998945, -7.362401413580458, -7.341856930596256, -7.357240928256174, -7.374309349711194, -7.360958542921878, -7.371926808040107, -7.35921402377884, -7.35916547028286, -7.3550199505559, -7.366133377644873, -7.360252875959583, -7.36491881346327, -7.365101181103266, -7.359053414111484, -7.349971883701548, -7.355873314161922, -7.364197131055456, -7.349489968783213, -7.379722885394727, -7.365049225884977, -7.36513158165031, -7.3576457118603225, -7.3478126411856355, -7.359695751641573, -7.363930333905528, -7.349666773192882, -7.356555741062991, -7.355265448516789, -7.349977444810509, -7.374642461822476, -7.360300171932341, -7.359505475536327, -7.368607076371499, -7.360185531224295, -7.349101735894524, -7.357138676351334, -7.3663064895982755, -7.364408680050643, -7.3580092192110484, -7.377681633783077, -7.367018245907511, -7.367140560080904, -7.357926512249714, -7.356207859208334, -7.358837568245287, -7.374082391099257, -7.368961270707655, -7.351394731165236, -7.366897363688458, -7.366428644422809, -7.369338966260864, -7.36895670581141, -7.352156787314955, -7.356311636601875, -7.368418487568985, -7.373618062975586, -7.365514562347909, -7.356458967476127, -7.350140557450977, -7.37430744555474, -7.365384180212878, -7.352452685490337, -7.365023570169725, -7.361808388584072, -7.366480133321798, -7.370469022282186, -7.352470346207248, -7.346992599713914, -7.3754666982799115, -7.367119981302624, -7.375893544945889, -7.3740184962020905, -7.360680688128673, -7.365533613211296, -7.3730267896333705, -7.378733399096636, -7.360938272380674, -7.3500785793055465, -7.356501828157371, -7.366701043649846, -7.360983720125592, -7.358977885377021, -7.359012030942887, -7.352071018778803, -7.358936876603126, -7.361806178157059, -7.343776779523118, -7.358320360826148, -7.356750472294554, -7.376891375456355, -7.361193797092221, -7.359021412991975, -7.365210523648424, -7.371075560503611, -7.366035104467214, -7.362885977563602, -7.378921723610643, -7.372516628456746, -7.365388770096758, -7.371996227457732, -7.360685568580893, -7.355651305069363, -7.374063334270516, -7.36866991119594, -7.366995215528181, -7.345944236817251, -7.376284921962682, -7.36334282363693, -7.355108514618833, -7.372041071067884, -7.365471765439953, -7.360843606108303, -7.353623255424593, -7.362459109079309, -7.374708343638556, -7.375105765383493, -7.364208223403619, -7.345214366910676, -7.364592321183875, -7.375684202992255, -7.367155527390262, -7.369246432134271, -7.360956615963479, -7.3619580616206255, -7.360459486794811, -7.371675296672397, -7.356317658441366, -7.374757871217501, -7.354379174387812, -7.366613426064128, -7.38178307075689, -7.366224634504145, -7.3597296489938495, -7.358974064648617, -7.3707272321459705, -7.373501209369182, -7.369675184795953, -7.3600172244870885, -7.3584439569990145, -7.366941946200081, -7.360982002370062, -7.359365301566428, -7.356006337639239, -7.34400178778242, -7.373952991273524, -7.358046504039474, -7.361604134578873, -7.349473609764614, -7.349403104466897, -7.3767576363243075, -7.35830652373711, -7.36174226205589, -7.373306073689175, -7.345617022309214, -7.366876143439954, -7.366985309233789, -7.357764798093134, -7.3591288311835985, -7.370257264352036, -7.358829371334706, -7.362238737252088, -7.344988673601462, -7.372449096327162, -7.371956426469645, -7.367637030712678, -7.354838786384415, -7.362342881621784, -7.353367159874581, -7.371558090338945, -7.372199508284778, -7.35559097590597, -7.352243472769708, -7.372060080386132, -7.358686593539402, -7.3706724142617706, -7.35528444874002, -7.362738558888143, -7.355687112281264, -7.361605788363014, -7.36476037660511, -7.357733503929607, -7.363214644109992, -7.3548389973015205, -7.3624925989230015, -7.359600708446874, -7.362931574957735, -7.358987677040328, -7.35107500006582, -7.356836143359705, -7.3546345900017345, -7.365944078095171, -7.364932472499365, -7.354398522173845, -7.357521665275058, -7.3768288423220465, -7.363289402239592, -7.343251478135545, -7.360503842060538, -7.3657683868095525, -7.348601589128535, -7.379870520124686, -7.349147391443481, -7.35970074286777, -7.371717356100115, -7.3588632737725, -7.368721429055141, -7.372265570186838, -7.353054140753173, -7.3577394252567245, -7.372738937492774, -7.349981341418335, -7.362565214437743, -7.364257487214802, -7.3610516071290935, -7.369268591142921, -7.355984717690602, -7.375194815193234, -7.36660973034524, -7.360138439964464, -7.370244045912211, -7.369368625502614, -7.365497694840824, -7.3724084362573, -7.362925924196621, -7.347527321193012, -7.354291928077748, -7.35483990109757, -7.376337424603696, -7.371389952666957, -7.366761093082787, -7.372038595248641, -7.3680292245858094, -7.372723879313842, -7.363111018625149, -7.352063570845146, -7.345940916439905, -7.370254067980764, -7.360839880193324, -7.356968204531796, -7.375528971249572, -7.371525868883696, -7.366754845337612, -7.370661731668315, -7.363084430101188, -7.362918987834069, -7.345723412236612, -7.366278292894045, -7.367094020811365, -7.370071839080922, -7.355364845487074, -7.368284885887138, -7.360124877456739, -7.354994688626578, -7.3649098543665605, -7.368282072577719, -7.345924708354052, -7.380842586667604, -7.36035334136359, -7.367649143212794, -7.3468891173007576, -7.354487074423081, -7.372476545988491, -7.370300266609272, -7.358185550263161, -7.358180712409783, -7.360590387167875, -7.357973406423506, -7.357492691696578, -7.36617128229452, -7.362170473006855, -7.3702491149201705, -7.347250830941381, -7.359065286033125, -7.360842711648379, -7.378426535571467, -7.354302172414079, -7.368199657726918, -7.369243498740597, -7.3626572837470805, -7.363192801642301, -7.365984259252732, -7.359957831263764, -7.354055670115411, -7.368901208708802, -7.365499387028483, -7.362057052695473, -7.36076061134795, -7.3578582420012895, -7.371070206494654, -7.392501032402848, -7.376719315384669, -7.36192020558924, -7.360572803680353, -7.364382834805135, -7.365781587067929, -7.364656255448828, -7.380197508773036, -7.348680263515486, -7.358557567638165, -7.365514533951133, -7.366222672189137, -7.356699052111834, -7.3634482860254895, -7.373209883567622, -7.355686002369842, -7.355419510511128, -7.349642719346203, -7.369344424565576, -7.345344548791268, -7.349659686199744, -7.348036040021483, -7.357953762034859, -7.355311612895259, -7.3714317232624795, -7.368810683670823, -7.359104369519746, -7.376622354423639, -7.360661288659202, -7.358520301623136, -7.36905661413032, -7.347537418729239, -7.377781546220456, -7.346710534929065, -7.37635041750454, -7.359992541999637, -7.357895645444458, -7.3637267758526805, -7.3659965989369205, -7.361875087672914, -7.362226066535422, -7.3687739171144875, -7.365454390248908, -7.3628051566367585, -7.3732335815428875], 'approximated_eneriges_3': [-7.665565108452975, -7.644901323573956, -7.640844028472312, -7.657254406209585, -7.658112461896535, -7.6568392828816485, -7.641390104849172, -7.6495594099925075, -7.644551215257205, -7.651378183593319, -7.662443144196291, -7.660808970446244, -7.6543644719951525, -7.579787725328885, -7.581575393716733, -7.593278932861819, -7.590112185247835, -7.58835070414362, -7.583838150366188, -7.584132884149633, -7.592723154742481, -7.600588992249034, -7.592989439982904, -7.589170555867332, -7.593330942586447, -7.598103983431033, -7.647418576300137, -7.642912816923083, -7.643896476593707, -7.641910200029536, -7.647168635191645, -7.647767599627591, -7.633891335931415, -7.6451174744419985, -7.648916011463749, -7.651596453059482, -7.652658602598597, -7.64925018366965, -7.652250819847233, -7.657391563539323, -7.65628022876998, -7.654372267148436, -7.6523680940147445, -7.646153944349784, -7.652891448904207, -7.662720272184743, -7.655418609074423, -7.645235055261529, -7.652248466967251, -7.658587503126946, -7.6441011073686935, -7.6472521312812125, -7.65578417759617, -7.65404932384636, -7.659074178854031, -7.652171967879082, -7.647353474046499, -7.653043857292235, -7.663262076576875, -7.658974031516964, -7.659773413941099, -7.659877261166179, -7.650674734519757, -7.657871577038285, -7.65218856996915, -7.661315019158188, -7.6608784060476145, -7.65903856685483, -7.650325258864766, -7.657149241987326, -7.6628369554438285, -7.662751902402708, -7.645830978532802, -7.659705924776128, -7.652202748407217, -7.648512995889111, -7.656062033485538, -7.658772090432675, -7.650168027354398, -7.652133754969269, -7.655634089834825, -7.6431287117715, -7.655701260178208, -7.6587933437074955, -7.646927138838895, -7.653111758973935, -7.64804338104222, -7.653306776277115, -7.650322200330327, -7.658879834821313, -7.654179963065271, -7.656924300725593, -7.65694024588232, -7.656643964370596, -7.653438994580543, -7.649654583407108, -7.6588747071651495, -7.661711976348323, -7.657942056516167, -7.6594176679534325, -7.6528382751568715, -7.648300771051253, -7.661655766275675, -7.652026357240133, -7.65484995311952, -7.663627660016132, -7.651696269976716, -7.651471203760689, -7.652688549766444, -7.650547795465464, -7.651428913845321, -7.654107023102959, -7.657571795914727, -7.652314051456776, -7.666254772709962, -7.662168392311318, -7.659842820238239, -7.664331049356466, -7.638036033198543, -7.661709974700356, -7.662459543469471, -7.647034607710653, -7.659347907334266, -7.654787706962608, -7.654339593062118, -7.6568974256567675, -7.646013658991441, -7.653099765259573, -7.650685693922264, -7.645383824147363, -7.655803522857804, -7.655403941428183, -7.650291960134789, -7.658776048487579, -7.652609631803865, -7.659541764373261, -7.654301165389112, -7.6505070594856015, -7.659838781640751, -7.653483388689125, -7.646318468699023, -7.653631379836062, -7.656315380826935, -7.660255323117884, -7.654990375238988, -7.641225742649195, -7.66405826389239, -7.654271860620266, -7.646634129130455, -7.650510510955897, -7.658728753991629, -7.645926973626786, -7.654701123754429, -7.638272916158379, -7.656332674300085, -7.653863882992666, -7.648837320500792, -7.640387250122717, -7.649244359784344, -7.650268513395258, -7.652866967189823, -7.6523557891630265, -7.643888963175816, -7.649627701754415, -7.652111005299847, -7.655242582599543, -7.651078841908696, -7.656342772524407, -7.66086562676355, -7.654187509979265, -7.652723758952326, -7.655343044873772, -7.655318868132087, -7.6525909880558265, -7.652632307738305, -7.650951036901952, -7.669286096861051, -7.652350772420757, -7.660446851056735, -7.659401097867884, -7.658145954855402, -7.65598015342052, -7.6585818022757906, -7.658411845818654, -7.662098249242379, -7.645861239029599, -7.653301645718722, -7.648596669553275, -7.655410214618722, -7.653651454737528, -7.653108457752997, -7.668396591214985, -7.651742330838472, -7.643272221341881, -7.6480076113614475, -7.646105722075325, -7.657937872190927, -7.653099062217942, -7.666011461331249, -7.645951841928547, -7.661057330564267, -7.653346502650349, -7.6526588084091625, -7.644999760332802, -7.6563323175765365, -7.658436744764569, -7.64925880962834, -7.653645575607522, -7.6605824141138035, -7.653611273403076, -7.6650829865663574, -7.656481794249267, -7.659460169543926, -7.655210623287882, -7.651139909298326, -7.661824302406185, -7.655144998887509, -7.651534007689744, -7.655049778567794, -7.662531821531967, -7.652062408912415, -7.6496410482217065, -7.6531326977073215, -7.644136973991895, -7.650950497401372, -7.644591098573973, -7.640845855337503, -7.667905625053742, -7.650333814842865, -7.652110487139681, -7.658219757526387, -7.657240184846646, -7.650828427136131, -7.6447235080247955, -7.665394749448972, -7.65443457344851, -7.652105099851306, -7.6458841283088645, -7.655403522905685, -7.65490635816747, -7.657835046482047, -7.662772983737446, -7.65335143226066, -7.659667844314349, -7.640147172486251, -7.651921991051257, -7.659168382390267, -7.65640911857179, -7.6553638343789485, -7.65376820350458, -7.656500818406482, -7.651715189752812, -7.65047465807989, -7.643718520551659, -7.64415677869882, -7.640750294074653, -7.6557818857307725, -7.649215454235926, -7.650081251221079, -7.648162520333877, -7.655517708101543, -7.658035203433566, -7.664428731877207, -7.6592303950745215, -7.6673548627608294, -7.660020287661474, -7.659737758823862, -7.656041511655851, -7.648507404110936, -7.653022356297249, -7.6524332877791865, -7.66431697314938, -7.6591357446614, -7.646691610906157, -7.654845941828202, -7.663067482655948, -7.650470847172488, -7.649418514487242, -7.6550498390786945, -7.644420728850646, -7.654795015049781, -7.6613612317631805, -7.654767695115201, -7.657190305340891, -7.656898793921717, -7.656225144244079, -7.659931102201272, -7.660014363803615, -7.656706784957107, -7.6588121853997, -7.654888558146463, -7.656401546136769, -7.656448760186196, -7.657953392871566, -7.650173917127307, -7.651437983635304, -7.653957489710805, -7.6539667407460374, -7.653713654316644, -7.647546740343754, -7.648980644044312, -7.65162924524375, -7.651802600897182, -7.655950997843602, -7.63917570280027, -7.649099009141816, -7.6711436604566785, -7.656094119507753, -7.660916007880858, -7.660108513494201, -7.651479797787551, -7.663651296922621, -7.664209310541335, -7.65740453684123, -7.654347360013047, -7.653254337879505, -7.649771899872737, -7.650187860986575, -7.646969009287433, -7.65932833797122, -7.652473286122496, -7.657447845927712, -7.6509800843866085, -7.649501992616811, -7.649543941474777, -7.661721054157811, -7.647821688928648, -7.651366617347241, -7.655407922067553, -7.667590855500485, -7.651003389128052, -7.650856862821003, -7.6561783181319, -7.661130988595605, -7.664145920493251, -7.653897854932308, -7.656493110072739, -7.655934153959316, -7.66209502182847, -7.662816393948624, -7.655017653503092, -7.649244985283952, -7.649228279587383, -7.650190991166763, -7.6488082362955865, -7.660426607640321, -7.646744695377181, -7.658734358003759, -7.66177693097403, -7.648217405882136, -7.65853080017318, -7.664522961074313, -7.6506323811866705, -7.654226662604913, -7.652957092965678, -7.644444582882459, -7.647671035701211, -7.6580655907480715, -7.663615455151189, -7.6627857130398755, -7.654044781278339, -7.6534808648838135, -7.655449080427594, -7.647640119768702, -7.646787117057311, -7.65389292674119, -7.659977579813853, -7.646309745997252, -7.657469286538147, -7.652930968416271, -7.651680446580526, -7.656359311921744, -7.655149743938323, -7.652890918037023, -7.659366964648121, -7.657957284927965, -7.652544936737028, -7.652783155812913, -7.646343032824489, -7.654871280821122, -7.646666505815597, -7.655385050167301, -7.658785076107344, -7.652325815918973, -7.648640691745009, -7.641891329255079, -7.651861882018293, -7.644743796827444, -7.6617625043417]} plot_convergence_of_optimization_process(LiH_approximated_energies, LiH_molecule_4_qubits, margin=0.02) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvectors(H2_molecule_Hamiltonian_4_qubits, H2_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() H2_approximated_energies = {'approximated_eneriges_0': [-7.044869071845908, -7.0522159431144695, -7.045826893427681, -7.040956622016025, -7.033636336738691, -7.03852022989153, -7.043777898111554, -7.0415561599539584, -7.04037809487655, -7.0453193426832215, -7.0373470588788996, -7.044564629495382, -7.044754815788807, -7.271419323963639, -7.26052383991807, -7.247357653224691, -7.261820010307763, -7.252539342679122, -7.2626464129237, -7.245920398831287, -7.247035733098027, -7.265952097434155, -7.24887083122739, -7.2531816673861735, -7.265940705468054, -7.25270662157792, -7.102617995399945, -7.089498116849218, -7.093325799353756, -7.096365339245411, -7.094106057615053, -7.107535385025435, -7.103305126646508, -7.091948777305775, -7.086315491445892, -7.10488835709718, -7.096982206618721, -7.0914861370367435, -7.093538444908571, -7.070529105326432, -7.067462257655455, -7.076956405751454, -7.066279474520601, -7.077988558064548, -7.076544412109634, -7.0658723955821845, -7.070992951297235, -7.071491621144808, -7.072676655189868, -7.069239264907494, -7.063587778613009, -7.072326880313549, -7.0486848773571, -7.046298838670843, -7.039678113562299, -7.039188863783721, -7.053704116853223, -7.052643297569627, -7.050661731110794, -7.049192506392741, -7.0476398150257715, -7.052762124552016, -7.048855537081967, -7.044614333935807, -7.05502435737143, -7.043489946891944, -7.042594008303074, -7.04959955388164, -7.052586159600431, -7.043061527383934, -7.046022024645883, -7.041379760574117, -7.046648212461671, -7.0441824707611245, -7.057042282144841, -7.046352543121911, -7.045337153671366, -7.049256240886576, -7.0378272540055065, -7.043903009848836, -7.048608550869771, -7.045266306647011, -7.050655640764568, -7.050509397550202, -7.041908116822447, -7.0526690959587155, -7.04823317227064, -7.041721783605734, -7.035312757770234, -7.042901180491823, -7.049113078824484, -7.044285463008793, -7.049442408039912, -7.0391089748590865, -7.041672722938562, -7.043665865505559, -7.043828664033352, -7.042920025064471, -7.0351881683253135, -7.043603402727344, -7.038009268423706, -7.039775544754238, -7.040883420582434, -7.037013595341853, -7.043819792934352, -7.042331437161471, -7.0456333038019405, -7.044548802876332, -7.038415766878813, -7.042968500357833, -7.03611416952854, -7.050432628509437, -7.043515351878789, -7.0364263386893064, -7.039288303056867, -7.0388500240705225, -7.03302407685042, -7.046960020729119, -7.044408693315892, -7.046657637715488, -7.04387014614952, -7.041187930508047, -7.034713210871416, -7.0424695121866945, -7.047725410183224, -7.04449085795552, -7.040806705875413, -7.0373853952318255, -7.037261842797666, -7.047859361581846, -7.049325843393123, -7.046151544622458, -7.043904221897233, -7.030302702310242, -7.0425612319577, -7.042291201514399, -7.038413698851512, -7.038412621015808, -7.043097019878359, -7.05238144474142, -7.051651858766015, -7.043762896318504, -7.031048444158597, -7.048869918982238, -7.044173709455461, -7.044276087098426, -7.039928716467672, -7.032741262414934, -7.05603933430837, -7.047712516719079, -7.029363034832074, -7.04120882235882, -7.038705395316446, -7.047649689091099, -7.043142711638445, -7.036958086099825, -7.050891397945634, -7.046994493016472, -7.04671562212142, -7.048569346180278, -7.039243574042099, -7.04302944528067, -7.040889111732697, -7.031685888156094, -7.044950083024378, -7.051877178085004, -7.046285775831468, -7.029559524717367, -7.037978211518291, -7.041085254242691, -7.044079649685425, -7.048988611826235, -7.0451941134830465, -7.037328268668186, -7.044100448273761, -7.040943041215821, -7.03914978891461, -7.0403395482554965, -7.046453268816699, -7.041288234787106, -7.039607543354191, -7.044551042858932, -7.038310324016002, -7.051193770196858, -7.036583203999625, -7.040478694265556, -7.038582313438599, -7.038909350623601, -7.042717248325647, -7.037321574213696, -7.0432663420012664, -7.049224888190789, -7.048931789809128, -7.043676795578305, -7.039809558091586, -7.045393069382596, -7.042396631840064, -7.043114992353083, -7.038462374140121, -7.046332291321339, -7.049023458842242, -7.044788845787949, -7.048339038543747, -7.046977441282405, -7.039777148935807, -7.049540827915558, -7.036962487132982, -7.045715536366187, -7.037443056104555, -7.051385449403388, -7.050145492134935, -7.042150341522066, -7.042889221955946, -7.053242066925324, -7.0390431325064755, -7.048359051553413, -7.045260503879417, -7.043482530079498, -7.042942267042148, -7.036513410863197, -7.0381343496658895, -7.052418453147576, -7.037468024799972, -7.038186713430111, -7.032175501130874, -7.0379334092469685, -7.036915083859438, -7.047553461406044, -7.045354491189099, -7.042785624301588, -7.039709867279104, -7.037032565711176, -7.045108922652119, -7.0357582699582135, -7.050000404547161, -7.0394185138961864, -7.052271352194985, -7.045606968052456, -7.0508600642674955, -7.0470800483045855, -7.043863452789584, -7.044813802868496, -7.050687813753245, -7.0407766824904545, -7.040842182847717, -7.052102298481224, -7.046337914315711, -7.04988918779328, -7.042104013380124, -7.0469319722733035, -7.047306057723097, -7.047469147761255, -7.046029336744473, -7.050346654126879, -7.043367589488681, -7.049975440549578, -7.048946922905914, -7.052610165294072, -7.038314824375851, -7.037340964972728, -7.046981363353354, -7.040413471602155, -7.041009311282204, -7.042602559535955, -7.037646386772052, -7.042514567980215, -7.038703779632361, -7.041529832962727, -7.042962754917504, -7.048786291588932, -7.043129547677769, -7.049021041423307, -7.049427252852342, -7.043836616413532, -7.036977436292433, -7.037620010721522, -7.047413988284011, -7.042065307986255, -7.039947338526112, -7.044411758976216, -7.051060299193217, -7.037766948566103, -7.047036104805181, -7.04021122655741, -7.044036139060423, -7.039718949602695, -7.033885499930792, -7.045033617714271, -7.041839583140589, -7.042374984054234, -7.03638371604375, -7.048445891340641, -7.041104828841519, -7.043251642420818, -7.043411931462254, -7.042924916028068, -7.046542176670868, -7.049764702707561, -7.040220654757975, -7.041801890197001, -7.045555266385649, -7.0430106557869046, -7.04329818292906, -7.049868368497418, -7.034838501816597, -7.038414717010243, -7.0480144131089215, -7.041535357301606, -7.043149083278204, -7.050721236368235, -7.04596017384676], 'approximated_eneriges_1': [-7.582453604466945, -7.582164266793541, -7.579073084596599, -7.585141242550659, -7.584589532241155, -7.5804643115002825, -7.5755634547601, -7.575600434478013, -7.582806656947542, -7.576958351501415, -7.574237985466983, -7.580187288314143, -7.574665472867071, -7.474764240900405, -7.4768714938741345, -7.466319706744727, -7.476154028838411, -7.471320885644612, -7.4590599683088294, -7.465030782155778, -7.475164569508971, -7.466084866348124, -7.477792033180828, -7.472963606706828, -7.4729137232137335, -7.466637719941649, -7.566267374472306, -7.557517351122575, -7.578861463899415, -7.566194514775459, -7.572894947849101, -7.558357851874592, -7.558189255072525, -7.562854661029755, -7.565416260195606, -7.56386180495245, -7.570649313607356, -7.559866728288295, -7.5649716056514675, -7.5763901452103095, -7.583014705078407, -7.576325392379665, -7.575686394573026, -7.57676889528636, -7.5855811909597595, -7.587406552562512, -7.576413156367478, -7.581672732639491, -7.582665201268557, -7.574126783110414, -7.5754863158538654, -7.575817174214625, -7.578319929886486, -7.583771883133503, -7.579308644768669, -7.581895500553291, -7.577818977719542, -7.579518614957346, -7.578770110736305, -7.568162483375374, -7.584272685036331, -7.575275136690887, -7.576691203553333, -7.583033572271182, -7.58628746773469, -7.571964290827396, -7.578726896842633, -7.576084156249764, -7.575686515562396, -7.560371684656434, -7.5816041152504186, -7.573564449240417, -7.575200458518374, -7.578389993722628, -7.58161482344728, -7.578346057217506, -7.578660232259293, -7.578358594053784, -7.576069944068362, -7.575499263179799, -7.575665722299441, -7.580105521608364, -7.583841927288854, -7.575701281027156, -7.5841062198935845, -7.5756327381698565, -7.576836709451854, -7.582683580777152, -7.583562878721634, -7.58548958816941, -7.575365428677632, -7.570096722992203, -7.5805140100552375, -7.583156825388065, -7.572553619199591, -7.580242430803599, -7.5690600027963955, -7.577282888503016, -7.584504157301762, -7.579320594284024, -7.574417626780096, -7.577251806051585, -7.581175922601044, -7.590788730721342, -7.58804567920823, -7.586773700746227, -7.574305306136674, -7.577466703824051, -7.59078398239154, -7.582840116308093, -7.5784948990982475, -7.576210269626564, -7.582801355603316, -7.567135133247455, -7.571236423881995, -7.583674639740933, -7.575546935778369, -7.5848395672040745, -7.578637870035943, -7.584649963135558, -7.583232044906465, -7.578037588333182, -7.575037024239425, -7.5756287278912575, -7.580846000257484, -7.575445583814912, -7.587356542975101, -7.585408529325551, -7.582830703653647, -7.579318293636298, -7.5817590405493, -7.569709966305507, -7.577143170455227, -7.58073497274696, -7.578116908199861, -7.58101963106108, -7.57939904963751, -7.580963758105738, -7.580014364562649, -7.576177639110013, -7.574832867592759, -7.57927102112272, -7.57933093475304, -7.586648373131018, -7.579089318160009, -7.5798338080276455, -7.580442009939318, -7.586558474218888, -7.582250053579411, -7.578917126849361, -7.583817756705378, -7.572648552241667, -7.576379678302254, -7.582520896345737, -7.58431330909813, -7.587561934482597, -7.566361872203952, -7.577275373294726, -7.584822521801764, -7.5808706572983615, -7.572063567264936, -7.587688658973814, -7.580834791459686, -7.582333173091506, -7.5823035713246245, -7.567910673030077, -7.570894732661367, -7.578778722501105, -7.579508916605638, -7.593317374148693, -7.585992876872101, -7.582597276594122, -7.576415967860754, -7.581530719038893, -7.585877906701415, -7.576638514263477, -7.583908549161456, -7.576221470782808, -7.57457610264675, -7.5691247473035, -7.567025061528623, -7.5799132440511965, -7.579811645932212, -7.576466217680586, -7.580157052176107, -7.591757723889211, -7.577075416560062, -7.581499536346734, -7.587283564693098, -7.579319569860482, -7.574807109706868, -7.5805662193633285, -7.577700088410532, -7.583070715978398, -7.572674908218506, -7.587958766585343, -7.585377991319518, -7.579335779957175, -7.583690752501266, -7.57262557018669, -7.58173539680413, -7.580513431597053, -7.578908209498602, -7.5795595447589585, -7.589571416086194, -7.57333933173756, -7.579656159422607, -7.576491857325173, -7.591484618841956, -7.5802494050358735, -7.58025279912429, -7.571051647913349, -7.581809926808362, -7.577714960144171, -7.581061186516403, -7.581860626666353, -7.582594915261997, -7.588702606385015, -7.5790945306775095, -7.582523368849969, -7.583575483069086, -7.588331770201276, -7.577268812603097, -7.574196242707301, -7.5824750573924184, -7.571801606472999, -7.573092497452785, -7.5798386558823925, -7.58364241206435, -7.5801244052688626, -7.57982770354082, -7.573945541936829, -7.575634335717406, -7.58218695853067, -7.5759007033048595, -7.577586904429252, -7.575193803613827, -7.584128590647623, -7.579224437618458, -7.573673400413032, -7.572686457314879, -7.5840459383690675, -7.589991900192306, -7.586290509143632, -7.573550999061493, -7.580272770111241, -7.584510686575842, -7.575049963974524, -7.582204805229044, -7.581051244278404, -7.577685458503512, -7.587445625374352, -7.570632450269072, -7.5751700775202595, -7.575880914264588, -7.58347947116411, -7.576308155287932, -7.577575435972919, -7.583437648836092, -7.584723768673469, -7.580372812491347, -7.579552059571315, -7.583758447271931, -7.580809011221502, -7.576743842393656, -7.579327348826819, -7.5831290999780805, -7.580064001665567, -7.576598908787449, -7.577558175438309, -7.570824510269273, -7.57063334016653, -7.585027271313368, -7.580571213051049, -7.582500776518187, -7.581365078016107, -7.581150660839033, -7.58085070568382, -7.586978004024601, -7.574014013013721, -7.57467488043918, -7.582420973797503, -7.580881153163834, -7.584832699162254, -7.5764164566720735, -7.577680274966804, -7.584624036983542, -7.588560624890894, -7.582218309682846, -7.577681480590064, -7.585395996797304, -7.576023030690075, -7.578464152585253, -7.576905118322982, -7.581184117379984, -7.580379077320153, -7.578419406429601, -7.583076596140048, -7.582102550404386, -7.587058322895608, -7.581828240210987, -7.576371745814872, -7.579504525545559, -7.582398541784724, -7.581065563326059, -7.575945081458147, -7.578834983689569, -7.575758190188583, -7.587162611711519, -7.580555918829417, -7.567371653372916], 'approximated_eneriges_2': [-7.578683503208721, -7.5931543389554745, -7.58787591756937, -7.586178677241158, -7.5937487883184485, -7.5812938657422615, -7.583926168551136, -7.595756167275311, -7.5974486898288465, -7.587645740415491, -7.601346607578855, -7.5891448369662315, -7.59006913160856, -7.45977719337515, -7.448862333994072, -7.461556900079808, -7.483217878018406, -7.447797282426053, -7.431932943974496, -7.464254381567711, -7.463471352482962, -7.462935813299841, -7.465931905634223, -7.448255452116852, -7.4747508958780005, -7.455763001010045, -7.530266269060302, -7.528081524502602, -7.5321690336747364, -7.530959017472535, -7.51697698886829, -7.531451174945902, -7.529980896053684, -7.524371709817597, -7.5239352110700235, -7.5212444905594245, -7.524311793017027, -7.541843004880607, -7.533990152827953, -7.553149049869688, -7.562279416050736, -7.5640291567026505, -7.568078403075637, -7.571108123884351, -7.564984270022434, -7.552673669647716, -7.552740280926134, -7.555693792106207, -7.56222478138485, -7.5632920781714, -7.561590573982431, -7.55926711734161, -7.588796822338731, -7.5636836007576775, -7.586232510201079, -7.592244313257442, -7.5759085914679405, -7.571123828980992, -7.580154201386861, -7.588135289239839, -7.582040543935425, -7.585254501805902, -7.576314599232319, -7.5842473182157, -7.595091525275136, -7.59866525513457, -7.591126887054619, -7.581667253914693, -7.587038521475237, -7.593265428179274, -7.587643994555676, -7.585605237479551, -7.5956134784723, -7.572780850163217, -7.596329586806689, -7.59031257249014, -7.587392576416836, -7.5947952581852025, -7.5898692552230065, -7.596194717517874, -7.59375647307333, -7.587755371898693, -7.587864540134338, -7.589406734705377, -7.5914119949821774, -7.581735489921218, -7.588877353827273, -7.587667133064402, -7.58608180760796, -7.5867041149041645, -7.594172569272973, -7.585666463638263, -7.5789639091580785, -7.592464114072826, -7.578293938676728, -7.592789806845936, -7.586469053338829, -7.579933734110607, -7.590437661459481, -7.576388785524825, -7.588923883612902, -7.59543439530978, -7.607208292759077, -7.596212683567193, -7.589175698091523, -7.587561697745929, -7.587917871413771, -7.590133249735344, -7.603500662010661, -7.597112041411421, -7.579564226040477, -7.587718617601744, -7.589768363462059, -7.59406574087067, -7.581628846576109, -7.579358057258006, -7.593281502502604, -7.5840229914972275, -7.597497416617267, -7.5891565613493075, -7.592391949007383, -7.586960987160365, -7.582701268727566, -7.591109524330426, -7.593871106184804, -7.58670081422275, -7.597273127181576, -7.590058394940967, -7.576949413568696, -7.588214086189539, -7.577575185627234, -7.599232900348659, -7.600687504491986, -7.603895690503902, -7.58082328397254, -7.5895617397182935, -7.592016390665446, -7.581246311448488, -7.601838570150319, -7.581161622114567, -7.581216963318931, -7.586389920002494, -7.589871001285056, -7.594352768386359, -7.585220361796463, -7.588173904448901, -7.588995293596656, -7.588775317687818, -7.593709008648448, -7.602806698640034, -7.583409983732506, -7.579684843283839, -7.591426815086892, -7.600291745124925, -7.603666030955258, -7.604348279535796, -7.5812941265869735, -7.589765095275158, -7.588901241629834, -7.5989647657620845, -7.589371082992922, -7.59817174245686, -7.594760943638512, -7.584335109560736, -7.595070496757898, -7.59255621022146, -7.586281303559234, -7.595198897831456, -7.604462273913371, -7.589747204514441, -7.599720754480531, -7.589208118030887, -7.597911856281437, -7.594335070639344, -7.585435798304614, -7.600101519266743, -7.593384079838442, -7.593542894893967, -7.5992396439312415, -7.580588914380738, -7.586902020337007, -7.589325398780175, -7.59817344395894, -7.588206524610579, -7.594955810207244, -7.585952655212365, -7.583922200309872, -7.585728743882994, -7.593416363241724, -7.5850186472792736, -7.591804838309055, -7.58679639181036, -7.594228564752007, -7.595780370208559, -7.574258156035539, -7.585311376675376, -7.589748275239228, -7.594772901771665, -7.593677884534406, -7.596885307264681, -7.596568390300541, -7.594878075782579, -7.590147057631574, -7.58815739361096, -7.602797301148743, -7.588978577195758, -7.592787955406494, -7.5852562284253375, -7.587439961046042, -7.585416220467494, -7.585276739270876, -7.5890684316371475, -7.596364168995866, -7.590150493524426, -7.592868916289156, -7.588865340238179, -7.5836404907562835, -7.581043414399546, -7.590079464120367, -7.609110826697228, -7.587982827673501, -7.592423607735933, -7.581291469574334, -7.584026486758773, -7.57728545151018, -7.583021098502603, -7.589345517380353, -7.590439157933853, -7.591102451174115, -7.591402339383597, -7.587035173432067, -7.611572478963275, -7.57941623869135, -7.59118431736744, -7.589927809405088, -7.58269713196266, -7.586870789539297, -7.588005384366656, -7.597552391881702, -7.587476992006394, -7.581438443852114, -7.589947609088305, -7.57161194005379, -7.6059050150464875, -7.5990277888459, -7.583939364459699, -7.593905802421668, -7.597398550635914, -7.589290039229096, -7.59069682900358, -7.5778804541942355, -7.599690770850041, -7.5925633837158895, -7.599086271877718, -7.592539981305608, -7.5848781566749075, -7.594628009166403, -7.587636908765328, -7.5895930673544845, -7.595182463143173, -7.592240683400318, -7.592459548310302, -7.5841028945577404, -7.604178358110788, -7.577115035409604, -7.5973285307493015, -7.593461167494049, -7.593093214833803, -7.583675165930156, -7.586809917779882, -7.5793886767747995, -7.594548129042497, -7.601607222365409, -7.589341216045241, -7.580152998244252, -7.6003639206009, -7.594343229812256, -7.600510000814319, -7.581945238754744, -7.599273560053577, -7.594283692343495, -7.597170155945373, -7.583584557739755, -7.584687065933869, -7.5936734801703745, -7.5908102511187145, -7.588671872447289, -7.5967225452812945, -7.595416109819035, -7.593707789947535, -7.591066175225888, -7.595479219847797, -7.5902173059568385, -7.5947883736292745, -7.590161788335861, -7.589153336047727, -7.594678068484873, -7.583352023206614, -7.592953578600243, -7.5982744954129915, -7.567993416796616, -7.5908272761439, -7.579081380529146, -7.589306556114438, -7.5789782758982, -7.596003051063719, -7.598161307392864, -7.584442740598526, -7.595376043673961, -7.582912994652124, -7.589969762679878], 'approximated_eneriges_3': [-7.751544766698706, -7.755382759898444, -7.7588573448875655, -7.750333908006543, -7.753121069313703, -7.745037975197169, -7.750176949528647, -7.755466555172707, -7.752643946802974, -7.749987250159876, -7.759991333025901, -7.759786517853326, -7.760442160539629, -7.49917168845674, -7.51460922469903, -7.5270629338962936, -7.513706349687308, -7.5250930626997645, -7.524332497938209, -7.534953033601943, -7.51170753447545, -7.525800797473628, -7.517337960712074, -7.510326877087334, -7.522635081351605, -7.517801924800858, -7.70927400304189, -7.713844043854497, -7.710928544333142, -7.717567954486238, -7.713134977641934, -7.714384431037695, -7.7204661880501275, -7.715471831346418, -7.719100079296667, -7.711764100315897, -7.715199721442915, -7.71042016364878, -7.7176306320087225, -7.7389091668549534, -7.749636419893328, -7.731983989302067, -7.739024891794881, -7.757064530690422, -7.746985739646444, -7.742441024609884, -7.740421591108306, -7.747960868678248, -7.744418583966718, -7.739187127889024, -7.744368994113976, -7.7555923855344195, -7.7520556582607165, -7.747695042019798, -7.746814141605138, -7.756591127615103, -7.756147240786697, -7.744265594630968, -7.7417374237762955, -7.74791986433853, -7.752843121990141, -7.763714012083222, -7.747956708887576, -7.756957077924681, -7.760430788177853, -7.747765866081701, -7.7457168829447705, -7.747901586545985, -7.753169826017695, -7.748831187685429, -7.753327633570565, -7.764772380347329, -7.756011705747082, -7.756288045410007, -7.765362534384527, -7.758175657817048, -7.7635629366169265, -7.749093032339201, -7.754377963311347, -7.751601196193235, -7.753033596042808, -7.754710234040921, -7.761871549000384, -7.758893311248456, -7.74914145849716, -7.753616758210788, -7.7496211916625795, -7.757549749652293, -7.743392334924374, -7.748935920008092, -7.747325754823692, -7.755444791584788, -7.75774245565876, -7.764217291584462, -7.746653194506497, -7.7526135879025935, -7.745004100387452, -7.754499107366891, -7.748881888378319, -7.7579724190158, -7.761344325183707, -7.752397411153568, -7.753203441245434, -7.751909085006676, -7.759162741062279, -7.752814014698454, -7.740462403281628, -7.743897452754459, -7.739636099047059, -7.762329416398708, -7.745074835586486, -7.754332579686614, -7.7600549377934165, -7.756234011997059, -7.747102805651635, -7.75106072860936, -7.755383699511321, -7.754220464582435, -7.747840629573525, -7.754768087642843, -7.746377899270535, -7.754572002739135, -7.741058540006747, -7.748729379962399, -7.741510109250558, -7.756909628533724, -7.7492764720880905, -7.756346424823958, -7.7601868286729445, -7.752304753870076, -7.7427309370649695, -7.742354828828864, -7.749159233434565, -7.753228158261914, -7.751241442177317, -7.752539413248214, -7.750372183896247, -7.741269790260364, -7.759455444029633, -7.750304915541718, -7.749108739830789, -7.760562480335842, -7.754459334360625, -7.755068815153284, -7.756727705656175, -7.732813342021415, -7.748564948269735, -7.74724238911974, -7.752181364316024, -7.7516508099875505, -7.747543675647448, -7.750707935823149, -7.7498325750013874, -7.755081079704518, -7.738907854230404, -7.758268291808157, -7.756613305849402, -7.7568890212229515, -7.764388841197386, -7.74525131541767, -7.745027950053753, -7.753513540377524, -7.757401531905581, -7.764042754455379, -7.756258663882559, -7.7602043361813005, -7.753631324493896, -7.7585219414541955, -7.751573689001982, -7.750242646751869, -7.74741078293913, -7.751597292941286, -7.747948266576574, -7.748005354695472, -7.754039515280349, -7.753227501341376, -7.7462033139824475, -7.752543874354947, -7.7500473238412395, -7.756912944723444, -7.751877842165016, -7.7550847184624025, -7.754764551897824, -7.7520208398071695, -7.7543749362775305, -7.755505430317207, -7.752310940237558, -7.76451842089832, -7.75862626465743, -7.76076798371711, -7.743357828286941, -7.7501897689298485, -7.753578341637515, -7.754677607223959, -7.755404625698354, -7.748690230742172, -7.7499106220184, -7.755472871803704, -7.756300948626108, -7.749333754505335, -7.7525381679054775, -7.7611435512498606, -7.755662749095439, -7.7548763759280614, -7.7471568175459335, -7.745585122667019, -7.750749461294535, -7.750242705368079, -7.760095966583469, -7.749853320777981, -7.748009302505093, -7.749961013747658, -7.757761654393711, -7.754986361398084, -7.755269561833093, -7.758009260023531, -7.751241906107987, -7.750981388751178, -7.7408813902344535, -7.764429830860316, -7.755096133188848, -7.752531558100684, -7.749141306010813, -7.752133983829143, -7.7487289579175584, -7.762405705225251, -7.754401557563736, -7.760284061940854, -7.756247080873755, -7.75245715987267, -7.761309652107444, -7.753339838029139, -7.745391634289997, -7.754594222253378, -7.748053189758376, -7.753557061623229, -7.750627092187286, -7.748122649964763, -7.762423575668679, -7.755679242461799, -7.7574460297856564, -7.747737220507729, -7.754730340807679, -7.752579196085017, -7.734891439904187, -7.75624097434428, -7.7621720359134345, -7.749293295970083, -7.744996151805008, -7.7571943399388985, -7.735088209550487, -7.744906121710207, -7.758347305074398, -7.746903433419974, -7.756164929621239, -7.756442032015691, -7.759331329514457, -7.755619997409755, -7.751213114134945, -7.7516168512232495, -7.755702331223667, -7.759133109597966, -7.751254906461934, -7.752815491153393, -7.761482448451672, -7.753233253022574, -7.75186228857032, -7.734068368624578, -7.759382558801796, -7.754597978505958, -7.746756505521222, -7.758638484432694, -7.756973637727583, -7.750423812727322, -7.754517387774341, -7.75989701896671, -7.766149017810932, -7.761312478121986, -7.75870589097194, -7.753175555115126, -7.750617134639217, -7.761143213227473, -7.754185958220965, -7.756809261611686, -7.750129819201203, -7.7465330904915275, -7.749467251878749, -7.745649796723613, -7.749341461425736, -7.743390135233459, -7.758878184914268, -7.757025641488555, -7.757425617534648, -7.747533690006613, -7.758228094783648, -7.7657387708064025, -7.75215188674995, -7.761769851335688, -7.741851715020775, -7.748987309803324, -7.7501568220416495, -7.74282055571017, -7.754881861741329, -7.749473645298008, -7.749204889272958, -7.752169577108456, -7.750895554677058, -7.7515134889857515, -7.746818115727269, -7.754709194507684, -7.751285718255909]} plot_convergence_of_optimization_process(H2_approximated_energies, H2_molecule_Hamiltonian_4_qubits, margin=0.01) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvectors(transverse_ising_4_qubits, TI_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() TI_approximated_energies = {'approximated_eneriges_0': [-7.230655824291587, -7.232156231813603, -7.2269118466834925, -7.224435292342758, -7.223090510850815, -7.232883464451508, -7.228534606397912, -7.219354944244936, -7.231064944404686, -7.228080867101087, -7.248782779735623, -7.245837078380108, -7.23217415595806, -7.406936545157612, -7.411831457927899, -7.430134402689202, -7.414265944626451, -7.416851880814031, -7.400408350428862, -7.427462455825711, -7.417112403651977, -7.434810143153512, -7.409863282248075, -7.427346672862717, -7.422754759252152, -7.404965523288016, -7.226943186680726, -7.230561909262265, -7.253943248477311, -7.246903128054697, -7.2376364884345, -7.230628484393112, -7.238475770984712, -7.243651868078656, -7.23567385988149, -7.240189611494555, -7.255884627062503, -7.231752576052941, -7.234520596353585, -7.239603528384539, -7.233885207667162, -7.232288789343925, -7.213622523440033, -7.225235252808737, -7.229912235896686, -7.218807050909878, -7.239032049689976, -7.220160787907363, -7.2163153136978035, -7.215508607064924, -7.217514511498871, -7.231954896099307, -7.2296714741882955, -7.232897976235796, -7.23671915877639, -7.210412586036357, -7.226610519232944, -7.217954881254602, -7.232063174593739, -7.227477410081558, -7.22418940679807, -7.227675986569633, -7.235965396635691, -7.24233631269727, -7.23379699546329, -7.234703612403967, -7.23508087823179, -7.2381244229018105, -7.242522157722863, -7.22545011836812, -7.234326155618267, -7.227091606180274, -7.236373035300872, -7.242479366897426, -7.235726190682856, -7.222299831383137, -7.23929324846661, -7.223227029274241, -7.256682736337177, -7.22755431910217, -7.234020343057368, -7.24547439399411, -7.245936366171937, -7.2448722042482165, -7.233421544314716, -7.226760703531076, -7.231403041353445, -7.223348320008962, -7.236209436597549, -7.237284228214967, -7.237086351618896, -7.2227428922274335, -7.236597662223316, -7.215213272528259, -7.2366175601210445, -7.236372515337477, -7.23378139932939, -7.239678024251709, -7.209977018523269, -7.228036674186689, -7.24120445822543, -7.227977743073735, -7.235555247511488, -7.241612289108028, -7.234355382241897, -7.237239537122246, -7.226822847088125, -7.238582037056109, -7.229715528846131, -7.229020963804856, -7.233930437028157, -7.238369981746838, -7.219061553625704, -7.248432422394126, -7.226410064889077, -7.251238789575872, -7.233621702768771, -7.230560965468209, -7.233126665159292, -7.236456409597164, -7.236985807434631, -7.209080550992588, -7.229348064880344, -7.253207894067526, -7.244851744551426, -7.222339372553338, -7.238784850816927, -7.22166865332316, -7.242762115068465, -7.222032233594889, -7.248488642944156, -7.238976567295522, -7.219009556806371, -7.238492619645845, -7.240190035190226, -7.241591759090362, -7.246143126531719, -7.223170840344449, -7.239156672984446, -7.230406176249597, -7.239779728598253, -7.236635133369277, -7.230763306589369, -7.229588430994365, -7.241729445862522, -7.217276949479711, -7.239918126486504, -7.226670667938001, -7.236228224012701, -7.226557442277676, -7.220181775697007, -7.234696495113567, -7.21866442584163, -7.221932457968856, -7.23350712090544, -7.2345189692494865, -7.217603129562463, -7.24551136255455, -7.2338363317123475, -7.229478026940409, -7.227224670906925, -7.238386476576431, -7.235947622214544, -7.2533286051484085, -7.239281164820781, -7.242676244778507, -7.2404320534315705, -7.237961914418423, -7.227765426077761, -7.238172338957211, -7.240418795584355, -7.23534521870218, -7.237472208938969, -7.23896936052762, -7.239446562558402, -7.224505532639014, -7.255045378639138, -7.2395972203564085, -7.231518858243917, -7.227586254785921, -7.243820387408635, -7.236821110961883, -7.229397814311788, -7.230458241979415, -7.2220092561007325, -7.227633519763264, -7.237948911093603, -7.223815065540219, -7.236247371937157, -7.233522867763223, -7.244506933607312, -7.228829589518504, -7.229575419310993, -7.229756751164102, -7.233194516496404, -7.240512133393528, -7.238160632291315, -7.23426508781678, -7.232962049991081, -7.2219132008464655, -7.248220236727849, -7.241637994352253, -7.2410873969477425, -7.223093799090048, -7.241487262172387, -7.227100985802835, -7.244157337271549, -7.228130258297405, -7.225592694637175, -7.230619033295259, -7.216665424362412, -7.243661109428171, -7.22352986332442, -7.236800906108402, -7.24431578174889, -7.2419659441983795, -7.249180739759378, -7.237421321661119, -7.224910782354195, -7.231841983484647, -7.241322974711623, -7.234127009283536, -7.2299625097876135, -7.230684222555189, -7.23700428772785, -7.229283613346334, -7.237321764578183, -7.230227672250537, -7.2335933695548205, -7.2365050778118984, -7.241236452552253, -7.243775317670092, -7.22639408357877, -7.23949849820077, -7.238180452840295, -7.24638119109773, -7.236256581617576, -7.212054729551554, -7.235289176899662, -7.226127665100424, -7.231602689899314, -7.23696558664305, -7.227442127044163, -7.240862399910503, -7.243898775733997, -7.227932376279429, -7.2368032897600285, -7.23054815019836, -7.220328072685952, -7.2340976972188615, -7.232601303264701, -7.2322988344501855, -7.219455639532654, -7.237211018125533, -7.224532746187833, -7.244491188531013, -7.226687934260373, -7.239541976434994, -7.233330306854079, -7.229050242331241, -7.237661542125556, -7.241127127604099, -7.237907000100805, -7.22187777336326, -7.244377641270739, -7.236358025550393, -7.233492165117918, -7.230423968851607, -7.214266446571548, -7.242337343771986, -7.237681710609208, -7.238001605199166, -7.235376459262585, -7.239170154605418, -7.2457223471380665, -7.241575636641166, -7.231149441259758, -7.23162829915286, -7.226566400063272, -7.2376870522820855, -7.23075129412491, -7.2372692965658745, -7.242438581084864, -7.229631853925922, -7.235736760163012, -7.238012607777581, -7.2207996997538615, -7.240512113021775, -7.231422839935761, -7.229856189296272, -7.2534681943734665, -7.238672033013341, -7.229692925943167, -7.240845083741161, -7.22922774464201, -7.229695535766312, -7.226610598619716, -7.235369410121787], 'approximated_eneriges_1': [-7.550683242962277, -7.538822863135065, -7.55008411662876, -7.55897796865705, -7.5632027489170826, -7.571948592178383, -7.560385446643115, -7.548556313213329, -7.557350382776294, -7.539623454091931, -7.554608404243045, -7.543805800289237, -7.552635230989461, -7.41748866035232, -7.4131605710874435, -7.414964422054285, -7.40205786354657, -7.408940043385269, -7.4192390558757255, -7.401615295588742, -7.411025352351437, -7.421010290318388, -7.401690746795952, -7.40417517482812, -7.4162558000248175, -7.397908971882198, -7.548923057644963, -7.546904128323561, -7.537370942920183, -7.560631342158139, -7.556976340568663, -7.560273628380784, -7.54430452309549, -7.543731717970082, -7.54818633166277, -7.543523800200846, -7.551414499272261, -7.5466198041360935, -7.539667932956796, -7.551645714623743, -7.538862222112098, -7.562295138781764, -7.55332466813669, -7.55641294673202, -7.556218619483761, -7.540866660026964, -7.545212656115853, -7.534946874032398, -7.542570699710828, -7.547096868400404, -7.553807940207289, -7.560199189958208, -7.561890029252995, -7.557121854128307, -7.554832078194802, -7.553704629848302, -7.555349916988187, -7.562804951811505, -7.544707827159325, -7.560204353132805, -7.55358193608607, -7.571005519951473, -7.557439496553331, -7.566095786379841, -7.55353072817666, -7.557675101533266, -7.5588578425861375, -7.546817344268718, -7.554652882560319, -7.542858506371966, -7.559609433119449, -7.5633202206735675, -7.551993438874603, -7.556593066198202, -7.556522200061691, -7.576482169720943, -7.558982153569666, -7.552108994671986, -7.544092461680996, -7.549386959976692, -7.55604436736714, -7.56663002661859, -7.557603825019027, -7.57597219383917, -7.549096241220243, -7.558338291953084, -7.569480878373801, -7.554975054877208, -7.56272165820795, -7.5538560975129, -7.556921992871783, -7.554024518465438, -7.557232533630467, -7.550615654836533, -7.564592721877621, -7.555498129722722, -7.569754026463483, -7.556325776674718, -7.561082045791271, -7.555653204839074, -7.553421577345177, -7.5638108159274156, -7.555597712756221, -7.549532088549326, -7.545794391815538, -7.54933930347947, -7.550947131685214, -7.557864130988, -7.559528132170389, -7.556113894153712, -7.54713899610519, -7.552075673500586, -7.5548836593173325, -7.562954938356408, -7.568867207428206, -7.554963719680873, -7.548680943666945, -7.552222876645382, -7.551841268146282, -7.556709155786664, -7.566096760519089, -7.569017170131674, -7.541787800400642, -7.556953061587577, -7.568509133649472, -7.56095440417102, -7.563144288945327, -7.549792402098119, -7.559501275831297, -7.5549071287459535, -7.5642991678225675, -7.551434529493169, -7.568404711014954, -7.573174050281887, -7.561251223246477, -7.555577276726262, -7.5639830990618515, -7.553438975257628, -7.553223301196071, -7.559058502220418, -7.546610118938945, -7.554150547318012, -7.5547881052282335, -7.57394668447194, -7.55581333138479, -7.544552569726852, -7.559495717543246, -7.5512159438824344, -7.556732611377398, -7.561626393637131, -7.566125278460293, -7.550860731860758, -7.547120653510534, -7.567891500009217, -7.559897056877579, -7.547229439818355, -7.554616445258716, -7.549905267646238, -7.562823620108678, -7.551832377008666, -7.556215151401625, -7.541832704185849, -7.549834009326433, -7.543759004986976, -7.556177775140475, -7.553130123896612, -7.558764599205452, -7.568678416059024, -7.536316271504655, -7.539566808598727, -7.569794118614989, -7.54826552268222, -7.563213559398289, -7.563586590532436, -7.563357946972766, -7.56449243196982, -7.551549493511942, -7.556788457208167, -7.554605845898709, -7.549301604957866, -7.549256299203932, -7.563124916479237, -7.537711191305687, -7.56084446024711, -7.559250234185563, -7.566763171451585, -7.556389915734708, -7.556562449101039, -7.5674707805078, -7.541754662855211, -7.559762193303108, -7.548460464886603, -7.554569664380687, -7.56085713240549, -7.561329665646655, -7.565231063614005, -7.552214902866351, -7.55021715047876, -7.57456741735939, -7.564551633420716, -7.543170762950222, -7.562290966614618, -7.540049075028705, -7.553530119011748, -7.544002501820431, -7.5672867103945345, -7.548030815033093, -7.548045691457346, -7.552495419599777, -7.555201363568631, -7.569751786599874, -7.548389452280374, -7.569318545520066, -7.5583551029780836, -7.564391720035807, -7.553567267215852, -7.560895124738541, -7.557424696478318, -7.567694847030491, -7.5565367220982385, -7.574118234369145, -7.561551078356445, -7.55449413546597, -7.569749979638946, -7.5489113666304, -7.556567860078667, -7.553595588280471, -7.55526180797587, -7.560393154569164, -7.5593118613025565, -7.55036790399995, -7.557962327701532, -7.562275794925345, -7.562525712648386, -7.564246148807295, -7.5551786896418625, -7.5571712986381865, -7.55258224270072, -7.553230158291084, -7.565559563874206, -7.550426796905481, -7.562155126547323, -7.537269898300711, -7.561162641385397, -7.5483183741395035, -7.5631623346616275, -7.556378903045296, -7.556801181997425, -7.550058619891834, -7.5640480149969, -7.558658917279983, -7.543861551851747, -7.547173974115072, -7.550577681045478, -7.561716440678923, -7.558409814338887, -7.552705674552182, -7.550037948010117, -7.549165761317303, -7.571757583835817, -7.564694526104574, -7.555666889939895, -7.562154738573207, -7.563277126344072, -7.56526660154923, -7.5625647680912715, -7.542881660555917, -7.554257598760987, -7.561379045441735, -7.556062561109061, -7.550863430729272, -7.550834104439993, -7.564164431198491, -7.557775005234187, -7.546211102075424, -7.554257203233912, -7.556254880533049, -7.559289364937038, -7.570457983152539, -7.5580062705260564, -7.54863397125863, -7.570783936678156, -7.56409808967914, -7.548862960439668, -7.561953452200041, -7.546232642716481, -7.551103331043392, -7.550179395728152, -7.547915363708788, -7.559735929973729, -7.548090965991739, -7.5557390949559196, -7.584170566175145, -7.557306216303866, -7.571676501223552, -7.54772621208632, -7.551036900911758, -7.552493737346103], 'approximated_eneriges_2': [-7.410444364672608, -7.415714453423059, -7.415938097126615, -7.408017966663016, -7.411926696725731, -7.410701573897746, -7.419352878341387, -7.419158949271299, -7.420415015254557, -7.424619761587982, -7.4268511180459065, -7.418024427836759, -7.404609945520007, -7.589386998779999, -7.600319421387095, -7.607455138580125, -7.599492255637303, -7.6015256592593765, -7.595930672716543, -7.58717224388028, -7.60987806854404, -7.582168037686289, -7.612525084715747, -7.611666484836461, -7.60652734066912, -7.587143701774609, -7.4837958290812105, -7.479734294459937, -7.491546169546624, -7.5111811400213115, -7.486656111152134, -7.482032814626383, -7.494604961911633, -7.494052164683773, -7.478067560055237, -7.486570495236522, -7.479730591071314, -7.4797851754636735, -7.486953928064199, -7.433142530036842, -7.4229755855042985, -7.432500450937396, -7.43294364150897, -7.414775693820271, -7.422289122079512, -7.439332189153368, -7.438893758915969, -7.413233120318137, -7.456667893399677, -7.441987027768607, -7.425008769691984, -7.454469381106106, -7.421554336127311, -7.413712774429379, -7.425844973393581, -7.402824712762297, -7.428095926295256, -7.416441753264347, -7.420259300551505, -7.399259445603592, -7.403695766936157, -7.416449591510461, -7.435755442790675, -7.414893307446768, -7.427560288995593, -7.412783417340669, -7.420330177171769, -7.427486797178415, -7.423377363706668, -7.416514061956097, -7.409451610631072, -7.438749449046901, -7.408960013709229, -7.421516106416111, -7.420611253255005, -7.413942378961346, -7.413595982264582, -7.390780588843896, -7.4084622853888735, -7.42124209464471, -7.412880469775962, -7.420777016827756, -7.427536960587946, -7.425587323265961, -7.418111470884228, -7.4143275263345165, -7.410316651774604, -7.401856447363387, -7.411822767959461, -7.431389462225188, -7.403089235376795, -7.401598556814728, -7.411348628632633, -7.414386324492143, -7.402957302521619, -7.432926701674536, -7.396649841473121, -7.415251855041303, -7.411428762397702, -7.406042320381719, -7.4145398335250325, -7.4152709291939685, -7.40658424014324, -7.405066053058349, -7.411548528475879, -7.414008371571924, -7.4123205752620835, -7.406722186984054, -7.417842283938753, -7.419830930402007, -7.400463799038998, -7.412282021683004, -7.40771656019699, -7.4192285057796425, -7.420192856399023, -7.428356692686373, -7.4114023837419865, -7.406367352937335, -7.40361213017597, -7.399731151408673, -7.403760125167092, -7.39514265976909, -7.4066343168997175, -7.416274937994275, -7.410738319182156, -7.402652742009214, -7.412648898988432, -7.411130390161757, -7.393913775543006, -7.401729989208781, -7.408164367202596, -7.410458637641345, -7.420930170929184, -7.420162114969175, -7.4193824884112995, -7.41955380606936, -7.41431645729939, -7.414111034016485, -7.427604797401894, -7.4100578315655685, -7.401925274129811, -7.408904048852081, -7.40917138906226, -7.414023819414739, -7.427551921566607, -7.428652238971265, -7.421105014760246, -7.426059034712438, -7.421227742998169, -7.384943157249668, -7.409354186033169, -7.41566556688613, -7.4214593382824505, -7.415144527375948, -7.408267821484224, -7.406554894795174, -7.402385639726274, -7.419116895868815, -7.409447232301686, -7.410747900640483, -7.403283885417719, -7.414859601277965, -7.3958330821863445, -7.4102185671681875, -7.409901753007446, -7.4349614409928675, -7.3914259123102255, -7.416534441131431, -7.408995196211471, -7.410313765251155, -7.415287726486965, -7.39998041723367, -7.4202562928892455, -7.413155506758194, -7.392766031853719, -7.410718186662607, -7.3941527335440105, -7.4140329976786, -7.410883145425181, -7.411236343181268, -7.433653854220001, -7.4124161445611065, -7.410523350736927, -7.423066054748081, -7.417395045470075, -7.405232589932642, -7.411695349205476, -7.393438544782937, -7.413070092312006, -7.411845736178486, -7.405986199902686, -7.412877320568309, -7.423637869512572, -7.417485122778937, -7.420346375249428, -7.421874620879591, -7.412471538840202, -7.408661648174666, -7.398806523365515, -7.409703274160633, -7.401502370816964, -7.415019489819521, -7.397996366552989, -7.416879606328125, -7.409568524824878, -7.412450181316362, -7.4043174398596, -7.390707254328941, -7.4144954187659415, -7.4008468406208126, -7.432212658353873, -7.417689790331265, -7.416297950401478, -7.420371265411078, -7.399711767696046, -7.418632969604109, -7.411531656365526, -7.41259101043679, -7.400612471388634, -7.4129388286238695, -7.397720546438961, -7.429951027389409, -7.428525938671341, -7.408518580725819, -7.407733315774913, -7.403006436670952, -7.403562707208992, -7.4180326153299525, -7.424593788196596, -7.42401998096983, -7.421705156615664, -7.404396708972521, -7.415199440338291, -7.411222660695321, -7.429646219900774, -7.418526018129546, -7.415979223492038, -7.3950969048259605, -7.400558588908429, -7.405183376463522, -7.404814221232868, -7.4108782549620065, -7.404578883465207, -7.397070653288616, -7.419287643385738, -7.415031097689276, -7.415169554445011, -7.420820684775902, -7.4149458976195355, -7.398974222998238, -7.4018094514863755, -7.4190927912145845, -7.40660299251048, -7.410718862777842, -7.408100477638087, -7.4251843746433055, -7.414906996945376, -7.431118038850682, -7.400281442721625, -7.4126205211633005, -7.40787768217344, -7.403092498243889, -7.409253836038857, -7.417143768118361, -7.4061200321664975, -7.400927261585105, -7.412065658573083, -7.410234665650475, -7.408906590251693, -7.426580069577404, -7.431152043071313, -7.409979137262973, -7.405085762880571, -7.405375805653347, -7.415085497284975, -7.428865699646528, -7.401761293027105, -7.412241800401161, -7.414960843288435, -7.421647163637885, -7.4154040320456165, -7.391043169754898, -7.405554611504087, -7.398829731574355, -7.408414720800373, -7.406586104670398, -7.404128438382962, -7.406072069560908, -7.40628852023641, -7.407877820661062, -7.402004918163509, -7.416688848785448, -7.402282440897539, -7.421522438989727, -7.41322314959422, -7.3976270021053905, -7.393738169656054, -7.401149522147831], 'approximated_eneriges_3': [-7.565665224802693, -7.571558557541593, -7.563488411786494, -7.5535972819342545, -7.568265658658191, -7.55764361817917, -7.549862490270664, -7.552378085418476, -7.561530453734309, -7.557885510897533, -7.550194896715531, -7.561191639341913, -7.547381220635373, -7.478847184356431, -7.493074318994978, -7.4936530929344505, -7.484656587329637, -7.4850404374973944, -7.48397222059697, -7.502882932513469, -7.497784126206931, -7.48061204741115, -7.488002033465607, -7.485254643745074, -7.482741338968084, -7.476596274780958, -7.58745351778472, -7.589352564985627, -7.604498448591276, -7.603986963079971, -7.60551920715375, -7.579345775953151, -7.594499215719384, -7.577776377931761, -7.594834362967512, -7.598861258957919, -7.614058213583621, -7.599076254034332, -7.610889082645888, -7.570468971532068, -7.565978169378039, -7.5689900582031, -7.56371558736955, -7.581395302038702, -7.569812845506195, -7.558061138578111, -7.57025094955635, -7.561662791049137, -7.559440699252352, -7.5591156104895205, -7.584113721903352, -7.569875517183606, -7.558351982919966, -7.561801548837393, -7.574467881363289, -7.549593226392686, -7.552273850283872, -7.569034967857946, -7.578802333381693, -7.566025496212142, -7.5587455859661565, -7.576459631268144, -7.561951100321032, -7.547104104469302, -7.564615613182923, -7.549965663541954, -7.5645195346878, -7.558149543969611, -7.554149140026431, -7.54245441822292, -7.5663544547300665, -7.555466278495125, -7.542851281074657, -7.552867299265858, -7.557246120884814, -7.562512200772655, -7.557729570157427, -7.548701524163326, -7.556629212603531, -7.562703070038278, -7.550158579897595, -7.557899460876809, -7.572583496985447, -7.556899857227568, -7.558109722433135, -7.543851154833375, -7.5510141824102615, -7.5736155602900626, -7.563360428348574, -7.547099219791205, -7.562822948215396, -7.566482515865028, -7.558787451469362, -7.556713812874585, -7.548583757587774, -7.562869475049058, -7.57078625456337, -7.566871254827781, -7.545176860647729, -7.571038541090749, -7.558378445475016, -7.558554328273203, -7.5640839014068035, -7.553778686511179, -7.558744848456306, -7.556879426146582, -7.539270801287508, -7.559349035216264, -7.556619401877544, -7.55933301867962, -7.558763567968391, -7.560433931647151, -7.563306035220907, -7.555059625283163, -7.556514978356334, -7.5671196377135885, -7.548457871207328, -7.574302889855866, -7.548241349502122, -7.556506780978408, -7.562947648240894, -7.557627833978751, -7.558031548956967, -7.553053133979084, -7.551161697722563, -7.557668696358851, -7.553807041628483, -7.557504336344521, -7.563768060767367, -7.559352004099949, -7.556503680915647, -7.54624800608743, -7.5678519641943085, -7.5426564498654525, -7.552297667857417, -7.559257779584226, -7.542668377833022, -7.557672004746245, -7.563448690659477, -7.559049301944132, -7.569165597455367, -7.544354950612827, -7.5499565930042705, -7.569860040564563, -7.5641490323006195, -7.550623222632321, -7.550514992597756, -7.558251804357427, -7.539828941350091, -7.55566232225068, -7.559678722135635, -7.560015820058426, -7.556801562259494, -7.566537275261356, -7.553064531028829, -7.548098479251611, -7.559985898201188, -7.565321530733754, -7.570869680141159, -7.554814630220452, -7.560505089273475, -7.565614656322719, -7.569028398909243, -7.547996809309446, -7.5664089455734, -7.550368842223157, -7.559795486797088, -7.541665676127119, -7.550089253965164, -7.5458670317836045, -7.553665967844049, -7.563936972176008, -7.560662269817603, -7.568667883986726, -7.5593734629693445, -7.5470354738758765, -7.561173656994816, -7.5424587924253155, -7.566303314591444, -7.562030367717736, -7.5560945532955275, -7.5766387156603585, -7.55790879145774, -7.558002418794064, -7.561704822479739, -7.5572186777597326, -7.565383783550966, -7.564248092630112, -7.542284617055556, -7.562128937563885, -7.547824673351669, -7.561777556251198, -7.5610090539379655, -7.552147351853727, -7.560794348824769, -7.563898039889992, -7.557013161047448, -7.573540345041206, -7.566905869413926, -7.57600834063447, -7.552371347093251, -7.555707984710987, -7.5644290606653115, -7.561914204862563, -7.559597381947844, -7.566880361745033, -7.57536927030609, -7.57056387243906, -7.565040990817158, -7.544954460939858, -7.5551845038135195, -7.56399852895941, -7.577609511622952, -7.559229812886538, -7.545124565157558, -7.550217690463665, -7.563742098340991, -7.561404415432949, -7.568860579358517, -7.570400075958647, -7.549757454804531, -7.572396927050729, -7.566226342594929, -7.553919302071998, -7.559697974169244, -7.566223465086674, -7.5390758326632525, -7.568494161923016, -7.550127108590029, -7.552933589818219, -7.563651853617645, -7.561104417454871, -7.541477275422324, -7.557756030360809, -7.55533249204703, -7.558900869064141, -7.555633514385122, -7.545413150167204, -7.554998988840136, -7.554953103488577, -7.56904469782563, -7.5571134000403655, -7.567999492576593, -7.560807573425701, -7.543779000768876, -7.565146911478062, -7.552412295678639, -7.562826424402587, -7.549464531576674, -7.568419161862177, -7.559471585349289, -7.573540563551335, -7.557952950896124, -7.555608147763329, -7.557356430298694, -7.567542313132486, -7.542182882707864, -7.565994613995024, -7.558524876948161, -7.578865973010801, -7.552717730416121, -7.572777962204683, -7.549903472783061, -7.557174238191128, -7.544273588204877, -7.55075254170614, -7.548722288848476, -7.5560627662135245, -7.554451536490434, -7.551615126174713, -7.55063467207524, -7.556887920783522, -7.554619773436095, -7.559158327825837, -7.5544038736168995, -7.557438674400187, -7.559357089605574, -7.572227309132768, -7.548021619199864, -7.561561151050764, -7.552085181079079, -7.564528582858334, -7.563319348025164, -7.56118837594011, -7.553830965704677, -7.55987891905092, -7.571607103462974, -7.568215034765017, -7.559707868972947, -7.555750141435884, -7.565404624717864, -7.550693539944269, -7.565729179048917, -7.563673079856357, -7.548448932343774, -7.548227144408689, -7.55813043032206, -7.552842495614734]} plot_convergence_of_optimization_process(TI_approximated_energies, transverse_ising_4_qubits, )
https://github.com/Tojarieh97/VQE
Tojarieh97
import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 16 K = 4 NUM_SHOTS = 1024 NUM_ITERATIONS = 50 w_vector = np.asarray([4,3,2,1]) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 8 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 8 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): L_w = 0 circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(LiH_molecule_4_qubits) for j in tqdm(range(K)): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) approximated_energy = get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies( approximated_energies_dict["approximated_eneriges_"+str(j)], approximated_energy) L_w += w_vector[j]*approximated_energy return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=360, size=12) optimizer_result = minimize( cost_function, x0=initial_thetas, args=(hamiltonian), method="COBYLA", options={"maxiter":NUM_ITERATIONS}) optimal_thetas = prepare_circuit_params(optimizer_result.x) return optimal_thetas def get_approximated_k_eigenvalues_of_hamiltonian(hamiltonian): approximated_k_eigenvalues = [] optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) for eigenvalue_index, eigenvector in enumerate(computational_eigenvectors): optimal_ansatz_state = get_ansatz_state(optimal_thetas, eigenvector) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) approximated_k_eigenvalues.append(approximated_eigenvalue) return approximated_k_eigenvalues from numpy import linalg as LA from statistics import mean def get_mean_approximation_error(exact_k_eigenvalues, approximated_k_eigenvalues): approximated_errors = [] for exact_eigenvalue, approximated_eigenvalue in zip(exact_k_eigenvalues, approximated_k_eigenvalues): approximated_errors.append(abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue)) return mean(approximated_errors) def get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, k): eigenvalues = LA.eig(hamiltonian.to_matrix())[0] return sorted(eigenvalues)[:k] def compare_exact_and_approximated_eigenvectors(hamiltonian, approximated_k_eigenvalues): exact_k_eigenvalues = get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, K) print("Exact K Eigenvalues:") print(exact_k_eigenvalues) print("\nApproximated K Eigenvalues:") print(sorted(approximated_k_eigenvalues)) print("\nMean Approximation error:") print(get_mean_approximation_error(exact_k_eigenvalues, sorted(approximated_k_eigenvalues))) approximated_energies_dict = { "approximated_eneriges_0": [], "approximated_eneriges_1":[], "approximated_eneriges_2": [], "approximated_eneriges_3": []} def initialize_approximated_energies_dict(): return { "approximated_eneriges_0": [], "approximated_eneriges_1":[], "approximated_eneriges_2": [], "approximated_eneriges_3": []} def insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energies_list, energy): approximated_energies_list.append(energy) import matplotlib.pyplot as plt import matplotlib.colors as mcolors def plot_convergence_of_optimization_process(approximated_energies, hamiltonian, margin=0.02): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0,margin) base_colors_list = list(mcolors.BASE_COLORS.keys()) exact_k_eigenvalues = get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, K) print(exact_k_eigenvalues) for energy_level, eigenvalue in enumerate(exact_k_eigenvalues): energy_level_name = "E_{0}".format(str(energy_level)) plt.axhline(y = eigenvalue, color = base_colors_list[energy_level], linestyle = 'dotted', label=energy_level_name) plt.plot(approximated_energies["approximated_eneriges_{0}".format(str(energy_level))], color = base_colors_list[energy_level], label="Weighted_SSVQE({0})".format(energy_level_name)) # plt.plot(approximated_energies["approximated_eneriges_0"]) # plt.plot(approximated_energies["approximated_eneriges_1"]) # plt.plot(approximated_energies["approximated_eneriges_2"]) # plt.plot(approximated_energies["approximated_eneriges_3"]) plt.xlabel("# of iterations") plt.ylabel("Energy") plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, Y, I, H, S LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvectors(LiH_molecule_4_qubits, LiH_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() LiH_approximated_energies = {'approximated_eneriges_0': [-7.443763256904104, -7.4002130802981165, -7.402247491880844, -7.470848596022202, -7.45320004578142, -7.2037442823809394, -7.606622032604259, -7.432350599744895, -7.432495103535102, -7.141159809219269, -7.34603922757036, -7.476135398795488, -7.280043003574207, -7.4614181224914295, -7.407924717612185, -7.461586578652535, -7.525445976535891, -7.422114431402694, -7.401649526037618, -7.488021953946464, -7.47896570893905, -7.462685937161847, -7.454120832230556, -7.436292572707697, -7.480688115871342, -7.515063846777348, -7.477177021961932, -7.391244710949009, -7.471217858315684, -7.503242588552382, -7.471439257727218, -7.44505573833778, -7.418285185624123, -7.466695823049642, -7.4771052531993325, -7.4637738318283535, -7.520776558858023, -7.526230791574609, -7.533608947411593, -7.503004948009757, -7.519724331102011, -7.493384913528219, -7.485478644775202, -7.516510223399673, -7.503475090881356, -7.494010354458551, -7.510090310795372, -7.526632388070386, -7.492160858734219, -7.5090846022988345], 'approximated_eneriges_1': [-7.611160770738447, -7.612537039823402, -7.5628667736575075, -7.627321643310454, -7.602218901158253, -7.669321267055824, -7.112869137843162, -7.529831878035033, -7.492031424566759, -7.546144927687019, -7.5380518543846815, -7.619806507952486, -7.536960192278364, -7.430594135829916, -7.558781662996708, -7.620192075334588, -7.500080654402885, -7.5874392595184466, -7.60518715593763, -7.587653509223957, -7.612775269021471, -7.6068484660945295, -7.599678769877363, -7.589714279771383, -7.60619548365883, -7.51735676728312, -7.612125836144872, -7.6014638647121675, -7.5899647846917055, -7.5976032888517775, -7.597212073112908, -7.558188737021209, -7.601200874808052, -7.607713345897209, -7.607499093171809, -7.599792654361252, -7.5596730670773855, -7.573728870000363, -7.546383632358012, -7.583001966857374, -7.5523102781572735, -7.560199542695961, -7.588780755315564, -7.566078651167328, -7.5879779290873905, -7.551861316141719, -7.573269260993632, -7.5817304433034804, -7.579569386092089, -7.570120795581553], 'approximated_eneriges_2': [-7.470829844981112, -7.470523575311227, -7.437547474097366, -7.489185208098881, -7.490140854087586, -7.406399694105737, -7.590301545017305, -7.541698353920802, -7.3691554663088015, -7.5191215141999335, -7.5115133084041545, -7.479635969058671, -7.567154091041735, -7.50831667284109, -7.404328307409327, -7.5010681837274165, -7.4650688490182455, -7.472575860441914, -7.402811603611692, -7.488550998068402, -7.488801074870055, -7.487994212250475, -7.515666333417201, -7.544214178703916, -7.510926968697341, -7.5173523503867195, -7.516193644717367, -7.53534000298624, -7.523519316290358, -7.455126696410415, -7.491381392393936, -7.504298259865865, -7.554652346024801, -7.523103712442472, -7.4955202720183, -7.517862423002627, -7.519654460714506, -7.518381698117194, -7.505702129067322, -7.504489391632537, -7.513392952340638, -7.5270772264781485, -7.519299542624053, -7.516485116618228, -7.50529569871512, -7.523333441799501, -7.499747575849092, -7.512325163721414, -7.52439763900249, -7.516395718429318], 'approximated_eneriges_3': [-7.32849500423405, -7.391564768264744, -7.474600394267608, -7.364808119047038, -7.381820772708144, -7.738911447566172, -7.758703374786833, -7.337171319897428, -7.381997666733045, -7.7142353175373115, -7.553174001897375, -7.381334761150993, -7.432289783474271, -7.368363081328347, -7.3468625031342345, -7.361828638208896, -7.480664471801326, -7.400110228803251, -7.3144431418222435, -7.368928231722106, -7.364078865897079, -7.373915189743662, -7.364944693985124, -7.3659051775080195, -7.361913922683342, -7.393984696256876, -7.358970234887909, -7.374457680841522, -7.380263158291077, -7.334590298526401, -7.362071851140452, -7.386812482151001, -7.350540699194575, -7.371636446671611, -7.367436744048734, -7.364018994060641, -7.366669879511723, -7.352155755509138, -7.36382240372502, -7.361211381137372, -7.395275852423786, -7.356090854960467, -7.385525123953955, -7.369782537122054, -7.388817786814771, -7.378669588844872, -7.38373310976381, -7.353810063874061, -7.387305671775982, -7.39466794423844]} plot_convergence_of_optimization_process(LiH_approximated_energies, LiH_molecule_4_qubits, margin=0.02) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvectors(H2_molecule_Hamiltonian_4_qubits, H2_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() H2_approximated_energies = {'approximated_eneriges_0': [-7.6847981551656215, -7.69669203350899, -7.695360282155182, -7.678547396735197, -7.682475520277694, -7.6665142799074735, -7.628511929237866, -7.727019079759623, -7.674672621892967, -7.782410750059304, -7.782640995023298, -7.774731391845236, -7.820098880570926, -7.644963955279764, -7.765933104421869, -7.689259899346986, -7.75838188322518, -7.7617232185924685, -7.6749058485455, -7.7606516385721775, -7.628823093333026, -7.778442627599486, -7.745777242153594, -7.753227986202937, -7.784556444100247, -7.756083187584806, -7.714476381527707, -7.780522704585265, -7.776979399600117, -7.782311933837449, -7.7842922352561335, -7.7870034099757515, -7.778992899075237, -7.787348917202359, -7.781744204782898, -7.789211430733308, -7.7871397501264985, -7.784088445887376, -7.793805473659068, -7.79346880686618, -7.786308107923922, -7.7925468325707765, -7.793338173915457, -7.78652494500572, -7.790090500177619, -7.792533180308775, -7.7962537918904715, -7.78963405481515, -7.786085398062213, -7.7891853374630635], 'approximated_eneriges_1': [-7.674684523604055, -7.680764074432957, -7.684992567218362, -7.683800571677806, -7.680390184089667, -7.721622516127985, -7.295633734656554, -7.7311487161990256, -7.678587133102517, -7.662425555106433, -7.669138289334058, -7.6673461427248775, -7.626942993490443, -7.538153577774583, -7.662429920440635, -7.619523577002202, -7.614356108241046, -7.658931116094572, -7.761466767269052, -7.64876243086473, -7.575843530150479, -7.675840508678627, -7.587039305802285, -7.66134535231588, -7.659686693231967, -7.6135464123687475, -7.651463803918251, -7.634151979073155, -7.665419894321144, -7.653707767256248, -7.659251797898335, -7.658200706731602, -7.671972673195233, -7.66434999274741, -7.663813235960182, -7.666611902147287, -7.667328389333765, -7.658213410128788, -7.663109239237157, -7.669688709053952, -7.669483352101843, -7.666970692695458, -7.67011145442623, -7.66774490260206, -7.66767261347493, -7.671932371682364, -7.671697879258323, -7.664936996622855, -7.665002841620933, -7.668432858833779], 'approximated_eneriges_2': [-7.216994389513745, -7.162295345496143, -7.340953879090269, -7.354575085834582, -7.25564377642011, -7.148940094695811, -7.524402673550271, -7.354347811404502, -7.25889495057094, -7.643589020627088, -7.644947961476648, -7.625158816558789, -7.620703327132717, -7.45620769838637, -7.630870366832682, -7.575290709380177, -7.596165182631779, -7.637811242834557, -7.170274298321406, -7.641715648367393, -7.601007658607277, -7.599962246378673, -7.554443833932802, -7.635475447591654, -7.64486017630937, -7.626536753201153, -7.6322795435642625, -7.610659904945782, -7.642214540537407, -7.630361126826373, -7.645346880047898, -7.6443043653096305, -7.616965316828286, -7.644233130202644, -7.64564265540827, -7.648497631150577, -7.647931469579165, -7.645272451577426, -7.650160805708954, -7.64876250969817, -7.646823091092999, -7.645297203651874, -7.641287946379679, -7.648284082427012, -7.6468976982996475, -7.6442778318847076, -7.649731833380351, -7.647619040578347, -7.648140904559129, -7.647936421498813], 'approximated_eneriges_3': [-7.202290172665147, -7.136542775453234, -7.32557094169548, -7.3304047498628275, -7.250215528560754, -7.530121383747615, -7.674756284215522, -7.3437821085023725, -7.25926128948872, -7.043725550448698, -7.048032766005656, -7.062091983030029, -7.015079505078198, -7.130094283026538, -7.023198238540297, -6.894206716999318, -6.948244787472701, -7.045666589563991, -7.516441009890359, -7.043138953607762, -7.164113379397319, -7.083629601908816, -6.994407404756581, -7.024569950050662, -7.042675844714379, -7.071398804304009, -7.030579249445848, -6.970942611477129, -7.0452067433138, -7.009655723846796, -7.0465525569622045, -7.041138823294234, -7.0758293298141, -7.037825997609188, -7.042134113140199, -7.045247103049186, -7.04832718431786, -7.060394271726066, -7.041607839469861, -7.04191968859915, -7.038852427210924, -7.034303963384438, -7.046001232407491, -7.0401609547447235, -7.040921144894931, -7.04670117664207, -7.043097516559149, -7.038106821967233, -7.045959853355035, -7.042930913127023]} plot_convergence_of_optimization_process(H2_approximated_energies, H2_molecule_Hamiltonian_4_qubits,margin=0.01) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvectors(transverse_ising_4_qubits, TI_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() TI_approximated_energies = {'approximated_eneriges_0': [-7.589752024122858, -7.613360553742977, -7.6190283377699295, -7.606452381315795, -7.623841264856606, -7.494521829539001, -7.646521400209204, -7.497441846730476, -7.679252378794595, -7.568306667439035, -7.635326747625471, -7.581974996633829, -7.6029476683468165, -7.629264364655602, -7.622068391999914, -7.639909424564434, -7.658080921293223, -7.6610216888186935, -7.654527411413256, -7.66008477955216, -7.7547150031040335, -7.7564360961248395, -7.7211692300067325, -7.740308604020784, -7.600566578864045, -7.745346804765525, -7.7462796221068615, -7.751641127972047, -7.731226373852388, -7.759764904228919, -7.738323394248081, -7.75008559994191, -7.776677950424584, -7.753426121197687, -7.782341273752688, -7.779205848396213, -7.748582934815819, -7.770913423670053, -7.762781290918378, -7.757243053876988, -7.771747073785976, -7.77460241775567, -7.768169945808579, -7.775293924988296, -7.777833875967182, -7.772874566073456, -7.770639259052609, -7.780183175053531, -7.770198633263086, -7.772715721535181], 'approximated_eneriges_1': [-7.479491405676765, -7.511836148005719, -7.386839072151142, -7.482910503302419, -7.45350504578557, -7.717645422348506, -7.557130209537956, -7.585292224236378, -7.601455267806437, -7.6053728445146245, -7.652940774863644, -7.495571799306382, -7.498805036929139, -7.665075417141012, -7.564424290629817, -7.649242137492966, -7.63973609380236, -7.662321437170673, -7.6197253632972295, -7.619795999950689, -7.77220111836819, -7.7560901206803, -7.733399518265041, -7.731248976846906, -7.5715275315884965, -7.707440626139587, -7.707393893999951, -7.7348112389201, -7.6963929548826515, -7.7303082911355006, -7.716146462527111, -7.726011057644771, -7.754736352832551, -7.7244308215718, -7.755435989771994, -7.740311979126285, -7.75802286075666, -7.74587377621213, -7.7511355458410875, -7.7524697184268225, -7.752276487330399, -7.752209127687969, -7.745506448113101, -7.763323596450217, -7.753689897688524, -7.761008277453863, -7.742591039142208, -7.750704035603405, -7.754889646373152, -7.762317652046046], 'approximated_eneriges_2': [-7.429773687068325, -7.456290835401122, -7.5244382722139695, -7.449488807771006, -7.475902887301357, -7.323710694006624, -7.382629223743793, -7.319565894330178, -7.37324196562631, -7.4655637009696845, -7.292361426064088, -7.305355248566785, -7.349061659711274, -7.423506442892262, -7.487123730123055, -7.419043739762055, -7.4468612412996995, -7.429270866973703, -7.449287078710123, -7.488601777023326, -7.338899993772503, -7.3479680423849905, -7.4752168162071655, -7.499949509399753, -7.438503219564106, -7.490451691757577, -7.478437506558136, -7.500437702418609, -7.500581801475034, -7.499075900701008, -7.502121265617482, -7.491113049098129, -7.518867376724795, -7.626022727858267, -7.528977849213658, -7.51704786926269, -7.341426863319758, -7.492808200100214, -7.491951333497299, -7.513636940451013, -7.517112352002725, -7.519479170352952, -7.532633970484797, -7.531363773844777, -7.533977320554524, -7.527126270896771, -7.527817041278419, -7.526558961818585, -7.533610800208856, -7.53189647381379], 'approximated_eneriges_3': [-7.491338578949814, -7.5365715669859465, -7.532419245094768, -7.536703941979599, -7.547853449746403, -7.624626489025748, -7.534978590313114, -7.508989186601839, -7.445225566309921, -7.443181538165437, -7.482755392167175, -7.491627334989187, -7.448561403824932, -7.450744878426274, -7.3527159389057335, -7.429044714148724, -7.453107440745492, -7.43199903518407, -7.426905138160319, -7.471734210770166, -7.394515983381335, -7.402658524799258, -7.382535100794421, -7.3287228122787855, -7.4052951836113845, -7.3303577854783635, -7.339337904181725, -7.340771690542788, -7.340357772707655, -7.316555819042501, -7.333550487910194, -7.313936474027675, -7.31041466499232, -7.227826572283069, -7.263505884929646, -7.299661733764759, -7.4931242665258, -7.314755252756475, -7.3482236593292924, -7.29989242094733, -7.3017643952015465, -7.296684067035896, -7.284748556671026, -7.276492262521696, -7.272782406124991, -7.295223632281355, -7.3008113357190965, -7.27265620287829, -7.284622446048762, -7.278514057888236]} plot_convergence_of_optimization_process(TI_approximated_energies, transverse_ising_4_qubits, )
https://github.com/Tojarieh97/VQE
Tojarieh97
import nbimporter from typing import Dict, Tuple, List import numpy as np from tqdm import tqdm QUBITS_NUM = 4 N = 16 K = 4 NUM_SHOTS = 1024 NUM_ITERATIONS = 100 w_vector = np.asarray([4,3,2,1]) from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals seed = 50 algorithm_globals.random_seed = seed simulator_backend = Aer.get_backend('qasm_simulator') from scipy.optimize import minimize from utiles import * input_states = get_first_k_eigenvectors_from_n_computational_basis(K, N) from ansatz_circuit_item2 import get_full_variational_quantum_circuit init_circuit_params = { "thetas": np.random.uniform(low=0, high=2*np.pi, size=8), "phis": np.random.uniform(low=0, high=2*np.pi, size=4), "D1": 2, "D2": 8 } def prepare_circuit_params(thetas) -> Dict: return { "thetas": thetas[4:], "phis": thetas[:4], "D1": 2, "D2": 8 } def get_ansatz_state(circuit_params, input_state): circuit_params_with_input_state = {**circuit_params, "input_state": input_state} return get_full_variational_quantum_circuit(**circuit_params_with_input_state) def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List: pauli_operators = hamiltonian.to_pauli_op().settings['oplist'] pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators)) pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators)) return pauli_coeffs, pauli_strings from qiskit.circuit.library.standard_gates import HGate, SGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister reducing_to_pauli_z_mapping = { 'I': 'I', 'Z': 'Z', 'X': 'Z', 'Y': 'Z' } def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str: reduced_pauli_string = "" for matrix_index in range(QUBITS_NUM): pauli_matrix = str(pauli_string[matrix_index]) reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix] reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string return reduced_pauli_string def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit): quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit") additional_circuit_layer = QuantumCircuit(quantum_registers) for quantum_register_index, pauli_matrix in enumerate(pauli_string): if pauli_matrix == "X": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) if pauli_string == "Y": additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]]) additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]]) extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer) return extended_quantum_circuit def get_probability_distribution(counts: Dict) -> Dict: proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()} return proba_distribution def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict: quantum_state_circuit.measure_all() transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend) Qobj = assemble(transpiled_quantum_state_circuit) result = simulator_backend.run(Qobj).result() counts = result.get_counts(quantum_state_circuit) return get_probability_distribution(counts) def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict: return dict(sorted(proba_distribution.items())) def reset_power_of_minus_1(power_of_minus_1): power_of_minus_1 = 0 return power_of_minus_1 def convert_pauli_string_into_str(pauli_string) -> str: return str(pauli_string) def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit): pauli_string_expectation_value = 0 power_of_minus_1 = 0 pauli_string_str = convert_pauli_string_into_str(pauli_string) extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit) probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit) reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string) sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution) for qubits_string, proba in sorted_probas_distribuition.items(): for string_index in range(QUBITS_NUM): if(str(qubits_string[string_index])=="1" and str(pauli_string[string_index])=="Z"): power_of_minus_1 += 1 pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1) return pauli_string_expectation_value def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings): total_expection_value = 0 for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings): total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas( pauli_string, ansatz_circuit) return total_expection_value from qiskit import assemble, transpile def cost_function(thetas, hamiltonian): L_w = 0 circuit_params = prepare_circuit_params(thetas) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(LiH_molecule_4_qubits) for j in tqdm(range(K)): ansatz_state = get_ansatz_state(circuit_params, computational_eigenvectors[j]) approximated_energy = get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings) insert_approximated_energy_to_list_of_all_approximated_energies( approximated_energies_dict["approximated_eneriges_"+str(j)], approximated_energy) L_w += w_vector[j]*approximated_energy return L_w def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian): initial_thetas = np.random.uniform(low=0, high=360, size=12) optimizer_result = minimize( cost_function, x0=initial_thetas, args=(hamiltonian), method="COBYLA", options={"maxiter":NUM_ITERATIONS}) optimal_thetas = prepare_circuit_params(optimizer_result.x) return optimal_thetas def get_approximated_k_eigenvalues_of_hamiltonian(hamiltonian): approximated_k_eigenvalues = [] optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian) computational_eigenvectors = get_first_k_eigenvectors_from_n_computational_basis(K, N) pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian) for eigenvalue_index, eigenvector in enumerate(computational_eigenvectors): optimal_ansatz_state = get_ansatz_state(optimal_thetas, eigenvector) approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings) approximated_k_eigenvalues.append(approximated_eigenvalue) return approximated_k_eigenvalues from numpy import linalg as LA from statistics import mean def get_mean_approximation_error(exact_k_eigenvalues, approximated_k_eigenvalues): approximated_errors = [] for exact_eigenvalue, approximated_eigenvalue in zip(exact_k_eigenvalues, approximated_k_eigenvalues): approximated_errors.append(abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue)) return mean(approximated_errors) def get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, k): eigenvalues = LA.eig(hamiltonian.to_matrix())[0] return sorted(eigenvalues)[:k] def compare_exact_and_approximated_eigenvectors(hamiltonian, approximated_k_eigenvalues): exact_k_eigenvalues = get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, K) print("Exact K Eigenvalues:") print(exact_k_eigenvalues) print("\nApproximated K Eigenvalues:") print(sorted(approximated_k_eigenvalues)) print("\nMean Approximation error:") print(get_mean_approximation_error(exact_k_eigenvalues, sorted(approximated_k_eigenvalues))) approximated_energies_dict = { "approximated_eneriges_0": [], "approximated_eneriges_1":[], "approximated_eneriges_2": [], "approximated_eneriges_3": []} def initialize_approximated_energies_dict(): return { "approximated_eneriges_0": [], "approximated_eneriges_1":[], "approximated_eneriges_2": [], "approximated_eneriges_3": []} def insert_approximated_energy_to_list_of_all_approximated_energies(approximated_energies_list, energy): approximated_energies_list.append(energy) import matplotlib.pyplot as plt import matplotlib.colors as mcolors def plot_convergence_of_optimization_process(approximated_energies, hamiltonian, margin=0.02): plt.title("convergence of optimization process to the exact eigenvalue") plt.margins(0,margin) base_colors_list = list(mcolors.BASE_COLORS.keys()) exact_k_eigenvalues = get_exact_k_eigenvalues_of_hamiltonian(hamiltonian, K) print(exact_k_eigenvalues) for energy_level, eigenvalue in enumerate(exact_k_eigenvalues): energy_level_name = "E_{0}".format(str(energy_level)) plt.axhline(y = eigenvalue, color = base_colors_list[energy_level], linestyle = 'dotted', label=energy_level_name) plt.plot(approximated_energies["approximated_eneriges_{0}".format(str(energy_level))], color = base_colors_list[energy_level], label="Weighted_SSVQE({0})".format(energy_level_name)) plt.xlabel("# of iterations") plt.ylabel("Energy") plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) def plot_fidelity(): plt.plot(LiH_approximated_energies) plt.xlabel("# of iterations") plt.ylabel("Energy") from qiskit.opflow import X, Z, Y, I, H, S LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) %%time LiH_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(LiH_molecule_4_qubits) compare_exact_and_approximated_eigenvectors(LiH_molecule_4_qubits, LiH_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() LiH_approximated_energies = {'approximated_eneriges_0': [-7.443763256904104, -7.4002130802981165, -7.402247491880844, -7.470848596022202, -7.45320004578142, -7.2037442823809394, -7.606622032604259, -7.432350599744895, -7.432495103535102, -7.141159809219269, -7.34603922757036, -7.476135398795488, -7.280043003574207, -7.4614181224914295, -7.407924717612185, -7.461586578652535, -7.525445976535891, -7.422114431402694, -7.401649526037618, -7.488021953946464, -7.47896570893905, -7.462685937161847, -7.454120832230556, -7.436292572707697, -7.480688115871342, -7.515063846777348, -7.477177021961932, -7.391244710949009, -7.471217858315684, -7.503242588552382, -7.471439257727218, -7.44505573833778, -7.418285185624123, -7.466695823049642, -7.4771052531993325, -7.4637738318283535, -7.520776558858023, -7.526230791574609, -7.533608947411593, -7.503004948009757, -7.519724331102011, -7.493384913528219, -7.485478644775202, -7.516510223399673, -7.503475090881356, -7.494010354458551, -7.510090310795372, -7.526632388070386, -7.492160858734219, -7.5090846022988345], 'approximated_eneriges_1': [-7.611160770738447, -7.612537039823402, -7.5628667736575075, -7.627321643310454, -7.602218901158253, -7.669321267055824, -7.112869137843162, -7.529831878035033, -7.492031424566759, -7.546144927687019, -7.5380518543846815, -7.619806507952486, -7.536960192278364, -7.430594135829916, -7.558781662996708, -7.620192075334588, -7.500080654402885, -7.5874392595184466, -7.60518715593763, -7.587653509223957, -7.612775269021471, -7.6068484660945295, -7.599678769877363, -7.589714279771383, -7.60619548365883, -7.51735676728312, -7.612125836144872, -7.6014638647121675, -7.5899647846917055, -7.5976032888517775, -7.597212073112908, -7.558188737021209, -7.601200874808052, -7.607713345897209, -7.607499093171809, -7.599792654361252, -7.5596730670773855, -7.573728870000363, -7.546383632358012, -7.583001966857374, -7.5523102781572735, -7.560199542695961, -7.588780755315564, -7.566078651167328, -7.5879779290873905, -7.551861316141719, -7.573269260993632, -7.5817304433034804, -7.579569386092089, -7.570120795581553], 'approximated_eneriges_2': [-7.470829844981112, -7.470523575311227, -7.437547474097366, -7.489185208098881, -7.490140854087586, -7.406399694105737, -7.590301545017305, -7.541698353920802, -7.3691554663088015, -7.5191215141999335, -7.5115133084041545, -7.479635969058671, -7.567154091041735, -7.50831667284109, -7.404328307409327, -7.5010681837274165, -7.4650688490182455, -7.472575860441914, -7.402811603611692, -7.488550998068402, -7.488801074870055, -7.487994212250475, -7.515666333417201, -7.544214178703916, -7.510926968697341, -7.5173523503867195, -7.516193644717367, -7.53534000298624, -7.523519316290358, -7.455126696410415, -7.491381392393936, -7.504298259865865, -7.554652346024801, -7.523103712442472, -7.4955202720183, -7.517862423002627, -7.519654460714506, -7.518381698117194, -7.505702129067322, -7.504489391632537, -7.513392952340638, -7.5270772264781485, -7.519299542624053, -7.516485116618228, -7.50529569871512, -7.523333441799501, -7.499747575849092, -7.512325163721414, -7.52439763900249, -7.516395718429318], 'approximated_eneriges_3': [-7.32849500423405, -7.391564768264744, -7.474600394267608, -7.364808119047038, -7.381820772708144, -7.738911447566172, -7.758703374786833, -7.337171319897428, -7.381997666733045, -7.7142353175373115, -7.553174001897375, -7.381334761150993, -7.432289783474271, -7.368363081328347, -7.3468625031342345, -7.361828638208896, -7.480664471801326, -7.400110228803251, -7.3144431418222435, -7.368928231722106, -7.364078865897079, -7.373915189743662, -7.364944693985124, -7.3659051775080195, -7.361913922683342, -7.393984696256876, -7.358970234887909, -7.374457680841522, -7.380263158291077, -7.334590298526401, -7.362071851140452, -7.386812482151001, -7.350540699194575, -7.371636446671611, -7.367436744048734, -7.364018994060641, -7.366669879511723, -7.352155755509138, -7.36382240372502, -7.361211381137372, -7.395275852423786, -7.356090854960467, -7.385525123953955, -7.369782537122054, -7.388817786814771, -7.378669588844872, -7.38373310976381, -7.353810063874061, -7.387305671775982, -7.39466794423844]} plot_convergence_of_optimization_process(LiH_approximated_energies, LiH_molecule_4_qubits, margin=0.02) H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) %%time H2_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits) compare_exact_and_approximated_eigenvectors(H2_molecule_Hamiltonian_4_qubits, H2_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() H2_approximated_energies = {'approximated_eneriges_0': [-7.231052657869664, -7.078319612689266, -7.215401871826676, -7.230221135636873, -7.262455020005291, -7.267031049860837, -7.501572363017872, -7.4813356803216, -7.4947234955867215, -7.467291869278843], 'approximated_eneriges_1': [-7.563886100199448, -7.658659320088765, -7.578874516640113, -7.5780818494863516, -7.560965458088562, -7.637089945397857, -7.663568893024004, -7.5617725937859115, -7.705323888763656, -7.702392677865555], 'approximated_eneriges_2': [-7.579265030661066, -7.5773451380441585, -7.599916344085796, -7.618297129617218, -7.60986111046384, -7.491511476610149, -7.270122634763994, -7.295684673991992, -7.268791877445621, -7.325654461172013], 'approximated_eneriges_3': [-7.592367719916387, -7.681333606694948, -7.696180773666084, -7.713150310751485, -7.710985775433959, -7.709751408629662, -7.676158468825629, -7.621108302975905, -7.706198964984833, -7.67241616951112]} plot_convergence_of_optimization_process(H2_approximated_energies, H2_molecule_Hamiltonian_4_qubits, margin=0.01) transverse_ising_4_qubits = 0.0 * (I^I^I^I) \ + 0.8398088405253477 * (X^I^I^I) \ + 0.7989496312070936 * (I^X^I^I) \ + 0.38189710487113193 * (Z^Z^I^I) \ + 0.057753122422666725 * (I^I^X^I) \ + 0.5633292636970458 * (Z^I^Z^I) \ + 0.3152740621483513 * (I^Z^Z^I) \ + 0.07209487981989715 * (I^I^I^X) \ + 0.17892334004292654 * (Z^I^I^Z) \ + 0.2273896497668042 * (I^Z^I^Z) \ + 0.09762902934216211 * (I^I^Z^Z) %%time TI_approximated_k_eigenvalues = get_approximated_k_eigenvalues_of_hamiltonian(transverse_ising_4_qubits) compare_exact_and_approximated_eigenvectors(transverse_ising_4_qubits, TI_approximated_k_eigenvalues) print(approximated_energies_dict) approximated_energies_dict = initialize_approximated_energies_dict() TI_approximated_energies = {'approximated_eneriges_0': [-7.527374926796388, -7.490948460217839, -7.471351892950928, -7.490702422799052, -7.515817970419744, -7.31595982882803, -7.099053535351137, -7.366127033312333, -7.558208686809385, -7.245080154006243], 'approximated_eneriges_1': [-7.435160167575143, -7.3454563436422955, -7.467036090723377, -7.46674892502807, -7.512177681355114, -7.551799781215262, -7.56977798445727, -7.337817913611366, -7.542405722352239, -7.604048469384494], 'approximated_eneriges_2': [-7.45094378726649, -7.494835406044515, -7.546427492721137, -7.5519911271001785, -7.621700741850081, -7.480593237888603, -7.63756007071119, -7.485733803067446, -7.551661441110606, -7.532503440725798], 'approximated_eneriges_3': [-7.420383731278358, -7.269163097081034, -7.378626010242662, -7.344163256333969, -7.384431167351, -7.606108205702219, -7.7098709634708, -7.590454974935595, -7.404154849273452, -7.621812392089753]} plot_convergence_of_optimization_process(TI_approximated_energies, transverse_ising_4_qubits, )
https://github.com/Tojarieh97/VQE
Tojarieh97
from qiskit.opflow import X, Z, I H2_molecule_hamiltonian = -0.5053051899926562*(I^I) + \ -0.3277380754984016*(Z^I) + \ 0.15567463610622564*(Z^Z) + \ -0.3277380754984016*(I^Z) print("========== H2 Molecule Hamiltonian for Two Qubits ==========\n") print(H2_molecule_hamiltonian.to_matrix())
https://github.com/Tojarieh97/VQE
Tojarieh97
from qiskit.opflow import X, Z, I, Y H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \ + 0.1721839326191554 * (I^I^I^Z) \ - 0.22575349222402372 * (I^I^Z^I) \ + 0.17218393261915543 * (I^Z^I^I) \ - 0.2257534922240237 * (Z^I^I^I) \ + 0.12091263261776627 * (I^I^Z^Z) \ + 0.16892753870087907 * (I^Z^I^Z) \ + 0.045232799946057826 * (Y^Y^Y^Y) \ + 0.045232799946057826 * (X^X^Y^Y) \ + 0.045232799946057826 * (Y^Y^X^X) \ + 0.045232799946057826 * (X^X^X^X) \ + 0.1661454325638241 * (Z^I^I^Z) \ + 0.1661454325638241 * (I^Z^Z^I) \ + 0.17464343068300453 * (Z^I^Z^I) \ + 0.12091263261776627 * (Z^Z^I^I) print("========== H2 Molecule Hamiltonian for Four Qubits ==========\n") print(H2_molecule_Hamiltonian_4_qubits.to_matrix())
https://github.com/Tojarieh97/VQE
Tojarieh97
from qiskit.opflow import X, Z, I, Y LiH_molecule_hamiltonian = -7.49894690201071*(I^I^I^I) + \ -0.0029329964409502266*(X^X^Y^Y) + \ 0.0029329964409502266*(X^Y^Y^X) + \ 0.01291078027311749*(X^Z^X^I) + \ -0.0013743761078958677*(X^Z^X^Z) + \ 0.011536413200774975*(X^I^X^I) + \ 0.0029329964409502266*(Y^X^X^Y) + \ -0.0029329964409502266*(Y^Y^X^X) + \ 0.01291078027311749*(Y^Z^Y^I) + \ -0.0013743761078958677*(Y^Z^Y^Z) + \ 0.011536413200774975*(Y^I^Y^I) + \ 0.16199475388004184*(Z^I^I^I) + \ 0.011536413200774975*(Z^X^Z^X) + \ 0.011536413200774975*(Z^Y^Z^Y) + \ 0.12444770133137588*(Z^Z^I^I) + \ 0.054130445793298836*(Z^I^Z^I) + \ 0.05706344223424907*(Z^I^I^Z) + \ 0.012910780273117487*(I^X^Z^X) + \ -0.0013743761078958677*(I^X^I^X) + \ 0.012910780273117487*(I^Y^Z^Y) + \ -0.0013743761078958677*(I^Y^I^Y) + \ 0.16199475388004186*(I^Z^I^I) + \ 0.05706344223424907*(I^Z^Z^I) + \ 0.054130445793298836*(I^Z^I^Z) + \ -0.013243698330265966*(I^I^Z^I) + \ 0.08479609543670981*(I^I^Z^Z) + \ -0.013243698330265952*(I^I^I^Z) print("========== LiH Molecule Hamiltonian for Four Qubits ==========\n") print(LiH_molecule_hamiltonian.to_matrix())
https://github.com/Tojarieh97/VQE
Tojarieh97
import numpy as np from qiskit.opflow import X, Z, I a_1 = np.random.random_sample() a_2 = np.random.random_sample() J_21 = np.random.random_sample() transverse_ising_2_qubits = a_1*(I^X) + a_2*(X^I) + J_21*(Z^Z) print("========== Transverse Ising Model Hamiltonian for Two Qubits ==========\n") print(transverse_ising_2_qubits) print() print(transverse_ising_2_qubits.to_matrix()) print()
https://github.com/Tojarieh97/VQE
Tojarieh97
from qiskit.opflow import X, Z, I, Y import numpy as np QUBITS_NUM = 3 def create_pauli_string_with_pauli_op_on_index_i(pauli_op, i, qubits_num): if i == 1: pauli_string = pauli_op for qubit in range(qubits_num - 1): pauli_string = pauli_string ^ I return pauli_string pauli_string = I for qubit in range(2, qubits_num + 1): if qubit == i: pauli_string = pauli_string ^ pauli_op else: pauli_string = pauli_string ^ I return pauli_string def create_pauli_string_with_pauli_ops_on_index_i_and_j(pauli_op_second, i, pauli_op_first, j, qubits_num): if j == 1: pauli_string = pauli_op_first for qubit in range(2, qubits_num + 1): if qubit == i: pauli_string = pauli_string ^ pauli_op_second else: pauli_string = pauli_string ^ I return pauli_string pauli_string = I for qubit in range(2, qubits_num + 1): if qubit == j: pauli_string = pauli_string ^ pauli_op_first elif qubit == i: pauli_string = pauli_string ^ pauli_op_second else: pauli_string = pauli_string ^ I return pauli_string def get_Ising_model_hamiltonian(): hamiltonian = I for qubit in range(QUBITS_NUM - 1): hamiltonian = hamiltonian^I hamiltonian = 0 * hamiltonian for i in range(1, QUBITS_NUM + 1): a_i = np.random.random_sample() x_i = create_pauli_string_with_pauli_op_on_index_i(X, i, QUBITS_NUM) hamiltonian = hamiltonian + a_i * x_i for j in range(1, i): J_ij = np.random.random_sample() z_ij = create_pauli_string_with_pauli_ops_on_index_i_and_j(Z, i, Z, j, QUBITS_NUM) hamiltonian = hamiltonian + J_ij * z_ij return hamiltonian transverse_ising_3_qubits = get_Ising_model_hamiltonian() print(transverse_ising_3_qubits) from qiskit.opflow import X, Z, I H2_molecule_hamiltonian = 0.0 * (I^I^I) + 0.012764169333459807 * (X^I^I) + 0.7691573729160869 * (I^X^I) + 0.398094746026449 * (Z^Z^I) + 0.15250261906586637 * (I^I^X) + 0.2094051920882264 * (Z^I^Z) + 0.5131291860752999 * (I^Z^Z)
https://github.com/Tojarieh97/VQE
Tojarieh97
from qiskit.opflow import X, Z, I, Y import numpy as np QUBITS_NUM = 4 def create_pauli_string_with_pauli_op_on_index_i(pauli_op, i, qubits_num): if i == 1: pauli_string = pauli_op for qubit in range(qubits_num - 1): pauli_string = pauli_string ^ I return pauli_string pauli_string = I for qubit in range(2, qubits_num + 1): if qubit == i: pauli_string = pauli_string ^ pauli_op else: pauli_string = pauli_string ^ I return pauli_string def create_pauli_string_with_pauli_ops_on_index_i_and_j(pauli_op_second, i, pauli_op_first, j, qubits_num): if j == 1: pauli_string = pauli_op_first for qubit in range(2, qubits_num + 1): if qubit == i: pauli_string = pauli_string ^ pauli_op_second else: pauli_string = pauli_string ^ I return pauli_string pauli_string = I for qubit in range(2, qubits_num + 1): if qubit == j: pauli_string = pauli_string ^ pauli_op_first elif qubit == i: pauli_string = pauli_string ^ pauli_op_second else: pauli_string = pauli_string ^ I return pauli_string def get_Ising_model_hamiltonian(): hamiltonian = I for qubit in range(QUBITS_NUM - 1): hamiltonian = hamiltonian^I hamiltonian = 0 * hamiltonian for i in range(1, QUBITS_NUM + 1): a_i = np.random.random_sample() x_i = create_pauli_string_with_pauli_op_on_index_i(X, i, QUBITS_NUM) hamiltonian = hamiltonian + a_i * x_i for j in range(1, i): J_ij = np.random.random_sample() z_ij = create_pauli_string_with_pauli_ops_on_index_i_and_j(Z, i, Z, j, QUBITS_NUM) hamiltonian = hamiltonian + J_ij * z_ij return hamiltonian transverse_ising_4_qubits = get_Ising_model_hamiltonian() print(transverse_ising_4_qubits)
https://github.com/Tojarieh97/VQE
Tojarieh97
from openfermion.chem import MolecularData from openfermion.transforms import get_fermion_operator, jordan_wigner from openfermion.linalg import get_ground_state, get_sparse_operator import numpy import scipy import scipy.linalg # Load saved file for H2. diatomic_bond_length = 1.2 geometry = [('H', (0., 0., 0.)), ('H', (0., 0., diatomic_bond_length))] basis = 'sto-3g' multiplicity = 1 # Set Hamiltonian parameters. active_space_start = 1 active_space_stop = 3 # Generate and populate instance of MolecularData. molecule = MolecularData(geometry, basis, multiplicity, description="1.2") molecule.load() # Get the Hamiltonian in an active space. molecular_hamiltonian = molecule.get_molecular_hamiltonian( occupied_indices=range(1), active_indices=range(1, 2)) # Map operator to fermions and qubits. fermion_hamiltonian = get_fermion_operator(molecular_hamiltonian) qubit_hamiltonian = jordan_wigner(fermion_hamiltonian) qubit_hamiltonian.compress() print('The Jordan-Wigner Hamiltonian in canonical basis follows:\n{}'.format(qubit_hamiltonian)) # Get sparse operator and ground state energy. sparse_hamiltonian = get_sparse_operator(qubit_hamiltonian) energy, state = get_ground_state(sparse_hamiltonian) print('Ground state energy before rotation is {} Hartree.\n'.format(energy)) # Randomly rotate. n_orbitals = molecular_hamiltonian.n_qubits // 2 n_variables = int(n_orbitals * (n_orbitals - 1) / 2) numpy.random.seed(1) random_angles = numpy.pi * (1. - 2. * numpy.random.rand(n_variables)) kappa = numpy.zeros((n_orbitals, n_orbitals)) index = 0 for p in range(n_orbitals): for q in range(p + 1, n_orbitals): kappa[p, q] = random_angles[index] kappa[q, p] = -numpy.conjugate(random_angles[index]) index += 1 # Build the unitary rotation matrix. difference_matrix = kappa + kappa.transpose() rotation_matrix = scipy.linalg.expm(kappa) # Apply the unitary. molecular_hamiltonian.rotate_basis(rotation_matrix) # Get qubit Hamiltonian in rotated basis. qubit_hamiltonian = jordan_wigner(molecular_hamiltonian) qubit_hamiltonian.compress() print('The Jordan-Wigner Hamiltonian in rotated basis follows:\n{}'.format(qubit_hamiltonian)) # Get sparse Hamiltonian and energy in rotated basis. sparse_hamiltonian = get_sparse_operator(qubit_hamiltonian) energy, state = get_ground_state(sparse_hamiltonian) print('Ground state energy after rotation is {} Hartree.'.format(energy))
https://github.com/Tojarieh97/VQE
Tojarieh97
from openfermion.chem import MolecularData from openfermion.transforms import get_fermion_operator, jordan_wigner from openfermion.linalg import get_ground_state, get_sparse_operator import numpy import scipy import scipy.linalg # Load saved file for LiH. diatomic_bond_length = 1.45 geometry = [('Li', (0., 0., 0.)), ('H', (0., 0., diatomic_bond_length))] basis = 'sto-3g' multiplicity = 1 # Set Hamiltonian parameters. active_space_start = 1 active_space_stop = 3 # Generate and populate instance of MolecularData. molecule = MolecularData(geometry, basis, multiplicity, description="1.45") molecule.load() # Get the Hamiltonian in an active space. molecular_hamiltonian = molecule.get_molecular_hamiltonian( occupied_indices=range(active_space_start), active_indices=range(active_space_start, active_space_stop)) # Map operator to fermions and qubits. fermion_hamiltonian = get_fermion_operator(molecular_hamiltonian) qubit_hamiltonian = jordan_wigner(fermion_hamiltonian) qubit_hamiltonian.compress() print('The Jordan-Wigner Hamiltonian in canonical basis follows:\n{}'.format(qubit_hamiltonian)) # Get sparse operator and ground state energy. sparse_hamiltonian = get_sparse_operator(qubit_hamiltonian) energy, state = get_ground_state(sparse_hamiltonian) print('Ground state energy before rotation is {} Hartree.\n'.format(energy)) # Randomly rotate. n_orbitals = molecular_hamiltonian.n_qubits // 2 n_variables = int(n_orbitals * (n_orbitals - 1) / 2) numpy.random.seed(1) random_angles = numpy.pi * (1. - 2. * numpy.random.rand(n_variables)) kappa = numpy.zeros((n_orbitals, n_orbitals)) index = 0 for p in range(n_orbitals): for q in range(p + 1, n_orbitals): kappa[p, q] = random_angles[index] kappa[q, p] = -numpy.conjugate(random_angles[index]) index += 1 # Build the unitary rotation matrix. difference_matrix = kappa + kappa.transpose() rotation_matrix = scipy.linalg.expm(kappa) # Apply the unitary. molecular_hamiltonian.rotate_basis(rotation_matrix) # Get qubit Hamiltonian in rotated basis. qubit_hamiltonian = jordan_wigner(molecular_hamiltonian) qubit_hamiltonian.compress() print('The Jordan-Wigner Hamiltonian in rotated basis follows:\n{}'.format(qubit_hamiltonian)) # Get sparse Hamiltonian and energy in rotated basis. sparse_hamiltonian = get_sparse_operator(qubit_hamiltonian) energy, state = get_ground_state(sparse_hamiltonian) print('Ground state energy after rotation is {} Hartree.'.format(energy))
https://github.com/Tojarieh97/VQE
Tojarieh97
from qiskit.circuit.library.standard_gates import RXGate, RZGate, CXGate, CZGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_thetas_circuit(thetas, D2): qr = QuantumRegister(4, name="qubit") qc = QuantumCircuit(qr) for d in range(D2): qc.append(RXGate(thetas[0]), [qr[0]]) qc.append(RXGate(thetas[1]), [qr[1]]) qc.append(RXGate(thetas[2]), [qr[2]]) qc.append(RXGate(thetas[3]), [qr[3]]) qc.append(RZGate(thetas[4]), [qr[0]]) qc.append(RZGate(thetas[5]), [qr[1]]) qc.append(RZGate(thetas[6]), [qr[2]]) qc.append(RZGate(thetas[7]), [qr[3]]) qc.append(CZGate(), [qr[0], qr[1]]) qc.append(CZGate(), [qr[1], qr[2]]) qc.append(CZGate(), [qr[2], qr[3]]) qc.barrier(qr) qc.append(RXGate(thetas[0]), [qr[0]]) qc.append(RXGate(thetas[1]), [qr[1]]) qc.append(RXGate(thetas[2]), [qr[2]]) qc.append(RXGate(thetas[3]), [qr[3]]) qc.append(RZGate(thetas[4]), [qr[0]]) qc.append(RZGate(thetas[5]), [qr[1]]) qc.append(RZGate(thetas[6]), [qr[2]]) qc.append(RZGate(thetas[7]), [qr[3]]) return qc def get_phis_circuit(phis, D1): qr = QuantumRegister(4, name="qubit") qc = QuantumCircuit(qr) for d in range(D1): qc.append(RXGate(phis[0]), [qr[2]]) qc.append(RXGate(phis[1]), [qr[3]]) qc.append(RZGate(phis[2]), [qr[2]]) qc.append(RZGate(phis[3]), [qr[3]]) qc.append(CZGate(), [qr[2], qr[3]]) qc.barrier(qr) return qc def get_full_variational_quantum_circuit(thetas, phis, D1, D2): thetas_quantum_circuit = get_thetas_circuit(thetas, D2) phis_quantum_circuit = get_phis_circuit(phis, D1) variational_quantum_circuit = phis_quantum_circuit.compose(thetas_quantum_circuit) return variational_quantum_circuit import numpy as np thetas = np.random.uniform(low=0, high=2*np.pi, size=8) phis = np.random.uniform(low=0, high=2*np.pi, size=4) D1 = 2 D2 = 6 qc1 = get_thetas_circuit(thetas,D2) print(qc1.draw()) qc2 = get_phis_circuit(phis,D1) print(qc2.draw()) print(get_full_variational_quantum_circuit(thetas, phis, D1, D2))
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit.circuit import Parameter from qiskit import pulse from qiskit.test.mock.backends.almaden import * phase = Parameter('phase') with pulse.build(FakeAlmaden()) as phase_test_sched: pulse.shift_phase(phase, pulse.drive_channel(0)) phase_test_sched.instructions # ()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit.circuit import Parameter from qiskit import pulse from qiskit.test.mock.backends.almaden import * phase = Parameter('phase') with pulse.build(FakeAlmaden()) as phase_test_sched: pulse.shift_phase(phase, pulse.drive_channel(0)) phase_test_sched.instructions # ()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit.circuit import Parameter from qiskit import pulse from qiskit.test.mock.backends.almaden import * phase = Parameter('phase') with pulse.build(FakeAlmaden()) as phase_test_sched: pulse.shift_phase(phase, pulse.drive_channel(0)) phase_test_sched.instructions # ()
https://github.com/Z-928/Bugs4Q
Z-928
# https://github.com/Z-726/Bugs-from-Users/edit/main/Program/1999.py import numpy as np from qiskit import * from qiskit.transpiler import transpile from qiskit.tools.qi.qi import random_unitary_matrix from qiskit.mapper import two_qubit_kak from qiskit.mapper import CouplingMap from qiskit.extensions.standard import SwapGate from qiskit.converters import circuit_to_dag def build_qv_circuit(seed, n, depth): """Create a quantum program containing model circuits. The model circuits consist of layers of Haar random elements of SU(4) applied between corresponding pairs of qubits in a random bipartition. name = leading name of circuits n = number of qubits depth = ideal depth of each model circuit (over SU(4)) """ np.random.seed(seed) q = QuantumRegister(n, "q") c = ClassicalRegister(n, "c") # Create measurement subcircuit qc = QuantumCircuit(q,c) # For each layer for j in range(depth): # Generate uniformly random permutation Pj of [0...n-1] perm = np.random.permutation(n) # For each pair p in Pj, generate Haar random SU(4) # Decompose each SU(4) into CNOT + SU(2) and add to Ci for k in range(int(np.floor(n/2))): qubits = [int(perm[2*k]), int(perm[2*k+1])] U = random_unitary_matrix(4) for gate in two_qubit_kak(U): i0 = qubits[gate["args"][0]] if gate["name"] == "cx": i1 = qubits[gate["args"][1]] qc.cx(q[i0], q[i1]) elif gate["name"] == "u1": qc.u1(gate["params"][2], q[i0]) elif gate["name"] == "u2": qc.u2(gate["params"][1], gate["params"][2], q[i0]) elif gate["name"] == "u3": qc.u3(gate["params"][0], gate["params"][1], gate["params"][2], q[i0]) elif gate["name"] == "id": pass # do nothing #qc.measure(q,c) return qc circuit = build_qv_circuit(1234, 20, 100) dag = circuit_to_dag(circuit) print(dag.num_tensor_factors())
https://github.com/Z-928/Bugs4Q
Z-928
#https://github.com/Qiskit/qiskit-terra/issues/2009 import numpy as np from qiskit import * from qiskit.tools.qi.qi import random_unitary_matrix from qiskit.mapper import two_qubit_kak q = QuantumRegister(2, 'q') qc = QuantumCircuit(q) num_gates = np.random.randint(30) # h = 0, x = 1, y = 2, z = 3, cx = 4 for _ in range(num_gates): item = np.random.randint(5) if item in [0, 1, 2, 3]: idx = np.random.randint(size) if item == 0: qc.h(q[idx]) elif item == 1: qc.x(q[idx]) elif item == 2: qc.y(q[idx]) elif item == 3: qc.z(q[idx]) else: idx = np.random.permutation(size) qc.cx(q[int(idx[0])], q[int(idx[1])]) uni = Aer.get_backend('unitary_simulator') res = execute(qc, uni).result() U = res.get_unitary() two_qubit_kak(U)
https://github.com/Z-928/Bugs4Q
Z-928
# https://github.com/Qiskit/qiskit-terra/issues/2036 from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, transpiler import numpy as np q = QuantumRegister(6, name='qn') c = ClassicalRegister(2, name='cn') zz = QuantumCircuit(q, c) zz.h(q[0]) zz.h(q[5]) zz.cx(q[0], q[5]) zz.u1(2 * np.pi, q[5]) zz.cx(q[0], q[5]) zz.h(q[0]) zz.h(q[5]) zz.barrier(q) zz.measure(q[0], c[0]) zz.measure(q[5], c[1]) print(zz) new_zz = transpiler.transpile(zz, basis_gates='u1, u2, u3, cx, id', coupling_map=[[0, 1], [0, 5], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3], [4, 9], [5, 0], [5, 6], [5, 10], [6, 5], [6, 7], [7, 6], [7, 8], [7, 12], [8, 7], [8, 9], [9, 4], [9, 8], [9, 14], [10, 5], [10, 11], [10, 15], [11, 10], [11, 12], [12, 7], [12, 11], [12, 13], [13, 12], [13, 14], [14, 9], [14, 13], [14, 19], [15, 10], [15, 16], [16, 15], [16, 17], [17, 16], [17, 18], [18, 17], [18, 19], [19, 14], [19, 18]], initial_layout = {("qn", 0): ("q", 0), ("qn", 1): ("q", 1), ("qn", 2): ("q", 2), ("qn", 3): ("q", 3), ("qn", 4): ("q", 4), ("qn", 5): ("q", 5)}) print(new_zz)
https://github.com/Z-928/Bugs4Q
Z-928
# https://github.com/Qiskit/qiskit-terra/issues/2373 # Importing needed libraries from qiskit import * from qiskit.mapper import Layout import numpy as np import matplotlib as mp import matplotlib.pyplot as plt from scipy.optimize import curve_fit # Enable use of real device IBMQ.load_accounts() backend_exp = IBMQ.get_backend('ibmq_16_melbourne') for u in range(0,1): # It isn't important, it is because I measured all qubit's T1 u_st = str(u) file1 = 'T1__raw_qubit_' + u_st + '.txt' out1 = open( file1, 'w' ) out1.write('# This is the qubit\'s ' + u_st +' T1 raw data \n' ) circuit = [] q = QuantumRegister(2, 'q') #Only changing this and the layout makes it works c1 = ClassicalRegister(1, 'c') qc = QuantumCircuit(q) mz = QuantumCircuit(q,c1) lay = Layout({ (q,0) : 0, (q,1):1 }) # Exciting the qubit qc.x(q[0]) qc.barrier(q) # Measurment on Z-axis mz.measure(q[0],c1[0]) # Waiting time ( 30*0.12 us each iteration) for i in range(50): identity = QuantumCircuit(q,c1) identity.barrier(q) for k in range(i*30): identity.iden(q) identity.barrier(q) circuit.append(qc+identity+mz) # Running the experiment jobZ = execute(circuit, backend_exp, initial_layout=lay, shots=1024) out1.write('# N° id_gates Z-Measure Error \n') Result = jobZ.result() # Taking the results counts = [] for i in range(50): counts.append(Result.get_counts(circuit[i]) ) # Preparing the lists to make fits y = [] x = [] for i in range(50): py = counts[i]['1']/1024 x.append(i*30*0.12) y.append( py ) out1.write(str(i*30) + ' '+ str(py) + '\n') out1.write( '\n') def expo(x, amp, slope, high): y = amp*np.exp(-slope*x)+high return y x = np.array(x) y = np.array(y) err_y = np.array(err_y) params , paramscov = curve_fit(expo, x, y,p0=[1,0.02,0] ) a =np.sqrt(np.diag(paramscov)) out1.write('The raw T1 is ' + str(1/params[1])+ ' +- ' + str(a[1]/params[1]) + '\n') out1.close() plt.figure() plt.plot(x, expo(x, *params), label='Raw fitted function') plt.plot(x , y, 'ro', label= 'data') plt.xlabel( ' Time [us] ') plt.ylabel(' Probability of being in the excited state ') plt.legend() plt.savefig('plot_q_'+ u_st+ '_raw.png')
https://github.com/Z-928/Bugs4Q
Z-928
# https://github.com/Qiskit/qiskit-terra/issues/5839 from qiskit import QuantumCircuit,QuantumRegister, Aer, execute from qiskit.compiler import transpile from qiskit.quantum_info.states.measures import state_fidelity from IPython.core.display import display # Create circuit circ = QuantumCircuit(3) circ.x(0) circ.cnot(0,1) circ.snapshot('snap1', snapshot_type='statevector') circ.snapshot('snap1', snapshot_type='density_matrix') circ.cnot(0,2) circ.snapshot('snap2', snapshot_type='statevector') circ.snapshot('snap2', snapshot_type='density_matrix') circ.cnot(1,2) circ.snapshot('snap3', snapshot_type='statevector') circ.snapshot('snap3', snapshot_type='density_matrix') circ.measure_all() transpiled_circ = transpile(circ, coupling_map=[[0,1],[1,0],[1,2],[2,1]],optimization_level=2) display(circ.draw()) display(transpiled_circ.draw()) results = execute(circ,Aer.get_backend('qasm_simulator')).result() statevector1 = results.data()['snapshots']['statevector']['snap1'][0] statevector2 = results.data()['snapshots']['statevector']['snap2'][0] statevector3 = results.data()['snapshots']['statevector']['snap2'][0] density_matrix1 = results.data()['snapshots']['density_matrix']['snap1'][0]['value'] density_matrix2 = results.data()['snapshots']['density_matrix']['snap2'][0]['value'] density_matrix3 = results.data()['snapshots']['density_matrix']['snap3'][0]['value'] results = execute(transpiled_circ,Aer.get_backend('qasm_simulator')).result() statevector_transpiled1 = results.data()['snapshots']['statevector']['snap1'][0] statevector_transpiled2 = results.data()['snapshots']['statevector']['snap2'][0] statevector_transpiled3 = results.data()['snapshots']['statevector']['snap3'][0] density_matrix_transpiled1 = results.data()['snapshots']['density_matrix']['snap1'][0]['value'] density_matrix_transpiled2 = results.data()['snapshots']['density_matrix']['snap2'][0]['value'] density_matrix_transpiled3 = results.data()['snapshots']['density_matrix']['snap3'][0]['value'] print('Fidelity between transpiled and normal statevector snapshots') print('snap 1',state_fidelity(statevector_transpiled1,statevector1)) print('snap 2',state_fidelity(statevector_transpiled2,statevector2)) print('snap 3',state_fidelity(statevector_transpiled3,statevector3)) print('\nFidelity between transpiled and normal density matrix snapshots') print('snap 1',state_fidelity(density_matrix_transpiled1,density_matrix1)) print('snap 2',state_fidelity(density_matrix_transpiled2,density_matrix2)) print('snap 3',state_fidelity(density_matrix_transpiled3,density_matrix3)) print('Counts normal: ',results.get_counts(circ)) print('Counts transpiled: ',results.get_counts(transpiled_circ))
https://github.com/Z-928/Bugs4Q
Z-928
open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Math; operation GlobalPhaseI(q:Qubit):Unit is Adj+Ctl{ X(q); Z(q); Y(q); } namespace Quantum.Kata.SingleQubitGates{ open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Math; operation GlobalPhaseI(q:Qubit):Unit is Adj+Ctl{ X(q); Z(q); Y(q); } }
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit.circuit import Parameter from qiskit import pulse from qiskit.test.mock.backends.almaden import * phase = Parameter('phase') with pulse.build(FakeAlmaden()) as phase_test_sched: pulse.shift_phase(phase, pulse.drive_channel(0)) phase_test_sched.instructions # ()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit.circuit import Parameter from qiskit import pulse from qiskit.test.mock.backends.almaden import * phase = Parameter('phase') with pulse.build(FakeAlmaden()) as phase_test_sched: pulse.shift_phase(phase, pulse.drive_channel(0)) phase_test_sched.instructions # ()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/Z-928/Bugs4Q
Z-928
# The snipplet above ==== is buggy version; the code below ==== is fixed version. from math import pi,pow from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, BasicAer, execute def IQFT(circuit, qin, n): for i in range (int(n/2)): circuit.swap(qin[i], qin[n -1 -i]) for i in range (n): circuit.h(qin[i]) for j in range (i +1, n, 1): circuit.cu1(-pi/ pow(2, j-i), qin[j], qin[i]) n = 3 qin = QuantumRegister(n) cr = ClassicalRegister(n) circuit = QuantumCircuit(qin, cr, name="Inverse_Quantum_Fourier_Transform") circuit.h(qin) circuit.z(qin[2]) circuit.s(qin[1]) circuit.z(qin[0]) circuit.t(qin[0]) IQFT(circuit, qin, n) circuit.measure (qin, cr) backend = BasicAer.get_backend("qasm_simulator") result = execute(circuit, backend, shots = 500).result() counts = result.get_counts(circuit) print(counts) #============ from math import pi,pow from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, BasicAer, execute def QFT(n, inverse=False): """This function returns a circuit implementing the (inverse) QFT.""" circuit = QuantumCircuit(n, name='IQFT' if inverse else 'QFT') # here's your old code, building the inverse QFT for i in range(int(n/2)): # note that I removed the qin register, since registers are not # really needed and you can just use the qubit indices circuit.swap(i, n - 1 - i) for i in range(n): circuit.h(i) for j in range(i + 1, n, 1): circuit.cu1(-pi / pow(2, j - i), j, i) # now we invert it to get the regular QFT if inverse: circuit = circuit.inverse() return circuit n = 3 qin = QuantumRegister(n) cr = ClassicalRegister(n) circuit = QuantumCircuit(qin, cr) circuit.h(qin) circuit.z(qin[2]) circuit.s(qin[1]) circuit.z(qin[0]) circuit.t(qin[0]) # get the IQFT and add it to your circuit with ``compose`` # if you want the regular QFT, just set inverse=False iqft = QFT(n, inverse=True) circuit.compose(iqft, inplace=True) circuit.measure (qin, cr) backend = BasicAer.get_backend("qasm_simulator") result = execute(circuit, backend, shots = 500).result() counts = result.get_counts(circuit) print(counts)
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import Aer, QuantumCircuit, transpile from qiskit.circuit.library import PhaseEstimation qc= QuantumCircuit(3,3) # dummy unitary circuit unitary_circuit = QuantumCircuit(1) unitary_circuit.h(0) # QPE qc.append(PhaseEstimation(2, unitary_circuit), list(range(3))) qc.measure(list(range(3)), list(range(3))) backend = Aer.get_backend('qasm_simulator') qc_transpiled = transpile(qc, backend) result = backend.run(qc, shots = 8192).result()
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import * qc = QuantumCircuit(2) qc.h(i) qc.crz (PI/4, 0, 1)